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Abstract

A numerical method for simulating three-dimensional, generic barotropic
flows on unstructured grids is developed. Space and time discretizations
are separately considered. A finite volume compressible approach, based on
a suitable Roe numerical flux function, is proposed and the accuracy of the
resulting semi-discrete formulation for nearly-incompressible flows is ensured
by ad hoc preconditioning. Moreover, a linearized implicit time-advancing
technique is proposed, only relying on the algebraic properties of the Roe
flux function and therefore applicable to a variety of problems. This implicit
strategy is extended so as to incorporate the aforementioned preconditioning.
The considered numerical ingredients are firstly defined in a one-dimensional
context; after validation, they are extended to three-dimensional non-rotating
as well as rotating frames. Finally, the resulting numerical method is vali-
dated by considering complex industrial flows, namely the water flow around
a hydrofoil (for which specific experimental data are available) and the water
flow around a rotating turbo-pump inducer.
By starting from a particular industrial problem (namely the numerical sim-
ulation of propellant flows around an axial inducer belonging to the feed
turbo-pump system of a liquid propellant rocket engine), a numerical method
which can be applied to generic barotropic flows is defined. Along the way,
a constructive procedure for solving the 1D Riemann problem associated
with a generic convex barotropic state law is proposed. This solution, also
exploited for defining a Godunov numerical flux suitable for incorporation
into finite volume schemes, is systematically used in order to define exact
benchmarks for the quantitative validation of the proposed one-dimensional
numerical methods.





Contents

Introduction X

1 Industrial problem 1
1.1 Axial inducers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Cavitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Cavitation modelling . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Choice of the cavitation model . . . . . . . . . . . . . . . . . . 5
1.5 Definition of the state law . . . . . . . . . . . . . . . . . . . . 7
1.6 Statement of the industrial problem . . . . . . . . . . . . . . . 7

2 Mathematical formulation 9
2.1 Notation and preliminary definitions . . . . . . . . . . . . . . 9
2.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 3D equations . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 3D equations in rotating frames . . . . . . . . . . . . . 14
2.2.3 Basic-1D equations . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Augmented-1D equations . . . . . . . . . . . . . . . . . 15
2.2.5 1D sweeps of the 3D equations . . . . . . . . . . . . . . 16
2.2.6 Hierarchical structure of the presented equations . . . . 17

2.3 Hyperbolicity and integral solutions . . . . . . . . . . . . . . . 17
2.3.1 Hyperbolicity of the 3D equations . . . . . . . . . . . . 17
2.3.2 Hyperbolicity of the augmented-1D equations . . . . . 19
2.3.3 Integral solutions . . . . . . . . . . . . . . . . . . . . . 19

2.4 The Riemann problem . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Preliminary definitions and results . . . . . . . . . . . 22
2.4.2 Basic wave solutions . . . . . . . . . . . . . . . . . . . 24
2.4.3 Local solution of the Riemann problem . . . . . . . . . 28

2.5 The Riemann problem for a convex barotropic state law . . . . 28
2.5.1 Convexity of the state law . . . . . . . . . . . . . . . . 29
2.5.2 Basic wave solutions . . . . . . . . . . . . . . . . . . . 32
2.5.3 Local solution of the Riemann problem . . . . . . . . . 35

3 1D Numerical method 41
3.1 Generalities on the 1D discretization . . . . . . . . . . . . . . 41

3.1.1 Space discretization . . . . . . . . . . . . . . . . . . . . 41
3.1.2 Time discretization: basic discrete schemes . . . . . . . 43

3.2 A Godunov scheme for convex barotropic state laws . . . . . . 49
3.2.1 Godunov numerical flux . . . . . . . . . . . . . . . . . 49
3.2.2 Numerical results . . . . . . . . . . . . . . . . . . . . . 50



3.3 A Roe scheme for generic barotropic state laws . . . . . . . . . 62
3.3.1 Roe numerical flux . . . . . . . . . . . . . . . . . . . . 62
3.3.2 Numerical results . . . . . . . . . . . . . . . . . . . . . 71

3.4 Preconditioning of the Roe scheme for low Mach number flows 80
3.4.1 Low Mach number asymptotic study . . . . . . . . . . 82
3.4.2 A brief introduction to preconditioning techniques for

the low speed Euler and Navier-Stokes equations . . . . 87
3.4.3 Preconditioning of the Roe numerical flux . . . . . . . 90
3.4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . 94

3.5 Linearized implicit time-advancing . . . . . . . . . . . . . . . 101
3.5.1 A linearization of a generic Roe numerical flux function 101
3.5.2 Incorporation of the preconditioning strategy . . . . . . 106
3.5.3 A second-order defect-correction scheme . . . . . . . . 107
3.5.4 Numerical results for smooth flows . . . . . . . . . . . 109
3.5.5 Numerical results for non-smooth flows at low Mach

numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.5.6 Numerical results for non-smooth flows at generic Mach

numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.5.7 A remark on the linearization technique . . . . . . . . 125

4 1D Applications to cavitating flows 129
4.1 State law of the working fluid . . . . . . . . . . . . . . . . . . 129

4.1.1 Pure liquid model . . . . . . . . . . . . . . . . . . . . . 129
4.1.2 Cavitation model . . . . . . . . . . . . . . . . . . . . . 130
4.1.3 Numerical implementation of the mixture state law . . 134
4.1.4 Convexity of the chosen state law . . . . . . . . . . . . 137

4.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 139

5 3D Numerical method 147
5.1 Space discretization . . . . . . . . . . . . . . . . . . . . . . . . 147

5.1.1 Finite volume approximation . . . . . . . . . . . . . . . 147
5.1.2 A 3D Roe numerical flux for generic barotropic state

laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.1.3 Incorporation of the preconditioning strategy . . . . . . 154
5.1.4 Discretization of the fluxes and semi-discrete formulation155
5.1.5 Extension to rotating frames . . . . . . . . . . . . . . . 157

5.2 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . 159
5.2.1 Linearization of the 3D Roe numerical flux . . . . . . . 159
5.2.2 Linearized implicit time-advancing . . . . . . . . . . . 159

VII



6 3D Applications 163
6.1 Simulation of the 3D flow around a hydrofoil . . . . . . . . . . 163

6.1.1 Problem description . . . . . . . . . . . . . . . . . . . 163
6.1.2 Computational grids . . . . . . . . . . . . . . . . . . . 165
6.1.3 Computational resources . . . . . . . . . . . . . . . . . 166
6.1.4 Numerical discretization . . . . . . . . . . . . . . . . . 167
6.1.5 Non-cavitating simulations . . . . . . . . . . . . . . . . 167
6.1.6 Cavitating simulations . . . . . . . . . . . . . . . . . . 169

6.2 Simulation of the 3D flow around an axial inducer . . . . . . . 175
6.2.1 Problem description . . . . . . . . . . . . . . . . . . . 175
6.2.2 Computational grids . . . . . . . . . . . . . . . . . . . 175
6.2.3 Computational resources . . . . . . . . . . . . . . . . . 177
6.2.4 Numerical discretization . . . . . . . . . . . . . . . . . 179
6.2.5 Non-cavitating simulations . . . . . . . . . . . . . . . . 179

7 Concluding remarks 183

A Appendix: auxiliary material for sec. 3 189
A.1 Derivation of the expression (170) . . . . . . . . . . . . . . . . 189
A.2 Derivation of the expression (172) . . . . . . . . . . . . . . . . 189
A.3 Proof of the Proposition 7 (sec. 3.4.1) . . . . . . . . . . . . . . 192
A.4 Derivation of the expression (188) . . . . . . . . . . . . . . . . 194
A.5 A remark on the expression (190) . . . . . . . . . . . . . . . . 198
A.6 Proof of the Proposition 8 (sec. 3.4.3) . . . . . . . . . . . . . . 199
A.7 Proof of the Proposition 9 (sec. 3.5.1) . . . . . . . . . . . . . . 200

B Appendix: efficient access to the table (256) for pressure-
based algorithms 203

References 207

VIII





Introduction

Motivation of the study

The present thesis documents the starting efforts made for constructing a
numerical frame aimed at simulating propellant flows occurring in the feed
turbo-pumps of modern liquid propellant rocket engines. More precisely, the
numerical simulation of the three-dimensional (hereafter 3D as well) unsteady
propellant flows around the axial inducers which are part of the aforemen-
tioned turbo-machines (see sec. 1.1) is the long-term goal of the present
research.

The suction performance and, consequently, the global performance of
the rocket engine significantly depend on the flow pattern within the turbo-
pumps [9]; hence, it is of interest to understand and control their hydro-
dynamics, in order to conceive a correct design. Besides the experimental
investigations, undoubtedly expensive as well as quite dangerous when deal-
ing with many liquid propellants [97], the numerical simulation may provide
a deep insight into the flows under consideration at a generally affordable
cost, thus motivating the development of suitable numerical tools. Neverthe-
less, several factors make it challenging to accurately and efficiently simulate
the considered liquid flows. Firstly, the severe weight and size constraints to
which the considered engines are subjected impose high rotor speeds which,
in turn, systematically entail the occurrence of cavitation phenomena (see
sec. 1.2). The simultaneous presence of the pure liquid (which is almost
incompressible) and the liquid-vapour mixture (which behaves like a highly
compressible fluid) dramatically changes the local flow properties at the un-
known interface, thus rendering common numerical methods hardly applica-
ble. Furthermore, the very complex geometry of the axial inducers adds to
the difficulty of the problem. Indeed, it imposes to adopt huge computational
grids which, if unstructured, generally do no permit to straightforwardly ex-
tend some well-known numerical techniques and, in any case, require efficient,
hopefully parallel, algorithms to be defined.

In view of the aforementioned considerations, the subject of the present
study seems to possess aspects of interest from both an academic and an
industrial point of view. As far as the latter point is concerned, a significant
part of the documented research activity has been funded by the Italian
Space Agency (ASI) under a 16 month industrial program, namely the FAST2
(Future Advanced Space Transportation Technologies) project 1.

1The author joined the project as a collaborator of the Aerospace Engineering Dept.
of the University of Pisa which, in turn, was involved in the program as subcontractor of



Overview and choice of the numerical methodology

In consideration of the fact that, under typical operational conditions, cavi-
tation phenomena can take place within the aforementioned flows, it is neces-
sary to select a suitable cavitation model as a first step in the development of
the numerical tool under consideration. Indeed, the cavitation model specif-
ically adopted directly affects the mathematical formulation of the problem
(through the closure of the governing equations) and therefore its numer-
ical discretization. A concise overview of the current cavitation models is
reported in sec. 1.3. For the present purposes it suffices to mention that
almost all the formulations used for computations of industrial interest are
based on equivalent fluid models, namely:

(BH) barotropic homogeneous flow models (see sec. 1.3), according to which
the pressure and the density are linked to each other by an invertible
relation within both the pure liquid and the cavitating mixture. Ex-
amples of this approach may be found, for instance, in [16], [21], [22],
[23], [24], [25], [45], [54], [76], [78], [82], [96], [104] and [105];

(DS) “dual species” models (a particular class of non-homogeneous flow mod-
els, see sec. 1.3) in which a convection equation for the volume or mass
void fraction is introduced, explicitly accounting for the mass trans-
fer at phase transition. Examples of this approach may be found, for
instance, in [3], [46], [47], [58], [70], [86], [87], [89] and [116].

With the exception of [46] and [47], the aforementioned works deal with struc-
tured grids (possibly involving generalized curvilinear coordinates as for [58]
and [89]) and adopt a finite volume spatial discretization (see secs. 3.1.1 and
5.1). Some of them, belonging either to the (BH) or to the (DS) class, im-
plement a pressure-based approach typically extending well-known pressure-
correction algorithms originally conceived for incompressible flows (e.g. the
SIMPLE algorithm [74] or some related variants, like PISO) in order to suit-
ably cope with the compressible, cavitating flow sub-domains. Other works,
instead, adopt a density-based approach which modifies (by preconditioning
techniques, see e.g. sec. 3.4) common algorithms originally conceived for
compressible flows so as to account for the very weak liquid compressibility.
In most cases, the convective component of the numerical flux function (see
the relevant paragraph in sec. 3.1.1) is discretized by upwinding: typically
a TVD scheme (see e.g. [98]) or, for the (BH) class, an artificial dissipation
approach (see e.g. [53]) is exploited. Conversely, the diffusive component of

the Italian Aerospace Research Center (CIRA).
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the numerical flux (if any) is discretized by central differencing for almost
all the considered works. As far as the time-advancing is concerned, both
explicit and implicit techniques (see sec. 3.1.2) are considered but only the
latter allow for the construction of efficient schemes. A dual time-stepping
is adopted in certain works (e.g. [22], [23], [24] and [58]), in which a suitable
preconditioning technique as well as an under-relaxation of the density are
introduced in order to speed-up the convergence of the internal iterations. It
is worth noticing that only Coutier-Delgosha and coworkers currently man-
age to compute cavitating flows in inducers with a certain degree of accuracy
2 while other researchers only succeed in dealing with less ambitious (even if
still challenging) applications like nozzle and hydrofoil flows.

On the basis of the literature reviewed at the beginning of the research
project here documented, both the pressure-based and the density-based ap-
proach seemed to possess points of strength as well as weaknesses, so that
there was no clear advantage in a priori preferring one to the other. Because
of this point, a resource-driven choice was made. In particular, a density-
based approach was selected, suitable for incorporation within a numerical
framework for the simulation of compressible flows, which was available to
the research group 3. The numerical tool under consideration is the AERO
code (see e.g. [32], [35] and [71]), derived from a collaboration between the
French national institute for research in computer science and control (IN-
RIA, “Institut National de Recherche en Informatique et en Automatique”)
and the University of Boulder (Colorado, USA).

The AERO code discretizes both the laminar and the turbulent Navier-
Stokes equations (written in conservation form) for ideal gases; in the latter
case either a Reynolds-averaged formulation (closed by several turbulence
models) or a LES (Large-Eddy Simulation) formulation can be adopted.
Moreover, it permits to simulate one-way fluid-structure interactions. Space
and time discretizations are kept separate (“method of lines”). The space
discretization is carried out by a mixed finite volume-finite element formula-
tion (see e.g. [85]) based on tetrahedral unstructured grids. The first-order
approximation of the convective fluxes is obtained by means of the Roe flux
function [84]; higher order extensions are based on a MUSCL-like recon-
struction [108] conceived for unstructured grids (see e.g. [28]). As for the
diffusive fluxes, P1 finite elements are exploited. A Roe-Turkel precondition-
ing technique is adopted for low Mach number (i.e. nearly incompressible)
flows, which can be exploited for unsteady simulations as well (see e.g. [42]

2The most advanced results, reported in e.g. [22] and [24], were not published at the
time the research project here documented started.

3Namely, the CFD group of the Aerospace Engineering Dept. of the University of Pisa.
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and [112]). As far as the time discretization is concerned, either explicit
or implicit time-advancing strategies are available. In the former case, a
low-storage 4−th order Runge-Kutta scheme is adopted while, in the latter
one, a linearized implicit scheme designed for the ideal gas state law (see
e.g. [36]) is implemented and the extension to the second order in time is
achieved by a “defect-correction” strategy [67]. An efficient implementation
of the whole numerical framework is achieved by means of a message-passing
(MPI-1 standard) parallelization strategy.

In order to construct a numerical solver for cavitating flows in complex
geometries starting from AERO, only the inviscid portion of the laminar gov-
erning equations (i.e. the Euler equations) has been considered (see sec. 2.2
for the rationale). A barotropic homogeneous flow cavitation model (able to
take into account thermal cavitation effects and, possibly, the concentration
of the active cavitation nuclei) as well as a barotropic state law for the pure
liquid have been chosen, thus providing a unified barotropic state law for the
working fluid (see sec. 4.1).

Note 1 For the sake of generality, only a very few, physically-based, con-
straints have been imposed on the considered barotropic state law (see sec.
1.5). Hence, all the proposed numerical ingredients (with the only excep-
tion of the Godunov numerical flux discussed in sec. 3.2, which additionally
requires the state law to be convex) can be applied to generic barotropic laws.

The adopted barotropic formulation permits to decouple the energy balance
from the rest of the governing equations and therefore a “reduced” system
only comprising the mass and the momentum balance has been considered.
The chosen state law directly affects the space discretization of the AERO
solver through the definition of the Roe numerical flux. Moreover, it also
affects the time discretization, since the linearized implicit time-advancing
strategy originally appearing in AERO directly exploits the first-order ho-
mogeneity of the analytical flux, which holds for the ideal gas case but not
for the barotropic one (see sec. 3.5). In addition, the adopted state law in-
directly appears within the Roe-Turkel preconditioning strategy as well (see
sec. 3.4.3). In view of the above considerations, a Roe numerical flux function
suitable for generic barotropic flows has been proposed as a basic numerical
ingredient. The spatial accuracy of the numerical solution obtained by ap-
plying the resulting finite volume scheme to nearly-incompressible flows has
then been addressed, by performing the asymptotic analysis originally pro-
posed in [42]. It has been shown that the preconditioning technique proposed
in [42] for the ideal gas case can be extended to the barotropic one. Carried
out one-dimensional (hereafter 1D as well) numerical experiments have con-
firmed the predicted accuracy problems occurring at low Mach numbers as
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well as the effectiveness of the considered preconditioning strategy [91]. How-
ever, it has been also observed that the preconditioning at hand restricts the
stability region of common explicit time-advancing schemes (see sec. 3.4.4),
thus decreasing their efficiency [91]. In order to counteract this problem, a
linearized implicit time-advancing strategy has been proposed, which only
relies on the algebraic properties of the Roe flux function (and therefore it is
well suited to a variety of problems) and which can be applied to the precon-
ditioned formulation as well. As shown by the aforementioned 1D numerical
experiments, the implicit scheme allows for a very efficient time-advancing
to be performed when non-cavitating flows are considered; however, when
cavitation occurs, the efficiency of the implicit scheme is noticeably reduced.
A 3D numerical method has been subsequently derived from the considered
1D techniques by exploiting the tensorial character of the governing equa-
tions. In view of the time-schedule imposed by the supporting industrial
program, the proposed 3D numerical method has been directly implemented
within the AERO mainframe and the resulting numerical tool has been val-
idated by considering the water flow around a NACA0015 hydrofoil. The
proposed 3D numerical method has finally been extended so as to deal with
rotating frames and the corresponding implementation has been validated
by considering the water flow around an axial turbo-pump inducer. The ef-
ficiency issues originally noticed in a 1D context have been systematically
observed in the 3D case as well. A more systematic investigation of the
aforementioned 1D numerical ingredients has been consequently started. In
this context, the exact solution of a 1D Riemann problem involving a generic
convex barotropic state law has been constructed (based on classical elements
of the theory of hyperbolic partial differential equations), to be exploited for
defining exact benchmarks for the analysis and the validation of the consid-
ered 1D numerical schemes, also when considering cavitating test-cases. A
Godunov numerical flux function based on the aforementioned exact solution
has been defined as well.

Thesis outline

• In sec. 1 the considered industrial problem is presented. More in detail,
once chosen a suitable (barotropic homogeneous flow) cavitation model,
a concise statement of the industrial problem under consideration is
reported, highlighting the generality of the chosen barotropic state law;

• in sec. 2 a hierarchy of governing equation is presented, each of which is
considered at a subsequent stage of the discussion. Once underlined the
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hyperbolic character of the systems at hand, the attention is focused
on the 1D Riemann problem (hereafter RP as well); a constructive
procedure for determining its exact solution when considering a generic
convex barotropic state law is proposed;

• in sec. 3 all the proposed 1D numerical ingredients are presented. Af-
ter introducing some basic material on the numerical discretization, a
Godunov numerical flux for generic convex barotropic state laws as well
as a Roe numerical flux for generic barotropic state laws are proposed.
The behaviour of the considered semi-discrete formulation (based on a
finite volume approach involving the Roe numerical flux) dealing with
nearly-incompressible flows is addressed and a suitable precondition-
ing strategy is presented following [42]. Moreover, a linearized implicit
time-advancing strategy is proposed, only relying on the algebraic prop-
erties of the Roe numerical flux function and therefore applicable to a
variety of problems. Finally, the linearized implicit strategy is extended
so as to deal with the preconditioned numerical flux function. All the
proposed ingredients are validated against exact (namely, solutions to
1D RPs) or nearly-exact benchmarks. The issue of the efficiency of the
considered scheme when dealing with discontinuous flow fields (mim-
icking cavitating conditions) is put forward;

• in sec. 4 the barotropic state law specifically adopted for the subsequent
simulation of the industrial test-cases is introduced. Moreover, an il-
lustrative 1D numerical experiment involving cavitation phenomena is
considered, in order to highlight some difficulties that are systemati-
cally encountered when dealing with the chosen cavitation model (or
similar ones);

• in sec. 5 the proposed (preconditioned) Roe numerical flux is extended
to the 3D case. Moreover, the discretization of the domain as well as
the numerical treatment of the convective fluxes are discussed. The
considered 3D numerical method is then extended to rotating frames.
Finally, the linearized implicit time-advancing originally proposed in a
1D context is extended to the 3D rotating case;

• in sec. 6 the applications of the proposed 3D numerical method, namely
the simulation of water flows around a hydrofoil and an axial turbo-
pump inducer, are presented. In the former case, a quantitative ap-
praisal is given for both non-cavitating and cavitating conditions, based
on available experimental data. In the latter one, a qualitative appraisal
is given for a non-cavitating flow;
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• in sec. 7 the main achievements of the present study, as well as its open
questions, are summarized, together with some research perspectives.

Auxiliary material (e.g. some mathematical derivations and proofs) is
finally reported in the appendices A and B, for ease of presentation.

Note 2 No details are given in the present document concerning the im-
plementation of the proposed numerical schemes within the aforementioned
parallel numerical frame, because they are behind the scope of the discussion.

Related scientific documentation

Some numerical ingredients discussed in secs. 3.3, 3.4, 3.5 and 5, as well
as the applications reported in sec. 6 have been documented through:

- the international publications [6] and [93];

- the INRIA research report [91];

- the proceedings of the international conferences [92] and [94];

- the proceedings of the national conference [90].

Other issues (e.g. those presented in secs. 2.5 and 3.2) originally appear in
the present document.
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1 Industrial problem

The present study is aimed at developing a numerical method suitable for the
numerical simulation of propellant flows occurring in the feed turbo-pumps
of modern liquid propellant rocket engines. More in detail, the numerical
simulation of 3D unsteady liquid flows through axial inducers is the long-
term goal of the present research.

In secs. 1.1 to 1.4 several issues are concisely presented, concerning the
physical modelling of the industrial problem of interest. Among the wide
variety of technical and conceptual aspects potentially arising during the
discussion, only those required by the subsequent treatment are introduced,
for ease of presentation. In sec. 1.5 the general form of the state law adopted
for the working fluid is defined. Finally, in sec. 1.6, a statement of the
industrial problem under consideration is reported, based on the material
presented through the previous sections.

1.1 Axial inducers

Axial flow inducers are hydraulic devices suitably designed to improve the
performance of the (usually centrifugal) pumps they are attached to, by in-
creasing the inlet pressure to the pump to a level at which it can operate
without excessive loss of performance due to cavitation (see sec. 1.2). Typi-
cally they consist of an axial flow stage, like that one shown in Figs. 1 and 2,
placed just upstream of the inlet to the main impeller. They are designed to
operate at small incidence angles and to have thin blades so that the pertur-
bation to the flow is small in order to minimize the production of cavitation
and its deleterious effect upon the flow: the objective is to raise the pressure
very gradually to the desired level 4 [9].

Axial inducers can be “shrouded” or “unshrouded”. In the former case,
there is no gap between the tip of the blades and the external case while
in the latter one such a gap is present. An example of an unshrouded ax-
ial inducer is shown in Figs. 1 and 2. The shrouded geometry makes the
inducer more robust with respect to cavitation instabilities 5. In addition,
the absence of the gap prevents the creation of very complex secondary flows

4The reason why the design incidence angle is not zero is that, under these conditions,
cavitation could form on either the pressure or the suction surfaces of the blades or it could
oscillate between the two. It is preferable to use a few degrees of incidence to eliminate
this uncertainty and ensure suction surface cavitation [9].

5For an exhaustive treatment of cavitation instabilities in inducers the interested reader
can refer to the work of Y. Tsujimoto, not reported in the bibliography because beyond
the scope of the present work.



Figure 1: Schematic of a two-bladed unshrouded helical inducer. The far-
field inflow is aligned with the rotation axis; the (swirled) outflow is directed
towards the main pump impeller (not shown).

(synthetically referred to as “tip leakage”) which affect the inducer fluid dy-
manics [59], generally weakening the inducer pumping performance. In spite
of their attractive features, the manufacturing process required by shrouded
inducers is very complex (and expensive); hence, most inducers are nowadays
unshrouded [9].

As for the vast majority of modern turbo-machines typical of space propul-
sion applications, also for axial inducers the very strict weight and size con-
straints impose, for a given power, a high rotational speed. This, in turn,
entails high tip speeds and paves the way for cavitation to take place. A
certain understanding of cavitation phenomena as well as suitable modelling
techniques are therefore needed in order to describe the liquid flows within
this kind of machines, even when they are not expressly designed to operate
in cavitating conditions.

2



Figure 2: Side and front views (left to right) of the two-bladed unshrouded
helical inducer sketched in Fig. 1.

1.2 Cavitation

Cavitation is a complex fluid dynamic phenomenon, involving the extremely
rapid growth and subsequent collapse of liquid cavities originating from weak
spots (cavitation nuclei) when the pressure falls below the saturation value
for a sufficiently long time for the nuclei to become active [10]. The relative
abundance and susceptibility of nuclei in the bulk of the liquid and on its low
pressure boundaries determines the dispersed or attached form of cavitation.
A major difficulty in the analysis of cavitating flows is the presence of free
surfaces, whose shape, location and evolution are not known a priori and
must in principle be obtained as part of the solution of the flow field. Cavi-
tating flows are therefore intrinsically unsteady on a length scale comparable
to the cavity size and often also on the global (macroscopic) scale, especially
in internal reverberating flows. The dynamic nature of cavitation, with the
occurrence of appreciable inertial effects in the liquid and rate-controlled
evaporation/condensation at the interface, adds to the complexity of the
phenomenon, since thermodynamic equilibrium is not satisfied and the usual
barotropic behaviour of common fluids 6 should in principle be replaced by
a differential relation between the local density and pressure. Therefore cav-
itation poses formidable obstacles in terms of both physical and numerical
modelling.

6I.e. the possibility of expressing the thermal state law of a certain fluid by means of
a one-to-one correspondence between density and pressure.
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1.3 Cavitation modelling

Current models for the description of cavitating flows can be classified as
follows:

• free streamline models, where the cavity region is separated by a sharp
interface from the region occupied by the pure liquid (e.g. [117]);

• equivalent fluid models, where volume, time or ensemble averaging is
used to account for the presence of two phases (e.g. [50]);

• direct simulation models, where the coupled Navier-Stokes equations of
the two phases are solved simultaneously.

In turn, equivalent fluid models can be divided in:

• homogeneous flow models, where the macroscopic features of cavitation
are represented in terms of a single-phase fluid whose properties are
obtained by introducing suitable simplifying assumptions (e.g. [30]);

• non-homogeneous flow models, based on the separate characterization
of the two phases with the relevant interaction terms (e.g. [2] and [70]);

• non-homogeneous flow models with cavity dynamics, similar to the pre-
vious ones except for the inclusion of the evolutionary effects connected
to the transfer of mass, momentum and energy between the two phases
(e.g. [15], [57] and [77]).

None of these models is free from inherent limitations. Free streamline
models, where a well-defined interface separates the pure liquid from the
cavity region occupied by the non-condensed phase, introduce prohibitive
complications in 3D configurations and are not realistic in the thermal cav-
itation conditions typical of cryogenic propellants of rocket motors, where
travelling bubble cavitation prevails [9]. On the other hand, direct simula-
tion methods are extremely demanding in terms of computational resources
and their superior accuracy is eluded in practice by the uncertain knowledge
of the initial state of the system, especially the nature, concentration and
susceptibility of cavitation nuclei.

This brief overview indicates that the successful choice of a model for
simulating cavitation in technical applications must be based on careful con-
sideration of the final objectives and implementation constraints, in order
to exploit all opportunities to simplify the formulation of the problem by
including only the essential physical phenomena.
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1.4 Choice of the cavitation model

The typical requirements of space propulsion applications for the analysis of
propellant feed turbo-pumps put especial prize on the suction and dynamic
performance of the machine rather than on its resistance to erosion and
other long-term effects of cavitation, which are typically a major concern
in other applications. Fortunately these properties are essentially related to
the large-scale characteristics of the flow field. The local behaviour of the
cavities, on the other hand, mainly controls aspects such as erosion, high
frequency vibrations and noise, which are less important in liquid propellant
rocket engines in view of their limited expected life time.

These considerations indicate the opportunity of choosing an equivalent
fluid model where the fine details of the cavity growth and collapse are ne-
glected, and the cavitating flow is visualized in terms of a single fluid, whose
properties are obtained by introducing suitable simplifying assumptions.

In cavitating liquids with relatively high vapour pressures (like most cryo-
genic propellants) the transfer of heat at the interface represents the most
important interaction between the two phases because of its influence on the
cavity pressure (“thermodynamic effect”) and indirectly on the other flow
variables. Conversely, in these flows mass and momentum exchanges usually
play a comparatively minor role. In view of these considerations, pressure
and velocity differences between the two phases can safely be neglected and
the choice of an homogeneous flow model explicitly accounting, at least ap-
proximately, for thermal cavitation effects seems to be an efficient approach
to the simulation of cavitating flows for performance predictions in space
propulsion applications [26].

Among the cavitation flow models meeting the above requirements, that
one recently proposed by d’Agostino and coworkers [27] deserves special men-
tion. In this model the liquid/vapour mixture behaves isentropically, so that
it is possible to use the mixture energy balance in order to evaluate the
mass interaction term accounting for evaporation/condensation phenomena
between the two phases and ultimately derive a monotonic constitutive rela-
tion between the density ρ and the pressure p of the cavitating mixture (i.e.
a barotropic thermal state law). In addition, the model naturally accounts
for the effects of thermal cavitation by exploiting the specific properties of
the thermally-controlled dynamics of cavitating spherical bubbles. Finally,
if required, the effects of the active nuclei concentration in the liquid phase
can be readily incorporated in the model. Only the essential features of the
model are reported below, further details being given in sec. 4.1.2.

In order to keep some degree of generality, the state law provided by the
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chosen cavitation model is expressed as a generic curve of the form:

p = pcav (ρ) , ρ ∈ [ρmin, ρLsat] (1)

The lower bound of the domain, ρmin, is constrained by some simplifying
assumptions on which the cavitation model is based (see sec. 4.1.2) while
the upper bound, ρLsat, is the liquid saturation density at a given tempera-
ture 7 and represents the transition to the pure liquid regime. The physical
foundations of the model ensure the strict positivity of ρ and p, which can
therefore be interpreted as the “usual” density and pressure of an equivalent
fluid in the sense of classical fluid mechanics. Furthermore, the strict posi-
tivity of the derivative dp/dρ is also guaranteed, thus satisfying a classical
thermodynamic stability requirement [12]

By virtue of the isentropic approximation adopted while deriving the
cavitation model, it is possible to interpret the following entity:

a := +

√

dp

dρ
(2)

as a mixture “sound speed”, in analogy with classical fluid mechanics. More
in general, (2) is adopted for defining the sound speed of a generic barotropic
fluid through the present document.

A common practice is to juxtapose the barotropic state law provided by
a homogeneous cavitation model with another one describing the pure liquid
8, in order to obtain a unified model for the working fluid 9, which may or
may not cavitate depending on the flow conditions. This approach seems to
represent a good compromise between computational cost and accuracy, and
it is adopted for the numerical simulation of the industrial test-cases reported
in secs. 4 and 6.

Despite their formal simplicity, however, considerable difficulties are still
encountered in implementing physically-based unified barotropic models in
a workable simulation tool for the prediction of cavitating flows. Indeed,
the local presence of two phases dramatically reduces the sound speed of the
mixture 10: both nearly-incompressible zones (pure liquid) and regions where

7The liquid is supposed to be at constant temperature; hence, ρLsat is properly defined.
8Usually, the starting point is a given model for the pure liquid to be coupled with a

consistent homogeneous flow cavitation model for the mixture. This perspective has been
somehow twisted in the present discussion for ease of presentation.

9The chosen cavitation model, in particular, allows a smooth junction (i.e. continuity
of p and a, see sec. 4.1.2) to be defined at the transition point ρLsat.

10For instance, in a water-vapour mixture at 20◦C, a ≈ O
(

103
)

m/s towards the pure

liquid limit, it abruptly decreases to O
(

10−1 ÷ 100
)

m/s in the mixture before rising back

to O
(

102
)

m/s towards the pure vapour limit.
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the flow may easily become highly supersonic (liquid-vapour mixtures) are
present in the flow and need to be solved simultaneously. The sound speed
variation at cavitation inception, in particular, is exceedingly abrupt (see sec.
4.1.2); it originates discontinuities within the flow field that, together with
the strong shocks occurring in the recondensation at the cavity closure, add
to the complexity of the phenomenon. It is therefore evident that specifi-
cally designed numerical schemes must be introduced in order to handle this
situation.

1.5 Definition of the state law

Let Dρ := [ρmin, ρsup) denote a density domain. In view of the considerations
reported in sec. 1.4, a generic state law is assumed for the working fluid, of
the form:

p = p(ρ) , ρ ∈ Dρ (3)

with:
dp

dρ
(ρ) > 0 , ρ ∈ Dρ (4)

No loss of generality is introduced by choosing ρ as the independent variable
(p would be equivalently acceptable). According to (4) the pressure is allowed
to vary within the domain Dp := [pmin, psup), with pmin = p(ρmin) and psup =
p(ρsup). Clearly, for the state law to be meaningful from the viewpoint of
classical fluid mechanics, the following conditions must be verified as well:

ρmin > 0 , pmin > 0 (5)

1.6 Statement of the industrial problem

In consideration of the material introduced up to this point, it is possible to
state that the present study is aimed at “developing a numerical method for
simulating the flow of a fluid showing the constitutive behaviour defined in
sec. 1.5 around 3D geometries of the type of those shown in sec. 1.1”.

Clearly, it is of primary interest to simulate non-cavitating flows at a first
stage, and then to be able to cope with the additional difficulties introduced
by cavitation phenomena. In this spirit, the above statement keeps a certain
degree of generality: the possibility of simulating a pure liquid or a cavitating
mixture (by a homogeneous cavitation model) is completely delegated to the
specific state law and, of course, to the actual flow conditions.
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2 Mathematical formulation

A natural framework for the mathematical formulation of the industrial prob-
lem introduced in sec. 1 is that one of classical fluid mechanics. Within this
scope, several sets of governing equations are introduced in sec. 2.2, to be
closed by the barotropic state law discussed in sec. 1.5. Each of them is rep-
resentative of a certain type of approximation and it is exploited at a specific
point during the subsequent development of numerical methods. Once re-
called some basic issues related to hyperbolic systems and integral solutions
in sec. 2.3, some attention is devoted to the Riemann problem in sec. 2.4
because of the key role its solution plays in the set up of modern numerical
methods for fluid dynamics. Finally, in sec. 2.5 the ingredients presented
in sec. 2.4 are exploited to solve the Riemann problem associated with a
generic convex barotropic state law.
General conventions concerning the notation adopted throughout the present
document, as well as some relevant definitions, are introduced in sec. 2.1.

2.1 Notation and preliminary definitions

(C1) A bold lowercase symbol like v denotes a matrix in R
n×1, hereafter

referred to as a vector in R
n. A bold uppercase symbol like M denotes

a matrix in R
n×n. For the present purposes n ∈ {2, 3, 4}. In particular,

0 denotes the null vector while I and O respectively denote the identity
matrix and the null matrix.

(C2) Let a, b, c,... o and p be real numbers. Moreover, let v1 ∈ R
3, v2 ∈ R

3,
M1 ∈ R

3×3, v3 ∈ R
4 and M2 ∈ R

4×4 admit the following representa-
tion:

v1 =





b
c
d



 , v2 =





e
i
m



 , M1 =





f j n
g k o
h l p





v3 =









a
b
c
d









, M2 =









a e i m
b f j n
c g k o
d h l p









Then, the following compact notation is understood:

v3 =

(

a
v1

)

, M2 =

(

a vT
2

v1 M1

)

where vT
2 denotes the transpose of v2.



(C3) The “·” (centred dot) symbol indicates the common matrix-matrix mul-
tiplication.

(C4) Let M ∈ R
n×n be diagonalizable with real eigenvalues λh, h = 1, . . . , n.

Then:
M = T · Λ · T−1

where Λ is diagonal:

Λ := Diag (λ1, . . . , λn)

and T is a matrix whose columns are given by the (right) eigenvectors
of M. Once defined the application of the usual absolute value | · | to
Λ as follows:

|Λ| := Diag (|λ1|, . . . , |λn|)
it is possible to introduce the following definitions, extensively used in
the sequel:

|M| := T · |Λ| · T−1 (6)

M± :=
1

2
(M± |M|) (7)

(C5) The symbol ‖v‖ denotes the L2 norm of the vector v. Unit vectors
(henceforth called versors as well) are marked by a top hat, e.g. v̂.

(C6) Symbol t ∈ [0,∞) always denotes time.

(C7) The partial derivative of the scalar f with respect to the scalar v is
denoted by ∂vf . The partial derivative of the vector f ∈ R

n with
respect to the vector v ∈ R

n is denoted by ∂vf ; it is the usual Jacobian
matrix in R

n×n, whose ij−th component is given by ∂vj
fi, where fi and

vj here denote the i−th component of f and the j−th component of v,
respectively. Consistently, the derivative ∂vf is manipulated as a matrix
in R

n×1 (i.e. a vector in R
n) while the derivative ∂vf is manipulated

as a matrix in R
1×n (i.e. the transpose of a vector in R

n).
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2.2 Governing equations

The Euler equations of classical fluid mechanics, which describe the flow of a
compressible and inviscid fluid [88], are chosen as governing equations. The
inviscid approximation seems to be justified, at least at a first stage, by the
fact that [26]:

• viscous stresses are usually negligible with respect to the huge dynamic
actions typical of modern hydraulic turbo-machinery for space propul-
sion systems;

• in these applications, viscous dissipation plays a minor role in the en-
ergy balance, if compared to the contribution due to heat conduction.

More in detail, the Euler equations for a force-free flow are considered, since
also the body forces are usually negligible with respect to the dynamic actions
under consideration. Furthermore, by virtue of the barotropic state law (3),
the energy balance is decoupled from the others (i.e. mass and momentum)
[88]; hence, a “reduced” set of equations is considered.

Once introduced the main system of governing equations in both inertial
and rotating frames in secs. 2.2.1 and 2.2.2, respectively, several simplified
systems are concisely reported in secs. 2.2.3 to 2.2.5. The hierarchical struc-
ture of the presented systems is finally discussed in sec. 2.2.6, with the aim of
highlighting the degree of approximation of each of them. Neither boundary
nor initial conditions are considered at this stage of the discussion.

2.2.1 3D equations

Let ê(k), k = 1, 2, 3 be the k−th versor of a chosen Cartesian orthogonal frame
associated with the physical (Euclidean) space. Moreover, let u ∈ R

3 indicate
the flow velocity, with k−th component uk. Finally, let V be an arbitrary
(regular) space domain having (regular) boundary S with unit outer normal
n̂. Then, the conservation of mass and momentum [88] within V can be
expressed as follows:

∂t

∫

V

q dV +

∫

S

(

3
∑

k=1

n̂k f (k)

)

dS = 0 (8)

where n̂k represents the k−th component of n̂, the vectors q and f (k) are
defined as follows:

q :=

(

ρ
ρu

)

(9)
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f (k) := uk q + p

(

0
ê(k)

)

(10)

and the pressure p is related to the density ρ by means of the barotropic law
(3). Regular solutions of (8) also satisfy its corresponding differential form,
namely:

∂t q +

3
∑

k=1

∂xk
f (k) = 0 (11)

where xk denotes the k−th Cartesian coordinate. The system (11) is referred
to as a “system of conservation laws” (see e.g. [34]). The equations in it are
said to be written in “conservation” or “divergence” form since they directly
descend from the conservation principles (8) by applying the divergence the-
orem (in consideration of the arbitrariness of V) [88].

