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Introduction

In this thesis we analyze several problems from the calculus of variations in
the framework of optimal transport theory. We are mainly concerned with
optimization problems from this theory and with other transportation prob-
lem which are alternative to the classical Monge-Kantorovich formalization.
Most of the models we present come from application purposes and the set
of possible applications includes urban economics, biology, fluid mechanics
and geophysics.

The main topic of the thesis consists of the study optimal transport
problem where some kind of concentration phenomena occur: on the one
hand concentration of the marginal measures and on the other concentration
along the transport itself.

The first subject, concentration of marginal measures, has been devel-
oped in the form of Transport and Concentration Problems, i.e. minimization
problems where the unknowns are probability measures and the quantity to
be minimized involves some functional encouraging or discouraging their
concentration or dispersion and some transport costs as well. In particular,
in these problems, transport appear only through their minimal value and
we are in general not interested in finding the variables (transport plans,
maps. . . ) that actually realize the minimum, and we are only concerned
with the properties of “optimal” marginal measures. These problems have
some quite natural interpretation from a modelistic point of view. For in-
stance, if we are concerned with the planning of a geographical region, we
may be interested in finding a concentrated distribution of production cen-
ters together with a spread distribution of consumers, keeping anyway as
small as possible the transportation costs for commuting or bringing the
product to the consumers. Similar problems may also have an interpreta-
tion in the study of the shape of certain biological objects, such as leaves;
these are in fact objects whose goal is to maximize their extension to take
advantage of sunlight, but they receive their nutrient from a single concen-
trated source and the transport cost for this nutrient is to be taken into
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account.
The attention that we give to these problems dates back to the Laurea

Thesis [66], prepared in 2003 under the direction of Prof. Buttazzo, and has
evolved in the years, considering several models and discussing the corre-
sponding results. A detailed report on these models is exactly the aim of
the first part of this thesis. Our attention will be devoted to some modeling
aspects and to the analysis of optimality conditions. In particular necessary
optimality conditions, typically of the first order, are a key feature of this
thesis. They are exploited as much as possible to obtain regularity, qualita-
tive properties and, when possible, explicit expressions for the minimizers.
In this case, as the unknowns are measures and hence belong to a nice vector
space, differentiation is often feasible and this program gives unexpectedly
strong results.

The second of the subjects we mentioned, concentration along transport,
has a more classical structure: we are given the starting and arrival measures
and we look for the optimal structure which transports the first onto the
second. What is important is that in some applications we want to take
into account how much the transportation appears to be concentrated: for
instance if too many people pass through a same road in a city there could
be a congestion effect; on the other hand if we need to create a road system,
we would like to concentrate most of the path that different drivers follow
on a same road, so that we only need to build few larger roads instead of
several smaller ones. This suggests that there should be some quantities
measuring how much the transportation is concentrated and, according to
the different applications, we would like to consider minimization problem
which encourage or discourage this concentration. It seems reasonable to
consider Monge’s problem as the concentration-neutral one and that we may
create variants departing from this one.

In the thesis the main model discouraging concentration of transport,
i.e. taking into account congestion effects, is hidden in Chapter 2, in the
middle of Transport and Concentration Problems. In such a chapter we only
briefly present it and we are much more interested in its minimal value, in
the sense that we will use it as a functional of the marginal measures. A
more refined and self-contained study of congestion models is in progress in
[36] but it has not been included in this thesis due to its preliminary state.

On the other hand a lot of attention is given to transport problems
encouraging joint transportation. There is a wide literature on them, as
they are very natural in applications, and they give raise to some optimal
one-dimensional branching structures. these structures are dealt with in
the thesis in three chapters (6,7 and 9), together with a brief review of the
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already existing results.
Let us see now how the themes above have been developed in the chapters

of the thesis. Each chapter corresponds roughly to a paper that has been
prepared during this three-years doctoral period: some of these articles have
been published and some are accepted. Only the last chapter contains some
new computations not yet presented in preprint form.

Chapters 1, 2 and 3 are the first part of the thesis and present trans-
port and concentration problems. In these chapters we are concerned with
optimization problems of the following kind:

min
µ,ν∈P(Ω)

F(µ, ν) := T (µ, ν) + F (µ) +G(ν),

where the functional T represents transport costs between the two proba-
bility measures µ and ν and F and G are functionals over the space P(Ω)
of probability measures on Ω with opposite behavior: the first favors spread
measures and penalizes concentration while the latter, on the other hand,
favors concentrated measures. Chapter 1 is devoted to a problem fitting into
this framework that has been proposed in the Laurea Thesis [66] and then
in [28]. A particular choice of the functionals T, F and G is performed: we
set

T (µ, ν) =W p
p (µ, ν),

F (µ) =

{

∫

Ω f(u) dLd if µ = u · Ld
+∞ otherwise,

G(ν) =

{

∑

k∈N g(ak) ifν =
∑

k∈N akδxk
+∞ otherwise.

The functions f and g must obviously satisfy some conditions, and in partic-
ular f must be convex and g subadditive. In this way T is the minimum of a
Kantorovich optimal transport problem and F and G are local semicontinu-
ous functionals over measures (see [16], [17] and [18]). A short introduction
of this useful class of functionals over measures has been inserted into the
chapter: in this way we can see that both concentration preferring func-
tionals (as G is) and functionals favoring spread measures (as F does) fall
into this class. Some emphasis is given throughout the Chapter to the in-
terpretation of such a variational model in terms of urban planning: here
the measure µ represents residents’ distribution in the urban area Ω and
ν stands for the distributions of services. The first measure has to be as
spread as possible to maximize the average use of land of the citizens, while
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the second has to be concentrated in order to increase the efficiency f the
production (i.e. we have positive externalities for nearby services). How-
ever, the commuting transportation cost for people needing to move from
home to services must be considered as well. From the interpretation of the
model the convexity and subadditivity assumptions on f and g, which are
useful for technical reasons, turn out to be quite natural.

Besides the modelistic side, the chapter is devoted to some mathematical
aspects of the problem. In this minimization existence results are straight-
forward, at least when Ω is compact. This is due to the semicontinuity of
the functionals with respect to weak convergence of measures. Our atten-
tion is consequently mainly devoted to optimality conditions. Notice that
any pair (µ, ν) giving finite value to F must be necessarily composed by an
absolutely continuous measure µ with density u ∈ L1(Ω) and by a purely
atomic measure ν. Hence it is interesting to deduce properties on the density
u and on the location of the atoms of ν. The main results are obtained by
perturbing an optimal µ into a new measure µ+ε(µ1−µ) and keeping frozen
ν. The duality formula in mass transportation plays a crucial role. The idea
is very simple and the computations are simple as well, up to overcoming
some technical difficulties about Kantorovich potentials. The result we get
is the following: if u is the density of µ and ψ a suitably chosen Kantorovich
potential between µ and ν we have

f ′(u) + ψ = const a.e.

For this result two proofs are provided. The second, mainly based on convex
analysis, has been suggested by an anonymous referee while reviewing the ar-
ticle [28]. In the original paper, anyway, such a proof was only sketched and
it actually requires some preliminary work before being performed. Then,
after understanding optimality conditions for fixed ν the attention comes
back to the whole problem when both µ and ν vary and the results are
applied in order to characterize the global optima. The same results are
also useful to gain some compactness when the problem is posed in an un-
bounded domain, such as Ω = Rd, where the existence is no longer trivial.
The qualitative shape of the optimal configurations is in the end the follow-
ing: ν is composed by finitely many atoms xi and µ = u · Ld is concentrated
on some balls Bi centered at these atoms, with radially decreasing densities
given by an explicit formula:

u = (f ′)−1(ci − |x− xi|p) for x ∈ Bi.
These balls may be interpreted as subcities (or cities if Ω is thought of as

a larger region) and the atoms are their centers, where services are located.
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In Chapter 2 we introduce in the subject of urban planning the concept
of traffic congestion. The source of inspiration is a set of works by Beckmann
([10] and [11]) and the idea is the following: it is well known that the Monge-
Kantorovich problem for a distance cost |x− y| is equivalent to the minimal
flow problem

inf

{∫

Ω
|Y (x)|dx : ∇ · Y = µ− ν in Ω, Y · n = 0 on ∂Ω

}

;

if one instead looks at the problem

inf

{∫

Ω
|Y (x)|2dx : ∇ · Y = µ− ν in Ω, Y · n = 0 on ∂Ω

}

we are not only minimizing the total movement that is necessary to pass
from µ to ν, but we are also penalizing an excessive concentration of this
movement. At the beginning of the chapter this congestion model for opti-
mal transportation is explained in more details. In minimizing the L2 norm
of the vector field Y under divergence constraints an elliptic equation with
Neumann boundary conditions appears as an Euler equation. the optimal
flow Y is in fact characterized by

Y = ∇φ;
{

−∆φ = µ− ν in Ω,
∂φ
∂n = 0 on ∂Ω,

where the equation as to be taken in the weak sense.
Anyway, as we said above, in the chapter we are not much interested

in the minimization problem itself and in understanding how the optimal
flow looks like, but we are more interested in using the minimal L2 norm
of the flow as a quantity which represents the congestioned transport cost
between the two measures. Then we insert this quantity in a Transport and
Concentration Problem as in Chapter 1. It is quite easy to convince oneself,
due to the link with elliptic theory, that the infimum of the L2− flow is
infinite if µ−ν does not belong to a suitable functional space. This requires
a sort of H−1 regularity and in particular prevents ν from having atoms.
Hence, in the functional F we will not only replace T by a congestion term,
but G has to be replaced too, as the atomic choice of Chapter 1 is no longer
possible. A very natural choice for the functional G is the following one,
that we call interaction energy, and it is well known in the framework of
optimal transport from the work of McCann ([58]):

G(ν) =

∫

Ω×Ω
V (x, y)(ν ⊗ ν)(dx, dy),
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where V (x, y) is, for instance, an increasing function of the distance between
x and y. The idea is to take the interaction cost for a service located at x and
another service located at y and average it with respect to the distribution
of services. For the functional F we keep the same choice as in Chapter
1 but we particularize it to the case f(s) = s2, and in the end we get the
following functional

F(µ, ν) = ||µ− ν||2X′ + ||µ||2L2 +G(ν),

which is a quadratic functional. Here the space X ′ is the dual space of X =
{ψ ∈ H1(Ω) :

∫

Ω ψ = 0} with norm ||ψ||X = ||∇ψ||L2 (this representation
of the congestion cost of transport comes from the representation formula
for the optimal flow Y ).

After setting the problem and getting some existence results, as in Chap-
ter 1 we look for optimality conditions. Here too the first step is freezing ν
and getting a convex quadratic problem in µ. Then the attention goes to
the problem in ν only. This is more involved than what we had in Chapter 1
since now ν is no longer discrete and it can a priori be any probability mea-
sure since G(ν) <∞ for any ν ∈ P(Ω). We prove consequently a regularity
result for ν which guarantees that ν is actually absolutely continuous with
bounded density under certain assumptions (in particular, we need Ω to be
convex: in the non-convex case ν may have a singular part concentrated on
the non-convex part of ∂Ω). The result is obtained by approximation and
it is interesting to see that a very powerful regularization technique comes
actually from the use of Monge-Kantorovich theory. In fact the original
idea was to perturb the problem by adding a small term ε||ν||2L2 in order
to force the optimal νε to have a density and then to get uniform estimates
on the L∞ norm of νε. Unfortunately, in this way we could retrieve at the
limit some information only on a particular minimizer of F, i.e. the one
which is approximated by minimizers of the perturbed problems. As we are
not facing a convex problem we have no guarantee that there is a unique
minimizer and we would like to have a regularity result which is valid for
arbitrary minimizers. To do this we decide to add a small perturbation of
the kind εW 2

2 (ν, ν), where ν is a minimizer that we can fix. In this way
we are somehow forcing the minimizers νε to converge to ν. What is inter-
esting is that, in computing optimality conditions for the minimizers of the
perturbed problems, the Kantorovich potential, induced by the presence of
the Wasserstein distance W2, appears. Then, well-known estimates on Kan-
torovich potentials help in getting uniform bounds on the densities of νε.
After a long part devoted to regularity the chapter contains some explicit
examples. The one-dimensional case is treated in detail and in this case it
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turns out that the functionals involved have some displacement convexity
properties (and the proof of this fact is interesting in itself). Then, the
two-dimensional radial case is treated under some assumptions that ensure
the uniqueness (and hence the radiality) of the solution. The case of a ball,
of the whole space and of a crown is treated with explicit solutions. The
whole work in Chapter 2 comes from a joint paper with Guillaume Carlier
([37]) that has been developed during a three months visit at the University
of Bordeaux IV in 2004.

Chapter 3 contains a subsequent short work ([67]) that has been written
to complete the subject of Transport and Concentration Problems. The goal
was twofold: first, presenting this class of problems as a whole subject, with
possible applications in urban planning (but not only); then, completing the
framework of the problems we studied. In fact with G. Buttazzo we studied
the problem where the transport cost was given by a Wasserstein distance
and the concentration one by a local functional on atomic measures and
with G. Carlier the case of a congestion transport cost and an interaction
concentration cost. We already noticed that the case of congestion + local
atomic functionals is not meaningful as it would have lead to a constantly
infinite functional. Consequently, to complete the framework it is interesting
to consider the Wasserstein + interaction case. The problem is hence the
minimization of the functional

F(µ, ν) =W 2
2 (µ, ν) + F (µ) +

∫

Ω×Ω
V (x, y)(ν ⊗ ν)(dx, dy),

where F is the same as in Chapter 1. In Chapter 3 the goals are: determining
some optimality conditions (mainly on ν for fixed µ, because those on µ for
fixed ν come directly from what we saw in Chapter 1), using them to get
L∞ regularity, analyzing an explicit, quadratic, example. The regularity
is obtained by the same scheme as in Chapter 2: almost the same kind
of perturbations are performed, but the results on elliptic PDEs are here
replaced by some results on Monge-Ampère equation. This comes from the
fact that the Kantorovich potential plays here the role that in the previous
case was played by the solution of the elliptic PDE. A more refined analysis of
the behavior of the Kantorovich potential on the boundary of Ω allows to give
a result under milder assumptions than what we did in Chapter 2. Anyway,
at least a third of the Chapter is devoted to the general topic of transport and
concentration problems, and a general definition of concentration preferring
functional is given: a functional G : P(Ω) → R ∪ {+∞} is said to be
concentration preferring if we have G(t]ν) ≤ G(ν) for any ν ∈ P(Ω) and
any t : Ω→ Ω which is 1−Lipschitz. Moreover it is shown that several other

10



well-known variational problems fall into this class of problems. This is the
case for instance of optimal location problems, which are quite studied in
urban economics, but also of other average distance problems that will be
discussed in Chapter 8 as well.

From Chapter 4 on our attention begins to be more directed towards
branched transport problems. These problems are quite natural when we
look at situations where we want to encourage joint transportation, for in-
stance because building a network system with few large roads is cheaper
than building several small roads. The structures that arise are all charac-
terized by a first gathering of the masses, followed by joint transportation
paths and finally a branching distribution towards the individual destina-
tions. These structures and these problems are likely to appear also in
natural phenomena, for instance in leaves, trees, river basins and blood ves-
sels, and not only in human-built systems. The first mathematical precise
formulation of the problem is due to Gilbert, who looked at it, in its discrete
version, from the point of view of the applications in communication net-
works (see [48]). Once given some sources xi with masses ai and some sinks
yj wth masses bj , his model consists in solving the following minimization
problem

min E(G) :=
∑

h

wαhH1(eh),

where the infimum is among all weighted oriented graphs G = (eh, êh, wh)h
which fulfill the Kirchoff law at any vertex (at any xi we have ai+ incoming
mass = outcoming mass, at any yj we have incoming mass = outcoming
mass +bj and at all the other vertices incoming and outcoming mass are
equal). The exponent α is a fixed parameter 0 < α < 1 so that the function
t 7→ tα is concave and subadditive.

The main recent mathematical interest on this subject has been try-
ing to generalize this problem to the case of non-discrete measures µ and
ν. There are very interesting models by Qinglan Xia ([72]), Maddalena-
Solimini-Morel ([57]) and Bernot-Caselles-Morel ([13]). Chapter 4 contains
a different approach that we tried to give to the problem in a joint work
with Alessio Brancolini and Giuseppe Buttazzo. The main idea is looking
at an interpolation between µ and ν, i.e a curve γ in the space of probability
measures, which minimizes a certain length functional

J (γ) =
∫ 1

0
J(γ(t))|γ′|(t) dt,

where J : P(Ω) → [0,+∞] is a functional encouraging the curve to pass
through concentrated measures and |γ ′| is the metric derivative according
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to a suitable distance in P(Ω) (for instance the Wasserstein one Wp). In
particular, the interest is choosing J = Gα where we have

Gα(ν) =

{

∑

k∈N a
α
k if ν =

∑

k∈N akδxk
+∞ otherwise,

that is a particular case of the functional G used in Chapter 1. It turns out
that this model is not equivalent to those by Gilbert, Xia et al. In fact, as
it considers all the atoms of the measure γ(t) at time t and it computes its
speed in a global way and not for each atom separately, it follows that the
functional takes into account also the mass of those atoms that have already
reached their destination and stay eventually still. Anyway the model has a
certain mathematical simplicity, due to the fact that it is in fact a geodesic
problem in the space of probability measures endowed with a conformal
perturbation of the Wasserstein distance. Moreover, the same model may
work under minor changes to obtain very different functionals and optimal
curves. For instance one can replace the functional Gα by Fq, given by

Fq(µ) =

{

∫

Ω |u|q dL if µ = u · L
+∞ otherwise.

In this case too we have a particular choice of a local semicontinuous func-
tional from those that we used in Chapter 1, but here we are discouraging
concentration, favoring on the contrary spread measures.

Throughout the chapter we give some general theoretical existence re-
sults for the minimization of this length energies in the framework of metric
spaces. Then we analyze separately the two cases of Gα and Fq. In order
to have a well-posed problem it is also necessary to answer the question
whether the minimal value is finite or not. It is in fact not obvious that
a diffuse measure may be reached by a curve of atomic measures keeping
the energy finite, as well as reaching an atomic measure with Lq densities
could be sometimes impossible. What we get is that it may depend on the
exponents α and q: for the case of the functional Gα we have finite energy
for any pairs of measures (µ, ν) if α > 1− 1/d (d being the dimension of the
ambient space) and for Fq the same is true if q < 1+1/d. It is interesting to
see how the two cases are somehow specular. At the end of the chapter we
also partly approach the case of Ω = Rd, where existence is less trivial due
to a certain lack of compactness. This is anyway solved by a more general
theoretical result for metric spaces which are not locally compact. These two
geodesic problems (the one with Gα and the one with Fq) could be some-
how considered as transport problem where we look at concentration criteria
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along the transport. We are in fact applying to the interpolating measures
the same concentration functional that we used in Chapter 1. Anyway, it
looks rather different from what we did to define congestion in Chapter 2
and to what we will see later on for branching problems. Here the approach
is less Eulerian and more time-dependent.

In Chapter 5 we develop a little more the case of the geodesic functional
based on Fq. In fact this had been presented in Chapter 4 only as a natural
counterpart of the concentration case, which was the main object from a
branching point of view, but has some interesting feature in itself. First it
may model the expansion of a gas whose initial and final configuration are
known and which is subject to a negative pressure which leads it to diffuse
as much as possible. Second, as we are facing Lq measures, we have in
fact densities, i.e. functions of time and space, and we can write optimality
conditions on them. The interest is towards the fact that the optimality
conditions for those densities are expressed in the form of a system of PDEs
which are very similar to the Euler equation for compressible gases. The
chapter follows a joint work with Luigi Ambrosio where we rigorously derive
this system of PDEs by means of perturbations of the measures through a
transport-like variation (i.e. we replace µt by (id + εT )]µt). The system
involves the densities and the velocity fields of the particles composing the
densities, for a total of d+ 1 equations. It consists of d equations of kinetic
type and the d+1−th equation is the continuity equation of conservation of
the mass: if we denote by u the density and by v the velocity field we have























H(t)∇uq +K(t)∇ ·
(

u|v|p−2v ⊗ v
)

+ d
dt

(

K(t)u|v|p−2v
)

= 0 in Ω,
d
dtu+∇ · (vu) = 0 in Ω

uv · n = 0 on ∂Ω

lim
t↓0

u(t, ·)Ld = µ0; lim
t↑1

u(t, ·)Ld = µ1,

for suitable time-depending functions K and H.
At the end of the chapter we look for some particular solutions of the

system, i.e. self-similar solutions. These are densities which have a certain
shape which remains the same during time, up to scaling and translations. It
turns out that there exist solutions of this kind (which, obviously, may only
link self-similar boundary data µ0 and µ1 or at the limit Dirac masses), but
they are characterized by a certain special shape: the allowed densities are
in fact of the same form of the reversed parabolas that we found in Chapter
1. In the easiest case, i.e when the exponents p and q (for the Wasserstein
space Wp and the diffusion functional Fq, respectively) are equal to 2, they
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have the form
u(t, x) =

(

At −Bt|x− xt|2
)+
.

The link with the optimal densities of Chapter 1 is evident, as we are min-
imizing a certain combination of Wasserstein distances and Fq functionals.
Moreover, the reference measure is in both cases a Dirac mass (in the first
problem ν is a finite sum of Dirac masses, and hence the situation is lo-
cally as if it were composed by a single atom; in this case, since if we have
self-similar densities, at the limit we also have a single Dirac mass). It is
however very interesting to see how this kind of densities appears in several
problems involving mass transport.

After presenting the alternative (but different) models viewing branched
transport structures as arising from geodesic problems in Wasserstein spaces,
we come back in Chapter 6 to the formulations that have been equivalently
given by Xia and Maddalena et al. as a generalization of Gilbert’s problem.
We first present Xia’s relaxed problem: the Kirchoff constraint in Gilbert’s
problem is expressed in [72] as a divergence constraint

∇ · λG = µ− ν, where λG =
∑

h

wh[[eh]].

Here [[e]] is the integration measure measure on the segment e, given by
[[e]] = êIe · H1, and hence λG is a vector measure representing the flow
which goes from µ to ν through the graph G. After this consideration Xia
extended Gilbert’s problem by relaxation to generic probabilities µ and ν.
The problems becomes

min E(λ) : ∇ · λ = µ− ν

where E(λ) := inf lim infnE(λGn) and the infimum is over all possible se-
quences of finite graphs (Gn)n such that the corresponding vector measures
λGn converge to λ. It is also possible to prove a representation formula for
the relaxed energy E(λ):

E(λ) =

{

∫

M θα dH1, if λ = (M, θ, ξ),

+∞ otherwise.
(0.0.1)

The equality λ = (M, θ, ξ) means that λ is a vector measure concentrated on
the 1−rectifiable set M and absolutely continuous w.r.t. H1 with density
given by θξ (θ being a real multiplicity and ξ a measurable tangent unit
vector field on M).
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It is interesting to notice that this problem, as in the congestion problem
of Chapter 2 and in the bidual version of Monge-Kantorovich, requires to
minimize a quantity on λ under the constraint ∇·λ = µ−ν. In Monge’s case
this quantity is just the mass of λ, i.e. the L1 norm when λ is absolutely
continuous, in the congestion case it is the L2 norm or more generally a
convex superlinear functional, and here it is a concave functional also known
as Mα−mass. This means that, under the same constraints, not only we
want to minimize the total movement quantity, but we may encourage or
discourage this movement to be concentrated or dispersed. Here we want it
to be concentrated (concentrated on one dimensional structures and with a
subadditive cost which prefers few larger flows than several small ones), in
Chapter 2 we want it to be as spread as possible. Monge’s case is somehow
in the middle, as a concentration-neutral case. This shows how we have
a common Eulerian formulation of some different transport problems, with
different features and applications, all starting from Monge (i.e. c(x, y) =
|x − y| and we cannot hope to retrieve them by means of other costs, such
as |x− y|p).

After presenting the Eulerian approach by Xia the same problem is pre-
sented under the Lagrangian approach of two works, the first one by Mad-
dalena, Solimini and Morel, [57], where only the case of a single source (i.e.
µ = δ0) is dealt with, and the second one by Bernot, Caselles and Morel,
[13], where the results are generalized to the case of arbitrary measures. The
main idea is to look at measures η on the space Γ of 1−Lipschitz paths which
eventually stop (at a time denoted by σ(γ)) and to define the multiplicity
that this system of paths has at a point x: we set [x]η = η({γ : x ∈ γ}).
Then we define Zη(γ) =

∫ σ(γ)
0 [γ(t)]α−1η dt and we minimize the functional

J(η) =

∫

Γ
Zη(γ)η(dγ).

The constraint in this case is that the initial and terminal measures of η
are µ and ν, respectively, i.e. (π0)]η = µ and (π∞)]η = ν, where π0(γ) =
γ(0) and π∞(γ) = γ(σ(γ)). In a recent paper by the same authors, [14],
the equivalences between all these model (i.e. the one by Xia, the one by
Maddalena, Solimini and Morel and the one by Bernot, Caselles and Morel)
are proven.

What we do in Chapter 6 is mainly looking at the infimum values of
these problems and at their dependence on µ and ν. First we recall some
finiteness result, and the main one is that the minimum is always finite for
any pair of compactly supported measures µ and ν if α > 1−1/d. It is well-
known that this bound is sharp (see [43]): here we provide only a short proof
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of the fact that, if α is strictly below the threshold, then it is not possible
to arrive at the rescaled Lebesgue measure on Ω with finite energy. Notice
that this threshold exponent is the same that we had in Chapter 4. By the
way, we also take advantage of the Lagrangian formulations that we present,
where the time variable is present, and we develop a little more a comparison
between the two models. From the formalism of Chapter 4, it turns out that
the way to get a problem which is as similar as possible to these branched
problems is to take p = ∞ in the choice of the distance Wp. After looking
at the finiteness of the value, for α > 1 − 1/d, we denote the minimum by
dα(µ, ν) as in [72]. This quantity turns out to be a distance over the space of
probability measures and it was known from Xia that it metrized the weak
convergence. In a joint work with Jean Michel Morel, which is the main
original part of the chapter, we prove some sharp inequalities between these
distances and the Wasserstein distance W1. Namely, what we prove is

W1(µ, ν) ≤ dα(µ, ν) ≤ cW1(µ, ν)
d(α−(1−1/d)),

where c is a constant depending only on the dimension d and on the expo-
nent α. We also prove that the exponents of W1 in the above inequalities
are sharp. This result gives an answer to a question posed by Cedric Vil-
lani about the comparison of standard Kantorovich transport and branched
transport.

If Chapter 6 has also played the role of a general introduction to branched
transport problems, in Chapter 7 we develop a very peculiar feature of them
whose motivations lie, as far as interdisciplinary applications are concerned,
mainly in geophysics. In fact, geophysicists, while studying the shape and
evolution of river basins, have two main objects to deal with: the structure
of the river network and the elevation of the landscape in the region. In
many physical models the landscape elevation is obtained at a point x by
integrating along the only stream arriving at x from the outlet of the whole
basin the quantity θα−1, where at any point of the river network θ stands
for the multiplicity of the network itself. This topic has been considered in
a series of paper (see for instance [9] or the book [64]) mainly under some
strong discretization. Anyway, the formula we gave for Zη and its use in the
definition of the functional J suggest that it should be possible to define a
similar landscape function also in the continuous case. Roughly speaking,
the idea is to take an optimal measure η ∈ P(Γ) minimizing J with initial
measure δ0 and terminal measure µ ∈ P(Ω) and defining the landscape
function z by

z(x) = Zη(γ) for γ such that π∞(γ) = x
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(this obviously requires to check that it is well-defined, i.e. that different
curves give the same result). The chapter follows a recent paper (see [68])
that has been widely discussed with Jean-Michel Morel during the same
six-months visit to Cachan in which the results of [60] and of Chapter 9
have been established.. As a first thing we argue in a detailed way the
interest of defining a landscape function z associated to branched transport
problems and we point out the features it should have: the main one is a
certain link with the geometry of the network and in particular we want that
at every point of the network the maximal slope direction of z must agree
with the direction of the network itself at x. Then it should be interesting
to have some regularity property of z, even if one cannot expect it to be
Lipschitz continuous, since it must have arbitrarily large derivatives θα−1

in the direction of the network. This in particular forces us to give a weak
concept of maximal slope direction in the above requirement. Anyway, at
the end of the chapter, the function z is proven to be Hölder continuous
under some extra assumptions (through an interesting use of Campanato
spaces), and in general lower semicontinuous.

Another very interesting feature of this study of the landscape function,
which is developed in Chapter 7, is the fact that z also acts as a derivative
of the functional µ 7→ Xα(µ) := dα(δ0, µ). In fact we can prove that, if we
set µε = µ+ ε(µ1 − µ), it holds

lim sup
ε→0+

Xα(µε)−Xα(µ)

ε
≤ α

∫

Ω
z d(µ1 − µ),

where z is the landscape function with respect to the fixed measure µ. This
is pointed out in the discrete case and then generalized to arbitrary measures
µ. This formula may be useful while studying minimization problems for
functionals like F (µ) +Xα(µ), which was in fact proposed in [57]. Recently
similar problems, where F is a functional which encourages the dispersion
of µ, have been proposed to model the shape of leaves or flowers. The
interpretation comes from the fact that we let µ stand for such a shape and
δ0 represent the source of nutrient for the leave which arrives at a single
point. Then, the shape tries to optimize the cost for being irrigated starting
from such a single point and the positive effect of being as widespread as
possible to take advantage of sunlight. This problem falls easily in the wide
framework of Transport and Concentration Problems proposed in Chapter
3 and in the chapter an example of this kind is developed to show how this
derivative formula could be useful in getting necessary optimality conditions.
This derivative result involving the landscape function may be compared to
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what happens in the case of usual optimal transportation, where we have

lim sup
ε→0+

W p
p (µε, ν)−W p

p (µ, ν)

ε
≤
∫

Ω
ψ d(µ1 − µ),

ψ being the Kantorovich potential in the transportation from µ to ν with
cost c(x, y) = |x − y|p (provided it is unique up to constants, otherwise
the situation is a little more tricky). This derivative result on Wasserstein
distances was in fact the starting point for the results in Chapters 1 and 3.
In fact we may realize that the landscape function plays somehow the role of
Kantorovich potential in branched transportation and this comes not only
from this derivative result, but also from the representation formula

Xα(µ) =

∫

Ω
z dµ =

∫

Ω
z d(µ− δ0),

which is proven in the chapter, and from the Hölder continuity result. The
Landscape function is proven in fact to be d(α−(1−1/d))−Hölder continuous
under some conditions on µ, and this result, as the Hölder exponent varies
from 0 to 1 as α goes from 1 − 1/d to 1, perfectly fits with the fact that
Kantorovich potentials are Lipschitz continuous. Unfortunately, due to the
lack of convexity in the minimization problem for branched transport, it
seems that there is no interpretation of z as the optimum of a dual problem.

In Chapter 8, we leave the framework of branched transport and we
present another optimization problem on one-dimensional structures. This
problem, introduced in [27], consists in finding a subset Σ ⊂ Ω which mini-
mizes the cost function

D(Σ) =

∫

Ω
d(x,Σ)µ(dx)

among all compact connected sets whose length does not exceed a given
value l, i.e. under the constraint H1(Σ) ≤ l. This means looking for a set
which must be as spread as possible (so that the values d(x,Σ) are as small as
possible), without breaking the connectedness and length constraints. This
problem has some interesting interpretations both in terms of applications
(in image reconstruction it corresponds to recovering a line Σ from a pixel
cloud µ in a picture, recalling the well-known concept of skeleton of the
image; in urban planning Σ may be interpreted as a subway network in a
city Ω with population density µ) and in optimal transport theory. The link
with optimal transport theory comes from the equality

D(Σ) = inf {W1(µ, ν) | spt(ν) ⊂ Σ} .

18



In this way we can also see that this problem too falls into the framework
of the Transport and Concentration Problems introduced in their generality
in Chapter 3: we are just minimizing ν 7→ W1(µ, ν) under a constraint
G(ν) ≤ l, the functional G standing for the minimal length of a compact
connected subset containing the support (this functional is explicitly listed
in Chapter 3 among those who satisfy the definition on being concentration
preferring).

This average distance problem with length constraints has been studied
as far as existence and qualitative properties of the minimizers are concerned
in [27] and the main tool for the existence is Golab’s theorem (which jus-
tifies the connectedness assumption, which makes anyway sense for several
applications). In the joint work ([69]) with Paolo Tilli on which the chapter
is based we look at some regularity properties of the minimizers. The main
question is the existence of blow-up limits of an optimal Σ around its points.
Precisely, we say that Σ has a blow-up limit K at x0 ∈ Σ if the localized
and rescaled sets (Σ ∩ B(x0, r)− x0)/r converge, in the Hausdorff distance
as r → 0, to some set K ⊂ B(0, 1). Due to compactness results on the
Hausdorff convergence it is not difficult to have the existence of these limits
up to subsequences. It is not even difficult to characterize their shapes: they
can be only composed by up to three unit rays, which may form a diam-
eter, a corner or triple 120◦ configuration when they are not a single ray
(this up-to-subsequence result is proven in the chapter). What is not trivial
at all is that these limits do not change according to the subsequence and
this is proven with different techniques in different cases (endpoints, triple
junctions. . . ): these techniques involve stationarity, small perturbations and
Γ−convergence as well. Under an L∞ assumption on the measure µ it is
proven that at any point x0 ∈ Σ the full limit of the blow-up procedure ex-
ists. Moreover, in some cases it is possible to estimate the rate of change of
the direction of the rays which form this limit, thus getting a C1,1 regularity
result. This is proven in the last section of the chapter in a neighborhood
of any point x0 such that the diameter of the set

T (x0) = {x ∈ Ω : d(x,Σ) = |x− x0|}

is sufficiently small. In particular this happens if x0 is a triple point, since
in this case we are able to prove that this set reduces to x0 only. In this
way we have a satisfactory description of the behavior of Σ near its triple
junctions: it is composed by three C1,1 curves whose tangent vectors at
x0 from three angles of 120◦. This gives a complete answer to one of the
main questions posed in [27] about this problem, the other ones being about
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regularity (partially answered by this blow-up result), asymptotics as l→∞
or l→ 0, boundary behavior and no-loop properties.

Some of the techniques introduced in Chapter 8 are then used in Chapter
9 on a different problem. We come back to the branched transport frame-
work and we want to study the blow-up. This has been first done by Xia in
[74], and we know from it how the blow-up limits up to subsequences look
like. In a work in progress with Jean-Michel Morel (see [61]) we try to use a
curvature approach to deduce the existence of the limits: we fix a curve in
the optimal network, we perturb it and we get optimality conditions. These
conditions ensure that the derivative of the curve is a BV function on the
interval of parametrization and allow to say that the curve has a side tangent
vector at any point. This result requires some strong assumptions on the
marginal measures, and in particular a lower bound on the densities. Here in
this chapter we propose an alternative approach, which works under differ-
ent conditions, which are less restrictive on the measures. We suppose that
µ belongs to Lp(Ω) for a certain p > 1 and that the couple (µ, ν) satisfies
the regularity assumption, i.e. either ν is atomic or spt(µ)∩ spt(ν) = ∅. On
the other hand, the result is only valid in two spatial dimensions and if the
point x0 where to center the blow-up is a branching point (which is anyway
the most interesting case, since then we could apply some angle conditions).
Under these conditions we are able to perform a procedure exactly as the
one used in Chapter 8 for triple points. We prove that the oscillation of
the angle θ(r) which represents the intersection direction of a branch of the
optimal network N = {x ∈ Ω : [x]η > 0} with ∂B(x0, r) may be estimated
by a quantity linked to the mass which is transported onto N ∩ B(x0, r).
Then it is sufficient to estimate this mass to get a convergence result and it
is what we do, via some geometric and asymptotic estimates.

At the very beginning of the thesis there is a preliminary chapter on
optimal transportation where all the results which will be useful later are
introduced. There is no proof but only some bibliographical reference to
the books by Villani, Ambrosio-Gigli-Savaré and the lecture notes by Am-
brosio ([71], [4] and [3], respectively). We deal with the primal and dual
Kantorovich problems, with the existence of optimal maps, i.e. solutions
to Monge’s problem, with the regularity of transports and potentials in the
quadratic case by Monge-Ampère equation and with Wasserstein distances,
curves in Wasserstein spaces, geodesics and geodesically convex functionals.

As a whole, this thesis presents, in a quite unified setting of transport
problems involving concentration criteria, almost all the researches that we
carried out during these PhD studies. Only some subjects, mainly related to
shape optimization, where the transport component was completely absent
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has been neglected. Probably the most interesting feature of the thesis are
the techniques to get necessary optimality conditions in the set of problems
that have been approached. Most of them are not new; we simply use them
in a particular way, obtaining sometimes unexpectedly strong results. This
is the case of the derivation of some functionals on P(Ω) with respect of
perturbations such as µ+ ε(µ1−µ) or (id+ εξ)]µ. On the other hand some
regularization issues such as the L∞ one in Chapter 2 or the blow-up one
in Chapter 8 have required some more technical tools which seem to be
quite original. Moreover, also some very classical results, for instance from
linear or nonlinear elliptic PDEs, from the theory of Campanato Spaces or
from convex analysis, are used throughout the thesis and this completes the
picture of the different techniques to get necessary conditions or regularity.
Anyway, the thesis does not develop only this aspect of the variational prob-
lems that approaches, but devotes also a certain space to the interpretation
of the models (as in Chapters 1 and 2 for urban planning and in Chapter 7
for river basins) and to existence results (mainly in Chapter 4).
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Notations

We summarize here most of the peculiar notations and expressions which
are used throughout the thesis and not always explicitely recalled.

First, let us precise that we will call, for simplicity, domains those sets
which are the closure of a non-empty connected and bounded open subset
of Rd with negligible boundary. These domains will be often denoted by
Ω, so that the reader must not be astonished if Ω denotes a compact set
instead of an open one. Moreover, we will silently confuse a domain Ω and

its interior
◦
Ω when some functional spaces involving higher regularity are

concerned: for instance when we write H1(Ω) we usually mean H1(
◦
Ω). This

is performed in order not to avoid heavy notations, should we distinguish
between the closed and the open set.

Given a set C endowed with a natural topology (usually a domain) we
will denote by P(C) the set of all Borel probability measures on C. The set
of finite vector on C measures valued in Rk will be denoted byMk(C).

The d−dimensional Lebesgue measure will be denoted by Ld, but some-
times we will write |Ω| for Ld(Ω). When we say “the Lebesgue measure
on Ω”and we are speaking of a probability measure, we actually mean the
rescaled measure 1/|Ω| · Ld restricted to Ω. The symbol H1 will denote
instead the 1−dimensional Hausdorff measure.

For a sequence of probability or vector measures on Ω we will use the
term weak convergence to mean the convergence in the duality with the
space C0b (Ω) of bounded continuous functions on Ω. This convergence will be
denoted by the symbol⇀ (with no stars), so that µn ⇀ µ means

∫

Ω φdµn →
∫

Ω φdµ for any φ ∈ C0b (Ω).
Crucial will also be the concept of image measure: given a measure µ

on Ω1 and a measurable map T : Ω1 → Ω2 we denote by T]µ the image of
µ through T , which is a measure on Ω2 defined by T]µ(A) = µ(T−1(A)) for
any measurable subset A ⊂ Ω2. If T]µ = ν we will also say that T transports
(or pushes) µ onto ν.
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As far as more transport-related concepts are concerned, we denote by
Π(µ, ν) the set of transport plans with marginal measures µ, ν ∈ P(Ω) (see
Section 0.1) and by TP (µ, ν) the set of traffic plans from µ to ν. This latter
concept is typical of the theory of branched transport: it consists of the
set of all probability measures on the space of Lipschitz curves on [0,+∞[
which eventually stop such that the images under the evaluation at the
starting time and at the stopping time are µ and ν, respectively. These two
evaluations are denoted by π0 and π∞, respectively, as well as the evaluation
at a generic time t which is denoted by πt. See Section 6.2 for details.

The symbol id denotes the identity mapping from a set to itsels id(x) =
x. The identity matrix is denoted by the symobl I. The symbol I the
indicator function: if we write IA we mean the function whose value is 1 on
A and 0 outside. We may also write Icondition, which means a function of
possibly several variables whose value is 1 if the condition is verified and 0
otherwise. For instance, writing Ix∈γ is a function of two variables (x and
γ) which has the same values as Iγ(x). When a measure µ (usually the
Lebesgue or the Haudorff measures d or H1) and a set A are given, we will
write IA · µ or µ A with the same meaning.

The indicator function in the sense of convex analysis is on the contrary
denoted by a δ symbol: δ(·|A) is the function whose value is 0 on A and
+∞ elsewhere. Its Legendre-Flenchel transform is the support function of
A and it is given by δ∗(y|A) = supx∈A y · x.
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Preliminaries on Optimal

Transportation

This chapter does not want to be an exhaustive presentation of the topic,
but only a short list of useful results with no proofs that will be used later
on in thesis. The main reference is [71]. Anyway, the approach is the same
used in the lectures given by Prof. L. Ambrosio at SNS Pisa in 2001/02 and
hence another possible reference is [3].

The motivation for the whole subject is the following problem proposed
by Monge in 1781 ([59]): given two densities of mass f, g ≥ 0 on Rd, with
∫

f =
∫

g = 1, find a map T : Rd → Rd pushing the first one onto the other,
i.e. such that

∫

A
g(x)dx =

∫

T−1(A)
f(y)dy for any Borel subset A ⊂ Rd

and minimizing the quantity

∫

Rd
|T (x)− x|f(x)dx

among all the maps satisfying this condition.
This problem has stayed with no solution (does a minimizer exist? how

to characterize it?. . . ) for centuries. Only with the work by Kantorovich
it has been inserted into a suitable framework which gave the possibility
to approach it and, later, to find that actually solutions exist and to study
them. The problem has been widely generalized, with very general cost
functions c(x, y) instead of the euclidean distance |x− y| and more general
measures and spaces. For simplicity, here we will not try to present a very
wide theory on generic metric spaces, but we will deal only with the euclidean
case.
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0.1 Primal and dual problems

In what follows we will suppose Ω to be a domain of Rd and the cost func-
tion c : Ω × Ω → [0,+∞[ will be supposed continuous and symmetric (i.e.
c(x, y) = c(y, x)).

The generalization that appears as natural from the work of Kantorovich
([53]) of the problem raised by Monge is the following:

Definition 0.1.1. Given two probability measures µ and ν on Ω and a cost
function c : Ω× Ω→ [0,+∞] we consider the problem

(K) min

{∫

Ω×Ω
c dπ |π ∈ Π(µ, ν)

}

, (0.1.1)

where Π(µ, ν) = {π ∈ P(Ω× Ω) : (p+)]π = µ, (p−)]π = ν, } and p+ and p−

are the two projections of Ω × Ω onto Ω. The minimizers for this problem
are called optimal transport plans between µ and ν. Should π be of the form
(id × T )]µ for a measurable map t : Ω → Ω, the map T would be called
optimal transport map from µ to ν.

Remark 0.1.2. It can be easily checked that if (id× T )]µ belongs to Π(µ, ν)
then T pushes µ onto ν (i.e. ν(A) = µ(T−1(A)) for any Borel set A) and
the functional takes the form

∫

c(x, T (x))µ(dx), thus generalizing Monge’s
problem.

Remark 0.1.3. This generalized problem by Kantorovich is much easier to
handle than the original one by Monge, for instance because in the Monge
case we would need existence of at least a map T satisfying the constraints.
This is not the case in the case µ = δ0 if ν is not a single Dirac mass.
On the contrary, there always exist transport plan in Π(µ, ν) (for instance
µ ⊗ ν ∈ Π(µ, ν)). Moreover, one can state that (K) is the relaxation of
the original problem by Monge: if one considers the problem in the same
setting, where the competitors are transport plans, but sets the functional
at +∞ on all the plans that are not of the form (id× T )]µ, then one has a
functional on Π(µ, ν) whose relaxation is the functional in (K) (see [5]).

An important tool will be duality theory and to introduce it we need in
particular the notion of c−transform (a kind of generalization of the well-
known Legendre transform).

Definition 0.1.4. Given a function χ : Ω → R we define its c−transform
(or c−conjugate function) by

χc(y) = inf
x∈Ω

c(x, y)− χ(x).
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Moreover, we say that a function ψ is c−concave if there exists χ such that
ψ = χc and we denote by Ψc(Ω) the set of c−concave functions.

It is well-known a duality result stating the following equality (see The-
orem 1 together with the following Remark on c−concavity in [71]):

Proposition 0.1.5. We have

min(K) = sup
ψ∈Ψc(Ω)

∫

Ω
ψ dµ+

∫

Ω
ψc dν. (0.1.2)

In particular the minimum value of (K) is a convex function of (µ, ν) as it
is a supremum of linear functionals.

Definition 0.1.6. The functions ψ realizing the maximum in (0.1.2) are
called Kantorovich potentials for the transport from µ to ν. This is in fact a
small abuse, because usually this term is used only in the case c(x, y) = |x−y|
only.

Notice that any c−concave function shares the same modulus of continu-
ity of the cost c. In particular, in the case c(x, y) = |x− y|p, if Ω is bounded
with diameter D, any ψ ∈ Ψc(Ω) is pD

p−1−Lipschitz continuous. The case
where c is a power of the distance is in fact of particular interest and two
values of the exponent p are remarkable: the cases p = 1 and p = 2. In
these two cases we provide characterizations for the set of c−concave func-
tions when Ω = Rd. Let us denote by Ψ(p)(Ω) the set of c−concave functions
with respect the cost c(x, y) = |x− y|p/p. It is not difficult to check that

ψ ∈ Ψ(1)(Rd)⇔ ψ is a 1-Lipschitz function;

ψ ∈ Ψ(2)(Rd)⇔ x 7→ x2

2
− ψ(x) is a convex function .

The first characterization is true also when Ω does not coincide with the
whole space, while the second in fact becomes just an implication (if ψ ∈
Ψ(2), then

x2

2 − ψ(x) is convex, but not any convex function comes from a
c−concave function, due to the restriction on the Lipschitz constant).

The case c(x, y) = |x−y| shows a lot of interesting features, even if from
the point of the existence of an optimal map T it is one of the most difficult.
A first interesting property is the following:

Proposition 0.1.7. For any 1−Lipschitz function ψ we have ψc = −ψ. In
particular, Formula 0.1.2 may be re-written as

min(K) = sup
ψ∈Lip1

∫

Ω
ψ d(µ− ν).
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Another peculiar feature of this case is the following:

Proposition 0.1.8. Consider the problem

(B) min
{

M(λ) : λ ∈Md(Ω);∇ · λ = µ− ν
}

, (0.1.3)

where M(λ) denotes the mass of the vector measure λ and the divergence
condition is to be read in the weak sense, with Neumann boundary conditions,
i.e. −

∫

∇φ · dλ =
∫

φd(µ − ν) for any φ ∈ C1(Ω). If Ω is convex then it
holds

min(K) = min(B).

This proposition links the Monge-Kantorovich problem to a minimal
flow problem which has been first proposed by Beckmann in [10], under
the name of continuous transportation model, without knowing this link,
as Kantorovich’s theory was being developed independently almost in the
same years. In Section 2.1 we will see some details more on this model and
on the possibility of generalizing it to the case of distances c(x, y) coming
from Riemannian metrics. In particular, in the case of a nonconvex Ω, (B)
would be equivalent to a Monge-Kantorovich problem where c is the geodesic
distance on Ω.

We now come back to the case of a generic cost c(x, y). Another useful
result about c−transform is the following:

Proposition 0.1.9. For any cost c and any function ψ : Ω → R we have
ψcc ≥ ψ and the equality holds if and only if ψ is c−concave.

We summarize here some useful results for the case where the cost c is
of the form c(x, y) = h(x− y), for a strictly convex function h.

Theorem 0.1.10. Given µ and ν probability measures on a domain Ω ⊂ Rd

there exists unique an optimal transport plan π. It is of the form (id×T )]µ,
provided µ is absolutely continuous. Moreover there exists also at least a
Kantorovich potential ψ, and the gradient ∇ψ is uniquely determined µ−a.e.
(in particular ψ is unique up to additive constants, provided the density of µ
is positive a.e. on Ω). The optimal transport map T and the potential ψ are
linked by T (x) = x− (∂h)−1(∇ψ(x)). Moreover it holds ψ(x) + ψc(T (x)) =
c(x, T (x)) for µ−a.e. x. Conversely, every map T which is of the form
T (x) = x−(∂h)−1(∇ψ(x)) for a function ψ ∈ Ψc(Ω) is an optimal transport
plan from µ to T]µ.
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Remark 0.1.11. Actually, the existence of an optimal transport map is true
under weaker assumptions: we can replace the condition of being absolutely
continuous by the condition µ(A) = 0 for any A ⊂ Rd such that Hd−1(A) <
+∞. Anyway, in this thesis only the absolutely continuous case will be used.

Remark 0.1.12. In Theorem 0.1.10 only the part concerning the optimal
map t is not symmetric in µ and ν: hence the uniqueness of the Kantorovich
potential is true even if it ν (and not µ) has positive density a.e.

Remark 0.1.13. Theorem 0.1.10 may be particularized to the quadratic case
c(x, y) = |x − y|2/2, thus getting the existence of an optimal transport
map t = ∇φ for a convex φ. By using the converse implication (sufficient
optimality conditions), this also proves the existence and uniqueness of a
gradient of a convex function transporting µ onto ν. This well known fact
has been investigated first by Brenier in [21].

All the costs c(x, y) = |x−y|p with p > 1 fall under Theorem 0.1.10. For
the case c(x, y) = |x − y| the results are a bit weaker and are summarized
below (this is the classical Monge case and we refer to [5] and [45]).

Theorem 0.1.14. Given µ and ν probability measures on a domain Ω ⊂ Rd

there exists at least an optimal transport plan π. Moreover, one of such plans
is of the form (id × T )]µ provided µ is absolutely continuous. There exists
also at least a Kantorovich potential ψ, and we have ψ(x) − ψ(T (x)) =
|x− T (x)| for µ−a.e. x, for any choice of optimal T and ψ.

Here the absolute continuity assumption is essential to have existence of
an optimal transport map, in the sense that in general it cannot be replaced
by weaker assumptions as in the strictly convex case. This can be seen from
the following example.

Example 0.1.15. Set

µ = H1 A and ν =
H1 B +H1 C

2

where A, B and C are three vertical parallel segments in R2 whose vertexes
lie on the two line y = 0 and y = 1 and the abscissas are 0, −1 and 1,
respectively. In this case one can get a sequence of maps Tn : A→ B∪C by
dividing A into 2n equal segments (Ai)i=1,...,2n and B and C into n segments
each, (Bi)i=1,...,n and (Ci)i=1,...,n (all ordered upwards). Then define Tn as
a piecewise affine map which sends A2i−1 onto Bi and A21 onto Ci. In this
way the cost of the map Tn is less than 1/2 + 1/n, but no map T may
obtain a cost 1/2, as this would imply that any point is sent horizontally
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and but this cannot respect the push-forward constraint. On the other hand,
the transport plan associated to Tn weakly converge to the transport plan
1/2T+] µ+1/2T−] µ, where T

±(x) = x±e and e = (1, 0). This transport plan
turns out to be the only optimal transport plan and has a Kantorovich cost
of 1/2.

The same construction provides also an example of the relaxation pro-
cedure leading from Monge to Kantorovich.

0.2 Wasserstein distances and spaces

Starting from the values of the problem (K) in (0.1.1) we can define a set
of distances over P(Ω). For any p ≥ 1 we can define

Wp(µ, ν) =
(

min(K) with c(x, y) = |x− y|p
)1/p

.

We recall that it holds, by Duality Formula,

1

p
W p
p (µ, ν) = sup

ψ∈Ψp(Ω)

∫

Ω
ψ dν +

∫

Ω
ψc dµ. (0.2.1)

Theorem 0.2.1. If Ω is compact, for any p ≥ 1 the function Wp is in
fact a distance over P(Ω) and the convergence with respect to this distance
is equivalent to the weak convergence of probability measures. In particular
any functional µ 7→Wp(µ, ν) is continuous with respect to weak topology.

