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Preface

T
he aim of this Thesis is to study some selected topics on volatility estimation and

modeling. Recently, these topics received great attention in the financial literature,

since volatility modeling is crucial in practically all financial applications, including

derivatives pricing, portfolio selection and risk management. Specifically, we focus on the

concept of realized volatility, which became important in the last decade mainly thanks to

the increased availability of high-frequency data on practically every financial asset traded

in the main marketplaces. The concept of realized volatility traces back to an early idea

of Merton (1980), and basically consists in the estimation of the daily variance via the

sum of squared intraday returns, see Andersen et al. (2003). The work presented here is

linked to this strand of literature but an alternative estimator is adopted. This is based

on Fourier analysis of the time series, hence the term Fourier estimator, which has been

recently proposed by Malliavin and Mancino (2002). Moreover, we start from this result to

introduce a nonparametric estimator of the diffusion coefficient.

The Thesis has two main objectives. After introducing the concept of quadratic variation and

the Fourier estimator, we compare the properties of this estimator with realized volatility in

a univariate and multivariate setting. This leads us to some applications in which we exploit

the fact that we can regard volatility as an observable instead of a latent variable. We pursue

this objective in Chapters 3 and 4. The second objective is to prove two Theorems on the

estimation of the diffusion coefficient of a stochastic diffusion in a univariate setting, and

this is pursued in Chapter 5.

The detailed structure of the work is the following.

In Chapter 1 we review basic facts about quadratic variation, thus we need to introduce

semimartingales, stochastic integrals and stochastic differential equations. Moreover, some

results on convergence of processes to semimartingales are sketched. The Chapter ends with

a brief review of the literature concerning the issues that will be discussed in the subsequent

chapters.
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In Chapter 2 the Fourier estimator (Malliavin and Mancino, 2002) is introduced and proved

to be consistent, both for the univariate and multivariate case. Details on the asymptotic

distribution are given in the case of constant variance.

In Chapter 3 we deal with univariate applications. We first compare the Fourier estimator

to alternative estimators, mainly realized volatility, on simulated data. Comparison is done

according to precision in estimating the integrated variance and reliability in measuring the

forecasting performance of a GARCH(1,1) model. Indeed Andersen and Bollerslev (1998a)

pointed out that in order to thoroughly assess the forecasting performance of a volatility

model, reliable volatility estimates are necessary. We repeat the analysis on exchange rate

data. On real data, the high-frequency analysis is distorted by microstructure effects, so

that we have to select a proper cut-off frequency, paralleling the choice of the grid in realized

volatility measurement. We show that, when evaluating the forecasting performance of the

GARCH(1,1), we get better results than those obtained with realized volatility. This part

is mainly taken from Barucci and Renò (2002a,b). We then show that, treating volatility as

an observable, we can simply model it via an auto-regressive process, and this simple model

performs better than GARCH(1,1) and Riskmetrics (Barucci and Renò, 2002c). We then

use these ideas to the analyze the Italian money market, following Barucci et al. (2004).

The Italian money market, which can be viewed as a proxy of the Euro market for liquidity,

displays several interesting features. We show that, as for the U.S. markets, the martingale

hypothesis for the overnight rate has to be rejected. This is due to the fact that banks do not

trade for speculative reasons, but only for hedging reasons. Efficient managing of reserves

leads to the violation of the martingale hypothesis. We then estimate a model for volatility,

which is estimated with a unique data set consisting of all transactions for the four years

following EMU. We show that volatility, as for stock markets, has a strong autoregressive

pattern, we find calendar effects and, most important, we show that volatility is linked to

the number of contracts instead of trading volume or average volume.

In Chapter 4, we follow the same route on multivariate applications. We first show, on

simulated data, that the Fourier estimator performs significantly better than the classical

estimator in measuring correlations. The reason for this fact is inherent in the nature of

correlation measurement. When two time series are not observed exactly at the same time,

and some interpolation techniques have to be used, a downward bias is introduced in the

absolute value of the measured correlation. With the Fourier estimator, we integrate the time

series, and the interpolation rule is used only to compute integrals. With classical estimators,

the interpolated time series is directly used for estimation. For the same reason, due to the

uneven nature of high-frequency transactions when increasing frequency a downward bias

in correlations is observed. This phenomenon is called Epps effect. Here, following Renò
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(2003) we provide evidence for this effect and relate this to lead-lag relationships and non-

synchronicity, both on simulated and real data. Finally, we depict a geometric interpretation

of the time-dependent variance-covariance matrix (Mancino and Renò, 2002), and illustrate

these ideas on a set of 98 U.S. stocks.