The vector q defined in (9), commonly referred to as the “conservative”
state vector, is chosen as the independent state vector 11. Clearly, uk can be
recast as follows:

uk =
ê(k)T · (ρu)

ρ
(12)

and therefore f (k) admits the following representation as a function of q:

f (k) (q) =
ê(k)T · (ρu)

ρ
q + p (ρ)

(

0
ê(k)

)

It is of interest to explicitly compute the following Jacobian:

J(k) := ∂qf
(k) (q) (13)

in view of the fact that, for smooth solutions, the system (11) is equivalent
to the following first-order quasi-linear one [55]:

∂t q +
3
∑

k=1

J(k) · ∂xk
q = 0 (14)

Then, the following expression is obtained by deriving (10) (by virtue of the
relevant definitions introduced in sec. 2.1):

J(k) = q · ∂quk + uk ∂qq +

(

0
ê(k)

)

· ∂qp (15)

11As pointed out, the “conservation” character of the system (11) is connected with its
mathematical structure and it is by no means due to the specific choice of the “conserva-
tive” state vector as dependent variable.
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By recalling (2)-(4), the derivative ∂qp is given by:

∂qp =

(

a2

0

)T

where a denotes the sound speed and therefore:

(

0
ê(k)

)

· ∂qp =

(

0 0T

a2ê(k) O

)

Moreover, by differentiating (12), the following relation is obtained:

∂quk = ρ−1

(

−uk

ê(k)

)T

and thus (q can be easily divided by ρ):

q · ∂quk =

(

1
u

)

·
(

−uk

ê(k)

)T

=

(

−uk ê(k)T

−uku u · ê(k)T

)

Finally, ∂qq is trivially equal to the identity matrix. Then, by exploiting the
usual compact notation, it is possible to write the following equality:

uk ∂qq =

(

uk 0T

0 ukI

)

By substituting the relevant entities into (15), the following representation
is finally obtained:

J(k) =





0 ê(k)T

a2 ê(k) − uku u · ê(k)T + uk I



 (16)

Note 3 It is well-known that the system (8), or its differential counterpart
(11), does not explicitly involve any similarity parameter [88]. This means
that the considered governing equations can be thought to involve either di-
mensional or non-dimensional entities (flow, space and time variables). In
the latter case, the non-dimensional form is obtained from the dimensional
one by a standard technique [88], once introduced the following reference en-
tities:

- xref : a reference length;

- uref : a reference speed;
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- ρref : a reference density;

- tref := xref u
−1
ref : a reference time;

- pref := ρref u
2
ref : a reference pressure.

Of course, this observation immediately applies to any subsequent system of
equations which is derived from (8) or (11) by means of simplifying assump-
tions. In particular, it directly applies to the Riemann problem introduced
in sec. 2.4 (the similarity character of its solution being preserved by the
aforementioned non-dimensionalization procedure). Moreover, the consid-
ered observation holds true also when recasting the governing equations in a
rotating frame (see sec. 2.2.2) at the only cost of introducing an additional
reference entity, namely:

- ωref := x−1
ref uref : a reference rotational speed.

2.2.2 3D equations in rotating frames

With respect to a Cartesian frame having the same origin as that one intro-
duced in sec. 2.2.1 and rotating with constant angular velocity ω, the mass
and momentum balances (8) read:

∂t

∫

V

q dV +

∫

S

(

3
∑

k=1

n̂k f (k)

)

dS =

∫

V

s dV (17)

with (relevant definitions from sec. 2.2.1 are recalled):

s := −
(

0
2ω ∧ ρu + ρω ∧ (ω ∧ x)

)

(18)

where x denotes the position of the generic fluid particle with respect to
the considered rotating frame, u consistently represents the relative velocity
and the symbol ∧ indicates the usual vector product. The vector s accounts
for the non-inertial effects related to the frame rotation; indeed, the terms
2ω ∧ ρu and ρω∧ (ω ∧ x) in (18) respectively represent the analogue of the
well-known Coriolis and centrifugal forces of classical rational mechanics [68].
Regular solutions of (17) also satisfy its differential counterpart, namely:

∂t q +

3
∑

k=1

∂xk
f (k) = s (19)
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2.2.3 Basic-1D equations

Let u be the unique component of the velocity vector in a purely 1D motion
along a certain direction, associated with the coordinate x; moreover, let
[α, β] denote an arbitrary control volume along the x-axis. Once defined the
1D counterparts of (9) and (10) as follows:

q(x) :=

(

ρ
ρu

)

(20)

f (x) :=

(

ρu
ρu2 + p

)

(21)

the 1D balances corresponding to (8) and (11) respectively read:

∂t

∫ β

α

q(x) dx+ f (x)|β − f (x)|α = 0 (22)

∂t q
(x) + ∂xf

(x) = 0 (23)

2.2.4 Augmented-1D equations

It is possible to extend the balances (22) and (23) so as to also describe
the mass conservation of a certain substance merely advected with the flow
(commonly referred to as a “passive scalar”). Indeed, once extended the
definitions (20) and (21) as follows:

q(A) :=





ρ
ρu
ρξ



 (24)

f (A) :=





ρu
ρu2 + p
ρuξ



 (25)

where ξ denotes the concentration of the passive scalar, the “augmented”
versions of the systems (22) and (23) respectively read (see e.g. [98]):

∂t

∫ β

α

q(A) dx+ f (A)|β − f (A)|α = 0 (26)

∂t q
(A) + ∂xf

(A) = 0 (27)
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Note 4 Clearly, the conservation of the passive scalar is decoupled from the
basic 1D system (as, for instance, the energy balance which has been delib-
erately dropped out at the beginning of sec. 2.2 for the sake of simplicity).
Nevertheless, it is added to the basic 1D system in order to prepare the ground
for the introduction of the 1D sweeps of the original 3D governing equations
(see sec. 2.2.5).

Note 5 It is straightforward to extend the “augmentation” procedure de-
scribed in the present section to the case of m passive scalars, with m > 1.
For instance, let ξ and η be two passive scalars; it is possible to formally
keep (26) and (27) as they are, at the only cost of extending (24) and (25)
as follows:

q(A) :=









ρ
ρu
ρξ
ρη









(28)

f (A) :=









ρu
ρu2 + p
ρuξ
ρuη









(29)

It should be noticed that the m passive scalars, while not affecting the basic
1D flow field (i.e. ρ and u), neither interact with one another even. There-
fore, the structure of the solution is identical for all of them, differences only
arising due to the specific initial and boundary conditions. In view of this, it
is reasonable to study the case m = 1, for the sake of simplicity.

2.2.5 1D sweeps of the 3D equations

The “k−th sweep” of the 3D system (11) is obtained by neglecting the sum-
mation in it, namely (see e.g. [98]):

∂t q + ∂xk
f (k) = 0 , k ∈ {1, 2, 3} (30)

By respectively comparing the definitions of q and f (k) in (9) and (10) with
those of q(A) and f (A) in (28) and (29), it is clear that (apart from the order of
the components) the k-th sweep (30) is formally equal to the augmented-1D
system (27), at the cost of considering:

- the k−th coordinate direction (i.e. ê(k)) as the direction along which a
basic-1D flow takes place;
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- the velocity components uh, with h ∈ {1, 2, 3} and h 6= k, as advected
passive scalars.

This observation is exploited in sec. 5.1.2 in order to discretize the surface
integral appearing in the 3D balances (8) and (17).

2.2.6 Hierarchical structure of the presented equations

The numerical discretization of the 3D problems (8) and (17) is discussed in
sec. 5. The rotating case, in particular, is treated as a generalization of the
non-rotating one and therefore the problem (8) is considered at a preliminary
stage.

Currently, a good mathematical understanding of the problems (8) and
(11) is largely unavailable [34]. For this reason, the numerical discretization
of (8) is based on some numerical techniques which are applied to the 1D
sweeps of the original 3D problem. As mentioned in sec. 2.2.5, the 1D sweeps
are regarded to as augmented-1D systems and therefore the balances (26) and
(27) are considered, in particular, for developing most of the proposed 1D
numerical ingredients (see sec. 3).

The basic-1D systems (22) and (23) are exploited in sec. 3.4 to tackle
some difficulties which are essentially related to the numerical discretiza-
tion of the mass and momentum balances appearing in every augmented-1D
system.

2.3 Hyperbolicity and integral solutions

In secs. 2.3.1 and 2.3.2, the hyperbolic character of the relevant governing
equations introduced in sec. 2.2 is concisely discussed. The concept of inte-
gral solution is then presented in sec. 2.3.3 (together with some related issues
like the Rankine-Hugoniot condition and the notion of entropy condition), in
order to pave the way for discussing shock waves and contact discontinuities
in secs. 2.4 and 2.5.

2.3.1 Hyperbolicity of the 3D equations

Let J represent the following matrix:

J :=

3
∑

k=1

n̂k J(k) (31)

where n̂k denotes the k−th component of the normal n̂ appearing in the 3D
balances (8) and J(k) is defined in (13). Once substituted the expression of
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J(k) provided in (16), the following representation is obtained:

J =





0 n̂T

a2 n̂ −
(

n̂T · u
)

u u · n̂T +
(

n̂T · u
)

I



 (32)

The quasi-linear system (14) is said to be hyperbolic (at a certain point of
the flow field) if J has real eigenvalues λj and a corresponding set of linearly
independent (right) eigenvectors rj (j = 1, . . . , 4), for every versor n̂ on the
unit sphere S

2. Furthermore, the system is said to be “strictly hyperbolic”
if the eigenvalues are all distinct [55].

It is straightforward to verify that the system (14) is actually hyperbolic,
with eigenvalues (the eigenvectors are not reported for the sake of concise-
ness):

λ1 = n̂ · u− a , λ2 = λ3 = n̂ · u , λ4 = n̂ · u + a (33)

Note 6 The following equation:

det (J − λ I ) = 0 (34)

with J given by (31), can be regarded to as a partial differential equation
where the unknown is a certain function z = z (x1, x2, x3, t) such that:

n̂ =
z

‖z‖ , λ = − ∂tz

‖z‖
where z denotes the (spatial) gradient of z. Manifolds z = const, where z is
an integral solutions of (34), are “characteristic manifolds” having normal n̂
and moving with a normal component of the velocity equal to λ:

λ = n̂ · dx

dt
(35)

where x here denotes the position of the generic point on the manifold (see
e.g. [19], [20], [55], [56], [65] and [115]). By comparing (33) and (35), it
is clear that the manifolds associated with λ2 and λ3 for the system (14) are
simply advected with the flow (i.e. they behave like material surfaces) while
those associated with λ1 and λ4 isotropically propagate along n̂ with the sound
speed a.

Characteristic manifolds associated with the speeds (33) can transport dis-
continuities of the derivatives of the solution of (14) within the flow field (see
e.g. [65]). This point, together with the well-known result that discontinuities
can arise during the evolution of the solution also by starting from smooth
data (see e.g. [34], [55] and [60]), clearly shows that it is not possible, in
general, to find smooth solutions of the differential problem (11). Therefore,
some way to interpret less regular solutions somehow “solving” (11), or its
simplified counterpart (27), must be devised (see sec. 2.3.3).

18



2.3.2 Hyperbolicity of the augmented-1D equations

The quasi-linear form of the system (27) reads:

∂t q
(A) + J(A) · ∂xq

(A) = 0 (36)

where J(A) is the Jacobian of the function f (A)
(

q(A)
)

defined by (24)-(25):

J(A) := ∂
q(A)f (A) (37)

By analogy with the 3D case discussed in sec. 2.3.1, the hyperbolicity of
the system (36) depends on the eigenstructure of J(A). In particular, it is
straightforward to verify that it is strictly hyperbolic, with the following pairs
of eigenvalue-eigenvector:























λ1 = u− a , r1 = (1, u− a, ξ)T

λ2 = u , r2 = (0, 0, 1)T

λ3 = u+ a , r3 = (1, u+ a, ξ)T

(38)

2.3.3 Integral solutions

By following [34], a certain field z ∈ L∞ ( R × (0,∞) ; R
m ) is said to be an

integral solution of the following initial-value problem:

{

∂t z + ∂xf = 0 in R × (0,∞)
z = z(0) on R × {t = 0} (39)

with f = f (z), once provided the following equality:

∫ ∞

0

∫ ∞

−∞

(z · ∂tv + f · ∂xv) dx dt +

∫ ∞

−∞

z(0) · v|t=0 dx = 0 (40)

holds for all the test functions v such that v is smooth and has compact
support.

Note 7 The relation (40) is obtained integrating by parts the dot product
between the p.d.e. in (39) and v. Even if (40) is obtained by assuming that
z is a smooth solution of (39), it makes sense if z is merely bounded. In
consideration of the fact that the solution set of (40) contains that one of
(39), the integral solutions are also called “weak” or “generalized” solutions
(see e.g. [63] and [98]).
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Rankine-Hugoniot condition

Let {(x, t) | x = s(t)}, for some smooth function s(·) : [0,∞) → R, represent
a curve γ dividing a certain domain within R × (0,∞) into a “left” and a
“right” sub-domain. Let z be an integral solution of (39) which is smooth on
either sides of γ, along which z has simple jump discontinuities. Then, the
integral solution must verify the classical Rankine-Hugoniot (hereafter RH
as well) condition across γ (see e.g. [34]):

[f ] = σ [z] (41)

where σ := ds/dt and [ψ] denotes the difference between the “left” and
“right” limits of ψ across γ (or vice-versa, consistently on both sides of (41)).
By analogy with classical fluid mechanics, the discontinuity along γ is com-
monly referred to as a “shock wave” or, briefly, “shock”.

Entropy conditions

It is well known that integral solutions need not be unique and additional
requirements for properly defining generalized solutions of (39) must be in-
troduced [34]. A key issue, in particular, is the definition of “admissible
shocks”, i.e. discontinuities subjected to (41) which link a certain state z2 to
a given state z1 in such a way that the evolution from z1 towards z2 is accept-
able from a certain, say “physical”, point of view while the reciprocal path
is not. Criteria for selecting admissible shocks are called entropy conditions
by analogy with classical gas dynamics, where the admissible shocks (from
supersonic to subsonic regimes) are selected by exploiting the second princi-
ple of thermodynamics (i.e. the non-decreasing trend of the thermodynamic
entropy) [66]. While allowing for the identification of the relevant physical
evolution, the entropy conditions generally permit to obtain a unique solution
of the mathematical problem.

Classical criteria like the Lax entropy condition [61] or the Liu entropy
criterion (see e.g. [34]) provide restrictions on a possible couple of states
joined by a shock. However, it is possible to widen the entropy criteria so as to
apply to more general integral solutions of the considered conservation laws.
In particular, it is possible to define so-called entropy solutions, i.e. solutions
obeying certain requirements of the type of the Oleinik condition [72] (see
e.g. [34]). The fundamental idea upon which the aforementioned entropy
criteria are based is that physically and mathematically correct solutions of
the p.d.e. in (39) should arise as the limit of the solutions to the following
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parabolic system (which admits travelling wave solutions, see e.g. [34]):

∂t z̃ + ∂x f (z̃) = ε ∂x (∂x z̃) , ε > 0 (42)

as the “viscosity” term on the right hand side vanishes (i.e. for ε→ 0) 12.
Another approach exploited for selecting relevant integral solutions con-

sists in introducing suitable functions, called entropy functions, for which
an additional conservation law holds for smooth solutions that becomes an
inequality for discontinuous solutions (see e.g. [34] and [63]).

There is great ongoing interest in studying entropy conditions. Indeed, it
is very difficult to assess criteria holding for general conservation laws, and in
particular for generic relations f (z) 13; a vast number of results is currently
available only for simplified systems or for scalar conservation laws [34]. In
consideration of this, the classical Lax entropy condition is adopted (see sec.
2.4.2), for the sake of simplicity, in order to determine the solution of the
so-called Riemann problem (see sec. 2.4) involving the system (27), closed
by a convex barotropic state law (see sec. 2.5.1).

2.4 The Riemann problem

In this section, the following system of conservation laws is considered:















∂t z + ∂x f = 0 in R × (0,∞)

z =

{

zL if x < 0
zR if x > 0

on R × {t = 0}
(43)

with z ∈ R
m and f = f (z) ∈ R

m. This system, characterized by a step-
like piece-wise constant initial data, is commonly referred to as the Riemann
problem (hereafter RP as well).

The solution to (43) also depends, in general, on the state law closing
the relevant p.d.e. through the specific relation f (z). This solution (when
available, since for sophisticated state laws it is very difficult to be obtained)
plays an important role in the set up of modern numerical methods for fluid
dynamics (see e.g. [63], [98] and [99]) and therefore a vast class of RPs has
been studied within this context, even involving complex state laws (see e.g.
[13] and [69] amongst many others).

12For this reason, an entropy solution is also called a vanishing-viscosity solution.
13The specific form of the state law which closes the considered differential problem

clearly affects f (z); in general, it can render it very difficult to define suitable entropy
criteria. (see e.g. [3] and the cited references).
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Once introduced some relevant definitions and results in sec. 2.4.1, the
basic wave solutions of (43) are presented in sec. 2.4.2 and, finally, an impor-
tant theorem related to the local solution of (43) is mentioned in sec. 2.4.3.
All the material concisely presented in secs. 2.4.1 to 2.4.3, essentially taken
from [34] and [55], is aimed at preparing the ground for the solution of the
specific RP studied in sec 2.5.

2.4.1 Preliminary definitions and results

The system in (43) is supposed to be strictly hyperbolic, with pairs (λk, rk)
(k = 1, . . . , m) of eigenvalue-eigenvector associated with the Jacobian ∂zf
appearing in its quasi-linear form:

∂t z + ∂zf · ∂xz = 0

Characteristics

The following differential equations:

dx

dα
= λk (z) ,

dt

dα
= 1 (44)

where α is an abscissa, define the k−th family of characteristic curves (briefly:
the k−th characteristics) in the x − t plane, associated with the hyperbolic
system in (43).

Genuinely non-linear and linearly-degenerate pairs

The pair (λk, rk), with λk = λk (z) and rk = rk (z) is called genuinely non-
linear (briefly: g.n.) provided:

∂zλk · rk 6= 0 , ∀z ∈ R
m

Conversely, it is said to be linearly-degenerate (briefly: l.d.) if:

∂zλk · rk = 0 , ∀z ∈ R
m

Rarefaction curves

Given a fixed state z0 ∈ R
m, the k−th rarefaction curve Rk (z0) is defined as

the path in R
m of the solution to the following ordinary differential equation

(hereafter o.d.e. as well):

dv (ξ)

dξ
= rk (v (ξ) ) (45)
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which passes through z0. If (λk, rk) is g.n., then (45) shows that λk mono-
tonically increases or decreases along Rk (z0) and therefore:

Rk (z0) = R+
k (z0) ∪ {z0} ∪R−

k (z0)

with:






R+
k (z0) := {z ∈ Rk (z0) | λk (z0) < λk (z)}

R−
k (z0) := {z ∈ Rk (z0) | λk (z) < λk (z0)}

(46)

Simple waves

A simple wave is a solution of the p.d.e. in (43) having the following struc-
ture:

z (x, t) = v ( η (x, t) ) in R × (0,∞) (47)

It is possible to show that v in (47) necessarily satisfies (45) for some k. In
addition, η in (47) must satisfy the following p.d.e.:

∂tη + λk (v (η) ) ∂xη = 0 (48)

The simple wave z given by (47) is consequently called a k−simple wave.

Shock set

Given a fixed state z0 ∈ R
m, the so-called shock set is defined as follows:

S (z0) := {z ∈ R
m | f (z) − f (z0) = σ (z − z0)} (49)

where σ depends on the states z and z0: σ = σ (z, z0). It is possible to show
that, in some neighbourhood of z0, S (z0) consists of the union of m smooth
curves Sk (z0) (k = 1, . . . , m) with the following properties:

- Sk (z0) passes through z0 with tangent rk (z0);

- σ (z ∈ Sk (z0) , z0) =
λk (z) + λk (z0)

2
+ O

(

|z− z0|2
)

as z → z0.

Furthermore, it is possible to show that, if (λk, rk) is g.n., then (provided
z is close enough to z0):

Sk (z0) = S+
k (z0) ∪ {z0} ∪ S−

k (z0) (50)

with:






S+
k (z0) := {z ∈ Sk (z0) | λk (z0) < σ (z, z0) < λk (z)}

S−
k (z0) := {z ∈ Sk (z0) | λk (z) < σ (z, z0) < λk (z0)}

(51)
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Linear degeneracy

If (λk, rk) is l.d. for some k ∈ {1, . . . , m}, then it is possible to show that,
for each z0 ∈ R

m:

- Sk (z0) = Rk (z0);

- σ (z, z0) = λk (z) = λk (z0) , ∀z ∈ Sk (z0).

Note 8 It should be noticed that the curves Sk (z0) and Rk (z0), which in gen-
eral agree at least to the first order at z0, coincide in the linearly-degenerate
case.

2.4.2 Basic wave solutions

The basic wave solutions of the RP (43) are considered in the sequel.

Rarefactions

It is possible to show that there exists a continuous integral solution z of
the RP (43) which is a k−simple wave constant along lines 14 through the
origin (x = 0, t = 0), for λk (zL) ≤ x/t ≤ λk (zR), provided that:

- (λk, rk) is g.n.;

- zR ∈ R+
k (zL).

For this solution, η (x, t) in (47) is given by η (x, t) = η̄ (x/t), for a suitable
function η̄. Since η is constant along a k−th characteristic by virtue of
(48) and (44), it follows that also the k−th characteristics, for λk (zL) ≤
x/t ≤ λk (zR), are lines through the origin and therefore (44), in particular,
becomes:

dx

dt
=
x

t
= λk (z) , λk (zL) ≤ x

t
≤ λk (zR) (52)

The k−th characteristics for the solution under consideration, also referred
to as a “k−rarefaction (wave)” by analogy with classical gas dynamics [66],
are sketched in Fig. 3.

Note 9 The relation (45), in particular, holds for the solution at hand; once
recast in differential form, it states that the solution z ∈ R

m, while moving

14In the present document, the word “line” denotes a straight curve while the word
“curve” stands for a generic curve.
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x=0

t

dx / dt = λ
k
( z

L
 ) dx / dt = λ

k
( z

R
 ) 

dx / dt = x / t = λ
k
( z ) 

Figure 3: Schematic representation of the k−th characteristics for a generic
k−rarefaction.

between two infinitesimally close lines within the wave region sketched in Fig.
3, must satisfy the following condition:

dz ∝ rk (z) (53)

The above condition provides m− 1 independent scalar differential relations
which can be integrated, thus providing m−1 prime integrals across the wave
15. The prime integrals under consideration are sometimes called generalized
Riemann invariants (see e.g. [55] and [98]) 16.

Shocks - Lax entropy condition

If zR ∈ Sk (zL), the following field:

z (x, t) =

{

zL if x < σt
zR if x > σt

(54)

15Since rk is only determined up to an arbitrary multiplicative constant, it might be
necessary to choose the multiplicative factor tacitly appearing in (53) so as to be a suitable
integrating factor.

16Indeed they generalize the classical Riemann invariants, which do not exist, in general,
for m > 2 (see e.g. [34]).
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with σ = σ (zR, zL), is an integral solution of (43). By virtue of (49), the
solution at hand satisfies the RH condition (41) and it is consequently referred
to as a shock (wave).

If (λk, rk) is g.n. then zR (provided it is close enough to zL) can belong
either to S+

k (zL) or to S−
k (zL), due to (50). By adopting the classical Lax

entropy condition [61] (hereafter LEC as well), only the latter possibility is
considered acceptable; once recalled the definition of S−

k in (51), it is possible
to recast the LEC as follows:

λk (zR) < σ (zR, zL) < λk (zL) (55)

Then, the shock (54) is accepted as an integral solution of (43) if and only if
the pair (zR, zL) satisfies (55).

Note 10 According to the LEC (55), the k−th characteristics from left and
right (lines on both sides) run into the shock, as sketched in Fig. 4. Since
the characteristics act as information carriers (see e.g. [55] and [65]), some
information is lost when they reach the shock, thus increasing a suitably de-
fined entropy of the system (see e.g. [34]). This, in turn, is considered as a
proper criterion for assessing the physical representativeness of the shock, in
analogy with the case of classical gas dynamics in which the LEC paraphrases
the non-decreasing character of the thermodynamic entropy, i.e. the second
principle of thermodynamics [66]. In view of this consideration, it is clear
why the LEC is regarded to as an entropy condition.

Contact discontinuities

The expression (54) is an integral solution of (43) also when (λk, rk) is l.d., at
the obvious cost of choosing σ = σ (zR, zL) = λk (zL) = λk (zR), as imposed
by the linear degeneracy (see sec. 2.4.1). The left and right k−th character-
istics (lines on both sides) are then parallel to the discontinuity, as sketched
in Fig. 5. This solution is called a k−contact discontinuity.

Note 11 In consideration of the fact that Sk (z) = Rk (z) for the contact
discontinuity, as imposed by the linear degeneracy (see sec. 2.4.1), the jump
[z] across the discontinuity can be computed by exploiting either the RH con-
dition (41) or by integrating (53) (as for a rarefaction).
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Figure 4: Schematic representation of the k−th characteristics for a generic
shock satisfying the LEC (55).
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Figure 5: Schematic representation of the k−th characteristics for a generic
k−contact discontinuity.
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2.4.3 Local solution of the Riemann problem

An important theorem shows that, if (λk, rk) is either g.n. or l.d. for each
k ∈ {1, . . . , m}, then there exists an integral solution of the RP (43) which
is constant on lines through the origin (x = 0, t = 0), provided the initial
states zL and zR are sufficiently close to each other [34]. While proving
the aforementioned statement, it is possible to construct the solution by
connecting m + 1 states zh (h = 0, . . . , m) by means of m waves of the
type of those discussed in sec. 2.4.2 (i.e. rarefactions, shocks and contact
discontinuities). More in detail, let λk < λk+1 (which is legitimate, due to the
strict hyperbolicity assumed at the beginning of sec. 2.4.1); then, once chosen
z0 = zL and zm = zR, the wave joining zk−1 to zk is a k−th rarefaction, a
shock or a k−th contact discontinuity, provided:

zk ∈ Tk (zk−1)

where the curve Tk (z) is defined, in some neighbourhood of z, as follows:

Tk (z) :=







R+
k (z) ∪ {z} ∪ S−

k (z) if (λk, rk) g.n.

Rk (z) = Sk (z) if (λk, rk) l.d.
(56)

This constructive procedure is applied in sec. 2.5.3 in order to solve the RP
(43) when associated with a generic but convex barotropic state law.

2.5 The Riemann problem for a convex barotropic state
law

In this section, the following RP is considered:



















∂t q
(A) + ∂x f (A) = 0 in R × (0,∞)

q(A) =

{

q
(A)
L if x < 0

q
(A)
R if x > 0

on R × {t = 0}
(57)

with q(A) and f (A) given by (24) and (25), respectively. The p.d.e. in (57)
(i.e. the system (27)) is supposed to be closed by a generic state law like
that one defined in sec. 1.5, subjected to an additional constraint that is
discussed in sec. 2.5.1. In sec. 2.5.2 basic wave solutions are investigated,
which are exploited in sec. 2.5.3 for constructing the solution of the RP (57).
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2.5.1 Convexity of the state law

In [69] general constitutive relations involving several thermodynamic entities
are investigated and the convexity of a given state law is defined within a
quite general context. To the purposes of the present work, it suffices to
mention that the generic barotropic state law (3) is said to be convex if:

d2p

dv2
> 0 (58)

where v := ρ−1 is the so-called specific volume. As a function of ρ, the term
on the left-hand side of the condition (58) can be recast as follows:

d2p

dv2
= 2 a ρ4 c(ρ) (59)

where:

c(ρ) :=
a

ρ
+

da

dρ
(60)

Hence, the condition (58) can be equivalently expressed as follows:

c(ρ) > 0 (61)

Some considerations can be drawn from the convexity condition (61),
namely:

• let χ = χ(ρ) be defined as follows:

χ(ρ) := ρ a(ρ) (62)

Clearly dχ/dρ = ρ c(ρ) and therefore for a convex barotropic state law
χ is a monotonically increasing function of ρ;

• let Θ (ρ0, ρ) be defined as follows (a prolongation by continuity is con-
sidered):

Θ (ρ0, ρ) :=











ρ0 ρ
p− p0

ρ− ρ0

if ρ 6= ρ0

χ2
0 if ρ = ρ0

(63)

where χ0 := χ (ρ0), with χ defined in (62). In consideration of the
stability constraint (4), Θ > 0. Moreover, for a convex barotropic state
law it is possible to show that:







Θ (ρ0, ρ) > χ2
0 if ρ > ρ0

Θ (ρ0, ρ) < χ2
0 if ρ < ρ0

(64)
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To the purpose, it suffices to consider the following function:

Γ (ρ) := (ρ− ρ0)
(

Θ − χ2
0

)

in which ρ0 is regarded to as a fixed parameter. Indeed, by virtue of
the convexity condition (61), d2Γ/dρ2 > 0 while dΓ/dρ = 0 for ρ = ρ0.
Hence, Γ has one and only one minimum in correspondence of ρ = ρ0;
since Γ (ρ = ρ0) = 0, it follows that Γ > 0 for ρ 6= ρ0 and therefore
(Θ − χ2

0) has the same sign as (ρ− ρ0) (thus obtaining (64)).
Once introduced the following definition:

ζ (ρ0, ρ) := + Θ (ρ0, ρ)
1
2 (65)

with Θ given by (63), it is possible to recast the inequalities (64) (which
only involve positive entities) as follows:







ζ (ρ0, ρ) > χ0 if ρ > ρ0

ζ (ρ0, ρ) < χ0 if ρ < ρ0

(66)

Then, in consideration of the symmetry ζ (ρ0, ρ) = ζ (ρ, ρ0) and by
inverting the role of ρ0 and ρ in (66), it follows that for a convex
barotropic state law:

χ0 < ζ (ρ0, ρ) = ζ (ρ, ρ0) < χ , ρ0 < ρ (67)

where, of course, χ = χ(ρ) according to (62);

• let Φ = Φ(ρ) be defined as follows:

Φ(ρ) := Ψ(ρ) + a(ρ) (68)

where:

Ψ(ρ) :=

∫ ρ

ρ0

a(s)

s
ds (69)

Clearly dΦ/dρ = c(ρ) and therefore for a convex barotropic state law
Φ is a monotonically increasing function of ρ.

Contrarily to the thermodynamic stability constraint (4), the convexity
condition (61) is not imposed by physical requirements. Nevertheless, it is
attractive from a mathematical point of view since it makes it possible to
construct a local solution to the RP (57) by juxtaposing the wave solutions
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introduced in sec. 2.4.2 (i.e. rarefactions, shocks and contact discontinu-
ities). Indeed, the convexity condition (61) renders all the pairs (λk, rk)
(k ∈ {1, 2, 3}) defined in (38) either g.n. or l.d., since:























∂
q(A)λ1 · r1 = − c(ρ) < 0 g.n.

∂
q(A)λ2 · r2 = 0 l.d.

∂
q(A)λ3 · r3 = + c(ρ) > 0 g.n.

(70)

and thus permits to exploit the results reported in sec. 2.4.3. A generic
convex barotropic state law is therefore assumed in secs. 2.5.2 and 2.5.3, in
order to construct the solution to the RP (57).

Note 12 As an example, it is straightforward to verify that the following
law:

p = pmodel(ρ) := κ ρκ + γ (71)

with κ > 0, κ > 0 and γ given (real) constants, is convex. It should be
noticed that:

- for γ = 0 the classical polytropic gas state law is obtained;

- for κ = 2−1, κ = 2 and γ = 0 the conservation laws (27) become for-
mally identical to the well-known homogeneous shallow water equations
(of course, augmented by the advection of the passive scalar), for which
there exists a vast literature also investigating RPs (see e.g. [99]);

- for κ = ε ρ−κ

0 and γ = −ε, with ε > 0 and ρ0 > 0 given constants,
the classical Tait law (which is used for describing isentropic compress-
ible liquids) is formally recovered; the corresponding RP is studied, for
instance, in [51].

Note 13 The rheological behaviour of a large variety of real-world materials
cannot be represented by convex laws and therefore non-convex state laws have
been studied as well, for incorporation into classical systems of equations for
fluid dynamics (see e.g. [69], [113] and [114]). The solution of the RP
associated with a non-convex state law is, in general, more difficult than that
one associated with a convex one since it admits, besides the basic waves
discussed in sec. 2.4.2, more complex wave solutions (see the aforementioned
references).
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2.5.2 Basic wave solutions

As already noticed in sec. 2.3.2, the system (27) is strictly hyperbolic, with
pairs of eigenvalue-eigenvector given by (38). In this section, basic k-waves
(i.e. wave solutions associated with the pair (λk, rk)) are investigated, of the
type of those discussed in sec. 2.4.2. In view of the material presented in the
aforementioned section, the relation (70) clearly implies that the 2−waves are
necessarily contact discontinuities while the others can be either rarefactions
or shocks.

In the rest of this section, the considered waves are supposed to separate
a “left” state q

(A)
l and a “right” state q

(A)
r . The subscripts l and r are also

exploited for concisely representing entities related to the aforementioned
states.

1−rarefaction

Let q
(A)
h (h ∈ {1, 2, 3}) denote the h−th component of q(A). Once recalled the

eigenstructure (38) of the system at hand, the definition of the generalized
Riemann invariants (53) leads to the following differential relations:































d

(

q
(A)
2

q
(A)
1

)

+
a(q

(A)
1 )

q
(A)
1

dq
(A)
1 = 0

dq
(A)
3

q
(A)
3

− dq
(A)
1

q
(A)
1

= 0

which integrate to:






ur − ul = Ψl − Ψr

ξr − ξl = 0
(72)

where Ψ is given by (69).

Proposition 1 The rarefaction under consideration is a wave solution of
the RP (57) if and only if:

ρr < ρl (73)

Proof Since the pair (λ1, r1) is g.n., it is necessary and sufficient for the
wave under consideration to be a solution that (see the relevant paragraph in
sec. 2.4.2):

q(A)
r ∈ R+

1

(

q
(A)
l

)
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For the present case, the aforementioned condition reads λ1l < λ1r or, equiv-
alently, ar − al < ur −ul. Then, by substituting the first relation in (72), the
inequality under consideration can be recast as follows:

Φr < Φl (74)

with Φ defined in (68). By recalling the fact that, for a convex barotropic
state law, Φ(ρ) is a monotonically increasing function, the conditions (73)
and (74) are equivalent to each other. This concludes the proof. �

1−shock

By introducing the relevant definitions into the RH condition (41), the fol-
lowing relations are obtained:























ρrūr − ρlūl = 0

ρrū
2
r − ρlū

2
l = pl − pr

ξr − ξl = 0

(75)

where:
ūj := uj − σ , j ∈ {l, r} (76)

and σ = σ(ul, ur) denotes the shock speed 17. By manipulating the first two
equations in (75) the following relations are obtained:

ρlūl = ρrūr = ζ (ρl, ρr) (77)

ur − ul =
ρl − ρr

ρl ρr
ζ (ρl, ρr) (78)

with ζ given by (65). Moreover, by substituting (77) into (76), the following
expression is obtained for the shock speed σ:

σ = uj − ρ−1
j ζ (ρl, ρr) , j ∈ {l, r}

Proposition 2 The shock under consideration is a wave solution of the RP
(57) if and only if:

ρl < ρr (79)

Proof Since the pair (λ1, r1) is g.n., the LEC (55) is a necessary and suf-
ficient condition for the shock under consideration to be admissible (see the

17The first relation in (75), directly derived from the first component of (41), is exploited
to obtain the representation of the others.
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relevant paragraphs in sec. 2.4.2). By exploiting (77), the LEC (55) can be
recast as follows:

χl < ζ (ρl, ρr) < χr (80)

with χ defined in (62). Then, by recalling (67), it is clear that for a convex
barotropic state law the condition (80) (i.e. the LEC (55)) and the condition
(79) are equivalent to each other. This concludes the proof. �

2−contact discontinuity

Let q
(A)
h (h ∈ {1, 2, 3}) denote the h−th component of q(A). By applying

(53) to the present case (see Note 11 in sec. 2.4.2), the following differential
relations are obtained:







dq
(A)
1 = 0

dq
(A)
2 = 0

which trivially integrate to:







ρr − ρl = 0

ur − ul = 0
(81)

Moreover, the speed σ of the contact discontinuity is straightforwardly given
by (see sec. 2.4.2):

σ = ul = ur

3−rarefaction

Once noticed that r3 reduces to r1 by inverting the sign of the sound speed a,
(72) directly implies that across the waves under consideration the following
relations hold:







ur − ul = Ψr − Ψl

ξr − ξl = 0
(82)

where Ψ is given by (69).

Proposition 3 The rarefaction under consideration is a wave solution of
the RP (57) if and only if:

ρl < ρr (83)

Proof Analogous to the that one of Proposition 1 above. �
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3−shock

By introducing the relevant definitions into the RH condition (41), the fol-
lowing relations are obtained (identical to those in (75)):























ρrūr − ρlūl = 0

ρrū
2
r − ρlū

2
l = pl − pr

ξr − ξl = 0

(84)

where ūj (j ∈ {l, r}) is defined in (76). By manipulating the first two equa-
tions in (84) the following relations are obtained:

ρlūl = ρrūr = − ζ (ρl, ρr) (85)

ur − ul =
ρr − ρl

ρl ρr
ζ (ρl, ρr) (86)

with ζ given by (65) 18. Moreover, by substituting (85) into (76), the following
expression is obtained for the shock speed σ:

σ = uj + ρ−1
j ζ (ρl, ρr) , j ∈ {l, r} (87)

Proposition 4 The shock under consideration is a wave solution of the RP
(57) if and only if:

ρr < ρl (88)

Proof Analogous to the that one of Proposition 2 above. �

2.5.3 Local solution of the Riemann problem

As remarked in sec. 2.5.1, by adopting a convex barotropic state law it is
possible to exploit the constructive procedure outlined in sec. 2.4.3 in order
to define a local solution of the RP (57). Moreover, since two generic adjacent
states appearing in the solution are only connected to each other by means
of a basic wave (i.e. a rarefaction, a shock or a contact discontinuity), it is
possible to use the relations obtained in sec. 2.5.2, as explained below. The
solution strategy outlined in this section is then exploited in secs. 3 and 4 in
order to validate 1D numerical methods.

18The difference between (77) and (85) arises from the LEC (55). Indeed, in the former
case it must be (in particular) λ1l = ul − al > σ, i.e. ūl > al while in the latter one it
must be (in particular) σ > λ3r = ur + ar, i.e. ūr < − ar. Since the sound speed is always
positive, in the former case ρj ūj = π1 while in the latter one ρj ūj = − π3, with π1 and π3

positive entities. Straightforward computations show that π1 = π3 = ζ (ρl, ρr).
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Figure 6: Schematic representation of the solution of the RP (57). The
2−wave is a contact discontinuity while the others can be either a shock or
a rarefaction.

Structure of the solution

By recalling the theorem mentioned in sec. 2.4.3, it is clear that the so-
lution of the RP (57) in general consists of three waves of the type of those

discussed in sec. 2.5.2. These waves separate four states, q
(A)
L , q

(A)
L⋆ , q

(A)
R⋆ and

q
(A)
R , amongst which q

(A)
L and q

(A)
R are given by the initial condition associ-

ated with the RP (57) while the others must be determined. The structure of
the wave solution is sketched in Fig. 6; in particular, the solid line represents
the 2−contact discontinuity while each couple of dotted lines denotes either
a shock or a rarefaction.

In consideration of (72), (75), (81), (82) and (84) it is evident that ξ only
varies across the contact discontinuity while ρ and u (which are continuous
across the contact discontinuity) change, in general, across the other waves.
Hence, the state vectors under consideration admit the following representa-
tion:

q
(A)
L =





ρL

ρLuL

ρLξL



 , q
(A)
L⋆ =





ρ⋆

ρ⋆u⋆

ρ⋆ξL
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q
(A)
R⋆ =





ρ⋆

ρ⋆u⋆

ρ⋆ξR



 , q
(A)
R =





ρR

ρRuR

ρRξR





where ρ⋆ and u⋆ need to be defined in order to completely determine the
solution.

