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Abstract

This thesis develops a mathematical framework for the analysis of con-

tinuous-time trading strategies which, in contrast to the classical setting of

continuous-time finance, does not rely on stochastic integrals or other prob-

abilistic notions.

Using the recently developed ‘non-anticipative functional calculus’, we

first develop a pathwise definition of the gain process for a large class of

continuous-time trading strategies which include the important class of delta-

hedging strategies, as well as a pathwise definition of the self-financing con-

dition.

Using these concepts, we propose a framework for analyzing the perfor-

mance and robustness of delta-hedging strategies for path-dependent deriva-

tives across a given set of scenarios. Our setting allows for general path-

dependent payoffs and does not require any probabilistic assumption on the

dynamics of the underlying asset, thereby extending previous results on ro-

bustness of hedging strategies in the setting of diffusion models. We obtain a

pathwise formula for the hedging error for a general path-dependent deriva-

tive and provide sufficient conditions ensuring the robustness of the delta

hedge. We show in particular that robust hedges may be obtained in a large

class of continuous exponential martingale models under a vertical convexity

condition on the payoff functional. Under the same conditions, we show that

discontinuities in the underlying asset always deteriorate the hedging perfor-

mance. These results are applied to the case of Asian options and barrier

options.
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iv Abstract

The last chapter, independent of the rest of the thesis, proposes a novel

method, jointly developed with Andrea Pascucci and Stefano Pagliarani, for

analytical approximations in local volatility models with Lévy jumps. The

main result is an expansion of the characteristic function in a local Lévy

model, which is worked out in the Fourier space by considéring the adjoint

formulation of the pricing problem. Combined with standard Fourier meth-

ods, our result provides efficient and accurate pricing formulae. In the case

of Gaussian jumps, we also derive an explicit approximation of the transition

density of the underlying process by a heat kernel expansion; the approxi-

mation is obtained in two ways: using PIDE techniques and working in the

Fourier space. Numerical tests confirm the effectiveness of the method.



Sommario

Questa tesi sviluppa un approccio ‘per traiettorie’ alla modellizzazione

dei mercati finanziari in tempo continuo, senza fare ricorso a delle ipotesi

probabilistiche o a dei modelli stocastici. Lo strumento principale utilizzato

in questa tesi è il calcolo funzionale non-anticipativo, una teoria analitica che

sostituisce il calcolo stocastico solitamente utilizzato in finanza matematica.

Cominciamo nel Capitolo 1 introducendo la teoria di base del calcolo fun-

zionale non-anticipativo e i suoi principali risultati che utilizzeremo nel corso

della tesi. Il Capitolo 2 mostra in dettaglio la versione probabilistica di tale

calcolo, soprannominata Calcolo di Itô funzionale, e mostra come essa per-

metta di estendere i risultati classici sulla valutazione e la replicazione dei

derivati finanziari al caso di opzioni dipendenti dalla traiettoria dei prezzi.

Inoltre illustriamo la relazione tra le equazioni alle derivate parziali con coef-

ficienti dipendenti dal cammino e le equazioni differenziali stocastiche ‘back-

ward’. Infine prendiamo in considérazione altre nozioni deboli di soluzione a

tali equazioni alle derivate parziali dipendenti dal cammino, utilizzate nella

letteratura nel caso in cui non esistano soluzioni classiche.

In seguito, nel Capitolo 3, costruiamo un modello di mercato finanziario

in tempo continuo, senza ipotesi probabilistiche e con un orizzonte tempo-

rale finito, dove i tempi di transazione sono rappresentati da una sequenza

crescente di partizioni temporali, il cui passo converge a 0. Identifichiamo

le traiettorie ‘plausibili’ con quelle che possiedono una variazione quadratica

finita, nel senso di Föllmer, lungo tale sequenza di partizioni. Tale condizione

di plausibilità sull’insieme dei cammini ammissibili rispetta il punto di vista
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vi Sommario

delle condizioni ‘per traiettorie’ di non-arbitraggio.

Completiamo il quadro introducendo una nozione ‘per traiettorie’ di strate-

gie auto-finanzianti su un insieme di traiettorie di prezzi. Queste strategie

sono definite come limite di strategie semplici e auto-finanzianti, i cui tempi di

transizione appartengono alla sequenza di partizioni temporali fissata. Iden-

tifichiamo una classe speciale di strategie di trading che dimostriamo essere

auto-finanzianti e il cui guadagno può essere calcolato traiettoria per traiet-

toria come limite di somme di Riemann. Inoltre, presentiamo un risultato

di replicazione per traiettorie e una formula analitica esplicita per stimare

l’errore di replicazione. Infine, definiamo una famiglia di operatori integrali

indicizzati sui cammini come delle isometrie tra spazi normati completi.

Il Capitolo 4 utilizza questo quadro teorico per proporre un’analisi per

traiettorie delle strategie di replicazione dinamica. Ci interessiamo in par-

ticolare alla robustezza della loro performance nel caso della replicazione di

derivati dipendenti dalla traiettoria dei prezzi e monitorati in tempo con-

tinuo. Supponiamo che l’agente di mercato utilizzi un modello di martingala

esponenziale di quadrato integrabile per calcolare il prezzo e il portafoglio

di replicazione; analizziamo quindi la performance della strategia di delta-

hedging quando viene applicata alla traiettoria realizzata dei prezzi del sot-

tostante piuttosto che a una dinamica stocastica.

Innanzitutto, considériamo il caso in cui disponiamo di un funzionale di

prezzo regolare e mostriamo che la replicazione tramite delta-hedging è ro-

busta se la derivata verticale seconda del funzionale di prezzo ha lo stesso

segno della differenza tra la volatilità del modello e la volatilità realizzata

dei prezzi di mercato. Otteniamo cos̀ı una formula esplicita per l’errore di

replicazione data una traiettoria. Questa formula è l’analogo per traietto-

rie del risultato ottenuto da EL Karoui et al (1997) e la generalizza al caso

dipendente dalla traiettoria, senza ricorrere a delle ipotesi probabilistiche o

alla propietà di Markov circa la dinamica reale dei prezzi di mercati. Pre-

sentiamo infine delle codizioni sufficienti affinché il funzionale di valutazione

abbia la regolarità richiesta per tali risultati sullo spazio dei cammini con-
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tinui.

Questi risultati permettono di analizzare la robustezza delle strategie di

replicazione dinamica. Forniamo una condizione sufficiente sul funzionale

di payoff che assicura la positività della derivata verticale seconda del fun-

zionale di prezzo, ovvero la convessità di una certa funzione reale. Analiz-

ziamo ugualmente il contributo di salti della traiettoria dei prezzi all’errore

di replicazione ottenuto agendo sul mercato secondo la strategia di delta-

hedging. Osserviamo che le discontinuità deteriorano la performance della

replicazione. Nel caso speciale di un modello Black-Scholes generalizzato uti-

lizzato dall’agente, se il derivato venduto ha un payoff monitorato a tempo

discreto, allora il funzionale di prezzo è localmente regolare su tutto lo

spazio dei cammini continui stoppati e le sue derivate, verticale e orizzontale,

sono date in forma esplicita. considériamo anche il caso di un modello con

volatilità dipendente dalla traiettoria dei prezzi, il modello Hobson-Rogers,

e mostriamo come il problema di pricing sia anche in quel caso riconducibile

all’equazione di pricing universale introdotta nel secondo capitolo. Infine,

mostriamo qualche esempio di applicazione della nostra analisi, precisamente

la replicazione di opzioni asiatiche e barriera.

L’ultimo capitolo è uno studio indipendente dal resto della tesi, svilup-

pato insieme ad Andrea Pascucci e Stefano Pagliarani, in cui proponiamo

un nuovo metodo di approssimazione analatica in modelli a volatilità locale

con salti di tipo Lévy. Il risultato principale è un’espansione in serie della

funzione caratteristica in un modello di Lévy locale, ottenuta nello spazio

di Fourier considérando la formulazione aggiunta del problema di ‘pricing’.

Congiuntamente ai metodi di Fourier standard, il nostro risultato fornisce for-

mule di ‘pricing’ efficienti e accurate. Nel caso di salti gaussiani, deriviamo

anche un’approssimazione esplicita della densità di transizione del processo

sottostante tramite un’espansione con nucleo del calore; tale approssimazione

è ottenuta in due modi: usando tecniche PIDE e lavorando nello spazio di

Fourier. Test numerici confermano l’efficacità del metodo.
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Résumé

Cette thèse développe une approche trajectorielle pour la modélisation

des marchés financiers en temps continu, sans faire appel à des hypothèses

probabilistes ou à des modèles stochastiques. L’outil principal dans cette

thèse est le calcul fonctionnel non-anticipatif, un cadre analytique qui rem-

place le calcul stochastique habituellement utilisé en finance mathématique.

Nous commençons dans le Chapitre 1 par introduire la théorie de base du

calcul fonctionnel non-anticipatif et ses principaux résultats que nous utili-

sons tout au long de la thèse. Le Chapitre 2 détaille la contrepartie proba-

biliste de ce calcul, le Calcul d’Itô fonctionnel, et montre comment ce calcul

permet d’étendre les résultats classiques sur l’évaluation et la couverture des

produits dérivés au cas des options avec une dépendance trajectorielle. Par

ailleurs, nous décrivons la relation entre les équations aux dérivées partielles

avec coefficients dépendant du chemin et les équations différentielles stochas-

tiques rétrogrades. Finalement, nous considérons d’autres notions plus faibles

de solution à ces équations aux dérivées partielles avec coefficients dépendant

du chemin, lesquelles sont utilisées dans la littérature au cas où des solutions

classiques n’existent pas.

Ensuite nous mettons en place, dans le Chapitre 3, un modéle de marché

financier en temps continu, sans hypothèses probabilistes et avec un hori-

zon fini où les temps de transaction sont représentés par une suite embôıtée

de partitions dont le pas converge vers 0. Nous proposons une condition

de plausibilité sur l’ensemble des chemins admissibles du point de vue des

conditions trajectorielles de non-arbitrage. Les trajectoires ‘plausibles’ sont
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x Résumé

révélées avoir une variation quadratique finie, au sens de Föllmer, le long de

cette suite de partitions.

Nous complétons le cadre en introduisant une notion trajectorielle de

stratégie auto-finançante sur un ensemble de trajectoires de prix.

Ces stratégies sont définies comme des limites de stratégies simples et auto-

finançantes, dont les temps de transactions appartiennent à la suite de par-

titions temporelles fixée. Nous identifions une classe spéciale de stratégies

de trading que nous prouvons être auto-finançantes et dont le gain peut être

calculé trajectoire par trajectoire comme limite de sommes de Riemann. Par

ailleurs, nous présentons un résultat de réplication trajectorielle et une for-

mule analytique explicite pour estimer l’erreur de couverture. Finalement

nous définissons une famille d’opérateurs intégrals trajectoriels (indexés par

les chemins) comme des isométries entre des espaces normés complets.

Le Chapitre 4 emploie ce cadre théorique pour proposer une analyse tra-

jectorielle des stratégies de couverture dynamique. Nous nous intéressons en

particulier à la robustesse de leur performance dans la couverture de pro-

duits dérivés path-dependent monitorés en temps continu. Nous supposons

que l’agent utilise un modèle de martingale exponentielle de carré intégrable

pour calculer les prix et les portefeuilles de couverture, et nous analysons

la performance de la stratégie delta-neutre lorsqu’elle est appliquée à la tra-

jectoire du prix sous-jacent réalisé plutôt qu’à une dynamique stochastique.

D’abord nous considérons le cas où nous disposons d’une fonctionnelle de

prix régulière et nous montrons que la couverture delta-neutre est robuste si

la dérivée verticale seconde de la fonctionnelle de prix est du même signe que

la différence entre la volatilité du modèle et la volatilité réalisée du marché.

Nous obtenons aussi une formule explicite pour l’erreur de couverture sur une

trajectoire donnée. Cette formule est l’analogue trajectorielle du résultat de

El Karoui et al (1997) et le généralise au cas path-dependent, sans faire ap-

pel à des hypothéses probabilistes ou à la propriété de Markov. Enfin nous

présentons des conditions suffisantes pour que la fonctionnelle d’évaluation

ait la régularité requise pour ces résultats sur l’espace des chemins continus.
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Ces résultats permettent d’analyser la robustesse des stratégies de cou-

verture dynamiques. Nous fournissons une condition suffisante sur la fonc-

tionnelle de payoff qui assure la positivité de la dérivé verticale seconde de

la fonctionnelle d’évaluation, i.e. la convexité d’une certaine fonction réelle.

Nous analysons également la contribution des sauts de la trajectoire des

prix à l’erreur de couverture obtenue en échangeant sur le marché selon la

stratégie delta-neutre. Nous remarquons que les discontinuités détériorent la

performance de la couverture. Dans le cas spécial d’un modèle Black-Scholes

généralisé utilisé par l’agent, si le produit dérivé vendu a un payoff monitoré

en temps discret, alors la fonctionnelle de prix est localement régulière sur

tout l’espace des chemins continus arrêtés et ses dérivées verticale et hori-

zontale sont données dans une forme explicite. Nous considérons aussi le cas

d’un modèle avec volatilité dépendante de la trajectoire des prix, le modèle

Hobsons-Rogers, et nous montrons comment le problème de ‘pricing’ peut

encore être réduit à l’équation universelle introduite dans le Chapitre 2. Fi-

nalement, nous montrons quelques applications de notre analyse, notamment

la couverture des options Asiatiques et barrières.

Le dernier chapitre, indépendant du reste de la thèse, est une étude en col-

laboration avec Andrea Pascucci and Stefano Pagliarani, où nous proposons

une nouvelle méthode pour l’approximation analytique dans des modèles à

volatilité locale avec des sauts de type Lévy. Le résultat principal est un

développement asymptotique de la fonction caractéristique dans un modèle

de Lévy local, qui est obtenu dans l’espace de Fourier en considérant la for-

mulation adjointe du problème de ‘pricing’. Associé aux méthodes de Fourier

standard, notre résultat fournit des approximations précises du prix. Dans

le cas de sauts gaussiens, nous dérivons aussi une approximation explicite

de la densité de transition du processus sous-jacent à l’aide d’une expansion

avec noyau de la chaleur; cette approximation est obtenue de deux façons:

en utilisant des techniques PIDE et en travaillant dans l’espace de Fourier.

Des test numériques confirment l’efficacité de la méthode.



xii Résumé
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Notation

Acronyms and abbreviations

càdlàg = right continuous with left limits

càglàd = left continuous with right limits

SDE = stochastic differential equation

BSDE = backward stochastic differential equation

PDE = partial differential equation

FPDE = functional partial differential equation

PPDE = path-dependent partial differential equation

EMM = equivalent martingale measure

NA = no-arbitrage condition

NA1 = “no arbitrage of the first kind” condition

NFL = “no free lunch” condition

NFLVR = “no free lunch with vanishing risk” condition

s.t. = such that

a.s. = almost surely

a.e. = almost everywhere
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xviii Notation

e.g. = exempli gratia ≡ example given

i.e. = id est ≡ that is

Basic mathematical notation

Rd
+ = positive orthant in Rd

D([0, T ],Rd) (resp. D([0, T ],Rd
+)) = space of càdlàg functions from [0, T ]

to Rd (respectively Rd
+), d ∈ N

C([0, T ],Rd
+) (resp. C([0, T ],Rd

+)) = space of continuous functions from [0, T ]

to Rd (respectively Rd
+), d ∈ N

Sd+ = set of symmetric positive-definite d× d matrices

F = (Ft)t∈[0,T ] = natural filtration generated by the coordinate process

FX = (Ft)Xt∈[0,T ] = natural filtration generated by a stochastic process X

EP = expectation under the probability measure P

P−−→ = limit in probability P

ucp(P)−−−−−→ = limit in the topology defined by uniform convergence on compacts

in probability P

· = scalar product in Rd (unless differently specified)

〈·〉 = Frobenius inner product in Rd×d (unless differently specified)

‖·‖∞ = sup norm in spaces of paths, e.g inD([0, T ],Rd), C([0, T ],Rd), D([0, T ],Rd
+),

C([0, T ],Rd
+),. . .

‖·‖p = Lp-norm, 1 ≤ p ≤ ∞

[·] ([·, ·]) = quadratic (co-)variation process

• = stochastic integral operator
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tr = trace operator, i.e. tr(A) =
∑d

i=1 Ai,i where A ∈ Rd×d.

tA = transpose of a matrix A

x(t−) = left limit of x at t, i.e. lims↗t x(s)

x(t+) = right limit of x at t, i.e. lims↘t x(s)

∆x(t) ≡ ∆−x(t) = left-side jump of x at t, i.e. x(t)− x(t−)

∆+x(t) = right-side jump of x at t, i.e. x(t+)− x(t)

∂x = ∂x

∂xy = ∂2

∂x∂y

Functional notation

x(t) = value of x at time t, e.g. x(t) ∈ Rd if x ∈ D([0, T ],Rd);

xt = x(t ∧ ·) ∈ D([0, T ],Rd) the path of x ‘stopped’ at the time t;

xt− = x1[0,t) + x(t−)1[t,T ] ∈ D([0, T ],Rd);

xδt = xt + δ1[t,T ] ∈ D([0, T ],Rd) the vertical perturbation – of size and direc-

tion given by the vector δ ∈ Rd – of the path of x stopped at t over the

future time interval [t, T ];

ΛT = space of (càdlàg) stopped paths

WT = subspace of ΛT of continuous stopped paths

d∞ = distance introduced on the space of stopped paths

DF = horizontal derivative of a non-anticipative functional F

∇ωF = vertical derivative of a non-anticipative functional F

∇X = vertical derivative operator defined on the space of square-integrable

FX-martingales
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Introduction

The mathematical modeling of financial markets dates back to 1900, with

the doctoral thesis [5] of Louis Bachelier, who first introduce the Brownian

motion as a model for the price fluctuation of a liquid traded financial asset.

After a long break, in the mid-sixties, Samuelson [94] revived Bachelier’s

intuition by proposing the use of geometric Brownian motion which, as well as

stock prices, remains positive. This became soon a reference financial model,

thanks to Black and Scholes [12] and Merton [74], who derived closed formulas

for the price of call options under this setting, later named the “Black-Scholes

model”, and introduced the novelty of linking the option pricing issue with

hedging. The seminal paper by Harrison and Pliska [55] linked the theory of

continuous-time trading to the theory of stochastic integrals, which has been

used ever since as the standard setting in Mathematical Finance.

Since then, advanced stochastic tools have been used to describe the price

dynamics of financial assets and its interplay with the pricing and hedging

of financial derivatives contingent on the trajectory of the same assets. The

common framework has been to model the financial market as a filtered

probability space (Ω,F , (Ft)0≤t≤T ,P) under which the prices of liquid traded

assets are represented by stochastic processes X = (Xt)t≥0 and the payoffs

of derivatives as functionals of the underlying price process. The probability

measure P, also called real world, historical, physical or objective probability

tries to capture the observed patterns and, in the equilibrium interpretation,

represents the (subjective) expectation of the “representative investor”. The

objective probability must satisfy certain constraints of market efficiency,

1
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the strongest form of which requires X to be a (Ft)t∈[0,T ]-martingale un-

der P. However, usually, weaker forms of market efficiency are assumed by

no-arbitrage considerations, which translate, by the several versions of the

Fundamental Theorem of Asset Pricing (see [95, 96] and references therein),

to the existence of an equivalent martingale (or risk-neutral) measure Q,

that can be interpreted as the expectation of a “risk-neutral investor” as

well as a consistent price system describing the market consensus. The first

result in this stream of literature (concerning continuous-time financial mod-

els) is found in Ross [93] in 1978, where the no-arbitrage condition (NA) is

formalized, then major advances came in 1979 by Harrison and Kreps [54]

and in 1981 by Harrison and Pliska [55] and in particular by Kreps [66], who

introduced the no free lunch condition (NFL), proven to be equivalent to

the existence of a local martingale measure. More general versions of the

Fundamental Theorem of Asset Pricing are due to Delbaen and Schacher-

mayer [31, 30], whose most general statement pertains to a general multi-

dimensional semimartingale model and establishes the equivalence between

the condition of no free lunch with vanishing risk (NFLVR) and the existence

of a sigma-martingale measure. The model assumption that the price process

behaves as a semimartingale comes from the theory of stochastic analysis,

since it is known that there is a good integration theory for a stochastic

process X if and only if it is a semimartingale. At the same time, such as-

sumption is also in agreement with the financial reasoning, as it is shown

in [31] that a very weak form of no free lunch condition, assuring also the

existence of an equivalent local martingale measure, is enough to imply that

if X is locally bounded then it must be a semimartingale under the objec-

tive measure P. In [32] the authors present in a “guided tour” all important

results pertaining to this theme.

The choice of an objective probability measure is not obvious and always

encompasses a certain amount of model risk and model ambiguity. Recently,

there has been a growing emphasis on the dangerous consequences of relying

on a specific probabilistic model. The concept of the so-called Knightian
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uncertainty, introduced way back in 1921 by Frank Knight [65], while dis-

tinguishing between “risk” and “uncertainty”, is still as relevant today and

led to a new challenging research area in Mathematical Finance.More funda-

mentally, the existence of a single objective probability does not even make

sense, agreeing with the criticism raised by de Finetti [28, 29].

After the booming experienced in the seventies and eighties, in the late

eighties the continuous-time modeling of financial markets evoked new in-

terpretations that can more faithfully represent the economic reality. In the

growing flow of literature addressing the issue of model ambiguity, we may

recognize two approaches:

• model-independent, where the single probability measure P is re-

placed by a family P of plausible probability measures;

• model-free, that eliminates probabilistic a priori assumptions alto-

gether, and relies instead on pathwise statements.

The first versions of the Fundamental Theorem of Asset Pricing under

model ambiguity are presented in [13, 14, 2] in discrete time, and [9] in

continuous time, using a model-independent approach.

The model-free approach to effectively deal with the issue of model ambi-

guity also provides a solution to another problem affecting the classical prob-

abilistic modeling of financial markets. Indeed, in continuous-time financial

models, the gain process of a self-financing trading strategy is represented as

a stochastic integral. However, despite the elegance of the probabilistic rep-

resentation, some real concerns arise. Beside the issue of the impossible con-

sensus on a probability measure, the representation of the gain from trading

lacks a pathwise meaning: while being a limit in probability of approximat-

ing Riemann sums, the stochastic integral does not have a well-defined value

on a given ‘state of the world’. This causes a gap in the use of probabilistic

models, in the sense that it is not possible to compute the gain of a trading

portfolio given the realized trajectory of the underlying asset price, which

constitutes a drawback in terms of interpretation.
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Beginning in the nineties, a new branch of the literature has addressed

the issue of pathwise integration in the context of financial mathematics.

The approach of this thesis is probability-free. In the first part, we will set

up a framework for continuous-time trading where everything has a pathwise

characterization. This purely analytical structure allows us to effectively deal

with the issue of model ambiguity (or Knightian uncertainty) and the lack

of a path-by-path computation of the gain of trading strategies.

A breakthrough in this direction was the seminal paper written by Föllmer

[46] in 1981. He proved a pathwise version of the Itô formula, conceiving the

construction of an integral of a C1-class function of a càdlàg path with re-

spect to that path itself, as a limit of non-anticipative Riemann sums. His

purely analytical approach does not ask for any probabilistic structure, which

may instead come into play only at a later point by considering stochastic

processes that satisfy almost surely, i.e. for almost all paths, the analytical

requirements. In this case, the so-called Föllmer integral provides a path-

by-path construction of the stochastic integral. Föllmer’s framework turns

out to be of main interest in finance (see also [97], [47, Sections 4,5], and

[99, Chapter 2]) as it allows to avoid any probabilistic assumption on the dy-

namics of traded assets and consequently to avoid any model risk/ambiguity.

Reasonably, only observed price trajectories are involved.

In 1994, Bick and Willinger [11] provided an interesting economic inter-

pretation of Föllmer’s pathwise calculus, leading to new perspectives in the

mathematical modeling of financial markets. Bick and Willinger reduced the

computation of the initial cost of a replicating trading strategy to an exer-

cise of analysis. Moreover, for a given price trajectory (state of the world),

they showed one is able to compute the outcome of a given trading strat-

egy, that is the gain from trade. Other contributions towards the pathwise

characterization of stochastic integrals have been obtained via probabilistic

techniques by Wong and Zakai (1965), Bichteler [10], Karandikar [62] and

Nutz [80] (only existence), and via convergence of discrete-time economies

by Willinger and Taqqu [108].
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We are interested only in the model-free approach: we set our framework

in a similar way to [11], and we enhance it by the aid of the pathwise cal-

culus for non-anticipative functionals, developed by Cont and Fournié [21].

This theory extends the Föllmer’s pathwise calculus to a large class of non-

anticipative functionals.

Another problem related to the model uncertainty, addressed in the sec-

ond part of this thesis is the robustness of hedging strategies used by market

agents to cover the risks involved in the sale of financial derivatives. The issue

of robustness came to light in the nineties, dealing mostly with the analysis

of the performance, in a given complete model, of pricing and hedging simple

payoffs under a mis-specification of the volatility process. The problem under

consideration is the following. Let us imagine a market participant who sells

an (exotic) option with payoff H and maturity T on some underlying asset

which is assumed to follow some model (say, Black-Scholes), at price given

by

Vt = EQ[H|Ft]

and hedges the resulting profit and loss using the hedging strategy derived

from the same model (say, Black-Scholes delta hedge for H). However, the

true dynamics of the underlying asset may, of course, be different from the

assumed dynamics. Therefore, the hedger is interested in a few questions:

How good is the result of the hedging strategy? How ’robust’ is it to model

mis-specification? How does the hedging error relate to model parameters

and option characteristics? In 1998, El Karoui et al. [43] provided an answer

to the important questions above in the setting of diffusion models, for non-

path-dependent options. They provided an explicit formula for the profit and

loss, or tracking error as they call it, of the hedging strategy. Specifically,

they show that if the underlying asset follows a Markovian diffusion

dSt = r(t)S(t)dt+ S(t)σ(t)dW (t) under P

such that the discounted price S/M is a square-integrable martingale, then

a hedging strategy computed in a (mis-specified) model with local volatility
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σ0, satisfying some technical conditions, leads to a tracking error equal to

∫ T

0

σ2
0(t, S(t))− σ2(t)

2
S(t)2e

∫ T
t r(s)ds

Γ(t)︷ ︸︸ ︷
∂2
xxf(t, S(t)) dt,

P-almost surely. This fundamental equation, called by Davis [27] ‘the most

important equation in option pricing theory’, shows that the exposure of

a mis-specified delta hedge over a short time period is proportional to the

Gamma of the option times the specification error measured in quadratic

variation terms. Other two papers studying the monotonicity and super-

replication properties of non-path-dependent option prices under mis-specified

models are [8] and [57], respectively by PDE and coupling techniques. The

robustness of dynamic hedging strategies in the context of model ambiguity

has been considered by several authors in the literature (Bick and Will-

inger [11], Avellaneda et al. [4], Lyons [71], Cont [18]). Schied and Stadje

[98] studied the robustness of delta hedging strategies for discretely moni-

tored path-dependent derivatives in a Markovian diffusion (‘local volatility’)

model from a pathwise perspective: they looked at the performance of the

delta hedging strategy derived from some model when applied to the realized

underlying price path, rather than to some supposedly true stochastic dy-

namics. In the present thesis, we investigate the robustness of delta hedging

from this pathwise perspective, but we consider a general square-integrable

exponential model used by the hedger for continuously - instead of discretely

- monitored path-dependent derivatives. In order to conduct this pathwise

analysis, we resort to the pathwise functional calculus developed in Cont

and Fournié [21] and the functional Itô calculus developed in [22, 19]. In

particular we use the results of Chapter 3 of this thesis, which provide an

analytical framework for the analysis of self-financing trading strategies in a

continuous-time financial market.

The last chapter of this thesis deals with a completely different problem,

that is the search for accurate approximation formulas for the price of fi-

nancial derivatives under a model with local volatility and Lévy-type jumps.

Precisely, we consider a one-dimensional local Lévy model: the risk-neutral
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dynamics of the underlying log-asset process X is given by

dX(t) = µ(t,X(t−))dt+ σ(t,X(t))dW (t) + dJ(t),

where W is a standard real Brownian motion on a filtered probability space

(Ω,F , (Ft)0≤t≤T ,P) with the usual assumptions on the filtration and J is a

pure-jump Lévy process, independent of W , with Lévy triplet (µ1, 0, ν). Our

main result is a fourth order approximation formula of the characteristic

function φXt,x(T ) of the log-asset price X t,x(T ) starting from x at time t, that

is

φXt,x(T )(ξ) = EP
[
eiξX

t,x(T )
]
, ξ ∈ R,

In some particular cases, we also obtain an explicit approximation of the

transition density of X.

Local Lévy models of this form have attracted an increasing interest in

the theory of volatility modeling (see, for instance, [3], [16] and [24]); however

to date only in a few cases closed pricing formulae are available. Our approx-

imation formulas provide a way to compute efficiently and accurately option

prices and sensitivities by using standard and well-known Fourier methods

(see, for instance, Heston [56], Carr and Madan [15], Raible [90] and Lipton

[69]).

We derive the approximation formulas by introducing an “adjoint” ex-

pansion method: this is worked out in the Fourier space by considering the

adjoint formulation of the pricing problem. Generally speaking, our approach

makes use of Fourier analysis and PDE techniques.

The thesis is structured as follows:

Chapter 1 The first chapter introduces the pathwise functional calculus,

as developed by Cont and Fournié [21, 19], and states some of its key results.

The most important theorem is a change-of-variable formula extending the

pathwise Itô formula proven in [46] to non-anticipative functionals, and ap-

plies to a class of paths with finite quadratic variation. The chapther then

includes a discussion on the different notions of quadratic variation given by

different authors in the literature.
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Chapter 2 The second chapter presents the probabilistic counterpart of the

pathwise functional calculus, the so-called ‘functional Itô calculus’, following

the ground-breaking work of Cont and Fournié [20, 22, 19].Moreover, the

weak functional calculus, which applies to a large class of square-integrable

processes, is introduced. Then, in Section 2.3 we show how to apply the

functional Itô calculus to extend the relation between Markov processes and

partial differential equations to the path-dependent setting. These tools have

useful applications for the pricing and hedging of path-dependent derivatives.

In this respect, we state the universal pricing and hedging formulas. Finally,

in Section 2.4, we report the results linking forward-backward stochastic

differential equations to path-dependent partial differential equations and we

recall some of the recent papers investigating weak and viscosity solutions of

such path-dependent PDEs.

Chapter 3 Section 3.1 presents a synopsis of the various approaches in

the literature attempting a pathwise construction of stochastic integrals, and

clarifies the connection with appropriate no-arbitrage conditions. In Section

3.2, we set our analytical framework and we start by defining simple trading

strategies, whose trading times are covered by the elements of a given se-

quence of partitions of the time horizon [0, T ] and for which the self-financing

condition is straightforward. We also remark on the difference between our

setting and the ones presented in Section 3.1.2 about no-arbitrage and we

provide some kind of justification, in terms of a condition on the set of ad-

missible price paths, to the assumptions underlying our main results. In

Section 3.3, we define equivalent self-financing conditions for (non-simple)

trading strategies on a set of paths, whose gain from trading is the limit of

gains of simple strategies and satisfies the pathwise counterpart equation of

the classical self-financing condition. Similar conditions were assumed in [11]

for convergence of general trading strategies. In Section 3.4, we show the

first of the main results of the chapter: in Proposition 3.7 for the continuous

case and in Proposition 3.8 for the càdlàg case, we obtain the path-by-path
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computability of the gain of path-dependent trading strategies in a certain

class of Rd-valued càglàd adapted processes, which are also self-financing on

the set of paths with finite quadratic variation along Π. For dynamic asset

positions φ in the vector space of vertical 1-forms, the gain of the correspond-

ing self-financing trading strategy is well-defined as a càdlàg process G(·, ·;φ)

such that

G(t, ω;φ) =

∫ t

0

φ(u, ωu) · dΠω

= lim
n→∞

∑
tni ∈πn,tni ≤t

φ(tni , ω
n
tni

) · (ω(tni+1)− ω(tni ))

for all continuous paths of finite quadratic variation along Π, where ωn is

a piecewise constant approximation of ω defined in (1.14). In Section 3.5,

we present a pathwise replication result, Proposition 3.9, that can be seen

as the model-free and path-dependent counterpart of the well known pricing

PDE in mathematical finance, giving furthermore an explicit formula for the

hedging error. That is, if a ‘smooth’ non-anticipative functional F solves{
DF (t, ω) + 1

2
tr (A(t) · ∇2

ωF (t, ω)) = 0, t ∈ [0, T ), ω ∈ QA(Π)

F (T, ω) = H(ω),

where H is a continuous (in sup norm) payoff functional and QA(Π) is the set

of paths with absolutely continuous quadratic variation along Π with density

A, then the hedging error of the delta-hedging strategy for H with initial

investment F (0, ·) and asset position ∇ωF is

1

2

∫ T

0

tr
(
∇2
ωF (t, ω) ·

(
A(t)− Ã(t)

))
dt (1)

on all paths ω ∈ QÃ(Π). In particular, if the underlying price path ω lies in

QA(Π), the delta-hedging strategy (F (0, ·),∇ωF ) replicates the T -claim with

payoff H and its portfolio’s value at any time t ∈ [0, T ] is given by F (t, ωt).

The explicit error formula (1) is the purely analytical counterpart of the

probabilistic formula given in [43], where a mis-specification of volatility is

considered in a stochastic framework. Finally, in Section 3.6 we propose, in
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Proposition 3.10, the construction of a family of pathwise integral operators

(indexed by the paths) as extended isometries between normed spaces defined

as quotient spaces.

Chapter 4 The last chapter begins with a review of the results, from the

present literature, that focus on the problem of robustness which we are

interested in, in particular the propagation of convexity and the hedging

error formula for non-path-dependent derivatives, as well as a contribution

to the pathwise analysis of path-dependent hedging for discretely-monitored

derivatives. In Section 4.2, we introduce the notion of robustness that we are

investigating (see Definition 4.12): the delta-hedging strategy is robust on a

certain set U of price paths if it super-replicates the claim at maturity, when

trading with the market prices, as far as the price trajectory belongs to U .

We then state in Proposition 4.2 a first result which applies to the case where

the derivative being sold admits a smooth pricing functional under the model

used by the hedger: robustness holds if the second vertical derivative of the

value functional, ∇2
ωF , is (almost everywhere) of same sign as the difference

between the model volatility and the realized market volatility. Moreover,

we give the explicit representation of the hedging error at maturity, that is

1

2

∫ T

0

(
σ(t, ω)2 − σmkt(t, ω)2

)
ω2(t)∇2

ωF (t, ω)dt,

where σ is the model volatility and σmkt is the realized market volatility,

defined by t 7→ σmkt(t, ω) = 1
ω(t)

√
d
dt

[w](t). In Section 4.4, Proposition

4.4 provides a constructive existence result for a pricing functional which

is twice left-continuously vertically differentiable on continuous paths, given

a log-price payoff functional h which is vertically smooth on the space of con-

tinuous paths (see Definition 4.15). We then show in Section 4.5, namely in

Proposition 4.5, that a sufficient condition for the second vertical derivative

of the pricing functional to be positive is the convexity of the real map

vH(·; t, ω) : R→ R, e 7→ vH(e; t, ω) = H
(
ω(1 + e1[t,T ])

)
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in a neighborhood of 0. This condition may be readily checked for all path-

dependent payoffs. In Section 4.3, we analyze the contribution of jumps of

the price trajectory to the hedging error obtained trading on the market ac-

cording to a delta-hedging strategy. We show in Proposition 4.3 that the

term carried by the jumps is of negative sign if the second vertical deriva-

tive of the value functional is positive. In Section 4.6, we consider a specific

pricing model with path-dependent volaility, the Hobson-Rogers model. Fi-

nally, in Section 4.7, we apply the results of the previous sections to common

examples, specifically the hedging of discretely monitored path-dependent

derivatives, Asian options and barrier options. In the first case, we show in

Lemma 4.18 that in the Black-Scholes model the pricing functional is of class

C1,2
loc and its vertical and horizontal derivatives are given in closed form. Re-

garding Asian options, both the Black-Scholes and the Hobson-Rogers pricing

functional have already been proved to be regular by means of classical re-

sults, and, assuming that the market price path lies in the set of paths with

absolutely continuous finite quadratic variation along the given sequence of

partitions and the model volatility overestimates the realized market volatil-

ity, the delta hedge is robust. Regarding barrier options, the robustness fails

to be satisfied: Black-Scholes delta-hedging strategies for barrier options are

not robust to volatility mis-specifications.

Chapter 5 Chapter 5, independent from the rest of the thesis, is based on

joint work with Andrea Pascucci and Stefano Pagliarani.

In Section 5.1, we present the general procedure that allows to approx-

imate analytically the transition density (or the characteristic function), in

terms of the solutions of a sequence of nested Cauchy problems. Then we also

prove explicit error bounds for the expansion that generalize some classical

estimates. In Section 5.2 and Section 5.3, the previous Cauchy problems are

solved explicitly by using different approaches. Precisely, in Section 5.2 we

focus on the special class of local Lévy models with Gaussian jumps and we

provide a heat kernel expansion of the transition density of the underlying
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process. The same results are derived in an alternative way in Subsection

5.2.1, by working in the Fourier space.

Section 5.3 contains the main contribution of the chapter: we consider

the general class of local Lévy models and provide high order approximations

of the characteristic function. Since all the computations are carried out

in the Fourier space, we are forced to introduce a dual formulation of the

approximating problems, which involves the adjoint (forward) Kolmogorov

operator. Even if at first sight the adjoint expansion method seems a bit odd,

it turns out to be much more natural and simpler than the direct formulation.

To the best of our knowledge, the interplay between perturbation methods

and Fourier analysis has not been previously studied in finance. Actually our

approach seems to be advantageous for several reasons:

(i) working in the Fourier space is natural and allows to get simple and

clear results;

(ii) we can treat the entire class of Lévy processes and not only jump-

diffusion processes or processes which can be approximated by heat

kernel expansions –potentially, we can take as leading term of the ex-

pansion every process which admits an explicit characteristic function

and not necessarily a Gaussian kernel;

(iii) our method can be easily adapted to the case of stochastic volatility or

multi-asset models;

(iv) higher order approximations are rather easy to derive and the approx-

imation results are generally very accurate. Potentially, it is possible

to derive approximation formulae for the characteristic function and

plain vanilla options, at any prescribed order. For example, in Sub-

section 5.3.1 we provide also the 3rd and 4th order expansions of the

characteristic function, used in the numerical tests of Section 5.4. A

Mathematica notebook with the implemented formulae is freely avail-

able on https://explicitsolutions.wordpress.com.

https://explicitsolutions.wordpress.com
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Finally, in Section 5.4, we present some numerical tests under the Merton

and Variance-Gamma models and show the effectiveness of the analytical

approximations compared with Monte Carlo simulation.
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Chapter 1

Pathwise calculus for

non-anticipative functionals

This chapter is devoted to the presentation of the pathwise calculus for

non-anticipative functionals developed by Cont and Fournié [21] and hav-

ing as main result a change of variable formula (also called chain rule) for

non-anticipative functionals. This pathwise functional calculus extends the

pathwise calculus introduced by Föllmer in his seminal paper Calcul d’Itô

sans probabilités in 1981. Its probabilistic counterpart, called the ‘functional

Itô calculus’ and presented in Chapter 2, can either stand by itself or rest

entirely on the pathwise results, e.g. by introducing a probability measure

under which the integrator process is a semimartingale. This shows clearly

the pathwise nature of the theory, as well as Föllmer proved that the classical

Itô formula has a pathwise meaning. Other chain rules were derived in [78]

for extended Riemann-Stieltjes integrals and for a type of one-sided integral

similar to Föllmer’s one.

Before presenting the functional case we are concerned with, let us set the

stage by introducing the pathwise calculus for ordinary functions. First, let

us give the definition of quadratic variation for a function that we are going

to use throughout this thesis and review other notions of quadratic variation.

15
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1.1 Quadratic variation along a sequence of

partitions

Let Π = {πn}n≥1 be a sequence of partitions of [0, T ], that is for all n ≥ 1

πn = (tni )i=0,...,m(n), 0 = tn0 < . . . < tnm(n) = T . We say that Π is dense if

∪n≥1πn is dense in [0, T ], or equivalently the mesh |πn| := maxi=1,...m(n) |tni −
tni−1| goes to 0 as n goes to infinity, and we say that Π is nested if πn+1 ⊂ πn

for all n ∈ N.

Definition 1.1. Let Π be a dense sequence of partitions of [0, T ], a càdlàg

function x : [0, T ] → R is said to be of finite quadratic variation along Π if

there exists a non-negative càdlàg function [x]Π : [0, T ]→ R+ such that

∀t ∈ [0, T ], [x]Π(t) = lim
n→∞

∑
i=0,...,m(n)−1:

tni ≤t

(x(tni+1)− x(tni ))2 <∞ (1.1)

and

[x]Π(t) = [x]cΠ(t) +
∑

0<s≤t

∆x2(s), t ∈ [0, T ], (1.2)

where [x]cΠ is a continuous non-decreasing function and ∆x(t) := x(t)−x(t−)

as usual. In this case, the non-decreasing function [x]Π is called the quadratic

variation of x along Π.

Note that the quadratic variation [x]Π depends strongly on the sequence

of partitions Π. Indeed, as remarked in [19, Example 2.18], for any real-

valued continuous function we can construct a sequence of partition along

which that function has null quadratic variation.

In the multi-dimensional case, the definition is modified as follows.

Definition 1.2. An Rd-valued càdlàg function x is of finite quadratic varia-

tion along Π if, for all 1 ≤ i, j ≤ d, xi, xi +xj have finite quadratic variation

along Π. In this case, the function [x]Π has values in the set S+(d) of positive

symmetric d× d matrices:

∀t ∈ [0, T ], [x]Π(t) = lim
n→∞

∑
i=0,...,m(n)−1:

tni ≤t

(
x(tni+1)− x(tni )

)
· t
(
x(tni+1)− x(tni )

)
,



1.1. Quadratic variation of paths 17

whose elements are given by

([x]Π)i,j(t) =
1

2

(
[xi + xj]Π(t)− [xi]Π(t)− [xj]Π(t)

)
= [xi, xj]cΠ(t) +

∑
0<s≤t

∆xi(s)∆xj(s)

for i, j = 1, . . . d.

For any set U of càdlàg paths with values in R (or Rd), we denote by

Q(U,Π) the subset of U of paths having finite quadratic variation along Π .

Note that Q(D([0, T ],R),Π) is not a vector space, because assuming

x1, x2 ∈ Q(D([0, T ],R),Π) does not imply x1 + x2 ∈ Q(D([0, T ],R),Π)

in general. This is the reason of the additional requirement xi + xj ∈
Q(D([0, T ],R),Π) in Definition 1.2. As remarked in [19, Remark 2.20], the

subset of paths x being C1-functions of a same path ω ∈ D([0, T ],Rd), i.e.

{x ∈ Q(D([0, T ],R),Π), ∃f ∈ C1(Rd,R), x(t) = f(ω(t))∀t ∈ [0, T ]},

is instead closed with respect to the quadratic variation composed with the

sum of two elements.

Henceforth, when considering a function x ∈ Q(U,Π), we will drop the

subscript in the notation of its quadratic variation, thus denoting [x] instead

of [x]Π.