The case of a noncompact Ω is a little more difficult. First, the distance
must be defined only on a subset of the whole space of probability measures,
to avoid infinite values. We will use the space of probabilities with finite
p−th momentum:

Wp(Ω) = {µ ∈ P(Ω) : Mp(µ) :=

∫

Ω
|x|pµ(dx) < +∞}.

Theorem 0.2.2. For any p ≥ 1 the function Wp is a distance over Wp(Ω)
and, given a measure µ and a sequence (µn)n in Wp(Ω), the following are
equivalent:

• µn → µ according to Wp;

• µn ⇀ µ and Mp(µn)→Mp(µ);

•
∫

Ω φdµn →
∫

Ω φdµ for any φ ∈ C0(Ω) whose growth is at most of
order p (i.e. there exist constants A and B depending on φ such that
φ(x) ≤ A+B|x|p for any x).
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Notice that, as a consequence of Hölder inequalities, the Wasserstein
distances are always ordered, i.e. Wp1 ≤ Wp2 if p1 ≤ p2. Reversed in-
equalities are possible only if Ω is bounded, and in this case we have, if set
D = diam(Ω), for p1 ≤ p2,

Wp1 ≤Wp2 ≤ D1−p1/p2W p1/p2
p1 .

From the monotone behavior of Wasserstein distances with respect to
p it is natural to introduce the following distance W∞: set W∞(Ω) =
{µ ∈ P(Ω) : spt(µ) is bounded } (obviously if Ω itself is bounded one
has W∞(Ω) = P(Ω)) and then

W∞(µ, ν) = inf

{

π − ess sup
x,y∈Ω×Ω

|x− y| : π ∈ Π(µ, ν)

}

.

It is easy to check that Wp ↗ W∞ and it is interesting to study the metric
space W∞(Ω). Curiously enough, this supremal problem in optimal trans-
port theory, even if quite natural, has not deserved much attention up to
now.

The W∞ convergence is stronger than any Wp convergence and hence
also than the weak convergence of probability measures. The converse is
not true and W∞ converging turns out to be actually rare: consequently
there is a great lack of compactness in W∞. For instance it is not difficult
to check that, if we set µt = tδx0 + (1 − t)δx1 , where x0 6= x1 ∈ Ω, we have
W∞(µt, µs) = |x0−x1| if t 6= s. This implies that the balls B(µt, |x0−x1|/2)
are infinitely many disjoint balls in W∞ and prevents compactness.

The following statement summarizes the compactness properties of the
spaces Wp for 1 ≤ p ≤ ∞ and its proof is a direct application of the consid-
erations above and of Theorem 0.2.2.

Proposition 0.2.3. For 1 ≤ p <∞ the space Wp(Ω) is compact if and only
if Ω itself is compact. Moreover, for an unbounded Ω the space Wp(Ω) is
not even locally compact. The space W∞(Ω) is neither compact nor locally
compact for any choice of Ω with ]Ω > 1.

0.3 Geodesics, continuity equation and displace-

ment convexity

We are concerned in this sections with several properties linked to the curves
in the Wasserstein space Wp. For this subject the main reference is [4].
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Before giving the main result we are interested in, we recall the definition
of metric derivative, which is a concept that may be useful when studying
curves which are valued in generic metric spaces.

Definition 0.3.1. Given a metric space (X, d) and a curve γ : [0, 1] → X
we define metric derivative of the curve γ at time t the quantity

|γ′|(t) = lim
s→t

d(γ(s), γ(t))

|s− t| , (0.3.1)

provided the limit exists.

As a consequence of Rademacher Theorem it can be seen (see [7]) that
for any Lipschitz curve the metric derivative exists at almost every point
t ∈ [0, 1]. We will be concerned quite often with metric derivatives of curves
which are valued in the space Wp(Ω).

Definition 0.3.2. If we are given a Lipschitz curve µ : [0, 1]→ Wp(Ω), we
define velocity field of the curve any vector field v : [0, 1] × Ω → Rd such
that for a.e. t ∈ [0, 1] the vector field vt = v(t, ·) belongs to [Lp(µt)]

d and
the continuity equation

d

dt
µt +∇ · (v · µt) = 0

is satisfied in the sense of distributions: this means that for all φ ∈ C1c (Ω)
and any t1 < t2 ∈ [0, 1] it holds

∫

Ω
φdµt2 −

∫

Ω
φdµt1 =

∫ t2

t1

ds

∫

Ω
∇φ · vs dµs,

or, equivalently, in differential form:

∂

∂t

∫

Ω
φdµt =

∫

Ω
∇φ · vt dµt for a.e. t ∈ [0, 1].

We say that v is the tangent field to the curve µt if, for a.e. t, vt has minimal
[Lp(µt)]

d norm for any t among all the velocity fields.

The following proposition is concerned with the existence of tangent
fields and comes from Theorem 8.3.1 and Proposition 8.4.5 in [4].
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Theorem 0.3.3. If p > 1 and µ = (µt)t is a curve in Lip([0, 1];Wp(Ω))
then there exist unique a tangent vector field v, and it is characterized by

∂

∂t
µ+∇ · (v · µ) = 0, (0.3.2)

||vt||Lp(µt) ≤ |µ′|(t) for a.e. t, (0.3.3)

where the continuity equation is satisfied in the sense of distributions as
previously explained. Moreover, if (0.3.2) holds for a family of vector fields
(vt)t with ||vt||Lp(µt) ≤ C then µ ∈ Lip([0, 1];Wp(Ω)) and |µ′|(t) ≤ ||vt||Lp(µt)
for a.e. t.

This characterization of Lipschitz (or, up to reparameterization, abso-
lutely continuous) curves in Wp will be very useful in Chapter 5. Moreover,
in the general theory of Wasserstein spaces, it is a key instrument for study-
ing geodesics and other properties linked to them, which will be used in
Chapters 2, 5, 6 and 7.

The following result is a characterization of geodesics in Wp(Ω) when Ω
is a convex domain in Rd (see Proposition 7.2.2 in [4], but some extension
to the case of length spaces, for instance non convex domains, may be found
in [54]). This procedure is also known as McCann’s linear interpolation.

Theorem 0.3.4. All the spaces Wp(Ω) are length spaces and if µ and ν
belong to Wp(Ω), any geodesic curve linking them, when parametrized by
arc-length, is of the form

γπ(s) = (ps)]π

where ps : Ω×Ω→ Ω is given by ps(x, y) = x+s(y−x) and π is an optimal
transport plan from µ to ν for the cost cp(x, y) = |x− y|p. In the case p > 1
and µ, ν absolutely continuous, if T is the corresponding optimal transport
map such that π = (id× T )]µ,then the curve has the form

γπ(s) = [(1− s)Id+ sT ]#µ.

Conversely, any curve of this form, for a transport plan π or a transport
map T , is an arc-length geodesic.

By means of this characterization of geodesics we can also define the
useful concept of displacement convexity introduced by McCann in [58].

Definition 0.3.5. Given a functional F : Wp(Ω) ∩ L1 → [0,+∞], we say
that it is displacement convex if all the maps t 7→ F (γπ(t)) are convex on
[0, 1] for every choice of µ and ν in Wp(Ω) and π optimal transport plan
from µ to ν with respect to c(x, y) = |x− y|p.
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The following well-known result provides a wide set of displacement con-
vex functionals. In the case p = 2 this result is due to McCann ([58]), while
the generalization to any p can be found in [4].

Theorem 0.3.6. Consider the following functionals on the space Wp(Ω),
where Ω is any convex subset of RN :

J1(µ) =

{

∫

Ω f(u(x)) dx if µ = u · Ld
+∞ if µ is not absolutely continuous;

J2(µ) =

∫

Ω
V (x)µ(dx);

J3(µ) =

∫

Ω

∫

Ω
w(x− y)µ(dx)µ(dy).

Suppose f : [0,+∞] → [0,+∞] is a convex and superlinear lower semi-
continuous function with f(0) = 0, V : Ω → [0,+∞] and w : Rd → [0,+∞]
are convex functions. Then the functionals J 2 and J3 are displacement con-
vex in Wp(Ω) and the functional J1 is displacement convex provided the
following additional condition holds: the map

r → rdf(r−d)

is required to be convex and non-increasing on ]0,+∞[.

0.4 Monge-Ampère equation and regularity

The next step of our analysis is concerned with some regularity properties of
t and ψ (the optimal transport map and the Kantorovich potential, respec-
tively) and their relations with the densities of µ and ν. We will consider
only the quadratic case c(x, y) = |x−y|2/2, because it is the one where more
results have been proven. Very recent results for generic costs may be found
in [70].

It is easy, just by a change-of-variables formula, to transform, in the
case of regular maps and densities, the equality ν = T]µ into the PDE
v(t(x)) = u(x)/|Jt|(x), where u and v are the densities of µ and ν and J
denotes the determinant of the Jacobian matrix. Recalling that we may
write t = ∇φ with φ convex (Remark 0.1.13), we get the Monge-Ampère
equation

Mφ =
u

v(∇φ) , (0.4.1)
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where M denotes the determinant of the Hessian

Mφ = detHφ = det

[

∂2φ

∂xi ∂xj

]

i,j

.

This equation up to now is satisfied by φ = id−ψ in a formal way only. We
define various notions of solutions for (0.4.1):

• we say that φ satisfies (0.4.1) in the Brenier sense if (∇φ)]u·Ld = v ·Ld
(and this is actually the sense to be given to this equation);

• we say that φ satisfies (0.4.1) in the Alexandroff sense if Hφ, which is
always a positive measure for φ convex, is absolutely continuous and
its density satisfies (0.4.1) a.e.;

• we say that φ satisfies (0.4.1) in the viscosity sense if it satisfies the
usual comparison properties required by viscosity theory but restrict-
ing the comparisons to regular convex test functions (since M is in
fact monotone just when restricted to positively definite matrices);

• we say that φ satisfies (0.4.1) in the classical sense if it is of class C2

and the equation holds pointwise.

Notice that any notion except the first may be also applied to the equation
Mφ = f , while the first one just applies to this specific transportation case.
The results we want to use are well summarized in Theorem 50 of [71]:

Theorem 0.4.1. If u and v are C0,α(Ω) and are both bounded from above
and from below on the whole Ω by positive constants and Ω is a convex
open set, then for the unique Brenier solution φ of (0.4.1) it holds φ ∈
C2,α(Ω) ∩ C1,α(Ω) and φ satisfies the equation in the classical sense (hence
also in the Alexandroff and viscosity senses).

Even if this precise statement is taken from [71], we just detail a possible
bibliographical path to arrive at this result. It is not easy to deal with
Brenier solutions, so the idea is to consider viscosity solutions, for which it
is in general easy to prove existence by Perron’s method. Then prove some
regularity result on viscosity solutions, up to getting a classical solution.
Then, once we have a classical convex solution to Monge-Ampère equation,
this will be a Brenier solution too. Since this is unique (up to additive
constants) we have got a regularity statement for Brenier solutions. We
can find results on viscosity solutions in [31], [33] and [32]. In [31] some
conditions to ensure strict convexity of the solution of Mφ = f when f is
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bounded from above and below are given. In [33] for the same equation
it is proved C1,α regularity provided we have strict convexity. In this way
the term u/v(∇φ) becomes a C0,α function and in [32] it is proved C2,α

regularity for solutions of Mφ = f with f ∈ C0,α.
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Chapter 1

An urban planning model by

local functionals

This chapter mainly contains results from [28], a joint work with G. Buttazzo
which was written in 2003, right after the Laurea Thesis [66]. As it is the
oldest of the papers concerned by this thesis, we provide here a slightly
different version which has undergone some changes with respect to the
published one. In particular the alternative proof for the main theorem has
been well detailed and some differences in the presentation of the whole
subject may be found.

1.1 Overall optimization of residence and working

areas

The efficient planning of a city is a quite complicated problem, possibly
involving a huge number of parameters (population density, price of the
land, kind and location of the industries working in the area, quality of the
life, prices and time for transportations, geographical obstacles, . . . ). In this
study we want to present a simplified model involving only the distribution
of inhabitants and of services in the urban area under consideration.

The geographical area will be considered as given and represented by a
subset Ω of Rd (d = 2 in the applications to concrete urban planning prob-
lems). We want to study the optimal location in Ω of a mass of inhabitants,
that we denote by µ, as well as of a mass of services (working places, stores,
offices, . . . ), that we denote by ν. We assume that µ and ν are probability
measures on Ω. This corresponds to say that the total amounts of popu-
lation and production are fixed as problem data: they are exogenous, in
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economical language. The measures µ and ν represent the unknowns of the
problem and have to be found in such a way that they satisfy some criteria:

i) there is a transportation cost for commuting from the residential areas
to the services areas;

ii) people desire to live in areas with low population density;

iii) services need to be concentrated as much as possible, in order to in-
crease efficiency and decrease management costs.

Fact i) will be described through a Monge-Kantorovich mass trans-
portation model; the transportation cost will be indeed given by using a
p-Wasserstein distance (p ≥ 1, see Section 0.2): we set Tp(µ, ν) =W p

p (µ, ν).
Fact ii) will be described by a penalization functional F , a kind of to-

tal unhappiness of citizens due to high density of population, obtained by
integrating with respect to the citizens’ density their personal unhappiness.

Fact iii) is modeled by a third term G representing the costs for managing
services once they are located according to the distribution ν, taking into
account that efficiency depends strongly on how much ν is concentrated.

An interesting mathematical model for the description of the equilibrium
structure of a city is presented by Carlier and Ekeland in [35]. The same
criteria (concentration of services and dispersion of inhabitants) appear and
transportation costs are considered as well. Moreover, Monge-Kantorovich
optimal transport theory plays an important role. Anyway, the goal is very
different since in [35] there is no total performance to be optimized. On the
other hand, in this chapter we are precisely looking for a configuration of
inhabitants and services which optimizes an overall utility criterion. This
will be made by minimizing a suitable total cost functional F(µ, ν).

The cost functional we will consider is

F(µ, ν) = Tp(µ, ν) + F (µ) +G(ν) (1.1.1)

(notice that we will also refer to this functional as Fp, when we will need to
let p vary) and so the optimal location of µ and ν will be determined by the
minimization problem

min
{

F(µ, ν) : µ, ν probabilities on Ω
}

. (1.1.2)

In this way this optimization problem falls into the wider subject of
transport and concentration problems, which will be presented in its gen-
erality in Chapter 3. In this particular case both F and G will be chosen
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among local semicontinuous functionals over measures. These functionals
have been widely studied by Bouchitté and Buttazzo in [16], [17] and [18]
and are briefly presented in the next section.

1.2 Local semicontinuous functionals on measures

The general theory of local functionals over measures has been developed in
the framework of vector measures on a metric space Ω. Consequently, we
provide here very general definitions and concepts which are valid inMk(Ω),
even if later we will particularize our analysis to the case of positive scalar
measures. Moreover, in the minimization problem for F, only probability
measures will be actually concerned.

Definition 1.2.1. A functional J :Mk(Ω)→ [0,+∞] is said to be local if
it is additive on mutually singular measures, i.e. J(µ1+µ2) = J(µ1)+J(µ2)
whenever µi ∈Mk(Ω) and µ1⊥µ2.

In [16] and [17] the set of local functionals which are l.s.c. with respect
to the weak convergence of measures is characterized as the set of those
functionals having this general form:

J(µ) =

∫

Ω
f

(

dµ

dm

)

dm+

∫

Ω\Aµ

f∞
(

dµs
d|µs|

)

d|µs|+
∫

Aµ

g(µ({x}))#(dx)

where

• m is a nonatomic positive measure on Ω;

• dµ/dm is the Radon-Nicodym derivative of µ with respect to m;

• f : R →] −∞,+∞] is convex, lower semicontinuous and proper (i.e.
not identically +∞);

• f∞ is the recession function given by

f∞(s) := lim
t→+∞

f(s0 + ts)

t
= sup

t>0

f(s0 + ts)− f(s0)
t

(the limit is independent on the choice of s0 in the domain of f , i.e.
the set of points such that f < +∞);

• Aµ is the set of atoms of µ, i.e. the points such that µ({x}) > 0;
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• g : R → [0,+∞] is a lower semicontinuous subadditive function such
that g(0) = 0;

• # is the counting measure;

• f and g satisfy a compatibility condition, namely for any s we have

g0(s) := lim
t>0

g(st)

t
= f∞(s).

Notice that these functional can be written in a simpler form since in the
case of positive measures dµs/d|µs| = 1 for |µs|−a.e. x:

J(µ) =

∫

Ω
f

(

dµ

dm

)

dm+ f∞(1)|µs|(Ω \Aµ) +
∫

Aµ

g(µ(x)) d#(x).

The key point is that, by the results that can be found in [16], these function-
als are lower semicontinuous for the weak convergence. Notice that both f∞

and g0 are positive 1−homogeneous functions. In particular, in the positive
scalar case, the compatibility condition, which is crucial for semicontinuity,
may be checked for s = 1 and written as

lim
t→0+

g(t)

t
= lim

t→∞

f(st)

t
.

The main advantage of this class of functionals is that it contains both
convex and nonconvex functionals (as opposed to what happens in the case
of local semicontinuous functionals over Lp functions). In particular the two
extreme cases are the ones we get if we let f or g be infinite. In fact, by
choosing g = δ(·|{0}) (i.e. g = +∞ on ]0,+∞[ and g(0) = 0), together
with a function f such that limt→+∞ f(t)/t = +∞ we get the following
functional:

F (µ) =

{

∫

Ω f(u)dm if µ = u ·m;

+∞ if µ is not absolutely continuous w.r.t. m.

Analogously, by setting f = δ(·|{0}), together with a function g such that
lims→0+ g(s)/s = +∞ we get

G(µ) =

{

∑

i g(ai) if µ =
∑

i aiδxi ;

+∞ if µ is not atomic.

Typical cases are f(s) = sq and g(s) = sα, for exponents q > 1 and α < 1.
In general, g is often chosen to be concave, even if subadditivity would be
sufficient to apply the general existence theory.
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1.3 Interpretation of the model

To define the three terms appearing in our functional F, we must precise
the choices for F and G, since the first term will be a Monge-Kantorovich
transport cost, as explained in Section 1.2. For the functional F we take

F (µ) =

{

∫

Ω f(u(x)) dx if µ = u · Ld, u ∈ L1(Ω)
+∞ otherwise,

(1.3.1)

where the integrand f : [0,+∞]→ [0,+∞] is assumed to be lower semicon-
tinuous and convex, with f(0) = 0 and superlinear at infinity, that is

lim
t→+∞

f(t)

t
= +∞. (1.3.2)

In this form we have a particular local semicontinuous functional on mea-
sures (with m = Ld). Without loss of generality, by subtracting constants
to the functional F , we can suppose f ′(0) = 0. Due to the assumption
f(0) = 0, the ratio f(t)/t is an incremental ratio of the convex function f
and so it is increasing in t. Then, if we write the functional F as

∫

Ω

f(u(x))

u(x)
u(x) dx,

we can see the quantity f(u)/u, which is increasing in u and tends to ∞ as
u‘to∞, as the unhappiness of a single citizen when he lives in a place where
the population density is u. Integrating it with respect to µ = u · Ld gives
the total unhappiness of the population.

As far as the concentration term G(ν) is concerned, we set

G(ν) =

{

∑∞
i=0 g(ai) if ν =

∑∞
i=0 aiδxi

+∞ if ν is not atomic.
(1.3.3)

To the function g we require to be subadditive, lower semicontinuous and
such that g(0) = 0 and

lim
t→0

g(t)

t
= +∞. (1.3.4)

Every single term g(ai) in the sum in (1.3.3) represents the cost for building
and managing a service pole of size ai, located at the point xi ∈ Ω.

In this model, as already pointed out, we fix as a datum the total pro-
duction of services; moreover, in each service pole the production is required
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as a quantity proportionally depending on its size (or on the number of in-
habitants using such a pole). We may define the productivity P of a pole of
mass (size) a as the ratio between the production and the cost to get such
a production. Then we have P (a) = a/g(a) and

∞
∑

i=0

g(ai) =
∞
∑

i=0

ai
P (ai)

.

As a consequence of the assumption (1.3.4), the productivity in very small
service poles is near 0. When g is also concave, for instance in the case of
powers g(s) = sr, the productivity is also an increasing function of the size
of the pole.

Notice that in the functional G we do not take into account distances
between service poles. It would be interesting to consider also non local
functionals involving such distances, taking into account possible interac-
tions and the consequent gain in efficiency. A study of the corresponding
problem for an interaction functional G can be found in Chapter 3. The
results of next section (since they do not depend on the choice of G) will be
used there as well as in the present setting.

For the problem introduced in (1.1.2) existence results are straightfor-
ward, especially when we use as an environment a compact set Ω.

Theorem 1.3.1. Suppose Ω is a domain, p ≥ 1 and f and g satisfy the
conditions listed above. Then the minimization problem (1.1.2) has at least
one solution.

Proof. By the direct method of Calculus of Variations, this result is an
easy consequence of the weak compactness of the space P(Ω), the space of
probability measures on Ω, when Ω itself is compact, and of the weak semi-
continuity of the functional F. The second and third term in the expression
(1.1.1) are in fact local semicontinuous functionals (due to results in [16]),
while the first term is nothing but a Wasserstein distance raised to a certain
power. Since it is known that in compact spaces this distance metrizes the
weak topology, Tp is actually continuous.

In [66], where we first presented the model, other existence results were
shown, for instance in the case of a non compact bounded convex set Ω ⊂ Rd.
Here we will not go through this proof, and will discuss only one existence
result in a non-compact setting, obtained as a consequence of a proper use
of the optimality conditions presented in next section.
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1.4 Necessary optimality conditions on Fν

In this section we find optimality conditions for probability measures on Ω
minimizing the functional

Fν(µ) = Tp(µ, ν) + F (µ).

It is clear that, if (µ, ν) is an optimal pair for the whole functional F, it
happens that µ is a minimizer for Fν . We will come back later, in the next
section, to the problem of minimizing F, and we will refer to it as the whole
minimization problem.

The goal of this section is to derive optimality conditions for Fν , for any
ν, without any link to the minimization of F. There are several different
proof for this result, all based on a derivation of the functional Fν . The idea
is not difficult but some technical problems, mainly linked to the lack of
uniqueness of Kantorovich potentials, arise. We provide here to two differ-
ent proofs, and another one was present in [66]. The former we give here, as
well as the one in [66], rely on a regularizing approach: we start by the easier
case p > 1 and ν “regular” in some sense, and then recover the general case
as a limit. The reason to do so are the conditions ensuring uniqueness prop-
erties of the Kantorovich potential presented in Section 0.1. The same idea
can be found in [66], where purely atomic probability measures (i.e. finite
sums of Dirac masses) were first considered and then, by approximation, the
result was extended to any measure ν. The second proof, suggested by an
anonimous referee while he/she was reviewing [28], is based on some convex
analysis tools and strongly uses the convex structure of the problem.

In the sequel the function f in (1.3.1) will be assumed to be strictly
convex, C1 and with polynomial growth, and we will denote by k the con-
tinuous, strictly increasing function (f ′)−1. Strict convexity of f will ensure
uniqueness for the minimizer of Fν . Typical choices are f(t) = tq, q > 1.

1.4.1 An approximation proof

Lemma 1.4.1. If µ is optimal for Fν then, for any other probability measure
µ1 with density u1, such that Fν(µ1) < +∞, the following inequality holds:

Tp(µ1, ν)− Tp(µ, ν) +
∫

Ω
f ′(u(x))[u1(x)− u(x)]dx ≥ 0.

Proof. For any ε > 0, due to the convexity of the transport term and the

42



minimality of µ, it holds

Tp(µ, ν) + F (µ) ≤ Tp(µ+ ε(µ1 − µ)) + F (µ+ ε(µ1 − µ), ν)
≤ Tp(µ, ν) + ε(Tp(µ1, ν)− Tp(µ, ν)) + F (µ+ ε(µ1 − µ)).

We deduce that the quantity

Tp(µ1, ν)− Tp(µ, ν) + ε−1 [F (µ+ ε(µ1 − µ))− F (µ)]

is nonnegative. If we let ε→ 0 we obtain the thesis if we prove

lim
ε→0

∫

f(u+ ε(u1 − u))− f(u)
ε

dLd =
∫

f ′(u)(u1 − u) dLd.

To prove this, notice that by convexity the inequality

∫

f(u+ ε(u1 − u))− f(u)
ε

dLd ≥
∫

f ′(u)(u1 − u) dLd

is straightforward. For the opposite inequality, we will use Fatous’s Lemma.
the pointwise convergence of the integrand is trivial and we can get an upper
bound by means ofthe following inequality, which is a consequence, for ε < 1,
of the monotonicity of the incremental ratios of convex functions:

f(u+ ε(u1 − u))− f(u)
ε

≤ f(u1)− f(u).

Since we have f(u), f(u1) ∈ L1(Ω), this is sufficient to apply Fatou’s Lemma
and get

lim sup
ε→0

∫

f(u+ ε(u1 − u))− f(u)
ε

dLd ≤
∫

f ′(u)(u1 − u) dLd.

Lemma 1.4.2. Let us suppose ν = νs+v·Ld, with v ∈ L∞(Ω), νs⊥Ld, v > 0
a.e. in Ω. If µ is optimal for Fν , then u > 0 a.e. in Ω.

Proof. The Lemma will be proved by contradiction. If the set A = {u = 0}
is not negligible, we will find a measure µ1 for which Lemma 1.4.1 is not
verified. Let N be a Lebesgue-negligible set where νs is concentrated and
T an optimal transport map between µ and ν. Such an optimal transport
exists, since µ¿ Ld, see Section 0.1.

Let B = T−1(A). Up to modifying t on the µ−negligible set A, we may
suppose B ∩A = ∅. Set µ1 = 1Bc · µ+ 1A\N · ν: it is a probability measure
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with density u1 given by 1Bcu + 1Av = 1Bc\Au + 1Av (this equality comes
from u = 0 on A). We have

F (µ1) =

∫

Bc\A
f(u) dLd +

∫

A
f(v) dLd ≤ F (µ) + ||f(v)||∞|Ω| < +∞.

Setting

T ∗(x) =

{

T (x) if x ∈ (A ∪B)c

x if x ∈ (A ∪B)
,

we can see that T ∗ is a transport map between µ1 and ν. In fact, for any
Borel set E ⊂ Ω, we may express (T ∗)−1(E) as the disjoint union of E ∩A,
E ∩B and T−1(E) ∩Bc ∩Ac, and so

µ1((T
∗)−1(E)) = ν(E ∩A) + ν(E ∩B ∩A) + µ(T−1(E) ∩Bc ∩Ac)

= ν(E ∩A) + µ(T−1(E ∩Ac)) = ν(E),

were we used the fact that A ∩ B = ∅ and that Ac is a set of full measure
for µ. Consequently,

Tp(µ1, ν) ≤
∫

(A∪B)c
|x− T (x)|pu(x)dx <

∫

Ω
|x− T (x)|pu(x)dx = Tp(µ, ν).

(1.4.1)
From this it follows that for µ1 Lemma 1.4.1 is not satisfied, as the integral
term

∫

Ω f
′(u)(u1 − u)dLd is non-positive, because u1 > u only on A, where

f ′(u) vanishes. The strict inequality in (1.4.1) follows from the fact that,
if
∫

A∪B |x − T (x)|pu(x)dx = 0 then for a.e. x ∈ B we have u(x) = 0 or
x = T (x), which, by definition of B, implies x ∈ A: in both cases we are
led to u(x) = 0. This would give ν(A) = µ(B) = 0, contradicting the
assumptions |A| > 0 and v > 0 a.e. in Ω.

from now on we will need some of the results from duality theory in mass
transportation that we presented in Section 0.1.

Theorem 1.4.3. Under the same hypotheses of Lemma 1.4.2, assuming
also p > 1, if µ is optimal for Fν and we denote by ψ the unique, up to
additive constants, Kantorovich potential for the transport between µ and ν,
there exists a constant l such that the following relation holds:

u = k(l − ψ) a.e. in Ω. (1.4.2)
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Proof. Let us choose an arbitrary measure µ1 with bounded density u1 (so
that F (µ1) < +∞) and define µε = µ + ε(µ1 − µ). Let us denote by ψε a
Kantorovich potential between µε and ν, chosen so that all the functions ψε
vanish at a same point. We can use the optimality of µ to write

Tp(µε, ν) + F (µε)− Tp(µ, ν)− F (µ) ≥ 0.

By means of the duality formula, as Tp(µε, ν) =
∫

ψεdµε +
∫

ψcεdν and
Tp(µ, ν) ≥

∫

ψεdµ+
∫

ψcεdν, we can write

∫

ψε d(µε − µ) + F (µε)− F (µ) ≥ 0.

Recalling that µε − µ = ε(µ1 − µ) and that

F (µε)− F (µ) =
∫

(f(u+ ε(u1 − u))− f(u)) dLd,

we can divide by ε and pass to the limit. We know from Lemma 1.4.4 that
ψε converge towards the unique Kantorovich potential ψ for the transport
between µ and ν. For the limit of the F part we use Fatou’s Lemma, as in
Lemma 1.4.1. We then obtain at the limit

∫

Ω
(ψ(x) + f ′(u(x)))(u1(x)− u(x))dx ≥ 0.

This means that for every probability µ1 with bounded density u1 we have

∫

(ψ(x) + f ′(u(x)))u1(x) dx ≥
∫

(ψ(x) + f ′(u(x)))u(x) dx.

Define first l = ess infx∈Ω ψ(x) + f ′(u(x)). The left hand side, by choosing
properly u1, can be made as close as we want to l. Then we get that the
function ψ + f ′(u), which is Ld−a.e. (and consequently also µ-a.e.) greater
than l, integrated with respect to the probability µ gives a result less or
equal than l. It follows

ψ(x) + f ′(u(x)) = l µ− a.e. x ∈ Ω.

since by Lemma 1.4.2 we know u > 0 a.e., we get an equality valid Ld−a.e.:

f ′(u) = l − ψ. (1.4.3)

We can then compose with k and get the thesis.
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To establish Lemma 1.4.4, that we used in the proof of Theorem 1.4.3,
we will use uniqueness properties for Kantorovich potentials when the ab-
solutely continuous part of one of the measures has strictly positive density
a.e. in the domain Ω. Notice that proving Lemma 1.4.1 was in fact not
essential to get this uniqueness, as in fact we had already supposed that the
density of ν was positive (and in fact one of the two densities is sufficient
to ensure uniqueness). On the other hand, having u > 0 guarantees that
(1.4.3) is valid a.e. and not only µ−a.e.
Lemma 1.4.4. Let ψε be Kantorovich potentials for the transport between
µε = µ + ε(µ1 − µ) and ν, all vanishing at a same point x0 ∈ Ω. Suppose
that µ = u · Ld and u > 0 a.e. in Ω and let ψ be the unique Kantorovich
potential between µ and ν vanishing at the same point: then ψε converge
uniformly to ψ.

Proof. First, notice that the family (ψε)ε is equicontinuous since any func-
tion which is c−concave with respect to the cost c(x, y) = |x − y|p is
pDp−1−Lipschitz continuous. Moreover, thanks to ψε(x0) = 0, we get also
equiboundedness, and so, by Ascoli-Arzelà Theorem, the existence of uni-
form limits up to subsequences. Let ψ be one of these limits, arising from
a certain subsequence. From the optimality of ψε in the duality formula for
µε and ν we have, for any c−concave function ϕ,

∫

ψε dµε +

∫

ψcε dν ≥
∫

ϕdµε +

∫

ϕc dν.

We want to pass to the limit as ε → 0: we have uniform convergence of ψε
but we need uniform convergence of ψcε as well. To get it, just notice

ψcε(x) = inf
y
|x− y|p − ψε(y), ψ

c
(x) = inf

y
|x− y|p − ψ(y),

|ψcε(x)− ψ
c
(x)| ≤ ||ψε − ψ||∞.

Passing to the limit as ε → 0 along the considered subsequence we get, for
any ϕ

∫

ψ dµ+

∫

ψ
c
dν ≥

∫

ϕdµ+

∫

ϕc dν.

This means that ψ is a Kantorovich potential for the transport between µ
and ν. Then, taking into account that ψ(x0) = 0, we get the equality ψ = ψ.
We can also derive that the whole sequence converges to ψ.

We now highlight that the relation we have proved in Theorem 1.4.3
enables us to choose a density u which is continuous. Moreover, it is also
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continuous in a quantified way, since it coincides with k composed with a
Lipschitz function with a fixed Lipschitz constant. As a next step we will try
to extend these results to the case of general ν and to the case p = 1. The
uniform continuity property we proved will be essential for an approximation
process.

In order to go through our approximation approach, we need the fol-
lowing lemma, requiring the well-known theory of Γ−convergence. For all
details about this theory, we refer to [39].

Lemma 1.4.5. Given a sequence (νh)h of probability measures on Ω, sup-
posing νh ⇀ ν and p > 1, it follows that the sequence of functionals (Fpνh)h,
Γ−converges to the functional F

p
ν with respect to weak−∗ topology on P(Ω).

Moreover if ν is fixed and we let p vary, we have Γ−convergence, according
to the same topology, of the functionals (Fpν)p to the functional F1ν as p→ 1.

Proof. For the first part of the statement, just notice that the Wasser-
stein distance is a metrization of weak−∗ topology: consequently, being
Tp(µ, ν) =W p

p (µ, ν), as νh ⇀ ν we have uniform convergence of the contin-
uous functionals Tp(·, νh). This implies Γ−convergence and pointwise con-
vergence. In view of Proposition 6.25 in [39], concerning Γ−convergence of
sums, we achieve the proof. The second assertion follows the same scheme,
once we notice that, for each p > 1 and every pair (µ, ν) of probability
measures, it holds

W1(µ, ν) ≤Wp(µ, ν) ≤ D1−1/pW 1/p
1 (µ, ν).

This gives uniform convergence of the transport term, as

Tp(µ, ν)− T1(µ, ν) ≤ (Dp−1 − 1)T1(µ, ν)

≤ D(Dp−1 − 1)→ 0.

Tp(µ, ν)− T1(µ, ν) ≥ T p1 (µ, ν)− T1(µ, ν)
≥ (p− 1)c(T1(µ, ν)) ≥ c (p− 1)→ 0,

where c(t) = t log t, c = inf c and we used the fact T1(µ, ν) ≤ D.

We now state in the form of lemmas two extensions of Theorem 1.4.3

Lemma 1.4.6. Suppose p > 1 and fix an arbitrary ν ∈ P(Ω): if µ is optimal
for Fν then there exists a Kantorovich potential ψ for the transport between
µ and ν such that Formula (1.4.2) holds.
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Proof. We choose a sequence (νh)h approximating ν in such a way that
each νh satisfies the assumptions of Theorem 1.4.3. By Lemma 1.4.5 and
the properties of Γ− convergence, the space P(Ω) being compact and the
functional Fν having a unique minimizer (see, for instance, Chapter 7 in
[39]), we get that µh ⇀ µ, where each µh is the unique minimizer of Fνh .
Each measure µh is absolutely continuous with density uh. We use (1.4.2)
to express uh in terms of Kantorovich potentials ψh and get uniform conti-
nuity estimates on uh. We would like to extract converging subsequences by
Ascoli-Arzelà Theorem, but we need also equiboundedness. We may obtain
this by using together the integral bound

∫

uhdLd =
∫

k(−ψh)dLd = 1 and
the equicontinuity. So, up to subsequences, we have this situation:

µh = uh · Ld, uh = k(−ψh),
uh → u, ψh → ψ uniformly,

µh ⇀ µ, µ = u · Ld, νh ⇀ ν,

where we have absorbed the constants l into the Kantorovich potentials.
Clearly it is sufficient to prove that ψ is a Kantorovich potential between µ
and ν to get our goal.

To see this, we consider that, for any c−concave function ϕ, it holds

∫

ψh dµh +

∫

ψch dνh ≥
∫

ϕdµh +

∫

ϕc dνh.

The thesis follows passing to the limit with respect to h, as in Lemma
1.4.4.

Next step will be proving the same relation when ν is generic and p = 1.
We are in the same situation as before, and we simply need approximation
results on Kantorovich potentials, in the more difficult situation when the
cost functions cp(x, y) = |x− y|p vary with p.

Lemma 1.4.7. Suppose p = 1 and fix an arbitrary ν ∈ P(Ω): if µ is optimal
for F1ν then there exists a Kantorovich potential ψ for the transport between
µ and ν with cost c(x, y) = |x− y| such that Formula (1.4.2) holds.

Proof. For any p > 1 we consider the functional Fν and its unique mini-
mizer µp. Thanks to Lemma 1.4.6 we get the existence of densities up and
Kantorovich potential ψp between µp and ν with respect to the cost cp, such
that

µp = up · Ld, up = k(−ψp).
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By Ascoli-Arzelà compacteness result, as usual, we may suppose, up to
subsequences,

up → u, ψp → ψ uniformly,

and, due the Γ−convergence result in Lemma 1.4.5, since F1ν has a unique
minimizer denoted by µ, we get also

µp ⇀ µ, µ = u · Ld.

As in Lemma 1.4.6, we simply need to prove that ψ is a Kantorovich potential
between µ and ν for the cost c1. The limit function ψ is Lipschitz continuous
with Lipschitz constant less or equal than lim infp→1 pD

p−1 = 1, since it is
approximated by ψp. Consequently ψ is c−concave for c = c1. We need to
show that it is optimal in the duality formula.

Let us recall that, for any real function ϕ and any cost function c, it holds
ϕcc ≥ ϕ and ϕcc is a c−concave function whose c−transform is ϕccc = ϕc.
Consequently, by the optimality of ψp, we get

∫

ψpdµp+

∫

ψ
cp
p dν ≥

∫

ϕcpcpdµp+

∫

ϕcpdν ≥
∫

ϕdµp+

∫

ϕcpdν. (1.4.4)

We want to pass to the limit in the inequality between the first and the last
term. We start by proving that, for an arbitrary sequence (ϕp)p, if ϕp → ϕ1,
we have the uniform convergence ϕ

cp
p → ϕc11 . Let us take into account that

we have uniform convergence on bounded sets of cp(x, y) = |x − y|p to
c1(x, y) = |x− y|. Then we have

ϕ
cp
p (x) = inf

y
|x− y|p − ϕp(y), ϕc11 (x) = inf

y
|x− y| − ϕ1(y),

|ϕc,pp (x)− ϕc,11 (x)| ≤ ||cp − c1||∞ + ||ϕp − ϕ1||∞,

which gives us the convergence we needed. If we apply it to the sequences
φp = ψp4and4φpφ, we obtain, passing to the limit as p→ 1 in (1.4.4),

∫

ψ dµ+

∫

ψc1 dν ≥
∫

ϕdµ+

∫

ϕc1 dν.

By restricting this inequality to the set of c1−concave functions we get that
ψ is a Kantorovich potential for the transport between µ and ν and the cost
c1.

We can now state the main Theorem of this section, whose proof consists
only in putting together all the results we have obtained above.
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Theorem 1.4.8. Let Ω be a bounded domain in Rd, f a C1 strictly convex
function, p ≥ 1 and ν a probability measure on Ω: then there exists a unique
measure µ ∈ P(Ω) minimizing Fν and it is absolutely continuous with density
u. Moreover, there exists a Kantorovich potential ψ for the transport between
µ and ν and the cost c(x, y) = |x − y|p such that u = k(−ψ), where k =
(f ′)−1.

Consequences on the regularity of u come from this expression, which
gives Lipschitz-type continuity, and from the relationship between Kan-
torovich potentials and optimal transport, which can be expressed through
some PDEs. It is not difficult, for instance, in the case p = 2, to obtain a
Monge-Ampère equation for the density u.

1.4.2 A convex analysis proof

The idea of this proof consists in looking at the subdifferential of the func-
tional Fν , in order to get optimality conditions on the unique minimizer
measure µ and its density u (here we will identify any absolutely continuous
probability measure with its density). We provide first some lemmas.

Lemma 1.4.9. If F : X → R and G : X → R∪{+∞} are convex functionals
with ∂F (u0) = {ξ0} and such that, for any u1 ∈ X we have

(F (u0 + ε(u1 − u0))− F (u0))/ε→< u1 − u0, ξ0 >,
then ∂(F +G)(u0) = ξ0 + ∂G(u0).

Proof. We only need to prove in fact that if ξ ∈ ∂(F +G)(u0), then ξ− ξ0 ∈
∂G(u0). To do this we take u1 ∈ dom(F + G) = dom(G), set uε = u0 +
ε(u1 − u0), and we write

F (uε)− F (u0)
ε

+
G(uε)−G(u0)

ε
≥< u1 − u0, ξ0 > + < u1 − u0, ξ − ξ0 > .

Passing to the limit as ε→ 0 gives

< u1 − u0, ξ − ξ0 >≤ lim
ε→0

G(uε)−G(u0)
ε

≤ G(u1)−G(u0),

where the last inequality follows from convexity and gives ξ − ξ0 ∈ ∂G(u0).

In this subsection, the c−transform of an L1 function will be defined
replacing the inf by an ess inf, i.e.

φc(x) = ess inf
y
c(x, y)− φ(y).
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Lemma 1.4.10. For any L1 function φ the inequality φcc ≥ φ is true almost
everywhere.

Proof. For any x we have

φcc(x) = ess inf
y

[

c(x, y)− ess inf
z
(c(y, z)− φ(z))

]

.

Notice that, in general ess infz ξ(z) = infz∈A ξ(z) if A is the set of Lebesgue
point of ξ. Since c is continuous, the Lebesgue points of c(y, ·)−φ(·) coincide
with the Lebesgue points of φ. Hence, if x is a Lebesgue point for φ, we get
ess infz (c(y, z)− φ(z)) ≤ c(y, x)− φ(x) and, consequently,

φcc(x) ≥ ess inf
y
[c(x, y)− c(y, x) + φ(x)] = φ(x).

Lemma 1.4.11. Define K(φ) =
∫

Ω φ
cdν: then K is concave and upper

semicontinuous in φ with respect to the σ(L1, L∞)−convergence.

Proof. To prove the concavity of K, just notice that

(tφ1+(1− t)φ0)c(x) = ess inf
y
tc(x, y)+ (1− t)c(x, y)− (tφ1+(1− t)φ0)(y)

≥ t·ess inf
y
c(x, y)−φ1(y)+(1−t)·ess inf

y
c(x, y)−φ0(y) = tφc1(x)+(1−t)φc0(x).

For semicontinuity, first notice that, once we have concavity, it is sufficient
to prove semicontinuity with respect to the strong convergence. Then we
prove that, if φn → φ a.e., then for any x it holds φc(x) ≥ lim supn φ

c
n(x).

In fact, suppose by contradiction

φc(x) = ess inf
y
c(x, y)− φ(y) < λ < lim sup

n
φcn(x).

Then, let A be the set of points which are Lebesgue points for all the φn and
for φ and where pointwise convergence happens. For at least a point y0 ∈ A
we have c(x, y0)−φ(y0) < λ and this implies eventually c(x, y0)−φn(y0) < λ.
From this we infer φcn(x) ≤ λ, which is a contradiction to the assumption.
Then take a sequence φn → φ in L1 with K(φ) < lim supnK(φn). Up
to subsequences we may suppose φn → φ pointwisely a.e. and φcn → ψ
uniformly (by Ascoli-Arzelà Theorem, as all functions φcn have the same
modulus of continuity as c). By the pointwise semicontinuity we proved we
have ψ ≤ φc and in the end we get limnK(φn) =

∫

Ω ψdν ≤ K(φ).
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Lemma 1.4.12. If F : X → R and G : X ′ → R are convex l.s.c. (F is
σ(X,X ′)−lsc and G is σ(X ′, X)−lsc) functionals with

F (u) = sup
v
< u, v > −G(v),

then for any u0 ∈ X we have

∂F (u0) = argmaxv < u0, v > −G(v).

Proof. From our assumption we deduce that F = G∗ and G = F ∗. Then,
we can use the well-known relation v ∈ ∂F (u0) ⇔ u0 ∈ ∂F ∗(v) (see [44],
Prop. 5.1, for instance). This means that v ∈ ∂F (u0) is equivalent to

G(w) ≥ G(v)+ < w − v, u0 > for any w ∈ X ′,

which means that v actually maximizes < u0, · > −G.

We are now ready to give the alternative proof of Theorem 1.4.8.

Proof. Consider the minimizing probability µ with density u ∈ L1(Ω) and
define the vector space X = span (L∞(Ω), {u}), and the space X ′

X ′ =

{

ξ ∈ L1(Ω) :
∫

Ω
|ξ|u dLd < +∞

}

,

which is in duality with X by means of the product < v, ξ >=
∫

Ω vξ dLd.
Then, we consider the minimization problem for the functional H defined
on X by

H(v) =

{

Fν(v) if v ∈ P(Ω);
+∞ otherwise.

It is clear that u minimizes H on X. We will prove

∂H(u) =

{

f ′(u) + ψ : ψ maximizes

∫

Ω
φdµ+

∫

Ω
φcdν for φ ∈ X ′

}

,

(1.4.5)
and then consider as an optimality condition 0 ∈ ∂H(u). The subdifferential
∂H of the convex functional H is to be considered in the sense of the duality
between X and X ′.

To prove (1.4.5) we will use the fact that H = F + Tp, where both F
and Tp are convex functionals. Here F is defined as the usual functional
u 7→

∫

f(u)dLd: notice that, from the growth assumption on f , we have
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dom(F ) = X. Moreover we have, we have ∂F (u) = {f ′(u)} ⊂ X ′ and for
any u1 ∈ X we have

(F (u+ ε(u1 − u))− F (u))/ε→< u1 − u, f ′(u) > .

This can be proven by using the same computations as in Lemma 1.4.1. The
functional Tp, on the other hand, is defined as usual on X ∩ P(Ω) and +∞
elsewhere.

Then we may apply Lemma 1.4.9 to get (1.4.5), provided we prove

∂Tp(u) =

{

ψ : ψ maximizes

∫

Ω
φdµ+

∫

Ω
φcdν for φ ∈ X ′

}

. (1.4.6)

By Lemma 1.4.12, applied to the spaces X and X ′, (1.4.6) is a consequence
of the equality Tp(v) = supφ < v, φ > +K(φ) and Lemma 1.4.11.

So far we have proven Formula (1.4.5), and, by minimality of u, we
get 0 ∈ ∂H(u), which means 0 = f ′(u) + ψ for a certain ψ attaining the
maximum in the duality formula among all functions of X ′. It is necessary
to prove that ψ is (or agrees a.e.) actually a Kantorovich potential, so that
we get the thesis of Theorem 1.4.8. First consider the double transform
ψcc and remember that it holds (Lemma 1.4.10) ψcc ≥ ψ a.e. (see below).
Then, by optimality, necessarily we have ψcc = ψ a.e. on {u > 0}, since ψcc
belongs to X ′(it is a bounded function) and it would improve the value of
the integrals in the duality formula. By ψcc ≥ ψ together with 0 = f ′(u)+ψ
we may infer ψ = ψcc ∧ 0 a.e. which shows that ψ agrees a.e. with an
infimum of two c−concave function (which is itself a c−concave function)
and concludes the proof.

1.5 Whole minimization on bounded and un-

bounded domains

In this section we want to go through the consequences that Theorem 1.4.8
has in the problem of minimizing the whole F, when this functional is built
by using a term G as in (1.3.3), which forces the measure ν, representing
services, to be purely atomic. Two are our goals: trying to have an explicit
expression for u in the case of a bounded domain Ω and proving an existence
result in the case Ω = Rd.

Theorem 1.5.1. Suppose (µ, ν) is optimal for problem (1.1.2). Suppose
also that the function g is locally Lipschitz in ]0, 1]: then ν has finitely many
atoms and is of the form ν =

∑m
i=1 aiδxi.
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Proof. It is clear that ν is purely atomic, i.e. a countable sum of Dirac
masses. We want to show their finiteness. Consider a = max ai (such a
maximum exists since limi ai = 0 and ai > 0) and let L be the Lipschitz
constant of g on [a, 1]. Now consider an atom with mass ai and modify ν
by moving its mass onto the atom xj whose mass aj equals a, obtaining
a new measure ν ′. The G−part of the functional decreases, while it may
happen that the transport part increases. Since we do not change µ the
F−part remains the same. By optimality of ν we get Tp(µ, ν) + G(ν) ≤
Tp(µ, ν

′) +G(ν ′) and so

g(ai)− Lai ≤ g(ai) + g(a)− g(a+ ai) ≤ Tp(µ, ν ′)− Tp(µ, ν) ≤ aiD.

This implies
g(ai)

ai
≤ D + L,

and, by the assumption on the behavior of g at 0, this gives a lower bound
δ on ai. Since we have proved that every atom of ν has a mass greater than
δ, we may conclude that ν has finitely many atoms.

Now we can use the results from last section.

Theorem 1.5.2. For any ν ∈ P(Ω) such that ν is purely atomic and com-
posed by finitely many atoms at the points x1, . . . , xm, if µ minimizes Fν
there exist constants ci such that

u(x) = k ((c1 − |x− x1|p) ∨ . . . (cm − |x− xm|p) ∨ 0) . (1.5.1)

In particular the support of u is the intersection with Ω of a finite union of
balls centered around the atoms of ν.

Proof. concerning the Kantorovich potential ψ appearing in Theorem 1.4.8
we know that

ψ(x) + ψc(y) = |x− y|p ∀(x, y) ∈ spt(π),
ψ(x) + ψc(y) ≤ |x− y|p ∀(x, y) ∈ Ω× Ω,

where π is an optimal transport plan between µ and ν. Taking into account
that ν is purely atomic we obtain, defining ci = ψc(xi),

−ψ(x) = ci − |x− xi|p µ− a.e. x ∈ Ωi,

−ψ(x) ≥ ci − |x− xi|p ∀x ∈ Ω, ∀i,
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where Ωi = T−1(xi) and T is an optimal transport map between µ and
ν. Since µ−a.e. point in Ω is transported to a point xi, we know that
u = 0 a.e. in the complement of

⋃

iΩi. Since, by f ′(u) = −ψ, it holds
−ψ(x) ≥ 0, one gets that everywhere in Ω the function −ψ is greater than
each of the terms ci − |x − xi|p and 0, while a.e. it holds equality with at
least one of them. By changing u on a negligible set, one obtains (1.5.1).
The support of µ, consequently, turns out to be composed by the union of

the balls Bi = B(xi, c
1/p
i ) intersected with Ω.

Theorem 1.5.2 allows us to have an almost explicit formula for the density
of µ. Formula (1.5.1) becomes more explicit when the balls Bi are disjoint.
We give now a sufficient condition on ν under which this fact occurs.

Lemma 1.5.3. There exists a positive number R, depending on the function
k, such that all the balls Bi have a radius not exceeding R. In particular,
for any atomic probability ν such that the distance between any two of its
atoms is larger than 2R, the balls Bi are disjoint.

Proof. Set Ri = c
1/p
i and notice that

1 =

∫

Ω
u ≥

∫

Bi

k(ci − |x− xi|p) dx =

∫ Ri

0
k(Rpi − rp)dωdrd−1 dr,

where the number ωd stands for the volume of the unit ball in Rd. This
inequality gives the required upper bound on Ri, since

∫ Ri

0
k(Rpi − rp)dωdrd−1 dr ≥ C

∫ Ri−1

0
nrd−1 dr = C(Ri − 1)d.