In Chapter 5, we turn to the problem of measuring the diffusion coefficient of an univariate

diffusion where the diffusion depends on the state variable only. This problem can be ap-

proached in a parametric fashion, as well as with nonparametric techniques (Florens-Zmirou,

1993; Stanton, 1997; Ait-Sahalia, 1996a; Bandi and Phillips, 2003). Following the last strand,

we introduce a non-parametric estimator of the diffusion coefficient which borrows from the

theory of Chapter 2 (Renò, 2004). We derive the asymptotic properties of this estimator,

which turns out to be consistent and asymptotically normally distributed (Theorems 5.6 and

5.9). We then compare our non-parametric estimator with those introduced in the literature.

After studying, via Monte Carlo simulation, the small sample properties of the estimator.

we use it to model the short rate, and we estimate the diffusion coefficient on several interest

rate time series. The results obtained are in line with those in the literature, with some

differences for large and small values of the short rate.

Many people contributed to his project with their work and ideas. I would like first to thank

Mavira Mancino and Paul Malliavin for their help, suggestions, and trust.
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particular Carlo Mari, Claudio Pacati and Antonio Roma, since they allowed me to fully
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Normale Superiore and to Carlo Gulminelli for scientific and financial support. In particular

I would like to thank Maurizio Pratelli, Anna Battauz and especially Marzia De Donno.

Finally, I would like to thank Rosario Rizza and Fulvio Corsi, as well as several anonymous

referees.
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Chapter 1

Theory of quadratic variation

In this introductory Chapter, we first define quadratic variation and its properties as a tool

in stochastic process theory. We subsequently discuss, through a brief review of literature,

the importance of the theory of quadratic variation in the financial literature.

1.1 Quadratic variation

1.1.1 Preliminaries

In what follows, we work in a filtered probability space (Ω, (Ft)t∈R+ , P ) satisfying the usual

conditions, see Jacod and Shiryaev (1987); Protter (1990). We start by the definition of a

process, and some other useful definitions.

Definition 1.1 A process is a family X = (Xt)t∈R+ of random variables from Ω to some set

E.

In applications, the set E will be usually R
d. A process can be thought as a mapping from

Ω × R+ into E.

Definition 1.2 A trajectory of the process X is the mapping t → X(ω) for a fixed ω ∈ Ω.

Definition 1.3 A process X is called càdlàg if all its trajectories are right-continuous and

admit left-hand limits. It is called càg if all its trajectories are left-continuous.

11



12 CHAPTER 1. THEORY OF QUADRATIC VARIATION

If a process is càdlàg, we can naturally define two other processes, X− and ∆X as follows:

X0− = X0, Xt− = lim
s→t

Xs (1.1)

∆Xt = Xt − Xt− (1.2)

If the trajectory is continuous in t, then Xt− = Xt and ∆Xt = 0.

Definition 1.4 A process is said to be adapted to the filtration F if Xt is Ft-measurable for

every t ∈ R+.

Since our aim is to study quadratic variation, it is important to identify processes of finite

quadratic variation for every trajectory. We denote by V the set of all real-valued processes

X that are càdlàg, adapted, with X0 = 0 and whose each trajectory Xt(ω) has a finite

variation over each finite interval [0, t], which implies

V ar(X) = lim
n→∞

∑

1≤k≤n

∣

∣Xtk/n(ω) − Xt(k−1)/n(ω)
∣

∣ < ∞. (1.3)

We then abbreviate by X ∈ V the fact that X is an adapted process with finite variation.

We end this subsection with the definitions of increasing and predictable processes.

Definition 1.5 A process X is said to be increasing if it is càdlàg, adapted, with X0 = 0

and such that each trajectory is non-decreasing.

Definition 1.6 The predictable σ-field is the σ-field on Ω × R+ that is generated by all càg

adapted processes. A process is said to be predictable if it is measurable with respect to the

predictable σ-field.