1.1.1 Relation with the other notions of quadratic vari-

ation

An important distinguish is between Definition 1.1 and the notions of 2-

variation and local 2-variation considered in the theory of extended Riemann-

Stieltjes integrals (see e.g. Dudley and Norvaǐsa [35, Chapters 1,2] and

Norvaǐsa [78, Section 1]). Let f be any real-valued function on [0, T ] and

0 < p <∞, the p-variation of f is defined as

vp(f) := sup
κ∈P [0,T ]

sp(f ;κ) (1.3)
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where P [0, T ] is the set of all partitions of [0, T ] and

sp(f ;κ) =
n∑
i=1

|f(ti)− f(ti−1)|p , for κ = {ti}ni=0 ∈ P [0, T ].

The set of functions with finite p-variation is denoted byWp. We also denote

by vi(f) the variation index of f , that is the unique number in [0,∞] such

that
vp(f) <∞, for all p > vi(f),

vp(f) =∞, for all p < vi(f)
.

For 1 < p < ∞, f has the local p-variation if the directed function

(sp(f ; ·),R), where R := {R(κ) = {π ∈ P [0, T ], κ ⊂ π}, κ ∈ P [0, T ]}, con-

verges. An equivalent characterization of functions with local p-variation was

introduced by Love and Young [70] and it is given by the Wiener class W∗p
of functions f ∈ Wp such that

lim sup
κ,R

sp(f ;κ) =
∑
(0,T ]

∣∣∆−f ∣∣p +
∑
[0,T )

∣∣∆+f
∣∣p ,

where the two sums converge unconditionally. We refer to [78, Appendix A]

for convergence of directed functions and unconditionally convergent sums.

The Wiener class satisfies ∪1≤q<pWq ⊂ W∗p ⊂ Wp.

A theory on Stieltjes integrability for functions of bounded p-variation

was developed by Young [112, 113] in the thirties and generalized among

others by [36, 77] around the years 2000. According to Young’s most well

known theorem on Stieltjes integrability, if

f ∈ Wp, g ∈ Wq, p−1 + q−1 > 1, p, q > 0, (1.4)

then the integral
∫ T

0
fdg exists: in the Riemann-Stieltjes sense if f, g have

no common discontinuities, in the refinement Riemann-Stieltjes sense if f, g

have no common discontinuities on the same side, and always in the Cen-

tral Young sense. [36] showed that under condition (1.4) also the refinement

Young-Stieltjes integral always exists. However, in the applications, we often

deal with paths of unbounded 2-variation, like sample paths of the Brownian
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motion. For example, given a Brownian motion B on a complete proba-

bility space (Ω,F ,P), the pathwise integral (RS)
∫ T

0
fdB(·, ω) is defined in

the Riemann-Stieltjes sense, for P-almost all ω ∈ Ω, for any function having

bounded p-variation for some p < 2, which does not apply to sample paths

of B. In particular, in Mathematical Finance, one necessarily deals with

price paths having unbounded 2-variation. In the special case of a market

with continuous price paths, as shown in Section 3.1.2, [106] proved that

non-constant price paths must have a variation index equal to 2 and infinite

2-variation in order to rule out ‘arbitrage opportunities of the first kind’. In

the special case where the integrand f is replaced by a smooth function of

the integrator g, weaker conditions than (1.4) on the p-variation are suffi-

cient (see [77] or the survey in [78, Chapter 2.4]) to obtain chain rules and

integration-by-parts formulas for extended Riemann-Stieltjes integrals, like

the refinement Young-Stieltjes integral, the symmetric Young-Stieltjes inte-

gral, the Central Young integral, the Left and Right Young integrals, and

others. However, these conditions are still quite restrictive.

As a consequence, other notions of quadratic variation were formulated

and integration theories for them followed.

Föllmer’s quadratic variation and pathwise calculus

In 1981, Föllmer [46] derived a pathwise version of the Itô formula, con-

ceiving a construction path-by-path of the stochastic integral of a special

class of functions. His purely analytic approach does not ask for any proba-

bilistic structure, which may instead come into play only in a later moment

by considering stochastic processes that satisfy almost surely, i.e. for almost

all paths, a certain condition. Föllmer considers functions on the half line

[0,∞), but we present here his definitions and results adapted to the finite

horizon time [0, T ]. His notion of quadratic variation is given in terms of

weak convergence of measures and is renamed here in his name in order to

make the distinguish between the different definitions.

Definition 1.3. Given a dense sequence Π = {πn}n≥1 of partitions of [0, T ],
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for n ≥ 1 πn = (tni )i=0,...,m(n), 0 = tn0 < . . . < tnm(n) < ∞, a càdlàg function

x : [0, T ] → R is said to have Föllmer’s quadratic variation along Π if the

Borel measures

ξn :=

m(n)−1∑
i=0

(
x(tni+1)− x(tni )

)2
δtni , (1.5)

where δtni is the Dirac measure centered in tni , converge weakly to a finite

measure ξ on [0, T ] with cumulative function [x] and Lebesgue decomposition

[x](t) = [x]c(t) +
∑

0<s≤t

∆x2(s), ∀t ∈ [0, T ] (1.6)

where [x]c is the continuous part.

Proposition 1.1 (Follmer’s pathwise Itô formula). Let x : [0, T ] → R be a

càdlàg function having Föllmer’s quadratic variation along Π. Then, for all

t ∈ [0, T ], a function f ∈ C2(R) satisfies

f(x(t)) = f(x(0)) +

∫ t

0

f ′(x(s−))dx(s) +
1

2

∫
(0,t]

f ′′(x(s−))d[x](s)

+
∑

0<s≤t

(
f(x(s))− f(x(s−))− f ′(x(s−))∆x(s)− 1

2
f ′′(x(s−))∆x(s)2

)
= f(x(0)) +

∫ t

0

f ′(x(s−))dx(s) +
1

2

∫
(0,t]

f ′′(x(s))d[x]c(s)

+
∑

0<s≤t

(f(x(s))− f(x(s−))− f ′(x(s−))∆x(s)) , (1.7)

where the pathwise definition∫ t

0

f ′(x(s−))dx(s) := lim
n→∞

∑
tni ≤t

f ′(x(tni ))
(
x(tni+1 ∧ T )− x(tni ∧ T )

)
(1.8)

is well posed by absolute convergence.

The integral on the left-hand side of (1.8) is referred to as the Föllmer

integral of f ◦ x with respect to x along Π.
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In the multi-dimensional case, where x is Rd-valued and f ∈ C2(Rd), the

pathwise Itô formula gives

f(x(t)) = f(x(0)) +

∫ t

0

∇f(x(s−)) · dx(s) +
1

2

∫
(0,t]

tr
(
∇2f(x(s))d[x]c(s)

)
+
∑

0<s≤t

(f(x(s))− f(x(s−))−∇f(x(s−)) ·∆x(s)) (1.9)

and ∫ t

0

∇f(x(s−)) · dx(s) := lim
n→∞

∑
tni ≤t

∇f(x(tni )) ·
(
x(tni+1)− x(tni )

)
,

where [x] = ([xi, xj])i,j=1,...,d and, for all t ≥ 0,

[xi, xj](t) =
1

2

(
[xi + xj](t)− [xi](t)− [xj](t)

)
= [xi, xj]c(t) +

∑
0<s≤t

∆xi(s)∆xj(s).

Föllmer also pointed out that the class of functions with finite quadratic

variation is stable under C1 transformations and, given x with finite quadratic

variation along Π and f ∈ C1(Rd), the composite function y = f ◦x has finite

quadratic variation

[y](t) =

∫
(0,t]

tr
(
∇2f(x(s))td[x]c(s)

)
+
∑

0<s≤t

∆y2(s).

Further, he has enlarged the scope of the above results by considering stochas-

tic processes with almost sure finite quadratic variation along some proper

sequence of partition. For example, let S be a semimartingale on a probabil-

ity space (Ω,F , (Ft)0≤t≤T ,P), it is well known that there exists a sequence

of random partitions, Π = (πn)n≥1, |πn| −−−→
n→∞

0 P-almost surely, such that

P ({ω ∈ Ω, S(·, ω) has Föllmer’s quadratic variation along Π}) = 1.

More generally, this holds for any so-called Dirichlet (or finite energy) pro-

cess, that is the sum of a semimartingale and a process with zero quadratic

variation along the dyadic subdivisions. Thus, the pathwise Itô formula holds
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and the pathwise Föllmer integral is still defined for all paths outside a null

set.

A last comment on the link between Itô and Föllmer integrals is the

following. For a semimartingale X and a càdlàg adapted process H, we

know that, for any t ≥ 0,∑
tni ≤t

H(tni ) ·
(
x(tni+1)− x(tni )

) P−−−→
n→∞

∫ t

0

H(s−) · dX(s),

hence we have almost sure pathwise convergence by choosing properly an

absorbing set of paths dependent on H, which is not of practical utility.

However, in the case H = f ◦X with f ∈ C1, we can select a priori the null

set out of which the definition (1.8) holds and so, by almost sure uniqueness

of the limit in probability, the Föllmer integral must coincide almost surely

with the Itô integral.

Norvaĭsa’s quadratic variation and chain rules

Norvaĭsa’s notion of quadratic variation was proposed in [78] in order to

weaken the requirement of local 2-variation used to prove chain rules and

integration-by-parts formulas for extended Riemann-Stieltjes integrals.

Definition 1.4. Given a dense nested sequence λ = {λn}n≥1 of partitions of

[0, T ], Norvaĭsa’s quadratic λ-variation of a regulated function f : [0, T ]→ R
is defined, if it exists, as a regulated function H : [0, T ] → R such that

H(0) = 0 and, for any 0 ≤ s ≤ t ≤ T ,

H(t)−H(s) = lim
n→∞

s2(f ;λn e [s, t]), (1.10)

∆−H(t) = (∆−f(t))2 and ∆+H(t) = (∆+f(t))2, (1.11)

where λn e [s, t] := (λn ∩ [s, t]) ∪ {s} ∪ {t}, ∆−x(t) = x(t) − x(t−), and

∆+x(t) = x(t+)− x(t).

In reality, Norvaĭsa’s original definition is given in terms of an additive

upper continuous function defined on the simplex of extended intervals of
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[0, T ], but he showed the equivalence to the definition given here and we

chose to report the latter because it allows us to avoid introducing further

notations.

Following Föllmer’s approach in [46], Norvaǐsa [78] also proved a chain

rule for a function with finite λ-quadratic variation, involving a new type

of integrals called Left (respectively Right) Cauchy λ-integrals. We report

here the formula obtained for the left integral, but a symmetric formula

holds for the right integral. Given two regulated functions f, g on [0, T ] and

a dense nested sequence of partitions λ = {λn}, then the Left Cauchy λ-

integral (LC)
∫
φdλg is defined on [0, T ] if there exists a regulated function

Φ on [0, T ] such that Φ(0) = 0 and, for any 0 ≤ u < v ≤ T ,

Φ(v)− Φ(u) = limn→∞ SLC(φ, g;λn e [u, v]),

∆−Φ(v) = φ(v−)∆−g(v), ∆+Φ(u) = φ∆+g(u),

where

SLC(φ, g;κ) :=
m−1∑
i=0

φ(ti)(g(ti+1)− g(ti)) for any κ = {ti}mi=0.

In such a case, denote (LC)
∫ v
u
φdλg := Φ(v)− Φ(u).

Proposition 1.2 (Proposition 1.4 in [78]). Let g be a regulated function on

[0, T ] and λ = {λn} a dense nested sequence of partitions such that {t :

∆+g(t) 6= 0} ⊂ ∪n∈Nλn. The following are equivalent:

(i) g has Norvaĭsa’s λ-quadratic variation;

(ii) for any C1 function φ, φ ◦ g is Left Cauchy λ-integrable on [0, T ] and,

for any 0 ≤ u < v ≤ T ,

Φ ◦ g(v)− Φ ◦ g(u) = (LC)

∫ v

u

(φ ◦ g)dλg +
1

2

∫ v

u

(φ′ ◦ g)d[g]cλ (1.12)

+
∑
t∈[u,v)

(
∆−(Φ ◦ g)(t)− (φ ◦ g)(t−)∆−g(t)

)
+
∑
t∈(u,v]

(
∆+(Φ ◦ g)(t)− (φ ◦ g)(t)∆+g(t)

)
.
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Note that the change of variable formula (1.12) gives the Föllmer’s for-

mula (1.7) when g is right-continuous, and the Left Cauchy λ-integral coin-

cides with the Föllmer integral along λ defined in (1.8).

Vovk’s quadratic variation

Vovk [104] defines a notion of quadratic variation along a sequence of par-

titions not necessarily dense in [0, T ] and uses it to investigate the properties

of ‘typical price paths’, that are price paths which rule out arbitrage oppor-

tunities in his pathwise framework, following a game-theoretic probability

approach.

Definition 1.5. Given a nested sequence Π = {πn}n≥1 of partitions of [0, T ],

πn = (tni )i=0,...,m(n) for all n ∈ N, a càdlàg function x : [0, T ] → R is said

to have Vovk’s quadratic variation along Π if the sequence {An,Π}n∈N of

functions defined by

An,Π(t) :=

m(n)−1∑
i=0

(x(tni+1 ∧ t)− x(tni ∧ t))2, t ∈ [0, T ],

converges uniformly in time. In this case, the limit is denoted by AΠ and

called the Vovk’s quadratic variation of x along Π.

An interesting result in [104] is that typical paths have the Vovk’s quadratic

variation along a specific nested sequence {τn}n≥1 of partitions composed by

stopping times and such that, on each realized path ω, {τn(ω)}n≥1 exhausts

ω, i.e. {t : ∆ω(t) 6= 0} ⊂ ∪n∈Nτn(ω) and, for each open interval (u, v) in

which ω is not constant, (u, v) ∩ (∪n∈Nτn(ω)) 6= ∅.
The most evident difference between definitions 1.1, 1.3, 1.4, 1.5 is that

the first two of them require the sequence of partitions to be dense, the third

one requires the sequence of partitions to be dense and nested, and the last

one requires a nested sequence of partitions. Moreover, Norvaǐsa’s definition

is given for a regulated, rather than càdlàg, function.

Vovk proved that for a nested sequence Π = {πn}n≥1 of partitions of [0, T ]

that exhausts ω ∈ D([0, T ],R), the following are equivalent:
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(a) ω has Norvaǐsa’s quadratic Π-variation;

(b) ω has Vovk’s quadratic variation along Π;

(c) ω has weak quadratic variation of ω along Π, i.e. there exists a càdlàg

function V : [0, T ]→ R such that

V (t) = lim
n→∞

m(n)−1∑
i=0

(x(tni+1 ∧ t)− x(tni ∧ t))2

for all points t ∈ [0, T ] of continuity of V and it satisfies (1.2) where [x]Π

is replace by V .

Moreover, if any of the above condition is satisfied, then H = AΠ = V .

If, furthermore, Π is also dense, than ω has Föllmer’s quadratic variation

along Π if and only if it has any of the quadratic variations in (a)-(c), in

which case H = AΠ = V = [ω].

In this thesis, we will always consider the quadratic variation of a càdlàg

path w along a dense nested sequence Π of partitions that exhausts ω, in

which case our Definition 1.1 is equivalent to all the other ones mentioned

above. It is sufficient to note that condition (b) implies that ω has fi-

nite quadratic variation according to Definition 1.1 and [ω] = A, because

the properties in Definition 1.1 imply the ones in Definition 1.3, which, by

Proposition 4 in [104], imply condition (b). Therefore, we denote k̄(n, t) :=

max{i = 0, . . . ,m(n)− 1 : tni ≤ t} and note that

An,Π(t)−
∑

i=0,...,m(n)−1:

tni ≤t

(x(tni+1)− x(tni ))2 =

= (ω(t)− ω(tnk̄(n,t)))
2 − (ω(tnk̄(n,t)+1)− ω(tnk̄(n,t)))

2 −−−→
n→∞

0

by right-continuity of ω if t ∈ ∪n∈Nπn, and by the assumption that Π exhausts

ω if t /∈ ∪n∈Nπn.
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1.2 Non-anticipative functionals

First, we resume the functional notation we are adopting in this thesis,

according to the lecture notes [19], which unify the different notations from

the present papers on the subject into a unique clear language.

As usual, we denote by D([0, T ],Rd) the space of càdlàg functions on [0, T ]

with values in Rd. Concerning maps x ∈ D([0, T ],Rd), for any t ∈ [0, T ] we

denote:

• x(t) ∈ Rd its value at t;

• xt = x(t ∧ ·) ∈ D([0, T ],Rd) its path ‘stopped’ at time t;

• xt− = x1[0,t) + x(t−)1[t,T ] ∈ D([0, T ],Rd);

• for δ ∈ Rd, xδt = xt + δ1[t,T ] ∈ D([0, T ],Rd) the vertical perturbation of

size δ of the path of x stopped at t over the future time interval [t, T ];

A non-anticipative functional on D([0, T ],Rd) is defined as a family of

functionals on D([0, T ],Rd) adapted to the natural filtration F = (Ft)t∈[0,T ]

of the canonical process on D([0, T ],Rd), i.e. F = {F (t, ·), t ∈ [0, T ]}, such

that

∀t ∈ [0, T ], F (t, ·) : D([0, T ],Rd) 7→ R is Ft-measurable.

It can be viewed as a map on the space of ’stopped’ paths ΛT := {(t, xt) :

(t, x) ∈ [0, T ]×D([0, T ],Rd)}, that is in turn the quotient of [0, T ]×D([0, T ],Rd)

by the equivalence relation ∼ such that

∀(t, x), (t′, x′) ∈ [0, T ]×D([0, T ],Rd), (t, x) ∼ (t′, x′) ⇐⇒ t = t′, xt = x′t.

Thus, we will usually write a non-anticipative functional as a map F : ΛT →
Rd.

The space ΛT is equipped with a distance d∞, defined by

d∞((t, x), (t′, x′)) = sup
u∈[0,T ]

|x(u∧t)−x′(u∧t′)|+ |t−t′| = ||xt−x′t′ ||∞+ |t−t′|,
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for all (t, x), (t′, x′) ∈ ΛT . Note that (ΛT , d∞) is a complete metric space and

the subset of continuous stopped paths,

WT := {(t, x) ∈ ΛT : x ∈ C([0, T ],Rd)},

is a closed subspace of (ΛT , d∞).

We recall here all the notions of functional regularity that will be used

henceforth.

Definition 1.6. A non-anticipative functional F is:

• continuous at fixed times if, for all t ∈ [0, T ],

F (t, ·) :
((
{t} ×D([0, T ],Rd)

)
/ ∼, || · ||∞

)
7→ R

is continuous, that is

∀x ∈ D([0, T ],Rd),∀ε > 0, ∃η > 0 : ∀x′ ∈ D([0, T ],Rd),

||xt − x′t||∞ < η ⇒ |F (t, x)− F (t, x′)| < ε;

• jointly-continuous, i.e. F ∈ C0,0(ΛT ), if F : (ΛT , d∞) → R is continu-

ous;

• left-continuous, i.e. F ∈ C0,0
l (ΛT ), if

∀(t, x) ∈ ΛT ,∀ε > 0, ∃η > 0 : ∀h ∈ [0, t], ∀(t− h, x′) ∈ ΛT ,

d∞((t, x), (t− h, x′)) < η ⇒ |F (t, x)− F (t− h, x′)| < ε;

a symmetric definition characterizes the set C0,0
r (ΛT ) of right-continuous

functionals;

• boundedness-preserving, i.e. F ∈ B(ΛT ), if,

∀K ⊂ Rd compact, ∀t0 ∈ [0, T ], ∃CK,t0 > 0; ∀t ∈ [0, t0], ∀(t, x) ∈ ΛT ,

x([0, t]) ⊂ K ⇒ |F (t, x)| < CK,t0 .

Now, we recall the notions of differentiability for non-anticipative func-

tionals.
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Definition 1.7. A non-anticipative functional F is said:

• horizontally differentiable at (t, x) ∈ ΛT if the limit

lim
h→0+

F (t+ h, xt)− F (t, xt)

h

exists and is finite, in which case it is denoted by DF (t, x); if this holds

for all (t, x) ∈ ΛT and t < T , then the non-anticipative functional

DF = (DF (t, ·))t∈[0,T ) is called the horizontal derivative of F ;

• vertically differentiable at (t, x) ∈ ΛT if the map

Rd → R, e 7→ F (t, xet )

is differentiable at 0 and in this case its gradient at 0 is denoted by

∇ωF (t, x); if this holds for all (t, x) ∈ ΛT , then the Rd-valued non-

anticipative functional ∇ωF = (∇ωF (t, ·))t∈[0,T ] is called the vertical

derivative of F .

Then, the class of smooth functionals is defined as follows:

• C1,k(ΛT ) the set of non-anticipative functionals F which are

– horizontally differentiable with DF continuous at fixed times,

– k times vertically differentiable with ∇j
ωF ∈ C0,0

l (ΛT ) for j =

0, . . . , k;

• C1,k
b (ΛT ) the set of non-anticipative functionals F ∈ C1,k(ΛT ) such that

DF,∇ωF, . . . ,∇k
ωF ∈ B(ΛT ).

However, many examples of functionals in applications fail to be globally

smooth, especially those involving exit times. Fortunately, the global smooth-

ness characterizing the class C1,2
b (ΛT ) is in fact sufficient but not necessary to

get the functional Itô formula. Thus, we will often require only the following

weaker property of local smoothness, introduced in [49]. A non-anticipative

functional F is said to be locally regular, i.e. F ∈ C1,2
loc(ΛT ), if F ∈ C0,0(ΛT )
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and there exist a sequence of stopping times {τk}k≥0 on (D([0, T ],Rd),FT ,F),

such that τ0 = 0 and τk →k→∞ ∞, and a family of non-anticipative function-

als {F k ∈ C1,2
b (ΛT )}k≥0, such that

F (t, xt) =
∑
k≥0

F k(t, xt)1[τk(x),τk+1(x))(t), t ∈ [0, T ].

1.3 Change of variable formulae for function-

als

In 2010, Cont and Fournié [21] extended the Föllmer’s change of variable

formula to non-anticipative functionals on D([0, T ],Rd), hence allowing to

define an analogue of the Föllmer integral for functionals. The pathwise

formulas are also viable for a wide class of stochastic process in an “almost-

sure” sense. The setting of Cont and Fournié [21] is more general than what

we need, so we report here its main results in a simplified version.

Remark 1.8 (Proposition 1 in [21]). Useful pathwise regularities follow from

the continuity of non-anticipative functionals:

1. If F ∈ C0,0
l (ΛT ), then for all x ∈ D([0, T ],Rd) the path t 7→ F (t, xt−)

is left-continuous;

2. If F ∈ C0,0
r (ΛT ), then for all x ∈ D([0, T ],Rd) the path t 7→ F (t, xt) is

right-continuous;

3. If F ∈ C0,0(ΛT ), then for all x ∈ D([0, T ],Rd) the path t 7→ F (t, xt) is

càdlàg and continuous at each point where x is continuous.

4. If F ∈ B(ΛT ), then ∀x ∈ D([0, T ],Rd) the path t 7→ F (t, xt) is bounded.

Below is one of the main results of [21]: the change of variable formula for

non-anticipative functionals of càdlàg paths. We only report the formula for

càdlàg paths because the change of variable formula for functionals of con-

tinuous paths ([21, Theorem 3]) can then be obtained with straightforward

modifications.
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Theorem 1.9 (Theorem 4 in [21]). Let x ∈ Q(D([0, T ],Rd),Π) such that

sup
t∈[0,T ]\πn

|∆x(t)| −−−→
n→∞

0. (1.13)

and denote

xn :=

m(n)−1∑
i=0

x(tni+1−)1[tni ,t
n
i+1) + x(T )1{T} (1.14)

Then, for any F ∈ C1,2
loc(ΛT ), the limit

lim
n→∞

m(n)−1∑
i=0

∇ωF (tni , x
n,∆x(tni )
tni −

)(x(tni+1)− x(tni )) (1.15)

exists, denoted by
∫ T

0
∇ωF (t, xt−) · dΠx, and

F (T, x) = F (0, x) +

∫ T

0

∇ωF (t, xt−) · dΠx+ (1.16)

+

∫ T

0

DF (t, xt−)dt+

∫ T

0

1

2
tr
(
∇2
ωF (t, xt−)d[x]cΠ(t)

)
+

+
∑

u∈(0,T ]

(F (u, x)− F (u, xu−)−∇ωF (u, xu−) ·∆x(u)) .

Note that the assumption (1.13) can always be removed, simply by in-

cluding all jump times of the càdlàg path ω in the fixed sequence of partitions

Π. Hence, in the sequel we will omit such an assumption.

The proof, in the simpler case of continuous paths, turns around the idea

of rewriting the variation of F (·, x) on [0, T ] as the limit for n going to infinity

of the sum of the variations of F (·, xn) on the consecutive time intervals in

the partition πn. In particular, these variations can be decomposed along

two directions, horizontal and vertical. That is:

F (T, xT )− F (0, x0) = lim
n→∞

m(n)−1∑
i=0

(
F (tni+1, x

n
tni+1−

)− F (tni , x
n
tni −

)
)
,

where

F (tni+1, x
n
tni+1−

)− F (tni , x
n
tni −

) = F (tni+1, x
n
tni

)− F (tni , x
n
tni

) (1.17)

+ F (tni , x
n
tni

)− F (tni , x
n
tni −

). (1.18)
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Then, it is possible to rewrite the two increments on the right-hand side

in terms of increments of two functions on Rd. Indeed: defined the left-

continuous and right-differentiable function ψ(u) := F (tni + u, xntni ), (1.17) is

equal to

ψ(hni )− ψ(0) =

∫ tni+1

tni

DF (t, xntni )dt,

while, defined the function φ(u) := F (tni , x
n,u
tni −

) of class C2(B(0, ηn),R), where

ηn := sup{
∣∣x(u)− x(tni+1)

∣∣+
∣∣tni+1 − tni

∣∣ , 0 ≤ i ≤ m(n)− 1, u ∈ [tni , t
n
i+1)},

(1.18) is equal to

φ(δxni )− φ(0) = ∇ωF (tni , x
n
tni −

) · δxni +
1

2
tr
(
∇2
ωF (tni , x

n
tni −

) t(δxni )δxni

)
+ rni ,

where δxni := x(tni+1)− x(tni ) and

rni ≤ K |δxni |
2 sup
u∈B(0,ηn)

∣∣∣∇2
ωF (tni , x

n,u
tni −

)−∇2
ωF (tni , x

n
tni −

)
∣∣∣ .

The sum over i = 0, . . . ,m(n) − 1 of (1.17), by the dominated convergence

theorem, converges to
∫ T

0
DF (t, xt)dt. On the other hand, by Lemma 12 in

[21] and weak convergence of the Radon measures in (1.5), we have

m(n)−1∑
i=0

1

2
tr
(
∇2
ωF (tni , x

n
tni −

) t(δxni )δxni

)
−−−→
n→∞

∫ T

0

1

2
tr
(
∇2
ωF (t, xt)d[x](t)

)
and the sum of the remainders goes to 0. Therefore, the limit of the sum

of the first order terms exists and the change of variable formula (see (1.21)

below) holds.

The route to prove the change of variable formula for càdlàg paths is much

more intricate than in the continuous case, but the idea is the following. We

can rewrite the variation of F over [0, T ] as before, but now we separate the

indexes between two complementary sets I1(n), I2(n). Namely: let ε > 0

and let C2(ε) be the set of jump times such that
∑

s∈C2(ε) |∆x(s)|2 < ε2 and

C1(ε) be its complementary finite set of jump times, denote I1(n) := {i ∈
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{1, . . .m(n)} : (tni , t
n
i+1] ∩ C1(ε) 6= 0} and I2(n) := {i ∈ πn : i /∈ I1(n)}, then

F (T, xT )− F (0, x0) = lim
n→∞

∑
i∈I1(n)

(
F (tni+1, x

n,∆x(tni+1)

tni+1−
)− F (tni , x

n,∆x(tni )
tni −

)
)

+

+ lim
n→∞

∑
i∈I2(n)

(
F (tni+1, x

n,∆x(tni+1)

tni+1−
)− F (tni , x

n,∆x(tni )
tni −

)
)
.

The first sum converges, for n going to infinity, to
∑

u∈C1(ε) (F (u, xu)− F (u, xu−)),

while the increments in the second sum are further decomposed into a hori-

zontal and two vertical variations. After many steps:

F (T, xT )− F (0, x0) =

=

∫
(0,T ]

DF (t, xt)dt+

∫
(0,T ]

1

2
tr
(
∇2
ωF (t, xt)d[x](t)

)
+

+ lim
n→∞

m(n)−1∑
i=0

∇ωFtni (x
n,∆x(tni )
tni −

, vntni −) · (x(tni+1)− x(tni ))+

+
∑

u∈C1(ε)

(F (u, xu)− F (u, xu−)−∇ωF (u, xu−) ·∆x(u)) + α(ε), (1.19)

where α(ε) ≤ K(ε2 + Tε). Finally, the sum in (1.19) over C1(ε) converges,

for ε going to 0, to the same sum over (0, T ] and the formula (1.16) holds.

It is important to remark that to obtain the change of variable formula on

continuous paths it suffices to require the smoothness of the restriction of the

non-anticipative functional F to the subspace of continuous stopped paths

(see [19, Theorems 2.27,2.28]). To this regard, it is defined the class C1,2
b (WT )

of non-anticipative functionals F such that there exists an extension F̃ of

class C1,2
b (ΛT ) that coincides with F if restricted toWT . Then, the following

theorem holds:

Theorem 1.10 (Theorems 2.29 in [19]). For any F ∈ C1,2
loc(WT ) and x ∈

Q(C([0, T ],Rd),Π), the limit

lim
n→∞

m(n)−1∑
i=0

∇ωF (tni , x
n
tni

)(x(tni+1)− x(tni )) (1.20)
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exists, denoted by
∫ T

0
∇ωF (t, xt) · dΠx, and

F (T, x) = F (0, x) +

∫ T

0

∇ωF (t, xt) · dΠx+ (1.21)

+

∫ T

0

DF (t, xt)dt+

∫ T

0

1

2
tr
(
∇2
ωF (t, xt)d[x](t)

)
.

As remarked in [21], the change of variable formula (1.16) also holds in the

case of right-continuous functionals instead of left-continuous, by redefining

the pathwise integral (1.15) as

lim
n→∞

m(n)−1∑
i=0

∇ωFtni+1
(xntni , v

n
tni

) · (x(tni+1)− x(tni ))

and the stepwise approximation xn in (1.14) as

xn :=

m(n)−1∑
i=0

x(tni )1[tni ,t
n
i+1) + x(T )1{T}.
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Chapter 2

Functional Itô Calculus

The ‘Itô calculus’ is a powerful tool at the core of stochastic analysis and

lies at the foundation of modern Mathematical Finance. It is a calculus which

applies to functions of the current state of a stochastic process, and extends

the standard differential calculus to functions of processes with non-smooth

paths of infinite variation. However, in many applications, uncertainty affects

the current situation even through the whole (past) history of the process and

it is necessary to consider functionals, rather than functions, of a stochastic

process, i.e. quantities of the form

F (Xt), where Xt = {X(u), u ∈ [0, t]}.

These ones appear in many financial applications, such as the pricing and

hedging of path-dependent options, and in (non-Markovian) stochastic con-

trol problems. One framework allowing to deal with functionals of stochastic

processes is the Fréchet calculus, but many path-dependent quantities inter-

vening in stochastic analysis are not Fréchet-differentiable. This instigated

the development of a new theoretical framework to deal with functionals of

a stochastic process: the Malliavin calculus [73, 79], which is a weak (varia-

tional) differential calculus for functionals on the Wiener space. The theory

of Malliavin calculus has found many applications in financial mathematics,

specifically to problems dealing with path-dependent instruments. However,

the Malliavin derivative involves perturbations affecting the whole path (both

35
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past and future) of the process. This notion of perturbation is not readily

interpretable in applications such as optimal control, or hedging, where the

quantities are required to be causal or non-anticipative processes.

In an insightful paper, Bruno Dupire [37], inspired by methods used by

practitioners for the sensitivity analysis of path-dependent derivatives, intro-

duced a new notion of functional derivative, and used it to extend the Itô

formula to the path-dependent case. Inspired by Dupire’s work, Cont and

Fournié [20, 21, 22] developed a rigorous mathematical framework for a path-

dependent extension of the Itô calculus, the Functional Itô Calculus [22], as

well as a purely pathwise functional calculus [21] (see Chapter 1), proving the

pathwise nature of some of the results obtained in the probabilistic frame-

work.

The idea is to control the variations of a functional along a path by

controlling its sensitivity to horizontal and vertical perturbations of the path,

by defining functional derivatives corresponding to infinitesimal versions of

these perturbations. These tools led to

• a new class of “path-dependent PDEs” on the space of càdlàg paths

D([0, T ], Rd), extending the Kolmogorov equations to a non-Markovian

setting,

• a universal hedging formula and a universal pricing equation

for path-dependent options.

In this chapter we develop the key concepts and main results of the Func-

tional Ito calculus, following Cont and Fournié [22], Cont [19].

2.1 Functional Itô formulae

The change of variable formula (1.16) implies as a corollary the exten-

sion of the classical Itô formula to the case of non-anticipative functionals,

called the functional Itô formula. This holds for very general stochastic pro-

cesses as Dirichlet process, in particular for semimartingales. We report here
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the results obtained with respect to càdlàg and continuous semimartingales,

in which case the pathwise integral (1.15) coincides almost surely with the

stochastic integral. The following theorems correspond to Proposition 6 in

[21] and Theorem 4.1 in [22], respectively.

Theorem 2.1 (Functional Itô formula: càdlàg case). Let X be a Rd-valued

semimartingale on (Ω,F ,P,F) and F ∈ C1,2
loc(ΛT ), then, for all t ∈ [0, T ),

F (t,Xt) = F (0, X0) +

∫
(0,t]

∇ωF (u,Xu−) · dX(u)+

+

∫
(0,t]

DF (u,Xu−)du+

∫
(0,t]

1

2
tr
(
∇2
ωF (u,Xu−)d[X]c(u)

)
+
∑
u∈(0,t]

(F (u,Xu)− F (u,Xu−)−∇ωF (u,Xu−) ·∆X(u)) ,

P-almost surely. In particular, (F (t,Xt), t ∈ [0, T ]) is a semimartingale.

Theorem 2.2 (Functional Itô formula: continuous case). Let X be a Rd-

valued continuous semimartingale on (Ω,F ,P,F) and F ∈ C1,2
loc(WT ), then,

for all t ∈ [0, T ),

F (t,Xt) = F (0, X0) +

∫ t

0

∇ωF (u,Xu) · dX(u)+ (2.1)

+

∫ t

0

DF (u,Xu)du+

∫ t

0

1

2
tr
(
∇2
ωF (u,Xu)d[X](u)

)
P-almost surely. In particular, (F (t,Xt), t ∈ [0, T ]) is a semimartingale.

Although the functional Itô formulae are a consequence of the stronger

pathwise change of variable formulae, Cont and Fournié [22], Cont [19] also

provided a direct probabilistic proof for the functional Itô formula for contin-

uous semimartingales, based on the classical Itô formula. The proof follows

the lines of the proof to Theorem 1.9 in the case of continuous paths, first

considering the case of X having values in a compact set K, P-almost surely,

then going to the general case. The i-th increment of F (t,Xt) along the nth

partition πn is decomposed as:

F (tni+1, X
n
tni+1−

)− F (tni , X
n
tni −

) = F (tni+1, X
n
tni

)− F (tni , X
n
tni

)

+ F (tni , X
n
tni

)− F (tni , X
n
tni −

).
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The horizontal increment is treated analogously to the pathwise proof, while

for the vertical increment, the classical Itô formula is applied to the par-

tial map, which is a C2-function of the continuous (Ftni +s)s≥0-semimartingale

(X(tni + s) − X(tni ), s ≥ 0). The sum of the increments of the functionals

along πn gives:

F (t,Xn
t )− F (0, Xn

0 ) =

∫ t

0

DF (u,Xn
i(u))du

+
1

2

∫ t

0

tr

(
∇2
ωF (tnk̄(u,n), X

n,X(u)−X(tn
k̄(u,n)

)

tn
k̄(u,n)

− )d[X](u)

)
+

∫ t

0

∇ωF (tnk̄(u,n), X
n,X(u)−X(tn

k̄(u,n)
)

tn
k̄(u,n)

− ) · dX(u).

Formula (2.1) then follows by applying the dominated convergence theorem

to the Stieltjes integrals on the first two lines and the dominated convergence

theorem for stochastic integrals to the stochastic integral on the third line.

As for the general case, it suffices to take a sequence of increasing compact

sets (Kn)n≥0, ∪n≥0Kn = Rd, define the stopping times τ̄k := inf{s < t, Xs /∈
Kk}∧t, and apply the previous result to the stopped process (Xt∧τ̄k). Finally,

taking the limit for k going to infinity completes the proof.

As an immediate corollary, if X is a local martingale, for any F ∈ C1,2
b ,

F (Xt, At) has finite variation if and only if ∇ωFt = 0 d[X](t) × dP-almost

everywhere.

2.2 Weak functional calculus and martingale

representation

Cont and Fournié [22] extended the pathwise theory to a weak functional

calculus that can be applied to all square-integrable martingales adapted to

the filtration FX generated by a given Rd-valued square-integrable Itô process

X. Cont [19] carries the extension further, that is to all square-integrable

semimartingales. Below are the main results on the functional Itô calculus

obtained in [22, 19].
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Let X be the coordinate process on the canonical space D([0, T ],Rd) of

Rd-valued càdlàg processes and P be a probability measure under which X

is a square-integrable semimartingale such that

d[X](t) =

∫ t

0

A(u)du (2.2)

for some Sd+-valued càdlàg process A satisfying

det(A(t)) 6= 0 for almost every t ∈ [0, T ], P-almost surely. (2.3)

Denote by F = (Ft)t∈[0,T ] the filtration (FXt+)t∈[0,T ] after P-augmentation.

Then define

C1,2
loc(X) := {Y : ∃F ∈ C1,2

loc, Y (t) = F (t,Xt) dt× dP-a.e.}. (2.4)

Thanks to the assumption (2.3), for any adapted process Y ∈ C1,2
b (X),

the vertical derivative of Y with respect to X, ∇XY (t), is well defined as

∇XY (t) = ∇ωF (t,Xt) where F satisfies (2.4), and it is unique up to an

evanescent set independently of the choice of F ∈ C1,2
b in the representation

(2.4).

Theorem 2.1 leads to the following representation for smooth local mar-

tingales.

Proposition 2.1 (Prop. 4.3 in [19]). Let Y ∈ C1,2
b (X) be a local martingale,

then

Y (T ) = Y (0) +

∫ T

0

∇XY (t) · dX(t).

On the other hand, under specific assumptions on X, this leads to an

explicit martingale representation formula.

Proposition 2.2 (Prop. 4.3 in [19]). If X is a square-integrable P-Brownian

martingale, for any square integrable F-martingale Y ∈ C1,2
loc(X), then ∇XY

is the unique process in the Hilbert space

L2(X) :=

{
φ progressively-measurable, EP

[∫ T

0

|φ(t)|2d[X](t)

]
<∞

}
,
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endowed with the norm ‖φ‖L2(X) := EP
[∫ T

0

|φ(t)|2d[X](t)

] 1
2

, such that

Y (T ) = Y (0) +

∫ T

0

∇XY (t) · dX(t) P-a.s.

This is used in [22] to extend the domain of the vertical derivative operator

∇X to the space of square-integrable F-martingales M2(X), by a density

argument.

On the space of smooth square-integrable martingales, C1,2
b (X)∩M2(X),

which is dense in M2(X), an integration-by-parts formula holds: for any

Y, Z ∈ C1,2
b (X) ∩M2(X),

E[Y (T )Z(T )] = E
[∫ T

0

Y (T )Z(T )d[X](t)

]
.

By this and by density of {∇XY, Y ∈ C1,2
loc(X)} in L2(X), the extension of

the vertical derivative operator follows.

Theorem 2.3 (Theorem 5.9 in [22]). The operator ∇X : C1,2
b (X)∩M2(X)→

L2(X) admits a closure in M2(X). Its closure is a bijective isometry

∇X :M2(X)→ L2(X),

∫ ·
0

φ(t)dX(t) 7→ φ, (2.5)

characterized by the property that, for any Y ∈ M2, ∇XY is the unique

element of L2(X) such that

∀Z ∈ C1,2
b (X)∩M2(X), E[Y (T )Z(T )] = E

[∫ T

0

∇XY (t)∇XZ(t)d[X](t)

]
.

In particular ∇X is the adjoint of the Itô stochastic integral

IX : L2(X)→M2(X), φ 7→
∫ ·

0

φ(t) · dX(t),

in the following sense: for all φ ∈ L2(X) and for all Y ∈M2(X),

E
[
Y (T )

∫ T

0

φ(t) · dX(t)

]
= E

[∫ T

0

∇XY (T )φ(t)d[X](t)

]
.
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Thus, for any square-integrable F-martingale Y , the following martingale

representation formula holds:

Y (T ) = Y (0) +

∫ T

0

∇XY (t) · dX(t), P-a.s. (2.6)

Then, denote by A2(F) the space of F-predictable absolutely continuous

processes H = H(0) +
∫ ·

0
h(u)du with finite variation, such that

‖H‖2
A2 := EP

[
|H(0)|2 +

∫ T

0

|h(u)|2 du

]
<∞

and by S1,2(X) the space of square-integrable FF -adapted special semi-

martingales, S1,2(X) = M2(X) ⊕ A2(F), equipped with the norm ‖·‖1,2

defined by

‖S‖2
1,2 := EP [[M ](T )] + ‖H‖2

A2 , S ∈ S1,2(X),

where S = M +H is the unique decomposition of S such that M ∈M2(X),

M(0) = 0 and H ∈ A2(F), H(0) = S(0).

The vertical derivative operator admits a unique continuous extension

to S1,2(X) such that its restriction to M2(X) coincides with the bijective

isometry in (2.5) and it is null if restricted to A2(F).

By iterating this construction it is possible to define a series of ‘Sobolev’

spaces Sk,2(X) on which the vertical derivative of order k, ∇k
X is defined as

a continuous operator. We restrict our attention to the space of order 2:

S2,2(X) := {Y ∈ S1,2(X) : ∇XY ∈ S1,2(X)},

equipped with the norm ‖·‖2
2,2 defined by

‖Y ‖2
2,2 = ‖H‖2

A2 + ‖∇XY ‖L2(X) +
∥∥∇2

XY
∥∥
L2(X)

, Y ∈ S2,2(X).

Note that the second vertical derivative of a process Y ∈ S2,2(X) has

values in Rd × Rd but it needs not be a symmetric matrix, differently from

the (pathwise) second vertical derivative of a smooth functional F ∈ C1,2
b (ΛT ).

The power of this construction is that it is very general, e.g. it applies

to functionals with no regularity, and it makes possible to derive a ‘weak
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functional Itô formula’ involving vertical derivatives of square-integrable pro-

cesses and a weak horizontal derivative defined as follow. For any S ∈
S2,2(X), the weak horizontal derivative of S is the unique F-adapted pro-

cess DS such that: for all t ∈ [0, T ]∫ t

0

DS(u)du = S(t)− S(0)−
∫ t

0

∇XSdX − 1

2

∫ t

0

tr(∇2
XS(u)d[X](u))

(2.7)

and EP
[∫ T

0
|DS(t)|2 dt

]
<∞.