When the balls Bi are disjoint we have Bi = Ωi for every i and we get a
simple relation between radii and masses corresponding to each atom. The

constants ci can then be found by using Ri = c
1/p
i . In fact, by imposing the

equality of the mass of µ in the ball and of ν in the atom, the radius R(m)
corresponding to a mass m satisfies

m =

∫ R(m)

0
k(R(m)p − rp)dωdrd−1dr. (1.5.2)

For instance, if f(s) = s2/2, we have

R(m) =

(

m(d+ p)

ωdp

)1/(d+p)

.
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The second aim of this section is to obtain an existence result for the problem
1.1.2 when Ω = Rd. A difference from the bounded case is the fact that we
must look for minimization among all pairs of measures inWp(Rd), the p−th
Wasserstein metric space (see Section 0.2), rather than in P(Rd).

We start by some simple results about the minimization problem for Fν .

Lemma 1.5.4. For every fixed ν ∈ P(Rd) there exist a unique minimizer
µ for Fν : it belongs to Wp(Rd) if and only if ν ∈ Wp(Rd), and if ν does
not belong to this space the functional Fν is infinite on the whole Wp(Rd).
Moreover, if ν is compactly supported, the same happens for µ.

Proof. The existence of µ comes from the direct method of the calculus
of variations and the fact that if (Tp(µh, ν))h is bounded, then (µh)h is
tight. Uniqueness follows from the strict convexity of f . The behavior of
the functional with respect to the space Wp(Rd) is trivial. Finally, the last
assertion can be proved by contradiction, supposing µ(B(0, R)c) > 0 for
every R < +∞ and replacing µ by

µR = 1BR · µ+
µ(Bc

R)

|Br|
IBr · Ld,

where B(0, r) is a ball containing the support of ν. By optimality, we should
have

Tp(µR, ν) + F (µR) ≥ Tp(µ, ν) + F (µ), (1.5.3)

but we have

Tp(µR, ν)− Tp(µ, ν) ≤ −((R− r)p − (2r)p)µ(Bc
R), (1.5.4)

F (µR)− F (µ) ≤
∫

Br

[

f

(

u+
µ(Bc

R)

|Br|

)

− f(u)
]

dLd. (1.5.5)

By summing up (1.5.4) and (1.5.5), dividing by µ(Bc
R) and taking into ac-

count (1.5.3), we get

−((R−r)p−(2r)p)+ 1

µ(Bc
R)

∫

Br

[

f

(

u+
µ(Bc

R)

|Br|

)

− f(u)
]

dLd ≥ 0. (1.5.6)

Yet, by passing to the limit as R → +∞ and µ(Bc
R) → 0, the first term

in (1.5.6) tends to −∞, while the second is decreasing as R → +∞. This
last one tends to

∫

Br
f ′(u)dLd, provided it is finite for at least a value of R

(which ensures the finiteness of the limit as well). To conclude it is sufficient
to prove that

∫

Br

[

f

(

u+
µ(Bc

R)

|Br|

)

− f(u)
]

dLd < +∞.
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This is quite easy in the case f(z) = Azq with q > 1, while for general f the
assertion comes from the fact that u is continuous on Br, hence bounded.
The continuity of u may be obtained by localizing the result of Theorem
1.4.8: just consider µ′ = 1Br/µ(Br)·µ and ν ′ = T]µ

′ for an optimal transport
map T between µ and ν and correspondingly rescale the function f . It is
clear that µ′ minimizes a new functional
tildeFν′ in the new domain Ω′ = Br. Then we may apply Theorem 1.4.8
and get the continuity of its density, which ensures the continuity of u on
Br.

To go through our proof we need to manage minimizing sequences, in
the sense of Lemma below.

Lemma 1.5.5. It is possible to choose a minimizing sequence ((µh, νh))h in
Wp(Rd)×Wp(Rd) such that for every h the measure νh is finitely supported,
and the density of µh is given by (1.5.1), with disjoint balls centerd at the
atoms of νh.

Proof. First we start from an arbitrary minimizing sequence ((µ′h, ν
′
h))h.

Then we approximate each ν ′h in Wp by a finite support measure ν ′′h. To
do this we truncate the sequence of its atoms and move the mass in excess
to the origin. In this way, we have G(ν ′′h) ≤ G(ν ′h), by the subadditivity
of g, while the value of the transport term increases of an arbitrary small
quantity. Consequently, ((µ′h, ν

′′
h))h is still a minimizing sequence. Then, we

replace µ′h by µ′′h, chosen in such a way that it minimizes Fν′′
h
. By Lemma

1.5.4, each µ′′h has a compact support. Then, we translate every atom of
each ν ′′h together with its own set Ωi, to some disjoint sets Ω∗i . In this way
we get new measures µ′′′h and ν ′′′h . The value of the functional in this step
has not changed. We may choose to place the atoms of each ν ′′′h so far from
each other so that each distance between atoms is at least 2R. Then we
minimize again in µ, getting a new sequence of pairs ((µ′′′′h , ν

′′′
h ))h and we

set νh = ν ′′′h and µh = µ′′′′h . Thanks to Theorem 1.5.2 and Lemma 1.5.3 the
requirements of the thesis are fulfilled.

It is clear now that, if one can obtain a uniform estimate on the number
of atoms of the measures νh, the existence problem is easily solved: in fact
we already know that each ball belonging to the support of µh is centered
at an atom of νh and has a radius not larger than R. Provided we are
able to prove an estimate like ] {atoms of νh} ≤ N , it would be sufficient to
act by translation on the atoms and their corresponding balls, obtaining a
new minimizing sequence (the value of F does not change) with supports all
contained in a same bounded set (for instance, the ball BNR).
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We now try to give sufficient conditions in order to find minimizing
sequences where the number of atoms stays bounded. Notice that, on se-
quences of the form given by Lemma 1.5.5, the functional F has the expres-
sion

F(µh, νh) =

k(h)
∑

i=1

E(mi,h), if νh =

k(h)
∑

i=1

mi,hδxi,h , (1.5.7)

where the quantity E(m) is the total contribute given by an atom with mass
m to the functional. We may compute:

E(m) = g(m) +

∫ R(m)

0
[f(k(R(m)p − rp))+k(R(m)p − rp)rp] dωdrd−1dr,

(1.5.8)
taking into account the particular form of the density in the ball.

Theorem 1.5.6. Let us suppose f ∈ C2((0,+∞)), g ∈ C2((0, 1]) ∩
C0([0, 1]), in addition to all previous assumptions. Then the minimization
problem for F in Wp(Rd)×Wp(Rd) has a solution, provided

lim sup
R→0+

g′′
(∫ R

0
k(Rp − rp)dωdrd−1dr

)∫ R

0
k′(Rp − rp)dωdrd−1dr < −1.

Proof. According to what previously proven, it is sufficient to produce a
minimizing sequence of the form of Lemma 1.5.5, with a bounded number of
atoms. We claim that it is enough to prove that the function E is subadditive
on an interval [0,m0]. In fact, once proven it, we start from a sequence
((µh, νh))h built as in Lemma 1.5.5 and use the characterization of F given
in (1.5.7). Then we modify our sequence by replacing in each νh any pair of
atoms of mass less than m0/2 by a single atom with the sum of the masses.
We keep atoms far away from each other, in order to use (1.5.7). We may
perform such a replacement as far as we find more than one atom whose
mass is less or equal than m0/2. At the end we get a new pair ((µ′h, ν

′
h))h

where the number of atoms of ν ′h is less than N = 1 + b2/m0c. The value
of the functional F has not increased, thanks to the subadditivity of E on
[0,m0].

Taking into account that E(0) = 0 and that concave functions vanishing
at 0 are subadditive, we look at concavity properties of the function E in an
interval [0,m0]. It is sufficient to compute the second derivative of E and
find it negative in a neighborhood of the origin.

By means of the explicit formula (1.5.8), and taking into account also
(1.5.2), setting E(m) = g(m) + K(R(m)), we start by computing dK/dr.
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Using the facts that f ′ ◦ k = id and that k(0) = 0, we can obtain the formula

dK(R(m))

dm
(m) = R(m)p.

From another derivation and some standard computation we finally obtain

E′′(m) = g′′(m) +
1

∫ R(m)
0 k′(R(m)p − rp)dωdrd−1dr

.

The assumption of this Theorem ensures that such a quantity is negative
for small m, and so the proof is achieved.

Remark 1.5.7. Notice that, when the functions f and g are of the form
f(t) = atq, q > 1, g(t) = btα, α < 1, with a and b positive constants, we
have

g′′
(∫ R

0
k(Rp − rp)dωdrd−1dr

)

≤ −CR(d+
p

q−1
)(α−2)

;

∫ R

0
k′(Rp − rp)dωdrd−1dr ≥ CRd+p

2−q
q−1 ,

and so the lim sup in Theorem 1.5.6 may be estimated from above by

lim
R→0+

−CR
p

q−1
(α−q)+d(α−1)

= −∞.

Consequently the assumption in Theorem 1.5.6 is always verified when f
and g are power functions.

Remark 1.5.8. From the proof of the existence Theorem it is clear that there
exists a minimizing pair (µ, ν) ∈ Wp(Rd)×Wp(Rd) where ν has finitely many
atoms and µ is supported in a finite, disjoint union of balls centered at the
atoms of ν and contained in a bounded domain Ω0, with a density given
by Theorem 1.5.2. The same happens if we look for the minimizers in a
bounded domain Ω, provided Ω is large enough to contain Ω0, and hence a
solution to the problem in Rd. For instance all the open sets containing N
balls of radius R admit a minimizing solution supported in disjoint balls.

We conclude by stressing the fact that, in order to solve the problem
in Rd, we have only to look at the function E and find out the number of
atoms and their respective masses (mi)i=1...k The problem to solve is then

min

{

k
∑

i=1

E(mi) : k ∈ N,
k
∑

i=1

mi = 1

}

. (1.5.9)
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Figure 1.1: Sketch of the solution in a large domain Ω or in the whole space

Typically, for instance when f and g are power functions, the function E
involved in (1.5.9) is a concave-convex function, as sketched in picture 2.1.
Due to such a concave-convex behavior, it is not in general clear whether the
values of the numbers mi solving (1.5.9) and representing sub-cities’ sizes
are all equal or may be different.

0 1 m

E

Figure 1.2: Typical behavior of E

1.6 Comments on the model and its results

The model we presented takes into consideration only the optimization of
a total welfare parameter of the city, disregarding the effects on each single
citizen. In particular no equilibrium condition is considered. This may
appear as a fault in the model, since the personal welfare of the citizens
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(depending on the population density of their zone and on the cost for
moving from home to services) could be non-constant. As a consequence,
non-stable optimal solutions may occur, where some citizens would prefer to
move elsewhere in the city in order to get better conditions. However, this
is not necessarily the case, since our model also disregards prices of land and
houses in the city, since they do not affect the total wealth of the area. It
may turn out that, by a proper, market-determined, choice of prices, welfare
differences could be compensated and equilibrium recovered. This fact turns
out to be a great difference from the model in [35], both for the importance
which is given there to the variable represented by the price of land and for
the fact that Carlier and Ekeland exactly look for an equilibrium solution
instead of an optimal one.

As we saw, both in the case Ω = Rd and Ω bounded, optimal choices
for µ and ν are given by the formation of a certain number of sub-cities,
which are circular areas with a pole of services in the center (an atom for
the measure ν) around which the population is distributed with a decreasing
radial density.

Since we have only considered a very simplified model, our goal is nei-
ther to suggest a realistic way to design the ideal city, nor to describe in a
variational way the formation of existing cities. Anyway, from the analysis
of our optimality results (and in particular from the sub-cities phenomena
we referred to), we can infer some conclusions.

• This model is not a proper choice to describe the shape of a single
existing city, since the delocalization of services we find in an optimal
solution does not reflect what reality suggests (in fact we find finitely
many disjoint, independent, sub-cities with services only in the center).

• This model is likely to be more realistic on a larger scale, when Ω
represents a large urban area composed by several cities: in this case
every atom of the optimal ν stands for the center of one of them
and includes a complex system of services, located downtown, whose
complexity cannot be seen in this scale.

• In this model the concentrated measure ν gives a good representation
of the areas where services are offered to citizens and not of areas where
commodities are produced (factories), due to the assumption that no
land is actually occupied by the service poles (since ν is atomic).

• We conclude by stressing that the same model may be applied as a
first simplified approach to other kinds of problems, where we have to
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choose in some efficient way the distributions of two different parame-
ters, being the first spread and the second concentrated, keeping them
as close as possible to each other in some mass transportation sense.
This is what will be proposed in a general framework in Chapter 3.
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Chapter 2

An urban planning model

with traffic congestion

In this chapter we want to introduce another model for the urban planning
of residence and working areas, where the transportation costs take into
account the effects of traffic congestion. Formalizing traffic congestion is a
very interesting matter which is suggested in [11]. The model in [11] has as a
starting point the work of Beckmann [10] who, in the early 50’s, introduced
the so-called continuous transportation model in urban economics, leading
to a minimal flow like problem (see Proposition 0.1.8). Here we will develop
a very simplified model whose goal is only to define a transportation cost,
sort of a distance between probability measures, which takes care of the
idea that “if several people are supposed to pass through a common point,
then passing through it will be more costly”. Then this cost will be used
in a variational problem over probability measures which shares the same
structure of the one studied in Chapter 1.

As in [28] and in Chapter 1, given a urban area Ω (a subset of R2 in the
applications), we look for the distribution of residents (or consumption), de-
noted by µ, and the distribution of services (or production), denoted by ν, so
as to minimize a cost involving three terms: an overall transportation term
for moving customers to services, a term penalizing dispersion of services
and a term penalizing concentration of residents. To take into account (in a
special case) congestion effects, we are lead to consider as a transportation
cost the squared norm of µ−ν in the dual space of some subspace of H1(Ω)
(see Section 2.1 for details). In dimension 2, this in particular prevents the
presence of atoms of µ − ν. Hence, contrary to [28] and Chapter 1, where
a term forcing the distribution of services ν to be concentrated in at most
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countably many locations was considered, we rather consider an interaction
term of the form:

H(ν) :=

∫

Ω×Ω
V d(ν ⊗ ν),

where V (x, y) is, for instance, an increasing function of |x−y|. Such a term,
studied in [58] as well, has already been proposed in [66] as a concentration
term useful in similar urban planning problems.

2.1 Traffic congestion

In this section, we formally describe how we model congestion effects in
the transportation cost functional. Our analysis builds upon the continuous
transportation model of Beckmann (see [10], [11]).

We are given an urban area Ω, which is an open bounded connected sub-
set of R2 satisfying some smoothness assumptions that will be made precise
later, and we denote by µ and ν the respective distributions of residents
and services in the city. As a normalization, we may assume that µ and
ν are probability measures on Ω and that µ (respectively ν) also gives the
distribution of consumption (respectively of production) so that the signed
measure µ − ν represents the local measure of excess demand. Following
[10], we assume that the consumers’ traffic is given by a traffic flow field, i.e.
a vector field Y : Ω → R2 whose direction indicates the consumers’ travel
direction and whose modulus |Y | is the intensity of traffic.

The relationship between the excess demand and the traffic flow is ob-
tained from an equilibrium condition as follows. There is equilibrium in a
subregion K ⊂ Ω if the outflow of consumers equals the excess demand of
K:

∫

∂K
Y · n dHn−1 = (µ− ν)(K).

Since the previous has to hold for arbitrary K, this formally yields:

∇ · Y = µ− ν. (2.1.1)

It is also assumed that the urban area is isolated, i.e. no traffic flow should
cross the boundary of the city, hence:

Y · n = 0 on ∂Ω. (2.1.2)

If the transportation cost per consumer is assumed to be uniform, then one
may define the transportation cost between µ and ν as the value of the
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minimal flow problem:

inf

{∫

Ω
|Y (x)|dx : Y satisfies (2.1.1)-(2.1.2)

}

. (2.1.3)

Of course, one generally has to look for generalized (i.e. vector-valued mea-
sures) solutions of the previous problem. As we pointed out in Proposi-
tion 0.1.8, this minimal value coincides with the 1-Wasserstein distance be-
tween µ and ν. Let us also mention that this problem (or its extension
to measures) is tightly connected to the notion of transport density in the
Monge-Kantorovich optimal transportation problem (where cost = euclidean
distance): we refer to De Pascale and Pratelli [40], for details and very in-
teresting regularity results for transport density in the Monge-Kantorovich
problem. These results may give the possibility, under Lp assumption on µ
and ν, to extend the problem to the setting of vector measures and then,
by regularity, to state that the same problem has also solution among Lp

vector fields.
The minimization problem in (2.1.3) may obviously be modified if we

want to take into account possible geographical conditions into the following

inf

{∫

Ω
k(x)|Y (x)|dx : Y satisfies (2.1.1)-(2.1.2)

}

. (2.1.4)

Here k(x) is a term whose meaning is the transportation cost per consumer
at a point x. In this case Problem (2.1.4) is still linked to a transport
problem, but for a cost c given by

c(x, y) = inf

{∫ 1

0
k(γ(t))|γ′(t)| dt : γ is Lipschitz and γ(0) = x, γ(1) = y

}

.

Now, in order to take into account congestion effects, it is more realistic
to assume that the transportation cost per consumer at a point x depends
on the intensity of traffic at x itself. Let g : [0,+∞] → [0,+∞] be a given
nondecreasing function, and assume that if the traffic flow is Y then we
would like to set k(x) = g(|Y (x)|). It is natural, at this point, to define the
transportation cost between µ and ν as:

Cg(µ, ν) := inf

{∫

Ω
g(|Y (x)|)|Y (x)|dx : Y satisfies (2.1.1)-(2.1.2)

}

.

For the sake of simplicity, we will assume, from now on, that g(t) = t for all
t ≥ 0, and define the cost:

C(µ, ν) := inf

{∫

Ω
|Y (x)|2dx : Y satisfies (2.1.1)-(2.1.2)

}

. (2.1.5)
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where (2.1.1)-(2.1.2) are understood in the weak sense, hence read as:

∫

Ω
Y · ∇φ =

∫

Ω
φd(µ− ν), for all φ ∈ C1(Ω).

Let us define:

X :=

{

φ ∈ H1(Ω) :

∫

Ω
φ = 0

}

.

X is a Hilbert space, when equipped with the following inner product and
norm:

〈φ, ψ〉X :=

∫

Ω
∇φ · ∇ψ , ‖φ‖2X := 〈φ, φ〉X .

As usual, we shall identify X and its dual X ′ by Riesz’s isomorphism: for
every f ∈ X ′, there exists, unique, φ ∈ X such that:

〈φ, ψ〉X = f(ψ) for all ψ ∈ X. (2.1.6)

This implies:
‖f‖X′ = ‖φ‖X .

We shall also write (2.1.6) in the form:

{

−∆φ = f in
◦
Ω,

∂φ
∂n = 0 on ∂Ω, φ ∈ X.

(2.1.7)

With those definitions in mind, it is easy to check that our cost functional
given by (2.1.5) may also be written as:

C(µ, ν) =

{

‖µ− ν‖2X′ if µ− ν ∈ X ′,
+∞ otherwise.

(2.1.8)

Equivalently, we have:

C(µ, ν)
1
2 = sup

{∫

Ω
φd(µ− ν) : φ ∈ C1(Ω),

∫

Ω
φ = 0, ‖φ‖X ≤ 1

}

.

(2.1.9)
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2.2 The minimization problem

In what follows, Ω will be a domain of R2 (even if most of the results
are actually valid in Rd), V a nonnegative l.s.c. function on R2 and L2
will denote the 2-dimensional Lebesgue measure on Ω. We consider the
variational problem:

inf {F(µ, ν) = C(µ, ν) +G(µ) +H(ν): µ, ν probabilities on Ω} (2.2.1)

where:

C(µ, ν) =

{

‖µ− ν‖2X′ if µ− ν ∈ X ′,
+∞ otherwise;

G(µ) =

{ ∫

Ω u
2 if µ = u · L2, u ∈ L2(Ω),

+∞ otherwise;

and

H(ν) :=

∫

Ω×Ω
V (x, y)(ν ⊗ ν)(dx, dy).

Theorem 2.2.1. Assume that V is bounded from below, l.s.c. and there
exist probability measures µ0 and ν0 on Ω such that F(µ0, ν0) < +∞. Then
the minimization problem (2.2.1) has at least one solution.

Proof. First it is clear that the infimum of (2.2.1) is finite. Due to the weak
compactness of the space of probability measures on Ω, the existence will
directly follow from the weak lower semicontinuity of F. The weak lower
semicontinuity of G is clear, that of the interaction functional H is easy to
establish and that of C follows from formula (2.1.9).

2.3 Minimization with respect to µ

In this paragraph, we consider for a fixed probability ν (with ν ∈ X ′) the
minimization of F with respect to µ:

inf{C(µ, ν) +G(µ) : µ probability measure on Ω } (2.3.1)

Proposition 2.3.1. Given ν ∈ P(Ω) ∩ X ′, then (2.3.1) admits a unique
solution µ which is characterized by µ = φ · L2, where φ ∈ H1(Ω) is the
solution of:

{

−∆φ+ φ = ν in
◦
Ω,

∂φ
∂n = 0 on ∂Ω.

(2.3.2)
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Proof. It is obvious that (2.3.1) admits a unique solution µ = u · L2 with
u ∈ L2(Ω). Let p be a probability measure on Ω with p = v · L2 and
v ∈ L2(Ω) (which implies at once p ∈ X ′). For ε ∈ (0, 1), one has:

0 ≤ C(µ+ ε(p− µ), ν) +G(µ+ ε(p− µ))− C(µ, ν)−G(µ). (2.3.3)

Let ψ ∈ X be the solution of:
{

∆ψ = µ− ν in
◦
Ω,

∂ψ
∂n = 0 on ∂Ω.

(2.3.4)

Similarly, let χ ∈ X be the solution of:
{

∆χ = p− µ in
◦
Ω,

∂χ
∂n = 0 on ∂Ω.

(2.3.5)

We then have:

C(µ+ ε(p− µ), ν) =‖µ− ν + ε(p− µ)‖2X′ = ‖ψ + εχ‖2X
=C(µ, ν) + 2ε

∫

Ω
∇ψ · ∇χ+ ε2

∫

Ω
|∇χ|2

=C(µ, ν)− 2ε

∫

Ω
ψ(v − u) + ε2‖p− µ‖2X′

(2.3.6)

Similarly

G(µ+ ε(p− µ)) = G(µ) + 2ε

∫

Ω
u(v − u) + ε2

∫

Ω
(v − u)2. (2.3.7)

Replacing (2.3.6) and (2.3.7) in (2.3.3), dividing by ε and letting ε → 0+,
yields:

∫

Ω
(v − u)(u− ψ) ≥ 0. (2.3.8)

Since p = v ·L2 is an arbitrary probability measure (with v ∈ L2(Ω)), (2.3.8)
can also be written as:

there exists m ∈ R such that: u− ψ ≥ m, u− ψ = m µ-a.e.. (2.3.9)

Since u ≥ 0, this also implies u = (ψ +m) ∨ 0.

Define then φ := (ψ+m). Let us prove that φ ≥ 0 so that we get u = φ.
First notice that φ ≥ 0 µ-a.e. (using (2.3.9)); then set φ− := −(φ ∧ 0) and
get

∫

Ω
∇φ · ∇φ− = −

∫

{φ<0}
|∇φ|2 =

∫

Ω
φ−d(ν − µ) =

∫

Ω
φ−dν ≥ 0.

This proves φ− = 0 and hence u = φ; replacing in (2.3.4), we get that φ is
the solution of (2.3.2).
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2.4 Optimality conditions

Thanks to proposition 2.3.1, we can reformulate the problem (2.2.1) in terms
of ν only. More precisely, define for every probability measure ν on Ω:

J(ν) := inf {F (µ, ν) : µ probability measure on Ω } .

By proposition 2.3.1, we have:

J(ν) =

{ ∫

Ω(|∇φ|2 + φ2) +H(ν) with φ the solution of (2.3.2) if ν ∈ X ′,
+∞ otherwise.

Identifying H1(Ω) and its dual H1(Ω)′ via Riesz’s isomorphism for its usual
Hilbertian structure:

〈φ, ψ〉H1(Ω) :=

∫

Ω
(∇φ · ∇ψ + φψ) ,

‖φ‖2H1(Ω) := 〈φ, φ〉H1(Ω) ,

we may also rewrite J as:

J(ν) =

{ ‖ν‖2H1(Ω)′ +H(ν) if ν ∈ H1(Ω)′,

+∞ otherwise.

Finally, the reformulation of (2.2.1) reads as:

inf {J(ν) : ν probability measure on Ω } . (2.4.1)

In what follows, for every ν ∈ H1(Ω)′, we will say that φ ∈ H1(Ω) is the
potential of ν if:

〈φ, ψ〉H1(Ω) = ν(ψ), for all ψ ∈ H1(Ω). (2.4.2)

Put differently, the potential of ν is the weak solution of:
{

−∆φ+ φ = ν in
◦
Ω,

∂φ
∂n = 0 on ∂Ω.

Let us also remark that if, in addition, ν is a probability measure on Ω and
φ its potential, then φ · L2 is a probability measure on Ω as well.

Let us denote by C the set of probability measures belonging to the
domain of J :

C = P(Ω) ∩H1(Ω)′ =
{

ν ∈ H1(Ω)′ : ν ≥ 0 in H1(Ω)′, < ν , 1 >= 1
}

.
(2.4.3)
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In general, the interaction functional H is not convex. However, in the
small case, i.e. when either V or Ω is small (in a sense quantified below)
then, due to the term ‖.‖2H1(Ω)′ , the quadratic functional J is in fact strictly
convex.

Assume that V ∈ C2(Ω× Ω,R) and define:

cΩ,V :=

(∫

Ω

(

‖V (x, .)‖2H1(Ω) + ‖∂x1V (x, .)‖2H1(Ω) + ‖∂x2V (x, .)‖2H1(Ω)

)

dx

) 1
2

(2.4.4)

Proposition 2.4.1. Assume that V ∈ C2(Ω×Ω,R) and let cΩ,V be defined
by (2.4.4). If cΩ,V < 1, then J is a strictly convex functional on C; (2.4.1)
then admits a unique solution.

Proof. Given ν ∈ C, let us define:

Tν(x) :=< ν , V (x, .) >=

∫

Ω
V (x, y)ν(dy).

Since Tν ∈ H1(Ω), we have, on the one hand:

|H(ν)| = |ν(Tν)| ≤ ‖ν‖H1(Ω)′‖Tν‖H1(Ω). (2.4.5)

On the other hand:

Tν(x)
2 + |∇Tν(x)|2 =

(∫

Ω
V (x, y)ν(dy)

)2

+

∣

∣

∣

∣

∫

Ω
∇xV (x, y)ν(dy)

∣

∣

∣

∣

2

≤ ‖ν‖2H1(Ω)′

(

‖V (x, .)‖2H1(Ω) + ‖∂x1V (x, .)‖2H1(Ω) + ‖∂x2V (x, .)‖2H1(Ω)

)

Integrating the previous inequality and using (2.4.5), we then get:

|H(ν)| ≤ cΩ,V ‖ν‖2H1(Ω)′ ,

so that:
J(ν) ≥ (1− cΩ,V ) ‖ν‖2H1(Ω)′

and the claim of the proposition easily follows using the fact that J is
quadratic.

Let V s denote the symmetric part of V :

V s(x, y) :=
1

2
(V (x, y) + V (y, x)). (2.4.6)

The first-order optimality conditions for (2.4.1) are given by the following
result:
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Proposition 2.4.2. Assume that V ∈ C2(Ω×Ω,R). Given ν ∈ C, let φ be
the potential of ν and let T sν be defined, for all x ∈ Ω , by:

T sν (x) :=< ν , V s(x, .) >=

∫

Ω
V s(x, y)ν(dy).

If ν is a solution of (2.4.1), then there exists a constant m such that:

φ+ T sν ≥ m, φ+ T sν = m ν-a.e.. (2.4.7)

Proof. Let p ∈ C, and χ ∈ H1(Ω) be the potential of p − ν. Let ε ∈ (0, 1);
since ν solves (2.4.1), we have:

0 ≤ J(ν + ε(p− ν))− J(ν). (2.4.8)

We also have:

‖ν+ε(p−ν))‖2H1(Ω)′ = ‖φ+εχ‖2H1(Ω) = J(ν)+2ε

∫

Ω
φd(p−ν)+ε2‖χ‖2H1(Ω)′

Similarly:

H(ν + ε(p− ν)) = H(ν) + 2ε

∫

Ω
T sν d(p− ν) + ε2

∫

Ω×Ω
V d((p− ν)⊗ (p− ν)).

Replacing in (2.4.8), dividing by ε and letting ε→ 0+ yields:
∫

Ω
(φ+ T sν ) d(p− ν) ≥ 0.

Since p ∈ C is arbitrary in the previous inequality, setting:

m :=

∫

Ω
(φ+ T sν )dν

and using the fact that φ+ T sν ∈ H1(Ω) we then have (in the H1(Ω) sense):

φ+ T sν ≥ m, φ+ T sν = m ν-a.e..

Remark 2.4.3. Let us remark that, thanks to proposition 2.4.1, if cΩ,V < 1,
Problem (2.4.1) being strictly convex, condition (2.4.7) is in fact sufficient
and fully characterizes the minimizer. This fact will be used several times
in the examples of section 8. Secondly, it should be noticed that in (2.4.7)
ν appears only indirectly through its potential and T sν .
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2.5 Regularity via approximation

The aim of this section is to get some regularity results on the optimal
measure ν by approximating the minimization problem and then looking
for some properties of minimizers passing to the limit. Our main tools
will be the Wasserstein distance from optimal transport theory and elliptic
regularity.

The results we need on the distanceW2 are in Sections 0.1 and 0.2. Con-
cerning elliptic regularity, we will deal with the case of Neumann conditions.
Precisely, we will use the following.

Proposition 2.5.1. Consider the elliptic equation (2.3.2), which is always
endowed with a unique solution for every ν ∈ X ′. Then it holds:

• if Ω is an open set with C2 boundary and ν ∈ Lp(Ω) then φ ∈W 2,p(Ω);

• if Ω is an open set with C2,α boundary and ν ∈ C0,α(Ω) then φ ∈
C2,α(Ω).

We refer to [1] for both implications. For the Hölder theory we can refer
also to [47], whose results in chapter 6, section 7, have to be adapted, while
for the Lp theory in the case p = 2 the ninth chapter in [26] can be seen as
well. From now on, we will call regular those open sets whose boundary is
C2,α for at least a positive value of α.

In our approximation, we want to retrieve information on all minimizers
of our problem (in general, when J is not convex they could be not unique),
and so we define some functionals Jε for every choice of ν ∈ argmin J .

We set, for small ε > 0,

Jε(ν) = J(ν) + εW 2
2 (ν, νε) + δε‖ν‖2L2(Ω),

where (νε)ε is a sequence of measures which are absolutely continuous with
a strictly positive density, approximating ν in the W2 distance, and δε is a
small parameter depending on ε to be properly chosen.

Since the semicontinuity of the terms we have added with respect to
weak* topology is straightforward, we get the existence of at least a min-
imizer νε for each functional Jε. We have the following result, which is
nothing but an ad hoc modification of general Γ−convergence concepts.

Proposition 2.5.2. It is possible to choose the parameters δε and the se-
quence (νε)ε in such a way that the sequence of minimizers (νε)ε of Jε tends
to ν in the weak* topology (or, equivalently, with respect to the W2 distance).
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Proof. We choose νε ∈ L2(Ω) such that J(νε) ≤ J(ν) + ε2/2, and νε ⇀ ν.
This is possible thanks to lemma 2.5.3: just choose an L2 sequence (νε)ε
which approximates ν in the strong topology ofH1(Ω)′ and noticing that also
the interaction term is in fact continuous with respect to this convergence.
It is not difficult to choose the densities of the measures νε to be positive as
required. Then we set δε = ε2(‖νε‖L2(Ω))

−2/2.
So we have

J(νε) + εW 2
2 (νε, νε) + δε ‖νε‖2L2(Ω) ≤ J(νε) + δε ‖νε‖2L2(Ω) ≤ J(ν) + ε2.

Since ν is a minimizer for J we have J(νε) ≥ J(ν), and so we get

J(ν) + εW 2
2 (νε, νε) ≤ J(ν) + ε2,

where we have neglected the positive term δε ‖νε‖2L2(Ω). By simplifying and
dividing by ε we get

W 2
2 (νε, νε) ≤ ε,

and so
W2(νε, ν) ≤

√
ε+W2(ν, νε)→ 0,

which is the thesis.

Lemma 2.5.3. The subspace C∞c (Ω) ⊂ L2(Ω) is dense in the Hilbert space
H1(Ω)′.

Proof. It is sufficient to show the following implication:

ξ ∈ H1(Ω)′, 〈ξ, f〉H1(Ω)′ = 0 for all f ∈ C∞c (Ω)⇒ ξ = 0.

After calling ψξ and ψf the potentials of ξ and f , respectively, we have

〈ξ, f〉H1(Ω)′ = 〈ψξ, ψf 〉H1(Ω) =

∫

Ω
ψξψf +

∫

Ω
∇ψξ · ∇ψf =

∫

Ω
ψξf.

Consequently, the condition of being ξ orthogonal to every f ∈ C∞c (Ω) in
H1(Ω)′ implies that the potential of ξ must be orthogonal in L2(Ω) to all
C∞c functions. So ψξ must be identically 0 and then ξ = 0.

Having established the convergence of the minimizers νε to ν, we look
for uniform estimates of such minimizers. From now on, we will make use
of the following assumption on the function V :
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Vdiod (V depends increasingly on distances): V is a function of the form
V (x, y) = v(|x − y|2) for a C2 strictly increasing function v with v′(s) > 0
for s > 0.

Obviously, under this hypothesis, V is a symmetric function and so V =
V s and Tν = T sν for every probability measure ν.

2.5.1 L∞ estimates in the convex case

Theorem 2.5.4. Suppose that Ω is a bounded, regular and strictly convex
open subset of R2 and that Vdiod holds. Then, every minimizer νε of Jε
is an absolutely continuous measure with L∞ density, bounded by a uniform
constant depending on Ω and on ‖V ‖C2(Ω). Consequently, ν has a density
bounded by the same constant as well.

Proof. We write down a necessary optimality condition on νε. To obtain
it, we act as in the proof of proposition 2.4.2. We have only to consider
two additional terms. The L2 term is easy to deal with: if we set νε,t =
νε + t(p− νε) for small ε, t ∈ [0, 1] and an arbitrary probability p ∈ L2(Ω),
we have

lim
t→0

‖νε,t‖2L2(Ω) − ‖νε‖
2
L2(Ω)

t
= 2

∫

Ω
(p− νε)νε.

For the Wasserstein term, we behave as in last chapter and in [28]. Let us
choose for each t a Kantorovich potential ψε,t for the transport between νε,t
and νε, and let ψε be the only Kantorovich potential (up to additive con-
stants) between νε and νε (uniqueness comes from the fact that the density
of νε is positive everywhere on the connected open set Ω). We can choose
all these Kantorovich potentials to vanish on a same point. Remember that
they are all L−Lipschitz functions. We then have

W 2
2 (νε,t, νε)−W 2

2 (νε, νε) ≤ t
∫

Ω
ψε,t d(p− νε),

and so

lim sup
t→0

W 2
2 (νε,t, νε)−W 2

2 (νε, νε)

t
≤
∫

Ω
ψε d(p− νε).

We have used the fact that, up to subsequences, the sequence (ψε,t)t has a
limit and such a limit must be a Kantorovich potential between νε and νε,
and so it must be ψε.
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By this considerations and the same technique as in proposition 2.4.2,
we get

δενε +
ε

2
ψε + φε + Tνε ≥ cε in Ω; (2.5.1)

δενε +
ε

2
ψε + φε + Tνε = cε for νε − a.e.x ∈ Ω. (2.5.2)

Here φε is the potential of νε, and we have identified νε with its density
(obviously νε ∈ L2(Ω)). We may write

νε =
1

δε

(

cε − φε − Tνε −
ε

2
ψε

)

+
. (2.5.3)

Since νε is L2 we have φε ∈ H2(Ω) ⊂ C0,α(Ω), and this shows that νε is
Hölder continuous, since all the functions appearing in the positive part are
at least Hölder continuous. Consequently, since νε ∈ C0,α(Ω), the function
φε turns out to be a C2,α function.

We look for a maximum point xε of νε: in it we have a local minimum
of the sum ε

2ψε + φε + Tνε . Thanks to x 7→ ψε(x) − x2 being concave, we
may write ψε ≤ l+Q, with equality in xε, where l is an affine function and
Q(x) = x2. Consequently xε is a local minimum for the sum ε

2(l + Q) +
φε + Tνε . Lemma 2.5.5 shows that xε does not belong to the boundary of
Ω, at least for ε sufficiently small. So, since xε is an interior point and all
the functions involved are at least twice differentiable, we may write, taking
the Laplacians,

0 ≤ 2ε+∆φε(xε) + ∆Tνε(xε). (2.5.4)

In this case we can use νε = φε −∆φε to estimate νε(xε). In fact in xε we
have νε(xε) > 0 and so

φε(xε)−M ≤ cε, (2.5.5)

where M = sup |ψε| + |Tνε | can be uniformly estimated, ψε being
L−Lipschitz functions vanishing at a given point in Ω and |Tν | ≤ sup |V |
for every probability ν. So it is sufficient to estimate cε. To do this we can
integrate (2.5.3), obtaining

δε ≥ cε|Ω| −M |Ω| − 1, (2.5.6)

where we used the fact that both νε and φε are probability measures.
Putting together (2.5.5) and (2.5.6) we get φε ≤ C, being C a constant
depending on Ω and supV , and so, by recalling the equality νε = φε −∆φε
and the inequality (2.5.4) we get

νε(xε) ≤ C + 2ε+ ‖V ‖C2(Ω) .

Since xε is a maximum point we have got an L∞ estimate on νε.
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Lemma 2.5.5. Suppose that Ω is a bounded, regular and strictly convex
open subset of R2 and that Vdiod holds. Then, at least for small ε, we have

xε ∈
◦
Ω.

Proof. Suppose, on the contrary, to have a sequence (xε)ε contained in the
boundary ∂Ω. Such xε is a local minimum point for ε

2ψε + φε + Tνε . In a
local minimum point on the boundary the normal exterior derivative should
be non positive. The derivative of ψε may also not exist, but we may use
the fact that ψε is an L−Lipschitz function. Being multiplied by ε, and
vanishing by definition the normal derivative of φε, it is not difficult to
check that we should have

lim sup
ε→0

∂Tνε
∂n

(xε) ≤ 0. (2.5.7)

On the other hand, we have

∂Tνε
∂n

(xε) = 2

∫

Ω
v′(|xε − y|2)(xε − y) · n(xε) νε(dy) ≥ aδδνε(Ω \ Sδ(xε)),

where aδ is the minimum value of v′ on [δ2, diamΩ2] and, for every point
x ∈ ∂Ω, we define Sδ(x) = {y ∈ Ω | (x− y) · n(x) ≤ δ}. Condition (2.5.7)
implies that, for every δ > 0, it holds νε(Ω\Sδ(xε))→ 0. Taking a limit point
x0 of the sequence (xε)ε, we will show that this implies that the measure
which is the limit of the sequence (νε)ε is concentrated on x0. This is
impossible, since this limit measure is ν, which is optimal for J , and so
it belongs to H1(Ω)′. Yet in two dimensions a measure concentrated on
a single point does not belong to such a space. To conclude, it is then
sufficient to show that, for each ball B(x0, r), it holds Sδ(xε) ⊂ B(x0, r) for
sufficiently small δ and ε, thus getting limε νε(B(x0, r)) = 1 for every r > 0.
If not, we would have a sequence (yδ,ε)δ,ε such that (xε−yδ,ε) ·n(xε) < δ and
|x−yδ,ε| > r. At the limit we get a point y ∈ ∂Ω such that (x0−y)·n(x0) ≤ 0
(which implies, in a strictly convex Ω, x0 = y), but |x0 − y| ≥ r, and this is
absurd.

Remark 2.5.6. If we want to consider the one-dimensional case (with Ω an
interval) the proof of lemma 2.5.5 has to be modified: it is sufficient to say
that a measure concentrated at a single point, which is a terminal point
of the interval, cannot be optimal. The potential of such a measure can
be explicitly computed, being an exponential function, and it can be proven
that the optimality condition of proposition 2.4.2 cannot hold, at least under
the additional assumption v′(0) = 0 in Vdiod.
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Remark 2.5.7. In chapter 3 and in [67] a different proof for the fact that
the maximum point does not lie on the boundary is provided. Such a proof
has the advantage of getting rid of the strict convexity assumption. Unluck-
ily, it is easy to be shown under some extra regularity assumption on the
Kantorovich potential that we cannot ensure here. It seems that it could
be extended to the case of Lipschitz potentials but through a quite heavy
procedure. This is the reason why we did not develop an alternative proof
for Lemma 2.5.5. Anyway, we refer to the proof of Theorem 3.2.2 in next
chapter.

We conclude this part of the section by a consideration on the conse-
quences of this result on the regularity of the potential φ.

Corollary 2.5.8. The potential φ of an optimal measure is a W 2,p function
for any 1 ≤ p < +∞ and then a C1,α function too.

Proof. Just apply proposition 2.5.1 and consider that ν ∈ L∞(Ω) ⊂ Lp(Ω)
for any finite p. The second part of the statement is just a consequence of
well-known embedding theorems.

2.5.2 Interior L2 estimates in the general case

In this section, we look for weaker estimates which are valid in the case of a
non convex domain Ω. Let us write ∂Ω = Γ1 ∪Γ2, where Γ1 = ∂Ω∩∂ (coΩ)
and Γ2 = ∂Ω \ ∂ (coΩ).

Theorem 2.5.9. Suppose that Γ1 is a strictly convex regular boundary
and that Vdiod holds. Then, given a Lipschitz function θ such that
d(spt θ,Γ2) > 0, the sequence of functions (θνε)ε is bounded in L2.

Proof. We start by testing equation (2.3.2) for νε against the function θ
2νε:

∫

Ω
ν2εθ

2 =

∫

Ω
φεθ

2νε +

∫

Ω
∇φε · ∇(θ2νε). (2.5.8)

Since on spt νε we have ∇φε = −δε∇νε −∇( ε2ψε + Tνε), we get

∫

Ω
ν2εθ

2 =

∫

Ω
φεθ

2νε − δε
∫

Ω
∇νε · ∇(θ2νε)−

∫

Ω
∇(ε

2
ψε + Tνε) · ∇(θ2νε)

≤
∫

Ω
φεθ

2νε − δε
∫

Ω
θ2|∇νε|2 − 2δε

∫

Ω
νεθ∇νε · ∇θ

+

∫

Ω
∆(

ε

2
ψε + Tνε)θ

2νε −
∫

∂Ω
θ2νε

(

∂Tνε
∂n
− ε

2
L

)

. (2.5.9)
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Using once more δε∇νε = −∇φε−∇( ε2ψε+Tνε) on spt νε in (2.5.9), we get:

∫

Ω
ν2εθ

2 ≤
∫

Ω
φεθ

2νε − δε
∫

Ω
θ2|∇νε|2 + 2

∫

Ω
νεθ∇φε · ∇θ

+2

∫

Ω
νεθ∇(

ε

2
ψε+Tνε)·∇θ+

∫

Ω
∆(

ε

2
ψε+Tνε)θ

2νε−
∫

∂Ω
θ2νε

(

∂Tνε
∂n
− ε

2
L

)

.

(2.5.10)

Notice that the Laplacian appearing in the fifth term is composed by two
parts: the Laplacian of a C2 function and the Laplacian of a concave one,
which is a negative measure. We have six terms that must be estimated:

• the first one is bounded by ‖θνε‖L2(Ω) ‖θφε‖L2(Ω);

• the second is negative;

• the third is bounded by ‖∇φε‖L2(Ω) ‖θνε‖L2(Ω) lip θ;

• the fourth by ‖θνε‖L2(Ω) (
ε
2L+ lipV ) lip θ;

• the fifth by (2ε+ ‖V ‖C2(Ω))
∥

∥θ2
∥

∥

L∞(Ω)
;

• the last one is negative for small ε and it can be proven exactly as in
the proof of lemma 2.5.5.

The proof is then achieved, since the sequence (φε)ε is bounded in H1(Ω),
thanks to ‖φε‖2L2(Ω) + ‖∇φε‖2L2(Ω) ≤ Jε(νε). Moreover, the left hand side in
(2.5.10) is quadratic in ‖θνε‖L2(Ω) and the right hand side at most linear,
which gives the estimate we were looking for.

Theorem 2.5.9 gives a local L2 bound on the densities νε: this enables
us, together with the optimality conditions of section 5, to state a stronger
regularity result.

Theorem 2.5.10. Suppose that Γ1 is a strictly convex regular boundary and
that Vdiod holds. Then any optimal measure ν for J can be expressed as
ν = νa + νs, with νa ∈ L∞(Ω) and νs a singular measure supported on Γ2.

Proof. By theorem 2.5.9 we get that ν is locally L2 in Ω \ Γ2. This means,
by interior elliptic regularity theory, that its potential φ is locally H2 in the
same set, and thus continuous. Hence the equality φ = c − Tν given by
optimality conditions holds true on the whole spt ν. So the following holds

φIspt ν = (c− Tν)Ispt ν ∈ L∞(Ω), (2.5.11)
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Moreover, L2−almost everywhere on spt ν, we also have ∆φ = −∆Tν and
so

∆φIspt ν = −∆TνIspt ν ∈ L∞(Ω). (2.5.12)

(2.5.11) and (2.5.12) together, imply

νIA = (φ−∆φ)Ispt ν ∈ L∞(Ω),

where A = Ω \ Γ2. Finally, set νa = νIA and νs = νIΓ2 .

Remark 2.5.11. In section 8, an example will be given to show that it is in
fact possible that an optimal ν gives a positive mass to Γ2

2.6 Qualitative properties of the minimizers

In this section, we give some qualitative properties regarding the support of
an optimal measure ν. This turns out to be very important, thanks to the
following result. In all the section Ω will be strictly convex, regular, and
condition Vdiod will hold.

Proposition 2.6.1. The L∞ density of any optimal measure ν coincides
almost everywhere in spt ν with a continuous function.

Proof. Thanks to the regularity of the potential φ we may say that the
equality φ = c − Tν holds everywhere in the support and that, for the
Laplacian of φ, which is an Lp function, it holds ∆φ = −∆Tν a.e. From
ν = φ−∆φ and V ∈ C2(Ω), which implies Tν ∈ C2(Ω), we get the thesis.

As a consequence of the previous result, we may say that the reason
for possible irregular behavior of ν must be traced back to the shape of its
support. As far as this shape is concerned, we can only give two general
results, whose statements are quite weak.

Proposition 2.6.2. Suppose, other than the general assumptions of the
section, that V is strictly convex. Then the support of ν has non-empty
interior.

Proof. We will show that spt ν contains a small ball around the point x0
defined by x0 = argminTν . The function Tν inherits strict convexity from
V , and so there exist just one minimizer and just one critical point for Tν .
We start by saying that, under the assumption of theorem 2.5.4, we must
have spt ν ∩ ∂Ω = ∅. Indeed, φ being a C1,α function, it holds ∇φ = −∇Tν
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on the whole support and this, by calculating ∇Tν as in lemma 2.5.5, would
otherwise prevent the normal derivative of φ from vanishing on ∂Ω.

We now want to show that x0 ∈ spt ν: to do this consider a maximum
point x for φ. Such a point must be placed in spt ν, since outside it holds
∆φ = φ and on an interior maximum point we should have a strictly positive
value for φ. The same consideration can be performed on the boundary, since
we already know that the normal derivative vanishes and no maximum point
on the boundary with vanishing normal derivative and positive Laplacian is
allowed. Notice that outside spt ν the function φ is an analytic function be-
cause of standard elliptic regularity theory and so it makes sense to consider
its Laplacian on ∂Ω too.

Now, it must hold

0 = ∇φ(x) = −∇Tν(x),

and so x = x0. Consequently x0 is a point in spt ν and then in Ω.
Let us now consider for a fixed small value of ε > 0 and for δ in a ball

near 0 ∈ R2 the functions

fε,δ(x) = φ(x)− ε

2
|x− (x0 + δ)|2.

The parameter ε has to be chosen in such a way that in any maximum
point of fε,δ it holds φ > ε (it is in fact sufficient to satisfy the inequality
|Ω|−1 > ε(1 + (diamΩ)2/2)). After choosing ε > 0 in such a way, we will
think of it as a fixed parameter.

Now consider xδ ∈ argmin fε,δ. Such a point cannot lie on the boundary
because of the sign of the normal derivative, and it cannot be outside spt ν,
by computing the Laplacian. So xδ ∈ spt ν. The point xδ is characterized
by

[εid+∇Tν ](xδ) = ε(x0 + δ),

the application on the left hand side being injective since it is monotone (in
the usual sense for vector-valued maps). If δ = 0 the solution is given by
xδ = x0, and so, by standard local inversion theorems, the set of points xδ
covers a small ball around x0. Such a ball must consequently be contained
in spt ν.

Our next result deals with the topology of the support

Proposition 2.6.3. Suppose, other than the general assumptions of the
section, that V is strictly subharmonic, i.e. ∆V > 0. Then the support of
ν is simply connected, in the sense that, if ω ⊂ Ω is an open set such that
∂ω ⊂ spt ν, then ω ⊂ spt ν.
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Proof. We consider a maximum point x0 for φ+ Tν in ω. Let us recall that
φ = c − Tν in spt ν and φ ≥ c − Tν everywhere. So, if the maximum point
belongs to spt ν, we have φ = c−Tν on ω. On the other hand, it is impossible
to have x0 ∈ ω \ spt ν because there we have ∆(φ + Tν) = φ +∆Tν > φ ≥
0, since Tν inherits strict subharmonicity from V . Consequently, x0 must
belong to ω ∩ spt ν. Then we have φ = c − Tν and so ∆φ = −∆Tν in the
whole ω and so

ν = φ+∆Tν > φ ≥ 0 in ω,

which obviously implies ω ⊂ spt ν.

2.7 Geodesic convexity in dimension one

It is worthwhile to consider the case where Ω = [−R,R] is a bounded interval
in R, instead of a two-dimensional open set. Obviously from the point of
view of applications it sounds less interesting, even if sometimes in urban
economics unidimensional models have been used to deal with the case of
very long and narrow cities (and in fact some towns on the sea shore are
not far from being one-dimensional). From a mathematical point of view,
the main interest lies in the fact that we can show the functional J to
be displacement convex (or strictly displacement convex), under convexity
assumption on V . See Section 0.3 for details about this notion. This gives
uniqueness of the minimizer, but it is also important since displacement
convexity has never been studied for functionals of the form of the squared
(H1)′ norm. Anyway, the techniques here used to get this term geodesically
convex are very specific to the one-dimensional case .

Before presenting the displacement convexity result, we need to recall
the concept of Green function and its link to the squared (H1)′ norm. The
following result can be adapted to any dimension.

Proposition 2.7.1. For every measure ν ∈ H1(Ω)′ it holds

‖ν‖2H1(Ω)′ =

∫

Ω×Ω
G(x, y) ν(dx)ν(dy),

the function Gx = G(x, ·) being for every x ∈ Ω the solution to
{

−∆yGx +Gx = δx in
◦
Ω,

∂Gx
∂n = 0 on ∂Ω,

(2.7.1)

i.e. G is the Green function for the operator −∆+ id with Neumann boun-
dary conditions.
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Proof. First, we notice that it holds

‖ν‖2H1(Ω)′ =

∫

Ω
φ2 +

∫

Ω
|∇φ|2 =

∫

Ω
φdν.

Then the general theory on Green functions allows us to say that it holds
φ(x) =

∫

ΩG(x, y)ν(dy). Integrating once more with respect to ν gives the
thesis.

Now we will take Ω = [−R,R] ⊂ R and we will divide the square
[−R,R]× [−R,R] into two triangles:

T+ = {(x, y) ∈ [−R,R]× [−R,R] |x < y}
T− = {(x, y) ∈ [−R,R]× [−R,R] |x > y}

Theorem 2.7.2. If Ω = [−R,R] ⊂ R and if V is a convex function of
the pair (x, y) then the functional J is strictly displacement convex. Conse-
quently, it admits a unique minimizer.

