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Introduction

This Ph.D. thesis is part of a research project originated within the Probability group
of the Mathematics department of the University of Padova in the year 2005. This
project involves the Professors Paolo Dai Pra and Wolfgang J. Runggaldier, a Ph.D.
student of the University of Padova, Elena Sartori and Marco Tolotti of the Bocconi
University and the Scuola Normale Superiore.

The goal of this project is to integrate techniques and skills coming from di�erent
disciplines (Probability, Statistical Mechanics, Finance, Econometrics, Physics) in
order to describe, analyze and quantify phenomena related to current issues in the
Finance literature.

Financial motivations

The crucial issue that has motivated in particular this thesis is to describe a math-
ematical framework within which it is possible to explain the �nancial phenomenon
referred to clustering of defaults or credit crisis.
By clustering of default we mean the situation in which many obligors experience
�nancial distress (default or downgrading in a rating system) in a short time period.
What we mean by �many� defaults in a �short� time will be discussed later. It is
clear that in order to speak of a credit crisis there must be an unexpected breakdown
from the standard economic business cycle. In some sense we have in mind a sudden
change in the equilibrium of the credit market.

�Financial distress�, �default�, �downgrading� are all issues belonging to the �eld of
credit risk management.
Managing the risk concerns the identi�cation and the analysis of the randomness
intrinsic in the �nancial world and in particular the capacity to predict and quantify
the losses triggered by changes in the variables describing the �nancial market.
More speci�cally, when speaking of credit risk, one is dealing with the risks connected
with the possible changes in the credit worthiness of the obligors.

We shall concentrate, in particular, on the losses related to large portfolios, meaning
to portfolios of many obligors with similar characteristics. The precise meaning of
words such as �large� and �similar� shall be extensively discussed. When dealing
with many obligors, the issue of modeling the dependence structure plays a major
role.

Our idea is that a credit crisis could be explained as the e�ect of a contagion pro-
cess. A �rm experiencing �nancial distress may a�ect the credit quality of business
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10 INTRODUCTION

partners (via direct contagion) as well as of �rms in the same sector (due to an infor-
mation e�ect). Therefore the mechanism of credit contagion is the crucial mechanism
that we are going to develop in order to describe clustering of defaults.
Reduced form models for direct contagion can be found -among others- in Jarrow and
Yu (2001) [47] for counterparty risk, Davis and Lo (2001) [22] for infectious default,
Kiyotaki and Moore (1987) [48], where a model of credit chain obligations leading to
default cascade is considered, Horst (2006) [46] for domino e�ects, and Giesecke and
Weber (2005) [40] for a particle system approach. Concerning the banking sector, a
micro-economic liquidity equilibrium is analyzed by Allen and Gale (2000) [1]. Re-
cent papers on information driven default models are e.g. Schönbucher (2003) [59],
Du�e et al. (2006) [28], Collin-Dufresne et al. (2003) [12].

An important point that we would like to stress is that we are aiming at describing
the formation of a credit crisis starting from the in�uences that the single obligors
have among each others, in other words as a microeconomic phenomenon.
The standard literature suggests that the aggregate �nancial health of the system
is fully described by some macroeconomic factors that capture the business cycle
and then in�uence the credit quality of the obligors. These factors are usually ex-
ogenously speci�ed. One consequence of our �micro" point of view is that in our
modeling framework a global health indicator is endogenously computed and not a
priori assigned. Notice that the same philosophy is already standard practice in other
disciplines: similar models and techniques as the ones developed in this thesis are ap-
plied for instance by Brock and Durlauf in (2001) [8] for modeling social interactions
or by Cont and Löwe (1998) [15] in order to describe phenomena as herding behavior
or peer pressure.

The last remark is about a new trend in the literature concerning portfolio credit
risk. In the last years portfolio credit derivatives such as default basket and Collat-
eralized Debt Obligations (CDO's) have become very popular. In order to treat this
kind of structured derivatives a dynamic study of the aggregate losses L(t) caused
by the defaults in the underlying pool of assets becomes crucial. It has been docu-
mented that an e�ective study of the dynamics of the aggregate losses L(t) may not
necessarily require a full understanding of the single name processes related to the
underlying assets. For this reason a new approach has been recently proposed in the
literature: the so called top-down approach (for more details see Cont and Minca
(2008) [16], Giesecke and Goldberg (2007) [39] and Schönbucher (2006) [60]).
When considering Markov chain models similar in spirit to the ones proposed in
this work, it is possible -under certain hypothesis- to fully explain the evolution of
the system via aggregate su�cient statistics. As argued also in Frey and Backhaus
(2007) [36], this is exactly the philosophy behind a top-down model. In particular we
shall see in Chapter 3 (see Remark 3.5.8) that our approach may be considered as
a useful tool also under this new perspective since it naturally exploits the problem
of computing approximations of L(t) in a parsimonious way as a function of aggre-
gate asymptotic variables that may account for the heterogeneity in the underlying
portfolio.

We have thus identi�ed the �nancial core of this discussion: quantifying the losses
connected to the deterioration of credit quality, taking the contagion into account and
eventually describing under which market conditions a credit crisis may take place.
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Technical aspects

From a more technical point of view there are di�erent tasks that we have to deal
with; we brie�y illustrate the most important ones:

• Having large portfolios in mind, we are going to describe asymptotic results for a
system of �in�nitely many� �rms and then provide �nite volume approximations.
It basically implies the development of suitable Laws of Large Numbers (LLN)
and Central Limit Theorems (CLT).
The implementation of LLN and CLT for the study of large portfolios is not
new in the risk management literature; for example it is implemented (in a
rather basic setup, without considering contagion) in the Basel II accord. More
recent generalizations to contagion models have been proposed -among others-
by Frey and Backhaus (2006) [36] and by Giesecke and Weber (2005) [40].
A di�erent approach to the study of large portfolio losses may concern the
extreme events (analyzing the tails of the loss distributions). In this case, it is
quite common to rely on Large Deviation techniques. For a recent survey on
these techniques, applied to Finance and risk management, see Pham (2007)
[56]. In Dembo et al. (2006) [23] an application to large portfolio losses is
proposed.

• The issue of contagion may be described relying on interacting particle sys-
tems borrowed from Statistical Mechanics. Notice that also in the literature of
quantitative risk management the terminology interacting intensities is used in
order to describe reduced form models where interaction is taken into account.
The use of particle systems is rather common in the Social Sciences literature,
for instance when modeling social interactions and aggregate behaviors (see the
paper by Cont and Bouchaud (2000) [5] for a discussion on herding behavior in
Finance). Particle and dynamical systems can be found also in the literature on
�nancial market modeling. It has been shown that some of these models have
"thermodynamic limits" that exhibit similar features compared to the limiting
distributions (in particular when looking at the tails) of market returns time
series. For a discussion on �nancial market modeling see the survey by Cont
(1999) [14] and the papers by Föllmer (1994) [33] and Föllmer et al. (2004) [34]
that contain inspiring discussions on interacting agents.

• In order to derive a LLN and a CLT for a particle system we rely on Large
Deviation techniques. The idea is to considerM1 the space of probability mea-
sures on trajectories endowed with the Skorohod topology. It is quite easy to
state a Large Deviation Principle (LDP) for a reference system where there is
no interaction between the �rms. Then the goal is to �nd a suitable function
F : M1 → R+ that relates (via Varadhan's lemma) the LDP for the reference
system with our interactive model for contagion. This technique has been ap-
plied to spin-�ip systems by Dai Pra and Den Hollander (1996) [18].
Concerning the central limit theorem we shall develop two di�erent approaches.
The �rst one (based on large deviations) relies on a theory by Bolthausen (1986)
[4]. The second one is based on a weak convergence-type approach based on
the uniform convergence of the generators of the associated Markov chains (as
developed in the book by Ethier and Kurtz (1996) [32]).
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• We are aiming at building a dynamic model. This has to be done in order
to describe the time evolution of the variables describing the credit quality of
the obligors, and hence (under particular conditions) the formation of a credit
crisis.
We shall propose a model where the credit crisis is connected with the existence
of multiple equilibria for the dynamical system. The system may in fact spend
some time near an unstable con�guration and then suddenly decay to a stable
one. We shall see that this e�ect is related to the phase transition, i.e., on the
level of interaction in the model.

It is �nally worth to spend some words on the point of view that we have adopted
in this research project (at least in its �rst step). We have focused our attention on
the modeling aspects, trying to build a model as simple as possible where the e�ects
of contagion (as the credit crises) could have been observed. Moreover we have looked
for a completely solvable model, where closed form solutions can be provided. Put
di�erently, we have given more relevance to the technical part of the problem and the
modeling aspects.
On the other hand we have not developed the validation part of the model, i.e., the
calibration and the analysis of real data. Nevertheless many numerical simulations
are provided in order to illustrate the shape of the loss distributions and the trajec-
tories of the health indicators under di�erent market conditions.
Although this observation could be seen as a drawback of our work, we would like
to argue that what we are aiming at are the qualitative aspects more than the quan-
titative ones (at least in the �st step of the research). Indeed, the models we are
going to propose are very basic and have to be considered as a starting point for the
construction of more realistic models that may better �t real data.

Structure of the thesis and main results

The thesis is divided into �ve chapters and one appendix.
Chapter 1 and Chapter 2 are devoted to the introduction of the main concepts

and the basic tools for managing credit risk.
In writing this introductive part we had two goals in mind: �rstly we aimed at letting
this work be -as much as possible- self consistent. On the other hand we have tried
to report and brie�y discuss the main approaches and models used in the literature.
We have focused in particular on those models that can be considered as the starting
point for our research.
The guideline to these two chapters may be summarized in the three following fun-
damental questions:

How can we model the credit quality of one obligor? How can we determine her
default probability and the possible losses that the event of default may trigger?

Given a set of N ∈ N di�erent obligors, how can dependence be modeled and even-
tually joint default probabilities computed?

How can we model credit contagion? Is it possible to build a model that explains
clustering of defaults (credit crises)?
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These questions shall be picked up again in more detail in the two introductive
chapters and should �nd appropriate answers in the further exposition. Notice that
they go from the very basic concepts up to the issues that have motivated our research.
Hence these questions (and the two chapters themselves) are intended to build a
bridge between the existing literature and our point of view.

The succeeding two chapters contain the mathematical implementation and the
discussion of our two original models, developed in order to tackle the problem of
contagion in a credit risk perspective.

In Chapter 3 we propose in particular a �rst attempt to model an interactive
system of defaultable counterparties where a local random environment enters into
play.

We shall see that a crucial object of this work is the so called empirical measure.
Indeed, suppose that N �rms are acting in a market and their default indicators
σ(t) = (σi(t); i = 1, . . . , N), where σi(t) ∈ {−1, 1}, evolve in time. We denote by
σ[0, T ] ∈ D[0, T ] a trajectory on the interval [0, T ] of such a rating indicator. D[0, T ]
denotes the space of càdlàg functions endowed with the Skorohood topology. The
empirical measure ρN is de�ned as follows

ρN (σ[0, T ]) =
1
N

N∑

i=1

δ(σi[0,T ]).

It is a random measure taking values in M1(D[0, T ]), the space of probabilities on
D[0, T ]. ρN weights the realizations of the N dimensional process σ[0, T ]. Put dif-
ferently the empirical measure can be thought of the physical (historical) measure of
the market.
Most of the mathematical results of this thesis are concerned with the sequence of
measures (ρN )N . In this chapter we state in particular a large deviation principle for
this sequence of measures (Theorem 3.3.3) and then we prove a suitable law of large
numbers (Theorem 3.3.6), �nding a unique Q∗ such that ρN → Q∗ almost surely.
Signi�cant and very useful for applications is also the characterization of Q∗ provided
in Proposition 3.3.5.
In Section 3.5 we �nally state and prove a functional central limit theorem character-
izing the �uctuations of ρN around Q∗ (Theorem 3.5.6). The proof of this theorem
is inspired by the seminal work of E. Bolthausen (see [4]). In [4] a rather general
framework is proposed in order to derive central limit theorems in Banach spaces.
Since M1 is not a Banach space we are forced to construct an auxiliary space where
a suitable large deviation principle is inherited and a central limit theorem can be
proved accordingly. This procedure is summarized in Theorems 3.5.4 and 3.5.5.

Although this �rst model shows some interesting features and -to some extent-
generalizes the present literature on dynamic mean-�eld models for large portfolio
losses, it turns out to be not yet comprehensive enough in order to explain clustering
and credit crises.
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Chapter 4 is then devoted to the analysis of a new framework that makes possible
the explicit identi�cation of the desired clustering e�ect.
To this aim we introduce a fundamental indicator of robustness ωi ∈ {−1, 1} that is
coupled with σi de�ned before. The 2N state variables (σ, ω) evolve in time and their
dynamics turn out to be non trivial at all. In particular our model is non-reversible.
As compared to similar but reversible stochastic interacting systems, more careful
arguments have to be used in order to prove the large deviation principle, which rep-
resents the basic tool in our approach.
Similarly to Chapter 3, the �rst main result is a Law of Large Numbers (Theorem
4.3.2) based on a Large Deviation Principle (Proposition 4.3.4).
In Theorem 4.3.11 we shall see that di�erent asymptotic con�gurations can be found,
depending on the values of the parameters. This phenomenon (called phase transi-
tion) has implications for the description of a credit crisis as we shall explain in more
details in Chapter 5.
The last section of this chapter is devoted to the study of the �uctuations of the em-
pirical measure around its limit. Two di�erent approaches are described, the former
is based on uniform convergence of generators (Theorem 4.4.1). The latter (Theorem
4.4.5) mimics the functional approach already introduced in the previous chapter.

One remark is needed at this point. Part of these rather technical proofs have been
pursued in collaboration with Paolo Dai Pra and Elena Sartori. We shall refer to the
Ph.D. thesis of Elena where some explicit computations have not been reported in
this dissertation.
To make the exposition less heavy we have postponed to Appendix A the most
technical proofs of Chapters 3 and 4.

The �nancial applications are discussed in Chapter 5.
The main result of this chapter is Theorem 5.0.8. It is concerned with the com-

putation of risk measures for managing the risk involved in large portfolios. Various
examples are provided, some of them have been suggested by the existing literature
on the subject.

The second issue that we are going to analyze in this chapter is related to the
formation of a credit crisis. To this aim the equilibria of the limiting dynamics and
their stability are studied and the phase transition is fully characterized. At the end
of the chapter, di�erent graphs and numerical implementations are presented in order
to support the �nancial interpretation of our model.

Finally we conclude this thesis with a brief summary of the main results and
mentioning some open problems and possible lines of future research in this area.



Chapter 1

Credit quality and credit risk

The goal of the �rst two chapters of this thesis is to equip the reader with the basic
notations and concepts necessary to enter the world of credit risk. First of all we
would like to specify what we intend for "risk" in the context of credit and propose a
mathematical framework in which a punctual quantitative analysis can be pursued.

A rather concise de�nition of risk in �nance could be as follows: we speak about
risk when we consider the possibility of having unexpected changes in the variables
that describe the �nancial model.
We thus have to de�ne a suitable probability space {Ω,F , P} that summarizes the
states of the world, the interesting events and a possible probability measure on them.
We may possibly add a �ltration (Ft)t≥0 that describes the �ow of information when
considering dynamic models. Finally we de�ne random variables (eventually pro-
cesses) X : Ω → R, representing the �nancial variables that we are interested in.
In the context of credit risk, X should basically describe the credit quality of a given
obligor, where an obligor is somebody who has to pay back a debt to somebody else in
the future. For credit quality we mean the ability of being able to pay back obligations.

How can we model the credit quality of one obligor? How can we determine her
default probability and the possible losses that the event of default may trigger?

Suppose that this obligor is a �rm; in this case X could represents the value of
the �rm at a given time. Thus we could be interested in estimating the probability
that X falls below a certain value (also named a threshold level) and this could be a
good choice for a credit quality indicator. In an even naiver world, X could simply
be an indicator of default (bankruptcy): if X = 0 the �rm is able to pay back its
obligation, if X = 1 it is not.
All these issues will be developed and speci�ed in the following chapters. In particular
many di�erent models with di�erent speci�cations for X will be provided as well as
di�erent speci�cations for {Ω,F , P} and (Ft)t≥0.
We would like to stress the fact that the majority of the concepts we are going to
state in the �rst two chapters are not new and can be found in di�erent books dealing
with credit risk. Our purpose is to give a glance on the main aspects, focusing the
attention on the basic building blocks necessary to assess and quantify the riskiness of
a portfolio of obligors and to price credit derivatives. We shall describe the existing
techniques used to compute these building blocks and the relevance of particular

15
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assumptions often used to provide explicit formulae. In doing this we shall build the
bridge between existing literature and our modeling ideas, leading the reader to the
new framework that we have introduced in order to solve some open problems that
are still debated in the present literature.

1.1 Default probability and loss given default
In this section we brie�y recall the very basic tools used to deal with credit risk. Our
aim is to focus the attention on the so called building blocks, i.e., the basic objects
on which the risk measurement and the pricing techniques of large part of more
complicated securities rely on. These objects are the so called default probability and
the loss given default.

In a credit risk environment the basic concept is default. We do not enter into the
discussion of the bankruptcy procedures. We simply say that a default time τ has
to be de�ned. In the next section we shall discuss on how τ is characterized within
di�erent models. Our concern now is simply that τ is a random time and in particular
a stopping time with respect to its own �ltration (Ht)t≥0

1.

Default probability (PD)
We de�ne the default probability between t and T for the obligor as

p(t, T ) = P (τ ≤ T |τ > t). (1.1)

It is worth to de�ne also the conditional version for the default probabilities meaning
the probability at time t of having a default between future dates T1 and T2 knowing
survival up to T1:

p(t, T1, T2) =
p(t, T2)
p(t, T1)

, 0 ≤ t ≤ T1 ≤ T2.

These quantities are then used in order to determine an important object often re-
ferred to the hazard rate. We de�ne the hazard rate between t and T as

h(t, T ) = lim
∆t→0

1
∆t

p(t, T, T + ∆t)

whenever this limit exists.

Remark 1.1.1 It should be stressed that in more general models (for example if the
interest rate r is stochastic or if other random variables in�uence the market prices)
one has to be careful with the de�nition of hazard rates. In particular it is very
important to study measurability conditions (namely which �ltration or information
structure are available in the model) and how the total information is related to the
�ltration generated by the default process (see chapters 5,6 in [3] for a punctual dis-
cussion). In particular it can be shown (see for instance Section 6.2 in [3]) that for a
random time τ one may consider two di�erent hazard processes (both well de�ned and
mathematically meaningful) and they may not coincide if some regularity hypotheses
are not made on the model.

1How F and H are related is a crucial point. An extensive discussion is made in [3]. We do not
enter into details at this point.
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Formally we can also de�ne a local hazard rate:

γ(t) := h(t, t) = lim
∆t→0

1
∆t

p(τ ≤ t + ∆t|τ > t).

Loss given default (LGD)
Suppose that a default happens. Suppose moreover that a bank holds a position
issued by the defaulting obligor. At the time of default τ < T part of the investment
of the bank is lost due to the impossibility of the obligor of paying back obligations.
The part that the bank (or more general an investor) cannot recover is called loss
given default. This quantity is often modeled as a random variable l = δe where
0 ≤ δ ≤ 1 represents a random proportion of the exposure that is lost and e the
actual exposure at default.
A rather general discussion on pricing issues of defaultable claims is also proposed in
[3]. There, it is shown that (PD) and (LGD) are the building blocks, necessary to
price many types of derivatives such as defaultable �xed-coupon bonds, credit default
swaps (and many variants of them), asset swap packages.

1.2 Di�erent approaches to credit risk modeling
Up to now we have considered a given probability space {Ω,F , (Ft)t, P} endowed
with a market �ltration. On this �ltered probability space we have de�ned a default
time τ without taking care of the economic process leading to this de�nition and
without specifying any distributional assumption on it (except for some assumptions
on the corresponding �ltration).
We now have to implement models that may help in computing the building blocks
seen in the previous section. In the literature two typical and rather di�erent point
of views are developed.

The �rst class of models, the so called structural models (or �rm value models),
relies on the precise de�nition of some economical variables (such as the �asset value
process� for a �rm). The evolution of these variables determine the credit quality of
the obligor itself.

The second class of models, the reduced form models (or intensity based models),
is based on a more �statistical� point of view. The idea here is that -having de�ned
a suitable family of processes (without direct economical interpretation)- one tries to
calibrate the parameters in order to �t historical time series or other data.

These two approaches lead of course to di�erent modeling frameworks. Both have
important advantages: the former gives more direct intuition on what is going on
economically; the latter is usually easier to implement and allows for more freedom
in modeling parameters and in �tting data2.

2We would like to stress the fact that the �dilemma" on what the best �philosophy" should be,
is far from being solved. Moreover, notice that it involves the fundamental debate whether when
using random variables one is or is not allowed to �forget" about the underlying probability space
(the underlying �experiment") taking into account only distributional consequences (the numerical
results of the experiment).
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A. Structural models
The basic idea behind structural models is to consider the evolution in time of an
underlying process X that is related to some fundamental indicators of the �rm.
Then, usually, the default happens when this process hits a predetermined (possibly
stochastic) barrier D. So that τ is de�ned as a �rst passage stopping time, indeed

τ = inf
t≥0
{Xt ≤ D}. (1.2)

In the progenitor of these models, due to Merton (1974) [53], the underlying process
was the �rm asset value process Vt. In particular it is assumed that Vt = St + Bt

where St is the value at time t of the equity and Bt is the value at time t of a zero
coupon bond with face value B and maturity T .
In this basic context where the payments to the bond-holders are due at a �xed time
T , the event of default is even easier to describe, than in Equation (1.2). We have in
fact that default happens if and only if VT < D so that τ = T . Moreover the recovery
at default is simply BT = min(VT , B).
Suppose that Vt evolves according to the di�erential equation

dVt = µV Vtdt + σV VtdWt

where V0 = V > 0, µV ∈ R and σV > 0 are constants and W is a standard Brownian
motion. Then one can compute the default probability

p(0, T ) = P (VT < B) = N
(

ln(B/V )− (µV − σ2
V /2)

σV

√
T

)

where N (·) stands for the standard normal distribution function.
We do not want to enter into more details on this topic, we simply mention the
fact that this modeling idea is still used in practice. More sophisticated models
have been proposed, we shall see some extensions in the next sections (the KMV
model, credit migration models, a multivariate extension of Merton model, ...). What
remains a milestone in all of them is the precise reference to an underlying explanatory
(fundamental) process and the fact that the default time is an hitting time3.

B. Reduced form models
We have seen what a model for credit risk should be able to provide: probabilities
of default and losses given default. In the structural approach, we have seen a basic
methodology to compute them.
One di�erent approach is to consider models where the family of the distributions
for the probabilities of default is a priori given and the model parameters are then

3The fact that τ is an hitting time for a continuous path process makes the time τ be fully
predictable. In particular this implies that the local probability of default h(t) is always zero. We
shall see that this is not the case in the so called intensity based models (and this re�ects better
real data). This is probably the main (mathematical) di�erence between the two approaches and
the reason that makes intensity based models so popular. Many authors have tried to relax this
hypothesis in order to make τ totally inaccessible. We refer to [58] for a discussion on the accessibility
of a stopping time and to [22], [10], [9], [43] and [44] for di�erent �bridge" models between structural
and reduced form models.
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computed in order to �t market data. In particular it is useful to consider models
where a local probability of default is well de�ned.

As in the previous sections we assume that a probability space {Ω,F , P} is given.
We consider the nonnegative random variable τ : Ω → R+, with P{τ = 0} = 0 and
P{τ > t} > 0 for all t, that describes the default time.
For simplicity we suppose that the information available to the market is the nat-
ural �ltration generated by the default time τ . Indeed, we consider the σ-�elds
Ht := σ({τ ≤ u} : u ≤ t) and the corresponding �ltration H = (Ht)t≥0.
In many reduced form models the default time τ is distributed according to an ex-
ponential law, so that the event of default is related to the �rst jump of a Poisson
process (N(t))t≥0 such that τ = inf{t : N(t) = 1}. After the �rst jump we stop the
Poisson process so that for t > τ we have N(t) = N(τ) = 1. Summarizing we �nally
have N(t) = N(t ∧ τ) = I{τ≤t}. Notice that Ht = σ(N(u) : u ≤ t).
We denote by F (t) = P{τ ≤ t} for all t ∈ R+ the cumulative distribution function
of the default time.

Assumption 1.2.1 F (t) is absolutely continuous with respect to the Lebesgue mea-
sure, that is, it admits a density function f(t) : R+ → R+ such that F (t) =

∫ t
0 f(u)du,

then
F (t) = 1− e−

∫ t
0 γ(u)du,

where γ(t) = f(t)(1− F (t))−1.

The function γ is called intensity function. It can be shown that in this case

γ(t) := lim
∆t→0

1
∆t

P (τ ≤ t + ∆t|τ > t).

Put di�erently, it describes the local probability of default. In the class of models
where the intensity function is well de�ned, it is natural to assume γ as the primitive
object to be characterized. These models are usually called intensity based models.

1.3 Credit migration
In the previous sections we have described the basic tools when dealing with default
risk. In particular we have de�ned a stopping time τ as the time of default. We want
now to consider more general frameworks in which the default event is no longer the
only interesting event (and the unique risk to be taken into account).
Instead of looking only at the default event, we shall describe the credit quality of
an obligor considering a whole set of rating classes where the default is only the last
(and worst) class. We are thinking of the so called credit rating models. These models
are implemented by rating agencies (Moody's, Standard and Poor's, Fitch) but also
by the internal rating systems of �nancial insitutions4.
The basic idea behind these models is to assign each obligor to one class that is char-
acterized by an estimated probability of default (i.e. of falling down to the default
state). This means that all the available information about the probability of default
of each obligor is given by its rating class.

4In the new Basel II accord the single institutions are encouraged to implement internal systems
to asses credit worthiness of obligors, see [2].
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For example in Moody's model the rating classes are labelled from the best to the
worst as AAA, AA, A, BBB,..., CCC, D, where D indicates the default state. Thus
we have to estimate a K-dimensional vector of probabilities of default where K is the
number of rating classes (apart form default). Notice that all the migration proba-
bilities have to be determined, in the sense that we are interested in the probability
that a �rm in class AA falls within a year into class B, and this has to be done for
each pair of classes. This means that we have to determine a transition matrix in
which the entries are exactly the probabilities of migration among the K + 1 classes.
To formalize this issue we give the following de�nitions:

De�nition 1.3.1

• We label the K +1 classes as K, K−1, ..., 1, 0 where k = 0 indicates the default
state;

• We name K0 the set of all the rating classes and K = K0/{0} the set of all the
classes except for default;

• De�ne the rating process R{t≥0} as the process R(ω, t) : Ω× [0,∞] → K0 where
{Ω,F ,Ft, P} is a probability space where Ft is the market �ltration;

• We de�ne Q(t, T ) ∈ RK+1 × RK+1 as the transition probability matrix for the
time interval [t, T ], so that

(Q(t, T ))ij = P (R(T ) = j|Ft ∨R(t) = i).

Notice that (Q(t, T ))ij ≥ 0, ∀ i, j ∈ K0;
∑K

j=0 Q(t, T )i,j = 1, ∀ i ∈ K0; Q(t, T )0,j =
0, ∀ j ∈ K and Q(t, t) = I where I is the identity matrix.

The problem of credit migration is now to specify a model in order to describe the
evolution of the transition matrix Q(t, T ) and eventually to calibrate it to the data.
In the standard literature as well as in the most famous models used in practice,
the rating transition process R is assumed to evolve as a time homogeneous Markov
chain. Basically this means that

(Q(t, T ))ij = P (R(T ) = j|R(t) = i);

Q(t, T ) = Q̃(T − t) ∀t ≤ T.

where Q̃ is a transition probability that depends only on the length of the time interval
between t and T .
The Markov hypothesis simpli�es the computation of the migration probabilities. It
can be proved (see [58] for more details) that in this case

Q(t, T ) = exp{(T − t)Λ}

where the exponential is de�ned formally as the limit of the series expansion

exp{(T − t)Λ} =
∞∑

n=0

((T − t)Λ)n

n!



1.4. MODELING DEPENDENCE 21

and where (Λ)ij = limh→0
Q̃(h)ij

h , ∀i 6= j are the local transition probabilities and the
diagonal elements (Λ)ii are de�ned as 1−∑

j 6=i(Λ)ij .
A discussion of these models can be found in [58] or in [31]. We want to stress
the fact that the Markov assumption is very restrictive and not supported by real
data on credit migration time series. In some recent papers di�erent authors have
proposed models where this hypothesis is relaxed in various ways. We quote the
papers by Lando and Skodeberg (2002) [50], Christensen, Hansen, Lando (2004)
[11] and McNeil and Wendin (2006) [54]. In the latter, a credit migration model that
allows for dependence between obligors is proposed. We shall describe in Chapter 4 an
alternative approach to credit migration that takes into account the direct contagion
between the obligors.

1.4 Modeling dependence
Suppose that a set of N ∈ N obligors are facing credit risk. Clearly each of them has
his marginal probability of default at time t (let's say pi(t), i = 1, .., N), that can be
computed using some techniques shown in the previous sections.

One might be interested in pricing multi-name derivatives (such as CDOs) or to
asses the riskiness of a loan portfolio of a bank. In both cases we have to deal with
joint default probabilities of the whole set (or part of it) of the N obligors. Notice
that it would be quite �naive� (and unrealistic) to simply assume that default events
of di�erent obligors are independent. There is in fact empirical evidence in the data
that reject the independence hypothesis (see for instance Section 3.1 in [29] for a
discussion on macroeconomic common factors and [47] for the necessity of direct
linkages between �rms). Thus a new problem arises when building a credit risk
model:

Given a set of N ∈ N di�erent obligors, how can dependence be modeled and even-
tually joint default probabilities computed?

As we have discussed in previous sections, there are basically two approaches to
model credit risk, the so called structural models and the reduced form model. This
di�erence applies also in the case of multiple obligors. A new issue is how to de�ne
dependence. The �rst possibility is to model directly (in a structural framework)
some correlated asset value processes and to try to infer probabilities of default from
the dynamics of these processes. The drawback is that even with only two obligors,
calculations become quite involved. An example of structural model for two value
processes is due to Zhou (see [64]). The second way is to rely on some intensity based
approaches.
In the next chapter we shall concentrate on the latter. We shall discuss two di�erent
families: the so called conditionally independent models and the contagion models.





Chapter 2

Portfolio credit risk

In this chapter we explore the basic tools for managing the risk, concentrating our
attention to the topics related to credit portfolios, eventually large portfolios.

From the �nancial viewpoint we are interested in studying models for evaluating
riskiness of portfolios and computing related risk measurements.
From the mathematical viewpoint, the core of the discussion remains how to model
dependence.
We shall also brie�y explore some particular models proposed in the literature for
credit risk management, giving examples and addressing the reader to the literature.

Credit risk management is related to the ability of hedging against changes in the
credit worthiness of the obligors. In particular one has to quantity the risk capital
that a bank is requested to hold in order to cover unexpected losses. In this framework,
we shall also see how credit risk is treated in the famous Basel II Accord (see [2]),
and how the formulas suggested to compute Capital Risk adequacies are based on
some extensions of one of the models we are going to illustrate in this chapter (the
asymptotic behavior of the Bernoulli mixture model).

2.1 Basic de�nitions and concepts
Relying on the book by Embrechts, Frey and McNeil [31], we explore in this section
some more technical details related to the existing models for portfolio credit risk
management.
We state in the next de�nition some general concepts for modeling dependent de-
faults and portfolio losses. Consider a certain number N of obligors for which we
are interested in assessing credit quality (e.g. their probability of default and their
exposure at a given time).

De�nition 2.1.1 (Default variables)
For any �xed time horizon T (eventually T →∞)

• Si(t) ∈ {0, 1, ...,K} for i = 1, ..., N and t ∈ [0, T ] is the state indicator of obligor
i at time t. Zero is the default state.

• Y (t) := (Y1(t), ..., YN (t)). Yi(t) is the default event: Yi(t) = 1 ⇔ Si(t) = 0.
M(t) :=

∑N
i=1 Yi(t) is the default counting variable.

23
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Notice that at this level we did not assign to the variable Si a precise �nancial
meaning. In could be any kind of credit quality indicator. For example, we shall
specialize this general setting to �t a multivariate credit migration model (see Section
2.2.3). It could also represent any fundamental indicator of �nancial health for a given
�rm (a liquidity indicator, the sign of the cash balances...).

Remark 2.1.2 In standard practice and in most of the literature on credit risk man-
agement, a static approach to default risk is often preferred. The reason being that
the time horizon for risk management is usually �xed to be one year. Therefore it
is implicitly assumed that t = 1 and therefore the time dependence is suppressed in
all the de�nitions in 2.1.1. We have preferred to propose them in a dynamic context
since our �nal aim is to provide a dynamic view to the risk management issues.
We believe that the dynamic point of view may help in explaining phenomena such
as credit crises, credit migration, and even help in pricing credit derivatives (e.g.
CDOs). For these reasons we shall provide in chapters 3 and 4 models where the time
evolution of the loss distribution is taken into account.

A second remark is related to the reduction of complexity of these models. When
dealing with fully heterogeneous models one looses analytical tractability. Moreover,
some homogeneity assumptions are commonly used in practice and in most of the lit-
erature on the topic. Think for instance at the segmentation in di�erent rating classes
or in sector groups. These categories are built in order to cut the high dimensionality
of the model.

Assumption 2.1.3
(A.1) (Exchangeability) The obligors i ∈ {1, ..., m} for m ≤ N are said to belong

to a homogeneous group if the state indicators Si, i = 1, .., m (and the default
indicators Y ) are exchangeable.
Si, i = 1, .., m are said exchangeable if (S1, ..., Sm) d= (SΠ(1), ..., SΠ(m)), for
any permutation (Π(1), ..., Π(m)) of (1, ..., m).

(A.2) (Mean �eld assumption) The default probability of obligor i depends on the
vector Y (t) only via M(t) =

∑
i F (Yi(t)), where F (·) is some smooth function.

(A.1) is related to the homogeneity within a group of obligors; (A.2) states that the
probability of default of one single obligor depends on the others only via one aggre-
gated variable that summarizes the health of the �nancial system. We shall see that
these homogeneity assumptions are often crucial to explicitly solve di�erent classes
of models.
We are now going to state a de�nition of portfolio losses. When speaking of portfolio
losses, we mean the losses that a �nancial institution may su�er in a credit portfolio
due to deterioration of the credit quality of the obligors. Many speci�cations may be
chosen to this aim. Some general rules are now stated.
Basically one has to describe marginal losses (the losses due to single obligors). Then
one looks at the aggregate credit portfolio. Thus we need random variables (or
stochastic processes when in a dynamic set up) describing marginal and aggregate
losses at a given time for the di�erent obligors.
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De�nition 2.1.4 (Portfolio losses)

• We de�ne Li(t) for i = 1, ..., N and t ∈ [0, T ] (eventually T →∞) the marginal
loss due to obligor i. Li(t) can be any non negative random variable de�ned on
the probability space {Ω,F , P} and measurable with respect to an appropriate
market �ltration (Ft)t≥0.

• We de�ne the portfolio loss at time t ∈ [0, T ] (eventually T →∞) as the random
variable

L(N)(t) =
N∑

i=1

Li(t). (2.1)

A particular choice of Li(t):

• We name δi(t)ei(t) the loss given default of obligor i at time t ∈ [0, T ], where
ei ∈ R+ represents the exposure (the value of the position i in the portfolio)
and where δi ∈ (0; 1] is the (random) proportion of the exposure which is lost in
case of default. In this case we have

L(N)(t) =
N∑

i=1

ei(t)δi(t)Yi(t). (2.2)

Before starting an extended illustration on di�erent frameworks for modeling depen-
dence, we would like to quote some technical aspects of the Basel II accord (see [2]),
related to the computation of the so called risk capital, that a bank is supposed to
hold in order to hedge against unexpected losses in credit portfolios.