1.1.2 Stopping times and subdivisions

The concept of stopping time is very useful in econometric analysis, since economic data are

recorded at discrete points in time.

Definition 1.7 A stopping time is a mapping T : Ω → R+ such that {ω|T (ω) ≤ t} ∈ Ft for

all t ∈ R+.
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Given a process X and a stopping time T , we define the stopped process as XT
t = XT∧t.

Among other things, stopping times are necessary to introduce the localization procedure.

Definition 1.8 If C is a class of processes, we define the localized class Cloc as follows: a

process X belongs to Cloc if and only if there exists an increasing sequence Tn of stopping

times such that limn→∞ Tn = ∞ a.s. and that each stopped process XTn ∈ C.

The sequence Tn is called a localizing sequence. It is clear that C ⊂ Cloc.

We call an adapted subdivision a sequence τn of stopping times with τ0 = 0, sup
n∈N

τn < ∞
and τn < τn+1 on the set {τn < ∞}. Among subdivisions, we will consider the Riemann

sequence.

Definition 1.9 A sequence τn,m,m ∈ N of adapted subdivisions is called a Riemann sequence

if lim
n→∞

sup
m∈N

[τn,m+1 − τn,m] = 0 for all t ∈ R+.

1.1.3 Martingales

Among processes, a very important role is played by martingales.

Definition 1.10 A martingale is an adapted process X whose P-a.s trajectories are càdlàg such

that every Xt is integrable and such that, for every s ≤ t:

Xs = E [Xt |Fs ] (1.4)

Definition 1.11 A martingale X is square-integrable if sup
t∈R+

E[X2
t ] < ∞.

In the forthcoming analysis, an important role is played by two special classes of martingales:

local martingales and locally squared-integrable martingales.

Definition 1.12 A locally square-integrable martingale is a process that belongs to the lo-

calized class constructed from the space of square integrable martingales.

Definition 1.13 A local martingale is a process that belongs to the localized class of uni-

formly integrable martingales, that is of martingales X such that the family of random vari-

ables Xt is uniformly integrable.
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We obviously have that if a martingale X is locally squared-integrable, than it is a local

martingale. The class of local martingale can be obtained by localization of the class of

martingales also. Indeed we have the following:

Proposition 1.14 Each martingale is a local martingale

Proof. Let X be a martingale, and consider the sequence of stopping times Tn = n. Then, for

every t ∈ R
+, we have XTn

t = E[Xn|Ft]. Since the class of uniformly integrable martingales

is stable under stopping, we have that XTn is uniformly integrable as well. ¤

Local martingales, that is martingales, can be decomposed in a continuous and discontinuous

part. This concept will be very useful when defining quadratic variation.

Definition 1.15 Two local martingales M,N are called orthogonal if their product MN is

a local martingale. A local martingale X is called a purely discontinuous local martingale if

X0 = 0 and if it is orthogonal to all continuous local martingales.

The following properties help the intuition:

Proposition 1.16 1. A local martingale X is orthogonal to itself if and only if X0 is

square integrable and X = X0 up to null sets

2. A purely discontinuous local martingale which is continuous is a.s. equal to 0.

3. A local martingale X with X0 = 0 is purely discontinuous if and only if it is orthogonal

to all continuous bounded martingales Y with Y0 = 0.

4. A local martingale in V is purely discontinuous.

Proof. 1. Let X be a local martingale such that X2 is a local martingale. By localization,

we can assume that X,X2 are uniformly integrable, so that X is square integrable. Thus

E[Xt] = E[X0] and E[X2
t ] = E[X2

0 ], and these fact imply Xt = X0 a.s. 2. Is a consequence

of point 1. 3. X is orthogonal to Y if and only if it is orthogonal to Y − Y0. Since Y is

continuous, Y −Y0 is locally bounded, then the claim follows from localization. 4. See Jacod

and Shiryaev (1987), Lemma I.4.14 (b). ¤

The concept of orthogonality, which can be proved to be equivalent to orthogonality in a

suitable Hilbert space, allows the following decomposition:
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Theorem 1.17 Any local martingale X admits a unique (up to null sets) decomposition:

X = X0 + Xc + Xd (1.5)

where Xc
0 = Xd

0 = 0, Xc is a continuous local martingale and Xd is a purely discontinuous

local martingale.