Proof. An easy computation shows that the Green function in (2.7.1) is
given, in the case of the interval [−R,R], by

G(x, y) =

{

cosh(x+R) cosh(y−R)
sinh(2R) if (x, y) ∈ T+,

cosh(x−R) cosh(y+R)
sinh(2R) if (x, y) ∈ T−

denoting by cosh and sinh the hyperbolic cosin and sin, respectively. It is
also easy to check that both expressions, the one valid in T+ and the one in
T−, are strictly convex functions.

Let us now consider a displacement interpolation νt = [(1− t)id+ tS]#ν
and take

J(νt) =

∫ R

−R

∫ R

−R
(G+ V )(x+ t(S(x)− x), y + t(S(y)− y)) ν(dx)ν(dy).

Since S must be an optimal transport with respect to the cost |x − y|2 it
is well-known that it is an increasing map: consequently (x, y) 7→ ((1 −
t)x + tS(x), (1 − t)y + S(y)) sends each of the triangles T+, T− into itself.
Then, in order to get t 7→ J(νt) strictly convex, it is sufficient to have strict
convexity of G + V in each triangle. Our hypothesis ensures it and we get
the thesis.

Remark 2.7.3. In the assumptions of theorem 2.7.2 the convexity in each
triangle T+, T− of G + V is sufficient: in particular, also some concave
functions V are allowed.
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Remark 2.7.4. In [71], Problem 5.17 addresses at the following question: find
new and meaningful functionals which have some displacement convexity
properties. The case of the functional ν 7→ ‖ν‖2H1(Ω)′ in one dimension is
quite trivial and specific but maybe it is worth to be linked to this question.

2.8 The quadratic case in two dimensions

We now develop the particular case where V (x, y) = |x − y|2. For such a
choice for V and particular Ω we are able to give an almost explicit solution.

First, we make some general considerations on the quadratic kernel. No-
tice that, for every probability measure ν, we have:

Tν(x) = |x− bar(ν)|2 +Var(ν), H(ν) = 2Var(ν),

J(ν) = ‖ν‖2H1(Ω)′ + 2

∫

Ω
|x|2ν(dx)− 2| bar(ν)|2, (2.8.1)

denoting by bar and Var the barycenter and the variance of a probability
measure, respectively.

We also compute the variation of our functional J when we pass from ν
to ν + h, being h an admissible perturbation, i.e. h = p− ν with p ∈ P(Ω):

J(ν + h) = J(ν) + 2

∫

Ω
(φ+ Tν) dh+ ‖h‖2H1(Ω)′ +

∫

Ω×Ω
|x− y|2 h(dx)h(dy).

By using that h is a zero-mean signed measure, we may re-write the last
term and get

J(ν + h) = J(ν) + 2

∫

Ω
(φ+ Tν) dh+ ‖h‖2H1(Ω)′ −

∣

∣

∣

∣

∫

Ω
xh(dx)

∣

∣

∣

∣

2

. (2.8.2)

We are now going to analyze the case of Ω being the whole plane, a ball
or a crown.

In the case Ω = R2 it is clear that we face a lot of symmetries, with
respect both to rotations and to translations. This second kind of symme-
tries enables us to consider just the problem where the barycenter of ν is
fixed at 0. Given the set of minimizers for this sub-problem, we will get all
the minimizers for the original problem by translating them of an arbitrary
vector in R2.

The problem

inf{J(ν) : ν probability measure on R2, bar(ν) = 0 }, (2.8.3)
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thanks to (2.8) or (2.8.2), turns out to be a strictly convex minimization
problem. We will then find its unique minimizer by finding a measure ν
satisfying the optimality condition, i.e. such that x 7→ φ(x)+ |x|2 is minimal
ν−almost everywhere. Equation (2.8.2) can be used to convince oneself that
such a condition is in fact sufficient to have a minimum.

We will build a solution to the minimization problem by looking for
a radial measure with radial potential satisfying proper conditions. The
following useful result is given without proof because it is only a (nontrivial,
we must admit) second-year exercise.

Lemma 2.8.1. Consider the Cauchy problem











tu′′a(t) + u′a(t) =
ua
4 for t ∈ (a,+∞)

ua(a) = Ca − a
u′a(a) = −1,

(2.8.4)

depending on a parameter a ∈ (a−, a+), where Ca is a decreasing function
of a in the interval (a−, a+) and the following conditions hold:

lim
a→a+

Ca − a < 0 and lim
a→a−

Ca = +∞.

Then there exists a number a ∈ (a−, a+) such that:

• for a < a the solution ua is convex and decreasing up to a point T (a)
where ua(T (a)) > 0 and u′a(T (a)) = 0 and then increasing with non-
zero derivative;

• for a = a the solution ua is convex, decreasing and positive on the
whole (a,+∞) and it is infinitesimal together with its derivative as
t→ +∞;

• for a > a the solution becomes negative.

Moreover, the map a 7→ T (a) is increasing and continuous and it holds

lim
a→a

T (a) = +∞.

Theorem 2.8.2. The unique solution to problem (2.8.3), and hence to the
whole minimization problem in R2 (up to translations), can be obtained by
using lemma 2.8.1, with a− = 0, arbitrary large a+ and

Ca =
1 + π

2a
2

πa
− 4.
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Then the solution is the measure ν whose density is given in the following,
together with its potential φ:

ν(x) =

{

Ca + 4− |x|2 for |x|2 ≤ a
0 for |x|2 > a

; φ(x) =

{

Ca − |x|2 for |x|2 ≤ a
ua(|x|2) for |x|2 > a

.

Proof. Thanks to the considerations made before, it is sufficient to check
that φ is the potential of ν (by computing the Laplacian) and that ν is a
probability, i.e.

∫

ν dL2 = 1 (but C has been properly chosen); the opti-
mality condition being immediately satisfied by construction (φ(x) + |x|2
is constant for x ∈ spt ν and outside it is greater than this constant as a
consequence of the convexity of ua). Similar computations are detailed in
the proof of Theorem 2.8.4

The case of a bounded ball in R2 may be interesting as well. In this case,
however, we may suffer of a loss of convexity, because we cannot reduce the
problem to the simpler one with fixed barycenter. To avoid this difficulty,
we will consider a small ball, such that cΩ,V < 1. Under this assumption,
any critical point of the functional will be actually the unique minimizer.
We will build the minimizer exactly as in the case of R2, by using Lemma
2.8.1. We keep the same choice of C, a− and a+. By inverting the map T in
Lemma 2.8.1 we define a map R→ a(R) given by T (a(R)) = R2: this map
is continuously increasing as well, and it obviously holds a(R) < R2.

Theorem 2.8.3. The unique solution to Problem (2.4.1), when V (x, y) =
|x−y|2, Ω = B(0, R) and R is small enough so that we have cΩ,V < 1, is the
measure ν whose density is given in the following, together with its potential
φ:

ν(x) =

{

Ca(R) + 4− |x|2 for |x|2 ≤ a(R),
0 for a(R) < |x|2 < R2;

φ(x) =

{

Ca(R) − |x|2 for |x|2 ≤ a(R),
ua(R)(|x|2) for a(R) < |x|2 < R2.

Proof. Simply act as in the proof of theorem 2.8.2 or have a look at compu-
tations in theorem 2.8.4.

Let us now consider a circular crown with radii R1 < R2, i.e. the domain
Ω = B(0, R2) \B(0, R1). To give a solution to the problem we will use once
more Lemma 2.8.1, but this time we will slightly change the function C.
Moreover, exactly as in the case of the ball, we will only deal with a small
crown.
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Ω

ν

φ=µ

Figure 2.1: The solution in a small ball

Theorem 2.8.4. The measure ν described in the following, together with
its potential φ, is the unique solution to Problem (2.4.1), when V (x, y) =
|x − y|2, Ω = B(0, R2) \ B(0, R1) and R1 and R2 are small enough so that
we have cΩ,V < 1 and 4πR21 < 1:

ν = νa + νs;

νa(x) =

{

Ca(R2) + 4− |x|2 for R21 < |x|2 ≤ a(R2)
0 for a(R2) < |x|2 < R22

,

νs = 2R1H1 ∂B(0, R1),

φ(x) =

{

Ca(R2) − |x|2 for R21 < |x|2 ≤ a(R2)
ua(R2)(|x|2) for a(R2) < |x|2 < R22

,

where we have chosen, in lemma 2.8.1

Ca =
1− 4πR21 +

π
2 (a

2 −R41)
π(a−R21)

− 4,

putting a− = R21, and choosing a(R2) so that it satisfies T (a(R2)) = R22.

86



Proof. This time we give a quite detailed proof. We start by computing the
mass of ν to show that it is a probability on Ω.

ν(Ω) = νs(Ω) + νa(Ω) = 4πR21 +

∫

√
a(R2)

R1

(

Ca(R2) + 4− ρ2
)

2πρ dρ

= 4πR21 +
(

Ca(R2) + 4
)

π
(

a(R1)−R21
)

− π

2

(

a(R1)
2 −R41

)

= 1.

To show that φ is the potential of ν we divide Ω into two crowns: Ω1 =
{

x ∈ Ω |R21 ≤ |x|2 ≤ a(R2)
}

and Ω2 =
{

x ∈ Ω | a(R2) < |x|2 ≤ R22
}

. Then
we have, for any ψ ∈ C1(Ω),
∫

Ω1∪Ω2

ψφ+∇ψ · ∇φ =

∫

Ω1

ψ (−∆φ+ φ) +

∫

∂Ω1∩∂Ω
ψ
∂φ

∂n
+

∫

∂Ω1∩∂Ω2

ψ
∂φ

∂n
+

∫

Ω2

ψ (−∆φ+ φ) +

∫

∂Ω2∩∂Ω
ψ
∂φ

∂n
+

∫

∂Ω2∩∂Ω1

ψ
∂φ

∂n
.

Let us have a look at the six terms in the right hand side:

• the first one equals
∫

Ω ψdν
a, because in Ω1 we have νa = φ + 4 and

∆φ = −4;

• the second term is zero because φ has, by construction, vanishing
normal derivative at |x| = R2;

• the third and the sixth one are opposite and so they give a vanishing
sum, because φ is C1 by construction;

• the fourth term vanishes because outside B(0,
√

a(R2)) we have ∆φ =
φ as a consequence of (2.8.4);

• the fifth one equals
∫

Ω ψdν
s by construction of νs.

After checking that φ is the potential of ν it is immediate to notice that, by
construction, the optimality conditions are satisfied.

Remark 2.8.5. Theorem 2.8.4 gives an example of an optimal ν composed
by an L∞ part and a singular part on Γ2 = ∂B(0, R1), while giving no mass
to ∂B(0, R2), which is the convex part of the boundary. See also Figure 2.2,
where the thick part on the top of the picture stands for the part of measure
concentrated on the interior boundary.
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Figure 2.2: The solution in a small crown
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Chapter 3

Transport and concentration

problems with interaction

One of the aim of this chapter is to underline the possibility of studying varia-
tional problems of the kind of those studied in Chapters 1 and 2 as a new
general class of optimization problems. Hence we start by a wide framework
that contains them all, and then we present a brief study on a problem na-
turally arising from the comparison of the first two chapters. In this way we
consider in an almost exhaustive way the possible problems involving traffic
congestion or Wasserstein distances and atomic or interaction concentration
functionals. We also refer to some problems which involve as transport costs
other models (namely, branched transport models) and which will be more
linked to the next parts of the thesis.

3.1 Variational problems for transport and con-

centration

The general problem we are interested in is

min
µ,ν∈P(Ω)

F(µ, ν) := T (µ, ν) + F (µ) +G(ν),

where the functional T quantifies in some way the distance between the
two probability measures µ and ν according to a transport cost criterion,
and F and G are functionals over the space P(Ω) (the space of probability
measures over a domain Ω) with opposite behavior: the first favors spread
measures and penalizes concentration while the latter, on the other hand, fa-
vors concentrated measures. Obviously there are several other sub-problems
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that may be of interest, for instance the minimizations of the two separate
functionals

Fν(µ) := T (µ, ν) + F (µ) and Fµ(ν) = T (µ, ν) +G(ν),

where each time one of the variables is frozen. Also imposing constraints
like F (µ) ≤ H, G(ν) ≤ L . . . instead of adding penalizations in the func-
tionals may sometimes be considered (and this is in fact the same as adding
penalizations through some 0/+∞ functions).

These minimization problems are likely to appear in several phenomena
both in nature and in decision science. For instance in [28], [37] and [66], as
we have seen in the first two chapters of the thesis, these variational problems
have been proposed for urban planning models. In this case the spread
measure µ stands for inhabitants, the concentrated measure ν for services
and they have to be close in a transportation distance sense. On the other
hand, a possible choice of the functional Fν has been proposed recently as a
model for the formation of a certain kind of leaves or in general for ramified
biological structures: if ν = δ0 represents the point where the nutrient arrives
to the leaf, then the shape of the leaf is modeled to optimize the quantity of
light it receives from the sun taking also into account the effective transport
cost for bringing the nutrient all over its shape (see Chapter 7).

We present here some choices for the functionals T and G. The choice
of F is in fact easier since a very good class of concentration-penalizing
functionals is given by local convex functionals over measures, for instance

F (µ) =

{

∫

Ω f(u) dL if µ = u · L
+∞ otherwise,

(3.1.1)

for any convex function f with f(0) = 0 which is superlinear at infinity. For
these functionals we refer to [16]. Here L is a reference measure that may be
chosen as the Lebesgue measure Ld if Ω ⊂ Rd. By Jensen inequality, spread
measures with constant density are optimal for these functionals.

Possible choices of T are the following:

• terms involving Monge-Kantorovich optimal transport cost, through
Wasserstein distances, for instance: T (µ, ν) =W p

p (µ, ν) (Wasserstein);

• terms taking into account traffic congestion effects, as in [37] and in
Chapter 2 (congestion): here the idea is to encourage separate trans-
portation, because in some applications if too many paths concur in a
same point the configuration turns out to be less efficient;
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• terms reflecting the natural ramified structure of a transportation net-
work (branching) as in [72], where a new distance on probability mea-
sures is introduced according to this criterion: on the contrary, here
the idea is to encourage joint transportation, in view of the applica-
tions where common paths are more efficient.

This last possibility is the most suitable for model involving natural branch-
ing structures like leaves (see Section 7.3.3), while the first two seem to be
quite natural in urban planning. As we pointed out in the introduction,
these three functionals correspond to three different models, where concen-
tration of the transport is indifferent (according to Monge), discouraged (to
avoid congestion effects) or encouraged (to reduce the building cost of the
network, thus getting ramified structures).

For the functional G, before presenting a list of examples, we give a
possible definition of the concept of concentration-preferring.

Definition 3.1.1. We say that G : P(Ω)→ R is a concentration-preferring
functional if G(t]ν) ≤ G(ν) for any measure ν ∈ P(Ω) and any 1−Lipschitz
continuous map t : Ω→ Ω.

It is easy to show that any G with this property is minimized by any
measure δx0 , with x0 ∈ Ω. We list here some functionals satisfying this
definition:

• G(ν) = ] spt(ν) (atomic), as in location problems, where the corre-
sponding T is usually of Wasserstein type;

• (subadditive, see [16])

G(ν) =

{

∑

k∈N g(ak) if ν =
∑

k∈N akδxk
+∞ otherwise

for a subadditive function g with g(0) = 0 and g′(0) = +∞ (if g = 1
on (0,+∞) and g(0) = 0 we recover the previous case);

• G(ν) = inf
{

H1(Σ) |spt(ν) ⊂ Σ, Σ compact and connected
}

as in the
irrigation problem (see [27] and Chapter 8), where T = W1 and a
constraint on G is considered (length);

• G(ν) =
∫

Ω×Ωw(|x− y|)ν(dx)ν(dy) for an increasing function w (inte-
raction).
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Actually the two first cases are functionals which decrease under the effect
of any map t and not only under 1−Lipschitz ones. The first one has been
presented separately and not as a particular case of the second because
of its large presence in literature. The last choice for G is a well-known
functional on probability measures which represents the interaction energy
(or cost) between the particles composing ν. It has been first studied in a
transportation framework by McCann in[58], where displacement convexity
results are given, with the aim of showing uniqueness results for variational
problems.

In the two previous chapters two combinations of these functional have
been studied for urban planning purposes: the Wasserstein + subadditive
and the congestion + interaction cases, respectively. The congestion + sub-
additive case has been excluded in Chapter 2 since it leads to a trivially
infinite functional, and so in this chapter we analyze the remaining one, i.e.
the Wasserstein + interaction case. Many ideas are in common with Chap-
ter 2, up to the fact that elliptic regularity is replaced by considerations on
Monge-Ampère equation. Moreover some extra devices are performed and
a careful use of Monge-Kantorovich theory is needed.

3.2 Optimality conditions for the interaction case

We are here concerned with the minimization problem for the functional Fµ,
when the transport term is given by T (µ, ν) = 1

2W
2
2 (µ, ν) and the concen-

tration one is an interaction term of the form

G(ν) =

∫

Ω×Ω
V (|x− y|2)ν(dx)ν(dy), (3.2.1)

with V : [0,+∞[→ [0,+∞[ a regular increasing function. From now on Ω
will be a convex domain in Rd.

A priori, a minimizer for this functional may be an arbitrary probability
measure on the set Ω, even a singular one. Our goal is to prove, under
suitable assumptions and by means of optimality conditions and of an ap-
proximation process, that it is in fact an absolutely continuous measure with
bounded density.

We provide here an easy optimality condition for the minimization of Fµ.
We do not go into details in the computation because it follows the same
scheme as in [28]. The approximation by measures with positive densities
that we are going to use works in this case too, while the alternative proof
by convex analysis of Subsection 1.4.2 does not, simply because there is no
convexity in the term G.
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Theorem 3.2.1. If a probability measure ν ∈ P(Ω) is a minimizer for Fµ,
then there exists a constant m such that

ψ + Tν ≥ m; ψ + Tν = m ν-a.e.,

where ψ is a Kantorovich potential for the transport from ν to µ and we
define

Tν(x) =

∫

Ω
2V (|x− y|2) ν(dy).

Proof. Let us start from the case when µ is absolutely continuous with
positive density. In this case we perform convex variations on an optimal
measure ν of the form νt = ν + t(ν1 − ν) for an arbitrary ν1 ∈ P(Ω): if we
call ψt the unique Kantorovich potential from νt to µ which vanishes at a
certain fixed point x0 ∈ Ω, we get (by means of Duality Formula)

∫

Ω
ψt dνt +

∫

Ω
ψct dµ+

∫

Ω×Ω
V (|x− y|2)νt(dx)νt(dy)

≥
∫

Ω
ψt dν +

∫

Ω
ψct dµ+

∫

Ω×Ω
V (|x− y|2)ν(dx)ν(dy).

After erasing the term
∫

Ω ψ
c
t dµ and dividing by t we pass to the limit,

and we know that ψt converges uniformly (by Ascoli-Arzelà) to the unique
Kantorovich potential ψ from ν to µ vanishing at x0. This provides, at the
limit,

∫

Ω
(ψ + Tν) dν1 ≥

∫

Ω
(ψ + Tν) dν.

Being ν1 arbitrary we get that ν−a.e. the function ψ+ Tν must be equal to
its infimum, and this is the thesis.

To generalize the result to an arbitrary measure µ, just proceed by ap-
proximation. This can be performed as in [28] and provides the same formula
where ψ becomes one of the possibly many Kantorovich potentials instead
of the only one. The main difference between this case and the case of a
measure µ with positive density is in fact the lack of uniqueness (even up to
additive constants) of the Kantorovich potential.

The problem in the condition of Theorem 3.2.1 lies in the fact that the
measure ν appears only in a very implicit way (both in ψ and in Tν), and
this does not allow to derive any estimate on it. We will consequently need
to pass through an approximation process, exactly as in Chapter 2. Fixed a
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minimizer ν for Fµ, we will consider a sequence of problems (Pε)ε given by
the minimization of

P(Ω) 3 ν 7→ T (µε, ν) +G(ν) + δεA(ν) + εW 2
2 (ν, νε),

where

• (µε)ε is a sequence of probability measures approximating µ with Lip-
schitz continuous strictly positive densities uε;

• the functional A is given by

A(ν) =

{

∫

Ω a(v) dLd if ν = v · Ld,
+∞ otherwise,

for a convex function a : [0,+∞[→ [0,+∞] which is superlinear at
infinity and blowing up at 0, i.e. limt→0+ a(t) = +∞, but finite and
C2 with a′′ ≥ c > 0 on ]0,+∞[ (for instance a(t) = t2 + 1/t);

• (δε)ε is a suitably chosen sequence with δε > 0 and δε → 0.

• (νε)ε is a suitably chosen sequence of measures with νε ⇀ ν.

We will prove, exactly as in Chapter 2, that this sequence of problems ad-
mits an uniform L∞ bound for their solutions and that we can choose the
parameters so that these solutions converge to ν, thus obtaining an L∞ esti-
mate for ν. The existence of solutions for Pε is trivial by the semicontinuity
of each term in the sum with respect to the weak convergence of probability
measures on the compact set Ω (and moreover any term but A is actually
continuous, while A is semicontinuous by convexity).

Lemma 3.2.2. Suppose that µ = u·Ld with ||u||L∞ ≤M and that V is a C2

function with V ′ > 0. Then any solution νε to the problem Pε is absolutely
continuous and its density is bounded by a constant C depending only on
M, d and V .

Proof. First we notice that, thanks to the presence of the term A(ν) in
the minimization problem, νε must be absolutely continuous with strictly
positive density almost everywhere. Then we write the optimality conditions
for νε with respect to variations of the form νt = νε + t(ν̃ − νε). From easy
computations we get

ψε + Tνε + δεa
′(νε) + εχε = mε a.e.,
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where ψε is the Kantorovich potential for the transport from νε to µε and
χε from νε to νε (they are unique up to additive constants) and mε is
a suitable constant. We get equality almost everywhere due to the fact
that we already know νε > 0 (we identify measures and their densities in
this context). Since Kantorovich potentials are Lipschitz functions and Tνε
shares the same regularity of the integrand (x, y) 7→ V (|x − y|2), which is
C2 and then Lipschitz, we get that even a′(νε) is Lipschitz continuous, and
in particular it is bounded. This prevents νε to be close to 0 since it holds
limt→0+ a

′(t) = −∞. Thus we get νε ≥ cε > 0. Moreover, a′(νε) is Lipschitz
continuous and, being a′′ bounded from below by a positive constant, also
the inverse of a′ is Lipschitz. This proves that νε is a Lipschitz continuous
function. We can now use regularity theory on Monge-Ampère equation to
get ψ ∈ C2,α(Ω) ∩ C1,α(Ω), since both νε and µε are bounded both from
above and from below by positive constants (depending on ε, anyway) and
are Lipschitz continuous. The same is true for the Kantorovich potential χε
by replacing µε by νε. What we can do now is looking for a maximum point
x0 of νε. Notice that such a point will be a minimum point for ψε+Tνε+εχε.
First we prove that x0 /∈ ∂Ω. To prove this it is sufficient to prove that the
gradient of ψε + Tνε + εχε is directed outwards at any point of ∂Ω, i.e.
∇(ψε + Tνε + εχε)(x0) · n(x0) > 0 for any x0 ∈ ∂Ω, where n is the outward
normal vector. From the fact that the optimal transport map t from νε to
µε is given by t(x) = x−∇ψ(x) we know that x−∇ψ(x) ∈ Ω for almost any
x ∈ Ω (see Figure 3.1). In this case, due to continuity up to the boundary of
∇ψ, this holds for any x and also for x0 ∈ ∂Ω and implies∇ψ(x0)·n(x0) ≥ 0.
Analogously we get ∇χ(x0) · n(x0) ≥ 0. For the gradient of Tνε it holds

∇Tνε(x0) =
∫

Ω
4V ′(|x0 − y|2)(x0 − y) νε(dy),

and so ∇Tνε(x0) · n(x0) > 0 since V ′ > 0 and for almost any y ∈ Ω it holds
(x0 − y) · n(x0) > 0. This proves that x0 lies in the interior of Ω and this
allows us to look at the second derivatives. Taking Hessians we have

Hψε(x0) +HTνε(x0) + εHχε(x0) ≥ 0,

where the letter H denotes Hessians and the inequality is in the sense of
positive definite symmetric matrices. Thus we get

Hψε(x0) ≥ −I
(

2||V ||C2(Ω) + ε
)

,

since the second derivatives of Tνε may be estimated by those of V and
from the fact that x2/2 − χ(x) is convex we deduce Hχ ≤ I. This is a
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uniform estimate from below for Hψε(x0) and for the convex function φ
given by φ(x) = x2/2 − ψε(x) we have Hφ(x0) ≤ I

(

1 + ε+ 2||V ||C2(Ω)

)

.

This implies Mφ(x0) ≤ (1 + ε + 2||V ||C2(Ω))
d, and, from νε = µε(∇φ)Mφ,

we get, for ε ≤ 1,

max νε = νε(x0) ≤ 2dM
(

1 + ||V ||C2(Ω)

)d
,

which is the desired estimate.

x0− ψ(x )0

x− ψ(x)

n(x )0
Ω

x

x0

Figure 3.1: Behavior of ∇(ψ) near ∂Ω

Remark 3.2.3. The proof above of the fact that the gradient is directed
outwards (illustrated in figure 3.1 as well) and no maximum point is allowed
on the boundary could be used similarly in Chapter 2, thus getting rid
of the strict convexity assumption in Theorem 6.5 and of the heavy proof
of Lemma 6.6. Notice that it could be possible to get the same result even
without C1 regularity for the potentials, just making the proof a bit trickier.
It would be sufficient to evaluate the increments of the potential in small
balls around x0 where the gradient is almost everywhere defined and such
that x − ∇ψ(x), x − ∇χ(x) ∈ Ω a.e. Also the estimate of the last term
in Theorem 2.5.9 could be obtained, but it is not immediate because of the
non pointwise differentiability of the Kantorovich potential.

Lemma 3.2.4. It is possible to choose the parameters for the problem Pε,
i.e. the numbers δε and the measures νε and µε so that any sequence of
minimizers (νε)ε converges to ν.

Proof. It is sufficient to choose for νε a sequence of absolutely continu-
ous measures with Lipschitz continuous strictly positive densities such that
Fµ(νε) ≤ Fµ(ν) + ε2. Then we have A(νε) < +∞ and we may choose
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δε = ε2A(νε)
−1. For (µε)ε we can chose any sequence of absolutely contin-

uous measures with Lipschitz continuous strictly positive densities approxi-
mating µ in such a way that W2(µε, µ) ≤ ε2. Then we have

T (µε, νε)+G(νε)+δεA(νε)+εW
2
2 (νε, νε) ≤ T (µε, νε)+G(νε)+δεA(νε),

which implies

Fµ(νε) + δεA(νε) + εW 2
2 (νε, νε) ≤ Fµ(νε) + 4DW2(µε, µ) + δεA(νε)

≤ Fµ(ν) + ε2 + 4Dε2 + ε2

≤ Fµ(νε) + ε2(2 + 4D).

Finally, this impliesW2(νε, νε) ≤ C
√
ε and, since νε ⇀ ν, we get νε ⇀ ν.

Remark 3.2.5. This is the point where global optimality of ν plays a crucial
role. In fact, should ν be only locally minimizing, we could not use the
inequality Fµ(ν) ≤ Fµ(νε), unless we already know that νε is in the domain
of minimality of ν, i.e. sufficiently close to it.

We can now state our main result and its consequence in the minimiza-
tion of the whole functional F.

Theorem 3.2.6. Given a compact convex set Ω ⊂ Rd with nonempty in-
terior and a probability measure µ ∈ L∞(Ω), if the function V appearing
in the definition of the functional G is of class C2 and V ′ > 0, then the
minimization problem for the functional Fµ over the space P(Ω) admits at
least a solution and any minimizer belongs in fact to the space L∞(Ω).

Proof. As usual the existence is trivial due to continuity and compactness
of P(Ω) while, for the L∞ regularity, just apply Lemma 3.2.2 and Lemma
3.2.4

Corollary 3.2.7. Given a compact convex set Ω ⊂ Rd with nonempty inte-
rior, a C1 strictly convex and superlinear function f with polynomial growth
and a C2 function V with V ′ > 0, then the minimization problem over the
space P(Ω)2 for the functional F(µ, ν) = 1

2W
2
2 (µ, ν)+F (µ)+G(ν), where F

is defined by (3.1.1) and G by (3.2.1), admits a solution and, in any mini-
mizing pair (µ, ν), both µ and ν are in fact absolutely continuous measures
µ = u · Ld, ν = v · Ld, with u ∈ C0(Ω) and v ∈ L∞(Ω).

Proof. After the usual proof of existence by the direct method in Calculus of
Variations, we refer to chapter 1 for the regularity results on µ. Since µ turns
out to be absolutely continuous with continuous density (hence bounded),
we may apply Theorem 3.2.6 to get the regularity on ν.
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3.3 An explicit example

In this section we come back to the whole problem of minimizing the func-
tional F in a very particular case, where we can provide almost explicit
densities for the solutions. We consider the case

• T (µ, ν) = 1
2W

2
2 (µ, ν) and G(ν) =

∫

Ω×Ω V (|x − y|2)ν(dx)ν(dy), as in
the previous Section;

• V (|x − y|2) = λ
2 |x − y|2 and so, setting bar(ν) =

∫

Ω y ν(dy), we have
Tν(x) = λ|x|2 − 2λx · bar(ν) + λ

∫

Ω |y|2ν(dy);

• F (µ) = 1
2 ||µ||2L2(Ω), a particular case of what considered in Chapter 1.

The framework we obtain is very similar to the one in Chapter 2.

Theorem 3.3.1. In the specific case described above, any pair of minimizers
(µ, ν) is shaped as follows:

• µ is concentrated on a ball B(x0, rλ) (intersected with Ω) and has a
density u given by

u(x) =
λ

2λ+ 1
(r2λ − |x− x0|2);

• ν is concentrated on the ball B(x0, rλ/(2λ+ 1)) and it is the image of
µ under the homothety of ratio (2λ+1)−1 and center x0, hence it has
density v given by

v(x) = λ(2λ+ 1)d−1(r2λ − (2λ+ 1)2|x− x0|2);

• x0 is the barycenter of both µ and ν.

Proof. First we write down the optimality conditions given by Theorem
3.2.1 for the minimization in ν with fixed µ and by Chapter 1 for the min-
imization in µ for fixed ν. We denote by u and v the densities of µ and ν,
respectively. We may suppose that the barycenter of ν is the origin, thus
obtaining Tν(x) = λ|x|2 + c. We have

{

u(x) + ϕ(x) = c1 a.e. on u > 0;

ψ(x) + λx2 = c2 a.e. on v > 0.

Here ϕ and ψ are Kantorovich potentials for the transport from µ to ν
and from ν to µ, respectively. From the second condition we can infer
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∇ψ(x) = −2λx a.e. on v > 0. Being ν absolutely continuous, this equality
is valid ν−a.e.. This means that the optimal transport map T from ν to µ
is given by T (x) = x − ∇ψ(x) = (2λ + 1)x. By uniqueness of the optimal
transport plan, which is in this case expressed both as a transport map
from ν to µ and vice versa, we know also the optimal transport map S from
µ to ν which will be S(x) = x/(2λ + 1). From duality theory in optimal
transportation we know the following equality

ϕ(x) + ϕc(S(x)) = c(x, S(x)) =
1

2
|x− S(x)|2,

and thus we get u(x) = c1 − 1
2 |x− S(x)|2 + ϕc(S(x)). We do already know

that u is Lipschitz continuous (by [28]), and this implies that the set {u > 0}
is an open set. Consequently the same is true for {v > 0}, which is just an
homothety of it. Since ϕc is a Kantorovich potential from ν to µ, we know
that it must agree (up to constants) with ψ on any connected component of
the open set {v > 0}. So, let ω ⊂ Ω be a connected component of {u > 0}.
On (2λ+ 1)−1ω we have ϕc = ψ + c3 and so we get

u(x) = c4 −
1

2
|x− S(x)|2 + ψ(S(x)) = c5 − |x|2

λ

2λ+ 1
.

From this expression it is clear that ∂ω \ ∂Ω (where u must vanish) is con-
tained in a sphere around 0. This implies that 0 belongs in fact to ω, since
no boundary of ω is allowed in the interior of a certain ball around 0. So
there is in fact just one connected component for {u > 0} and so we get

u(x) =

[

c− |x|2 λ

2λ+ 1

]+

. (3.3.1)

From this it is easy to recover the density v of ν since ν = S]µ and we get
the thesis. The point x0 which turns out to be the center of the balls which
are supports for µ and ν is in this notation 0, the barycenter of ν, as in the
thesis. It is clear that in this case µ and ν share the same barycenter since
they are homothetic.

Remark 3.3.2. In the example of Theorem 3.3.1 the density v shares the
same regularity of u except at the points corresponding to boundary points
of Ω where u is positive, i.e. if at x0 ∈ ∂Ω it happens u(x0) > 0 then at S(x0)
we have a jump for v. It is clear from the fact that u is 2λ/(2λ+1)−Lipschitz
continuous (it follows from the explicit formula) that we have, recalling also
∫

Ω u dLd = 1,

1 ≤
(

inf u+
2λ

2λ+ 1
D

)

|Ω|,
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Ω

µ

ν

Figure 3.2: The solution for a small ball Ω

ν

µ
Ω

Figure 3.3: A solution for a larger ball
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where D is the diameter of Ω. This implies, for small Ω, inf u > 0. In this
case u would be positive at any point of ∂Ω and v discontinuous at any
point of S(∂Ω). This gives examples when the L∞ regularity for v cannot
be improved up to v ∈ C0(Ω).
Remark 3.3.3. In the explicit example above there remain to be determined
both the constant c (or the radius rλ) and the position of the barycenter
x0 in the formula for u. In some simple cases this is possible too. Notice
that, once fixed x0, the constant c may always be recovered by imposing the
condition of being probability measures. For instance if Ω is a ball, we may
see that x0 may not be the barycenter of a density u shaped as in (3.3.1)
unless the set B(x0, 2λ

−1(2λ+1))∩Ω is a ball around x0. This happens for
large Ω whenever the ball B(x0, 2λ

−1(2λ+1)) does not touch the boundary
∂Ω or, in general, when x0 is the center of the ball Ω. In the first case (Ω
a large ball, as in Figure 3.3, where the case of a generic Ω is represented)
we have several solutions for the problem (non-uniqueness), obtained from
each other under translations, and u and v are continuous; in the second (Ω
a small ball, Figure 3.2) we have uniqueness of the solution, with u a radial
continuous function around the center and v a rescaled version of u on a
smaller ball.

0
µbar(  )

Ω

Ω

0=bar(  )µ

Figure 3.4: The position of the center and of the barycenter

Remark 3.3.4. In general, if Ω is not a ball, the fact that 0 is the barycenter
of a distribution of mass which is radial around 0 itself imposes some con-
straints on the position of 0 with respect to ∂Ω. If the domain Ω cuts a part
of the supporting ball from one side, then the center of the ball could be
no longer the barycenter. Figure 3.4 shows this effect, as well as a situation
where the support touches the boundary on two sides and the center of the
ball is actually the barycenter.
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Chapter 4

Path functionals in

Wasserstein spaces

In this chapter we consider the problem of finding optimal interpolations
between two given distributions of masses in order to satisfy some concen-
tration criteria. This is formalized by means of curves in the space of prob-
ability measures, endowed with a Wasserstein metric. This distance is then
perturbed into a kind of conformal Riemannian metric by means of some
penalization encouraging or discouraging concentration. The functional we
use to deal with these penalization are the same as in Chapter 1. The
starting goal was to give a geodesic approach (curves optimizing a certain
perturbed length in a suitable metric space) to some branching transport
problems arising in several applications by means of a functional encourag-
ing the curve to pass through concentrated atomic measures, and the case of
functionals discouraging concentrations is presented only as a natural coun-
terpart. The results are in fact somehow specular. This chapter follows
essentially what presented in a published joint paper with Alessio Brancoli-
ni and Giuseppe Buttazzo, [20], up to some preliminary notions which are
presented in Sections 0.2 and 0.3. As in [20], we are mainly concerned with
existence results and conditions ensuring that the optimal solution has a
finite energy. In particular, we will not give necessary optimality conditions
and the spirit is hence different with respect to what we did in the previ-
ous chapters. Anyway, in the diffusion case (when the energy discourages
concentration), as the optimal curve passes through absolutely continuous
measures, it is interesting to write down optimality conditions on their den-
sities. These conditions have the form of a system of PDEs and are studied
in Chapter 5.
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4.1 The metric framework

In this section a generic metric space X with distance d is considered. Under
the assumption that closed bounded subsets of X are compact, we will prove
an existence result (Theorem 4.1.1) for variational problems with functionals
of the type

J (γ) =
∫ 1

0
J(γ(t))|γ′|(t) dt

where γ : [0, 1]→ X ranges among all Lipschitz curves such that γ(0) = x0
and γ(1) = x1. We will refer to the value of J in γ as the energy of γ. By
|γ′|(t) we denote the metric derivative of γ at the point t ∈ (0, 1), that we
introduced in Section 0.3 and which exists a.e. for Lipschitz curves. Another
useful result is that the variation (length) of γ can be written in terms of
the metric derivative in integral form:

Length(γ) =

∫ 1

0
|γ′|(t) dt.

By this formula it follows easily that |γ ′| ≤ M a.e. if and only if γ is
M -Lipschitz, since when s < t

d(γ(t), γ(s)) ≤ Length(γ, [s, t]) =

∫ t

s
|γ′|(τ) dτ ≤M |t− s|,

the converse implication being immediate.

Theorem 4.1.1. Let X be a metric space such that any closed bounded
subset of X is compact, J : X → [0,+∞] be a lower semicontinuous function
and x0, x1 arbitrary points in X. Then the functional

J (γ) =
∫ 1

0
J(γ(t))|γ′|(t) dt

achieves a minimum value among all Lipschitz curves γ : [0, 1] → X such
that γ(0) = x0 and γ(1) = x1, provided the following two assumptions are
satisfied:

(H1): there exists a curve γ0 such that J (γ0) < +∞;

(H2):
∫∞
0

(

infB(x0,r) J
)

dr = +∞.

The proof of Theorem 4.1.1 relies on the following reparameterization
lemma whose proof can be found for example in [7].
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Lemma 4.1.2. Let γ ∈ Lip([0, 1], X) and L = Var(γ) be its total variation.
Then there exists a Lipschitz curve γ̃ ∈ Lip([0, L], X) such that |γ̃ ′| = 1
almost everywhere in [0, L] and γ̃ is a parametrization of γ.

Proof of Theorem 4.1.1. Let (γn)n be a minimizing sequence and set Ln =
Var(γn). The sequence (J (γn))n is bounded by a finite number M . By
Lemma 4.1.2 there exists a sequence of curves γ̃n : [0, Ln]→ X parametrized
with unit velocity, reparametrizing the given curves. We have:

M ≥ J (γn) =
∫ Ln

0
J(γ̃n(t)) dt ≥

∫ Ln

0

(

inf
Bt(x0)

J

)

dt.

Then (Ln)n is bounded otherwise, by assumption H2, the right hand side
would be unbounded. We can reparameterize each curve γn at constant
speed Ln, thus obtaining a new sequence (γ̂n)n in Lip([0, 1], X), which is still
a minimizing sequence, thanks to the equality J (γn) = J (γ̂n). Being (Ln)n
bounded, we get that this new minimizing sequence is uniformly bounded
and uniformly Lipschitz. By Ascoli-Arzelà Theorem we can suppose, up to a
subsequence, that we have uniform convergence γ̂n → γ̂ for some L-Lipschitz
curve γ̂ where we have taken L = lim infn Ln. By recalling the link between
Lipschitz conditions and metric derivative we have

|γ̂′|(t) ≤ L for a.e. t ∈ [0, 1].

Now by using the lower semicontinuity of the functional J , we obtain

J (γ̂) =
∫ 1

0
J(γ̂(t))|γ̂′|(t) dt ≤ L

∫ 1

0
lim inf
n→+∞

J(γ̂n(t)) dt

≤ lim inf
n→+∞

Ln

∫ 1

0
J(γ̂n(t)) dt = lim inf

n→+∞
J (γ̂n),

that is the lower semicontinuity of J on the considered sequence, which
achieves the proof.

Remark 4.1.3. Notice that the integral assumption H2 is always true if J ≥ c
for a suitable strictly positive constant. Moreover Theorem 4.1.1 still holds
if condition H2 is replaced by the weaker assumption that there exists a
curve γ0 such that

J (γ0) <
∫ +∞

0
inf

B(x0,r)
J dr.

We give here a slightly refined version of Theorem 4.1.1, which will be
useful in the last section. The goal here is to weaken the compactness
assumption on bounded subsets of X.
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Theorem 4.1.4. Let (X, d, d′) be a metric space endowed with two dis-
tances, such that:

(K1): d′ ≤ d;

(K2): all d−bounded sets in X are relatively compact with respect to d′;

(K3): the mapping d : X×X → R+ is a lower semicontinuous function with
respect to the distance d′ × d′.

Let J : X → [0,+∞] be lower semicontinuous with respect to d′. Consider
the functional, defined on the set of d−Lipschitz curves γ : [0, 1]→ X, given
by

J (γ) =
∫ 1

0
J(γ(t))|γ′|d(t)dt,

where |γ′|d(t) stands for the metric derivative of γ with respect to d. Then,
with the same hypotheses H1 and H2 (where the balls B(x0, r) are balls in
the d-sense) of Theorem 4.1.1, there exists a minimum for J .

Proof. We can take a minimizing sequence (γn)n and, as in Theorem 4.1.1,
reparameterize it to obtain a sequence (γ̂n)n in which every curve has con-
stant speed Ln. Hypothesis H2 gives us the boundedness of Ln. Hence the
sequence (γ̂n)n is composed by d−equicontinuous functions from [0, 1] to a
d−bounded subset of X. If we endow X with the distance d′ we have an
equicontinuous (thanks to assumption K1) sequence of functions whose im-
ages are contained in a compact set. We can consequently use Ascoli-Arzelà
Theorem to choose a subsequence (not relabeled), such that γ̂n → γ, for a
suitable curve γ (uniformly in the d′−sense). The lower semicontinuity of J
with respect to d′ allows us to use Fatou Lemma and shows that γ minimizes
J , as far as we can show that γ is d−Lipschitz with a Lipschitz constant not
exceeding lim infn Ln. To do this we use assumption K3. Taken two points
s, t we have in fact:

d(γ(s), γ(t)) ≤ lim inf
n

d(γ̂n(s), γ̂n(t)) ≤ lim inf
n

Ln|s− t|,

which shows the required Lipschitz property.

4.2 The case of the space of probability measures

In this section we will choose X to be a space of probability measures on
a domain Ω ⊂ Rd. To endow it with a distance we will consider actually
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the Wasserstein space Wp(Ω). See Section 0.2 for the basic notions on this
space. Once fixed that the elements of the space X will be measures, we will
choose the functional J to be a local semicontinuous functional, according
to the general theory briefly presented in Section 1.2. Hence J will be of the
form

J(µ) =

∫

Ω
f

(

dµ

dm

)

dm+ f∞(1)|µs|(Ω \Aµ) +
∫

Aµ

g(µ({x})) d#(x).

To satisfy the assumptions of Theorem 4.1.1, according to Remark 4.1.3, we
will prove the following, easy, general estimate, in the case m(Ω) < +∞.

Theorem 4.2.1. Suppose that f(s) > 0 for s > 0 and g(1) > 0. Then we
have J ≥ c > 0. In particular, the assumption H2 is verified.

Proof. Let us fix some notation. By µa we mean the absolutely continuous
part of µ with respect to the measure m, and by µs, µ#, µc respectively the
singular part, the atomic part and the singular diffused part of µ. Then we
have µ = µa + µs = µa + µc + µ#. Since f is convex, by Jensen inequality
we have

∫

Ω
f

(

dµ

dm

)

dm ≥ m(Ω)f

(

1

m(Ω)

∫

Ω

dµ

dm
dm

)

= m(Ω)f

(

µa(Ω)

m(Ω)

)

.

Since µ is a positive measure and f∞ is 1−homogeneous

∫

Ω\Aµ

f∞
(

dµs

d|µs|

)

d|µs| = |µs|(Ω \ Aµ)f∞(1) = m(Ω)f∞
(

µc(Ω)

m(Ω)

)

.

Since g is a subadditive function

∫

Aµ

g(µ({x})) d#(x) =
∑

x∈Aµ

g(µ({x})) ≥ g





∑

x∈Aµ

µ({x})



 = g(µ#(Ω)).

For the recession function f∞ we have (thanks to its equivalent definition
by means of a sup)

f∞(x) ≥ f(x+ y)− f(y) for all x, y ∈ R,

and so the sum of the first two terms can be estimated from below by

m(Ω)f

(

µa(Ω) + µc(Ω)

m(Ω)

)

.
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Therefore, summing up we obtain

J(µ) ≥ m(Ω)f

(

µa(Ω) + µc(Ω)

m(Ω)

)

+ g(µ#(Ω)).

We set a = µ#(Ω) and 1 − a = µa(Ω) + µc(Ω). Since the function a 7→
m(Ω)f((1− a)/m(Ω)) + g(a) is lower semicontinuous, it attains a minimum
in the interval [0, 1]. Thanks to our hypothesis this sum is always positive,
and so we have

min
0≤a≤1

m(Ω)f

(

1− a
m(Ω)

)

+ g(a) = c > 0,

that is, we have J(µ) ≥ c > 0.

We now study some special cases of the functional we defined above. In
the rest of this section Ω will be a convex domain in Rd and the measure m
will be the Lebesgue measure Ld on it.

4.2.1 Concentration

Roughly speaking, this is the case we get by setting f = +∞ and g(z) = |z|α
for 0 ≤ α < 1. More precisely we set f = +∞ on ]0,+∞[ and f(0) = 0,
and g(z) = zα. We are in a particular case of what shown as an example in
Section 1.2. The functional J will be denoted by Gα and has the following
form

Gα(µ) =

{

∑

i a
α
i if µ =

∑

i aiδxi ;

+∞ if µ is not atomic.

The corresponding functional J on Lipschitz paths will be called Gα.
This is the case when Gα is finite only on purely atomic measures and
minimizing Gα will look for curves which interpolate µ0 and µ1 by passing
through concentrated atomic measures.

We are now going to consider the question whether there exists a curve
connecting two given measures keeping finite our functional. First we prove
that if both the initial and the final measure are atomic the answer is pos-
itive. Then we prove that for α in a suitable subinterval of [0, 1] every
measure can be connected to a Dirac mass, hence every measure can be
connected to every other measure by a path of finite energy. Finally we
show that this is not possible in general for any α ∈ [0, 1].
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Theorem 4.2.2. Let µ0 and µ1 be atomic measures, i.e.,

µ0 =
∞
∑

k=1

akδxk , µ1 =
∞
∑

l=1

blδyl

with ak, bl > 0,
∑

k ak =
∑

l bl = 1. Suppose also Gα(µ0) =
∑

k a
α
k <

+∞, Gα(µ1) =
∑

l b
α
l < +∞. Then there exists a Lipschitz curve γ :

[0, 1]→Wp(Ω) such that γ(0) = µ0, γ(1) = µ1 and

Gα(γ) =
∫ 1

0
Gα(γ(t))|γ′|(t) dt < +∞.

Proof. Suppose 0 ∈ Ω: it is sufficient to prove the theorem when µ0 = δ0
since in the general case one connects the first measure µ0 to δ0, then δ0
to the final measure µ1. If one can keep finite the functional in both steps,
then the result is proved in the general case.

In the transportation from δ0 to µ1 there is only one admissible transport
plan π ∈ Π(δ0, µ1). Take the curve γπ which is the geodesic associated to
this transport plan. This curve (see Theorem 0.3.4) is given by

γπ(t) =
∞
∑

l=1

blδtyl .

Since it is the geodesic from δ0 to µ1 we have |(γπ)′|(t) =Wp(δ0, µ1) for a.e.
t. Moreover the atoms of the measure γπ(t), for t > 0, have the same masses
of the atoms of µ1, and hence we have Gα(γ

π(t)) = Gα(µ1). It follows

Gα(γπ) = Gα(µ1)Wp(δ0, µ1) < +∞

and the thesis is proven.

The proof of the next theorem is related to the one of Proposition 3.1 of
[72].

Theorem 4.2.3. Let 1− 1/d < α ≤ 1. Then given two arbitrary µ0 and µ1
in Wp(Ω), there exists a curve joining them such that the functional Gα is
finite.

Proof. It is sufficient to prove that every measure can be joined to a Dirac
mass in an arbitrary point. We prove first the statement for Ω = [0, 1]d.
The dyadic subdivision of order k of Q = [0, 1]d is given by the family of
closed d-dimensional cubes (Qk

h)h∈Ik where Ik = {1, 2, 3, . . . , 2k}d obtained
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Figure 4.1: Approximation at step k = 3.

by Q dividing each edge into 2k pieces of equal length. We will refer to the
elements of (Qkh)h∈Ik as k-cubes. To every Borel regular finite measure µ we
associate the following sequence of measures:

µk =
∑

h∈Ik

bkhδyh

where bh = µ(Qkh) and yh is the center of Qk
h. It is straightforward to see

that µk ⇀
∗ µ as k → +∞.

The idea is now simple (see Figure 4.1): first join µk to µk+1 with an
arc length parametrization γk, then put together all these curves to obtain a
path from a Dirac mass to the measure µ. At every step a k-cube is divided
in 2d parts which are (k + 1)-cubes. To bring the Dirac mass in the center
of the k-cube to the 2d centers of the (k+1)-cubes with the right weights at
each center one splits the center of the k-cube into 2d parts moving towards
the centers of the adjacent (k + 1)-cubes in such a way that each point
moves with unitary speed. At each step (see Figure 4.1 where the first three
steps are represented) we obtain a curve γk defined on an interval of length
(1/2)k

√
d/2 (

√
d is the diagonal of Q) such that |γ ′k|(t) = 1 for all t.

Let us now compute the value of the functional on the curve γ made by
joining all curves γk above. Since the function f(x1, . . . , xn) =

∑n
i x

α
i with

the constraint
∑n

i xi = 1 reaches its maximum at point (1/n, . . . , 1/n) we
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have:

Gα(γ) =
+∞
∑

k=1





1

2

1

2k
d
∑

h∈Ik

(bkh)
α



 ≤
+∞
∑

k=1

(

1

2

1

2k
d2dk

(

1

2dk

)α)

.

Since 1− 1/d < α ≤ 1 the sum considered above is convergent.
In the case of a general bounded Ω it is sufficient to consider a large cube

containing the support of the measure µ such that the center is contained
in Ω.

The bound given by α > 1− 1/d is sharp. We have in fact the following
result.

Theorem 4.2.4. Suppose α ≤ 1−1/d. Then there exists a probability mea-
sure µ on Ω such that every non-constant Wp-Lipschitz path γ with γ(0) = µ
has Gα(γ) = +∞.