Proposition 2.3 (Proposition 4.18 in [19]). For any S ∈ S2,2(X), the fol-

lowing ‘weak functional Itô formula’ holds dt× dP-almost everywhere:

S(t) = S(0) +

∫ t

0

∇XSdX +
1

2

∫ t

0

tr(∇2
XSd[X]) +

∫ t

0

DS(u)du. (2.8)

2.3 Functional Kolmogorov equations

Another important result in [19] is the characterization of smooth har-

monic functionals as solutions of functional Kolmogorov equations. Specif-

ically, a non-anticipative functional F : ΛT → R is called P-harmonic if

F (·, X·) is a P-local martingale, where X is the unique weak solution to the

path-dependent stochastic differential equation

dX(t) = b(t,Xt)dt+ σ(t,Xt)dW (t), X(0) = X0,

where b, σ are non-anticipative functionals with enough regularity and W is

a d-dimensional Brownian motion on (D([0, T ],Rd),FT ,P).

Proposition 2.4 (Theorem 5.6 in [19]). If F ∈ C1,2
b (WT ), DF ∈ C0,0

l (WT ),

then F is a P-harmonic functional if and only if it satisfies

DF (t, ωt) + b(t, ωt)∇ωF (t, ωt) +
1

2
tr
(
∇2
ωF (t, ωt)σ(t, ωt)

tσ(t, ωt)
)

= 0 (2.9)

for all t ∈ [0, T ] and all ω ∈ supp(X), where

supp(X) :=
{
ω ∈ C([0, T ],Rd) : P(XT ∈ V ) > 0 (2.10)

∀ neighborhood V of ω in
(
C([0, T ],Rd), ‖·‖∞

) }
,

is the topological support of (X,P) in (C([0, T ],Rd), ‖·‖∞).
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Analogously to classical finite-dimensional parabolic PDEs, we can in-

troduce the notions of sub-solution and super-solution of the functional (or

path-dependent) PDE (2.9), for which [19] proved a comparison principle

allowing to state uniqueness of solutions.

Definition 2.4. F ∈ C1,2(ΛT ) is called a sub-solution (respectively super-

solution) of (2.9) on a domain U ⊂ ΛT if, for all (t, ω) ∈ U ,

DF (t, ωt) + b(t, ωt)∇ωF (t, ωt) +
1

2
tr
(
∇2
ωF (t, ωt)σ(t, ωt)

tσ(t, ωt)
)
≥ 0 (2.11)

(resp. DF (t, ωt) + b(t, ωt)∇ωF (t, ωt) + 1
2
tr (∇2

ωF (t, ωt)σ(t, ωt)
tσ(t, ωt)) ≤ 0).

Theorem 2.5 (Comparison principle (Theorem 5.11 in [19])). Let F ∈
C1,2(ΛT ) and F ∈ C1,2(ΛT ) be respectively a sub-solution and a super-solution

of (2.9), such that

∀ω ∈ C([0, T,Rd), F (T, ω) ≤ F (T.ω),

EP
[
supt∈[0,T ] |F (t,Xt)− F (t,Xt)|

]
<∞.

Then,

∀t ∈ [0, T ), ∀ω ∈ supp(X), F (t,Xt) ≤ F (t,Xt).

This leads to a uniqueness result on the topological support of X for

P-uniformly integrable solutions of the functional Kolmogorov equation.

Theorem 2.6 (Uniqueness of solutions (Theorem 5.12 in [19])). Let H :

(C([0, T ],Rd), ‖·‖∞) → R be continuous and let F 1, F 2 ∈ C1,2
b (ΛT ) be solu-

tions of (2.9) verifying

∀ω ∈ C([0, T,Rd), F 1(T, ω) = F 2(T.ω) = H(ωT ),

EP
[
supt∈[0,T ] |F 1(t,Xt)− F 2(t,Xt)|

]
<∞.

Then:

∀(t, ω) ∈ [0, T ]× supp(X), F 1(t, ω) = F 2(t, ω).

The uniqueness result, together with the representation of P-harmonic

functionals as solutions of a functional Kolmogorov equation, leads to a

Feynman-Kac formula for non-anticipative functionals.
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Theorem 2.7 (Feynman-Kac, path-dependent (Theorem 5.13 in [19])). Let

H : (C([0, T ],Rd), ‖·‖∞) → R be continuous and let F ∈ C1,2
b (ΛT ) be a

solution of (2.9) verifying F (T, ω) = H(ωT ) for all ω ∈ C([0, T,Rd) and

EP
[
supt∈[0,T ] |F (t,Xt)|

]
<∞. Then:

F (t, ω) = EP[H(XT )|Ft] dt× dP-a.s.

2.3.1 Universal pricing and hedging equations

Straightforward applications to the pricing and hedging of path-dependent

derivatives then follow from the representation of P-harmonic functionals.

Now we consider the point of view of a market agent and we suppose that

the asset price process S is modeled as the coordinate process on the path

space D([0, T ],Rd), and it is a square-integrable martingale under a pricing

measure P,

dS(t) = σ(t, St)dW (t).

Let H : D([0, T ],Rd) → R be the payoff functional of a path-dependent

derivative that the agent wants to sell. The price of such derivative at time

t is computed as

Y (t) = EP [H(ST ) | Ft] .

The following proposition is a direct corollary of Proposition 2.2.

Proposition 2.5 (Universal hedging formula). If EP
[
|H(ST )|2

]
< ∞ and

if the price process has a smooth functional representation of S, that is Y ∈
C1,2
loc(S), then:

P-a.s. H = EP [H(ST ) | Ft] +

∫ T

t

∇SY (u) · dS (2.12)

= EP [H(ST ) | Ft] +

∫ T

t

∇ωF (u, Su) · dS, (2.13)

where Y (t) = F (t, St) dt×dP-almost everywhere and ∇ωF (·, S·) is the unique

(up to indistinguishable processes) asset position process of the hedging strat-

egy for H.
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We refer to the equation (2.13) as the ‘universal hedging formula’, be-

cause it gives an explicit representation of the hedging strategy for a path-

dependent option H. The only dependence on the model lies in the compu-

tation of the price Y .

Remark 2.8. If the price process does not have a smooth functional repre-

sentation of S, but the payoff functional still satisfies EP
[
|H(ST )|2

]
< ∞,

then the equation (2.12) still holds.

In this case, the hedging strategy is not given explicitly, being the vertical

derivative of a square-integrable martingale, but it can be uniformly approx-

imated by regular functionals that are the vertical derivatives of smooth

non-anticipative functionals. Namely: there exists a sequence of smooth

functionals

{F n ∈ C1,2
b (ΛT ), F n(·, S·) ∈M2(S), ‖F n(·, S·)‖2 <∞}n≥1,

where

‖Y ‖2 := EP [|Y (T )|2
] 1

2 <∞, Y ∈M2(S),

such that

‖F n(·, S·)− Y ‖2 −−−→n→∞
0 and ‖∇SY −∇SF

n(·, S·)‖L2(S) −−−→n→∞
0.

For example, Cont and Yi [23] compute an explicit approximation for

the integrand in the representation (2.12), which cannot be itself computed

through pathwise perturbations. They allow the underlying process X to

be the strong solution of a path-dependent stochastic differential equation

with non-anticipative Lipschitz-continuous and non-degenerate coefficients,

then they consider the Euler-Maruyama scheme of such SDE. They proved

the strong convergence of the Euler-Maruyama approximation to the original

process. By assuming that the payoff functional H : (D([0, T ],Rd), ‖·‖∞)→
R is continuous with polynomial growth, they are able to define a sequence

{Fn}n≥1 of smooth functionals Fn ∈ C1,∞(ΛT ) that approximate the pricing

functional and provide thus a smooth functional approximation sequence

{∇ωFn(·, S·)}n≥1 for the hedging process ∇SY .
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Another application is derived from Proposition 2.4 for the pricing of

path-dependent derivatives.

Proposition 2.6 (Universal pricing equation). If there exists a smooth func-

tional representation of the price process Y for H, i.e.

∃F ∈ C1,2
b (WT ) : F (t, St) = EP[H(ST )|Ft] dt× dP-a.s.,

such that DF ∈ C0,0
l , then the following path-dependent partial differential

equation holds on the topological support of S in
(
C([0, T ],Rd), ‖·‖∞

)
for all

t ∈ [0, T ]:

DF (t, ωt) +
1

2
tr
(
∇2
ωF (t, ωt)σ(t, ωt)

tσ(t, ωt)
)

= 0. (2.14)

Remark 2.9. If there exists a smooth functional representation of the price

process Y for H, but the horizontal derivative is not left-continuous, then the

pricing equation (2.14) cannot hold on the whole topological support of S in(
C([0, T ],Rd), ‖·‖∞

)
, but it still holds for P-almost every ω ∈ C([0, T ],Rd).

2.4 Path-dependent PDEs and BSDEs

In the Markovian setting, there is a well-known relation between backward

stochastic differential equations (BSDEs) and semi-linear parabolic PDEs,

via the so-called nonlinear Feynman-Kac formula introduced by Pardoux and

Peng [84] (see also Pardoux and Peng [83] for the introduction to BSDEs

and El Karoui et al. [42] for a comprehensive guide on BSDEs and their

application in finance). This relation can be extended to a non-Markovian

setting using the functional Itô calculus.

Consider the following forward-backward stochastic differential equation

(FBSDE) with path-dependent coefficients:

X(t) = x+

∫ t

0

b(u,Xu)du+

∫ t

0

σ(u,Xu) · dW (u) (2.15)

Y (t) = H(XT ) +

∫ T

t

f(u,Xu, Y (u), Z(u))du−
∫ T

t

Z(u) · dX(u),(2.16)
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where W is a d-dimensional Brownian motion on (D([0, T ],Rd),P), F =

(Ft)t∈[0,T ] is the P-augmented natural filtration of the coordinate process X,

the terminal value is a square-integrable FT -adapted random variable, i.e.

H ∈ L2(Ω,FT ,P), and the coefficients

b :WT → Rd, σ :WT → Rd×d, f :WT × R× Rd → R

are assumed to satisfy the standard assumptions that guarantee that the

process M , M(t) =
∫ t

0
σ(u,Xu) · dW (u) is a square-integrable martingale,

and the forward equation (2.15) has a unique strong solution X satisfying

EP
[
supt∈[0,T ] |X(t)|2

]
< ∞. Moreover, assuming also det (σ(t,Xt−, X(t))) 6=

0 dt× dP-almost surely, they guarantee that the FBSDE (2.15)-(2.16) has a

unique solution (Y, Z) ∈ S1,2(M)×Λ2(M) such that EP
[
supt∈[0,T ] |Y (t)|2

]
<

∞ and Z = ∇MY .

The following is the extension of the non-linear Feynman-Kac formula of

[84] to the non-Markovian setting.

Theorem 2.10 (Theorem 5.14 in [19]). Let F ∈ C1,2
loc(WT ) be a solution of

the path-dependent PDEDF (t, ω) + f(t, ωt, F (t, ω)∇ωF (t, ω)) + 1
2
tr(σ(t, ω) tσ(t, ω)∇2

ωF (t, ω)) = 0

F (T, ω) = H(ωT )

for (t, ω) ∈ [0, T ]× supp(X). Then, the pair (Y, Z) = (F (·, X·),∇ωF (·, X·))
solves the FBSDE (2.15)-(2.16).

Together with the standard comparison theorem for BSDEs, Theorem

2.10 provides a comparison principle for functional Kolmogorov equations

and uniqueness of the solution.

To prove existence of a solution to (2.9), additional regularity of the

coefficients is needed. A result in this direction is provided by Peng [87],

using BSDEs where the forward process is a Brownian motion. Peng [87]

considers the following backward stochastic differential equation:

Y (t,γ)(s) = H(W
(t,γ)
T )+

∫ T

s

f(W (t,γ)
u , Y (t,γ)(u), Z(t,γ)(u))du−

∫ T

s

Z(t,γ)(u)dW (u),

(2.17)
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where W is the coordinate process on the Wiener space (C([0, T ],Rd),P)

and, for all (t, γ) ∈ ΛT , W (t,γ) = γ1[0,t) + (γ(t) +W −W (t))1[t,T ]. Note that

the notation has been rearranged to be consistent with the presentation in

this thesis.

The BSDE (2.17) has a unique solution (Y (t,γ), Z(t,γ)) ∈ S2([t, T ]) ×
M2([t, T ]), where M2([t, T ]) and S2([t, T ]) denote respectively the space of

Rm-valued processes X such that X ∈ L2([t, T ]×Ω, dt×dP) and Rm×d-valued

processes X such that EP[supu∈[t,T ] |X(u)|2] <∞, both adapted to the com-

pletion of the filtration generated by {W (u) −W (t), u ∈ [t, T ]}, under the

following assumptions on the coefficients:

1. H : ΛT → Rm satisfies

(a) ψ(t,γ) : Rd → Rm, e 7→ H(γ + e1[t,T ]) is twice differentiable in 0

for all (t, γ) ∈ [0, T ]×D([0, T ],Rd),

(b) |H(γT )−H(γ′T )| ≤ C(1 + ‖γT‖k∞ + ‖γ′T‖
k
∞) ‖γT − γ′T‖∞ for all

γ, γ′ ∈ D([0, T ],Rd),

(c) ∂jeψ
(t,γ)(0)−∂jeψ(t′,γ′)(0) ≤ C(1+‖γT‖k∞+‖γ′T‖

k
∞)(|t− t′|+‖γT − γ′T‖∞)

for all γ, γ′ ∈ D([0, T ],Rd), t, t′ ∈ [0, T ], j = 1, 2;

2. f : ΛT × Rm × Rm×d → Rm is continuous; for any (t, γ) ∈ ΛT and s ∈
[0, t] (x, y, z) 7→ f(t, γt+x1[s,T ], y, z) is of class C3(Rd×Rm×Rm×d,Rm)

with first-order partial derivatives and second-order partial derivatives

with respect to (y, z) uniformly bounded, and all partial derivatives

up to order three growing at most as a polynomial at infinity; for any

(t, y, z), γ 7→ f(t, γt, y, z) satisfies assumptions 1(a),1(b),1(c) replacing

H with f(t, ·t, y, z), γ 7→ ∂yf(t, γt, y, z), ∂zf(t, γt, y, z) satisfy assump-

tions 1(a),1(b) and 1(c) with only j = 1, and

γ 7→ ∂yyf(t, γt, y, z), ∂zzf(t, γt, y, z), ∂yzf(t, γt, y, z)

satisfy the assumptions 1(a),1(b).
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The functional Kolmogorov equation associated is the following: for all γ ∈
D([0, T ],Rd) and t ∈ [0, T ],DF (t, γt) + 1

2
tr(∇2

ωF (t, γt)) + f(t, γt, F (t, γt),∇ωF (t, γt)) = 0,

F (T, γT ) = H(γT )
(2.18)

First, by the functional Itô formula, they obtain the analogue of Theorem

2.10, then they prove the converse result: the non-anticipative functional F

defined by F (t, γ) = Y (t,γt)(t) is the unique C1,2(ΛT )-solution of the functional

Kolmogorov equation (2.18). This significant result is achieved based on the

theory of BSDEs.

Another approach to study the connection between PDEs and SDEs in the

path-dependent case is provided by Flandoli and Zanco [45], who reformulate

the problem into an infinite-dimensional setting on Banach spaces, where

solutions of the SDE are intended in the mild sense and the Kolmogorov

equations are defined appropriately. However, in the infinite-dimensional

framework, the regularity requirements are very strong, involving at least

Fréchet differentiability.

2.4.1 Weak and viscosity solutions of path-dependent

PDEs

The results seen above in Section 2.3 require a regularity that is often

difficult to prove and classical solutions of the above path-dependent PDEs

may fail to exist. To find a way around this issue, more general notions

of solution have been proposed, analogously to the Markovian case where

weak solutions of PDEs are considered or viscosity solutions are used to link

solutions of BSDEs to the associated PDE.

Cont [19] proposed the following notion of weak solution, using the weak

functional Itô calculus presented in Section 2.2 and generalizing Proposition

2.4.

Consider the stochastic differential equation (2.15) with path-dependent
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coefficients such that X is the unique strong solution and M is a square-

integrable martingale.

Denote by W1,2(P) the Sobolev space of dt × dP-equivalence classes of

non-anticipative functionals F : ΛT → R such that the process S = F (·, X·)
belongs to S1,2(M), equipped with the norm ‖·‖W1,2 defined by

‖F‖2
W1,2 := ‖F (·, X·)‖2

1,2

= EP
[
|F (0, X0)|2 +

∫ T

0

tr(∇MF (t,Xt)
t∇MF (t,Xt)d[M ](t))

+

∫ T

0

|v(t)|2dt

]
,

where F (t,Xt) = V (t)+
∫ t

0
∇MSdM and V (t) = S(0)+

∫ t
0
v(u)du, V ∈ A2(F).

Equivalently, W1,2(P) can be defined as the completion of (C1,2
b (ΛT ), ‖·‖W1,2).

Note that, in general, it is not possible to define for F ∈ W1,2(P) the

F-adapted process DF (·, X·), because it requires F ∈ S2,2(M). On the other

hand, the finite-variation part of S belongs to the Sobolev space H1([0, T ]),

so the process U defined by

U(t) := F (T,XT )− F (t,Xt)−
∫ T

t

∇MF (u,Xu)dM(u), t ∈ [0, T ],

has paths in H1([0, T ]), almost surely. By integration by parts, for all Φ ∈
A2(F), Φ(t) =

∫ t
0
φ(u)du for t ∈ [0, T ],∫ T

0
Φ(t) d

dt

(
F (t,Xt)−

∫ t
0
∇MF (u,Xu)dM(u)

)
dt

=
∫ T

0
Φ(t)

(
− d

dt
U(t)

)
dt

=
∫ T

0
φ(t)

(
F (T,XT )− F (t,Xt)−

∫ T
t
∇MF (u,Xu)dM(u)

)
dt.

Thus, the following notion of weak solution is well defined.

Definition 2.11. A non-anticipative functional F ∈ W1,2(P) is called a

weak solution of the path-dependent PDE (2.9) on supp(X) with terminal

condition H(XT ) ∈ L2(Ω,P) if, for all φ ∈ L2([0, T ]×Ω, dt×dP), it satisfiesEP
[∫ T

0
φ(t)

(
H(XT )− F (t,Xt)−

∫ T
t
∇MF (u,Xu)dM(u)

)
dt
]

= 0,

F (T,XT ) = H(XT ).

(2.19)
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Using the tools provided by the functional Itô calculus presented in this

chapter, different notions of viscosity solutions have been recently proposed,

depending on the path-dependent partial differential equation considered.

Ekren et al. [38] proposed a notion of viscosity solution for semi-linear parabolic

path-dependent PDEs that allows to extend the non-linear Feynman-Kac

formula to non-Markovian case. Ekren et al. [39] generalizes the definition

of viscosity solutions introduced in [38] to deal with fully non-linear path-

dependent parabolic PDEs. Then, in [40] they prove a comparison result

for such viscosity solutions that implies a well-posedness result. Cosso [26]

extended the results of [40] to the case of a possibly degenerate diffusion

coefficient for the forward process driving the BSDE.

We remark that, although these approaches are useful to study solutions

of path-dependent PDEs from a theoretical point of view and in applications,

the problem studied in this thesis cannot be faced by means of viscosity or

weak solutions. This is due to the fact that the change of variable formula

for non-anticipative functionals and the pathwise definition of the Föllmer

integral are the key tools that allow us to achieve the robustness results, and

they require smoothness (C1,2 regularity) of the portfolio value functionals.
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Chapter 3

A pathwise approach to

continuous-time trading

The Itô theory of stochastic integration defines the integral of a general

non-anticipative integrand as either an L2 limit or a limit in probability of

non-anticipative Riemann sums. The resulting integral is therefore defined

almost-surely but does not have a well-defined value along a given sample

path. If one interprets such an integral as the gain of a strategy, this poses a

problem for interpretation: the gain cannot necessarily be defined for a given

scenario, which does not make sense financially. It is therefore important to

dispose of a construction which allows to give a meaning to such integrals in

a pathwise sense.

In this Chapter, after reviewing in Section 3.1 various approaches pro-

posed in the literature for the pathwise construction of integrals with respect

to stochastic processes, we present an analytical setting where the pathwise

computation of the gain from trading is possible for a class of continuous-

time trading strategies which includes in particular ‘delta-hedging’ strategies.

This construction also allows for a pathwise definition of the self-financing

property.

53
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3.1 Pathwise integration and model-free ar-

bitrage

3.1.1 Pathwise construction of stochastic integrals

A first attempt to a pathwise construction of the stochastic integral deals

with Brownian integrals and dates back to the sixties, due to Wong and Zakai

[109]. They stated that, for a restricted class of integrands, the sequence of

Riemann-Stieltjes integrals obtained by replacing the Brownian motion with

a sequence of approximating smooth integrators converges in mean square

(hence pathwise along a properly chosen subsequence) to a Stratonovich in-

tegral. This approach is based on approximating the integrator process.

In 1981, Bichteler [10] obtained almost-sure convergent subsequences by

using stopping times. Namely, given a càglàd process φ and a sequence of

non-negative real numbers (cn)n≥0 such that
∑
n≥0

cn < ∞, by defining for

each n ≥ 0 a sequence of stopping times T n0 = 0, T nk+1 = inf{t > T nk :

|φ(t) − φ(T nk )| > cn}, k ≥ 0, for a certain class of integrands M (more gen-

eral than square-integrable martingales) the following holds: for almost all

states ω ∈ Ω,
(∫

φdM
)

(ω) is the uniform limit on every bounded interval of

the pathwise integrals
(∫

φndM
)

(ω) of the approximating elementary pro-

cesses φn(t) =
∑
k≥0

φ(T nk )1(Tnk ,T
n
k+1](t), t ≥ 0. Though Bichteler’s method is

constructive, it involves stopping times. Moreover, note that the P-null set

outside of which convergence does not hold depends on φ.

Pathwise stochastic integration by means of “skeleton approxima-

tions”

In 1989, Willinger and Taqqu [108] proposed a constructive method to

compute stochastic integrals path-by-path by making both time and the

probability space discrete. The discrete and finite case contains the main

idea of their approach and shows the connection between the completeness

property, i.e. the martingale representation property, and stochastic inte-
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gration. It is given a probability space (Ω,F ,P) endowed with a filtration

F = (Ft)t=0,1,...,T generated by minimal partitions of Ω, Ft = σ(Pt) for all

t = 0, 1, . . . , T , and an Rd+1-valued (F,P)-martingale Z = (Z(t))t=0,1,...,T with

components Z0 ≡ 1 and Z1(0) = . . . = Zd(0) = 0. They denote by Φ the

space of all Rd+1-valued F-predictable stochastic processes φ = (φ(t))t=0,1,...,T ,

where φ(t) is Ft−1-measurable ∀t = 1, . . . , T , and such that

φ(t) · Z(t) = φ(t+ 1) · Z(t) P-a.s., t = 0, 1, . . . , T, (3.1)

where by definition φ0 ≡ φ1. Property (3.1) has an interpretation in the

context of discrete financial markets as the self-financing condition for a

strategy φ trading the assets Z, in the sense that at each trading date the

investor rebalances his portfolio without neither withdrawing nor paying any

cash. Moreover, it implies

(φ•Z)(t) := φ(1)·Z(0)+
t∑

s=1

φ(s)·(Z(s)−Z(s−1)) = φ(t)·Z(t) P-a.s., t = 0, 1, . . . , T,

where φ • Z is the discrete stochastic integral of the predictable process φ

with respect to Z. The last equation is still meaningful in financial terms,

having on the left-hand side the initial investment plus the accumulated gain

and on the right-hand side the current value of the portfolio. The Rd+1-

valued (F,P)-martingale Z is defined to be complete if for every real random

variable Y ∈ L1(Ω,F ,P) there exists φ ∈ Φ such that for P-almost all ω ∈ Ω,

Y (ω) = (φ • Z)(T, ω), i.e.

{φ • Z, φ ∈ Φ} = L1(Ω,F ,P). (3.2)

The (Z,Φ)-representation problem (3.2) is reduced to a duality structure be-

tween the completeness of Z and the uniqueness of an equivalent martingale

measure for Z, which are furthermore proved (Taqqu and Willinger [102])

to be equivalent to a technical condition on the flow of information and the

dynamics of Z, that is: ∀t = 1, . . . , T, A ∈ Pt−1,

dim (span ({Z(t, ω)− Z(t− 1, ω), ω ∈ A})) = ]{A′ ⊂ Pt : A′ ⊂ A} − 1.

(3.3)
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The discrete-time construction extends then to stochastic integrals of con-

tinuous martingales, by using a “skeleton approach”. The probability space

(Ω,F ,P) is now assumed to be complete and endowed with a filtration

FZ = F = (Ft)t∈[0,T ], where Z = (Z(t))t∈[0T ] denotes an Rd+1-valued continu-

ous P-martingale with the components Z0 ≡ 1 and Z1(0) = . . . = Zd(0) = 0

P-a.s. and F satisfies the usual condition and is continuous in the sense

that, for all measurable set B ∈ F , the (F,P)-martingale (P(B|Ft))t∈[0,T ] has

a continuous modification. The key notion of the skeleton approach is the

following.

Definition 3.1. A triplet (Iζ ,Fζ , ζ) is a continuous-time skeleton of (F, Z)

if:

(i) Iζ is a finite partition 0 = tζ0 < . . . < tζN =: T ζ ≤ T ;

(ii) for all t ∈ [0, T ], F ζt =
N−1∑
k=0

F ζ
tζk
1[tζk,t

ζ
k+1)(t), such that for all k = 0, . . . , N

there exists a minimal partition of Ω which generates the sub-σ-algebra

F ζ
tζk
⊂ Ftζk ;

(iii) for all t ∈ [0, T ], ζ(t) =
N−1∑
k=0

ζtζk
1[tζk,t

ζ
k+1)(t) where ζtζk

is F ζ
tζk

-measurable

for all k = 0, . . . , N .

Given an Rd+1-valued stochastic process ν = (ν(t))t∈[0,T ] and Iν ,Fν satisfying

(i),(ii), (Iν ,Fν , ν) is called a Fν-predictable (continuous-time) skeleton if, for

all t ∈ [0, T ], ν(t) =
N∑
k=1

νtνk1(tνk−1,t
ν
k](t) where νtνk is Fνtνk−1

-measurable for all

k = 1, . . . , N .

A sequence of continuous-time skeletons (In,Fn, ζn)n≥0 is then called a continuous-

time skeleton approximation of (F, Z) if the sequence of time partitions (In)n≥0 =

{0 = tn0 < . . . < tnNn =: T n ≤ T}n≥0 has mesh going to 0 as n → ∞, the

skeleton filtrations Fn converge to F in the sense that, for each t ∈ [0, T ],

F0
t ⊂ · · · ⊂ Fn−1

t ⊂ Fnt ⊂ σ

(
∪
k≥0
Fkt
)

= Ft

and the skeleton processes ζn converge to Z uniformly in time, as n → ∞,

P-a.s.
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Given Ȳ ∈ L1(Ω,F ,P) and considered the (F,P)-martingale Y = (Y (t))t∈[0,T ],

Y (t) = EP[Ȳ |Ft]P-a.s., the pathwise construction of stochastic integrals with

respect to Z runs as follows.

1. Choose a complete continuous-time skeleton approximation (In,Fn, ζn)n≥0

of (F, Z) such that, defined Y n =
(
Y n
t = EP[Ȳ |Fnt ]P-a.s.

)
t∈[0,Tn]

for all

n ≥ 0, the sequence (In,Fn, Y n)n≥0 defines a continuous-time skeleton

approximation of (F, Y ).

2. Thanks to the completeness characterization in discrete time, for each

n ≥ 0, there exists an Fn-predictable skeleton (In,Fn, φn) such that

φn(tnk) · ζn(tnk) = φn(tnk+1) · ζn(tnk) P-a.s., k = 0, 1, . . . , Nn,

and

Y n = (φn • ζn)(T n) = φn(T n) · ζn(T n) P-a.s.

3. Define the pathwise integral∫ t

0

φ(s, ω) · Z(s, ω) := lim
n→∞

(φn • ζn)(t, ω), t ∈ [0, T ] (3.4)

for P-almost all ω ∈ Ω, namely on the set of scenarios ω where the

discrete stochastic integrals converge uniformly.

Willinger and Taqqu [108] applied their methodology to obtain a conver-

gence theory in the context of models for continuous security market with

exogenously given equilibrium prices. Thanks to the preservation of the

martingale property and completeness and to the pathwise nature of their

approximating scheme, they were able to characterize important features of

continuous security models by convergence of “real life” economies, where

trading occurs at discrete times. In particular, for a continuous security

market model represented by a probability space (Ω,F ,P) and an (F,P)-

martingale Z on [0, T ], the notions of “no-arbitrage” and “self-financing”

are understood through the existence of converging discrete market approx-

imations (T n,Fn, ζn) which are all free of arbitrage opportunities (as ζn is
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an (Fn,P)-martingale) and complete. Moreover, the characterization (3.3)

of completeness in finite market models relates the structure of the skeleton

filtrations Fn to the number of non-redundant securities needed to complete

the approximations ζn.

However, this construction lacks an appropriate convergence result of the

sequence (φn)n≥0 to the predictable integrand φ; moreover it deals exclusively

with a given martingale in the role of the integrator process, which restricts

the spectrum of suitable financial models.

Continuous-time trading without probability

In 1994, Bick and Willinger [11] looked at the current financial modeling

issues from a new perspective: they provided an economic interpretation

of Föllmer’s pathwise Itô calculus in the field of continuous-time trading

models. Föllmer’s framework turns out to be of interest in finance, as it

allows to avoid any probabilistic assumption on the dynamics of traded assets

and consequently any resulting model risk. Reasonably, only observed price

trajectories are needed. Bick and Willinger reduced the computation of the

initial cost of a replicating trading strategy to an exercise of analysis. For

a given stock price trajectory (state of the world), they showed one is able

to compute the outcome of a given trading strategy, that is the gain from

trading.

The set of possible stock price trajectories is taken to be the space of

positive càdlàg functions, D([0, T ],R+), and trading strategies are defined

only based on the past price information.

They define a simple trading strategy to be a couple (V0, φ) where V0 :

R+ → R is a measurable function representing the initial investment de-

pending only on the initial stock price and φ : (0, T ]×D([0, T ],R+)→ R is

such that, for any trajectory S ∈ D([0, T ],R+), φ(·, S) is a càglàd step-

wise function on a time grid 0 ≡ τ0(S) < τ1(S) < . . . < τm(S) ≡ T ,

and satisfies the following ‘adaptation’ property: for all t ∈ (0, T ], given

S1, S2 ∈ D([0, T ],R+), if S1|(0,t] = S2|(0,t] , then φ(t+, S1) = φ(t+, S2), where
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φ(t+, ·) := lim
u↘t

φ(u, ·). The value φ(t, S) represents the amount of shares of

the stock held at time t. They restrict the attention to self-financing portfo-

lios of the stock and bond (always referring to their discounted prices), so that

the number of bonds in the portfolio is described by the map ψ : (0, T ]→ R,

ψ(t) = V0(S(0))− φ(0+, S)S(0)−
m∑
j=1

S(τj ∧ t)(φ(tj+1 ∧ t, S)− φ(tj ∧ t, S)).

The cumulative gain is denoted by

G(t, S) =
m∑
j=1

φ(tj ∧ t, S)(S(tj ∧ t)− S(tj−1 ∧ t)).

The self-financing assumption supplies us with the following well-known

equation linking the gain to the value of the portfolio,

V (t, S) := ψ(t) + φ(t, S)S(t) = V0(S(0)) +G(t, S), (3.5)

and makes V be a càdlàg function in time.

Then, they define a general trading strategy to be a triple (V0, φ,Π) where

φ(·, S) is more generally a càglàd function, satisfying the same ‘adaptation’

property and Π = (πn(S))n≥1 is a sequence of partitions πn ≡ πn(S) =

{0 = τn0 < . . . < τnmn = T} whose mesh tends to 0 and such that πn ∩ [0, t]

depends only on the price trajectory up to time t. To any such triple is

associated a sequence of simple trading strategies {(V0, φ
n)}, where φn(t, S) =

mn∑
j=1

1(τnj ,τ
n
j+1]φ(τnj +, S), and for each n ≥ 1 the correspondent numbers of

bonds, cumulative gains and portfolio values are denoted respectively by

ψn, Gn and V n. They define a notion of convergence for S of a general

trading strategy (V0, φ,Π) involving several conditions, that we simplify in

the following:

1. ∃ lim
n→∞

ψn(t, S) =: ψ(t, S) <∞ for all t ∈ (0, T ];

2. ψ(·, S) is a càglàd function;

3. ψ(t+, S)− ψ(t, S) = −S(t) (φ(t+, S)− φ(t, S)) for all t ∈ (0, T ).
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The limiting gain and portfolio value of the approximating sequence, if exist,

are denoted by Gn(t, S) = lim
n→∞

G(t, S) and V (t, S) = lim
n→∞

V n(t, S). Note

that condition 1. can be equivalently reformulated in terms of G or V and,

in case it holds, equation (3.5) is still satisfied by the limiting quantities.

Assuming 1., Condition 2. is equivalent to the equation

V (t, S)− V (t−, S) = φ(t, S)(S(t)− S(t−)) ∀t ∈ (0, T ], (3.6)

while condition 3. equates to the right-continuity of V (·, S). In this setting,

the objects of main interest can be expressed in terms of properly defined

‘one-sided’ integrals, namely

ψ(t, S) = V0(S(0))−φ(0+, S)S(0)−
(+)∫ t

0

S(u)dφ(u+, S)+S(t)(φ(t+, S)−φ(t, S)),

(3.7)

where the right integral of S with respect to (φ(·+, S),Π) is defined as

(+)∫ t

0

S(u)dφ(u+, S) := lim
n→∞

mn∑
j=1

S(τnj ∧t)
(
φ((tnj ∧ t)+, S)− φ((tj−1 ∧ t)+, S)

)
,

(3.8)

and G(t, S) =
(−)∫ t

0
φ(u+, S)dS(u), where the left integral of φ(·+, S) with

respect to (S,Π) is defined as

(−)∫ t

0

φ(u+, S)dS(u) := lim
n→∞

mn∑
j=1

φ(τnj−1+, S)
(
S(tnj ∧ t)− S(tj−1 ∧ t)

)
.

(3.9)

The existence and finiteness of either integral is equivalent to condition 1.,

hence equation (3.5) turns into the following integration-by-parts formula:

(−)∫ t

0

φ(u+, S)dS(u) = φ(t+, S)S(t)− φ(0+, S)S(0)−
(+)∫ t

0

S(u)dφ(u+, S).

It is important to note that the one-sided integrals can exist even if the corre-

spondent Riemann-Stieltjes integrals do not, in which case the right-integral

may differ in value from the left-integral with respect to the same functions.

When the Riemann-Stieltjes integrals exist, they necessarily coincide respec-

tively with (3.8) and (3.9). Moreover, these latter are associated to a specific
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sequence of partitions Π along which convergence for S holds true. Once

established the set-up, Bick and Willinger provide a few examples showing

how to compute the portfolio value in different situations where convergence

holds for S in a certain sub-class of D([0, T ],R+), along an arbitrary sequence

of partitions.

Finally, they use the pathwise calculus introduced in [46] to compute the

portfolio value of general trading strategies depending only on time and on

the current observed price in a smooth way.

Their two main claims, slightly reformulated, are the following.

Proposition 3.1 (Proposition 2 in [11]). Let f : [0, T ]×R+ → R be such that

f ∈ C2([0, T ) × R+) ∩ C({T} × R+) and Π be a given sequence of partitions

whose mesh tends to 0. If the price path S ∈ D([0, T ],R+) has finite quadratic

variation along Π and if f, ∂xf, ∂tf, ∂txf, ∂xxf, ∂ttf have finite left limits in T ,

then the trading strategy (0, φ,Π), where φ(t, S) = fx(t−, S(t−)), converges

for S and its portfolio value at any time t ∈ [0, T ] is given by

(−)∫ t

0

φ(u+, S)dS(u) = f(t, S(t))− f(0, S(0))−
∫ t

0

∂tf(u, S(u))du (3.10)

− 1

2

∫
[0,t]

∂xxf(u−, S(u−))d[S](u)

−
∑
u≤t

[
f(u, S(u))− f(u−, S(u−))

− ∂xf(u−, S(u−))∆S(u)− 1

2
∂xxf(u−, S(u−))∆S2(u)

]
.

This statement is a straightforward application of the Föllmer’s equa-

tion (1.9) by the choice x(t) = (t, S(t)), which makes the definition of the

Föllmer’s integral (1.8) equivalent to the sum of a Riemann integral and a

left-integral, i.e.∫ t

0

∇f(x(u−)) · dx(u) =

∫ t

0

∂tf(u, S(u))du+
(−)∫ t

0

∂xf(u, S(u))dS(u).

Moreover, the convergence is ensured by remarking that the pathwise for-

mula (3.10) implies that the portfolio value V (t, S) =
(−)∫ t

0
φ(u+, S)dS(u) is
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a càdlàg function and has jumps

∆V (t) = ∂xf(t−, S(t−))∆S(t) = φ(t, S)∆S(t) for all t ∈ (0, T ],

hence conditions 2. and 3. are respectively satisfied.

The second statement is a direct implication of the previous one and pro-

vides a non-probabilistic version of the pricing problem for one-dimensional

diffusion models.

Proposition 3.2 (Proposition 3 in [11]). Let f : [0, T ] × R+ → R be such

that f ∈ C2([0, T )× R+) ∩ C({T} × R+) and f, ∂xf, ∂tf, ∂txf, ∂xxf, ∂ttf have

finite left limits in T , and let Π be a given sequence of partitions whose mesh

tends to 0. Assume that f satisfies the partial differential equation

∂tf(t, x) +
1

2
β2(t, x)∂xxf(t, x) = 0, t ∈ [0, T ], x ∈ R+, (3.11)

where β : [0, T ] × R+ → R is a continuous function. If the price path S ∈
D([0, T ],R+) has finite quadratic variation along Π of the form [S](t) =∫ t

0
β2(u, S(u))du for all t ∈ [0, T ], then the trading strategy (f(0, S(0)), φ,Π),

where φ(t, S) = ∂xf(t−, S(t−)), converges for S and its portfolio value at

time t ∈ [0, T ] is f(t, S(t)).

Following Bick and Willinger’s approach, all that has to be specified is

the set of all possible scenarios and the trading instructions for each possible

scenario. The investor’s probabilistic beliefs can then be considered as a way

to express the set of all possible scenarios together with their odds, however

there may be no need to consider them. Indeed, by taking any financial mar-

ket model in which the price process satisfies almost surely the assumptions

of either above proposition, the portfolio value of the correspondent trad-

ing strategy, computed pathwise, will provide almost surely the model-based

value of such portfolio. In this way, on one hand the negligible set outside of

which the pathwise results do not hold depends on the specific sequence of

time partitions, but on the other hand we get a path-by-path interpretation

of the hedging issue, which was missing in the stochastic approach.
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Karandikar’s pathwise construction of stochastic integrals

In 1994, Karandikar [62] proposed another pathwise approach to stochas-

tic integration for continuous time stochastic processes. She proved a path-

wise integration formula, first for Brownian integrals, then for the general

case of semimartingales and a large class of integrands. It is fixed a complete

probability space (Ω,F ,P), equipped with a filtration (Ft)t≥0 satisfying the

usual conditions.

Proposition 3.3 (Pathwise Brownian integral, [62]). Let W be a (Ft)-

Brownian motion and Z be a càdlàg (Ft)-adapted process. For all n ≥ 1,

let {τn1 }i≥0 be the random time partition defined by

τn0 := 0, τni+1 := inf{t ≥ τni : |Z(t)− Z(τni )| ≥ 2−n}, i ≥ 0,

and (Y n(t))t≥0 be a stochastic process defined by, for all t ∈ [0,∞),

Y n(t) :=
∞∑
i=0

Z(τni ∧ t)(W (τni+1 ∧ t)−W (τni ∧ t)).

Then, for all T ∈ [0,∞), almost surely, sup
t∈[0,T ]

∣∣∣∣Y n(t)−
∫ t

0

ZdW

∣∣∣∣ −−−→n→∞
0.

The proof hinges on the Doob’s inequality for p = 2, which says that a

càdlàg martingale M such that, for all t ∈ [0, T ], E[|M(t)|2] <∞, satisfies∥∥∥∥∥ sup
t∈[0,T ]

|M(t)|

∥∥∥∥∥
L2(P)

≤ 4 ‖M(T )‖L2(P) .

Indeed, by taking M(t) =
∫ t

0
(Zn − Z)dW , where Zn :=

∞∑
i=1

Z(τni−1)1[τni−1,τ
n
i ),

the Doob’s inequality holds and gives

E

[
sup
t∈[0,T ]

∣∣∣∣Y n(t)−
∫ t

0

ZdW

∣∣∣∣2
]
≤ 4T2−2n,

by the definitions of {τni } and Y n.

Finally, by denoting Un := sup
t∈[0,T ]

∣∣∣∣Y n(t)−
∫ t

0

ZdW

∣∣∣∣, the Hölder’s inequality
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implies that

E

[∑
n≥1

Un

]
≤ 2
√
T
∑
n≥1

2−n <∞,

hence, almost surely,
∑
n≥1

Un <∞, whence the claim.

The generalization to semimartingale integrators is the following.

Proposition 3.4 (Pathwise stochastic integral, [62]). Let X be a semi-

martingale and Z be a càdlàg (Ft)-adapted process. For all n ≥ 1, let {τn1 }i≥0

be the time partition defined as in the previous theorem and Y n be the process

defined by, for all t ∈ [0,∞),

Y n(t) := Z(0)X(0) +
∞∑
i=1

Z(τni−1 ∧ t)(X(τni ∧ t)−X(τni−1 ∧ t)).

Then, for all T ∈ [0,∞), almost surely,

sup
t∈[0,T ]

∣∣∣∣Y n(t)−
∫ t

0

Z(u−)dX(u)

∣∣∣∣ −−−→n→∞
0.

The proof is carried out analogously to the Brownian case, using some

basic properties of semimartingales and predictable processes. Precisely, X

can be decomposed as X = M + A, where M is a locally square-integrable

martingale and A has finite variation on bounded intervals, and let {σk}k>0

be a sequence of stopping times increasing to∞ such that Ck = E [〈M〉(σk)] <
∞. By rewriting Y n(t) =

∫ t
0
ZndX, where

Zn := Z(0)10 +
∞∑
i=1

Z(τni )1(τni ,τ
n
i+1],

the Doob’s inequality gives

E

[
sup

t∈[0,σk]

∣∣∣∣∫ t

0

(Zn(u)− Z(u−))dM

∣∣∣∣2
]
≤ 4Ck2

−2n,

by the definitions of {τni }. Then, proceeding as before and using σk ↗ ∞,

for all T ∈ [0,∞), almost surely

sup
t∈[0,T ]

∣∣∣∣∫ t

0

(Zn(u)− Z(u−))dM(u)

∣∣∣∣ −−−→n→∞
0.
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As regards the Stieltjes integrals with respect to A, the uniform convergence

of Zn to the left-continuous version of Z implies directly that, almost surely,

sup
t∈[0,T ]

∣∣∣∣∫ t

0

(Zn(u)− Z(u−))dA(u)

∣∣∣∣ −−−→n→∞
0.