2.1.1 Basel II insights
The standard way in which a �nancial institution may prevent itself against bankruptcy
is to allocate (to keep aside) part of the capital to cover unexpected losses (of a prede-
termined magnitude) that may occur during a �xed time-period (see Remark 2.1.2).
How is this fact formalized?
The simplest way to de�ne it is to hold 8% of the so called risk weighted assets (RWA)
of its credit portfolio as risk capital (RC). For each investment a risk weight ai is
de�ned, so that RWAtot =

∑
i RWAi, where RWAi = aiei, being ei the exposure of

obligor i. And �nally RC = 0, 08×RWA.
The weights ai can be determined either simply by the type and the credit of the
counterpart (being 50% for a corporation in the range A+ to A− of Moody's), or
by more sophisticated mechanisms of calculation, the so called internal rating based
approach. In this case the weights take the form

ai = (0, 08)−1cδiN
(N−1(p̄i) +

√
ρN−1(0, 999)√

1− ρ

)
, (2.3)

where c is a technical factor, p̄i represents the marginal probability of default, δi

the percentage loss given default as seen in De�nition 2.1.4 and ρ is a �correlation�
parameter. The latter parameter is �xed by the Basel II Accord (as well as c), whereas
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p̄i, ei, δi can be estimated by the bank with internal models. Finally we write the
formula for the RC related to obligor i:

RCi = (0, 08)RWAi = cδieiN
(N−1(p̄i) +

√
ρN−1(0, 999)√

1− ρ

)
, (2.4)

In the next section we shall explore di�erent approaches which lead an institution to
come up with estimates for the above mentioned parameters.
Two important classes of models are the conditional independent defaults models and
the contagion models. The �rst class focuses on the dependence of the entire set
of obligors on some exogenous variables (macroeconomic factors), whereas the sec-
ond is dealing with direct economic links among �rms, and how �nancial distress is
transmitted from one stressed �rm to a linked one directly. In short one could say
that the former is a macroscopic point of view and the latter a microscopic point of
view. It can be argued that, given the enormous size of a typical loan portfolio, direct
business relations play a less prominent role in explaining default dependence. This
issue has been analyzed in details for instance by Giesecke and Weber (see [40] and
[41] for details). They propose a comprehensive model where both e�ects are taken
into account. In our perspective the discussion about the importance of including
direct linkages when looking at portfolio losses is still far from being closed. We shall
propose our approach in the next chapters.

2.2 Conditionally independent models
The main assumption in this class of models is that after conditioning on some vari-
ables (or sigma algebra), the default events are independent. Following [31] we dis-
tinguish two important families of conditionally independent models.

2.2.1 Mixture models
Here the default probabilities depend on a set of common economic factors labeled
as Ψ, for instance explanatory macroeconomic variables. Given a realization of Ψ,
defaults of di�erent obligors are independent.

De�nition 2.2.1 (Bernoulli mixture models)
Given p < N and a p-dimensional random vector Ψ, Y follows a Bernoulli mixture
model with factor vector Ψ, if there are functions Qi such that conditional on Ψ,
the default indicator Y is a vector of independent Bernoulli random variables with
P (Yi = 1|Ψ = ψ) = Qi(ψ). Then for y ∈ {0, 1}N we have

P (Y = y|Ψ = ψ) = ΠN
i=1Qi(ψ)yi(1−Qi(ψ))1−yi

Example 2.2.2 (One factor Bernoulli mixture models) To give an intuition,
we explicitly describe the simple case in which we only have one random variable Ψ
and suppose that all the functions Qi coincide. In this case the Bernoulli-mixture
model is exchangeable, since the random vector Y is exchangeable (recall Assumption
2.1.3).
In this case the common background variable has the e�ect of randomizing the prob-
ability of the binomial and induces dependence.



2.2. CONDITIONALLY INDEPENDENT MODELS 27

If Yi, i = 1, ..., N are i.i.d. Bernoulli random variables with parameter p̃, where p̃ is
again random taking values on [0, 1] with a well de�ned density f and E[p̃] = p̄. We
have

E[Yi] = p̄ ; V ar(Yi) = p̄(1− p̄)

The distribution of the random variable counting the number of defaults M (N) =∑N
i=1 Yi has mean EM (N) = Np̄ and variance

V ar(M (N)) = Np̄(1− p̄) + N(N − 1)(Ep̃2 − p̄2)

The conditional probability of M (N) is given by

P (M (N) = k|p̃ = q) =
(

N

k

)
qk(1− q)N−k

and then
P (M (N) = k) =

(
N

k

) ∫ 1

0
qk(1− q)N−kdf(q)

Observe also that for a large portfolio the variance is determined only by the random-
ness of p̃, in fact we have

V ar

(
M (N)

N

)
→ Ep̃2 − p̃2 ; N →∞.

One can also see that

P

(
M (N)

N
< Θ

)
→

∫ Θ

0
f(p)dp = F (Θ).

This results suggest that in this kind of model, the basic goal is to �nd a suitable
distribution for p. A possible (and commonly used) speci�cation is p ∼ β(α, β) the
beta distribution.
It is also possible to relax the homogeneity assumption to homogeneity within groups.
In this case the obligors are exchangeable only inside their group. See for instance
[36] for such an extension.

2.2.2 Threshold models
Another very popular class of models are the so called threshold models which refer
again to the larger class of conditionally independent models. They are called also
latent variable models because defaults are triggered by some exogenous latent ran-
dom variables.
In this case default occurs when a random variable X falls below some threshold. An
example is the Merton �rm value model (described in the previous chapter) where X
is the �rm asset value.

De�nition 2.2.3 Let X = (X1, ..., XN ) be an N−dimensional random vector and
di

1 < ... < di
n a sequence of thresholds, with di

0 = −∞, di
n+1 = +∞. Then we set

Si = j ⇐⇒ di
j < Xi ≤ di

j+1; j ∈ {0, ..., n}, i ∈ {1, ..., N}. (2.5)

(X, D) is said to be a threshold model for the state vector S where (Xi, (di
j)1≤j≤n)1≤i≤N

is a latent vector and the i-th row of D contains the critical thresholds for obligor i.
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In this kind of models it becomes crucial to know the marginal distribution functions
of X: Fi(x) = P (Xi ≤ x) and how these are correlated. Notice that p̄i = Fi(di

1).
A natural way to de�ne a correlation structure between the latent variables is to use
a copula function. We refer to [31] for further explanations and examples of latent
variable models and copulae. We only notice that two of the most popular credit
models used in practice (Credit Metrics and KMV model) are re�ned versions of the
above de�nition.

Example 2.2.4 (A simple one factor model) We describe in this example a sim-
ple one-factor reduction of the multivariate factor model, which illustrates the model-
ing intuition behind the KMV/CreditMetrcis model.
Consider a model with N Gaussian variables X1, ..., XN . These variables depend on
a factor F ∼ N (0, σ) so that we can write X = bF +ε, where b is a vector of loadings
and ε the idiosyncratic errors such that εi ∼ N (0, vi).
We would like to normalize the variances of X so that V ar(Xi) = 1, ∀i. Hence, if
βi = (bi)2σ2 identi�es the systematic risk of Xi then vi = 1−βi gives the idiosyncratic
risk of Xi.
Hence it can be shown that

p̄i(F ) = N
(N−1(p̄i)− biF√

1− βi

)
(2.6)

In the particular case where all loadings coincide and are equal to √ρ and F = −Ψ
(an exogenous variable) so that Xi = −√ρ Ψ +

√
1− ρ εi, equation (2.6) becomes

p̄i(ψ) = N
(N−1(p̄i) +

√
ρ ψ√

1− ρ

)
(2.7)

2.2.3 A view on dependent credit migration models
In the framework of threshold models McNeil and Wendin (see [54]) have speci�ed
a credit migration model where the evolution of the transition probability is not
Markovian and takes into account the dependence of the obligors in a vector of
macroeconomic (common) factors and a set of latent variables (which of course break
the independence). We remind to De�nition 1.3.1 and we add the following:

• We have Nt obligors whose rating class has to be assigned at each time t ≥ 0;

• We have threshold values (µκ,l)κ∈K,l∈K0 such that for all κ ∈ K

−∞ = µκ,−1 ≤ µκ,0 ≤ µκ,1 ≤ ... ≤ µκ,K−1 ≤ µκ,K = ∞

and µ0,l = ∞ for all l ∈ K0;

• We have a vector of latent factors bt. A design vector zti and an idiosyncratic
risk variable εti for each obligor i = 1, ..., Nt. εti are i.i.d and independent of bt.
Finally we set Xti := εti + z′tibt for i = 1, ..., Nt.

In view of these de�nitions, we reformulate De�nition 2.2.3 as follows:

Rti = l ⇐⇒ Xti ∈ (µκ(t,i),l−1, µκ(t,i),l] (2.8)
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where Rti represents the rating class at the end of period t and κ(t, i) the rating
at the beginning thereof. For details on the implications of this model and possible
generalizations see [54].
What we would like to stress is that the introduction of latent (and possibly also
known) risk factors introduces dependence in the model. As we have already seen in
this section, this kind of models belong to the family of the so called conditionally
independent models. The events of downgrades for the �rms are not independent but
they become independent once we condition on the realization of bt.
We shall propose in Chapter 4 a very basic credit migration model where the depen-
dence structure is built in such a way that it does not allow for conditional indepen-
dence. This latter approach can be linked to the family of the so called contagion
models.

2.3 Contagion models
Following the standard literature on quantitative credit risk management we have pro-
vided the basic concepts and the standard models usually considered when dealing
with credit risk. In particular we have focused attention on how to model the depen-
dence structure between di�erent obligors. The conditional independence framework
that we have explored has many advantages, in particular it is very tractable and
easy to �t. The problems arise when one is interested in studying phenomena where
the connection between the obligors is not only related to macroeconomic factors.
We are thinking of direct business relationships, lending-borrowing networks, primary-
secondary ties and other relationships that have an important consequence: the e�ect
(observed in the data) that default intensities of non-defaulted �rms change (usually
increase) at the time of default of other "near" �rms, where near means that the
�rms are related with some lending-borrowing linkages or simply that they are in the
same sector or group.
Think at the e�ect of the bankruptcy of the energy company Enron in 2001: in-
vestors had the feeling that illegal accounting practices could have been in place in
other debt-issuers on similar markets, causing a rising e�ect on credit spreads of other
�rms. This e�ect is called information e�ect in the sense that having new information
on the safety of one sector, may change the feeling about a particular �rm.1
When the connections are more than informational (as in a borrowing-lending net-
work) we speak about counterparty risk. The consequences of these business ties are
(maybe) rare events but highly signi�cant from the perspective of a credit manager.
These e�ects are credit crises, default clustering, credit cascades, domino e�ects, bank
runs 2. In one word credit contagion.

How can we model credit contagion? Is it possible to build a model that explains
clustering of defaults (credit crises)?

In the remaining part of this thesis we shall try to answer this question.
1Information driven default is discussed for instance in [59], [27] and [28].
2We shall extensively discuss about these e�ects in the next chapters especially in Chapter 4

where the concept of credit crisis becomes crucial. When speaking of a credit crisis we intend a
period of time (short compared to a standard business cycle) during which many �rms default (or
are downgraded by rating agencies).
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The literature on this topic is rather recent. To our knowledge the �rst paper that
appeared in this area is due to Jarrow and Yu [47] (2001) and contains an interesting
(and negative) answer to the question above:

�A default intensity that depends linearly on a set of smoothly varying macroeco-
nomic variables is unlikely to account for the clustering of defaults around an economic
recession".

This is the starting point for the contagion modeling: the dependence can not be
related simply to macroeconomic exogenous factors.

When speaking of intensity based models we have to assign marginal local proba-
bilities of default λi(t) in some reasonable way (see section 1.2 for details) and we try
to infer joint probabilities of default and distribution of losses in credit portfolios.
We are now going to introduce the basic concept for modeling interacting intensities,
providing also two examples treated in the literature, which are the starting point for
the discussion of the next chapters.
The intuition behind an interacting intensity model is that the N obligors are now
seen as a �network of interacting agents�, meaning that they have a kind of �physi-
cal� in�uence on each other. The probability of having a default somewhere in the
network depends explicitly on the state of all the obligors.
The way in which this �philosophy� is then applied, sensibly depends on the speci�c
features of the particular model. It is quite intuitive that the idea of a network where
agents interact leads naturally to the literature of particle systems used in Statistical
Physics.
This point of view is quite new in the world of �nancial mathematics especially when
dealing with credit risk management. Some very recent papers have appeared in the
last years. Among them we would like to mention the works by Giesecke and Weber
[40], and [41] for an interacting particle approach; the papers by Frey and Backhaus
[36] and [35] on credit derivatives pricing and Horst [46] on cascade processes3.
For a structural model developing the idea of a net of obligors where contagion is
taken into account we refer to Eglo�, Leippold and Vanini [30].

As already pointed out the intensity λi depends on the state of all the obligors
and possibly on some other variables (e.g. a vector of macroeconomic factors). We
write λi(Ψt; Yt) for some observable (possibly multidimensional) background process
Ψ. This is all what we can de�ne at a very general level. We are now going to explore
some particular models proposed in the literature.
Example 2.3.1 (A Markovian approach) This approach, due to Frey and Back-
haus [36], is based on the (conditional) Markovianity of the default indicator process
Y . The authors show that under this assumption it is possible to provide, via the
Kolmogorov backward equation, a useful tool for pricing basket credit derivatives. We
brie�y state the basic ideas.
Suppose for simplicity that λi (the default intensity for the i− th obligor) depends on
Yt only via an aggregate quantity M

(N)
t that counts the number of defaulted �rms in

the portfolio of size N . This mean-�eld assumption is in line with Assumption (A.2)
3[36] and [40] are summarized as examples below.
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in 2.1.3. Generalizations to more sophisticated models are provided in [36]. We then
simply have λi(t) = λ(Ψt,M

(N)
t ).

The process Yt behaves as a time-inhomogeneous continuous time Markov chain with
state space S = {0, 1}N and transition rates λ(y, x) = I{yi=0}λi(ψt, y) if x = yi (where
yi is the vector y where the i− th component has changed value), for some i and zero
otherwise.
It can be shown that under these hypotheses the process M

(N)
t follows a continuous

time Markov process with generator

G
(N)
[ψ] f(l) = (N − l)λ(ψ, l)(f(l + 1/N)− f(l)) (2.9)

If we name p(t, s, k, l) = P (M (N)(s) = l|M (N)(t) = k) for any k, l in[0, 1] and
0 ≤ t ≤ s < ∞, we know that the function (t, k) → p(t, s, k, l) satis�es the following
Kolmogorov backward equation

∂

∂t
p(t, s, k, l) + G

(N)
[ψ] p(t, s, k, l) = 0

with terminal condition p(s, s, k, l) = I{l}(k).
This equation can be used to compute numerically joint (and marginal) probabilities
of default, and also to compute conditional expected values, i.e., to price derivatives.
We refer to [36] for details and further generalizations of the model.

We show now an example where an interacting particle model is used to compute
credit portfolio losses. It is a comprehensive model in the sense that it takes into
account both macroeconomic factors and contagion. It is worth to notice that in this
kind of models, it can be useful to look at a �nancial distress indicator (indicated
in the following by σ) instead of at a pure default indicator Y . In particular it is
assumed that a �rm may come back to an healthy state after having experienced a
period of distress. In other words there is no "co�n state" (corresponding to the
default state yi = 1 of the previous example).

Remark 2.3.2 The market value of a portfolio position is subject to the credit quality
of the issuers or counterparties, in other words to their ability to generate the required
cash �ows in the future. Due to adverse changes in a counterparty's credit quality
the market valuation of the corresponding position can be severely reduced. Then risk
measurements aim to evaluate the potential loss induced by credit quality deterioration
(instead of looking at the number of default events).

Example 2.3.3 (Credit contagion and cyclical correlation) This approach pro-
posed by Giesecke and Weber (based on [40] and [41]) shows the �rst attempt to link
a �pure� interacting model with the more di�used concept of mixture model (see sec-
tion 2.2.1). The idea is to take into account both cyclical default correlation (due to
a exogenous macroeconomic variable Ψ) and direct contagion (due to a interacting
particle set up).
Even if the results show that the cyclical correlation explains the biggest part of the
losses, local interaction causes additional �uctuations of losses around their average.
Nevertheless, we shall discuss at the end of Chapter 4 how this secondary e�ect may
determine (under particular conditions of the parameters) credit crises and default
clustering in the �nancial systems.



32 CHAPTER 2. PORTFOLIO CREDIT RISK

In this model a geometrical structure is proposed: a d−dim lattice S = (Zd) where
d ≥ 2. Each �rm represents a node in this lattice and its �nancial health is represented
by a binary variable σ ∈ X := {−1, 1}S.
On the other hand we have perfect homogeneity (all the �rms have the same marginal
characteristics). One �rm i is directly in�uenced by nearby �rms: j ∈ N(i) where
near means that we look at j s.t. |i− j| = 1 (being | · | the length of the shortest path
between two �rms on the lattice).
Notice that (given the de�nition of N(i)) the parameter d characterizes the �degree of
complexity� of the partner network.
Transition rates are de�ned as follows

λi(σ) =
1
4d

∑

j:|i−j|=1

|σi − σj |. (2.10)

This model is basically the voter model used in the literature of particle systems 4.
A signi�cant di�erence with respect to example 2.3.1 is that the indicator σ may

come back from state −1; in fact σ ∈ {−1; 1} does not represent a default indicator,
but a liquidity state indicator, i.e. an indicator of �nancial health or �nancial distress
of a �rm (it characterizes its ability to repay obligations). When �rm i is in state −1
it means that the portfolio containing a position of �rm i su�ers a possible loss.
The liquidity state indicator (σt)t evolves as a continuous time Markov process. The
stationary distributions are described and hence losses are studied at the equilibrium.

The aggregated losses are given by LN =
∑

i∈ΛN
Li where ΛN indicates the [−N,N ]d

cube in the lattice. The marginal loss Li, i.e., the loss caused by �rm i depends on
the liquidity state of �rm i and on macroeconomic factors Ψ. Ψ is intended to cap-
ture the economic business environment. The key assumption is that conditional on
the variable Ψ and on the liquidity pro�le σ, losses are independent and identically
distributed, so that we can write Li = L(σ(i), Ψ) (the dependence on the single �rm
is only via its liquidity indicator).
A possible representation for Li is of a Bernoulli type (generalized to the contagion
case):

L(σ(i), ψ) =
{

1 with probability P (σ(i), ψ),
0 with probability 1− P (σ(i), ψ)

so that conditionally on (σ, ψ), the position loss is a Bernoulli random variable.

2.4 Large portfolio losses
The last concept we want to introduce concerns large portfolios. After de�ning a large
portfolio we brie�y analyze how the problem of computing large portfolio losses is
treated in the literature on risk management, in particular we shall recall the standard
static conditional independence case (Subsection 2.4.1) and two extensions based on
interacting intensities: the �rst one is still static and introduces local interactions
(Subsection 2.4.2), the latter is a dynamic conditionally Markov model (Subsection
2.4.3). In Subsection 2.4.4 we �nally explain why these models are unsatisfactory (in

4In the standard voter model (and in [40] as well) the state variable σ takes values in {0; 1}. To
our purposes it is more comfortable to work in the state space {−1; 1}. See the book by Ligget [52]
for more details on the voter model.
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our perspective) and how we are going to develop these issues in the rest of the thesis.

To de�ne a large portfolio we rely on De�nition 2.1.4. There, we de�ned marginal
losses as Li(t), i = 1, ..., N and aggregate losses as L(N)(t) =

∑
i Li(t) so that

De�nition 2.4.1 (Asymptotic portfolio) Let N be the size of a credit portfolio
and L(N)(t) =

∑
i Li(t) the associated losses. The asymptotic portfolio is de�ned

as P∞ (i.e. when N → ∞). The corresponding losses at any time t ∈ [0, T ] are
computed as

L∞(t) = lim
N→∞

L(N)(t)

Notice that, in this context, "large" means that we look at approximations (for a
large but �nite number N of obligors involved) of the asymptotic portfolio. We shall
see that some version of the law of large numbers and central limit theorem should
enter into play.
Depending on the nature of the model, the features of the limiting results and the
methodologies may change. Referring to [31] and [37], we �rstly show how to get
asymptotic results in a conditionally independent and static model, then we state
some aspects regarding contagion models of di�erent kind.

2.4.1 Conditionally independent static models
Following [31], we now provide an asymptotic result for large portfolios in the Bernoulli
mixture model (see De�nition 2.2.1). This approximation is very natural when refer-
ring to a mixture model, or in general to conditionally independent default models.
Generalizing De�nition 2.1.4 we now have N ∈ N obligors and sequences of positive
exposures (ei)i≤N , (δi)i≤N and default indicators (Yi)i≤N , hence a sequence of losses
Li = δieiYi. Following [31] we make the following assumptions:
Assumption 2.4.2
(B.1) There is a p−dimensional random vector Ψ and functions li : Rp → [0, 1] such

that, conditional on Ψ, the (Li)i≤N form a sequence of independent random
variables with mean li(ψ) = E(Li|Ψ = ψ).

(B.2) There is a function l̄ : Rp → R+ such that

lim
N→∞

1
N

E(L(N)|Ψ = ψ) = lim
N→∞

1
N

N∑

i=1

li(ψ) = l̄(ψ)

for each ψ ∈ Rp. We call l̄(ψ) the asymptotic conditional loss function.

(B.3) There is some C < ∞ such that
∑N

i=1

(
ei
i

)2
< C for all N .

We state now two important propositions that show how the limiting loss is charac-
terized.
Proposition 2.4.3 Consider a sequence L(N) satisfying Assumptions (B.1)− (B.3)
above. Denote by P (·|Ψ = ψ) the conditional distribution of the sequence (Li)i≤N

given Ψ = ψ. Then

lim
N→∞

1
N

L(N) = l̄(Ψ) , P (·|Ψ = ψ) a.s.
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Notice that when δi = ei = 1 for all i, the proposition applies for M (N) =
∑

i Yi

and (B.2) becomes

lim
N→∞

1
N

N∑

i=1

pi(ψ) = p̄(ψ),

for some p̄.
This result can be used to obtain an estimate for the quantiles of L(N). For any
random variable X we de�ne qα(X) = inf{x ∈ R : FX(x) ≥ α} as the α-quantile of
the distribution function FX .

Proposition 2.4.4 Consider the sequence L(N) =
∑

i Li satisfying (B.1)−(B.3) with
a one-dimensional mixing variable Ψ with distribution function G. Assume moreover
that the conditional asymptotic loss function l̄(ψ) is strictly increasing and right con-
tinuous and that G is strictly increasing at qα(Ψ); then

lim
N→∞

1
N

qα(L(N)) = l̄(qα(Ψ)).

For a proof of these propositions see [37].
The latter proposition shows in particular how quantiles of the loss distribution (in

mixture models) are driven by the tail of the mixing variable.
One can verify that, using a one-factor threshold model (see Example 2.2.4) and sup-
posing moreover that the single losses given default δiei are deterministic, according
to Proposition 2.4.4 and using Equation (2.7), one has:

qα(L(N)) ≈
N∑

i=1

δieipi(qα(ψ)) =
N∑

i=1

δieiN
(N−1(p̄i) +

√
ρN−1(α)√

1− ρ

)
.

This formula corresponds to Equation (2.4), given in Chapter 2.1.1, concerning
the internal-ratings-based approach in Basel II Accord, useful to compute the Risk
weighted assets (see Equation 2.3).

2.4.2 A static model with local interaction
An example of large portfolio losses computed considering direct contagion and local
(non mean-�eld) interaction, is proposed by Giesecke and Weber in [40]. The model
and the notations have been introduced in Example 2.3.3.
Depending on d, the complexity parameter, the authors describe two di�erent behav-
iors of the limiting distribution. The interesting case is when d > 2 (dense partner
network): de�ne the empirical proportion of low liquidity �rms (i.e., in the state
σi = −1) as

m(N) =
1

|ΛN |
∑

i

1− σi

2

where ΛN indicates the [−N,N ]d cube in the lattice. Let m̄ = limN m(N). The
following result holds true

Proposition 2.4.5 Given a network of �rms structured as a N dimensional lattice
S = Zd, d > 2 and a vector of liquidity indicators σi ∈ {−1, 1}, i = 1, ..., |ΛN |
(being |ΛN | the number of �rms). Suppose that the transition intensities λi(σ) are as
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de�ned in Equation (2.10), then the sequence of aggregate losses (LN )N≥0 satis�es
the following law of large numbers

lim
N→∞

L(N)

|ΛN | = m̄l−1(ψ) + (1− m̄)l1(ψ)

where lσ(ψ) = E[L(σi,Ψ)|σ(i) = σ,Ψ = ψ].

Moreover the following central limit theorem (CLT) also holds true

Proposition 2.4.6 Let d > 2, then (L(N))N≥0 satis�es the following central limit
theorem

(|ΛN |)
−d−2

2d

(
L(N) − |ΛN |l̄

)
−→ N (0, (l−1 − l1)2v2) (2.11)

where l̄ = m̄(l−1 − l1) + l1 and v2 denotes the limiting variance (see [41] for an
expression of v).

See [40] for the proofs of these results and possible generalizations. What we would
like to stress is that this is a non standard CLT since the rate of convergence
(|ΛN |)

−d−2
2d is not the usual square root. This is due to the interaction between

the �rms.

2.4.3 A conditionally Markov dynamic model
A generalization to dynamic models that allows for direct contagion between obligors
is due to Frey and Backhaus [36]. They consider the case of conditionally Markov
default indicators (see Example 2.3.1 for details).
We analyze here only the case in which the default intensity λ(N)(Ψ,M (N)) is sup-
posed to depend on the default indicator vector Yt (describing the state of the system)
only via an averaged statistic M

(N)
t (the mean-�eld assumption).

Recall that M
(N)
t follows a continuous time Markov process with generator G

(N)
[ψ]

de�ned in Formula (2.9).

Proposition 2.4.7 Suppose that λ(N) converges uniformly on compacts to some Lip-
schitz function λ(∞). Suppose moreover that limN M

(N)
0 = l, then for all T > 0

lim
N→∞

sup
t≤T,l∈[0,1]

{∣∣∣G(N)
[Ψ] f(l)−G

(∞)
[Ψ] f(l)

∣∣∣
}

= 0;

where
G

(∞)
[Ψ] f(l) = (1− l)λ(∞)(ψ, l)

∂

∂l
f(l).

Moreover the pair of processes (Ψ,M (N)) converges in distribution to (Ψ,M (∞)),
where M (∞) solves

d

dt
M∞

t (ω1) = (1−M∞
t (ω1))λ∞(Ψt(ω1),M∞

t (ω1))

with the initial condition M∞
0 (ω1) = l.

See [36] for a proof.
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Remark 2.4.8 Proposition 2.4.7 provides a dynamic version of a weak law of large
number for the variables (M (N))N≥0. In fact it quanti�es the number of defaulted
�rms at a given time in a portfolio of size N going to ∞. The result is only weak in
the sense that the convergence holds in distribution.
We shall provide in the next chapter a di�erent methodology in order to describe a
strong law of large numbers (where convergence is proved almost surely) and a central
limit theorem that allows for characterization of �uctuations around the limit.

2.4.4 Dynamic models with random environment
The latter two models take the contagion into account. The local interaction case
provides a LLN (and CLT) at the equilibrium and therefore it is in some sense static:
it is not possible to describe how, when, (and whether) the system (once started from
a given initial con�guration) reaches the equilibrium.
The model by Frey and Backhaus is a dynamic model and provides a (weak) LLN
for conditionally Markov processes.

The framework we are going to introduce in the next chapters involves features of
both these approaches. We shall develop a mean-�eld framework that in the �rst for-
mulation (Chapter 3) has a conditional independence structure. What distinguishes
our model from that by Frey and Backhaus is the presence of a random environment
that is local in the sense that it may take di�erent values in di�erent sites.
Moreover we are going to study a strong law of large numbers, meaning that we
provide convergence results that hold almost surely. We are also able to characterize
the speed of convergence to the equilibrium using large deviations techniques and the
�uctuations around the limits (CLT). Moreover our treatment is dynamic: indeed we
characterize the paths towards the equilibrium con�guration of the asymptotic loss,
in particular we are able to exhibit situations in which it is possible to describe credit
crises. All these concepts will be developed in the next chapters.



Chapter 3

Exogenous (static) random
environment

In this chapter we shall describe our approach for modeling credit contagion and for
the study of the losses that a bank may su�er due to deterioration of credit quality
of the obligors (�rms).
In Section 3.1, we collect some technical results that shall be used in this and also
in the next chapter in order to state a large deviation principle. Although most of
them are classical results, we prefer to propose these theorems in the form that is
more convenient to our proposes. In Section 3.2 we specify the model into details. In
Section 3.3 we de�ne one of the main objects of this thesis: the so called empirical
measure (see formula (3.26)). Suppose that N �rms are acting in a market and
their default indicators σ(t) = (σi(t); i = 1, . . . , N), where σi(t) ∈ {−1, 1}, evolve
in time. We denote by σ[0, T ] ∈ D[0, T ] a trajectory on the interval [0, T ] of such
a rating indicator. D[0, T ] denotes the space of càdlàg functions endowed with the
Skorohod topology. The empirical measure ρN is a random measure taking values
in M1(D[0, T ]), the space of probabilities on D[0, T ]. ρN weights the realizations
of the N dimensional process σ[0, T ]. Put di�erently the empirical measure can be
thought of the physical (historical) measure of the market. Most of the mathematical
results of this thesis are concerned with the sequence of measures (ρN )N . In this
section we state in particular a large deviation principle for this sequence of measures
(Theorem 3.3.3) and then we prove a suitable law of large numbers (Theorem 3.3.6),
�nding a unique Q∗ such that ρN → Q∗ almost surely. Signi�cant and very useful
for applications is also the characterization of Q∗ provided in Proposition 3.3.5.
Section 3.4 applies the previous results to the study of the time evolution of the
empirical mean of σ(t) (the expectations computed under the empirical measure)
(Proposition 3.4.1). Simple examples of portfolio losses are provided even though a
more involved treatment of the applications is discussed in Chapter 5. In Section 3.5
we �nally state and prove a functional central limit theorem (CLT) characterizing the
�uctuations of ρN around Q∗ (Theorem 3.5.6). The proof of this theorem is inspired
by the seminal work of E. Bolthausen (see [4]). In [4] a rather general framework is
proposed in order to derive central limit theorems in Banach spaces. SinceM1 is not
a Banach space we are forced to construct an auxiliary space where a suitable large
deviation principle is inherited and a CLT can be proved accordingly. This procedure
is summarized in Theorems 3.5.4 and 3.5.5.

37
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3.1 Some general results on large deviations
Let X be a Polish space (complete separable metric space) and (PN )N≥1 be a sequence
of probability measures on the Borel subsets of X .

De�nition 3.1.1 The sequence of probabilities (PN )N≥1 on X is said to satisfy a
Large Deviations Principle (LDP) with rate N and rate function I : X → [0, +∞] if
the following conditions hold true:

1. I 6≡ +∞;

2. I is lower semicontinuous;

3. for every C ⊂ X , closed,

lim sup
N→+∞

1
N

log PN (C) ≤ − inf
x∈C

I(x); (3.1)

4. for every G ⊂ X , open,

lim inf
N→+∞

1
N

log PN (G) ≥ − inf
x∈G

I(x). (3.2)

Moreover if the level sets of I are compact, that is, if for every k < +∞ the set
{x ∈ X : I(x) ≤ k} is compact in X , then we say that I is a �good� rate function.

De�nition 3.1.2 The sequence of probabilities (PN )N≥1 on X is said to satisfy a
weak Large Deviations Principle with rate N and (weak) rate function I : X →
[0,+∞] if the following conditions hold true:

1. I 6≡ +∞;

2. I is lower semicontinuous;

3. for every K ⊂ X , compact, lim supN→+∞
1
N log PN (K) ≤ − inf x∈K I(x);

4. for every G ⊂ X , open, lim inf N→+∞ 1
N log PN (G) ≥ − inf x∈G I(x).

Lemma 3.1.3 Let us denote by M1(X ) the space of all the probability measures
on X . Then for every sequence of probability measures (PN )N≥1 ⊂ M1(X ) which
satis�es a weak LDP, the associated rate function is unique.

Proof. See Lemma 4.1.4. in [24].

Proposition 3.1.4 Let (PN )N≥1 satisfy a LDP with a good rate function I. Then
there exists x ∈ X such that I(x) = 0, i.e. I attains at least one zero.

Proof. Take C = X in (3.1). Necessarily we have infx∈X I(x) = 0. Moreover, being
I a good rate function, there exists at least one point for which I(x) = 0, since the
in�mum is achieved on closed sets.
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De�nition 3.1.5 If P, Q ∈M1(X ), de�ne

H(Q|P ) :=





∫
X dQ log dQ

dP if Q ¿ P and log dQ
dP ∈ L1(Q)

+∞ otherwise
(3.3)

the �relative entropy of Q with respect to P �.

Remark 3.1.6 Let us consider P �xed. Then the relative entropy H(· |P ) is a non-
negative convex function on M1(X ). H(Q|P ) = 0 if and only if Q = P . Besides, it
is lower semicontinuous on M1(X ) endowed with the weak topology.

Theorem 3.1.7 (Sanov's Theorem) Let P ∈ M1(X ) and P̃N ∈ M1(M1(X )) be
the law under P of the random probability

ρN (y) =
1
N

N∑

i=1

δyi (3.4)

with y = (y1, . . . , yN ) ∈ XN , where XN denotes the Cartesian product of N copies of
X . Then H(· |P ) is a convex good rate function on M1(X ) and (P̃N )N≥1 satis�es a
LDP with rate function H(· |P ).

Proof. See Theorem 6.2.10. in [24].

The following theorem is a version of Cramer's Theorem for i.i.d. random variables
taking values on a suitable vector space.

Theorem 3.1.8 Let Y be a locally convex Hausdor� topological vector space. Let YN

be a sequence of i.i.d. Y−valued random variables with law w ∈ M1(Y) . For all
N ∈ N, denote by PN the law of the Y−valued random variable

XN =
1
N

N∑

i=1

Yi. (3.5)

Then the sequence (PN )N≥1 satis�es a weak LDP with rate N and rate function

Λ∗(y) = sup
ϕ∈Y ′

{ϕ(y)− Λ(ϕ)} ; (3.6)

where Λ(ϕ) := log
∫
Y eϕ(y)w(dy) and where Y ′ is the topological dual of Y.

Proof. The result is a consequence of Theorem 6.1.3. in [24].

Proposition 3.1.9 (Contraction principle) Let X and Y be Hausdor� topological
spaces and (PN )N>0 ⊂ M1(X ) satisfy a LDP with good rate function I. Moreover,
let T : X → Y be a continuous function. Then (PN ◦ T−1)N>0 satis�es a LDP with
good rate function

J(y) = inf
x=T−1(y)

I(x). (3.7)
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Proof. See Theorem 4.2.1. in [24].

We now provide a �relaxed" version the so called Varadhan Lemma. The statement
is relaxed in the sense that we assume that a suitable function F : X → R, instead
of being continuous on all its domain, is continuous only on a subset XH  X in the
following sense:
For any sequence (xn)n ∈ X such that xn → x, where x ∈ XH we have F (xn) → F (x).
We point out that this is a stronger assumption than assuming continuity of the
restriction of F on the subset XH .