Determination of the solution

By combining the expressions which give the variation of u across the waves,
namely (72), (78), (82) and (86), it is straightforward to express u⋆ as a
function of ρ⋆ as follows:

u⋆ = uL − Ω (ρ⋆, ρL) = uR + Ω (ρ⋆, ρR) (89)

where (a prolongation by continuity for ρ = ρj is considered):

Ω (ρ, ρj) :=















Ψ (ρ) − Ψ (ρj) if ρ ≤ ρj

ρ− ρj

ρ ρj

ζ (ρ, ρj) if ρ > ρj

, j ∈ {L,R}

with Ψ and ζ respectively given by (69) and (65). Let ∆u be defined as
follows:

∆u := uR − uL

Then, in view of (89), the identity (uL − u⋆) + (u⋆ − uR) + (uR − uL) = 0
can be recast as follows:

Ω (ρ⋆, ρL) + Ω (ρ⋆, ρR) + ∆u = 0 (90)

Clearly, for the relation (90) to hold, ρ⋆ must be a zero of the following
function:

Ω(L,R) (ρ) := ΩL (ρ) + ΩR (ρ) + ∆u (91)

where:
Ωj (ρ) := Ω (ρ, ρj) , j ∈ {L,R}

The existence and the uniqueness of such a zero is ensured by the following:
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Proposition 5 Let Dρ = [ρmin, ρsup) denote the density domain of the con-
sidered barotropic state law, as defined in sec. 1.5. There exists a unique
solution ρ⋆ ∈ Dρ of the equation (90) if and only if:

∆infu < ∆u ≤ ∆maxu (92)

with:














∆infu := −ρsup − ρL

ρsup ρL

ζ (ρsup, ρL) − ρsup − ρR

ρsup ρR

ζ (ρsup, ρR)

∆maxu := Ψ (ρL) + Ψ (ρR) − 2 Ψ (ρmin)

Proof The first derivative of Ωj (ρ) is given by the following (continuous)
function:

d

dρ
Ωj (ρ) =



















a

ρ
if ρ ≤ ρj

1

2

(

ζ (ρ, ρj)

ρ2
+

a2

ζ (ρ, ρj)

)

if ρ > ρj

, j ∈ {L,R}

which is clearly positive. Hence, Ω(L,R) (ρ) in (91) is a monotonically increas-
ing function and admits a unique zero, which moves towards lower values of
the density as ∆u increases. By continuity, there exists a maximum value of
∆u, denoted by ∆maxu, for which ρ⋆ = ρmin as well as an inferior one, de-
noted by ∆infu, in correspondence of which ρ⋆ = ρsup. Clearly, ∆maxu can be
determined by evaluating (90) in correspondence of ρ = ρmin. In particular,
since ρmin ≤ ρj, j ∈ {L,R}, it follows (from the definitions) that:

ΩL (ρmin) + ΩR (ρmin) = 2 Ψ (ρmin) − Ψ (ρL) − Ψ (ρR)

and therefore (90) in the present case reads:

2 Ψ (ρmin) − Ψ (ρL) − Ψ (ρR) + ∆maxu = 0

Similar considerations can be exploited for deriving the expression of ∆infu.
It is evident that (92) represents a necessary and sufficient condition for de-
termining a solution ρ⋆ ∈ Dρ of the non-linear equation (90). This completes
the proof. �

Note 14 As ∆u transitions between ∆infu and ∆maxu, the wave structure
of the solution of the RP (57) changes. Once introduced the following defini-
tions:











∆2su := −ρM − ρm

ρM ρm

ζ (ρM , ρm)

∆2ru := Ψ (ρM ) − Ψ (ρm)
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where:
ρM := max(ρL, ρR) , ρm := min(ρL, ρR)

and by recalling the monotonicity of Ω(L,R), it is possible to identify the fol-
lowing sequence of wave solutions:

- for ∆infu < ∆u < ∆2su, ρM < ρ⋆ < ρsup and both the 1−wave and the
3−wave are shocks;

- for ∆2su ≤ ∆u < ∆2ru, ρm < ρ⋆ ≤ ρM ; there is a shock between ρ⋆

and ρm, and a rarefaction between ρ⋆ and ρM ;

- for ∆2ru ≤ ∆u ≤ ∆maxu, ρmin ≤ ρ⋆ ≤ ρm and both the 1−wave and
the 3−wave are rarefactions.

The aforementioned statements can be straightforwardly verified by introduc-
ing considerations of the same kind of those reported in the proof of Propo-
sition 5 (above) for determining ∆maxu.

Note 15 The solution for ξ depends on ρ⋆ and u⋆ (since u⋆ determines the
location of the contact discontinuity) but, in turns, it does not affect the
solution for ρ and u. This point, which is due to the decoupling between the
passive scalar and the underlying 1D flow field (see Note 4 in sec. 2.2.4),
permits to straightforwardly extend the structure of the considered solution to
the case of an arbitrary number m > 1 of passive scalars. Indeed, since there
is no interaction between them (see Note 5 in sec. 2.2.4), it suffices to make
all of them simultaneously jump across the contact discontinuity. Even if for
m > 1 the system (27) ceases to be strictly hyperbolic (the multiplicity of the
eigenvalue associated with the contact discontinuity being in general equal
to m), the fact that the additional waves do not interact with the starting
system, neither with one another even, makes the loss of strict hyperbolicity
purely formal. In other words, the augmented system with m > 1 behaves
like that one having m = 1 and it is possible to keep the proposed solution
strategy.

Note 16 Clearly, the solution of the considered RP is essentially constructed
by solving (90). It is therefore evident that it is possible to keep the proposed
solution procedure also for formulations adopting p instead of ρ as the inde-
pendent variable, at the only cost of straightforward changes in the notation.

Note 17 It is worth mentioning that the material presented in secs. 2.5.2
and 2.5.3 generalizes the solution procedure reported in [99] for the RP as-
sociated with the homogeneous shallow water equations (see Note 12 in sec.
2.5.1).
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3 1D Numerical method

A 1D numerical method (hereafter also referred to as numerical scheme) for
discretizing the augmented-1D equations (27) is developed in the present
section. In particular, the integral form of the considered conservation law,
namely (26), is considered in order to allow integral solutions (see sec. 2.3.3)
to be taken into account. A shock-capturing approach (see e.g. [39], [64], [80]
and [98]) is chosen, in order to approximate possibly discontinuous solutions.

Once introduced some basic material in sec. 3.1, a Godunov scheme for
(generic) convex barotropic state laws is proposed in sec. 3.2. A Roe scheme
is then proposed in sec. 3.3, which can be applied when dealing with generic
barotropic state laws. In sec. 3.4 the behaviour of this scheme in the nearly-
incompressible limit is investigated and a suitable preconditioning technique
for low Mach number flows is introduced. Finally, in sec. 3.5 a linearization of
a generic Roe numerical flux function is proposed, only relying on its algebraic
properties and therefore applicable to a variety of problems. The proposed
linearization is then applied to the barotropic case under consideration, in
order to define a linearized implicit time-advancing strategy.

3.1 Generalities on the 1D discretization

In the sequel, some basic concepts and definitions which are related to the nu-
merical discretization of the considered 1D conservation law are introduced,
to be exploited within the rest of sec. 3. The concise introduction under
consideration does not lay claim to yield a rigorous and complete treatment
of the subject; a detailed presentation can be found in a number of textbooks
(e.g [39], [64] and [98] amongst many others).

3.1.1 Space discretization

A finite volume approach is adopted for the spatial discretization of the
problem (27). The x−domain is divided into Nc cells, indexed by i ∈ I :=
{1, . . . , Nc}. The i−th cell spans the interval Ci := (xi−1/2, xi+1/2), with
xi−1/2 < xi+1/2, having measure µi. On Ci the exact solution q(A)(x, t) is

approximated by a semi-discrete function q
(A)
i (t), which is considered as an

approximation of the mean value of q(A)(x, t) over Ci:

q
(A)
i (t) ≈ 1

µi

∫

Ci

q(A)(x, t) dx (93)

The differential system defining q
(A)
i is obtained by discretizing the integral

balance (26) over the control volume Ci. Indeed, by virtue of (93), the time-



derivative in (26) is naturally approximated as follows:

∂

∂t

∫

Ci

q(A)(x, t) dx ≈ µi
d

dt
q

(A)
i (94)

while the inter-cell flux f (A) defined in (25) is approximated by introducing
a suitable numerical flux function (hereafter numerical flux, as well) φ(A),
depending on the semi-discrete solution.

Numerical flux

Let πi denote the set of indexes identifying the cells in the neighbourhood of
Ci, namely:

πi := {i− 1, i+ 1} (95)

A certain degree of locality is usually assumed for φ(A) and the flux crossing
the boundary between Ci and Cj towards Cj is commonly approximated by
means of the following expression:

φ(A)
(

q
(A)
i ,q

(A)
j , ν̂ij

)

, j ∈ πi (96)

where ν̂ij is the versor associated with a generic vector mapping an arbitrary
point of Ci to an arbitrary point of Cj. If ê denotes the versor associated
with the x−axis, then clearly:

ν̂ij = (j − i) ê , j ∈ πi (97)

The following definition is consequently introduced, to be exploited in the
sequel:

sij := ν̂ ij · ê = sign(j − i) , j ∈ πi (98)

Note 18 The explicit dependence of φ(A) on ν̂ij in (96) may seem somewhat
redundant in the present context. Indeed, a 1D case is intrinsically structured:
any internal cell Ci has two and only two neighbours, Ci−1 and Ci+1, and
ν̂ ij = ±ê according to (97). However, the proposed formulation (96), allows
for an extension to 2D and 3D -possibly unstructured- spatial discretizations
to be obtained (see e.g. sec. 5.1.2), since it does not a priori incorporate any
structure.

In general, the numerical flux must satisfy the following basic require-
ments:

φ(A)
(

q
(A)
j ,q

(A)
i , ν̂ji = − ν̂ ij

)

= − φ(A)
(

q
(A)
i ,q

(A)
j , ν̂ij

)

(99)

φ(A)
(

q
(A)
i ,q

(A)
j = q

(A)
i , ν̂ij

)

= sij f (A)
(

q
(A)
i

)

(100)
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The property (99) is directly inherited from the continuous flux; it permits
to associate the numerical flux with the inter-cell boundary in a well-defined
way, thus allowing for the definition of “conservative” numerical schemes
(see Note 19 in sec. 3.1.2). The property (100), instead, enforces a natural
consistency requirement.

Godunov approach

By following the well-known approach originally proposed by Godunov [40],

the piece-wise constant approximant q
(A)
i (i ∈ I) can be considered as defin-

ing a local RP like (57) at each interface x(i+j)/2 (j ∈ πi). The numerical
flux between Ci and Cj can therefore be constructed by properly exploiting
the solution either of the RP of interest (see sec. 3.2.1) or of a suitable
approximation of it (see sec. 3.3.1).

Semi-discrete formulation and boundary conditions

By exploiting (94) and (96) it is straightforward to obtain the following class
of semi-discrete approximations of (26), depending on the specific choice of
the numerical flux:

µi
d

dt
q

(A)
i +

∑

j∈πi

φ(A)
(

q
(A)
i ,q

(A)
j , ν̂ij

)

= 0 , i ∈ I (101)

At the present stage of the discussion, the scheme (101) is not properly
defined for i = 1 and i = Nc: suitable boundary conditions (hereafter BCs
as well) must be introduced in order to completely define the semi-discrete

formulation. To the purpose, two fictitious state vectors, q
(A)
0 and q

(A)
Nc+1,

are introduced. Once these vectors have been given a value (modelling the
chosen BCs), it is possible to directly apply (101) to every cell Ci (i ∈ I).

3.1.2 Time discretization: basic discrete schemes

A fully-discrete (hereafter discrete) numerical scheme approximating (26) is
defined by considering (101) as an ordinary differential equation 19. The
discrete solution at time-level n+ 1 (corresponding to t = tn+1), denoted by

q
(A)n+1
i within cell Ci, can therefore be obtained from that one at time-level
n by exploiting a variety of integration techniques. Basic discrete schemes
are presented below.

19This approach, keeping space and time discretizations separate, is sometimes referred
to as a “method of lines” (see e.g. [39]).
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Explicit time-advancing

An explicit discrete scheme can be obtained from (101) by considering, for
instance, the classical “forward Euler” integration technique (see e.g. [79]):

q
(A)n+1
i = q

(A)n
i − δnt

µi

∑

j∈πi

φ(A)
(

q
(A)n
i ,q

(A)n
j , ν̂ij

)

, i ∈ I (102)

where:
δn(·) := (·)n+1 − (·)n (103)

Note 19 Due to its specific form, the scheme (102) is said to be “conser-
vative” (see e.g. [39] and [98]). It is very important to exploit conservative
schemes in order to compute possibly discontinuous integral solutions; indeed,
non-conservative formulations do not converge 20 to the correct solution of
the problem if it involves shock waves [48]. A classical result, on the other
hand, states that conservative numerical methods, if convergent, do converge
to an integral solution of the considered conservation law [62]. Hence, it
is practically compulsory to exploit conservative schemes when adopting a
shock-capturing numerical approach 21.

Implicit time-advancing

An implicit discrete scheme can be obtained from (101) approximating the
time derivative by means of a backward finite difference as follows:

µi

δnt
δnq

(A)
i +

∑

j∈πi

φ(A)
(

q
(A)n+1
i ,q

(A)n+1
j , ν̂ij

)

= 0 , i ∈ I (104)

It is well known that implicit schemes like (104) permit a more efficient
time-advancing than explicit ones, because they do not suffer from time-step
limitations caused by CFL-like stability constraints (see e.g. [44]). However,
the scheme (104) can be demanding from a computational point of view,
since it requires the solution of a non-linear system at each time-level. In-
deed, the flux function is, in general, non-linear and the specific form of the
considered state law can add to the complexity of the algorithm. As a matter
of fact, 3D numerical schemes based on the extension of (104) are exceedingly

20The notion of convergence, even if not formally introduced, is assumed to be under-
stood at this point of the discussion.

21Different choices can be considered when adopting other techniques (e.g. shock-fitting
or adaptive primitive-conservative numerical methods) [98].
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intensive from a computational point of view 22, especially if they are applied
to industrial problems involving very complex geometries.

Linearized implicit time-advancing

In view of the above considerations, a reasonable compromise between a
purely explicit and a purely implicit scheme seems to be provided by a lin-
earized implicit time-advancing strategy. This technique is based on the
following approximate linearization of the numerical flux (which, in general,
is not differentiable), assuming it exists:

δnφ
(A)
ij ≈ A

(A)n
ij · δnq

(A)
i + B

(A)n
ij · δnq

(A)
j (105)

where:
φ

(A)n
ij := φ(A)

(

q
(A)n
i ,q

(A)n
j , ν̂ ij

)

and:














A
(A)n
ij := A(A)

(

q
(A)n
i ,q

(A)n
j , ν̂ij

)

B
(A)n
ij := B(A)

(

q
(A)n
i ,q

(A)n
j , ν̂ij

)

(106)

with A(A) and B(A) suitably defined matrices. By substituting (105) into
(104), the following scheme is obtained:

(

µi

δnt
I +

∑

j∈πi

A
(A)n
ij

)

· δnq
(A)
i +

∑

j∈πi

B
(A)n
ij · δnq

(A)
j = −

∑

j∈πi

φ
(A)n
ij , i ∈ I

(107)
The scheme (107) represents a linear system (in particular, a block tridi-

agonal system in the considered 1D case) for the unknowns δnq
(A)
i ; once

it has been solved, the unknowns at time-level n + 1 are trivially given by
q

(A)n+1
i = q

(A)n
i + δnq

(A)
i . Clearly, the linearized scheme (107) involves an

additional degree of approximation with respect to the implicit scheme (104)
(due to the approximate linearization 23) but it is less demanding from a com-
putational point of view. For this reason, a linearized implicit time-advancing
is proposed in sec. 3.5.

22Unless exploiting specific supercomputing resources which are usually not available
for common research or even industrial projects.

23Of course, the effects the approximate linearization has on the numerical solution may
be relatively less important for simulations marching towards a steady-state.
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The scheme (107) can be regarded to as a particular instance of a more
general linearized implicit formulation which is described below. The semi-
discrete formulation (101) can be rewritten, in a more general way, as follows:

d

dt
zh +ψ

(p)
h (zh) = 0 (108)

where zh denotes a suitable state vector representing the semi-discrete so-
lution and ψ

(p)
h (·) denotes a vector operator whose components are spatial

difference operators (the superscript p is discussed below). It is possible to
approximate the time derivative as follows:

d

dt
zh

(

tn+1
)

≈ αk zn+1
h − z

(n,k)
h

δnt
(109)

where z
(n,k)
h denotes a linear combination of zn

h, . . . , z
n+1−k
h and αk is a scalar.

Clearly, by suitably defining αk and z
(n,k)
h it is possible to obtain a cer-

tain order of accuracy (in the sense of the finite difference schemes) for the
approximation of the time derivative. Once the approximation (109) has
been substituted into the semi-discrete scheme (108), its discrete counter-
part reads:

µ
(p,k)
h

(

zn+1
h

)

= 0 (110)

where the operator µ
(p,k)
h (·) is defined as follows:

µ
(p,k)
h (z̄h) :=

αk

δnt
z̄h +ψ

(p)
h (z̄h) −

1

δnt
z

(n,k)
h (111)

The non-linear discrete problem (110)-(111) can then be solved by means of
a variety of techniques. In particular, it is possible to:

(i) introduce an approximate linearization of the operator µ
(p,k)
h , as follows:

µ
(p,k)
h

(

zn+1
h

)

− µ(p,k)
h (zn

h) ≈ J
(p,k)
h (zn

h) · δnzh (112)

where:
J

(p,k)
h (·) :=

αk

δnt
I + δψ

(p)
h (·) (113)

and δψ
(p)
h (·) denotes an approximation of the Jacobian of ψ

(p)
h (·) or,

more in general, a term rendering the approximation (112) acceptable.
Once (112) has been substituted into (110), it is straightforward to
solve the resulting linear problem with respect to δnzh (the discrete
scheme (107), for instance, is obtained by following this approach). Of
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course, the computational cost of the considered strategy is mainly de-
termined by the inversion of the linear operator J

(p,k)
h , which can be

still demanding for complex 3D industrial problems. When dealing
with structured grids, for instance, it is possible to contain the com-
putational cost by applying an approximate factorization technique to
J

(p,k)
h [11]; indeed, the introduction of an additional discretization error

due to the factorization may be acceptable, in consideration of the fact
that simpler linear systems must be solved.

(ii) iteratively solve (110) by determining a fixed-point of the following
relation, which implicitly maps zλ

h to zλ+1
h (with zλ=0

h = zn
h as starting

point) 24:

µ
(q,k)
h

(

zλ+1
h

)

= µ
(q,k)
h

(

zλ
h

)

− µ(p,k)
h

(

zλ
h

)

(114)

where µ
(q,k)
h is formally defined by (111), with q in place of p. Once

introduced the following linearization (in the spirit of (112)):

µ
(q,k)
h

(

zλ+1
h

)

− µ(q,k)
h

(

zλ
h

)

≈ J
(q,k)
h

(

zλ
h

)

· δλzh

the map (114) can be explicitly approximated as follows:

zλ+1
h ≈ zλ

h −
(

J
(q,k)
h

(

zλ
h

)

)−1

·
(

µ
(p,k)
h

(

zλ
h

)

)

(115)

Obviously, for the considered strategy to be computationally attractive
with respect to that one described in the point (i) above, the inversion of

J
(q,k)
h must be cheaper than that one of J

(p,k)
h

25. In particular, as for the
point (i) above, it is possible to contain the considered computational
cost when dealing with structured grids by applying an approximate
factorization technique to J

(q,k)
h [11]. For practical purposes, the solu-

tion is advanced only for a limited number, say λn
max, of iterations and

the considered scheme globally reads:


























zλ=0
h = zn

h

zλ+1
h = zλ

h −
(

J
(q,k)
h

(

zλ
h

)

)−1

·
(

µ
(p,k)
h

(

zλ
h

)

)

λ = 0, . . . , (λn
max − 1)

zn+1
h = z

λ=λn
max

h

(116)

24The considered iterations advance the solution with respect to the counter λ and the
fixed-point zλ=λ̄

h represents the discrete solution at time-level n + 1 (i.e. zn+1
h ) indepen-

dently of the specific value of λ̄. In order to emphasize this concept, the iterations at hand
are sometimes referred to as “internal iterations” or “pseudo-iterations”.

25Typically, J
(q,k)
h is sparser than J

(p,k)
h .
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If the superscripts p and q denote a formal order of accuracy of the
corresponding spatial operators, it suffices, in general, to choose q < p
for making the inversion of J

(q,k)
h cheaper than that one of J

(p,k)
h . Let

k denote the formal order of accuracy of the discretization of the time
derivative in (109); in particular, let k = p for the sake of simplicity.
Under these assumptions, the solution of the discrete scheme (110) as
well as the fixed-point solution of (114) are formally of order p. On the
other hand, the solution obtained by taking a single step of (116) is of
order (q, p) (i.e. of order q < p for the space discretization and of order
p for the time discretization). Nevertheless, it is possible to recover a
p−order accuracy within a certain number of time-steps, without fully
converging to the fixed-point solution. This consideration, which is at
the basis of the “Defect Correction” methods (see e.g. [67]), renders the
iterative scheme (116) appealing from a computational point of view.
The definition of a suitable DeC scheme is mentioned in sec. 3.5.3;

(iii) adopt a dual time-stepping approach [52], according to which the solu-
tion zn+1

h in (110) is obtained by advancing the following problem:











d

dτ
yh + µ

(p,k)
h (yh) = 0

yh (τ = 0) = zn
h

(117)

with respect to the pseudo-time τ , up to a steady-state. Of course, the
numerical scheme specifically adopted for discretizing the pseudo-time
derivative in (117) characterizes the considered “artificial” evolution
between time-level n and time-level n+ 1.
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3.2 A Godunov scheme for convex barotropic state
laws

In sec. 3.2.1 a Godunov numerical flux function applicable to generic convex
barotropic state laws is defined. In sec. 3.2.2, the scheme (102) exploiting
the considered numerical flux is validated against an exact solution.

3.2.1 Godunov numerical flux

Let
q

(A)
RP

(

q
(A)
L ,q

(A)
R , ζ

)

denote the solution of a RP having “left” and “right” initial states q
(A)
L and

q
(A)
R , respectively, in correspondence of x/t = ζ . The Godunov numerical

flux at the interface x(i+j)/2, with j ∈ πi and πi given by (95), is constructed
by evaluating the analytical flux f (A) in correspondence of the following state
vector:

q
(A)
RP

(

q
(A)
Lij
,q

(A)
Rij
, 0
)

where:
Lij := min(i, j) , Rij := max(i, j)

and ζ = 0 (i.e. x = 0) is chosen for correctly picking out the considered
interface with respect to the local x−coordinate system to which the initial
states are referred. The orientation defined by ν̂ij is straightforwardly taken
into account by defining the Godunov numerical flux as follows:

φ(A)GOD
(

q
(A)
i ,q

(A)
j , ν̂ij

)

:= sij f (A)
(

q
(A)
RP

(

q
(A)
Lij
,q

(A)
Rij
, 0
) )

, j ∈ πi

(118)
with sij given by (98).

Note 20 It should be noticed that the numerical flux (118) satisfies the con-
servation property (99); indeed, Lji = Lij and Rji = Rij, while sji = −sij.
The consistency property (100) is satisfied as well, by virtue of the consistency

of q
(A)
RP (·, ·, ·) which does not perturb a uniform (trivial) initial condition.

For the case of a generic convex barotropic state law (see sec. 2.5.1),
it is possible to define the numerical flux (118) by exploiting the solution

q
(A)
RP (·, ·, ·) proposed in sec. 2.5.
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Benchmark κ κ γ ρL uL ξL ρR uR ξR teval

B1 106 1 0 1.02 10 2 1 20 4 1
B2 106 2 0 1.02 10 2 1 20 4 1

Table 1: Considered benchmarks.

3.2.2 Numerical results

The solution of a chosen RP is considered as a quantitative benchmark for
validating the discrete scheme (102), based on the proposed numerical flux
(118).

Benchmarks

The considered benchmarks are summarized in Tab. 1. In this table, κ,
κ and γ refer to the chosen convex state law (71), ρL, uL, ξL, ρR, uR and
ξR characterize the initial condition (hereafter IC as well) associated with
the RP and teval denotes the time at which the considered solution is picked.
The instances of the convex state law (71) incorporated in Tab. 1 are sim-
ple power laws which permit to control the characteristic sound speed and
the wave structure (hence, the flow compressibility) of the solution to the
considered RP, by tuning the IC. In particular:

• for the state law considered in the benchmark B1, the sound speed
is constant: a =

√
κ = 103 and therefore ã = 103 represents the

characteristic sound speed of the flow. Once chosen ρR = 1, uL = M̃ ã
with M̃ = 10−2 and uR = 2 uL, the value of ρL is tuned so as to obtain

a left rarefaction and a right shock, with u⋆/ã = O
(

M̃
)

(in particular

ρL/ρR = 1 + O
(

M̃
)

). Hence, M̃ = 10−2 represents a characteristic

Mach number for the whole flow field under consideration;

• for the state law considered in the benchmark B2, the sound speed
varies with the density as follows: a =

√
2κρ. Once chosen ρR = 1,

uL = ζ aR/
√

2 with ζ = 10−2 and uR = 2 uL, the value of ρL is tuned so
as to obtain a left rarefaction and a right shock, with u⋆/aR = O (ζ) (in
particular ρL/ρR = 1 + O (ζ)). In the present case, the characteristic
sound speed and the characteristic Mach number of the flow are ã = aR

and M̃ = ζ (in particular, M̃ = 10−2 as for the benchmark B1).
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Note 21 The structure of the solution to the considered RPs (i.e. rarefac-
tion, contact discontinuity and shock wave) is that one of the classical “Sod
test-case” [95]. Usually (see e.g. [98] and [99]), the data are chosen for
the Sod test-case so as to get a “sonic rarefaction” (i.e. a rarefaction for
which ‖u‖ = a along a certain characteristic line, see sec. 2.4.2), since this
wave is a representative benchmark for evaluating the entropic behaviour of
a considered numerical scheme (see e.g. Note 32 in sec. 3.3.1). Never-
theless, no sonic rarefactions are present in the solution of the considered
benchmarks, since a first target of the present work is the simulation of non-
cavitating, nearly-incompressible, liquid flows (see sec. 1.6) in which sonic
conditions can not take place. Conversely, it is of interest here to investi-
gate the behaviour of numerical schemes dealing with low Mach number flows
(e.g. M̃ = O (10−3)÷O (10−2)), like those considered in the aforementioned
benchmarks. However, it must be remarked that the application of the pro-
posed numerical techniques is by no means restricted to low Mach number
flows.

Initial and boundary conditions

The initial discontinuity of the considered RP is located at x = 0. More-
over, the space discretization is built in such a way that the right boundary
of the cell Cs̄ (s̄ ∈ I, s̄ < Nc) is systematically located at x = 0. Hence the
following IC is directly derived from that one of the considered RP:

q
(A)0
i :=

{

q
(A)
L i = 1, . . . , s̄

q
(A)
R i = s̄+ 1, . . . , Nc

(119)

As far as the BCs are concerned, transmissive conditions are chosen (see

e.g. [98]), obtained by defining the fictitious state vectors q
(A)n
0 and q

(A)n
Nc+1

(introduced in the relevant paragraph of sec. 3.1.1) as follows:

q
(A)n
0 = q

(A)n
1 , q

(A)n
Nc+1 = q

(A)n
Nc

, n = 0, 1, 2, . . . (120)
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Test-cases

For the sake of simplicity, a uniform space discretization as well as a constant
time-step is adopted in (102), namely:

µi = µ , i ∈ I
δnt = τ , n = 0, 1, 2, . . .

Then, the following CFL-like stability constraint should be enforced when
adopting the basic explicit scheme under consideration:

τ ≤ c(CFL) µ

sn
max

, n = 0, 1, 2, . . . (121)

where:

- sn
max represents the largest wave speed present throughout the compu-

tational domain at time-level n;

- c(CFL) denotes a suitable safety coefficient. A possible choice, origi-
nally proposed by Godunov, is c(CFL) = 0.5, which prevents any wave
interaction from taking place within the generic cell Ci. This choice
seems to be a little bit strict and a coefficient 0 < c(CFL) ≤ 1.0 is
commonly adopted, by assuming that no wave acceleration occurs as a
consequence of wave interaction (see e.g. [98]).

For the sake of simplicity, both µ and τ are chosen at the beginning
of the simulation and the CFL condition (121) is only checked during the
simulation, at each time-level (in particular, sn

max is exactly computed by
exploiting the relevant relations introduced in sec. 2.5.2). The considered
test-cases are summarized in Tab. 2, where nL and nR respectively represent
the number of cells introduced within the “left” and “right” sub-domains
(i.e nL = s̄ and nR = Nc − s̄, with s̄ appearing in (119)); the corresponding
numerical solutions are shown in Figs. 7-14.
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Test-case Benchmark µ (nL, nR) τ

EG1-1 B1 100 (2, 2) · 101 5 · 10−2

EG1-2 B1 10 (2, 2) · 102 5 · 10−3

EG1-3 B1 1 (2, 2) · 103 5 · 10−4

EG1-4 B1 0.1 (2, 2) · 104 5 · 10−5

EG2-1 B2 100 (2, 2) · 101 5 · 10−2

EG2-2 B2 10 (2, 2) · 102 5 · 10−3

EG2-3 B2 1 (2, 2) · 103 5 · 10−4

EG2-4 B2 0.1 (2, 2) · 104 5 · 10−5

Table 2: Considered test-cases for the discrete scheme (102), based on the
numerical flux (118).

It should be noticed that the left rarefaction appearing in the aforemen-
tioned figures is very steep. Such a behaviour is typical of low Mach number
flows (see e.g. [49]) and can be justified as follows. For the considered flows,
the head of the left rarefaction 26 travels with a speed uL−aL ≈ uL− ã ≈ − ã
where ã is the characteristic sound speed (ã≫ |u| since M̃ ≪ 1). Moreover,
according to (87) the speed of the right shock is σ = uR+ρ−1

R ζ (ρ⋆, ρR) and, in
consideration of (67), σ > uR +aR. However, since ρ⋆ turns out to be close to

ρR: ρ⋆/ρR = 1 + O
(

M̃
)

, it follows that σ ≈ uR + aR

(

1 + O
(

M̃
))

≈ ã and

therefore ã can be considered as an acceptable estimate for the shock speed
as well 27. It is therefore clear that, during a unit time interval (teval = 1),
the flow perturbation extends over an interval having width wdomain of the
order of ã:

wdomain

ã
= O (1) (122)

As far as the left rarefaction fan is concerned, it is delimited by the following
characteristics (compare with (52)):

x

t
= uL − aL ,

x

t
= u⋆ − a⋆

26 The head of the wave is the extreme of the wave region which is in contact with the
unperturbed state while the tail is the extreme of the wave region adjacent to the star
region [98].

27These considerations incidentally show that, at low Mach numbers, the rarefactions
and the shocks approximately travel at the same speed (in absolute value), as confirmed
e.g. by Figs. 7-9 and Figs. 11-13 (in which the shock and the rarefaction are roughly
located at the same distance from the position of the initial discontinuity, i.e. x = 0).
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Figure 7: Approximation of ρ for the test-cases EG1-1 to EG1-4.

−2000 −1500 −1000 −500 0 500 1000 1500 2000

1

1.005

1.01

1.015

1.02

x 10
6

x

p

exact
EG1−1
EG1−2
EG1−3
EG1−4

Figure 8: Approximation of p for the test-cases EG1-1 to EG1-4.
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Figure 9: Approximation of u for the test-cases EG1-1 to EG1-4.
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Figure 10: Approximation of ξ for the test-cases EG1-1 to EG1-4. The
x−range is cut for ease of readability.
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Figure 11: Approximation of ρ for the test-cases EG2-1 to EG2-4.
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Figure 12: Approximation of p for the test-cases EG2-1 to EG2-4.
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Figure 13: Approximation of u for the test-cases EG2-1 to EG2-4.
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Figure 14: Approximation of ξ for the test-cases EG2-1 to EG2-4. The
x−range is cut for ease of readability.
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and thus, for teval = 1, its width wfan can be expressed as follows:

wfan = (u⋆ − uL) + (aL − a⋆)

In particular:

• for the benchmark B1, aL = a⋆ = ã, uL = αL M̃ ã and u⋆ = α⋆ M̃ ã,
with αL and α⋆ of the order of the unity and such that (α⋆ − αL) > 0.
Hence, in the present case wfan reads:

wfan = (α⋆ − αL) M̃ ã (123)

• for the benchmark B2, uL = γL M̃ ã and u⋆ = γ⋆ M̃ ã, with γL and
γ⋆ of the order of the unity and such that (γ⋆ − γL) > 0. Moreover,

ρL = ρR

(

1 + βL M̃
)

and ρ⋆ = ρR

(

1 + β⋆ M̃
)

, with βL and β⋆ of the

order of the unity and such that (βL − β⋆) > 0. Then, since a =
√

2κρ

and ã = aR =
√

2κ, it follows that aL ≈ ã
(

1 + βL M̃/2
)

and a⋆ ≈
ã
(

1 + β⋆ M̃/2
)

. Hence, wfan for the present case reads:

wfan ≈
[

(γ⋆ − γL) +
1

2
(βL − β⋆)

]

M̃ ã (124)

In light of (123) and (124),

wfan

ã
= O

(

M̃
)

for both the considered benchmarks and, by recalling (122), it is clear that:

wfan

wdomain

= O
(

M̃
)

thus motivating the aforementioned observation.
Some entities which can be exploited in order to evaluate the accuracy

as well as the computational cost of each simulation are finally reported in
Tab. 3, namely:

• an estimate c̃(CFL) of the CFL coefficient, defined as follows (compare
with (121)):

c̃(CFL) :=
τ s̃max

µ
(125)

where s̃max denotes the largest wave speed of the RP associated with
the relevant benchmark;
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Test-case c̃(CFL) tCPU e (ρ) e (p) e (u) e (ξ)

EG1-1 0.51 ≈ 0.1 sec. 0.1792 0.1792 8.5733 4.3568
EG1-2 0.51 ≈ 1 sec. 0.0967 0.0967 4.6240 2.0348
EG1-3 0.51 ≈ 35 sec. 0.0492 0.0492 2.3530 1.0299
EG1-4 0.51 ≈ 35 min. 0.0211 0.0211 1.0110 0.4740

EG2-1 0.72 ≈ 0.1 sec. 0.1587 0.3185 8.6763 4.5884
EG2-2 0.72 ≈ 1 sec. 0.0837 0.1679 4.5757 2.0057
EG2-3 0.72 ≈ 35 sec. 0.0392 0.0786 2.1438 1.0515
EG2-4 0.72 ≈ 35 min. 0.0141 0.0282 0.7703 0.4493

Table 3: CFL estimate, CPU time and error estimates for the test-cases
reported in Tab. 2.

• the CPU time tCPU , as required on a laptop having the following char-
acteristics: Intel P4 CPU 2.66GHz, 512kB L2 cache, 512MB RAM;

• some error estimates concerning the numerical solution for ρ, p, u and ξ,
whose definition is discussed below by considering the generic entity ψ.
Let ψbench

k denote a sequence obtained by sampling the exact solution
ψ of the relevant RP in correspondence of the sequence xbench

k , with
k = 1, 2, . . . , Nbench, which is fine enough to reproduce the variation
of the considered solution almost exactly. Moreover, let ψnum

j denote
a discrete approximation of ψ which is constant within each interval
(

xnum
j , xnum

j+1

)

, with j = 1, 2, . . . , (Nnum − 1). Finally, let Dx represent
the following interval:

Dx := (−nL µ, nR µ)

Clearly, it is always possible to define the aforementioned sequences
over Dx by adjusting the parameters controlling the space discretization
in such a way that:

(

xbench
1 , xbench

Nbench

)

=
(

xnum
1 , xnum

Nnum

)

= Dx

Furthermore, it is possible to merge xbench
k and xnum

j into a new sequence
of abscissae, say xmerge

h (with h = 1, 2, . . . , Nmerge) and to define a linear

interpolation of ψbench
k and ψnum

j , respectively denoted by ψ̂bench
h and
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ψ̂num
h , over the new sequence 28. Then, the following definition can

be introduced in order to estimate the error e (ψ) connected with the
numerical approximation of ψ:

e (ψ) :=









∫

Dx

(

ψ̂num
h − ψ̂bench

h

)2

dx

∫

Dx

(

ψ̂bench
h

)2

dx









1
2

· 102 (126)

where the integration can be carried out by means of the trapezoidal
rule [79], consistently with the chosen linear interpolation.
According to Tab. 3, the discrete solution correctly converges towards
the exact one 29. Moreover, the convergence is sub-linear and roughly
exhibits the same trend for all the considered entities, as shown in Figs.
15 and 16.

28The linear interpolation is consistent with the piece-wise constant numerical discretiza-
tion. Moreover, as far as the exact solution is concerned, it should introduce a negligible
error in view of the adopted fine sampling.

29For the test-cases EG1-1 to EG1-4, e (ρ) = e (p) by virtue of the direct proportionality
between ρ and p which is introduced by the state law associated with the benchmark B1.
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Figure 15: Plot of the error estimates for the test-cases EG1-1 to EG1-4
reported in Tab. 3.
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Figure 16: Plot of the error estimates for the test-cases EG2-1 to EG2-4
reported in Tab. 3.
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3.3 A Roe scheme for generic barotropic state laws

In sec. 3.3.1 a Roe numerical flux function applicable to generic barotropic
state laws is proposed. In sec. 3.3.2 the scheme (102) exploiting the proposed
numerical flux is validated against an exact solution.

3.3.1 Roe numerical flux

A common numerical flux suitable for incorporation into the Godunov ap-
proach (see sec. 3.1.1) is that one originally proposed by Roe [84]. According
to this method, an approximate RP is suitably introduced at each cell inter-
face and the numerical flux is defined by considering the flux -as obtained
by exactly solving the approximate RP- which crosses the interface. In the
Roe method, the approximation of the inter-cell flux is obtained “directly”
(contrarily to other methods, generally referred to as “approximate-state Rie-
mann solvers”, which define the numerical flux by evaluating the analytical
one f (A) in correspondence of a suitably defined state vector); further details
can be found in a number of textbooks, e.g. [39] and [98] amongst many
others.

Definition of the numerical flux φ
(A)ROE
LR

The non-linear p.d.e. in (57) is locally replaced with the following linear
one:

∂t q
(A) + J̃

(A)
LR · ∂x q(A) = 0 (127)

where J̃
(A)
LR represents a suitable matrix, called “Roe matrix”, depending on

the “left” and “right” states q
(A)
L and q

(A)
R :

J̃
(A)
LR := J̃(A)

(

q
(A)
L ,q

(A)
R

)

(128)

The Roe matrix must verify the following conditions for any couple
(

q
(A)
L ,q

(A)
R

)

:

(RM1) J̃
(A)
LR is diagonalizable with real eigenvalues;

(RM2) J̃(A)
(

q
(A)
L → q(A)⋆,q

(A)
R → q(A)⋆

)

→ J(A)
(

q(A)⋆
)

where J(A) denotes the Jacobian of the original (non linear) flux f (A)

defined in (37);

(RM3) let ∆LR z denote the variation of the generic vector z between a “left”
state zL and a “right” state zR:

∆LR z := zR − zL (129)
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Then:
∆LR f (A) = J̃

(A)
LR · ∆LR q(A) (130)

where, of course, f
(A)
s is understood as f (A)

(

q
(A)
s

)

, s ∈ {L,R}.

Note 22 The condition (RM1) ensures that the hyperbolicity of the 1D prob-
lem at hand (see sec. 2.3.2) is preserved when replacing the original RP with
the approximate, linearized, one. The condition (RM2) enforces a natural
consistency requirement. The condition (RM3), instead, is imposed by the
fact that a unique value for the flux crossing the interface must be obtained
by only considering either the left or the right portion of the solution to the
considered linearized RP (of course, due to conservation) [98].

By recalling the solution of the considered linearized RP (see e.g. [98]), it

is possible to express the numerical flux from q
(A)
L to q

(A)
R (along the direction

associated with the versor ê defined in sec. 3.1.1) as follows:

φ
(A)ROE
LR := φ

(A)ROE
c,LR + φ

(A)ROE
u,LR (131)

where:

φ
(A)ROE
c,LR :=

1

2

(

f
(A)
L + f

(A)
R

)

(132)

φ
(A)ROE
u,LR := D

(A)
LR · ∆LRq(A) (133)

D
(A)
LR := − 1

2






J̃

(A)
LR






(134)

As far as the definition (134) is concerned, the operator |·|, defined in (6),
can be rightfully applied in consideration of the condition (RM1) above.

Note 23 The expression (133) takes into account the wave structure of the
linearized RP (in particular, the sudden variation of the solution across the
waves propagating along the characteristics [98]) and it is consequently re-
ferred to as the “upwind” component of the numerical flux function. The
expression (132), instead, is often referred to as the “centred” component of
the numerical flux function, due to its symmetrical form.

By exploiting the definition (7), together with the property (RM3) above, it

is possible to recast the numerical flux φ
(A)ROE
LR as follows:















φ
(A)ROE
LR = f

(A)
L +

(

J̃
(A)
LR

)−

· ∆LRq(A)

φ
(A)ROE
LR = f

(A)
R −

(

J̃
(A)
LR

)+

· ∆LRq(A)

(135)
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A Roe matrix for generic barotropic state laws

Clearly, the Roe matrix depends in general on the specific problem under
consideration and, in particular, on the specific state law. In the original
paper [84], for instance, a Roe matrix is defined for the Euler equations asso-
ciated with a perfect gas state law 30. A crucial constraint on the definition
of the Roe matrix is given by the condition (RM3) above. In [84], the ful-
filment of this condition is obtained by identifying a suitable vector, called
“parameter vector”, such that both the state vector and the (analytical) flux
are homogeneous quadratic functions of it. In the present (barotropic) case,
the approach under discussion would encourage to seek a certain vector z
such that q(A) and f (A) are homogeneous quadratic functions of z. Clearly,
it is not possible to define such a vector due to the assumed generality of the
barotropic curve p = p(ρ). Nevertheless, it is possible to take advantage of
the basic idea underlying the considered approach, as described below.