The main tool in Karandikar’s pathwise characterization of stochastic in-

tegrals is the martingale Doob’s inequality. A recent work by Acciaio et al. [1]

establishes a deterministic version of the Doob’s martingale inequality, which

provides an alternative proof of the latter, both in discrete and continuous

time. Using the trajectorial counterparts, they also improve the classical

Doob’s estimates for non-negative càdlàg submartingales by using the initial

value of the process, obtaining sharp inequalities.

These continuous-time inequalities are proven by means of ad hoc con-

structed pathwise integrals. First, let us recall the following notion of path-

wise integral (see [78, Chapter 2.5]):

Definition 3.2. Given two càdlàg functions f, g : [0, T ] → [0,∞), the Left

Cauchy-Stieltjes integral of g with respect to f is defined as the limit, denoted

(LCS)
∫ T

0
gdf , of the directed function (SLC(f ; ·),R), where the Left Cauchy

sum is defined by

SLC(g, f ;κ) :=
∑
ti∈κ

g(ti)(f(ti+1)− f(ti)), κ ∈ P [0, T ]. (3.12)

Acciaio et al. [1] are interested in the particular case where the inte-

grand is of the form g = h(f̄) and h : [0,∞) → [0,∞) is a continuous

monotone function. In this case, the limit of the sums in (3.12) in the

sense of refinements of partitions exists if and only if its predictable ver-

sion (LCS)

∫ T

0

g(t−)df(t) := lim
n→∞

∑
tni ∈πn

g(tni−)(f(tni+1)− f(tni )) exists for ev-

ery dense sequence of partitions (πn)n≥0, in which case the two limits coin-

cide. By monotonicity of g and rearranging the finite sums, it follows that∫ T
0
g(t)df(t) is well defined if and only if

∫ T
0
f(t)dg(t) is; if so, they lead to



66 Chapter 3. PATHWISE CONTINUOUS-TIME TRADING

the following integration-by-parts formula:

(LCS)

∫ T

0

g(t)df(t) = g(T )f(T )− g(0)f(0)− (LCS)

∫ T

0

f(t)dg(t)

−
∑

0≤t≤T

∆g(t)∆f(t). (3.13)

By the assumptions on h, the two integrals exist and the equation (3.13)

holds. Moreover, given a martingale S on (Ω,F , (Ft)t≥,P) and taking f to

be the path of S, the Left Cauchy-Stieltjes integral coincides almost surely

with the Itô integral, i.e.

(h(S̄) • S)(T, ω) = (LCS)

∫ T

0

h(S̄(t−, ω))dS(t, ω), for P-almost all ω ∈ Ω.

Indeed, Karandikar [62] showed the almost sure uniform convergence of the

sums in (3.12) to the Itô integral along a specific sequence of random parti-

tions; therefore, by the existence of the pathwise integral and uniqueness of

the limit, the two coincide.

The trajectorial Doob inequality obtained in continuous time and using

the pathwise integral defined above is the following.

Proposition 3.5. Let f : [0, T ] → [0,∞) be a càdlàg function, 1 < p < ∞
and h(x) := − p2

p−1
xp−1, then

f̄p(T ) ≤ (LCS)

∫ T

0

h(f̄(t))df(t)− p

p− 1
f(0)p +

(
p

p− 1

)p
f(T )p.

Pathwise integration under a family of measures

In 2012, motivated by problems involving stochastic integrals under fam-

ilies of measures, Nutz [80] proposed a different pathwise “construction” of

the Itô integral of an arbitrary predictable process under a general set of

probability measures P which is not dominated by a finite measure and un-

der which the integrator process is a semimartingale. However, his result

concerns only existence and does not provide a constructive procedure to

compute such integral.



3.1. Pathwise integration and model-free arbitrage 67

Let us briefly recall his technique. It is fixed a measurable space (Ω,F) en-

dowed with a right-continuous filtration F∗ = (F∗t )t∈[0,1] which is P-universally

augmented. X denotes a càdlàg (F∗,P)-semimartingale for all P ∈ P and H

is an F∗-predictable process. The approach is to average H in time in order

to obtain approximating processes of finite variation which allow to define

(pathwise) a sequence of Lebesgue-Stieltjes integrals converging in medial

limit to the Itô integrals. To this aim, a domination assumption is needed,

but it is imposed at the level of characteristics, thus preserving the non-

dominated nature of P encountered in all applications. So, it is assumed

that there exists a predictable càdlàg increasing process A such that

BP +〈Xc〉P + (x2 ∧ 1) ∗ νP � A P-a.s., for all P ∈ P ,

where (BP,〈Xc〉P, νP) is the canonical triplet (i.e. the triplet associated with

the truncation function h(x) = x1{|x|<1}) of predictable characteristics of X.

The main result is the following.

Theorem 3.3. Under the assumption above, there exists an F∗-adapted càdlàg

process
(∫ t

0
HdX

)
t∈[0,1]

such that
∫ ·

0
HdX = (H • X)P P-almost surely, for

all P ∈ P, where the construction of
(∫

HdX
)

(ω) involves only H(ω) and

X(ω).

The proof stands on two lemmas. Without loss of generality and to

simplify notation, it is set X(0) = 0 and defined H(t) = A(t) = 0 for all

t < 0; it is also assumed that X has bounded jumps, |∆X| ≤ 1, H is

uniformly bounded, |H| ≤ c, and A(t)− A(s) ≥ t− s for all 0 ≤ s ≤ t ≤ 1.

Lemma 3.4. For all n ≥ 1, the processes Hn, Y n, defined by

Hn(0) := 0, Hn(t) := 1
At−At− 1

n

∫ t
t− 1

n
H(s)dA(s), 0 < t ≤ 1,

Y n := HnX −
∫ ·

0
X(s−)dHn(s),

are well defined (pathwise) in the Lebesgue-Stieltjes sense and

Y n = (Hn •X)P P-a.s., Y n ucp(P)−−−−−→ (H •X)P for all P ∈ P .
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Lemma 3.5. Let (Y n)n≥1 be a sequence of F∗-adapted càdlàg processes and

assume that for each P ∈ P there exists a càdlàg process Y P such that

Y n(t)
P−−−→

n→∞
Y P(t) for all t ∈ [0, 1]. Then, there exists an F∗-adapted càdlàg

process Y such that Y = Y P P-almost surely for all P ∈ P.

The first claim in Lemma 3.4 is a consequence of the assumptions on

H,A, while the convergence in ucp(P) is implied by the L2(P) convergence

EP

[
sup
t∈[0,1]

∣∣∣∣∫ t

0

Hn(s)dX(s)−
∫ t

0

H(s)dX(s)

∣∣∣∣2
]
−−−→
n→∞

0,

which in turn is proven thanks to the convergence of Hn(ω) to H(ω) in

L1([0, 1], dA(ω)) for all ω ∈ Ω.

Instead, Lemma 3.5 relies on the notion of Mokobodzki’s medial limit, a

kind of ‘projective limit’ of convergence in measure. More precisely, the me-

dial limit lim medn is a map on the set of real sequences, such that, if (Zn)n≥1

is a sequence of random variables on a measurable space, the medial limit de-

fines a universally measurable random variable Z, Z(ω) := lim mednZn(ω),

such that, if for some probability measure P, Zn
P−−−→

n→∞
ZP, then ZP = Z

P-almost surely.

However, as anticipated above, Nutz’s method does not give a pathwise

computation of stochastic integrals, though it supplies us with a process

which coincides P-almost surely with the P-stochastic integral for each P in

the set of measures P and is a limit in ucp(P) of approximating Stieltjes

integrals.

3.1.2 Model-free arbitrage strategies

Once we have at our disposal a pathwise notion of gain process, a natural

next step is to examine the corresponding notion of arbitrage strategy.

The literature investigating arbitrage notions in financial markets admit-

ting uncertainty is recent and there are different approaches to the subject.

The mainstream approach is that of model-uncertainty, where arbitrage no-

tions are reformulated for families of probability measures in a way analogous
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to the classical case of a stochastic model. However, most of the contribu-

tions in this direction deal with discrete-time frameworks. In continuous

time, recent results are found in [9].

An important series of papers exploring arbitrage-like notions by a model-

free approach is due to Vladimir Vovk (see e.g. Vovk [103, 106, 105, 104]).

He introduced an outer measure (see [101, Definition 1.7.1] for the definition

of outer measure) on the space of possible price paths, called upper price

(Definition 3.6), as the minimum super-replication price of a very special class

of European contingent claims. The important intuition behind this notion

of upper price is that the sets of price paths with zero upper price, called

null sets, allow for the infinite gain of a positive portfolio capital with unitary

initial endowment. The need to guarantee this type of market efficiency in

a financial market leads to discard the null sets. Vovk says that a property

holds for typical paths if the set of paths where it does not hold is null, i.e.

has zero upper price. Let us give some details.

Definition 3.6 (Vovk’s upper price). The upper price of a set E ⊂ Ω is

defined as

P̄(E) := inf
S∈S
{S(0)| ∀ω ∈ Ω, S(T, ω) ≥ 1E(ω)}, (3.14)

where S is the set of all positive capital processes S, that is: S =
∑∞

n=1 ν
cn,Gn,

where νcn,Gn are the portfolio values of bounded simple predictable strategies

trading at a non-decreasing infinite sequence of stopping times {τni }i≥1, such

that for all ω ∈ Ω τni (ω) = ∞ for all but finitely many i ∈ N, with initial

capitals cn and with the constraints νcn,Gn ≥ 0 on [0, T ] × Ω for all n ∈ N
and

∑∞
n=1 cn <∞.

It is immediate to see that P̄(E) = 0 if and only if there exists a positive

capital process S with initial capital S(0) = 1 and infinite capital at time T

on all paths in E, i.e. S(T, ω) =∞ for all ω ∈ E.

Depending on what space Ω is considered, Vovk obtained specific re-

sults. In particular, he investigated properties of typical paths that con-

cern their measure of variability. The most general framework considered



70 Chapter 3. PATHWISE CONTINUOUS-TIME TRADING

is Ω = D([0, T ],R+). He proved in [105] that typical paths ω have a p-

variation index less or equal to 2, which means that the p-variation is finite

for all p > 2, but we have no information for p = 2 (a stronger result is stated

in [105, Proposition 1]). If we relax the positivity and we restrict to càdlàg

path with all components having ‘moderate jumps’ in the sense of (3.15),

then Vovk [104] obtained appealing results regarding the quadratic variation

of typical paths along special sequences of random partitions. Indeed, by

adding a control on the size of the jumps, in the sense of considering the

sample space Ω = Ωψ, defined as

Ωφ :=

{
ω ∈ D([0, T ],R)

∣∣∣∣ ∀t ∈ (0, T ], |∆ω(t)| ≤ ψ

(
sup
s∈[0,t)

|ω(s)|

)}
(3.15)

for a given non-decreasing function ψ : [0,∞), Vovk [104] obtained finer re-

sults. In particular, he proved the existence for typical paths of the quadratic

variation in Definition 1.5 along a special sequence of nested vertical parti-

tions. It is however important to remark ([104, Proposition 1]) that the same

result applies to all sequences of nested partitions of dyadic type, and that

any two sequences of dyadic type give the same value of quadratic variation

for typical paths. A sequence of nested partitions is called of dyadic type if

it is composed of stopping times such that there exist a polynomial p and a

constant C and

1. for all ω ∈ Ωψ, n ∈ N0, 0 ≤ s < t ≤ T , if |ω(t)− ω(s)| > C2−n, then

there is an element of the nth partition which belongs to (s, t],

2. for typical ω, from some n on, the number of finite elements of the nth

partition is at most p(n)22n.

The sharper results are obtained when the sample space is Ω = C([0, T ],R)

(or equivalently Ω = C([0, T ], [0,∞))). In this case, in [106] it is proved that

typical paths are constant or have a p-variation which is finite for all p > 2

and infinite for p ≤ 2 (stronger results are stated in [106, Corollaries 4.6,4.7].

Note that the situation changes remarkably from the space of càdlàg paths
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to the space of continuous paths. Indeed, no (positive) càdlàg path which is

bounded away from zero and has finite total variation can belong to a null set

in D([0, T ],Rd
+), while all continuous paths with finite total variation belong

to a null set in C([0, T ],Rd
+).

A similar notion of outer measure is introduced by Perkowski and Prömel

[89] (see also Perkowski [88]), which is more intuitive in terms of hedging

strategies. He considers portfolio values that are limits of simple predictable

portfolios with the same positive initial capital and whose correspondent

simple trading strategies never risk more than the initial capital.

Definition 3.7 (Definition 3.2.1 in [88]). The outer content of a set E ⊂
Ω := C([0, T ],Rd) is defined as

P̃(E) := inf
(Hn)n≥1∈H̃λ,s

{λ| ∀ω ∈ Ω, lim inf
n→∞

(λ+ (Hn • ω)(T )) ≥ 1E(ω)}, (3.16)

where H̃λ,s is the set of all λ-admissible simple strategies, that is of bounded

simple predictable strategies Hn trading at a non-decreasing infinite sequence

of stopping times {τni }i≥1, τni (ω) =∞ for all but finitely many i ∈ N for all

ω ∈ Ω, such that (Hn • ω)(t) ≥ −λ for all (t, ω) ∈ [0, T ]× Ω.

Analogously to Vovk’s upper price, the P̃-null sets are identified with the

sets where the inferior limit of some sequence of 1-admissible simple strategies

brings infinite capital at time T . This characterization is shown to be a

model-free interpretation of the condition of no arbitrage of the first kind

(NA1) from mathematical finance, also referred to as no unbounded profit

with bounded risk (see e.g. [63, 64]). Indeed, in a financial model where the

price process is a semimartingale on some probability space (Ω,F ,P), the

(NA1) property holds if the set {1 + (H • S)(T ), H ∈ H̃1} is bounded in

P-probability, i.e. if

lim
c→∞

sup
H∈H̃1,s

P(1 + (H • S)(T ) ≥ c) = 0.

On the other hand, [88, Proposition 3.28] proved that an event A ∈ F which

is P̃-null has zero probability for any probability measure on (Ω,F) such that

the coordinate process satisfies (NA1).
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However, the characterization of null sets in [89, 88] is possibly weaker

than Vovk’s one. In fact, the outer measure P̃ is dominated by the outer

measure P̄.

A distinct approach to a model-free characterization of arbitrage is pro-

posed by Riedel [91], although he only allows for static hedging. He considers

a Polish space (Ω, d) with the Borel sigma-field and he assumes that there

are D uncertain assets in the market with known non-negative prices fd ≥ 0

at time 0 and uncertain values Sd at time T , which are continuous on (Ω, d),

d = 1, . . . , D. A portfolio is a vector π in RD+1 and it is called an arbitrage

if π · f ≤ 0, π · S ≥ 0 and π · S(ω) > 0 for some ω ∈ Ω, where f0 = S0 = 1.

Thus the classical “almost surely” is replaced by “for all scenarios” and “with

positive probability” is replaced by “for some scenarios”. The main theorem

in [91] is a model-free version of the FTAP and states that the market is

arbitrage-free if and only if there exists a full support martingale measure,

that is a probability measure whose topological support in the polish space of

reference is the full space and under which the expectation of the final prices

S is equal to the initial prices f . This is proven thanks to the continuity

assumption of S(ω) in ω on one side and a separation argument on the other

side. Even without a prior probability assumption, it shows that, if there

are no (static) arbitrages in the market, it is possible to introduce a pricing

probability measure, which assigns positive probability to all open sets.

3.2 The setting

We consider a continuous-time frictionless market open for trade during

the time interval [0, T ], where d risky (non-dividend-paying) assets are traded

besides a riskless security, named ‘bond’. The latter is assumed to be the

numeraire security and we refer directly to the forward asset prices and port-

folio values, which makes this framework of simplified notation without loss

of generality. Our setting does not make use of any (subjective) probabilis-

tic assumption on the market dynamics and we construct trading strategies
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based on the realized paths of the asset prices.

Precisely, we consider the metric space (Ω, ||·||∞), Ω := D([0, T ],Rd
+), pro-

vided with the Borel sigma-field F and the canonical filtration F = (Ft)t∈[0,T ],

that is the natural filtration generated by the coordinate process S, S(t, ω) :=

ω(t) for all ω ∈ Ω, t ∈ [0, T ]. Thinking of our financial market, Ω represents

the space of all possible trajectories of the asset prices up to time T . When

considering only continuous price trajectories, we will restrict to the subspace

Ω0 := C([0, T ],Rd
+).

In such analytical framework, we think of a continuous-time path-depen-

dent trading strategy as determined by the value of the initial investment

and the quantities of asset and bond holdings, given by functions of time

and of the price trajectory.

Definition 3.8. A trading strategy in (Ω,F) is any triple (V0, φ, ψ), where

V0 : Ω → R is F0-measurable and φ = (φ(t, ·))t∈(0,T ], ψ = (ψ(t, ·))t∈(0,T ] are

F-adapted càglàd processes on (Ω,F), respectively with values in Rd and in

R. The portfolio value V of such trading strategy at any time t ∈ [0, T ] and

for any price path ω ∈ Ω is given by

V (t, ω;φ, ψ) = φ(t, ω) · ω(t) + ψ(t, ω).

Economically speaking, φ(t, ω), ψ(t, ω) represent the vectors of the num-

ber of assets and bonds, respectively, held in the trading portfolio at time t in

the scenario w ∈ Ω. The left-continuity of the trading processes comes from

the fact that any revision to the portfolio will be executed the instant just af-

ter the time the decision is made. On the other hand, their right-continuous

modifications φ(t+, ω), ψ(t+, ω), defined by

φ(t+, ω) := lim
s↘t

φ(s, ω), ψ(t+, ω) := lim
s↘t

ψ(s, ω), ∀ω ∈ Ω, t ∈ [0, T )

represent respectively the number of assets and bonds in the portfolio just

after any revision of the trading portfolio decided at time t. The choice of

strategies adapted to the canonical filtration conveys the realistic assumption
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that any trading decision makes use only of the price information available

at the time it takes place.

We aim to identify self-financing trading strategies in this pathwise frame-

work, that is portfolios where changes in the asset position are necessarily

financed by buying or selling bonds without adding or withdrawing any cash.

In particular, we look for those of them which trade continuously in time but

still allow for an explicit computation of the gain from trading. In the clas-

sical literature about continuous-time financial market models, unlike for

discrete-time models, we don’t have a general pathwise characterization of

self-financing dynamic trading strategies, mainly because of the probabilistic

characterization of the gain in terms of a stochastic integral with respect

to the asset price process. In the same way, the number of bonds which

continuously rebalances the portfolio has no pathwise representation.

Here, we start from considering strategies where the portfolio is rebal-

anced only a finite number of times, for which the self-financing condition is

well established and whose gain is given by a pathwise integral, equal to a

Riemann sum.

Henceforth, we will take as given a dense nested sequence of time parti-

tions, Π = (πn)n≥1, i.e. πn = {0 = tn0 < tn1 < . . . , tnm(n) = T}, πn ⊂ πn+1,

|πn| −−−→
n→∞

∞.

We denote by Σ(Π) the set of simple predictable processes whose jump

times are covered by one of the partitions in Π1:

Σ(πn) :=

{
φ : ∀i = 0, . . . ,m(n)− 1, ∃λiFtni -measurable Rd-valued

random variable on (Ω,F), φ(t, ω) =

m(n)−1∑
i=0

λi(ω)1(tni ,t
n
i+1]

}
,

Σ(Π) := ∪
n≥1

Σ(πn).

1We could assume in more generality that the jump times are only covered by ∪n≥1π
n,

but at the expense of more complicated formulas



3.2. The setting 75

3.2.1 A plausibility requirement

The results reviewed in Subsection 3.1.2 cannot directly be applied to our

framework, because the partitions considered there consist of stopping times,

i.e. depend on the path, while we are given a fixed sequence of partitions

Π. Nonetheless, we can deduce that if we consider a singleton {ω}, where

ω ∈ Ωψ with Ωψ defined in (3.15), and our sequence of partition is of dyadic

type for ω, then the property of finite quadratic variation for ω is necessary

to prevent the existence of a positive capital process, according to Definition

3.6, trading at times in Π, that starts from a finite initial capital but ends

up with infinite capital at time T . However, the conditions imposed on the

sequence of partitions are difficult to check.

Instead, we turn around the point of view: we want to keep our sequence

of partitions Π fixed and to identify the right subset of paths in Ω that

is plausible working with. To do so, we propose the following notion of

plausibility that, together with a technical condition on the paths, suggests

that it is indeed a good choice to work on set of price paths with finite

quadratic variation along Π, as we do in all the following sections.

Definition 3.9. A set of paths U ⊂ Ω is called plausible if there does not

exist a sequence (V n
0 , φ

n) of simple self-financing strategies such that:

(i) the correspondent sequence of portfolio values, {V (t, ω;φn)}n≥1, is non-

decreasing for all paths ω ∈ U at any time t ∈ [0, T ],

(ii) the correspondent sequence of initial investments {V n
0 (ω0)}n≥1 converges

for all paths ω ∈ U ,

(iii) the correspondent sequence of gains along some path ω ∈ U at the final

time T grows to infinity with n, i.e. G(T, ω;φn) −−−→
n→∞

∞.

Proposition 3.6. Let U ⊂ Ω be a set of price paths satisfying, for all (t, ω) ∈
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[0, T ]× U and all n ∈ N,

∞∑
n=1


m(n−1)−1∑

i=0

∑
j,k: j 6=k,

tn−1
i ≤tnj ,tnk<t

n−1
i+1

(ω(tnj+1 ∧ t)− ω(tnj ∧ t))(ω(tnk+1 ∧ t)− ω(tnk ∧ t))


−

<∞.

(3.17)

Then, if U is plausible, all paths ω ∈ U have finite quadratic variation along

Π .

Proof. First, let us write explicitly what the condition (3.17) means in terms

of the relation between the ω and the sequence of nested partitions Π. Let

d = 1 for sake of notation. Denote by An the nth-approximation of the

quadratic variation along Π, i.e.

An(t, ω) :=

m(n)−1∑
i=0

(ω(tni+1 ∧ t)− ω(tni ∧ t))2 ∀(t, ω) ∈ [0, T ]× Ω.

Then:

An(t, ω)− An−1(t, ω) =

=

m(n)−1∑
i=0

(ω(tni+1 ∧ t)− ω(tni ∧ t))2 −
m(n−1)−1∑

i=0

(ω(tn−1
i+1 ∧ t)− ω(tn−1

i ∧ t))2

=

m(n−1)−1∑
i=0

 ∑
tn−1
i ≤tnj <t

n−1
i+1

(ω(tnj+1 ∧ t)− ω(tnj ∧ t))2 − (ω(tn−1
i+1 ∧ t)− ω(tn−1

i ∧ t))2


= − 2

m(n−1)−1∑
i=0

∑
j,k: j 6=k,

tn−1
i ≤tnj ,tnk<t

n−1
i+1

(ω(tnj+1 ∧ t)− ω(tnj ∧ t))(ω(tnk+1 ∧ t)− ω(tnk ∧ t)).

Thus the series in (3.17) is exactly the series
∑∞

n=1(An(t, ω)− An−1(t, ω))−.

Now, for n ∈ N, let us define a simple predictable process φn ∈ Σ(πn) by

φn(t, ω) := − 2

m(n)−1∑
i=0

ω(tni )1(tni ,t
n
i+1](t) (3.18)
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Then, we can rewrite the nth approximation of the quadratic variation of ω

at time t ∈ [0, T ] as

An(t, ω) = ω(t)2 − ω(0)2 − 2

m(n)−1∑
i=0

ω(tni )(ω(tni+1 ∧ t)− ω(tni ∧ t))

= ω(t)2 − ω(0)2 +G(t, ω;φn)

= V (t, ω;φn)− cn, (3.19)

where cn = ω(0)2−ω(t)2 +V n
0 (ω0). We want to define the initial capitals V n

0

in such a way that the sequence of simple self-financing strategies (V n
0 , φ

n)

has non decreasing portfolio values at any time and the sequence of initial

capitals converges. By writing

An(t, ω)− An−1(t, ω) + kn = V (t, ω;φn)− V (t, ω;φn−1), (3.20)

where kn = cn − cn−1 = V n
0 (ω0) − V n−1

0 (ω0), we see that the monoton-

icity of {V (t, ω;φn)}n∈N is obtained by opportunely choosing a finite kn ≥
0 (i.e. by choosing V n

0 ), which is made possible by the boundedness of

|An(t, ω)− An−1(t, ω)|, implied by condition (3.17). However, it is not suf-

ficient to have kn < ∞ for all n ∈ N, but we need the convergence of the

series
∑∞

n=1 kn. This is provided again by condition (3.17), because the min-

imum value of kn satisfying the positivity of (3.20) for all t ∈ [0, T ] is indeed

maxt∈[0,T ](A
n(t, ω) − An−1(t, ω))−. On the other hand, since both the se-

quence {V (t, ω;φn)}n≥1 for any t ∈ [0, T ] and the sequence {V n
0 }n≥1 are

regular, i.e. they have limit for n going to infinity, by (3.19) the sequence

{An(t, ω)}n≥1 is also regular. Finally, since the sequence of initial capitals

converges, the equation (3.19) implies that the sequence of approximations

of the quadratic variation of ω converges if and only if {G(T, ω;φn)}n≥1

converges. But U is a plausible set by assumption, thus convergence must

hold.
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3.3 Self-financing strategies

Definition 3.10. (V0, φ, ψ) is called a simple self-financing trading strategy

if it is a trading strategy such that φ ∈ Σ(πn) for some n ∈ N and

ψ(t, ω;φ) = V0 − φ(0+, ω) · ω(0)−
m(n)−1∑
i=1

ω(tni ∧ t) · (φ(tni+1 ∧ t, ω)− φ(tni ∧ t, ω))

= V0 − φ(0+, ω) · ω(0)−
k(t,n)∑
i=1

ω(tni ) · (λi(ω)− λi−1(ω)), (3.21)

where φ(t, ω) =
∑m(n)−1

i=0 λi(ω)1(tni ,t
n
i+1] and k(t, n) := max{i ∈ {1, . . . ,m} :

tni < t}. The gain of such a strategy is defined at any time t ∈ [0, T ] by

G(t, ω;φ) :=

m(n)∑
i=1

φ(tni ∧ t, ω) · (ω(tni ∧ t)− ω(tni−1 ∧ t))

=

k(t,n)∑
i=1

λi−1(ω) · (ω(tni )− ω(tni−1)) + λk(t,n)(ω) · (ω(t)− ω(tnk(t,n))).

In the following, when there is no ambiguity, we drop the dependence of

k on t, n and write k ≡ k(t, n).

Note that the definition (3.21) is equivalent to requiring that the trading

strategy (V0, φ, ψ) satisfies

V (t, ω;φ, ψ) ≡ V (t, ω;φ) = V0 +G(t, ω;φ).

Since a simple self-financing trading strategy is uniquely determined by

its initial investment and the asset position at all times, we will drop the

dependence on ψ of the quantities involved. For instance, when we are re-

ferring to a simple self-financing strategy (V0, φ), we implicitly refer to the

triplet (V0, φ, ψ) with ψ ≡ ψ(·, ·;φ) defined in (3.21).

Remark 3.11. The portfolio value V (·, ·;φ) of a simple self-financing strat-

egy (V0, φ, ψ) is a càdlàg F-adapted process on (Ω,F), satisfying

∆V (t, ω;φ) = φ(t, ω) ·∆ω(t), ∀t ∈ [0, T ], ω ∈ Ω.
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The right-continuity of V comes from the definition (3.21), which implies,

for all t ∈ [0, T ] and ω ∈ Ω,

ψ(t, ω) + φ(t, ω) · ω(t) = ψ(t+, ω) + φ(t+, ω) · ω(t).

Below, we are going to establish the self-financing conditions for (non-

simple) trading strategies.

Definition 3.12. Given an F0-measurable random variable V0 : Ω → R
and an F-adapted Rd-valued càglàd process φ = (φ(t, ·))t∈(0,T ] on (Ω,F), we

say that (V0, φ) is a self-financing trading strategy on U ⊂ Ω if there exists

a sequence of self-financing simple trading strategies {(V0, φ
n, ψn), n ∈ N},

such that

∀ω ∈ U, ∀t ∈ [0, T ], φn(t, ω) −−−→
n→∞

φ(t, ω),

and any of the following conditions is satisfied:

(i) there exists an F-adapted real-valued càdlàg process G(·, ·;φ) on (Ω,F)

such that, for all t ∈ [0, T ], ω ∈ U ,

G(t, ω;φn) −−−→
n→∞

G(t, ω;φ) and ∆G(t, ω;φ) = φ(t, ω) ·∆ω(t);

(ii) there exists an F-adapted real-valued càdlàg process ψ(·, ·;φ) on (Ω,F)

such that, for all t ∈ [0, T ], ω ∈ U ,

ψn(t, ω) −−−→
n→∞

ψ(t, ω;φ)

and

ψ(t+, ω;φ)− ψ(t, ω;φ) = −ω(t) · (φ(t+, ω)− φ(t, ω)) ;

(iii) there exists an F-adapted real-valued càdlàg process V (·, ·;φ) on (Ω,F)

such that, for all t ∈ [0, T ], ω ∈ U ,

V (t, ω;φn) −−−→
n→∞

V (t, ω;φ) and ∆V (t, ω;φ) = φ(t, ω) ·∆ω(t).
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Remark 3.13. It is easy to see that the three conditions (i)-(iii) of Defi-

nition 3.12 are equivalent. If any of them is fulfilled, the limiting processes

G,ψ, V are respectively the gain, bond holdings and portfolio value of the

self-financing strategy (V0, φ) on U and they satisfy, for all t ∈ [0, T ], ω ∈ U ,

V (t, ω;φ) = V0 +G(t, ω;φ) (3.22)

and

ψ(t, ω;φ) = V0−φ(0+, ω)− lim
n→∞

m(n)∑
i=1

ω(tni ∧ t) · (φn(tni+1∧ t, ω)−φn(tni ∧ t, ω)).

(3.23)

Equation (3.22) is the pathwise counterpart of the classical definition

of self-financing in probabilistic financial market models. However, in our

purely analytical framework, we couldn’t take it directly as the self-financing

condition because some prior assumptions are needed to define path-by-path

the quantities involved.

3.4 Pathwise construction of the gain process

In the following two propositions we show that we can identify a special

class of (pathwise) self-financing trading strategies, respectively on the set of

continuous price paths with finite quadratic variation along Π and on the

set of càdlàg price paths with finite quadratic variation along Π , whose gain

is computable path-by-path as a limit of Riemann sums.

Proposition 3.7 (Continuous price paths). Let φ = (φ(t, ·))t∈(0,T ] be an

F-adapted Rd-valued càglàd process on (Ω,F) such that there exists F ∈
C1,2
loc(ΛT ) ∩ C0,0(WT ) satisfying

φ(t, ω) = ∇ωF (t, ωt) ∀ω ∈ Q(Ω,Π), t ∈ [0, T ]. (3.24)

Then, there exists a càdlàg process G(·, ·;φ) such that, for all ω ∈ Q(Ω0,Π)
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and t ∈ [0, T ],

G(t, ω;φ) =

∫ t

0

φ(u, ωu) · dΠω (3.25)

= lim
n→∞

∑
tni ≤t

∇ωF (tni , ω
n
tni −

) · (ω(tni+1 ∧ T )− ω(tni ∧ T )), (3.26)

where ωn is defined as in (1.14). Moreover, φ is the asset position of a path-

wise self-financing trading strategy on Q(Ω0,Π) with gain process G(·, ·;φ).

Proof. First of all, under the assumptions, the change of variable formula

for functionals of continuous paths holds ([21, Theorem 3]), which ensures

the existence of the limit in (3.26) and provide us with the definition of

the Föllmer integral in (3.25). Then, we observe that each nth sum in the

right-hand side of (3.26) is exactly the accumulated gain of a pathwise self-

financing strategy which trades only a finite number of times. Precisely, let

us define, for all ω ∈ Ω and all t ∈ [0, T ),

φn(t, ω) := φ(0+, ω)1{0}(t) +

m(n)−1∑
i=0

φ
(
tni , ω

n
tni

)
1(tni ,t

n
i+1](t),

and

ψn(t, ω) := V0 − φ(0+, ω)−
m(n)−1∑
i=1

ω(tni ∧ t) · (φn(tni+1 ∧ t, ω)− φn(tni ∧ t, ω)),

then (V0, φ
n, ψn) is a simple self-financing strategy, with cumulative gain

G(·, ·;φn) given by

G(t, ω;φn) =
k∑
i=1

∇ωF
(
tni−1, ω

n
tni−1−

)
· (ω(tni )− ω(tni−1))

+∇ωF
(
tnk , ω

n
tnk−

)
· (ω(t)− ω(tnk)).

and portfolio value V (·, ·;φn) given by

V (t, ω;φn) = ψn(t, ω) + φn(t, ω) · ω(t) = V0 +G(t, ω;φn).
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Then, we have to verify that the simple asset position φn converges pointwise

to φ, i.e.

∀ω ∈ Ω, ∀t ∈ [0, T ], |φn(t, ω)− φ(t, ω)| −−−→
n→∞

0.

This is true, because by assumption ∇ωF ∈ C0,0
l (ΛT ) and this implies that

the path t 7→ F (t, ωt−) = F (t, ωt) is left-continuous (see Remark 1.8). Indeed,

for each t ∈ [0, T ], ω ∈ Ω and ε > 0, there exist n̄ ∈ N and η > 0, such that,

for all n ≥ n̄,

d∞

(
(tnk , ω

n
tnk−

), (t, ω)
)

= max

{
||ωntnk−, ωtnk−||∞, sup

u∈[tnk ,t)

|ω(tnk)− ω(u)|

}
+|t−tnk | < η,

where k ≡ k(t, n) := max{i ∈ {1, . . . ,m} : tni < t}, and

|φn(t, ω)− φ(t, ω)| =
∣∣∣φ(tnk , ω

n
tnk

)− φ(t, ω)
∣∣∣

=
∣∣∣∇ωF (tnk , ω

n
tnk−

)−∇ωF (t, ω)
∣∣∣

≤ ε.

We have thus built a sequence of self-financing simple trading strategies ap-

proximating φ and, if the realized price path ω is continuous with finite

quadratic variation along Π, then the gain of the simple strategies converges

to a real-valued càdlàg function G(·, ω;φ). Namely, for all t ∈ [0, T ] and

ω ∈ Q(Ω0,Π),

G(t, ω;φn) −−−→
n→∞

G(t, ω;φ), G(t, ω;φ) =

∫ t

0

∇ωF (u, ω) · dΠω.

Moreover, by the assumptions on F and by Remark 1.8, the map t 7→ F (t, ωt)

is continuous for all ω ∈ C([0, T ],Rd). Therefore, by the change of variable

formula for functionals of continuous paths, G(·, ω;φ) is continuous for all

ω ∈ Q(Ω0,Π).

Thus, the process G(·, ·;φ) satisfies the condition (i) in Definition 3.12

and so it is the gain process of the self-financing trading strategy with initial

value V0 and asset position φ, on the set of continuous paths with finite

quadratic variation along Π.
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Corollary 3.1. Let φ be as in Proposition 3.7, then ψ(·, ·;φ), defined for all

t ∈ [0, T ] and ω ∈ Q(Ω0,Π) by

ψ(t, ω;φ) = V0 − φ(0+, ω)

− lim
n→∞

k(t,n)∑
i=1

ω(tni ) ·
(
∇ωF

(
tni , ω

n
tni −

)
−∇ωF

(
tni−1, ω

n
tni−1−

))
,

is the bond holding process of the self-financing trading strategy (V0, φ) on

Q(Ω0,Π).

Proposition 3.8 (Càdlàg price paths). Let φ = (φ(t, ·))t∈(0,T ] be an F-

adapted Rd-valued càglàd process on (Ω,F) such that there exists F ∈ C1,2
loc(ΛT )∩

C0,0
r (WT ) with ∇ωF ∈ C0,0(ΛT ), satisfying

φ(t, ω) = ∇ωF (t, ωt−) ∀ω ∈ Q(Ω,Π), t ∈ [0, T ].

Then, there exists a càdlàg process G(·, ·;φ) such that, for all ω ∈ Q(Ω,Π)

and t ∈ [0, T ],

G(t, ω;φ) =

∫ t

0

φ(u, ωu) · dΠω

= lim
n→∞

∑
tni ≤t

∇ωF
(
tni , ω

n,∆ω(tni )
tni −

)
· (ω(tni+1 ∧ T )− ω(tni ∧ T )),

(3.27)

where ωn is defined as in (1.14). Moreover, φ is the asset position of a path-

wise self-financing trading strategy on Q(Ω,Π) with gain process G(·, ·;φ).

Proof. The proof follows the lines of that of Proposition 3.7, using the change

of variable formula for functionals of càdlàg paths instead of continuous

paths, which entails the definition of the pathwise integral (3.27). For all

ω ∈ Ω and t ∈ [0, T ], we define

φn(t, ω) := φ(0, ω)1{0}(t) +

m(n)−1∑
i=0

φ
(
tni +, ω

n,∆ω(tni )
tni −

)
1(tni ,t

n
i+1](t)
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and

ψn(t, ω) := V0 − φ(0+, ω)−
m(n)−1∑
i=1

ω(tni ∧ t) · (φn(tni+1 ∧ t, ω)− φn(tni ∧ t, ω)).

then (V0, φ
n, ψn) is a simple self-financing strategy, with cumulative gain

G(·, ·;φn) given by

Gn(t, ω) =
k∑
i=1

∇ωF
(
tni−1, ω

n,∆ω(tni−1)

tni−1−

)
· (ω(tni )− ω(tni−1))

+∇ωF
(
tnk , ω

n,∆ω(tnk )

tnk−

)
· (ω(t)− ω(tnk)),

Finally, we verify that

∀ω ∈ Ω, ∀t ∈ [0, T ], |φn(t, ω)− φ(t, ω)| −−−→
n→∞

0.

This is true, by the left-continuity of ∇ωF : for each t ∈ [0, T ], ω ∈ Ω and

n ∈ N, we have that ∀ε > 0, ∃η = η(ε) > 0, ∃n̄ = n̄(t, η) ∈ N such that,

∀n ≥ n̄,

d∞

(
ω
n,∆ω(tnk )

tnk−
, ωt−

)
= max

{
||ωntnk−, ωtnk−||∞, sup

u∈[tnk ,t)

|ω(tnk)− ω(u)|

}
+|t−tnk | < η,

hence

|φn(t, ω)− φ(t, ω)| =
∣∣∣∣ lims↘tnk

φ(s, ω
n,∆ω(tnk )

tnk−
)− φ(t, ω)

∣∣∣∣
= lim

s↘tnk

∣∣∣∇ωF (s, ω
n,∆ω(tnk )

tnk−
)−∇ωF (t, ωt−)

∣∣∣
≤ε.

Therefore:

G(t, ω;φn) =−−−→
n→∞

G(t, ω;φ), G(t, ω;φ) =

∫
(0,t]

∇ωF (u, ωu−) · dΠω,

where G(t, ω;φ) is an F-adapted real-valued process on (Ω,F). Moreover,

by the change of variable formula (1.16) and Remark 1.8, it is càdlàg with
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left-side jumps

∆G(t, ω;φ) = lim
s↗t

(G(t, ω;φ)−G(s, ω;φ))

= F (t, ωt)− F (t, ωt−)− (F (t, ωt)− F (t, ωt−)−∇ωF (t, ωt−) ·∆ω(t))

= ∇ωF (t, ωt−) ·∆ω(t).

Corollary 3.2. Let φ be as in Proposition 3.8, then ψ(·, ·;φ), defined for all

t ∈ [0, T ] and ω ∈ Q(Ω,Π) by

ψ(t, ω;φ) = V0 − φ(0+, ω)

− lim
n→∞

k(t,n)∑
i=1

ω(tni ) ·
(
∇ωFtni

(
ω
n,∆ω(tni )
tni −

)
−∇ωFtni−1

(
ω
n,∆ω(tni−1)

tni−1−

))
is the bond position process of the trading strategy (V0, φ, ψ) which is self-

financing on Q(Ω,Π).

3.5 Pathwise replication of contingent claims

A non-probabilistic replication result restricted to the non-path-dependent

case was obtained by Bick and Willinger [11], as shown in Propositions 3.1,3.2

in Section 3.1.1 of this thesis. Here, we state the generalization to the repli-

cation problem for path-dependent contingent claims.

For any càdlàg function with values in S+(d), say A ∈ D([0, T ],S+(d)),

we denote by

QA(Π) :=

{
ω ∈ Q(Ω,Π) : [ω](t) =

∫ t

0

A(s)ds ∀t ∈ [0, T ]

}
the set of functions with finite quadratic variation along Π and whose quadratic

variation is absolutely continuous with density A. Note that the elements of

QA(Π) are continuous, by (1.2).



86 Chapter 3. PATHWISE CONTINUOUS-TIME TRADING

Proposition 3.9. Consider a path-dependent contingent claim with exercise

date T and a continuous payoff functional H : (Ω, ‖·‖∞) 7→ R. Assume

that there exists a non-anticipative functional F ∈ C1,2
loc(WT )∩C0,0(WT ) that

satisfies, for any ω ∈ Q(Ω0,Π),{
DF (t, ω) + 1

2
tr (A(t) · ∇2

ωF (t, ω)) = 0, t ∈ [0, T ),

F (T, ω) = H(ω).
(3.28)

Then, for any Ã ∈ D([0, T ],S+(d)), in any price scenario ω ∈ QÃ(Π)

the hedging error of the trading strategy (F (0, ·),∇ωF ), self-financing on

Q(Ω0,Π), is
1

2

∫ T

0

tr
(

(A(t)− Ã(t))∇2
ωF (t, ω)

)
dt. (3.29)

In particular, the strategy (F (0, ·),∇ωF ) replicates the claim at maturity on

all price scenarios ω ∈ QA(Π) and its portfolio value at any time t ∈ [0, T ]

is given by F (t, wt).

Proof. By Proposition 3.7, the gain at time t ∈ [0, T ] of the trading strat-

egy (F (0, ·),∇ωF ) along a price path ω ∈ Q(Ω0,Π) is given by G(t, ω) =∫ T
0
∇ωF (t, ω) · dΠω. Moreover, the strategy is pathwise self-financing and,

by Remark 3.13, its portfolio value at any time t ∈ [0, T ] is given by

V (t, ω) = F (0, ω0) +

∫ t

0

∇ωF (u, ωu) · dΠω.