Proposition 3.1.10 (Varadhan's Lemma) Let X be a Polish space. Let (PN )N

satisfy the LDP with rate N and good rate function H. Let F : X → R be measurable,
bounded from above and continuous on the set XH := {x : H(x) < ∞}. Then the
sequence of probability measures (PF

N )N de�ned by

dPF
N

dPN
(·) =

exp (NF (·))∫
X exp (NF (y))PN (dy)

(3.8)

satis�es the LDP with the good rate function

I(x) = H(x)− F (x)− inf
y∈X

[H(y)− F (y)]. (3.9)

In particular

lim
N→+∞

1
N

log
[∫

X
exp (NF (y))PN (dy)

]
= − inf

y ∈X
[H(y)− F (y)] . (3.10)

Proof.
We have to show the validity of 1., ..., 4. of De�nition 3.1.1.
Point 1. Being H a good rate function, {x : H(x) < ∞} is not empty. Thus
{x : I(x) < ∞} is not empty as well.
Point 2. We have to show that lim xN → x implies that

lim inf
n→∞ [H(xN )− F (xN )] ≥ H(x)− F (x). (3.11)

In the case when H(x) = +∞ then lim inf H(xN ) = +∞ since H is lower semicon-
tinuous. So the thesis follows since F is bounded from above.
If H(x) < +∞ we distinguish two cases.
(a) There exists N̄ such that H(xN ) = +∞ for all N > N̄ . Then (3.11) is trivial.
(b) If instead there exists a subsequence xNk

such that H(xNk
) < ∞ for all k, then by

lower semicontinuity of H we have that lim inf H(xNk
) ≥ H(x) and by the continuity

of F on XH we have that F (xNk
) → F (x). So (3.11) follows.

The �goodness" of I can be seen as follows. Without loss of generality, we assume that
supy∈X [F (y)−H(y)] = 0. For any l ∈ R, consider the set {x : H(x) ≤ l+supX F (x)}.
Notice that l+supF (x) is �nite, being F bounded from above; thus this set is a level
set for H then it is compact. We denote by CI(l) the level l set of the function I.
By de�nition we have CI(l) := {x : H(x)−F (x) ≤ l} ⊂ {x : H(x) ≤ l + supX F (x)}.
The function F is continuous on CI(l), thus CI(l) is closed. Indeed, it is compact
since it is a closed subset of a compact set. This shows the goodness of I.
Concerning points 3. and 4., we need to prove an upper and a lower bound.
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Using the fact that sup -f=-inf f, after some algebra, the thesis can be reduced to the
validity of the following two inequalities.

lim sup
N→∞

1
N

log PF
N (C) ≤ sup

y∈C
[F (y)−H(y)]− sup

y∈X
[F (y)−H(y)]; (3.12)

lim inf
N→∞

1
N

log PF
N (O) ≥ sup

y∈O
[F (y)−H(y)]− sup

y∈X
[F (y)−H(y)]. (3.13)

for all C closed and O open. We split the remaining part of the proof in three steps.

Step 1). Take C ⊂ X closed. First we show that

lim sup
N→+∞

1
N

log
[∫

C
exp (NF (y))PN (dy)

]
≤ sup

y ∈C
[F (y)−H(y)] . (3.14)

By assumption, F is bounded from above, thus there exists K < ∞ such that
supy∈C F (y) ≤ K. We �x now α < ∞ and δ > 0 and we denote by CH(α) :=
{y : H(y) ≤ α} the compact level sets of the good rate function H. We then look
at D := CH(α) ∩ C. Notice that D is still compact and F is continuous on D, since
CH(α) ⊂ XH .
We now can apply the same reasoning as in the proof of Lemma 4.3.6. in [24]. The
fact that H is lower semicontinuous and F is continuous imply that for every x ∈ D
there exists an open neighborhood Ax of x such that

inf
y∈Ax

H(y) ≥ H(x)− δ ; sup
y∈Ax

F (y) ≤ H(x) + δ. (3.15)

By compactness, from the open covering
⋃

x∈D Ax of D, we extract a �nite covering
of D, e.g.,

⋃m
i=1 Axi . Therefore,

∫

C
eNF (y)PN (dy) ≤

m∑

i=1

∫

Axi

eNF (y)PN (dy) +
∫

C∩(∪m
i=1Axi)

c
eNF (y)PN (dy) ≤

≤
m∑

i=1

∫

Axi

eNF (y)PN (dy) + eNKPN {C ∩ (∪m
i=1Axi)

c} ≤

≤
m∑

i=1

eN(F (xi)+δ)PN (Axi) + eNKPN {C ∩ (∪m
i=1Axi)

c} . (∗)

We now de�ne x̄ := argmax{eNF (xi)PN (Axi) ; xi = 1, ..., m}, hence

(∗) ≤ m eN(F (x̄)+δ)PN (Ax̄) + eNKPN {C ∩ (∪m
i=1Axi)

c} ≤

≤ (m + 1)max
{

eN(F (x̄)+δ)PN (Ax̄) ; eNKPN {C ∩ (∪m
i=1Axi)

c}
}

.

Being Ax̄ and {C ∩ (∪m
i=1Axi)

c} closed we use the fact that for A closed

lim sup
N→∞

1
N

log PN (A) ≤ − inf
y∈A

H(y). (∗∗)
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We now take the limsup in the above expression

lim sup
N→∞

1
N

log
∫

C
eNF (y)PN (dy) ≤

≤ lim sup
N→∞

1
N

log
[
(m + 1) max

{
eN(F (x̄)+δ)PN (Ax̄) ; eNKPN {C ∩ (∪m

i=1Axi)
c}

}]
.

After some algebra and using (∗∗) we obtain the following upper bound

lim sup
N→∞

1
N

log
∫

C
eNF (y)PN (dy) ≤

max

{
F (x̄) + δ − inf

y∈Ax̄

H(y) ; K − inf
y∈{C∩(∪m

i=1Axi)
c}

H(y)

}
.

We �nally use (3.15) and the fact that (∪m
i=1Axi)

c ⊂ CH(α)c, to see that

lim sup
N→∞

1
N

log
∫

C
eNF (y)PN (dy) ≤ max {F (x̄)−H(x̄) + 2δ ; K − α} .

Formula (3.14) thus follows taking the limits δ → 0 and α →∞.

Step 2). Take G ⊂ X open. We show that

lim inf
N→+∞

1
N

log
[∫

G
exp (NF (y))PN (dy)

]
≥ sup

y ∈G
[F (y)−H(y)] . (3.16)

Fix x ∈ G∩XH . F is continuous in x, we then take an open neighborhood O ∈ G∩XH

of x such that infy∈O F (y) ≥ F (x)− δ, for δ > 0. Hence,

lim inf
N→∞

1
N

log
[∫

G
exp (nF (y))PN (dy)

]
≥ lim inf

N→∞
1
N

log
[∫

O
exp (nF (y))Pn(dy)

]
≥

≥ inf
y∈O

F (y) + lim inf
N→∞

1
N

log [Pn(O)]

By the large deviation lower bound applied to the good rate function H (see 4. in
De�nition 3.1.1) and by the choice of O, we have that

inf
y∈O

F (y) + lim inf
N→∞

1
N

log [PN (O)] ≥ inf
y∈O

F (y)− inf
y∈O

H(y)) ≥

≥ F (x)−H(x)− δ.

As a consequence, the inequality

lim inf
N→+∞

1
N

log
[∫

G
exp (NF (y))PN (dy)

]
≥ [F (x)−H(x)] (3.17)

holds for any x ∈ G ∩ XH since δ was arbitrarily chosen.
Concerning x ∈ G \ XH , notice that in this case H(x) = +∞ and thus (3.17) still
holds true. We have thus shown that (3.17) is valid for each x ∈ G, hence (3.16) is
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proved.

Step 3). We notice that (3.14) and (3.16) computed with C = O = X give

lim
N→+∞

1
N

log
[∫

X
exp (NF (y))PN (dy)

]
= sup

y ∈X
[F (y)−H(y)] . (3.18)

So that Equation (3.10) is proved once we observe that sup -f=-inf f.

To conclude the proof, we have to show the validity of (3.12) and (3.13). By
de�nition of PF

N ,

1
N

log PF
N (S) =

1
N

[
log

∫

S
exp (NF (y))PN (dy)− log

∫

X
exp (NF (y))PN (dy)

]
,

(3.19)
so that

lim sup
N→∞

1
N

log PF
N (C) =

= lim sup
N→∞

1
N

[
log

∫

C
exp (NF (y))PN (dy)− log

∫

X
exp (NF (y))PN (dy)

]
.

As a consequence, (3.12) follows from (3.18) and (3.14). Using the same argument for
the liminf, it is easy to see that (3.13) follows from (3.18) and (3.16). So the thesis
follows.

Remark 3.1.11 An analogous result of Proposition 3.1.10 holds when the sequence
(PN )N satis�es a weak LDP. In this case it can be shown that the sequence (PF

N )N ,
de�ned as in (3.8), satis�es a weak LDP with good rate function I as de�ned in (3.9).

3.2 The model for contagion
In this section we describe our approach for modeling credit contagion. In order to
keep the treatment easy, we prefer to rely on a simplifying assumption: we describe
a mean �eld interaction model. What characterizes a mean-�eld model -within the
large class of particle systems- is the absence of a �geometry� in the con�guration
space, meaning that each particle interacts with all the others in the same way.
Other approaches, di�erent from the mean-�eld one, have also been proposed in
the literature: Giesecke and Weber have chosen a local-interaction model (the voter
model1, see Example 2.3.3 for details) assuming that each particle interacts with a
�xed number d of neighbors; it may be argued that the hypothesis that each �rm has
the same (constant) number of partners is rather unrealistic. Cont and Bouchaud (see
[5]) suggest a random graph approach, meaning that the connections are randomly
generated with some distribution functions.
Despite this homogeneity assumption we attach to each site (�rm) a local random
environment which plays the role of an idiosyncratic term that in�uences the credit

1The Voter model assumes -roughly speaking- that the variable σi ∈ {−1, 1} is more likely to take
a positive value if the majority of the nearest neighbors of i are in a positive state and vice-versa.
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worthiness of the �rms. The random environment introduces heterogeneity in the
contagion process.

We consider a network of N �rms. The state of each �rm is identi�ed by two
variables, that will be denoted by σ and ω ((σi, ωi) is the state of the i-th �rm). The
variable σ may be interpreted as a credit quality indicator2: a low value basically
re�ects an higher probability of not being able to pay back obligations.
The variable ω represents the economic random environment in which a �rm is op-
erating. The simplest interpretation could be the size (or the market volume) of the
�rm itself. It summarizes the capacity of the �rm of bu�ering news coming from the
market. In this �rst model the fundamental variable ωi will be stochastic but not
time varying. Hence its distribution is assigned at time zero and remains constant.
To keep the model simple we consider the case in which σi ∈ {−1; 1}, hence it can
take only two values. Being this model based on interacting intensities (as described
in Section 2.3), we have to assign directly the rates/intensities (inverse of the average
waiting time) at which the transitions σi 7→ −σi take place. In order to ensure the
Markovianity of the system we choose intensities that depend on the state of the
economy at time t (represented by σ = (σ1, ..., σN ) and ω = (ω1, ..., ωN ) where the
dependence on time is implicitly assumed), so that

σi 7→ −σi with intensity λi ≡ λN
i (θ, σ, ω) (3.20)

where θ represents a vector of parameters that will be de�ned case by case in di�erent
speci�cations. In �nancial terms these parameters should represents a measure of the
interaction (hence of the dependence) in the �nancial system.
What distinguishes the random environment ω from the Ψ de�ned in Example 2.3.1
is that ω may take di�erent values in di�erent sites. It should be stressed that Ψ was
assumed to be a time varying exogenous parameter, whereas ω is �xed. We could also
look at a dynamic (exogenous) ω. Nevertheless, we prefer to keep the treatment as
simple as possible. In Chapter 4 we shall see extensions to a (endogenous) dynamically
varying random environment.

The variable σ ∈ {−1; 1}N , for a given realization ω of the random environment,
evolves as a continuous time Markov chain with in�nitesimal generator acting on
functions f : {−1; 1}N → R as follows

G[ω]f(σ) =
N∑

i=1

λN
i (θ, σ, ω)[f(σi)− f(σ)] (3.21)

where σi represents the vector σ where the i−th component has been �ipped.

Notice that the trajectories of this process, restricted to a time interval [0, T ],
belong to the space (D[0, T ])N where D[0, T ] denotes the space of right continuous,
piecewise constant functions [0, T ] → {−1; 1}, endowed with the Skorohod topology
(see [32]). We shall denote by σ[0, T ] a generic trajectory in D[0, T ].

Remark 3.2.1 We would like to stress the fact that from the mathematical viewpoint
we are going to provide versions of the law of large numbers and central limit theorems

2We shall specify in the following what σ represents in di�erent models (a default indicator or a
rating class indicator in credit migration models).
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relying on large deviation techniques.
As already argued in Section 2.4.4, these results have the advantage to be dynami-
cally consistent and to ensure closed form solutions for the asymptotic dynamics of
aggregate variables (as the number of �rms in �nancial distress at a given time) pro-
viding useful tools for the computation of large portfolio losses. Moreover they give a
contribution to the development of the large deviation techniques applied to Finance.

We shall see that this model allows to describe dynamically credit contagion in a very
natural way.
In this �rst model, the indicator σ represents a default indicator : σi(t) = 1 if the �rm
is still operating and σi(t) = −1 when default happens3.

We consider only one parameter β indicating the level of interaction in the network,
so that in this case θ ≡ β.
An important statistic which collects the information coming from the individual
�rms is the so called global health indicator

mN =
1
N

N∑

i=1

σi (3.22)

This aggregate variable takes values in [−1, 1] and gives a picture of the market since
it counts the number of defaulted �rms. The number of defaulted �rms is exactly
N(1−mN )/2. We are ready to specify our model.

Assumption 3.2.2 We assume that

(C.1) ωi, i = 1, ..., N are real i.i.d. random variables such that

ωi ∼ η

where η has bounded support.

(C.2) The rate of �ipping for σ at time t is given by

λN
i (β, σ, ω) = I{σi=1} exp{−β(ωi + mN )} (3.23)

(C.3) σi(0) = +1 for all i = 1, ..., N .

(C.1) says that in this model the environment is �xed at time zero in each site.
Moreover we assume that the support of its distribution is bounded in the real line.
(C.2) characterizes the marginal "intensity of default" for �rm i. It depends on the
random environment ωi and on the global health of the system (via mN ). Notice
that a good economic environment and a good health in the system decrease the
probability of default.
(C.3) simply says that at time zero all the obligors are alive.

Remark 3.2.3 We give here two more remarks on Assumption 3.2.2.
3The slightly di�erent notation from the default indicator Y de�ned in 2.1.1 is simply for com-

putational reasons. In this context it is in fact more useful to work with variables taking values in
{−1; 1} instead of {0; 1}.



46 CHAPTER 3. EXOGENOUS (STATIC) RANDOM ENVIRONMENT

1. According to Assumption (C.1) the variable ω has been exogenously speci�ed.
Moreover the dynamics of the variable σ are Markovian once a distribution for
ω is given. In Chapter 4 we shall propose a di�erent model where the behavior
of σ and ω are closely linked and in particular the pair (σ(t), ω(t))t∈[0,T ] will
de�ne a Markov process.

2. By Assumption (C.2), each component of σ is allowed to jump at most once.
Thus the model may be described in terms of the default times τ1, ..., τN , where
τi := inf{t > 0 : σi(t) = −1}, avoiding the use of the path space D[0, T ]. We
shall use this fact later. However we keep our approach and notations at the level
of full generality for two reasons: most arguments will be readily extendible to the
model in Chapter 4; the ��nite dimensional" description in terms of (τ1, ..., τN )
does not appear to allow relevant simpli�cations from the technical viewpoint.

We are interested in describing the evolution over a time period [0, T ] of the system
(σi[0, T ])N

i=1 as well as of the global health indicator mN for large N . Our approach
proceeds according to the following steps

i) Look for the limit dynamics of the system (N →∞);

ii) Describe the ��nite volume approximations� (for large but �nite N) via a central
limit-type result.

Substituting (3.23) into (3.21) we obtain

G[ω]f(σ) =
N∑

i=1

I{σi=1} exp {−β(ωi + mN )}[f(σi)− f(σ)] (3.24)

The operator G given in (3.24) de�nes an irreducible, �nite-state Markov chain once
a con�guration for ω has been speci�ed.
It is easy to see that its unique stationary distribution has to be µN = δ⊗N

−1 . This is
because the con�guration σ = (−1, ...,−1) is a co�n state.

3.3 Implementation of a Large Deviation Principle
We are going to obtain a large deviation principle for this model for contagious default,
that will be stated in Theorem 3.3.3. We �rst collect some notations and de�nitions.

For a generic T > 0, we denote by D̃[0, T ] the subspace od D[0, T ] of those trajec-
tories σ[0, T ] such that σ(t) = 1, for all t < τ ∧ T and σ(t) = −1 for t ≥ τ ∧ T where
τ is de�ned as inf{t > 0|σ(t) = −1}.
Let (σi[0, T ])N

i=1 ∈ D̃([0, T ])N denote a path of the Markov process induced by (3.24),
with initial condition σi(0) = 1 for all i = 1, ..., N .
We recall that M1(D̃[0, T ] × R) represents the space of probability measures on
D̃[0, T ] × R, endowed with the topology induced by weak convergence. Moreover,
with a slight abuse of notation we shall often write M1 without specifying the un-
derlying trajectories space.
Any measure Q ∈M1 can be written as

Q(dσ[0, T ], dω) = Qω(dσ[0, T ]) · νQ(dω)
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where νQ is the projection of Q on the �eld variable ω and Qω is a stochastic kernel
(depending on ω) which is a measure on D̃[0, T ].
We de�ne qω

t = ΠtQ
ω ∈M1({−1; 1}) as the projection at time t of the measure Qω.

Notice that ΠtQ(dσ, dω) = qt(dσ, dω) = qω
t (dσ) · νQ(dω).

For any q ∈M1({−1, 1} × R) we de�ne

mq =
∫

σq(dσ, dω). (3.25)

We denote by Pω
N the law of σ[0, T ] = (σt)t∈[0,T ] given ω under the dynamics induced

by (3.24).
Its unconditional version will be denoted by PN (·) =

∫
Pω

N (·)η⊗N (dω), where η⊗N

denotes the product of N copies of the law η de�ned in (C.1).
We consider moreover the law W of the {−1; 1} valued process σ(t) such that σ(0) = 1
and the rate of transition is equal to one in survival and zero otherwise so that
λW

i = I{σi=1}.
We de�ne the empirical measure

ρN (σ[0, T ], ω) =
1
N

N∑

i=1

δ(σi[0,T ],ωi). (3.26)

Notice that ρN ∈ M1(D̃[0, T ]× R) and its projection at time t is denoted by ρN (t).
ρN (t) is a measure on {−1; 1} × R; following (3.25) we have

mρN (t) =
∫

σρN (t)(dσ, dω); (3.27)

in particular we see that the global health indicator, computed at time t, as de�ned
in (3.22), can be represented as an empirical mean, that is

mN (t) = mρN (t) ∀t ∈ [0, T ]. (3.28)

Finally we de�ne PN (resp. WN ) to be the law of ρN under the joint distribution of
(σ, ω), i.e., PN (·) =

∫
Pω

N (ρN ∈ · )η⊗N (dω) (resp. under (W ⊗ η)⊗N ).
Having introduced many de�nitions we summarize in table 3.1 the main objects

and notations that we are going to use frequently in what follows. Consider now the
function F : M1(D̃[0, T ]× R) → R de�ned as follows

F (Q) :=
∫

Q(dσ[0, T ], dω)
{∫ T∧τ

0

(
1− e−β(ω+mqt )

)
dt + I{τ≤T} (−β(ω + mqτ− ))

}

(3.29)
where τ := inf{t > 0 : σ(t) = −1}.

We shall follow [18] in order to state a large deviation principle for the law PN of
the empirical measure and infer a strong limiting result for the system and the global
health indicator. In this case we want to obtain a LDP as in De�nition 3.1.1 where
the Polish space to be considered isM1(D̃[0, T ]×R) and the sequence of probabilities
is PN . We thus have to identify a suitable rate function I. We shall see that the
relative entropy H (see De�nition 3.1.5) and the function F will play a major role.
Before stating the main theorem, we need to prove some technical lemmas.
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σ[0, T ] The trajectory of the variable σ on the interval [0, T ]
τ inf{t > 0|σ(t) = −1}

D̃[0, T ] The space of trajectories such that:
σ(t) = 1, for all t < τ ∧ T and σ(t) = −1 for t ≥ τ ∧ T ;
endowed with the Skorohod topology

W The law of σ[0, T ] under independence
η The law of the ω component (see Assumption 3.2.2)

Pω
N The law of σ[0, T ], induced by (3.24), given ω

PN (·) The law of (σ[0, T ], ω) induced by (3.24)
W⊗N ⊗ η⊗N The law of (σ[0, T ], ω) under independence
ρN (σ[0, T ], ω) 1

N

∑N
i=1 δ(σi[0,T ],ωi): The empirical measure

PN The law of ρN under PN

WN The law of ρN under W⊗N ⊗ η⊗N

M(E) The set of signed measures on the Polish space E
M0(E) The set of signed measures with zero total mass on E
M1(E) The set of probability measures on the Polish space E

MA {Q ∈M1(D̃[0, T ]× R) : Q ¿ W ⊗ η}
MH {Q ∈M1(D̃[0, T ]× R) : H(Q|W ⊗ η) < ∞}

where H(· |W ⊗ η) denotes the relative entropy w.r.t. W ⊗ η

Table 3.1: Main notations and de�nitions of Chapter 3.

Lemma 3.3.1 For given ω

dPω
N

dW⊗N
(σ[0, T ]) = exp{NF (ρN (σ[0, T ], ω))}. (3.30)

Proof. It basically follows from the Girsanov formula for point processes (See [7]).

dPω
N

dW⊗N
= exp

{
N∑

i=1

∫ T

0

[
I{τi>t} − I{τi>t}e

−β(ωi+mρN (t))
]
dt+

+
N∑

i=1

I{τi≤T}
(
−β(ωi + mρN (τ−i ))

)}
;

where, as usual, τi = inf{t > 0 : σi(t) = −1}.
On the other hand we compute F (ρN ) as

F (ρN ) =
1
N

N∑

i=1

∫ T∧τi

0

(
1− e−β(ωi+mρN (t))

)
dt+

+
1
N

N∑

i=1

I{τi≤T}(−β(ωi + mρN (t−))),

hence the thesis follows.

Lemma 3.3.2 F(Q) is bounded onM1 and continuous onMA := {Q : Q ¿ W⊗η}.
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Proof. We rewrite F (Q) as given in Equation (3.29).

F (Q) =
∫

Q(dσ[0, T ], dω)
{∫ T

0
I{τ>t}

(
1− e−β(ω+mqt )

)
dt+

+ I{τ≤T}
(−β(ω + mqτ− )

)}
=

= EQ

[∫ T

0

1 + σ(t)
2

(
1− e−β(ω+mqt )

)
dt− β(ω + mqτ− )I{τ≤T}

]
(3.31)

where we have used the fact that
∫ T
0 I{τ>t}(·)dt =

∫ T
0

1+σ(t)
2 (·)dt.

We show �rst that F can be rewritten in the following form

F (Q) =
∫ T

0

1 + mqt

2
dt−

∫ T

0
EQ

[
1 + σ(t)

2
e−βω

]
e−βmqt dt−

−βEQ
[
ωI{τ≤T}

]− β[Q(τ ≤ T )−Q2(τ ≤ T )]− β
∑

t∈[0,T ]

(∆Q(τ ≤ t))2; (3.32)

where ∆f(t) := f(t)− f(t−).

First of all, notice that the argument of the integral in (3.31) is bounded, thus we
are allowed to interchange the expectation with respect to Q and the time integral.
In particular

EQ

[∫ T

0

1 + σ(t)
2

dt

]
=

∫ T

0

1 + mqt

2
dt.

and

EQ

[∫ T

0

1 + σ(t)
2

(
−e−β(ω+mqt )

)
dt

]
= −

∫ T

0
EQ

[
1 + σ(t)

2
e−βω

]
e−βmqt dt.

The term −βEQ[ωI{τ≤T}] appears in both (3.31) and (3.32). It remains to show that

EQ
[
mqτ− I{τ≤T}

]
= Q(τ ≤ T )−Q2(τ ≤ T ) +

∑

t∈[0,T ]

(∆Q(τ ≤ t))2. (3.33)

The l.h.s. can be written as

EQ
[
mqτ− I{τ≤T}

]
=

∫ T

0
mqt−dQ(τ ≤ t) =

∫ T

0
[1− 2Q(τ < t)]dQ(τ ≤ t),

where we use the fact that mqt− = Q(τ ≥ t)−Q(τ < t) = 1− 2Q(τ < t) and where
we denote by dQ(τ ≤ t) the Lebesgue-Stieltjes measure associated to the distribution
function of τ . Furthermore,

∫ T

0
[1− 2Q(τ < t)]dQ(τ ≤ t) = Q(τ ≤ T )− 2

∫ T

0
Q(τ < t)dQ(τ ≤ t). (3.34)
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Integrating the latter term by parts4, we see that
∫ T

0
Q(τ < t)dQ(τ ≤ t) = −

∫ T

0
Q(τ ≤ t)dQ(τ ≤ t) + Q2(τ ≤ T )−Q2(τ ≤ 0).

We now add
∫ T
0 Q(τ < t)dQ(τ ≤ t) to both terms, obtaining

2
∫ T

0
Q(τ < t)dQ(τ ≤ t) = −

∫ T

0
[Q(τ ≤ t)−Q(τ < t)]dQ(τ ≤ t) + Q2(τ ≤ T ).

Notice that
∫ T
0 [Q(τ ≤ t)−Q(τ < t)]dQ(τ ≤ t) =

∑
t∈[0,T ](∆Q(τ ≤ t))2. Hence

−2
∫ T

0
Q(τ < t)dQ(τ ≤ t) =

∑

t∈[0,T ]

(∆Q(τ ≤ t))2 −Q2(τ ≤ T ). (3.35)

Substituting the r.h.s. of (3.35) into (3.34) we obtain

EQ
[
mqτ− I{τ≤T}

]
= Q(τ ≤ T )−Q2(τ ≤ T ) +

∑

t∈[0,T ]

(∆Q(τ ≤ t))2,

and Equation (3.32) follows.

We show now boundedness and continuity of F . The boundedness is easily proved
since σ ∈ {−1; 1}, ω ∼ η and η has bounded support and

∑
t∈[0,T ](∆Q(τ ≤ t))2 ≤ 1.

In order to prove the continuity on MA, we consider a sequence of probabilities
(Qn)n≥0 ∈M1 converging weakly to Q ∈MA. We want to show that

lim
n

EQn [f(ω)σ(t)] = EQ[f(ω)σ(t)]

for all t ∈ [0, T ] and for any measurable and continuous function f : R→ R bounded
on the support of η. This statement is not trivial, since the projection σ[0, T ] → σ(t)
is not continuous in D̃[0, T ]. However, de�ne for any ε > 0 the functions

g−t (ε; f, σ) :=
1
ε

∫ t+ε

t
f(ω)σ(s)ds , g+

t (ε; f, σ) :=
1
ε

∫ t

t−ε
f(ω)σ(s)ds;

where we suppose that the trajectory σ[0,T ] can be extended to the larger interval
[0− ε, T + ε] by continuity.
These functions are continuous in D̃[0, T ], bounded by ‖f‖∞ for any ε and such that
g−t (ε; f, σ) ≤ f(ω)σ(t) ≤ g+

t (ε; f, σ) a.s. for any t. Thus, by the Lebesgue convergence
theorem,

lim sup
n

EQn [f(ω)σ(t)] ≤ lim
n

EQn [g+(ε; f, σ)] = EQ[g+(ε; f, σ)], ∀ε > 0.

4We use the generalized integration by part formula for functions with bounded variation. Indeed
for f and g functions with bounded variation we have

∫ T

0

f(t−)dg(t) = −
∫ T

0

g(t)df(t) + f(T )g(T )− f(0)g(0).

We apply this formula with f(t) = g(t) = Q(τ ≤ t).
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Letting ε → 0 and noticing that limε→0 g+
t (ε; f, σ) = f(ω)σ(t−) we get

lim sup
n

EQn [f(ω)σ(t)] ≤ EQ[f(ω)σ(t−)].

The same argument holds for g−t (ε; f, σ); here limε→0 g−t (ε; f, σ) = f(ω)σ(t). Thus

EQ[f(ω)σ(t)] ≤ lim inf
n

EQn [f(ω)σ(t)] ≤ lim sup
n

EQn [f(ω)σ(t)] ≤ EQ[f(ω)σ(t−)].

Notice that f(ω)σ(t) and f(ω)σ(t−) may di�er only on the event {σ(t−) 6= σ(t)}.
But this event has measure zero for any Q ∈MA, since (W⊗η)({σ(t−) 6= σ(t)}) = 0.
This implies that the corresponding expected values must coincide; as a consequence
EQ[f(ω)σ(t)]−EQ[f(ω)σ(t−)] = 0. We have thus proved that 5

lim
n

EQn [f(ω)σ(t)] = EQ[f(ω)σ(t)] for all t. (3.36)

Taking f(ω) ≡ 1 we simply have that for all t, mqt = EQ[σ(t)] is a continuous
mapping in Q on MA. Choosing instead f(ω) = ω and f(ω) = e−βω, we prove the
thesis for EQ

[
1+σ(t)

2 e−βω
]
and EQ

[
ωI{τ≤T}

]
, where the latter follows from the fact

that I{τ≤T} = 1−σ(T )
2 . The same argument ensures that Q(τ ≤ T ) = EQ[I{τ≤T}] is

continuous in Q.
The next step is to show that Qn → Q implies
∣∣∣∣EQ

[∫ T

0

(
1 + σ(t)

2
e−βω

)
e−βmqt dt

]
− EQn

[∫ T

0

(
1 + σ(t)

2
e−βω

)
e
−βmqn

t dt

]∣∣∣∣ → 0

(3.37)
where qn

t := ΠtQn.
We add and subtract EQn

[∫ T
0

(
1+σ(t)

2 e−βω
)

e−βmqt dt
]
, to the expression in | · |:

∣∣∣∣EQ

[∫ T

0

(
1 + σ(t)

2
e−βω

)
e−βmqt dt

]
− EQn

[∫ T

0

(
1 + σ(t)

2
e−βω

)
e−βmqt dt

]
+

+ EQn

[∫ T

0

(
1 + σ(t)

2
e−βω

)(
e−βmqt − e

−βmqn
t

)
dt

]∣∣∣∣ ≤ |an|+ |bn|

where

an = EQ

[∫ T

0

(
1 + σ(t)

2
e−βω

)
e−βmqt dt

]
−EQn

[∫ T

0

(
1 + σ(t)

2
e−βω

)
e−βmqt dt

]
;

bn = EQn

[∫ T

0

(
1 + σ(t)

2
e−βω

)(
e−βmqt − e

−βmqn
t

)
dt

]
.

|an| goes to zero by weak convergence. Concerning bn we see that

|bn| ≤
∫ T

0

∣∣∣∣ EQn

[(
1 + σ(t)

2
e−βω

)(
e−βmqt − e

−βmqn
t

)]∣∣∣∣ dt ≤

5 In saying that (W ⊗η)({σ(t−) 6= σ(t)}) = 0 we have used the fact that the distribution function
of τ under W ⊗ η is an exponential distribution with parameter 1. In particular, it is absolutely
continuous. This observation suggests that EQn [σ(t)] converges to EQ[σ(t)] pointwise in t, for all
those t such that Q(τ = t) = 0 even if Q does not belong to MA. We shall use this fact in what
follows.
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≤
∫ T

0

∣∣∣ e−βmqt − e
−βmqn

t

∣∣∣ ·
∣∣∣∣ EQn

[(
1 + σ(t)

2
e−βω

)]∣∣∣∣ dt.

Notice that, being EQn

[(
1+σ(t)

2 e−βω
)]

uniformly bounded in n, and since by what
shown in (3.36), mqtn

→ mqt we have that

lim
n→∞

∣∣∣ e−βmqt − e
−βmqn

t

∣∣∣ ·
∣∣∣∣ EQn

[(
1 + σ(t)

2
e−βω

)]∣∣∣∣ = 0.

As a consequence, |bn| goes to zero as well, since we are allowed to interchange the
limit and the time integral, by dominated convergence.

It remains to show that Qn → Q implies
∑

t∈[0,T ]

(∆Qn(τ ≤ t))2 →
∑

t∈[0,T ]

(∆Q(τ ≤ t))2 = 0;

where the last equality is due to the fact that Q ¿ (W ⊗ η), that is, the distribution
of τ under Q has no jumps.
For all n, we take enumerations {t(n)

1 , t
(n)
2 , ...} of the jumps of Qn(τ ≤ t).

De�ne sn := supk

∣∣∣ ∆Qn(τ ≤ t
(n)
k )

∣∣∣. We claim that

lim
n→∞ sn = 0. (3.38)

In this case we have
∑

t∈[0,T ]

(∆Qn(τ ≤ t))2 ≤ sn ·
∑

t∈[0,T ]

(∆Qn(τ ≤ t)) ≤ sn;

where the second inequality follows since
∑

t∈[0,T ] (∆Qn(τ ≤ t)) ≤ 1.
Thus we see that the thesis follows once we prove the validity of (3.38).
Suppose, by way of contradiction, that there exists t

(n)
kn

such that
∣∣∣ ∆Qn(τ ≤ t

(n)
kn

)
∣∣∣ ≥ ε > 0,

that is
Qn

(
τ ∈ (t(n)

kn
− δ, t

(n)
kn

+ δ]
)
≥ ε ; ∀δ > 0.

On the other hand, being [0, T ] compact, t
(n)
kn

admits a convergent subsequence. We
denote by t̄ its limit. Hence, along this subsequence and for n large enough

Qn ( τ ∈ (t̄− δ, t̄ + δ] ) ≥ ε ; ∀δ > 0.

This implies that Q ( τ ∈ (t̄− δ, t̄ + δ] ) ≥ ε for all δ > 0.
This fact gives a contradiction, since Q(τ ≤ t) has no jumps. We have thus proved
the continuity of all the summands of the function F .

As already said, we want to state a LDP for the sequence of distributions PN .
Thanks to Lemma 3.3.1, we have identi�ed the Radon Nikodym derivative that relates
W⊗N and Pω

N (where W⊗N plays the role of the reference measure). The most natural
way to develop a large deviation principle is now to rely on the Varadhan Lemma
(see Proposition 3.1.10).
We are ready to prove the main result of this section.
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Theorem 3.3.3 For each Q ∈M1(D̃[0, T ]× R) de�ne

I(Q) = H(Q|W ⊗ η)− F (Q), (3.39)

then the sequence (PN )N obeys a Large Deviation Principle (LDP) with good rate
function I(·).
Proof.
Since (σi[0, T ];ωi) are i.i.d. random variables under (W⊗η)⊗N , we can apply Sanov's
Theorem (see Theorem 3.1.7) to the sequence of measures (WN )N , where WN rep-
resents the law of the empirical measure in the case of independence (i.e. under
(W ⊗ η)⊗N ). Hence (WN )N obeys a large deviation principle with rate function
H(Q|W ⊗ η).
Being F (Q) bounded in the weak topology and continuous on MA ⊃ MH = {Q ∈
M1 : H(Q|W ⊗ η) < ∞}, we can rely on Proposition 3.1.10 to conclude that the
sequence (PN )N obeys a large deviation principle with good rate function

I(Q) = H(Q|W ⊗ η)− F (Q)− inf
R∈M1

[H(R|W ⊗ η)− F (R)].

We �nish the proof by showing that

inf
R∈M1

[H(R|W ⊗ η)− F (R)] = lim
N→∞

1
N

log
[∫

M1

eNF (Q)WN (dQ)
]

= 0. (3.40)

The �rst equality is simply a consequence of Equation (3.10).
The thesis thus follows if

∫
M1

eNF (Q)WN (dQ) = 1. This fact is a consequence of
Lemma 3.3.1, indeed

PN ( · ) =
∫

η⊗N (dω)Pω
N (ρN ∈ · ) =

=
∫

η⊗N (dω)
∫
I{ρN∈· }

dPω
N

dW⊗N
dW⊗N =

∫
I{ρN∈· }e

NF (ρN ) d(W⊗N ⊗ η⊗N ) =

=
∫
I{Q∈· }eNF (Q)WN (dQ).

Being PN (M1) = 1, the thesis follows.