Proof. See Jacod and Shiryaev (1987), Theorem I.4.18. ¤

We call Xc the continuous part of X and Xd its purely discontinuous part. We have also the

following:

Proposition 1.18 Let X,Y be two purely discontinuous local martingales such that ∆M =

∆N (up to null sets). Then M = N (up to null sets).

Proof. Apply Theorem 1.17 to M − N . ¤

1.1.4 Quadratic variation for locally square-integrable martingales

We start defining the quadratic variation of two locally square-integrable martingales, see

Definition 1.8. We first need the following:

Lemma 1.19 Any predictable local martingale which belongs to V is equal to 0 a.s.

Proof. See Jacod and Shiryaev (1987), Corollary I.3.16. ¤

Theorem 1.20 For each pair M,N of locally square-integrable martingales there exists a

unique, up to null measure sets, predictable process < M,N >∈ V such that MN− < M,N >

is a local martingale.

Proof. The uniqueness comes from Lemma 1.19. For the existence, see Jacod and Shiryaev

(1987), Theorem I.4.2.

The process < M,N > is called the predictable quadratic variation of the pair (M,N).

Proposition 1.21 The following property holds: < M,N >=< M − M0, N − N0 >
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A fundamental example is the Wiener process.

Definition 1.22 A Wiener process is a continuous adapted process W such that W0 = 0

and:

1. E[W 2
t ] < ∞, E[Wt] = 0,∀t ∈ R+

2. Wt − Ws is independent of the σ-field Fs, ∀ 0 ≤ s ≤ t.

It can be proved that the Wiener process is Gaussian. The function σ2(t) = E[W 2
t ] is called

the variance function of Wt. If σ2(t) = t then W is called a standard Wiener process. In the

literature, the Wiener process is also called a Brownian motion. For a proof of the existence

of the Wiener process, see Da Prato (1998). The most important properties of the Wiener

process can be found in Karatzas and Shreve (1988).

We can now prove the following proposition about the quadratic variation of the Wiener

process, which is a locally square-integrable martingale. The result is very intuitive:

Proposition 1.23 If W is a Wiener process, then < W,W >t= σ2(t).

Proof. By Theorem 1.20, we have to prove that Xt = W 2
t − σ2(t) is a local martingale. We

have:

Xt − Xs = W 2
t − W 2

s − σ2
t + σ2

s = (Wt − Ws)
2 − 2W 2

s + 2WtWs − σ2
t + σ2

s .

Then E[Xt − Xs|Fs] = 0, hence the result. ¤

Note that σ2(t) is continuous, null at 0 and increasing.

1.1.5 Semimartingales

Let us denote by L the set of all local martingales M such that M0 = 0.

Definition 1.24 A semimartingale is a process X of the form X = X0 +M +A where X0 is

finite-valued and F0-measurable, M ∈ L and A ∈ V (see the discussion of equation 1.3). If

there exists a decomposition such that A is predictable, X is called a special semimartingale.
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From the definition is clear that if X ∈ V then it is a semimartingale. Obviously the

decomposition X = X0 + M + A is not unique, but if X is a special semimartingale then

there is a unique decomposition with A predictable (Jacod and Shiryaev, 1987). Given

that a semimartingale is the sum of a local martingale and a process of finite variation, we

can naturally decompose it in a continuous and discontinuous part in the same fashion of

Theorem 1.17:

Proposition 1.25 Let X be a semimartingale. Then there is a unique (up to null sets)

continuous local martingale Xc such that Xc,0 = 0 and any decomposition X = X0 + M + A

of type 1.24 meets M c = Xc up to null sets.

Proof. It is enough to use Theorem 1.17 and Proposition 1.16(4).

We then follow the above terminology and call Xc the continuous martingale part of the

semimartingale X. The following Proposition shows that all deterministic processes with

finite variation are semimartingales:

Proposition 1.26 Let F (t) be a real-valued function on R+, and define the process Xt(ω) =

F (t). Then X is a semimartingale if and only if F is càdlàg, with finite-variation over each

finite interval.