In particular, since F is smooth, we can apply the change of variable for-

mula for functionals of continuous paths. By using the functional partial

differential equation (3.28) and assuming ω ∈ QÃ(Π), this gives

V (T, ω) = F (0, ω0) +

∫ T

0

∇ωF (t, ω) · dΠω

= F (T, ωT )−
∫ T

0

DF (t, ω)dt− 1

2

∫ T

0

tr
(
Ã(t)∇2

ωF (t, ω)
)

dt

= H − 1

2

∫ T

0

tr
(

(Ã(t)− A(t))∇2
ωF (t, ω)

)
dt.
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3.6 Pathwise isometries and extension of the

pathwise integral

We denote Q̊(Ω,Π) the set of price paths ω of non-trivial finite quadratic

variation, that is ω ∈ Q(Ω,Π) such that [ω](T ) > 0. Then, given ω ∈
Q̊(Ω,Π), we consider the measure space ([0, T ],B([0, T ]), d[ω]), where B([0, T ])

is the family of Borel sets of[0, T ] and d[ω] denotes the finite measure on [0, T ]

associated with [ω]. Here, we define the space of measurable Rd-valued func-

tions on [0, T ] with finite second moment with respect to the measure d[ω],

that is

L2([0, T ], [ω]) :=

{
f : ([0, T ],B([0, T ]))→ Rd measurable :∫ T

0

〈
f(t) tf(t), d[ω](t)

〉
<∞

}
,

where 〈·〉 denotes the Frobenius inner product, i.e. 〈A,B〉 = tr(tAB) =∑
i,j Ai,jBi,j. Then, consider the set

L2(F, [ω]) :=
{
φ Rd-valued, progressively measurable process on (Ω,F ,F),

φ(·, ω) ∈ L2([0, T ], [ω])
}

and we equip it with the following semi-norm:

‖φ‖2
[ω],2 :=

∫ T

0

〈
φ(t, ω) tφ(t, ω), d[ω](t)

〉
, φ ∈ L2(F, [ω])

We also define the quotient of the space of real-valued paths with finite

quadratic variation by its subspace of paths with zero quadratic variation:

Q̄(D([0, T ],R),Π) := Q(D([0, T ],R),Π)/ker([·](T )),

where ker([·](T )) = {v ∈ Q(D([0, T ],R),Π) : [v](T ) = 0}.

Proposition 3.10. For any price path ω ∈ Q̊(Ω,Π), let us define the path-

wise integral operator

Iω :
(

Σ̄(Π), ‖·‖[ω],2

)
→

(
Q̄(D([0, T ],R),Π),

√
[·](T )

)
φ 7→

∫
φ · dΠω, (3.30)
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where Σ̄(Π) := Σ(Π)/ker(‖·‖[ω],2) and

ker(‖·‖[ω],2) =

{
z = (z1, . . . , zd) ∈ L2(F, [ω]) : ∀i, j = 1, . . . , d,

[ω]i,j
(
{t ∈ [0, T ] : zi(t, ω) 6= 0, zj(t, ω) 6= 0}

)
= 0

}
.

Iω is an isometry between two normed spaces:

∀φ ∈ Σ̄(Π),

[∫
φ · dΠω

]
(T ) =

∫ T

0

〈
φ(t, ω)tφ(t, ω), d[ω](t)

〉
. (3.31)

Moreover, Iw admits a closure on L2(F, [ω]) := L2(F, [ω])/ker(‖·‖[ω],2), that

is the isometry

Ĩω :
(
L2(F, [ω]), ‖·‖[ω],2

)
→

(
Q̄(Ω,Π),

√
[·](T )

)
,

φ 7→
∫
φ · dΠω.

(3.32)

Proof. The space
(
L2(F, [ω]), ‖·‖[ω],2

)
is a semi-normed space and its quotient

with respect to the kernel of ‖·‖[ω],2 is a normed space, which is also a Banach

space by the Riesz-Fischer theorem. Moreover, for any φ ∈ Σ(Π), it holds∫ T

0

〈
φ(t, ω)tφ(t, ω), d[ω](t)

〉
=

=

m(n)∑
i=1

tr
(
φ(tni , ω)tφ(tni , ω)([ω](tni )− [ω](tni−1))

)
=

m(n)∑
i=1

tr

φ(tni , ω)tφ(tni , ω) lim
m→∞

∑
tni−1<t

m
j ≤tni

(ω(tmj )− ω(tmj−1))t(ω(tmj )− ω(tmj−1))


= lim

m→∞

∑
tmj ∈πm

tr
(
φ(tmj , ω)tφ(tmj , ω)(ω(tmj )− ω(tmj−1))t(ω(tmj )− ω(tmj−1))

)
= lim

m→∞

∑
tmj ∈πm

(∫ tmj

tmj−1

φ(·, ω) · dΠω

)2

=

[∫
φ(·, ω) · dΠω

]
(T ).

Finally, since
(
Q̄(D([0, T ],R),Π),

√
[·](T )

)
is a Banach space and Σ̄(Π) is

dense in
(
L2(F, [ω]), ‖·‖[ω],2

)
, we can uniquely extend the isometry Iω in

(3.30) to the isometry Ĩω in (3.32).
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Remark 3.14. For any ω ∈ Q̊(Ω,Π) and any φ ∈ L2(F, [ω]), the pathwise

integral of φ with respect to ω along Π is given by a limit of Riemann sums:∫
φ · dΠω = lim

n→∞

∑
tni ∈πm

φn(tni , ω) · (ω(tni )− ω(tni−1)), (3.33)

independently of the sequence (φn)n≥1 ∈ Σ̄(Π) such that

‖φn(·, ω)− φ(·, ω)‖[ω],2 −−−→n→∞
0.

Indeed, the definition of the isometry in (3.32) entails that, given φ(·, ω) ∈
L2(F, [ω]), for any sequence (φn(·, ω))n≥1 ∈ Σ̄(Π) such that

‖φn(·, ω)− φ(·, ω)‖[ω],2 −−−→n→∞
0,

then ∑
tni ∈πm

φn(tni , ω) · (ω(tni )− ω(tni−1))−
∫
φ · dΠω

 (T ) −−−→
n→∞

0. (3.34)

Since
√

[·](T ) defines a norm on Q̄(D([0, T ],R),Π), (3.34) implies that the

pathwise integral of φ with respect to ω along Π is a pointwise limit of

Riemann sums:∫
φ · dΠω = lim

n→∞

∑
tni ∈πm

φn(tni , ω) · (ω(tni )− ω(tni−1)),

independently of the chosen approximating sequence (φn)n≥1.
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Chapter 4

Pathwise Analysis of dynamic

hedging strategies

The issue of model uncertainty and its impact on the pricing and hedg-

ing of derivative securities has been the focus of a lot of research in the

quantitative finance literature (see e.g. Avellaneda et al. [4], Bick and Will-

inger [11], Cont [18], Lyons [71]). Starting with Avellaneda et al.’s Uncertain

Volatility Model [4], the literature has focused on the analysis of the perfor-

mance of pricing and hedging simple payoffs under model uncertainty. The

dominant approach in this stream of literature was to replace the assumption

of a given, known, probability measure by a family of probability measures

which reflects model uncertainty, and look for bounds on prices and perfor-

mance measures for trading strategies using a worst-case analysis across the

family of possible models.

A typical problem to consider is the hedging of a contingent claim. Con-

sider a market participant who issues a contingent claim with payoff H and

maturity T on some underlying asset. To price and hedge this claim, the

issuer uses a pricing model (say, Black-Scholes), computes the price as

Vt = EQ[H|Ft]

and hedges the resulting profit and loss using the hedging strategy derived

from the same model (say, Black-Scholes delta hedge for H). However, the

91
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true dynamics of the underlying asset may, of course, be different from the

assumed dynamics. Therefore, the hedger is interested in a few questions:

How good is the result of the model-based hedging strategy in a realistic

scenario? How ’robust’ is it to model mis-specification? How does the the

hedging error relate to model parameters and option characteristics? In

1998, El Karoui et al. [43] provided an answer to these questions in the

case of non-path-dependent options in the context of Markovian diffusion

models. They provided an explicit formula for the profit and loss of the

hedging strategy. El Karoui et al. [43] showed that, when the underlying

asset follows a Markovian diffusion

dSt = µ(t)S(t)dt+ S(t)σ0(t, S(t))dW (t) under P0,

a hedging strategy computed in a (mis-specified) local volatility model with

volatility σ:

dSt = r(t)S(t)dt+ S(t)σ(t, S(t))dW (t) under Qσ

leads, under some technical conditions on σ, σ0 to a P&L equal to

∫ T

0

σ2(t, S(t))− σ2
0(t, S(t))

2
S(t)2e

∫ T
t r(s)ds

Γ(t)︷ ︸︸ ︷
∂2
xxf(t, S(t)) dt. (4.1)

P0−almost surely. This fundamental result, called by Mark Davis ‘the most

important equation in option pricing theory’ [27], shows that the exposure

of a mis-specified delta hedge over a short time period is proportional to the

Gamma of the option times the specification error measured in quadratic

variation terms.

In this chapter, we contribute to this line of analysis by developing a gen-

eral framework for analyzing the performance and robustness of delta hedging

strategies for path-dependent derivatives across a given set of scenarios. Our

approach is based on the pathwise financial framework introduced in Chapter

3, which takes advantage of the non-anticipative functional calculus devel-

oped in [21], which extends Föllmer’s pathwise approach to Itô calculus [46]
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to a functional setting. Our setting allows for general path-dependent payoffs

and does not require any probabilistic assumption on the dynamics of the

underlying asset, thereby extending previous results on robustness of hedging

strategies in the setting of diffusion models to a much more general setting

which is closer to the scenario analysis approach used by risk managers. We

obtain a pathwise formula for the hedging error for a general path-dependent

derivative and provide sufficient conditions ensuring the robustness of the

delta hedge. Under the same conditions, we show that discontinuities in the

underlying asset always deteriorate the hedging performance. We show in

particular that robust hedges may be obtained in a large class of continuous

exponential martingale models under a vertical convexity condition on the

payoff functional. We apply these results to the case of hedging strategies

for Asian options and barrier options, both in the Black Scholes model with

time-dependent volatility and in a model with path-dependent characteris-

tics, the Hobson-Rogers model [58].

4.1 Robustness of hedging under model un-

certainty: a survey

4.1.1 Hedging under uncertain volatility

Two fundamental references in the literature on model uncertainty are

Avellaneda et al. [4] and Lyons [71]. Avellaneda et al. [4] proposed a novel

approach to pricing and hedging under ‘volatility risk’: the Uncertain Volatil-

ity Model. Instead of looking for the most accurate model (in terms of forward

volatility of asset prices), they work under the assumption that the volatil-

ity is bounded between two extreme values. In particular, they assume that

future stock prices are Itô processes

dS(t) = S(t) (σ(t)dW (t) + µ(t)dt) , (4.2)

where µ, σ are adapted process such that σmin ≤ σ ≤ σmax and W is a

standard Brownian motion. The problem under consideration was the pric-
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ing and hedging of a derivative security paying a stream of cash-flows at

N future dates: f1(S(t1)), . . . , fN(S(tN)), where fj are known functions.

By denoting P the class of probability measures on the set of paths un-

der which the coordinate process S has a dynamics (4.2) for some σ between

the bounds, then in absence of arbitrage opportunities it is possible to con-

struct an optimal (in the sense that the initial cost is minimal) self-financing

portfolio that hedges a short position in the derivative and gives a non-

negative value after paying out all the cash flows. This optimal portfolio

consists of an initial capital p+(t, S(t)) and a risky position ∂Sp
+(t, S(t)),

where p+(t, S(t)) = supP∈P EP
[∑N

j=1 e
−r(tj−t)fj(S(tj))

]
is obtained by solv-

ing the Black-Scholes-Barenblatt equation

∂tp
+(t, S(t)) +

1

2
S(t)2σ∗

(
∂SSp

+(t, S(t))
)2
∂SSp

+(t, S(t))

= −
N−1∑
k=1

fj(S(t))δtk(t), t < tN ,

with final condition p+(t, S(t)) = fN(S(tN)) where the function σ∗ is defined

as σ∗(s) = σmin1(−∞,0)(s) + σmax1[0,∞)(s).

On the other hand, Lyons [71] analyzes the same problem of Avellaneda

et al. [4] but uses a pathwise approach, in view of Föllmer’s formula (1.7).

The security process S is multi-dimensional and the only assumption is that

it has finite quadratic variation at any time t ≥ 0 along the sequence of

dyadic partitions and that the quadratic variation function A = {Ai,j}i,j∈I is

such that, for all u ≥ 0, A(u) belongs to the set

O(λ,Λ, K(u, S(u)) := {γ = {γi,j}i,j∈I positive symmetric matrix,

∀v ∈ RI
+, λ

tvK(u, S(u))v <t vγv < Λ tvK(u, S(u))v
}
,

where λ ≤ 1,Λ ≥ 1 are given constants and K is a reference model for

the squared volatility of the security, e.g. Ki,j(t, s) = σi,j(t, s)sisj. The

main result in [71] claims that there exists a hedging strategy with an initial

investment f(0, S(0)) that replicates a derivative paying F (τ, S(τ)) at the

first occasion τ that the security (t, S(t)) leaves a fixed smooth domain U ⊂
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R × RI
+. Moreover, such a strategy returns at any time t < T an excess

stream of money equal to∫ t

0

1

2

(∑
i,j∈I

(Ãi,j(u, S(u))− Ai,j(u, S(u))∂sisjf

)
(u, S(u))du

and at time T it holds exactly F (T, S(T )). This is an application of the path-

wise Itô formula proven by Föllmer and of the PDE theory, which guarantees

that under appropriate conditions on K the Pucci-maximal equation

supa∈O(λ,Λ,K(u,S(u)))

(
1
2

∑
i,j∈I ai,j∂sisjf

)
(u, s) + ∂uf(u, s) = 0, (u, s) ∈ U,

f(u, s) = F (u, s), (u, s) ∈ ∂pU

has a smooth solution f which is also the solution of the linear equation(
1

2

∑
i,j∈I

Ãi,j∂sisjf

)
(u, s) + ∂uf(u, s) = 0, Ãi,j ∈ O(λ,Λ, K(u, s)).

In 1996, Bergman et al. [8] established the properties of European option

prices as functions of the model parameters in case the underlying asset

follows a one-dimensional diffusion or belongs to a certain restricted class of

multi-dimensional diffusions, or stochastic volatility models, by using PDE

methods. Their results have implications in the robustness analysis of pricing

and hedging derivatives. They assume absence of arbitrage opportunities and

that the following stochastic differential equations are well-defined in terms

of path-by-path uniqueness of solutions and that parameters allow for the

application of the Feynman-Kac theorem. In the one-dimensional case, they

assume that the risk-neutral dynamics of the underlying asset process S is

dS(t) = S(t)r(t)dt+ S(t)σ(t, S(t))dW (t), (4.3)

where W is a standard Brownian motion. This holds the no-crossing prop-

erty, i.e.

s2 ≥ s1 ⇒ St,s2(u) ≥ St,s1(u), almost surely, ∀u ≥ t, (4.4)

where Ss,t solves (4.3) with Ss,t(t) = s. Indeed, fixed a realization W (·, ω)

of the Brownian motion in (4.3) and the correspondent paths St,s2(·, ω) and



96 Chapter 4. PATHWISE ANALYSIS OF DYNAMIC HEDGING

St,s1(·, ω), if there exists a time s̄ ≥ t such that St,s2(s̄, ω) = St,s1(s̄, ω), then

the two paths will coincide from s̄ onwards, by the Markov property. This

property allows a claim price to inherit monotonicity from the payoff. In the

two-dimensional case, they assume that the risk-neutral dynamics is given

by 
dS(t) = S(t)r(t)dt+ S(t)σ(t, S(t), Y (t))dW 1(t),

dY (t) = (β(t, S(t), Y (t))− λ(t, S(t), Y (t)))θ(t, S(t), Y (t))dt

+θ(t, S(t), Y (t))dW 2(t),

(4.5)

where W 1,W 2 are standard Brownian motions with quadratic co-variation

[W 1,W 2](t) = ρ(t, S(t), Y (t))dt. Despite the fact that, unfortunately, multi-

dimensional diffusions do not exhibit in general a similar behavior, there

are conditions under which the process S solving (4.5) holds the no-crossing

property (4.4) as well. A first important result concerns the inheritance of

monotonicity from option prices and establishes bounds on the risky position

of a delta-hedging portfolio.

Theorem 4.1 (Theorem 1 in [8]). Let the payoff function g be one-sided

differentiable and at each point x we also allow either g′(x−) = ±∞ or

g′(x+) = ±∞. Suppose that S follows either the one-dimensional diffu-

sion (4.3), or the two-dimensional diffusion (4.5) with the additional property

that the drift and diffusion parameters do not depend on s. Then

inf
x

(min{g′(x−), g′(x+)}) ≤ ∂sv ≤ sup
x

(min{g′(x−), g′(x+)}),

uniformly in s, t, where v is the value of the European claim with payoff g.

This follows directly by the no-crossing property and an application of

the generalized intermediate value theorem of real analysis. A second impor-

tant result proves the inheritance of convexity of the claim price from the

payoff function, which was already known for proportional one-dimensional

diffusions (Black-Scholes setting).

Theorem 4.2 (Theorem 2 in [8]). Suppose that S follows either the one-

dimensional diffusion (4.3), or the two-dimensional diffusion (4.5) with the
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additional property that the drift and diffusion parameters do not depend on

s and there exists a function G : [0,∞)2 → R such that

G(t, y) = σ(t, s, y)θ(t, s, y)ρ(t, s, y).

Then, if the payoff function is convex (concave), the calms value is a convex

(concave) function of the current underlying price.

The proof proceeds by applying the Feynman-Kac theorem to write the

claim value as the solution of a Cauchy problem with final datum given by the

payoff function g; then, by taking the s-partial derivative of the PDE, we get

a new Cauchy problem for ∂sv with final datum g′. It suffices to apply again

the Feynman-Kac theorem, taking into account the hypothesis on coefficients,

to write ∂sv as an expectation of g′ composed to a new stochastic process

which holds the no-crossing property. Finally, the no-crossing property gives

the monotonicity of ∂sv and equivalently the convexity (concavity) of v in

the underlying asset price. A consequence of the previous results in terms of

robustness analysis of hedging strategies is the extension of the comparative

statics known in a Black-Scholes setting to a one-dimensional diffusion. In

particular, an ordering in the volatility functions is preserved in the claim

value functions:

Theorem 4.3 (Theorem 6 in [8]). Let σ1(t, s) ≥ σ2(t, s) for all s, t and strict

inequality holds in some region, then v1(t, s) ≥ v2(t, s) for all s, t.

This result turns out to be of special interest if one has knowledge of

deterministic bounds on the volatility and the claim to hedge is a plain vanilla

option, e.g. a call option; in such a case it implies to have both the call option

and its Delta bounded respectively by the correspondent Black-Scholes call

prices and appropriate Black-Scholes Deltas.

Theorem 4.4 (Theorem 8 in [8]). If for all s, t, σ(t) ≤ σ(t, s) ≤ σ̄(t), then,

for all s, t,

cBS(σ)(t, s) ≤ c(t, s) ≤ cBS(σ̄)(t, s),

∂sc
BS(σ̄)(t, s′′) ≤ ∂sc(t, s) ≤ ∂sc

BS(σ̄)(t, s′),
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where s′, s′′ solve respectively

cBS(σ)(t, s) = cBS(σ̄)(t, s′′) + ∂sc
BS(σ̄)(t, s′′)(s− s′′),

cBS(σ)(t, s) = cBS(σ̄)(t, s′)− ∂scBS(σ̄)(t, s′)(s′ − s).

The bounds on the delta are an immediate consequence of bounds on the

call price and of inherited convexity. When the values of s and c(t, s) are

observed, these bounds can even be tightened. Finally, they remark that

relaxing either the continuity or the Markov property in the one-dimensional

case, or the restrictions on the two-dimensional diffusion, the no-crossing

property does not need to hold, hence call option prices may exhibit unex-

pected behaviors.

In 1998, El Karoui et al. [43] derived results analogous to Bergman et al.

[8] for both European and American options under a one-dimensional dif-

fusion setting, by an independent approach based on stochastic flows rather

than PDEs. While completeness is not assumed, the market is equipped with

the strongest form of no-arbitrage condition, namely discounted stock prices

are martingales under the objective probability measure P. The stock price

is assumed to follow

dS(t) = r(t)S(t)dt+ σ(t)S(t)dW (t), (4.6)

where W is a standard ((Ft)t∈[0,T ] ,P)-Brownian motion, the interest rate r is

a deterministic function in L1([0, T ], dt) and the volatility process σ is non-

negative, (Ft)t∈[0,T ]-adapted, almost surely in L1([0, T ], dt) and such that the

discounted stock price

S(t)

M(t)
= S(0) exp

(∫ t

0

σ(u)dW (u)− 1

2

∫ t

0

σ2(u)du

)
, 0 ≤ t ≤ T,

is a square-integrable martingale. A trading strategy, or portfolio process, is

defined as a bounded adapted process, while a payoff function is defined as

a convex function on R+ having bounded one-sided derivatives. Let h be the

payoff function of a European contingent claim, φ a portfolio process and P

an adapted process such that P (T ) = h(S(T )) (called a price process), the



4.1. Robustness of hedging under model uncertainty: a survey 99

tracking error associated with (P, φ) is defined as e := V − P , where V is

the value process of the self-financing portfolio with trading strategy φ and

initial investment V (0) = P (0). Then, (P, φ) is called a

• replicating strategy if e
M
≡ 0, in which case the hedger exactly replicates

the option at maturity, i.e. V (T ) = h(S(T )), and P (0) = EP
[
h(S(T ))
M(T )

]
is an arbitrage price for the claim;

• super-strategy if e
M

is non-decreasing, in which case the hedger super-

replicates a short position in the claim at maturity, i.e. V (T ) ≥
h(S(T )), and P (0) ≥ EP

[
h(S(T ))
M(T )

]
;

• sub-strategy if e
M

is non-increasing, hence the hedger super-replicates a

long position in the claim and the above inequalities are reversed.

The main purpose in [43] is to analyze the performance of a hedging portfolio

derived from a model with mis-specified volatility. First, assuming complete-

ness, they provide two counterexamples of the familiar properties of option

prices, when volatility is allowed to be stochastic in a path-dependent man-

ner. On the one hand, a volatility process depending on the initial stock

price and the driving Brownian motion may cause the value of a European

call to fail the monotonicity property, even if the volatility is non-decreasing

in the initial stock price, as it happens for

σ(t) = 1{W (t)<S(0)}1{t≤Ta}, a > 0, Ta := inf{t ≥ 0,W (t) = a}. (4.7)

On the other hand, even when the underlying dynamics allows the claim

value to preserve both monotonicity and convexity, it may happen that an

ordering on volatilities is not passed on to the respective call values, e.g.

σ(t) ≤ σ̂(t) := 1{t≤Ta} but v(x) > v̂(x) = 0 ∀x ∈ (0, a). (4.8)

Given a mis-specified model

dSγ(t) = Sγ(t)r(t)dt+ Sγ(t)γ(t, Sγ(t))dW (t), (4.9)
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where the only source of randomness in the volatility is the dependence on

the current stock price, the following theorem states the important prop-

erty of propagation of convexity, also obtained by Bergman et al. [8], for

one-dimensional diffusions, but the proof follows a completely independent

approach.

Theorem 4.5 (Theorem 5.2 in [43]). Suppose that γ : [0, T ] × R+ → R
is continuous and bounded from above and s 7→ ∂s(sγ(t, s)) is Lipschitz-

continuous and bounded in R+, uniformly in t ∈ [0, T ]. Then, if h is a payoff

function, the mis-specified claim value

vγ(x) = EP [h(Sγ(T ))|Sγ(0) = x]

is a convex function of x > 0.

Indeed, by denoting Sxγ the solution of (4.9) with initial value Sxγ (0) = x

and by applying the Itô formula to the process ∂xS
x
γ , the discounted pro-

cess ζx =
(
∂xSxγ (t)

M(t)

)
t∈[0,T ]

turns out to be the exponential martingale of

(N(t))t∈[0,T ], N(t) =
∫ t

0
∂s(S

x
γ (u)γ(u, Sxγ (u)))dW (u), i.e. ζx(t) = exp

{
N(t)−

1
2
〈N〉(t)

}
. Then, Girsanov’s theorem says that the process W x, defined by

W x(t) = W (t)−
∫ t

0
∂s(S

x
γ (u)γ(u, Sxγ (u)))du, is a Px-Brownian motion, where

dPx
dP = ζ(T ). The idea now is to prove that v has increasing one-sided deriva-

tives. In order to do that, the first step is to bound the incremental ratios
vγ(y)−vγ(x)

y−x , for y > x, in such a way to be able to apply on both sides a version

of Fatou’s lemma. This gives

EPx [h′(Sxγ (T )+)
]
≤ lim inf

y↘x

vγ(y)− vγ(x)

y − x

≤ lim sup
y↘x

vγ(y)− vγ(x)

y − x
≤ EPx [h′(Sxγ (T )+)

]
,

and an analogous estimate holds for y < x, y ↗ x, thus

v′γ(x±) = EPx [h′(Sxγ (T )±)
]
.

Let us notice that, to achieve the above bounds, it is used the same no-

crossing property (4.4) which is fundamental in [8]. Lastly, to remove the
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dependence on x of the expectation operators, they define a new process S̃x,

whose law under P is the same as the law of Sxγ under Px and which still

holds the no-crossing property, hence rewrite v′γ(x±) = EP
[
h′(S̃x(T )±)

]
.

From the last argument it also follows that the one-sided derivatives of v

have the same bounds as h. Under additional requirements, El Karoui et al.

[43] proved a robustness principle similar to Theorem 4.2 but also providing

the explicit formula of the tracking error, which is fundamental to monitor

hedging risks.

Theorem 4.6. Under the assumptions of Theorem 4.5, let r, γ be Hölder-

continuous in their arguments. Then, if

σ(t) ≤ γ(t, S(t)) for Lebesgue-almost all t ∈ [0, T ], P− a.s., (4.10)

then (Pγ,∆γ) is a super-strategy, where Pγ(t) := vγ(t, S(t)) and ∆γ(t) :=

∂svγ(t, S(t)) for all t ∈ [0, T ]. If the volatilities satisfy the reversed inequal-

ity in (4.10), then (Pγ,∆γ) is a sub-strategy. Moreover, the tracking error

associated with (V∆, Pγ) is

eγ(t) = M(t)
1

2

∫ t

0

(
γ2(u, S(u))− σ2(u)

)
S2(u)∂xxvγ(u, S(u))

du

M(u)
. (4.11)

Indeed, under the assumptions, the value function vγ defined by

vγ(t, x) := E
[
e−

∫ T
t r(u)duh(St,xγ (T ))

]
, t ∈ [0, T ], x > 0,

where St,x,γ is the solution of (4.9) with initial condition St,xγ (t) = x, belongs to

C1,2([0, T )×R+)∩C([0, T ]×R+) and satisfies the partial differential equation

Lγvγ = 0 on [0, T )× R+, with the operator defined by

Lγf(t, x) := ∂tf(t, x) + r(t)x∂xf(t, x) +
1

2
γ2(t, x)x2∂xxf(t, x)− r(t)f(t, x).

(4.12)

Then, the value V∆ of the self-financing portfolio ∆γ will evolve according to

dV∆(t) = r(t)V∆(t)dt+ ∆γ(t)(dS(t)− r(t)S(t)dt),



102 Chapter 4. PATHWISE ANALYSIS OF DYNAMIC HEDGING

whereas the price process is governed by

dPγ(t) = r(t)Pγ(t)dt+ ∆γ(t)(dS(t)− r(t)S(t)dt)

+
1

2

(
σ2(t)− γ2(t, S(t))

)
S2(t)∂xxvγ(t, S(t))dt.

Finally, the convexity of vγ and the domination of the mis-specified volatility

over the ‘true’ one end the proof. Important remarks about weakening the

assumption (4.10) are reported in the appendix of [43]. By the way, under the

regularity requirements, equation (4.11) for the discounted tracking error is

still true, independently of the domination of volatilities. If σ, γ are both non-

negative, square-integrable and deterministic functions of time, satisfying(∫ T

t

σ2(u)du

) 1
2

≤
(∫ T

t

γ2(u)du

) 1
2

, for all 0 ≤ t ≤ T, (4.13)

then the mis-specified value of the claim succeeds to dominate the true price,

but the mis-specified delta-hedging portfolio is not guaranteed to replicate

the option at maturity, in the sense that the expected tracking error under

the market probability measure can be negative.

In 1998, Hobson [57] also addressed the monotonicity and super-replication

properties of options prices under mis-specified models. The theorems pre-

sented in [57] are similar to the results found in [8] and [43], but the author

uses a further different approach, based on coupling techniques.

The setting is that of a continuous-time frictionless market with finite

horizon T , where the interest rate is set to r = 0 and the stock price process

S is a weak solution to the stochastic differential equation

dS(t) = S(t)σ(t)dB(t), S(0) = s0, (4.14)

for some standard Brownian motion B on a stochastic basis (Ω,F ,P) and an

adapted volatility process σ. For the moment, completeness of the model is

assumed, so that options prices are given by P-expectations of the respective

claims at maturity. The first main theorem goes under the name of “option

price monotonicity”.
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Theorem 4.7. Let h be a convex function and consider two candidate models

for (4.14), namely σ(·) = σ̃(·, S(·)) or σ(·) = σ̂(·, S(·)), such that σ̂(t, s) ≥
σ̃(t, s) for all t ∈ [0, T ], s ∈ R. Then, the European option with payoff

h(S(T )) has a higher value under the model with volatility σ̂ than under the

one with volatility σ̃.

The proof is based on the joint application on the Brownian representation

of local martingales and a coupling argument. Precisely, fixed a Brownian

motion W issued of s0, define, for each model, a strictly increasing process τ

as the solution, for almost all ω ∈ Ω, of the ordinary differential equation

dτ(t;ω))

dt
=

1

W 2(t;ω)σ2(τ(t;ω),W (t;ω))
, t ∈ [0, T ].

Then, define A(·;ω) as the inverse of τ(·;ω) and consider the process P =

W (A) (again one for each model). This is a local martingale whose quadratic

variation has time-derivative given by

∂tA(t) = W 2(A(t))σ2(τ(A(t)),W (A(t))) = P 2(t)σ2(t, P (t))

Thus, P is a weak solution to the SDE dP (t) = P (t)σ(t, P (t))dB for some

Brownian motion B. By this representation, Â ≥ Ã on [0,T], almost surely.

Indeed, at time 0, P̂ (0) = P̃ (0) = s0 and Â(0) = Ã(0) = 0; afterward,

if P̂ (t) = P̃ (t) then dÂ(t) ≥ dÃ(t) and if Â(t) = Ã(t) then P̂ (t) = P̃ (t).

Finally, by Jensen’s inequality and properties of the Brownian motion,

E[h(P̂ (T ))] = E
[
E
[
h(P̂ (T )) | FÃ(T )

]]
≥ E

[
h
(
E
[
P̂ (T ) | FÃ(T )

])]
= E

[
h
(
E
[
W (Ã(T )) + (W (Â(T ))−W (Ã(T ))) | FÃ(T )

])]
= E[h(P̃ (T ))].

Notice that Hobson’s method allows to generalize the statement of the the-

orem in two directions:

• it does not require the completeness assumption, which is used only in

the last step of proof, when pricing the European claim by taking the



104 Chapter 4. PATHWISE ANALYSIS OF DYNAMIC HEDGING

expectation under the risk-neutral probability P, and can be omitted

provided an agreed pricing measure;

• it has not to restrict to diffusion models, as the same construction

applies also to the case of path-dependent volatility σ(t) = σ(t, St),

provided that τ and its inverse can be defined and by assuming that,

for all t ∈ [0, T ], s ∈ R,

σ̂(t, ŝt) ≥ σ̃(t, s̃t) ∀ŝt, s̃t ∈ {{f(u ∧ t)}u∈[0,T ], f(0) = s0, f(t) = s}
(4.15)

The contradiction that seems to arise with the counterexample (4.8) in

[43] is not consistent here. In fact, in [43] the price process is defined to

be the strong solution of the SDE (4.6), so that the coupling argument

could not be applied, while in [57] it is instead a weak solution. In

effect, what matters to the aim of derivative pricing and hedging is

the law of the price process, rather than its relation with a specific

Brownian motion.

The second property of option prices addressed by Hobson is the preser-

vation of convexity from the payoff to the value function. This is then used

to derive the so-called ‘super-replication property’.

Theorem 4.8. Suppose the asset price follows the complete diffusion model

(4.14) where the volatility function has sufficient regularity to ensure that the

solution is unique-in-law (e.g. s 7→ sσ(t, s) Lipschitz) and a true martingale

(e.g. σ bounded). If h is a convex payoff function, then the claim value at

each time prior to maturity is convex in the current underlying price.

The coupling argument used here is the following. Take 0 < z < y < x

and define X, Y, Z as the solutions to (4.14) with respect to independent

Brownian motions and starting point respectively x, y, z at time 0. Denote

the crossing times with HX := inf{t ≥ 0, X(t) = Y (t)} and HY := inf{t ≥
0, Y (t) = Z(t)}, and τ := HX ∧ HY ∧ T . Conditionally on {τ = HX}
(respectively on τ = HY ), X(T )

d
= Y (T ) (respectively Y (T )

d
= Z(T )), while
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on {τ = T} we have Z(T ) < Y (T ) < X(T ). Thus, by using the identities in

law and the convexity of h,

E[(X(T )− Z(T ))h(Y (T ))] ≤ E[(Y (T )− Z(T ))h(X(T ))]

+ E[(X(T )− Y (T ))h(Z(T ))].

Then, the independence of the driving Brownian motions gives

(x− z)E[h(Y (T ))] ≤ (x− y)E[h(Z(T ))] + (y − z)E[h(X(T ))],

that is the convexity of the option price, by arbitrariness of starting points.

It should be noticed that this proof cannot be extended to non-diffusion

models, where the identities in law could not be used.

The same property is also proved in [8] and [43], however both require

more restrictive conditions, such as the differentiability of the diffusion co-

efficient s2σ2(t, s) and a bounded (possibly one-sided) derivative for h. In

case h has a derivative bounded by a constant C on [0,∞), then bounds on

the option price and its spatial derivative at any time t ∈ [0, T ] are a direct

consequence:

h(0)− CS(t) ≤ v(t, S(t)) ≤ h(0) + CS(t), |∂sv(t, S(t))| ≤ C.

In [43] the property of inherited convexity is used to prove robustness of

a delta-hedging portfolio, accordingly to their definition. Hobson reproduces

the same steps to prove the ‘super-replication property’, stated as follows.

Theorem 4.9. Under the model assumption of Theorem 4.8, assume also

that option prices from the model are of class C1,2([0, T ]×R) (e.g. σ > 0 and

Hölder continuous). If the model volatility σ dominates the true volatility σ̂,

i.e. σ(t, s) ≥ σ̂(t, s) for all t ∈ [0, T ], s ∈ R, and if the payoff function is

convex, then pricing and hedging according to the model will super-replicate

the option payout.

In order to prove that the model price dominates the true price, the port-

folio value process, in particular the stochastic integral
∫ ·

0
∂sv(u, S(u))dS(u),
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has to be a martingale. In case of a payoff function with bounded derivative,

this is achieved by assuming that E
[(∫ T

0
S2(u)σ2(u, S(u))du

) 1
2

]
<∞, which

makes S itself a true martingale, even if not necessarily square-integrable.

4.1.2 Robust hedging of discretely monitored options

More recently, Schied and Stadje [98] revisited the notion of robustness by

considering the performance of a model-based hedging strategy when applied

to the realized observed path of the underlying asset price, rather than to

some supposedly ‘true’ model, inspired by the Föllmer’s pathwise Itô calculus.

Schied and Stadje [98] studied the performance of delta hedging strategies

for a path-dependent discretely monitored derivative, obtained under a local

volatility model.

The stock price process S is assumed to follow a local volatility model

where the volatility process is a deterministic function of time and the current

stock price,

dS(t) = S(t)σ(t, S(t))dW (t), (4.16)

where the local volatility function is assumed to satisfy the following regu-

larity conditions.

Assumption 4.1.

• σ ∈ C1([0, T ]× R+,R+), bounded above and below away from 0;

• s 7→ sσ(t, s) Lipschitz continuous, uniformly in t ∈ [0, T ].

The derivatives considered here have a path-dependent claim of the form

H(S) = h(S(t1), . . . , S(tn)), where 0 = t0 < t1 < . . . tn ≤ T and h :

[0,∞)n → [0,∞) is continuous and satisfies h(x) ≤ C(1 + |x|p) for all

x ∈ [0,∞)n and certain C, p ≥ 0, in which case h is referred to as a payoff

function.
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Using the Markov property, the price at time t ∈ [tk, tk+1) is given by

v(t, s1, . . . , sk, s) = E[H(S) | S(t1) = s1, . . . , S(tk) = sk, S(t) = s]

= E[h(s1, . . . , sk, S(tk+1), . . . , S(tn)) | S(t) = s] (4.17)

We denote v(t, x) :=
n∑
k=1

1[tk,tk+1)(t)v(t, s1, . . . , sk, s), where x ∈ C([0, T ],R+)

is a deterministic function matching the observed stock price path, i.e. x(t1) =

s1, . . . , x(tk) = sk, x(t) = s. It is also assumed that all observed price paths

are continuous and have finite quadratic variation along a fixed sequence of

time partitions {πn}n≥1, πn = (tni )i=0,...,m(n), 0 = tn0 < . . . < tnm(n) = T for all

n ≥ 1, with mesh going to 0. The following result shows the regularity of the

value function and makes use of the Föllmer’s pathwise calculus presented in

Chapter 1.

Proposition 4.1. Let h be a payoff function. Under Assumption 4.1, the

map (t, s) 7→ v(t, x) belongs to C1,2
( n−1

∪
k=0

(tk, tk+1)×[0,∞)
)
∩C([0, T ]×[0,∞))

and satisfies the partial differential equation

∂tv(t, x) +
1

2
σ2(t, s)s2∂ssv(t, x) = 0, t ∈

n−1

∪
k=0

(tk, tk+1), s ∈ [0,∞). (4.18)

Furthermore, the Föllmer integral
∫ T

0
∂sv(t, x)dx(t) is well defined and the

pathwise Itô formula holds:

v(T, x) = v(0, x)+

∫ T

0

∂sv(t, x)dx(t)+
1

2

∫ T

0

∂ssv(t, x)d〈x〉(t)+
∫ T

0

∂tv(t, x)dt.

The regularity and the PDE characterization of the value function are

proven by backward induction and using the following standard result for a

European non-path-dependent option with payoff h : [0,∞) → R+, that is:

let v(t, s) := E[h(S(T )) | S(t) = s], then v ∈ C1,2([0, T ]× (0,∞))∩C([0, T ]×
[0,∞)), satisfies a polynomial growth condition in s uniformly in t ∈ [0, T ]

and solves the Cauchy problem (4.18) on [0, T ] × (0,∞). So, at step 1, let

t ∈ [tn−1, tn), the problem reduces to the standard case. Then, at each step
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k > 1, let t ∈ [tn−k, tn−k+1), define the auxiliary function

hk(s) = E[h(s1, . . . , sn−k, s, S(tn−k+2), . . . , S(tn)) | S(tn−k+1) = s],

which is a payoff function such that v(t, s1, . . . , sn−k, s) = E[hk(S(tn−k+1)) |
S(t) = s] and again the standard result applies.

Using the same notation above for x and H, Schied and Stadje defined

the delta-hedging strategy for H obtained from the model (4.16) to be ro-

bust if, when the model volatility overestimates the market volatility, i.e.∫ t
r
σ2(u, x(u))x2(u)du ≥ 〈x〉(t) −〈x〉(r) for all 0 ≤ r < t ≤ T , or equiv-

alently σ(t, x(t)) ≥
√
ζ(t), where 〈x〉(t) =

∫ t
0
ζ(u)x2(u)du and ζ ≥ 0, for

Lebesgue-almost every t ∈ [0, T ], then

v(0, x) +

∫ T

0

∂sv(u, x)dΠx(u) ≥ H(x). (4.19)

They pointed out that, under the assumptions of Proposition 4.1, the

positivity of the option Gamma leads to a robust delta-hedging strategy. An

application of this first basic result is the generalized Black-Scholes model,

where the value function of any convex payoff function is again convex and

hence the corresponding delta hedge is robust. This follows directly from

the fact that a geometric Brownian motion with time-dependent volatility is

affine in its starting point and convexity is invariant under affine transfor-

mations.

However, in a general local volatility model, convexity of a payoff function

does not guarantee the robustness property. Indeed, the main theorem in [98]

spots sufficient conditions on the payoff function resulting in convexity for

the value function and consequent robustness for the delta hedge.

Theorem 4.10. If the payoff function h is directionally convex, i.e. for all

i = 1, . . . , n the map xi 7→ h(x1, . . . , xi, . . . , xn) is convex and has increasing

right-derivative with respect to any other component j = 1, . . . , n, then, for

all k = 1, . . . , n and for any t ∈ [tk, tk+1), the value function (s1, . . . , sk, s) 7→
v(t, s1, . . . , sk, s) is also directionally convex and hence convex in the last

variable, and the delta-hedging strategy is robust.
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The crucial step in the proof of the above theorem is the inherited direc-

tional convexity of a map of the form

u(s1, . . . , sn) = E[h(s1, . . . , sn−1, S(T )) | S(t) = sn],

which is proven by means of the notion of Wright convexity. Furthermore,

given a directionally convex function of k + 1 arguments u(s1, . . . , sk+1), the

contraction ũ(s1, . . . , sk) = u(s1, . . . , sk, sk) is also directionally convex. By

this remark, the proof ends by induction on k = 0, . . . , n, noticing that for

t ∈ [tn−k, tn−k+1) the value function can be written as

v(t, s1, . . . , sn−k, s) = E[v(tn−k+1s1, . . . , sn−k, S(tn−k+1), S(tn−k+1)) | S(t) = s].

A counter-example consisting of a local volatility model where the delta

hedge fails to be robust in case of any convex payoff which is not identically

linear and is positively homogeneous, implies that every payoff function that

is both positively homogeneous and directionally convex must be linear.

The results obtained in [98] in the context of robustness of hedging strate-

gies are specific to one-dimensional local volatility models. In more general

models, the issue of propagation of convexity is quite intricate: in multi-

variate local volatility models, the convexity of prices of European options

depends on the volatility matrix and value functions of European call options

may fail to be convex.

4.2 Robustness and the hedging error for-

mula

In this thesis, we consider the following problem: a market participant

sells a path-dependent derivative with maturity T and payoff functional H

and uses a model of preference to compute the price of such derivative and

the corresponding hedging strategy.

This situation is typical of financial institutions issuing derivatives and

subject to risk management constraints. The behavior of the underlying asset
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during the lifetime of the derivative may or may not correspond to a typi-

cal trajectory of the model used by the issuer for constructing the hedging

strategy. More importantly, the hedger only experiences a single path for the

underlying so it is not even clear what it means to assess whether the model

correctly describes the risk along this path. The relevant question for the

hedger is to assess, ex-post, the performance of the hedging strategy in the

realized scenario and to quantify, ex-ante, the magnitude of possible losses

across different plausible risk scenarios. This calls for a scenario analysis –or

pathwise analysis– of the performance of such hedging strategies. In fact such

scenario analysis, or stress testing, of hedging strategies are routinely per-

formed in financial institutions using simulation methods, but a theoretical

framework for such a pathwise analysis was missing.

In the general case where either the payoff or the volatility are path-

dependent, the value at time t of the claim will be a non-anticipative func-

tional of the path of the underlying asset.

In this chapter, we keep to the one-dimensional case and we work on the

canonical space of continuous paths (Ω,F ,F), where Ω := C([0, T ],R+), F
is the Borel sigma-field and F = (Ft)t∈[0,T ] is the natural filtration of the

coordinate process S, given by S(u, ω) = ω(u) for all ω ∈ Ω, t ∈ [0, T ]. The

coordinate process S represents the asset price process and we assume that

the hedger’s model consists in a square-integrable martingale measure for S:

Assumption 4.2. The market participant prices and hedges derivative in-

struments assuming that the underlying asset price S evolves according to

dS(t) = σ(t)S(t)dW (t), i.e.