Proof. Let Ω be the cube [0, 1]d and µ the Lebesgue measure on it. We want
to estimate from below

inf {Gα(ν) |Wp(µ, ν) ≤ t}

and we will show it to be larger than ct−d(1−α). Therefore, if γ is a Wp-
Lipschitz path with constant speed which originates from µ, the integral
defining Gα diverges. We can simply consider t = 2−k. To estimate Gα(ν),
when ν is such thatWp(µ, ν) ≤ t, consider a partition of Ω by small cubes of
side ε. Let k be the number of those cubes Qi such that ν(Qi) ≤ µ(Qi)/2 =
εd/2. In all these cubes we have a zone in which the optimal transport map
S between µ and ν must take values outside the cube; this zone, given by
Qi \ S−1(Qi), has a measure of at least εd/2. We want to estimate from
below the contribute of this zone to the total transport cost between µ and
ν. For this contribute we may write

∫

Qi\S−1(Qi)
d(x, ∂Qi)

pdx =

∫ (ε/2)p

0
|
(

Qi \ S−1(Qi)
)

∩ {d(x, ∂Qi)p > τ} |dτ

≥
∫ (ε/2)p

0

(

εd

2
− | {d(x, ∂Qi)p ≤ τ} |

)

dτ

≥
∫ Bpεp

0

(

εd

2
− | {d(x, ∂Qi) ≤ Bε} |

)

dτ

≥c1εpεd,
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where B is sufficiently small and c1 is a positive constant. By recalling that
the total transport cost (i.e. the p−th power of the distanceWp) is less than
tp, we have

kc1ε
d+p ≤ tp. (4.2.1)

On the other hand, the value of Gα can be estimated from below by means
of the other cubes and we have

Gα(ν) ≥ (ε−d − k)c2εdα.
Let us now choose ε = mt with m an integer such that c1m

p > 1 and, by
using (4.2.1), we have

Gα(ν) ≥ t−d(m−d −m−d−p/c1)c2mdαtdα = c3t
−d(1−α),

where the constant c3 is positive.
For a general Ω we can simply use a cube contained in Ω and show that

the Lebesgue measure on it, rescaled to a probability measure, cannot be
reached keeping finite the value of the integral.

Example 4.2.5 (Y-shaped paths versus V-shaped paths). Consider the exam-
ple in Figure 4.2, where we suppose that l and h are fixed. We define for
0 ≤ t ≤ l0

x(t) = (t, 0)

and for l0 ≤ t ≤ l0 +
√

l21 + h2

x1(t) =(l0 + l1
t− l0

√

l21 + h2
, h

t− l0
√

l21 + h2
)

x2(t) =(l0 + l1
t− l0

√

l21 + h2
,−h t− l0

√

l21 + h2
).

Let us consider the curve γ : [0, l0 +
√

l21 + h2]→Wp(Ω) defined by

γ(t) =

{

δx(t) if 0 ≤ t < l0
1
2δx1(t) +

1
2δx2(t) if l0 ≤ t ≤ l0 +

√

l21 + h2.

It easy to see that |γ ′|(t) = 1 and that

Gα(γ) = l0 + 21−α
√

(1− l0)2 + h2.

Then the minimum is achieved for

l0 = l − h√
41−r − 1

.

In particular, when α = 1/2 we have a Y-shaped path (similar to the one in
Figure 4.2) when l > h, while the path is V-shaped when l ≤ h.
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h

l

l l0 1

Figure 4.2: A Y-shaped path for α = 1/2.

Remark 4.2.6. The result given by Theorem 4.2.3 can clearly be improved
for particular choices of µ0 and µ1. For instance, we can connect a Dirac
mass to the k-dimensional Hausdorff measure on a smooth k-surface for all
α ∈]1− 1/k, 1] (see also [42]).

4.2.2 Diffusion

Here we will roughly set f(z) = |z|q (q > 1) and g = +∞. In fact we are
considering the functional

Fq(µ) =

{

∫

Ω u
qdLd if µ = u · Ld;

+∞ if µ is not absolutely continuous

This is a particular case of the other case presented in section 1.2 and more-
over we can notice that we have Fq(µ) = ||µ||qLq , with the convention that
this norm is infinite if the measure does not belong to Lq.

We follow the same structure of the previous section. In this case we
will denote the functional J by Fq and J by Fq.

We start by proving that when Fq(µ0) and Fq(µ1) are finite, that is µ0
and µ1 are measures with Lq(Ω) densities, the optimal path problem admits
a solution with finite energy.

Theorem 4.2.7. Assume that µ0 = u0 ·Ld, µ1 = u1 ·Ld with u0, u1 ∈ Lq(Ω).
Then µ0 and µ1 can be joined by a finite energy path.
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Proof. The proof of this result relies on the notion of displacement convexity
(see Section 0.3 for details and useful results). Take T an optimal transport
map from µ0 to µ1 and let π = (id× T )]µ be the associated transport plan.
Let γ = γπ the geodesic in Wp that it induces according to Theorem 0.3.4.
We will show that the energy of the path γ is finite. By Theorem 0.3.6 the
functional Fq is displacement convex, so that

Fq(γ(t)) ≤ (1− t)Fq(µ0) + tFq(µ1).

Then

∫ 1

0
Fq(γ(t))|(γ)′|(t) dt ≤

Wp(µ0, µ1)

∫ 1

0
[(1− t)Fq(µ0) + tFq(µ1)] dt =

1

2
(Fq(µ0) + Fq(µ1))Wp(µ0, µ1).

Since Fq(µ0) and Fq(u1) are finite, we have that the path t 7→ γ(t) provides
a finite value for the energy functional Fq.

Next step will be the existence of an admissible path for arbitrary ex-
tremal measures, if q satisfies some additional constraints.

Recall that if µ0 and µ1 are probability measures given by L1 densities (u0
and u1 respectively) and T is a transport map between them with sufficient
regularity we have:

u1(y) = u0(T
−1(y))|det DT−1(y)|.

Lemma 4.2.8. Let q < 1 + 1/d. Let also µ = u · Ld with u ∈ Lq(Ω) and
ν =

∑k
j=1 bjδyj with

∑k
j=1 bj = 1. Then there exists a path between µ and ν

with finite energy.

Proof. Let T be an optimal transport map between µ and ν and π the
associated transport plan. Let Bj := T−1(yj). We now show that the path
γ = γπ has a finite energy. Let us set Tt = (1 − t)id + tT . If x ∈ Bj , then
Tt(x) = (1 − t)x + tyj and detDTt(x) = (1 − t)d. Let ut be the density of
the measure (Tt)#µ, that is to say:

ut(y) = u(T−1t (y))| detDT−1t (y)|.
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We then have:

∫

|ut(y)|q dy =
k
∑

j=1

∫
∣

∣

∣

∣

u

(

y − tyj
1− t

)∣

∣

∣

∣

q 1

(1− t)dq dy

=
k
∑

j=1

∫

|u(z)|q(1− t)d(1−q) dz

= (1− t)d(1−q)
∫

|u(z)|q dz.

Moreover, thanks to Theorem 0.3.4, γ is a constant speed geodesic and thus
the metric derivative |γ ′|(t) is constantly equal to the Wasserstein distance
Wp(µ, ν). Then,

Fq(γ) =Wp(µ, ν)

∫ 1

0

∫

|ut(y)|q dy dt =
Wp(µ, ν)

d+ 1− dq

∫

Ω
|u|q dx

which is finite since q < 1 + 1/d.

Theorem 4.2.9. Let q < 1 + 1/d. Then every couple of measures can be
joined by a path with finite energy.

Proof. It is enough to link any measure ν to a fixed Lq measure µ (for in-
stance, the normalized Lebesgue measure) with a finite energy path. Let
(νk)k∈N be a sequence of atomic measures approximating ν in the Wasser-
stein distance Wp. By Lemma 4.2.8, for every k there is a path γk with
energy

Fq(γk) = CWp(µ, νk)

where C is a constant which only depends on d, q,Ω (and of course µ).
Extracting a convergent subsequence from (γk)k∈N provides a path γ such
that, by repeating the lower semicontinuity argument of Theorem 4.1.1,
gives

Fq(γ) ≤ lim inf
k→+∞

Fq(γk) = lim
k→+∞

CWp(µ, νk) = CWp(µ, ν).

Since γk connects µ to νk, then γ connects µ to ν and the result is established.

As in the previous section, we show that this result is sharp, as it can be
seen from the following statement which is valid in a more general setting.
In fact, we prove an estimate which holds for every Wp-Lipschitz curve not
only valued in P(Ω), but also in P(Rd).
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Theorem 4.2.10. Suppose q ≥ 1+ 1/d. Then there exists µ ∈ Wp(Ω) such
that every non-constant Wp-Lipschitz path γ with γ(0) = µ gives Fq(γ) =
+∞.

Proof. Let us choose µ = δ0. It is sufficient to prove that

inf {Fq(ν) | ν ∈ P(Ω), Wp(µ, ν) ≤ t} ≥ Ct−d(q−1), (4.2.2)

with C > 0. In fact, by reparameterization, it is sufficient to prove that the
functional is infinite on constant speed paths. Taken such a path γ, with
constant speed L > 0, we then have

Fq(γ) = L

∫ 1

0
Fq(γ(t))dt ≥ L

∫ 1

0
C(Lt)−d(q−1)dt = +∞,

where the integral diverges thanks to the assumption on q. To prove (4.2.2)
we can suppose that Ω = Rd, which is the worst case. This shows that the
result does depend neither on the compactness nor on the convexity of Ω.
By considering the map that associates to every probability measure ρ the
measure ν = (mt)#ρ, where mt(x) = tx, one has a one-to-one correspon-
dence between the probabilities whose Wasserstein distance from δ0 is less
than 1 and those whose distance is less than t. It is easy to see that ν is
Lq if and only if the same happens for ρ and that the density of ν is the
function x 7→ t−du(x/t), where u is the density of ρ. Therefore

Fq(ν) =

∫

uq(x/t)

tdq
dx =

∫

uq(y)t−dqtddy = Fq(ρ)t
−d(q−1).

Consequently, it is now sufficient to evaluate the infimum in (4.2.2) when
t = 1, and this number will be the constant C we are looking for. We
will show that this infimum is in fact a minimum, thus obtaining that it
is strictly positive. This problem is quite similar to what we have seen in
Chapter 1. To get the existence of a minimum we recall that the functional
Fq is sequentially lower semicontinuous with respect to weak topology on
probability measures, while the set {ν ∈ P(Rn) |Wp(δ0, ν) ≤ 1} is sequen-
tially compact with respect to the same topology (actually every sequence
in such a set turns out to be tight).

Remark 4.2.11. As in the previous case, it is possible that two measures
could be connected by a finite energy path even when q is greater than
1 + 1/d. For instance, with N = 2, the path given by

γ(t) =
1

4t
I[−1,1]×[−t,t] · L2
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is a Lipschitz path in Wp([−1, 1] × [−1, 1]) joining γ0 = 1/2H1 [−1, 1] to
γ1 = 1/4L2 (it is in fact a Wasserstein geodesic between them). The energy
is finite as far as

∫ 1

0

4t

(4t)q
dt < +∞.

This condition is fulfilled when 1− q > −1, i.e. when q < 2, instead of the
condition q < 1 + 1/2 found in Theorem 4.2.9.

4.3 The non-compact case

The existence results of the previous section were based on two important
facts: the compactness of Wasserstein spacesWp(Ω) when Ω itself is compact
and 1 ≤ p < +∞, and the estimate Fq ≥ c > 0, proven in Theorem 4.2.1,
under the assumption |Ω| < +∞. Both the facts do not hold when Ω = Rd,
for instance. This is the reason why we developed in Section 4.1 some tools
giving the existence of optimal paths under weaker assumption, even in
the abstract metric setting. To replace the compactness of Ω we need to use
Theorem 4.1.4, while to deal with the fact that we do not have Fq(ν) ≥ c > 0
in the case where ν runs over all Wp(Rd) we can use the weaker assumption
given by hypothesis H2. In this Section we only deal with the case of Fq-
like functionals studied in Section 4.2.2; the case of atomic measures and
Gα-like functionals of Section 4.2.1 still present some extra difficulties when
Ω is unbounded. We stress the fact that most of the techniques we use can
be adapted to deal with several different cases, i.e. Ω unbounded but not
necessarily the whole space, or the space W∞(Ω) (see Section 0.2). Notice
that the use of Theorem 4.1.4 is necessary because in general, if Ω is not
compact, the corresponding Wasserstein spaces are not even locally compact
(see Proposition 0.2.3).

First, we show some lemmas in order to use Theorem 4.1.4.

Lemma 4.3.1. The weak topology on the space Wp(Ω) can be metrized by
a distance d′ such that d′ ≤W1 ≤Wp.

Proof. The usual distance metrizing the weak topology is given by

d(µ, ν) =

∞
∑

k=1

2−k
∣

∣

∣

∣

∫

φk d (µ− ν)
∣

∣

∣

∣

,

where (φk)k is a dense sequence in the unit ball of C0b (Ω). We can choose
these functions to be Lipschitz continuous and let, for every index k, ck be
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the Lipschitz constant of φk. Then

d′(µ, ν) =

∞
∑

k=1

2−k

1 + ck

∣

∣

∣

∣

∫

φkd (µ− ν)
∣

∣

∣

∣

is a distance which metrizes the same topology. Being φk/(1+ ck) a 1−Lip-
schitz function, thanks to the dual formulation of Monge’s problem, we have

∣

∣

∣

∣

∫

φk
1 + ck

d (µ− ν)
∣

∣

∣

∣

≤W1(µ, ν),

and so, by summing up on k, we get d′ ≤W1 as required.

The following two lemmas are well known.

Lemma 4.3.2. The distanceWp is lower semicontinuous onWp(Ω)×Wp(Ω)
endowed with the weak × weak convergence.

Proof. Take µn ⇀ µ and νn ⇀ ν. Let γn be an optimal transport plan for
the cost |x − y|p between µn and νn: the sequence of this plans turns out
to be tight thanks to tightness of the sequence of the marginal measures,
and so we may suppose γn ⇀ γ. We can now see that γ is a transport plan
between µ and ν and so it holds

Wp(µ, ν) ≤
(∫

|x− y|pd γ
)1/p

≤ lim inf
n→+∞

(∫

|x− y|pd γn
)1/p

= lim inf
n→+∞

Wp(µn, νn).

Lemma 4.3.3. All bounded sets in Wp(Rd) are relatively compact with re-
spect to weak topology.

Proof. Just notice that, in a bounded set, every sequence of probability
measures turns out to be tight. The limits up to subsequences (that exist
in the weak sense) still belong to the space Wp(Rd) as a consequence of the
lower semicontinuity of the functional µ 7→Wp(µ, δ0) (which is nothing but
the p−th momentum of the measure).

We can give now our result.

Theorem 4.3.4. Let Fq and Fq be defined as in Section 4.2.2 respectively
on Wp(Rd) and on the set of Lipschitz path in Wp(Rd) joining two measures
µ0 and µ1. Then
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• if q < 1+ 1/d for every µ0 and µ1 there exists a path giving finite and
minimal value to Fq;

• if q ≥ 1 + 1/d there exists a measure µ0 such that Fq = +∞ on every
non-constant Lipschitz path starting from µ0.

Proof. Let us start by the case q < 1+1/d: thanks to Lemma 4.3.2 and 4.3.3
we can use Theorem 4.1.4 and so we just need to verify the two assumptions
H1 and H2. The existence of a finite-energy path can be achieved in the
same way as in Theorem 4.2.9, by passing through a fixed Lq probability
measure. Notice that, in order to have the convergence of a subsequence
and the lower semicontinuity in the approximation by atomic measures, we
will argue as in the proof of Theorem 4.1.4 instead of Theorem 4.1.1. In
order to estimate the integral in H2 we will use the same estimate given in
Theorem 4.2.10, to achieve

inf {Fq(ν) | ν ∈ P(Ω), Wp(µ, ν) ≤ t} ≥ Ct−d(q−1),

so that the integral diverges as far as q < 1 + 1/d.
By repeating the arguments of Theorem 4.2.10, we can then prove also

the second part of our result, because µ = δ0 cannot be joined to any other
probability measure by a finite energy path.

Remark 4.3.5. In the previous theorem we did not mention the possibility
to link, for arbitrary q > 1, two measures µ0, µ1 ∈ Lq(Rd). It is easy to
check that the same construction used in Theorem 4.2.7 can be used in this
setting too. We get in such a way the existence of a path providing a finite
value to Fq, but some problems arise when we look for a minimal one. In
fact, for arbitrary q, condition H2 is no longer fulfilled and this prevents us
from applying the general existence results.

To conclude this section, we highlight the difference between the case
we dealt with (the Fq case) and the other important case, represented by
the functional Gα. In this latter case it is not necessary to pass through the
divergence of the integral in assumption H2, because we actually have Gα ≥
1, as already shown. On the other hand, some difficulties arise in verifying
assumption H1. In fact the construction we made to build a finite energy
path linking δ0 to a probability measure µ strongly uses the compactness of
the support of µ. In order to get a similar construction for the case Ω = Rd

we would need an estimate such as

inf{Wp(µ, ν) |#spt(ν) ≤ k} ≤ C(µ)k−1/d, (4.3.1)
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where C(µ) is a finite constant depending on the measure µ. It is easy to get
a similar estimate when µ has compact support, but the constant may de-
pend on the diameter of its support. The existence of a similar estimate for
arbitrary measures µ is linked to the asymptotics of the rescaled location
problem in Rd. A theory on this asymptotic problem has been explicitly
developed (for instance in [19]) only in the case of compact support. How-
ever, it leads to a condition like µd/(d+p) ∈ L1, which is always fulfilled for
µ compactly supported, while it may fail for general probability measures
in Wp(Rd). Other interesting estimates that could replace (4.3.1) may be
found in [52], where the asymptotics of the same problem under constraints
on Gα(ν) instead of constraints on the cardinality of the support is consid-
ered. Unluckily, also these estimates cannot be directly used here.

On the contrary, the case of the functional Gα for p =∞ and Ω bounded
would be feasible. In this case the estimate (4.3.1) is in fact valid and
we can prove the existence of a curve with bounded energy reaching any
probability measure, provided α > 1 − 1/d. We do not develop explicitly
the proof, but the reader may convince himself that putting together all the
elements that we have proved here one can extend all te results to the case
p =∞. We want to stress this fact since the case p =∞ will be important
for an informal comparison of this model to the models in [72], [57] and [13]
that will be considered in chapters 6, 7 and 9 (see Section 6.2).
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Chapter 5

A system of PDEs from a

geodesic problem in Wp

In this chapter, mainly based on a joint work with Luigi Ambrosio (see
[6]), we consider the diffusion case of Chapter 4 and we look for a system
of PDEs characterizing the optimal curves. This can be performed only in
the diffusion case, since it in this case that we are concerned with measures
which have a density. In fact in the concentration case we are facing a
curve of measures which are too singular (usually atomic) to write PDEs
on them. This Chapter follows the accepted version of the article [6], up
to some difference in the presentation of the topic and some preliminaries
which have been moved to Section 0.3.

5.1 Compressible Euler equations from geodesic

problems

As in Chapter 4 we will consider a convex domain Ω ⊂ Rd and the corre-
sponding Wasserstein spaces Wp(Ω). As we mentioned in Section 0.3, it is
well known thatWp(Ω) is a length space, and that (constant speed) geodesics
ofWp(Ω) are in one to one correspondence with optimal transport plans, via
McCann’s linear interpolation procedure (see for instance Proposition 7.2.2
of [4] and Section 0.3). Here we consider, as in Chapter 4, the case when the
Wasserstein metric is perturbed by a conformal factor J(µ): by minimizing

∫ 1

0
J(µt)|µ′|(t) dt (5.1.1)
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among all curves µ connecting µ0 = µ to µ1 = ν, one obtains a new distance
depending on p and J , and we are interested in computing the geodesics
relative to this distance. In (5.1.1), |µ′|(t) is the metric derivative, see Section
0.3.

In chapter 4 we saw this problem in two opposite cases, namely the con-
centration and the diffusion one. As we will see later in Chapter 6, the
motivation of the study mainly relied on the concentration case, in correla-
tion to some branched transport problems. The case of a functional J which
is a local functional preferring spread measures is considered in Chapter 4
only as a natural counterpart and the two problems sound somehow specu-
lar. The aim of the present Chapter is to consider this second problem and
to find out optimality conditions in the form of PDEs.

Hence, we study in detail the case when J(µ) is the γ-th power of the
Lq norm of the density of µ with respect to Lebesgue measure Ld, with
q > 1 and γ > 0 given (and J(µ) = +∞ if µ is a singular measure). Thus,
geodesics with respect to the new metric tend to spread the density as much
as possible. Denoting by ut the density of µt, we find that a necessary
optimality condition for geodesics is (for p = 2, see (5.2.4) for general p)

d

dt
(K(t)vu) +K(t)∇ · (v ⊗ vu) +H(t)∇uq = 0, (5.1.2)

where vt is the tangent velocity field of µt, linked to ut via the continuity
equation d

dtut + ∇ · (vtut) = 0. Here H(t) < 0 and K(t) > 0 are suitable
functions depending only on the metric derivative of µt and on J(µt). As
Brenier pointed to us, this equation is very similar to the compressible Euler
equation, but with a negative pressure field p = H(t)uq; a similar equation,
with H constant and q = 3, recently appeared also in [50], in the one-
dimensional case. In fact the main difference appears in the relationship
between the L part and the speed part: here it is multiplicative, while in
[50] it is additive, as we will explain in a while.

The appearance of the Euler equation as an optimality condition is not
surprising, taking into account the approach developed, in the incompress-
ible case, by Brenier (first in a purely Lagrangian framework in [22], [23],
and then in a mixed Eulerian-Lagrangian one in [24], [25]). In this connec-
tion, we mention that our derivation of the optimality condition differs from
[23], [25], where duality is used to perform first variations, and uses instead
a perturbation argument directly at the level of the primal problem.

Due to the non-convex nature of this problem, we don’t know of any
sufficient minimality condition for the geodesics. In this connection, one
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may notice that, in the case γ = q/2 and p = 2, we have

inf
δ>0

δ

∫

Ω
uq dx+

1

δ

∫

Ω
|v|2u dx = 2J(uLd)

(∫

Ω
|v|2u dx

)1/2

and the minimal L2(µ) norm of v is strictly linked to the metric derivative.
This suggests a connection between the multiplicative model studied here
and in Chapter 4, and the additive model

min

{∫ 1

0

∫

Ω
uq + |v|2u dxdt : d

dt
u+∇ · (vu) = 0

}

subject to Dirichlet conditions at t = 0 and t = 1. This additive model,
in the case q = 3, is exactly the one studied in [50] (in this connection, see
also [55]). Notice that this problem is convex in the pair (u, vu). It turns
out, indeed, that the (necessary and sufficient, by the convex nature of the
problem) optimality conditions for the additive model are very similar to
(5.1.2), the only difference being that H and K do not depend on time.

5.2 Optimality conditions for weighted Wasser-

stein geodesics

5.2.1 A new velocity vector field

We refer to the notion of tangent and velocity vector fields of Section 0.3.
We want here to investigate how velocity fields change if we modify the curve
µt.

Theorem 5.2.1. Let a Lipschitz curve µ : [0, 1] → Wp(Ω) and a smooth
function T : [0, 1] × Ω → Ω be given, such that for any t the function
Tt := T (t, ·) is a diffeomorphism. Let us consider the new curve µ′ given by
µ′t = (Tt)]µt. If vt is a velocity field for µt, then the vector field v′ defined
by

v′t · µ′t = (Tt)]

[(

∇Tt · vt +
∂T

∂t

)

µt

]

is a velocity field for µ′t.
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Proof. We have

∫

Ω
φdµ′t+h −

∫

Ω
φdµ′t =

∫

Ω
φ ◦ Tt+hdµt+h −

∫

Ω
φ ◦ Tt dµt

=

∫

Ω
(φ ◦ Tt+h − φ ◦ Tt) dµt+h +

∫

Ω
φ ◦ Tt d(µt+h − µt)

=

∫

Ω

(∫ t+h

t
(∇φ) ◦ Ts ·

∂T

∂t
|s ds

)

dµt+h+

∫ t+h

t
ds

∫

Ω
(∇φ)◦Tt·∇Tt·vs dµs,

where in the last equality we have used the fact that vt is a velocity field for
µ, with test function φ ◦Tt. It is now convenient to divide by h, rewrite and
pass to the limit as h→ 0:

∫

Ω φdµ
′
t+h −

∫

Ω φdµ
′
t

h
=

∫

Ω
dµt+h

1

h

∫ t+h

t
(∇φ) ◦ Ts ·

∂T

∂t
|s ds

+

∫

Ω
(∇φ) ◦ Tt · ∇Tt · vt dµt +

1

h

∫ t+h

t
ds

∫

Ω
∇ψt · (vsdµs − vtdµt) , (5.2.1)

where ψt = φ ◦ Tt. In the first term on the right hand side the measures
µt+h weakly converge to µt, since t 7→ µt is Lipschitz continuous, while
the integrand uniformly converges as a function of the space variable x to
(∇φ) ◦ Tt · ∂T∂t as h → 0. Hence we get convergence of the integral. If we
prove that the last term tends to zero at least for a.e. t ∈ [0, 1] we get the
thesis, since then we would have

lim
h→0

∫

Ω φdµ
′
t+h −

∫

Ω φdµ
′
t

h

=

∫

Ω

(

(∇φ) ◦ Tt ·
∂T

∂t
+ (∇φ) ◦ Tt · ∇Tt · vt

)

dµt =

∫

Ω
∇φ · v′tdµ′t,

and this is nothing but the differential version of the continuity equation for
v′ and µ′ (it remains to prove v′t ∈ Lp(µ′t) but this is straightforward since Tt
is a diffeomorphism and this allows to write down the densities and estimate
them). To prove that the last term vanishes at the limit we see that, for
fixed ψ ∈ Lip(Ω) the function

s 7→ gψ(s) :=

∫

Ω
∇ψ · vsdµs =

d

ds

∫

Ω
ψ dµs

is L∞ since µt is a Lipschitz curve in Wp(Ω) and hence almost any s ∈ [0, 1]
is a Lebesgue point. This allows to fix a negligible set N ⊂ [0, 1] such that
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any point t ∈ [0, 1] \ N is a Lebesgue point for all the functions gψt1 for
t1 ∈ Q. We fix now t ∈ [0, 1] \N and try to prove that the last integral in
(5.2.1) tends to zero. For t1 ∈ Q it holds

∣

∣

∣

∣

1

h

∫ t+h

t
ds

∫

Ω
∇ψt · (vsdµs − vtdµt)

∣

∣

∣

∣

≤ 1

h

∫ t+h

t
ds

(∣

∣

∣

∣

∫

Ω
∇(ψt − ψt1) · vsdµs

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω
∇(ψt − ψt1) · vtdµt

∣

∣

∣

∣

)

+

∣

∣

∣

∣

1

h

∫ t+h

t
ds

∫

Ω
∇ψt1 · (vsdµs − vtdµt)

∣

∣

∣

∣

≤ Lip(ψt − ψt1) LipWp
(µ) +

∣

∣

∣

∣

1

h

∫ t+h

t
ds

∫

Ω
∇ψt1 · (vsdµs − vtdµt)

∣

∣

∣

∣

.

In the last sum the second term tends to zero by the fact that t is a Lebesgue
point for gψt1 and the first term may be made as small as we want by choosing
t1 close to t, since ψs = φ ◦ Ts and both φ and T are regular.

5.2.2 Derivation of the optimality conditions

We consider the diffusion case of the minimization problem presented in
Chapter 4, i.e. finding a curve of measures in Wp(Ω) of minimal length
according to a metric which, roughly speaking is the Wasserstein (infinite-
simal) metric multiplied by a conformal factor. Precisely, we consider for
q > 1 the usual functional (see Sections 1.2 and 4.2)

Fq(ν) =

{

∫

Ω u
qdLd if ν = u · Ld

+∞ otherwise,

we want to minimize
∫ 1

0
Fq(µt)|µ′|(t) dt,

where |µ′|(t) is the metric derivative of the curve µ and the minimiza-
tion occurs among all the Wp-Lipschitz curves t 7→ µt with given initial
and final points, i.e. µ0 and µ1 are given probability measures in Wp(Ω).
We will always consider only the non trivial case µ0 6= µ1. If we define
V (µ, t) =

∫

Ω |vt|pdµt, where v is the tangent field to the curve µt, we know

that |µ′|(t) = V (µ, t)1/p. We may generalize the functional we want to
minimize by considering

F(µ) :=
∫ 1

0
Fq(µt)

α V (µ, t)βdt
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which reduces to the case studied in [20] and Chapter 4 if α = 1 and β = 1/p.
Notice that in this case the functional does not change under reparameter-
ization of curves, while if β > 1/p the minimization selects a particular
parametrization. For β < 1/p the existence of a minimum will in general
fail. Anyway we do not deal here with existence results (see [20]), but we
only look for necessary optimality conditions. We will consider variations of
µ of the form

µεt = (T εt )]µt with T ε(t, x) = x+ εξ(t, x), T εt = id+ εξ(t, ·),

for arbitrary regular functions ξ ∈ C∞c ([0, 1]×Ω;Rd). In the end optimality
conditions will be expressed through a system of PDEs: we will obtain the
result after collecting some lemmas. What we want to do now is exploi-
ting the fact that for a minimizing curve µ the following quantity must be
minimal for ε = 0:

F(µεt ) =
(∫ 1

0
Fε(t)

αVε(t)
βdt

)

,

provided we define Fε(t) = Fq(µ
ε
t ) and Vε(t) = V (µε, t). Since it is not

completely easy to deal with the term Vε(t), we will replace it by Ṽε(t), with
Ṽε(t) given by

Ṽε(t) =

∫

Ω
|(vε)t|p dµεt .

Here the vector field vε is the one we get by Theorem 5.2.1 when the map T
is given by T ε and the initial field vt is the tangent field to µt. In this way
we have Ṽε(t) ≥ Vε(t) (since vεt is a velocity field which is not necessarily of
minimal Lp norm) but Ṽε(0) = Vε(0). Thus we may switch to considering
Ṽε(t) instead of Vε(t), getting

F̃(µεt ) =
(∫ 1

0
Fε(t)

αṼε(t)
βdt

)

.

We will compute the derivative of F̃(µεt ) with respect to ε and get the
conditions we are looking for.

Lemma 5.2.2. If µ is a curve given by µt = utLd and such that F(µ) <
+∞, then for almost any t ∈ [0, 1] it holds

d

dε
Fε(t) = (1− q)

∫

Ω
(JT εt )

′

(

ut
JT εt

)q

dLd.
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In particular, if we compute the derivative at ε = 0, we have

d

dε
Fε(t)|ε=0 = (1− q)

∫

Ω
(∇ · ξ)uqtdLd.

Moreover, for ε sufficiently small (depending on T , but not on t) the follow-
ing inequality holds:

d

dε
Fε(t) ≤ CFq(µt).

Proof. We look at the integrand function in the definition of Fε: to do this it
is necessary to look at the density of the measure µεt . Thanks to the change
of variables formula, this density can be easily seen to be given by

uεt =
ut
JT εt

◦ (T εt )−1,

where J stands for the Jacobian (this formula is a consequence of T εt being
a diffeomorphism at least for small ε). Thus, after changing variables, we
have

Fε(t) = Fq(µ
ε
t ) =

∫

Ω

(

ut
JT εt

)q

JT εt dLd.

The derivative of the integral is given by

(1− q)(JT εt )′
(

ut
JT εt

)q

,

where (JT εt )
′ stands for the derivative w.r.t. ε of JT εt . This quantity may

be easily estimated by Cuqt , since 1− a ≤ JT εt ≤ 1 + a and (JT εt )
′ ≤ B for

suitable constants a and B. Since for almost any t the function ut belongs
to Lq (because the functional we are minimizing is finite) we can apply the
dominated convergence theorem and get the thesis. To obtain the derivative
at ε = 0 it is sufficient to notice that (JT εt )

′|ε=0 = ∇·ξ, which is well-known.
The same estimate we used to get dominated convergence may be used to
get the last inequality.

In the next lemma we consider the term Ṽε.

Lemma 5.2.3. If µ is a curve such that F(µ) < +∞, then for almost any
t ∈ [0, 1] it holds

d

dε
Ṽε(t) = p

∫

Ω

∣

∣

∣

∣

∇T εt · vt +
∂T ε

∂t

∣

∣

∣

∣

p−2(

∇T εt · vt +
∂T ε

∂t

)

·
(

∇ξ · vt +
∂ξ

∂t

)

dµt.

(5.2.2)
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In particular, if we compute the derivative at ε = 0, we have

d

dε
Ṽε(t)|ε=0 = p

∫

Ω
|vt|p−2vt ·

(

∇ξ · vt +
∂ξ

∂t

)

dµt.

Moreover, for ε sufficiently small (depending on T , but not on t) the follow-
ing inequality holds:

d

dε
Ṽε(t) ≤ C(V (µ, t) + 1).

Proof. If we compute the densities of µεt and the expression of the new
velocity field and we change variable in the integral by y = T εt (x), as we did
in the previous lemma, we get

Ṽε(t) =

∫

Ω

∣

∣

∣

∣

∇T εt · vt +
∂T ε

∂t

∣

∣

∣

∣

p

dµt. (5.2.3)

When we differentiate the integrand we get exactly the integrand in (5.2.2),
and we need only to show that this expression is uniformly dominated, at
least for small ε and almost every t to get the result. By boundedness of the
derivatives of T ε it is not difficult to see that the norm of the first vector in
the scalar product in the integrand may be estimated by

∣

∣

∣

∣

∇T εt · vt +
∂T ε

∂t

∣

∣

∣

∣

p−1

≤ (C|vt|+ C)p−1,

while for the second it holds
∣

∣

∣

∣

∇ξ · vt +
∂ξ

∂t

∣

∣

∣

∣

≤ C|vt|+ C

for a suitable constant C. Hence, since vt ∈ [Lp(µt)]
d for almost every t the

integrability is proved and the differentiation under the integral sign can be
performed.

To conclude, we must put together the two previous results in order to
compute the derivative of the integral in t.

Theorem 5.2.4. If µ is a curve with F(µ) < +∞ and V (µ, t) ≥ V0 > 0 for
almost every t, then it holds

d

dε
F̃(µε)|ε=0 = α(1− q)

∫ 1

0
Fα−1V β

∫

Ω
(∇ · ξ)uqt dLd dt

+ pβ

∫ 1

0
FαV β−1

∫

Ω
|vt|p−2

(

∇ξ · vt +
∂ξ

∂t

)

· vt dµt dt,

where F (t) = Fq(µt) and V (t) has the usual meaning.

127



Proof. By the definition of F̃(µε) we see that the pointwise derivative of

the integrand is given by αFε(t)
α−1 dF

dε Ṽε(t)
β + βFε(t)

αṼε(t)
β−1 dṼ

dε . By the
regularity of T ε the term Fε(t) may be estimated both from above and below
by F (t), up to multiplicative constants. As far as Ṽ ε(t) is concerned, the
argument is a little bit more tricky. Indeed we must write Ṽ ε(t) according
to (5.2.3), then estimate

A−|vt| −B ≤
∣

∣

∣

∣

∇T εt · vt +
∂T ε

∂t

∣

∣

∣

∣

≤ A+|vt|+B,

for ε small enough, where the constants A± are as close to 1 as we want and
the constant B is as small as we want (this comes from ∇T εt = id + O(ε)
and ∂T ε/∂t = O(ε)), and get

A−Ṽ 0 −B ≤ Ṽ ε ≤ A+Ṽ 0 +B.

The assumption V ≥ V0 > 0 allows us to infer from these inequalities
that also Ṽ ε may be estimated both from above and below by V up to
multiplicative constants. Finally, by the estimates in Lemmas 5.2.2 and
5.2.3, we bound the whole pointwise derivative by CF αV β since we have

dF

dε
≤ CF ; dṼ

dε
≤ C(V + 1) ≤ C(1 + 1

V0
)V,

)the last inequality too comes from V ≥ V0). Since Fαq V
β is integrable on

[0, 1], we may differentiate under the integral sign and get

d

dε
F(µε)|ε=0 =

∫ 1

0

(

αF (t)α−1
dF

dε
|ε=0Ṽ (t)β + βF (t)αṼ (t)β−1

dṼ

dε
|ε=0

)

dt.

The result follows when we replace the derivatives in ε by the explicit ex-
pressions we computed in Lemmas 5.2.2 and 5.2.3.

Remark 5.2.5. If β = 1/p and µ is a minimizer, it is always possible to
get the lower bound V ≥ V0 by reparameterizing in time, for instance by
choosing the constant speed parametrization.

Corollary 5.2.6. If µ minimizes F with given boundary conditions µ0 and
µ1, then its density u and its tangent field v satisfy

α(1− q)
∫ 1

0
F (t)α−1V (t)β

∫

Ω
(∇ · ξ)uqt dLd dt

+ pβ

∫ 1

0
F (t)αV (t)β−1

∫

Ω
ut|vt|p−2(∇ξ · vt +

∂ξ

∂t
) · vt dLd dt = 0,

for any vector field ξ ∈ C∞c (]0, 1[×Ω;Rd).
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Proof. It is sufficient to notice that when we create the modified curve µε

starting form the vector field ξ we do not change the initial and final points
of the curve, so that the minimality implies that the derivative of F̃(µε) at
ε = 0 must vanish.

5.2.3 The resulting system of PDEs

The following theorem follows directly from the previous section.

Theorem 5.2.7. Let µ0, µ1 ∈ Wp(Ω) and let µ be a curve with F(µ) < +∞
which minimizes F over all the Lipschitz curves with prescribed starting and
arrival measures µ0 and µ1. Then, denoting by u(t, ·) the density of µt and
by v(t, ·) the tangent field to the curve µ, the pair (u, v) provides a weak
(distributional) solution of the system























H(t)∇uq +K(t)∇ ·
(

u|v|p−2v ⊗ v
)

+ d
dt

(

K(t)u|v|p−2v
)

= 0 in Ω,
d
dtu+∇ · (vu) = 0 in Ω

uv · n = 0 on ∂Ω

lim
t↓0

u(t, ·)Ld = µ0; lim
t↑1

u(t, ·)Ld = µ1,

(5.2.4)
where H(t) = α(1− q)F (t)α−1V (t)β and K(t) = pβF (t)αV (t)β−1.
Given (µ0, µ1), if β ≥ 1/p, the existence of minimizers is ensured whenever
q < 1 + 1/d or, for general q, under the assumption µ0 = u0Ld, µ1 = u1Ld
with u0, u1 ∈ Lq(Ω) (see Chapter 4). In particular, under these conditions,
the existence of solutions to this system is ensured.

It is interesting to rewrite the equations, make some formal simplification
and look at some particular cases.

First we expand all the terms in the first equation of System (5.2.4),
obtaining

H(t)∇uq +K(t)
(

u|v|p−2v · ∇v + v|v|p−2∇ · (uv) + u
(

v · ∇|v|p−2
)

v
)

+K(t)

(

v|v|p−2 d
dt
u+ u

d

dt

(

v|v|p−2
)

)

+
d

dt
K(t)u|v|p−2v = 0. (5.2.5)

Notice that this is always a vector equation, i.e. a system itself, consisting
of d equations with d+ 1 unknown functions (the components of v and the
density u). This system is then completed by the continuity equation. As
usual, by v·∇v we mean the vector whose i−th component is

∑

j(vj∂vi/∂xj).
A formal simplification in (5.2.5) may be done: in fact there is a term

(K(t)v|v|p−2)(du/dt+∇·(uv)) that might be removed by using the continuity
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equation. This is actually possible only under extra regularity assumptions
onK and v (it consists of testing the continuity equation against the product
K(t)v|v|p−2 which is not in general C1 or regular enough). Anyway, after
this formal simplification, (5.2.5) becomes

H(t)∇uq +K(t)
(

u|v|p−2v · ∇v + u
(

v · ∇|v|p−2
)

v
)

+K(t)u
d

dt

(

v|v|p−2
)

+
d

dt
K(t)u|v|p−2v = 0. (5.2.6)

Notice that in the case β = 1/p we can reparameterize in time the solution
and there are several possible parametrization choices that present some
advantages. For instance, we could choose a parametrization so that K(t)
is constant, to get rid of the final derivative in time. This choice implies

V (t) =

(

Fα

K

)p/(p−1)

,

and this, in the case of a bounded |Ω| < +∞, is sufficient to have the lower
bound V ≥ V0, since F would be bounded from below by a positive constant.

Another important fact to be noticed is that in (5.2.6) there is a common
u factor. It is still formal, but in this way we should get, on {u > 0},

H(t)uq−2∇u+K(t)
(

|v|p−2v · ∇v +
(

v · ∇|v|p−2
)

v
)

+K(t)
d

dt

(

v|v|p−2
)

+
d

dt
K(t)|v|p−2v = 0.

Remark 5.2.8. One might wonder whether the solutions u are automatically
positive a.e. in Ω for t ∈]0, 1[. This could be suggested by the fact that
in the minimization problem the diffusion of the density is favored and this
could entitle us to simplify u in the system. In the next session we will see
with explicit examples that this is not necessarily the case.

We finish this overview of simplifications of the system by looking at the
simplest case, i.e. p = q = 2, α = 1, β = 1/2, in the parametrization regime
where K is constant. In this case we get























−2V (t)1/2∇u+K
(

v · ∇v + d
dtv
)

= 0 in {u > 0},
d
dtu+∇ · (vu) = 0 in Ω

uv · n = 0 on ∂Ω

lim
t↓0

u(t, ·)Ld = µ0; lim
t↑1

u(t, ·)Ld = µ1.

(5.2.7)
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Under no constraint on the parametrization we would have, instead,























−2V (t)1/2∇u+K(t)
(

v · ∇v + d
dtv
)

+ v dKdt = 0 in {u > 0},
d
dtu+∇ · (vu) = 0 in Ω

uv · n = 0 on ∂Ω

lim
t↓0

u(t, ·)Ld = µ0; lim
t↑1

u(t, ·)Ld = µ1.

(5.2.8)

5.3 Self-similar solutions

5.3.1 Homothetic solutions with fixed center

In this section we look for particular solutions of the System (5.2.4) which
are self-similar in the sense that, for any t, the measure µt is the image
under an homothety of a fixed measure. For simplicity we will consider only
the case of System (5.2.8), i.e. with p = q = 2, and we assume that 0 ∈ Ω.
The regularity of the candidate solutions we will propose will be enough to
ensure that we can use this simplified system, instead of System (5.2.4). To
start this analysis it is necessary to establish the following Lemma.

Lemma 5.3.1. If µ is a curve in W2(Ω) of the form µt = (TR(t))]µ for a
certain regular function R : [0, 1]→]0, 1] (where TR(x) = Rx is the multipli-
cation by a factor R, hence an homothety), then its tangent field is given by
vt(x) = xR′(t)/R(t).

Proof. It is not difficult to prove that the field we defined solves the conti-
nuity equation and hence is a velocity field. Indeed, if φ ∈ C1c (Ω), it holds

d

dt

∫

Ω
φdµt =

d

dt

∫

Ω
φ(R(t)x) dµ(x) =

∫

Ω
∇φ(R(t)x) ·R′(t)x dµ(x)

=

∫

Ω
∇φ(R(t)x) · R

′(t)

R(t)
R(t)x dµ(x) =

∫

Ω
∇φ · vt dµt.

It remains to prove that v is actually the tangent velocity field, i.e. that its
L2 norm is minimal for a.e. t. This is achieved if we are able to prove that
‖vt‖L2(µt) = |µ|′(t) for a.e. t ∈ [0, 1]. To do this, let us fix two times t < t+h
and see that the map T (x) = xR(t+ h)/R(t) is a transport between µt and
µt+h. Since it is the gradient of the convex function x 7→ x2R(t+ h)/2R(t),
it is actually the optimal transport according to the quadratic cost. Hence

W 2
2 (µt, µt+h)

h2
=

1

h2

∫

Ω

(

R(t+ h)

R(t)
− 1

)2

x2 dµt(x)→
∫

Ω

(

R′(t)

R(t)

)2

x2 dµt(x).
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Since this last quantity is exactly the norm of vt in L
2(µt), this proves that

v is the tangent field to the curve µ.

Remark 5.3.2. In the case p 6= 2 the same result is true, but one has to use
the characterization of tangent velocity fields in terms of closure of gradients
of smooth maps, see Proposition 8.4.5 of [4].

A first result we prove is the following:

Theorem 5.3.3. If (u, v) is a self-similar solution of the system (5.2.4)
with u Lipschitz continuous, then necessarily u is of the form

u(t, x) = (At −Bt|x|2) ∨ 0 for suitable coefficients At, Bt > 0.

Proof. We look at the equation (5.2.7) with p = q = 2, which is valid on
{u > 0}, and we freeze time, i.e. we look at the resulting space equation
for fixed t. We use the fact that v is of the form vt(x) = ctx, which implies
that all the terms v, v · ∇v and dv/dt are of the same form. This easily
implies that also ∇u is of the same form. Hence, at time t, on {u > 0}, it
holds u(x) = At − Btx2, where a priori Bt could also be negative. Anyway
we can prove that Bt cannot be negative. In this case in fact, if Ω were a
convex unbounded domain, then u could not be the density of a probability
measure. On the other hand one can easily see that on bounded convex
domains Ω self-similar solutions must vanish on ∂Ω, otherwise we should
get a jump of the density at the boundary of {u > 0} when rescaling, but u
was supposed to be Lipschitz (except in the case that the solution is constant
in time). This implies that also in the case of a bounded Ω the coefficient
Bt must be positive. For the same continuity reason we get that the region
{u > 0} must agree with the region Ω ∩ {At − Btx2 > 0} in order to have
continuity of u, and this proves the formula.

Remark 5.3.4. A similar result could be obtained for generic Wasserstein
spaces with exponent p > 1, getting that any self-similar solution should be
of the form u(t, x) = (At −Bt|x|p) ∨ 0.

Theorem 5.3.5. If µ is a probability measure on Ω with density

u(x) = A[(R2 − |x|2) ∨ 0],

then for any regular and monotone function R : [0, 1] → [0, 1] the curve
µt = (TR(t))]µ is a solution to System (5.2.4) together with its tangent field
v.
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Proof. It is sufficient to check the first vector equation in the system (5.2.8).
First we compute the correct constant A: we must have

1 = A

∫ R

0
(R2 − r2)dωdrd−1dr = ARd+2ωd

2

d+ 2
,

and hence A = R−d−2(d + 2)/(2ωd). This allows us to compute the term
F (t):

F = A2
∫ R

0
(R2 − r2)2dωdrd−1dr = R−d

2(d+ 2)

(d+ 4)ωd
.

Then we compute V by recalling that vt(x) = xR′(t)/R(t). It holds

V =

(

R′

R

)2

A

∫ R

0
r2(R2 − r2)dωdrd−1dr =

d

d+ 4
(R′)2.

We must also compute dv/dt and v · ∇v:

∂v

∂t
= x

R′′R− (R′)2

R2
; ∇v =

(

R′

R

)

I; v · ∇v =

(

R′

R

)2

x.

We compute now

K(t) = F (t)V (t)−1/2 = R−d|R′|−1 2(d+ 2)
√

d(d+ 4)ωd
,

K ′(t) = sign(R′)(−dR−d−1 −R−d(R′)−2R′′) 2(d+ 2)
√

d(d+ 4)ωd
.

If we set c = sign(R′) 2(d+2)√
d(d+4)ωd

we have K = cR−d(R′)−1 and K ′ =

c(−dR−d−1 − R−d(R′)−2R′′), but also −2V 1/2∇u(x) = cdR′R−d−2x. In-
serting everything in the equation we must check that

dR′xR−d−2 +R−d(R′)−1x
R′′

R
− (dR−d−1 +R−d(R′)−2R′′)x

R′

R
= 0.

The proof is achieved as this last equation is (miraculously enough) always
satisfied.

Remark 5.3.6. By a similar proof we can show that, for p 6= 2, if µ has
a density of the form u(x) = A[(Rp − |x|p) ∨ 0], then µ gives raise to a
self-similar solution.
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Remark 5.3.7. This kind of self-similar solutions can join two different prob-
ability measures which are homothetic, and in particular arrive up to the
Dirac mass δ0. Anyway it is not in general possible to link a measure to δ0
by a curve with finite energy: in [20], conditions to ensure this possibility
are provided, but in general they are not satisfied in the case q = 2.

Remark 5.3.8. It is interesting to notice that this self-similar solutions are
density of the same kind of the optimal solutions of the problem presented
in Chapter 1. This comes from the fact that the measures µt are chosen
by minimizing a combination of an Fq functional and some Wasserstein
distances from the measures µs, where µs are on the Wasserstein geodesic
linking µt to δ0 (and in Chapter one we exactly minimized functionals of the
kind Fq +W p

p (δxi , ·)).

5.3.2 Moving self-similar solutions

We have characterized all the self-similar solutions which link two homo-
thetic probability measures. It is however interesting to look also at the
moving self-similar solutions, i.e. at solutions obtained by homotheties and
translations together.

In this case we consider a reference measure µ and we look for solutions
of the form (T t)]µ, where T

t(x) = R(t)x+ x(t). It is not difficult to replace
Lemma 5.3.1 with the following:

Lemma 5.3.9. If µ is a curve of the form µt = (T t)]µ, then its tangent
field is given by

vt(x) =
R′(t)

R(t)
(x− x(t)) + x′(t).

Proof. The result may be proved very similarly to Lemma 5.3.1: it is suffi-
cient to check the continuity equation

d

dt

∫

Ω
φ(R(t)x+ x(t)) dµ(x) =

∫

Ω
∇φ(R(t)x+ x(t)) · (R′(t)x+ x′(t)) dµ(x)

=

∫

Ω
∇φ(R(t)x+ x(t)) · R

′(t)

R(t)
(R(t)x+ x′(t)) dµ(x) =

∫

Ω
∇φ · vt dµt,

and then to check the optimality of the norm by the fact that the map

x 7→ R(t+ h)

R(t)
(x− x(t)) + x(t+ h)
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transports µt on µt+h and is optimal, and that

1

h2

∫

Ω

(

R(t+ h)

R(t)
(x− x(t)) + x(t+ h)− x

)2

dµt(x)

converges to

∫

Ω

(

R′(t)

R(t)
(x− x(t)) + x′(t)

)2

dµt(x) = ‖vt‖L2(µt).

For computational simplicity we consider moving self-similar solutions
only under a special reparameterization.

Theorem 5.3.10. If µ is a probability measure on Ω with density

u(x) = A[(R2 − |x|2) ∨ 0]

and x(0), x(1) ∈ Ω are assigned, a curve µt = (T t)]µ, parameterized so that
K = FV −1/2 is constant, is a moving self-similar solution (solving System
(5.2.7) together with its own tangent field) if and only if the vector x moves
on the straight line segment from x(0) to x(1) with constant speed and R is
a strictly concave function of t. This means

x′′ = 0; R2d(d(R′)2 + (d+ 4)(x′)2) is constant and R strictly concave.

Proof. We only need to find conditions for the first equation to be satisfied.
We re-write in this case the quantity considered in Theorem 5.3.5: first we
compute

u(x) = A[(R2 − |x− x|2) ∨ 0]; A =
(d+ 2)

2Rd+2ωd
; ∇u(x) = − (d+ 2)

Rd+2ωd
(x− x)

F = R−d
2(d+ 2)

(d+ 4)ωd
; V =

d

d+ 4
(R′)2 + (x′)2.

We have used the fact that ut is symmetric around x(t) and hence there is
no mixed term (x − x(t)) · x′(t) in computing V (t). Then we go on with
dv/dt and v · ∇v:

∂v

∂t
= (x− x)R

′′R− (R′)2

R2
− x′R

′

R
+ x′′; ∇v =

(

R′

R

)

I;

v · ∇v =

(

R′

R

)2

(x− x) + R′

R
x′

∂v

∂t
+ v · ∇v = (x− x)R

′′

R
+ x′′.
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Then we look at the the condition to have K ′(t) = 0, which is equivalent to
F−2V being constant, and thus R2d(d(R′)2 + (d + 4)(x′)2) being constant.
Assuming K to be constant we try to satisfy the equation, and we write it
in the following form that we can reach after multiplying by V 1/2:

−2V∇u+ F

(

∂v

∂t
+

1

2
v · ∇v

)

= 0.

This equation becomes

2

(

d

d+ 4
(R′)2 + (x′)2

)

(d+ 2)

ωdRd+2
(x−x(t))+R−d 2(d+ 2)

(d+ 4)ωd
((x−x)R

′′

R
+x′′) = 0.

To satisfy this equation it is necessary and sufficient that the two parts, the
one involving x−x and the other with x′′ both vanish. After simplifying we
get

R−2(d(R′)2 + (d+ 4)(x′)2) +
R′′

R
= 0; x′′ = 0.