Proof. For the sufficiency, it is enough to use the definition of semimartingales. For the

converse, see Jacod and Shiryaev (1987), Proposition I.4.28. ¤

1.1.6 Stochastic integral

If a process X ∈ V, it is easy to define the integral of another process H with respect to X.

We define the integral process
∫

HdX by:

∫ T

0

hsdXs(ω) =







∫ t

0

Hs(ω)dXs(ω) if

∫ t

0

|Hs(ω)|d[V ar(X)]s(ω) < ∞
+∞ otherwise

(1.6)

This definition stems from the fact that, if X ∈ V, then its trajectories are the distribution

functions of a signed measure. We want now to define the stochastic integral when X is

a semimartingale. In this case, the trajectories do not define a measure; for example, the

Wiener process has infinite variation over each finite interval. Now consider a generic process

X. The stochastic integral can be naturally defined for processes H such that H = Y 1[0]
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where Y is bounded and F0-measurable, or H = Y 1]r,s], where r < s and Y is bounded and

Fr-measurable. In this case we can define:

∫ t

0

HsdXs =

{

0 if H = Y 1[0]

Y (Xs∧t − Xr∧t) if H = Y 1]r,s]

(1.7)

The distinctive property of semimartingales is that this definition can be extended to any

locally bounded predictable process H if and only if X is a semimartingale. The feasibility

of the extension for semimartingales is stated in the following theorem.

Theorem 1.27 Let X be a semimartingale. Then the mapping 1.7 has an extension to the

space of all locally bounded predictable processes H, with the following properties:

1. Gt =

∫ t

0

HsdXs is a càdlàg adapted process

2. The mapping H →
∫

HdX is linear

3. If a sequence Hn of predictable processes converges pointwise to a limit H, and if

|Hn| ≤ K, where K is a locally bounded predictable process, then
∫ t

0
Hn

s dXs converges

to
∫ t

0
HsdXs in measure for all t ∈ R+.

Moreover this extension is unique, up to null measure sets, and in iii) above the convergence

is in measure, uniformly on finite intervals: sups≤t |
∫ s

0
Hn

udXu −
∫ s

0
HudXu| → 0.

A complete proof of the above Theorem can be found in Dellacherie and Meyer (1976). It is

important to state the following properties, which we state without proof.

Proposition 1.28 Let X be a semimartingale and H,K be locally bounded predictable pro-

cess. Then the following properties hold up to null sets:

1. The mapping X →
∫

HdX is linear.

2.
∫

HdX is a semimartingale; if X is a local martingale, then
∫

HdX is a local martin-

gale.

3. If X ∈ V then
∫

HdX ∈ V and it is given by (1.6).

4. (
∫

HdX)0 = 0 and
∫

HdX =
∫

Hd(X − X0).



1.1. QUADRATIC VARIATION 19

5. ∆(
∫

HdX) = H∆X.

6.
∫

Kd(
∫

HdX) =
∫

HKdX.

The stochastic integral of a predictable process that is left-continuous can be approximated

by Riemann sums. Consider a subdivision τn. Then the τ -Riemann approximant of the

stochastic integral
∫

HdX is defined as the process τ(
∫

HdX) defined by

τ
(∫

HdX
)

t
=

∑

n∈N

Hτn
(Xτn+1∧t − Xτn∧t) (1.8)

We than have the following:

Proposition 1.29 Let X be a semimartingale, H be a càg adapted process and τn a Riemann

sequence of adapted subdivisions. Then the τn-Riemann approximants converge to
∫

HdX,

in measure uniformly on each compact interval.

Proof. Consider τn,m and define Hn by

Hn =
∑

m∈N

Hτn,m
1]τn,m,τn,m+1] (1.9)

Then Hn is predictable, converges pointwise to H, since H is càg. Now consider Kt =

sups≤t |Hs|. The process K is adapted, càg, locally bounded and |Hn| ≤ K. Then the result

follow from Theorem 1.27 and from the property τn(
∫

HdX) =
∫

HndX. ¤

1.1.7 Quadratic Variation

We now define the quadratic variation of two semimartingales, and state its most important

properties.