Let now Q ∈ M1(D̃[0, T ]× R). We associate with Q the law of a time inhomoge-
neous Markov process on {−1; 1} which evolves according to the following rules:

σ = +1 → σ = −1 with intensity e−β(ω+mqt )

σ = −1 → σ = +1 with intensity 0

and with σi(0) = 1 for all i = 1, ..., N .
We recall that qt = ΠtQ ∈ M1({−1; 1}) represents the projection at time t of the
measure Q and mqt =

∫
σdqt. We denote by Pω,Q the law of this process and by

PQ = Pω,Q ⊗ η. In other words, Pω,Q is the law of the Markov process on {−1; 1}
with initial distribution δ1 and time-dependent generator LQ

t de�ned as

LQ
t f(σ) = I{σ=1}e−β(ω+mqt )(f(−σ)− f(σ)). (3.41)

We show now an important property of PQ.
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Proposition 3.3.4 For every Q ∈M1(D̃[0, T ]× R), we have

I(Q) = H(Q|PQ).

Proof.
We distinguish two cases:
Case 1. Q : H(Q|W ⊗ η) < ∞. We have (see (3.39))

I(Q) =
∫

log
dQ

d(W ⊗ η)
dQ− F (Q).

By Girsanov's formula for continuous time Markov chains, we obtain

log
dPω,Q

dW
=

∫ T∧τ

0

(
1− e−β(ω+mqt )

)
dt +

[
I{τ≤T}

(−β(ω + mqτ− )
)]

;

hence, by de�nition of F given in (3.29) we have

F (Q) =
∫

log
dPω,Q

dW
dQ

so that

I(Q) =
∫

log
dQ

d(W ⊗ η)
dQ−

∫
log

dPω,Q

dW
dQ =

∫
log

dQ

dPQ
dQ (3.42)

where the last equality follows from

dQ

d(W ⊗ η)
dW

dPω,Q
=

dQ

d(W ⊗ η)
d(W ⊗ η)

dPQ
=

dQ

dPQ
.

Being
∫

log dQ
dP Q dQ = H(Q|PQ), the thesis follows.

Case 2. Q : H(Q|W ⊗ η) = +∞. In this case I(Q) = +∞.
Thus we have to check that H(Q|PQ) = +∞ as well. Being

H(Q|PQ) =
∫

log
dQ

d(W ⊗ η)
dQ +

∫
log

dW

dPω,Q
dQ,

the thesis follows since W ∼ Pw,Q whereas
∫

log dQ
d(W⊗η)dQ = +∞ since H(Q|W ⊗

η) = +∞.

Furthermore we have

Proposition 3.3.5 The equation I(Q) = 0 has a unique solution Q∗. Moreover Q∗
has the following properties

i) νQ∗ = η, with η de�ned in Assumption 3.2.2;

ii) Qω∗ is η − a.s. the law of a Markov process;
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iii) q∗,ωt := ΠtQ
ω∗ solves the so called McKean-Vlasov equation

{
∂
∂tq

∗,ω
t = Gω

t q∗,ωt

q∗,ω0 = δ1
(3.43)

where
(Gω

t q∗,ωt )(x) = −xe
−β

(
ω+mq∗t

)
q∗,ωt (1) (3.44)

and where Q∗(dσ[0, T ], dω) = Qω∗ (dσ[0, T ]) · νQ∗(dω).

Proof. By properness of the relative entropy (H(µ|ν) = 0 ⇒ µ = ν), from Proposi-
tion 3.3.4 we have that the equation I(Q) = 0 is equivalent to Q = PQ. Suppose Q∗
is a solution of this last equation. In this case (i) and (ii) easily follow. Moreover,
q∗t := ΠtQ∗ = ΠtP

Q∗ . The marginals of a Markov process are solutions of the cor-
responding forward equation that, in this case, leads to the fact that q∗t is a solution
of equation (3.43) where Gω

t is the adjoint of LQ
t . This di�erential equation, being

an equation in �nite dimension with locally Lipschitz coe�cients, has at most one
solution in [0, T ], for a given initial condition. Since PQ∗ is totally determined by the
�ow q∗t , it follows that equation Q = PQ has at most one solution. The existence of a
solution follows from the fact that I(Q) is the rate function of a LDP, and therefore
must have at least one zero.
We now show that Gω

t has the form given in (3.44). Being the adjoint of LQ
t , it must

satisfy

(Gω
t q)(x) = I{σ=1}(−x)e−β(ω+mq)q(−x)− I{σ=1}(x)e−β(ω+mq)q(x).

When x = 1 we have

(Gω
t q)(1) = I{σ=1}(−1)e−β(ω+mq)q(−1)− I{σ=1}(1)e−β(ω+mq)q(1) =

= −e−β(ω+mq)q(1)

and when x = −1

(Gω
t q)(−1) = I{σ=1}(1)e−β(ω+mq)q(1)− I{σ=1}(−1)e−β(ω+mq)q(−1) =

= e−β(ω+mq)q(1).

We have thus proved Formula (3.44).

In the following theorem we derive a law of large numbers for the sequence of
empirical measures.

Theorem 3.3.6 Consider the Markov process (σ(t))t≥0 with generator (3.24) and
such that the random variables σi(0) = 1 and ωi ∼ η, i = 1, . . . , N . Then

ρN → Q∗ almost surely

in the weak topology, where Q∗ has been de�ned in Proposition 3.3.5. Moreover

ρN (t) → q∗t almost surely (3.45)

in the weak topology, where q∗t = q∗,ωt · νQ∗ and q∗,ωt satis�es (3.43).
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Proof. Let Q∗ be the unique zero of the good rate function I(·) as given by Propo-
sition 3.3.5. Let BQ∗ be an arbitrary open neighborhood of Q∗. By the upper bound
in Formula (3.1), we have

lim sup
N

1
N

logPN (Bc
Q∗) ≤ − inf

Q6∈BQ∗
I(Q) < 0, (3.46)

where the last inequality comes from lower-semicontinuity of I(·), compactness of its
level sets and the fact that I(Q) > 0 for every Q 6= Q∗. Indeed, if infQ6∈BQ∗ I(Q) = 0,
then there exists a sequence Qn 6∈ BQ∗ such that I(Qn) → 0. By the compactness
of the level sets there exists then a subsequence Qnk

→ Q̄ 6∈ BQ∗ . By lower- semi-
continuity it then follows I(Q̄) ≤ lim inf I(Qnk

) = 0 which contradicts I(Q) > 0 for
q 6= Q∗. By the above inequality we thus have that PN (Bc

Q∗) decays to 0 exponen-
tially fast. By a standard application of the Borel-Cantelli Lemma, we obtain that
ρn → Q∗ almost surely and this leads to the �rst assertion of the theorem.
The convergence of the projections as in Formula (3.45) is not trivial since the pro-
jection maps are not a priori continuous under the weak topology.
Nevertheless they are continuous in Q∗. This follows by the argument used in the
proof of Lemma 3.3.2, that is, the projections are continuous in all the measures Q
such that the distribution of τ under Q is continuous. In particular Q∗ belongs to
this set, hence the convergence is ensured also on its projections.

3.4 A law of large numbers for portfolio losses
In this section we derive a (dynamic) law of large numbers for the global health
indicator mN (t) =

∑
i σi(t)/N . Recall that mN (t) =

∫
σρN (t)(dσ, dω). This implies

that the law of large numbers for the empirical law ρN , proved in Theorem 3.3.6,
is the starting point for deriving limiting results for the global health indicator and
eventually for the distribution of losses in large portfolios.
In this section, in order to simplify the notation, we use the following expressions for
the asymptotic health indicators

m(t) instead of mq∗t ,

m(t; ω) instead of mq∗,ω
t

;

where q∗ and q∗,ω have been de�ned in Theorem 3.3.6.

Proposition 3.4.1 Under Assumption 3.2.2 we have that the sequence of global
health indicators satis�es, for any t ∈ [0, T ] �xed,

lim
N→∞

mN (t) = m(t), a.s. (3.47)

Moreover m(t) =
∫

m(t; ω)η(dω), where m(t;ω) solves
{

ṁ(t;ω) = −(1 + m(t; ω))e−β(ω+m(t))

m(0;ω) = 1
(3.48)



3.4. A LAW OF LARGE NUMBERS FOR PORTFOLIO LOSSES 57

Proof. We recall that mN (t) = mρN (t). By Theorem 3.3.6, ρN (t) → q∗t a.s. in the
weak topology, that is

∫
F (σ, ω)ρN (t)(dσ, dω) →

∫
F (σ, ω)q∗t (dσ, dω)

for continuous and bounded functions F . Taking F (σ, ω) = σ for σ ∈ {−1; 1}, we
have exactly (3.47).
The fact that m(t) =

∫
m(t; ω)η(dω) follows from the decomposition q∗t = q∗,ωt · νQ∗ ,

as provided in Theorem 3.3.6 and noticing that, by Proposition 3.3.5, νQ∗ = η.
Concerning Equation (3.48) we can write

m(t; ω) = q∗,ωt (1)− q∗,ωt (−1)

then m(0;ω) = 1 and

ṁ(t; ω) = q̇∗,ωt (1)− q̇∗,ωt (−1) = −2q∗,ωt (1)e−β(ω+m(t)) (3.49)

where we have used (3.43). Since m(t; ω) = q∗,ωt (1) − q∗,ωt (−1) = −1 + 2q∗,ωt (1) we
have q∗,ωt (1) = (1 + m(t; ω))/2 hence

ṁ(t;ω) = −(1 + m(t;ω))e−β(ω+m(t))

We now use these results, in order to compute the losses that a bank may su�er
in a credit portfolio, due to the fact that the �rms involved may default before pay-
ing back their obligations.
We recall the de�nition of portfolio losses as given in De�nition 2.1.4. L(N)(t) stands
for the aggregate loss at time t and more precisely

L(N)(t) =
N∑

i=1

Li(t),

where Li(t) are the marginal losses due to the single �rms.
As an example, we consider here the very basic case in which Li(t) = 1 in case of
default and zero otherwise6.

Corollary 3.4.2 Let L(N)(t) denote the aggregate loss at time t of a N -dimensional
portfolio as given in De�nition 2.1.4. Suppose moreover that Li(t) = I{σ(t)=−1}. Then

L(N)(t) → 1−m(t)
2

Proof. We have

L(N)(t) =
N∑

i=1

Li(t) =
1
N

N∑

i=1

1− σi(t)
2

=
1−mN (t)

2
.

6It is possible to consider generalizations of this case assuming a more complex recovery structure
in case of default (see Examples 5.0.12 and 5.0.14 in Chapter 5).
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Thus the thesis immediately follows from Proposition 3.4.1.

These limiting results are in line with the literature and propose a di�erent ap-
proach to the study of large portfolio losses as we already stressed in Section 2.4.4.
From the technical viewpoint we have thus developed a large deviation approach
to the study of large portfolios, obtaining strong limiting results for the empirical
distributions of the Markov chain (σ(t))t∈[0,T ] and its conditional and unconditional
empirical means.

In the next section we shall provide some numerical studies of the evolution in
time of the global health indicator under di�erent speci�cations of the model (di�er-
ent values of β and di�erent laws η). We shall then show some interesting features
of these trajectories. In particular we shall discuss why this �rst model is not com-
pletely satisfactory in our perspective and how it can be modi�ed in order to capture
important real world e�ects that can not be described by this simple model.

3.4.1 Simulation results
We �rst explore the easiest case where we have a �xed (non random) environment,
meaning that ω = ρ where ρ ∈ R.

A: Non random environment
This speci�cation corresponds to the case η = δρ for ρ ∈ R. Without loss of generality
we may assume ρ = 0. Notice that in this case m(t; ω) = m(t; 0) = m(t) , so that
Equation (3.48) can be rewritten as

{
ṁ(t) = −(1 + m(t))e−βm(t)

m(0) = 1
(3.50)

We can even consider the trivial case in which there is no interaction at all (i.e.
β = 0), then the solution is simply given by

m(t) = 2e−t − 1

When β 6= 0 we can only give some numerical descriptions of the solution of the
di�erential equation above. In Figure 3.1 we have plotted the trajectories of m(t) for
di�erent values of β. When β is small, the exponential term does not give a signi�cant
contribution to the evolution, thus m(t) is not far from the benchmark case in which
β = 0. The situation changes for β > 1. In this case the global health indicator
decreases very slowly for small t but at a certain time it starts decaying fast to the
value −1. Notice that the decay to the equilibrium is typically very fast and this e�ect
is more pronounced for higher values of β. Notice also that the concavity/convexity
is di�erent for β bigger and lower than one.

B: Introducing a random environment
As a simple example we make Assumption (C.1) more precise by assuming that
η = 1

2δρ + 1
2δ−ρ. This means that ω may take the values −ρ and ρ with the same

probability (the asymmetric case p 6= 1/2 can be treated in the same way).
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Figure 3.1: In this �gure we plot the trajectories of m(t), the solution of Equation
(3.50), with t ∈ [0, 20] for di�erent values of β. Recall that in this case ω = 0 hence
we do not consider a random environment.

Having dynamic equations for m(t;ω) we can look jointly at the evolution of m(t; ρ)
and m(t;−ρ). We have





ṁ(t; ρ) = −(1 + m(t; ρ)) e−βρ exp
{
−β

[
m(t;ρ)

2 + m(t;−ρ)
2

]}
; m(0; ρ) = 1

ṁ(t;−ρ) = −(1 + m(t;−ρ)) eβρ exp
{
−β

[
m(t;ρ)

2 + m(t;−ρ)
2

]}
; m(0;−ρ) = 1

Without loss of generality we may assume ρ = 1. A comparative numerical study
gives the following results.
When β is big, the solution of m(t; 1) remains for a long time (when compared to the
solution of m(t;−1)) near to the value m = 1. In Figures 3.2 and 3.3 we show this
fact plotting di�erent time scales for the same trajectories.
In Figure 3.4 we compare the random with the non random case. We can see that
when β = 1 the dynamics in the non random case is an average between the two
trajectories m(t; 1) and m(t;−1). This is not the case when β = 5 as in Figure 3.5.

These remarks are summarized in the following observations:
• Behavior of m(t; ρ) for small times. For all β and for all pairs ρi > ρj there

exists a time ζ = ζ(i, j) > 0 such that for all t < ζ we have m(t; ρi) > m(t; ρj).
This implies that for small times a favorable environment gives a positive con-
tribution to the health of the system.

• Behavior of m(t; ρ) for large times. For all β and for all pairs ρi > ρj there
exists a time ζ = ζ(i, j) > 0 such that for all t > ζ we have m(t; ρi) > m(t; ρj).
This implies that for large enough times a favorable environment gives a positive
contribution to the health of the system.
Between ζ and ζ things are di�erent.
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Figure 3.2: In this �gure we plot the trajectories of m(t; ω), t ∈ [0, 5 ·10−4] and β = 5.
The random �eld may take values −1 and 1 with probability 1/2. We can see the
di�erent behavior of the trajectories in the two cases.
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Figure 3.3: In this �gure we plot the trajectories of m(t;ω), t ∈ [0, 50], β = 5 and
ρ = 1.
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Figure 3.4: In this �gure we compare m(t; ω) in the case of random (ω ∈ {−ρ; ρ})
and non-random (ω = 0) media. Here β = 1 and ρ = 1.
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Figure 3.5: In this �gure we compare m(t; ω) in the case of random (ω ∈ {−ρ; ρ})
and non-random (ω = 0) media. Here β = 5 and ρ = 1.
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• For any �xed ρ ∈ (0, 1) there exists a value β̄(ρ) such that for β < β̄ we have
for all t

mβ(t; ρ) ≥ mβ(t; 0).

For β ≥ β̄ and t ∈ (ζ; ζ̄)

mβ(t; ρ) < mβ(t; 0).

The last fact suggests that for β large enough it may happen that mβ(t; ρ) (that
is, the proportion of defaulted �rms computed only on favorable sites) may be
smaller (in certain times) than the proportion of defaulted �rms in the case in
which we are not (a priori) distinguishing between good and bad environment.
This latter fact may be explained in �nancial terms as follows. In presence of
direct contagion, if bad (and good) �rms are known to act on the market then
even a good �rm may have an higher probability of default compared to the
case in which we do not have any -a priori- knowledge about good or bad �rms.

Looking at Figure 3.5 (the continuous line path for m(t; 1)) we can see that the global
indicator m(t; 1) may spend a rather long time near the con�guration m = 1 before
suddenly falling down to the equilibrium m = −1.
This fact becomes more and more evident when β increases. However, the behavior
of this limiting system depends smoothly on β. We shall see in Chapter 4 a model
where there is a breakdown of the smoothness. In other words there exists a critical
value βc. This will be referred to as phase transition.

3.5 A central limit theorem
Up to now we have described the limiting behavior of a system when the number
of sites (�rms) tends to in�nity, in other words we have characterized a law of large
numbers as follows

ρN → Q∗ a.s.

An important issue is to study �uctuations around this limit, in other words a central
limit theorem (CLT).
Consider a vector Φ = (Φ1, ...,Φn) of measurable, continuous and bounded functions
such that Φi : D̃[0, T ] × R → R; (σ(t), ω) 7→ Φi(σ(t), ω). In what follows, the
dimension n of such a vector will be �xed. We are aiming at obtaining a result of the
form √

N

(∫
ΦidρN −

∫
ΦidQ∗

)n

i=1

→ Z , as N →∞

where Q∗ is as de�ned in Proposition 3.3.5 and where Z ∼ Nn(0, C) is a cen-
tered n−dimensional Gaussian random variable with a suitable covariance matrix
C = (C)ij = C(Φi,Φj).

The spirit of the derivation of such a CLT is borrowed from F.den Hollander and
P.Dai Pra [18]. We brie�y explain the guideline of their idea.
Looking at the proof of Theorem 3.3.6 we see that the validity of the LLN is ensured
by a LDP with a suitable rate function I with the important property that I(Q) = 0
if and only if Q = Q∗. The idea is to rely on the same LDP in order to describe also
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a CLT; the milestone is the following pseudotheorem.

Pseudotheorem Let XN be a sequence of random variables taking values in a topo-
logical space V and let (PN )N≥1 denote the corresponding sequence of laws. Assume

1. (PN )N≥1 satis�es a LDP with rate function I;

2. There exists a unique x∗ ∈ V such that I(x∗) = 0;

3. Denote by DI(x∗)[y] = limh→0
I(x∗+hy)−I(x∗)

h the directional derivative of I at
x∗ computed in the direction y ∈ V . Assume that the second order derivatives
Hy,z := D2I(x∗)[y, z] = D(DI(x)[y])[z]|x=x∗ exist.

Then
√

N(XN − x∗) converges as N →∞ to a Gaussian random variable Z, whose
covariance can be expressed in terms of the second order directional derivatives Hy,z.

This sloppy statement has been turned into a rigorous theorem in [4].

Theorem 3.5.1 (Bolthausen) Let (B, ‖ · ‖) be a real separable Banach space. Let
(Yk)k≥1 be a sequence of B-valued, i.i.d. random variables, de�ned on the probability
space (Ω,A,P) and denote by w their common law. De�ne XN := 1

N

∑N
k=1 Yk and

consider a continuous map Ψ : B → R. Suppose that the following conditions are
satis�ed:

(B.1)
∫

exp(r|x|)w(dx) < ∞ for all r ∈ R.
(B.2) For any x ∈ B, Ψ(x) ≤ C1 +C2‖x‖, for some C1, C2 > 0. Moreover, Ψ is three

times continuously Fréchet di�erentiable.

(B.3) De�ne, for h ∈ B′ (the topological dual of B), Λ(h) :=
∫

eh(y)w(dy), and for
x ∈ B, Λ∗(x) := suph∈B′ [h(x) − Λ(h)]. Assume that there exists a unique
y∗ ∈ B such that Λ∗(y∗)−Ψ(y∗) = infy∈B[Λ∗(y)−Ψ(y)].

(B.4) De�ne the probability p on B by dp
dw = eDΨ(y∗)

z for a suitable normalizing factor
z. This probability is well de�ned and

∫
yp(dy) = y∗. Let p∗ denote the centered

version of p, i.e., p∗ = p ◦ θ−1
x∗ , where θa : B → B is de�ned by θa(x) = x− a.

For λ ∈ B′ de�ne λ̃ ∈ B by λ̃ =
∫

yλ(y)p∗(dy). Then we assume that for every
λ ∈ B′ such that λ̃ 6= 0

∫
λ2(y)p∗(dy)−D2Ψ(y∗)[λ̃, λ̃] > 0.

(B.5) B is a Banach space of type 2. 7

Now, letting πN be the probability on (Ω,A) given by

dπN

dP
=

eNΨ(XN )

EP
[
eNΨ(XN )

] , (3.51)

7A Banach space B is said to be of type 2 if `2(B) ⊆ C(B). Here `2(B) = {(xn) ∈ B∞ :∑
i ‖xi‖2 < ∞} and C(B) = {(xn) ∈ B∞ :

∑
j εjxj converges in probability} where (εn) is a

Bernoulli sequence, i.e., a sequence of independent random variables such that P (εn = ±1) = 1
2
.

For more details see [45] and [4].
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then, for every λ1, ..., λn ∈ B′, the πN -law of the n−dimensional vector
√

N (λi(XN )− λi(y∗))n
i=1

converges weakly, as N →∞, to the law of a centered Gaussian vector with covariance
matrix C ∈ Rn×n, such that for i, j = 1, ..., n

(C)i,j =
∫

λi(y)λj(y)p∗(dy)−D2Ψ(y∗)[λ̃i, λ̃j ]. (3.52)

Proof. See Theorem 2 in [4].

Remark 3.5.2 For our purposes it will be necessary to use a slightly modi�ed version
of this statement, where Equation (3.51) is changed into

dπN

dP
=

e
N

(
Ψ(XN )+

Σ(XN )

N

)

EP
[
e
N

(
Ψ(XN )+

Σ(XN )

N

)] , (3.53)

where Σ is linear and continuous.
Bolthausen's proof is essentially insensitive to this generalization.

We notice that Assumption (B.5) is clearly not satis�ed by the space of measuresM
(which is not a Banach space either). For this reason we map M to a Banach space
by a linear map T , obtaining �rst a CLT for T (ρN ) via Theorem 3.5.1. Finally we
derive a CLT for ρN in M.
This proceeding is summarized into the following three steps:

i) De�ne a linear mapping T : M(D̃[0, T ]×R) → B from the set of measures into
a Banach space of type 2.

ii) Ensure the validity of (B.1), ..., (B.5) and prove a CLT in B.

iii) Obtain a corresponding CLT in M.

The three steps correspond to the following three theorems. The proofs are postponed
to the appendix.

De�nition 3.5.3 We de�ne ν∗ as the law, induced by Q∗, of the M0-valued random
variable (δ{σ[0,T ],ω} −Q∗) .
Let Cb be the space of bounded, continuous, measurable functions Φ : D̃[0, T ]×R→ R.
We write Φ̂ ∈ M0(D̃[0, T ]× R) for the signed measure of zero total mass induced by
Φ and de�ned as

Φ̂(A) =
∫ (

R(A) · ∫ ΦdR
)
ν∗(dR). (3.54)

for any measurable subset A ⊂ D̃[0, T ]× R. Finally, we de�ne Φ∗ as follows

Φ∗ :=
∫

ΦdQ∗.

Theorem 3.5.4 The following properties hold true
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i) There exists a Banach space of type 2 (B, ‖ · ‖), a linear map T : M(D̃[0, T ]×
R) → B, continuous on the set {Q : Q(τ = T ) = 0}. Moreover there exist two
continuous maps Ψ,Σ : B → R, where Ψ is bounded and three times Fréchet
di�erentiable and Σ is linear, such that

dPω
N

dW⊗N
= exp

{
N

[
Ψ(T (ρN )) +

Σ(T (ρN ))
N

]}
, a.s. (3.55)

ii) For any vector Φ = (Φ1, ...,Φn) ⊂ Cb there exist λ = (λ1, ..., λn) ⊂ B′ such that
(λi ◦ T )(Q) =

∫
ΦidQ, where B′ stands for the topological dual of B.

Proof. The proof is postponed to Appendix A.1.
Theorem 3.5.5 The sequence of B−valued random variables Yi := T (δ{σi[0,T ],ωi})
satis�es a CLT.
Proof. The proof is postponed to Appendix A.2.
Theorem 3.5.6 Let ρN be as de�ned in (3.26) and Q∗ as de�ned in Proposition
3.3.5. For any vector Φ = (Φ1, ...,Φn) ⊂ Cb, as N →∞

√
N

(∫
ΦidρN −

∫
ΦidQ∗

)n

i=1

(3.56)

converges weakly under PN to a n−dimensional Gaussian random variable with co-
variance matrix C ∈ Rn×n, such that for i, j = 1, ..., n

(C)ij =
∫

(Φi − Φ∗i )(Φj − Φ∗j )dQ∗ −D2F (Q∗)[Φ̂i, Φ̂j ] = (3.57)

= EQ∗
[(

Φi − Φ∗i + β

∫ T∧τ

0
mΦ̂i(s)

dMσ
s

)(
Φj − Φ∗j + β

∫ T∧τ

0
mΦ̂j(s)

dMσ
s

)]
;

where mΦ̂i(s)
=

∫
σ(s)(Φ− Φ∗)dQ∗ = and

Mσ
t := I{t≥τ} −

∫ t∧τ

0
e−β(ω+mq∗s )ds (3.58)

is the compensated Q∗−martingale associated with the jump process of σ(t).
Proof. The proof is postponed to Appendix A.3.

As an application of Theorem 3.5.6, we show in the following corollary how to
explicitly compute the asymptotic limit, in a particular case of function Φ. Indeed,
we shall specialize this general result in order to infer information on the �uctuations
of the global health indicator mρN (T ) around its limit mq∗T .
Corollary 3.5.7 As N →∞ we have that

√
N

[
mρN (T ) −mq∗T

]

converges weakly to a centered Gaussian random variable with variance

V (T ) = EQ∗

[(
σ(T )−mq∗T + β

∫ T∧τ

0
CovQ∗(σ(s), σ(T )) dMσ

s

)2
]

, (3.59)

where q∗T has been de�ned in Theorem 3.3.6.
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Proof. Let us de�ne ϕT : D̃[0, T ] × R → R as ϕT (σ[0, T ], ω) = σT , namely the
projection on the �rst component at time T . This is a particular choice of (Φ1, ...,Φn)
with n = 1. We can thus apply Theorem 3.5.6.
First of all we notice that

∫
ϕT (x, y)ρN (T )(dx, dy) = mρN (T ) ,

∫
ϕT (x, y)Q∗(dx, dy) = mq∗T .

Concerning the variance, we have that Φ = ϕT = σ(T ) and Φ∗ =
∫

ϕT dQ∗ = mq∗T .
Thus

mΦ̂(s) =
∫

σ(s)(Φ− Φ∗)dQ∗ =

=
∫

σ(s)(σ(T )−mq∗T )dQ∗ = CovQ∗(σ(s), σ(T )), ∀s ∈ [0, T ].

Finally

V (T ) = EQ∗

[(
(σ(T )−mq∗T ) + β

∫ T∧τ

0
CovQ∗(σ(s), σ(T )) dMσ

s

)2
]

.

We shall see how to apply this kind of results to the study of large portfolio losses
in Chapter 5.
Concerning Equation (3.59), notice that in the case of no interaction, (i.e., β = 0) we
have

V (T ) = EQ∗
[
(σ(T )−mq∗T )2

]
= V arQ∗(σ(T )).

In the case of β > 0 there is a suppletive noise given by the interaction. It depends
on the autocovariance function of σ[0, T ], that is, on CovQ∗(σ(t), σ(T )). This term
introduces dependence on the past history of the process, hence a sort of �memory"
of the variance V (T ).

Remark 3.5.8 Corollary 3.5.7 can be generalized to the study of more complex port-
folios as follows. Relying on Equation (2.2), consider the case in which for all t,
ei(t)δi(t) = φ(ωi) for a suitable function φ. In doing so, we are reasonably assuming
that the randomness of the loss given default and the exposure at default is due to the
idiosyncratic characteristics of the �rms, summarized in our model by the random
environment ω. Then

L(N)(t) =
N∑

i=1

1
2
φ(ωi)(1− σi(t)),

where we have used the fact that Yi(t) = 1−σi(t)
2 , being Yi the default indicator of the

i-th �rm. If we de�ne L(σ(t), ω) := 1
2φ(ω)(1− σ(t)) then

L(N)(t) = N

∫
L(σ(t), ω)ρN (dσ[0, T ], ω) (3.60)

This straightforward representation of L(N) in terms of the empirical measure can be
used to compute portfolio losses relying on Theorem 3.5.6.
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This fact matches the point of view of the so called top-down approaches (see [16],
[39] or [60]). In those models one �forgets� the underlying marginal processes and
describes directly the statistical properties of the random process LN (t). Via Equation
(3.60) we obtain a functional description of the aggregate losses in terms of the em-
pirical measure that makes the approximation of the loss distribution feasible, without
adding any computational e�ort. In particular we do not need to simulate the full
N -dimensional underlying Markov process, avoiding for instance heavy Monte Carlo
methods.

The vicinity between homogeneous Markov models and top-down models has been
already captured by Frey and Backhaus (see [35]). We would like to notice that our
representation via the empirical measure let us to introduce a certain degree of het-
erogeneity (represented by the random �eld ω), without compromising the tractability.

Indeed it can be shown (see Corollary 2 in [20]) that

√
N

[
L(N)(t)

N
−EQ∗ [L(t)]

]

converges weakly to a centered Gaussian random variable with variance V̂ (t) that
generalizes Eqaution (3.59) and that can be explicitly computed.
In [20] simulations are also provided in order to show that the CLT approximation is
reasonable for portfolios of 100−150 obligors, this volume is rather standard for CDO's
contracts. Nevertheless an actual validation of this model has not jet been pursued.
For an example of calibration under the top-down approach, see the algorithm proposed
in [16] for the pricing of portfolio credit derivatives.

In the next chapter we propose a di�erent model that allows us to describe in
details the formation of a credit crises.





Chapter 4

Endogenous (dynamic) random
environment

This chapter is devoted to the analysis of a new model characterized by interacting
intensities where a di�erent transition mechanism is in place. As before, our system
is described by variables σ and ω where the former are intended to re�ect the market
perception of the �nancial health of the �rm (e.g. a rating class indicator) whereas
the latter one should capture the fundamental situation of the �rm.
In this new framework we shall see that the indicators ω will evolve in time, more-
over, their dynamics will result coupled with the dynamics of the state variables
σ. Eventually we are dealing with a 2N dimensional continuous time Markov chain
(σ(t), ω(t))t∈[0,T ]. Before entering into details on the modeling issues we would like
to stress the philosophy behind this new model.
What we would like to capture is a more complex structure, in particular the fact
that the fundamental health of a �rm (summarized by ω) determines basically the
perception of the market concerning its capacity of honoring �nancial obligations
(summarized by σ). Gathering all this information we construct (endogenously) a
picture of the health of the market summarized by the so called global health indi-
cator mN (t) = 1

N

∑
i σi. Finally this aggregate factor may have an impact on the

single �rm, by in�uencing the dynamics of ω. Summarizing we obtain the following
"chain" of contagion

... ωi 99K σi 99K mN 99K ωj ...

We anticipate here what is probably the main implication of this modeling idea. The
intensities that we are going to de�ne make the model "complex" enough to see what
is called phase transition in the literature of Statistical Mechanics. Phase transition
means that for di�erent values of the parameters we see di�erent limiting behaviors
of the Markov chain. In particular, when N goes to in�nity (the asymptotic model),
the dynamics may have multiple stable equilibria. The e�ects of phase transition for
the system with �nite N can be seen on di�erent time-scales. On a long time-scale
we observe what it is usually meant by metastability in Statistical Mechanics: the
system may spend a very long time in a small region of the state space around a
stable equilibrium of the limiting dynamics and then switch relatively fast to another
region around a di�erent stable equilibrium. This switch, of which the rigorous anal-
ysis will be postponed to future work, occurs on a time-scale proportional to ekN for
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a suitable k > 0, that could be unrealistic for �nancial applications.
The model we propose exhibits, however, a di�erent feature that can be interpreted
as a credit crisis. A credit crisis is a concentration of many defaults (or downgrades
in a rating systems) in a short time caused by an high level of dependence between
the obligors. The crisis is the consequence of a cascade or domino e�ect (a run in the
banking sector) caused often by the deterioration of �nancial quality and the loss of
trust by the market participants.
In our model this crisis may be explained as follows: for certain values of the initial
condition the system is initially driven towards an unstable equilibrium. After a cer-
tain time that depends on the initial state, the system is �captured� by an unstable
direction of this equilibrium, and moves towards a stable one; during the transition to
the stable equilibrium, the volatility of the system increases sharply, before decaying
to a stationary value. All this occurs at a time-scale of order O(1) (i.e. the time scale
does not depend on N).
Notice that we explain the formation of credit crises as a purely microeconomic phe-
nomenon. Recall in fact that the variable m(t), describing the �nancial health of
the system, is an aggregate factor (a possible indicator of the business cycle) that is
endogenously generated and not a priori assigned. All these issues will be exploited
in details in what follows.

Besides the explanation of the credit crises we have to deal also with the risk
management issues and in particular we want to provide tools for the computation
of large portfolio losses (possibly taking crises into account). Hence we are going
to quantify the impact of contagion on the losses su�ered by a �nancial institution
holding a large portfolio with positions issued by the �rms. In particular, we aim at
obtaining a dynamic description of a risky portfolio in the context of our contagion
model. The standard literature on risk management usually focuses on static models
allowing to compute the distribution of a risky portfolio over a given �xed time
horizon T . For a recent paper that introduces a discussion relating to static and
dynamic models see the one by Deuschel, Du�e and Dembo (2004) [23].

As already mentioned in the previous sections, we shall consider large homogeneous
portfolios. Attention to large homogeneous portfolios becomes crucial when looking
at portfolios with many small entries. If the �rms are supposed to be exchangeable,
in the sense that the losses that they may cause to the bank in case of �nancial
distress depend on the single �rm only via its �nancial state indicator, it is worth to
evaluate an homogeneous model where N goes to in�nity and then to look for �large-
N � approximations.1 This apparently restrictive assumption may be easily relaxed
by considering many homogeneous groups within the network (in this context see also
[36]).

Although we shall provide only formulas to compute Var-like probabilities for excess
losses in the context of our contagion model, we shall in fact determine the entire
portfolio loss distribution; furthermore, these Var-like probabilities will in turn allow
to compute other credit risk related quantities as we shall brie�y mention at the end
of the chapter.

1As already discussed in Section 2.4.1 this simpli�cations is also assumed in the Basel II Accord,
where the internal based models for computing the Risk Capital are based on an asymptotic model
where the N issuers are modeled as in a one-factor Gaussian model.
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Outline of Chapter 4
Section 4.1 contains a punctual exposition of the model and highlights the di�erences
compared to the model analyzed in the previous chapter. In Section 4.2 we discuss
the non-reversibility of the model and the consequences of this fact. In particular
we show how to implement a dynamic study in Section 4.3. Similarly to Chapter 3,
the �rst main result is a Law of Large Numbers (Theorem 4.3.2) based on a Large
Deviation Principle (Proposition 4.3.4).
Subsection 4.3.2 describes the equilibria of the asymptotic (N → ∞) dynamics. In
particular we shall prove in Theorem 4.3.11 that di�erent asymptotic con�gurations
can be found, depending on the values of the parameters. This phenomenon (called
phase transition) has implications for the description of a credit crisis as we shall
explain in more details in Chapter 5.
The last section of this chapter is devoted to the study of the �uctuations of the
empirical measure around its limit. Two di�erent approaches are described, the
former (corresponding to Section 4.4.1) is based on uniform convergence of generators
(Theorem 4.4.1). The latter (in Section 4.4.2) mimics the functional approach of
Section 3.5.

4.1 The model in details
In this section we describe a mean-�eld interaction model di�erent from that of the
previous chapter.2

The philosophy behind our model can be summarized as follows.

• We introduce only a small number of variables that however have a simple
economic interpretation.