Hence we must have x(t) = (1− t)x(0) + tx(1) and x′(t) = e = x(1)− x(0).
Now we recall that R2d(d(R′)2+(d+4)(x′)2) was assumed to be constant and
so d(R′)2 + (d + 4)(x′)2 = CR−2d. Hence we get R′′ = −CR−2d−1. Thus,
u is a moving self-similar solutions if and only if the following conditions
simultaneously hold:











d(R′)2 + (d+ 4)e2 = CR−2d for a certain C,

R′′ = −CR−2d−1 for the same C,

x(t) = x(0) + te.

By differentiating the first equation we get 2dR′R′′ = −2dCR−2d−1R′ and
hence the second is automatically satisfied, provided we can ensure that
R′ 6= 0 a.e. This means that R being strict concave is sufficient (it is not
possible to have more than a time where R′ vanishes), but it is also necessary
from the second equation. The result is then proved.
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Chapter 6

Branching transport

problems and distances

In this chapter we introduce the subject of branching transport problems,
which was the motivation for the geodesic approach of Chapter 4 (concen-
tration case). We start by the Eulerian formulation which was given in the
’60s by Gilbert in the discrete case and then generalized to the continuum
by Xia. In this chapter we are interested in the minimum value of the vari-
ational problems that arise and not in the features of the corresponding
optimal structures. We will address the question of the finiteness of the
minimum and of the distance dα induced by it. We will also present the
Lagrangian models introduced by Maddalena, Solimini, Morel, Bernot and
Caselles. We will take advantage of this to propose an informal comparison
between these models and the concentrated case of Chapter 4. The final part
of the chapter contains a proof of an inequality between dα and the classical
Wasserstein distance, from a recent work in collaboration with Jean-Michel
Morel ([60]).

6.1 Eulerian models by Gilbert and Xia

Lots of branching structures transporting different kind of fluids, such as
road systems, communication networks, river basins, blood vessels, leaves
and trees and so on, may be easily thought of as coming from a variational
principle. They appear when transport costs encourage joint transportation.
Recently these problems received a lot of attention by mathematicians, but
in fact a mathematical formalization for them is very classical and has been
performed first for atomic measures and then generalized. We briefly present
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here the problem introduced by Gilbert in [48] and [49], where it is presented
as an extension of Steiner’s minimal length problems. The main applications
that Gilbert referred to were in the field of communication networks and the
energy to be minimized represents the costs for building the network.

Given two finitely atomic probability measures µ =
∑m

i=1 aiδxi and ν =
∑n

j=1 bjδyj , consider

(PG) min E(G) :=
∑

h

wαhH1(eh), (6.1.1)

where the infimum is among all weighted oriented graphs G = (eh, êh, wh)h
(where eh are the edges, êh represent their orientations and wh the weights)
satisfying Kirchhoff’s Law: in each segment vertex which is not one of the
xi’s or yj ’s the total incoming mass equals the outcoming, while in each xi
we have

ai + incoming mass = outcoming mass

and, conversely, in each yj we have

incoming mass = outcoming mass + bj .

These conditions correspond exactly to the well known Kirchhoff Law for
electric circuits. The orientations êh do not appear in the energy E but
appear in fact in Kirchhoff constraints. The exponent α is a fixed parameter
0 < α < 1 so that the function t 7→ tα is concave and subadditive. In this
way larger links bringing the mass from µ to ν are preferred to several smaller
links transporting the same total mass. It is not difficult to check that the
energy of any finite graph may be improved if we remove cycles from the
graph. In this way we can minimize among finite graphs which are actually
trees. This implies a bound on the number of edges and hence ensures a
suitable compactness which is enough to prove existence of a minimizer.

More recently Xia, in [72], has proposed a new formalization leading
to generalizations of this problem to arbitrary probability measures µ and
ν. In this case the interest of the author of [72] is to view this problem
as an extension of Monge-Kantorovich optimal transport theory. Actually
Steiner and Monge’s problems represent the limit cases α = 0 and α = 1,
respectively.

Let us briefly see how Xia extended to the continuous case the discrete
irrigation model proposed by Gilbert. The key point is formalizing the prob-
lem by using measures (or currents), since the constraint on the incoming
and outcoming masses in each vertex (Kirchoff Law) may be easily written
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as ∇ · λG = µ − ν, where λG =
∑

hwh[[eh]] is a vector measure ([[e]] being
the integration measure measure on the segment e: [[e]] = ê · H1 e). This
consideration lead Xia in [72] to extend the problem by relaxation to generic
probabilities µ and ν. The problems becomes

(PX) min E(λ) : ∇ · λ = µ− ν

where

E(λ) := inf
{

lim inf
n

E(λGn) : Gn are finite graphs and λGn ⇀ λ
}

.

It is also possible to prove a representation formula for the relaxed energy
E: we have

E(λ) =

{

∫

M θα dH1, if λ = (M, θ, ξ),

+∞ otherwise,
(6.1.2)

where the equality λ = (M, θ, ξ) means that M is a 1−rectifiable set, θ a
real multiplicity, ξ a measurable unit vector field on M tangent to M itself
and λ is the vector measure θξ · H1 M .

Notice that (PX) means minimizing an energy E under a divergence
constraint, exactly as in the minimal flow problem (Proposition 0.1.8). The
difference is that, instead of minimizing the total mass of the vector measure
whose divergence is prescribed, we minimize what is sometimes called its
α−mass Mα (see [73] and [62]).

It should be proven that, when µ and ν are both actually atomic mea-
sures, we retrieve the problem by Gilbert. This is not trivial, as we admitted
lots of new competitors. Moreover, as our relaxation process did not keep
fixed the marginal measures µ and ν, it is not even a priori clear that the
infimum value has not changed. To deal with this problem we need some
necessary optimality conditions: we would like to state that, once we mini-
mize over vector measures Xia’s functional, if µ and ν are themselves finitely
atomic, then any minimizer must actually be a finite graph. The problem of
regularity is addressed to in [73] and [14], but here we will not be concerned
with it.

Another non trivial issue is understanding when the minimum value,
which is always finite in the discrete case, is finite in the general case. This
leads to some conditions on α and the measures µ and ν. We will resume
them in next section.
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6.2 Lagrangian models: traffic plans and patterns

This section is an informal summary of the models in [57] and [13] and their
properties. Languages and approaches have been sometimes simplified to
present them in a more concise way.

Let Ω be a fixed domain in Rd. Let us denote by Γ the set of 1−Lipschitz
curves γ : [0,+∞[→ Ω that are eventually constant. It means that, if we
define the stopping time of a curve γ by

σ(γ) = inf {s : γ is constant on [s,+∞[} ,
these are curves with σ(γ) < +∞. Let us also denote by Γarc the set of
those curves in Γ which are parametrized by arc length and by Γinj the set
of curves in Γ which are injective on [0, σ(γ)[. In the sequel we will often
identify a curve with its image, in the sense that sometimes we will write γ
instead of γ([0, σ(γ)]) = γ([0,+∞[).

Given a probability measure η on the space Γ, for any point x ∈ Rd the
η−multiplicity of x is defined by

[x]η := η {γ ∈ Γ : x ∈ γ([0, σ(γ)])} . (6.2.1)

Then we can define

Zη(γ) =

∫ σ(γ)

0
[γ(t)]α−1η dt and J(η) =

∫

Γ
Zη dη. (6.2.2)

Notice that, for simplicity, here Zη is defined without the term |γ ′|(t) which
appears in the original definition in [13]. As a consequence, it will be deduced
later that minimizers are actually parametrized by arc length.

Finally, we consider the maps π0, π∞ : Γ → Ω, given by π0(γ) = γ(0),
and π∞(γ) = γ(σ(γ)). The two image measures (π0)]η and (π∞)]η, which
belong to P(Ω), will be called the starting and the terminal measure of η,
respectively. Following the notation of [13] we may define a traffic plan as a
measure η ∈ P(Γ) such that

∫

Γ σ(γ)η(dγ) < +∞. We will also call pattern
a traffic plan η such that (π0)]η = δ0. In the case of a pattern the terminal
measure will also be called the measure irrigated by η

The minimization problem proposed in [13] is

(P ) min J(η) : η is a traffic plan, (π∞)]η = µ, (π0)]η = ν,

where µ and ν are given measures in P(Ω). We also denote the set of
admissible traffic plans by TP (ν, µ). As [γ(t)]η ≤ 1, we have Zη(γ) ≥ σ(γ).
Hence it is straightforward that any η such that J(η) < +∞ is actually a
traffic plan.
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Definition 6.2.1. A traffic plan η which minimizes J among all the traffic
plans with the same starting and terminal measures, with J(η) < +∞, will
be called an optimal traffic plan. In the case ν = δ0 it will be called optimal
pattern.

A useful tool developed in [13] (see also [12]) is the following: if η is
concentrated on Γarc ∩ Γinj then the following remarkable formula holds:

J(η) =

∫

Rd
[x]αη H1(dx). (6.2.3)

This formula gives an evident link with Gilbert and Xia’s models.
In the next chapter we will mainly deal with the problem of optimal

patterns, i.e. with the case ν = δ0. This problem requires some extra tools
and concepts that we will present in a while. Before that, let us introduce
another concept which is very typical of the general traffic plan case.

Definition 6.2.2. A curve γ0 : [s0, t0]→ Ω is said to be an arc of η if

η ({γ ∈ Γ : γ0([s0, t0]) ⊂ γ}) > 0.

We move now to the concepts we need to specifically deal with the case
ν = δ0.

For any t ≥ 0 consider an equivalence relation on Γ given by “the two
curves γ1 and γ2 are in relation at time t if they agree on the interval [0, t]”,
and denote the equivalence classes by [·]t, so that

[γ]t = {γ̃ : γ̃(s) = γ(s) for any s ≤ t} .

For notational simplicity, let us set |γ|t,η := η([γ]t).

Definition 6.2.3. Given η ∈ P(Γ), a curve γ ∈ Γ is said to be η−good if

Z0η(γ) :=

∫ σ(γ)

0
|γ|α−1t,η dt < +∞.

Remark 6.2.4. When ν = δ0, the problem of minimizing the functional J0

given by J0(η) =
∫

Γ Z
0
ηdη, is exactly the problem adressed in [57]. Its

equivalence with the traffic plan model we are presenting here, proposed in
[13], is proven in [14] and in [56] and relies on optimality conditions.

Remark 6.2.5. Other intermediate models may be introduced, all differing
in the definition of the multiplicity of the curve γ at time t. See for instance
[15] or [56].
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Here are now the most important optimality results that can be found
in [57], [13], [12], [14] and [56] or easily deduced from them.

1. Problem (P ) admits a solution, provided the infimum is finite (i.e.
there is at least a solution with finite energy).

2. If η is an optimal traffic plan, then η is concentrated on Γarc ∩ Γinj .
In particular, we may apply formula (6.2.3) for J .

3. Suppose that η is an optimal traffic plan, that two curves γ0, γ1 ∈
Γarc∩Γinj meet twice (i.e. γ0(s0) = γ1(s1), γ0(t0) = γ1(t1) and si 6= ti)
and that γ0 on the interval [s0, t0] ia an arc of η. Then either both
curves coincide in the trajectory between the two common points or
we have

∫ t0
s0
[γ0(t)]

α−1
η dt <

∫ t1
s1
[γ1(t)]

α−1
η dt. In particular two different

arcs of η cannot part and then meet again.

4. If η is an optimal pattern (in particular ν = δ0), then for η−a.e. curve
γ and a.e. t < σ(γ) we have [γ(t)]η = |γ|t,η. Roughly speaking this
means that if all the mass starts from a common point then there is
no parting-and-meeting-again-later (this is the single path property
described in [14].

5. As a consequence, any optimal pattern η is concentrated on the set of
η−good curves, and any η−good curve γ belongs to Γarc ∩ Γinj and
satisfies [γ(t)]η = η([γ]t) for any t < σ(γ).

6. Last but not least min (P ) = min(PX), which means that the minima
of the Lagrangian and of the Eulerian model coincide.

For the whole set of equivalences between the different models, see [14].

Remark 6.2.6. Notice that an optimal traffic plan η is concentrated on the
set of η−good curves, but this does not mean that this set is linked to the
support of η. In fact any restriction of an η−good curve is itself an η−good
curve and hence, for instance, in the discrete case, we have plenty of η−good
curves but the support of η is finite. In particular the set of η−good curves
may be very different from the set of fibers of a traffic plan that we find in
[13] or [14] and does not depend on any parametrization χ, but it is more
intrinsic.

Remark 6.2.7. These Lagrangian models may be useful to understand dif-
ferences and similarities with the concentration case of Chapter 4. In fact
it is easy to realize that, even in simple cases such as discrete ones, the way
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the two models combine length and masses are different. In fact, in the
case where some masses (mi)i are transported each one on a segment whose
length is li, in the Xia (or traffic plan or pattern) model the cost is

∑

im
α
i li

while in the concentration case of Chapter 4 is (
∑

im
α
i ) (
∑

imil
p
i )
1/p

. But
the situation changes if we take p =∞ and this is the reason why we insisted
on the case of the space W∞ in Section 0.2 and in Chapter 4. In fact, if we
take a Lipschitz curve µ in W∞ (and we can think a 1−Lipschitz curve up
to reparameterization on a different interval), in analogy to Theorem 0.3.3,
we may think that there is a velocity field v with ||v|| ≤ 1 and that there
is a measure η on Γ (concentrated on solutions of the ODE associated to
the vector field v, i.e. on 1−Lipschitz curves) such that µt = (πt)]η (this is
suggested by some results in [54], but it has to be proven). For simplicty
let us have a look at the pattern case, i.e. µ0 = δ0. In terms of η the two
models give a cost at time t which is

∫

Γ |γ|α−1t,η It<σ(γ)η(dγ) =
∑

i∈I(t)m
α
i for

one and Gα(µt) =
∑

im
α
i for the other. Here mi = η([γi]t) and the curves γi

are representatives of the equivalence classes of time t, the set I(t) denoting
those indexes such that the corresponding classes have not yet stopped. Due
to the optimality condition 3 these masses correspond to the masses of the
atoms of µt (in the sense that two η−good curves arrive at time t at the
same point if and only if they have stayed together from time 0). This shows
that the only difference between the two models is the fact that in the model
concerning curves in W∞ we take into account in the cost also the masses
that have stopped. This is in fact the main difference, which is due to the
fact that the cost at time t is chosen to depend only on the configuration of
masses at time t. It is the price to be paid, having a less accurate and less
realistic model, in order to have it mathematically simpler (as a particular
case of an abstract geodesic problem).

6.3 Irrigation costs and their finiteness

The minimum value of (PX) (or of (P )), which obviously depends on µ and
ν, will be denoted by dα(µ, ν). About its finiteness, there are results on α
ensuring dα(µ, ν) < +∞ for any pair of probabilities (µ, ν) and results con-
cerning the two measures as well, and in particular sort of their dimension.

We know that in the case α = 1 any pair of compactly supported mea-
sures may be linked with finite energy, because we are actually facing the
Monge-Kantorovich problem. It is proven in [72] that, when α is sufficiently
close to 1, namely α > 1− 1/d, the minimum stays finite for any pair (µ, ν).
This is obtained by means of a dyadic construction which is very similar to
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the one we did in Chapter 4 (actually, its our construction which is very sim-
ilar to the one performed by Xia). Moreover the following uniform estimate
(see [72]) holds

dα(µ, ν) ≤ Cα,d diam(Ω). (6.3.1)

It is not difficult to extend the whole model to the case of finite measures
instead of probabilities, thus getting, when µ and ν are two measures with
the same mass m,

dα(µ, ν) ≤ Cα,dmα diam(Ω). (6.3.2)

From (6.3.2) and the fact that the distance dα depends only on µ − ν we
can deduce a sharper estimate which refines (6.3.1), namely

dα(µ, ν) ≤ Cα,d δα diam(ω), (6.3.3)

whenever µ−ν = δ(µ′−ν ′) and µ′ and ν ′ are probability measures on ω ⊂ Ω
(i.e. we have taken into account the possibility that the two measures differ
only on a small set and the mass of the difference is small).

In dimension one this means that for α > 0 there is finiteness of the
minimum. For α = 0 the problem reduces to a length minimization and in
the particular case of d = 1 this has always a finite solution.

In larger dimensions, however, when α is below this threshold there are
pairs of measures which are not linkable by a finite energy configuration.
Since in order to link µ to ν and estimate dα(µ, ν), we can always decide to
link µ to δ0 and then δ0 to ν, we will give the following definition.

Definition 6.3.1. A measure µ is called α−irrigable if dα(µ, δ0) < +∞.
The quantity dα(µ, δ0) will also be denoted by Xα(µ).

In the case d > 1 and α < 1 − 1/d, for a measure µ being α−irrigable
is a fact somehow linked to its “dimension”. The proofs are in [41] and [43]
and give both irrigability and non-irrigability results. In view of the fact
that, for lots of applications, it is very interesting to deal with the case of
the Lebesgue measure on Ω, we will here presents only the results which are
relevant for such a case.

Proposition 6.3.2. If µ is α−irrigable, then µ is concentrated on a set
which is Hd(α)−negligible, where d(α) = 1/(1−α). In particular the Lebesgue
measure is not α−irrigable for α ≤ 1− 1/d.

We do not provide here the complete proof of this fact, but we want
to give a proof of the fact that a measure whose density with respect to
the Lebesgue measure is bounded away from zero may not be irrigated for
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α < 1 − 1/d. It is consequently a very weak result, as it requires the strict
inequality on α and very strong assumptions on the measure, but it has the
advantage of using only the formulation of the problem given by Xia. This
proof comes from some conversations with P. Tilli.

Theorem 6.3.3. Suppose α < 1 − 1/d and that µ ∈ P(Ω) is such that
µ(Q) ≥ c|Q| for a certain c > 0 and any cube Q ⊂ Ω. Then µ is not
α−irrigable.

Proof. Let us divide Ω into small cubes Qi of side ε, thus having approxi-
matively Cε−d cubes. Inside any cube we place a subcube Q′i, with side cε
(c < 1). We fix now two sequence of discrete probability measure µn and νn,
converging to µ and δ0 respectively, such that dα(µ, ν) = lim infn dα(µn, νn).
Once we fix the sequence and the cubes, we will eventually have µn(Q

′
i) ≥

C1ε
d and νn(Qi) ≤ C2ε

d, for C1 > C2 and any index i up to the one for
which we have 0 ∈ Qi. Hence we may deduce that, in the optimal discrete
graph linking µn to νn, for all the indexes i but one, there should be at least
a mass (C2 − C1)εd passing through the region Qi \Q′i. Since the distance
to be covered is at least (1 − c)ε, the energy of the part of the graph con-
tained in Qi \Q′i must be at least Cε1+dα. The total energy is hence at least
Cε1+d(α−1). We can deduce dα(µ, ν) ≥ Cε1+d(α−1) and, being ε arbitrary
and 1 + d(α− 1) < 0, we get dα(µ, ν) = +∞.

Remark 6.3.4. In the previous proof, in the case α = 1−1/d we could not get
the result. Anyway, notice that the energy has been hugely underestimated,
as a consequence of the fact that in any cube Qi only the contribution of
the mass coming from Q′i has been considered, while for most of the cubes
this could be negligible with respect to the mass arriving from other cubes.

Remark 6.3.5. Notice that the threshold 1− 1/d is the same which appears
in Chapter 4 for the concentration case.

6.4 The dα distance and its comparison with W1

In [72] it is proven that, for α > 1 − 1/d, the quantity dα defines a new
distance over the space of probability measures P(Ω), which induces the
weak topology and endows P(Ω) with a structure of length space.

It is natural, as the branching transport problem (PX) comes from a
variant of Monge’s problem, to compare the distance arising here (dα) and
the one coming from Monge-Kantorovich theory (W1). As far as now we
know that the two distances induce the same topology on P(Ω), which is
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the same induced by the weak convergence, and it is easily checked ([72])
that W1 ≤ dα. The purpose of this Section is to give a sharp quantitative
estimate of the kind dα ≤ C(W1)

β . This question was raised as a conjecture
by Cedric Villani while reviewing the PhD Thesis [12]. Such an inequality
would give an a priori estimate on dα which is, by the way, numerically
relevant. Indeed W1 is much easier to compute by linear programming than
dα, which involves a non-convex optimization problem.

This estimate, as we avoid using previous results on the topology induced
by these distances (i.e. no density argument) gives a direct and quantitative
proof of the equivalence between the weak convergence topology and the
topology defined by dα. In fact the only properties on dα we will use are
(6.3.1), (6.3.2) and (6.3.3).

To fix the ideas, we consider two probability measures µ and ν with
support in a d-dimensional cube C with edge 1, say C = [0, 1]d. It is not
difficult to scale the result to any bounded domain in Rd.

Proposition 6.4.1. The following inequality holds for 1 > α > 1− 1
d :

dα(µ, ν) ≤ cW1(µ, ν)
d(α−(1−1/d)),

where c denotes a suitable constant depending only on d and α.

We shall see in Example 6.4.2 that this inequality is sharp.

Proof. Let π0 ∈ P(C × C) be an optimal transport plan between µ and ν.
We denote by p+ and p− the two projections from C × C onto C, so that
p+(x, y) = x, p−(x, y) = y and (p+)]π0 = µ and (p−)]π0 = ν. In what
follows we set δ =W1(µ, ν) and

Ei =

{

(x, y) ∈ C × C = Ω, (2i − 1)
δ

2
≤ |x− y| < (2i+1 − 1)

δ

2

}

.

We can limit ourselves to consider those indexes i which are not too
large, i.e. up to (2i+1 − 1) δ2 ≤

√
d (
√
d being the diameter of C). Let I be

the maximal index i so that this inequality is satisfied. C × C = ∪Ii=0Ei is
a disjoint union and

I
∑

i=0

(2i − 1)
δ

2
π0(Ei) ≤W1(µ, ν) = δ ≤

I
∑

i=0

(2i+1 − 1)
δ

2
π0(Ei) (6.4.1)

We call cube with edge e any translate of [0, e[d. For each i = 0, · · · , I,
using a regular grid in Rd, one can cover C with disjoint cubes Ci,k with
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edge (2i+1 − 1)δ. The number of the cubes in the i−th covering may be
easily be estimated by

(

1

(2i+1 − 1)δ
+ 1

)d

≤
(

c

(2i+1 − 1)δ

)d

= K(i). (6.4.2)

For each index i, it holds C ⊂ ∪K(i)k=1Ci,k and the cubes are disjoint. Set

Ei,k = (Ci,k × C)∩Ei, µi,k = (p+)#(IEi,k ·π0) and νi,k = (p−)#(IEi,k ·π0).

In informal terms we have just cut µ and ν into pieces: the µi are the
pieces of µ for which the Wasserstein distance to the corresponding part νi
of ν is of order 2i δ2 . The measure µi,k is the part of µi whose support is in
the cube Ci,k. What we have now gained is that each µi,k has a specified
diameter of order 2iδ and is at a distance to its corresponding νi,k which
is of the same order 2iδ (see picture 6.1). Let us be a bit more precise.
The support of µi,k is a cube with edge (2i − 1)δ. By definition of Ei, the
maximum distance of a point in the support of νi,k to a point in the support
of µi,k is less than (2i+1 − 1) δ2 . Thus the supports of νi,k and µi,k are both
contained in a same cube with edge c2iδ.

+=

Figure 6.1: Decomposition of Monge’s transportation into the sets Ei,k

By the scaling properties of the dα distance, see (6.3.1), (6.3.2) and
(6.3.3), we deduce:

dα(µi,k, νi,k) ≤ c2iδπ0(Ei,k)α.

From this last relation, the sub-additivity of dα, Hölder inequality, (6.4.1)
and the bound on K(i) given in (6.4.2), one obtains in turn
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dα(µ, ν) ≤
∑

i,k

dα(µi,k, νi,k)

≤
∑

i,k

c2iδπ0(Ei,k)
α = c

∑

i,k

(2iδπ0(Ei,k))
α(2iδ)1−α

≤ c(
∑

i,k

(2iδπ0(Ei,k)))
α(
∑

i,k

2iδ)1−α

≤ c(
∑

i

(2iδπ0(Ei)))
α(

I
∑

i=0

K(i)2iδ)1−α

≤ c(δ)α

(

I
∑

i=0

(

c

(2i+1 − 1)δ

)d

2iδ

)1−α

≤ cδα+(1−d)(1−α)

(

I
∑

i=0

2i(1−d)

)1−α

≤ cδαd−(d−1) = cW1(µ, ν)
αd−(d−1),

where c denotes various constants depending only on d and α and where
the last two inequalities are valid if d ≥ 2 so that the series

∑∞
i=0 2

i(1−d) is
convergent.

In the case d = 1 a different proof is needed. In this case we know
how does an optimal transportation for dα(µ, ν) look like. We refer to the
formulation in (6.1.2), which in the one-dimensional setting gives

dα(µ, ν) =

∫ 1

0
|θ(x)|αdx.

The function θ plays the role of the multiplicity and it is given by

θ(x) = ρ([0, x]), ρ := µ− ν,
as a consequence of its constraint on the derivative. Hence we have

dα(µ, ν) =

∫ 1

0
|ρ([0, x])|αdx ≤

[∫ 1

0
|ρ([0, x])|dx

]α

,

where the inequality comes from Jensen inequality. Then we define the set
A = {x ∈ [0, 1] : ρ([0, x]) > 0} and h(x) = IA(x)− I[0,1]\A(x) and we have
∫ 1

0
|ρ([0, x])|dx =

∫ 1

0
ρ([0, x])h(x)dx =

∫ 1

0
h(x)dx

∫ 1

0
I{t≤x}ρ(dt)

=

∫ 1

0
ρ(dt)

∫ 1

t
h(x)dx =

∫ 1

0
u(t)ρ(dt) ≤W1(µ, ν),
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where u(t) =
∫ 1
t h(x)dx is a Lipschitz continuous function whose Lipschitz

constant does not exceed 1 as a consequence of |h(x)| ≤ 1. Thus the last
inequality is justified by the duality formula (see Section 0.1, (0.1.2)). Hence
it follows easily dα(µ, ν) ≤W1(µ, ν)

α, which is the thesis for the one dimen-
sional case.

As we announced, the result in Proposition 6.4.1 is sharp as far as es-
timates of dα in terms of W1 are concerned. The assumption α > 1 − 1/d
cannot be removed: for d ≥ 2, if we remove it, the quantity dα could be
infinite while W1 is always finite; in dimension one the only uncovered case
is α = 0. In this case dα is in fact always finite but, for instance if µ = δ0
and ν = (1− ε)δ0 + εδ1 we have dα(µ, ν) = 1 while W1(µ, ν) = ε. As ε is as
small as we want, this excludes any desired inequality. Moreover, the expo-
nent d(α− (1− 1/d)) cannot be improved as can be seen from the following
example.

Example 6.4.2. There exists a sequence of pairs of probability measures
(µn, νn) on the cube C such that

dα(µn, νn) = cn−d(α−(1−1/d)) and W1(µn, νn) = c/n.

Proof. It is sufficient to divide the cube C into nd small cubes of edge 1/n

and to set µn =
∑nd

i=1
1
nd
δxi and νn =

∑nd

i=1
1
nd
δyi , where each xi is a ver-

tex of one of the nd cubes (let us say the one with minimal sum of the
d−coordinates) and the corresponding yi is the center of the same cube. In
this way yi is one of the points yj which are the closest to xi. Thus the
optimal configuration both for dα and W1 is given by linking any xi directly
to the corresponding yi. In this way we have

dα(µn, νn) = nd
(

1

nd

)α c

n
= cn−d(α−(1−1/d))

W1(µn, νn) = nd
1

nd
c

n
=
c

n
.
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Chapter 7

Landscape function

In this chapter we propose an interesting feature of branching transport,
which is a function that is associated to a branching transport problem
with one source, and corresponds somehow to the Kantorovich potential
of Monge’s transport. This chapter follows an accepted paper ([68]) whose
motivations lie in different applications. Some of the preliminaries which are
needed (mainly we have to look at the Lagrangian formulations in [57] and
[13]) have been moved to Chapter 6, so that this chapter is much landscape-
focused.

7.1 Motivations

In this chapter we discuss some features of optimal branching structures
which are crucial in river basins applications, but we address also applica-
tions to other fields.

7.1.1 Landscape equilibrium and OCNs in geophysics

It is interesting to see how people working in geophysics arrive in the study of
river basins to some problems which are very similar to the models presented
in Chapter 6. There is a wide literature on this geophysical point of view
and a quite comprehensive reference is [64]. The specific subject dealt with
here is developed both in [64] and in [9] (this last paper being our main
reference, but a short previous summary of these ideas can be found in [8]
as well).

When studying the configuration of a river basin, the main objects are
two: the landscape elevation, which is a function z giving the altitude of
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any point of the region, and a river network N , which is the datum of all
the streams that concur to bring water (which falls on the region as rain) to
a single point (where a lake is supposed to be present). A first link between
the two objects is the fact that at any point the direction followed by water
is the direction of steepest descent of z. Hence, once we know z we are able
to deduce N and to compute the multiplicity θ(x) at any point xç this is
the quantity of water passing through x while following the steepest descent
lines of z. At first the interest is towards an evolution model, which allows z
and N (and hence θ) to depend on time as well. The evolution of z is ruled
by an erosion equation of the form

∂z

∂t
= −θ|∇z|2 + c, (7.1.1)

where ∇z is the spatial gradient of z and c is a positive constant. The idea
is that the erosion effect increases both with the quantity of water and with
the slope. The constant c is called uplift and takes care of the fact that all
the material brought down by erosion is in the end uniformly redistribu-
ted from below in the whole region as a geomorphological effect. Equation
(7.1.1) is in fact a simplified version of other more general evolution equa-
tions involving higher order terms. The following phenomenon concerning
solutions of (7.1.1) can be empirically observed: approximately, up to a
certain time scale both z and θ (i.e. N) move, in a very strong erosional
evolution; then, up to a larger time scale the network is almost constant,
letting θ(x, t) = θ(x) depend on the position only, and the landscape func-
tion evolves without changing its lines of maximal slope; finally there is a
much larger time scale such that z approximatively agrees with a landscape
equilibrium, i.e. a stationary solution of (7.1.1). We are interested in study-
ing landscape equilibria. In this case the steepest descent condition, that
we can read as “∇z follows the direction of the network”, is completed by
a second one which we get by imposing ∂z/∂t = 0 in (7.1.1). This leads to
|∇z| = c1/2θ−1/2 and this last condition is called slope-discharge relation. It
is explicitly suggested in [9] that in (7.1.1) one could change the exponents
of θ and |∇z| (preserving anyway the increasing behavior with respect to
both variables), thus obtaining different slope-discharge relationships. In
general we get |∇z| = c θα−1 and the physically interesting case is when the
exponent α is very close to 1/2.

To find landscape equilibria a discretization is performed in [9] and a
regular square grid is used. Functions defined on the pixels of the grid and
vanishing at a given point x0, representing the outlet, are considered, as well
as networks composed by edges of the grid, directed from every point to one
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of the neighbors.

• As we already mentioned, the conditions on the direction of the water
allow to reconstruct a network from a function. Given a function z
with no local minima other than x0, one can always follow the maximal
slope paths of z.

• These paths are obtained by linking any point x of the grid to a point
which realizes the minimum of z among the neighbors of z. Notice in
particular that these paths are only composed by edges following the
two main directions of the grid.

• In this way a network N = N(z) can be deduced from z.

• On the other hand, the slope-discharge condition allows to reconstruct
a function from a network N , provided it is tree-shaped.

• In order to make this reconstruction, first compute the multiplicities
of the points of the network: at a point x its multiplicity θ(x) is the
number of points which find x on their way to the outlet (this assumes
that the quantity of rain falling down at any pixel is the same, i.e.
rain falls uniformly on the grid). See also Figure 7.1.1, where the
multiplicity of a point xi is computed as the number of points in the
area Ai.

• Then set z(x0) = 0 and for any other point x consider the only path
on N linking x0 to x. Set z(x) =

∑

i θ(xi)
α−1, where the xi’s are the

points on the path. In Figure 7.1.1 the path linking x0 to x is shown.

• In this way we get a function z = z(N).

In general it will not be true that a function z(N) has maximal slope
in the direction of the network N . Finding a landscape equilibrium means
exactly satisfying both conditions at a time, through a fixed point problem.
The algorithm starts from a tree-shaped network N , builds the function
z(N), and then the new network N ′ = N(z(N)). If N ′ = N , then the
landscape function z = z(N) is a landscape equilibrium.

The important idea presented in [9] is the relation between landscape
equilibria and Optimal Channel Networks (OCNs in literature, see for in-
stance [65], [63] and [51]). An OCN is a network N minimizing a certain
dissipated energy. The dissipated energy in a system satisfying the slope-
discharge relation is the total potential energy that water loses on the net-
work. For each pixel we have a quantity of water θ which falls down to
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Figure 7.1: The path from x to x0 and the multiplicity of xi

the next pixel and its elevation decreases by a quantity which is propor-
tional to |∇z| and hence to θα−1. Hence, the total energy loss is given by
∑

i θ(xi)θ(xi)
α−1 =

∑

i θ(xi)
α. It is clear that this energy is the same as in

(6.1.1) (no length of segments is involved because in a regular grid they all
have the same, given, length). What is proven in [9] is that, if N is an OCN
minimizing this energy, then the landscape function z = z(N) reconstructed
from N is in fact an equilibrium. This actually means that not only the
slope of z in the direction of the network is given by θα−1, which is true by
construction, but also that this direction is the direction of maximal slope.

Notice that the problems studied in [9] and in the other papers on the
subject have undergone a very strong discretization. In fact they correspond
to solve (PG) (see Section 6.1) where µ is a discretization on a regular grid of
the Lebesgue measure and ν = δx0 , but with the extra constraint that only
edges eh which are edges of the grid are allowed. Compared to continuous
models there is a loss of rotational invariance, a fixed scale effect due to
the mesh, and several questions concerning the river basin may lose their
meaning (for instance questions about the interfaces between two separated
parts of the basin and points where the water takes two different directions,
or most regularity issues). On the other hand, a continuous counterpart
for the landscape function could not be simply a regular solution of (7.1.1)
or of its statical version: for C1 functions steepest descent curves are well-
defined, but they never merge and therefore do not give raise to a positive
multiplicity θ (except for the case d = 1, see [9]).
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7.1.2 A landscape function appearing for derivative purposes

We will briefly see here another aspect of branching transport problems
such as (PG) where a function similar to the landscape function appears.
We recall that the irrigation cost of a finite atomic measure µ ∈ P(Ω) is the
minimum of problem (PG) for ν = δ0. This quantity, as in the generalization
to the continuum by Xia, is denoted by Xα(µ). A variational analysis of the
functional Xα yields the following.

Theorem 7.1.1. Suppose µ =
∑m

i=1 aiδxi with ai > 0 (so that the finite set
K = {xi : i = 1, . . . , n} is actually the support of µ) and that µ1 is another
probability measure concentrated on K with µ1 =

∑m
i=1 biδxi. Then we have

Xα(µ1) ≤ Xα(µ) + α
m
∑

i=1

z(xi)(bi − ai),

where the function z is defined in this way: take an optimal graph G for
the problem (PG) for the measures µ and δ0; this graph is a tree; for any xi
define

z(xi) =
∑

h∈H(i)

wα−1h H1(eh),

where H(i) denotes the sets of indexes of the edges of the unique path from
0 to xi.

Proof. We will build a new oriented graph which is acceptable for Problem
(PG) when irrigating µ1. This graph will be built by using the same edges
(eh)h as in G but changing the weights wh’s. We define the new weights w′h
by

w′h = wh +
∑

i:h∈H(i)

(bi − ai).

It is easy to check that this new graph satisfies the constraints, and so we
get

Xα(µ1) ≤
∑

h

(w′h)
αH1(eh) ≤ Xα(µ) + α

∑

h

wα−1h

∑

i:h∈H(i)

(bi − ai),

where the last inequality is obtained by concavity of t 7→ tα. By changing
the order in performing the sums we easily get the thesis.

Remark 7.1.2. The link between this function z and the one used in geo-
physics is straightforward: to compute a value z(x) in fact what we do is
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integrating the multiplicity of the graph along the river from 0 up to x. See
Figure 7.1.2 and compare with Figure 7.1.1: in this case there are in general
many more degrees of freedom. The multiplicity of the represented point xi
is the total mass of the region Ai and the geometry of points and edges is
not prescribed.

Ai
x

x0 =0

xi

Figure 7.2: The path from x to x0 and the multiplicity of xi

Remark 7.1.3. As a consequence of Theorem 7.1.1, if we set µε = µ+ε(µ1−
µ), we get the following inequality:

lim sup
ε→0+

Xα(µε)−Xα(µ)

ε
≤
∫

z d(µ1 − µ).

This inequality gives information on the derivative of the functional Xα and
this fact is very useful in variational problems of the following kind:

(P+) min Xα(µ) + F (µ),

where F may be any functional whose derivative is known. We will show
later an example and briefly explain the interest of these problems.

Remark 7.1.4. The result of Theorem 7.1.1 has been established under no
constraints on the direction of the edges, i.e. in the setting of problem (PG).
It is easy to reproduce them in the case of grid-constrained OCNs, as in the
proof there is no need to change the edges of the graph. Hence it is a result
which is valid also in the setting of [9].

Our main goal is hence to define a landscape function in the continuous
case and analyze its properties. We will use the models about these irrigation
problems concerning arbitrary probability measures (and not only atomic
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ones) that we mentioned before. In particular the Lagrangian models will
be very useful. We will consider the irrigation of an arbitrary measure on a
domain Ω starting from a single source δ0. Here the main problem is that
the optimal structures which arise are not necessarily trees in the sense that
there may be points which are reached by several curves. We will anyway
propose a landscape function z and check that it is well-defined. Then we
will prove that it shares all the properties that we had in the discrete case,
in particular the fact that on a point x0 of the irrigation network it has
maximal slope in the direction of the network itself and that this slope is
given by θα−1, where θ is the multiplicity of the network at x0. Moreover we
will prove that even in the continuous case an inequality on the derivative
of the energy Xα involving the landscape function is available and finally we
will give some continuity and semicontinuity results.

The interest of generalizing the concept of landscape function to the
irrigation of arbitrary probability measures does not have only variational
applications. In river basins applications, in fact, it is natural to consider
directly a configuration where the starting measure is the Lebesgue measure
instead of considering a grid discretization. Moreover, getting rid of the
discretization will also add isotropy and other features to the models in [9]
and [64].

7.2 A general development formula

As we announced we will use the framework that has been introduced in
[57] and in [13] and presented in this thesis in Section 6.2. In this section
we will develop in a useful way the variation of the functional J (see (6.2.2))
when passing from a traffic plan η to a traffic plan η′. Formula 6.2.3 will be
crucial.

Theorem 7.2.1. Let η and η′ be probability measures on Γ and ∆η = η′−η.
Let us suppose that both η and ∆η are concentrated on Γarc ∩ Γinj and
∫

Γ Zη d|∆η| < +∞. Then

J(η′) ≤ J(η) + α

∫

Γ
Zη d∆η − α(1− α)

∫

Rd
[x]2∆ηH1(dx). (7.2.1)

Proof. For any traffic plan η, let us set Sη = {x ∈ Rd : [x]η > 0}. First we
prove that, under the assumptions of this theorem, we have H1(Sη′ \Sη) = 0.
In fact, for any point x ∈ Sη′ \Sη we have necessarily [x]η = 0 and [x]∆η > 0.
Hence it is sufficient to prove that the integral of [x]∆η on this set w.r.t. H1
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vanishes to get the desired result. We have

∫

Sη′\Sη

[x]∆ηH1(dx) =
∫

Sη′\Sη

H1(dx)
∫

Γ
∆η(dγ)Ix∈γ =

∫

Γ
∆η(dγ)H1

(

γ∩(Sη′\Sη)
)

.

The second assumption of the theorem implies that for ∆η−a.e. curve γ
the quantity Zη(γ) is finite and hence, for a.e. t, we have γ(t) ∈ Sη. Since
γ is 1−Lipschitz continuous, this yields H1 (γ \ Sη) = 0. Hence we have
∫

Sη′\Sη
[x]∆ηH1(dx) = 0, which proves H1(Sη′ \ Sη) = 0.

Now, as both η and η′ are concentrated on Γarc ∩ Γinj , to evaluate J we
can use the expression in (6.2.3) and get

J(η′) =

∫

Sη

([x]η + [x]∆η)
αH1(dx)

≤ J(η) + α

∫

Sη

[x]α−1η [x]∆ηH1(dx)− α(1− α)
∫

Sη

[x]2∆ηH1(dx), (7.2.2)

where we have used the fact that Sη′ ⊂ Sη up to H1−negligible sets and the
concavity inequalities

(t+s)α ≤ tα+αtα−1s−α(1−α)(max{t, t+s})α−2s2 ≤ tα+αtα−1s−α(1−α)s2

(this last inequality being valid when both t and t+ s belong to ]0, 1]).
Let us now work on the second term of the last sum we obtained. We

have
∫

Sη

[x]α−1η [x]∆ηH1(dx) =
∫

Sη

H1(dx)
∫

Γ
∆η(dγ) [x]α−1η Ix∈γ .

Here we want to change the order of integration and to do this we check
what happens in absolute value:

∫

Sη

H1(dx)
∫

Γ
|∆η|(dγ)[x]α−1η Ix∈γ =

∫

Γ
|∆η|(dγ)

∫

Sη

H1(dx) [x]α−1η Ix∈γ

=

∫

Γ
|∆η|(dγ)

∫ σ(γ)

0
[γ(t)]α−1η dt =

∫

Γ
Zηd|∆η| < +∞. (7.2.3)

In this series of equality, the first one is just changing the integration order,
while the second relies on the fact that |∆η|−a.e. we have H1(γ \ Sη) = 0
and, γ being parametrized by arc length, the H1−integral on its image may
become an integral in dt on [0, σ(γ)]. The finiteness of the last integral in

157



(7.2.3) allows us to change the order of integration between ∆η and H1 and
by analogous computations we get

∫

Sη

H1(dx)
∫

Γ
∆η(dγ)[x]α−1η Ix∈γ =

∫

Γ
Zη d∆η.

Inserting this last equality in (7.2.2) gives the thesis.

7.3 Landscape function: existence and applica-

tions

In this section we come specifically back to Problem (P ) for ν = δ0. Even
when not specifically stated, from now on η will be an optimal pattern
irrigating an α−irrigable measure µ.

7.3.1 Well-definedness of the landscape function

First a very elementary truncation lemma is needed. As it is just the formal-
ization of a well-known principle (that a part of an optimal structure is itself
optimal), it will not be proven here. It is in fact proven in [14] when stating
the optimality of the connected components of a traffic plan in Rd \ {x0}.

Lemma 7.3.1. If γ0 is a curve such that |γ0|t0,η > 0, set x0 = γ0(t0),
A = [γ0]t0, µA = (π∞)](IA·η), µ′ = µ−µA+η(A)δx0 , η

′ = η−IA·η+η(A)δγ0,
where the curve γ0 is the curve γ0 stopped at time t0. Then η

′ is an optimal
pattern irrigating the measure µ′.

Theorem 7.3.2. If γ0 and γ1 are two η−good curves sharing the same
end-point x, then Zη(γ0) = Zη(γ1).

Proof. If the two curves are identical the thesis is easily obtained. If they
are not identical, then they must split at a certain time t. It is possible
that one of them stops at time t, but not both (in this case they would be
identical). Then we can choose two times t0 and t1 with |γi|ti,η > 0 and
t ≤ ti ≤ σ(γi) for i = 0, 1 (if one of the two curves stops at time t, say for
instance σ(γ0) = t, then we are forced to choose t0 = σ(γ0) = t and we have
|γ0|t0,η = |γ1|t,η > 0, where the inequality is a consequence of t < σ(γ1)).
Figure 7.3.1 shows the two possible situations.

Let us set xi = γi(ti) and l = |x1 − x0|. Then we use the notations of
the previous Lemma and we write

dα(δ0, µ
′) ≤ dα(δ0, µ′′) + dα(µ

′, µ′′), (7.3.1)
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Figure 7.3: Both curves may go on after t or one may stop

where µ′′ = µ− µA + η(A)δx1 . Define η′′ = η − IA · η + η(A)δγ1 , where γ1 is
the curve γ1 stopped at time t1. It is easy to check (π∞)]η

′′ = µ′′ and then

dα(δ0, µ
′′) ≤ J(η′′) ≤ J(η′) + α

∫

Γ
Zη d(η

′′ − η′)

= J(η′) + αη(A)

(∫ t1

0
|γ1|α−1t,η dt−

∫ t0

0
|γ0|α−1t,η

)

.

Here we have used Theorem 7.2.1 to estimate J(η′′). Actually by this theo-
rem we should have had Zη′ instead of Zη. Yet we can interchange Zη′ and
Zη because we have only replaced the measure η on A by a same amount of
mass concentrated on γ0, and on γ0 ∪ γ1 this does not affect multiplicities.
As far as the second term of the sum in (7.3.1)is concerned it is easy to see
that we have

dα(µ
′, µ′′) ≤ lη(A)α.

By inserting these estimates in (7.3.1) we get

∫ t0

0
|γ0|α−1 dt−

∫ t1

0
|γ1|α−1 dt ≤ α−1lη(A)α−1.

Now estimate the length l by

l = |x0 − x1| ≤ |x0 − x|+ |x− x1| ≤ (σ(γ0)− t0) + (σ(γ1)− t1)

≤ η(A)1−α
∫ σ(γ0)

t0

|γ0|α−1t,η dt+ η(B)1−α
∫ σ(γ1)

t1

|γ1|α−1t,η dt.

Hence

∫ t0

0
|γ0|α−1dt−

∫ t1

0
|γ1|α−1dt ≤α−1

(

∫ σ(γ0)

t0

|γ0|α−1t,η dt+
η(B)1−α

η(A)1−α

∫ σ(γ1)

t1

|γ1|α−1t,η dt

)

.
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Notice that we cannot have |γi|σ(γi),η > 0 for both i = 0, 1, thanks to the
no-loop property (property 3). So, if it is |γ1|σ(γ1),η = 0, once we fix t0 such
that η(A) > 0, we can choose t1 so that η(B) ≤ η(A) since η(B) → 0 as
t1 → σ(γ1). Otherwise, if |γ1|σ(γ1),η > 0, we can choose directly t1 = σ(t1).
In both cases we have
∫ t0

0
|γ0|α−1 dt−

∫ t1

0
|γ1|α−1 dt ≤ α−1

(

∫ σ(γ0)

t0

|γ0|α−1t,η dt+

∫ σ(γ1)

t1

|γ1|α−1t,η dt

)

.

(7.3.2)
Then we let t0 and t1 tend to σ(γ0) and σ(γ1), according to the criteria for
the choice of t1 we have used so far, and we get at the limit

Zη(γ0)− Zη(γ1) ≤ 0,

because the integral terms on the right hand side of (7.3.2) tend to zero
as a consequence of the fact that γ0 and γ1 are both η−good curves. By
interchanging the role of γ0 and γ1 the thesis is proven.

Corollary 7.3.3. If two different η−good curves γ0 and γ1 meet at a certain
point x = γ0(t0) = γ1(t1), then |γ0|t0,η = |γ1|t1,η = 0.

Proof. If one of the two multiplicities |γi|ti,η were positive a strict inequality
between Zη(γ0) and Zη(γ1) should hold. Yet equality has just been proven
and this is a contradiction.

Corollary 7.3.4. Any η−good curve γ is in fact injective on [0, σ(γ)].

Proof. The injectivity on [0, σ(γ)[ is already known. Hence, consider the
case γ(σ(γ)) = γ(t) for t < σ(γ). This would imply |γ|t,η > 0 but it is
contradiction with Corollary 7.3.3, applied to the curve γ and to the curve
γ, which is γ stopped at time t.

Remark 7.3.5. The injectivity on [0, σ(γ)] was already known for η−a.e.
curve γ (see [13]). Yet, it was not possible to identify an explicit class of
curves sharing this property. For our purposes it is important to switch from
a generic “a.e.” to the fact that this is true for η−good curves.

The result of Theorem 7.3.2 allows us to define a function on Ω by the
values of Zη.

Definition 7.3.6. We define the landscape function associated to the traffic
plan η as the function zη given by

zη(x) =

{

Zη(γ) if γ is η−good and x = γ(σ(γ));

+∞ if no η − good curve ends at x.
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Remark 7.3.7. It was in fact possible to prove more easily that µ−a.e. the
value of z was well defined (in the sense that if on a non negligible set of
points x we had two different values for Zη we would have had the possibility
to strictly improve the value of J). Yet, we do not want a function z which
is defined a.e. but a pointwisely defined value, to deal later with pointwise
properties, being also concerned with negligible sets such as Sη.

Remark 7.3.8. Notice, as in Remark 6.2.6, that restrictions of η−good curves
are still η−good and that this implies that if the landscape function is finite
on a point x then it is finite also on the whole η−good curve arriving up to
x.

7.3.2 Variational applications: the functional Xα

Some consequences of the existence of the landscape function are presented
here.

Corollary 7.3.9. For the functional Xα we have the following represen-
tation formula Xα(µ) =

∫

Ω z dµ, where z = zη is the landscape function
associated to any optimal pattern η irrigating the measure µ.

Proof. It is sufficient to take the formula Xα(µ) = J(η) =
∫

Γ Zηdη and use
the fact that Zη(γ) depends only on π∞(γ) through Zη(γ) = z(π∞(γ)) and
get

Xα(µ) =

∫

Γ
Zηdη =

∫

Ω
z d(π∞)]η =

∫

Ω
z dµ.

Corollary 7.3.10. If µ is α−irrigable, then any landscape function z is
finite µ−a.e.

Proof. Corollary 7.3.9 yields
∫

z dµ = Xα(µ) < +∞ and from this the result
is straightforward.

Remark 7.3.11. As the word “any” in the previous statement suggests, there
is no uniqueness for the landscape function, and there is a landscape function
for any optimal pattern.

Moreover, using Theorem 7.2.1 together with the existence of the land-
scape function, a derivative result extending the discrete case can be ob-
tained. Notice that the following theorem will be useful also for other pur-
poses, for instance when looking for continuity properties of the landscape
function (see Section 6).
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Theorem 7.3.12. For a given function g on Ω, such that ||g||L∞(µ) ≤ 1
and

∫

Ω g dµ = 0, set µ1 = µ(1 + g). Then

Xα(µ1) ≤ Xα(µ) + α

∫

Ω
z(x)g(x)µ(dx),

where the function z = zη is the landscape function according to an arbitrary
optimal pattern η irrigating the measure µ.

Proof. We will consider a variation of η given by η1 = (1 + (g ◦ π∞)) · η.
Since (π∞)]η1 = (1 + g) · µ, we have

Xα(µ1)−Xα(µ) ≤ J(η1)− J(η).

We want to apply Theorem 7.2.1 to this situation, with ∆η = (g ◦ π∞) · η.
Since ∆η is absolutely continuous with respect to η with bounded density,
it is straightforward that both the conditions required by the theorem (∆η
being concentrated on Γarc∩Γinj and Zη being |∆η|−integrable) are satisfied,
so that one gets

J(η′) ≤ J(η) + α

∫

Γ
Zηd∆η.

Now use the fact that Zη depends only on its terminal point and get

∫

Γ
Zηd∆η =

∫

Ω
z d((π∞)]∆η) =

∫

Ω
zgdµ.

Putting together all the results yields the thesis.

A simple consequence of this theorem may be expressed in terms of
derivatives.

Corollary 7.3.13. Set µε = µ + εg · µ. Then the following derivative
inequality holds:

lim sup
ε→0+

Xα(µ+ εg · µ)−Xα(µ)

ε
≤ α

∫

Ω
z(x)g(x)µ(dx).