Once the flux f (A) has been split as follows:

f (A) = f
(A)
H + f

(A)
NH (136)

with:

f
(A)
H :=





ρu
ρu2

ρuξ



 , f
(A)
NH :=





0
p
0



 (137)

the variation ∆LRf (A) clearly reads:

∆LRf (A) = ∆LR f
(A)
H + ∆LR f

(A)
NH (138)

Moreover, once introduced the following vector:

z =





z1
z2
z3



 :=





√
ρ√
ρ u√
ρ ξ





it is clear that both q(A) and f
(A)
H are homogeneous quadratic function of z,

since:

q(A) (z) =





z2
1

z1z2
z1z3



 , f
(A)
H (z) =





z1z2
z2
2

z2z3





30Different extensions to more complex cases have been proposed in the literature (see
e.g. [37], [111], [1] and [41]) amongst many others.
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and therefore the following relations hold (by a well-known property of the
homogeneous quadratic functions):

∆LRq(A) = QLR · ∆LRz , ∆LRf
(A)
H = FH,LR · ∆LRz (139)

where:

QLR := ∂zq
(A)

(

z =
zL + zR

2

)

, FH,LR := ∂zf
(A)
H

(

z =
zL + zR

2

)

Then, by combining the equations in (139), the following relation is immedi-
ately obtained:

∆LRf
(A)
H = Ĵ

(A)
LR · ∆LRq(A)

with:
Ĵ

(A)
LR := FH,LR · Q−1

LR

and (138) can be finally recast as follows:

∆LRf (A) = Ĵ
(A)
LR · ∆LRq(A) + ∆LR f

(A)
NH (140)

Straightforward computations lead to the following representation, in partic-
ular, for Ĵ

(A)
LR :

Ĵ
(A)
LR =













0 1 0

−u2
LR 2 uLR 0

−uLR ξLR ξLR uLR













(141)

where (subscripts “L” and “R”, as applied to vector components, are under-
stood in the sequel):























uLR :=

√
ρL uL +

√
ρR uR√

ρL +
√
ρR

ξLR :=

√
ρL ξL +

√
ρR ξR√

ρL +
√
ρR

(142)

By starting from (140), it is possible to to match the condition (130) and,
consequently, to define a Roe matrix for the barotropic case under consider-
ation, as shown in the following:
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Proposition 6 A Roe matrix J̃
(A)
LR applicable when considering a generic

barotropic state law reads:

J̃
(A)
LR =













0 1 0

a2
LR − u2

LR 2 uLR 0

−uLR ξLR ξLR uLR













(143)

where:

aLR :=















(

∆LR p

∆LR ρ

)
1
2

if ρR 6= ρL

a(ρ⋆) if ρR = ρL = ρ⋆

(144)

Proof At a first step, a matrix J̌
(A)
LR is sought such that:





0
∆LR p

0



 = ∆LRf
(A)
NH = J̌

(A)
LR · ∆LRq(A) (145)

Let αmn (m,n ∈ {1, 2, 3}) denote the mn−th component of J̌
(A)
LR . Then,

α1n = α3n = 0 due to the mutual independence of the state vector components
(i.e. ρ, ρu and ρξ), while α22 = α23 = 0 by virtue of the barotropic state law
(3). Hence, (145) reduces to the following scalar equation:

∆LR p = α21 ∆LR ρ (146)

When ρR = ρL the above equation is trivially verified regardless of the specific
value of α21 while, for ρR 6= ρL it necessarily follows that:

α21 =
∆LR p

∆LR ρ
, ρR 6= ρL

where the divided difference is positive, due to the strict monotonicity of p (ρ)
assumed in (4). Hence, by choosing α21 = a2

LR with aLR defined in (144), a
continuous (i.e. prolongated by continuity) solution is obtained. As a result,

the expression of J̌
(A)
LR reads:

J̌
(A)
LR =





0 0 0
a2

LR 0 0
0 0 0



 (147)
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By substituting (145) into (140) it is evident that the following matrix:

J̃
(A)
LR = Ĵ

(A)
LR + J̌

(A)
LR (148)

satisfies the condition (130) (i.e. the condition (RM3) above). Furthermore,

it is straightforward to verify that the considered matrix J̃
(A)
LR also satisfies the

aforementioned conditions (RM1) and (RM2) and, therefore, it is a suitable
Roe matrix for the generic barotropic case at hand. As far as its representa-
tion is concerned, by substituting (141) and (147) into (148), the expression
(143) is immediately obtained. This completes the proof. �

Note 24 While uLR and ξLR in (142) are well-known “Roe averages” [84],
aLR in (144) represents an average value (hereafter referred to as Roe aver-
age as well) which is specific to the present (generic) barotropic case. For
instance, it can be also exploited when considering the well-known homoge-
neous shallow water equations, since they can be derived from the considered
conservation laws (see Note 12 in sec. 2.5.1). Indeed, the expression (144)
generalizes the relevant one defined in [99] for the shallow water case.

Note 25 It may be worth mentioning that, as far as its numerical imple-
mentation is concerned, aLR should be defined as follows:

aLR :=















(

∆LR p

∆LR ρ

)1/2

if | ρR − ρL |> ǫρ

a ( ρ = ̺ (ρL, ρR) ) if | ρR − ρL |< ǫρ

where ǫρ is a suitable numerical threshold and ̺ (ρL, ρR) is an average value
(e.g. a geometrical mean) such that ̺ (ρL → ρ⋆, ρR → ρ⋆) → ρ⋆.

Note 26 The expression of the Jacobian J(A) defined in (37) reads:

J(A) =













0 1 0

a2 − u2 2 u 0

−u ξ ξ u













(149)

Once noticed the formal similarity between (149) and (143) and by interpret-
ing J(A) in (149) as a function of a, u and ξ, the following relation clearly
holds 31:

J̃
(A)
LR = J(A) ( a = aLR, u = uLR, ξ = ξLR ) (150)

31An analogous relation holds for the Euler equations associated with a perfect gas state
law [84].
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Note 27 The Roe matrix (143) keeps the same representation even when the
“left” and “right” states are interchanged, due to the “symmetrical” definition
of its components, namely (142) and (144).

Note 28 By neglecting the third row and the third column of (143), a Roe
matrix for the basic-1D equations (see sec. 2.2.3) is obtained, which has been
previously introduced in [38].

Note 29 In [91], a Roe matrix for the basic-1D equations (see sec. 2.2.3)
completed with the energy balance is defined. The averages appearing in [91]
can be derived from those obtained in [37] for the case of a generic state law
of the form p = p(ρ, ei), ei denoting the internal energy per unit mass.

Note 30 It is straightforward to extend the Roe matrix (143) to the case of
m > 1 passive scalars. When adopting, for instance, the definition (28) for
the state vector q(A) (m = 2), the considered Roe matrix reads:

J̃
(A)
LR =





















0 1 0 0

a2
LR − u2

LR 2 uLR 0 0

−uLR ξLR ξLR uLR 0

−uLR ηLR ηLR 0 uLR





















(151)

with ηLR defined analogously to ξLR in (142).

Definition of the numerical flux φ
(A)ROE
ij

Let q
(A)
i , q

(A)
j and ν̂ ij, with j ∈ πi, be defined as in sec. 3.1.1. In par-

ticular, q
(A)
i and q

(A)
j can respectively represent either a couple of “left” and

“right” states or vice-versa. It is possible to exploit the numerical flux (131)-

(134) in order to define a Roe numerical flux from q
(A)
i to q

(A)
j , as described

below.
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As far as the Roe matrix is concerned, in view of the “symmetry” already
pointed out in Note 27 above, it is straightforward to generalize (143) as
follows:

J̃
(A)
ij :=













0 1 0

a2
ij − u2

ij 2 uij 0

−uij ξij ξij uij













(152)

with:






















uij :=

√
ρi ui +

√
ρj uj√

ρi +
√
ρj

ξij :=

√
ρi ξi +

√
ρj ξj√

ρi +
√
ρj

(153)

aij :=















(

∆ij p

∆ij ρ

)
1
2

if ρj 6= ρi

a(ρ⋆) if ρj = ρi = ρ⋆

(154)

and, of course:
∆ij (·) := (·)j − (·)i (155)

Then, once recalled the definition of sij given in (98), it is possible to define
the Roe numerical under consideration as follows:

φ(A)ROE
(

q
(A)
i ,q

(A)
j , ν̂ij

)

:= φ
(A)ROE
ij , j ∈ πi (156)

with:

φ
(A)ROE
ij := φ

(A)ROE
c,ij + φ

(A)ROE
u,ij (157)

φ
(A)ROE
c,ij :=

1

2
sij

(

f
(A)
i + f

(A)
j

)

(158)

φ
(A)ROE
u,ij := D

(A)
ij · ∆ijq(A) (159)

D
(A)
ij := − 1

2






sij J̃

(A)
ij






(160)

where, of course, f
(A)
i is understood as f (A)

(

q
(A)
i

)

.
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The expressions (158)-(160) are defined by considering the following RP
which generalizes (57):



















∂t q
(A) + ∂x

(

sij f (A)
)

= 0 in R × (0,∞)

q(A) =

{

q
(A)
i if x < 0

q
(A)
j if x > 0

on R × {t = 0}

(161)
with i ∈ I and j ∈ πi. Indeed:

- for j = i+ 1 (161) reduces to (57), with q
(A)
L = q

(A)
i and q

(A)
R = q

(A)
j ;

- also for j = i − 1 (161) reduces to (57), at the only cost of reversing
the orientation of the x−axis (accordingly to ν̂ij = − ê); in this case,

q
(A)
L = q

(A)
j and q

(A)
R = q

(A)
i .

In both cases, the generalized analytical flux sij f (A) must be considered when
defining the Roe linearization and the corresponding Roe matrix is clearly
given by sij J̃

(A)
ij , with J̃

(A)
ij defined in (152).

Note 31 It should be noticed that the Roe numerical flux (156) trivially sat-
isfies the consistency property (100). The conservation property (99) is sat-

isfied as well. Indeed, while sji = −sij and J̃
(A)
ji = J̃

(A)
ij , the following relation

clearly holds, due to the definition of the operator | · | introduced in (6):






sji J̃

(A)
ji






=





sij J̃

(A)
ij






(162)

In consideration of the equality (162), the introduction of sij into (160)
may appear not necessary. Nevertheless, for the sake of consistency with
(134), the operator | · | should be applied to the Roe matrix of the considered,

namely sij J̃
(A)
ij . Moreover, it is compulsory to work with the proper Roe

matrix sij J̃
(A)
ij if alternative formulations of the type of (135) are sought (as,

for instance, in sec. 3.5.1), since:

(

sij J̃
(A)
ij

)±

6=
(

J̃
(A)
ij

)±

In particular, the following relations hold:

(

sji J̃
(A)
ji

)±

= −
(

sij J̃
(A)
ij

)∓

(163)

where the definition of the operators (·)+ and (·)− is introduced in (7).
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Note 32 It is known from the literature (see e.g. [39], [84] and [98]) that
non-physical results may arise when exploiting the Roe scheme (156)-(160),
due to the fact that the solution to the linearized problem, always consisting
of discontinuities (see e.g. [98]), does not provide a correct approximation
of continuous waves, like rarefactions. In a practical computational set up,
however, problems generally arise when dealing with sonic rarefactions (i.e.
rarefactions for which ‖u‖ = a along a certain characteristic line, see sec.
2.4.2): these show up in the form of discontinuities violating the RH condition
(41). Besides the classical correction technique introduced in [43], various
“entropy fixes” have been proposed in the literature to counteract this problem
(see [39], [64] and [98] for a comprehensive list of references).

It must be stated in advance that, despite the importance of the issue un-
der consideration, no entropy fixes are considered in the present document,
to be applied to the proposed Roe numerical flux (156)-(160). Indeed, the
time-schedule of the industrial project this work was based on, imposed to
directly concentrate on the simulation of non-cavitating flows, as a compul-
sory intermediate step towards the simulation of cavitation, as mentioned in
sec. 1.6. Then, in consideration of the fact that pure liquid flows are nearly-
incompressible (and therefore far from allowing for sonic conditions to take
place), the investigation of the entropic behaviour of the considered numeri-
cal schemes was initially postponed and the numerical method developed for
non-cavitating flows has been exploited for cavitating simulations as well (see
sec. 6). On the other hand, when cavitation occurs a transonic regime is
systematically encountered (see sec. 1.4) and the entropic behaviour of the
considered Roe scheme must be assessed; according to the author, a further
study should be devoted to this issue.

3.3.2 Numerical results

Benchmarks

The benchmarks introduced and discussed in sec. 3.2.2 (see Tab. 1) are
considered here for validating the discrete scheme (102), based on the pro-
posed numerical flux (156)-(160).

Initial and boundary conditions

The IC and the BCs introduced in sec. 3.2.2, namely (119) and (120), are
adopted here.
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Test-case Benchmark µ (nL, nR) τ

ER1-1 B1 100 (2, 2) · 101 5 · 10−2

ER1-2 B1 10 (2, 2) · 102 5 · 10−3

ER1-3 B1 1 (2, 2) · 103 5 · 10−4

ER1-4 B1 0.1 (2, 2) · 104 5 · 10−5

ER2-1 B2 100 (2, 2) · 101 5 · 10−2

ER2-2 B2 10 (2, 2) · 102 5 · 10−3

ER2-3 B2 1 (2, 2) · 103 5 · 10−4

ER2-4 B2 0.1 (2, 2) · 104 5 · 10−5

Table 4: Considered test-cases for the discrete scheme (102), based on the
numerical flux (156)-(160).

Test-cases

In order to directly compare the proposed Roe numerical flux with the Go-
dunov one proposed in sec. 3.2.1, the test-cases introduced in sec. 3.2.2 (see
Tab. 2) are considered here. They are reported in Tab. 4, where the labels
in the first column (different from those in Tab. 2) remind that the Roe
numerical flux is exploited here. The corresponding numerical solutions are
shown in Figs. 17-24.

As for the case of the Godunov flux, some entities which can be exploited
for evaluating the accuracy and the computational cost of the considered
simulations are reported in Tab. 5 (the definition of the relevant entities is
reported in sec. 3.2.2, in correspondence of the introduction of Tab. 3). It
should be noticed that:

• the column reporting the estimate c̃(CFL) of the CFL coefficient is
clearly identical to the corresponding one in Tab. 3 since all the pa-
rameters involved in the definition of c̃(CFL), namely τ , µ and s̃max in
(125), have the same value for corresponding test-cases;

• the CPU time (on a laptop with Intel P4 CPU 2.66GHz, 512kB L2
cache, 512MB RAM) is similar to that one required when adopting the
Godunov flux. According to the author, the discrepancy between the
test-cases ER1-4 and EG1-4 (or ER2-4 and EG2-4) may be due to some
differences in the implementation of the considered schemes 32;

32The implementation of the Roe scheme, in particular, has been developed by repeat-
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Figure 17: Approximation of ρ for the test-cases ER1-1 to ER1-4.
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Figure 18: Approximation of p for the test-cases ER1-1 to ER1-4.
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Figure 19: Approximation of u for the test-cases ER1-1 to ER1-4.
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Figure 20: Approximation of ξ for the test-cases ER1-1 to ER1-4. The
x−range is cut for ease of readability.
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Figure 21: Approximation of ρ for the test-cases ER2-1 to ER2-4.
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Figure 22: Approximation of p for the test-cases ER2-1 to ER2-4.
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Figure 23: Approximation of u for the test-cases ER2-1 to ER2-4.
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Figure 24: Approximation of ξ for the test-cases ER2-1 to ER2-4. The
x−range is cut for ease of readability.
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Test-case c̃(CFL) tCPU e (ρ) e (p) e (u) e (ξ)

ER1-1 0.51 ≈ 0.1 sec. 0.1792 0.1792 8.5737 4.3596
ER1-2 0.51 ≈ 1 sec. 0.0967 0.0967 4.6240 2.0329
ER1-3 0.51 ≈ 35 sec. 0.0492 0.0492 2.3530 1.0297
ER1-4 0.51 ≈ 40 min. 0.0211 0.0211 1.0110 0.4740

ER2-1 0.72 ≈ 0.1 sec. 0.1587 0.3185 8.6766 4.5910
ER2-2 0.72 ≈ 1 sec. 0.0837 0.1679 4.5757 2.0039
ER2-3 0.72 ≈ 35 sec. 0.0392 0.0786 2.1438 1.0514
ER2-4 0.72 ≈ 40 min. 0.0141 0.0282 0.7703 0.4492

Table 5: CFL estimate, CPU time and error estimates for the test-cases
reported in Tab. 4.

• by comparing the error estimates in Tabs. 3 and 5, the discrete scheme
based on the Roe flux turns out to behave similarly to that one exploit-
ing the Godunov flux. This result could be partly related to the fact
that, for low Mach numbers, the shocks and the rarefactions appearing
in the solution of the original (non-linear) RP tend to be close to the
corresponding discontinuities in the Roe-linearized RP. This observa-
tion can be applied locally, at the generic cell interface between the state
vectors q

(A)
i and q

(A)
j . For the sake of illustration, let ã and M̃ ≪ 1

respectively denote a characteristic sound speed and a characteristic
Mach number of the considered flow field. Then, the aforementioned
discontinuities in the Roe-linearized RP travel with a speed uij ± aij .
Since for low Mach numbers aij ≈ ã and uij ≤ max (ui, uj) ≈ ±ãM̃ ,
it follows that the speed under consideration can be approximated by

± ã
(

1 + O
(

M̃
))

, as for the shocks and the rarefactions -which origi-

nate, in practice, discontinuities like the shocks- of the non-linear prob-
lem (see the relevant paragraph in sec. 3.2.2). As far as the contact dis-
continuity is concerned, its speed is given by uij for the Roe-linearized
problem while for the non-linear one is given by u⋆. Let the distance of

edly calling some BLAS (Basic Linear Algebra Subprograms, see www.netlib.org/blas)
routines, even when dealing with very small (i.e. 2-4 components) arrays. This point,
together with the fact that no ad-hoc tuning has been performed for the aforementioned
external library (in consideration of the underlying computing platform), may have intro-
duced a certain amount of computational overhead, which becomes more evident for the
longest simulations.
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both ρi and ρj from a certain reference value, say ρ̃, be of the order of
ρ̃M̃ (consistently with the fact that small density variations take place
in nearly-incompressible flows); then, from the definitions (153) and
(89) it follows that for low Mach numbers:

uij ≈
ui + uj

2

(

1 + O
(

M̃
))

u⋆ ≈
ui + uj

2
(1 + O (1))

and therefore the asymptotic behaviour of the considered speeds is dif-
ferent. Furthermore, while uij is always contained between min (ui, uj)
and max (ui, uj) since the relations in (153) are convex combinations,
u⋆ does not necessarily belong to the aforementioned interval, as shown
e.g. in Figs. 19 and 23. Nevertheless, the difference under considera-
tion may not be accurately perceived by the error estimate e(ξ) defined
in (126), since the numerator of (126) for the present case is small with
respect to the denominator (indeed the variation of ξ across the contact
discontinuity is abrupt) for both cases.

According to Tab. 5, the discrete solution correctly converges towards the
exact one 33. Moreover, the convergence is sub-linear and roughly exhibits
the same trend for all the considered entities, as shown in Figs. 25 and 26.

33For the test-cases ER1-1 to ER1-4, e (ρ) = e (p) by virtue of the direct proportionality
between ρ and p which is introduced by the state law associated with the benchmark B1.
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Figure 25: Plot of the error estimates for the test-cases ER1-1 to ER1-4
reported in Tab. 5.
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Figure 26: Plot of the error estimates for the test-cases ER2-1 to ER2-4
reported in Tab. 5.
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3.4 Preconditioning of the Roe scheme for low Mach
number flows

It is known from the literature that classical numerical schemes conceived for
compressible flows (in particular, a variety of finite volume methods) exhibit
accuracy problems when dealing with nearly-incompressible ones. In [42], for
instance, the compressible Euler equations coupled with a perfect gas state
law are considered. More in detail, the low Mach number asymptotic solution
is investigated, as obtained by starting from the continuous formulation as
well as from a semi-discrete one, of the type of (101) and based on a Roe
flux function. It is shown, in particular, that the semi-discrete solution can
exhibit pressure variations in space higher than those associated with the
analytical one. Furthermore, a suitably modified numerical flux function is
consequently introduced in order to counteract this discrepancy.

An investigation of the same type as that one in [42] is performed in the
present section, by considering the basic-1D partial differential system (23)
for the sake of simplicity 34. More in detail, consistently with the fact that
nearly-incompressible flow regions generally do not exhibit discontinuities,
smooth (i.e. differentiable enough) solutions to (23) are considered 35.

The semi-discrete formulation, based on the Roe numerical flux proposed
in sec. 3.3.1, which corresponds to (23) reads (compare with (101)):

µi
d

dt
q

(x)
i +

∑

j∈πi

φ(x)ROE
(

q
(x)
i ,q

(x)
j , ν̂ij

)

= 0 , i ∈ I (164)

where q(x) is given by (20) and φ(x)ROE (·, ·, ·) is straightforwardly derived
from (156)-(160) as follows:

φ(x)ROE
(

q
(x)
i ,q

(x)
j , ν̂ij

)

:= φ
(x)ROE
ij , j ∈ πi (165)

34Indeed, as remarked in Note 4 (sec. 2.2.4), the presence of the passive scalar does not
affect the underlying 1D flow field. Hence, in principle, it suffices to consider the mass
and momentum balances in order to highlight the problem under consideration.

35By virtue of this position, the solution to a RP associated with (23) is not of interest
in the present case, even when it involves two rarefactions. Indeed, it is not difficult to see
that both ρ -and therefore p- and u are strictly monotonic functions of x -for a fixed time-
within the rarefaction fans (their derivative being proportional to the convexity marker
c(ρ) defined in (60)); consequently, the considered solution is continuous (since there is no
contact discontinuity in the basic-1D case) but it is not differentiable.
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with:

φ
(x)ROE
ij := φ

(x)ROE
c,ij + φ

(x)ROE
u,ij

φ
(x)ROE
c,ij :=

1

2
sij

(

f
(x)
i + f

(x)
j

)

(166)

φ
(x)ROE
u,ij := D

(x)
ij · ∆ijq(x)

D
(x)
ij := − 1

2






sij J̃

(x)
ij






(167)

where sij is defined in (98) and, of course, f
(x)
i is understood as f (x)

(

q
(x)
i

)

,

with f (x) (·) defined in (21). Moreover, the Roe matrix J̃
(x)
ij in (167) is defined

as follows (see Note 28 in sec. 3.3.1):

J̃
(x)
ij :=





0 1

a2
ij − u2

ij 2 uij



 (168)

where uij and aij are respectively given by (153) and (154).
By following [42], an asymptotic study is performed in sec. 3.4.1; it is

shown, in particular, that also in the present (barotropic) case, for nearly-
incompressible flows, there is a discrepancy between the behaviour of the
solution of the continuous problem (23) and that one of the semi-discrete one
(164). In sec. 3.4.2 a concise introduction to preconditioning techniques for
low Mach flows is reported. Then, in sec. 3.4.3 the preconditioning technique
originally proposed in [42] is applied to the proposed numerical flux (156)-
(160) (in particular to its purely 1D counterpart (165)-(167)), with the aim
of eliminating the discrepancy under consideration. Finally, in sec. 3.4.4
a discrete scheme based on the proposed preconditioned numerical flux is
validated against a nearly-exact solution.

81



3.4.1 Low Mach number asymptotic study

Non-dimensionalization

In order to determine the behaviour of low Mach number asymptotic so-
lutions, both the continuous problem (23) and the semi-discrete one (164)
are non-dimensionalized by means of the following reference entities:















































































xref

uref := max
x∈Dx

u(x, t = 0)

ρref := max
x∈Dx

ρ(x, t = 0)

aref := max
x∈Dx

a(x, t = 0)

tref := xref u
−1
ref

pref := ρref a
2
ref

(169)

where xref denotes a suitable reference length andDx represents the x−domain
(the remaining entities being understood). More in detail, each non-dimensional
entity (namely the flow variables, the Roe averages, any relevant function like
the state law, etc...) is defined dividing its dimensional counterpart by the
proper reference value.
It must be noticed that a reference sound speed aref is explicitly introduced
in (169) in order to directly take into account the compressibility effects 36.

Note 33 No specific symbols are introduced in order to distinguish between
the non-dimensional entities and their dimensional counterparts, for the sake
of simplicity.

The non-dimensional form of the continuous system (23), which is intro-
duced in sec. A.1 for ease of presentation, reads:







∂t (ρ) = Ψ
(0)
c

∂t (ρu) = M−2
⋆ Θ

(−2)
c + Θ

(0)
c

(170)

36This position is not in contrast with that one mentioned in Note 3 (sec. 2.2).
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where the relevant coefficients are defined in the aforementioned section 37.
The non-dimensional parameter M⋆ appearing in (170) is defined as follows:

M⋆ :=
uref

aref
(171)

and plays a key role in the asymptotic study under consideration. Indeed,
the nearly-incompressible limit of the considered equations is obtained for
M⋆ → 0 (and therefore M⋆ is considered as a characteristic Mach number of
the flow field).

For M⋆ → 0 the non-dimensional form of the semi-discrete system (164),
which is derived in sec. A.2 for ease of presentation, reads (as usual, i ∈ I):



















2µi
d

dt
(ρi) = M−1

⋆ Ψ
(−1)
sd + Ψ̂

(0)
sd

2µi
d

dt
(ρiui) = M−2

⋆ Θ
(−2)
sd + M−1

⋆ Θ
(−1)
sd + Θ̂

(0)
sd

(172)

where the relevant coefficients are defined in the aforementioned section 38.

Asymptotic analysis

Following [42], solutions are sought to the continuous problem (170) and the
semi-discrete one (172) in the nearly-incompressible limit (i.e. for M⋆ → 0),
in the form of asymptotic expansions in power of M⋆, namely:






















ρ(x, t) = ρ0(x, t) + M⋆ ρ1(x, t) + M2
⋆ ρ2(x, t) + · · ·

u(x, t) = u0(x, t) + M⋆ u1(x, t) + M2
⋆ u2(x, t) + · · ·

p(x, t) = p0(x, t) + M⋆ p1(x, t) + M2
⋆ p2(x, t) + · · ·

(173)

for the continuous system and:






















ρi(t) = ρ0i(t) + M⋆ ρ1i(t) + M2
⋆ ρ2i(t) + · · ·

ui(t) = u0i(t) + M⋆ u1i(t) + M2
⋆ u2i(t) + · · ·

pi(t) = p0i(t) + M⋆ p1i(t) + M2
⋆ p2i(t) + · · ·

(174)

37In particular by (336), once understood the same symbol for corresponding dimen-
sional and non-dimensional entities, as declared in Note 33 above.

38In particular by (346) and (349), once understood the same symbol for corresponding
dimensional and non-dimensional entities, as declared in Note 33 above.
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for the semi-discrete one. All the entities appearing in the expansions above
are supposed to be regular enough (for any further manipulations).

Note 34 By virtue of the considered barotropic state law (3), it is possible
to derive some relations between the coefficients ρk(·, ·) and ph(·, ·) appearing
in (173). For instance,

p = p (ρ) = p (ρ0 +M⋆ρ1 + · · · )

= p (ρ0) +M⋆ a
2 (ρ0) ρ1 + · · ·

and therefore:






p0 = p(ρ0)

p1 = a2(ρ0) ρ1

Similar considerations can be introduced for the coefficients ρki(·) and phi(·)
in (174); thus, for instance, the following relations hold as well:







p0i = p(ρ0i)

p1i = a2(ρ0i) ρ1i

(175)

Note 35 It is possible to exploit the equalities in (174) in order to also ex-
pand the Roe averages. For instance, the coefficient a0ij appearing in the
following expansion of aij:

aij(t) = a0ij(t) +M⋆ a1ij(t) +M2
⋆ a2ij(t) + · · ·

can be obtained as follows:

• if ∆ijρ = 0 then ρi = ρj = ρ̄ and, according to (154) and (174), the
following relation holds:

aij = a (ρ̄)

= a (ρ̄0 +M⋆ ρ̄1 + · · · )

= a (ρ̄0) +M⋆
da

dρ
(ρ̄0) ρ̄1 + · · ·

Then, clearly:
a0ij = a (ρ̄0)
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• if ∆ijρ 6= 0 then, by only considering the zero-order terms in the expan-
sion of the following equality (which is directly obtained from (154)):
∆ijp = a2

ij ∆ijρ, the subsequent relation is obtained: ∆ijp0 = a2
0ij ∆ijρ0.

The coefficient a0ij is positive since aij is positive (by definition) and
aij (M⋆ → 0) → a0ij. Hence, ∆ijp0 = 0 ⇔ ∆ijρ0 = 0. As a conse-
quence,

– if ∆ijρ0 6= 0, then:

aij =

(

∆ijp

∆ijρ

)
1
2

=

(

∆ijp0

∆ijρ0

)
1
2
(

1 +M⋆
∆ijp1

∆ijp0

+ · · ·
)

1
2
(

1 +M⋆
∆ijρ1

∆ijρ0

+ · · ·
)− 1

2

=

(

∆ijp0

∆ijρ0

)
1
2

+M⋆
1

2

(

∆ijp0

∆ijρ0

)
1
2
(

∆ijp1

∆ijp0
− ∆ijρ1

∆ijρ0

)

+ · · ·

In this case:

a0ij =

(

∆ijp0

∆ijρ0

)
1
2

– if ∆ijρ0 = 0, then by exploiting the same kind of linearization as
above, the following expression is obtained:

a0ij =

(

∆ijpk

∆ijρk

)
1
2

where k denotes the first integer such that ∆ijρk 6= 0.

Of course, once defined the relevant coefficients appearing in the expansion
of the Roe averages, it is possible to expand all the derived entities as well.
For instance, once noticed that (as reminded above, a0ij > 0):

a−1
ij = a−1

0ij

(

1 +M⋆
a1ij

a0ij
+ · · ·

)−1

= a−1
0ij

(

1 −M⋆
a1ij

a0ij
+ · · ·

)

the parameter Mij introduced in (347) (sec. A.2) and reported below for the
sake of clarity:

Mij :=
uij

aij
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admits the following asymptotic expression:

Mij =
u0ij

a0ij
+M⋆

(

u1ij

a0ij
− u0ij a1ij

a2
0ij

)

+ · · ·

Hence, in particular, M0ij =
u0ij

a0ij
.

By exploiting the aforementioned expansions, it is possible to state the
following:

Proposition 7 For M⋆ → 0, the pressure associated with the solution of the
continuous problem (170) is of the form:

p(x, t) = p̄0(t) +M⋆ p̄1(t) +M2
⋆ p2(x, t) + · · · (176)

while that one relative to the semi-discrete problem (172) admits the following
representation:

pi(t) = p̃0(t) +M⋆ p1i(t) + · · · (177)

Proof The proof is reported in sec. A.3, for ease of presentation. �

By comparing the expansions (176) and (177) it is clear that, in the
nearly-incompressible limit, the semi-discrete solution admits pressure vari-
ations in space higher than those associated with the continuous one. As a
consequence, for M⋆ → 0 the discrete schemes based on the proposed Roe nu-
merical flux (165)-(167) (i.e. (156)-(160)) may provide a numerical solution
remarkably different from the continuous one. In other words, the accuracy
of the considered compressible solvers can be dramatically reduced when the
flow tends to become (even locally) nearly-incompressible.

Note 36 An asymptotic behaviour of the same kind of that one described
by the expansions (176) and (177) is obtained in [42], when considering the
compressible Euler equations coupled with a perfect gas state law.
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3.4.2 A brief introduction to preconditioning techniques for the
low speed Euler and Navier-Stokes equations

The considered preconditioning techniques originate from the “artificial com-
pressibility” method proposed by Chorin [18] for determining a steady-state
solution to the incompressible Navier-Stokes equations. When considering
the two-dimensional incompressible equations written in terms of the so-
called “primitive” variables p, u1 and u2 (where, of course, u1 and u2 denote
the components of the velocity vector), the continuity equation reads:

∂x1u1 + ∂x2u2 = 0

Then, by following the artificial compressibility method a fictitious pressure
time-derivative is added to the above equation, as follows:

κ−1 ∂tp+ ∂x1u1 + ∂x2u2 = 0

where κ is a constant. Once completed the set of the governing equations by
also considering the proper momentum balance, the original and the modified
system only differ from each other as for the time-derivative term, which in
the former case reads:

∂t





0
u1

u2





while in the latter one can be expressed as follows:

P−1
Chorin · ∂t





p
u1

u2





with:

P−1
Chorin :=





κ−1 0 0
0 1 0
0 0 1



 (178)

By introducing the aforementioned pressure time-derivative term, the de-
coupling between the pressure and the velocity field, which represents an
important issue for the numerical discretization of the incompressible equa-
tions, is avoided and the hyperbolicity of the governing system is restored.
However, the modified system is not consistent in time and therefore the
considered formulation can only be exploited in order to march towards a
steady-state solution, hopefully by guaranteeing a stable and efficient con-
vergence through the definition of the parameter κ in P−1

Chorin.
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Note 37 In consideration of the fact that the artificial compressibility for-
mulation results in a hyperbolic system of equations, its discretization is car-
ried out in [5] by exploiting classical techniques conceived for compressible
flows (namely a finite volume method based on upwind schemes and Rie-
mann solvers). In particular, a linearized implicit time-advancing strategy
is defined in which the parameter κ, originally associated with the fictitious
pressure time-derivative, appears in such a way that the consistency in time
is preserved. Hence, the considered scheme can be exploited for unsteady
simulations as well.

The basic idea of pre-multiplying the time-derivative term by a suitable
matrix gave birth to a class of numerical methods designed for improving
the convergence of the compressible Euler and Navier-Stokes equations to
a steady-state. In particular, the time-derivatives are modulated (again, at
the cost of loosing the consistency in time) in order to achieve a stable and
efficient time-marching; in this spirit, the matrix under consideration is re-
ferred to as a preconditioner. The resulting schemes are generally referred
to as “pseudo-unsteady” methods (see e.g. [75]) and the considered precon-
ditioning technique is often indicated as “iterative preconditioning” (see e.g.
[112]).
The numerical technique under consideration has been also exploited for the
numerical simulation of flows in which there is a significant discrepancy be-
tween the convective and the acoustic speeds (i.e. time-scales). In particular,
it has been used for reducing the numerical stiffness of compressible solvers
dealing with flows at low Mach numbers. In this context, a well-known pre-
conditioner has been put forward by Turkel [100]. Once introduced a state

vector z such that dz =
(

(ρ a)−1 dp, du1, du2, a c
−1
P ds

)T
where s indicates

the entropy per unit mass of the fluid and cP its specific heat at constant
pressure (a denoting the sound speed), the expression of the considered pre-
conditioner which appears in the compressible equations written in terms of
z reads [101]:

P−1
Turkel :=





























1

β2
0 0 δ

αu1

a β2
1 0 0

αu2

a β2
0 1 0

0 0 0 1





























(179)
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where α, β and δ indicate suitable non-dimensional parameters. In particular
β is chosen of the order of M̃ , where M̃ denotes the characteristic Mach num-
ber of the flow field, for the considered preconditioning to be effective. For
α = 0 and δ = 1 the matrix (179) reduces to another classical preconditioner
introduced by Choi and Merkle [17] while for δ = 0 it clearly generalizes that
matrix of Chorin (178), by also altering the time-derivative appearing in the
momentum balance.

The iterative preconditioning has been also introduced when considering
upwind schemes like, for instance, the Roe scheme. The upwinding strat-
egy, in particular, can be applied to the preconditioned formulation (see e.g.
[109]). The resulting scheme, in general, may be not consistent in time.
However, by confining the effect of the preconditioner within a portion of the
numerical scheme which does not affect its consistency in time (as, for in-
stance, that one associated with the upwind component of the Roe numerical
flux when dealing with the corresponding scheme), it is possible to exploit
the resulting scheme for unsteady simulations as well. A time-consistent
preconditioning strategy is defined, in particular, in [42] and [112], which is
recalled in the following sec. 3.4.3.

It may be worth mentioning that, as an alternative to the aforementioned
approach, a dual time-step strategy is usually adopted in order to overcome
the time-consistency problem (see e.g. [23], [58], [73] and [102]). More in
detail, by starting from the following system:

∂tz + r (z) = 0

in which r denotes the steady-state residual as a function of the chosen state
vector z, an additional term is added, as follows:

P−1 · ∂τz + ∂tz + r (z) = 0

where τ denotes a fictitious time and P−1 is a suitable matrix. More in
detail, by advancing the solution of the latter system with respect to τ up to
a steady-state 39, the solution of the former one is recovered; the consistency
in time is clearly preserved. The matrix P−1 is designed for optimizing the
aforementioned convergence and therefore represents a preconditioner (in the
sense of the iterative preconditioning).

39Of course, in a practical set-up only a limited number of time-advancing steps are
performed.
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3.4.3 Preconditioning of the Roe numerical flux

As pointed out in Note 36 above, the asymptotic behaviours obtained for
the perfect gas state law and for a generic barotropic state law are similar
to each other. Hence, the preconditioning technique proposed in [42] is also
considered for the barotropic case. Basically, it consists in replacing the Roe
flux (165)-(167) with the following expression:

φ(x)ROE,p
(

q
(x)
i ,q

(x)
j , ν̂ij

)

:= φ
(x)ROE,p
ij , j ∈ πi (180)

where:

φ
(x)ROE,p
ij := φ

(x)ROE
c,ij + φ

(x)ROE,p
u,ij (181)

φ
(x)ROE,p
u,ij := D

(x),p
ij · ∆ijq(x)

D
(x),p
ij := − 1

2

(

P
(x)
ij

)−1

·





P

(x)
ij ·

(

sij J̃
(x)
ij

)




(182)

and φ
(x)ROE
c,ij in (181) is defined by (166). It should be noticed that only

the upwind component of the flux function is modified, by means of the
preconditioning matrix P

(x)
ij defined below. Let w

(x)
p denote the following

basic-1D primitive state vector:

w(x)
p :=

(

p
u

)

Then, the following matrix:

P(x)
q

:= ∂
w

(x)
p

q(x) · P(x)
wp

· ∂
q(x)w(x)

p (183)

where q(x) denotes the basic-1D conservative state vector (20) and P
(x)
wp is

defined as follows:

P(x)
wp

:=





β2 0

0 1



 , β = const (184)

defines a function of u, namely:

P(x)
q

(u) = I +
(

β2 − 1
)





1 0

u 0



 (185)
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The matrix P
(x)
ij is finally defined by evaluating (185) in correspondence of

the proper Roe average, as follows:

P
(x)
ij := P(x)

q
(u = uij) (186)

It is worth remarking that the matrix P
(x)
ij ·

(

sij J̃
(x)
ij

)

appearing in the pre-

conditioned upwind component (182) is diagonalizable with real eigenvalues
(see sec. A.4 for details) and therefore the operator | · |, defined by (6), can
be rightfully applied.

Note 38 The numerical flux (180)-(182) is generally referred to as the Roe-
Turkel numerical flux (see e.g. [42]). Indeed, the matrix (184) can be derived
from the 1D counterpart of the preconditioner of Turkel (179) for α = δ = 0,
by a change of variables 40.

Note 39 The preconditioner is usually introduced by considering a quasi-
linear formulation, consistently with the fact that regular solutions (e.g. with-
out shocks) are investigated in the nearly-incompressible limit. Several sets
of independent variables can be chosen in order to derive the preconditioner
(see e.g. [102] and [110]) 41. For the present case, the preconditioner is
introduced in terms of the primitive variables through the matrix (184) and
then it is converted to the conservative variables by means of the expression
(183). The specific form of the adopted state law comes into play at this point
of the derivation; the expression (185), in particular, is valid for a (generic)
barotropic state law.

In order to assess the effects the considered preconditioning technique
produces on the asymptotic semi-discrete solution, the following semi-discrete
system is considered:

µi
d

dt
q

(x)
i +

∑

j∈πi

φ(x)ROE,p
(

q
(x)
i ,q

(x)
j , ν̂ ij

)

= 0 , i ∈ I (187)

where the numerical flux φ(x)ROE,p (·, ·, ·) is given by (180)-(182). ForM⋆ → 0
the non-dimensional form of the semi-discrete system (187), which is derived
in sec. A.4 for ease of presentation, reads (as usual, i ∈ I):



















2µi
d

dt
(ρi) = M−1

⋆ Ψ
(−1)
sd,p + Ψ̂

(0)
sd,p

2µi
d

dt
(ρiui) = M−2

⋆ Θ
(−2)
sd,p + M−1

⋆ Θ
(−1)
sd,p + Θ̂

(0)
sd,p

(188)

40For α = δ = 0, the preconditioner of Turkel reduces to that one of Chorin, i.e. (178).
41The specific choice affects the convergence to a steady-state and the accuracy of the

numerical solutions for low Mach number steady and unsteady flows [102].
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where the relevant coefficients are defined in the aforementioned section 42.
The expansion (188) is obtained by assuming that the parameter β in

(184) is formally of the order of the unity. However, by following [42], the
parameter β is hereafter assumed of the order of the characteristic Mach
number M⋆, namely:

β = βref M⋆ (189)

where βref is a given constant of the order of the unity. The position (189)
renders the considered preconditioning technique effective, as shown in the
sequel. First of all, the fact that now β explicitly introduces the factor M⋆

leads to a non-dimensional system different from (188). In particular, it is
possible to show that for M⋆ → 0 the non-dimensional form of (187) now
reads:



















2µi
d

dt
(ρi) = M−2

⋆ Ψ̌
(−2)
sd,p + M−1

⋆ Ψ̌
(−1)
sd,p + Ψ̈

(0)
sd,p

2µi
d

dt
(ρiui) = M−2

⋆ Θ̌
(−2)
sd,p + M−1

⋆ Θ̌
(−1)
sd,p + Θ̈

(0)
sd,p

(190)

The definition of the coefficients appearing in (190) is not reported here
because inessential to the present purposes. However, it should be noticed
that the coefficient Ψ̌

(−2)
sd,p in (190) has no counterpart in (188). Indeed, it

derives from the position (189), by a mechanism of the type of that one
mentioned in sec. A.5. The behaviour of the the system (190) in the nearly-
incompressible limit is described by the following:

Proposition 8 For M⋆ → 0, the pressure associated with the solution of the
semi-discrete problem (190) admits the following representation:

pi(t) = p̂0(t) +M⋆ p̂1(t) +M2
⋆ p2i(t) + · · · (191)

Proof The proof is reported in sec. A.6, for ease of presentation. �

By comparing the expansions (191) and (176) it is clear that, in the
nearly-incompressible limit, the solution associated with the preconditioned
semi-discrete formulation exhibits a behaviour which is qualitatively similar
to that of the continuous one. This should result, in principle, in a more
accurate discrete solution for M⋆ → 0, as confirmed by the numerical results
reported in the following sec. 3.4.4.