• We de�ne dynamic rules that describe interaction between the variables.

• We keep the model as simple as possible; on one side this may make the model
less adherent to reality, on the other it leads to exact computations, and allows
to show what basic features of the model produce phenomena such as cluster-
ing of defaults, phase transition, etc. More generally, it allows to show how,
contrary to most models relying on macroeconomic factors, the �health� of the
system can here be described by endogenous �nancial indicators so that a credit
crisis can be viewed as a microeconomic phenomenon.

As before we consider a network of N �rms. The state of each �rm is identi�ed by
two variables, σ and ω ((σi, ωi) is the state of the i-th �rm).
Compared to the model presented in Chapter 3, there are two main di�erences.

1. The variable σ takes values in {−1; 1} as before, but it is allowed to return
from state −1 to the safe state 1. The bad state is associated with a �nancial
distress position, that is not necessarily a default state.

2We would like to notice that mean-�eld models are used also in the literature of Social Sciences
in order to capture the interaction of agents when facing any kind of decision problems. We refer
the reader to the paper by Brock and Durlauf [8] for an example in this area.
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2. The variable ω takes values in {−1; 1} as before but its value is not constant
in time and moreover the dynamics of σ and ω are coupled. We shall see how
they are related.

In this context σ may be interpreted as the rating class indicator: a low value
re�ects a bad rating class, i.e. a higher probability of not being able to pay back
obligations. The variable ω represents (as before) an indicator of the �nancial health
of the �rm and is typically not directly observable. It could e.g. be a liquidity
indicator as in Giesecke and Weber [40]. The important fact is that, while there is
usually a strong interaction between σi and ωi, the non-observability of ω makes it
reasonable to assume that ωi cannot directly in�uence the rating indicators σj for
j 6= i.

Again we assume that the two indicators σi, ωi can only take two values, that we
label by 1 (�good� �nancial state) and −1 (�nancial distress). In the case of portfolios
consisting of defaultable bonds, we may then refer to the rating class corresponding
to σ = −1 also as �speculative grade� and corresponding to σ = +1 as �investment
grade�.
Contrary to other rating class models (see Section 2.2.3 for details), we have not
explicitly introduced a default state. We may do so, and this becomes more natural
in the case when σ may take more than just the two values −1,+1. In our binary
variable case we would obviously assign the default state to −1 as done in the previous
chapter. What we always need however is that there is a positive probability that the
system can exit from a state where σ takes its lowest value. This is the main reason
why we have not explicitly termed −1 as the default state.

As said in the introduction we assume that the interaction between di�erent �rms
only depends on the value of the global �nancial health indicator

m
σ
N :=

1
N

N∑

i=1

σi,

where we have preferred to explicitly indicate that the average is taken on the compo-
nent σ. We shall also speak about mω and even mσω when referring to the expected
mean of the product of the two3. We are now going to specify the rate of transition
for each component of the Markov chain. Under the assumption made before we are
led to consider intensities of the form:

σi 7→ −σi with intensity a(θσ, σi, ωi,m
σ
N )

ωi 7→ −ωi with intensity b(θω, σi, ωi,m
σ
N ),

(4.1)

where a(·, ·, ·, ·) and b(·, ·, ·, ·) are given functions and θσ, θω are parameters. Since
both �nancial health and distress tend to propagate, we assume that a(θσ,−1, ωi, m

σ
N )

is increasing in both ωi and m
σ
N , and a(θσ, 1, ωi,m

σ
N ) is decreasing.

Similarly, b(θω, σi,−1,m
σ
N ) and b(θω, σi, 1,m

σ
N ) should be respectively increasing and

decreasing in their variables.
The next assumption is that the intensity a(θσ, σi, ωi, m

σ
N ) is actually independent

of m
σ
N , i.e. of the form a(θσ, σi, ωi). Although this assumption amounts to a rather

3Notice that mω has nothing to do with the (conditional) health indicator m(t; ω) encountered
in Corollary 3.4.1. The latter one indicates in fact an average on the σ component once conditioned
on a realization of ω.
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mild computational simpli�cation, it allows to show that aggregate behavior (phase
transition, etc.) may occur even in absence of a direct interaction between rating
indicators.

Although a model of this generality could be fully analyzed, we make the following
choice of the intensities, inspired by spin-glass systems, to make the model depend
on only two parameters:

σi 7→ −σi with intensity e−βσiωi

ωi 7→ −ωi with intensity e−γωi m
σ
N .

(4.2)

Here θσ = β and θω = γ are positive parameters which indicate the strength of
the corresponding interaction. Put di�erently, we are considering a continuous-time
Markov chain on {−1; 1}2N with the following in�nitesimal generator:

Lf(σ, ω) =
N∑

i=1

e−βσiωi∇σ
i f(σ, ω) +

N∑

j=1

e−γωjm
σ
N∇ω

j f(σ, ω) (4.3)

where ∇σ
i f(σ, ω) = f(σi, ω) − f(σ, ω) (analogously for ∇ω

i ), and where the j−th
component of σi is

σi
j =

{
σj for j 6= i
−σi for j = i.

The rest of this chapter is devoted to a detailed analysis of the above model. We
conclude this subsection with some further considerations.

• The techniques that we use in this chapter apply, in principle, to modi�cations
of the above model in which variables take values in larger or even continuous
spaces. For instance, one could assume the fundamental values ωi to be R+-
valued, and evolving according to the stochastic di�erential equation

dωi(t) = ωi(t)[f(mσ
N (t))dt + g(mσ

N (t))dBi(t)] + dJi(t),

where f and g are given functions, the Bi(·) are independent Brownian motions,
and Ji(·) is a pure jump process whose intensity is a function of ωi(t) and m

σ
N (t).

• An interesting extension of the above model consists in letting the functions
a(·, ·, ·, ·) and b(·, ·, ·, ·) in (4.1) to be random rather than deterministic; in partic-
ular they may depend on (possibly time-dependent) exogenous macro-economic
variables.

• The mean-�eld assumption may be weakened by assuming that the rate at which
ωi changes depends on an i-dependent weighted global health of the form

m
σ
N,i :=

1
N

N∑

j=1

J

(
i

N
,

j

N

)
σj ,

where J : [0, 1]2 → R is a function describing the interaction between pairs of
�rms. In other words, the i-th �rm �feels� the information given by the rating
of the other �rms in a non-uniform way.
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• We have viewed the variable σ as a rating class indicator. Contrary to the
standard models for rating class transitions, our rating indicator σ is not Markov
by itself, but it is Markov only if paired with ω. This property is in line with
empirical data and with recent research in the �eld of credit migration models.
It is in fact well documented that real data of credit migration between rating
classes exhibit a �non Markovian� behavior. For a discussion on this topic see
e.g. Christensen et al. (2004) [11] 4.

• With a choice of the intensities as in (4.2) we introduce a form of symmetry in
our model, whereby the values σ = −1 and σ = +1 for the rating indicator turn
out to be equally likely. One could however modify the model in order to make
the value σ = −1 less (more) likely than the value σ = +1 and this could e.g.
be achieved by letting the intensity for ωi be of the form eωiφ(m

σ
N ), where φ is

an increasing, nonlinear and non even function. A possible �prototype� choice
would be φ(x) = γ(x−K)++δ with γ, δ > 0 and K ∈ (0, 1). Note that with this
latter choice we have φ ≥ 0 so that the value ωi = +1 (and hence also σi = +1)
becomes more likely. Such an asymmetric setup might be more realistic in
�nancial applications but, besides leading to more complicated derivations, it
depends also on the speci�c application at hand. Since, as already mentioned,
we want to study a model that is as simple as possible and yet capable of
producing the basic features of interest, in this paper we concentrate on the
�symmetric choice� in (4.2), possibly commenting in the text below the situation
whenever a major di�erence may arise with respect to a non symmetric setup
(see Remark 5.0.10).

4.2 Invariant measures and non-reversibility
Mean �eld models as the one we propose in this paper have already appeared, mostly
in the Statistical mechanics literature (see in particular [18] and [13], from which
we borrow many of the mathematical tools). However, unlike what happens for
the models in the cited references, we now show that our model is non-reversible.
This implies that an explicit formula for the stationary in time distribution and its
N →∞ asymptotic is not available. It is thus appropriate to follow a more speci�cally
dynamic approach to understand the long time behavior of the system. As already
mentioned, we shall thus �rst study the N →∞ limit of the dynamics of the system,
obtaining limit evolution equations. Then we study the equilibria of these equations.
This is not necessarily equivalent to studying the N →∞ properties of the stationary
distribution µN . However, as we will show later in this paper, this provides rather
sharp information on how the system behaves for t and N large.

The operator L given in (4.3) de�nes an irreducible, �nite-state Markov chain. It
follows that the process admits a unique stationary distribution µN , i.e. a distribution

4In this paper the authors propose an hidden Markov process to model credit migration. The
basic criticism that these authors move to the standard Markov models is that they cannot capture
a real e�ect, seen in market data, that the probability of being downgraded is higher for �rms that
have been just downgraded. In order to capture this issue, the authors consider an �excited� rating
state (for example B∗ from which there is an higher probability to be downgraded compared to
the standard state B). This point of view is not far from ours, even though the mechanism of the
transition is di�erent. The downgrade to σ = −1 is higher when (σ = 1, ω = −1) compared to
(σ = 1, ω = 1).
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such that, for each function f on the con�guration space of (σ, ω),
∑
σ,ω

µN (σ, ω)Lf(σ, ω) = 0. (4.4)

This distribution re�ects the long-time behavior of the system, in the sense that,
for each f and any initial distribution,

lim
t→+∞E[f(σ(t), ω(t))] =

∑
σ,ω

µN (σ, ω)f(σ, ω).

The stationarity condition (4.4) can be rewritten in the form

N∑

i=1

[
µN (σi, ω)eβσiωi − µN (σ, ω)e−βσiωi

]
+

N∑

i=1

[
µN (σ, ωi)eγωim

σ
N − µN (σ, ω)e−γωim

σ
N

]
= 0

(4.5)
for every σ, ω ∈ {−1; 1}N .

Simpler su�cient conditions for stationarity are the so-called detailed balance con-
ditions. We say that a probability ν on {−1, ; 1}2N satis�es the detailed balance
condition for the generator L if

ν(σi, ω)eβσiωi = ν(σ, ω)e−βσiωi and ν(σ, ωi)eγωim
σ
N = ν(σ, ω)e−γωim

σ
N (4.6)

for every σ, ω. When the detailed balance conditions (4.6) hold, we say the system is
reversible: the stationary Markov chain with generator L and marginal law ν has a
distribution which is left invariant by time-reversal. In the case (4.6) admit a solution,
they usually allow to derive the stationary distribution explicitly. This is not the case
in our model. We have in fact

Proposition 4.2.1 The detailed balance equations (4.6) admit no solution.

Proof. By way of contradiction, assume a solution ν of (4.6) exists. Then one easily
obtains

∇σ
i log ν(σ, ω) = −2βσiωi

∇ω
i log ν(σ, ω) = −2γωim

σ
N ,

which implies

∇ω
i ∇σ

i log ν(σ, ω) = 4βσiωi

∇σ
i ∇ω

i log ν(σ, ω) = 4N−1γωiσi.

This is not possible since ∇ω
i ∇σ

i log ν(σ, ω) ≡ ∇σ
i ∇ω

i log ν(σ, ω).

4.3 Studying the dynamics of the system
Our results in this section concern the dynamics of the system (σi[0, T ], ωi[0, T ])N

i=1

as well as of the global �nancial health indicator m
σ
N for large N .
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Remark 4.3.1 In this section we are going to study the dynamic of the system using
techniques similar to the ones implemented in Chapter 3. For this reason, some
statements and proofs shall appear similar to what seen in the previous chapter. On
the other hand, the di�erent speci�cations of the model make some technical steps of
the derivation of the large deviation principle more involved.
We have decided to use the same notations of Chapter 3 to indicate corresponding
objects, this is done in order to maintain a sort of symmetry between the two models.
As an example, when speaking of Q ∈M1 we have to keep in mind that the underlying
path space on which the measure is referred to, is now di�erent (ω evolves dynamically
whereas σ may jump more than once in [0, T ], see also Remark 3.2.3).

Our approach proceeds according to the following three steps

i) Look for the limit dynamics of the system (N →∞);

ii) Study the equilibria of the limiting dynamics;

iii) Describe the ��nite volume approximations� (for large but �nite N) via a central
limit-type result.

The �rst two items are treated in the next two subsections. Concerning the �nite
volume approximation we shall treat it in Section 4.4 where two di�erent approaches
are proposed and analyzed.

4.3.1 Deterministic limit: Law of large numbers
Let (σi[0, T ], ωi[0, T ])N

i=1 ∈ D([0, T ])2N denote a path of the system process in the
time-interval [0, T ] for a generic T > 0. If f(σi[0, T ], ωi[0, T ]) is a function of the
trajectory of the variables related to a single �rm, one is interested in the asymptotic
behavior of empirical averages of the form

1
N

N∑

i=1

f(σi[0, T ], ωi[0, T ]) =:
∫

fdρN ,

where ρN is the sequence of empirical measures

ρN =
1
N

N∑

i=1

δ(σi[0,T ],ωi[0,T ]). (4.7)

We may think of ρN as a (random) element of M1(D([0, T ]) × D([0, T ])), the space
of probability measures on D([0, T ])×D([0, T ]) endowed with the weak convergence
topology.

Our �rst aim is to determine the limit of
∫

fdρN as N → ∞, for f continuous
and bounded; in other words we look for the weak limit limN ρN in M1(D([0, T ])×
D([0, T ])). This corresponds to a Law of Large Numbers with the limit being a
deterministic measure. This limit, being an element of M1(D([0, T ]) × D([0, T ])),
can be viewed as a stochastic process, and represents the dynamics of the system in
the limit N → ∞. The �uctuations of ρN around this deterministic limit will be
studied in subsection 4.4 below, and this turns out to be particularly relevant in the
risk analysis of a portfolio (Chapter 5).
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Let now q ∈M1({−1; 1}2) be a probability on {−1; 1}2. De�ne

mσ
q :=

∑

σ,ω=±1

σq(σ, ω),

that can be interpreted as the expected rating under q. The main result of this
subsection is the following.

Theorem 4.3.2 Suppose that the distribution at time t = 0 of the Markov process
(σ(t), ω(t))t≥0 with generator (4.3) is such that the random variables (σi(0), ωi(0)),
i = 1, . . . , N , are independent and identically distributed with law λ. Then there exists
a probability Q∗ ∈M1(D([0, T ])×D([0, T ])) such that

ρN → Q∗ almost surely

in the weak topology. Moreover, if qt ∈ M1({−1; 1}2) denotes the marginal distribu-
tion of Q∗ at time t, then qt is the unique solution of the nonlinear (McKean-Vlasov)
equation {

∂qt

∂t = Lqt, t ∈ [0, T ]
q0 = λ

(4.8)

where
Lq(σ, ω) = ∇σ

[
e−βσωq(σ, ω)

]
+∇ω

[
e−γωmσ

q q(σ, ω)
]

(4.9)

with (σ, ω) ∈ {−1, ; 1}2.

Remark 4.3.3 The strong assumption on the initial distribution in Theorem 4.3.2
could be weakened at the cost of more technical assumptions; this point is not really
relevant for the purpose of understanding the limiting dynamics and will thus not be
considered further.

The rest of this subsection will be devoted to the proof of this theorem. The
proof, based fundamentally on a Large Deviations Principle, proceeds along three
steps corresponding to the three propositions below. We start with some preliminary
notions letting, in what follows, W ∈ M1(D([0, T ]) × D([0, T ])) denote the law of
the {−1; 1}2-valued process (σ(t), ω(t)) such that (σ(0), ω(0)) has distribution λ, and
both σ(·) and ω(·) change sign with constant intensity 1.
For Q ∈M1(D([0, T ])×D([0, T ])), ΠtQ denotes its marginal law at time t, and

γQ
t := γ

∫
σΠtQ(dσ, dτ). (4.10)

For a given path (σ[0, T ], ω[0, T ]) ∈ D([0, T ]) × D([0, T ]), let Nσ
t (resp. Nω

t ) be the
process counting the jumps of σ(·) (resp. ω(·)). De�ne

F (Q) =
∫ [∫ T

0

(
1− e−βσ(t)ω(t)

)
dt +

∫ T

0

(
1− e−ω(t)γQ

t

)
dt

+β

∫ T

0
σ(t)ω(t−)dNσ

t +
∫ T

0
ω(t)γQ

t−dNω
t

]
dQ, (4.11)

whenever ∫
(Nσ

T + Nω
T ) dQ < +∞,
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and F (Q) = 0 otherwise. Finally let

I(Q) := H(Q|W )− F (Q).

where H(·|W ) denotes the relative entropy with respect to W (see De�nition 3.1.5).
We remark that, if

∫
(Nσ

T + Nω
T ) dQ = +∞, then H(Q|W ) = +∞ (this will be shown

in Appendix A.4, Lemma A.4.3) and thus also I(Q) = +∞.

Proposition 4.3.4 For each Q ∈M1(D([0, T ])×D([0, T ])) we have that I(Q) ≥ 0,
and I(·) is a lower-semicontinuous function with compact level-sets (i.e. for each
k > 0 one has that {Q : I(Q) ≤ k} is compact in the weak topology). Moreover, for
A, C ⊆M1(D([0, T ])×D([0, T ])) respectively open and closed for the weak topology,
we have

lim inf
N

1
N

log P (ρN ∈ A) ≥ − inf
Q∈A

I(Q) (4.12)

lim sup
N

1
N

log P (ρN ∈ C) ≤ − inf
Q∈C

I(Q). (4.13)

This means that the distribution of ρN obeys a Large Deviation Principle (LDP) with
rate function I(·) (see Section 3.1 for the de�nition and fundamental facts on LDP).

Proof. The proof of Proposition 4.3.4 is given in Appendix A.4 and follows from
rather standard arguments, similar to those in [18]. Some technical di�culties are
due to unboundedness of F , which is related to the non-reversibility of the model.

Let now Q ∈ M1(D([0, T ]) × D([0, T ])). Arguing similarly as in Section 3.3, we
associate with Q the law of a Markov process on {−1; 1}2 which evolves according to
the following rules:

σ → −σ with intensity e−βσω

ω → −ω with intensity exp
[
−γω

∑
σ,τ∈{−1;1} σΠtQ(σ, τ)

]
= e

−γωmσ
ΠtQ

and with initial distribution λ. We denote by PQ the law of this process. In other
words, PQ is the law of the Markov process on {−1; 1}2 with initial distribution λ
and time-dependent generator

LQ
t f(σ, ω) = e−βσω∇σf(σ, ω) + e

−γωmσ
ΠtQ∇ωf(σ, ω).

We show now an important property of PQ.

Proposition 4.3.5 For every Q ∈M1(D([0, T ])×D([0, T ])) such that I(Q) < +∞,
we have

I(Q) = H(Q|PQ).

Proof. The proof is given in Appendix A.5.

Finally, we have

Proposition 4.3.6 The equation I(Q) = 0 has a unique solution Q∗, of which the
marginals qt := ΠtQ

∗ solve equation (4.8).
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Proof. The proof is essentially the same as the proof of Proposition 3.3.5, with only
minor modi�cations in the notations.

Proof of Theorem 4.3.2 Let Q∗ be the unique zero of the rate function I(·) as given
by Proposition 4.3.6. Let BQ∗ be an arbitrary open neighborhood of Q∗. By the
upper bound in Proposition 4.3.4, we have

lim sup
N

1
N

log P (ρN 6∈ BQ∗) ≤ − inf
Q6∈BQ∗

I(Q) < 0,

where the last inequality comes from lower semicontinuity of I(·), compactness of its
level sets and the fact that I(Q) > 0 for every Q 6= Q∗. The rest of the proof follows
from Proposition 4.3.6 and arguing in the same way as in the proof of theorem 3.3.6.

Before studying in detail the phenomenon of phase transition we prove a couple
of propositions that give an explicit form to the asymptotic marginal measure q̄
satisfying Lq̄ = 0, in other terms, the invariant solution of Equation (4.8).

Remark 4.3.7 Why is it so important to describe q̄? It is related to the concept of
"asymptotic" behavior of the system in the limit when N →∞. Remember that Q∗ is
actually the limiting law described in Theorem 4.3.2, and that qt = ΠtQ

∗ represents
its projection at time t; thus q̄, such that Lq̄ = 0, describes the asymptotic behavior
of Q∗ (when t →∞).

Now it should be clear that the "expected global health" mσ
q̄ =

∑
σ,ω σq̄(σ, ω) com-

puted under q̄, is the asymptotic value of the liquidity in the system where we let N
go to in�nity. If di�erent values of mσ

q̄ are found, suppose {mσ∗ , 0,−mσ∗}5, the �nite
volume system will spend a long time near the unstable equilibrium mσ = 0 before de-
caying to one of the stable ones, for instance mσ

q̄ = −mσ∗ . This fact will be supported
by numerical simulations in Section 5.1 and is the basic concept for explaining default
clustering and credit crises.

Proposition 4.3.8 Fix m ∈ [−1, 1], and consider the probability qm on {−1; 1}2

given by




qm(1, 1) = K
[

eβ+γm(eβ+eγm)+e−β+γm(eβ+e−γm)
−(e−β−eβ)+e−β(eβ+e−γm)(e−β+e−γm)

]

qm(1,−1) = K

qm(−1, 1) = K
[

eβ+γm(eβ+eγm)+e−β+γm(eβ+e−γm)
−(e−β−eβ)+e−β(eβ+e−γm)(e−β+e−γm)

e−β+e−γm

eβ + e−β+γm
]

qm(−1,−1) = K
[

eβ+γm(eβ+eγm)+e−β+γm(eβ+e−γm)
(e−β−eβ)−e−β(eβ+e−γm)(e−β+e−γm)

eβ−γm + eβ(eβ + eγm)
]

where

K =
[

eβ+γm(eβ + eγm) + e−β+γm(eβ + e−γm)
−(e−β − eβ) + e−β(eβ + e−γm)(e−β + e−γm)

(
1 +

e−β + e−γm

eβ
− eβ−γm

)
−

−e−β+γm + eβ(eβ + eγm) + 1
]−1

.

5This will actually be the case for certain values of the parameters. We shall characterize such
values in the following results.



80 CHAPTER 4. ENDOGENOUS (DYNAMIC) RANDOM ENVIRONMENT

Then Lqm = 0 if and only if

m = m(qm) :=
∑

σ,ω=±1

σqm(σ, ω). (4.14)

Moreover all solutions of Lq = 0 are of this form.

Proof. The aim of the proof is to show that all the solutions of Lq = 0 are of the
form of qm, with m de�ned in Equation (4.14).

Firstly we �x m and we solve an auxiliary problem

Lmq(σ, ω) = 0,
∑
ω,σ

q(σ, ω) = 1

where
Lmq(σ, ω) := ∇σ

[
e−βσωq(σ, ω)

]
+∇ω

[
e−γωmq(σ, ω)

]
. (4.15)

Writing explicitly the operator for each entry q(1, 1), q(−1, 1), ..., we obtain a linear
system in four unknowns. A long and tedious inspection of this linear system shows
that there exists a unique solution for each m and this is exactly qm. We omit the
details of this computation.

Secondly we have to ensure that qm solves Lq = 0. Notice that Lm is di�erent
from L (we have �xed m to get linearity in q).
Choosing m ≡ m(qm) as in Equation (4.14) we describe all the solutions qm of Lq = 0,
so that the thesis follows.

Proposition 4.3.9 The value m = 0 is a solution of equation (4.14) for all values
of γ and β. Moreover, de�ne

γ̄(β) =
1

tanhβ
, (4.16)

then the solution is unique if and only if γ ≤ γ̄(β). If γ > γ̄(β) there exists mσ∗ > 0
such that the set of solutions of equation (4.14) is given by {−mσ∗ , 0, mσ∗}.
Proof. Equation (4.14) is of the form m = f(m) for a suitable continuous and odd
function f : [−1, 1] → [−1, 1]. In particular one can show (we omit the details) that
f(m) = 2A(m)+1

B(m) − 1 where

A(m) =
eβ+2γm + e2β+γm + eγm + e−β

e−β−2γm + e−2β−γm + e−γm − eβ

B(m) = A(m)
[
1− eβ−γm + e−β−γm + e−2β

]
+ eβ+γm − e−β+γm + e2β + 1.

We have to deal with a �xed point problem. In particular it can be shown that

A(0) = eβ ; B(0) = 2(eβ + 1)

so that
f(0) = 2

eβ + 1
2(eβ + 1)

− 1 = 0

and the �rst part of the thesis follows.
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Concerning the second part. Notice that, being the function f odd, we can restrict
the research to the positive m. Moreover, it can be shown that f ′′(m) < 0 for m ≥ 0.
As a consequence of these facts, there exists a unique mσ∗ > 0 such that f(mσ∗ ) = mσ∗
if and only if f ′(0) > 1.
Consequently if f ′(0) ≤ 1, m = 0 is the unique solution of the �xed point problem. If
f ′(0) > 1, {0,+mσ∗ ,−mσ∗} are the solutions of the �xed point problem. We are thus
left to compute f ′(0).

f ′(0) = −2
B′(0)
B2(0)

(eβ + 1) + 2γB−1(0)
eβ(eβ + 1)2

1 + e2β

and �nally some basic algebra gives

f ′(0) > 1 ⇔ γ >
e2β + 1
e2β − 1

=
1

tanhβ

and this completes the proof.

We shall see in the next section how the result of Proposition 4.3.9 may be gener-
alized and rephrased in a more pro�table framework. In particular we shall translate
the McKean-Vlasov Equation (4.8) into a di�erential system involving the expected
values mσ, mω and mσω. This will be useful in order to discuss the stability of the
equilibria.

4.3.2 Equilibria of the limiting dynamics: Phase transition
Equation (4.8) describes the dynamics of the system with generator (4.3) in the limit
as N → +∞. In this section we determine the equilibrium points, or stationary (in
t) solutions of Equation (4.8), i.e. solutions of Lqt = 0 and, more generally, the large
time behavior of its solutions. First of all, we provide a result that shows how to
re-parameterize the unknown qt in Equation (4.8) in terms of the expected values
mσ, mω and mσω.

Lemma 4.3.10 Let µ be a probability on {−1; 1}2, then µ is completely identi�ed by
the expectations:

mσ
µ :=

∑

σ,ω=±1

σµ(σ, ω), mω
µ :=

∑

σ,ω=±1

ωµ(σ, ω), mσω
µ :=

∑

σ,ω=±1

σωµ(σ, ω). (4.17)

In particular, if µ = qt, the marginal of Q∗ appearing in Theorem 4.3.2, then we
write mσ

t for mσ
qt
, and similarly for mω

t ,mσω
t . Equation (4.8) can be rewritten in the

following form:




ṁσ
t = 2 sinh(β)mω

t − 2 cosh(β)mσ
t

ṁω
t = 2 sinh(γmσ

t )− 2 cosh(γmσ
t )mω

t

ṁσω
t = 2 sinh(β) + 2 sinh(γmσ

t )mσ
t − 2(cosh(β) + cosh(γmσ

t ))mσω
t

(4.18)

with initial condition mσ
0 = mσ

λ, mσω
0 = mσω

λ , mω
0 = mω

λ .

Proof. Take µ probability on {−1; 1}2. Each f : {−1; 1}2 → R can be written in
the form f(σ, ω) = aσ + bω + cσω + d. It follows that µ is completely identi�ed by
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the three expectations mσ
µ, mω

µ and mσω
µ de�ned above.

The second part can be proved arguing as follows.
By de�nition mσ

t =
∑

σ,ω σqt(σ, ω), hence ṁσ
t =

∑
σ,ω σq̇t(σ, ω). Relying on (4.15)

we then have

ṁσ
t =

∑
σ,ω

σ
(
∇σ[e−βσωqt(σ, ω)] +∇ω

[
e−γωmσ

t qt(σ, ω)
])

=

=
∑
σ,ω

σ
(
eβσωqt(−σ, ω)− e−βσωqt(σ, ω)

)
+

+
∑
σ,ω

σ
(
eγωmσ

t qt(σ,−ω)− e−γωmσ
t qt(σ, ω)

)
.

We now use the following facts
∑
σ,ω

σeβσωqt(−σ, ω) = −
∑
σ,ω

σe−βσωqt(σ, ω)

∑
σ,ω

σeγωmσ
t qt(σ,−ω) =

∑
σ,ω

σe−γωmσ
t qt(σ, ω)

So that
ṁσ

t = −2
∑
σ,ω

σe−βσωqt(σ, ω).

Moreover, it is easy to check that for σ, ω ∈ {−1; 1}, it holds

e−βσω = −σω
eβ − e−β

2
+

eβ + e−β

2

Thus, using the de�nition of sinh(x) = ex−e−x

2 and coshx = ex+e−x

2 , we have

ṁσ
t = −2

∑
σ,ω

σ[−σω sinh(β) + cosh(β)]qt(σ, ω) =

= 2 sinh(β)mω
t − 2 cosh(β)mσ

t

where the last equality follows since σ2 = 1 and
∑

σ,ω ωqt(σ, ω) = mω
t .

Equations for mω and mσω are found using similar techniques.

Note that mσω
t does not appear in the �rst and in the second equation in (4.18);

this means that the di�erential system (4.18) is essentially two-dimensional: �rst one
solves the two-dimensional system (on [−1, 1]2)

(ṁσ
t , ṁω

t ) = V (mσ
t ,mω

t ), (4.19)

with V (x, y) = (2 sinh(β)y−2 cosh(β)x, 2 sinh(γx)−2y cosh(γx)), and then one solves
the third equation in (4.18), which is linear in mσω

t . Note also that to any (mσ∗ ,mω∗ )
satisfying V (mσ∗ ,mω∗ ) = 0, there corresponds a unique mσω∗ := sinh(β)+mσ∗ sinh(γmσ∗ )

cosh(β)+cosh(γmσ∗ )

such that (mσ∗ ,mω∗ ,mσω∗ ) is an equilibrium (stable solution) of (4.18). Moreover, if
mσ

t → mσ∗ as t → +∞, then mσω
t → mσω∗ . Thus, to discuss the equilibria of (4.18)

and their stability, it is enough to analyze (4.19) and for this we have the following
Proposition, where by �linearly stable equilibrium� we mean a pair (x̄, ȳ) such that
V (x̄, ȳ) = 0, and the linearized system (ẋ, ẏ) = DV (x̄, ȳ)(x − x̄, y − ȳ) is stable, i.e.
the eigenvalues of the Jacobian matrix DV (x̄, ȳ) have all negative real parts.
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Theorem 4.3.11

i) Suppose γ ≤ 1
tanh(β) . Then equation (4.19) has (0, 0) as a unique equilibrium

solution, which is globally asymptotically stable, i.e. for every initial condition
(mσ

0 ,mω
0 ), we have

lim
t→+∞(mσ

t , mω
t ) = (0, 0).

ii) For γ < 1
tanh(β) the equilibrium (0, 0) is linearly stable. For γ = 1

tanh(β) the
linearized system has a neutral direction, i.e. DV (0, 0) has one zero eigenvalue.

iii) For γ > 1
tanh(β) the point (0, 0) is still an equilibrium for (4.19), but it is a saddle

point for the linearized system, i.e. the matrix DV (0, 0) has two nonzero real
eigenvalues of opposite sign. Moreover (4.19) has two linearly stable solutions
(mσ∗ ,mω∗ ), (−mσ∗ ,−mω∗ ), where mσ∗ is the unique strictly positive solution of the
equation

x = tanh(β) tanh(γx),

and
mω
∗ =

1
tanh(β)

mσ
∗ .

iv) For γ > 1
tanh(β) , the phase space [−1, 1]2 is bi-partitioned by a smooth curve Γ

containing (0, 0) such that [−1, 1]2 \ Γ is the union of two disjoint sets Γ+, Γ−

that are open in the induced topology of [−1, 1]2. Moreover

lim
t→+∞(mσ

t ,mω
t ) =





(mσ∗ ,mω∗ ) if (mσ
0 ,mω

0 ) ∈ Γ+

(−mσ∗ ,−mω∗ ) if (mσ
0 ,mω

0 ) ∈ Γ−

(0, 0) if (mσ
0 ,mω

0 ) ∈ Γ.

Proof. We �rst observe that the square [−1, 1]2 is stable for the �ow of Equation
(4.19), since the vector �eld V (x, y) points inward at the boundary of [−1, 1]2. It
is also immediately seen that the equation V (x, y) = 0 holds if and only if x =
tanh(β) tanh(γx) and y = 1

tanh(β)x. Moreover a simple convexity argument shows
that x = tanh(β) tanh(γx) has x = 0 as unique solution for γ ≤ 1

tanh(β) , while for
γ > 1

tanh(β) a strictly positive solution, and its opposite, bifurcate from the null
solution. We have therefore found all equilibria of (4.19).
We now remark that Equation (4.19) has no cycles (periodic solutions). Indeed,
suppose (xt, yt) is a cycle of period T . Then by the Divergence Theorem

0 ≤
∫ T

0
[V1(xt, yt)ẋt + V2(xt, yt)ẏt]dt =

∫

C
divV (x, y)dxdy, (4.20)

where V1, V2 are the components of V and C is the open set enclosed by the cycle.
But

divV (x, y) = −2 cosh(β)− 2 cosh(γx) < 0

in all of [−1, 1]2, so that (4.20) cannot hold.
It follows by the Poincaré-Bendixon Theorem that every solution must converge to
an equilibrium as t → +∞. This completes the proof of i).
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Now let us denote by (x̄, ȳ) a pair such that V (x̄, ȳ) = 0. Then the matrix of the
linearized system in (x̄, ȳ) is

DV (x̄, ȳ) = 2
( − cosh(β) sinh(β)

γ (cosh(γx̄)− ȳ sinh(γx̄)) − cosh(γx̄)

)
.

Let λ1, λ2 be its eigenvalues. Then

λ1 =
−(cosh(β) + 1)−

√
(cosh(β)− cosh(γx̄))2 + 4γ [ sinh(β) cosh(γx̄)− ȳ sinh(γx̄) ]

2
,

λ2 =
−(cosh(β) + 1) +

√
(cosh(β)− cosh(γx̄))2 + 4γ [ sinh(β) cosh(γx̄)− ȳ sinh(γx̄) ]

2
.

When (x̄, ȳ) = (0, 0), it is easy to see that λ1,2 ∈ R, λ1 < 0, while the sign of
λ2 depends on the value of γ. But we know that det DV (0, 0) = λ1λ2. Then
sign (det DV (0, 0)) = − sign(λ2), with det DV (0, 0) = 2 [cosh(β)− γ sinh(β)]. So
it follows that:

• if γ < 1
tanh(β) , then λ2 < 0, i.e. (0, 0) is linearly stable;

• if γ = 1
tanh(β) , then λ2 = 0, i.e. DV (0, 0) has a neutral direction;

• if γ > 1
tanh(β) , then λ2 > 0, i.e. (0, 0) is a saddle point for the linearized system.

So ii) and the �rst part of iii) are shown.
Now, when γ > 1

tanh(β) =: γc, also (x̄, ȳ) = (mσ∗ ,mω∗ ) and (x̄, ȳ) = (−mσ∗ ,−mω∗ ), solve
V (x̄, ȳ) = 0.
If λ1,2 ∈ C \ R, i.e. if the argument of the square root of λ1,2 is negative, then
Re λ1 = Re λ2 = −(cosh(β) + 1)/2 < 0 and so (mσ∗ ,mω∗ ), (−mσ∗ ,−mω∗ ) are linearly
stable.
Instead, if λ1,2 ∈ R, then it is immediate to see that λ1 < 0 and, as before,
sign(det DV (mσ∗ ,mω∗ )) = − sign(λ2). Notice that

det DV (mσ
∗ ,m

ω
∗ ) = 2 [ cosh(β) cosh(γmσ

∗ )− γ sinh(β) (cosh(γmσ
∗ )−mω

∗ sinh(γmσ
∗ ))]

= 2 [ cosh(β) cosh(−γmσ
∗ )− γ sinh(β) (cosh(−γmσ

∗ ) + mω
∗ sinh(−γmσ

∗ ))]
= det DV (−mσ

∗ ,−mω
∗ ) .