S(t) = S(0)e
∫ t
0 σ(u)dW (u)− 1

2

∫ t
0 σ(u)2du, t ∈ [0, T ], (4.20)

where W is a standard Brownian motion on (Ω,F ,F,P) and the volatility

σ is a non-negative F-adapted process such that S is a square-integrable P-

martingale.

This assumption includes the majority of models commonly used for pric-

ing and hedging derivatives. The assumption of square-integrability is not
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essential and may be removed by localization arguments but we will retain it

to simplify some arguments. Note that this is an assumption on the pricing

model used by the hedger, not an assumption on the evolution of the under-

lying asset itself. We will not make any assumption on the process generating

the dynamics of the underlying asset.

Assumption 4.3. Let H : D([0, T ],R) 7→ R be the payoff of a path-dependent

derivative with maturity T , such that EP[|H(ST )|2] <∞.

Under Assumptions 4.2 and 4.3, the replicating portfolio for H is given

by the delta-hedging strategy (Y (0),∇SY ) and its value process coincides

with Y .

We denote by

supp(S,P) :=
{
ω ∈ Ω : P(ST ∈ V ) > 0 ∀neighborhood V of ω in (Ω, ‖·‖∞)

}
,

(4.21)

the topological support of (S,P) in (Ω, ‖·‖∞), that is the smallest closed set

in (Ω, ‖·‖∞) such that it contains ST with P-measure equal to one. Since S

may not have full support in (Ω, ‖·‖∞), we will need to specifically work on

the support of S in order to pass from equations that hold P-almost surely

for functionals of the price process S to pathwise equations for functionals

defined on the space of stopped paths.

Throughout this chapter, we consider a fixed sequence of partitions Π =

(πn)n≥1, πn = {0 = tn0 < tn1 < . . . , tnm(n) = T}, with mesh going to 0 as n goes

to ∞. For paths of absolutely continuous finite quadratic variation along Π,

we define the local realized volatility as

σmkt : [0, T ]×A → R, (t, ω) 7→ σmkt(t, ω) =
1

ω(t)

√
d

dt
[ω](t),

where

A := {ω ∈ Q(Ω,Π), t 7→ [ω](t) is absolutely continuous}.

Our main results apply to paths with finite quadratic variation along the

given sequence Π of partitions, as it is a necessary assumption in the theory
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of functional pathwise calculus. However, as remarked in Subsection 3.2.1,

this assumption is also reasonable in terms of avoiding undesirable strategies

that carry infinite gain with bounded initial capital on some paths.

If Y ∈ C1,2
b (S), with Y (t) = F (t, St) dt× dP-almost surely, the universal

hedging equation (2.13) holds and the asset position of the hedger’s portfolio

at almost any time t ∈ [0, T ] and for P-almost all scenarios ω, is given by

∇SY (t, ω) = ∇ωF (t, ω). Note that, even if the non-anticipative functional

F :WT 7→ R does depend on the choice of the functional representation F of

Y such that Y (t) = F (t, ω) for Lebesgue-almost all t ∈ [0, T ] and P-almost

all ω, the process ∇SY (·) = ∇ωF (·, S·) does not, up to indistinguishable pro-

cesses. Moreover, if it also satisfies F ∈ C0,0(WT ), according to Proposition

3.7 the trading strategy (F (0, ·),∇ωF ) is self-financing on Q(Ω,Π) and allows

a path-by-path computation of the gain from trading as a Föllmer integral.

We will therefore restrict to this class of pathwise trading strategies, which

are of main interest:

V := {∇ωF, F ∈ C1,2
loc(WT ) ∩ C0,0(WT )}. (4.22)

Note that V has a natural structure of vector space; we call its elements

vertical 1-forms.

In line with Remark 3.13, the portfolio value of a self-financing trading

strategy (V0, φ) with asset position a vertical 1-form φ = ∇ωF and initial

investment V0 = F (0, ·) will be given by, at any time t ∈ [0, T ] and in any

scenario ω ∈ Q(Ω,Π),

V (t, ω) = F (0, ω) +

∫ t

0

∇ωF (u, ω)dΠω(u).

The portfolio value functional V (T, ·) at the maturity date can be different

from the payoff H with strictly positive P-measure. What is important about

this mis-replication is the sign of the difference between the portfolio value

at maturity and the payoff in a given scenario. So, we give the following

definitions.

Definition 4.11. The hedging error of a trading strategy (V0, φ) such that

φ ∈ V for a derivative with payoff H and in a scenario ω ∈ Q(Ω,Π) is the
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value

V (T, ω)−H(ωT ) = V0(ω) +

∫ T

0

φ(u, ω)dΠω(u)−H(ωT ).

(V0, φ) is called a super-strategy for H on U ⊂ Q(Ω,Π) if its hedging error

for H is non-negative on U , i.e.

V0(ω) +

∫ T

0

φ(u, ω)dΠω(u) ≥ H(ωT ) ∀ω ∈ U.

Definition 4.12. Given F ∈ C1,2
loc(WT ) ∩ C0,0 such that Y (t) = F (t, St)

dt × dP-almost surely, the delta-hedging strategy (Y (0),∇SY ) for H is said

to be robust on U ⊂ Q(Ω,Π) if (F (0, ·),∇ωF ) is a super-strategy for H on

U .

Proposition 4.2 (Pathwise hedging error formula). If there exists a non-

anticipative functional F : ΛT → R such that

F ∈ C1,2
b (WT ) ∩ C0,0(WT ), DF ∈ C0,0

l (WT ), (4.23)

F (t, St) = EP[H(ST )|Ft] dt× dP-a.s. (4.24)

then, the hedging error of the delta hedge (F (0, S(0)),∇ωF ) along any path

ω ∈ Q(Ω,Π) ∩ supp(S,P) is explicitly given by

V0(ω) +

∫ T

0

∇ωF (u, ω)dΠω(u)−H(ωT )

=
1

2

∫ T

0

σ(t, ω)2ω2(t)∇2
ωF (t, ω)dt− 1

2

∫ T

0

∇2
ωF (t, ω)d[ω](t).

In particular, if ω ∈ A ∩ supp(S,P), then

V0(ω) +

∫ T

0

∇ωF (u, ω)dΠω(u)−H(ωT )

=
1

2

∫ T

0

(
σ(t, ω)2 − σmkt(t, ω)2

)
ω2(t)∇2

ωF (t, ω)dt. (4.25)

Furthermore, if for all ω ∈ U ⊂ (A∩ supp(S,P)) and Lebesgue-almost every

t ∈ [0, T ),

∇2
ωF (t, ω) ≥ 0 (resp. ≤), and σ(t, ω) ≥ σmkt(t, ω) (resp.≤), (4.26)

then the delta hedge for H is robust on U .
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Proof. Assumptions (4.23)-(4.24) imply Y ∈ C1,2
b (S), with Y (t) = F (t, St)

dt × dP-almost surely, thus F (·, S·) satisfies the functional Itô formula for

functionals of continuous semimartingales (2.1). Moreover, by Proposition

2.6, the universal pricing equation holds: for all ω ∈ supp(S,P),

DF (t, ω) +
1

2
∇2
ωF (t, ω)σ2(t, ω)ω2(t) = 0 ∀t ∈ [0, T ) (4.27)

By Proposition 3.7 and using the pathwise change of variable formula for

functionals of continuous paths (Theorem 1.10), the value of the hedger’s

portfolio at maturity is given by, for all ω ∈ Q(Ω,Π),

V (T, ω) = F (0, ω0) +

∫ T

0

∇ωF (t, ω)dΠω(t)

= H −
∫ T

0

DF (t, ω)dt− 1

2

∫ T

0

∇2
ωF (t, ω)d[ω](t). (4.28)

Then, using the equations (4.28) and (4.27), we get an explicit expression for

the hedging error along any path ω in A ∩ supp(S,P) as

V (T, ω)−H =

∫ T

0

(
1

2
σ2(u, ω)ω2(u)∇2

ωF (u, ω)− 1

2
∇2
ωF (u, ω)d[ω](t)

)
du

−
∫ T

0

DF (u, ω)dt−
∫ T

0

1

2
σ(u, ω)2ω2(u)∇2

ωF (u, ω)du

=
1

2

∫ T

0

(
σ(u, ω)2 − σmkt(t, ω)2

)
ω2(u)∇2

ωF (u, ω)du.

Moreover, the inequalities (4.26) imply that, for all ω ∈ U ,

V (T, ω) ≥ H −
∫ T

0

DF (t, ω)dt− 1

2

∫ T

0

σ(t, ω)2ω2(t)∇2
ωF (t, ω)dt

= H.

This proves the robustness of the delta hedge on U .

Remark 4.13. Proposition 4.2 simply requires the price trajectory to have

an absolutely continuous quadratic variation in a pathwise sense, but does

not assume any specific probabilistic model. Nevertheless, it applies to any

model whose sample paths fulfill these properties almost-surely: this applies
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in particular to diffusion models and other models based on continuous semi-

martingales analyzed in [4, 8, 43, 57]. However, note that we do not even

require the price process to be a semimartingale. For example, our results

also hold when the price paths are generated by a (functional of a) fractional

Brownian motion with index H ≥ 1
2
.

4.3 The impact of jumps

The presence of jumps in the price trajectory affects the hedging error of

the delta-hedging strategy in an unfavorable way.

Proposition 4.3 (Impact of jumps on delta hedging). If

∃F ∈ C1,2
b (ΛT )∩C0,0(WT ) : F (t, St) = EP[H(ST )|Ft] dt×dP-a.s. (4.29)

then, for any ω ∈ Q(D([0, T ],R+,Π) such that [ω]c is absolutely continuous,

the hedging error of the delta hedge (F (0, S(0)),∇ωF ) for H is explicitly

given by

1

2

∫ T

0

(
σ(t, ω)2 − σmkt(t, ω)2

)
ω2(t)∇2

ωF (t, ω)dt (4.30)

−
∑
t∈(0,T ]

(F (t, ωt)− F (t, ωt−)−∇ωF (t, ωt−) ·∆ω(t)) . (4.31)

Proof. We follow the same steps as in the proof of Proposition 4.2, with

the appropriate modifications. The universal pricing equation holds on the

support of S, that is, for all ω ∈ supp(S,P),

DF (t, ω) +
1

2
∇2
ωF (t, ω)σ2(t, ω)ω2(t) = 0 for Lebesgue-a.e. t ∈ [0, T ).

By Proposition 3.8 and using the pathwise change of variable formula for

functionals of càdlàg paths (Theorem 1.9), the value of the hedger’s portfolio
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at maturity in the scenario ω is given by

V (T, ω) = F (0, ω0) +

∫ T

0

∇ωF (t, ω)dΠω(t)

= H −
∫ T

0

DF (t, ω)dt− 1

2

∫ T

0

∇2
ωF (t, ω)d[ω]c(t) (4.32)

−
∑
t∈(0,T ]

(F (t, ωt)− F (t, ωt−)−∇ωF (t, ωt−) ·∆ω(t)) . (4.33)

Then, using the equations (4.32), (4.33) and (4.27), we get an explicit ex-

pression for the hedging error in the scenario ω:

V (T, ω)−H =
1

2

∫ T

0

(
σ(u, ω)2 − σmkt(u, ω)2

)
ω2(u)∇2

ωF (u, ω)du

−
∑
t∈(0,T ]

(F (t, ωt)− F (t, ωt−)−∇ωF (t, ωt−)∆ω(t)) .

Remark 4.14. Using a Taylor expansion of e 7→ F (t, ωt− + e1[t,T ]), we can

rewrite the hedging error as

V (T, ω)−H =
1

2

∫ T

0

(
σ(u, ω)2 − σmkt(u, ω)2

)
ω2(u)∇2

ωF (u, ω)du

− 1

2

∑
t∈(0,T ]

∇2
ωF (t, ωt− + ξ1[t,T ])∆ω(t)2,

for an appropriate ξ ∈ B(0, |∆ω(t)|). This shows that the exposure to jump

risk is quantified by the Gamma of the option computed in a ‘jump scenario’,

i.e. along a vertical perturbation of the original path.

4.4 Regularity of pricing functionals

Proposition 4.2 requires some regularity on the pricing functional F ,

which is in general defined as a conditional expectation, therefore it is not

obvious to verify such regularities for F on the space of stopped paths. In

Proposition 4.4, we give sufficient conditions on the payoff functional which

lead to a vertically smooth pricing functional.
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Definition 4.15. A functional h : D([0, T ],R) 7→ R is said to be vertically

smooth on U ⊂ D([0, T ],R) if ∀(t, w) ∈ [0, T ]× U the map

gh(·; t, ω) : R → R,

e 7→ h
(
ω + e1[t,T ]

)
is twice continuously differentiable at 0, with first and second derivatives

bounded in a neighborhood of 0 uniformly in (t, w) ∈ [0, T ] × U , i.e. there

exists K > 0 such that, for all (t, ω) ∈ [0, T ]× U ,∣∣∂egh(e; t, ω)
∣∣+
∣∣∂eegh(e; t, ω)

∣∣ ≤ K,

and there exist c, β > 0 such that, for all t, t′ ∈ [0, T ] and ω, ω′ ∈ U ,∣∣∂egh(0; t, ω)− ∂egh(0; t′, ω′)
∣∣+
∣∣∂2
eg

h(0; t, ω)− ∂2
eg

h(0; t′, ω′)
∣∣

≤ c(‖ω − ω′‖∞ + |t− t′|β).
(4.34)

We define, for all t ∈ [0, T ], the concatenation operator ⊕
t

as

⊕
t

: D([0, T ],R)×D([0, T ],R)→ D([0, T ],R),

(ω, ω′) 7→ ω ⊕
t
ω′ = ω1[0,t) + ω′1[t,T ].

This will appear in the proof of Propositions 4.4 and 4.5.

The following result shows how to construct a (vertically) smooth ver-

sion of the conditional expectation that gives the price of a path-dependent

contingent claim.

Proposition 4.4. Let H : (D([0, T ],R), ‖·‖∞) 7→ R a locally-Lipschitz payoff

functional such that EP[|H(ST )|] < ∞ and define h : (D([0, T ],R) → R by

h(ωT ) = H(expωT ), where expωT (t) := eω(t) for all t ∈ [0, T ]. If h is

vertically smooth on C([0, T ],R+) in the sense of Definition 4.15, then

∃F ∈ C0,2
b (WT )∩C0,0(WT ), F (t, St) = EP[H(ST )|Ft] dt×dP-a.s. (4.35)

Proof. The first step is to construct analytically a regular non-anticipative

functional representation F : ΛT 7→ R of the claim price, then the properties
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of regularity and vertical smoothness of F will follow from the conditions of

the payoff H.

By Theorem 1.3.4 in [100] on the existence of regular conditional dis-

tributions, for any t ∈ [0, T ] there exists a regular conditional distribution

{P(t,ω), ω ∈ Ω} of P given the (countably generated) sub-σ-algebra Ft ⊂ F ,

i.e. a family of probability measures P(t,ω) on (Ω,F) such that

1. ∀B ∈ F , the map Ω 3 ω 7→ P(t,ω)(B) ∈ [0, 1] is Ft-measurable;

2. ∀A ∈ Ft,∀B ∈ F , P(A ∩B) =
∫
A
P(t,ω)(B)P(dω);

3. ∀A ∈ Ft,∀ω ∈ Ω, P(t,ω)(A) = 1A(ω).

Moreover, for any random variable Z ∈ L1(Ω,F ,P), it holds

EP(t,ω)

[|Z|] <∞ and EP [Z|Ft] (ω) = EP(t,ω)

[Z] for P-almost all ω ∈ Ω.

By taking Z = H(ST ), since P(t,ω) is concentrated on the subspace Ω(t,ω) :=

{ω′ ∈ Ω : ω′t = ωt}, we can rewrite EP(t,ω)
[H(ST )] = EP(t,ω)

[H(ω ⊕
t
ST )].

For any t ∈ [0, T ], x > 0, we denote P(t,x) the law of the stochastic process

x1[0,t) + S(t,x)1[t,T ] on (Ω,F ,P), where {S(t,x)(u)}u∈[t,T ] is defined by

S(t,x)(u) = x+

∫ u

t

σ(r)S(t,x)(r)dW (r), u ∈ [t, T ]. (4.36)

Note that S has the same law under P(t,x+ε) that S
(
1 + ε

x

)
has under P(t,x).

Indeed:

S(t,x+ε) =

(
x+ ε+

∫ ·
t

σ(u)S(t,x+ε)(u)dW (u)

)
1[t,T ]

= (x+ ε)e
∫ ·
t σ(s)dW (s)− 1

2

∫ ·
t σ

2(u)du1[t,T ]

= S(t,x)
(

1 +
ε

x

)
,

hence we have the following identities in law

Law(S,P(t,x+ε)) = Law
(
(x+ ε)1[0,t) + S(t,x+ε)1[t,T ],P

)
= Law

((
x1[0,t) + S(t,x)1[t,T ]

) (
1 +

ε

x

)
,P
)

= Law
(
S
(

1 +
ε

x

)
,P(t,x)

)
.
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Then, consider the non-anticipative functional F : ΛT → R defined by, for

all (t, ω) ∈ ΛT ,

F (t, ω) = EP(t,ω(t))

[
H

(
ω ⊕

t
ST

)]
(4.37)

= EP
[
H

(
ω ⊕

t
ω(t)e

∫ ·
t σ(s)dW (s)− 1

2

∫ ·
t σ

2(u)du1[t,T ]

)]
.

If computed respectively on a continuous stopped path (t, ω) ∈ WT and on

its vertical perturbation in t of size ε, it gives

F (t, ω) = EP(t,ω)

[
H

(
ω ⊕

t
ST

)]
= EP [H(ST )|Ft] (ω) P-a.s.,

F (t, ωεt ) = EP(t,ω(t)+ε)

[
H

(
ω ⊕

t
ST

)]
= EP(t,ω)

[
H

(
ω ⊕

t

(
ST

(
1 +

ε

ω(t)

)))]
.

SinceH is locally Lipschitz continuous, given (t, ω) ∈ [0, T ]×C([0, T ],R+),

there exist η = η(ω) > 0 and Kω ≥ 0 such that

‖ω − ω′‖∞ ≤ η(ω) ⇒ |H(ω)−H(ω′)| ≤ Kω‖ω − ω′‖∞.

Now, we prove the joint-continuity, by showing the computation for the

right side - the other being analogous because of symmetric properties; this

also proves continuity at fixed times. So, given (t, ω) ∈ WT , for t′ ∈ [t, T ],

(t′, ω′) ∈ WT such that d∞((t, ω), (t′, ω′)) ≤ η, then:

|F (t, ω)− F (t′, ω′)| =

=

∣∣∣∣EP(t,ω)

[
H

(
ω ⊕

t
ST

)]
− EP(t′,ω′)

[
H

(
ω′ ⊕

t′
ST

)]∣∣∣∣
= EP

[∣∣∣H (ω1[0,t) + ω(t)e
∫ ·
t σ(u)dW (u)− 1

2

∫ ·
t σ

2(u)du1[t,T ]

)
−H

(
ω′1[0,t′) + ω′(t′)e

∫ ·
t′ σ(u)dW (u)− 1

2

∫ ·
t′ σ

2(u)du1[t′,T ]

)∣∣∣]
≤ Kω EP [∥∥(ω − ω′)1[0,t)

∥∥
∞ +

∥∥∥(ω(t)e
∫ ·
t σ(u)dW (u)− 1

2

∫ ·
t σ

2(u)du − ω′
)
1[t,t′)

∥∥∥
∞

+
∥∥∥(ω(t)e

∫ ·
t σ(u)dW (u)− 1

2

∫ ·
t σ

2(u)du − ω′(t′)e
∫ ·
t′ σ(u)dW (u)− 1

2

∫ ·
t′ σ

2(u)du
)
1[t′,T ]

∥∥∥
∞

]
≤ Kω

(
η + |ω(t)|EP

[∥∥∥(e∫ ·t σ(u)dW (u)− 1
2

∫ ·
t σ

2(u)du − 1
)
1[t,t′)

∥∥∥
∞

]
+ η

+ |ω(t)|EP
[∥∥∥e∫ ·t′ σ(u)dW (u)− 1

2

∫ ·
t′ σ

2(u)du1[t′,T )

∥∥∥
∞

∣∣∣e∫ t′t σ(u)dW (u)− 1
2

∫ t′
t σ2(u)du − 1

∣∣∣]
+ηEP

[∥∥∥e∫ ·t′ σ(u)dW (u)− 1
2

∫ ·
t′ σ

2(u)du1[t′,T )

∥∥∥
∞

])
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≤ Kω

[
2η + |ω(t)|

(
EP
[

sup
s∈[t,t′)

∣∣∣e∫ st σ(u)dW (u)− 1
2

∫ s
t σ

2(u)du − 1
∣∣∣ ]

+ EP
[

sup
s∈[t′,T )

∣∣∣e∫ st′ σ(u)dW (u)− 1
2

∫ s
t′ σ

2(u)du
∣∣∣ ]EP

[∣∣∣e∫ t′t σ(u)dW (u)− 1
2

∫ t′
t σ2(u)du − 1

∣∣∣])

+ ηEP
[

sup
s∈[t′,T )

∣∣∣e∫ st′ σ(u)dW (u)− 1
2

∫ s
t′ σ

2(u)du
∣∣∣ ]] (4.38)

The first and third expectations in (4.38) go to 0 as t′ tends to t, indeed:

0 ≤ EP
[∣∣∣e∫ t′t σ(u)dW (u)− 1

2

∫ t′
t σ2(u)du − 1

∣∣∣]
≤ EP

[
sup
s∈[t,t′)

∣∣∣e∫ ·t σ(u)dW (u)− 1
2

∫ ·
t σ

2(u)du − 1
∣∣∣ ]

≤ EP
[

sup
s∈[t,t′)

∣∣∣e∫ ·t σ(u)dW (u)− 1
2

∫ ·
t σ

2(u)du − 1
∣∣∣2 ] 1

2

, by Hölder’s inequality

≤ 2EP
[∣∣∣e∫ t′t σ(u)dW (u)− 1

2

∫ t′
t σ2(u)du − 1

∣∣∣2] 1
2

, by Doob’s martingale inequality

= 2
(
EP [(M(t′)− 1)2

]) 1
2

= 2

√
EP
[
[M ](t′)

]
,

where M denotes the exponential martingale

M(s) = e
∫ s
t σ(u)dW (u)− 1

2

∫ s
t σ(u)2du, s ∈ [t, T ].

So, the expectation goes to 0 as t′ tends to t, by Assumption 4.2. On the

other hand, the second and fourth expectations in (4.38) are bounded above,

again by Hölder’s and Doob’s martingale inequalities:

EP
[

sup
s∈[t′,T )

∣∣∣e∫ st′ σ(u)dW (u)− 1
2

∫ s
t′ σ

2(u)du
∣∣∣ ] ≤ EP

[
sup

s∈[t′,T )

e2
∫ s
t′ σ(u)dW (u)−

∫ s
t′ σ

2(u)du

] 1
2

≤ 2EP

[(
M(T )

M(t′)

)2
] 1

2

= 2EP
[

[M ](T )

M(t′)
− 1

] 1
2

,
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which is finite by Assumption 4.2.

The vertical incremental ratio of F is given by

F (t, ωεt )− F (t, ω)

ε
=

1

ε
EP(t,ω)

[
H

(
ω ⊕

t
ST

(
1 +

ε

ω(t)
1[t,T ]

))
−H

(
ω ⊕

t
ST

)]

=
1

ε
EP(t,ω)

h
log

ω ⊕t ST
(

1 + ε
ω(t)
1[t,T ]

)
ω(0)




− h

(
log

(
ω ⊕

t
ST

ω(0)

))
=

1

ε
EP(t,ω)

[
h

(
log

(
ω ⊕

t
ST

ω(0)

)
+ log

(
1 +

ε

ω(t)

)
1[t,T ]

)

− h

(
log

(
ω ⊕

t
ST

ω(0)

))]
.

Then, the vertical smoothness of h allows to use a dominated convergence

argument to go to the limit for ε going to 0 inside the expectation. So we

get:

∇ωF (t, ω) =
1

ω(t)
EP(t,ω)

[
∂eg

h

(
0; t, log

(
ω ⊕

t
ST

ω(0)

))]
,

∇2
ωF (t, ω) =

1

ω(t)2

(
EP(t,ω)

[
∂2

∂e2
gh

(
0; t, log

(
ω ⊕

t
ST

ω(0)

))]

−EP(t,ω)

[
∂eg

h

(
0; t, log

(
ω ⊕

t
ST

ω(0)

))])

The joint continuity of the first and second-order vertical derivative of F

are proved similarly, by means of the Hölder condition (4.34). Indeed, if

d∞((t, ω), (t, ω′)) < η, then:
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|∇ωF (t, ω)−∇ωF (t′, ω′)| =

=

∣∣∣∣∣ 1

ω(t)
EP(t,ω)

[
∂eg

h

(
0; t, log

(
ω ⊕

t
ST

ω(0)

))]

− 1

ω′(t′)
EP(t′,ω′)

∂egh
0; t′, log

ω′ ⊕t′ ST
ω′(0)

∣∣∣∣∣∣
=

1

ω(t)ω′(t′)
EP

[∣∣∣∣∣ω′(t′)∂egh
(

0; t, log

(
ω1[0,t) + ω(t)e

∫ ·
t σ(u)dW (u)− 1

2

∫ ·
t σ

2(u)du1[t,T ]

ω(0)

))

−ω(t)∂eg
h

(
0; t′, log

(
ω′1[0,t′) + ω(t′)e

∫ ·
t′ σ(u)dW (u)− 1

2

∫ ·
t′ σ

2(u)du1[t′,T ]

ω′(0)

))∣∣∣∣∣
]

≤ 1

ω(t)(ω(t)− η)

{
EP

[
η

∣∣∣∣∣∂egh
(

0; t, log

(
ω1[0,t) + ω(t)e

∫ ·
t σ(u)dW (u)− 1

2

∫ ·
t σ

2(u)du1[t,T ]

ω(0)

))∣∣∣∣∣
]

+K|ω(t)|
(
|t′ − t|β +

∥∥∥∥(log
ω

ω(0)
− log

ω′

ω′(0)

)
1[0,t)

∥∥∥∥
∞

+ EP

[∥∥∥∥(log

(
ω(t)

ω(0)
e
∫ ·
t σ(u)dW (u)− 1

2

∫ ·
t σ

2(u)du

)
− log

ω′

ω′(0)

)
1[t,t′)

∥∥∥∥
∞

+

∥∥∥∥(log

(
ω(t)

ω(0)
e
∫ ·
t σ(u)dW (u)− 1

2

∫ ·
t σ

2(u)du

)
− log

(
ω′(t′)

ω′(0)
e
∫ ·
t′ σ(u)dW (u)− 1

2

∫ ·
t′ σ

2(u)du

))
1[t′,T ]

∥∥∥∥
∞

])}

≤ 1

ω(t)(ω(t)− η)

{
ηC1 +K|ω(t)|

(
|t′ − t|β + 2η′ (4.39)

+ EP
[∥∥∥∥(∫ ·

t

σ(u)dW (u)− 1

2

∫ ·
t

σ2(u)du

)
1[t,t′)

∥∥∥∥
∞

]
+ EP

[∣∣∣∣∣
∫ t′

t

σ(u)dW (u)− 1

2

∫ t′

t

σ2(u)du

∣∣∣∣∣
]}

≤ K ′

η + |t′ − t|β + 2η′ + 3EP

∣∣∣∣∣
∫ t′

t

σ(u)dW (u)

∣∣∣∣∣
2
 1

2

+ σ̄2(t′ − t)


(4.40)

The two constants C1 and η′ in (4.39) come respectively from the uniform

bound on ∂eg
h and from the bound of

∥∥∥log ω
ω(0)
− log ω′

ω′(0)

∥∥∥
∞

, while to obtain
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(4.40) we used the Hölder’s and Doob’s martingale inequalities.

4.5 Vertical convexity as a condition for ro-

bustness

The path-dependent analogue of the convexity property that plays a role

in the analysis of hedging strategies turns out to be the following.

Definition 4.16. A non-anticipative functional G : ΛT → R is called ver-

tically convex on U ⊂ ΛT if, for all (t, ω) ∈ U , there exists a neighborhood

V ⊂ R of 0 such that the map

V → R
e 7→ G

(
t, ω + e1[t,T ]

)
is convex.

It is readily observed that if F ∈ C0,2 is vertically convex on U , then

∇2
ωF (t, ω) ≥ 0 for all (t, ω) ∈ U .

We now provide a sufficient condition on the payoff functional which

ensures that the vertically smooth value functional in (4.35) is vertically

convex.

Proposition 4.5 (Vertical convexity of pricing functionals). Assume that,

for all (t, ω) ∈ T × supp(S,P), there exists an interval I ⊂ R, 0 ∈ I, such

that the map

vH(·; t, ω) : I → R,
e 7→ vH(e; t, ω) = H

(
ω(1 + e1[t,T ])

) (4.41)

is convex. If the value functional F defined in (4.37) is of class C0,2(WT ),

then it is vertically convex on T× supp(S,P). In particular:

∀(t, ω) ∈ T× supp(S,P), ∇2
ωF (t, ω) ≥ 0. (4.42)
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Proof. We only need to show that convexity of the map in (4.41) is inherited

by the map e 7→ F (t, ωet ), which is also twice differentiable in 0 by assumption,

hence (4.42) follows. A simple way of proving convexity of a continuous func-

tion is through the property of Wright-convexity, introduced by Wright [110]

in 1954. Precisely, we want to prove that for every (t, ω) ∈ T × supp(S,P),

for all ε, e > 0 such that e
ω(t)

, e+ε
ω(t)
∈ I, the map

I ′ → R, e 7→ F (t, ωe+εt )− F (t, ωet )

is increasing:

F (t, ωe+εt )− F (t, ωet ) = EP(t,ω)

[
H

((
ω ⊕

t
ST

)(
1 +

e+ ε

ω(t)
1[t,T ]

))
−H

((
ω ⊕

t
ST

)(
1 +

e

ω(t)
1[t,T ]

))]
= EP(t,ω)

[
vH
(
e+ ε

ω(t)
; t, ω ⊕

t
ST

)
− vH

(
e

ω(t)
; t, ω ⊕

t
ST

)]
.

Since vH(·; t, ω) is continuous and convex, hence Wright-convex, on I, the

random variable inside the expectation is pathwise increasing in e. Hence

also I ′ 3 e 7→ F (t, ωet ) is Wright-convex, where I ′ := ω(t)I ⊂ R, 0 ∈ I ′.
Therefore, F is vertically convex. Moreover, since F ∈ C0,2(WT ), Definition

4.16 implies that

∀(t, ω) ∈ T× supp(SP), ∇2
ωF (t, ω) ≥ 0.

Remark 4.17. If there exists an interval I ⊂ R, B
(

0, |∆ω(t)|
ω(t)

)
⊂ I, such

that the map vH(·; t, ω) defined in (4.41) is convex, then

∇2
ωF (t, ωt− + ξ1[t,T ]) ≥ 0 ∀ξ ∈ B(0, |∆ω(t)|). (4.43)

4.6 A model with path-dependent volatility:

Hobson-Rogers

In the model proposed by Hobson and Rogers [58], under the market

probability P̃, the discounted log-price process Z, Z(t) = logS(t) for all
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t ∈ [0, T ], is assumed to solve the stochastic differential equation

dZ(t)

Z(t)
= σ(t, Zt)dW̃ (t) + µ(t, Zt)dt,

where W̃ is a P̃-Brownian motion and σ, µ are non anticipative functionals of

the process itself, which can be rewritten as Lipschitz-continuous functions

of the current time, price and offset functionals of order up to n:

σ(t, ω) = σn(t, ω(t), o(1)(t, ω), . . . , o(n)(t, ω)),

µ(t, ω) = µn(t, ω(t), o(1)(t, ω), . . . , o(n)(t, ω)),

o(m)(t, ω) =
∫∞

0
λe−λu(ω(t)− ω(t− u))mdu, m = 1, . . . , n.

Note that, in the original formulation in [58], the authors take into account

the interest rate and denote by Z(t) = log(S(t)e−rt) the discounted log-price.

We use the same notation for the forward log-prices instead.

Even if the coefficients of the SDE are path-dependent functionals, [58]

proved that the n+1-dimensional process (Z,O(1), . . . , O(n)) composed of the

price process and the offset processes up to order n, O(m)(t) := o(m)(t, Zt),

is a Markov process. In the special case n = 1 and σn(t, x, o) = σn(o),

µn(t, x, o) = µn(o), denoted O := O(1), they proved the existence of an

equivalent martingale measure P defined by

dP
dP̃
|Ft = exp

{
−
∫ t

0

θ(O(u))dW (u)− 1

2

∫ t

0

θ(O(u))2du

}
,

where θ(o) = 1
2
σn(o) + µn(o)

σn(o)
. Then, the offset process solves

dO(t) = σn(O(t))dW̃ (t) + (µn(O(t))− λO(t))dt

= σn(O(t))dW (t)− 1

2
(σn(O(t))2 + λO(t))dt,

where W is the P-Brownian motion defined by W (t) = W̃ (t)+
∫ t

0
θ(O(u))du.

So, the (forward) price process solves

dS(t) = S(t)σn(O(t))dW (t), (4.44)

where W is a standard Brownian motion on (Ω,F ,F,P) and σn : R→ R is a

Lipschitz-continuous function, satisfying some integrability conditions such

that the correspondent pricing PDEs admit a classical solution.



126 Chapter 4. PATHWISE ANALYSIS OF DYNAMIC HEDGING

The price of a European contingent claim with payoff H(S(T )), satisfying

appropriate integrability and growth conditions, is given by ,for all (t, ω) ∈
WT ,

F (t, ω) = f(t, ω(t), o(t, ω)), o(t, ω) =

∫ ∞
0

λe−λu(ω(t)− ω(t− u))du,

where f is the solution f ∈ C1,2,2([0.T )×R+×R)∩C([0.T ]×R+×R) of the

partial differential equation on [0, T )× R+ × R

σn(o)2

2
(x2∂xxf + 2x∂xof + ∂oof)−

(
1

2
σn(o)2 + λo

)
∂of + ∂tf = 0,

where f ≡ f(t, x, o), with final datum f(T, x, o) = H(x). Using a change of

variable, the pricing problem simplifies to solving the following degenerate

PDE on [0, T ]× R× R:

1

2
σn(x1 − x2)2(∂x1x1u− ∂x1u) + λ(x1 − x2)∂x2u− ∂tu = 0, (4.45)

where u ≡ u(T−t, x1, x2) = f(t, ex1 , x1−x2), with initial condition u(0, x1, x2) =

H(ex1). Note that the pricing PDE (4.45) reduces to the universal pricing

equation (4.27), where, for all (t, ω) ∈ WT ,

F (t, ω) = u(T − t, logω(t), logω(t)− o(t, ω)),

and

DF (t, ω) = −∂tu(T − t, logω(t), logω(t)− o(t, ω))

+ λ∂x2u(T − t, logω(t), logω(t)− o(t, ω)),

∇ωF (t, ω) = ∂x1u(T − t, logω(t), logω(t)− o(t, ω)),

∇2
ωF (t, ω) =

1

ω(t)2
(∂x1x1u(T − t, logω(t), logω(t)− o(t, ω))

− ∂x1u(T − t, logω(t), logω(t)− o(t, ω)).

4.7 Examples

We now show how the above results apply to specific examples of hedging

strategies for path-dependent derivatives.
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4.7.1 Discretely-monitored path-dependent derivatives

The simplest class of path-dependent derivatives are those which are

discretely-monitored. The robustness of delta-hedging strategies for discretely-

monitored path-dependent derivatives was studied in [98] as shown in Sec-

tion 4.1.2. In the case of a Black-Scholes pricing model with time-dependent

volatility, we show such results may be derived, without probabilistic assump-

tions on the true price dynamics, as a special case of the results presented

above, and we obtain explicit expressions for the first and second order sen-

sitivities of the pricing functional (see also Cont and Yi [9]).

The following lemma describes the regularity of pricing functionals for

discretely-monitored options in a Black-Scholes model with time-dependent

volatility σ : [0, T ]→ R+ such that
∫ T

0
σ2(t)dt <∞. The regularity assump-

tion on the payoff functional is weaker then the ones required for Proposition

4.4, thanks to the finite dimension of the problem.

Lemma 4.18 (Discretely-monitored path-dependent derivatives). Let H :

D([0, T ],R+) and assume that there exist a partition 0 = t0 < t1 < . . . <

tn ≤ T and a function h ∈ C2
b (Rn;R+) such that

∀ω ∈ D([0, T ],R+), H(ωT ) = h(ω(t1), ω(t2), . . . , ω(tn)).

Then, the non-anticipative functional F defined in (4.37) is locally regular,

that is F ∈ C1,2
loc(WT ), with horizontal and vertical derivatives given in a

closed form.

Proof. For any ω ∈ Ω and t ∈ [0, T ], let us denote k̄ ≡ k̄(n, t) := max{i ∈
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{1, . . . , n} : ti ≤ t}, then for s small enough t+ s ∈ [tk̄, tk̄+1) and we have

F (t+ s, ωt)− F (t, ωt)

= EQ
[
H

(
ω(t1), . . . , ω(tk̄), ω(t)e

∫ tk̄+1
t+s σ(u)dW (u)− 1

2

∫ tk̄+1
t+s σ2(u)du, . . . ,

ω(t)e
∫ tn
t+s σ(u)dW (u)− 1

2

∫ tn
t+s σ

2(u)du
)

+

−H
(
ω(t1), . . . , ω(tk̄), ω(t)e

∫ tk̄+1
t σ(u)dW (u)− 1

2

∫ tk̄+1
t σ2(u)du, . . . ,

ω(t)e
∫ tn
t σ(u)dW (u)− 1

2

∫ tn
t σ2(u)du

)]

=

∫
· · ·
∫
H (ω(t1), . . . , ω(tk̄), ω(t)ey1 , . . . , ω(t)eyn−k̄)

n−k̄∏
i=1

e
−

(
yi+

1
2

∫ tk̄+i
t+s σ2(u)du

)2

2
∫ tk̄+i
t+s σ2(u)du√

2π
∫ tk̄+i

t+s
σ2(u)du

dyi

−
∫
· · ·
∫
H (ω(t1), . . . , ω(tk̄), ω(t)ey1 , . . . , ω(t)eyn−k̄)

n−k̄∏
i=1

e
−

(
yi+

1
2

∫ tk̄+i
t σ2(u)du

)2

2
∫ tk̄+i
t σ2(u)du√

2π
∫ tk̄+i

t
σ2(u)du

dyi.

By denoting

vi(s) :=
e
−

(
yi+

1
2

∫ tk̄+i
t+s σ2(u)du

)2

2
∫ tk̄+i
t+s σ2(u)du√

2π
∫ tk̄+i

t+s
σ2(u)du

, i = 1, . . . , n− k̄,

dividing by s and taking the limit for s going to 0, we obtain

DF (t, ω) = lim
s→0

F (t+ s, ωt)− F (t, ωt)

s

=
n−k̄∑
j=1

∫
· · ·
∫
H (ω(t1), . . . , ω(tk̄), ω(t)ey1 , . . . , ω(t)eyn−k̄)

∏
i=1,...,n−k̄

i 6=j

v′j(0)vi(0)dyidyj,

(4.46)
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where, for i = 1, . . . , n− k̄,

v′i(0) = vi(0)σ2(t)

2

(∫ tk̄+i
t σ2(u)du

)2

((
yi + 1

2

∫ tk̄+i

t
σ2du

) ∫ tk̄+i

t
σ2(u)du

−
(
yi + 1

2

∫ tk̄+i

t
σ2(u)du

)2

+
∫ tk̄+i

t
σ2(u)du

)
.

Moreover, the first and second vertical derivatives are explicitly computed

as:

∇ωF (t, ω) =
n−k∑
j=1

∫
· · ·
∫
∂k+jH (ω(t1), . . . , ω(tk), ω(t)ey1 , . . . , ω(t)eyn−k̄) eyj

n−k∏
i=1

vi(0)dyi,

(4.47)

∇2
ωF (t, ω) =

n−k∑
i,j=1

∫
· · ·
∫
∂k+i,k+jH (ω(t1), . . . , ω(tk), ω(t)ey1 , . . . , ω(t)eyn−k̄) eyi+yj

n−k∏
l=1

vl(0)dyl,

(4.48)

where k ≡ k(n, t) := max{i ∈ {1, . . . , n} : ti < t}.

4.7.2 Robust hedging for Asian options

Asian options, which are options on the average price computed across

a certain fixing period, are commonly traded in currency and commodities

markets. The payoff of Asian options depends on an average of prices during

the lifetime of the option, which can be of two types: an arithmetic average

MA(T ) =

∫ T

0

S(u)µ(du),

or a geometric average

MG(T ) =

∫ T

0

logS(u)µ(du).

We consider Asian call options with date of maturity T , whose payoff is given

by a continuous functional on (D([0, T ],R), ‖·‖∞):

HA(ST ) = (MA(T )−K)+ =: ΨA(S(T ),MA(T )) arithmetic Asian call,

HG(ST ) = (eM
G(T ) −K)+ =: ΨG(S(T ),MG(T )) geometric Asian call.

Various weighting schemes may be considered:
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• if µ(du) = δ{T}(du), we reduce to an European option, with strike price

K;

• if µ(du) = 1
T
1[0,T ](u)du, we have a fixed strike Asian option, with strike

price K;

• in the arithmetic case, if µ(du) = δ{T}(du)− 1
T
1[0,T ](u)du andK = 0, we

have a floating strike Asian option; the geometric floating strike Asian

call has instead payoff (S(T )− eMG(T ))+ with µ(du) = 1
T
1[0,T ](u)du.

Here, we consider the hedging strategies for fixed strike Asian options, first in

a Black-Scholes pricing model, where the volatility is a deterministic function

of time, then in a model with path-dependent volatility, the Hobson-Rogers

model introduced in Section 4.6. First, we show that these models admit a

smooth pricing functional. Then, we show that the assumptions of Proposi-

tion 4.5 are satisfied, which leads to robustness of the hedging strategy.

Black-Scholes delta-hedging for Asian options

In the Black-Scholes model, the value functional of such options can be

computed in terms of a standard function of three variables (see e.g. [86,

Section 7.6]). In the arithmetic case: for all (t, ω) ∈ WT ,

F (t, ω) = f(t, ω(t), a(t, ω)), a(t, ω) =

∫ t

0

ω(s)ds, (4.49)

where f ∈ C1,2,2([0.T ) × R+ × R+) ∩ C([0.T ] × R+ × R+) is the solution of

the following Cauchy problem with final datum:
σ2(t)x2

2
∂xxf(t, x, a) + x∂af(t, x, a) + ∂tf(t, x, a) = 0, t ∈ [0, T ), a, x ∈ R+

f(T, x, a) = ΨA
(
x, a

T

)
.

(4.50)

Different parametrizations were suggested in order to facilitate the computa-

tion of the solution, which is however not in a closed form. For example, [37]

shows a different characterization which improves the numerical discretiza-

tion of the problem, while [92] reduces the pricing issue to the solution of a
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parabolic PDE in two variable, thus decreasing the dimension of the problem,

as done in [61] for the case of a floating-strike Asian option.