42In particular by (365) and (368), once understood the same symbol for corresponding
dimensional and non-dimensional entities, as declared in Note 33 (sec. 3.4.1).
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Note 40 It is straightforward to extend the considered preconditioning tech-
nique to the augmented-1D systems defined in sec. 2.2.4. To the purpose,
the following numerical flux function is introduced:

φ(A)ROE,p
(

q
(A)
i ,q

(A)
j , ν̂ij

)

:= φ
(A)ROE,p
ij , j ∈ πi (192)

with:

φ
(A)ROE,p
ij := φ

(A)ROE
c,ij + φ

(A)ROE,p
u,ij

φ
(A)ROE,p
u,ij := D

(A),p
ij · ∆ijq(A)

D
(A),p
ij := − 1

2

(

P
(A)
ij

)−1

·





P

(A)
ij ·

(

sij J̃
(A)
ij

)




(193)

where φ
(A)ROE
c,ij is formally given by (158) and:

- if q(A) is defined by (24) then f (A) is given by (25), J̃
(A)
ij is given by

(152) and the preconditioner reads:

P
(A)
ij := I +

(

β2 − 1
)













1 0 0

uij 0 0

ξij 0 0













- if q(A) is given by (28) then f (A) is given by (29), J̃
(A)
ij is defined anal-

ogously to (151) and the preconditioner reads:

P
(A)
ij := I +

(

β2 − 1
)





















1 0 0 0

uij 0 0 0

ξij 0 0 0

ηij 0 0 0





















(194)
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3.4.4 Numerical results

Benchmark

A quasi-1D, inviscid, barotropic flow within a duct having variable cross-
sectional area A = A(x) (e.g. a convergent-divergent nozzle) is considered.
Let q(x) and f (x) be defined by (20) and (21), respectively. The relevant mass
and momentum balances read (compare with (23)):

∂t q
(x) + ∂x f (x) = s(x)

(

q(x)
)

(195)

with:

s(x)
(

q(x)
)

:= − d

dx
ln (A(x) )

(

ρ u
ρ u2

)

As declared at the beginning of sec. 3.4, a smooth solution to (195) is sought
in the present context. In particular, the steady, nearly-incompressible solu-
tion to (195) described below is considered in order to define a benchmark
for the proposed preconditioning strategy.

Let M⋆ ≪ 1 denote the characteristic Mach number of a flow field ex-
hibiting a roughly constant density:

ρ ≈ ρ∞ (196)

where the subscript ∞ hereafter refers to the inlet conditions, associated with
the section located at x = xmin ∈ [xmin, xmax]. In consideration of (196), the
conservation of the mass approximately reduces to the following relation:

uA ≈ u∞A∞ (197)

Moreover, by invoking the well-known Bernoulli theorem (for incompressible,
non-dissipative steady flows) [88], the momentum balance can be approxi-
mated as follows:

p+
1

2
ρ∞ u2 ≈ p∞ +

1

2
ρ∞ u2

∞ (198)

Then, once defined:

α(x) :=
A(x)

A∞

(199)

it is possible to respectively recast (197) and (198) as follows:

u

u∞
≈ α−1 (200)

p

p∞
≈ 1 +

1

2

ρ∞ u2
∞

p∞

(

1 − α−2
)

(201)
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Benchmark κ κ γ ρ∞ u∞ xmin x1 x2 xmax σ

BN 106 1 0 1 1 −2000 −1000 1000 2000 2.5 · 10−2

Table 6: Considered benchmark.

The relations (200) and (201) provide a nearly-exact, steady solution to (195)
(they tend to be exact for M⋆ → 0) which can be exploited for validating
the discrete scheme (205), based on the preconditioned numerical flux (180)-
(182).

As far as the variation of the cross-sectional area is concerned, the fol-
lowing definition is adopted, in particular, for α(x):

α(x) :=































1 if xmin ≤ x ≤ x1

1 − σ

(

1 − cos

(

2π
x− x1

x2 − x1

))

if x1 < x < x2

1 if x2 ≤ x ≤ xmax

(202)

where x1, x2 and 0 < σ < 1/2 are adjustable parameters. The function (202)
represents a sinusoidal reduction of the cross-sectional area between x1 and
x2. In particular, the minimum value of α is given by:

αmin := 1 − 2 σ (203)

and it is obtained for x = (x1 + x2) /2.
The considered benchmark is summarized in Tab. 6. In this table, κ, κ

and γ characterize an instance of the convex barotropic state law (71) which
introduces, in particular, a constant sound speed ã =

√
κ = 103 for the flow.

The variation of the cross-sectional area A/A∞ = α is shown in Fig. 27. In
consideration of (200), the maximum value of u is given by u ≈ α−1

min ≈ 1.05
and therefore M⋆ = 10−3 can be regarded to as a characteristic Mach number
of the considered flow.

Discrete scheme, initial and boundary conditions

By starting from the system (164), the following semi-discrete formulation is
introduced, based on the proposed preconditioned numerical flux (180)-(182):

µi
d

dt
q

(x)
i +

∑

j∈πi

φ(x)ROE,p
(

q
(x)
i ,q

(x)
j , ν̂ij

)

= s
(x)
i , i ∈ I (204)
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Figure 27: Variation of the cross-sectional area for the test-case under con-
sideration.

where:

s
(x)
i ≈

∫

Ci

s(x) dx

In particular, the following definition is adopted:

s
(x)
i := γi

(

ρi ui

ρi u
2
i

)

with:

γi := ln

(

A(xi−1/2)

A(xi+1/2)

)

= ln

(

α(xi−1/2)

α(xi+1/2)

)

Then, in the spirit of the basic explicit scheme (102), the following discretiza-
tion is considered:

q
(x)n+1
i = q

(x)n
i +

δnt

µi

(

−
∑

j∈πi

φ(x)ROE,p
(

q
(x)n
i ,q

(x)n
j , ν̂ij

)

+ s
(x)n
i

)

, i ∈ I

(205)
The following uniform field is chosen as IC:

q
(x)0
i = q(x)

∞ , i ∈ I (206)
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where:

q(x)
∞ :=

(

ρ∞
ρ∞ u∞

)

(207)

and both ρ∞ and u∞ are introduced in the previous paragraph.
As far as the BCs are concerned, a Dirichlet-like inlet BC is enforced by

defining the fictitious state vector q
(x)n
0 as follows:

q
(x)n
0 = q(x)

∞ , n = 0, 1, 2, . . . (208)

while the following transmissive BC is adopted at the outlet:

q
(x)n
Nc+1 = q

(x)n
Nc

, n = 0, 1, 2, . . . (209)

A remark on linear stability

The explicit discrete scheme (205) is subjected to a CFL-like constraint of
the type of (121), as the basic explicit scheme (102) from which it is derived.

Independently of s
(x)
i , which accounts for the specific geometry of the duct,

it makes sense to investigate the effect the preconditioning strategy has on
the wave structure of the linearized problem and in particular on the corre-
sponding maximum wave speed smax, since it directly affects the CFL-like
constraint. To the purpose, some considerations are reported below; a rather
informal presentation is adopted for the sake of simplicity.

An estimate of smax can be obtained by considering the spectral radius
of the matrix D

(x),p
ij defined in (182). In particular, it is possible to linearize

the flow field in the neighbourhood of a certain point q̃(x) and, by virtue of
the property (RM2) reported in sec. 3.3.1, to evaluate the spectral radius

of D
(x),p
ij in correspondence of q̃(x) (see e.g. [8]). Straightforward algebraic

manipulations (not reported here for the sake of conciseness) show that:

M⋆ ≪ 1 ⇒ D
(x),p
ij ≈





O (M−1
⋆ ã) O (M−2

⋆ )

O (ã2) O (M−1
⋆ ã)





where ã denote the characteristic sound speed associated with q̃(x). Clearly,
smax = O (M−1

⋆ ã) for the present, preconditioned case. On the other hand,
the non-preconditioned case can be analysed exactly in the same manner (in
particular, by simply choosing β2 = 1 where appropriate), thus obtaining:

M⋆ ≪ 1 ⇒ D
(x)
ij ≈





O (ã) O (M⋆)

O (M⋆ ã
2) O (ã)
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Test-case Benchmark µ β2 τ

ER-NOPREC BN 10 1 5 · 10−3

ER-PREC BN 10 10−6 5 · 10−6

Table 7: Considered test-cases for the discrete scheme (205), based on the
preconditioned numerical flux (180)-(182).

In this case, smax = O (ã) (as already noticed, for instance, in sec. 3.3.2). On
the basis of the aforementioned analysis, it is clear that the largest wave speed
increases of O (M−1

⋆ ) ≫ 1 when switching the preconditioning technique on.
In other words, in consideration of the CFL-like constraint (121), it should
be necessary to reduce the time-step of O (M⋆) ≪ 1 in order to keep the
explicit time-advancing stable:

τprec = O (M⋆) · τnoprec (210)

As a result, the considered (explicit preconditioned) discrete scheme (205)
should exhibit very severe efficiency limitations. This point is confirmed by
the numerical results reported in the following paragraph.

Test cases

The considered test-cases are summarized in Tab. 7. In particular:

- the x−domain [xmin, xmax] is uniformly discretized (with cells having
size µ) for both cases;

- for the test-case ER-NOPREC the proposed preconditioning strategy
is not activated (indeed for β2 = 1 the preconditioner (185) reduces
to the identity matrix and therefore it does not modify the numerical
flux function). Conversely, the test-case ER-PREC exploits the pre-
conditioning strategy at hand, by choosing βref in (189) exactly equal
to 1;

- the time-step τ for the test-case ER-NOPREC is chosen equal to that
one associated with the test-case ER1-2 in Tab. 4 (sec. 3.3.2), since
both the considered (non-preconditioned) test-cases are based on the
same state law as well as the same space discretization. The value which
is chosen for the test-case ER-PREC, instead, represents the maximum
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time-step which can be adopted, as a matter of fact, in order to obtain
a stable time-advancing (up to the benchmark steady-state).

The behaviour of the corresponding numerical solutions is shown in Figs. 28
and 29. It should be noticed that:

• the approximation of u does not suffer from the accuracy problems
related to the low Mach number flow (its main driver being the area
variation, according to (197)), while the approximation of p exhibits
the problems highlighted in Proposition 7 (sec. 3.4.1). The proposed
preconditioning strategy, however, seems to effectively counteract these
problems, as shown in Fig. 29;

• the time-steps reported in Tab. 7 clearly satisfies the relation (210),
thus supporting the considerations regarding the stability of the consid-
ered scheme which are introduced in the previous paragraph. The ex-
tremely small time-step required by the preconditioned scheme clearly
indicates that an extension of the considered explicit time-advancing
strategy to more complex test-cases (e.g. 3D industrial geometries)
could be hardly affordable, due to the high computational cost of the
simulation 43. This result is not restricted to the very simple time-
advancing strategy considered in (205); indeed, a similar time-step re-
duction can be observed, for instance, when adopting a classical 4−th-
order Runge-Kutta scheme [91].

43For instance, the test-case ER-PREC approximately requires 12 hours (CPU time on
a laptop with Intel P4 CPU 2.66GHz, 512kB L2 cache and 512MB RAM) for reaching the
steady-state.
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Figure 28: Approximation of u for the test-cases in Tab. 7.
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Figure 29: Approximation of p for the test-cases in Tab. 7. The pressure
variation on the y−axis is scaled for ease of readability.
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3.5 Linearized implicit time-advancing

An approximate linearization of the type of (105) is proposed in sec. 3.5.1,
which can be applied to generic Roe numerical flux functions and in particular
to (156)-(160). Then, in sec. 3.5.2 the proposed linearization is generalized
so as to be applied to preconditioned Roe numerical flux functions of the
type of (192)-(193). Furthermore, a second-order accurate scheme is briefly
introduced in sec. 3.5.3, defined through a “Defect Correction” technique
based on the proposed linearization. Finally, in secs. 3.5.4 and 3.5.5, the
discrete solution obtained by exploiting the proposed linearization strategy
is respectively validated against a nearly-exact and an exact benchmark.

3.5.1 A linearization of a generic Roe numerical flux function

Linearization of a Roe numerical flux φ
(g)ROE
LR

Let φ
(g)ROE
LR denote a Roe numerical flux of the type of (131)-(134), asso-

ciated with a generic hyperbolic problem hereafter reminded by superscript
(g) (where appropriate).

Note 41 No specific assumptions on the considered state law are introduced
at this stage of the discussion. In particular, the application of the lineariza-
tion strategy proposed below is not restricted to problems associated with a
(generic) barotropic state law.

In order to derive an approximate linearization ofφ
(g)ROE
LR of the type of (105),

two matrices A
(g)n
LR and Bn

LR are sought, such that the following relation holds:

δnφ
(g)ROE
LR ≈ A

(g)n
LR · δnq

(g)
L + B

(g)n
LR · δnq

(g)
R (211)

where the increment δn(·) is defined in (103). Clearly, the Roe numerical flux
is not differentiable and therefore the linearization (211) cannot be obtained
by a first-order Taylor expansion. Moreover, if the analytical flux f (g) is a
first-order homogeneous function 44, the following relation is satisfied (by
definition):

f (g) = J(g) · q(g) (212)

where, of course:
J(g) := ∂

q(g)f (g) (213)

and it is possible to recast φ
(g)
LR as follows:

φ
(g)
LR = F · q(g)

L + G · q(g)
R (214)

44As, for instance, for the Euler equations associated with a perfect gas state law.
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where F = F
(

q
(g)
L ,q

(g)
R

)

and G = G
(

q
(g)
L ,q

(g)
R

)

are suitably defined ma-

trices (see below). Then, by assuming F and G to be weakly dependent on

their arguments, it is possible to choose A
(g)n
LR and B

(g)n
LR in (211) as follows:

A
(g)n
LR = F

(

q
(g)n
L ,q

(g)n
R

)

, B
(g)n
LR = G

(

q
(g)n
L ,q

(g)n
R

)

This is a rather classical approach for obtaining an approximate linearization
of the type of (211) (see e.g. [36]). However, as pointed out in [91], there
is no uniqueness as far as the choice of F and G is concerned. Indeed, by
substituting (212) into the equalities which are obtained by formally replacing
the superscript (A) with (g) in (135), it is straightforward to identify the
following choices for F and G:















F = F(1)
(

q
(g)
L ,q

(g)
R

)

:= J
(g)
L −

(

J̃
(g)
LR

)−

G = G(1)
(

q
(g)
L ,q

(g)
R

)

:=
(

J̃
(g)
LR

)−
(215)















F = F(2)
(

q
(g)
L ,q

(g)
R

)

:=
(

J̃
(g)
LR

)+

G = G(2)
(

q
(g)
L ,q

(g)
R

)

:= J
(g)
R −

(

J̃
(g)
LR

)+
(216)

where J
(g)
s (s ∈ {L,R}) is naturally understood as J(g)

(

q
(g)
s

)

and, of course,

J̃
(g)
LR denotes the relevant Roe matrix. Then, by exploiting (215) and (216),

the following class of approximate linearizations can be introduced [91]:

(F,G) = γ
(

F(1),G(1)
)

+ (1 − γ)
(

F(2),G(2)
)

(217)

where γ is a free parameter.
It is possible to propose a linearization of the type of (211) even when the

first-order homogeneity condition (212) is not verified (as, for instance, for
the case of the state vectors introduced in sec. 2.2, associated with a generic
barotropic state law), by virtue of the following:
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Proposition 9 The Roe numerical flux function φ
(g)ROE
LR satisfies the fol-

lowing relation:

δnφ
(g)ROE
LR =

(

J̃
(g)n
LR

)+

· δnq
(g)
L +

(

J̃
(g)n
LR

)−

· δnq
(g)
R +

1

2
r
(g),n,n+1
LR (218)

where r
(g),n,n+1
LR is defined as follows:

r
(g),n,n+1
LR :=

(

∆L

(

J̃
(g)
LR

)+

+ ∆R

(

J̃
(g)
LR

)+
)

· δnq
(g)
L +

(

∆L

(

J̃
(g)
LR

)−

+ ∆R

(

J̃
(g)
LR

)−
)

· δnq
(g)
R +

(

∆R

(

J̃
(g)
LR

)−

− ∆L

(

J̃
(g)
LR

)+
)

· ∆LRq(g)n +

(

∆̄L

(

J̃
(g)
LR

)+

− ∆̄R

(

J̃
(g)
LR

)−
)

· ∆LRq(g)n+1

(219)

with ∆LR (·) introduced in (129) and:



























































∆L

(

J̃
(g)
LR

)±

:= J̃±
(

q
(g)n+1
L ,q

(g)n
R

)

− J̃±
(

q
(g)n
L ,q

(g)n
R

)

∆R

(

J̃
(g)
LR

)±

:= J̃±
(

q
(g)n
L ,q

(g)n+1
R

)

− J̃±
(

q
(g)n
L ,q

(g)n
R

)

∆̄L

(

J̃
(g)
LR

)±

:= J̃±
(

q
(g)n
L ,q

(g)n+1
R

)

− J̃±
(

q
(g)n+1
L ,q

(g)n+1
R

)

∆̄R

(

J̃
(g)
LR

)±

:= J̃±
(

q
(g)n+1
L ,q

(g)n
R

)

− J̃±
(

q
(g)n+1
L ,q

(g)n+1
R

)

(220)

where, finally, J̃±
(

q
(g)
L ,q

(g)
R

)

is obtained by applying the operators defined in

(7) to the considered Roe matrix J̃
(g)
LR = J̃

(

q
(g)
L ,q

(g)
R

)

.

Proof The proof is reported in sec. A.7, for ease of presentation. �

In view of the aforementioned proposition, it is possible to state that, if for

all
(

q
(g)n
L ,q

(g)n
R ,q

(g)n+1
L ,q

(g)n+1
R

)

in a same neighbourhood:

∥

∥

∥
r
(g),n,n+1
LR

∥

∥

∥
≪
∥

∥

∥

∥

(

J̃
(g)n
LR

)+

· δnq
(g)
L +

(

J̃
(g)n
LR

)−

· δnq
(g)
R

∥

∥

∥

∥

(221)
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then, the following approximation can be considered:

δnφ
(g)ROE
LR ≈

(

J̃
(g)n
LR

)+

· δnq
(g)
L +

(

J̃
(g)n
LR

)−

· δnq
(g)
R (222)

It is worth emphasizing that, since the relation (218) is obtained by only
exploiting the algebraic properties of the Roe numerical flux function (see
sec. A.7), the linearization (222) is independent of the specific state law.
Hence, it can be applied to a variety of problems.

Note 42 Let µ and τ denote the characteristic sizes of the space and time
discretizations, respectively. If a certain degree of regularity is assumed for
the discrete solution, then δnq

(g)
s , s ∈ {L,R}, is of the order of τ while

∆LRq(g)n is of the order of µ. Furthermore, if the matrices
(

J̃
(g)
LR

)±

are

functions regular enough (e.g. Lipschitzian) with respect to their arguments,
then the entities in (220) are of the order of τ . Hence, the condition (221)

is verified since
∥

∥

∥
r
(g),n,n+1
LR

∥

∥

∥
= O (τ 2, τµ) while the right-hand side term of

(221) is of the order of τ . In this spirit, the proposed linearization (222) is
thought to introduce an error which is formally of the order of O (τ 2, τµ).

Linearization of a Roe numerical flux φ
(A)ROE
ij

As far as the linearization of the augmented-1D system of interest is con-
cerned, it is possible to directly exploit the approximate linearization (222)
at the only cost of formally replacing (g) with (A). Then, by recalling the

considerations introduced when deriving φ
(A)ROE
ij from φ

(A)ROE
LR in sec. 3.3.1,

it is straightforward to generalize the proposed linearization so as to take
the orientation of ν̂ ij into account. To the purpose, it suffices to choose the
right-hand terms of (106) as follows:















A(A)
(

q
(A)n
i ,q

(A)n
j , ν̂ij

)

=
(

sij J̃
(A)n
ij

)+

B(A)
(

q
(A)n
i ,q

(A)n
j , ν̂ij

)

=
(

sij J̃
(A)n
ij

)−
(223)

In consideration of (223), the linear system (107) which is associated with
the proposed linearized implicit scheme reads:

Mi,n
(−1) · δnq

(A)
i−1 + Mi,n

(0) · δnq
(A)
i + Mi,n

(+1) · δnq
(A)
i+1 = mi,n , i ∈ I (224)
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where:






























































































Mi,n
(−1) :=

(

si(i−1) J̃
(A)n
i(i−1)

)−

Mi,n
(0) :=

µi

δnt
I

+
(

si(i−1) J̃
(A)n
i(i−1)

)+

+
(

si(i+1) J̃
(A)n
i(i+1)

)+

Mi,n
(+1) :=

(

si(i+1) J̃
(A)n
i(i+1)

)−

mi,n := φ
(A)ROE n
(i−1)i − φ

(A)ROE n
i(i+1)

(225)

Moreover, by recalling the definition of sij given in (98) as well as the relation
(163), it is possible to simplify the representation of the coefficients on the
right-hand side of (225) as follows:































































































Mi,n
(−1) = −

(

J̃
(A)n
(i−1)i

)+

Mi,n
(0) =

µi

δnt
I

−
(

J̃
(A)n
(i−1)i

)−

+
(

J̃
(A)n
i(i+1)

)+

Mi,n
(+1) =

(

J̃
(A)n
i(i+1)

)−

mi,n := φ
(A)ROE n
(i−1)i − φ

(A)ROE n
i(i+1)

(226)
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3.5.2 Incorporation of the preconditioning strategy

Let φ
(g)ROE,p
ij denote a generic Roe numerical flux function, formally ob-

tained by replacing (A) with (g) in the definition (192)-(193) 45. As for the
non-preconditioned case, by exploiting the definition (7) together with the

property (RM3) introduced in sec. 3.3.1, it is possible to recast φ
(g)ROE,p
ij as

follows (the superscript (g) is correctly introduced for the preconditioner as
well):














φ
(g)ROE,p
ij = sij f

(g)
i +

(

P
(g)
ij

)−1

·
(

P
(g)
ij ·

(

sij J̃
(g)
ij

))−

· ∆ijq(g)

φ
(g)ROE,p
ij = sij f

(g)
j −

(

P
(g)
ij

)−1

·
(

P
(g)
ij ·

(

sij J̃
(g)
ij

))+

· ∆ijq(g)

(227)

There is a close formal analogy between the relation (227) and the rela-
tion (383) introduced in sec. A.7 for proving the Proposition 9. In view
of this point, it is possible to extend the relevant passages reported in the
aforementioned section to the considered preconditioned numerical flux, thus
obtaining the following relation:














A(g)
(

q
(g)n
i ,q

(g)n
j , ν̂ij

)

=
(

P
(g)n
ij

)−1

·
(

P
(g)n
ij ·

(

sij J̃
(g)n
ij

))+

B(g)
(

q
(g)n
i ,q

(g)n
j , ν̂ij

)

=
(

P
(g)n
ij

)−1

·
(

P
(g)n
ij ·

(

sij J̃
(g)n
ij

))−

(228)

As for the non-preconditioned case, the proposed linearization (228) is only
based on the algebraic properties of the Roe numerical flux function and
therefore it can be applied to a variety of problems.

The formulation corresponding to the augmented-1D problem considered
in the present document is straightforwardly obtained from (228) by a trivial
change of notation (superscript (A) in place of (g)) and it is reported below
for the sake of completeness:














A(A)
(

q
(A)n
i ,q

(A)n
j , ν̂ij

)

=
(

P
(A)n
ij

)−1

·
(

P
(A)n
ij ·

(

sij J̃
(A)n
ij

))+

B(A)
(

q
(A)n
i ,q

(A)n
j , ν̂ij

)

=
(

P
(A)n
ij

)−1

·
(

P
(A)n
ij ·

(

sij J̃
(A)n
ij

))−

(229)

In consideration of the relation (229) (which clearly generalizes (223)), the
linear system (107) associated with the proposed preconditioned linearized

45A generic state law is assumed at this stage of the discussion. Hence, for instance,
besides the barotropic case specifically treated in the present document it is possible to
consider the preconditioned numerical flux discussed in [42].
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implicit scheme reads:

Li,n
(−1) · δnq

(A)
i−1 + Li,n

(0) · δnq
(A)
i + Li,n

(+1) · δnq
(A)
i+1 = li,n , i ∈ I (230)

where the relevant coefficients are straightforward generalizations of those
reported in (226), namely:































































































Li,n
(−1) := −

(

P
(A)n
(i−1)i

)−1

·
(

P
(A)n
(i−1)i · J̃

(A)n
(i−1)i

)+

Li,n
(0) :=

µi

δnt
I

−
(

P
(A)n
(i−1)i

)−1

·
(

P
(A)n
(i−1)i · J̃

(A)n
(i−1)i

)−

+
(

P
(A)n
i(i+1)

)−1

·
(

P
(A)n
i(i+1) · J̃

(A)n
i(i+1)

)+

Li,n
(+1) :=

(

P
(A)n
i(i+1)

)−1

·
(

P
(A)n
i(i+1) · J̃

(A)n
i(i+1)

)−

li,n := φ
(A)ROE,p n
(i−1)i − φ

(A)ROE,p n
i(i+1)

3.5.3 A second-order defect-correction scheme

A generalization of the considered linearized implicit scheme, i.e. (107) cou-
pled with (223) or (229), is concisely introduced in the present section, based
on the “Defect Correction” technique [67] (hereafter DeC) mentioned in the
relevant paragraph of sec. 3.1.2.

The discrete scheme at hand can be regarded to as an instance of the
iterative scheme (116). More in detail (of course, the discrete solution is here

zh = q
(A)
h ):

- a single iteration is considered: λn
max = 1;

- the time discretization is obtained from the expression (109) by con-
sidering:

k = 1 , α1 = 1 , z
(n,k)
h = q

(A)n
h

This approximation is first-order accurate and the corresponding trun-
cation error is formally O (τ), where τ represents the characteristic size
of the time discretization;
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- the spatial component ψ
(p)
h of the non-linear operator µ

(p,k)
h defined in

(111) is based on the Roe numerical flux. This leads to a first-order
accurate discretization (see e.g. [39]): p = 1. The corresponding error
is formally O (µ), µ representing the characteristic size of the space
discretization;

- the linear operator J
(q,k)
h is defined by choosing q = 1. The term δψ

(q)
h

appearing in the relevant definition (113) is constructed, in particular,
by exploiting the approximate linearization (222) which, as pointed
out in Note 42 (sec. 3.5.1), formally introduces a discretization error
O (τ 2, τµ).

The resulting scheme clearly introduces a discretization error O (µ, τ) and
therefore it is only first-order accurate.

It is possible to increase the accuracy of the aforementioned scheme up
to the second order by adopting a DeC strategy, as briefly outlined in sec.
3.1.2. To the purpose:

- a second-order backward finite difference approximation is derived from
(109) by means of the following settings:

k = 2 , α2 =
1 + 2θ

1 + θ
, z

(n,k)
h = (1 + θ) q

(A)n
h − θ2

1 + θ
q

(A)n−1
h

where:

θ :=
δnt

δn−1t

The truncation error associated with the approximation at hand is
formally O (τ 2);

- a second-order spatial discretization ψ
(p)
h , with p = 2, is introduced by

performing a MUSCL reconstruction [106] [107] [108] before evaluating
the Roe numerical flux. According to this strategy, the Roe numerical
flux between the cells Ci and Cj (towards Cj) is computed as follows:

φ(A)ROE
(

q
(A)
[i]j ,q

(A)
i[j] , ν̂ij

)

where φ(A)ROE represents the usual Roe flux function 46 while q
(A)
[i]j and

q
(A)
i[j] denote suitably extrapolated values at the interface between Ci and
Cj , respectively on the side of Ci and Cj. The considered extrapolation

46Any additional superscript, like that one denoting the preconditioning technique dis-
cussed in the previous sections, is here dropped, for the sake of simplicity.
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is constrained (by exploiting the starting, piece-wise constant, discrete
solution and therefore in a non-linear fashion) so as to avoid spurious
oscillations (see e.g. [39], [64], [98] and many references cited therein);

- in the spirit of the DeC approach [67], a value q < p is chosen for
containing the computational cost associated with the inversion of the
linear operator J

(q,k)
h (see sec. 3.1.2). Hence, in particular, the value

q = 1 is adopted, as for the case discussed in the corresponding point
of the previous list. In other words, the term δψ

(q)
h is constructed by

applying the proposed approximate linearization (222) to the starting,
piece-wise constant, numerical solution. Of course, the corresponding
discretization error is still O (τ 2, τµ).

In view of the aforementioned points, a single iteration (i.e. λn
max = 1) of

the scheme (116) yields a discretization error O (µ2, τ 2, τµ) = O (ǫ2), with
ǫ := max (µ, τ) and therefore a second-order accurate solution is obtained.
Moreover, on the basis of some preliminary carried out numerical experiments
[90], a sensible improvement in the solution behaviour is observed by slightly
increasing λn

max, e.g. by performing 2 or 3 iterations. Hence, the DeC seems
to be a promising strategy for defining high-order, efficient schemes based
on the proposed linearization (222); further investigations on this subject is
definitely recommended.

3.5.4 Numerical results for smooth flows

Benchmarks

The benchmark already introduced in sec. 3.4.4 (namely the quasi-1D flow
within a duct having variable cross-sectional area) and summarized, in par-
ticular, in Tab. 6 is considered here, with the aim of directly comparing the
proposed linearized implicit time-advancing strategy with the explicit one
given by (205). The relevant definitions/considerations are tacitly recalled
from the aforementioned section.

Discrete scheme, initial and boundary conditions

A linearized implicit discrete scheme can be derived from (204) by following
the procedure which permits to obtain (107) from (101), at the only cost of
extending the linearization to the term s(x) as follows:

s
(x)n+1
i ≈ s

(x)n
i + S

(x)n
i · δnq

(x)
i (231)
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where:

S
(x)n
i := ∂

q(x)∂s(x)
(

q
(x)n
i

)

=





0 1

− (un
i )2 2 un

i





In particular, it suffices to respectively incorporate s
(x)n
i and S

(x)n
i into the

right-hand side term and the diagonal coefficient of a linear system of the
type of (230), namely:

L̂i,n
(−1) · δnq

(x)
i−1 + L̂i,n

(0) · δnq
(x)
i + L̂i,n

(+1) · δnq
(x)
i+1 = l̂i,n , i ∈ I (232)

with:


















































































































L̂i,n
(−1) := −

(

P
(x)n
(i−1)i

)−1

·
(

P
(x)n
(i−1)i · J̃

(x)n
(i−1)i

)+

L̂i,n
(0) :=

µi

δnt
I

− S
(x)n
i

−
(

P
(x)n
(i−1)i

)−1

·
(

P
(x)n
(i−1)i · J̃

(x)n
(i−1)i

)−

+
(

P
(x)n
i(i+1)

)−1

·
(

P
(x)n
i(i+1) · J̃

(x)n
i(i+1)

)+

L̂i,n
(+1) :=

(

P
(x)n
i(i+1)

)−1

·
(

P
(x)n
i(i+1) · J̃

(x)n
i(i+1)

)−

l̂i,n := s
(x)n
i + φ

(x)ROE,p n
(i−1)i − φ

(x)ROE,p n
i(i+1)

The uniform flow field given by (206) is chosen as IC while, as far as the
BCs are concerned:

- the Dirichlet-like BC (208) clearly implies that:

δnq
(x)
0 = 0

and therefore it is naturally implemented as follows:

L̂1,n
(0) · δnq

(x)
1 + L̂1,n

(+1) · δnq
(x)
2 = l̂1,n

- the transmissive BC (209) clearly implies that:

δnq
(x)
Nc+1 = δnq

(x)
Nc

and therefore it is naturally implemented as follows:

L̂Nc,n
(−1) · δnq

(x)
Nc−1 +

(

L̂Nc,n
(0) + L̂Nc,n

(+1)

)

· δnq
(x)
Nc

= l̂Nc,n (233)
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Test-case Benchmark µ β2 τ

IR-NOPREC BN 10 1 ≈ ∞
IR-PREC BN 10 10−6 ≈ ∞

Table 8: Considered test-cases for the discrete scheme (232), based on the
preconditioned numerical flux (180)-(182).

Test-cases

The considered test-cases are summarized in Tab. 8, in which BN denotes
the considered benchmark (described in Tab. 6, sec. 3.4.4). In particular:

- the x−domain [xmin, xmax] (with xmin and xmax defined in the afore-
mentioned Tab. 6) is uniformly discretized (with cells having size µ)
for both cases;

- for the test-case IR-NOPREC the proposed preconditioning strategy
is not activated (indeed for β2 = 1 the preconditioner (185) reduces
to the identity matrix and therefore it does not modify the numerical
flux function). Conversely, the test-case IR-PREC exploits the precon-
ditioning strategy at hand, by choosing βref in (189) exactly equal to
1;

- it turns out that, for both the considered test-cases, a practically “un-
bounded” time-step can be adopted for advancing the numerical so-
lution by means of the proposed linearized implicit strategy. In the
carried out numerical experiments τ has been increased up to 105, thus
reaching the steady-state solution in a very few (namely 2 to 5) itera-
tions; the required CPU time is practically negligible.

The corresponding numerical solutions, shown in Figs. 30 and 31, are indis-
tinguishable from their counterparts obtained by the explicit time-advancing
(reported in Figs. 28 and 29, sec. 3.4.4).
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Figure 30: Approximation of u for the test-cases in Tab. 8.
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Figure 31: Approximation of p for the test-cases in Tab. 8. The pressure
variation on the y−axis is scaled for ease of readability.
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A local preconditioning strategy

It may be worth investigating the behaviour of the preconditioned numeri-
cal flux as the local Mach number of the flow field undergoes non-negligible
variations. Indeed, under this circumstance, it may be difficult to identify a
unique Mach number M⋆ which is representative of the entire flow field and,
consequently, the definition of the preconditioning parameter β2 in (189) may
be not straightforward.

To the purpose, it is possible to consider the nozzle flow introduced in
sec. 3.4.4. More precisely, by varying the parameter σ (which determines the
variation of cross-sectional area through (202)), it is possible to control the
velocity u in the duct as well as the corresponding (local) Mach number, since
the sound speed is constant for the considered benchmark (a = 103). Thus,
for instance, by choosing σ = 4.5 · 10−1 (while keeping the other settings in
Tab. 6, sec. 3.4.4), the minimum value of α provided by (203) is αmin = 0.1.
The maximum value of u can be obtained from (200), since the flow turns
out to be nearly-incompressible for the present case as well. In particular,
the maximum value of u (taken in correspondence of the minimum cross-
sectional area of the duct, hereafter referred to as throat as well) is roughly
10 · u∞. Hence, if M∞ denotes the inlet Mach number (M∞ = 10−3 for the
present case), the Mach number at the throat is Mthroat = 10 ·M∞. Then,
by choosing M∞ as representative of the whole flow field: M⋆ = M∞ and
by choosing β2 = M2

⋆ (= 10−6) as preconditioning parameter, it follows that
β2 = M3

throat 6= M2
throat. As a consequence, it is reasonable to expect a less

accurate numerical solution near the throat. This is confirmed by the curves
labelled with “GLOBAL-PREC” in Figs. 32 and 33, which are computed
using the settings of the test-case IR-PREC reported in Tab. 8 above. It may
be worth noticing that the discrepancy between the numerical and the nearly-
exact solution in the aforementioned figures does not appreciably propagate
towards the inlet section, since the adopted Dirichlet-like BC does not allow
for a substantial variation of the state vector to take place.

In view of the aforementioned considerations, it makes sense to investi-
gate the effects which are produced on the numerical solution by replacing
the original preconditioning parameter β2 with a new one, say β2

ij, taking into
account the local Mach number. More in detail, since the preconditioner acts
(as the numerical flux, of course) at the cell interface, it seems reasonable to
relate β2

ij to a certain Mach number M̄ij which can be considered represen-

tative of both the adjacent state vectors q
(x)
i and q

(x)
j . In consideration of

the fact that the Roe flux between q
(x)
i and q

(x)
j is essentially based on the

averaging defined, as the name suggests, by the Roe averages (see Note 24
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in sec. 3.3.1), the following choice seems to be quite natural:

M̄ij :=
|uij|
aij

Then, a definition for β2
ij may be the following:

β2
ij := 1 − exp

(

−κij ·
(

M̄ij

)2
)

(234)

where κij = O (1) is a free parameter. Indeed, according to the definition
above:

• for M̄ij → 0, β2
ij → κij ·

(

M̄ij

)2
, somehow (locally) recovering the

original relation (189);

• as M̄ij increases, β2
ij → 1 and the effects of the preconditioning strategy

correctly disappear. The parameter κij, in particular, can be modelled
in order to control the transition under consideration.

The numerical solution which is obtained by adopting (234) with κij = 1
(while keeping the remaining settings of the aforementioned test-case IR-
PREC) is shown by the curves labelled with “LOCAL-PREC” in Figs. 32
and 33. The considered solution turns out to be more accurate than that
one obtained by the global preconditioning technique, even if there are still
discrepancies with respect to the nearly-exact benchmark. In view of this
result, it seems reasonable to further investigate (even heuristic) general-
izations of the considered preconditioning technique, like (234), in order to
accurately simulate flow fields characterized by non-negligible variations of
the local Mach number. Such a study is postponed to a subsequent research
activity.
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Figure 32: Comparison between the original (“global”) preconditioning strat-
egy and the modified (“local”) one: effects on u.
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Test-case Benchmark µ (nL, nR) τ

IR2-3-1 B2 1 (2, 2) · 103 5 · 10−4

IR2-3-2 B2 1 (2, 2) · 103 5 · 10−3

IR2-3-3 B2 1 (2, 2) · 103 5 · 10−2

Table 9: Considered test-cases for the discrete scheme (224), based on the
numerical flux (156)-(160).

3.5.5 Numerical results for non-smooth flows at low Mach num-
bers

In order to directly compare the proposed linearized implicit time-advancing
strategy with an explicit one, the implicit counterpart of the test-case ER-2-3
described in Tab. 4 (sec. 3.3.2) is considered.

The benchmark description as well as any relevant definition is tacitly
recalled from the aforementioned section. The discrete scheme (224) is con-
sidered, associated with a constant time-step τ . The implementation of the
assumed BCs (120) reads (compare with (233)):















(

M1,n
(−1) + M1,n

(0)

)

· δnq
(A)
1 + M1,n

(+1) · δnq
(A)
2 = m1,n

MNc,n
(−1) · δnq

(A)
Nc−1 +

(

MNc,n
(0) + MNc,n

(+1)

)

· δnq
(A)
Nc

= mNc,n

(235)

The considered test-cases are reported in Tab. 9; the behaviour of the cor-
responding numerical solutions is shown in Figs. 34-37.