Then in both cases we have to study sign(det DV (mσ∗ ,mω∗ )). We have

det DV (mσ
∗ ,m

ω
∗ ) > 0 ⇔ cosh(β) cosh(γmσ

∗ )−γ sinh(β) (cosh(γmσ
∗ )−mω

∗ sinh(γmσ
∗ )) > 0 ⇔

⇔ γ mω
∗ tanh(γmσ

∗ ) > γ − γc . (4.21)
But mσ∗ = tanh(β) tanh(γmσ∗ ) , mω∗ = 1

tanh(β) mσ∗ , yield

tanh(γmσ
∗ ) =

1
tanh(β)

mσ
∗ = mω

∗ . (4.22)

So, if we substitute (4.22) in (4.21), we obtain

γ tanh2(γmσ
∗ ) > γ − γc ⇔ 1− 1

cosh2(γmσ∗ )
> 1− γ

γc
,
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which is equivalent to
γ

γc
< cosh2(γmσ

∗ ) . (4.23)

Then, set y = γmσ∗ ,

mσ
∗ =

1
γc

tanh(γmσ
∗ ) ⇔ y =

γ

γc
tanh(y) . (4.24)

So det DV (mσ∗ ,mω∗ ) > 0 is equivalent to
γ

γc
< cosh2(y). (4.25)

On the other hand, from (4.24), we obtain
γ

γc
=

y

tanh(y)
=

y

sinh(y)
cosh(y) < cosh(y) < cosh2(y),

because y/ sinh(y) < 1 and cosh(y) < cosh2(y), since y = γmσ∗ > 0 if γ > γc. This
shows that det DV (mσ∗ ,mω∗ ) > 0.
Then, if γ > γc = 1

tanh(β) , λ1,2 < 0, i.e. (mσ∗ ,mω∗ ), (−mσ∗ ,−mω∗ ) are linearly stable,
from which also the second part of iii) is shown.
It remains to show iv). For γ > 1

tanh(β) , we let vs be an eigenvector of the negative
eigenvalue of DV (0, 0). By the Stable Manifold Theorem (see Section 2.7 in [55]), the
set of initial conditions that are asymptotically driven to (0, 0) form a one-dimensional
manifold Γ that is tangent to vs at (0, 0). Since any solution converges to an equilib-
rium point, and solutions starting in Γc cannot cross Γ (otherwise uniqueness would
be violated), the remaining part of statement iv) follows.

In the following section we are going to provide the technical tools useful to apply
this limiting results to the study of large portfolio losses and to the description of a
credit crisis. In particular we are going to state a central limit theorem that measures
the dispersion around the limit when the volume N of the system is large but �nite.

4.4 Fluctuations: A central limit theorem
Having established a law of large numbers ρN → Q∗, it is natural to analyze �uctua-
tions around the limit, i.e. the rate at which ρN converges to Q∗ and the asymptotic
distribution of ρN −Q∗.

To study the asymptotic distribution of ρN − Q∗ there are at least the following
two possible approaches :

i. A weak convergence-type approach based on uniform convergence of the gener-
ators (see [32]).

ii. An approach based on a functional Central Limit Theorem using a result in
[4] that relates Large Deviations with the Central Limit Theorem. (as already
seen in Chapter 3).

In the following two subsections we are going to discuss these two methods and their
applicability to �nancial problems.
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4.4.1 Convergence of generators approach
In this section we shall provide a dynamical interpretation of the Law of Large Num-
bers discussed in Theorem 4.3.2. Let ψ : {−1; 1}2 → R, and de�ne ρN (t) by

∫
ψdρN (t) :=

1
N

N∑

i=1

ψ(σi(t), ωi(t)). (4.26)

In other words, ρN (t) is the marginal of ρN at time t and we also have m
σ
N (t) =

mσ
ρN (t). Note that, for each �xed t, ρN (t) is a probability on {−1; 1}2, and so, by the

considerations leading to (4.17), it can be viewed as a three-dimensional object. Thus
(ρN (t))t∈[0,T ] is a three-dimensional �ow. A simple consequence of Theorem 4.3.2 is
the following convergence of �ows:

(ρN (t))t∈[0,T ] → (qt)t∈[0,T ] a.s., (4.27)

where the convergence of �ows is meant in the uniform topology. Since the �ow
of marginals contains less information than the full measure of paths, the law of
large numbers in (4.27) is weaker than the one in Theorem 4.3.2. However, the
corresponding �uctuation �ow

(
√

N(ρN (t)− qt))t∈[0,T ]

is also a �nite-dimensional �ow, and it allows for a very explicit characterization of
the limiting distribution.

Theorem 4.4.1 Consider the following three dimensional �uctuation process

xN (t) :=
√

N
(
mσ

ρN (t) −mσ
t

)

yN (t) :=
√

N
(
mω

ρN (t) −mω
t

)

zN (t) :=
√

N
(
mσω

ρN (t) −mσω
t

)
.

Then (xN (t), yN (t), zN (t)) converges as N →∞, in the sense of weak convergence of
stochastic processes, to a limiting three-dimensional Gaussian process (x(t), y(t), z(t))
which is the unique solution of the following linear stochastic di�erential equation




dx(t)
dy(t)
dz(t)


 = A(t)




x(t)
y(t)
z(t)


 dt + D(t)




dB1(t)
dB2(t)
dB3(t)


 (4.28)

where B1, B2, B3 are independent, standard Brownian motions,

A(t) = 2
( − cosh(β) sinh(β) 0

−γmω
t sinh(γmσ

t ) + γ cosh(γmσ
t ) − cosh(γmσ

t ) 0
sinh(γmσ

t ) + γmσ
t cosh(γmσ

t ) + γmσω
t sinh(γmσ

t ) 0 −(cosh(β) + cosh(γmσ
t ))

)

D(t)D∗(t)
2 =( −mσω

t sinh(β) + cosh(β) 0 −mσ
t sinh(β) + mω

t cosh(β)
0 −mω

t sinh(γmσ
t ) + cosh(γmσ

t ) mσ
t cosh(γmσ

t )−mσω
t sinh(γmσ

t )
−mσ

t sinh(β) + mω
t cosh(β) mσ

t cosh(γmσ
t )−mσω

t sinh(γmσ
t ) −mσω

t sinh(β) + cosh(β)−mω sinh(γmσ
t ) + cosh(γmσ

t )

)
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and (x(0), y(0), z(0)) have a centered Gaussian distribution with covariance matrix



1− (mσ
λ)2 mσω

λ −mσ
λmω

λ mω
λ −mσ

λmσω
λ

mσω
λ −mσ

λmω
λ 1− (mω

λ)2 mσ
λ −mσω

λ mω
λ

mω
λ −mσ

λmσω
λ mσ

λ −mσω
λ mω

λ 1− (mσω
λ )2


 (4.29)

Proof.
One key remark is the fact that the stochastic process (mσ

ρN (t),m
ω
ρN (t),m

σω
ρN (t)) is a

su�cient statistics for our model: in this context this means that its evolution is
Markovian.
Notice that (xN (t), yN (t), zN (t)) is obtained from (mσ

ρN (t),m
ω
ρN (t),m

σω
ρN (t)) through a

time dependent, linear invertible transformation. Hence (xN (t), yN (t), zN (t)) is itself
a (time inhomogeneous) Markov process, whose in�nitesimal generator HN,t can be
explicitly obtained. A punctual derivation is given in [57], we obtain

HN,tf(x, y, z) =
N

4

∑

j,k∈{−1;1}

(
x√
N

j +
y√
N

k +
z√
N

jk + mσ
t j + mω

t k + mσω
t jk + 1

)
·

·
{

e−βjk

[
f

(
x− 2√

N
j, y, z − 2√

N
jk

)
− f(x, y, z)

]

+e
−γ

(
x√
N

+mσ
t

)
k
[
f

(
x, y − 2√

N
k, z − 2√

N
jk

)
− f(x, y, z)

]}

−
√

Nṁσ
t

∂f

∂x
(x, y, z)−

√
Nṁω

t

∂f

∂y
(x, y, z)−

√
Nṁσω

t

∂f

∂z
(x, y, z). (4.30)

If we now take f : R3 → R a C3 function with compact support, an exercise in Taylor
expansion yields

lim
N→∞

sup
x,y,z∈R3

|HN,tf(x, y, z)−Htf(x, y, z)| = 0,

where Ht is the in�nitesimal generator of the linear di�usion process (4.28). Using
Theorem 1.6.1 in [32], the proof is completed if we show that (xN (0), yN (0), zN (0))
converges in distribution to (x(0), y(0), z(0)). This last statement follows by the
standard central limit theorem for i.i.d. random variables: indeed, by assumption,
(σi(0), ωi(0)) are independent with law λ, and (4.29) is just the covariance matrix
under λ of (σ(0), ω(0), σ(0)ω(0)).

Theorem 4.4.1 ensures that, for each t > 0, the distribution of (xN (t), yN (t), zN (t))
is asymptotically Gaussian, and provides a method to compute the limiting covariance
matrix. Indeed, denote by Σt the covariance matrix of (x(t), y(t), z(t)). A simple
application of Ito's rule to (4.28) shows that Σt solves the Lyapunov equation

dΣt

dt
= A(t)Σt + ΣtA(t)∗ + D(t)D∗(t). (4.31)

In order to solve Equation (4.31), it is convenient to interpret Σ as a vector in R3×3 =
R3 ⊗ R3. To avoid ambiguities, for a 3 × 3 matrix C we write vec(C) whenever we
interpret it as a vector. It is easy to check that Equation (4.31) can be rewritten as
follows

d(vec(Σt))
dt

= (A(t)⊗ I + I ⊗A(t))vec(Σt) + vec(D(t)D∗(t)), (4.32)
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where �⊗� denotes the tensor product of matrices. Equation (4.32) is linear, so its
solution can be given an explicit expression and can be computed after having solved
(4.18). More importantly, the behavior of Σt for large t can be obtained explicitly as
follows.

A. Case γ < 1
tanh(β) . In this case we have shown in Theorem 4.3.11 that the solution

(mσ
t ,mω

t ,mσω
t ) of Equation (4.18) converges to (0, 0, tanh(β)) as t → +∞. In

particular, one immediately obtains the limits

A := lim
t→+∞A(t), DD∗ := lim

t→+∞D(t)D∗(t). (4.33)

A direct inspection (see Appendix A.6) shows that A has three real strictly
negative eigenvalues. Moreover, the eigenvalues of the matrix A × I + I × A∗

are all of the form λi + λj where λi and λj are eigenvalues of A, and therefore
they are all strictly negative. It follows from (4.32) that limt→+∞Σt = Σ where

vec(Σ) = −(A⊗ I + I ⊗A)−1vec(DD∗). (4.34)

B. Case γ > 1
tanh(β) . Also in this case, by Theorem 4.3.11, the limit

lim
t→+∞(mσ

t ,mω
t ,mσω

t )

exists. Disregarding the exceptional case in which the initial condition of (4.18)
belongs to the stable manifold Γ introduced in Theorem 4.3.11 iv), the limit
above equals either (mσ∗ ,mω∗ ,mσω∗ ), or (−mσ∗ ,−mω∗ ,mσω∗ ), depending on the
initial condition, where (mσ∗ ,mω∗ ,mσω∗ ) are obtained by Theorem 4.3.11 (iii).
In both cases one obtains as in (4.33) the limits A and DD∗, and we show in
Appendix A.6 that also in this case the eigenvalues of A are real and strictly
negative, so that limt→+∞Σt = Σ is obtained as in (4.34).

C. Case γ = 1
tanh(β) . In this case, as shown in Appendix A.6, the limiting matrix

A is singular: it follows that the limit limt→+∞Σt does not exists, as one
eigenvalue of Σt grows polynomially in t. This means that, for critical values
of the parameters, the size of normal �uctuations around the deterministic
limit grows in time. Similarly to what is done in [13] for reversible models, we
can determine the critical long-time behavior of the �uctuation by a suitable
space-time scaling in the model, giving rise to non-normal �uctuations. More
precisely, one can show the following convergence in distribution

N
1
4

(
m·

ρN
(
√

Nt)−m·(
√

Nt)
)

N→∞−→ Z

where Z is non-Gaussian.

In this thesis we shall not study any further the critical case, we shall rather
specialize the result of Theorem 4.4.1 in order to infer information on the evolution
of the �nite volume global health indicator and this will be used in the next section
on large portfolio losses. We have in fact the immediate
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Corollary 4.4.2 As N →∞ we have that
√

N
[
mσ

ρN (t) −mσ
t

]

converges in law to a centered Gaussian random variable Z with variance

V (t) = Σ11(t) (4.35)

where Σ(t) solves Equation (4.31) and mσ
t solves Equation (4.18).

Moreover for α ∈ R we have

P (mσ
N (t) ≥ α) ≈ N

(√
Nmσ

t −
√

Nα√
V (t)

)
. (4.36)

We conclude this section with the following

Remark 4.4.3 The evolution equation (4.31) for the covariance matrix Σt is coupled
with the McKean-Vlasov Equation (4.18), and their joint behavior exhibits interesting
aspects even before the system gets close to the stable �xed point. In particular, in
the case γ > 1

tanh(β) , if the initial condition is su�ciently close to the stable manifold
Γ, the system (4.18) spends some time close to the symmetric equilibrium before
drifting to one of the stable equilibria. A closer look at Equation (4.31) shows that
when the system is close to the symmetric equilibrium, the covariance matrix Σ grows
exponentially fast in time, causing sharp peaks in the variances. This is related to the
credit crisis mentioned in the introduction. A more detailed discussion on this point
is given in the next chapter, in relation to applications to portfolio losses.

4.4.2 A functional approach
We are now going to propose a second (and more general) approach to the study of
the �uctuation of the empirical measure ρN around its limit Q∗.
What do we mean by "more general"? Recall Equation (4.26)

∫
ψ(σi(t), ωi(t))dρN (t) :=

1
N

N∑

i=1

ψ(σi(t), ωi(t))

and the convergence result in Equation (4.27)

(ρN (t))t∈[0,T ] → (qt)t∈[0,T ] a.s.

Notice that the convergence is made on the �ow (ρN (t))t∈[0,T ] of the projection at
given times, instead of on the trajectory measure ρN . This implies that with the
methods explored before, we are able to characterize the �uctuation only on func-
tionals that are linear in the measure ρ (e.g. the expected means of the components
or functions of expected means).
In the next chapter we are going to illustrate an example of marginal and aggregate
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losses (see Example 5.0.14) where the method of the convergence of generators, de-
scribed in Section 4.4.1, is not powerful enough to explain the �uctuations.
A more general result must involve directly the empirical measure ρN on the trajec-
tory space.
As in Section 3.5, we are aiming at describing a limiting result of the form:

√
N

(∫
ΦidρN −

∫
ΦidQ∗

)n

i=1

→ Z̃ , N →∞

where Φi, i = 1, ..., n is a �xed vector of functions in Cb(D[0, T ] × D[0, T ];R) and
Z̃ ∼ Nn(0, C̃), for a well de�ned covariance matrix C̃(Φi,Φj).

The spirit of the derivation below follows the approach already seen in Section 3.5.
We have shown there, see Theorem 3.5.4, that one crucial point is to de�ne a linear
map T : M→ B where B is a suitable Banach space in which it is possible to prove
a central limit theorem.

Conjecture: The space M(D[0, T ]×D[0, T ]) can be mapped into a suitable Banach
space, where Theorem 3.5.1 can be applied. (cfr Section 3.5)

Remark 4.4.4 Concerning the setting of this chapter we are still not able to ensure
the validity of the Conjecture. The existence of a linear map T is in fact related to
the "smoothness" of the function F (Q) de�ned in Formula (4.11).
We are quite con�dent that this technical problem can be solved and leave this issue to
future research. In spite of this incomplete result, we have decided to state the main
theorem, in order to let the reader appreciate the generality of this methodology.

Assuming the validity of the Conjecture we have

Theorem 4.4.5 Let ν∗ be the law, induced by Q∗, of the M0-valued random variable
(δ{σ[0,T ],ω[0,T ]} −Q∗). Let (Φi)n

i=1 ∈ Cb(D[0, T ]×D[0, T ];R) be a �xed vector.
De�ne moreover Φ̂i(A) =

∫
R(A)

∫
ΦidR ν∗(dR), for all i = 1, ..., n.

Finally, let ρN be as de�ned in (4.7) and Q∗ as de�ned in Theorem 4.3.2. As N →∞
√

N

(∫
ΦidρN −

∫
ΦidQ∗

)n

i=1

(4.37)

converges under PN to a multivariate Gaussian random variable with covariance

(C̃)ij =
∫

(Φi − Φ∗i )(Φj − Φ∗j )dQ∗ −D2F (Q∗)[Φ̂i, Φ̂j ] = (4.38)

= EQ∗
[(

(Φi − Φ∗i ) + γ

∫ T

0
ω(t)mΦ̂i(t)

dMω
t

)(
(Φj − Φ∗j ) + γ

∫ T

0
ω(t)mΦ̂j(t)

dMω
t

)]
;

where mΦ̂i(t)
=

∫
σ(t) Φ̂i(dσ[0, T ], dω) for i = 1, ..., n and where

Mω
t := Nω

t −
∫ t

0
e−γω(s)mqs ds (4.39)

denotes the Q∗−martingale associated with the jump process of the ω component.
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Proof. The proof of this result is similar to the one given for Theorem 3.5.6. We
would like to notice that the analogous of Theorem 3.5.4 and 3.5.5, have to be proved
as well. The latter one can be proved with minor modi�cations in the notations.
Concerning the former, it is basically the argument of the Conjecture.

We shall provide in the next chapter an example (see Example 5.0.14), in which, in
order to obtain a CLT for the global health indicator, we need to use Theorem 4.4.5.

Remark 4.4.6 Compare Equation (3.57) and Equation (4.38), that is, the expres-
sions for the covariances C and C̃ of the central limit theorems in the two model
proposed respectively in Chapter 3 and in Chapter 4. One sees that in the former
it is involved the martingale Mσ, whereas in the latter we see Mω, corresponding
respectively to the jump process of the σ and ω components of the Markov chain.
This discrepancy is due to the di�erent speci�cations of the corresponding jump in-
tensities. Indeed, compare the second expression in (4.2) with Assumption (C.2) in
3.2.2. In Chapter 3, the term involving emN is related to the jump of σ, whereas in
the model proposed in Section 4.1 it is related to ω. This fact has an impact on the
second order derivatives of the functionals involved and eventually on the covariances
found in the corresponding central limit theorems.





Chapter 5

Applications to portfolio losses

We now address the problem of computing losses in a portfolio of positions issued
by the N �rms. The main result is Theorem 5.0.8 where an approximation for the
distribution of losses su�ered via large portfolios is provided. Examples with di�erent
speci�cations of portfolios and a qualitative description of a credit crisis based on
simulations follow.

A rather general modeling framework is to consider the total loss that a bank may
su�er due to a risky portfolio at time t as a random variable de�ned by LN (t) =∑

i Li(t). Di�erent speci�cations for the single (marginal) losses Li(t) can be chosen
accounting for heterogeneity, time dependence, interaction, macroeconomic factors
and so on1.

In this work we adopt the point of view of Giesecke and Weber (2005) (see [40]).
The idea is to compute the aggregate losses as a sum of marginal losses Li(t), of which
the distribution is supposed to depend on the realization of the variable σi, i.e. on the
rating class. In particular, conditioned on the realization of σ, the marginal losses
will be assumed to be independent and identically distributed (the independence
condition can be weakened, see Example 5.0.12 below). More precisely, we assume
given a suitable conditional distribution function Gx, x ∈ {−1; 1} namely

Gx(u) := P (Li(t) ≤ u|σi(t) = x) (5.1)
where the �rst and second moments are well de�ned, namely

l1 := E(Li(t)|σi(t) = 1) < E(Li(t)|σi(t) = −1) =: l−1 (5.2)
and

v1 := V ar(Li(t)|σi(t) = 1); v−1 := V ar(Li(t)|σi(t) = −1) (5.3)
The inequality in (5.2) speci�es that we expect to loose more when in �nancial dis-
tress.

The aggregate loss of a portfolio of size N at time t is then de�ned as

LN (t) =
N∑

i=1

Li(t)

1A punctual treatment of this general modeling framework can be found in the book by Em-
brechts, Frey and McNeil (2005)[31]. For a comparison with the most widely used industry examples
of credit risk models see Frey and McNeil (2002)[38], Crouhy, Galai and Mark (2000)[17] or Gordy
(2000)[42]. The same modeling insights are also developed in the more recent literature on risk man-
agement and large portfolio losses analysis, see [40], [36], [23] and [46] for di�erent speci�cations.
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We recall the de�nition of the global health indicators m
σ
N (t) := 1

N

∑N
i=1 σi(t), and

mσ
t :=

∫
σdqt where qt solves the McKean-Vlasov Equation (see Equation (4.8)).

We also introduce a deterministic time function, which will be seen to represent an
�asymptotic� loss when the number of �rms goes to in�nity, namely

L(t) =
(l1 − l−1)

2
mσ

t +
(l1 + l−1)

2
(5.4)

We state now a technical lemma and the main result of this section.

Lemma 5.0.7 De�ne f : {−1; 1} → {l−1, l1} as f(−1) = l−1, f(1) = l1 with l−1, l1
as in (5.2). Then for t ∈ [0, T ] we have the convergence in distribution

√
N

(∑
j f(σj(t))

N
− L(t)

)
→ X ∼ N

(
0,

(l1 − l−1)2V (t)
4

)
.

where L(t) is de�ned in Equation (5.4) and V (t) in (4.35).

Proof. De�ne, for x ∈ {−1; 1}, the quantity AN
x (t) as the number of σi that, at a

given time t, are equal to x. We may then write 1+m
σ
N (t)

2 = AN
1 (t)
N and 1−m

σ
N (t)

2 =
AN
−1(t)

N . Recall moreover that for N →∞, m
σ
N (t) → mσ

t . We then have

√
N

(∑
i f(σi(t))

N
− L(t)

)
=
√

N




∑
i:σi=1

f(σi(t)) +
∑

i:σi=−1
f(σi(t))

N
− L(t)


 =

=
√

N

(
l1A

N
1 (t) + l−1A

N
−1(t)

N
− L(t)

)
=
√

N

(
l1

1 + m
σ
N (t)

2
+ l−1

1−m
σ
N (t)

2
− L(t)

)
=

=
√

N

(
(l1 + l−1)

2
+

(l1 − l−1)
2

m
σ
N (t)− (l1 − l−1)

2
mσ

t −
(l1 + l−1)

2

)
=

=
√

N

(
(l1 − l−1)

2
(
m

σ
N (t)−mσ

t

)) → X ∼ N

(
0,

(l1 − l−1)2V (t)
4

)

where the convergence follows from Corollary 4.4.2, since m
σ
N (t) = mσ

ρN (t).

Theorem 5.0.8 Assume Li(t) has a distribution of the form (5.1). Then for any
t ∈ [0, T ] and for any value of the parameters β > 0 and γ > 0, we have

√
N

(
LN (t)

N
− L(t)

)
→ Y ∼ N

(
0, V̂ (t)

)

in distribution, where L(t) has been de�ned in Equation (5.4) and

V̂ (t) =
(l1 − l−1)2V (t)

4
+

(1 + mσ
t ) v1

2
+

(1−mσ
t ) v−1

2
. (5.5)

with V (t) as de�ned in (4.35).
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Proof. We have to check that
√

N

(
LN (t)

N
− L(t)

)
→ Y ∼ N

(
0, V̂ (t)

)

where V̂ (t) is de�ned in (5.5).
Separating the �rms that belong to di�erent rating classes,

√
N




∑
j

L(σj(t))

N
− L(t)


 =

√
N




∑
j:σj=1

L(σj(t)) +
∑

j:σj=−1
L(σj(t))

N
− L(t)




Since L(σj(t)) conditioned on the realization of σj(t) are i.i.d. random variables, we
construct X1,j for j = 1, .., AN

1 (t), as AN
1 (t) independent copies of L(σj(t) = 1) and

X−1,j , for j = 1, .., AN
−1(t), as copies of L(σj(t) = −1). We then add and subtract∑

j f(σj(t)), obtaining

√
N




∑
j:σj=1

(X1,j − l1)

N
+

∑
j:σj=−1

(X−1,j − l−1)

N
+

∑
j

f(σj(t))

N
− L(t)




(5.6)
Since we have only independence conditionally on σ, we need to check whether the
CLT still applies. Let us show the convergence of the corresponding characteristic
functions. De�ne for r ∈ R, ϕ1(r) = E

(
eir(X1,j−l1)

)
for all j (respectively ϕ−1(t)),

then we have

E

[
exp

{
ir

LN (t)−NL(t)√
N

}]
= (5.7)

E


E


exp





ir

∑
j:σj=1

(X1,j − l1)

√
N

+

∑
j:σj=−1

(X−1,j − l−1)

√
N

+

∑
j

f(σj(t))−NL(t)
√

N





∣∣∣∣∣∣∣
σ(t)







The last of the three terms is measurable with respect to the sigma algebra gener-
ated by σ(t) so that we can take it out from the inner expectation. Because of the
conditional independence we can separate the remaining terms in the expectations:

E


exp





ir

∑
j:σj=1

(X1,j − l1)

√
N





∣∣∣∣∣∣∣
σ(t)


 · E


exp





ir

∑
j:σj=−1

(X−1,j − l−1)

√
N





∣∣∣∣∣∣∣
σ(t)




We now prove that a CLT holds for each term:

E


exp





ir

∑
j:σj=1

(X1,j − l1)

√
N





∣∣∣∣∣∣∣
σ(t)


 = E




AN
1 (t)∏

j=1

exp
{

ir
(X1,j − l1)√

N

}∣∣∣∣∣∣
σ(t)


 =

=
AN

1 (t)∏

j=1

E

[
exp

{
ir

(X1,j − l1)√
N

}∣∣∣∣σ(t)
]

=
[
1− v1

2
r2

N
+ o

(
1
N

)]AN
1 (t)
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where the last equality follows because l1 and v1 are the �rst two moments of X1,j .
Recalling that AN

1 (t)
N = 1+m

σ
N (t)

2 converges almost surely to 1+mσ
t

2 we obtain

lim
N→∞

[
1− v1

2
r2

N
+ o

(
1
N

)]AN
1 (t)

=

= lim
N→∞

[
1− v1

2
r2

AN
−1(t)

AN
−1(t)
N

+ o

(
1
N

)]AN
1 (t)

= e−
r2

2

1+mσ
t

2
v1

The same argument is used to prove the convergence for the terms where σj = −1.

Since AN
−1(t)

N → 1−mσ
t

2 , we have

lim
N→∞

[
1− v−1

2
r2

AN
−1(t)

AN
−1(t)
N

+ o

(
1
N

)]AN
−1(t)

= e−
r2

2

1−mσ
t

2
v−1 .

We now take the limit in Equation (5.7); by dominated convergence we can inter-
change lim and expected value so that

lim
N→∞

E [E [...|σ(t)]] = E

[
lim

N→∞
E [...|σ(t)]

]

Moreover recall from Lemma 5.0.7 that
∑

j f(σj(t))−NL(t)√
N

converges to X ∼ N
(
0, (l1−l−1)2V (t)

4

)
,

so that

lim
N→∞

E


exp





ir

∑
j

f(σj(t))−NL(t)
√

N






 = e−

r2

2

(l1−l−1)2V (t)

4

Finally we �nd

lim
N→∞

E [... |σ(t)] = e−
r2

2

(l1−l−1)2V (t)

4 e−
r2

2

1+mσ
t

2
v1e−

r2

2

1−mσ
t

2
v−1 = e−

r2

2
V̂ (t)

and this completes the proof.

From Theorem 5.0.8 we immediately have the following

Corollary 5.0.9 We have

P (LN (t) ≥ α) ≈ N

N L(t)− α
√

N

√
V̂ (t)


 .

Remark 5.0.10 By the symmetry of the model, the above Gaussian approximation
for the losses is appropriate for a wide (depending on N) range of values of α. If
we modify the model to become asymmetric as discussed at the end of Section 4.1
and, more precisely, we modify it so that σ = −1 becomes much less likely than
σ = +1, then for a �realistic� value of N , the number of �rms with σi = −1 could be
too small for the Gaussian approximation to be su�ciently precise. One could then
rather consider a Poisson-type approximation.
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We shall now provide examples illustrating possible speci�cations for the marginal
loss distributions where, without loss of generality, we assume a unitary loss (e.g. loss
due to a corporate bond) when a �rm is in the bad state.

We start with a very basic example where we assume that the marginal losses
(when conditioned on the value of σ) are deterministic. This means that the riskiness
of the loss portfolio is related only to the number of �rms in �nancial distress and so
we can use directly the results of section 4.3, in particular of Corollary 4.4.2.

Example 5.0.11 Suppose that marginal losses are described as follows:

Li(t) =
{

1 if σi(t) = −1
0 if σi(t) = 1

On the other hand

LN (t) =
N∑

i=1

1− σi(t)
2

.

Recalling that m
σ
N (t) = 1

N

∑
i σi(t), by Corollary 4.4.2 (that here becomes a particular

case of Corollary 5.0.9), we can compute various risk measures related to the portfolio
losses such as the following Var-type measure

P (LN (t) ≥ α) = P

(
N −Nm

σ
N (t)

2
≥ α

)
= P

(
m

σ
N (t) ≤ N − 2α

N

)
≈

≈ N
(
−2α + (1−mσ

t )N√
N

√
V (t)

)
= N

(
−2α + 2L∞(t)N√

N
√

V (t)

)
(5.8)

where L∞(t) := limN→∞
LN (t)

N = limN→∞
∑

i
1−σi(t)

2N = 1−mσ
t

2 .

Looking at a portfolio of N = 10000 small �rms, we compute the excess loss proba-
bility for di�erent values of the parameters β, γ comparing them with the benchmark
case where there is no interaction at all, i.e. where β = γ = 0 (�independence case�).
In Figure 5.1 we show the cumulative probability of having excess losses for the same
portfolios. In this �gure we see that, when the dependence increases, the corresponding
risk measures increase. The distributions become in fact more spread out.

More general speci�cations are already suggested in the existing literature. In
particular in the following example we apply our approach to a very tractable class of
models, the �Bernoulli mixture models�. This kind of modeling has been used in the
context of cyclical correlations, i.e. in models where exogenous factors are supposed
to characterize the evolution of the indicator of defaults (the classical factor models).
In the context of contagion based models this class was �rst introduced by Giesecke
and Weber in [40].

Example 5.0.12 (Bernoulli mixture models) Assume that the marginal losses Li(t)
are Bernoulli mixtures, i.e.

Li(t) =
{

1 with probability P (σi(t), Ψ)
0 with probability 1− P (σi(t), Ψ)

(5.9)
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Figure 5.1: Excess loss in a large portfolio (N = 10000) for di�erent values of the
parameters γ and β compared with the independence case.

where the mixing derives not only from the rating class indicator σi(t) of �rm i, but
also from an exogenous factor Ψ ∈ Rp that represents macroeconomic variables that
re�ect the business cycle and thus allow for both contagion and cyclical e�ects on the
rating probabilities.

Notice that, with the above speci�cation, the quantities de�ned in (5.2) and (5.3)
now depend on the random factor Ψ, i.e.

l1 = P (1, Ψ), v1 = P (1, Ψ)(1− P (1, Ψ)) and analogously for l−1, v−1.

As a consequence, the asymptotic loss L(t) as well as the variance of the Gaussian
approximation V̂ (t) de�ned in Equations (5.4) and (5.5) are also functions of Ψ. With
a slight abuse of notation we shall write Lψ(t) (respectively V̂ψ(t)) for the asymptotic
loss (variance) at time t given that Ψ = ψ.

Next we give a possible expression for the mixing distribution for P (σ,Ψ) that is in
line with existing models on contagion2. Let a and bi, i = 1, 2, be non negative weight
factors. Let us assume for simplicity that Ψ ∈ R is a Gamma distributed random
variable. De�ne then

P (σ,Ψ) = 1− exp
{
−aΨ− b1

(
1− σ

2

)
− b2

}

This speci�cation follows the CreditRisk+ modeling structure, even though in the
standard industry examples direct contagion is not taken into account. Notice that

2We want to stress the fact that this modeling framework has been introduced by Giesecke and
Weber in [40]. What is di�erent from their approach is the microscopic interaction between the
�rms. In particular our framework makes it possible to quantify the time varying �uctuations of
mσ

ρN
(t) for any t ∈ [0, T ], i.e. in a dynamically consistent way.
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Figure 5.2: Loss amount in a large portfolio (N = 10000) in the case of marginal losses
which (depending on the rating class) are distributed as Bernoulli random variables
for which the parameter depends on Ψ.

the factor 1−σ
2 increases the probability of default for the �rms in the bad rating class

(σ = −1). Applying Corollary 5.0.9 to this case we have that

P (LN (t) ≥ α) ≈
∫
N


NLψ(t)− α√

NV̂ψ(t)


 dfΨ(ψ).

where fΨ is the density function of the Gamma random variable Ψ.
In Figure 5.2 we plot the excess loss probability in the case where a = 0.1, b1 = 1,

b2 = 0.5 and β = 1.5 is supposed to be �xed. We compare di�erent speci�cations for
Ψ and γ. In particular we consider the following cases:

Ψ = 4.5, γ = 0.6; Ψ = 4.5, γ = 1.1; Ψ ∼ Γ(2.25, 2), γ = 1.1

The shape of the excess losses suggests that the loss may be sensibly higher in the
case of high uncertainty about the value of the macroeconomic factor (Ψ ∼ Γ(2.25; 2))
and in the case of high level of contagion (γ = 1.1). Notice that in all three situations
we are in the subcritical case, since the critical value for γ is γc = 1/ tanh(β) ' 1.105.
This also implies that the equilibrium value is the same in the three situations and
depends only on Ψ.

Remark 5.0.13 Notice that the asymptotic loss distribution in the above Bernoulli
mixture model does not only depend on a mixing parameter as in standard Bernoulli
mixture models but, via L(t), it depends also on the value mσ

t of the asymptotic average
global health indicator. Moreover, compared to Giesecke and Weber [40], we are able
to quantify the time varying �uctuations of the global indicator mσ

ρN (t). We shall see
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that this may sensibly in�uence the distribution of losses in particular when looking
at two di�erent time horizons T1 and T2 before and after a credit crisis.

Example 5.0.14 (A further example) Further examples may be considered, in par-
ticular when the distribution of the marginal losses Li(t) depends on the entire past
trajectory of the rating indicator σi, taking e.g. into account how long the �rm has
been in the bad state. Instead of depending simply on σi(t), the distribution of Li(t)
could then be made dependent on Si(t) := I{∫ t

0

(
1−σi(s)

2

)
ds≥δt

} with δ ∈ (0, 1), which
is equal to one if �rm i has spent at least a fraction δ of time in the bad state.
Corresponding to (5.9) we would then have

Li(t) =
{

1 with probability P (Si(t),Ψ)
0 with probability 1− P (Si(t),Ψ)

Although this last example appears as a straightforward extension of Example
5.0.12, the Central Limit Theorem result in Section 4.4.1, is not su�cient to handle
it. For this we need the approach based on the functional Central Limit Theorem
explained in Section 4.4.2.

Let us point out that in the examples above we have considered only the problem
of computing large portfolio losses which led to computing (approximately) the Var-
like probabilities P (LN (t) ≥ α) where α is a (large) integer. From here, passing
to expressions of the form P (LN (t)

N ≥ α
N ), one could then compute the probability

that the loss ratio belongs to a given interval and this would then allow to compute
(approximately) for our contagion model also other quantities in a risk sensitive
environment. In any case notice that Theorem 5.0.8 provides the entire distribution
for the portfolio losses.