In the geometric case: for all (t, ω) ∈ WT ,

F (t, ω) = f(t, ω(t), g(t, ω)), g(t, ω) =

∫ t

0

logω(s)ds, (4.51)

where f ∈ C1,2,2([0.T )× R+ × R) ∩ C([0.T ]× R+ × R) is the solution of the

following Cauchy problem with final datum: for t ∈ [0, T ), x ∈ R+, g ∈ R,
σ2(t)x2

2
∂xxf(t, x, g) + log x∂gf(t, x, g) + ∂tf(t, x, g) = 0,

f(T, x, g) = ΨG
(
x, g

T

)
.

(4.52)

As in the arithmetic case, the dimension of the problem (4.52) can be reduced

to two by a change of variable. Moreover, in this case, it is possible to obtain

a Kolmogorov equation associated to a degenerate parabolic operator that

has a Gaussian fundamental solution.

We remark that the pricing PDEs (4.50),(4.52) are both equivalent to the

functional partial differential equation (4.27) for F defined respectively by

(4.49) and (4.51). Indeed, computing the horizontal and vertical derivatives

of F yields

DF (t, ω) = ∂tf(t, ω(t), a(t, ω)) + ω(t)∂af(t, ω(t), a(t, ω)),

∇ωF (t, ω) = ∂xf(t, ω(t), a(t, ω)), ∇2
ωF (t, ω) = ∂xxf(t, ω(t), a(t, ω))

for the arithmetic case, and

DF (t, ω) = ∂tf(t, ω(t), g(t, ω)) + logω(t)∂gf(t, ω(t), g(t, ω)),

∇ωF (t, ω) = ∂xf(t, ω(t), g(t, ω)), ∇2
ωF (t, ω) = ∂xxf(t, ω(t), g(t, ω))

for the geometric case.

Thus, the standard pricing problems for the arithmetic and geometric

Asian call options turn out to be particular cases of Proposition 3.9, with

A = σ2ω2. In particular, the delta-hedging strategy is given by

φ(t, ω) = ∇ωF (t, ω) = ∂xf(t, ω(t), a(t, ω)) (arithmetic), or

= ∂xf(t, ω(t), g(t, ω)) (geometric).

The following claim is an application of Proposition 4.5.
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Corollary 4.1. If the Black-Scholes volatility term structure over-estimates

the realized market volatility, i.e.

σ(t) ≥ σmkt(t, ω) ∀ω ∈ A ∩ supp(S,P)

then the Black-Scholes delta hedges for the Asian options with payoff func-

tionals

HA(ST ) = ( 1
T

∫ T
0
S(t)dt−K)+ arithmetic Asian call,

HG(ST ) = (e
1
T

∫ T
0 logS(t)dt −K)+ geometric Asian call,

are robust on A ∩ supp(S,P). Moreover, the hedging error at maturity is

given by

1

2

∫ T

0

(
σ(t)2 − σmkt(t, ω)2

)
ω2(t)

∂2

∂x2
fdt,

where f stays for, respectively, f(t, ω(t), a(t, ω)) solving the Cauchy problem

(4.50), and f(t, ω(t), g(t, ω)) solving the Cauchy problem (4.52).

Let us emphasize again that the hedger’s profit-and-loss depends explic-

itly on the Gamma of the option and on the distance of the Black-Scholes

volatility from the realized volatility during the lifetime of the contract.

Proof. The integrability of HA, HG in (Ω,P) follows from the Feynman-Kac

representation of the solution of the Cauchy problems with final datum (4.50),

(4.52).

By the functional representation in (4.49), respectively (4.51), the pric-

ing functional F is smooth, i.e. it satisfies (4.23). If the assumptions of

Proposition 4.5 are satisfied, we can thus apply Proposition 4.2 to prove the

robustness property. We have to check the convexity of the map vH(·; t, ω)

in (4.41) for all (t, ω) ∈ [0, T ] × Q(Ω,Π). Concerning the arithmetic Asian
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call option, we have:

vH
A

(e; t, ω) = HA
(
ω(1 + e1[t,T ])

)
=

(
1

T

(∫ t

0

ω(u)du+

∫ T

t

ω(u)(1 + e)

)
−K

)+

=
(
m(T ) +

e

T
(a(T )− a(t))−K

)+

=
a(T )− a(t)

T
(e−K ′)+

,

where m(T ) = 1
T
a(T ) and K ′ = KT−a(T )

a(T )−a(t)
, which is clearly convex in e.

As for the geometric Asian call option, we have:

vH
G

(e; t, ω) = HG
(
ω(1 + e1[t,T ])

)
=
(
e

1
T

∫ t
0 logω(u)due

1
T

∫ T
t log(ω(u)(1+e))du −K

)+

which is a convex function in e around 0, since ω is bounded away from 0 on

[0, T ]. Indeed: e 7→
∫ T
t

log(ω(u)(1+e))du is convex since it is the integral in u

of a function of (u, e) which is convex in e by preservation of convexity under

affine transformation; then e 7→ e
1
T

∫ T
t log(ω(u)(1+e))du is convex because it is

the composition of a convex increasing function and a convex function.

Remark 4.19. The robustness of the Black-Scholes-delta hedging for the

arithmetic Asian option is in fact a direct consequence of Proposition 4.2.

Indeed, in the Black-Scholes framework, the Gamma of an Asian call option

is non-negative, as it has been shown for different closed-form analytic ap-

proximations found in the literature. An example can be seen in [76], where

the density of the arithmetic mean is approximated by a reciprocal gamma

distribution which is the limit distribution of an infinite sum of correlated

log-normal random variables. This already implies the condition (4.42).

Hobson-Rogers delta-hedging for Asian optionsmodel

We have already shown in Section 4.6 that the Hobson-Rogers model ad-

mits a smooth pricing functional for suitable non-path-dependent payoffs.
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Di Francesco and Pascucci [33] proved that also the problem of pricing and

hedging a geometric Asian option can be similarly reduced to a degenerate

PDE belonging to the class of Kolmogorov equations, for which a classical so-

lution exists. In this case, the pricing functional can be written as a function

of four variables

F (t, ω) = u(T − t, logω(t), logω(t)− o(t, ω), g(t, ω)), (4.53)

where u is the classical solution of the following Cauchy problem on [0, T ]×
R× R× R:1

2
σn(x1 − x2)2(∂x1x1u− ∂x1u) + λ(x1 − x2)∂x2u+ x1∂x3u− ∂tu = 0,

u(0, x1, x2, x3) = ΨG(ex1 , x3

T
).

(4.54)

The following claim is the analogous of Corollary 4.1 for the Hobson-

Rogers model; the proof is omitted because it follows exactly the same argu-

ments as the proof of Corollary 4.1.

Corollary 4.2. If the Hobson-Roger volatility in (4.44) over-estimates the

realized market volatility, i.e.

σ(t, ω) = σn(o(t, ω)) ≥ σmkt(t, ω) ∀ω ∈ A ∩ supp(S,P)

then the Hobson-Rogers delta hedge for the geometric Asian option with pay-

off functional

HG(ST ) = (e
1
T

∫ T
0 logS(t)dt −K)+

is robust on A∩ supp(S,P). Moreover, the hedging error at maturity is given

by

1

2

∫ T

0

(
σn(o(t, ω))2 − σmkt(t, ω)2

)
ω2(t)

∂2

∂x2
u(T−t, logω(t), logω(t)−o(t, ω), g(t, ω))dt,

where u is the solution of the Cauchy problem (4.54).
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4.7.3 Dynamic hedging of barrier options

Barrier options are examples of path-dependent derivatives for which

delta-hedging strategies are not robust.

Consider the case of an up-and-out barrier call option with strike price

K and barrier U , whose payoff functional is

H(ST ) = (S(T )−K)+1{S(T )<U}. (4.55)

The pricing functional of a barrier option is determined by regular solutions

of classical Dirichlet problems, opportunely stopped at the barrier hitting

times. The pricing functional for the claim with payoff (4.55) is given, at

time t ∈ [0, T ], by

F (t, ω) = f(t ∧ τU(ω), ω(t ∧ τU(ω))),

where τU(ω) := inf{t ≥ 0 : ω(t) ∈ [U,+∞)} and f is the C1,2([0, T )×(0, U))∩
C([0, T ]× (0, U)) solution of the following Dirichlet problem:

1
2
σ2(t)x2∂xxf(t, x) + ∂tf(t, x) = 0, (t, x) ∈ [0, T )× (0, U),

f(t, U) = 0, t ∈ [0, T ],

f(T, x) = H(x), x ∈ (0, U).

(4.56)

The delta-hedging strategy is then given by

φ(t, ω) = ∂xf(t, ω(t))1[0,τU (ω))(t).

Analogously to the application in Section 4.7.2, we can compute the hedging

error of the delta hedge for the barrier option. However, unlike for Asian

options, the delta hedge for barrier options fails to have the robustness prop-

erty, because the price collapses at t = τU , disrupting the positivity of the

Gamma. On the other end, the Gamma of barrier options can be quite large

in magnitude, so it is crucial to have a good estimate of volatility, in order

to keep the hedging error as small as possible.

Remark 4.20. Let H be the payoff functional of the up-and-out barrier call

option with strike price K and barrier U in (4.55). Then the Black-Scholes
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delta hedge for H is not robust to volatility mis-specifications. Any mismatch

between the model volatility σ and the realized volatility σmkt is amplified by

the Gamma of the option as the barrier is approached and the resulting error

can have an arbitrary sign due to the non-constant sign of the option Gamma

near the barrier.

The assumptions of Proposition 4.5 are not satisfied, indeed: for any

(t, ω) ∈ [0, T ]× C([0, T ],R+),

vH(e; t, ω) = (ω(T ) + ω(T )e−K)+1(0,U)

(
sup
s∈[0,T ]

(
ω(s)(1 + e1[t,T ](s))

))

= ω(T )

(
e− K − ω(T )

ω(T )

)+

1(0,U)(γ(e))

= ω(T )

(
e− K − ω(T )

ω(T )

)+

1{γ−1((0,U))}(e)

where γ : R→ R+,

γ(e) := sup
s∈[0,T ]

(
ω(s)(1 + e1[t,T ](s))

)
= max

{
ω(t), (1 + e) sup

s∈[t,T ]

ω(s))

}

= sup
s∈[t,T ]

ω(s)

(
e−

ω(t)− sups∈[t,T ] ω(s)

sups∈[t,T ] ω(s)

)+

+ ω(t).

γ−1(A) denote the counter-image of A ⊂ R+ via γ, and ω(t) := sups∈[0,t] ω(s).

Since γ is a positive non-decreasing continuous function, we have

γ−1((0, U)) =

∅, if U ≤ ω(t)(
−∞, U−sups∈[t,T ] ω(s)

sups∈[t,T ] ω(s)

)
, otherwise.

Thus, there exist an interval I ⊂ R, 0 ∈ I, such that vH(·; t, ω) : I → R is

convex if and only if U > sups∈[t,T ] ω(s). However, Proposition 4.5 requires

the map vH(·; t, ω) to be convex for all ω ∈ supp(S,P) in order to imply

vertical convex of the value functional.

Thus, we observe that unlike the case of Asian options, delta-hedging

strategies do not provide a robust approach to the hedging of barrier options.



Chapter 5

Adjoint expansions in local

Lévy models

This chapter is based on a joint work with Stefano Pagliarani and Andrea

Pascucci, published in 2013 [82].

Analytical approximations and their applications to finance have been

studied by several authors in the last decades because of their great impor-

tance in the calibration and risk management processes. The large body of

the existing literature (see, for instance, [53], [59], [107], [52], [7], [25], [17])

is mainly devoted to purely diffusive (local and stochastic volatility) models

or, as in [6] and [111], to local volatility (LV) models with Poisson jumps,

which can be approximated by Gaussian kernels.

The classical result by Hagan [53] is a particular case of our expansion, in

the sense that for a standard LV model with time-homogeneous coefficients

our formulae reduce to Hagan’s ones (see Section 5.2.1). While Hagan’s

results are heuristic, here we also provide explicit error estimates for time-

dependent coefficients as well.

The results of Section 5.2 on the approximation of the transition density

for jump-diffusions are essentially analogous to the results in [6]: however in

[6] ad-hoc Malliavin techniques for LV models with Merton jumps are used

and only a first order expansion is derived. Here we use different techniques

137
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(PDE and Fourier methods) which allows to handle the much more general

class of local Lévy processes: this is a very significant difference from previous

research. Moreover we derive higher order approximations, up to the 4th

order.

Our approach is also more general than the so-called “parametrix” meth-

ods recently proposed in [25] and [17] as an approximation method in finance.

The parametrix method is based on repeated application of Duhamel’s prin-

ciple which leads to a recursive integral representation of the fundamental

solution: the main problem with the parametrix approach is that, even in the

simplest case of a LV model, it is hard to compute explicitly the parametrix

approximations of order greater than one. As a matter of fact, [25] and [17]

only contain first order formulae. The adjoint expansion method contains

the parametrix approximation as a particular case, that is at order zero and

in the purely diffusive case. However the general construction of the adjoint

expansion is substantially different and allows us to find explicit higher-order

formulae for the general class of local Lévy processes.

5.1 General framework

In a local Lévy model, we assume that the log-price process X of the

underlying asset of interest solves the SDE

dX(t) = µ(t,X(t−))dt+ σ(t,X(t))dW (t) + dJ(t). (5.1)

In (5.1), W is a standard real Brownian motion on a filtered probability

space (Ω,F , (Ft)0≤t≤T ,P) with the usual assumptions on the filtration and J

is a pure-jump Lévy process, independent of W , with Lévy triplet (µ1, 0, ν).

In order to guarantee the martingale property for the discounted asset price

S̃(t) := S0e
X(t)−rt, we set

µ(t, x) = r̄ − µ1 −
σ2(t, x)

2
, (5.2)

where

r̄ = r −
∫
R

(
ey − 1− y1{|y|<1}

)
ν(dy). (5.3)
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We denote by

X t,x : T 7→ X t,x(T )

the solution of (5.1) starting from x at time t and by

ϕXt,x(T )(ξ) = E
[
eiξX

t,x(T )
]
, ξ ∈ R,

the characteristic function of X t,x(T ). Provided that X t,x(T ) has density

Γ(t, x;T, ·), then its characteristic function is equal to

ϕXt,x(T )(ξ) =

∫
R
eiξyΓ(t, x;T, y)dy.

Notice that Γ(t, x;T, y) is the fundamental solution of the Kolmogorov oper-

ator

Lu(t, x) =
σ2(t, x)

2
(∂xx − ∂x)u(t, x) + r̄∂xu(t, x) + ∂tu(t, x)

+

∫
R

(
u(t, x+ y)− u(t, x)− ∂xu(t, x)y1{|y|<1}

)
ν(dy).

(5.4)

Example 5.1. Let J be a compound Poisson process with Gaussian jumps,

that is

J(t) =

N(t)∑
n=1

Zn

where N(t) is a Poisson process with intensity λ and Zn are i.i.d. random

variables independent of N(t) with Normal distribution Nm,δ2. In this case,

ν = λNm,δ2 and

µ1 =

∫
|y|<1

yν(dy).

Therefore the drift condition (5.2) reduces to

µ(t, x) = r0 −
σ2(t, x)

2
, (5.5)

where

r0 = r −
∫
R

(ey − 1) ν(dy) = r − λ
(
em+ δ2

2 − 1
)
. (5.6)

Moreover, the characteristic operator can be written in the equivalent form

Lu(t, x) =
σ2(t, x)

2
(∂xx − ∂x)u(t, x) + r0∂xu(t, x) + ∂tu(t, x)

+

∫
R

(u(t, x+ y)− u(t, x)) ν(dy).
(5.7)
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Example 5.2. Let J be a Variance-Gamma process (cf. [72]) obtained by

subordinating a Brownian motion with drift θ and standard deviation %, by

a Gamma process with variance κ and unitary mean. In this case the Lévy

measure is given by

ν(dx) =
e−λ1x

κx
1{x>0}dx+

eλ2x

κ|x|
1{x<0}dx (5.8)

where

λ1 =

(√
θ2κ2

4
+
%2κ

2
+
θκ

2

)−1

, λ2 =

(√
θ2κ2

4
+
%2κ

2
− θκ

2

)−1

.

The risk-neutral drift in (5.1) is equal to

µ(t, x) = r0 −
σ2(t, x)

2

where

r0 = r +
1

κ
log
(
1− λ−1

1

) (
1 + λ−1

2

)
= r +

1

κ
log

(
1− κ

(
θ +

%2

2

))
, (5.9)

and the expression of the characteristic operator L is the same as in (5.7)

with ν and r0 as in (5.8) and (5.9) respectively.

Our goal is to give an accurate analytic approximation of the characteris-

tic function and, when possible, of the transition density of X. The general

idea is to consider an approximation of the volatility coefficient σ. More

precisely, to shorten notations we set

a(t, x) = σ2(t, x) (5.10)

and we assume that a is regular enough: more precisely, for a fixed N ∈ N,

we make the following

Assumption AN . The function a = a(t, x) is continuously differentiable

with respect to x up to order N . Moreover, the function a and its derivatives

in x are bounded and Lipschitz continuous in x, uniformly with respect to t.
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Next, we fix a basepoint x̄ ∈ R and consider the N th-order Taylor poly-

nomial of a(t, x) about x̄:

α0(t) + 2
N∑
n=1

αn(t)(x− x̄)n,

where α0(t) = a(t, x̄) and

αn(t) =
1

2

∂nxa(t, x̄)

n!
, n ≤ N. (5.11)

Then we introduce the nth-order approximation of L:

Ln := L0 +
n∑
k=1

αk(t)(x− x̄)k (∂xx − ∂x) , n ≤ N, (5.12)

where

L0u(t, x) =
α0(t)

2
(∂xxu(t, x)− ∂xu(t, x)) + r̄∂xu(t, x) + ∂tu(t, x)

+

∫
R

(
u(t, x+ y)− u(t, x)− ∂xu(t, x)y1{|y|<1}

)
ν(dy).

(5.13)

Following the perturbation method proposed in [81], and also recently used

in [48] for the approximation of Asian options, the nth-order approximation

of the fundamental solution Γ of L is defined by

Γn(t, x;T, y) :=
n∑
k=0

Gk(t, x;T, y), t < T, x, y ∈ R. (5.14)

The leading term G0 of the expansion in (5.14) is the fundamental solution

of L0 and, for any (T, y) ∈ R+ × R and k ≤ N , the functions Gk(·, ·;T, y)

are defined recursively in terms of the solutions of the following sequence of

Cauchy problems on the strip ]0, T [×R:
L0G

k(t, x;T, y) = −
k∑

h=1

(Lh − Lh−1)Gk−h(t, x;T, y)

= −
k∑

h=1

αh(t)(x− x̄)h (∂xx − ∂x)Gk−h(t, x;T, y),

Gk(T, x;T, y) = 0.

(5.15)
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In the sequel, when we want to specify explicitly the dependence of the

approximation Γn on the basepoint x̄, we shall use the notation

Γx̄,n(t, x;T, y) ≡ Γn(t, x;T, y). (5.16)

In Section 5.2 we show that, in the case of a LV model with Gaussian

jumps, it is possible to find the explicit solutions to the problems (5.15) by

an iterative argument. When general Lévy jumps are considered, it is still

possible to compute the explicit solution of problems (5.15) in the Fourier

space. Indeed, in Section 5.3, we get an expansion of the characteristic func-

tion ϕXt,x(T ) having as leading term the characteristic function of the process

whose Kolmogorov operator is L0 in (5.13).

We explicitly notice that, if the function σ only depends on time, then

the approximation in (5.14) is exact at order zero.

We now provide global error estimates for the approximation in the purely

diffusive case. The proof is postponed to the Appendix (Section 5.5).

Theorem 5.3. Assume the parabolicity condition

m ≤ a(t, x)

2
≤M, (t, x) ∈ [0, T ]× R, (5.17)

where m,M are positive constants and let x̄ = x or x̄ = y in (5.16). Under

Assumption AN+1, for any ε > 0 we have∣∣Γ(t, x;T, y)− Γx̄,N(t, x;T, y)
∣∣ ≤ gN(T − t)Γ̄M+ε(t, x;T, y), (5.18)

for x, y ∈ R and t ∈ [0, T [, where Γ̄M is the Gaussian fundamental solution

of the heat operator

M∂xx + ∂t,

and gN(s) = O
(
s
N+1

2

)
as s→ 0+.

Theorem 5.3 improves some known results in the literature. In particular

in [7] asymptotic estimates for option prices in terms of (T−t)N+1
2 are proved

under a stronger assumption on the regularity of the coefficients, equivalent

to Assumption A3N+2. Here we provide error estimates for the transition
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density: error bounds for option prices can be easily derived from (5.18).

Moreover, for small N it is not difficult to find the explicit expression of gN .

Estimate (5.18) also justifies a time-splitting procedure which nicely adapts

to our approximation operators, as shown in detail in Remark 2.7 in [81].

5.2 LV models with Gaussian jumps

In this section we consider the SDE (5.1) with J as in Example 5.1,

namely J is a compound Poisson process with Gaussian jumps. Clearly, in

the particular case of a constant diffusion coefficient σ(t, x) ≡ σ, we have the

classical Merton jump-diffusion model [75]:

XMerton(t) =

(
r0 −

σ2

2

)
t+ σW (t) + J(t),

with r0 as in (5.6). We recall that the analytical approximation of this kind

of models has been recently studied by Benhamou, Gobet and Miri in [6] by

Malliavin calculus techniques.

The expression of the pricing operator L was given in (5.7) and in this

case the leading term of the approximation (cf. (5.13)) is equal to

L0v(t, x) =
α0(t)

2
(∂xxv(t, x)− ∂xv(t, x)) + r0∂xv(t, x)

+ ∂tv(t, x) +

∫
R

(v(t, x+ y)− v(t, x)) ν(dy).
(5.19)

The fundamental solution of L0 is the transition density of a Merton process,

that is

G0(t, x;T, y) = e−λ(T−t)
+∞∑
n=0

(λ(T − t))n

n!
Γn(t, x;T, y), (5.20)

where

Γn(t, x;T, y) =
1√

2π (A(t, T ) + nδ2)
e
−

(x−y+(T−t)r0−
1
2A(t,T )+nm)

2

2(A(t,T )+nδ2) ,

A(t, T ) =

∫ T

t

α0(s)ds.

(5.21)
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In order to determine the explicit solution to problems (5.15) for k ≥ 1,

we use some elementary properties of the functions (Γn)n≥0. The following

lemma can be proved as Lemma 2.2 in [81].

Lemma 5.4. For any x, y, x̄ ∈ R, t < s < T and n, k ∈ N0, we have

Γn+k(t, x;T, y) =

∫
R

Γn(t, x; s, η)Γk(s, η;T, y)dη, (5.22)

∂kyΓn(t, x;T, y) = (−1)k∂kxΓn(t, x;T, y), (5.23)

(y − x̄)kΓn(t, x;T, y) =V k
t,T,x,nΓn(t, x;T, y), (5.24)

where Vt,T,x,n is the operator defined by

Vt,T,x,nf(x) =

(
x− x̄+ (T − t)r0 −

1

2
A(t, T ) + nm

)
f(x)

+
(
A(t, T ) + nδ2

)
∂xf(x).

(5.25)

Our first results are the following first and second order expansions of the

transition density Γ.

Theorem 5.5 (1st order expansion). The solution G1 of the Cauchy problem

(5.15) with k = 1 is given by

G1(t, x;T, y) =
+∞∑
n,k=0

J1
n,k(t, T, x)Γn+k(t, x;T, y). (5.26)

where J1
n,k(t, T, x) is the differential operator defined by

J1
n,k(t, T, x) = e−λ(T−t)λ

n+k

n!k!

∫ T

t

α1(s)(s− t)n(T − s)kVt,s,x,nds (∂xx − ∂x).

(5.27)

Proof. By the standard representation formula for solutions to the non-

homogeneous parabolic Cauchy problem (5.15) with null final condition, we

have

G1(t, x;T, y) =

∫ T

t

∫
R
G0(t, x; s, η)α1(s)(η − x̄)·

· (∂ηη − ∂η)G0(s, η;T, y)dηds =
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(by (5.24))

=
+∞∑
n=0

λn

n!

∫ T

t

α1(s)e−λ(s−t)(s− t)n·

· Vt,s,x,n
∫
R

Γn(t, x; s, η)(∂ηη − ∂η)G0(s, η;T, y)dηds =

(by parts)

= e−λ(T−t)
+∞∑
n,k=0

λn+k

n!k!

∫ T

t

α1(s)(T − s)k(s− t)n·

· Vt,s,x,n
∫
R
(∂ηη + ∂η)Γn(t, x; s, η)Γk(s, η;T, y)dηds =

(by (5.23) and (5.22))

= e−λ(T−t)
∞∑

n,k=0

λn+k

n!k!

∫ T

t

α1(s)(T − s)k(s− t)nVt,s,x,nds·

· (∂xx − ∂x)Γn+k(t, x;T, y)

and this proves (5.26)-(5.27).

Remark 5.6. A straightforward but tedious computation shows that the op-

erator J1
n,k(t, T, x) can be rewritten in the more convenient form

J1
n,k(t, T, x) =

3∑
i=1

1∑
j=0

f 1
n,k,i,j(t, T )(x− x̄)j∂ix, (5.28)

for some deterministic functions f 1
n,k,i,j.

Theorem 5.7 (2nd order expansion). The solution G2 of the Cauchy problem

(5.15) with k = 2 is given by

G2(t, x;T, y) =
+∞∑

n,h,k=0

J2,1
n,h,k(t, T, x)Γn+h+k(t, x;T, y)

+
∞∑

n,k=0

J2,2
n,k(t, T, x)Γn+k(t, x;T, y), (5.29)
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where

J2,1
n,h,k(t, T, x) =

λn

n!

∫ T

t

α1(s)e−λ(s−t)(s− t)nVt,s,x,n(∂xx − ∂x)J̃1
n,h,k(t, s, T, x)ds

J2,2
n,k(t, T, x) = e−λ(T−t)λ

n+k

n!k!

∫ T

t

α2(s)(s− t)n(T − s)kV 2
t,s,x,nds (∂xx − ∂x)

and J̃1
n,h,k is the “adjoint” operator of J1

h,k, defined by

J̃1
n,h,k(t, s, T, x) =

3∑
i=1

1∑
j=0

f 1
h,k,i,j(s, T )V j

t,s,x,n∂
i
x (5.30)

with f 1
h,k,i,j as in (5.28). Also in this case we have the alternative represen-

tation

J2,1
n,h,k(t, T, x) =

6∑
i=1

2∑
j=0

f 2,1
n,h,k,i,j(t, T )(x− x̄)j∂ix (5.31)

J2,2
n,k(t, T, x) =

6∑
i=1

2∑
j=0

f 2,2
n,k,i,j(t, T )(x− x̄)j∂ix, (5.32)

with f 2,1
n,h,k,i,j and f 2,2

n,k,i,j deterministic functions.

Proof. We show a preliminary result: from formulae (5.28) and (5.30) for J1

and J̃1 respectively, it follows that∫
R

Γn(t, x; s, η)J1
h,k(s, T, η)Γh+k(s, η;T, y)dη =

(by (5.23) and (5.24))

=

∫
R
J̃1
n,h,k(s, T, x)Γn(t, x; s, η)Γh+k(s, η;T, y)dη

= J̃1
n,h,k(s, T, x)

∫
R

Γn(t, x; s, η)Γh+k(s, η;T, y)dη =

(by (5.22))

= J̃1
n,h,k(s, T, x)Γn+h+k(x, t;T, y). (5.33)



5.2. LV models with Gaussian jumps 147

Now we have

G2(t, x;T, y) = I1 + I2,

where, proceeding as before,

I1 =

∫ T

t

∫
R
G0(t, x; s, η)α1(s)(η − x̄)(∂ηη − ∂η)G1(s, η;T, y)dηds

=
+∞∑

n,h,k=0

λn

n!

∫ T

t

α1(s)e−λ(s−t)(s− t)n·

· Vt,s,x,n
∫
R

Γn(t, x; s, η)(∂ηη − ∂η)J1
h,k(s, T, η)Γh+k(s, η;T, y)dηds

=
+∞∑

n,h,k=0

λn

n!

∫ T

t

α1(s)e−λ(s−t)(s− t)n·

· Vt,s,x,n(∂xx − ∂x)
∫
R

Γn(t, x; s, η)J1
h,k(s, T, η)Γh+k(s, η;T, y)dηds =

(by (5.33))

=
+∞∑

n,h,k=0

λn

n!

∫ T

t

α1(s)e−λ(s−t)(s− t)nVt,s,x,n(∂xx − ∂x)J̃1
n,h,k(s, T, x)ds·

· Γn+h+k(x, t;T, y)

=
+∞∑

n,h,k=0

J2,1
n,h,k(t, T, x)Γn+h+k(t, x;T, y)

and

I2 =

∫ T

t

∫
R
G0(t, x; s, η)α2(s)(η − x̄)2(∂ηη − ∂η)G0(s, η;T, y)dηds

= e−λ(T−t)
+∞∑
n,k=0

λn+k

n!k!

∫ T

t

α2(s)(T − s)k(s− t)n·

· V 2
t,s,x,n

∫
R

Γn(t, x; s, η)(∂ηη − ∂η)Γk(s, η;T, y)dηds

= e−λ(T−t)
+∞∑
n,k=0

λn+k

n!k!

∫ T

t

α2(s)(T − s)k(s− t)n·

· V 2
t,s,x,n(∂xx − ∂x)

∫
R

Γn(t, x; s, η)Γk(s, η;T, y)dηds
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= e−λ(T−t)
+∞∑
n,k=0

λn+k

n!k!

∫ T

t

α2(s)(T − s)k(s− t)n·

· V 2
t,s,x,nds (∂xx − ∂x)Γn+k(t, x;T, y)

=
+∞∑
n,k=0

J2,2
n,k(t, T, x)Γn+k(t, x;T, y).

This concludes the proof.

Remark 5.8. Since the derivatives of a Gaussian density can be expressed in

terms of Hermite polynomials, the computation of the terms of the expansion

(5.14) is very fast. Indeed, we have

∂ixΓn(t, x;T, y)

Γn(t, x;T, y)
=

(−1)ihi,n(t, T, x− y)

(2 (A(t, T ) + nδ2))
i
2

where

hi,n(t, T, z) = Hi

(
z + (T − t)µ0 − 1

2
A(t, T ) + nm√

2 (A(t, T ) + nδ2)

)
and Hi = Hi(x) denotes the Hermite polynomial of degree i. Thus we can

rewrite the terms
(
Gk
)
k=1,2

in (5.26) and (5.29) as follows:

G1(t, x;T, y) =
∞∑

n,k=0

G1
n,k(t, x;T, y)Γn+k(t, x;T, y)

G2(t, x;T, y) =
∞∑

n,h,k=0

G2,1
n,h,k(t, x;T, y)Γn+h+k(t, x;T, y)

+
∞∑

n,k=0

G2,2
n,k(t, x;T, y)Γn+k(t, x;T, y),

(5.34)

where

G1
n,k(t, x;T, y) =

3∑
i=1

(−1)i
1∑
j=0

f 1
n,k,i,j(t, T )(x− x̄)j

hi,n+k(t, T, x− y)

(2 (A(t, T ) + (n+ k)δ2))
i
2

G2,1
n,h,k(t, x;T, y) =

6∑
i=1

(−1)i
1∑
j=0

f 2,1
n,h,k,i,j(t, T )(x− x̄)j

hi,n+h+k(t, T, x− y)

(2 (A(t, T ) + (n+ h+ k)δ2))
i
2
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G2,2
n,k(t, x;T, y) =

6∑
i=1

(−1)i
1∑
j=0

f 2,2
n,k,i,j(t, T )(x− x̄)j

hi,n+k(t, T, x− y)

(2 (A(t, T ) + (n+ k)δ2))
i
2

.

In the practical implementation, we truncate the series in (5.20) and (5.34)

to a finite number of terms, say M ∈ N ∪ {0}. Therefore we put

G0
M(t, x;T, y) = e−λ(T−t)

M∑
n=0

(λ(T − t))n

n!
Γn(t, x;T, y),

G1
M(t, x;T, y) =

M∑
n,k=0

G1
n,k(t, x;T, y)Γn+k(t, x;T, y),

G2
M(t, x;T, y) =

M∑
n,h,k=0

G2,1
n,h,k(t, x;T, y)Γn+h+k(t, x;T, y)

+
M∑

n,k=0

G2,2
n,k(t, x;T, y)Γn+k(t, x;T, y),

and we approximate the density Γ by

Γ2
M(t, x;T, y) := G0

M(t, x;T, y) +G1
M(t, x;T, y) +G2

M(t, x;T, y). (5.35)

Next we denote by C(t, S(t)) the price at time t < T of a European option

with payoff function ϕ and maturity T ; for instance, ϕ(y) = (y −K)+ in the

case of a Call option with strike K. From the expansion of the density in

(5.35), we get the following second order approximation formula.

Remark 5.9. We have

C(t, S(t)) ≈ e−r(T−t)uM(t, logS(t))
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where

uM(t, x) =

∫
R+

1

S
Γ2
M(t, x;T, logS)ϕ(S)dS

= e−λ(T−t)
M∑
n=0

(λ(T − t))n

n!
CBSn(t, x)

+
M∑

n,k=0

(
J1
n,k(t, T, x) + J2,2

n,k(t, T, x)
)

CBSn+k(t, x)

+
M∑

n,h,k=0

J2,1
n,h,k(t, T, x)CBSn+h+k(t, x) (5.36)

and CBSn(t, x) is the BS price1 under the Gaussian law Γn(t, x;T, ·) in

(5.21), namely

CBSn(t, x) =

∫
R+

1

S
Γn(t, x;T, logS)ϕ(S)dS.

5.2.1 Simplified Fourier approach for LV models

Equation (5.1) with J = 0 reduces to the standard SDE of a LV model.

In this case we can simplify the proof of Theorems 5.5-5.7 by using Fourier

analysis methods. Let us first notice that L0 in (5.19) becomes

L0 =
α0(t)

2
(∂xx − ∂x) + r∂x + ∂t, (5.37)

and its fundamental solution is the Gaussian density

G0(t, x;T, y) =
1√

2πA(t, T )
e−

(x−y+(T−t)r− 1
2A(t,T ))

2

2A(t,T ) ,

with A as in (5.21).

Corollary 5.1 (1st order expansion). In case of λ = 0, the solution G1 in

(5.26) is given by

G1(t, x;T, y) = J1(t, T, x)G0(t, x;T, y) (5.38)

1Here the BS price is expressed as a function of the time t and of the log-asset x.
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where J1(t, T, x) is the differential operator

J1(t, T, x) =

∫ T

t

α1(s)Vt,s,xds (∂xx − ∂x), (5.39)

with Vt,s,x ≡ Vt,s,x,0 as in (5.25), that is

Vt,T,xf(x) =

(
x− x̄+ (T − t)r − 1

2
A(t, T )

)
f(x) + A(t, T )∂xf(x).

Proof. Although the result follows directly from Theorem 5.5, here we pro-

pose an alternative proof of formula (5.39). The idea is to determine the

solution of the Cauchy problem (5.15) in the Fourier space, where all the

computation can be carried out more easily; then, using the fact that the

leading term G0 of the expansion is a Gaussian kernel, we are able to com-

pute explicitly the inverse Fourier transform to get back to the analytic ap-

proximation of the transition density.

Since we aim at showing the main ideas of an alternative approach, for

simplicity we only consider the case of time-independent coefficients, precisely

we set α0 = 2 and r = 0. In this case we have

L0 = ∂xx − ∂x + ∂t

and the related Gaussian fundamental solution is equal to

G0(t, x;T, y) =
1√

4π(T − t)
e−

(x−y−(T−t))2
4(T−t) .

Now we apply the Fourier transform (in the variable x) to the Cauchy prob-

lem (5.15) with k = 1 and we get
∂tĜ

1(t, ξ;T, y) = (ξ2 − iξ) Ĝ1(t, ξ;T, y)

+α1(i∂ξ + x̄) (−ξ2 + iξ) Ĝ0(t, ξ;T, y),

Ĝ1(T, ξ;T, y) = 0, ξ ∈ R.

(5.40)

Notice that

Ĝ0(t, ξ;T, y) = e−ξ
2(T−t)+iξ(y+(T−t)). (5.41)
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Therefore the solution to the ordinary differential equation (5.40) is

Ĝ1(t, ξ;T, y) = −α1

∫ T

t

e(s−t)(−ξ2+iξ)(i∂ξ + x̄)
(

(−ξ2 + iξ)Ĝ0(s, ξ;T, y)
)
ds =

(using the identity f(ξ)(i∂ξ + x̄)(g(ξ)) = (i∂ξ + x̄)(f(ξ)g(ξ))− ig(ξ)∂ξf(ξ))

= −α1

∫ T

t

(i∂ξ + x̄)
(

(−ξ2 + iξ)e(s−t)(−ξ2+iξ)Ĝ0(s, ξ;T, y)
)
ds

+ iα1

∫ T

t

(−ξ2 + iξ)Ĝ0(s, ξ;T, y)∂ξe
(s−t)(−ξ2+iξ)ds =

(by (5.41))

= −α1

∫ T

t

(i∂ξ + x̄)
(

(−ξ2 + iξ)eiξ(y+(T−t))−ξ2(T−t)
)
ds

+ iα1

∫ T

t

(−ξ2 + iξ)(s− t)(−2ξ + i)eiξ(y+(T−t))−ξ2(T−t)ds =

(again by (5.41))

= −α1(T − t)(i∂ξ + x̄)
(

(−ξ2 + iξ)Ĝ0(t, ξ;T, y)
)

+ iα1
(T − t)2

2
(−ξ2 + iξ)(−2ξ + i)Ĝ0(t, ξ;T, y).

Thus, inverting the Fourier transform, we get

G1(t, x;T, y) = α1(T − t)(x− x̄)(∂2
x − ∂x)G0(t, x;T, y)+

− α1
(T − t)2

2
(−2∂3

x + 3∂2
x − ∂x)G0(t, x;T, y)

= α1

(
(T − t)2∂3

x +

(
(x− x̄)(T − t)− 3

2
(T − t)2

)
∂2
x+

+

(
−(x− x̄)(T − t) +

(T − t)2

2

)
∂x

)
G0(t, x;T, y),

where the operator acting on G0(t, x;T, y) is exactly the same as in (5.39).
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Remark 5.10. As in Remark 5.6, operator J1(t, T, x) can also be rewritten

in the form

J1(t, T, x) =
3∑
i=1

1∑
j=0

f 1
i,j(t, T )(x− x̄)j∂ix, (5.42)

where f 1
i,j are deterministic functions whose explicit expression can be easily

derived.

The previous argument can be used to prove the following second order

expansion.

Corollary 5.2 (2nd order expansion). In case of λ = 0, the solution G2 in

(5.29) is given by

G2(t, x;T, y) = J2(t, T, x)G0(t, x;T, y)

where

J2(t, T, x) =

∫ T

t

α1(s)Vt,s,x(∂xx − ∂x)J̃1(t, s, T, x)ds

+

∫ T

t

α2(s)V 2
t,s,xds (∂xx − ∂x)

(5.43)

and J̃1 is the “adjoint” operator of J1, defined by

J̃1(t, s, T, x) =
3∑
i=1

1∑
j=0

f 1
i,j(s, T )V j

t,s,x∂
i
x

with f 1
i,j as in (5.42).

Remark 5.11. In a standard LV model, the leading operator of the approx-

imation, i.e. L0 in (5.37), has a Gaussian density G0 and this allowed us

to use the inverse Fourier transform in order to get the approximated den-

sity. This approach does not work in the general case of models with jumps

because typically the explicit expression of the fundamental solution of an

integro-differential equation is not available. On the other hand, for several

Lévy processes used in finance, the characteristic function is known explicitly

even if the density is not. This suggests that the argument used in this section
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may be adapted to obtain an approximation of the characteristic function of

the process instead of its density. This is what we are going to investigate in

Section 5.3.

5.3 Local Lévy models

In this section, we provide an expansion of the characteristic function for

the local Lévy model (5.1). We denote by

Γ̂(t, x;T, ξ) = F (Γ(t, x;T, ·)) (ξ)

the Fourier transform, with respect to the second spatial variable, of the

transition density Γ(t, x;T, ·); clearly, Γ̂(t, x;T, ξ) is the characteristic func-

tion of X t,x(T ). Then, by applying the Fourier transform to the expansion

(5.14), we find

ϕXt,x(T )(ξ) ≈
n∑
k=0

Ĝk(t, x;T, ξ). (5.44)

Now we recall that Gk(t, x;T, y) is defined, as a function of the variables

(t, x), in terms of the sequence of Cauchy problems (5.15). Since the Fourier

transform in (5.44) is performed with respect to the variable y, in order

to take advantage of such a transformation it seems natural to characterize

Gk(t, x;T, y) as a solution of the adjoint operator in the dual variables (T, y).

To be more specific, we recall the definition of adjoint operator. Let L

be the operator in (5.4); then its adjoint operator L̃ satisfies (actually, it is

defined by) the identity∫
R2

u(t, x)Lv(t, x)dxdt =

∫
R2

v(t, x)L̃u(t, x)dxdt

for all u, v ∈ C∞0 . More explicitly, by recalling notation (5.10), we have

L̃(T,y)u(T, y) =
a(T, y)

2
∂yyu(T, y) + b(T, y)∂yu(T, y)

− ∂Tu(T, y) + c(T, y)u(T, y)

+

∫
R

(
u(T, y + z)− u(T, y)− z∂yu(T, y)1{|z|<1}

)
ν̄(dz),
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where

b(T, y) = ∂ya(T, y)−
(
r̄ − a(T, y)

2

)
, c(T, y) =

1

2
(∂yy + ∂y)a(T, y),

and ν̄ is the Lévy measure with reverted jumps, i.e. ν̄(dx) = ν(−dx). Here

the superscript in L̃(T,y) is indicative of the fact that the operator L̃ is acting

in the variables (T, y).

By a classical result (cf., for instance, [51]) the fundamental solution

Γ(t, x;T, y) of L is also a solution of L̃ in the dual variables, that is

L̃(T,y)Γ(t, x;T, y) = 0, t < T, x, y ∈ R. (5.45)

Going back to approximation (5.44), the idea is to consider the series of

the dual Cauchy problems of (5.15) in order to solve them by Fourier-

transforming in the variable y and finally get an approximation of ϕXt,x(T ).

For sake of simplicity, from now on we only consider the case of time-

independent coefficients: the general case can be treated in a completely

analogous way. First of all, we consider the integro-differential operator L0

in (5.13), which in this case becomes

L
(t,x)
0 u(t, x) =

α0

2
(∂xx − ∂x)u(t, x) + r̄∂xu(t, x) + ∂tu(t, x)

+

∫
R

(
u(t, x+ y)− u(t, x)− y∂xu(t, x)1{|y|<1}

)
ν(dy),

(5.46)

and its adjoint operator

L̃
(T,y)
0 u(T, y) =

α0

2
(∂yy + ∂y)u(T, y)− r̄∂yu(T, y)− ∂Tu(T, y)

+

∫
R

(
u(T, y + z)− u(T, y)− z∂yu(T, y)1{|z|<1}

)
ν̄(dz).

(5.47)

By (5.45), for any (t, x) ∈ R2, the fundamental solution G0(t, x;T, y) of L0

solves the dual Cauchy problemL̃
(T,y)
0 G0(t, x;T, y) = 0, T > t, y ∈ R,

G0(t, x; t, ·) = δx.
(5.48)
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It is remarkable that a similar result holds for the higher order terms of the

approximation (5.44). Indeed, let us denote by Ln the nth order approxima-

tion of L in (5.12):

Ln = L0 +
n∑
k=1

αk(x− x̄)k (∂xx − ∂x) (5.49)

Then we have the following result.