Some entities which can be exploited for evaluating the accuracy as well
as the computational cost of the considered simulations are reported in Tab.
10 (to be compared with the relevant row of Tab. 5 in sec. 3.3.2). It should
be noticed that:

• the estimate c̃(CFL) is directly proportional to τ since its definition
(125) is based on the largest wave speed of the benchmark RP (which,
of course, is not affected by the numerical set-up) for all the considered
test-cases. In particular, c̃(CFL) assumes the same value for the test-
cases ER2-3 and IR2-3-1, for which the same time-step is adopted. The
linearized implicit scheme does not suffer from the stability restriction
encountered in the explicit case (coefficients c̃(CFL) > 1 can be adopted)
and it is therefore more efficient than the explicit one. However, as
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Figure 34: Approximation of ρ for the test-cases reported in Tab. 9.
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Figure 35: Approximation of p for the test-cases reported in Tab. 9.
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Figure 36: Approximation of u for the test-cases reported in Tab. 9.
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Figure 37: Approximation of ξ for the test-cases reported in Tab. 9. The
x−range is cut for ease of readability.
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Test-case c̃(CFL) tCPU e (ρ) e (p) e (u) e (ξ)

IR2-3-1 7.2e-1 ≈ 5 min. 0.0707 0.1419 3.8683 1.0599
IR2-3-2 7.2 ≈ 30 sec. 0.1111 0.2231 6.0785 1.0956
IR2-3-3 7.2e1 ≈ 4 sec. 0.1992 0.3997 10.8928 1.3401

Table 10: CFL estimate, CPU time and error estimates for the test-cases
reported in Tab. 9.

discussed in more detail in sec. 3.5.6, the proposed linearized implicit
scheme is not unconditionally stable and the largest time-step which
can be adopted seems to be somehow related to the magnitude of the
discontinuity introduced by the IC of the underlying benchmark RP;

• the CPU time (on a laptop with Intel P4 CPU 2.66GHz, 512kB L2
cache, 512MB RAM) turns out to be inversely proportional to τ . The
considered implementation of the implicit time-advancing turns out to
be slower than the explicit one of about one order of magnitude 47;

• despite small differences (which may be partly addressed to the imple-
mentation), the numerical solution obtained by the considered implicit
scheme turns out to be as accurate as that one obtained by the consid-
ered explicit scheme (compare the test-case IR2-3-1 in Tab. 10 with the
test-case ER2-3 in Tab. 5, sec. 3.3.2). Moreover, the accuracy of the
numerical solution provided by the linearized implicit scheme rapidly
degrades as the time-step is increased (for a chosen space discretiza-
tion), as shown in Fig. 38 48. Hence, the largest time-step which can
be adopted when using the proposed linearized implicit scheme for un-
steady simulations could be bounded by chosen accuracy requirements
even before reaching the aforementioned stability limit.

47This result does not seem to be closely related to the specific implementation of the
implicit solver. Indeed, comparable CPU times have been obtained by considering two
different solvers for the linear system of interest (namely a library routine for banded
matrices and the block version of the Thomas algorithm [79] for tri-diagonal systems).

48It should be noticed that, with the only exception of e (ξ) (whose measure is, in general,
more susceptible to errors due to the specific shape of the relevant curve), the remaining
curves exhibit a similar trend.
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Figure 38: Plot of the error estimates for the test-cases reported in Tab. 10.

Benchmark κ κ γ ρL uL ξL ρR uR ξR teval

B3 1 1 0 1 0.9 2 1 −0.9 4 1

Table 11: Considered benchmark.

3.5.6 Numerical results for non-smooth flows at generic Mach
numbers

Up to the present section, all the considered numerical experiments have
focused attention on low Mach number flows, because of widely discussed
reasons. However, since the proposed linearized implicit time-advancing can
be applied to generic Roe numerical flux functions and therefore to a variety
of problems, it is of interest to also investigate the behaviour of the discrete
solution when the characteristic Mach number of the flow (if any) is not close
to zero.

To the purpose, the benchmark summarized in Tab. 11 is considered. In
this table, κ, κ and γ refer to the chosen convex state law (71), ρL, uL, ξL,
ρR, uR and ξR characterize the initial condition (IC) of a Riemann problem
(RP) and teval denotes the time at which the considered solution is picked.
The adopted state law introduces a constant sound speed a =

√
κ = 1 and
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Test-case Benchmark µ (nL, nR) τ

IR-M09-1 B3 10−2 (2, 2) · 102 5 · 10−3

IR-M09-2 B3 10−2 (2, 2) · 102 1 · 10−2

IR-M09-3 B3 10−2 (2, 2) · 102 1 · 10−1

Table 12: Considered test-cases.

therefore the unperturbed “left” and “right” regions of the relevant RP are
characterized by a local Mach number equal to 0.9. On the other hand, due
to the symmetry of the chosen IC, u⋆ = 0 (easily derived by averaging the
expressions in (89) for ρL = ρR) and consequently the local Mach number
undergoes a noticeable variation through the domain 49. In this sense, the
present benchmark introduces discontinuities which are stronger than those
considered in previous numerical experiments. Besides the (stationary, since
u⋆ = 0) contact discontinuity, two symmetrical shock waves appear as part
of the solution, travelling with speed s̃ ≈ 0.65.

The discrete scheme (224) is considered, associated with a uniform space
discretization having measure µ = 10−2 and a constant time-step τ . It may
be worth noticing that the adopted space discretization is only apparently
finer than that one considered in previous numerical experiments, e.g. those
reported in Tab. 9. Indeed, a relevant parameter is µ/µ̃, where µ̃ denotes a
characteristic length scale of the problem. For the RP at hand, µ̃ ≈ s̃ teval =
O (1) and µ/µ̃ = O (10−2) while for the test-cases reported in Tab. 9 (for
which the largest wave speed is of the order of 103) µ/µ̃ = O (10−3). In a
similar manner, a relevant parameter for the time discretization is τ/teval.
The boundary conditions (235) are adopted for closing the problem.

The considered test-cases are reported in Tab. 12. The numerical approx-
imation of ρ (i.e. p, since p = ρ according to the considered state law) and
u are shown in Figs. 39 and 40, respectively. An example of the numerical
approximation of ξ is reported in Fig. 41.
It is worth remarking that:

• by increasing the time-step (for a fixed space discretization) the nu-
merical scheme becomes unstable. More in detail:

- for the test-cases IR-M09-1 the coefficient c̃(CFL) defined in (125)
is approximately equal to 0.33 and an explicit time-advancing run-

49Sonic conditions are deliberately avoided, see Note 32 in sec. 3.3.1.
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Figure 39: Approximation of ρ (i.e. p) for the test-cases reported in Tab. 12.
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Figure 40: Approximation of u for the test-cases reported in Tab. 12.
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Figure 41: Approximation of ξ for the test-case IR-M09-1 reported in Tab.
12.

ning with the same c̃(CFL) turns out to be stable as well;

- for the test-cases IR-M09-2 and IR-M09-3, c̃(CFL) is approximately
equal to 0.65 and 6.5, respectively. By further increasing the time-
step (1.25·10−1 < τ < 2.00·10−1 ⇒ c̃(CFL) ≈ 10), a blow-up occurs
after a few iterations: the numerical solution becomes unstable
since the beginning of the simulation, in correspondence of the
discontinuity associated with the benchmark RP.

This observation suggests the existence of a stability limit for the lin-
earized implicit time-advancing. By comparing the maximum c̃(CFL)

which can be adopted in the present case with e.g that one associated
with the test-case IR2-3-3 in Tab. 10, it is possible to put forward
the hypothesis that the stability limit under consideration somehow
becomes more severe as the magnitude of some relevant discontinuities
associated with the underlying RP increases 50. For instance, the varia-
tion of the density for the benchmark B3 (associated with the test-cases
in Tab. 12) is O (1) (see Fig. 39) while that one for the benchmark B2

50The jump of the passive scalar ξ may play a minor role, since it does not directly
affect the considered Roe linearization.
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(associated with the test-cases in Tab. 10) is O (10−2); an even more
considerable difference is observed when considering the variation of
the Mach number.
The aforementioned hypothesis may be supported by the fact that for
smooth solutions this stability problem does not appear (see e.g. the
nozzle flow discussed in sec. 3.5.4). On the other hand, some numeri-
cal experiments involving stronger initial discontinuities (not reported
here for brevity) exhibit an even narrow stability margin. After all, the
presence of a discontinuity within the flow field makes it more difficult
to apply the proposed linearization strategy (222); in particular, it is
likely to violate the condition (221) in the neighbourhood of the dis-
continuity. In summary, as soon as considerable discontinuities appear
within the flow field, a time-step reduction could be required in order to
keep the proposed linearized implicit time-advancing algorithm stable
51, thus reducing the efficiency of the corresponding numerical scheme.
However, this stability problem does not appear to be related to the
specific linearization which is proposed in the present work; indeed, it
affects other linearizations as well, as discussed in sec. 3.5.7;

• as for the test-cases presented in sec. 3.5.5, the accuracy of the consid-
ered numerical solutions rapidly degrades as the time-step is increased
and the largest time-step which can be adopted for unsteady simula-
tions could be bounded by chosen accuracy requirements even before
reaching the aforementioned stability limit;

• the considered linearized implicit scheme is able to approximate the
contact discontinuity with a reasonably good accuracy (i.e. a few cells),
as shown in Fig. 41 for the test-case IR-M09-1. This result is not
obvious, since in general it is not a trivial task to approximate slowly
moving (in particular, stationary) contact discontinuities [98].

51In a practical computational set-up the time-step can be modulated, possibly by an
adaptive strategy, so as to mitigate the stability problem under consideration.
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3.5.7 A remark on the linearization technique

It seems valuable to address the issue of whether the stability constraint high-
lighted in sec. 3.5.6 is specific to the proposed linearization technique or not.
To the purpose, two linearizations of the Roe flux function are recalled, of the
type of (105). As for the proposed linearization (222), the aforementioned

ones can be applied to a generic Roe numerical flux function φ
(g)ROE
LR .

(L1) By adopting the following approximations:

δnf (g) ≈ J(g)n · δnq(g) (236)

δn





J̃

(g)
LR






≈ 0 (237)

where J(g) denotes the Jacobian defined by (213) and J̃
(g)
LR represents

the relevant Roe matrix, the variation of the centred and upwind com-
ponents of φ

(g)ROE
LR can be expressed as follows:

δnφ
(g)ROE
c,LR ≈ 1

2

(

J
(g)n
L · δnq

(g)
L + J

(g)n
R · δnq

(g)
R

)

(238)

δnφ
(g)ROE
u,LR ≈ − 1

2






J̃

(g)n
LR






·
(

δnq
(g)
R − δnq

(g)
L

)

(239)

Consequently, a linearization of the type of (211) can be straightfor-
wardly introduced, involving the following coefficients:



















An
LR =

1

2

(

J
(g)n
L +






J̃

(g)n
LR







)

Bn
LR =

1

2

(

J
(g)n
R −






J̃

(g)n
LR







)

(240)

The linearization (240) is exploited in [31] for defining a linearized
implicit time-advancing technique.

(L2) By defining a matrix J(g)⋆ = J(g)⋆
(

q(g)
)

which mimics the first-order
homogeneity property (212) as follows:

f (g) = J(g)⋆ · q(g) (241)

it is possible to introduce the following linearization (formally similar
to (236)):

δnf (g) ≈ J(g)⋆ n · δnq(g)
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Then, it is possible to replace (238) with the following expression:

δnφ
(g)ROE
c,LR ≈ 1

2

(

J
(g)⋆ n
L · δnq

(g)
L + J

(g)⋆ n
R · δnq

(g)
R

)

Finally, by keeping the approximation (237) (and, consequently, (239))
the following additional linearization can be introduced:
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2
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J
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)

Bn
LR =

1

2

(

J
(g)⋆ n
R −






J̃

(g)n
LR







)

(242)

which, of course, is similar to the previous one (240). The definition
of the matrix J(g)⋆) and, consequently, the linearization (242) are in-
troduced in [4] in order to define a linearized implicit time-advancing
technique.

Note 43 In general, the definition of J(g)⋆ is not unique, as shown by
the following example based on the basic-1D state vector q(x) (intro-
duced in sec. 2.2.3). Let αmn, with m,n ∈ {1, 2}, denote the mn−th
component of J(x)⋆. Then, the following relation must be verified, by
the definition (241):

(

ρ u
ρ u2 + p

)

=

(

α11 α12

α21 α22

)

·
(

ρ
ρ u

)

By virtue of the fact that ρ and u are independent of each other, it
necessarily follows that α11 = 0 and α12 = 1, while the remaining
relation leads to the following equation:

α21 ρ+ α22 ρ u = ρ u2 + p (243)

which admits an infinite number of solutions. By assuming, for in-
stance, α22 = 2 u, the matrix J(x)⋆ can be expressed as follows:

J(x)⋆ =









0 1

a2 − u2 +

(

p

ρ
− a2

)

2 u









(244)

while, by assuming α21 = a2 − u2, the following representation is ob-
tained:

J(x)⋆ =









0 1

a2 − u2 2 u+ u−1

(

p

ρ
− a2

)









(245)
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The matrix (244), in particular, is exploited in [4].

It is worth noticing that the aforementioned linearization techniques (L1)
and (L2) may coincide with each other. For instance, if the adopted barotropic
state law is first-order homogeneous:

p =
dp

dρ
ρ = a2 ρ (246)

then the expressions (244) and (245) become equal to each other and J(x)⋆

reduces to the relevant Jacobian J(x). As a result, the aforementioned lin-
earization techniques (L1) and (L2) coincide with each other.

A few simulations have been carried out, also involving the aforemen-
tioned linearizations (L1) and (L2). In particular, the test-case IR-M09-3
reported in Tab. 12 above has been considered. The state law associated
with the corresponding benchmark (namely B3, defined in Tab. 11) verifies
the condition (246) and therefore the linearizations (L1) and (L2) coincide
for the case at hand. Some relevant behaviours are shown in Figs. 42 and
43, in which the label L1/L2 concisely refers to both the aforementioned lin-
earizations while Lorig refers to the proposed one (222). It is worth noticing
that:

• for the considered test-case the considered discrete solutions turn out
to be very similar to each other;

• the stability of the linearized implicit time-advancing based on (L1) i.e
(L2) turns out to be comparable with that one based on the proposed
linearization. Indeed, as far as the test-cases reported in Tab. 12 are
concerned (hence, in particular for IR-M09-3), a blow-up occurs when
advancing the simulations with a coefficient c̃(CFL) = O (10), namely
for 1.5 · 10−1 < τ < 5.0 · 10−1 (compare with the relevant point in sec.
3.5.6).

Similar results have been obtained by exploiting a slightly different state law
for which (L1) does not coincide with (L2). On the basis of the carried-out
numerical experiments, the proposed linearization technique (222) seems to
behave similarly to the aforementioned ones, as far as the accuracy and the
efficiency are concerned. In particular, the stability restrictions imposed on
the time-advancing by the presence of discontinuities within the flow field
seem to affect all the considered linearized algorithms in a similar manner.
However, only a preliminary investigation has been performed in this regard
and further study is definitely recommended.

127



−3 −2 −1 0 1 2 3

1

1.5

2

2.5

x

ρ

exact
(IR−M09−1) L1/L2
(IR−M09−1) L

orig

Figure 42: Comparison between the considered approximate linearizations:
approximation of ρ (i.e. p) for the test-case IR-M09-3 in Tab. 12.
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Figure 43: Comparison between the considered approximate linearizations:
approximation of u for the test-case IR-M09-3 in Tab. 12.
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4 1D Applications to cavitating flows

In sec. 4.1 the considered state law is introduced, together with some details
concerning its numerical implementation. In sec. 4.2 some numerical results
obtained in [91] are recalled and an illustrative numerical experiment, based
on a RP whose IC leads to a cavitating flow, is presented.

4.1 State law of the working fluid

A state law of the type of that one defined in 1.5 is assumed for the working
fluid. The density domain, in particular, is split into two adjacent sub-
domains: an upper one, where the working fluid behaves as a pure liquid,
and a lower one, where cavitation phenomena are taken into account by a
homogeneous flow cavitation model (see secs. 1.3 and 1.4).

The mathematical definition of both models, whose physical assumptions
and implications are widely discussed in [26] and [27], is respectively given in
secs. 4.1.1 and 4.1.2. Some issues regarding the numerical implementation
of the cavitating mixture state law are then discussed in sec. 4.1.3. Finally,
in sec. 4.1.4, the convexity of the chosen barotropic state law is discussed.

4.1.1 Pure liquid model

The working liquid is supposed to be at a constant temperature TL. Let
psat and ρLsat be the saturation pressure and the liquid saturation density,
respectively, at temperature TL. Furthermore, let βL > 0 denote the coeffi-
cient of isentropic compressibility of the liquid at temperature TL [12]. The
non-dimensional form of the considered liquid barotropic state law reads:

p̄ = p̄liq (ρ̄) := 1 + ϑ ln (ρ̄) , ρ̄ ∈ [1,∞) (247)

where:
ρ̄ :=

ρ

ρLsat

, p̄ :=
p

psat

, ϑ := (βLpsat)
−1 (248)

Note 44 Common liquids are nearly-incompressible: their non-dimensional
compressibility coefficient ϑ, as computed by adopting physically-based values,
is very high (e.g. O (106) for water at 20◦C). Consequently, the density is
practically constant (ρ̄ ≈ 1) for preventing unphysically high pressure values
to be produced. In consideration of this point, in many computations involv-
ing real fluids under ordinary conditions, the logarithmic state law (247) is
replaced with its linearization (see e.g. [96] and [78]), namely:

p̄− 1 ≈ ϑ (ρ̄− 1) , ρ̄ ∈ [1,∞) (249)



The linearized state law may be preferable to the original one in view of its
simplicity. It is worth noticing that the expression (249) represents a specific
instance of the convex barotropic state law (71), obtained in particular for
κ = ϑ, κ = 1 and γ = 1 − ϑ.

4.1.2 Cavitation model

The chosen cavitation model provides the following differential relation be-
tween the non-dimensional density and pressure -introduced in (248)- within
the mixture region:

p̄

ρ̄

dρ̄

dp̄
= ρ̄

{

(1 − ε) ϑ−1 p̄+ σ1 ε p̄
σ2
}

+ (1 − ρ̄) {σ3 } , ρ̄ < 1 (250)

where:

- the non-dimensional parameters σ1, σ2 and σ3 are defined as follows
(psat being introduced in the previous section):

σ1 := g⋆

(

pc

psat

)η

, σ2 := −η , σ3 :=
1

γV

in which pc denotes the saturation pressure of the fluid at hand, γV

represents the specific heat ratio (i.e. specific heat at constant pressure
over specific heat at constant volume) of the relevant vapour and g⋆

and η are constants depending on the fluid under consideration [10].
It should be noticed, in particular, that σ2 and σ3 only depend on the
chosen liquid while σ1 is also affected by the liquid temperature TL;

- the symbol ε denotes the following non-dimensional function of ρ̄:

ε = εζ (ρ̄) :=

{

{

(

(1 + ζ)3 − 1
) 1 − ρ̄

ρ̄

}−3

+ 1

}−1/3

, ρ̄ < 1

(251)
which describes the liquid volume fraction (0 ≤ ε ≤ 1) which is in
thermal equilibrium with the cavities. The symbol ζ > 0 in (251) de-
notes a free model parameter accounting for thermal cavitation effects
and, possibly, for the concentration of the active cavitation nuclei [26]
[27]. The function εζ (ρ̄) is monotonically decreasing and, in particular,
admits the following asymptotic behaviour:

εζ (ρ̄→ 1) → 0 (252)

which correctly models the fact that a negligible fraction of the liquid
participates to the heat exchange at the interface with a vanishing
cavity [26].
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Note 45 It should be noticed that, once chosen the working liquid, the pure
liquid state law (247) only depends on the chosen temperature TL while the
mixture model (250) also depends on the free parameter ζ.

The physical foundations of the considered cavitation model ensure, in
particular, that the monotonicity requirement (4) is satisfied. Hence, once
given TL and ζ a value, the o.d.e. (250) can be numerically integrated with
the following physically based initial condition:

p̄ (ρ̄ = 1) = 1 (253)

Moreover, due to some approximations that are introduced when deriving
the cavitation model [26], the integration can only be extended down to a
certain threshold ρ̄min such that:

ρ̄min ≫ ρV sat

ρLsat
(254)

where ρV sat is the vapour saturation density at temperature TL. The con-
dition (254) clearly prevents the model to be applied for describing liquid-
vapour mixtures towards the pure vapour limit (hence, the chosen cavitation
model is not suitable, as it is, for juxtaposition with a barotropic state law
describing the pure vapour).

For consistency with the expression (1), the integral curve defined by
(250) and (253) is formally denoted as follows:

p̄ = p̄cav (ρ̄) , ρ̄ ∈ [ρ̄min, 1) (255)

where the half-open density domain must be juxtaposed with that one of the
pure liquid. The considered mixture state law (255), in particular, smoothly
joins the liquid one (247) at the saturation point (ρ̄ = 1, p̄ = 1), up to the
first derivative. Indeed, the continuity of p is trivially enforced by the initial
condition (253). Moreover, by substituting (253) and (252) into (250), it
follows that:

dρ̄

dp̄
(ρ̄→ 1) → ϑ−1

in agreement with the fact that, according to (247), dp̄/dρ̄ (ρ̄ = 1) = ϑ. In
other words, both p and a are continuous across the saturation point.

As an example, water at TL = 293.16 K is considered, leading to the
following values for the parameters in (250): ϑ ≈ 8.55 · 105 (see [26] and
[83]), σ1 ≈ 1.33 · 103, σ2 ≈ − 0.73 and σ3 ≈ 0.78 (see [10], [26] and [83]).
Since ρV sat/ρLsat = O (10−5) for the case under consideration, a threshold
ρ̄min = O (10−4 ÷ 10−3) is chosen in consideration of (254). Two barotropic
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curves obtained by choosing different values of the free parameter ζ are shown
in Fig. 44. The corresponding (dimensional) sound speed curves are reported
in Fig. 45. In this figure, the scale of the y-axis is deliberately cut for ease
of readability. Indeed, both limits a (ρ̄→ 1) → (ϑ psat/ρLsat)

1/2 ≈ 1.41 · 103

m/s and a (ρ̄→ ρ̄min) → O (102) m/s would in practice squash almost all the
curve on the x-axis.

The very sharp, step-like, transition of the sound speed occurring near
the saturation point in Fig. 45 is typical of the cavitation inception at low
temperatures TL (“cold cavitation”), of the type of the considered one. As
already mentioned in sec. 1.4, this abrupt transition is essentially related to
the considered physical phenomenon, as modelled by a homogeneous cavi-
tation model, and not to the specific model here adopted. In particular, it
is also present when considering the well-known barotropic cavitation model
originally proposed by Delannoy (see e.g. [22], [29] and [30]). Clearly, it is
very challenging to incorporate state laws like those shown in Fig. 44 (cou-
pled with a suitable liquid model, e.g. (247) or (249)), into state-of-the-art
numerical schemes.
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Figure 44: Typical trends of the considered mixture barotropic state law for
water at TL = 293.16 K.
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Figure 45: Trend of the mixture sound speed corresponding to the state laws
shown in Fig. 44. The y-axis is cut for ease of readability.
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4.1.3 Numerical implementation of the mixture state law

The cavitation model (250) does not explicitly provide the output of interest
(e.g. p) in correspondence of the chosen input (e.g. ρ): to this purpose, an
o.d.e. must be solved in advance. Obviously, when performing a simulation,
it is not convenient from a computational standpoint to solve such an o.d.e. at
each time-step and at each point of the computational grid in order to obtain
the desired output. Thus, it seems convenient to numerically integrate the
mixture cavitation model at the beginning of each simulation and then to
store a table of the form:

(ρi , pi , ai) , i ∈ {0, . . . , n− 1} (256)

with, say, ρ0 = ρLsat and ρn−1 = ρmin := ρ̄min · ρLsat, to be accessed as
required by the simulation algorithm. It is therefore necessary to define a
fast table look-up strategy in order to efficiently incorporate the cavitating
branch (255) of the barotropic model into a suitable numerical solver. To
the purpose, it is possible to take advantage of the typical “S-like” shape of
the mixture state law (see Fig. 44), as explained below.

A density-based algorithm is assumed for the remainder of the present
section. A typical access to the table (256) within such an algorithm is
aimed at finding the pressure p and the sound speed a corresponding to a
certain input value of the independent variable ρ < ρLsat. It is possible to
define a fast look-up strategy by firstly noticing that the distribution along
the x-axis in Fig. 44 of the density “nodes” ρi, as provided by an ordinary
adaptive integration algorithm (e.g. a classical fourth-order Runge-Kutta
scheme [79] with adaptive step-size control), typically exhibits clusters near
the extremes i = 0 and i = n − 1 due to the high value of the mixture
sound speed, respectively in correspondence of ρ = ρLsat and ρ = ρmin. It is
therefore possible to approximate the original density sequence ρi by a new
one, say ρ′j, obtained by juxtaposing two geometric sequences, ρ

(right)
j and

ρ
(left)
j , respectively starting from ρ0 and ρn−1 and joining each other at a

certain node ρi⋆ such that ρi⋆ ≈ 0.5 · ρLsat. Let γr > 1 and γl > 1 denote the

ratios of ρ
(right)
j and ρ

(left)
j , respectively. Once defined the number of points

in each sequence, say nr and nl respectively, the following representations
are easily obtained:

ρ
(right)
j := ρ0 −

γj
r − 1

γr − 1
δr , j ∈ {0, . . . , (nr − 1)} (257)

ρ
(left)
j := ρn−1+

γ
(nr+nl−2)−j
l − 1

γl − 1
δl , j ∈ {(nr−1), . . . , (nr+nl−2)} (258)
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where:

δr := (ρ0 − ρi⋆)
γr − 1

γ
(nr−1)
r − 1

δl := (ρi⋆ − ρn−1)
γl − 1

γ
(nl−1)
l − 1

and the new density sequence finally reads:

ρ′j :=



























































ρ0 , j = 0

ρ
(right)
j , j ∈ {1, . . . , (nr − 2)}

ρi⋆ , j = (nr − 1)

ρ
(left)
j , j ∈ {nr, . . . , (nr + nl − 3)}

ρn−1 , j = (nr + nl − 2)

(259)

The new density sequence has a noticeable advantage over the old one: it
permits to analytically identify the nodal span to which a given value of the
density ρ belongs by inverting (257) and (258) as follows (the cases ρ = ρ0,
ρ = ρi⋆ and ρ = ρn−1 are neglected because trivial):

ρ ∈















(

ρ′σ(ρ)+1, ρ
′
σ(ρ)

]

, ρi⋆ < ρ < ρ0

[

ρ′τ(ρ), ρ
′
τ(ρ)−1

)

, ρn−1 < ρ < ρi⋆

(260)

with:

σ (ρ) :=

⌊

1

ln (γr)
ln

{

1 + (ρ0 − ρ)
γr − 1

δr

}⌋

(261)

τ (ρ) := (nr + nl − 2) −
⌊

1

ln (γl)
ln

{

1 + (ρ− ρn−1)
γl − 1

δl

}⌋

(262)

where, of course, the symbol ⌊·⌋ denotes the floor function.
Once defined the new density sequence ρ′j , a new table can be built either

by solving the o.d.e. (250) once more, now in correspondence of the sequence
ρ′j , or by interpolating the original table. The latter strategy is considered
here and the following new table, in particular, is built:

(

ρ′j , p
′
j , a

′
j

)

, j ∈ {0, . . . , (nr + nl − 2)} (263)
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Figure 46: Comparison between the barotropic curves extracted from tables
(256) (“old”) and (263) (“new”) for water at TL = 20◦C. Data: n = 8127,
i⋆ = 6586, γr = γl = 1.004, nr = 6587 and nl = 1541. The y-axis is cut for
ease of readability.

by linearly interpolating the original one (256) in correspondence of the new
density sequence (259). Clearly, the original table can be discarded at this
point, since it is never accessed by the considered algorithm. It may be worth
noticing that, besides being attractive for its simplicity, a linear interpolation
preserves the strict monotonicity of the p-ρ curve.

For suitable values of the relevant parameters, the new table very well
approximates the original one, as shown for instance in Fig. 46. It is therefore
natural to define the following two-step access strategy based on the new table
(263):

- given an input density ρ (the cases ρ = ρ0, ρ = ρi⋆ and ρ = ρn−1 are
not considered here because trivial), the corresponding span within the
new table (263) is identified, by means of (260)-(262);

- the values of p and a corresponding to ρ are then defined by linear
interpolation within the identified span. Of course, this procedure can
be extended to an arbitrary number of dependent variables (e.g. the
function Ψ, defined in (69), to be used for solving RPs associated with
convex state laws, see sec. 2.5.1).
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Evidently, the aforementioned access strategy is more efficient than a crude
look-up within the original table (256). A similar technique can be defined
for pressure-based algorithms, as outlined in sec. B.

4.1.4 Convexity of the chosen state law

In consideration of the equality (59), the original convexity condition (58) is
introduced as follows:

2 a c(ρ) > 0

where c(ρ) is defined by (60). Then, by substituting the expression of c(ρ),
the condition above is recast as follows, for later convenience:

2
ϕ

ρ
+

dϕ

dρ
> 0 (264)

where:
ϕ := a2(ρ)

The condition (264) is exploited below for assessing the convexity of the
chosen barotropic state law.

For the pure liquid model (247)-(248) the following equality holds:

2
ϕ

ρ
+

dϕ

dρ
=

1

βL ρ2

and therefore the convexity condition (264) is clearly satisfied (βL > 0 by
definition). This holds true also for the linearized liquid model (249), as
already noticed in Note 44 (sec. 4.1.1).

In view of the fact that ϕ = a2 = dp/dρ, the cavitation model (250) can
be formally written in a more general way as follows:

ϕ =
p

ρ ω (ρ, p(ρ))
(265)

where the function ω represents the right-hand side of (250). Then, by dif-
ferentiating (265), the following equality is obtained:

2
ϕ

ρ
+

dϕ

dρ
=
ϕ

ρ
+
ϕ2

p

{

1 − ρ

(

∂ω

∂ρ
+ ϕ

∂ω

∂p

)}

(266)

The right-hand side of (266) can be exactly computed during the numerical
integration of the o.d.e. (250) (of course, the partial derivatives of ω are
known functions) and therefore it is possible to assess the convexity of the
cavitating branch of specific state law as well.
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Both the barotropic laws shown in Fig. 44, for instance, turn out to be
convex. Hence, in spite of the fact that the convexity marker c(ρ) defined
in (60) exhibits a jump at the junction between the liquid and the cavitat-
ing branch (which is due to the discontinuity of da/dρ across the saturation
point (ρLsat, psat)), the corresponding unified barotropic curve (i.e. (247) cou-
pled with (255)) can be classified as convex on the whole [69]. However, the
aforementioned discontinuity of da/dρ across the saturation point is not a
“pathology” affecting the chosen cavitation model. On the contrary, it re-
flects, within the limits of the homogeneous flow modelling, the characteristic
behaviour of the state law at phase transition. Indeed, in general, “phase
transitions in the fluid are a principal cause of non-convexity, since the sound
speed in a mixed phase region is smaller than in the pure phase” [69].

It may be worth remarking that the approximations introduced when de-
riving homogeneous flow cavitation models may affect the convexity of the
resulting state laws. Indeed, even small differences between two given ho-
mogeneous flow models can lead to substantially different wave solutions
of the same system of governing equations. For instance, a non-convex
barotropic state law is considered in [103], which is qualitatively similar to
those shown in Fig. 44. This law, which is smooth within the mixture region
and which allows for smooth junctions with a pure liquid and a pure vapour
barotropic models to be defined, is exploited in [103] to solve a RP by fol-
lowing [113]. Besides the classical rarefaction and shock waves presented in
sec. 2.4.2, so called “composite” waves appear as part of the solution, which
are defined by juxtaposing up to three classical waves in an alternate fash-
ion (i.e. shock-rarefaction, rarefaction-shock, shock-rarefaction-shock and
rarefaction-shock-rarefaction 52). According to the author, the aforemen-
tioned sensitivity, besides highlighting the key role that modelling plays in
this context, can encourage to also consider cavitation models which expressly
take into account additional physical effects, e.g. non-homogeneous models
(see sec. 1.3) or models directly incorporating thermodynamic effects related
to phase transition. This opinion seems to be somehow supported by the
fact that difficulties arise in applying common entropy conditions (see sec.
2.3.3) for selecting numerical solutions to classical p.d.e.s coupled with the
state laws provided by classical homogeneous flow models (see e.g. [3] and
[69]). Alternative approaches (e.g. the entropy-satisfying procedure based
on the mixture thermodynamics which is proposed in [3]) should be carefully
considered.

52No contact discontinuities are involved in the solution of the system at hand [103].
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4.2 Numerical results

The Roe flux function, the preconditioning strategy and the linearized im-
plicit time-advancing respectively presented in secs. 3.3, 3.4 and 3.5 have
been originally introduced in [91]. A qualitative appraisal of the considered
numerical ingredients is reported in the aforementioned document, based on
the quasi-1D water flow within a convergent-divergent nozzle. In particular,
the state law reported in Fig. 44 which is associated with ζ = 0.1 is con-
sidered in order to numerically simulate both non-cavitating and cavitating
flows. The obtained results, simply recalled here for conciseness, show that:

- the semi-discrete scheme based on the proposed Roe flux function ex-
hibits accuracy problems at the low Mach numbers typical of liquid
flows. The considered preconditioning strategy effectively overcomes
this problem (in particular, a local preconditioning strategy of the type
of that one mentioned in sec. 6.1.6 turns out to be effective also when
cavitation occurs);

- the preconditioning technique restricts the stability of the considered
explicit time-advancing algorithm (a 4−th order Runge-Kutta scheme).
The proposed linearized implicit strategy counteracts this problem: it
permits to efficiently advance in time the non-cavitating simulations.
However, when cavitation takes place, a noticeable time-step restriction
must be accepted; in particular, the allowable time-step turns out to
be of the order of that one required by the explicit non-preconditioned
scheme.

The relevant numerical experiments reported in secs. 3.3, 3.4 and 3.5 are in
agreement with the aforementioned results. The time-step reduction which
must be introduced when considering cavitating flows, in particular, is due
to the occurrence of noticeable discontinuities -especially as far as the Mach
number and the density are concerned- which are associated with the incep-
tion of cavitation (see secs. 1.4 and 4.1.2). However, as discussed in sec.
3.5.7, this problem does not seem to be specifically introduced by the pro-
posed linearization technique (222). Furthermore, it has been also observed
by performing a rather extensive number of numerical simulations [7], based
on the proposed linearization (222) and involving a different homogeneous
flow cavitation model (namely the instance of the well-known barotropic cav-
itation model of Delannoy which is reported in [22]).

Clearly, once introduced a convex instance of the unified barotropic curve
(247)-(255), it is possible to recall the material introduced in sec. 2.5.3 in
order to exactly solve 1D Riemann problems (RPs) based on the considered
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Benchmark Liquid TL ζ ρL uL ρR uR teval

B4 water 293.16 0.1 998 −0.1 998 0.1 1

Table 13: Considered benchmark.

state law. These, in turn, provide exact benchmarks for validating 1D nu-
merical methods dealing with cavitating flows and permit, in particular, to
accurately investigate the behaviour of the considered numerical schemes at
cavitation inception (thus addressing most of the difficulties related to the
phase transition, as described by a homogeneous flow model). A systematic
study of this type is postponed to a subsequent research stage; nevertheless,
an illustrative test-case is considered in the sequel, showing some features
that characterize the numerical discretization of the phase transition, as de-
scribed by the unified barotropic model (247)-(255).

Benchmark

The considered benchmark is defined in Tab. 13. The mixture branch of
the chosen state law is one of the two curves reported in Fig. 44. The rel-
evant non-dimensional dependent parameters for the expressions (247) and
(250) are: ϑ ≈ 8.55 · 105 (see [26] and [83]), σ1 ≈ 1.33 · 103, σ2 ≈ − 0.73 and
σ3 ≈ 0.78 (see [10], [26] and [83]). At the chosen temperature TL, the liquid
saturation density is ρLsat = 997.95 and therefore the IC in Tab. 13 defines
two liquid states 53 (passive scalars are neglected for the sake of simplicity).
Moreover, the speeds uL and uR are chosen so as to obtain two rarefactions
(symmetrical with respect to the original discontinuity x = 0) which lead to
a cavitating star region characterized by ρ⋆ ≈ 960.47 < ρLsat and u⋆ = 0 (by
symmetry). The sound speed in the liquid is aL = aR ≈ 1415.63 while in the
cavitating region it falls down to approximately acav ≈ 0.37; the resulting
flow is entirely subsonic 54. In consideration of the aforementioned varia-
tion of the sound speed, it is to be expected that the star region is hardly
observable as part of the solution.

53The SI units are tacitly understood, see Note 3 in sec. 2.2.
54Sonic conditions are deliberately avoided, see Note 32 in sec. 3.3.1.
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Test-case Benchmark µ (nL, nR) τ

LdA1 B4 1 (2, 2) · 103 10−4

LdA2 B4 1 (2, 2) · 103 10−3

LdA3 B4 1 (2, 2) · 103 10−2

Table 14: Considered test-cases.

Discretization

The discrete scheme (224) is considered (more precisely, its basic-1D coun-
terpart not involving the passive scalar ξ), associated with a uniform space
discretization having measure µ = 1 and a constant time-step τ . Transmis-
sive BCs of the type of (120) are adopted, leading to equations similar to
(235). The considered test-cases are reported in Tab. 14. The numerical
approximation of ρ, p and u is shown in Figs. 47-51. It should be noticed
that:

• the density undergoes a spike-like variation close to the cavitating re-
gion. It is practically impossible to distinguish the head as well as the
tail of the density waves (see Note 26 in sec. 3.2.2) in Fig. 47, be-
cause the density variation close to rarefaction head is squashed by the
considerable variation occurring towards the cavitating region. Fur-
thermore, the width of the star region is not resolved by the adopted
space discretization.
When examining in Fig. 48 a narrower sub-domain around x = 0 it
is evident that, as expected, the accuracy of the numerical solution
improves when adopting smaller time-steps. However, it is extremely
difficult to accurately describe the cavity, which only occupies a very
small region close to the minimum of the “exact” curve shown in Fig.
48 (see the following point). Indeed, the characteristic size of the cav-
ity is O (acav · teval) = O (10−1), clearly finer than the adopted space
discretization 55.

• the pressure exhibits a remarkably different trend with respect to the
density, as shown in Fig. 49. Indeed:

55A uniform space discretization is adopted for consistency with the other 1D numerical
experiments reported in the present document. A finer discretization is not considered in
order not to introduce a computational overhead within the liquid region (which represents
the vast majority of the computational domain).
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- the head of the rarefactions is clearly visible; that one of the left
rarefaction, for example, is marked by P1 in the considered figure;

- most of the pressure variation takes place, in practice, near the
head of the rarefactions. For instance, as far as the left rarefaction
is concerned, the pressure abruptly reaches the saturation value
psat, marked by P2 in Fig. 49, as well as the “right corner” of the
relevant pressure curve in Fig. 44 (very close to the right margin
of the figure), marked by P3 in Fig. 49. The transition between
P2 and P3 is aligned with that one between P1 and P2 (i.e. no
abrupt changes occur when entering the mixture region). Indeed,
the rightmost portion of the relevant cavitating curve in Fig. 44
is practically vertical near the saturation point (due to the very
weak compressibility of the liquid) and therefore it behaves like a
prolongation of the adopted liquid model;

- the cavity, whose width is O (10−1) (see above), is indicated in
Fig. 49 by P4. When moving from P3 to P4, the pressure weakly
decreases (the variation is not resolved in the figure) and therefore
this arc is not part of the star region of the considered RP (where
the solution is constant, see sec. 2.5.3). Indeed, most of this arc
corresponds to the practically horizontal portion of the relevant
pressure curve in Fig. 44 and the pressure decrease occurring
near the left extreme of the aforementioned curve originates the
variation shown in Fig. 50;

• as shown in Fig. 51, the approximation of u is reasonably good, even
near the cavity

In consideration of the previous points, it is clear that an accurate description
of the ratrefaction’s tail and, more in general, of the cavity is only possible
at the cost of a very fine space discretization. Of course, several numerical
investigations of the type of that one reported above can be performed by
exploiting the chosen barotropic state law (the discretization of the sound
speed, for instance, is considered in Fig. 52). However, as stated above, such
an investigation is postponed to a subsequent research stage.
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Figure 47: Approximation of ρ for the test-cases reported in Tab. 14.
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Figure 48: Detail of Fig. 47.
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Figure 49: Approximation of p for the test-cases reported in Tab. 14. The
labels P1-P4 are added for ease of discussion.
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Figure 50: Detail of Fig. 49.
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Figure 51: Approximation of u for the test-cases reported in Tab. 14.
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Figure 52: Approximation of a for the test-cases reported in Tab. 14.
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5 3D Numerical method

In the present section, a linearized implicit discrete scheme is proposed for
solving the 3D governing equations introduced in secs. 2.2.1 and 2.2.2, based
on some numerical ingredients introduced in sec. 3. By adopting the archi-
tecture of the numerical frame mentioned in the introduction to the present
document (namely the AERO code), the space and time discretizations are
kept separate from each other.
As far as the space discretization is concerned, some basic issues regarding
the considered unstructured grids are recalled in sec. 5.1.1. Then, a gen-
eralization of the Roe numerical flux proposed in sec. 3.3 is discussed in
sec. 5.1.2. Moreover, in sec. 5.1.3 the preconditioning technique introduced
in sec. 3.4 is incorporated into the considered 3D Roe numerical flux. Fi-
nally, once specified the discretization of the convective fluxes, the relevant
semi-discrete formulation is introduced in sec. 5.1.4 and extended to rotating
frames in sec. 5.1.5.
As far as the time discretization is concerned, in sec. 5.2.1 the linearization
of the Roe numerical flux function proposed in sec. 3.5 is generalized to the
present 3D context. Furthermore, in sec. 5.2.2 a linearized implicit discrete
scheme is defined, based on the relevant material introduced in the preceding
sections (numerical simulations exploiting this scheme are reported in sec. 6).