7.3.3 A transport and concentration problem

As we said the last derivative inequality may be useful in variational prob-
lems involving Xα. For the sake of clearness we provide a short example, of
the kind we referred to as (P+) in Section 7.1.
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Example 7.3.14. Let us consider the functional F : P(Ω) → [0,+∞] given
by

F (µ) =

{

∫

Ω u
2 dLd if µ = u · Ld,

+∞ if µ is not absolutely continuous.

If we want to minimize (for α > 1 − 1/d) the sum Xα(µ) + F (µ) over all
probabilities µ on Ω we get as an optimality condition, by deriving and using
Corollary 7.3.13,

αz + 2u = const a.e. on {u > 0}. (7.3.3)

This implies several interesting properties. First of all we can notice that,
both z and u being positive, they are also bounded. It was not a priori
evident that u ∈ L∞(Ω), since the natural condition was u ∈ L2(Ω). Since
z(x) ≥ |x|, this gives also an estimate on the support of µ. As the constant
appearing in (7.3.3) could be uniformly estimated (it is sufficient to multi-
ply (7.3.3) by u and integrate, thus obtaining const = αXα(µ) + 2F (µ) ≤
2min(Xα + F )), this could also be used to prove an existence result for
Ω = Rdç we may also prove that actually minimizers of Xα + F are sup-
ported in a given bounded ball. Moreover, Formula 7.3.3 yields some regu-
larity result on u according to the results we will prove later on z.

Variational problems such as (P+) have been first proposed in [57], where
the authors suggested to consider problems involving both the irrigation pat-
tern χ and the irrigated measure µχ. Moreover they are very similar to what
considered in Chapter 1 and they fall into the framework of transport and
concentration problems proposed in Chapter 3. It is in fact the minimiza-
tion of a functional Fν with ν = δ0 (a very much concentrated choice for ν).
Exactly as the models in Chapter 1 were proposed to study urban planning
problems, with µ standing for the population density in a region, (P+) may
be used in studying the shape of a leaf or a flower, represented by µ. In
fact the minimization of a sum of an Xα term and a convex functional on µ
could be an easy model taking into account that leaves want to be as spread
as possible to catch sunlight but have to be irrigated starting from a single
source. This model has been informally proposed by G. Buttazzo. Another
model for the formation of tree leaves taking into account irrigation costs
may be found in [76], but it has a different nature, as it takes care of the
evolution and growth of the leaf.

In the framework of Chapter 1 the key condition coming from optimality
was ψ+ f ′(u) = const and the landscape function z dealt with in this paper
plays somehow the role of the Kantorovich potential ψ. Also Corollary
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7.3.9 can be seen as a similarity between the landscape function and the
Kantorovich potential. Moreover, the Hölder continuity result at the end of
this paper perfectly agrees with the fact that Kantorovich potentials (which
correspond to α = 1) are Lipschitz continuous.

7.4 Properties of the landscape function

7.4.1 Semicontinuity

Lemma 7.4.1. Given any η ∈ P(Γ), the function Zη : Γ → R is lower
semi-continuous with respect to pointwise convergence.

Proof. This result is almost implicitly proven both in [57] and in [13], but
never explicitly stated. It is anyway proven that x 7→ [x]η is upper semi-
continuous, and hence x 7→ [x]α−1η is l.s.c. Then, to prove lim infn Zη(γn) ≥
Zη(γ), fix a time t1 < σ(γ) and use lim inf σ(γn) ≥ σ(γ). Eventually we
have σ(γn) > t1 and, by Fatou’s Lemma, we get

lim inf
n

Zη(γn) ≥ lim inf
n

∫ t1

0
[γn]

α−1
η dt ≥

∫ t1

0
[γ]α−1η dt.

Passing to the limit as t1 → σ(γ) gives the thesis.

Theorem 7.4.2. The landscape function z is lower semi-continuous.

Proof. Consider a sequence xn → x and, correspondingly, some η−good
curves γn such that π∞(γn) = xn and z(xn) = Zη(γn). We may as-
sume supn z(xn) < +∞. Since it holds σ(γn) ≤ Zη(γn) = z(xn), we
also have supn σ(γn) < +∞ and we can extract a subsequence (not re-
labeled) such that γn → γ uniformly. It is not difficult to prove that
π∞(γ) = x. Thus, it is sufficient to use Lemma 7.4.1 to get Zη(γ) ≤
lim infn Zη(γn) = lim infn z(xn). This implies that γ is an η−good curve
and that z(x) = Zη(γ), which yields the thesis.

7.4.2 Maximal slope in the network direction

The next property that can be proven in general (i.e., under no extra as-
sumption on α, Ω, µ . . . ) on the landscape function is the most important in
view of its meaning in river basins applications. Our interest is a continuous
counterpart of the landscape function of [9]. What we actually need is a
result concerning the fact that, on the points of the irrigation network Sη,
the direction of maximal slope of z is exactly the direction of the network. If
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an η−good curve γ0 is fixed, from the definition of z for a.e. t0 the derivative
of z along the curve γ at the point x0 = γ0(t0) is exactly |γ0|α−1t0,η

. This is the
reason why we prove the following result. Notice that, as we said, in this
continuous case the function z cannot be expected to be very regular, and in
fact the maximal slope result we are going to prove involves differentiability
in a very pointwise way but very weak as well.

Theorem 7.4.3. Let x0 = γ0(t0), where γ0 is an η−good curve, t0 a time
such that t0 ≤ σ(γ0) and θ0 := |γ0|t0,η > 0. Then, for any x /∈ γ0([0, t0]), we
have

z(x) ≥ z(x0)− θα−10 |x− x0| − o(|x− x0|).
This corresponds to saying that the slope at x0 in the direction of the network
is actually the maximal slope at x0.

Proof. Let us fix x /∈ γ0([0, t0]) such that z(x) < z(x0). We may assume that
x = γx(tx) for an η−good curve γx (otherwise z(x) = +∞) and that the two
curves γ0 and γx get apart at a certain time t1(x) < t0 (the case t1(x) ≥ t0
implies in fact z(x) ≥ z(x0)). By Lemma 7.4.4 (see below) we know that
t1(x) → t0 as |x − x0| → 0. Let us set θ(t) = |γ0|t,η: for t ∈ [t1(x), t0] we
may write θ(t) ≤ θ0(1 + εx), where εx is infinitesimal as |x − x0| → 0 as a
consequence of t1(x) → t0. We use again Lemma 7.3.1 and its notations.

x0 t0 x t
,

, x

x1,t1(x)

γ
0 γx

Figure 7.4: Curves and points in the proof

In particular A = [γ0]t0 and θ0 = θ(t0) = η(A). Let us also define, as in
Theorem 7.3.2, µ′′ = µ− µA + η(A)δx and η′′ = η − IA · η + η(A)δγx , where
the curve γx is the curve γx stopped at time tx, and it is easy to check that
(π∞)]η

′′ = µ′′. Then, by the optimality of η′ (we recall, according to the
notations of Lemma 7.3.1 µ′ = µ−µA+η(A)δx0 and η′ = η−IA ·η+η(A)δγ0 ,
where γ0 is the curve γ0 stopped at time t0, see also Figure 7.4.2), we have

J(η′) = Xα(µ
′) ≤ Xα(µ

′′) + dα(µ
′′, µ′) ≤ J(η′′) + |x− x0|θα0 . (7.4.1)
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We want to compare J(η′) and J(η′′) and to do this here we need a more
refined estimate than what we could find by using Theorem 7.2.1. As η′ −
η′′ = θ0(δγ0 − δγx), we have in particular [y]η′′ = [y]η′ + θ0(Iy∈γx − Iy∈γ0).
By using Formula (6.2.3) we get the following:

J(η′′)−J(η′) =
∫

γx\γ0

(

([y]η′ + θ0)
α− [y]αη′

)

dH1−
∫

γ0\γx

(

[y]αη′ − ([y]η′− θ0)α
)

dH1.

It is not difficult to check that, for y ∈ γx ∪ γ0, it holds [y]η′ = [y]η, as we
have replaced the part of η concentrated on A by an equal amount of mass
on γ0. Hence we may estimate (rewriting the integrals w.r.t. H1 as integrals
in dt)

J(η′′)− J(η′) ≤ α
∫ tx

t1(x)
|γx|α−1t,η θ0 dt−

∫ t0

t1(x)
(θ(t)α − (θ(t)− θ0)α) dt.

Since the function s 7→ sα − (s − θ0)α is decreasing and θ(t) ≤ (1 + εx)θ0,
we get θ(t)α − (θ(t)− θ0)α ≥ θα0 ((1 + εx)

α − εαx). Hence we have

J(η′′)− J(η′) ≤ α(z(x)− z(x1))− |t0 − t1(x)|θα0 ((1 + εx)
α − εαx) ,

where x1 = γ0(t1(x)) = γx(t1(x)). Write (1 + εx)
α − εαx = (1 + ε′x)

−1

and ε′x > 0 is infinitesimal as x → x0. From θα−10 ≥ (θ(t))α−1 we get
|t0 − t1(x)|θα0 ≥ θ0(z(x0)− z(x1)). Now notice that, for |x− x0| sufficiently
small, the inequality α < (1 + ε′x)

−1 is satisfied, and hence

J(η′′) ≤ J(η′) + (1 + ε′x)
−1θ0(z(x)− z(x0).

If we finally insert it into (7.4.1) we finally get

z(x)− z(x0) ≥ −θα−10 |x− x0|(1 + ε′x), .

Lemma 7.4.4. According to the notations of Theorem 7.4.3, when x→ x0
and z(x) ≤ z(x0), the parting time t1(x) tends to t0.

Proof. Suppose, by contradiction, that there exists a sequence xk → x0
such that limk t1(xk) = t < t0 and z(xk) ≤ z(x0). Since γ0 is injective
(Corollary 7.3.4), we may infer the existence of a positive quantity δ such
that |γ0(t1(xk))− x0| ≥ δ (otherwise there would be a time t ≤ t < t0 with
γ0(t) = x0). For any k consider an η-good curve γk such that xk = γk(tk).
First notice that, at least for k large enough, thanks to |γk(t1(xk))− xk| =
|γ0(t1(xk)) − xk| → |γ0(t) − x0| ≥ δ, we have tk > t + δ/2. Then let us
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consider the points γk(t + δ/2): this collection of points must in fact be
finite, otherwise we would have |γk|t+δ/2,η → 0 and hence

z(xk) ≥ |γk|α−1t+δ/2,η
|tk − (t+ δ/2)| → +∞

because |tk − (t+ δ/2)| ≥ |xk − γ0(t)| − δ/2 ≥ δ/2. This is in contradiction
with z(xk) ≤ z(x0) and then we may suppose, up to subsequences, that
γk(t + δ/2) = x (for a point x which does not belong to the image of γ0,
otherwise we would contradict Property 3) and that γk uniformly converges
to a curve γ. At the limit we should get a curve γ passing through γ0(t), x
and x0, i.e. we have created a loop because γ0 does not pass through x (see
Figure 7.4.2 as well).

t1(k)

xk
x0

t

( t+  /2)δγ
k

Figure 7.5: A sequence of curves creating a loop at the limit

From z(xk) ≤ z(x0) we can infer by semicontinuity (Lemma 7.4.1) that
γ is an η−good curve and hence this loop is against Corollary 7.3.3.

7.5 Hölder continuity under extra assumptions

Here we will be able to prove some extra regularity properties on z, but
we have to add some assumptions. The most important ones are on α
(α > 1− 1/d is required) and on the irrigated measure µ (a lower bound on
its density).

7.5.1 Campanato spaces by medians

We will here give a simple variant of a well-known result by Campanato (see
[34]) about an integral characterization of Hölder continuous functions.

Definition 7.5.1. Given a measurable function u on a domain U we call
median of u in U any number m which satisfies the following equivalent
conditions:
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• |{x ∈ U : u(x) > m}| ≤ 1
2 |U | and |{x ∈ U : u(x) < m}| ≤ 1

2 |U |;

• there exists a measurable subset A ⊂ {x ∈ U : u(x) = m} such that
|{x ∈ U : u(x) > m} ∪A| = 1

2 |U |;

• the function t 7→
∫

U |u(x)− t|dx achieves its minimum at t = m.

The sets of medians of u in U is an interval of R; the middle point of this
interval is called central median of u in U

Definition 7.5.2. If A is a given positive number, a domain Ω ⊂ Rd is
said to be of type A if it holds |Ωx0,r| ≥ Ard for any r ∈ [0, diamΩ], where
Ωx0,r = Ω ∩B(x0, r).

Lemma 7.5.3. If Ω is a domain of type A and u is a function in L1(Ω)
such that

∫

Ωx0,r

|u− ũx0,r|dx ≤ Crd+β ,

for a finite constant C and any r ∈ [0, diamΩ], where ũx0,r is the central
median of u on Ωx0,r, then u admits a representative which is Hölder con-
tinuous of exponent β.

Proof. This is nothing but the fact that Campanato spaces may be built by
using medians instead of average values. See the proof of Theorem 1.2 at
page 70 in [46] and adapt it. In fact it is easy to see that for each point x0
the value ũx0,r converges as r → 0 to a value ũ(x0) and that

|ũ(x)− ũ(y)| ≤ C|x− y|β ,

exactly as in the proof we mentioned. What we need to prove is that ũ(x) =
u(x) a.e.. This can be obtained in this way: let us denote the average value
of u on Ωx0,r by ux0,r. Then

|ux0,r−ũx0,r| ≤ |Ωx0,r|−1
∫

Ωx0,r

|u(x)−ũx0,r|dx ≤ |Ωx0,r|−1
∫

Ωx0,r

|u(x)−ux0,r|dx,

where the second inequality has been established as a consequence of the
minimality property of the median. As at Lebesgue points the last expres-
sion tends to zero, this implies that the average ux0,r and the median ũx0,r

share the same limit a.e. On the same points we also have ux0,r → u(x0),
and this proves ũ(x0) = u(x0) a.e.
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7.5.2 Hölder continuity of the landscape function

Theorem 7.5.4. Suppose that Ω is a domain of type A for A > 0, that
α > 1 − 1/d and that µ ∈ P(Ω) is a probability measure such that the
density of its absolutely continuous part is bounded from below by a positive
constant. Then any landscape function z has a representative z̃ which is
Hölder continuous of exponent β = d(α− (1− 1/d)).

Proof. Let us fix a measure µ1 and apply Theorem 7.3.12 to it and µ. By
using the triangle inequality for dα, we get

−dα(µ, µ1) ≤ Xα(µ1)−Xα(µ) ≤ α
∫

Ω
z d(µ1 − µ), (7.5.1)

provided µ1 is a measure of the form allowed in Theorem 7.3.12, i.e. µ1 << µ
with bounded density. From (7.5.1) we get

α

∫

Ω
z d(µ− µ1) ≤ dα(µ, µ1). (7.5.2)

Suppose that µ has an absolutely continuous part with density everywhere
larger than λ0 > 0 and choose

µ1 = µ− λ0IA · Ld + λ0IB · Ld,
where A and B are two measurable subsets of Ωx0,ε with |A| = |B|, A∪B =
Ωx0,ε and A ⊂ {z ≥ m} and B ⊂ {z ≤ m} and m is the central median
value for z in Ωx0,ε. By construction µ1 is a probability measure to which
the estimate of Theorem 7.3.12 may be applied. With this choice of µ and
µ1 we get
∫

Ω
z d(µ− µ1) =

∫

A
z(x)λ0 dx−

∫

B
z(x)λ0 dx

= λ0

(∫

A
(z(x)−m)dx−

∫

B
(z(x)−m)dx

)

= λ0

∫

Ωx0,ε

|z(x)−m|dx.

Putting into (7.5.2)
∫

Ωx0,ε

|z(x)−m|dx ≤ (αλ0)
−1dα(µ, µ1).

To estimate dα(µ, µ1) use (6.3.3) and get
∫

Ωx0,ε

|z(x)−m|dx ≤ Cα,d

λ1−α0

ε1+αd.

Since 1 + αd = d+ β, Lemma 7.5.3 may be applied.
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An important consequence of this fact is the following:

Corollary 7.5.5. Under the same assumptions on Ω, α and µ of Theorem
7.5.4, the inequality

Xα(µ1) ≤ Xα(µ) +

∫

Ω
z̃d(µ1 − µ)

holds for any measure µ1 ∈ P(Ω).

Proof. The inequality holds for µ1 of the form µ1 = (1+ g) ·µ with g ∈ L∞,
but any measure µ1 ∈ P(Ω) may be approximated by these kind of measures.
Since z̃ is continuous, at both the sides of the inequalities we have quantities
which are continuous with respect to weak convergence in the variable µ1.
This allows to conclude that the same inequality is valid for any µ1.

Even if we have proven that the landscape function z equals a.e. a
function which is Hölder continuous, this is not enough. In fact, this result
does not provide information on the behavior of z on negligible sets. Yet,
the pointwise values of z on Sη are of particular interest (as in last Section),
and Sη is one-dimensional and thus negligible. This is why the next step
will be proving that z and z̃ actually agree everywhere.

Theorem 7.5.6. Let mε denote the central median of z in the ball B(x0, ε).
Under the same assumptions of Theorem 7.5.4 one has mε → z(x0) as
ε→ 0. Consequently, we have z̃(x0) = z(x0).

Proof. By the semicontinuity of z it is easy to get lim infε→0mε ≥ z(x0),
hence only an estimate from above for mε is needed. Let us now con-
sider a ball B(x0, ε) and a set Aε ⊂ B(x0, ε) ∩ {z ≥ mε} such that
|Aε| = |B(x0, ε)|/2. Then set Γε = {γ ∈ Γ : π∞(γ) ∈ Aε}, µε =
µ + µ(Aε)δx0 − IAε · µ, and ηε = η + η(Γε)δγ0 − IΓε · η, where γ0 is an
η−good curve stopping at x0. Theorem 7.2.1 can be applied to η and ηε
and hence we have

J(ηε) ≤ J(η)+α

(

η(Γε)Zη(γ0)−
∫

Γε

Zηdη

)

= J(η)+αµ(Aε)z(x0)−α
∫

Aε

z(x)µ(dx)≤J(η) + αµ(Aε)(z(x0)−mε).

Hence we have

Xα(µ) ≤ Xα(µε)+Cεµ(Aε)
α ≤ Xα(µ)+αµ(Aε)(z(x0)−mε)+Cεµ(Aε)

α.
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This implies
mε − z(x0) ≤ Cεµ(Aε)α−1 ≤ Cε1+d(α−1).

Since the exponent 1+d(α−1) is larger than 0 we get lim supε→0mε ≤ z(x0).
To get the second part of the thesis, just use z̃(x0) = limε→0mε.

Remark 7.5.7. The landscape function z is in general never Lipschitz con-
tinuous (not even locally), as on the set Sη it has slopes given by θα−1.
This means that, if we have arbitrarily small values of θ, we cannot have a
Lipschitz constant for z. Yet estimates of the kind θ ≥ c > 0 would imply
H1(Sη) < +∞ and no measure whose support is not one-dimensional may
be irrigated by a set of finite length (or locally finite length).

Remark 7.5.8. Notice that the Hölder exponent β is the same of the inequal-
ity dα ≤ cW β

1 of Section 6.4.
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Chapter 8

Blow-up for optimal

one-dimensional sets

In this chapter we consider a minimization problem for an average distance
functional over one-dimensional sets under length constraints and investigate
some regularity properties of the minimizers. This problem, first proposed
in [27], has also a transport interpretation. Even if the structure of the
problem is quite different, it is interesting to compare it and its solutions
to what happens in the branching transport problems we saw in Chapter 6.
In fact the results of this chapter, which come from a joint published work
with Paolo Tilli ([69]), will be the inspiration source for analogous results
in the branching transport framework, as we will see in Chapter 9. This is
the main reason to insert this chapter in this thesis.

8.1 Average distance problems and free Dirichlet

regions

We present here, in a sketched and simplified way, the framework of the
problems that are described in [27] and in [30].

An optimal transport problem with a Dirichlet region Σ is a Kantorovich
problem where the cost function c(x, y) takes into account that “transporta-
tion is free of charge along Σ”. This means that a point x may be linked to
a point y by arriving up to x′ ∈ Σ, moving from y′ ∈ Σ up to y and paying
only for the transportation between x and x′ and between y′ and y. If Σ is
arcwise connected this means that we moved from x′ to y′ at no charge, and
otherwise this means that free teleport between points of Σ is allowed. If
the original cost of transportation was the Monge one, i.e. c(x, y) = |x− y|,
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then this induces a new cost cΣ(x, y) = |x− y| ∧ (d(x,Σ) + d(y,Σ)).
In this kind of problems it turns easily out that if one of the two measures,

say ν, has a part which is supported on Σ, then it does not matter where this
part is concentrated. In other words, one can always replace ν by another
measure ν̃ such that ν − ν̃ is concentrated on Σ and the infimum value of
∫

cΣ dπ for π ∈ Π(µ, ν) does not change. In the particular case when ν is
completely concentrated on Σ it means that it could be replaced by any
other probability measure concentrated on the same set. As a consequence
the minimum value of the Kantorovich problem for the cost cΣ and fixed
marginals µ ∈ P(Ω) and ν ∈ P(Σ) is given by

D(µ,Σ) =

∫

Ω
d(x,Σ)µ(dx) = inf {W1(µ, ν) | spt(ν) ⊂ Σ} , (8.1.1)

where W1 is the 1−Wasserstein distance as in Section 0.2. In the end this
problem reduces to an average distance from the set Σ, where the average
is computed according to the measure µ (and only this measure actually
appears in the result).

As a further problem, it is interesting to let Σ itself vary. In this way we
get the general version of the average distance problem, i.e.

min{D(µ,Σ) |Σ ∈ E},

where E is a suitable class of subsets of Ω. As the problem would be trivial if
Ω itself were an admissible set, the point is choosing a class Σ which contains
only “small” sets in some sense. Typical choices are the set of all the finite
Σ such that ]Σ ≤ k or the set of all the one-dimensional connected and
compact Σ such that H1(Σ) ≤ l. From (8.1.1) it is easy to see that these
problems are equivalent to the minimization of W1(µ, ν) under constraints
on the support of ν and hence turn out to be transport and concentration
problem for a functional Fµ as in Section 3.1.

The first two cases, namely

min{D(µ,Σ) | ]Σ ≤ k} = min{W1(µ, ν) | ] spt(ν) ≤ k},

and

min{D(µ,Σ) |Σ is compact and connected and H1Σ ≤ k}
= min{W1(µ, ν) |G(ν) ≤ l},

(where G : P(Ω)→ [0,+∞] is the length concentration preferring functional
introduced in Section 3.1) are known as location problem and irrigation
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problem, respectively. As we want to avoid confusion between this kind
of irrigation problems, coming from an average distance functional under
length constraints, and the branching transport problems of Chapter 6, we
will try not to use the name of irrigation problem in this setting.

In this chapter we will be specifically concerned with the following vari-
ational problem:

min D(Σ) =

∫

Ω
d(x,Σ)µ(dx) : Σ ⊂ Ω compact and connected, H1(Σ) ≤ l.

(8.1.2)
As a possible interpretation, we may regard Σ as a resource, whose amount
is limited by the constraint H1(Σ) ≤ l, to be distributed over a region Ω.
Since the functional F (Σ) is the average distance of a point x ∈ Ω to Σ,
minimizing F (Σ) means letting the resource be as widespread as possible
throughout the region Ω. Of course, the measure µ reflects the fact that some
subregions of Ω might have a higher or lower priority in being close to the
resource Σ. Finally, the imposed connectedness of Σ prevents the infimum of
F from being zero, and is a natural constraint in several applications, such
as image reconstruction (trying to recover a line Σ from a pixel cloud µ in
a picture) or urban planning (when Σ is a subway network in a city Ω with
population density µ). The interpretation in image analysis corresponds to
what is in general known as the skeleton of the image.

Existence results for the minimum problem (8.1.2) can be achieved by
GoÃlab’s theorem (see, for instance, [7]) and are the starting point of [27].

In the first paper on the subject [27], after proving the existence of solu-
tions, some questions concerning the minimizers are posed and some partial
answers are provided. Stronger results on the structure of a minimizer Σ
are obtained in [29]. In the next section we will recall the results from
[27, 29] which are relevant to the present paper, after introducing some no-
tation which will be used throughout, and then we will establish the main
technical tools that we will use.

We will use several different variational techniques to get necessary op-
timality conditions; most of them are simply based on first-order pertur-
bations of the minimizer, i.e. the key ingredient is stationarity instead of
minimality. We cite in connection to this feature of our work the classical pa-
per [2] on regularity of stationary 1-dimensional structures. However, some
of the cases we study here have been solved by more variational techniques,
such as Γ−convergence, and are not easy to translate into stationarity con-
ditions.
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8.2 Preliminary and auxiliary results

Let Σ be a minimizer of (8.1.2). We denote by T : Ω→ Σ a fixed measurable
selection of the projection multimap, i.e. T is a measurable map such that
|x − T (x)| = d(x,Σ) for every x ∈ Ω. See [38] for the existence of such a
selection. The measure µ and the map T induce a measure ψ on Σ defined
by ψ = T]µ. Of course, ψ is a probability measure concentrated on Σ.
Estimates on the measure ψ will be crucial in the sequel.

The result from [29] which is most relevant to our purpose states that,
topologically, Σ is equivalent to a finite graph without cycles, whose vertices
have order at most three. More precisely (see [29] for more details):

• Σ is the union of finitely many injective Lipschitz curves with endpoints
(called “branches” of Σ).

• Any two branches have at most one endpoint in common;

• Σ has no loops (i.e. R2 \ Σ is connected);

• For every x ∈ Σ, exactly one of the following three possibilities occurs:

1. x is in the relative interior of one branch and belongs to no other
branch of Σ (in this case we say that x is an ordinary point of Σ);

2. x is an endpoint of exactly one branch of Σ (we say that x is an
endpoint of Σ);

3. x is an endpoint of exactly three branches of Σ (we say that x is
a triple junction);

• Every endpoint of Σ is an atom for the measure ψ.

• There are at least two endpoints in Σ.

Here we focus on the existence and characterization of blow-up limits of
Σ. More precisely, we say that Σ has a blow-up limit K at x0 ∈ Σ if the
localized and rescaled sets (Σ ∩B(x0, r)− x0)/r converge, in the Hausdorff
distance as r → 0, to some set K ⊂ B1 (here and throughout, B(x0, r)
denotes the ball of radius r centered at x0, whereas Br denotes the ball
centered at the origin).

We stress the fact that the existence of the blow-up limits in the Haus-
dorff distance at a point x0 is linked to differentiability of Σ at x0. In fact,
parameterizing every branch of Σ by arc length curves, it is not difficult to
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check that our results on blow-ups will imply the existence of the deriva-
tive as a unit vector in the classical sense, or at least the existence of the
derivatives from each side in the unlucky case of the limit being a corner.

Let us now add some assumptions and set the last useful notations. From
now on Ω will be a convex domain of R2. Since Ω is supposed to be convex
we know that Σ ⊂ Ω is a solution also to Problem 8.2.1:

min D(Σ) =

∫

Ω
d(x,Σ)µ(dx) : Σ ⊂ R2 compact and connected, H1(Σ) ≤ l.

(8.2.1)
This is a consequence of what proven in [30], i.e. that Σ is always contained
in the convex hull of the support of µ, and so there is no matter if we enlarge
the domain. In the sequel, to get rid of possible boundary difficulties, we
will silently use the fact that Σ minimizes also in Problem 8.2.1.

The measure µ will be supposed to be of the form µ = f ·Ld with f ∈ L∞.
We will call C any positive, finite constant depending only on Ω, µ

and Σ that may be enlarged at will. Every time a new, larger constant
C is needed, the value of the former will be considered to be enlarged as
necessary, without changing the notation C.

Finally, given two sets A,B ⊂ R2, we denote by dH(A,B) their Hausdorff
distance, i.e. the infimum of those positive numbers h such that d(x,B) < h
for any x ∈ A and, conversely, d(y,A) < h for any y ∈ B.

Remark 8.2.1. Let S be a Lipschitz curve with endpoints x, y and let xy be
the segment from x to y. Then the Hausdorff distance dH(S, xy) coincides
with the smallest h ≥ 0 such that S is contained in a h0-neighborhood of
xy. Indeed, letting h0 denote such smallest h, it suffices to observe that xy
is contained in a h-neighborhood of S: in fact, for every z ∈ xy, there is at
least a point of S on the line through z perpendicular to xy.

Lemma 8.2.2. In the same case as before we have

H1(S) ≥
√

4 dH(S, xy)2 + |x− y|2. (8.2.2)

Proof. Take a point p ∈ S a distance exactly dH(S, xy) to the segment xy
(such a point exists due to the previous remark): then clearly

H1(S) ≥ |x− p|+ |p− y|,

and minimizing the last expression over all possible p gives the desired esti-
mate (the minimum is achieved at a point p belonging to the axis of xy).

We use here the fact that endpoints are atoms for ψ to establish a basic
estimate which will be useful in the sequel.
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Lemma 8.2.3. There exists a constant C > 0 with the following properties.
Let U be any open subset of Σ and V a compact set in R2 such that (Σ\U)∪V
is connected. If Σ \ U contains at least one endpoint of ψ, then

H1(U) ≤ H1(V ) + Cψ(U \ V )max
z∈U

d(z, V ) (8.2.3)

and
H1(U) ≤ H1(V ) + Cψ(U \ V ) dH(U, V ). (8.2.4)

The proof uses some ideas from [29]. For the sake of completeness, we
provide all the details.

Proof. We can assume that H1(V ) ≤ H1(U).
Let a ∈ Σ \ U be an endpoint of Σ (hence an atom for ψ), and set

A = T−1(a). Since A is the intersection of a convex set and Ω, and µ(A) =
ψ({a}) > 0, then A has nonempty interior. Let B(y, ρ) be a small closed
ball of radius ρ > 0, centered at some point y ∈ A and contained in A,
such that a /∈ B(y, ρ) and µ(B(y, ρ)) > 0. Letting l = H1(U) −H1(V ), we
construct a new competitor Σ′ as follows:

Σ′ = (Σ \ U) ∪ V ∪ sl,

where sl is the closed segment of length l, that lies on the half-line from a
to y and has a as one endpoint. Clearly, H1(Σ′) = H1(Σ). Moreover, Σ′ is
compact and connected (the segment sl touches Σ \U at a, and (Σ \U)∪V
is connected by assumption), hence the minimality of Σ implies that

∫

Ω
d(x,Σ)µ(dx) ≤

∫

Ω
d(x,Σ′)µ(dx). (8.2.5)

Note that, by construction, d(x,Σ′) ≤ d(x,Σ) for all x ∈ Ω such that T (x) /∈
U \ V , hence in particular, from (8.2.5) we find

∫

B(y,ρ)

(

d(x,Σ)− d(x,Σ′)
)

)µ(dx) ≤
∫

T−1(U\V )

(

d(x,Σ′)− d(x,Σ)
)

µ(dx).

(8.2.6)
For every x ∈ B(y, ρ), we have d(x,Σ) = |x − a|, and d(x,Σ′) ≤ d(x, sl).
Hence we find
∫

B(y,ρ)

(

d(x,Σ)− d(x,Σ′)
)

)µ(dx) ≥
∫

B(y,ρ)
(|x− a| − d(x, sl)) µ(dx) =: I(l).

(8.2.7)
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Considering for a while l as a parameter, we want to estimate from below
the last integral I(l) as a function of l (i.e. the length of the segment sl),
on the interval [0,H1(Σ)] (having defined l = H1(U) − H1(V ), we are not
interested in I(l) when l > H1(Σ)): it is clear that I(l) is non decreasing in l,
and one can easily check that when l is small enough (for instance, such that
2l < |y − a| − ρ), there holds I(l) ≥ εl for some ε > 0 (which depends only
on ρ, µ and on the distance |a − y|). Since I(l) is nondecreasing, reducing
if necessary the value of ε we obtain that an estimate of the kind I(l) ≥ εl
holds for all l ∈ [0,H1(Σ)]. Therefore, plugging this estimate in (8.2.7) and
using (8.2.6), we obtain

ε
(

H1(U)−H1(V )
)

= εl ≤ I(l) ≤
∫

T−1(U\V )

(

d(x,Σ′)− d(x,Σ)
)

µ(dx).

(8.2.8)
Note that ε can also be made independent of the particular endpoint a that
we have chosen in Σ\U , since Σ has only finitely many endpoints: therefore,
we may work with some ε which depends only on Σ, and not on U . Then,
observing that

sup
x∈T−1(U\V )

(

d(x,Σ′)− d(x,Σ)
)

≤ sup
x∈T−1(U)

(d(x, V )− d(x, U)) ≤ sup
z∈U

d(z, V ),

from (8.2.8) one obtains (8.2.3). Finally, (8.2.4) is an easy consequence of
(8.2.3).

We face an important particular case when the set V is a segment.

Lemma 8.2.4. There exists C with the following property. Let S ⊂ Σ be
a closed injective arc, with endpoints x, y, such that S \ {x, y} contains no
triple junctions of Σ and Cψ(S \ {x, y}) < 1/2. Then

H1(S) ≤ |x− y|+ Cψ(S \ {x, y}) dH(S, xy), (8.2.9)

dH(S, xy) ≤ Cψ(S \ {x, y})|x− y|, (8.2.10)

H1(S) ≤ |x− y|
(

1 + Cψ(S \ {x, y})2
)

, (8.2.11)

H1(S) ≤ 2|x− y|. (8.2.12)

Proof. We apply the previous lemma with U = S \{x, y} and V the segment
from x to y (note that (Σ\S)∪V is connected since we have replaced a simple
curve by another curve with the same endpoints). Then (8.2.9) follows from
(8.2.4). Moreover, on squaring (8.2.2) one obtains

4 dH(S, xy)
2 ≤

(

H1(S)+|x−y|
)(

H1(S)−|x−y|
)

≤ 2H1(S)
(

H1(S)−|x−y|
)

.
(8.2.13)
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If we temporarily set ∆ = H1(S)− |x− y| and we square (8.2.9), we get

∆2 ≤ Cψ(S \ {x, y})2 dH(S, xy)2 ≤ Cψ(S \ {x, y})2H1(S)∆,
where we used also (8.2.13). Then we get

∆ ≤ Cψ(S \ {x, y})2H1(S). (8.2.14)

To estimate H1(S) we use the estimate on ∆:

H1(S)− |x− y| = ∆ ≤ Cψ(S \ {x, y})2H1(S),
which, under the assumption Cψ(S \ {x, y}) < 1/2, provides

1

2
H1(S) ≤

(

1− Cψ(S \ {x, y})2
)

H1(S) ≤ |x− y|, (8.2.15)

which is (8.2.12). Then, from (8.2.14) and (8.2.15), we get also the estimate

∆ ≤ Cψ(S \ {x, y})|x− y|
and, by recalling (8.2.13) and (8.2.15), (8.2.10) is valid as well. Finally,
(8.2.11) follows from (8.2.9) and (8.2.10).

8.2.1 The function θ and its variation

Take a point x0 ∈ Σ and consider a branch of Σ starting at x0: we may
regard it as an injective Lipschitz curve γ : [0, δ] → Σ, parameterized by
arclength, such that γ(0) = x0 and γ(δ) is either an endpoint or a triple
point of Σ. Of course, we suppose that δ > 0 and that γ contains neither
endpoints nor triple junctions in its relative interior.

We will prove that, if r > 0 is small enough, then γ touches ∂B(x0, r)
at exactly one point: in this way, we can define for small r > 0 the function
θ(r), i.e. (choosing polar coordinates centered at x0) the angular coordinate
θ of the (unique) point where γ touches ∂B(x0, r). We will also prove some
regularity properties of the function θ(r).

Choose a certain radius r0 > 0, such that the ball B(x0, r0) contains no
endpoint and no triple junction of Σ, with the only possible exception of x0.
In particular, γ meets ∂B(x0, r) at least once, for every r ≤ r0.

We have the following

Theorem 8.2.5. Consider x0 ∈ Σ and r0 > 0 such that B(x0, r0) contains
no endpoint and triple junction other than, possibly, x0 itself. For any r <
r0, set

t1 = min{t ≥ 0 | γ(t) ∈ ∂B(x0, r)}, t2 = max{t ≤ δ | γ(t) ∈ ∂B(x0, r)}.
If Cψ(γ((0, t2]) < 1, then t1 = t2, i.e. γ touches ∂B(x0, r) exactly once.
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Proof. Let us set for brevity γ0,1 = γ([0, t1]), γ0,2 = γ([0, t2]) and γ1,2 =
γ([t1, t2]). We apply Lemma 8.2.3, with U = γ0,2 \ {γ(0), γ(t2)} and V
equal to a suitable rotation of γ0,1 around x0, of an angle ∆θ, in such a way
that the point γ(t1), after the rotation, overlaps with γ(t2). Observing that
H1(U)−H1(V ) = H1(γ1,2), (8.2.3) implies that

H1(γ1,2) ≤ Cψ (γ0,2 \ {x0}) max
x∈γ0,2

d(x, V ). (8.2.16)

To estimate the max in the right hand side, let us split γ0,2 = γ0,1 ∪ γ1,2.
Since V is a rotation of γ0,1 which sends the boundary point γ(t1) to γ(t2),
there holds

max
x∈γ0,1

d(x, V ) ≤ |γ(t1)− γ(t2)| ≤ H1(γ1,2).

Moreover, since γ(t2) ∈ V we find

d(x, V ) ≤ |x− γ(t2)| ≤ diam(γ1,2) ≤ H1(γ1,2)

since γ1,2 is connected. Plugging these estimates into (8.2.16), we find

H1(γ1,2) ≤ CH1(γ1,2)ψ(γ((0, t2])). (8.2.17)

Under the assumption Cψ(γ((0, t2])) < 1 it is clear that we get H1(γ1,2) = 0
and also t1 = t2, since γ is injective.

If we want the last result to be useful, it is necessary to establish the
following.

Lemma 8.2.6. For any x0 ∈ Σ there exists r0 = r0(x0) > 0 sufficiently
small such that, for any r < r0, the ball B(x0, r) contains no triple junction
nor endpoint other than, possibly, x0 itself, and Cψ(γ((0, t2])) < 1.

Proof. It is immediate to satisfy the first constraint (no triple junction nor
endpoint in the ball) since these points are finite. To satisfy the second
requirement it is sufficient to show that the diameter of γ((0, t2]) tends
to 0 when r → 0. In fact, proven this, we would have ψ(γ((0, t2])) ≤
ψ(B(x0, ε(r) \ {x0}) with ε(r) → 0. Since the measure of the ball without
the center tends to vanish with the radius, the thesis would be achieved.

To prove that diam(γ((0, t2])) tend to 0 suppose, on the contrary, that
there exists ε0 > 0 and a sequence of radii rj → 0 with diam(γ((0, t

rj
2 ]) ≥ ε0

and |x0 − γ(trj2 )| = rj . In the limit we would get a loop in this branch of Σ,
and this is a contradiction.
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To strengthen the result, we can make it quite uniform (and in the sequel
we will use such an uniformization).

Theorem 8.2.7. For any Σ1 ⊂ Σ compactly contained in the complement
of the atoms of mass at least (2C)−1 and of triple junctions and endpoints
(which is the complement of a finite set) there exists r0 = r0[Σ1] such that,
if r < r0 and x0 ∈ Σ1, then Cψ(B(x0, r)) < 1/2, no triple junction nor
endpoint belongs to B(x0, r), and Cψ(γ((0, t2]) < 1 (as in Theorem 8.2.5).

Proof. We can consider separately the three requirements, and then choose
the smallest radius.

It is easy to deal with the statement on ψ(B(x0, r)): otherwise there
would exist a sequence of centers xn0 and of radii rn → 0 with the mass of
the corresponding balls greater than (2C)−1. By passing to a converging
subsequence it would be straightforward to get the existence of a point x0
which would be an atom of mass at least (2C)−1, obtained as a limit of the
considered sequence of centers, which is a contradiction.

The requirement on triple junctions and endpoints is easily satisfied
thanks to the assumption on Σ1.

As far as the curves γ((0, t2]) are concerned it is a little more difficult.
Suppose on the contrary that there exists a sequence of arcs γn([0, t

n
2 ]) for

which the distance |γn(0)−γn(tn2 )| = rn is arbitrarily small and the measure
ψ(γn([0, t

n
2 ])) larger than C

−1. Up to subsequences we may assume that all
this arcs are contained in one of the finitely many parts Σi consisting in
the support of an injective simple curve γ and that they converge in the
Hausdorff distance to a closed subset of Σi. The map γ provides an homeo-
morphism between Σi and the interval [0, δ]. Because it is well known that
Hausdorff convergence on compact sets depends only on topology and not
on metric (see, for instance, [38]) we can deduce that we have convergence
also of the images of the arcs in [0, 1]. The images are clearly segments and
so the same holds for the limit. The condition that the distance between the
extremal points xn, yn of the arcs goes to 0 says that, for a certain x ∈ Σ1,
we have xn → x, yn → x and this fact is conserved by the homeomorphism.
As a consequence also the extremal points of the segments in [0, 1] collapse
to the same point in the limit and so the limit must be a single point. Re-
garding this fact in Σi it is easy to deduce that we have a limit consisting
in a single point which must be an atom of at least mass C−1, which is a
contradiction.

As a consequence of what we have just proved, there exists well defined
and continuous a function θ : (0, r0]→ S1 such that θ(r) is the angle of the
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unique point of the curve γ which lies on ∂B(x0, r). The value r0 has to be
small enough and can be chosen quite uniformly according to Theorem 8.2.7
or depending on x0 if x0 is one of the dangerous points (triple junctions,
endpoints, atoms of mass at least (2C)−1). From now on, r0 will always
denote such a radius chosen in this way.

Theorem 8.2.8. The function θ is locally Lipschitz on (0, r0]. Moreover,
for almost every r ∈ (0, r0) we have

|θ′(r)| ≤ C
ψ
(

B(x0, r) \ {x0}
)

r
.

Proof. Consider two rays 0 < r < R ≤ r0 and the variation ∆θ of the angle
θ between the two values of the ray.

Let ∆r = R− r, y = Σ∩ ∂Br and x = Σ∩ ∂BR. We apply Lemma 8.2.3
with U = γ ∩ BR \ {x0}, and V given by two parts: a rotation of γ ∩ Br
of an angle ∆θ around x0 (in such a way that the image y′ of y under the
rotation is collinear with x0 and x), and the segment y′x.

Setting S := γ∩BR\Br, the Hausdorff distance from S to the segment yx
can be bounded by C|y−x|ψ(S \ {x}) due to (8.2.10), whereas the distance
from yx to y′x equals |y − y′|, hence

max
z∈S

d(z, V ) ≤ C|y−x|ψ(S\{x})+|y−y′| ≤ C(r∆θ+∆r)ψ(BR\{x0})+r∆θ.
(8.2.18)

Moreover, for every point in γ ∩ Br there is a point in V at a distance less
than r∆θ (just follow the point along the arc as it rotates), hence combining
this with (8.2.18) we find

max
z∈U

d(z, V ) ≤ r∆θ+C(r∆θ+∆r)ψ(BR\{x0}) ≤ Cr∆θ+C∆rψ(BR\{x0}).
(8.2.19)

Then from (8.2.4) we find

H1(U)−H1(V ) ≤ Cψ(U \ V )
(

r∆θ +∆rψ(BR \ {x0})
)

.

By our construction, the left hand side equals H1(S)−∆r ≥ |y − x| −∆r,
hence we find

|y − x| −∆r ≤ Cψ(BR \ {x0})
(

r∆θ +∆rψ(BR \ {x0})
)

, (8.2.20)

where we used U \ V ⊂ BR \ {x0}. Now for the left hand side a simple
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computation yields

|y − x| −∆r =
√

(∆r)2 + 2r(r +∆r)(1− cos∆θ)−∆r ≥

= ∆r

(
√

1 +
r2

(∆r)2
(1− cos∆θ)− 1

)

≥ C∆r
(

r2(∆θ)2

(∆r)2
∧ r∆θ

∆r

)

,

where we used some elementary estimates such as
√
1 + x2 − 1 ≥ C(x2 ∧ x)

and (1 − cos t) ≥ Ct2. Now, getting back to (8.2.20) and writing ψR for
ψ(BR \ {x0}), we see that either

∆r
r2(∆θ)2

(∆r)2
≤ CψRr∆θ + Cψ2R∆r

or

∆r
r∆θ

∆r
≤ CψRr∆θ + Cψ2R∆r

is satisfied.
The first case provides a quadratic estimate like A2 ≤ CAB+CB2, which

implies A ≤ (1∨ 2C)B, where A = ∆θ/∆r and B = ψR/r. The second one,
under the assumption that 2CψR < 1, gives r∆θ ≤ 2Cψ2R∆r ≤ ψR∆r and
hence the same linear estimate.

So far we have obtained

∆θ

∆r
≤ CψR

r
,

which gives local Lipschitz continuity of θ, as far as ψR/r remains bounded,
i.e. as far as r stays bounded away from 0. By passing to the limit as R→ r
we get also the bound on the derivative required by the statement of the
theorem.

Remark 8.2.9. What we have just proved is useful when one wants to show
uniqueness of the possible limits of subsequences of (Σ ∩ Br)/r: it is often
enough to find a limit to θ(r) as r → 0. To achieve it, it would be enough
to have θ ∈ BV (0, r0), since any function with bounded variation near 0
satisfies a Cauchy condition near the same point, and so the desired condition
is

∫ r0

0

ψ(Br)

r
dr < +∞.

Remark 8.2.10. Actually a Cauchy condition near 0 is sufficient, which is
implied by a BV condition but is weaker. A similar idea will be used in
Chapter 9.
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8.2.2 Blow-up limits, up to subsequences

Lemma 8.2.11. Choose a point x0 ∈ Σ and, for every r > 0, let Σr = Σ ∩
B(x0, r). The family of rescaled sets r−1(Σr − x0) is compact, in the metric
space of all non-empty compact subsets of B1 endowed with the Hausdorff
distance. If r−1j (Σrj − x0) converge to some set K ⊆ B1 for a suitable
subsequence rj → 0, then:

1. If x0 is an endpoint, then K is a radius of B1.

2. If x0 is a simple point, then K is the union of two radii of B1, which
form an angle of at least 120 degrees.

3. If x0 is a triple junction, then K is the union of three radii of B1,
forming angles of 120 degrees.

Proof. We can assume that x0 is the origin of the coordinates. According to
the results in [29], there are p branches of Σ going out of x0, with p ∈ {1, 2, 3}
according to the nature of x0. We can regard these p branches as p injective
curves γi : [0, δ] → Σ, with γi(0) = x0. Moreover, these curves meet only
at the starting point x0 (otherwise Σ would have a loop), and Theorem
8.2.5 implies that, when r is small enough, each γi has a unique intersection
with the circle ∂Br. As a consequence, we can reparameterize each γi in
such a way that for r ∈ [0, r0] we have γi ∩ ∂Br = {γi(r)}, and hence also
Σr =

⋃

i γi([0, r]).
Thanks to the choice of r0 (small enough), we can suppose that Σr

contains no triple junctions, other than (possibly) x0. Then applying Lemma
8.2.4 with S = γi([0, r]) for some i, (8.2.10) and (8.2.11) yields

dH

(

γi([0, r]), x0γi(r)
)

≤ Crψ (Br \ {x0}) , (8.2.21)

Moreover, letting Kr =
⋃

i x0γi(r) denote the union of the p radii of Br from
the center to the points γi(r), using (8.2.21) for i = 1, . . . , p yields

dH(Σr,Kr) ≤ Crψ (Br \ {x0}) ,

Now observe that ψ (Br \ {x0})→ 0 as r → 0. Such an estimate is the key
tool. Indeed, given a sequence of radii rj → 0, passing to subsequences (not
relabeled) we may suppose that the sets r−1j Krj converge, in the Hausdorff
distance, to some set K, which clearly is the union of q radii of B1, with
1 ≤ q ≤ p. When p = 1 this proves the lemma.

Now suppose that p = 2. To complete the proof, it suffices to prove that
q = 2 (i.e. that no two radii of Kr/r overlap in the limit).
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To do this, we suppose that there exists some ε > 0 and a subsequence
of radii (still denoted by rj) such that the angle formed by, say, the radii

x0γ1(rj) and x0γ2(rj) is less than 120◦ − ε for every j, and we seek a con-
tradiction.

Let us apply Lemma 8.2.3 to the sets U = (γ1([0, rj ]) ∪ γ2([0, rj ])) \
{x0, γ1(rj), γ2(rj)}, and V equal to the Steiner connection of the three points
x0, γ1(rj) and γ2(rj). Since clearly H1(U) ≥ 2rj and dH(U, V ) ≤ 2rj , from
(8.2.4) we find

2rj ≤ H1(V ) + Cψ
(

Brj \ {x0}
)

2rj .

Now, due to our assumption on the angle, one can check that there exists
δ0, depending only on ε > 0, such that H1(V ) ≤ (2− δ0)rj . Then we obtain

2rj ≤ (2− δ0)rj + Cψ(Brj \ {x0})2rj ∀j,

and we get a contradiction for small enough rj since ψ(Brj \ {x0})→ 0.
When p = 2, this shows that the two radii forming Kr tend to form an

angle, in the limit, which is at least 120◦. Hence the limit set K is, in this
case, the union of exactly two radii of B1, whose angle is at least 120◦.

Finally, when p = 3 is suffices to repeat the same argument to every pair
of radii in Kr.

For the case of ordinary points, we give also a stronger result.

Lemma 8.2.12. Suppose x0 is a simple point with ψ({x0}) = 0 and rj → 0
a sequence of radii such that r−1j (Σrj −x0) converge to a set K ⊂ B1. Then
K is a diameter (i.e. the angle between the two radii given by Lemma 8.2.11
is in fact 180◦).

Proof. As usual, we will suppose x0 = 0. By Lemma 8.2.11 we know that K
is the union of two radii, forming an angle α > 120◦. If we set Σ ∩ ∂Brj =
{x1j , x2j}, we may say

2=H1(K)≤ lim inf
j→+∞

H1
(

Σrj
rj

)

≤ lim inf
j→+∞

|x1j − x2j |
rj

(

1 + Cψ(Σrj )
2
)

=2 sin
(α

2

)

.

Here the first inequality is a consequence of GoÃlab’s Theorem, while the
second comes from (8.2.11). This easily implies α = 180◦ and the thesis.

185



8.2.3 Γ−Convergence
We want here to give a useful Γ−convergence result finding a Γ−limit to a se-
quence of functionals minimized by sets of the form Σr := Σ∩B(x0, r). Here
we state our theorem by considering only the case when x0 is an endpoint,
but the same result is true, with small modifications, also for any point of Σ
which is an atom for ψ. A slightly more sophisticated Γ−convergence result
concerning atomic ordinary point will be developed in section 8.3.

Let us consider an endpoint of Σ which we will call 0 and a small Br
around it. Let xr be the only point of intersection of Σ and the boundary
of the ball Br. It is clear that Σr minimizes, among all compact connected
sets S such that xr ∈ S and H1(S) ≤ H1(Σr), the quantity

∫

Ar

d(x, S)µ(dx), (8.2.22)

where Ar = T−1(Σr) is the set of points projected to Σr. What we want to
investigate now is whether we can find a limit of a proper rescaling of the
functional appearing in (8.2.22), in order to get information on the limits
of Σr/r. Let us consider the functionals defined on the set X of compact
connected sets contained in the closed ball of radius 2 and of length less than
2 (which is a compact metric space if endowed with the Hausdorff topology,
as a consequence of GoÃlab’s Theorem), given by:

Fr(S) =

{

∫

Ar/r
(d(x, S)− d(x, 0))mr]µ(dx) if xrr ∈ S, H1(S) ≤

H1(Σr)
r ;

+∞ otherwise.

(8.2.23)
Here we denote by mr the division by r, i.e.: mr(x) = x/r.