Theorem 5.12. For any k ≥ 1 and (t, x) ∈ R2, the function Gk(t, x; ·, ·) in

(5.15) is the solution of the following dual Cauchy problem on ]t,+∞[×R
L̃

(T,y)
0 Gk(t, x;T, y) = −

k∑
h=1

(
L̃

(T,y)
h − L̃(T,y)

h−1

)
Gk−h(t, x;T, y),

Gk(t, x; t, y) = 0, y ∈ R,
(5.50)

where

L̃
(T,y)
h − L̃(T,y)

h−1 = αh(y − x̄)h−2
(

(y − x̄)2∂yy + (y − x̄) (2h+ (y − x̄)) ∂y

+ h (h− 1 + y − x̄)
)
.

Proof. By the standard representation formula for the solutions of the back-

ward parabolic Cauchy problem (5.15), for k ≥ 1 we have

Gk(t, x;T, y) =
k∑

h=1

∫ T

t

∫
R
G0(t, x; s, η)M

(s,η)
h Gk−h(s, η;T, y)dηds, (5.51)

where to shorten notation we have set

M
(t,x)
h = L

(t,x)
h − L(t,x)

h−1 .

By (5.48) and since

M̃
(T,y)
h = L̃

(T,y)
h − L̃(T,y)

h−1 .

the assertion is equivalent to

Gk(t, x;T, y) =
k∑

h=1

∫ T

t

∫
R
G0(s, η;T, y)M̃

(s,η)
h Gk−h(t, x; s, η)dηds, (5.52)
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where here we have used the representation formula for the solutions of the

forward Cauchy problem (5.50) with k ≥ 1.

We proceed by induction and first prove (5.52) for k = 1. By (5.51) we

have

G1(t, x;T, y) =

∫ T

t

∫
R
G0(t, x; s, η)M

(s,η)
1 G0(s, η;T, y)dηds

=

∫ T

t

∫
R
G0(s, η;T, y)M̃

(s,η)
1 G0(t, x; s, η)dηds,

and this proves (5.52) for k = 1.

Next we assume that (5.52) holds for a generic k > 1 and we prove the

thesis for k + 1. Again, by (5.51) we have

Gk+1(t, x;T, y) =
k+1∑
j=1

∫ T

t

∫
R
G0(t, x; s, η)M

(s,η)
j Gk+1−j(s, η;T, y)dηds

=

∫ T

t

∫
R
G0(t, x; s, η)M

(s,η)
k+1 G

0(s, η;T, y)dηds

+
k∑
j=1

∫ T

t

∫
R
G0(t, x; s, η)M

(s,η)
j Gk+1−j(s, η;T, y)dηds =

(by the inductive hypothesis)

=

∫ T

t

∫
R
G0(t, x; s, η)M

(s,η)
k+1 G

0(s, η;T, y)dηds

+
k∑
j=1

∫ T

t

∫
R
G0(t, x; s, η)M

(s,η)
j ·

·
k+1−j∑
h=1

∫ T

s

∫
R
G0(τ, ζ;T, y)M̃

(τ,ζ)
h Gk+1−j−h(s, η; τ, ζ)dζdτdηds

=

∫ T

t

∫
R
G0(t, x; s, η)M

(s,η)
k+1 G

0(s, η;T, y)dsdη

+
k∑

h=1

k+1−h∑
j=1

∫ T

t

∫ τ

t

∫
R2

G0(t, x; s, η)G0(τ, ζ;T, y)·

·M (s,η)
j M̃

(τ,ζ)
h Gk+1−j−h(s, η; τ, ζ)dηdζdsdτ

=

∫ T

t

∫
R
G0(s, η;T, y)M̃

(s,η)
k+1 G

0(t, x; s, η)dsdη
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+
k∑

h=1

∫ T

t

∫
R
G0(τ, ζ;T, y)M̃

(τ,ζ)
h ·

·

(
k+1−h∑
j=1

∫ τ

t

∫
R
G0(t, x; s, η)M

(s,η)
j Gk+1−h−j(s, η; τ, ζ)dηds

)
dζdτ =

(again by (5.51))

=

∫ T

t

∫
R
G0(t, η;T, y)M̃

(s,η)
k+1 G

0(t, x; s, η)dsdη

+
k∑

h=1

∫ T

t

∫
R
G0(τ, ζ;T, y)M̃

(τ,ζ)
h Gk+1−h(t, x; τ, ζ)dζdτ

=
k+1∑
h=1

∫ T

t

∫
R
G0(τ, ζ;T, y)M̃

(τ,ζ)
h Gk+1−h(t, x; τ, ζ)dζdτ.

Next we solve problems (5.48)-(5.50) by applying the Fourier transform

in the variable y and using the identity

Fy
(
L̃

(T,y)
0 u(T, y)

)
(ξ) = ψ(ξ)û(T, ξ)− ∂T û(T, ξ), (5.53)

where

ψ(ξ) = −α0

2
(ξ2 + iξ) + ir̄ξ +

∫
R

(
eizξ − 1− izξ1{|z|<1}

)
ν(dz). (5.54)

We remark explicitly that ψ is the characteristic exponent of the Lévy process

dX0(t) =
(
r̄ − α0

2

)
dt+

√
α0dW (t) + dJ(t), (5.55)

whose Kolmogorov operator is L0 in (5.46). Then:

(i) from (5.48) we obtain the ordinary differential equation∂T Ĝ0(t, x;T, ξ) = ψ(ξ)Ĝ0(t, x;T, ξ), T > t,

Ĝ0(t, x; t, ξ) = eiξx.
(5.56)

with solution

Ĝ0(t, x;T, ξ) = eiξx+(T−t)ψ(ξ) (5.57)

which is the 0th order approximation of the characteristic function

ϕXt,x(T ).
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(ii) from (5.50) with k = 1, we have
∂T Ĝ

1(t, x;T, ξ) = ψ(ξ)Ĝ1(t, x;T, ξ)

+α1 ((i∂ξ + x̄)(ξ2 + iξ)− 2iξ + 1) Ĝ0(t, x;T, ξ)

Ĝ1(t, x; t, ξ) = 0,

with solution

Ĝ1(t, x;T, ξ) =

∫ T

t

eψ(ξ)(T−s)α1

(
(i∂ξ + x̄)(ξ2 + iξ)− 2iξ + 1

)
Ĝ0(t, x; s, ξ)ds =

(by (5.57))

= −eixξ+ψ(ξ)(T−t)α1

∫ T

t

(ξ2 + iξ) (x− x̄− i(s− t)ψ′(ξ)) ds

= −Ĝ0(t, x;T, ξ)α1(T − t)(ξ2 + iξ)

(
x− x̄− i

2
(T − t)ψ′(ξ)

)
, (5.58)

which is the first order term in the expansion (5.44).

(iii) regarding (5.50) with k = 2, a straightforward computation based on

analogous arguments shows that the second order term in the expansion

(5.44) is given by

Ĝ2(t, x;T, ξ) = Ĝ0(t, x;T, ξ)
2∑
j=0

gj(T − t, ξ)(x− x̄)j (5.59)

where

g0(s, ξ) =
1

2
s2α2ξ(i+ ξ)ψ′′(ξ)

− 1

6
s3ξ(i+ ξ)ψ′′(ξ)

(
α2

1(i+ 2ξ)− 2α2ψ
′′(ξ) + α2

1ξ(i+ ξ)
)

− 1

8
s4α2

1ξ
2(i+ ξ)2ψ′′(ξ)2,

g1(s, ξ) =
1

2
s2ξ(i+ ξ)

(
α2

1(1− 2iξ) + 2iα2ψ
′′(ξ)

)
− 1

2
s3iα2

1ξ
2(i+ ξ)2ψ′′(ξ),

g2(s, ξ) = −α2sξ(i+ ξ) +
1

2
s2α2

1ξ
2(i+ ξ)2.
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Plugging (5.57)-(5.58)-(5.59) into (5.44), we finally get the second order ap-

proximation of the characteristic function of X. In Subsection 5.3.1, we also

provide the expression of Ĝk(t, x;T, ξ) for k = 3, 4, appearing in the 4th order

approximation.

Remark 5.13. The basepoint x̄ is a parameter which can be freely chosen in

order to sharpen the accuracy of the approximation. In general, the simplest

choice x̄ = x seems to be sufficient to get very accurate results.

Remark 5.14. To overcome the use of the adjoint operators, it would be

interesting to investigate an alternative approach to the approximation of the

characteristic function based of the following remarkable symmetry relation

valid for time-homogeneous diffusions

m(x)Γ(0, x; t, y) = m(y)Γ(0, y; t, x) (5.60)

where m is the so-called density of the speed measure

m(x) =
2

σ2(x)
exp

(∫ x

1

(
2r

σ2(z)
− 1

)
dz

)
.

Relation (5.60) is stated in [60] and a complete proof can be found in [41].

For completeness, we close this section by stating an integral pricing

formula for European options proved by Lewis [68]; the formula is given

in terms of the characteristic function of the underlying log-price process.

Formula below (and other Fourier-inversion methods such as the standard,

fractional FFT algorithm or the recent COS method [44]) can be combined

with the expansion (5.44) to price and hedge efficiently hybrid LV models

with Lévy jumps.

We consider a risky asset S(t) = eX(t) where X is the process whose

risk-neutral dynamics under a martingale measure Q is given by (5.1). We

denote by H(t, S(t)) the price at time t < T , of a European option with

underlying asset S, maturity T and payoff f = f(x) (given as a function of

the log-price): to fix ideas, for a Call option with strike K we have

fCall(x) = (ex −K)+ .
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The following theorem is a classical result which can be found in several

textbooks (see, for instance, [85]).

Theorem 5.15. Let

fγ(x) = e−γxf(x)

and assume that there exists γ ∈ R such that

i) fγ, f̂γ ∈ L1(R);

ii) EQ [S(T )γ] is finite.

Then, the following pricing formula holds:

H(t, S(t)) =
e−r(T−t)

π

∫ ∞
0

f̂(ξ + iγ)ϕXt,log S(t)(T )(−(ξ + iγ))dξ.

For example, fCall verifies the assumptions of Theorem 5.15 for any γ > 1

and we have

f̂Call(ξ + iγ) =
K1−γeiξ logK

(iξ − γ) (iξ − γ + 1)
.

Other examples of typical payoff functions and the related Greeks can be

found in [85].

5.3.1 High order approximations

The analysis of Section 5.3 can be carried out to get approximations of

arbitrarily high order. Below we give the more accurate (but more compli-

cated) formulae up to the 4th order that we used in the numerical section. In

particular we give the expression of Ĝk(t, x;T, ξ) in (5.44) for k = 3, 4. For

simplicity, we only consider the case of time-homogeneous coefficients and

x̄ = x.

We have

Ĝ3(t, x;T, ξ) = Ĝ0(t, x;T, ξ)
7∑
j=3

gj(ξ)(T − t)j
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where

g3(ξ) =
1

2
α3(1− iξ)ξψ(3)(ξ),

g4(ξ) =
1

6
iξ(i+ ξ)

(
2ψ′(ξ) (α1α2 − 3α3ψ

′′(ξ))

+ α1α2

(
3(i+ 2ξ)ψ′′(ξ) + 2ξ(i+ ξ)ψ(3)(ξ)

))
,

g5(ξ) =
1

24
(1− iξ)ξ

(
− 8α1α2(i+ 2ξ)ψ′(ξ)2 + 6α3ψ

′(ξ)3

+ α1ψ
′(ξ)

(
α2

1(−1 + 6ξ(i+ ξ))− 16α2ξ(i+ ξ)ψ′′(ξ)
)

+ α3
1ξ(i+ ξ)

(
3(i+ 2ξ)ψ′′(ξ) + ξ(i+ ξ)ψ(3)(ξ)

) )
,

g6(ξ) = − 1

12
iα1ξ

2(i+ ξ)2ψ′(ξ)
(
α2

1(i+ 2ξ)ψ′(ξ)

− 2α2ψ
′(ξ)2 + α2

1ξ(i+ ξ)ψ′′(ξ)
)
,

g7(ξ) = − 1

48
i (α1ξ(i+ ξ)ψ′(ξ))

3
.

Moreover, we have

Ĝ4(t, x;T, ξ) = Ĝ0(t, x;T, ξ)
9∑
j=3

gj(ξ)(T − t)j

where

g3(ξ) = −1

2
α4ξ(i+ ξ)ψ(4)(ξ),

g4(ξ) =
1

6
ξ(i+ ξ)

(
2ψ′′(ξ)

(
α2

2 + 3α1α3 − 3α4ψ
′′(ξ)

)
+ 2

((
α2

2 + 2α1α3

)
(i+ 2ξ)− 4α4ψ

′(ξ)
)
ψ(3)(ξ)

+
(
α2

2 + 2α1α3

)
ξ(i+ ξ)ψ(4)(ξ)

)
,

g5(ξ) = − 1

24
ξ(i+ ξ)

(
α2

1α2(−7 + 44ξ(i+ ξ))ψ′′(ξ)

−
(
7α2

2 + 15α1α3

)
ξ(i+ ξ)ψ′′(ξ)2

− 2ψ′(ξ)2
(
2α2

2 + 9α1α3 − 18α4ψ
′′(ξ)

)
+ ψ′(ξ)

(
(i+ 2ξ)

(
8α2

1α2 −
(
14α2

2 + 33α1α3

)
ψ′′(ξ)

)
−
(
10α2

2 + 21α1α3

)
ξ(i+ ξ)ψ(3)(ξ)

)



5.4. Numerical tests 163

+ 3α2
1α2ξ(i+ ξ)

(
4(i+ 2ξ)ψ(3)(ξ) + ξ(i+ ξ)ψ(4)(ξ)

) )
,

g6(ξ) =
1

120
ξ(i+ ξ)

(
2
(
8α2

2 + 21α1α3

)
(i+ 2ξ)ψ′(ξ)3 − 24α4ψ

′(ξ)4

+ 2ψ′(ξ)2
(
α2

1α2(11− 70ξ(i+ ξ)) +
(
26α2

2 + 57α1α3

)
ξ(i+ ξ)ψ′′(ξ)

)
+ α2

1ψ
′(ξ)
(

(i+ 2ξ)
(
α2

1(−1 + 12ξ(i+ ξ))− 112α2ξ(i+ ξ)ψ′′(ξ)
)

− 38α2ξ
2(i+ ξ)2ψ(3)(ξ)

)
+ α2

1ξ(i+ ξ)
(
α2

1(−7 + 36ξ(i+ ξ))ψ′′(ξ)

− 26α2ξ(i+ ξ)ψ′′(ξ)2 + α2
1ξ(i+ ξ)

(
6(i+ 2ξ)ψ(3)(ξ) + ξ(i+ ξ)ψ4(ξ)

) ))
,

g7(ξ) =
1

144
ξ2(i+ ξ)2

(
− 32α2

1α2(i+ 2ξ)ψ′(ξ)3 + 2
(
4α2

2 + 9α1α3

)
ψ′(ξ)4

+ 2α4
1ξ

2(i+ ξ)2ψ′′(ξ)2

+ α2
1ψ
′(ξ)2

(
α2

1(−5 + 26ξ(i+ ξ))− 47α2ξ(i+ ξ)ψ′′(ξ)
)

+ α4
1ξ(i+ ξ)ψ′(ξ)

(
13(i+ 2ξ)ψ′′(ξ) + 3ξ(i+ ξ)ψ(3)(ξ)

) )
,

g8(ξ) =
1

48
α2

1ξ
3(i+ ξ)3ψ′(ξ)2

(
α2

1(i+ 2ξ)ψ′(ξ)

− 2α2ψ
′(ξ)2 + α2

1ξ(i+ ξ)ψ′′(ξ)
)
,

g9(ξ) =
1

384
α4

1ξ
4(i+ ξ)4ψ′(ξ)4.

5.4 Numerical tests

In this section our approximation formulae (5.44) are tested and compared

with a standard Monte Carlo method. We consider up to the 4th order

expansion (i.e. n = 4 in (5.44)) even if in most cases the 2nd order seems to

be sufficient to get very accurate results. We analyze the case of a constant

elasticity of variance (CEV) volatility function with Lévy jumps of Gaussian

or Variance-Gamma type. Thus, we consider the log-price dynamics (5.1)

with

σ(t, x) = σ0e
(β−1)x, β ∈ [0, 1], σ0 > 0,

and J as in Examples 5.1 and 5.2 respectively. In our experiments we assume

the following values for the parameters:
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(i) S0 = 1 (initial stock price);

(ii) r = 5% (risk-free rate)

(iii) σ0 = 20% (CEV volatility parameter);

(iv) β = 1
2

(CEV exponent).

In order to present realistic tests, we allow the range of strikes to vary over

the maturities; specifically, we consider extreme values of the strikes where

Call prices are of the order of 10−3S0, that is we consider deep-out-of-the-

money options which are very close to be worthless. To compute the reference

values, we use an Euler-Monte Carlo method with 10 millions simulations and

250 time-steps per year.

5.4.1 Tests under CEV-Merton dynamics

In the CEV-Merton model of Example 5.1, we consider the following set

of parameters:

(i) λ = 30% (jump intensity);

(ii) m = −10% (average jump size);

(iii) δ = 40% (jump volatility).

In Table 5.1, we give detailed numerical results, in terms of prices and im-

plied volatilities, about the accuracy of our fourth order formula (PPR-4th)

compared with the bounds of the Monte Carlo 95%-confidence interval.

Figures 5.1, 5.2 and 5.3 show the performance of the 1st, 2nd and 3rd

approximations against the Monte Carlo 95% and 99% confidence intervals,

marked in dark and light gray respectively. In particular, Figure 5.1 shows

the cross-sections of absolute (left) and relative (right) errors for the price of

a Call with short-term maturity T = 0.25 and strike K ranging from 0.5 to

1.5. The relative error is defined as

Callapprox − CallMC

CallMC
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where Callapprox and CallMC are the approximated and Monte Carlo prices

respectively. In Figure 5.2 we repeat the test for the medium-term maturity

T = 1 and the strike K ranging from 0.5 to 2.5. Finally in Figure 5.3 we

consider the long-term maturity T = 10 and the strike K ranging from 0.5

to 4.

Other experiments that are not reported here, show that the 2nd order

expansion (5.35), which is valid only in the case of Gaussian jumps, gives the

same results as formula (5.44) with n = 2, at least if the truncation index M

is suitable large, namely M ≥ 8 under standard parameter regimes. For this

reason we have only used formula (5.44) for our tests.

5.4.2 Tests under CEV-Variance-Gamma dynamics

In this subsection we repeat the previous tests in the case of the CEV-

Variance-Gamma model. Specifically, we consider the following set of pa-

rameters:

(i) κ = 15% (variance of the Gamma subordinator);

(ii) θ = −10% (drift of the Brownian motion);

(iii) σ = 20% (volatility of the Brownian motion).

Analogously to Table 5.1, in Table 5.2 we compare our Call price formulas

with a high-precision Monte Carlo approximation (with 107 simulations and

250 time-steps per year) for several strikes and maturities. For both the price

and the implied volatility, we report our 4th order approximation (PPR 4th)

and the boundaries of the Monte Carlo 95%-confidence interval.

Figures 5.4, 5.5 and 5.6 show the cross-sections of absolute (left) and

relative (right) errors of the 2nd, 3rd and 4th approximations against the

Monte Carlo 95% and 99% confidence intervals, marked in dark and light

gray respectively. Notice that, for longer maturities and deep out-of-the-

money options, the lower order approximations give good results in terms of

absolute errors but only the 4th order approximation lies inside the confidence
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regions. For a more detailed comparison, in Figures 5.5 and 5.6 we plot the

2nd (dotted line), 3rd (dashed line), 4th (solid line) order approximations.

Similar results are obtained for a wide range of parameter values.

5.5 Appendix: proof of Theorem 5.3

In this appendix we prove Theorem 5.3 under Assumption AN+1 where

N ∈ N is fixed. For simplicity we only consider the case of r = 0 and

time-homogeneous coefficients. Recalling notation (5.11), we put

L0 =
α0

2
(∂xx − ∂x) + ∂t (5.61)

and

Ln = L0 +
n∑
k=1

αk(x− x̄)k (∂xx − ∂x) , n ≤ N. (5.62)

Our idea is to modify and adapt the standard characterization of the

fundamental solution given by the parametrix method originally introduced

by Levi [67]. The parametrix method is a constructive technique that allows

to prove the existence of the fundamental solution Γ of a parabolic operator

with variable coefficients of the form

Lu(t, x) =
a(x)

2
(∂xx − ∂x)u(t, x) + ∂tu(t, x).

In the standard parametrix method, for any fixed ξ ∈ R, the fundamental

solution Γξ of the frozen operator

Lξu(t, x) =
a(ξ)

2
(∂xx − ∂x)u(t, x) + ∂tu(t, x)

is called a parametrix for L. A fundamental solution Γ(t, x;T, y) for L can

be constructed starting from Γy(t, x;T, y) by means of an iterative argument

and by suitably controlling the errors of the approximation.

Our main idea is to use the N th-order approximation ΓN(t, x;T, y) in

(5.14)-(5.15) (related to Ln in (5.61)-(5.62)) as a parametrix. In order to
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prove the error bound (5.18), we carefully generalize some Gaussian esti-

mates: in particular, for N = 0 we are back into the classical framework, but

in general we need accurate estimates of the solutions of the nested Cauchy

problems (5.15).

By analogy with the classical approach (see, for instance, [50] or the recent

and more general presentation in [34]), we have that Γ takes the form

Γ(t, x;T, y) = ΓN(t, x;T, y) +

∫ T

t

∫
R

Γ0(t, x; s, ξ)ΦN(s, ξ;T, y)dξds

where ΦN is the function in (5.63) below, which is determined by imposing

the condition LΓ = 0. More precisely, we have

0 = LΓ(z; ζ) = LΓN(z; ζ) +

∫ T

t

∫
R
LΓ0(z;w)ΦN(w; ζ)dw − ΦN(z; ζ),

where, to shorten notations, we have set z = (t, x), w = (s, ξ) and ζ = (T, y).

Equivalently, we have

ΦN(z; ζ) = LΓN(z; ζ) +

∫ T

t

∫
R
LΓ0(z;w)ΦN(w; ζ)dw

and therefore by iteration

ΦN(z; ζ) =
∞∑
n=0

Zn(z; ζ) (5.63)

where

ZN
0 (z; ζ) = LΓN(z; ζ),

ZN
n+1(z; ζ) =

∫ T

t

∫
R
LΓ0(z;w)Zn(w; ζ)dw.

The thesis is a consequence of the following lemmas.

Lemma 5.16. For any n ≤ N the solution of (5.15), with Ln as in (5.61)-

(5.62), takes the form

Gn(t, x;T, y) =
∑

i≤n, j≤n(n+3), k≤n(n+5)
2

i+j−k≥n

cni,j,k(x− x̄)i(
√
T − t)j∂kxG0(t, x;T, y),

(5.64)

where cni,j,k are polynomial functions of α0, α1, . . . , αn.
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Proof. We proceed by induction on n. For n = 0 the thesis is trivial. Next

by (5.15) we have Gn+1(t, x;T, y) = In,2 − In,1 where

In,l =
n+1∑
h=1

αh

∫ T

t

∫
R
G0(t, x; s, η)(η − x̄)h∂lηG

n+1−h(s, η;T, y)dηds, l = 1, 2.

We only analyze the case l = 2 since the other one is analogous. By the

inductive hypothesis (5.64), we have that In,2 is a linear combination of terms

of the form∫ T

t

∫
R
G0(t, x; s, η)(

√
T − s)j(η − x̄)h+i−p∂k+2−p

η G0(s, η;T, y)dηds (5.65)

for p = 0, 1, 2 and h = 1, . . . , n+ 1; moreover we have

i+ j − k ≥ n+ 1− h, (5.66)

i ≤ n+ 1− h, (5.67)

j ≤ (n+ 1− h)(n+ 4− h) ≤ n(n+ 3), (5.68)

k ≤ (n+ 1− h)(n+ 6− h)

2
≤ n(n+ 5)

2
. (5.69)

Again we focus only on p = 0, the other cases being analogous: then by

properties (5.24), (5.23) and (5.22), we have that the integral in (5.65) is

equal to ∫ T

t

(
√
T − s)jV h+i

t,s,xds ∂
k+2
x G0(t, x;T, y) (5.70)

where Vt,T,x ≡ Vt,T,x,0 is the operator in (5.25). Now we remark that V n
t,s,x is

a finite sum of the form

V n
t,s,x =

∑
0≤j1,

j2
2 ,j3≤n

j1+j2−j3≥n

bnj1,j2,j3(x− x̄)j1(
√
s− t)j2∂j3x (5.71)

for some constants bnj1,j2,j3 . Thus the integral in (5.70) is a linear combination

of terms of the form

(x− x̄)j1(
√
T − s)j+2+j2∂k+2+j3

x G0(t, x;T, y)
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where

0 ≤ j1,
j2

2
, j3 ≤ h+ i, (5.72)

j1 + j2 − j3 ≥ h+ i. (5.73)

Eventually we have

j1 + j + j2 + 2− (k + 2 + j3) ≥

(by (5.73))

≥ i+ j − k + h ≥

(by (5.66))

≥ n+ 1.

On the other hand, by (5.72) and (5.67) we have

j1 ≤ h+ i ≤ n+ 1.

Moreover, by (5.72), (5.67) and (5.68) we have

j + 2 + j2 ≤ j + 2 + 2(n+ 1) ≤ n(n+ 3) + 2 + 2(n+ 1) = (n+ 1)(n+ 4).

Finally, by (5.72), (5.67) and (5.69) we have

k + 2 + j3 ≤ k + 2 + h+ i ≤ k + n+ 3

≤ n(n+ 5)

2
+ n+ 3 =

(n+ 1)(n+ 6)

2
.

This concludes the proof.

Now we set x̄ = y and prove the thesis only in this case: to treat the

case x̄ = x, it suffices to proceed in a similar way by using the backward

parametrix method introduced in [25].
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Lemma 5.17. For any ε, τ > 0 there exists a positive constant C, only

dependent on ε, τ,m,M,N and max
k≤N
‖αk‖∞, such that

|∂xxGn(t, x;T, y)| ≤ C(T − t)
n−2

2 Γ̄M+ε(t, x;T, y), (5.74)

for any n ≤ N , x, y ∈ R and t, T ∈ R with 0 < T − t ≤ τ .

Proof. By Lemma 5.16 with x̄ = y, we have

|∂xxGn(t, x;T, y)| ≤
∑

i≤n, j≤n(n+3), k≤n(n+5)
2

i+j−k≥n

∣∣cni,j,k∣∣ (√T − t)j ·
·
∣∣∂xx ((x− y)i∂kxG

0(t, x;T, y)
)∣∣ .

Then the thesis follows from the boundedness of the coefficients αk, k ≤ N ,

(cf. Assumption AN) and the following standard Gaussian estimates (see,

for instance, Lemma A.1 and A.2 in [25]):

∂kxG
0(t, x;T, y) ≤ c

(√
T − t

)−k
Γ̄M+ε(t, x;T, y),(

x− y√
T − t

)k
G0(t, x;T, y) ≤ c Γ̄M+ε(t, x;T, y),

(5.75)

where c is a positive constant which depends on k,m,M, ε and τ .

Lemma 5.18. For any ε, τ > 0 there exists a positive constant C, only

dependent on ε, τ,m,M,N and max
k≤N+1

‖αk‖∞, such that

∣∣ZN
n (t, x;T, y)

∣∣ ≤ κn(T − t)
N+n−1

2 Γ̄M+ε(t, x;T, y), (5.76)

for any n ∈ N, x, y ∈ R and t, T ∈ R with 0 < T − t ≤ τ , where

κn = Cn ΓE
(

1+N
2

)
ΓE
(
n+1+N

2

)
and ΓE denotes the Euler Gamma function.
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Proof. On the basis of definitions (5.14) and (5.15), by induction we can

prove the following formula:

ZN
0 (z; ζ) = LΓN(z; ζ) =

N∑
n=0

(L− Ln)GN−n(z; ζ). (5.77)

Indeed, for N = 0 we have

LΓ0(z; ζ) = (L− L0)G0(z; ζ),

because L0G
0(z; ζ) = 0 by definition. Then, assuming that (5.77) holds for

N ∈ N, for N + 1 we have

LΓN+1(z; ζ) = LΓN(z; ζ) + LGN+1(z; ζ) =

(by inductive hypothesis and (5.15))

=
N∑
n=0

(L− Ln)GN−n(z; ζ) + (L− L0)GN+1(z; ζ)

−
N+1∑
n=1

(Ln − Ln−1)GN+1−n(z; ζ)

=
N+1∑
n=1

(L− Ln−1)GN−(n−1)(z; ζ) + (L− L0)GN+1(z; ζ)

−
N+1∑
n=1

(Ln − Ln−1)GN+1−n(z; ζ)

= (L− L0)GN+1 +
N+1∑
n=1

(L− Ln)GN+1−n(z; ζ)

from which (5.77) follows.

Then, by (5.77) and Assumption AN+1 we have∣∣ZN
0 (z; ζ)

∣∣ ≤ N∑
n=0

‖αn+1‖∞|x− y|n+1
∣∣(∂xx − ∂x)GN−n(z; ζ)

∣∣ (5.78)

and for n = 0 the thesis follows from estimates (5.74) and (5.75). In the

case n ≥ 1, proceeding by induction, the thesis follows from the previous

estimates by using the arguments in Lemma 4.3 in [34]: therefore the proof

is omitted.
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Figure 5.1: Absolute (left) and relative (right) errors of the 1st (dotted line),

2nd (dashed line), 3rd (solid line) order approximations of a Call price in

the CEV-Merton model with maturity T = 0.25 and strike K ∈ [0.5,1.5].

The shaded bands show the 95% (dark gray) and 99% (light gray) Monte

Carlo confidence regions

Figure 5.2: Absolute (left) and relative (right) errors of the 1st (dotted line),

2nd (dashed line), 3rd (solid line) order approximations of a Call price in the

CEV-Merton model with maturity T = 1 and strike K ∈ [0.5,2.5]
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Figure 5.3: Absolute (left) and relative (right) errors of the 1st (dotted line),

2nd (dashed line), 3rd (solid line) order approximations of a Call price in the

CEV-Merton model with maturity T = 10 and strike K ∈ [0.5,4]

Figure 5.4: Absolute (left) and relative (right) errors of the 1st (dotted

line), 2nd (dashed line), 3rd (solid line) order approximations of a Call price

in the CEV-Variance-Gamma model with maturity T = 0.25 and strike

K ∈ [0.5,1.5]. The shaded bands show the 95% (dark gray) and 99% (light

gray) Monte Carlo confidence regions
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Figure 5.5: Absolute (left) and relative (right) errors of the 2nd (dotted

line), 3rd (dashed line), 4th (solid line) order approximations of a Call price

in the CEV-Variance-Gamma model with maturity T = 1 and strike

K ∈ [0.5,2.5]

Figure 5.6: Absolute (left) and relative (right) errors of the 2nd (dotted

line), 3rd (dashed line), 4th (solid line) order approximations of a Call price

in the CEV-Variance-Gamma model with maturity T = 10 and strike

K ∈ [0.5,5]
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Call prices Implied volatility (%)

T K PPR-4th MC-95% c.i. PPR-4th MC-95% c.i.

0.5 0.50669 0.50648 – 0.50666 57.81 54.03 – 57.31

0.75 0.26324 0.26304 – 0.26321 37.91 37.48 – 37.84

0.25 1 0.05515 0.05501 – 0.05514 24.58 24.50 – 24.57

1.25 0.00645 0.00637 – 0.00645 30.48 30.39 – 30.49

1.5 0.00305 0.00300 – 0.00306 42.05 41.93 – 42.07

0.5 0.52720 0.52700 – 0.52736 38.82 38.35 – 39.20

1 0.13114 0.13097 – 0.13125 27.06 27.01 – 27.08

1 1.5 0.01840 0.01836 – 0.01852 29.04 29.03 – 29.10

2 0.00566 0.00566 – 0.00575 34.45 34.45 – 34.55

2.5 0.00209 0.00208 – 0.00214 37.65 37.62 – 37.77

0.5 0.72942 0.72920 – 0.73045 32.88 32.81 – 33.21

1 0.52316 0.52293 – 0.52411 29.67 29.64 – 29.80

10 5 0.05625 0.05604 – 0.05664 26.12 26.09 – 26.17

7.5 0.02267 0.02246 – 0.02290 26.34 26.30 – 26.39

10 0.01241 0.01091 – 0.01126 27.05 26.54 – 26.66

Table 5.1: Call prices and implied volatilities in the CEV-Merton model for

the fourth order formula (PPR-4th) and the Monte Carlo (MC-95%) with

10 millions simulations using Euler scheme with 250 time steps per year,

expressed as a function of strikes at the expiry T = 3M, 1Y, 10Y. Parameters:

S0 = 1 (initial stock price), r = 5% (risk-free rate), σ0 = 20% (CEV volatility

parameter), β = 1
2

(CEV exponent), λ = 30% (jump intensity), m = −10%

(average jump size), δ = 40% (jump volatility).
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Call prices Implied volatility (%)

T K PPR 4th MC 95% c.i. PPR 4th MC 95% c.i.

0.8 0.23708 0.23704 – 0.23722 55.61 55.57 – 55.72

0.9 0.15489 0.15482 – 0.15497 47.09 47.05 – 47.14

0.25 1 0.08413 0.08403 – 0.08415 39.29 39.24 – 39.30

1.1 0.03436 0.03426 – 0.03433 33.27 33.22 – 33.26

1.2 0.00968 0.00961 – 0.00965 29.28 29.21 – 29.25

0.5 0.54643 0.54630 – 0.54679 61.02 60.91 – 61.30

0.75 0.35456 0.35438 – 0.35479 52.35 52.28 – 52.44

1 1 0.20071 0.20049 – 0.20082 45.42 45.36 – 45.45

1.5 0.03394 0.03374 – 0.03387 35.16 35.09 – 35.14

2 0.00188 0.00185 – 0.00188 29.08 29.01 – 29.07

0.5 0.80150 0.80279 – 0.80502 52.60 52.95 – 53.53

1 0.66691 0.66775 – 0.66990 49.09 49.21 – 49.52

10 5 0.22948 0.22836 – 0.22986 42.02 41.93 – 42.05

7.5 0.13680 0.13497 – 0.13618 40.34 40.17 – 40.29

10 0.08664 0.08418 – 0.08518 39.21 38.93 – 39.05

Table 5.2: Call prices and implied volatilities in the CEV-Variance-Gamma

model for the fourth order formula (PPR-4th) and the Monte Carlo (MC-

95%) with 10 millions simulations using Euler scheme with 250 time steps

per year, expressed as a function of strikes at the expiry T = 3M, 1Y, 10Y.

Parameters: S0 = 1 (initial stock price), r = 5% (risk-free rate), σ0 = 20%

(CEV volatility parameter), β = 1
2

(CEV exponent), κ = 15% (variance

of the Gamma subordinator), θ = −10% (drift of the Brownian motion),

σ = 20% (volatility of the Brownian motion).
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[5] L. Bachelier. Théorie de la spéculation. Ann. Sci. École Norm. Sup.

(3), 17:21–86, 1900. ISSN 0012-9593. URL http://www.numdam.org/

item?id=ASENS_1900_3_17__21_0.

[6] E. Benhamou, E. Gobet, and M. Miri. Smart expansion and fast

calibration for jump diffusions. Finance Stoch., 13(4):563–589, 2009.

ISSN 0949-2984. doi: 10.1007/s00780-⊆009-⊆0102-⊆3. URL http:

//dx.doi.org/10.1007/s00780-⊆009-⊆0102-⊆3.

177

http://www.numdam.org/item?id=ASENS_1900_3_17__21_0
http://www.numdam.org/item?id=ASENS_1900_3_17__21_0
http://dx.doi.org/10.1007/s00780-009-0102-3
http://dx.doi.org/10.1007/s00780-009-0102-3


178 BIBLIOGRAPHY

[7] E. Benhamou, E. Gobet, and M. Miri. Expansion formulas for Euro-

pean options in a local volatility model. Int. J. Theor. Appl. Finance, 13

(4):603–634, 2010. ISSN 0219-0249. doi: 10.1142/S0219024910005887.

URL http://dx.doi.org/10.1142/S0219024910005887.

[8] Yaacov Z. Bergman, Bruce D. Grundy, and Zvi Wiener. General prop-

erties of option prices. The Journal of Finance, (5), 1996.

[9] Sara Biagini, Bruno Bouchard, Constantinos Kardaras, and Marcel

Nutz. Robust Fundamental Theorem for Continuous Processes. ArXiv

e-prints, October 2014. URL http://arxiv.org/abs/1410.4962v1.

[10] Klaus Bichteler. Stochastic integration and Lp-theory of semi-

martingales. Ann. Probab., 9(1):49–89, 1981. ISSN 0091-1798.

URL http://links.jstor.org/sici?sici=0091-⊆1798(198102)9:
1<⊆49:SIAOS>⊆2.0.CO;2-⊆&origin=MSN.

[11] Avi Bick and Walter Willinger. Dynamic spanning without proba-

bilities. Stochastic Process. Appl., 50(2):349–374, 1994. ISSN 0304-

4149. doi: 10.1016/0304-⊆4149(94)90128-⊆7. URL http://dx.doi.

org/10.1016/0304-⊆4149(94)90128-⊆7.

[12] Fischer Black and Myron Scholes. The pricing of options and corporate

liabilities [reprint of J. Polit. Econ. 81 (1973), no. 3, 637–654]. In

Financial risk measurement and management, volume 267 of Internat.

Lib. Crit. Writ. Econ., pages 100–117. Edward Elgar, Cheltenham,

2012.

[13] Bruno Bouchard and Marcel Nutz. Arbitrage and Duality in Nondom-

inated Discrete-Time Models. ArXiv e-prints, February 2014. URL

http://arxiv.org/abs/1305.6008v2.

[14] Matteo Burzoni, Marco Frittelli, and Marco Maggis. Universal Arbi-

trage Aggregator in Discrete Time Markets under Uncertainty. ArXiv

e-prints, February 2015. URL http://arxiv.org/abs/1407.0948v2.

http://dx.doi.org/10.1142/S0219024910005887
http://arxiv.org/abs/1410.4962v1
http://links.jstor.org/sici?sici=0091-1798(198102)9:1<49:SIAOS>2.0.CO;2-&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(198102)9:1<49:SIAOS>2.0.CO;2-&origin=MSN
http://dx.doi.org/10.1016/0304-4149(94)90128-7
http://dx.doi.org/10.1016/0304-4149(94)90128-7
http://arxiv.org/abs/1305.6008v2
http://arxiv.org/abs/1407.0948v2


179

[15] P. Carr and D. Madan. Option valuation using the fast Fourier trans-

form. J. Comput. Finance, 2(4):61–73, 1999.
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Ito formula. Comptes Rendus Mathématique Acad. Sci. Paris Ser. I,

348:57–61, 2010. URL http://dx.doi.org/10.1016/j.crma.2009.

11.013.

[21] Rama Cont and David-Antoine Fournié. Change of variable formulas

for non-anticipative functionals on path space. J. Funct. Anal., 259

(4):1043–1072, 2010. ISSN 0022-1236. doi: 10.1016/j.jfa.2010.04.017.

URL http://dx.doi.org/10.1016/j.jfa.2010.04.017.

[22] Rama Cont and David-Antoine Fournié. Functional Itô calculus and
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[60] Kiyosi Itô and Henry P. McKean, Jr. Diffusion processes and their

sample paths. Springer-Verlag, Berlin, 1974. Second printing, corrected,

Die Grundlehren der mathematischen Wissenschaften, Band 125.

[61] Jonathan E. Ingersoll Jr. Theory of Financial Decision Making. Black-

well, Oxford, 1987. p.377.

[62] Rajeeva L. Karandikar. On pathwise stochastic integration. Stochas-

tic Process. Appl., 57(1):11–18, 1995. ISSN 0304-4149. doi: 10.

http://dx.doi.org/10.1016/0304-4149(81)90026-0
http://dx.doi.org/10.1016/0304-4149(81)90026-0
http://dx.doi.org/10.1214/aoap/1027961040
http://dx.doi.org/10.1214/aoap/1027961040
http://dx.doi.org/10.1111/1467-9965.00043
http://dx.doi.org/10.1111/1467-9965.00043
http://dx.doi.org/10.1007/s10665-005-7716-z
http://dx.doi.org/10.1007/s10665-005-7716-z


185

1016/0304-⊆4149(95)00002-⊆O. URL http://dx.doi.org/10.1016/

0304-⊆4149(95)00002-⊆O.

[63] Ioannis Karatzas and Constantinos Kardaras. The numéraire portfolio
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integration. Acta Math., 67(1):251–282, 1936. ISSN 0001-5962. doi: 10.

1007/BF02401743. URL http://dx.doi.org/10.1007/BF02401743.

[113] L. C. Young. General inequalities for Stieltjes integrals and the con-

vergence of Fourier series. Math. Ann., 115(1):581–612, 1938. ISSN

0025-5831. doi: 10.1007/BF01448958. URL http://dx.doi.org/10.

1007/BF01448958.

http://dx.doi.org/10.1111/j.0960-1627.2005.00224.x
http://dx.doi.org/10.1111/j.0960-1627.2005.00224.x
http://dx.doi.org/10.1016/0304-4149(89)90079-3
http://dx.doi.org/10.1016/0304-4149(89)90079-3
http://dx.doi.org/10.1016/j.insmatheco.2010.08.008
http://dx.doi.org/10.1016/j.insmatheco.2010.08.008
http://dx.doi.org/10.1007/BF02401743
http://dx.doi.org/10.1007/BF01448958
http://dx.doi.org/10.1007/BF01448958

	Notation
	Introduction
	Pathwise calculus for non-anticipative functionals
	Quadratic variation along a sequence of partitions
	Relation with the other notions of quadratic variation

	Non-anticipative functionals
	Change of variable formulae for functionals

	Functional Itô Calculus
	Functional Itô formulae
	Weak functional calculus and martingale representation
	Functional Kolmogorov equations
	Universal pricing and hedging equations

	Path-dependent PDEs and BSDEs
	Weak and viscosity solutions of path-dependent PDEs


	A pathwise approach to continuous-time trading
	Pathwise integration and model-free arbitrage
	Pathwise construction of stochastic integrals
	Model-free arbitrage strategies

	The setting
	A plausibility requirement

	Self-financing strategies
	Pathwise construction of the gain process
	Pathwise replication of contingent claims
	Pathwise isometries and extension of the pathwise integral

	Pathwise Analysis of dynamic hedging strategies
	Robustness of hedging under model uncertainty: a survey
	Hedging under uncertain volatility
	Robust hedging of discretely monitored options

	Robustness and the hedging error formula
	The impact of jumps
	Regularity of pricing functionals
	Vertical convexity as a condition for robustness
	A model with path-dependent volatility: Hobson-Rogers
	Examples
	Discretely-monitored path-dependent derivatives
	Robust hedging for Asian options
	Dynamic hedging of barrier options


	Adjoint expansions in local Lévy models
	General framework
	LV models with Gaussian jumps
	Simplified Fourier approach for LV models

	Local Lévy models
	High order approximations

	Numerical tests
	Tests under CEV-Merton dynamics
	Tests under CEV-Variance-Gamma dynamics

	Appendix: proof of Theorem 5.3

	Bibliography