5.1 Space discretization

In this section, the main issues regarding the adopted finite volume space
discretization are discussed.

5.1.1 Finite volume approximation

The considered space discretization is based on the finite volume approach
introduced in sec. 3.1.1; the definition of the finite volume cells for the 3D
case at hand is described below. At a preliminary stage, the considered 3D
(bounded) computational domain D ∈ R

3 is approximated by means of a
polyhedral domain Dpol which, in turn, is divided into Nt tetrahedra having
vertices Pi, with i ∈ I := {1, . . . , Nc}. Let Th, with h ∈ H := {1, . . . , Nt},
denote the h−th tetrahedron; the following relations are (by construction)
satisfied:

Th1 ∩ Th2 6=h1 = {0} , Dpol =
⋃

h∈H

Th



The i−th finite volume cell Ci, associated with Pi, is given by:

Ci =
⋃

h∈t(i)

C
(h)
i

where:

- t(i) ⊂ H is the set of indexes marking those tetrahedra which share Pi

as a vertex;

- C
(h)
r represents the subset of Th which is defined by further dividing

Th into 24 sub-tetrahedra by means of its median planes 56 and subse-
quently considering those 6 sub-tetrahedra which share Pr as a vertex.

Clearly, there is a finite volume cell for each vertex 57. Moreover, the
resulting finite volume discretization clearly verifies the following relations:

Ci1 ∩ Ci2 6=i1 = {0} , Dpol =
⋃

i∈I

Ci

and it is sometimes referred to as a “dual mesh” (see e.g. [39]), by virtue of
the specific procedure which is adopted in order to build the cells by starting
from the tetrahedra.

An example of the construction of the finite volume cells is shown in Fig.
53, for the 2D counterpart of the aforementioned 3D case. In this figure the
tetrahedra are replaced with triangles in the x1 − x2 plane (whose vertices
and edges are respectively marked by circles and dashed lines) and the me-
dian planes reduce to the ordinary medians (marked by dotted lines). Each
triangle is then divided into 6 sub-triangles by the medians and 2 of them are
associated with each vertex. The boundary of the cell Ci associated with Pi

is identified by a solid line and the portion of this boundary representing, in
particular, the interface between Ci and Ch is highlighted by a thicker line.

Let µi represent the measure of Ci. On Ci the exact solution q(x, t),
where x ∈ R

3 denotes the position vector and q represents the conservative
state vector defined in (9), is approximated by a semi-discrete function qi(t)
which is considered as an approximation of the mean value of q(x, t) over Ci

(in analogy with (93)):

qi(t) ≈
1

µi

∫

Ci

q(x, t) dV (267)

56Each median plane is associated with an edge. The median plane relative to a certain
edge ẽ contains ẽ as well as the middle point of the (unique) edge ē which is not directly
connected to ẽ.

57The considered finite volume discretization can be regarded to as a “cell vertex” one
[39], even if it is not necessary -to the purposes of the present study- to associate the
quantities defined on Ci with a specific point belonging to Ci (in particular with Pi).
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Figure 53: Example of the construction of a 2D finite volume cell by a dual
mesh approach based on the medians.

The differential system defining qi is obtained by discretizing the integral
balance (8) over the control volume Ci. To the purpose, by virtue of (267),
the time-derivative in (8) is naturally approximated as follows:

∂t

∫

Ci

q(x, t) dV ≈ µi
d

dt
qi (268)

while the term involving the flux is discretized as described in sec. 5.1.4.

5.1.2 A 3D Roe numerical flux for generic barotropic state laws

In the spirit of (96), let:
φ (qi,qj, ν̂ij) (269)

denote a 3D numerical flux from qi to qj, along the direction ν̂ ij. An instance
of the aforementioned flux function is defined in the present section, based
on the proposed augmented-1D Roe numerical flux (156)-(160).

Frame change and rotational invariance

Let R ∈ R
3×3 denote an orthogonal matrix (R−1 = RT ) associated with
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a rotation of the chosen Cartesian frame (see sec. 2.2.1). By introducing a
matrix R̄ ∈ R

4×4 defined as follows:

R̄ :=

(

1 0T

0 R

)

it is straightforward to compactly apply the aforementioned rotation to the
considered state vector q ∈ R

4 (whose first component is a scalar, obviously
invariant with respect to a frame change) as follows:

q −→ q′ := R̄ · q

In order to correctly discretize the considered balance (8), which is prop-
erly formulated as a tensorial relation, the flux function (269) must satisfy
the following property (rotational invariance, see e.g. [39] and [98]):

φ (qi,qj , ν̂ij) = R̄−1 · φ
(

q′
i,q

′
j, ν̂

′
ij

)

(270)

where, of course, ν̂ ′
ij corresponds in the rotated frame to ν̂ij:

ν̂ ′
ij := R · ν̂ ij

Sweep approximation

A frame rotation R is considered; without any loss of generality, the ro-
tated direction ν̂ ′

ij is supposed to coincide with the versor ê′(k) associated
with the k−th direction x′k (k ∈ {1, 2, 3}) of the rotated frame:

ν̂ ′
ij = ê′(k) (271)

Moreover, a basic-1D flow is assumed to take place along x′k (this assumption
plays a fundamental role in the subsequent derivation). Thus, by recalling the
k−th sweep of the relevant 3D governing equations (see sec. 2.2.5) written
in the rotated frame, it is possible to define an instance of the flux function
φ
(

q′
i,q

′
j, ν̂

′
ij

)

appearing in (270). More precisely, due to the formal identity
between the augmented-1D equations and the 1D sweeps of the 3D equations
(see sec. 2.2.5), the considered instance of φ

(

q′
i,q

′
j, ν̂

′
ij

)

can be defined by

introducing a Roe numerical flux φ′ROE
ij which generalizes the proposed one

(156)-(160), as described below.
The centred component of φ′ROE

ij is firstly considered. Let f (ν̂′

ij) (q′) de-
note the augmented-1D analytical flux along x′k. In consideration of (271),
it is straightforward to derive from (10) the following representation:

f (ν̂′

ij) (q′) =
(

u′T · ν̂ ′
ij

)

q′ + p

(

0
ν̂ ′

ij

)

(272)
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where, of course:
u′ := R · u

The sought centred component, which generalizes the augmented-1D one
(158), can then be defined as follows:

φ′ROE
c,ij :=

1

2

(

f (ν̂′

ij) (q′
i) + f (ν̂′

ij)
(

q′
j

)

)

The upwind component of φ′ROE
ij is considered in the sequel. According

to the sweep approximation, the velocity components associated with the
versors ê′(h) , h 6= k, of the rotated frame are treated as passive scalars.
Consequently, the Roe averages to be introduced in a Roe matrix for the
k−th sweep under consideration are aij , defined in (154), and u′

ij, with u′
ij

defined as follows:
u′

ij := R · uij (273)

where:

uij :=

√
ρi ui +

√
ρj uj√

ρi +
√
ρj

(274)

The above definition, in particular, extends the Roe averages (153) to the
present context. Let J̃′

ij denote the sought Roe matrix, which clearly general-

izes the matrix sij J̃
(A)
ij appearing in (160). By a straightforward extension of

(150), it is possible to define J̃′
ij by evaluating the Jacobian associated with

the direction x′k -which, in turn, can be derived from (16)- in correspondence
of the aforementioned Roe averages, namely:

J̃′
ij :=





0 ν̂ ′T
ij

a2
ij ν̂

′
ij − σij u′

ij u′
ij · ν̂ ′T

ij + σij I



 (275)

where:
σij := u′T

ij · ν̂ ′
ij = uT

ij · ν̂ij (276)

Then, once recalled the definition of ∆ij given in (155), the sought upwind
component generalizing (159)-(160) can be defined as follows:

φ′ROE
u,ij := D′

ij · ∆ijq′ (277)

D′
ij := − 1

2






J̃′

ij







and the resulting Roe flux function:

φ′ROE
ij := φ′ROE

c,ij + φ′ROE
u,ij (278)
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can be considered as an instance of the flux function φ
(

q′
i,q

′
j , ν̂

′
ij

)

, namely:

φ
(

q′
i,q

′
j, ν̂

′
ij

)

= φ′ROE
ij (279)

3D Roe numerical flux

In view of (279), the representation of the considered instance ofφ (qi,qj , ν̂ij)
can be derived from the definitions introduced in the previous paragraph, by
a trivial change of notation. Nevertheless, such a representation is reported
below for ease of presentation.

Let the considered 3D Roe numerical flux function φROE
ij be defined as

follows:

φROE
ij := φROE

c,ij + φROE
u,ij (280)

φROE
c,ij :=

1

2

(

f (ν̂ij) (qi) + f (ν̂ij) (qj)
)

(281)

φROE
u,ij := Dij · ∆ijq

Dij := − 1

2






J̃ij






(282)

where the function f (ν̂ij) (q) in (281) is straightforwardly derived from (272)
as follows:

f (ν̂ij) (q) =
(

uT · ν̂ij

)

q + p

(

0
ν̂ij

)

(283)

and the Roe matrix J̃ij in (282) is trivially derived from (275) as follows:

J̃ij :=





0 ν̂T
ij

a2
ij ν̂ij − σij uij uij · ν̂T

ij + σij I



 (284)

with σij introduced in (276). From (279) it follows that the considered in-
stance of the 3D flux function (269) reads:

φ (qi,qj , ν̂ij) = φROE
ij (285)

with φROE
ij defined in (280)-(284).

Note 46 The numerical flux (285) evidently satisfies the following relations:

φ (qj ,qi, ν̂ji = − ν̂ij) = − φ (qi,qj , ν̂ij) (286)

φ (qi,qj = qi, ν̂ij) = f (ν̂ij) (qi) (287)
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with f (ν̂ij) (q) given by (283). The relation (286) clearly extends the conser-
vation property (99) while the relation (287) provides a generalization of the
consistency property (100).
Moreover, the numerical flux (285) also satisfies the rotational invariance
condition (270). Clearly, in order to verify the previous assertion it suffices
to show that the following relation:

φ′ROE
ij = R̄ · φROE

ij (288)

holds true. To the purpose, the centred components are firstly considered.
Once noticed that the right-hand side of the expression (272) can be recast as
follows (of course, u′T · ν̂ ′

ij = uT · ν̂ij):

(

uT · ν̂ij

)

R̄ · q + p R̄ ·
(

0
ν̂ ij

)

= R̄ · f (ν̂ij) (q)

with f (ν̂ij) (q) given by (283), it is evident that:

φ′ROE
c,ij = R̄ · φROE

c,ij (289)

As far as the upwind components are concerned, the following relation (straight-
forwardly derived from the relevant definitions) can be introduced:

J̃′
ij = R̄ · J̃ij · R̄−1 (290)

In consideration of the fact that the eigenvalues are invariant with respect to
a frame change and by recalling the definition of the operator | · | given in
(6), it follows from (290) that:

|J̃′
ij| = R̄ · |J̃ij| · R̄−1 ⇒ D′

ij = R̄ · Dij · R̄−1

Hence, the right-hand side of (277) can be recast as follows (of course, ∆ijq′ =
R̄ · ∆ijq):

R̄ · Dij · R̄−1 · R̄ · ∆ijq = R̄ · Dij · ∆ijq

and therefore:
φ′ROE

u,ij = R̄ · φROE
u,ij (291)

As a result, the equality (288) immediately follows from (289) and (291), in
view of the definitions (278) and (280).
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5.1.3 Incorporation of the preconditioning strategy

It is possible to extend the preconditioning strategy introduced in sec. 3.4.3
so as to be incorporated into the proposed 3D Roe numerical flux (280)-
(284). To the purpose, the preconditioner (194) is firstly recalled. Consis-
tently with the sweep approximation introduced in the previous section, the
representation of the preconditioner P′

ij -to be incorporated into the Roe flux

φ′ROE
ij defined in (278)- can be derived from the expression (194) by replacing

(uij, ξij, ηij)
T with the Roe averages (273), namely:

P′
ij := I +

(

β2 − 1
)





1 0T

u′
ij O



 (292)

The matrix (292) satisfies the following relation:

P′
ij = R̄ · Pij · R̄−1

where, of course:

Pij := I +
(

β2 − 1
)





1 0T

uij O



 (293)

with the Roe averages uij defined in (274). The preconditioner (293) must

be associated with the Roe matrix J̃ij defined in (284) and the resulting 3D
preconditioned Roe numerical flux finally reads:

φ
ROE,p
ij := φROE

c,ij + φROE,p
u,ij (294)

where the centred component φROE
c,ij is given by (281) while the upwind one

reads:

φ
ROE,p
u,ij := Dp

ij · ∆ijq

Dp
ij := − 1

2
(Pij)

−1 ·





Pij · J̃ij






(295)

It may be worth remarking that, as for the starting augmented-1D case, the
matrix Pij · J̃ij appearing in (295) is diagonalizable with real eigenvalues and
therefore the operator | · | -defined in (6)- can be rightfully applied. The Roe
numerical flux (294)-(295) can be considered as an instance of the 3D flux
function (269); for later convenience, it is marked as follows:

φp (qi,qj, ν̂ij) := φ
ROE,p
ij (296)
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5.1.4 Discretization of the fluxes and semi-discrete formulation

The discretization of the surface integral appearing in the balance (8) is
considered in the present section. More precisely, the convective flux across
the boundary ∂Ci of the generic cell Ci is considered.

In general, the relevant integrand can be recast as follows:

3
∑

k=1

n̂k f (k) = f (n̂)

where the definition of f (n̂) (·) is trivially derived from (283), namely:

f (n̂) (q) :=
(

uT · n̂
)

q + p

(

0
n̂

)

(297)

As far as the integration domain is concerned, it can be split into several
parts, as described below. The cell Ci is adjacent to a certain number s(i)
of other cells Cj , clearly equal to the number of vertices Pj which are con-
nected to Pi by an edge of the underlying tetrahedral lattice (see sec. 5.1.1).
Consequently, the boundary ∂Ci of Ci can be decomposed as follows 58:

∂Ci =





⋃

j∈s(i)

∂Ci ∩ ∂Cj



 ∪
(

∂Ci ∩ ∂Dpol
)

(298)

where ∂Dpol denotes the boundary of the flow domain Dpol. This boundary,
in turn, is assumed to be split as follows:

∂Dpol = ∂DI ∪ ∂DO ∪ ∂DB ∪ ∂DC (299)

where ∂DI and ∂DO respectively denote the inflow and the outflow surfaces,
∂DB represents the wall of a rigid body immersed within the flow (if any) and
∂DC indicates a rigid wall encasing the flow. Consequently, once introduced
the following definitions:

Sij := ∂Ci ∩ ∂Cj , ϕij :=

∫

Sij

f (n̂) dS

SiX := ∂Ci ∩ ∂DX , ϕiX :=

∫

SiX

f (n̂) dS , X ∈ {I, O,B, C}

58A detailed characterization of the considered boundary can be found in [33].
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the convective flux across the boundary ∂Ci in the balance (8) can be recast
as follows:

∫

∂Ci

f (n̂) dS =
∑

j∈s(i)

ϕij +ϕiI +ϕiO +ϕiB +ϕiC (300)

The discretization of each flux appearing on the right-hand side of (300) is
discussed below.

In order to define a numerical approximation ϕ̃ij of ϕij, the following
average direction ν̂ ij associated with Sij is introduced:

νij :=

∫

Sij

n̂ dS , ν̂ ij :=
ν ij

‖ν ij‖
(301)

and ϕij is firstly approximated by a 3D numerical flux of the type of (269)
crossing an “equivalent” planar surface having measure ‖νij‖ and normal
ν̂ ij, namely:

ϕij ≈ ‖νij‖ φ (qi,qj, ν̂ij)

In consideration of the fact that the convective flux along ν̂ij , as obtained
by substituting n̂ = ν̂ij into (297), coincides with the expression (283), it is
possible to choose the proposed 3D Roe flux φROE

ij defined in (280)-(284) for

approximating ϕij . More in general, the 3D preconditioned Roe flux φROE,p
ij

given in (294)-(295) can be considered and therefore, in view of (296), the
following approximation is defined:

ϕij ≈ ϕ̃ij := ‖νij‖ φp (qi,qj, ν̂ij) (302)

An approximation of the type of (302) is also adopted for the fluxes ϕiI

and ϕiO. More precisely, once introduced a fictitious inflow state vector qI
i ,

the following relation is introduced:

ϕiI ≈ ϕ̃iI := ‖ν iI‖ φp
(

qi,q
I
i , ν̂iI

)

(303)

where ν̂ iI is defined in the spirit of (301). Similarly, the chosen approximation
of the outflow flux reads:

ϕiO ≈ ϕ̃iO := ‖ν iO‖ φp
(

qi,q
O
i , ν̂iO

)

(304)

where qO
i represents a fictitious outflow state vector and ν̂iO is defined in

the spirit of (301). It should be noticed that the approximations (303) and
(304), besides being consistent with the discretization of the inner fluxes
(302), take into account the wave structure of the flow entering/exiting the
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computational domain by means of the upwinding component of the consid-
ered Roe numerical flux function.

At the walls ∂DB and ∂DC the classical slip condition [88]:

uT · n̂ = 0 (305)

is imposed, consistently with the adopted inviscid approximation (see sec.
2.2). The condition (305) can be introduced into (297), thus leading to the
following approximations:

ϕiB ≈ ϕ̃iB := ‖νiB‖
(

0
pi ν̂ iB

)

(306)

ϕiC ≈ ϕ̃iC := ‖νiC‖
(

0
pi ν̂iC

)

(307)

where ν̂ iB and ν̂ iC are clearly defined in the spirit of (301).
In consideration of the material introduced in the present section, the

convective flux (300) is discretized as follows:

∫

∂Ci

f (n̂) dS ≈ ϕ̃i :=
∑

j∈s(i)

ϕ̃ij + ϕ̃iI + ϕ̃iO + ϕ̃iB + ϕ̃iC (308)

with ϕ̃ij , ϕ̃iI , ϕ̃iO, ϕ̃iB and ϕ̃iC respectively defined in (302), (303), (304),
(306) and (307). The expression (308) can be formally introduced for all the
finite volume cells; indeed, if SiX = {∅} (X ∈ {I, O,B, C}) then ‖νiX‖ = 0
and the term ϕ̃iX correctly vanishes. As a result, by combining (268) and
(308), the following semi-discrete formulation of the considered balance (8)
is finally obtained:

µi
d

dt
qi + ϕ̃i = 0 , i ∈ I (309)

5.1.5 Extension to rotating frames

Let B denote a rigid body immersed within the flow, which rotates with
constant angular velocity ω (e.g. an axial inducer of the type of those intro-
duced in sec. 1). The representation of the governing equations with respect
to a frame rotating with B (hereafter referred to as body-frame) is given in
(17); the corresponding semi-discrete formulation is considered in the present
section.

The external portion ∂Dpol(ext) of the boundary ∂Dpol in (299) is clearly
given by:

∂Dpol(ext) := ∂DI ∪ ∂DO ∪ ∂DC
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The surface ∂Dpol(ext) is here assumed to be symmetrical with respect to
the rotation axis; in such a circumstance, it behaves like a fixed one in the
body-frame and therefore it is possible to discretize the balance (17) without
dealing with moving computational grids. While the previous assertion is
clear as far as the inflow and outflow components are concerned 59, it may be
useful to further discuss the term related to the external wall ∂DC . In the
body frame, ∂DC is a moving surface on which the slip condition is properly
formulated as follows [88]:

uT · n̂ = (ω ∧ x)T · n̂ (310)

where the vector product on the right-hand side represents the dragging
velocity associated with the point on ∂DC which is identified by the position
vector x. However, by virtue of the assumed symmetry, the vectors ω, x
and n̂ are necessarily coplanar and therefore the right-hand side of (310) is
systematically equal to zero. As a result, the condition (310) reduces to its
non-rotating counterpart (305) and ∂DC behaves as a non-rotating boundary.

In view of the aforementioned considerations, it is possible to derive the
sought semi-discrete formulation from the non-rotating one (309), as de-
scribed below. Let gi denote the centroid associated with Ci, namely:

gi :=
1

µi

∫

Ci

x dV (311)

Moreover, let ri denote the vector mapping the projection of gi on the rota-
tion axis to gi itself:

ri := − ω̂ ∧ (ω̂ ∧ gi)

where ω̂ represents the versor associated with ω. Then, once introduced the
following definition (derived from (18)):

si := ‖ω‖
(

0
− 2 ω̂ ∧ ρiui + ρi ‖ω‖ ri

)

(312)

it is possible to approximate the right-hand side of the balance (17) -written
for Ci- as follows:

∫

Ci

s dV ≈ µi si (313)

Finally, by combining (309) and (313), it is straightforward to introduce the
following semi-discrete formulation for the considered balance (17):

µi
d

dt
qi + ϕ̃i = µi si , i ∈ I (314)

59Of course, the rotation affects the representation of the fictitious state vectors qI
i and

qO
i appearing in the approximations (303) and (304) which, however, can be formally kept.
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5.2 Time discretization

A discrete scheme is presented, based on a generalization of the linearized
implicit time-advancing proposed in sec. 3.5.

5.2.1 Linearization of the 3D Roe numerical flux

It turns out to be straightforward to extend the proposed linearization (229)
of the preconditioned, augmented-1D Roe flux function to the 3D case. In-
deed, as highlighted in sec. 5.1.2, the preconditioner Pij defined in (293) and

the Roe matrix J̃ij defined in (284) respectively generalize their augmented-

1D counterparts (namely P
(A)
ij and sij J̃

(A)
ij ) and therefore the linearization

of the preconditioned Roe numerical flux (296) reads (δn being defined in
(103)):

δnφp (qi,qj, ν̂ij) ≈ An
ij · δnqi + Bn

ij · δnqj (315)

where:






An
ij := A

(

qn
i ,q

n
j , ν̂ij

)

Bn
ij := B

(

qn
i ,q

n
j , ν̂ij

)

(316)















A (qi,qj, ν̂ij) := (Pij)
−1 ·

(

Pij · J̃ij

)+

B (qi,qj, ν̂ij) := (Pij)
−1 ·

(

Pij · J̃ij

)−
(317)

5.2.2 Linearized implicit time-advancing

Starting from the semi-discrete formulation (314), a linearized implicit time-
advancing strategy is defined, as described below:

• the time derivative term in (314) is approximated by a backward finite
difference, namely:

µi
d

dt
qi ≈

µi

δnt
δnqi =

µi

δnt
I · δnqi (318)

• from the relevant definition (308), the variation of the term ϕ̃i in (314)
reads:

δnϕ̃i =
∑

j∈s(i)

δnϕ̃ij + δnϕ̃iI + δnϕ̃iO + δnϕ̃iB + δnϕ̃iC (319)
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Then, in consideration of the definitions (302)-(304) and by recalling
the material discussed in sec. 5.2.1, it is possible to introduce the
following approximations:

δnϕ̃ij ≈ ‖νij‖
(

An
ij · δnqi + Bn

ij · δnqj

)

(320)

δnϕ̃iI ≈ ‖νiI‖
(

An
iI · δnqi + Bn

iI · δnqI
i

)

δnϕ̃iO ≈ ‖νiO‖
(

An
iO · δnqi + Bn

iO · δnqO
i

)

(321)

where An
ij and Bn

ij are given by (316) and the remaining coefficients are
defined in the spirit of (316), by suitably replacing qj with the fictitious
state vectors qI

i and qO
i . Moreover, let K(ν̂) (q) denote the following

Jacobian:

K(ν̂) (q) := ∂q

(

0
p ν̂

)

=

(

0 0T

a2 ν̂ O

)

Then, by defining the following matrices:

Kn
iB := K(ν̂iB) (qn

i ) , Kn
iC := K(ν̂iC) (qn

i )

it is possible to introduce the following linearization for the remaining
numerical fluxes in (319):

δnϕ̃iB ≈ ‖ν iB‖ Kn
iB · δnqi (322)

δnϕ̃iC ≈ ‖νiC‖ Kn
iC · δnqi (323)

By combining (320)-(321), (322) and (323) it is possible to recast (319)
as follows:

δnϕ̃i ≈ Fn
ii · δnqi +

∑

j∈s(i)

Fn
ij · δnqj + Fn

iI · δnqI
i + Fn

iO · δnqO
i (324)

where:






























































Fn
ii :=

∑

j∈s(i)

‖νij‖ An
ij+

‖νiI‖ An
iI + ‖νiO‖ An

iO + ‖νiB‖ Kn
iB + ‖νiC‖ Kn

iC

Fn
ij := ‖νij‖ Bn

ij

Fn
iI := ‖νiI‖ Bn

iI

Fn
iO := ‖νiO‖ Bn

iO
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• let Si denote the Jacobian of the term si introduced in (312), namely:

Si := ∂qi
∂si = ‖ω‖





0 0T

‖ω‖ ri − 2Ω



 (325)

with Ω defined by the following relation:

ω̂ ∧ y = Ω · y

where y is a generic vector in R
3. Once noticed that the matrix (325)

does not depend on the specific instance of the state vector qi (and
therefore on the time-level), it is possible to linearize the right-hand
side of (314) as follows:

µi s
n+1
i = µi s

n
i + µi Si · δnqi (326)

By combining (318), (324) and (326), it is straightforward to introduce the
following discrete scheme:

En
i · δnqi +

∑

j∈s(i)

Fn
ij · δnqj + Fn

iI · δnqI
i + Fn

iO · δnqO
i = bn

i , i ∈ I (327)

where:










En
i :=

µi

δnt
I + Fn

ii − µi Si

bn
i := µi s

n
i − ϕ̃n

i

Note 47 The equation (327) clearly represents a sparse linear system which
can be solved once the boundary terms δnqI

i and δnqO
i have been suitably

associated to specific BCs. For instance, if a uniform inflow is assumed with
respect to the non-rotating frame, associated with the state vector q∞(t), then
qI

i admits the following representation in the body frame:

qI
i = q∞(t) − ‖ω‖

(

0
ω̂ ∧ gi

)

(328)

with gi given by (311). In consideration of the fact that the corresponding
variation:

δnqI
i = q∞(tn+1) − q∞(tn)

does not involve any unknown, the term Fn
iI · δnqI

i in (327) must be formally
incorporated into the known term bn

i . If, in addition, the following transmis-
sive outflow BC is assumed:

qO
i = qi (329)
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then the corresponding variation, namely:

δnqO
i = δnqi

clearly implies that the coefficient Fn
iO in (327) must be formally incorporated

into En
i . As a result, when adopting the BCs (328) and (329), the system

(327) becomes:

Ēn
i · δnqi +

∑

j∈s(i)

Fn
ij · δnqj = b̄n

i (330)

with:










Ēn
i :=

µi

δnt
I + Fn

ii + Fn
iO − µi Si

b̄n
i := µi s

n
i − ϕ̃n

i − Fn
iI · δnqI

i
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6 3D Applications

In the present section, the numerical method proposed in sec. 5 is applied to
the liquid flow around a hydrofoil (sec. 6.1) as well as to the flow around an
axial inducer (sec. 6.2). For both cases, suitable instances of the barotropic
state law introduced in sec. 4.1 are adopted.

6.1 Simulation of the 3D flow around a hydrofoil

The water flow around a 3D NACA0015 hydrofoil having chord c = 115 mm
and mounted within a water tunnel at 4◦ angle of attack is considered, as
a validation benchmark for the linearized implicit scheme proposed in sec.
5. After introducing the problem in sec. 6.1.1, some issues regarding the
numerical discretization as well as the used computational resource are pre-
sented in secs. 6.1.2 to 6.1.4. Non-cavitating as well as cavitating numerical
simulations are respectively presented in secs. 6.1.5 and 6.1.6.

6.1.1 Problem description

The geometry of the test-chamber is sketched in Fig. 54 while the test-
section, which is obtained by cutting the chamber along its symmetry plane,
is sketched in Fig. 55.

Figure 54: Sketch of the 3D test-chamber.

The considered temperature of the water is TL = 293.16 K. Let the sub-
script ∞ denote the free-stream (unperturbed) conditions; experimental data
are available for the conditions reported in Tab. 15. More precisely, mea-



Figure 55: Sketch of the test-section.

Free-stream p∞ (Pa) ‖u∞‖ (m/s) M∞ σ∞

FS1 59050 3.115 2.2 · 10−3 11.7
FS2 12000 3.460 2.4 · 10−3 1.5

Table 15: Free-stream conditions of the available experiments.

surements of the pressure coefficient:

Cp :=
p− p∞

1
2
ρ∞ ‖u∞‖2

are available [81] along the curve which is defined by intersecting the hydrofoil
surface and the test-section. The velocity u∞ is orthogonal to the inlet
section. The symbols M∞ and σ∞ in Tab. 15 respectively denote the free-
stream Mach number, defined as follows:

M∞ :=
‖u∞‖
a∞

(331)

and the cavitation number, defined as follows [9]:

σ∞ :=
p∞ − psat

1
2
ρ∞ ‖u∞‖2

(332)

In view of the definition (332), it is clear that cavitation phenomena are likely
to take place in correspondence of low cavitation numbers. The conditions
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Grid Nc Nt

GR1 27220 137756
GR2 19322 88400

Table 16: Considered computational grids.

FS1 in Tab. 15, in particular, are associated with a non-cavitating flow,
which can be considered as a (very) low Mach number validation benchmark
for numerical solvers. Conversely, the conditions FS2 are associated with a
cavitating flow. At the considered liquid temperature, the transition between
non-cavitating and cavitating flow regions is extremely abrupt [10]; this be-
haviour is described by e.g. the complex state laws shown in Figs. 44 and
45, whose numerical treatment is particularly tough.

6.1.2 Computational grids

The domain sketched in Fig. 54 is discretized by means of a 3D tetrahedral
unstructured grid. The considered grids are reported in Tab. 16, in which
the symbols Nc and Nt (defined in sec. 5.1.1) respectively denote the number
of cells (i.e. nodes) and elements (i.e. tetrahedra). It is worth mentioning
that:

• both the grids GR1 and GR2 are 3D tetrahedral, unstructured grids.
However, by construction they are symmetrical with respect to the test-
section and therefore their imprint on the test-section appears as a 2D
triangular, unstructured grid (see Fig. 56);

• neither GR1 nor GR2 is highly refined in order to contain the compu-
tational cost of the simulations while validating/developing the consid-
ered numerical schemes (examples of finer grids discretizing the domain
under consideration can be found in [6]);

• while GR1 represents the whole test-chamber, GR2 only discretizes a
“slice” of it (its span-wise width being 0.1 c instead of 0.7 c) and it is
used for reducing the computational cost while validating/developing
the considered numerical schemes.

The considered grids must be partitioned in order to be incorporated into
the parallel numerical frame mentioned in the introduction to the present
document (i.e. the AERO code). The grids GR1 and GR2, in particular,
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Figure 56: Imprint of the grid GR1 on the test-section (detail).

Computer CPU No. of CPUs Total RAM

COMP1 Intel Pentium4, 2.66 GHz 1 512 MB
COMP2 Intel Pentium4 Xeon, 3.06 GHz 2 8 GB
COMP3 IBM POWER4, 1.3 GHz 512 1088 GB

Table 17: Available computers.

have been divided into 5 and 2 sub-domains, respectively. To the purpose, the
proprietary software “TopDomDec” as well as the open source tool “Metis”
(http://www-users.cs.umn.edu/ karypis/metis/metis) have been exploited.

6.1.3 Computational resources

The considered computational resources are reported in Tab. 17. Among
them, COMP3 denotes the IBM SP4 computing platform available at CINECA
(currently upgraded to SP5, see http://www.cineca.it) while COMP1 and
COMP2 are common PCs.
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6.1.4 Numerical discretization

The linearized implicit discrete scheme which is derived from (330) by set-
ting ω = 0 is considered for both the non-cavitating and the cavitating
simulations.

A variable time-step is adopted, defined as follows:

δnt = c(CFL) n min
h∈H

(

λh

s̃n
h

)

(333)

where:

- λh denotes the minimum among the four heights which are associated
with the h−th tetrahedron Th (h ∈ H := {1, . . . , Nt});

- s̃n
h denotes the value at time-level n of an estimate of the maximum

wave speed s̃h associated with Th. More precisely, s̃h is chosen as the
maximum among the wave speeds arising in the Roe-linearized RPs
associated with the four vertices of Th;

- c(CFL) n denotes the value at time-level n of a CFL-like coefficient,
c(CFL), which can be modulated during the simulation (see below).

Since, as shown by the experiments, the flows associated with the considered
free-streams in Tab. 15 turn out to be substantially steady (even the cav-
itating one, due to the low angle of attack), the numerical simulations are
advanced in time up to a steady-state.

6.1.5 Non-cavitating simulations

The considered non-cavitating test-cases are summarized in Tab. 18. The
following state vector:

q∞ =

(

ρ∞
ρ∞ u∞

)

(334)

is derived, in particular, from the chosen free-stream FS1 (see Tab. 15 above).
The state vector (334), in turn, is introduced in (328) for defining the ficti-
tious inflow state vectors qI

i ; moreover, it is exploited for defining the adopted
initial conditions. The free-stream Mach number M∞ (see Tab. 15 above)
is assumed to be the characteristic Mach number M⋆ to be used for precon-
ditioning the Roe numerical flux; in particular, the constant βref in (189)
is chosen equal to 1 60. Furthermore, the parameters “Liquid” and “TL” in
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Test-case Free-stream Liquid TL (K) Grid

NONCAV1 FS1 water 293.16 GR1
NONCAV2 FS1 water 293.16 GR2

Table 18: Considered non-cavitating test-cases.
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Figure 57: Cp distribution for the test-cases in Tab. 18.

Tab. 18 characterize the isentropic compressibility coefficient ϑ ≈ 8.55 · 105

appearing in the chosen liquid model (247).
The resulting Cp distribution is reported in Fig. 57, against the relevant

experimental data. It is worth noticing that:

• the numerical results respectively obtained by exploiting GR1 and GR2
are close to each other, thus showing that the obtained Cp distribution

60A sensitivity study has been performed in order to set βref , not reported here for the
sake of conciseness. It has been observed that smaller time-steps must be adopted when de-
creasing βref from its upper bound, βref = M−1

⋆ (corresponding to the non-preconditioned
case β = 1 in (189)) down to its “recommended” value, i.e. O(1). However, the resulting
numerical solution turns out to be considerably inaccurate (in terms of Cp, against the
experiments) when βref is distant from 1; vice versa, for βref in the neighbourhood of the
unity, the most accurate result seems to be associated with βref ≈ 1.
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is almost independent of the grid. Moreover, no appreciable 3D effects
take place along the span-wise direction (which is not surprising, by
virtue of the assumed absence of viscosity effects);

• the agreement between the numerical results and the experimental data
can be considered reasonably good, in view of the fact that the con-
sidered 3D numerical scheme is only first-order accurate and the used
grids are relatively coarse. Both these issues seem to contribute, for
instance, to underestimating the suction peak which is located near
the leading edge of the hydrofoil 61;

• the coefficient c(CFL) in (333) has been increased, linearly with respect
to n, during the first iterations for smoothly abandoning the initial
flow field (which is, in general, a crude approximation of the final one).
In particular, it has been increased up to more than 400 for both the
considered test-cases, thus confirming the efficiency of the proposed
linearized implicit schemes when dealing with smooth flows (see sec.
3.5.5). As far as the total CPU time is concerned, the test-case NON-
CAV1 requires 17 hours and 30 minutes on the computer COMP3 re-
ported in Tab. 17 (a contained elapsed time is obtained, due to the
parallelization strategy) while the test-case NONCAV2 requires 7 hours
and 30 minutes on the computer COMP1 62 reported in Tab. 17.

6.1.6 Cavitating simulations

The considered cavitating test-cases are reported in Tab. 19. A state vector
of the type of (334) is introduced also for the present case, based on the free-
stream FS3 defined in Tab. 20. More in detail, the considered state vector is
obtained from that one associated with the free-stream FS1 in Tab. 15 (sec.
6.1.1), by decreasing the pressure p∞; such a procedure has been actually
performed for defining the considered inlet and initial conditions 63. The
free-stream Mach number M∞ in Tab. 20 is assumed to be the characteristic
Mach number of the liquid region. However, in consideration of the fact that

61A better result could be obtained by suitably refining the grid in the leading edge area
and by increasing the order of spatial accuracy of the scheme (e.g. by a standard MUSCL
technique [108]); these improvements are postponed to a subsequent research stage.

62 The considered parallel code has been run on the mono-processor computer COMP1
by means of the “LAM” parallel environment (see http://www.lam-mpi.org), thus intro-
ducing a certain degree of communication overhead.

63A variable free-stream state vector q∞(t) is explicitly considered in (328). Moreover,
a user-defined flow field (typically, the result of a previous simulation) can be read by the
developed numerical solver for starting the simulation.
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Test-case Free-stream Liquid TL (K) ζ Grid

CAV1 FS3 water 293.16 0.1 GR1
CAV2 FS3 water 293.16 0.1 GR2
CAV3 FS3 water 293.16 0.01 GR2

Table 19: Considered cavitating test-cases.

Free-stream p∞ (Pa) ‖u∞‖ (m/s) M∞ σ∞

FS3 7500 3.115 2.2 · 10−3 1.1

Table 20: Considered free-stream conditions.

no preconditioning is required within the cavitating region (where the flow
can be easily hypersonic), a local preconditioning strategy is heuristically
adopted. More precisely, a local preconditioning parameter β2

ij, defined as
follows (compare with (234)):

β2
ij :=







M2
∞ if min (ρi, ρj) ≥ ρLsat

1 otherwise

is introduced into the preconditioning matrix (293) in place of the original
parameter β2. As far as the state law is concerned, the parameters “Liquid”,
“TL” and “ζ” in Tab. 19 characterize two instances of the barotropic model
(247)-(255). The relevant model parameters are ϑ ≈ 8.55·105, σ1 ≈ 1.33·103,
σ2 ≈ − 0.73 and σ3 ≈ 0.78; the mixture branches of the considered laws are
shown in Fig. 44.

It is possible to adopt the experimental data based on the free-stream FS2
in Tab. 15 (sec. 6.1.1) for validating the cavitating simulations at hand, since
the corresponding cavitation number is similar to that one associated with the
considered free-stream FS3. Hence, in Figs. 58 and 59, the Cp distribution
-on the suction side of the considered hydrofoil- which is obtained from the
considered simulations is compared with the aforementioned experimental
points. It is worth noticing that:

• only small differences, located near the leading edge of the hydrofoil (i.e.
where cavitation occurs), appear in the Cp distribution when adopting
different grids (see Fig. 58);
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Figure 58: Cp distribution (suction side) for the test-cases CAV1 and CAV2
reported in Tab. 19.
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Figure 59: Cp distribution (suction side) for the test-cases CAV2 and CAV3
reported in Tab. 19.

171



• the agreement between the numerical results and the experimental data
can be considered reasonably good, in view of the fact that it is very
challenging to accurately simulate the cavitation phenomena at hand;

• on the basis of the numerical results in Fig. 59, it seems that the Cp

distribution gradually varies with respect to ζ . Moreover, a lower value
of ζ correctly leads to a less pronounced Mach number variation (in-
deed, as shown in Fig. 45, the minimum sound speed -in the cavitating
region- increases when reducing ζ), as shown in Figs. 60 and 61. Fur-
thermore, once defined a local cavitation number as follows (compare
with (332)):

σ :=
p− psat

1
2
ρ∞ ‖u∞‖2

it is possible to identify the cavity with the fluid sub-domain within
which σ < 0. Then, as shown in Figs. 62 and 63, it is possible to see
that a lower value of ζ results in a more extended cavity. Also this result
seems to be correct, since the nearly constant pressure value in Fig. 44,
which roughly provides a characteristic value of the cavity pressure,
decreases when decreasing ζ . Nevertheless, a systematic investigation
of the sensitivity of the numerical results to the free cavitation model
parameter ζ is postponed to a further research stage;

• before the inception of cavitation, the coefficient c(CFL) introduced in
(333) can be increased during the simulation up to O (102) for all the
considered cavitating test-cases However, as soon as cavitation occurs,
it must be reduced to O (10−2) for all the considered simulations to
remain stable. This point seems to confirm the hypothesis put forward
in sec. 3.5.6 according to which the observed stability restriction can be
caused by the presence/onset of discontinuities in the flow field (caused
by the cavitation inception in the present case), which render it more
difficult to exploit the proposed linearized scheme. As far as the total
CPU time is concerned, the test-case CAV1 approximately requires
400 hours on the computer COMP3 (see Tab. 17) while the test-cases
CAV2 and CAV3 approximately require 150 hours on the computer
COMP2. In both cases, a contained elapsed time is obtained, thanks
to the parallelization strategy.

Further investigation is definitely recommended in order to counteract the
aforementioned efficiency problem. Moreover, according to the author, it
would of interest to also assess the effects that the chosen local precondition-
ing strategy produces on the stability properties of the resulting numerical
scheme. However, such a study is postponed to a subsequent research stage.
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Figure 60: Contour plot of the local Mach number on the test-section (detail),
for the test-case CAV2 reported in Tab. 19.

Figure 61: Contour plot of the local Mach number on the test-section (detail)
for the test-case CAV3 reported in Tab. 19.