In the previous examples we have described large portfolio losses at a predetermined
time horizon T for di�erent speci�cations of the conditional loss distribution. In what
follows, we shall (implementing di�erent numerical simulations) how the phenomenon
of a credit crisis may be explained in our setting and how this issue may in�uence the
quanti�cation of losses. This dynamic point of view on risk management that accounts
for the possibility of a credit crisis in the market, is one of the main contributions of
this work.

As one could expect, the possibility of having a credit crisis is related to the ex-
istence of particular conditions on the market, more precisely to certain levels of
interaction between the obligors (i.e. the parameters β and γ) and certain values of
the state variables describing the rating classes and the fundamentals (i.e. σ and ω).

5.1 Simulation results
To illustrate the situation we shall now present some simulation results. We shall
proceed along two steps: the �rst one relates more speci�cally to the particle system,
the second to the portfolio losses.

Step 1.: (Domains of attraction)

In Section 4.3.2 we have characterized all the equilibria of the system depending
on the values of the parameters. In particular we have shown that for supercritical
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Figure 5.3: Domains of attraction Γ+ for (mσ∗ ,mω∗ ) and Γ− for (−mσ∗ ,−mω∗ ) and
their boundary Γ for β = 1 and varying γ. Here the critical value for γ is γc :=
1/ tanh(β) ' 1.313.

values, by which we mean γ > 1
tanh(β) , there are two asymmetric equilibrium con�g-

urations in the space (mσ,mω) that are symmetric to one another and are de�ned as
(mσ∗ ,mω∗ ) and (−mσ∗ ,−mω∗ ).
In particular, Theorem 4.3.11 allows to characterize their domains of attraction, i.e.
the sets of initial conditions that lead the trajectory to one of the equilibria. Numer-
ical simulations provide diagrams as in Figure 5.3.

Step 2.: (Credit crises)

We show results from numerical simulations that detect the crises when the values
of the parameters are supercritical and the initial conditions are �near� the boundary
of the domains of attraction, i.e. near Γ.

In Figure 5.4 we have plotted a trajectory starting in (mσ
0 ,mω

0 ) ∈ Γ− but near the
boundary. It can be seen that the path moves towards (mσ,mω) = (0, 0) and then
leaves it decaying to the stable equilibrium.

Concerning the time evolution of this trajectory we see in Figure 5.5 that, for an
initial condition near the boundary, the variable mσ

t (the same would happen also
with mω

t that for clarity is not plotted) is �rst attracted to the unstable value zero,
around which it spends a long time before moving to the stable equilibrium. This
can be explained, in �nancial terms, as follows:
Suppose that at a certain moment the market conditions are such that the parameters
are subcritical implying that (mσ,mω) = (0, 0) is a stable equilibrium. When the
market conditions change so that the interaction between the �rms increases, the
parameters may become supercritical. In this new situation (mσ,mω) = (0, 0) is no
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Figure 5.5: Trajectory of mσ
t and V (t) with initial conditions mσ

0 = −0.5 when
β = 1.5 and γ = 2.1 (here γc = 1/ tanh(β) ' 1.105) . We have marked by (∗) the
time horizons T1 = 2 and T2 = 10 before and after the crisis where in the next Figure
5.6 we shall compute the excess loss probabilities.



5.1. SIMULATION RESULTS 103

−1000 −500 0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Excess loss probabilities before and after the crisis

Excess loss: x

E
xc

es
s 

pr
ob

ab
ili

ty
: P

(L
N

>
x)

 

 
Before the crisis (T=2)
After the crisis (T=10)

Figure 5.6: Excess probability of losses in a portfolio of N = 10000 obligors, β = 1.5
and γ = 2.1 computed in T1 = 2 and T2 = 10, namely before and after the crisis in
the case of Example 5.0.12 with Ψ ∼ Γ(2.25; 2) (here γc = 1/ tanh(β) ' 1.105).

longer a stable equilibrium and the system starts moving towards a new equilibrium
con�guration. If the system con�guration belongs to Γ−, the new stable equilibrium
that the system is attracted to is given by (−mσ∗ ,−mω∗ ). As soon as the system
moves away from (0, 0), the uncertainty (volatility) increases fast and the credit
quality indicators move to the stable con�guration changing completely the picture
of the market (the speed of the convergence depends on the level of interaction).
This situation is also well illustrated by the loss probability computed before and
after the crisis (i.e. in certain time instants T1 and T2). In Figure 5.6 we see the
excess probability of su�ering a loss of value x for the case of Example 5.0.12 with
an exogenous parameter Ψ ∼ Γ(2.25; 2). One can see that before the crisis both the
expected loss and the dispersion around the mean (as shown also in Figure 5.5) may
be underestimated as well as the corresponding risk measures.

Finally we mention the fact that for di�erent levels of interaction we can distinguish
between a smoothly varying business cycle and a crisis. When β and γ, the parameters
describing the level of interaction are su�ciently small, the business cycle (described
in our simple model by the proportion of �rms in the rating classes) evolves smoothly
and the induced variance (level of uncertainty about the number of bad rated �rms)
is lower compared to the crisis case. In Figure 5.7 we show this fact for two levels of
β and γ, both supercritical.
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of badly rated �rms decreases smoothly to a new equilibrium, i.e. towards a bad
business cycle. The critical values for γ are, respectively, 1/ tanh(1.5) ' 1.105 and
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Conclusions

In this thesis we have described a new framework useful to study the propagation of
�nancial distress in a network of �rms linked by business relationships.

In particular we have proposed two models for credit contagion, based on inter-
acting particle systems and we have quanti�ed the impact of contagion on the losses
su�ered by a �nancial institution holding a large portfolio with positions issued by
the �rms.

Compared to the existing literature on credit contagion, we have proposed a dy-
namic model where it is possible to describe the evolution of the indicators of �nancial
distress. In this way we are able to compute the distribution of the losses in a large
portfolio for any time horizon T , via a suitable version of the central limit theorem.

The peculiarity of our models is the fact that the �nancial health indicators (the
σ variables) are related to the degree of health of the system (the global indicator
mσ). There is a further characteristic of the �rms that is summarized by a second
variable ω (a liquidity indicator) that describes the ability of the �rm to act as a
bu�er against adverse news coming from the market.

The behavior of the pair (σ, ω) is di�erent in the two models and depends only on
few parameters: β in the �rst one-parametric model and γ and β in the second one.
These parameters indicate the strength of the interaction.

In the second model described in Chapter 4 we see phase transition and the pres-
ence of multiple equilibria, leading to the characterization of a possible credit crisis
on the credit markets.

The fact that our model leads to endogenous �nancial indicators that describe the
general health of the systems has allowed us to view a credit crisis as a microeconomic
phenomenon. This has also been exempli�ed through simulation results.

As already stressed in the introduction the proposed models are rather simple and
may not allow for a punctual calibration to real time series of default data.
To this aim, the future research may go in two directions: �rstly the development
of more comprehensive models. The aspects that we would like to take into account
have already been proposed throughout the exposition of the model in Chapter 4.
We summarize them:

• Develop a realistic credit migration model, i.e., let the variable σ take more
than only two values. Moreover -given our setup- it could be a non-Markovian
migration model in line with the current literature.
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• Let the intensity of transition be random rather then deterministic. In partic-
ular add the dependence on some macroeconomic factors.

• Weaken the mean �eld assumption and the symmetry of the system where the
sites +1 and −1 are perfectly symmetric.

• Implement a calibration of the models to real data.

Secondly we would like to pursue the study of some technical aspects:

• Prove the Conjecture of Chapter 4.

• Analyze in more detail the critical case of the parameters (see point C in Sec-
tion 4.4.1), where the standard central limit theorem does not apply since the
variance Σt of the Gaussian approximation (see Equation (4.31)) grows poly-
nomially in t.

• Prove a law of small numbers for the asymptotic system (with in�nite obligors),
providing a Poissonian limiting distribution. This might better re�ect real data
when looking at credit events.



Appendix A

Technical proofs (Chapters 3-4)

Before proving the remaining theorems, we collect in table A.1 the notations that we
are going to use in the �rst three sections of this appendix.
In what follows, in order to simplify the notations, we shall often write, with a slight
abuse of notation, Φ instead of Φ(σ[0, T ], ω).

Cb The space of bounded continuous and measurable functions Φ : D̃[0, T ]× R→ R
ν∗ The law of (δ{σ[0,T ],ω} −Q∗) induced by Q∗
Φ∗

∫
ΦdQ∗

Φ̂(S)
∫

(R(S) · ∫
ΦdR) ν∗(dR); for all measurable S ⊂ D̃[0, T ]× R

(A;BQ
t ) A = βω; BQ

t = β
∫

σΠtQ(dσ[0, T ], dω)
(B;B′) B = L2[0, T ]× L2[0, T ]× R2+n ; B′ its topological dual

T T : M→ B
pN (·) PN ◦ T−1(·) : The measure induced by PN on B
wN (·) WN ◦ T−1(·) : The measure induced by WN on B

p∗ The law of T (δ{σ[0,T ],ω})− T (Q∗) induced by Q∗
λ The map in B′ such that (λ ◦ T )(Q) =

∫
ΦdQ, for Φ ∈ X

λ̃
∫

yλ(y)p∗(dy)

Table A.1: Main notations and de�nitions of Appendix A.1, A.2 and A.3.

A.1 Proof of Theorem 3.5.4
We begin this section with some preliminary de�nitions.

De�nition A.1.1 Let B be the Banach space de�ned by B = BI × BII where BI

and BII are respectively

BI := L2[0, T ]× L2[0, T ]× R2 ; BII := Rn.

Let T be the operator T : M(D̃[0, T ]× R) → B,

T := (T1, T2, T3, T4, S1, S2, ..., Sn)
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such that
T1(Q) = EQ[σ(t)] ∈ L2[0, T ]
T2(Q) = EQ

[
1+σ(t)

2 e−βω
]
∈ L2[0, T ]

T3(Q) = EQ[I{τ≤T}] ∈ R
T4(Q) = EQ[ωI{τ≤T}] ∈ R

where τ = inf{t > 0 : σ(t) = −1} and such that

Si(Q) =
∫

ΦidQ ∈ R, ∀i = 1, ..., n; (A.1)

for a given vector Φ = (Φ1, ...,Φn) ∈ Cb as de�ned in Theorem 3.5.4.

Lemma A.1.2 The map T is linear on M and continuous on {Q : Q(τ = T ) = 0}.

Proof. The linearity is obviously satis�ed inM for each component of T . Concerning
the continuity, we �rst show that T1 is continuous. We have to ensure that, given a
sequence of measures Qn converging towards Q such that Q(τ = T ) = 0, it follows

∫ T

0

(
EQn [σ(t)]−EQ[σ(t)]

)2
dt → 0.

We have already noticed in the proof of Lemma 3.3.2 (see footnote 5) that EQn [σ(t)]
converges to EQ[σ(t)] for those t such that Q(τ = t) = 0. Notice that the set of t
such that Q(τ = t) > 0 is at most countable; in particular it has Lebesgue measure
zero. Thus EQn [σ(t)] → EQ[σ(t)] almost everywhere w.r.t. the Lebesgue measure.
Moreover, being EQn [σ(t)] and EQ[σ(t)] bounded uniformly in n and t, the conver-
gence holds also in the L2 sense, by Dominated Convergence. The same argument is
used to show the continuity of T2.
Concerning T3 and T4, notice that both EQ[I{τ≤T}] and EQ[ωI{τ≤T}] are continuous
on {Q : Q(τ = T ) = 0}. This can be seen by the same argument used to prove (3.36)
(see again footnote 5). Here we are dealing with signed measures, but the argument
can be applied to the positive and the negative part separately.
Finally, the Si's, for i = 1, ..., n, are continuous by de�nition of weak topology.

Remark A.1.3 We would like to notice that for our purposes the fact that T fails to
be continuous in A = {Q : Q(τ = T ) > 0}, plays no role at all in our dissertation.
Indeed, PN (A) = WN (A) = 0 by de�nitions of WN and PN given in Section 3.3.
For this reason we can ignore the set A. All the proofs and the arguments used in
this chapter hold true if we restrict our analysis to M̃ := M\A.

Proof of Theorem 3.5.4.
Point (i). The Banach space B proposed in De�nition A.1.1 is of type 2 since it is
an Hilbert space and Hilbert spaces are Banach spaces of type 2.
In order to de�ne properly the map Ψ needed to prove Theorem 3.5.4, we introduce
an auxiliary function g : R→ R de�ned as follows

g(x) =





g−(x) if x < −1
x if −1 ≤ x ≤ eβ

g+(x) if x > eβ
(A.2)
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where g− and g+ are real function smooth enough in order to make g(·) bounded,
continuous and three times continuously di�erentiable.

Consider now the maps Ψ : B → R and Σ : B → R such that

Ψ(y) =
∫ T

0

1 + g(y1(t))
2

dt−
∫ T

0
g(y2(t)) e−βg(y1(t))dt− β[g(y4) + g(y3)− (g(y3))2],

Σ(y) = −β y3; (A.3)

where y = (y1, ..., y4, z1, ..., zn) ∈ B.
Ψ is bounded and continuous; moreover, it can be shown by an explicit computation,
that Ψ is at least three times Fréchet di�erentiable. Σ is clearly linear and continuous.
We recall the expression for F as given in Equation (3.32), namely

F (Q) =
∫ T

0

1 + mqt

2
dt−

∫ T

0
EQ

[
1 + σ(t)

2
e−βω

]
e−βmqt dt−

−βEQ
[
ωI{τ≤T}

]− β[Q(τ ≤ T )−Q2(τ ≤ T )]− β
∑

t∈[0,T ]

(∆Q(τ ≤ t))2; (A.4)

For our purposes, it is more convenient to introduce a new function F1:

F1(Q) :=
∫ T

0

1 + mqt

2
dt−

∫ T

0
EQ

[
1 + σ(t)

2
e−βω

]
e−βmqt dt−

−βEQ
[
ωI{τ≤T}

]− β[Q(τ ≤ T )−Q2(τ ≤ T )]. (A.5)
It is clear that F (Q) = F1(Q)− β

∑
t∈[0,T ](∆Q(τ ≤ t))2. We now claim that

F (ρN ) = Ψ(T (ρN )) +
Σ(T (ρN ))

N
, (W ⊗ η)⊗N − a.s. (A.6)

We show �rst that
Ψ(T (Q)) = F1(Q). (A.7)

To this aim, notice that g(·) de�ned in (A.2) is such that g(T (Q)) = T (Q) for all Q in
M1. In fact, for all t ∈ [0, T ], we see that T1(Q)(t) ∈ [−1; 1] and T2(Q)(t) ∈ [−1; eβ].
Moreover T3(Q) ∈ [0, 1] and �nally T4(Q) ∈ [−1; eβ].
As a consequence we have that g(T (Q)) ≡ T (Q) for all Q ∈M1.
Look now at the de�nition of Ψ : B → R as given in (A.3). We compute it in
T (Q) ∈ B:

Ψ(T (Q)) =

=
∫ T

0

1 + T1(Q)(t)
2

dt−
∫ T

0
T2(Q)(t) e−βT1(Q)(t)dt− β[T4(Q) + T3(Q)− (T3(Q))2].

Looking at the de�nition of F1 given in (A.5) and recalling the de�nition of T1, ..., T4,
we easily see that Ψ(T (Q)) = F1(Q). In order to prove (A.6), it remains to show that

Σ(T (ρN ))
N

= −β
∑

t∈[0,T ]

(∆ρN (τ ≤ t))2 , (W ⊗ η)⊗N − a.s.

To this aim, notice that ρN (τ ≤ t) = J(t)
N , where J(t) denotes the number of defaulted

�rms up to time t. In fact, being ρN = 1
N

∑
i δ{σi[0,T ],ωi}, we are putting mass 1/N
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on each jump occurred up to time t.
From this fact, we easily see that ∆ρN (τ ≤ t) = 1

N

∑
i I{σi(t)6=σi(t−)}. Since simulta-

neous jumps may happen only with zero (W ⊗ η)⊗N -probability, we have that
∑

t∈[0,T ]

(∆ρN (τ ≤ t))2 =
1

N2
J(T ) , (W ⊗ η)⊗N − a.s.

On the other hand J(T ) = NρN (τ ≤ T ), then
∑

t∈[0,T ]

(∆ρN (τ ≤ t))2 =
ρN (τ ≤ T )

N
, (W ⊗ η)⊗N − a.s.

Now, by de�nition of Σ and T3, we have that Σ(T (ρN )) = −βT3(ρN ) = −βρN (τ ≤ T ).
Hence

−β
∑

t∈[0,T ]

(∆ρN (τ ≤ t))2 =
Σ(T (ρN ))

N
, (W ⊗ η)⊗N − a.s.

This ensures the validity of (A.6).
Equation (3.55) now follows by the fact that dP ω

N

dW⊗N = exp {NF (ρN )} (see Lemma
3.3.1) and applying (A.6).

Point (ii). It is an immediate consequence of the de�nition of T . For any Φi ∈ Cb we
can de�ne λi ∈ B′, where B′ stands for the topological dual of B, such that λi(y) =
λi(y1, ..., y4, z1, ..., zn) := zi. Thus, by de�nition, λi ◦ T (Q) = Si(Q) =

∫
ΦidQ.

A.2 Proof of Theorem 3.5.5
We apply Theorem 3.5.1 to the sequence Yi = T (δ{σi[0,T ],ωi}) taking values on B

as de�ned in De�nition A.1.1. Notice that in our setting Ω = (D̃[0, T ] × R)N and
P = (W ⊗ η)N .
We need to check that the assumptions (B.1), ..., (B.5) of Theorem 3.5.1 hold true.

(B.1):
We recall that w is the law of T (δ{σi[0,T ],ωi}) induced by W ⊗ η. Thus

∫
exp(r|x|)w(dx) = EW⊗η

[
er|T (δ{σi[0,T ],ωi})|

]
.

The expected value is necessarily �nite, since the image of T is bounded in the ‖ · ‖B

norm. This ensures the validity of (B.1).

(B.2):
Consider the function Ψ as de�ned in (A.3). Being bounded, Ψ clearly grows less
than linearly, and, as stated in Theorem 3.5.4, it is three times Fréchet di�erentiable.
Thus it satis�es (B.2).

(B.3):
In order to ensure the validity of (B.3), we de�ne a suitable sequence of measures
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(pN )N on B and we show that it satis�es a LDP with rate function Λ∗(y)−Ψ(y) as
de�ned in Theorem 3.5.1. We shall see that (B.3) follows as a corollary of this LDP.
Let pN ∈M1(B) (respectively wN ) be the probability measure induced by PN (resp.
WN ) on B de�ned as

pN (·) = PN ◦ T−1(·) (resp. wN (·) = WN ◦ T−1(·) ).

Lemma A.2.1 The following property holds true

dpN

dwN
= eN(Ψ+ Σ

N ), (A.8)

where Ψ and Σ have been de�ned in (A.3).

Proof. For any S ⊂ B, we have

pN (S) = PN (T−1(S)) =
∫
IS(T (ρN (σ[0, T ], ω)))η⊗N (dω)Pω

N (dσ[0, T ]) =

=
∫
IS(T (ρN (σ[0, T ], ω)))η⊗N (dω)eN

(
Ψ(T (ρN (σ[0,T ],ω)))+

Σ(T (ρN (σ[0,T ],ω)))

N

)
W⊗N (dσ[0, T ]) =

=
∫

S
e
N

(
Ψ(y)+

Σ(y)
N

)
wN (dy).

where the third equality is a consequence of Equation (3.55).

Lemma A.2.2 There exists a functional J : B → R+ such that the sequence of
measures (pN )N satis�es a LDP with rate function J . Moreover J is a good rate
function with a unique zero at y∗ = T (Q∗).

Proof. The �rst part of the statement follows as a corollary of Proposition 3.1.9. In
particular

J(y) = inf
Q=T−1(y)

I(Q). (A.9)

Concerning the uniqueness of y∗, it follows since Q∗ is the unique point such that
I(Q) = 0.

Lemma A.2.3 The good rate function J de�ned in Lemma A.2.2 is of the form

J(y) = [Λ∗(y)−Ψ(y)];

where
Λ∗(y) := sup

ϕ∈B′
{ϕ(y)− Λ(ϕ)} ; Λ(ϕ) := ln

∫
eϕ(y) w(dy).

Proof. In this proof we show that the sequence (pN )N satis�es a weak LDP with
rate function Λ∗ − Ψ. As a consequence, by virtue of Lemma 3.1.3, concerning the
uniqueness of the rate function, we conclude that J(y) ≡ Λ∗(y)−Ψ(y) for all y ∈ B.
To this aim, we apply Theorem 3.1.8 to the sequence of measures wN ∈ M1(B). B
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is in fact a locally convex Hausdor� topological vector space and wN are the laws of
the random variables

XN =
1
N

N∑

i=1

Yi ∈ B,

where Yi are i.i.d. B−valued random variables with law w. Thus we have that wN

satis�es a weak LDP with rate function Λ∗.
We would like to rely on Proposition 3.1.10 (more precisely on Remark 3.1.11) in
order to derive a weak LDP for the sequence pN ∈ M1(B). Notice that, in our
setting, Ψ(·) + Σ(·)/N plays the role of the function F (·) of Proposition 3.1.10. The
presence of the term involving Σ(·) does not in�uence the proof of this proposition.
In fact Σ is bounded when computed on the support of the measures pN (that is on
the image of T ). Thus this term gives no contribution when taking the limit for N
going to in�nity.
We thus can apply Proposition 3.1.10 and Remark 3.1.11 to the sequence pN such
that dpN

dwN
= eN(Ψ+ Σ

N ), concluding that pN satis�es a weak LDP with rate function

J̃(y) = [Λ∗(y)−Ψ(y)]− inf
z∈B

[Λ∗(z)−Ψ(z)].

Moreover, arguing as in the proof of Theorem 3.3.3 (see Equation (3.40)), we see that

lim
N→∞

1
N

log E

[
e

{
N

(
Ψ(XN )+

Σ(XN )

N

)}]
= − inf

z∈B
[Λ∗(z)−Ψ(z)] = 0.

Hence J̃(y) = [Λ∗(y)−Ψ(y)].
By virtue of Lemma 3.1.3, we conclude that J̃(y) ≡ J(y) for all y ∈ B.

As a corollary of Lemmas A.2.2 and A.2.3, we have that there exists a unique
y∗ ∈ B such that Λ∗(y∗)−Ψ(y∗) = infz[Λ∗(z)−Ψ(z)]. So (B.3) follows.

(B.4):
We have to ensure that for each λ ∈ B′ such that λ̃ =

∫
yλ(y)p∗(dy) 6= 0 we have

∫
λ2(y)p∗(dy)−D2Ψ(y∗)[λ̃, λ̃] > 0; (A.10)

where p and p∗ are de�ned in Theorem 3.5.1.
This proof is rather technical and long. We divide it into three steps. We �rst
show that the measure p such that dp

dw = eDΨ(y∗)
z , for a suitable normalizing factor z,

is exactly the law of the random variable T (δ{σ[0,T ],ω}) induced by Q∗. This argu-
ment is then used in the second step to ensure the positivity of a suitable functional
H : Cb × Cb → R. In the last part we see how to relate H to assumption (B.4).

Step 1:

The key result of this �rst step is given in Lemma A.2.5 below. We look at the
measure p on B, de�ned by putting

dp

dw
(y) = eDΨ(y∗)[y] , being y∗ = T (Q∗)
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where, as already seen, w represents the law of T (δ{σ[0,T ],ω}) induced by W ⊗ η.
We shall prove in Lemma A.2.5 that p is the law of T (δ{σ[0,T ],ω}) induced by Q∗.
We �rst need to prove a technical lemma.

Lemma A.2.4 For any P ∈M, we call F2(P ) the quantity

F2(P ) :=
∑

t∈[0,T ]

(∆P (τ ≤ t))2. (A.11)

Then for Q such that F2(Q) = 0 and any r ∈M we have

DΨ(T (Q))[T (r)] = DF (Q)[r], (A.12)

where F has been de�ned in (3.29).

Proof. First of all we show that DF (Q)[r] is well de�ned. Indeed, we explicitly
compute the Fréchet derivative on the function F .
To simplify the notation, we de�ne

A := βω ; Br
t = β

∫
σΠt r(dσ, dω) = βmrt , r ∈M (A.13)

We rewrite (3.29) substituting A and Br
t computed under Q ∈M1.

F (Q) =
∫

dQ

{∫ T∧τ

0
(1− exp{−A−BQ

t })dt + I{τ≤T}(−A−BQ
τ−)

}
.

Being BQ
t linear in Q, we have

F (Q + hr) =
∫

d(Q + hr)
∫ T∧τ

0
(1− e−A−BQ+hr

t )dt +

+
∫

d(Q + hr)
[
I{τ≤T}(−A−BQ+hr

τ− )
]

the linearity of the integrals (as well as of the di�erentials) allows us to split the
integrals, so that we can write F (Q + hr)− F (Q) as

F (Q + hr) − F (Q) =

=
∫

dQ

∫ T∧τ

0
[(1− e−A−BQ

t −hBr
t )− (1− e−A−BQ

t )]dt +

+ h

∫
dr

∫ T∧τ

0
(1− e−A−BQ

t −hBr
t )dt +

+ h

∫
dr

[
−I{τ≤T}(A + BQ

τ− + hBr
τ−)

]
+ (A.14)

+ h

∫
dQ

[−I{τ≤T}Br
τ−

]
.

We have now to divide by h and let h go to zero. Notice that there exists C < ∞
such that ∣∣∣∣∣

(1− e−A−BQ
t −hBr

t )− (1− e−A−BQ
t )

h

∣∣∣∣∣ ≤ C (A.15)
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for h small enough. We can thus use the dominated convergence Theorem, taking
the limit under the integral in the �rst term of (A.14). We obtain

DF (Q)[r] = lim
h→0

F (Q + hr)− F (Q)
h

= (A.16)

=
∫

dQ

∫ T∧τ

0
Br

t e−A−BQ
t dt +

∫
dr

∫ T∧τ

0
(1− e−A−BQ

t )dt +

+
∫

dr
[
−I{τ≤T}(A + BQ

τ−)
]

+
∫

dQ
[−I{τ≤T}Br

τ−
]
.

This shows that DF (Q)[r] is well de�ned.
Back to the statement, recall that Ψ(T (·)) = F1(·) (see (A.5) and (A.7) ).
We now show that under the assumptions of the lemma

DF1(Q)[r] = DF (Q)[r]. (A.17)

By (A.5) we immediately see that F2(Q) =
∑

t∈[0,T ](∆Q(τ ≤ t))2 = F (Q) − F1(Q).
We have to show that DF2(Q)[r] = 0. Indeed

DF2(Q)[r] = lim
h→0

1
h

[F2(Q + hr)− F2(Q)] .

By assumption F2(Q) = 0, moreover

F2(Q + hr) =
∑

t∈[0,T ]

(∆(Q + hr)(τ ≤ t))2 = h2F2(r). (A.18)

On the other hand, for any measure r ∈M, F2(r) is bounded. Indeed, for r ∈M we
have that

∑
t∈[0,T ] |∆r(τ ≤ t)| ≤ |r|TV < ∞, where |r|TV denotes the total variation

of r. Hence
0 ≤ F2(r) =

∑

t∈[0,T ]

(∆r(τ ≤ t))2 < ∞.

As a consequence DF2(Q)[r] = limh→0
h2F2(r)

h = 0.
This proves (A.17). We now show the validity of (A.12).

DΨ(T (Q))[T (r)] = lim
h→0

Ψ(T (Q + hr))−Ψ(T (Q))
h

=

= lim
h→0

F1(Q + hr)− F1(Q)
h

= DF1(Q)[r] = DF (Q)[r].

Where we have used (A.17) and the fact that Ψ(T (·)) = F1(·) (see (A.7)).

Lemma A.2.5 The measure p is the law of T (δ{σ[0,T ],ω}) induced by Q∗.

Proof. We �rst prove the following claim

DF (Q∗)[δ{σ[0,T ],ω}] = log
dQ∗

d(W ⊗ η)
(σ[0, T ], ω), (A.19)

for W ⊗ η−almost all (σ[0, T ], ω).
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To this aim, we compute DF (Q)[r] in Q∗

DF (Q∗)[r] =

=
∫

dQ∗
∫ T∧τ

0
βmrt e

−β(ω+mq∗t )
dt +

∫
dr

∫ T∧τ

0
(1− e

−β(ω+mq∗t ))dt +

+
∫

dr
[
−I{τ≤T}(βω + βmq∗

τ−
)
]

+
∫

dQ∗
[−I{τ≤T}βmrτ−

]
.

In the case when r = δ{σ[0,T ],ω}, we see that the second equation in (A.13) can be
rewritten as

βmδ{σ[0,T ],ω} = β

∫
σΠt(δ{σ[0,T ],ω})(dσ, dω) = βσ(t) = β , ∀t ∈ [0, τ ].

Then

DF (Q∗)[δ{σ[0,T ],ω}] =

=
∫

dQ∗ β

∫ T∧τ

0
e
−β(ω+mq∗t )

dt +
∫

dδ{σ[0,T ],ω}

∫ T∧τ

0

(
1− e

−β(ω+mq∗t )
)

dt +

+
∫

dδ{σ[0,T ],ω}
[
I{τ≤T}

{
−β(ω + mq∗

τ−
)
}]
−

∫
dQ∗ β

∫ T∧τ

0
dNσ

t .

where in writing the last integral we have used the fact that I{τ≤T} =
∫ T∧τ
0 dNσ

t ,
where (Nσ

t )t is de�ned by
Nσ

t := I{τ≥t}. (A.20)

Notice that (Nσ
t )t is a Poisson process with intensity I{τ≥t}e

−β(ω+mq∗t ). Thus its
compensated Q∗−martingale is exactly Mσ

t de�ned in (3.58). Hence
∫ T∧τ

0
dNσ

t −
∫ T∧τ

0
e
−β(ω+mq∗t )

dt =
∫ T∧τ

0
dMσ

t .

Moreover, being
∫ T∧τ
0 dMσ

t a Q∗− martingale we have
∫

dQ∗
∫ T∧τ
0 dMσ

t = 0. Hence

DF (Q∗)[δ{σ[0,T ],ω}] =

=
∫

dδ{σ[0,T ],ω}

{∫ T∧τ

0

(
1− e

−β(ω+mq∗t )
)

dt +
[
I{τ≤T}

{
−β(ω + mq∗

τ−
)
}]}

=

=
∫ T∧τ

0

(
1− e

−β(ω+mq∗t )
)

dt +
[
I{τ≤T}

{
−β(ω + mq∗

τ−
)
}]

.

By virtue of Girsanov's Formula for Markov chains it can be seen that
∫ T∧τ

0

(
1− e

−β(ω+mq∗t )
)

dt +
[
I{τ≤T}

{
−β(ω + mq∗

τ−
)
}]

= log
dPQ∗

d(W ⊗ η)
,

where PQ is the law of the Markov process with generator given in (3.41).
(A.19) thus follows since PQ∗ = Q∗ as shown in the proof of Proposition 3.3.5.

Back to the statement of the lemma, we see that for h measurable and bounded
∫

h(y)p(dy) =
∫

h(y)
eDΨ(y∗)[y]

z
w(dy) =
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=
∫

h(T (δ{σ[0,T ],ω}))
eDΨ(y∗)[T (δ{σ[0,T ],ω})]

z
(W ⊗ η)(dσ[0, T ], dω) =

=
∫

h(T (δ{σ[0,T ],ω}))
eDF (Q∗)[δ{σ[0,T ],ω}]

z
(W⊗η)(dσ[0, T ], dω) =

∫
h(T (δ{σ[0,T ],ω}))dQ∗

where we have used (A.19) in the last equality and Lemma A.2.4 in the next to last.
Notice moreover that, thanks to (A.19), z ≡ 1.
The fact that DΨ(y∗)[T (δ{σ[0,T ],ω})] = DF (Q∗)[δ{σ[0,T ],ω}] follows since Q∗ ¿ W ⊗ η
and F2(W ⊗η) = 0, being the distribution of τ under W ⊗η of exponential type. We
can thus apply Lemma A.2.4.

Step 2:

In this second step we prove positivity of the functional H de�ned in (A.26) below.
Its positivity will imply (A.10), as shown in Step 3. We start proving a technical
lemma.

Lemma A.2.6 The following properties hold true

i) Φ̂, de�ned by (3.54), is absolutely continuous w.r.t. Q∗ and in particular

dΦ̂
dQ∗

= Φ− Φ∗. (A.21)

ii) The second order Fréchet derivative of the function F (Q) computed in Q∗ can
be written as

D2F (Q∗)[Φ̂i, Φ̂j ] = EQ∗
[∫ T∧τ

0
−β2mΦ̂i(t)

mΦ̂j(t)
e−β(ω+mqt )dt + (A.22)

+ (Φj − Φ∗j )
∫ T∧τ

0
βmΦ̂i(t)

e−β(ω+mqt )dt + (Φi − Φ∗i )
∫ T∧τ

0
βmΦ̂j(t)

e−β(ω+mqt )dt

]
+

−βEΦ̂i

[
I{τ≤T}mΦ̂j(τ−)

]
− βEΦ̂j

[
I{τ≤T}mΦ̂i(τ−)

]
.

Proof.
Point (i). We observe that, given Φ̂ as in De�nition 3.5.3, we have

Φ̂(S) =
∫

M0(E)

[
R(S)

∫
ΦdR

]
ν∗(dR) =

=
∫

E
(I{(σ[0,T ],ω)∈S} −Q∗(S)) ·

(∫
Φ dδ{σ[0,T ],ω} −

∫
ΦdQ∗

)
dQ∗ =

=
∫

E

[
(I{(σ[0,T ],ω)∈S} −Q∗(S)) · (Φ(σ[0, T ], ω)− Φ∗)

]
dQ∗

for any S ⊂ E := D̃[0, T ]× R. The second equality follows since ν∗ is the law of the
random variable δ{σ[0,T ],ω} −Q∗ induced by Q∗.
Notice that Q∗(S)

∫
E(Φ − Φ∗)dQ∗ = 0, being Φ∗ the expectation under Q∗ of Φ(·).

Hence
Φ̂(S) =

∫

S
(Φ− Φ∗)dQ∗
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and point (i) follows.
Point (ii). We have to compute the second order derivatives of the function F . We
�rst compute the �rst order derivative as given in (A.16), substituting r = Φ̂i.

DF (Q)[Φ̂i] = lim
h→0

F (Q + hΦ̂i)− F (Q)
h

= (A.23)

=
∫

dQ

∫ T∧τ

0
BΦ̂i

t e−A−BQ
t dt +

∫
dΦ̂i

∫ T∧τ

0
(1− e−A−BQ

t )dt +

+
∫

dΦ̂i

[
−I{τ≤T}(A + BQ

τ−)
]

+
∫

dQ
[
−I{τ≤T}B

Φ̂i

τ−

]
.

We now compute the second order derivatives, where

D2F (Q)[Φ̂i, Φ̂j ] = lim
h→0

1
h

(
DF (Q + hΦ̂j)[Φ̂i]−DF (Q)[Φ̂i]

)
.

To this aim, we see that

DF (Q + hΦ̂j)[Φ̂i] =

=
∫

d(Q + hΦ̂j)
∫ T∧τ

0
BΦ̂i

t e−A−BQ
t −hB

Φ̂j
t dt +

∫
dΦ̂i

∫ T∧τ

0
(1− e−A−BQ

t −hB
Φ̂j
t )dt +

+
∫

dΦ̂i

[
−I{τ≤T}(A + BQ

τ−) + hB
Φ̂j

τ−

]
+

∫
d(Q + hΦ̂j)

[
−I{τ≤T}B

Φ̂i

τ−

]
.

hence

DF (Q + hΦ̂j)[Φ̂i]−DF (Q)[Φ̂i] =

=
∫

dQ

∫ T∧τ

0
BΦ̂i

t [(e−A−BQ
t −hB

Φ̂j
t )− (e−A−BQ

t )]dt +

+ h

∫
dΦ̂j

∫ T∧τ

0
BΦ̂i

t (e−A−BQ
t −hB

Φ̂j
t )dt +

+
∫

dΦ̂i

∫ T∧τ

0
[(1− e−A−BQ

t −hB
Φ̂j
t )− (1− e−A−BQ

t )]dt +

+ h

∫
dΦ̂i

[
−I{τ≤T}B

Φ̂j

τ−

]
+ h

∫
dΦ̂j

[
−I{τ≤T}B

Φ̂i

τ−

]
.