Each functional Fr is then minimized by Σr/r, as far as such sets have
length smaller than 2. This happens for small r, since it holds

lim
r→0

H1(Σr)
r

= 1,

as a consequence of (8.2.11).
Let us denote by Q the application Q(x) = x/|x| that gives the direction

of a non-zero vector and by ν the measure on S1 given by ν = Q](µIA0),
where A0 is the set of point projected to the endpoint 0.

Lemma 8.2.13. Suppose that on a certain subsequence (not relabeled) we

have xr/r → x: then it follows Fr
S→ F , where the Γ−convergence is in-
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tended with respect to the Hausdorff convergence on X and F is given by

F (S) =

{

∫

S1 −δ∗(v|S)ν(dv) if x ∈ S and H1(S) ≤ 1;

+∞ otherwise.
(8.2.24)

As usual, δ∗(v|S) = supy∈S v ·y. As a particular consequence Σr/r converges
in the Hausdorff distance to a minimizer of F .

Proof. Let us start by the Γ− lim inf inequality. We have to prove that, for
any S ∈ X and Sr → S we have lim inf Fr(Sr) ≥ F (S). We may suppose
that Fr(Sr) is finite for a subsequence, otherwise the lim inf is +∞, and so
we have a sequence of sets Sr approaching S in such a way that xr ∈ Sr and
H1(Sr) ≤ H1(Σr)/r → 1. It is clear so far that S satisfies the constraints x ∈
S and H1(S) ≤ 1, as a consequence of Hausdorff convergence’s properties.

For every x we denote by yx(Sr) (one of) the nearest point(s) to x belong-
ing to Sr and by zx(Sr) (one of) the point(s) realizing the max in supz∈Sr x·z.
Notice that zx(Sr) depends actually only on Q(x). For every point x we have

d(x, Sr)− d(x, 0) = d(x, yx(Sr))− d(x, 0) ≥ −
x

|x| · yx(Sr) ≥ −
x

|x| · zx(Sr).

So we may estimate

Fr(Sr) ≥
∫

Ar/r
− x

|x| · zx(Sr)mr]µ(dx)

=

∫

Ar

−Q(x) · zQ(x)(Sr)µ(dx)

=

∫

A0

−Q(x) · zQ(x)(Sr)µ(dx) +
∫

Ar\A0

−Q(x) · zQ(x)(Sr)µ(dx).

The latter term in the last line tends to 0 with r because the integrand is
bounded by 2 and the set on which we integrate converges to the empty set.
The former indeed is equal to

∫

S1

−δ∗(v|Sr)ν(dv)→ F (S)

where the convergence relies on the fact that Hausdorff convergence implies
pointwise convergence of the support functions δ∗ (see, for instance, [38]).
The Γ−liminf inequality is then proved.

Let us pass to the Γ−limsup inequality. For every fixed S such
that F (S) < +∞, we have to find a sequence (Sr)r → S such that
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lim supFr(Sr) ≤ F (S). For each r it is sufficient to rotate S so that its
intersection with the boundary of the unit ball becomes xr instead of x and
to perform an homothety around xr in order to satisfy the length constraint.
We have hence a sequence of sets Sr such that Fr(Sr) is finite and given by
the integral expression in (8.2.23), for which it holds Sr → S in the Haus-
dorff distance. This convergence is true thanks to xr → x and to the fact
that convergence holds also for the ratios of the homotheties, which are pre-
scribed by the length constraints. It remains to estimate Fr(Sr). For each
couple of point x, z we have

|x− z| − |x| = |x|
(
√

1− 2x · z
|x|2 +

|z|2
|x|2 − 1

)

≤ −Q(x) · z + |z|
2

2|x| .

So we may write

Fr(Sr) ≤
∫

Ar/r
(|x− zx(Sr)| − |x|) mr]µ(dx)

≤
∫

Ar/r

(

−Q(x) · zQ(x)(Sr) +
|zQ(x)(Sr)|2

2|x|

)

mr]µ(dx)

=

∫

A0

−Q(x) · zQ(x)(Sr)µ(dx) +
∫

Ar\A0

−Q(x) · zQ(x)(Sr)µ(dx)

+r

∫

Ar

|zQ(x)(Sr)|2
2|x| µ(dx).

In the last sum, the first term yields F (S) in the limit, while the second and
the third tend to zero.

8.2.4 Iterated estimates for small diameters

We show here that, if the diameter of the transported set to a certain point
of Σ is sufficiently small, the measure ψ(Br), for balls centered around that
point, can be estimated by r itself.

Lemma 8.2.14. There exists a constant C such that, given x0 ∈ Σ, and r0
chosen as usual, if we set k = diam(T−1(Br0)), for all r ≤ r0/2 it holds

ψ(Br) ≤ Ck (r + ψ(B2r)) . (8.2.25)

Proof. Consider a point of Σ, which we will call 0, together with two balls
around it, of radii r and 2r ≤ r0 respectively. Let x1, x2 be the intersection
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points of Σ and the boundary of the largest ball. We can for each segment
0xi consider the Hausdorff distance dH(Σ

i
2r, 0xi) between it and the corre-

sponding branch of Σ and the distance dH(Σ2r, 0x1 ∪ 0x2). We have a set
K in which Σ2r is contained, i.e. the set obtained by fattening the two seg-
ments by a quantity equal to the latter distance. We may estimate, using
each branch of Σ2r as S in (8.2.10),

dH(Σ2r, 0x1 ∪ 0x2) ≤ max
i=1,2

dH(Σ
i
2r, 0xi) ≤ Crψ(B2r).

mentioned can be estimated by Crψ(B2r), thanks to (8.2.10) and the choice
of r and r0, choosing a branch of Σ2r to play the role of S and x = 0, y = xi.
Consider now the set K ′ = K ∩ Br and its convex hull K ′′. Since we want
to estimate the area of the set transported to Br it is sufficient to estimate
the area of the set of points which are closer to K ′′ than to the points xi.
Moreover, being k greater than the diameter of T−1(Br), we can replace this
set by its intersection with Bk. We include this set in the union of

• two stripes S1, S2 which are 2r wide and each Si is orthogonal to 0xi
and has the points 0 and xi on its boundary,

• a sector E of amplitude 180◦− x̂10x2 starting from 0, delimited by the
boundaries of the stripes Si passing through the origin,

• four small sectors Ci,j , each of them delimited by the boundary of the
stripe Si passing through xi and the axis of the segment xiyi,j , where
the points yi,j are the corner points of the boundary of K ′′ near xi.

The amplitude of these last sectors is the same of the angle ˆ0xiyi,j , which can
be estimated by Cψ(B2r) thanks to the estimate on the Hausdorff distance.
We know that also the amplitude α of the sector E can be estimated the
same. In fact, we can consider in (8.2.11) S = Σ2r, x = x1 and y = x2. We
obtain

2r ≤ H1(Σ2r) ≤ 2r cos
(α

2

)

(

1 + Cψ(Σ2r)
2
)

,

and, dividing by 2r and using (cosβ)−1 ≥ 1 + cβ2, which is true for β ≤ π,
we get

α2 ≤ Cψ(Σ2r)2.
Being µ a measure with an L∞ density, it is enough to estimate the areas

of Ti, E and Ci,j intersected with Bk, and we obtain

ψ(Br) ≤ C
(

kr + k2ψ(B2r)
)

.

For simplicity we will estimate k2 by Ck.
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The interest in the estimate (8.2.25) is that we can iterate it, especially
when we have small diameters of the transported sets.

Theorem 8.2.15. Suppose that there exists r1 < r0/2 such that

k = diam(T−1(B(x0, r1))) < 1/(2C).

Then, for all r < r1 we have the estimate

ψ(Br) ≤
Ckr

1− 2Ck
+

(

2r

r1

)log2 1/Ck

. (8.2.26)

Proof. Fixed r < r1 we can find an integer h such that r1/2 < r2h ≤ r1.
Iterating (8.2.25) we obtain

ψ(Br) ≤ Ckr
h−1
∑

i=0

(2Ck)i + (Ck)hψ(Br1) ≤
Ckr

1− 2Ck
+

(

2r

r1

)log2 1/Ck

.

Notice that, due to the semicontinuous behavior of the diameter
of the transported set, saying that there exists a small r1 such that
diam(T−1(Br1)) < 1/(2C) is the same as saying that diam(T−1({x0})) <
1/(2C).

Notice also the following useful consequence:

Corollary 8.2.16. If x0 ∈ Σ and diam(T−1({x0})) < 1/(2C), then
ψ({x0}) = 0, i.e. all atoms of ψ have transported sets with large diame-
ter.

Proof. Just use (8.2.26) and ψ({x0}) = limr ψ(Br).

8.3 Blow-up limits

8.3.1 Triple junctions

We make here use of the previous section’s tools to establish the expected
result regarding singular points of Σ. For simplicity we will always center
our analysis in a point x0 supposed to be the origin.

Theorem 8.3.1. Suppose 0 ∈ Σ is a triple junction: then there exists the
limit as r → 0 of Σr/r in the Hausdorff distance and it is composed by the
union of three rays with 120◦ angles.
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Proof. Thanks to Lemma 8.2.11 (which states that the limits up to subse-
quences are shaped like the union of three rays angled 120◦) we just need to
show the uniqueness of those limits. By means of Remark 8.2.9, it is enough
to achieve

∫ r0

0

ψ(B(0, r))

r
dr < +∞. (8.3.1)

We will show that, for small r, it holds ψ(B(0, r)) ≤ Cr2, thus achieving
the goal.

Let us consider small values of r, such that the angles between the points
of intersection of Σ with the boundary of B(0, 3r) are all smaller than 130◦

(we know that for small r this happens, otherwise we could produce a sub-
sequence having a limit different from the admissible ones). Consider now
a point x at a distance |x| = cr from the origin: we want to show that, if c
is great enough, it is not possible to have x ∈ T−1(B(0, r)). Supposing on
the contrary that x is transported to B(0, r), we get that no point of Σ is
contained in the ball centered at x and of radius r(c− 1). In particular no
point of Σ may lay on the part of ∂B(0, 3r) contained in such a ball. Yet, the
amplitude of such arc depends only on c and, as c increases to infinity, tends
to 2 arccos(1/3) > 130◦. This would mean that, for big c, we would have
an arc of 130◦ on ∂B(0, 3r) without any of the three points of intersection
with Σ, which is a contradiction. So there exists a constant c0 such that
T−1(B(0, r)) ⊂ B(0, c0r) and this, since µ ∈ L∞, completes the proof.

Remark 8.3.2. Notice that (8.3.1) remains true also in the case where the
measure µ, instead of being L∞, is simply Lp with p > 1, because in this
case we can use Holder inequality to get

ψ(B(0, r)) ≤ Cr2−2/p,

and this is sufficient for the convergence of the desired integral. This idea
will be used in chapter 9 as well.

8.3.2 Endpoints

Here we will state an analogous theorem concerning existence of the limit
near an endpoint of Σ, giving also a characterization of the direction of the
ray we find as a limit. We use the same notation as in the Γ−convergence
subsection, from which this theorem arises.

Theorem 8.3.3. If 0 is an endpoint of Σ the limit of Σr/r in the Hausdorff
distance as r → 0 exists and is given by a single ray from the origin in the
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direction of −v, where v is given by

v =

∫

S1

v ν(dv)

Proof. Thanks to Lemma 8.2.11 it is enough to determine the direction of
the rays that can be possible limits of subsequences. To do this we use
the Γ−convergence result provided in Lemma 8.2.13. In fact every set K
limit of a subsequence of Σr/r intersecting ∂B1 in a point x must be the
set maximizing

∫

S1 δ
∗(v|S)ν(dv) among all the sets S which are compact

and connected, pass through x and satisfy H1(S) ≤ 1. This maximizer is
always a segment of unit length directed from x according to the vector v.
But we also know that 0 ∈ K and the only possible position for x so that
the maximing set passes through the origin is x = −λv. Then x is uniquely
determined and the limit of Σr/r exists.

8.3.3 Ordinary points

Our next step is establishing existence of the same limit in the four cases
in which we will divide the general case of an ordinary point. In fact we
will classify these points x0 according to the shape of the transported set
T (x0) = {x ∈ Ω : d(x,Σ) = |x− x0|}. This set coincides up to negligible
sets with T−1(x0). Moreover, T (x0) is always a convex set, thus endowed
with its own entire dimension: it may be 0, 1 or 2. The four cases will be
given by

1. T (x0) = {x0}, i.e. dimension 0;

2. T (x0) is a segment starting in x0 (a subcase of dimension 1);

3. T (x0) is a segment having x0 in its relative interior (the other subcase
of dimension 1);

4. T (x0) is two-dimensional (i.e. with non empty interior).

Let us start from the easiest of the four cases:

Theorem 8.3.4. Suppose 0 is an ordinary point of type 3: then there exists
the limit of Σr/r as r → 0 in the Hausdorff distance and it is the diameter
composed by the two unit rays orthogonal to the segment T (0).

Proof. No optimality of Σ is here required: just notice that Σ is contained in
the complement of two suitable balls tangent in 0 to the segment orthogonal
to T (0).
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Now we move to a case just a little more complicated:

Theorem 8.3.5. Suppose 0 is an ordinary point of type 2: then there exists
the limit of Σr/r as r → 0 in the Hausdorff distance and it is the diameter
composed by the two unit rays orthogonal to the segment T (0).

Proof. Now we can only ensure that Σ stays outside a single ball tangent in
0 to the segment orthogonal to T (0): this is enough to say that, provided a
limit of a subsequence is a diameter, it must be the diameter orthogonal to
T (0). But every limit of subsequences here is a diameter, thanks to Lemma
8.2.12, since ψ({0}) = µ(T (0)) = 0. So the limits are uniquely determined
and this makes the limit exists.

Our next case uses something more, because here T (0) gives no infor-
mation on the possible limit:

Theorem 8.3.6. Suppose 0 is an ordinary point of type 1: then there exists
the limit of Σr/r as r → 0 in the Hausdorff distance and it is a diameter.

Proof. By using Lemma 8.2.12 on subsequences we know that any limit
point in the Hausdorff distance has to be a diameter and, to identify it,
it is enough to show that the function θ (with respect to any of the two
branches of Σ going out from 0) has a limit. As usual, we will look for

the inequality
∫ r0
0

ψ(B(0,r))
r dr < +∞, required by Remark 8.2.9. Here we

can use the result valid when diam(T−1(0)) is small , given by Theorem
8.2.15, (we have actually a vanishing diameter) to establish an estimate like
ψ(Br) ≤ Cr for small r. This gives the convergence of the integrand and
the proof is achieved.

The last case requires something more, that we will state as another
Γ−convergence lemma. This time we will use the fact that Σ∩Br minimizes,
among all sets S sharing with it the same two intersections with ∂Br, the
functional

∫

Ar

d(x, S)µ(dx) + P
(

H1(Σr)−H1(S)
)

, (8.3.2)

where the quantity P (ε) is defined, for ε < 0, as the increase in the functional
if we cut away a curve of length −ε > 0 starting from a given endpoint in
Σ (it is in fact a penalization if S is too long), while for ε > 0 it is the
diminution (a negative quantity) of the functional if we add a straight line
segment of length ε starting from the same endpoint, in the direction of the
tangent vector in it (which exists and coincides with the direction of v(x0),
thanks to Theorem 8.3.3). We give now a precise estimate of the term P , in
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term of the saved/lost length ε (if we save length we have ε > 0 and P < 0,
and vice versa). Let v0 be the unit vector in the direction of v(x0), which
is the tangent vector to Σ in the endpoint that we call x0. If ε > 0 we can
estimate

P (ε) ≤
∫

A0(x0)−x0

(|x− εv0| − |x|) µ(dx)

≤
∫

A0(x0)−x0

(

−εv0 ·
x

|x| +
ε2

2|x|

)

µ(dx) = −εv0 · v(x0) + o(ε);

if, on the other hand ε < 0 we have

P (ε) ≤
∫

Arε (x0)
(|x− wε| − d(x,Σ)) µ(dx),

where wε is the point of Σ situated after an arc Sε of length |ε| starting form
the extremal point 0 and rε = diam(Sε) (for small ε it holds rε = |wε−x0|).
We may go on with the estimation with

P (ε) ≤
∫

A0(x0)
(|x− wε|−|x− x0|)µ(dx) +

∫

Arε(x0)\A0(x0)
(|x− wε|−d(x,Σ))µ(dx)

≤ −(wε − x0) · v(x0) + o(ε) + rεµ(Arε(x0) \A0(x0)).

For small ε it is clear that rε = |wε − x0| ≤ |ε| and moreover we have
(wε − x0)/rε = −v0 − δε with δε → 0 as ε→ 0. We can then estimate again

P (ε) ≤ rεv0 · v(x0) + rεδε · v(x0) + o(ε) + o(rε) ≤ −εv0 · v(x0) + o(ε).

Notice that such estimates can be used in fact to get a precise quantita-
tive version of part of the proof Lemma 8.2.4.

So the in the minimization problem given by (8.3.2) it is still true that
Σr minimizes if we replace the real penalization by a function given by
P (ε) = −cε+ o(ε), where c = v0 · v(x0) = |v(x0)|. We may also require

P (ε) ≥ −cε, (8.3.3)

because the minimization is preserved if we make bigger the value of the
functional on sets different from the minimizer: in this case no matter if the
value of P is made bigger outside 0 (it is the same reason for which we have
only given estimate from above of the real penalization). We now rescale
the functionals as before, obtaining that Σr/r minimizes

Fr(S) =

{

∫

Ar/r
(d(x, S)−|x|) mr]µ(dx)+

1
rP (r(lr −H1(S))) if x1r, x

2
r ∈ S,

+∞ otherwise,
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where lr = H1(Σr)/r → 2 (as usual, it is a consequence of (8.2.12)) and x1r
and x2r are the points in which Σr/r intersects the boundary of the unit ball.

Lemma 8.3.7. Let F denote the functional given by

F (S) =

{

∫

S1 −δ∗(v|S)ν(dv)− c(2−H1(S)) if x1, x2 ∈ S
+∞ otherwise.

Then Fr
Γ→ F with respect to the Hausdorff convergence on the space X

of compact connected sets contained in a fixed large closed ball, provided
xir → xi for i = 1, 2.

Proof. The proof is close to that of Lemma (8.2.13): for the Γ−liminf in-
equality fix a S and an approaching sequence (Sr)r and use the same esti-
mate to deal with the integral term of the functionals Fr and F . For the
penalization term, thanks to (8.3.3), we have

−c(2−H1(S)) ≤ lim inf
r

1

r
P (r(lr −H1(Sr))).

For the proof of Γ−limsup inequality it is sufficient to build a sequence
(Sr)r such that it converges to S, the points xir belong to Sr and we have
H1(Sr) → H1(S): the convergence of the last term follows then from the
asymptotic behavior near 0 of the function P and the first can be estimated
the same as in the proof of Lemma (8.2.13). To obtain such a sequence it
is sufficient to apply to S an affine transformation sending xi to xir. The
convergence xir → xi implies the convergences we need.

We can now state the last theorem regarding existence of the limit.

Theorem 8.3.8. Suppose 0 is an ordinary point of type 4: then there exists
the limit of Σr/r as r → 0 in the Hausdorff distance and it is a corner
composed by two unit rays.

Proof. Being X a compact metric space (see, for instance, [7]), a a conse-
quence of our previous Γ−convergence result (Lemma 8.3.7), all limits of
Σr/r must minimize the functional appearing in Lemma 8.3.7. Moreover,
we know that they must be the union of two segments (Lemma 8.2.11). We
will now try to identify those pair of radii that may be minimizers, exactly
as in the proof of Theorem 8.3.3, in order to have uniqueness of the limits
and then the existence of the limit.

Let us consider a ball in which the vertical ray directed upwards is given
by the vector v. We want to show the existence of the limit of Σr/r, so
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we must identify the possible limits of subsequences as a unique one. We
stress that this is strongly different from saying that the functional F has
a unique minimizer: for every converging subsequence we have a different
functional F , depending on the limit points xi. What we want to do is
to show that there exists only one possible choice of xi, i = 1, 2 so that
the corner composed by the rays arriving in these two points minimizes the
corresponding functional. We may identify the points xi by means of the
angles α, β between the corresponding rays and the horizontal line. Notice
that if we have some two rays as a limit of subsequence, the set A0 has to
be contained in the sector having 0 has a vertex and the normal vector to
the rays as boundary directions. This implies in particular that α, β ≥ 0.

Consider now the ellipse having xi as focuses and 2 as the length of the
greater axis. The center 0 lies on it. The tangent direction to the ellipse is
not horizontal unless α = β. Any S consisting by two segments joining, in
order, x1, y and x2, where y lies on such an ellipse can be used as a variation
to K (where K is the corner we are taking into consideration as a limit of
Σr/r) and provides the same value as K to the length-penalizing term. Yet,
if y has a positive component in the direction of v, the integral term turns
out to be strictly lesser. This shows that only α = β is possible.

We are now going to perform variations in which we move the vertex of
the corner up or down to a certain value y of the v−component. The value
of F on the set S obtained in such a way can be estimated by

∫

S1

v · yv0 ν(dv)− c(2−H1(S)) = −y|v|+ cH1(S)− 2c,

where v0 is the unit vector in the direction of v. By v we mean the vector
calculated at 0, while we denote by v(x0) the one obtained at the endpoint
x0. Notice that c = |v(x0)|. We have H1(S) = 2

√

cos2 α+ (y − sinα)2 and
we may write at the first order in y:

F (S) = −y|v|+ cy sinα+ o(y).

Optimality of K (i.e. y = 0) gives so necessarily |v| = c sinα, and this
completes the determination of α.

8.4 Something more on regularity

We present in this section a regularity result, as a by subproduct of our
previous analysis.
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Theorem 8.4.1. Let γ be an arc length parameterization of a subset Σ1 ⊂
Σ consisting of a simple curve with no triple junction nor endpoint in its
relative interior, such that k = supx∈Σ1

diam(T−1 {x}) < 1/(2C). Then
γ ∈ C1,1 and

|γ′′| ≤ Ck

1− 2Ck
.

Proof. Notice that the condition on the diameters of the transported sets
prevents Σ1 to contain atoms, thanks to Corollary 8.2.16. So, writing Σ1,
if necessary, as a countable union of subsets, we can suppose that it is
compactly contained in the complement of triple junctions, endpoints and
atoms with mass larger than (2C)−1.

Because of semicontinuity, for every point x ∈ Σ1 it will exist a ball
B(x, r1) such that diam(T−1(B(x, r1))) < 1/(2C). We can also suppose
r1 < r0[Σ1] (the radius defined in Theorem 8.2.7). Then for every y ∈
B(x, r1/2) we have diam(T−1(B(y, r1/2))) < 1/(2C). This means that we
can use estimate (8.2.26) in all these points. By using also theorem 8.2.8 we
can then say that, whenever y1 = γ(t1) and y2 = γ(t2) are points in such a
neighborhood at distance r, we can estimate

∆θ(y1, y2) ≤
Ckr

1− 2Ck
+ rαC(r1),

where ∆θ(y1, y2) is the angle between the tangent vector to Σ in y1 and
the segment y1y2 (such an angle can be estimated by the variation of the
function θ) and α is an exponent greater than 1. By writing the same
inequality interchanging the role of y1 and y2, summing up, and taking into
account that γ is an arc length parameterization, so that all derivatives are
unit vector determined only by the direction of the tangent vector, we get

|γ′(t1)− γ′(t2)| ≤
Ckr

1− 2Ck
+ rαC(r1). (8.4.1)

Taking into account that r = |y1 − y2| ≤ |t1 − t2|, this implies that γ is
locally C1,1, and so it has almost everywhere a second derivative. Passing
to the limit in (8.4.1) we get

|γ′′(t)| ≤ Ck

1− 2Ck

for almost every t.

Let us have a look to some consequences. First of all we see that the
situation analyzed in theorem 8.3.6 is in fact impossible to be found.
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Corollary 8.4.2. No ordinary point x0 in Σ is such that T (x0) = {x0}.

Proof. Just notice, that, thanks to Theorem 8.4.1, in a neighborhood of
such a point we should have a C1,1 curve. But for γ ∈ C1,1 in every point of
the curve we have a positive radius ball to which γ is tangent from outside.
This ensures the existence of some more points, different from x0, which are
transported to x0.

Next consequence deals with triple junctions and can be considered a
quite complete answer to the question about them posed in [27]. We will
state it in the form of an all-inclusive theorem.

Theorem 8.4.3. Suppose that x0 ∈ Σ is a triple junction: then the three
branches of Σ starting from x0 are parameterized by arc length by C1,1 curves
at least in a neighborhood of x0 and have tangent vectors in x0 which form
three 120◦ angles.

Proof. Just use previously proved results (Theorem 8.3.1) and notice that,
due to T−1(Br) ⊂ Bc0r, we have diam(T−1(x0)) = 0, which is enough for
Theorem 8.4.1 and local C1,1 regularity.
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Chapter 9

Blow-up for optimal

branching structures

In this chapter we want to apply some techniques from Chapter 8 to the
branched transport problems of Chapter 6. The problem of the existence
of the blow-up limits for the optimal structures that arise from them has
been pointed out by Xia in [74], who mainly considered the limits up to
subsequences. As in chapter 8, a delicate point is proving the existence of
full limits. the result we present in this chapter are based on an analysis of
the variation of the function θ as in Section 8.2.1. They appear here for the
first time, but they have been widely discussed with Jean-Michel Morel in
last months.

9.1 Techical tools

For a traffic plan η and a function c : Rd × [0, 1] → [0,+∞], set Ec(η) =
∫

Rd c(x, [x]η)H1(dx). We consider only the case of a subadditive function
c, i.e. c(x, s + t) ≤ c(x, s) + c(x, t). For c(x, s) = sα we get back to the
usual energy J (see Section 6.2). We will also use the definitions of arcs of
η (Defintion 6.2.2) introduced in Chapter 6 and coming from [12]. Here and
in the sequel, as in Chapters 6 and 7, we identify sometimes a curve with
its image.

9.1.1 Geometric estimates

Lemma 9.1.1. Let η be a traffic plan and γ an arc of η parametrized on
the interval [t0, t1] with γ(t0) = x0 and γ(t1) = x1. Set A = γ([t0, t1]),
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ΓA = {γ̃ ∈ Γ : A ⊂ γ̃} and θ0 = η(ΓA). Suppose that the inequalities
0 < θ0 ≤ [x]η ≤ θ0(1 + ε) hold for any x ∈ A. Fix an arc B from x0 to x1
and consider the new traffic plan η′ = T]η where T : Γ → Γ is the identity
on Γ \ ΓA and, for γ̃ ∈ ΓA, the curve T (γ̃) is the curve which agrees with γ̃
up to the part between x0 and x1 which is replaced by B. Then we have

Ec(η
′) ≤ Ec(η)− θα0H1(A) ((1 + ε)α − εα) +

∫

B
c(x, θ0)H1(dx).

Proof. We only have to evaluate
∫

A (θ(x)α − (θ(x)− θ0)α)H1(dx), because
the integral on B will be estimated by subadditivity. To evaluate this other
term we act as in Theorem 7.4.3. Since the function s 7→ sα − (s − θ0)α is
decreasing and we know θ(x) ≤ (1 + ε)θ0, we get θ(x)α − (θ(x) − θ0)α ≥
θα0 ((1 + ε)α − εα). Hence we may estimate from below the gain by means
of

H1(A)θα0 ((1 + ε)α − εα) ,
and then we get the thesis.

Lemma 9.1.2. Let η be an optimal traffic plan for J . According to the
notations of the previous Lemma, let B be the straight line segment from x0
to x1. Suppose again 0 < θ0 ≤ [x]η ≤ θ0(1+ ε) for any x ∈ A. Then it holds
H1(A) ((1 + ε)α − εα) ≤ H1(B). It also follows

H1(A) ≤ H1(B)(1 + cεα),

for a suitable constant c.

Proof. We consider the new traffic plan η′ built as in Lemma 9.1.1. By the
optimality of η, we should have J(η′) ≥ J(η). Yet, by using Lemma 9.1.1
we get

J(η′) ≤ J(η)−H1(A)θα0 ((1 + ε)α − εα) +H1(B)θα0 ,

which gives the thesis. The final estimate, on the other hand, comes just
from a development of ((1 + ε)α − εα)−1 near 0.

Remark 9.1.3. Notice that in particular, as a consequence of the previous
Lemma, the length of a curve of η is always bounded by a constant times
the length of the straight line segment between its endpoints, provided ε is
sufficiently small.

Lemma 9.1.4. Under the same notations of Lemma 9.1.2, it holds H1(A) ≥
√

H1(B)2 + 4dH(A,B)2, where dH denotes the Hausdorff distance.
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The proof of Lemma 9.1.4 is in fact contained in Lemma 8.2.2 in the
previous chapter.

Lemma 9.1.5. Under the same notations of Lemma 9.1.2, suppose that η
is an optimal traffic plan and that γ is an arc of η joining x0 to a point
x1 ∈ ∂B(x0, R). Moreover, let x2 ∈ A ∩ ∂B(x0, r) be a point such that the
angle ˆx2x0x1 = ∆θ. Suppose r ≥ R/2. Then we have ∆θ ≤ Cεα/2, where
C is a constant depending only on α.

Proof. We need to notice that dH(A,B) ≥ cr∆θ, and, combining the in-
equalities in Lemmas 9.1.2 and 9.1.4, and inserting this last estimate, we
get

√

R2 + cr2(∆θ)2 ≤ R(1 + cεα).

Then we use r ≥ R/2 and
√
1 + x2 ≥ 1+ cx2 (which is true as far as x stays

bounded, and this is satisfied by ∆θ) to get

1 + c(∆θ)2 ≤ 1 + cεα,

and then the thesis.

9.1.2 Concatenation of traffic plans

We devote this subsection to an useful tool that we need in this Lagrangian
setting, i.e. the quite natural concept of concatenation of traffic plans. The
idea here is that if we have two traffic plans η1 and η2 with the terminal
measure of η1 equal to the starting measure of η2, then it is possible to merge
them in order to form a new traffic plan. In the language of traffic plan (the
Lagrangian approach to branching transport) this is not completely trivial
and requires an ad-hoc procedure, while in the Eulerian approach this is
very easy, as it simply corresponds to the sum of two vector measures.

We need first to introduce the operation of gluing curves: if we are given
two curves γ1, γ2 ∈ Γ such that π∞(γ1) = π0(γ2) we denote by g(γ1, γ2) the
curve given by

g(γ1, γ2)(t) =

{

γ1(t) if t ≤ σ(γ1),
γ2(t− σ(γ1)) if t ≥ σ(γ1).

We also denote by GP (Γ) ⊂ Γ × Γ the set of gluable pairs of curves, i.e.
GP (Γ) = {(γ1, γ2) ∈ Γ × Γ : π∞(γ1) = π0(γ2)}. The application g is a
well-defined map from GP (Γ) to Γ.
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Lemma 9.1.6. If we are given two traffic plans η1 and η2 with (π0)]ηi = µi
and (π∞)]ηi = νi, with ν1 = µ2, there exists a traffic plan η with the following
properties:

• (π0)]η = µ1 and (π∞)]η = ν2;

• [x]η ≤ [x]η1 + [x]η2 for any x ∈ Ω and in particular Ec(η) ≤ Ec(η1) +
Ec(η2) for any subadditive c;

• if Γ1 and Γ2 are subsets of Γ such that η1 is concentrated on Γ1 and
η2 on Γ2, then η is concentrated on g(GP (Γ) ∩ (Γ1 × Γ2)).

Proof. The proof follows a the idea of the gluing lemma in [71]. Let us
disintegrate η1 and η2 with respect to ν1 = µ2. We get two families of
measures (ηx1 )x and (ηx2 )x which give the two disintegrations:

η1 =

∫

Ω
ηx1 ν1(dx) and η2 =

∫

Ω
ηx2 µ2(dx),

and the measures ηx1 and ηx2 are concentrated on the curves stopping at x
and leaving x, respectively. Take, for any x, the measure ηx1 ⊗ ηx2 : all these
measures are probabilities on Γ× Γ concentrated on GP (Γ). Then consider

η = g]

(∫

Ω
ηx1 ⊗ ηx2ν1(dx)

)

.

This is the desired measure and it is easy to check the desired properties.
To check the first, just notice that π0(g(γ1, γ2)) = π0(γ1) and analogously
π∞(g(γ1, γ2)) = π∞(γ2). Hence the marginals of η come from the marginals
of η1 and η2. The last property is a consequence of the definition of η: set
ρ =

∫

Ω η
x
1 ⊗ ηx2ν1(dx) and see that

η (g (GP (Γ) ∩ (Γ1 × Γ2)) ≥ ρ(GP (Γ) ∩ (Γ1 × Γ2) =
∫

Ω
ν1(dx) η

x
1 ⊗ ηx2 (GP (Γ) ∩ (Γ1 × Γ2)) =

∫

Ω
ν1(dx) η

x
1 ⊗ ηx2 (Γ1 × Γ2) =

∫

Ω
ν1(dx) η

x
1 (Γ1) η

x
2 (Γ2) = 1,

where the first inequality comes from the definition of image measure and
then we have used the fact that any measure ηx1 ⊗ ηx2 is concentrated on
GP (Γ) and at the end that ηxi (Γi) = 1 for ν1−a.e. x and i = 1, 2. To verify
the second requirement, just notice that

[x]η = η ({γ : x ∈ γ}) = ρ ({(γ1, γ2) : x ∈ γ1 ∪ γ2})
≤ ρ ({(γ1, γ2) : x ∈ γ1}) + ρ ({(γ1, γ2) : x ∈ γ2}) .
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Then we use the fact that the two marginals of ρ, which is a measure on
Γ× Γ, are η1 and η2 and we get in the end

[x]η ≤ η1 ({γ1 : x ∈ γ1}) + η2 ({γ2 : x ∈ γ2}) = [x]η1 + [x]η2 .

9.2 Blow-up at branching points

In this section we will use the estimates and the preliminaries that we pre-
sented above to get a blow-up result. This result is very weak as it requires
several assumptions on the two measures µ and ν (on their summability
and support). Moreover, it will be valid only at branching points of optimal
traffic plan in R2. To precise the assumptions on the measures we need to
introduce the following concept:

Definition 9.2.1. We say that the pair (µ, ν) satisfies the regularity as-
sumption if either one of the two measures µ or ν is finitely atomic or
spt(µ) ∩ spt(ν) = ∅.

Actually most of the results in [14] have been proven under the assump-
tion that (µ, ν) satisfies the regularity assumption and it is not surprising
that this hypothesis appears in this framework too.

Notice that, if spt(µ) ∩ spt(ν) = ∅, by applying the interior regularity
results in [14], we know that far away from spt(µ) ∪ spt(ν) the traffic plan
is in fact a finite graph. Suppose now x0 /∈ sptµ and let ω be an open set
containing sptµ but such that d(ω, spt(ν)) > 0. This means that, locally
around x0, the situation is the same as if we replaced µ by µ′ = (Tω)]η,
where Tω : Γ→ ∂ω is the the map given by

Tω(γ) = γ(t0) if t0 = inf{t : γ(t) /∈ ω}.

This measure µ′, by the interior regularity result, is a finite atomic measure.
So we may always think that the starting measure is finitely atomic (at least
if we are looking at a neighborhood of a point far from the support of the
starting measure: if it is not so, this means that it is far from the support of
the arrival measure and we may reverse the situation by switching the roles
of the two measures).

Remark 9.2.2. This procedure replacing µ by µ′ corresponds to taking the
spatial restriction of the traffic plan η to R2 \ ω and then taking the initial
measure of the new traffic plan.

203



We now recall what is known about the behavior of an optimal traffic
plan η near a point x0 and its limits of blow-up procedures. Most of the
notions come from [74] or [14]. In [14] the definition of connected component
of a traffic plan in open set is given. By applying it to the open set Rd \{x0}
we get the definition of the cuts of η around x0: any cut of η is a branch
around x0. In [14] it is proven that there are finitely many cuts for any point
x0 and an uniform upper bound is given for this number. Any cut gives a
new traffic plan with its starting and arrival measures. We say that a cut is
entering in x0 if it irrigates a measure of the form ν̃ + a0δx0 with ν̃ ≤ ν or
leaving x0 if its starting measure is of the form µ̃+ a0δx0 with µ̃ ≤ µ. Any
cut is an optimal traffic plan between its starting and its irrigated measure;
in any cut any two arcs leaving x0 (or arriving at) agree on a common initial
(ending) path; consequently if γ is an arc of the traffic plan leaving x0 at
time t0, we have limt→t0 [γ(t)]η = a0.

We now want to precise what we mean by blow-up in this setting:

Definition 9.2.3. Fix an optimal traffic plan η and a point x0 and take for
each cut of η at x0 a curve γi (i = 1, . . . , I) arriving at or starting from x0.
We say that η admits a blow-up limit at x0 on the subsequence (rj)j with

rj → 0 if there are sets Ki ⊂ B(0, 1) such that

γi ∩B(0, rj) − x0
rj

→ Ki

in the Hausdorff sense for any i = 1, . . . , I. This definition does not depend
on the choice of the curves γi since two possible curves in the same cut
coincide on an initial arc near x0. If the limit exists as a full limit for r → 0
we say that η admits a blow-up limit at x0 and we will call limit the set
K =

⋃I
i=1Ki.

In [74] the interest was towards the blow-up limits in the sense of cur-
rents: here we will on the contrary look at the Hausdorff limits of the blow-
up of the arcs of the cuts. The situation thus corresponds to what we have
seen in Chapter 8. Thanks to the correspondence between traffic plans and
currents (or vector measures) that has been pointed out in [14] and to the
equivalences that have been proven in the same paper, we know that the two
notions of blow-up agree. We also know that, as far as the the blow-up limits
up to subsequences are concerned, they are a union of a finite number of
segments, one for each cut, with directions n̂i such that

∑N
i θ

α
i n̂i = 0. The

number N of cuts is uniformly estimated by a constant N(d, α). The impor-
tant fact is that we do not know whether these are limits up to subsequences
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or full limits. To prove that the full limit exists we will prove that, on any arc
γ arriving at x0, the angle direction θ(r) of the point γ∩∂B(x0, r) satisfies a
Cauchy condition as r → 0 (as we pointed out in Remark 8.2.10). We want
to estimate |θ(r0)− θ(r1)|: set 2−n > r0 ≥ 2−(n+1) and 2−m > r1 ≥ 2−(m+1)

with m ≥ n. Then we write

|θ(r0)− θ(r1)| ≤ |θ(r0)− θ(2−(n+1))|+ |θ(2−m)− θ(r1)|+
m−1
∑

j=n+1

∆θj ,

where ∆θj is the angle variation between radii 2−j and 2−(j+1). Let us define
ε(r) as the incremental excess of the multiplicity on γ ∩B(x0, r):

ε(r) =
maxx∈γ∩B(x0,r)[x]η

minx∈γ∩B(x0,r)[x]η
− 1.

The quantity ε(r) is increasing in r and so we may estimate, thanks to
Lemma 9.1.5

|θ(r0)− θ(r1)| ≤ C
m
∑

j=n

ε(2−j)α/2.

To get |θ(r0)− θ(r1)| as small as we want it is hence sufficient to have

∞
∑

j=0

ε(2−j)α/2 < +∞, (9.2.1)

so that the tail of the sum is infinitesimal. Notice that such a condition is
always verified if we have ε(r) ≤ Crβ for a suitable β > 0.

Now take a point x0 and an arc γ in one of its cuts. Since µ is finitely
atomic, by using the no-loop property, we get that only at a finite number
of points of γ there could be some mass which arrives (no more than once
for every Dirac mass of µ, even less if they merge before arriving at γ).
We are concerned with the arrival points which are not x0 itself, so that
we may simply choose a sufficiently small radius r in order not to have
any arrival point in γ ∩ B(x0, r). This means that the multiplicity on the
curve γ is decreasing, at least if we stay close enough to x0 and its variation
inside B(x0, r) is due only to the departing mass. Let us now consider the
mass irrigated starting from γ ∩B(x0, r). This in fact means taking all the
connected components of η in R2 \ (γ ∩B(x0, r)) which touch the relative
interior of γ ∩ B(x0, r): the traffic plan corresponding to the union of all
these last components is an optimal traffic plan which irrigates a measure
νr starting from a measure µr concentrated on γ ∩ B(x0, r), with the same
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mass that we denote by m(r). Call θ0 the maximal value of the multiplicity
on γ∩B(x0, r). This is the value of the mass at x0 in the irrigating measure
of the cut we are considering. The minimal value, on the contrary, is at x1,
and it is given by θ0 −m(r). We have

ε(r) =
θ0

θ0 −m(r)
− 1 =

m(r)

θ0 −m(r)
.

Since θ0 > 0 and m(r) is infinitesimal, at least for small r it holds

ε(r) ≤ 2θ−10 m(r) (9.2.2)

and hence estimating ε(r) is the same as estimating m(r). To do this, we
will give a geometric estimate on the area of the set where the measure νr is
concentrated. Let us call R(r) the highest radius R such that νr(B(x0, R)) ≤
m(r)/2.

We will prove the following result.

Lemma 9.2.4. Suppose x0 is a branching point of an optimal traffic plan
η in R2 and that (µ, ν) satisfies the regularity assumption: then there exists
a constant k, depending on α, η, x0, such that for any small r we have
R(r) ≤ kr.

Proof. We will prove the result by contradiction. Supposing the result to be
false, we could build a sequence of measures µn whose mass is mn → 0, each
concentrated on γ ∩ B(x0, rn) with rn → 0, irrigating through a sequence
of traffic plans ηn some corresponding measures νn. The measures ηn are
traffic plans in a quite enlarged sense, as they are not probability measures
but they have total mass mn. Anyway the whole theory extends easily to
finite-mass measures on Γ. We are assuming that the radius R(rn) (the
maximal radius to have νn(B(x0, Rn)) ≤ mn/2) is much larger than rn, in
the sense that it holds R(rn)/rn → +∞. Set N = ∪iγi, where the curves
γi’s are chosen an arc for each cut. We notice that the traffic plans ηn are
optimal according to the usual costs J , but also with respect to the energy
Ecn given by

cn(x, θ)) =

{

θα if x /∈ N
α[x]α−1η θ ∧ θα if x ∈ N.

This fact is true since, if we consider a new current η′ replacing ηn, we may
concatenate it into the optimal traffic plan η and estimate the difference
between the total energy of the new traffic plan and the energy of η by
subadditivity outside N , while on N there is already a positive multiplicity:
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adding some multiplicity on N is hence cheaper than doing it elsewhere, and
its cost may be estimated by concavity.

Afterwards, we can replace any measure νn by the measure we get by
stopping the irrigation at ∂B(x0, Rn). In this way at least half of the mass
of the new measure is on the boundary. We can easily renormalize in space
what we have so far by a translation (bringing x0 to 0) and an homothety of
ratio R−1n . In this way we have new sequences µ′n with dH(spt(µ

′
n), 0) → 0

and ν ′n with ν ′n(∂B(0, 1)) ≥ 1/2mn, where mn is the common mass of µ′n
and ν ′n. After this we renormalize also in mass, multiplying by m−1n . In
this way we get two sequences of probability measures µ′′n, ν

′′
n and a new

sequence of traffic plans η′′n (with mass 1, after the rescaling). This traffic
plans are optimal both for the usual energy and for the energy E ′′n := Ec′′n ,
derived by renormalization by Ecn and given by:

c′′n(x, θ) =

{

θα if x /∈ An
m1−α
n θ0(x)

α−1θ ∧ θα if x ∈ An,

where An = R−1n (N − x0)∩B(0, 1) and θ0(x), for x ∈ An is the multiplicity
of η at the point Rnx + x0 ∈ N . To get this expression it is sufficient to
consider the expression of Ecn , renormalize in space, and then in mass. Then
we divide the result by mα

n. Hence it holds

dα(µ
′′
n, ν

′′
n) = E′′n(η

′′
n) ≤ E′′n(η),

where the inequality holds for any traffic plan η ∈ TP (µ′′n, ν ′′n). Now we want
to let n tend to infinity. Up to subsequences, we may suppose µ′′n ⇀ µ∞,
ν ′′∞ ⇀ ν∞, An → A∞ (in the Hausdorff sense). It is straightforward that we
have µ∞ = δ0. We also want a limit energy for E ′′n. Let us set E∞ = Ec∞ ,
where c∞ is given by

c∞(θ, x) =

{

θα if x /∈ A∞
0 if x ∈ A∞,

.

We want now to prove

dα(µ∞, ν∞) ≤ E∞(η),

for any η ∈ TP (µ∞, ν∞). It is actually sufficient to prove this for traffic
plan whose support is contained in B(0, 1) (by the convex-hull property, see
[14]). In order to do this we can use the approximation in Lemma 9.2.5 and
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then pass to the limit in the inequality. Since the energy E∞ allows to move
on A∞ for free, we get

min {E∞(η) : η ∈ TP (δ0, ν∞)} = min {dα(µ, ν∞ : spt(µ) ⊂ A∞} .

Notice that, by the results on limits of the blow-up procedure up to subse-
quences, the set A∞ is the union of finitely many rays which form convex
angles between them. Hence we may apply Lemma 9.2.6, since ν∞ 6= δ0,
and get a contradiction.

Lemma 9.2.5. Any traffic plan η ∈ TP (δ0, ν∞) whose support is contained
in B(0, 1) may be approximated by a sequence of traffic plan (ηn)n with
ηn ∈ TP (µ′′n, ν ′′n), such that lim supnE

′′
n(Tn) ≤ E∞(T ).

Proof. Let us consider the traffic plan η′ which is the restriction of η outside
A∞ and its starting measure σ, concentrated on A∞. Let πn : A∞ → An
be a measurable map such that |πn(x) − x| = d(x,An) ≤ dH(A∞, An) (its
existence comes from a measurable selection criterion, see [38]). We consider
a traffic plan ηn which is obtained by concatenating the following four traffic
plans in order: η1n, η

2
n, η

′ and η4n. Here η1n ∈ TP (µ′′n, (πn)]σ) is a traffic plan
which is optimal for the energy E ′′n; η

2
n ∈ TP ((πn)]σ, σ) and η4n ∈ TP (ν∞, ν ′′n)

are optimal traffic plans. We want to estimate E ′′n(ηn). We have

E′′n(ηn) ≤ E′′n(η′) + E′′n(η
1
n) + E′′n(η

2
n) + E′′n(η

4
n).

Notice that, being c′′n(·, x) linear for x ∈ An, the cost E′′n(η
1
n) coincides, up

to the multiplicative constant m1−α
n , with the Wasserstein distance from µ′′n

to (πn)]σ according to the geodesic distance on An with a weight given by
θ0(x)

α−1. This weight being bounded, we deduce (thanks to Remark 9.1.3
too, which implies H1(An) ≤ C)

E′′n(η
1
n) ≤ Cm1−α

n H1(An)→ 0.

To estimate E ′′n(η
2
n)we use E′′n(η

2
n) ≤ E(η2n) = dα((πn)]σ, σ). Then, thanks

to dH(An, A∞) → 0, we get (πn)]σ ⇀ σ , which implies dα((πn)]σ, σ) → 0.
Similarly one can get E ′′n(η

4
n)→ 0 as a consequence of ν ′′n ⇀ ν∞. In the end

we get
lim sup

n
E′′n(ηn) ≤ E(η′) + 0 + 0 + 0 = E∞(η).

Lemma 9.2.6. Suppose dα(ν, µ0) = min{dα(ν, µ) | spt(µ) ⊂ A0}, where
A0 ⊂ B(0, 1) ⊂ R2 is a set composed by finitely many rays meeting at 0 with
convex angles. Then, if ν 6= δ0, we also have µ0 6= δ0.
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Proof. To prove this we just take an optimal traffic plan η ∈ TP (δ0, ν) and
an arc going out of 0. Let x1 be a point in this arc different from 0 and let A
be the part of the arc up to x1. Let ε be such that θ0 ≤ [x]η ≤ θ0(1 + ε) for
any x ∈ A. We know that ε→ 0 as x1 → 0. Let S be the sector bounded by
the rays of A0 containing x1. Since the amplitude of S is 180◦ − 2δ < 180◦,
there is one of the two rays composing the boundary of S such that the
angle between it and the segment x10 is less than 90◦ − δ. This implies
d(x1, A0) < c|x1| for a constant c depending on δ and strictly less than 1.
Let B be the straight line segment from x1 to x0 ∈ A0 realizing d(x1, A0) as
a length. Then we consider the new traffic plan η′ = T]η, where T : Γ→ Γ
is the identity on the curves which do not contain A and replaces A by
B on the curves containing it. By optimality of η and µ0 we should have
J(η) ≤ J(η′). Yet we have, by Lemma 9.1.1,

J(η′) ≤ J(η)− θα0H1(A) ((1 + ε)α − εα) + θα0H1(B).

By using H1(A) ≥ |x1| and H1(B) < c|x1| we get

J(η′) ≤ J(η)− θα0 |x1| ((1 + ε)α − εα − c) ,

which is a contradiction as c < 1 and ε→ 0.

The consequence of what we have proven is the following final theorem.

Theorem 9.2.7. Suppose x0 is a branching point of an optimal traffic plan
η in Ω ⊂ R2 and that (µ, ν) satisfies the regularity assumption. To fix the
ideas, let us think that either x0 /∈ spt(µ) or µ is finitely atomic. Suppose
moreover that ν = f · L2 and that f ∈ Lp(Ω) for p > 1. Then there exists
the full limit of the blow up of the traffic plan η at x0.

Proof. We know that there exist limits of blow-up up to subsequences and
that these limits are composed by finitely many rays. To show that there
is actually a full limit, it is sufficient to prove that the angle direction of
the points γi ∩ ∂B(x0, r) have a limit for each i as r → 0. This is the same
idea as in Chapter 8. In fact the limit direction should be, by Hausdorff
convergence, the direction of the limit ray and this would fix such a direction,
giving uniqueness of the subsequences limits. To do this we prove that these
angles satisfy a Cauchy condition and we want hence to prove that (9.2.1)
holds. We use (9.2.2) and Lemma 9.2.4 to say that

ε(r) ≤ 2θ−10 m(r) ≤ 4θ−10 ν(B(x0, R
j(r)) ≤ 4θ−10 ν(B(x0, kr)).
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Then, by the Lp assumption on ν, we get ν(E) ≤ ||f ||p|E|1−1/p, and hence

ε(r) ≤ Cr2(1−1/p).

We have already noticed that this is sufficient to make the estimate (9.2.1)
hold.
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available at www.unipi.it/etd and cvgmt.sns.it, 2003.

[67] F. Santambrogio, Transport and Concentration Problems with Inter-
action Effects, J. Glob. Opt., to appear, availbale at arxiv.org .

[68] F. Santambrogio, Optimal Channel Networks, Landscape Function
and Branched Transport, Interfaces and Free Boundaries, to appear.
Available at cvgmt.sns.it.

[69] F. Santambrogio, P. Tilli, Blow-up of optimal sets in the irrigation
problem, J. Geom. Anal. (15), no. 2, 343–362, 2005.

[70] N. Trudinger and X.-J. Wang, On the second boundary value problem
for Monge-Ampere type equations and optimal transportation, 2006.
Preprint available at arxiv.org .

[71] C. Villani. Topics in Optimal Transportation. Graduate Studies in
Mathematics, AMS, 2003.

[72] Q. Xia, Optimal Paths related to Transport Problems. Comm. Cont.
Math. (5), no. 2, 251–279, 2003.

[73] Q. Xia, Interior regularity of optimal transport paths. Calc. Var. Par.
Diff. Eq. (20), no. 3, 283–299, 2004.

216



[74] Q. Xia, Boundary Regularity of Optimal Transport Paths, 2003.
Preprint available at http://www.math.ucdavis.edu/ qlxia/

[75] Q. Xia, An Application of Optimal Transport Paths to Urban Trans-
port Networks. Discrete and Continuous Dynmical Systems, Supple-
ment Volume, 904–910, 2005.

[76] Q. Xia, The Formation of Tree Leaves. ESAIM Control Op-
timization and Calculus of Variations, to appear. Available at
http://www.math.ucdavis.edu/ qlxia/ .

217