173



Figure 62: Contour plot of the local cavitation number (sigma) on the test-
section (detail), for the test-case CAV2 reported in Tab. 19.

Figure 63: Contour plot of the local cavitation number (sigma) on the test-
section (detail), for the test-case CAV3 reported in Tab. 19.
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6.2 Simulation of the 3D flow around an axial inducer

The water flow around a turbo-pump inducer (see sec. 1.1) is considered in
the present section, as a qualitative validation benchmark for the linearized
implicit scheme proposed in sec. 5.

After introducing the problem in sec. 6.2.1, some issues regarding the
numerical discretization as well as the used computational resource are pre-
sented in secs. 6.2.2 to 6.2.4. Some non-cavitating numerical results are
finally presented in sec. 6.2.5. In consideration of the efficiency problems
already discussed in secs. 3.5.6, 4.2 and 6.1.6, no cavitating simulations
are considered for the inducer flow at hand. Indeed, the huge increase in
computational cost, which is here amplified by the complexity of the con-
sidered geometry (see below), makes it practically impossible to advance the
simulation unless exploiting specific supercomputing resources, that are not
available within the scope of the present research project 64.

6.2.1 Problem description

The considered geometry is sketched in Fig. 64, where the inducer is denoted
by “I”. A nose “N” as well as an after-body “A” smoothly join “I”; in par-
ticular, the nose is part of an axisymmetrical ellipsoid while the after-body
is a circular cylinder having a diameter equal to the base diameter of the in-
ducer. The flow domain is bounded by a cylindrical case, whose diameter is
equal to the maximum blade tip diameter D; hence, there is no tip clearance
and a shrouded inducer (see sec. 1.1) is considered. The length Lout of the
after-body, as well as the length Lin of the inflow section, are chosen equal
to 1.5D. The inducer angular speed is equal to 2000 rpm.

The chosen temperature of the water is TL = 296.16 K. The considered
free-stream conditions are reported in Tab. 21. Both M∞ and σ∞ in the
aforementioned table, respectively defined in (331) and (332), are computed
by exploiting the absolute velocity u∞; the local Mach number and the local
cavitation number are respectively higher and lower than those reported in
Tab. 21, due to the dragging velocity appearing in the body frame.

6.2.2 Computational grids

The domain sketched in Fig. 64 is discretized by means of a 3D tetrahedral
unstructured grid, whose main features are reported in Tab. 22 (Nc and
Nt respectively denoting the number of nodes and elements). It is worth

64As mentioned in [93], a cavitating simulation has been stopped at the inception stage,
due to the aforementioned efficiency problems.
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Figure 64: Schematic representation of the considered inducer geometry.

Free-stream p∞ (Pa) ‖u∞‖ (m/s) M∞ σ∞

FS4 115000 0.476 3.4 · 10−4 990

Table 21: Considered free-stream conditions.

Grid Nc Nt

GR3 549139 2588501

Table 22: Considered computational grid.
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Figure 65: Detail of the grid GR3 at the nose-inducer junction.

mentioning that:

• the size of the grid elements smoothly transitions between different
regions on the body surface (e.g. the nose-inducer junction shown
in Fig. 65) and accurately follows the solid walls even within high-
curvature regions (e.g. the hub-blade intersection shown in Fig. 66);

• as far as the external case is concerned, it is not possible to define
a perfectly cylindrical wall due to the numerical errors (even if very
small) related to the numerical format of the inducer geometry file.
To counteract this problem, a kind of shell covering the inter-blade
passages is modelled, whose external aspect is shown in Fig. 67.

The considered grid has been partitioned into 16 sub-domains in order
to be incorporated into the parallel numerical frame mentioned in the intro-
duction to the present document (i.e. the AERO code). To the purpose, the
proprietary software “TopDomDec” has been exploited.

6.2.3 Computational resources

In consideration of the noticeable size of the grid at hand, the only super-
computer COMP3 reported in Tab. 17 (sec. 6.1.3) is considered.
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Figure 66: Detail of the hub-blade intersection for GR3.

Figure 67: External view of the inter-blade covering created for GR3. The
“cut” on the boundary surface represent the imprint of the inducer blade tip.
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6.2.4 Numerical discretization

The linearized implicit discrete scheme (330) is considered, in which the terms
related to the rotation are computed by exploiting the inducer (constant)
angular velocity.

As far as the time-advancing is concerned, the variable time-step (333) is
adopted.

6.2.5 Non-cavitating simulations

The considered non-cavitating test-case is reported in Tab. 23. A state
vector of the type of (334), derived from the considered free-stream FS4 (see
Tab. 21 in sec. 6.2.1), is introduced for the defining the fictitious inflow
state vector qI

i in (328). Moreover, a uniform initial flow field, determined
by the free-stream conditions, is assumed; its representation in the body
frame is therefore obtained (for the i−th finite volume cell) by evaluating
the right-hand side of (328) in correspondence of the aforementioned free-
stream state vector. In consideration of the fact that, with respect to the
rotating frame, the local Mach number can undergo substantial variations
along the radial direction due to the dragging velocity, a local preconditioning
strategy is required (see the relevant paragraph in sec. 3.5.4). In particular, a
local preconditioning parameter β2

ij (to be introduced into the preconditioner
(293) in place of the original parameter β2) is heuristically defined as follows
(compare with (234)):

β2
ij := 1 − exp

(

−
(

M̂ij

)2
)

where:

M̂ij :=
‖uij‖
aij

with uij and aij respectively defined in (274) and (154). Finally, as far
as the state law is concerned, the parameters “Liquid” and “TL” in Tab. 23
characterize the isentropic compressibility coefficient ϑ ≈ 7.13 ·105 appearing
in the chosen liquid model (247).

The pressure contours on the inducer surface, obtained after 27000 iter-
ations, are reported in Fig. 68. It is worth noticing that:

• the behaviour of the flow field, as described by the numerical simu-
lation, is in a good qualitative agreement with that one observed in
a number of experimental works. Indeed, the working fluid gradually
undergoes a pressure rise while flowing within the vanes between the
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Test-case Free-stream Liquid TL (K) Grid

NONCAV3 FS4 water 296.16 GR3

Table 23: Considered non-cavitating test-case.

rotating blades, as shown in Fig. 68. Moreover, according to this fig-
ure, the flow region which is most prone to cavitation is located near
that portion of the blades where the volutes, detaching from the hub,
firstly reach the external tip diameter D. This is in agreement with the
experiments which, for similar flow conditions, observe the cavitation
inception exactly in the flow region under consideration (see e.g. [14]);

• the considerable axial back-flow occurring near the blade tip where
the diameter is less than D (i.e. where the volutes are not completely
shrouded), which is well documented in a number of experimental works
(e.g. [118]), is described by the numerical simulation as well, as shown
in Fig. 69;

• the coefficient c(CFL) introduced in (333) has been increased during the
simulation for smoothly abandoning the initial flow field (which is, in
general, a crude approximation of the final one). In particular, it has
been increased up to 350. As far as the total CPU time is concerned,
the considered simulation approximately requires 1500 hours on the
computer mentioned in sec. 6.2.3; the corresponding elapsed time can
be contained by virtue of the parallelization strategy.
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Figure 68: Pressure contours on the inducer surface for the test-case NON-
CAV3: max [red] 177700 (Pa), min [blue] 79700 (Pa), spacing 5000 (Pa).

Figure 69: Velocity field (x: axial component, y: radial component) in a lon-
gitudinal cut plane of the flow domain for the test-case NONCAV3. Pressure
contours are drawn in the background.
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7 Concluding remarks

A numerical method for simulating 3D barotropic flows in complex, possi-
bly rotating, geometries has been presented. The considered method can
successfully cope with nearly-incompressible flows by ad hoc precondition-
ing and allows for an efficient linearized implicit time-advancing technique
to be defined. All the proposed numerical ingredients were implemented
within a parallel numerical framework; the resulting CFD solver was val-
idated against 3D non-cavitating as well as cavitating liquid flows. The
documented research activities were driven by an industrial program, funded
by the Italian Space Agency (ASI), aimed at developing a numerical tool for
simulating propellant flows around 3D rotating axial inducers belonging to
the feed turbo-pump system of a liquid propellant rocket engine.

In view of the fact that, under typical operational conditions, cavitation
phenomena can take place within the aforementioned turbo-machines, the
choice of a suitable cavitation model was initially addressed. A literature re-
view suggested considering an equivalent fluid cavitation model; a barotropic
homogeneous flow model was adopted, in particular, which can take into ac-
count thermal cavitation effects and, possibly, the concentration of the active
cavitation nuclei. This model was coupled with the mass and momentum bal-
ances of classical fluid dynamics; the effects of viscosity were neglected. In
order to incorporate the chosen model into an existing numerical frame which
was available to the research group, namely the AERO code described in the
introduction, a density-based numerical approach was chosen. The AERO
code was originally conceived for dealing with ideal gases and the specific
expression and properties of the ideal gas state law deeply affected its im-
plementation. In particular, both the definition of the Roe numerical flux
function (characterizing the space discretization of the convective fluxes by
a finite volume approach) and the linearized implicit time-advancing strat-
egy (involving an approximate linearization of the aforementioned numerical
flux) were based on the ideal gas state law. Moreover, also the precondition-
ing technique introduced for coping with low Mach number flows was affected
by the specific form of the adopted state law. As a consequence, all these
numerical issues needed to be replaced, if possible, with proper counterparts
holding for a barotropic state law.

The definition of the new numerical ingredients was initially conceived
in a 1D context; moreover, in order to keep a certain degree of generality,
a generic barotropic state law was assumed. Once defined a Roe numeri-
cal flux applicable to generic barotropic fluids, the accuracy of the resulting
semi-discrete formulation, as applied to nearly-incompressible flows, was ad-
dressed following [42]. This study showed that for low Mach number flows



the accuracy of the proposed semi-discrete formulation degrades; the same
result had already been found -and a suitable remedy (preconditioning) had
been proposed- in [42] for the ideal gas case. The considered precondition-
ing strategy was successfully extended to the barotropic case; however, the
introduction of the preconditioning narrowed the stability region of common
explicit time-advancing schemes. To counteract this problem, a linearized
implicit time-advancing strategy was proposed, only relying on the algebraic
properties of the Roe flux function and therefore applicable to a variety of
problems. In particular, differently from the linearization technique already
implemented in AERO, the proposed one does not rely on the first-order
homogeneity of the analytical flux function (since this properties, satisfied
by the ideal gas state law, does not hold for the barotropic one). The im-
plicit scheme was further extended so as to incorporate the aforementioned
preconditioning strategy. All these ingredients were qualitatively validated
in a 1D context, namely the water flow in a convergent-divergent nozzle, for
both non-cavitating and cavitating conditions [91]. The proposed precondi-
tioning technique turned out to effectively counteract the accuracy problem
at low Mach numbers. Furthermore, the proposed linearized implicit scheme
allowed for an efficient time-advancing to be performed when considering
non-cavitating flows; as soon as cavitation occurred, however, significantly
smaller time-steps had to be adopted. The proposed 1D numerical tech-
niques were then extended to the 3D case, firstly to non-rotating and then
to rotating frames. The generalization of the Roe numerical flux, in particu-
lar, was accomplished by exploiting the tensorial character of the considered
governing equations while the extension to rotating frames was performed
by introducing a suitable term in the aforementioned equations, account-
ing for non-inertial effects. The proposed 3D numerical method was firstly
validated by considering the water flow around a NACA0015 hydrofoil, for
which experimental data concerning the pressure coefficient distribution were
available. In particular, water at 20◦ C was considered, possibly leading to
the occurrence of “cold cavitation” phenomena whose numerical treatment
is extremely challenging. All the issues highlighted in the 1D numerical
experiments appeared in the 3D case as well; in particular, the proposed
scheme proved out to efficiently compute non-cavitating flows but, as soon
as cavitation takes place, its efficiency was significantly reduced. As far as
the accuracy is concerned, the obtained results (which appeared to be in-
dependent of the grid) seemed reasonably good for both non-cavitating and
cavitating conditions, in view of the fact that the considered 3D numerical
scheme was only first-order accurate and the used grids were relatively coarse.
A few thousand iterations of a non-cavitating simulation of the water flow
around an axial turbo-pump inducer were carried out as well. The behaviour
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of the flow field, as described by the considered numerical simulation, turned
out to be in a good qualitative agreement with that one observed in a num-
ber of experimental works. In particular, the numerical solution correctly
described the pressure contours on the surface of the inducer blades as well
as the considerable axial back-flow occurring where the inducer volutes are
not completely shrouded. Moreover, also for the non-cavitating case under
consideration, an efficient time-advancing could be performed.

A more systematic investigation of the aforementioned 1D numerical in-
gredients was then started. In this context, the exact solution of the 1D
Riemann problem associated with a generic convex barotropic state law was
addressed and a solution procedure was proposed (which was also exploited
for defining exact benchmarks for the validation of the 1D numerical schemes
considered in the present document). A Godunov numerical flux function
based on the aforementioned exact solution was defined as well.

Clearly, the efficiency problem emerging when considering non-smooth
flow fields, like those originating from cavitation inception when adopting
realistic homogeneous flow models, deserves special attention. In view of the
numerical results reported in the present document, this efficiency issue seems
to be imputable to the approximate linearization of the Roe numerical flux
in the implicit time-advancing (as briefly mentioned, the specifically adopted
linearization does not seem to play a crucial role in this problem). Conse-
quently, it could be of interest to also consider different (i.e. more robust,
even if less refined) numerical flux functions as, for instance, the Rusanov
flux, the HLL/HLLC flux, etc... [98] (in this spirit, the proposed solution
to the 1D Riemann problem associated with convex barotropic state laws
could be exploited for investigating further Godunov methods). The afore-
mentioned point could be supported by the fact that the considered Roe flux
function (as it stands, without fixes) may provide entropy-violating solutions
within the transonic regime associated with cavitation inception. Further-
more, the fact that phase transition (and therefore cavitation) is a major
reason in the lack of convexity of the considered state law [69] may add to
the complexity of the problem, since the convexity may be important when
seeking entropic solutions [3]. It is therefore evident that there is room for
improvement while keeping the adopted numerical frame (i.e. homogeneous
flow cavitation model, compressible -generally preconditioned- algorithms, fi-
nite volume space discretization, linearized implicit time-advancing); further
investigation in this direction is definitely recommended. Simultaneously, it
would be of interest to increase the order of accuracy of the proposed method
(e.g. by developing the “Defect Correction” strategy briefly discussed in sec.
3.5.3) as well as to investigate additional/different numerical ingredients as,
for instance, relaxation techniques (see e.g. [3], [22] and [23]) and dual time-
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stepping strategies (see e.g. [22], [23] and [58]), which seem to improve the
convergence properties of the considered algorithms.

As a concluding remark, it may be worth emphasizing that the assumed
generality of the considered barotropic state law permits to apply the pro-
posed material to several problems (e.g. to shallow water flows, see Note
12 in sec. 2.5.1). This aspect, together with the fact that the proposed
linearization of the Roe numerical flux function may be applied when con-
sidering an arbitrary state law (not necessarily a barotropic one), endow the
present work with a certain degree of generality.

186







A Appendix: auxiliary material for sec. 3

A.1 Derivation of the expression (170)

By applying the standard non-dimensionalization procedure mentioned in the
relevant paragraph of sec. 3.4.1 to the continuous system (23), the following
expression is obtained:







∂t (ρ) = Ψ
(0)
c

∂t (ρu) = M−2
⋆ Θ

(−2)
c + Θ

(0)
c

(335)

with:


























Ψ
(0)
c := − ∂x (ρu)

Θ
(−2)
c := − ∂xp

Θ
(0)
c := − ∂x (ρu2)

(336)

and:
M⋆ :=

uref

aref
(337)

The expressions (335) and (337) are copied in sec. 3.4.1, respectively to (170)
and (171), for ease of presentation.

A.2 Derivation of the expression (172)

By recalling the relevant definitions, the equation (164) can be recast as
follows:
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As a preliminary step, a suitable representation is sought for the generic

term
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·∆ijq(x) appearing, in particular, in (338). To the purpose, once



introduced the eigenvalue-eigenvector pairs of J̃
(x)
ij , namely:
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it is possible to introduce the following equality:






J̃

(x)
ij






· ∆ijq(x) =

2
∑

k=1

c
(k)
ij |λ(k)
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where c
(k)
ij denotes the k-th coordinate of ∆ijq(x) with respect to the basis

formed by the eigenvectors introduced in (339). Then, by exploiting the
following classical property (see e.g. [1] or [111]):

∆ij(ρu) = uij ∆ijρ+ ρ̃ij ∆iju (341)

with:
ρ̃ij := (ρiρj)

1/2 (342)

the following expressions are obtained:
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and (340) can be recast as follows:
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where the components of the matrix Ũ
(x)
ij read:
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Ũ
(x)
ij (1, 2) = |λ(1)

ij | − |λ(2)
ij |

Ũ
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For nearly-incompressible flows |uij| ≪ aij
65 and, consequently, the repre-

sentation of Ũ
(x)
ij reduces to:

Ũ
(x)
ij (M⋆ → 0) → 2





1 uij

2uij u2
ij + a2

ij



 (344)

By substituting (344) into (343) and then back into the proper terms in (338),
the following expression is obtained for the nearly-incompressible limit of the
(dimensional) semi-discrete system at hand:
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where:
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a(i−1)i
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(0)
sd := ρi−1ui−1 − ρi+1ui+1

Ψ
(1)
sd := Mi(i+1) ρ̃i(i+1) ∆i(i+1)u−

M(i−1)i ρ̃(i−1)i ∆
(i−1)iu

Θ
(−2)
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Θ
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sd := 2

(

Mi(i+1) ∆i(i+1)p−M(i−1)i ∆
(i−1)ip

)

+

ai(i+1) ρ̃i(i+1) ∆i(i+1)u− a(i−1)i ρ̃(i−1)i ∆
(i−1)iu

Θ
(0)
sd := ρi−1u

2
i−1 − ρi+1u

2
i+1

Θ
(1)
sd := Mi(i+1) ui(i+1) ρ̃i(i+1) ∆i(i+1)u−

M(i−1)i u(i−1)i ρ̃(i−1)i ∆
(i−1)iu

(346)

65Indeed, the density is practically constant and therefore aij , as given by (154), is of
the order of the characteristic sound speed a⋆ of the flow. On the other hand, due to the
relevant convex combination in (153), uij ≤ max(ui, uj) = a⋆ O (M⋆).
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and:
Mij :=

uij

aij

(347)

Finally, by applying the standard non-dimensionalization procedure men-
tioned in the relevant paragraph of sec. 3.4.1 to the system (345), the fol-
lowing expression is obtained:
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where:
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sd +M⋆ Θ
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(349)

and the relevant coefficients are recalled from (346). The system (348) is
copied in sec. 3.4.1, namely to (172), for ease of presentation.

A.3 Proof of the Proposition 7 (sec. 3.4.1)

By substituting the expansion of the continuous solution (173) into the rel-
evant system (170), the following relations are obtained:
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where:
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2
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(351)

Clearly, it is possible to solve the system (350) for M⋆ → 0 only if:

Θ̌(−2)
c = 0 , Θ̌(−1)

c = 0 (352)
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The equations (352) imply that:

p0(x, t) = p̄0(t) , p1(x, t) = p̄1(t)

for suitable functions p̄0 and p̄1 and therefore the asymptotic expression (176)
is obtained.

As far as the semi-discrete problem is concerned, by substituting the
expansion (174) into the relevant system (172), the following relations are
obtained:
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(353)

where the coefficients are suitably defined in terms of the entities introduced
in (346) (the definitions are not reported here because inessential to the
present purposes). As for the continuous case, the coefficients associated
with the negative powers of M⋆ in (353) must be identically equal to zero in
order to allow for the solution to be defined when M⋆ → 0. In particular,
the following relations are obtained by respectively imposing Ψ̌

(−1)
sd = 0 and

Θ̌
(−2)
sd = 0:

∆i(i+1)p0

a0i(i+1)

− ∆(i−1)ip0

a0(i−1)i

= 0 (354)

∆i(i+1)p0 + ∆(i−1)ip0 = 0 (355)

The equations (354) and (355) above only admit the following solution (as
usual, i ∈ I and j ∈ πi):

∆ijp0 = 0 (356)

Indeed, according to (354), ∆i(i+1)p0 has the same sign as ∆(i−1)ip0 (a0ij being
positive), in contrast with (355) unless (356) holds. The relation (356), in
turn, implies that:

p0i(t) = p̃0(t)

for a certain function p̃0. In consideration of (356), the condition Θ̌
(−1)
sd = 0

leads to the following relation:

ρ̃0

(

a0i(i+1)∆
i(i+1)u0 − a0(i−1)i∆

(i−1)iu0

)

+ p1(i+1) − p1(i−1) = 0 (357)

where ρ̃0 is defined by inverting the first relation in (175) in correspondence
of p0 = p̃0. The equation (357), in general, does not impose any specific
constraint on p1i(t). As a result, the asymptotic expression (177) is recovered.
This completes the proof. �

193



A.4 Derivation of the expression (188)

By recalling the relevant definitions, the equation (187) can be recast as
follows:

2µi
d

dt
q

(x)
i = f

(x)
i−1 − f

(x)
i+1 +

(

P
(x)
i(i+1)

)−1

·





P

(x)
i(i+1) · J̃

(x)
i(i+1)






· ∆i(i+1)q(x) −

(

P
(x)
(i−1)i

)−1

·





P

(x)
(i−1)i · J̃

(x)
(i−1)i






· ∆(i−1)iq(x)

(358)

As a preliminary step, a suitable representation is sought for the generic term
(

P
(x)
ij

)−1

·





P

(x)
ij · J̃(x)

ij






· ∆ijq(x) appearing, in particular, in (358). To the

purpose, once introduced the eigenvalue-eigenvector pairs of
(

P
(x)
ij · J̃(x)

ij

)

,

namely:














λ
(1,p)
ij = u

(p)
ij + a

(p)
ij , r

(1,p)
ij =

(

1, λ
(1,p)
ij

)T

λ
(2,p)
ij = u

(p)
ij − a

(p)
ij , r

(2,p)
ij =

(

1, λ
(2,p)
ij

)T
(359)

with:

u
(p)
ij :=

1 + β2

2
uij

and:

a
(p)
ij :=

(

(

1 − β2

2
uij

)2

+ (β aij)
2

)
1
2

(360)

it is possible to introduce the following equality:

(

P
(x)
ij

)−1

·





P

(x)
ij · J̃(x)

ij






·∆ijq(x) =

(

P
(x)
ij

)−1

·
(

2
∑

k=1

c
(k,p)
ij |λ(k,p)

ij | r(k,p)
ij

)

(361)

where c
(k,p)
ij denotes the k-th coordinate of ∆ijq(x) with respect to the basis

formed by the eigenvectors introduced in (359). Then, by exploiting the
classical property (341), the following expressions are obtained:



























c
(1,p)
ij =

β2

2 a
(p)
ij

(

∆ijp

σij
+ ρ̃ij ∆iju

)

c
(2,p)
ij =

β2

2 a
(p)
ij

(

∆ijp

τij
− ρ̃ij ∆iju

)
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with:

σij := a
(p)
ij +

1 − β2

2
uij , τij := a

(p)
ij − 1 − β2

2
uij

and (361) can be recast as follows:

(

P
(x)
ij

)−1

·





P

(x)
ij · J̃(x)

ij






· ∆ijq(x) =

1

2 a
(p)
ij

Ũ
(x)p
ij ·





∆ijp

ρ̃ij ∆iju



 (362)

where the components of the matrix Ũ
(x)p
ij read:































































Ũ
(x)p
ij (1, 1) =

|λ(1,p)
ij |
σij

+
|λ(2,p)

ij |
τij

Ũ
(x)p
ij (1, 2) = |λ(1,p)

ij | − |λ(2,p)
ij |

Ũ
(x)p
ij (2, 1) =

λ
(1,p)
ij |λ(1,p)

ij |
σij

+
λ

(2,p)
ij |λ(2,p)

ij |
τij

+
(

1 − β2
)

uij Ũ
(x)p
ij (1, 1)

Ũ
(x)p
ij (2, 2) = λ

(1,p)
ij |λ(1,p)

ij | − λ
(2,p)
ij |λ(2,p)

ij | + (1 − β2) uij Ũ
(x)p
ij (1, 2)

For nearly-incompressible flows |u(p)
ij | ≪ a

(p)
ij ; indeed:

(

u
(p)
ij

)2

−
(

a
(p)
ij

)2

= β2
(

u2
ij − a2

ij

)

and therefore the considerations already introduced when discussing the non-
preconditioned case in sec. A.2 can be applied. Consequently, the represen-
tation of the matrix Ũ

(x)p
ij in (362) reduces to:

Ũ
(x)p
ij (M⋆ → 0) → 2











1 − 1 − β2

2
M2

ij

1 + β2

2
uij

(

3 + β2

2
− 1 − β2

2
M2

ij

)

uij u2
ij + β2 a2

ij











(363)

where Mij is defined in (347). By substituting (363) into (362) and then
back into the proper terms in (358), the following expression is obtained for
the nearly-incompressible limit of the (dimensional) semi-discrete system at
hand:



















2µi
d

dt
(ρi) = Ψ

(−1)
sd,p + Ψ

(0)
sd,p + Ψ

(1)
sd,p

2µi
d

dt
(ρiui) = Θ

(−2)
sd,p + Θ

(−1)
sd,p + Θ

(0)
sd,p + Θ

(1)
sd,p

(364)
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where:






























































































































































































































































Ψ
(−1)
sd,p :=

∆i(i+1)p

a
(p)
i(i+1)

− ∆(i−1)ip

a
(p)
(i−1)i

Ψ
(0)
sd,p := ρi−1ui−1 − ρi+1ui+1

Ψ
(1)
sd,p :=

1 + β2

2

(

M
(p)
i(i+1) ρ̃i(i+1) ∆i(i+1)u−

M
(p)
(i−1)i ρ̃(i−1)i ∆(i−1)iu

)

−

1 − β2

2

(

(

Mi(i+1)

)2 ∆i(i+1)p

a
(p)
i(i+1)

−
(

M(i−1)i

)2 ∆(i−1)ip

a
(p)
(i−1)i

)

Θ
(−2)
sd,p := pi−1 − pi+1

Θ
(−1)
sd,p :=

3 + β2

2

(

M
(p)
i(i+1) ∆i(i+1)p−M

(p)
(i−1)i ∆

(i−1)ip
)

+

β2

(

a2
i(i+1)

a
(p)
i(i+1)

ρ̃i(i+1) ∆i(i+1)u−
a2

(i−1)i

a
(p)
(i−1)i

ρ̃(i−1)i ∆
(i−1)iu

)

Θ
(0)
sd,p := ρi−1u

2
i−1 − ρi+1u

2
i+1

Θ
(1)
sd,p := M

(p)
i(i+1) ui(i+1) ρ̃i(i+1) ∆i(i+1)u−

M
(p)
(i−1)i u(i−1)i ρ̃(i−1)i ∆

(i−1)iu−

1 − β2

2

(

(

Mi(i+1)

)2
M

(p)
i(i+1) ∆i(i+1)p−

(

M(i−1)i

)2
M

(p)
(i−1)i ∆

(i−1)ip
)

(365)

and:
M

(p)
ij :=

uij

a
(p)
ij

The non-dimensional counterpart of the system (364) is obtained by apply-
ing the standard non-dimensionalization procedure mentioned in the rele-
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vant paragraph of sec. 3.4.1. It is worth remarking that, to the purpose,
the reference sound speed aref introduced in (169) is exploited for non-

dimensionalizing a
(p)
ij , in view of the fact that a

(p)
ij (β2 → 1) → aij . Hence,

the non-dimensional counterpart of (360) in particular reads 66:

a
(p)
ij =

(

(

1 − β2

2
M⋆ uij

)2

+ (β aij)
2

)
1
2

(366)

Then, by assuming that the parameter β is formally of the order of the unity,
the following non-dimensional expression is obtained for the system (364):



















2µi
d

dt
(ρi) = M−1

⋆ Ψ
(−1)
sd,p + Ψ̂

(0)
sd,p

2µi
d

dt
(ρiui) = M−2

⋆ Θ
(−2)
sd,p + M−1

⋆ Θ
(−1)
sd,p + Θ̂

(0)
sd,p

(367)

where:










Ψ̂
(0)
sd,p := Ψ

(0)
sd,p +M⋆ Ψ

(1)
sd,p

Θ̂
(0)
sd,p := Θ

(0)
sd,p +M⋆ Θ

(1)
sd,p

(368)

and the relevant coefficients (of course, here understood as non-dimensional)
are recalled from (365). The system (367) is copied in sec. 3.4.1, namely to
(188), for ease of presentation.

66The same symbol is used for corresponding dimensional and non-dimensional entities,
as declared in Note 33 (sec. 3.4.1).
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A.5 A remark on the expression (190)

Both the (non-dimensional) systems (188) and (190) derive from the (dimen-
sional) system (364) by the non-dimensionalization procedure mentioned in
the relevant paragraph of sec. 3.4.1. More in detail, in the former case β
is assumed of the order of the unity while in the latter one it is assumed
of the order of M⋆ by means of the position (189). Clearly, (189) directly
affects the considered non-dimensional equations through the definitions of
the relevant coefficients associated with the powers of M⋆. As an example,
the non-dimensional form of a

(p)
ij , given by (366), can be considered. Once

introduced the following definition:

αij :=
(

a
(p)
ij

)2

the expansion of
(

a
(p)
ij

)−1

, which appears in (365) both directly and via M
(p)
ij ,

varies as shown below:

• without the position (189) the expansion of αij reads:

αij = α0ij +M⋆ α1ij + · · ·
where:







α0ij = β2 a2
0ij

α1ij = 2 β2 a0ij a1ij

and therefore (α0ij is positive, see Note 35 in sec. 3.4.1):

(

a
(p)
ij

)−1

= α
− 1

2
0ij

(

1 −M⋆
α1ij

2α0ij

+ · · ·
)

• with the position (189), the following expansion must be considered:

αij = M2
⋆ (α2ij +M⋆ α3ij + · · · )

where:


















α2ij = β2
ref a

2
0ij +

1

4
u2

0ij

α3ij = 2 β2
ref a0ij a1ij +

1

2
u0ij u1ij

(369)

and thus (α2ij is clearly positive, see Note 35 in sec. 3.4.1):

(

a
(p)
ij

)−1

= M−1
⋆ α

− 1
2

2ij

(

1 −M⋆
α3ij

2α2ij
+ · · ·

)
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A.6 Proof of the Proposition 8 (sec. 3.4.3)

The coefficients associated with the negative powers of M⋆ in (190) must be
identically equal to zero in order to allow for the solution to be defined for
M⋆ → 0. In particular, the following relations are derived by respectively
imposing Ψ̌

(−2)
sd,p = 0 and Θ̌

(−2)
sd,p = 0:

∆i(i+1)p0

α
1/2
2i(i+1)

− ∆(i−1)ip0

α
1/2
2(i−1)i

= 0 (370)

∆i(i+1)p0 − ∆(i−1)ip0 +

3

2

(

u0i(i+1)

α
1/2
2i(i+1)

∆i(i+1)p0 −
u0(i−1)i

α
1/2
2(i−1)i

∆(i−1)ip0

)

= 0
(371)

with α2ij given by (369). The equations (370) and (371) constitute a system
of two homogeneous difference equations for the two unknowns ∆(i−1)ip0 and
∆i(i+1)p0. Due to the arbitrariness of the coefficients (depending on the
solution itself), it necessarily follows that (as usual, i ∈ I and j ∈ πi):

∆ijp0 = 0 (372)

and therefore p0i does not depend on the spatial index i:

p0i(t) = p̂0(t) (373)

and therefore for a suitable function p̂0. In consideration of (372), the con-

ditions Ψ̌
(−1)
sd,p = 0 and Θ̌

(−1)
sd,p = 0 respectively read:

∆i(i+1)p1

α
1/2
2i(i+1)

− ∆(i−1)ip1

α
1/2
2(i−1)i

= 0 (374)

∆i(i+1)p1 − ∆(i−1)ip1+

3

2

(

u0i(i+1)

α
1/2
2i(i+1)

∆i(i+1)p1 −
u0(i−1)i

α
1/2
2(i−1)i

∆(i−1)ip1

)

= 0
(375)

The equations (374) and (375) are identical to (370) and (371), respectively,
once replaced p1 with p0. Hence, the following condition can be immediately
drawn from (373):

p1i(t) = p̂1(t)

where p̂1 denotes a suitable function. As a result, the asymptotic expression
(191) is recovered. This completes the proof. �
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A.7 Proof of the Proposition 9 (sec. 3.5.1)

In order to simplify the notation, a generic function g (u,v) is considered at
a preliminary stage, u and v hereafter denoting generic vectors. Moreover,
the following definitions, directly derived from (220), are introduced:







































∆(L)g := g (u,v0) − g (u0,v0)

∆(R)g := g (u0,v) − g (u0,v0)

∆̄(L)g := g (u0,v) − g (u,v)

∆̄(R)g := g (u,v0) − g (u,v)

where u0 and v0 represent specific instances of u and v, respectively.
The proof under consideration exploits the algebraic relation described

by the subsequent:

Lemma 1 Let M (·, ·) and N (·, ·) denote suitable matrices and let r̂ (·, ·, ·, ·)
represent a suitable vector, such that:

∆(L)g + ∆(R)g = M (u,v0) · (u − u0) +

N (u0,v) · (v − v0) +

r̂ (u0,v0,u,v)

(376)

for any value of u0, v0, u and v. Then, the following relation is satisfied:

g (u,v) − g (u0,v0) = M (u0,v0) · (u − u0) +

N (u0,v0) · (v − v0) +

1

2
r (u0,v0,u,v)

(377)

with:
r (u0,v0,u,v) :=

(

∆(L)M + ∆(R)M
)

· (u − u0) +

(

∆(L)N + ∆(R)N
)

· (v − v0) −

∆(LR)r̂ (·, ·,u0,v) −

∆(LR)r̂ (·, ·,u,v0)
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and:
∆(LR)r̂ (·, ·, ū, v̄) := r̂ (u,v, ū, v̄) − r̂ (u0,v0, ū, v̄)

Proof By firstly choosing v = v0 and then u = u0 in (376), the following
expressions are respectively obtained:

∆(L)g = M (u,v0) · (u − u0) + r̂ (u0,v0,u,v0) (378)

∆(R)g = N (u0,v) · (v − v0) + r̂ (u0,v0,u0,v) (379)

Furthermore, by inverting the role of (u0,v0) and (u,v) it follows that:

∆̄(L)g = M (u0,v) · (u0 − u) + r̂ (u,v,u0,v) (380)

∆̄(R)g = N (u,v0) · (v0 − v) + r̂ (u,v,u,v0) (381)

Then, once noticed that:

2 (g (u,v) − g (u0,v0) ) = ∆(L)g + ∆(R)g − ∆̄(L)g − ∆̄(R)g (382)

the equality (377) is immediately obtained by substituting (378)-(381) into
the corresponding terms on the right-hand side of (382). This completes the
proof. �

Let φROE (u,v) denote, in the present context, the generic Roe numerical

flux φ
(g)ROE
LR considered in sec. 3.5.1. It is possible to recast the considered

numerical flux as follows (from (135), by a trivial change of notation):






φROE (u,v) = f (u) + J̃− (u,v) · (v − u)

φROE (u,v) = f (v) − J̃+ (u,v) · (v − u)

(383)

Then, from the first relation in (383) it follows that:

∆(R)φ
ROE = J̃− (u0,v) · (v − u0) − J̃− (u0,v0) · (v0 − u0) (384)

while from the second one it follows that:

∆(L)φ
ROE = J̃+ (u0,v0) · (v0 − u0) − J̃+ (u,v0) · (v0 − u) (385)

Moreover, by combining (384) and (385) the subsequent relation is obtained:

∆(L)φ
ROE + ∆(R)φ

ROE = J̃+ (u,v0) · (u− u0) +

J̃− (u0,v) · (v − v0) +

r̂ROE (u0,v0,u,v)

(386)
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with:
r̂ROE (u0,v0,u,v) :=

(

∆(R)J̃
− − ∆(L)J̃

+
)

· (v0 − u0)

In consideration of the similarity between (376) and (386), it is possible to
apply the Lemma 1 introduced above, thus obtaining the following relation:

φROE (u,v) − φROE (u0,v0) = J̃+ (u0,v0) · (u− u0) +

J̃− (u0,v0) · (v − v0) +

1

2
rROE (u0,v0,u,v)

(387)

with:

rROE (u0,v0,u,v) :=
(

∆(L)J̃
+ + ∆(R)J̃

+
)

· (u− u0) +

(

∆(L)J̃
− + ∆(R)J̃

−
)

· (v − v0) +

(

∆(R)J̃
− − ∆(L)J̃

+
)

· (v0 − u0) +

(

∆̄(L)J̃
+ − ∆̄(R)J̃

−
)

· (v − u)

Finally, the equality (218) is directly obtained from (387) by means of a
straightforward change of notation. This completes the proof. �
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B Appendix: efficient access to the table (256)

for pressure-based algorithms

A typical access to the table (256) within a pressure-based algorithm is aimed
at finding the density ρ and the sound speed a corresponding to a certain
input value of the independent variable p < psat.

It is possible to define a fast look-up strategy by firstly noticing that
the distribution along the y-axis in Fig. 44 of the pressure “nodes” pi,
as provided by an ordinary adaptive integration algorithm (e.g. a classi-
cal fourth-order Runge-Kutta scheme [79] with adaptive step-size control), is
typically clustered around a node pi⋆ corresponding to a density ρi⋆ such that
ρi⋆ ≈ 0.5 · ρLsat. It is therefore possible to approximate the original pressure
sequence pi by a new one, say p′′k, obtained by juxtaposing two geometric se-

quences, p
(up)
k and p

(down)
k , both starting from pi⋆ and respectively marching

towards p0 and pn−1. Let γu > 1 and γd > 1 denote the ratios of p
(up)
k and

p
(down)
k , respectively. Once defined the number of points in each sequence,

say nu and nd respectively, the following representations are easily obtained:

p
(up)
k := pi⋆ +

γ
(nu−1)−k
u − 1

γu − 1
δu , k ∈ {0, . . . , (nu − 1)} (388)

p
(down)
k := pi⋆ −

γ
k−(nu−1)
d − 1

γd − 1
δd , k ∈ {(nu−1), . . . , (nu +nd−2)} (389)

where:

δu := (p0 − pi⋆)
γu − 1

γ
(nu−1)
r − 1

δd := (pi⋆ − pn−1)
γd − 1

γnd−1
d − 1

and the new pressure sequence finally reads:

p′′k :=























































p0 , k = 0

p
(up)
k , k ∈ {1, . . . , (nu − 2)}

pi⋆ , k = (nu − 1)

p
(down)
k , k ∈ {nu, . . . , (nu + nd − 3)}

pn−1 , k = (nu + nd − 2)

(390)



The new pressure sequence has a noticeable advantage over the old one: it
permits to analytically identify the nodal span to which a given value of the
pressure p belongs by inverting (388) and (389) as follows (the cases p = p0,
p = pi⋆ and p = pn−1 are neglected because trivial):

p ∈















[

p′′µ(p), p
′′
µ(p)−1

)

, pi⋆ < p < p0

(

p′′ν(p)+1, p
′′
ν(p)

]

, pn−1 < p < pi⋆

(391)

with:

µ (p) := (nu − 1) −
⌊

1

ln (γu)
ln

{

1 + (p− pi⋆)
γu − 1

δu

}⌋

(392)

ν (p) := (nu − 1) +

⌊

1

ln (γd)
ln

{

1 + (pi⋆ − p)
γd − 1

δd

}⌋

(393)

where, of course, the symbol ⌊·⌋ denotes the floor function.
Once defined the new pressure sequence p′′k, a new table can be built either

by solving the o.d.e. (250)once more, now in correspondence of the sequence
p′′k, or by interpolating the original table. The latter strategy is considered
here and the following new table, in particular, is built:

(ρ′′k , p
′′
k , a

′′
k) , k ∈ {0, . . . , (nu + nd − 2)} (394)

by linearly interpolating the original one (256) in correspondence of the new
pressure sequence (390). Clearly, the original table can be discarded at this
point, since it is never accessed by the considered algorithm. It may be worth
noticing that, besides being attractive for its simplicity, a linear interpolation
preserves the strict monotonicity of the p-ρ curve.

For suitable values of the relevant parameters, the new table very well
approximates the original one: a fitting practically identical to that one
shown in Fig. 46 is obtained, not reported here for brevity. It is therefore
natural to define the following two-step access strategy based on table (394):

- given an input pressure p (the cases p = p0, p = pi⋆ and p = pn−1

are not considered here because trivial), the corresponding span within
(394) is identified by means of (391)-(393);

- the values of ρ and a corresponding to p are defined by linear inter-
polation within the identified span. Of course, this procedure can be
extended to an arbitrary number of dependent variables (e.g. the func-
tion Ψ, defined in (69), to be used for solving RPs associated with
convex state laws, see sec. 2.5.1).

Evidently, the aforementioned access strategy is more efficient than a crude
look-up within the original table (256).
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