Dividing by h, letting h go to zero and relying on a boundedness argument, similar
to (A.15), we see that

D2F (Q)[Φ̂i, Φ̂j ] =
∫

dQ

∫ T∧τ

0
−BΦ̂i

t B
Φ̂j

t e−A−BQ
t dt +

+
∫

dΦ̂j

∫ T∧τ

0
BΦ̂i

t e−A−BQ
t dt +

∫
dΦ̂i

∫ T∧τ

0
B

Φ̂j

t e−A−BQ
t dt +

+
∫

dΦ̂i

[
−I{τ≤T}B

Φ̂j

τ−

]
+

∫
dΦ̂j

[
−I{τ≤T}B

Φ̂i

τ−

]
.
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Taking Q = Q∗ and using point (i), we can write

D2F (Q∗)[Φ̂i, Φ̂j ] = EQ∗
[∫ T∧τ

0
−BΦ̂i

t B
Φ̂j

t e−A−BQ∗
t dt+ (A.24)

+ (Φj − Φ∗j )
∫ T∧τ

0
BΦ̂i

t e−A−BQ∗
t dt + (Φi − Φ∗i )

∫ T∧τ

0
B

Φ̂j

t e−A−BQ∗
t dt

]
+

+ EΦ̂i

[
−I{τ≤T}B

Φ̂j

τ−

]
+ EΦ̂j

[
−I{τ≤T}B

Φ̂i

τ−

]
.

Using the de�nitions of A and B (see (A.13)), we have

D2F (Q∗)[Φ̂i, Φ̂j ] = EQ∗
[∫ T∧τ

0
−β2mΦ̂i(t)

mΦ̂j(t)
e−β(ω+mqt )dt + (A.25)

+ (Φj − Φ∗j )
∫ T∧τ

0
βmΦ̂i(t)

e−β(ω+mqt )dt + (Φi − Φ∗i )
∫ T∧τ

0
βmΦ̂j(t)

e−β(ω+mqt )dt

]
+

−βEΦ̂i

[
I{τ≤T}mΦ̂j(τ−)

]
− βEΦ̂j

[
I{τ≤T}mΦ̂i(τ−)

]
.

So the conclusion follows.

Proposition A.2.7 Given Φ1 and Φ2 in Cb, let

H(Φ1, Φ2) := CovQ∗(Φ1, Φ2)−D2F (Q∗)[Φ̂1, Φ̂2]; (A.26)

where CovQ∗(Φ1, Φ2) :=
∫

(Φ1 − Φ∗1)(Φ2 − Φ∗2)dQ∗. Then

H(Φ, Φ) > 0, for all Φ such that Φ̂ 6= 0.

Proof. We �rst show that H(Φ, Φ) is the expected value of a square. Indeed

H(Φ,Φ) = CovQ∗(Φ, Φ)−D2F (Q∗)[Φ̂, Φ̂] = (A.27)

= EQ∗ [(Φ− Φ∗)2] + EQ∗
[∫ T∧τ

0
β2m2

Φ̂(t)
e−β(ω+mqt )dt −

− 2(Φ− Φ∗)
∫ T∧τ

0
βmΦ̂(t)e

−β(ω+mqt )dt

]
+ 2βEΦ̂

[
I{τ≤T}mΦ̂(τ−)

]
.

We rewrite the last term using the de�nition of (Nσ
t ) given in (A.20).

As a consequence we see that βI{τ≤T}mΦ̂(τ−) = β
∫ T∧τ
0 mΦ̂(t−)dNσ

t . Thus

2βEΦ̂
[
I{τ≤T}mΦ̂(τ−)

]
= 2EQ∗

[
(Φ− Φ∗)

∫ T∧τ

0
βmΦ̂(t−)dNσ

t

]
.

We rewrite (A.27) as follows

H(Φ, Φ) = EQ∗ [(Φ− Φ∗)2] + EQ∗
[∫ T∧τ

0
β2m2

Φ̂(t)
e−β(ω+mqt )dt

]
+

+ EQ∗
[
2(Φ− Φ∗)

{
−

∫ T∧τ

0
βmΦ̂(t)e

−β(ω+mqt )dt +
∫ T∧τ

0
βmΦ̂(t−)dNσ

t

}]
.
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We now use the Q∗−martingale (M s
t )t de�ned in (3.58), in order to rewrite the latter

term in brackets as a martingale.

H(Φ, Φ) = EQ∗ [(Φ− Φ∗)2] + EQ∗
[∫ T∧τ

0
β2m2

Φ̂(t)
e
−β(ω+mq∗t )

dt

]
+

+ EQ∗
[
2(Φ− Φ∗)

{∫ T∧τ

0
βmΦ̂(t)dMσ

t

}]
.

Moreover by the isometry property of square integrable martingales (notice that the
argument of the integral: (βmΦ̂(t)) is bounded) we have

EQ∗
[∫ T∧τ

0
β2m2

Φ̂(t)
e
−β(ω+mq∗t )

dt

]
= EQ∗

[ (∫ T∧τ

0
βmΦ̂(t)dMσ

t

)2
]

.

Hence

H(Φ,Φ) =

= EQ∗

[
(Φ− Φ∗)2 +

(∫ T∧τ

0
βmΦ̂(t)dMσ

t

)2

+ 2(Φ− Φ∗)
(∫ T∧τ

0
βmΦ̂(t)dMσ

t

)]
=

= EQ∗

[(
(Φ− Φ∗) +

∫ T∧τ

0
βmΦ̂(t)dMσ

t

)2
]

. (A.28)

H(Φ, Φ) is thus the expected value of a square, hence it cannot be negative. For this
reason, we simply need to prove that it is non-zero. Without loss of generality we
take Φ∗ = 0.
Suppose by way of contradiction that H(Φ,Φ) = 0. Then necessarily

(
Φ(σ[0,T ], ω) +

∫ T∧τ

0
βmΦ̂(s)dMσ

s

)
= 0, Q∗ a.s.

Using the fact that

mΦ̂(s) =
∫

σ(s) Φ̂(dσ, dω) =
∫

σ(s) Φ(σ[0, T ], ω) Q∗(dσ, dω),

where the last equality follows since dΦ̂
dQ∗ = Φ. We rewrite the expression above as

(
Φ(σ[0,T ], ω) +

∫ T∧τ

0
β

[∫
σ(s)Φ(σ[0,T ], ω)dQ∗

]
dMσ

s

)
= 0, Q∗ − a.s.

hence

Φ(σ[0,T ], ω) = −
∫ T∧τ

0
β

[∫
σ(s)Φ(σ[0,T ], ω)dQ∗

]
dMσ

s , Q∗ − a.s. (A.29)

On the other hand, de�ne Φt = EQ∗ [Φ|Ft], where

Ft = σ{σs : 0 ≤ s ≤ t; ω}.
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Notice that
∫

σ(t)Φ(·)dQ∗ = EQ∗ [σ(t)Φ(·)] = EQ∗ [σ(t)EQ∗ [Φ(·)|Ft]] =
∫

σ(t)ΦtdQ∗.

Taking the conditional expectation in (A.29), we obtain

Φt = EQ∗
[
−

∫ T∧τ

0
β

(∫
σ(s)ΦsdQ∗

)
dMσ

s

∣∣∣∣Ft

]
, Q∗ a.s.

= −
∫ t∧τ

0
β

(∫
σ(s)ΦsdQ∗

)
dMσ

s , Q∗ a.s.

We now take the L2-norm in both sides. For all t ∈ [0, T ] we have

||Φt||2L2(Q∗) =
∥∥∥∥
∫ t∧τ

0
β

(∫
σ(s)ΦsdQ∗

)
dMσ

s

∥∥∥∥
2

L2(Q∗)
=

= EQ∗

[∫ t∧τ

0
β2

(∫
σ(s)ΦsdQ∗

)2

e−β(ω+mq∗s )ds

]
.

Notice that
(∫

σ(s)ΦsdQ∗
)2 ≤ (∫

ΦsdQ∗
)2 ≤ ∫

Φ2
sdQ∗ ≤

∫
Φ2

t dQ∗ = ‖Φt‖2
L2(Q∗),

where t ≥ s. The �rst inequality follows since σ ∈ {−1; 1}; the second one is trivial
and the latter one is due to the fact that (Φ2

s)s is a submartingale and thus its
expected value is an increasing function of time. Then

||Φt||2L2(Q∗) ≤ EQ∗
[∫ t∧τ

0
β2‖Φt‖2

L2(Q∗)e
−β(ω+mq∗s )ds

]
≤

≤ (t ∧ τ) ε−1 ||Φt||2L2(Q∗) ≤ t ε−1 ||Φt||2L2(Q∗)

where 0 < ε < ∞ is a constant such that β2e−β(ω+mq∗s ) ≤ ε−1. As a consequence,
Φs = 0, Q∗ a.s. for s ∈ [0, ε).
This argument can be iterated de�ning Φ(2)

t := Φt+ε. The same argument shows that
Φ(2)

s = 0, Q∗ a.s. for s ∈ [0, ε); hence Φt = 0, Q∗ a.s. for s ∈ [0, 2ε). Eventually
we extend the statement to s ∈ [0, T ]. Being ΦT = Φ, we would have Φ̂ = 0 and this
gives a contradiction. Hence the thesis follows.

Step 3:

Consider λ1, λ2 ∈ B′. Since λi ◦ T , for i = 1, 2, are in the topological dual of M,
there exist Φ1, Φ2 ∈ Cb such that λi ◦ T (Q) =

∫
ΦidQ. We de�ne

Covp∗(λ1, λ2) =
∫

λ1(y)λ2(y)p∗(dy) and λ̃i =
∫

yλi(y)p∗(dy); i = 1, 2

where we recall that p∗, de�ned in (B.4) of Theorem 3.5.1, is the centered version of
the law of T (δ{σ[0,T ],ω}) induced by Q∗. Then the following result holds true
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Lemma A.2.8

i)
Covp∗(λ1, λ2) = CovQ∗(Φ1, Φ2);

D2Ψ(y∗)[λ̃1, λ̃2] = D2F (Q∗)[Φ̂1, Φ̂2].

ii) For λi, i = 1, 2 we have

Covp∗(λi, λi)−D2Ψ(y∗)[λ̃i, λ̃i] > 0.

Proof. Point (i). By the de�nition of p∗ and λi, i = 1, 2 we see that

Covp∗(λ1, λ2) =
∫

[S1(δ{σ[0,T ],ω})− S1(Q∗)][S2(δ{σ[0,T ],ω})− S2(Q∗)]dQ∗ =

=
∫

[Φ1 − Φ∗1][Φ2 − Φ∗2]dQ∗,

where we have used the fact that λi ◦ T (Q) = Si(Q) =
∫

ΦidQ.
Concerning the second statement, we �rst prove the following claim.

λ̃i = T (Φ̂i) ; i = 1, 2. (A.30)

To show the validity of (A.30), we use the following two facts:

λ̃i = EQ∗
{
[T (δ{σ[0,T ],ω})− T (Q∗)][Φi(σ[0, T ], ω)− Φ∗i ]

}
;

Φ̂i = EQ∗
{
[δ{σ[0,T ],ω} −Q∗][Φi(σ[0, T ], ω)− Φ∗i ]

}
.

The former follows by de�nition of p∗, λ and Si(Q), whereas the latter is a conse-
quence of the de�nition of Φ̂ given in (3.54).
(A.30) is a consequence of the fact that T is both linear and continuous, hence we
are allowed to interchange the T operator with the expectation.
Having proved (A.30), we compute the second order Fréchet derivatives on the func-
tion Ψ as follows.

D2Ψ(y∗)[λ̃1, λ̃2] = lim
k→0

DΨ(y∗ + kλ̃2)[λ̃1]−DΨ(y∗)[λ̃1]
k

. (A.31)

Notice that, by the linearity of T and by (A.30), we have that

y∗ + kλ̃2 = T (Q∗ + kΦ̂2) , y∗ = T (Q∗).

Thus

lim
k→0

DΨ(y∗ + kλ̃2)[λ̃1]−DΨ(y∗)[λ̃1]
k

= lim
k→0

DΨ(T (Q∗ + kΦ̂2))[λ̃1]−DΨ(T (Q∗))[λ̃1]
k

.

We now claim that

lim
k→0

DΨ(T (Q∗ + kΦ̂2))[λ̃1]−DΨ(T (Q∗))[λ̃1]
k

= lim
k→0

DF (Q∗ + kΦ̂2)[Φ̂1]−DF (Q∗)[Φ̂1]
k

.

(A.32)
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To show this equality we rely on Lemma A.2.4. Recall that this lemma guarantees that
DΨ(T (Q))[T (r)] = DF (Q)[r], if F2(Q) = 0 where F2(P ) :=

∑
t∈[0,T ](∆P (τ ≤ t))2.

We are in this situation: in fact F2(Q∗) = 0 since Q∗ ¿ (W ⊗ η) and Φ̂i is absolutely
continuous with respect to Q∗. Hence both F2(Φ̂i) and F2(Q∗ + kΦ̂i) = 0. This
proves (A.32). Finally we use the fact that F is Fréchet di�erentiable

lim
k→0

DF (Q∗ + kΦ̂2)[Φ̂1]−DF (Q∗)[Φ̂1]
k

= D2F (Q∗)[Φ̂1, Φ̂2].

We have thus proved that D2Ψ(y∗)[λ̃1, λ̃2] = D2F (Q∗)[Φ̂1, Φ̂2].

Concerning point (ii), we notice that

Covp∗(λi, λi)−D2Ψ(y∗)[λ̃i, λ̃i] = CovQ∗(Φi,Φi)−D2F (Q∗)[Φ̂i, Φ̂i] = H(Φi, Φi),

where H has been de�ned in Equation (A.26). Hence by Proposition A.2.7 the posi-
tivity condition is ensured and the thesis follows.

By virtue of Lemma A.2.8, for any λ ∈ B′ such that λ̃ 6= 0, (A.10) holds true. As
a consequence, assumption (B.4) is ensured.

(B.5):
It follows by Theorem 3.5.4.

Having ensured the validity of assumptions (B.1), ..., (B.5), we are allowed to apply
Theorem 3.5.1, so Theorem 3.5.5 is proved. Notice that in our setting we have
Ω = (D̃[0, T ]× R)N and P = (W ⊗ η)⊗N , then (3.51) can be written as

dπN

d(W ⊗ η)⊗N
=

e
N

(
Ψ(XN )+

Σ(XN )

N

)

E(W⊗η)⊗N

[
e
N

(
Ψ(XN )+

Σ(XN )

N

)] . (A.33)

A.3 Proof of Theorem 3.5.6
Recalling that y∗ = T (Q∗) and λi ◦ T (Q∗) =

∫
ΦidQ∗, by virtue of Theorem 3.5.4

point (ii), we have
√

N (λi(T (ρN ))− λi(y∗))n
i=1 =

√
N

(∫
ΦidρN −

∫
ΦidQ∗

)n

i=1

;

Concerning the covariance matrix, (C)ij ≡ H(Φi,Φj) for all i, j = 1, ..., n, as shown
in (A.26). Moreover it follows immediately by Lemma A.2.8, that

H(Φi,Φj) = Covp∗(λi, λj)−D2Ψ(y∗)[λ̃i, λ̃j ].

The r.h.s. in the above expression is indeed equal to (C)ij de�ned in (3.52).
The fact that

(C)ij = EQ∗
[(

Φi − Φ∗i + β

∫ T∧τ

0
mΦ̂i(s)

dMσ
s

) (
Φj − Φ∗j + β

∫ T∧τ

0
mΦ̂j(s)

dMσ
s

)]
,
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follows easily from (A.28), where in this case we need to compute H(Φi, Φj) ≡ (C)ij

also on the terms outside the diagonal. We omit this straightforward computation.

It remains to show that πN de�ned in Theorem 3.5.1 is nothing but PN , mentioned
in the statement of Theorem 3.5.6, where PN is the law of (σ[0, T ], ω) induced by
(3.24); for more details see Section 3.3.
We �rst notice that, by the linearity of T , XN as de�ned in Theorem 3.5.1, can be
written as

XN =
1
N

N∑

i=1

Yi =
1
N

N∑

i=1

T (δ{σi[0,T ],ω}) = T

(
1
N

N∑

i=1

δ{σi[0,T ],ω}

)
= T (ρN ).

Then

dπN

d(W ⊗ η)⊗N
=

e
N

(
Ψ(XN )+

Σ(XN )

N

)

E(W⊗η)⊗N

[
e
N

(
Ψ(XN )+

Σ(XN )

N

)] =
e
N

(
Ψ(T (ρN ))+

Σ(T (ρN ))

N

)

E(W⊗η)⊗N

[
e
N

(
Ψ(T (ρN ))+

Σ(T (ρN ))

N

)] .

On the other hand

dPN

d(W ⊗ η)⊗N
=

d(Pω
N ⊗ η⊗N )

d(W⊗N ⊗ η⊗N )
=

dPω
N

dW⊗N
=

eNF (ρN )

EW⊗N
[
eNF (ρN )

] ;

where the last equality follows from Lemma 3.3.1. Notice moreover that as a conse-
quence of (3.30), EW⊗N [

eNF (ρN )
]

= 1.

The thesis thus follows from the fact that almost surely, F (ρN ) = Ψ(ρN ) + Σ(ρN )
N , as

shown in (A.6).

A.4 Proof of Proposition 4.3.4
In what follows we denote by PN the law on the path space of (σ[0, T ], ω[0, T ]) ∈
(D[0, T ])2N under the interacting dynamics, with initial conditions satisfying the as-
sumptions in Theorem 4.3.2. As in Section 4.3.1 we let W ∈M1(D([0, T ])×D([0, T ]))
denote the law of the {−1; 1}2-valued process σ(t), ω(t) such that (σ(0), ω(0)) has dis-
tribution λ, and both σ(·) and ω(·) change sign with constant rate 1. By W⊗N we
mean the product of N copies of W . We begin with some preliminary lemmas.

Lemma A.4.1
dPN

dW ⊗N
(σ[0, T ], ω[0, T ]) = exp [NF (ρN (σ[0, T ], ω[0, T ]))] , (A.34)

where F is the function de�ned in (4.11).

Proof. This lemma is the analogous of Lemma 3.3.1 of Chapter 3. Nevertheless
it requires a separate proof. We rely on Girsanov's Formula for Markov chains (see
[7]). Let

(
N

σ
t (i)

)N

i=1
be the multivariate Poisson process which counts the jumps of
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σi for i = 1, . . . , N , and
(
N

ω
t (i)

)N

i=1
be the multivariate Poisson process which counts

the jumps of ωi for i = 1, . . . , N . Girsanov's Formula yields

dPN

dW ⊗N
(σ[0, T ], ω[0, T ])

= exp
[ N∑

i=1

∫ T

0

(
1− e−β σi(t) ωi(t)

)
dt +

N∑

i=1

∫ T

0
log e−β σi(t

−) ωi(t
−) dN

σ
t (i)

+
N∑

i=1

∫ T

0

(
1− e

−γ ωi(t) mσ
ρN (t)

)
dt +

N∑

i=1

∫ T

0
log e

−γ ωi(t
−) mσ

ρN (t−) dN
ω
t (i)

]

where σi (t−) = lim s→t− σi (s), analogously for ωi(t−). Since, with probability 1,
there are no simultaneous jumps, we have

N∑

i=1

∫ T

0
log e−β σi(t

−) ωi(t
−) dN

σ
t (i)=

N∑

i=1

∫ T

0
−β (−σi(t))ωi(t) dN

σ
t (i)

and
N∑

i=1

∫ T

0
log e

−γ ωi(t
−) m

σ

ρN (t−) dN
ω
t (i)=

N∑

i=1

∫ T

0
−γ (−ωi(t))m

σ
ρN (t) dN

ω
t (i)

from which (A.34) follows easily after having observed that, W⊗N almost surely,
∫

(Nσ
T + Nω

T ) dρN < +∞,

and that simultaneous jumps of σ and ω do not occur.

The main problem in the proof of Proposition 4.3.4 is related to the fact that
the function F in (4.11) is neither continuous nor bounded. The following technical
lemmas have the purpose of circumventing this problem. In what follows, we let

I :=
{

Q ∈M1

(D[0, T ]2
)

:
∫

(Nσ
T + Nω

T ) dQ < +∞
}

. (A.35)

We �rst de�ne, for r > 0 and Q ∈ I,

Fr(Q) =
∫ [∫ T

0

(
r − e−βσ(t)ω(t)

)
dt +

∫ T

0

(
r − e−ω(t)γQ

t

)
dt

+
∫ T

0
(βσ(t)ω(t−)− log r)dNσ

t +
∫ T

0
(ω(t)γQ

t− − log r)dNω
t

]
dQ. (A.36)

Note that F = F1. Moreover, Lemma A.4.1 can be easily extended to show that

dPN

dW ⊗N
r

(σ[0, T ], ω[0, T ]) = exp [NFr (ρN (σ[0, T ], ω[0, T ]))] , (A.37)

where Wr is the law of the {−1; 1}2-valued process σ(t), ω(t) such that (σ(0), ω(0))
has distribution λ, and both σ(·) and ω(·) change sign with constant rate r.
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Lemma A.4.2 For 0 < r ≤ min(e−β, e−γ), Fr is lower semicontinuous on I. For
r ≥ max(eβ, eγ), Fr is upper semicontinuous.

Proof. By de�nition of weak topology the fact that the map

Q 7→
∫ [∫ T

0

(
r − e−βσ(t)ω(t)

)
dt +

∫ T

0

(
r − e−ω(t)γQ

t

)
dt

]
dQ

is continuous is rather straightforward (since Q-expectations of bounded continuous
functions in D[0, T ] are continuous in Q). Thus we only have to deal with the term

∫ [∫ T

0
(βσ(t)ω(t−)− log r)dNσ

t

]
dQ +

∫ [∫ T

0
(ω(t)γQ

t− − log r)dNω
t

]
dQ. (A.38)

We show that for 0 < r ≤ min(e−β, e−γ) the expression in (A.38) is lower semicontin-
uous in Q ∈ I. This shows that Fr is lower semicontinuous. The case r ≥ max(eβ, eγ)
is treated similarly.

For ε > 0 consider the function ϕε : D[0, T ] → R de�ned by

ϕε(η) :=
{

1
ε if η(t) jumps for some t ∈ (0, ε]
0 otherwise.

Given η ∈ D[0, T ] we de�ne η(s) for s > T by letting η(s) ≡ η(T ). Then, letting θt

denote the shift operator, we have that, for t ∈ [0, T ], θtη is the element of D[0, T ]
given by θtη(s) := η(t + s). Consider now two functions f, g : {−1; 1}2 → R, and
de�ne fε, gε : D[0, T ]2 → R by

fε(σ[0,T ], ω[0,T ]) := inf{f(σ(t), ω(t)) : t ∈ (0, ε)},
and similarly for gε. Then de�ne

Φε(σ[0,T ], ω[0,T ]) :=
∫ T

0
fε(θtσ, θtω)ϕε(θtσ)dt +

∫ T

0
gε(θtσ, θtω)ϕε(θtω)dt.

The key to the continuation of the proof below are the following two properties of
Φε. These properties are essentially straightforward, and their proofs are omitted.

• Φε is continuous and bounded on {(σ[0,T ], ω[0,T ]) : Nσ
T + Nω

T < +∞}.
• Suppose f, g ≥ 0. Then, for δ(σ[0,T ],ω[0,T ]) ∈ I, Φε(σ[0,T ], ω[0,T ]) increases when

ε ↓ 0 to ∫ T

0
f(σt− , ωt−)dNσ

t +
∫ T

0
g(σt− , ωt−)dNω

t .

Therefore by monotone convergence
∫ [∫ T

0
f(σt− , ωt−)dNσ

t +
∫ T

0
g(σt− , ωt−)dNω

t

]
dQ = sup

ε>0

∫
Φε(σ[0,T ], ω[0,T ])dQ,

In particular, the map

Q 7→
∫ [∫ T

0
f(σt− , ωt−)dNσ

t +
∫ T

0
g(σt− , ωt−)dNω

t

]
dQ

is lower semicontinuous on I.
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Now, for r ≤ min(e−β, e−γ), the function f(σ, ω) = −βσω − log r is nonnegative.
As for the function g, that should be −ω(t)γQ

t − log r, we notice that it is not a
function of (σ, ω), but rather a function of (σ,ΠtQ), thus depending explicitly on t
and Q. However, due to its boundedness and the fact that γQ

t is continuous in Q
uniformly in t, σ, the argument above applies with minor modi�cations thus leading
to the conclusion of the proof.

Lemma A.4.3 Let Q ∈ M1

(D[0, T ]2
)
be such that H(Q|W ) < +∞. Then Q ∈ I.

The same result applies if Wr replaces W .

Proof. By the entropy inequality (see (6.2.14) in [24])
∫

Nσ
T dQ ≤

∫
eNσ

T dW + H(Q|W ).

But Nσ
T has Poisson distribution under W , so

∫
eNσ

T dW < +∞. By applying the
same argument to Nω

T , the proof is completed. This proof extends with no modi�ca-
tions to the case r 6= 1.

Lemma A.4.4 The function

I(Q) := H(Q|W )− F (Q)

is lower semicontinuous on M1

(D[0, T ]2
)
.

Proof. It is well known (see [24], Lemma 6.2.13) that the entropy H(Q|W ) is lower
semicontinuous in Q in all of M1

(D[0, T ]2
)
. Moreover, by Lemma A.4.3 and the

de�nition of F (Q) we have that H(Q|W ) = I(Q) if H(Q|W ) = +∞. Thus we are
left to prove the following two statements:

i) I(Q) is lower semicontinuous in I.

ii) If H(Q|W ) = +∞ and Qn → Q weakly, then I(Qn) → +∞.

The following key identity, which holds for r > 0 is a simple consequence of the
de�nition of relative entropy and of the Girsanov formula for Markov Chains.

H(Q|Wr) = H(Q|W ) +
∫

dW

dWr
dQ = H(Q|W ) + 2T (r− 1) + log r

∫
(Nσ

T + Nω
T ) dQ.

(A.39)
In particular, by Lemma A.4.3, we have that H(Q|W ) < +∞ ⇐⇒ H(Q|Wr) <
+∞. A simple consequence of (A.39) is then the following:

I(Q) = H(Q|Wr)− Fr(Q), (A.40)

where the di�erence in (A.40) is meant to be +∞ whenever H(Q|Wr) = +∞ (which
is equivalent to H(Q|W ) = +∞).

We are now ready to prove (i) and (ii).
To prove (i) it is enough to choose r ≥ max(eβ, eγ) and use Lemma A.4.2. Moreover,
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for the same choice of r, the stochastic integrals in (A.36) are non-positive, hence
Fr(Q) ≤ 2Tr. Therefore, if H(Q|W ) = +∞ and Qn → Q,

lim inf I(Qn) ≥ lim inf H(Qn|Wr)− 2Tr = +∞,

where last equality follows from lower semicontinuity of H(·|Wr) and H(Q|Wr) =
+∞. Thus (ii) is proved.

Lemma A.4.5 The function I(Q) has compact level sets, i.e. for every k > 0 the
set {Q : I(Q) ≤ k} is compact.

Proof. Choosing, as above, r ≥ max(eβ, eγ), we have that Fr(Q) ≤ 2Tr for every
Q. Thus, by (A.40),

{Q : I(Q) ≤ k} ⊆ {Q : H(Q|Wr) ≤ k + 2Tr}.

Since (see [24], Lemma 6.2.13) the relative entropy has compact level sets, {Q :
I(Q) ≤ k} is contained in a compact set. Moreover, by lower semicontinuity of I,
{Q : I(Q) ≤ k} is closed, and this completes the proof.

Lemma A.4.6 There exists δ > 1 such that

lim sup
N→+∞

1
N

log E { exp [ δNF (ρN ) ] } < +∞

Proof. The proof consists of the following manipulations:

1
N

log E {exp [ δNF (ρN ) ] }

=
1
N

log E

{
exp

[ N∑

i=1

∫ T

0
(δ−δe−βσi(t) ωi(t)) dt+

N∑

i=1

∫ T

0
δ log e−βσi(t

−) ωi(t
−)dN

σ
t (i)

+
N∑

i=1

∫ T

0
(δ−δe

−γ ωi(t) mσ
ρN (t)) dt +

N∑

i=1

∫ T

0
δ log e

−γ ωi(t
−) mσ

ρN (t−)dN
ω
t (i)

]}

=
1
N

log E

{
exp

[ N∑

i=1

∫ T

0
(1− e−δβσi(t) ωi(t)) dt +

N∑

i=1

∫ T

0
δβσi(t) ωi(t) dN

σ
t (i)

+
N∑

i=1

∫ T

0
(1− e

−δγ ωi(t) mσ
ρN (t)) dt +

N∑

i=1

∫ T

0
δγ ωi(t) mσ

ρN (t) dN
ω
t (i)

]
·

· exp
[ N∑

i=1

∫ T

0
(δ−δe−βσi(t) ωi(t) − (1− e−δβσ(t) ω(t))) dt

]
·

· exp
[ N∑

i=1

∫ T

0
(δ−δe

−γ ωi(t) mσ
ρN (t) − (1− e

−δγ ω(t) mσ
ρN (t))) dt

]}
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≤ 1
N

log
(

E

{
exp

[ N∑

i=1

∫ T

0
(1− e−δβσi(t) ωi(t)) dt +

N∑

i=1

∫ T

0
δβσi(t) ωi(t) dN

σ
t (i)

+
N∑

i=1

∫ T

0
(1− e

−δγ ωi(t) mσ
ρN (t)) dt +

N∑

i=1

∫ T

0
δγ ωi(t) mσ

ρN (t) dN
ω
t (i)

]}
·

· exp
[ N∑

i=1

∫ T

0
(δ−δe−β − 1 + eδβ) dt +

N∑

i=1

∫ T

0
(δ−δe−γ − 1 + eδγ) dt

])

=
1
N

log exp
[
NT (δ − δe−β − 1 + eδβ + δ − δe−γ − 1 + eδγ)

]

= T (2δ − δ(e−β + e−γ)− 2 + eδβ + eδγ) < +∞

where the next-to-last equality holds because

exp
[ N∑

i=1

∫ T

0
(1− e−δβσi(t) ωi(t)) dt +

N∑

i=1

∫ T

0
δβσi(t) ωi(t) dN

σ
t (i)+

+
N∑

i=1

∫ T

0
(1− e

−δγ ωi(t) m
σ
ρN (t)) dt +

N∑

i=1

∫ T

0
δγ ωi(t) m

σ
ρN (t) dN

ω
t (i)

]

is a Radon-Nikodym derivative with expected value = 1.

Completing the proof of Proposition 4.3.4.
It remains to show the upper and the lower bounds (3.1) and (3.2). We prove them

separately; our main tool is the Varadhan Lemma in the version in [24], Lemmas 4.3.4
and 4.3.6.

We deal �rst with the upper bound (3.1). Take r ≥ max(eβ, eγ), so that the
function Fr in (A.36) is upper semicontinuous. Denote by PN the distribution of ρN

under PN , and by W(r)
N its distribution under W⊗N

r . By (A.37)

dPN

dW(r)
N

(Q) = exp [NFr(Q)] (A.41)

Since Fr is upper semicontinuous and satis�es the superexponential estimate in
Lemma A.4.6, we can apply Lemma 4.3.6 in [24] to obtain the upper bound (3.1).The
lower bound (3.2) is proved similarly, by taking 0 < r ≤ min(e−β, e−γ), so that Fr

becomes lower semicontinuous, using (A.41) again and Lemma 4.3.4 in [24].

A.5 Proof of Proposition 4.3.5
We begin by observing that, since by assumption I(Q) < ∞, we have H(Q|W ) < +∞
and so by Lemma A.4.3 it follows that Q ∈ I, which implies that the integrals below
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are well de�ned. By Girsanov's Formula for Markov Chains
∫

log
dP Q

dW
(σ[0, T ], ω[0, T ]) dQ =

=
∫ [∫ T

0

(
1− e−β σ(t)ω(t)

)
dt +

∫ T

0

(
1− e−γ ω(t)

∫
σΠtQ( dσ, dω)

)
dt

+
∫ T

0

(−β σ(t−) ω(t−)
)

dN σ
t +

∫ T

0
−γ ω(t−)

[∫
σΠt−Q ( dσ, dω)

]
dN ω

t

]
dQ

=
∫ [∫ T

0

(
1− e−β σ(t)ω(t)

)
dt +

∫ T

0

(
1− e−γ ω(t)

∫
σΠtQ( dσ, dω)

)
dt

+β

∫ T

0
σ(t) ω(t) dN σ

t + γ

∫ T

0
ω(t)

[∫
σΠtQ ( dσ, dω)

]
dN ω

t

]
dQ

=
∫ [∫ T

0

(
1− e−βσ(t)ω(t)

)
dt +

∫ T

0

(
1− e−ω(t)γQ

t

)
dt

+β

∫ T

0
σ(t)ω(t)dNσ

t +
∫ T

0
ω(t)γQ

t−dNω
t

]
dQ = F (Q),

where last equality comes from Fubini's Theorem. Finally, just observe that

I(Q) =
∫

dQ log
dQ

dW
−

∫
dQ log

dP Q

dW
=

∫
dQ log

dQ

dP Q
= H(Q | P Q).

A.6 The eigenvalues of the matrix A
We begin by writing down explicitly the limit matrix A:

A = 2




− cosh(β) sinh(β) 0

−γ
sinh(γmσ

∗ )

cosh(γmσ∗ )
sinh(γmσ∗ ) + γ cosh(γmσ∗ ) − cosh(γmσ∗ ) 0

sinh(γmσ∗ ) + γmσ∗ cosh(γmσ∗ ) + γ
sinh(β)+mσ

∗ sinh(γmσ
∗ )

cosh(β)+cosh(γmσ∗ )
sinh(γmσ∗ ) 0 −(cosh(β) + cosh(γmσ∗ ))




where for the �rst term in the second row we have used the relations in iii) of Theorem
4.3.11. By direct computation, we see that their eigenvalues are:

λ1 = − (cosh(β) + cosh(γmσ
∗ ))

λ2 = −1
2

{
cosh(β) + cosh(γmσ

∗ )) +

√
(cosh(β)− cosh(γmσ∗ )))2 + 4γ

sinh(β)
cosh(γmσ∗ )

}

λ3 = −1
2

{
cosh(β) + cosh(γmσ

∗ ))−
√

(cosh(β)− cosh(γmσ∗ )))2 + 4γ
sinh(β)

cosh(γmσ∗ )

}

(A.42)

The eigenvalues are all real, and λ1, λ2 < 0. Moreover λ3 < 0 if and only if
γ

γc
< cosh2(γmσ

∗ ) (A.43)

where γc = 1
tanh(β) .
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a) If γ < γc, which implies mσ∗ = 0, (A.43) holds, because
γ

γc
< 1 = cosh2(γ · 0).

In this case the matrix A has three di�erent real eigenvalues, all strictly nega-
tive.

b) If γ = γc, we still have mσ∗ = 0, but it is immediately seen that λ3 = 0.

c) Finally, if γ > γc, set y = γmσ∗ ,

mσ
∗ =

1
γc

tanh(γmσ
∗ ) ⇔ y =

γ

γc
tanh(y) . (A.44)

Then (A.43) is equivalent to showing that
γ

γc
< cosh2(y) (A.45)

and from (A.44) we obtain
γ

γc
=

y

tanh(y)
=

y

sinh(y)
cosh(y) < cosh(y) < cosh2(y)

because y/ sinh(y) < 1 and cosh(y) < cosh2(y), since y = γmσ∗ > 0 if γ > γc.
Then, in this case too, the matrix A has three di�erent real eigenvalues, all
strictly negative.
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