Definition 1.30 The quadratic variation of two semimartingales X and Y is defined by the

following process:

[X,Y ]t := XtYt − X0Y0 −
∫ t

0

Xs−dYs −
∫ t

0

Ys−dXs (1.10)

From the definition itself, it is straightforward to verify the following properties:
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Proposition 1.31 The quadratic variation of two semimartingales X,Y has the following

properties:

1. [X,Y ]0 = 0

2. [X,Y ] = [X − X0, Y − Y0]

3. [X,Y ] =
1

4

(

[X + Y,X + Y ] − [X − Y,X − Y ]
)

(polarization)

The following analysis is crucial for at least two reason. First, the name quadratic variation

comes after Theorem 1.32. Second, it is the basis for realized volatility, a concept which

will be illustrated in the following chapters. Indeed, it allows an estimation of quadratic

variation.

Theorem 1.32 Let X and Y be two semimartingales. Then for every Riemann sequence

τn,m of adapted subdivisions, the process Sτn
(X,Y ) defined by:

Sτn
(X,Y )t =

∑

m≥1

(

Xτn,m+1∧t − Xτn,m∧t

) (

Yτn,m+1∧t − Yτn,m∧t

)

(1.11)

converges, for m → ∞, to the process [X,Y ]t, in measure and uniformly on every compact

interval.

Proof. By polarization, it suffices to prove the claim for X = Y . From equation (1.8) we

get:

Sτn
(X,X) = X2 − X2

0 − 2τn

(
∫

X−dX

)

.

The last term converges to
∫

X−dX by Proposition 1.29, then Sτn
(X,X) converges to [X,X].

¤

An immediate consequence of Theorem 1.32 is that the quadratic variation of the Wiener

process is [W,W ]t = σ2(t).

Let us provide now useful properties of the quadratic variation:

Proposition 1.33 Let X and Y be two semimartingales.

1. [X,Y ] ∈ V.

2. [X,X] is increasing.
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3. ∆[X,Y ] = ∆X∆Y .

4. If T is a stopping time, then [XT , Y ] = [X,Y T ] = [XT , Y T ] = [X,Y ]T .

The property 3 implies that if X or Y is continuous, then [X,Y ] is continuous as well.

Proof. We prove the properties for X = Y , then we can generalize by polarization. 1.

[X,X] is càdlàg, adapted and with [X,X]0 = 0, thus [X,X] ∈ V. 2. Comes directly from

Theorem 1.32, since Sτn
(X,X) is increasing. 3. Using Proposition 1.28 (5) we get ∆[X,X] =

∆(X2) − 2X−∆X. Then, since ∆(X2) = (∆X)2 + 2X−∆X, we have ∆[X,X] = (∆X)2. 4.

It is a simple consequence of Theorem 1.32. ¤

Proposition 1.34 If X is a special semimartingale and Y ∈ V then:

1. [X,Y ]t =

∫ t

0

∆XsdYs

2. XtYt =

∫ t

0

Y−sdXs +

∫ t

0

XsdYs

3. if Y is predictable, then [X,Y ]t =

∫ t

0

∆YsdXs

4. If X or Y is continuous, then [X,Y ] = 0.

Proof. See Jacod and Shiryaev (1987), Proposition I.4.49. ¤

We now provide a very useful result.

Lemma 1.35 Let X be a purely discontinuous square-integrable martingale. Then [X,X]t =
∑

s≤t(∆Xs)
2

Proof. This is Lemma I.4.51 in Jacod and Shiryaev (1987). ¤

Theorem 1.36 If X and Y are semimartingales, and if Xc, Y c denote their continuous

martingale parts, then:

[X,Y ]t =< Xc, Y c >t +
∑

s≤t

∆Xs∆Ys (1.12)
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Proof. We prove the theorem in the case X = Y , then polarization yields the result. We can

use the decomposition of Proposition 1.25, X = X0 + Xc + M + A, where A ∈ V and M is

locally square-integrable and purely discontinuous. By localization we can assume that M

is square-integrable. Then:

[X,X] = [Xc, Xc] + 2[Xc,M ] + 2[Xc, A] + [M,M ] + 2[M,A] + [A,A]. (1.13)

We have [Xc, Xc] =< Xc, Xc >. Moreover we have [M,M ] =
∑

(∆Ms)
2 from 1.35, while

[A,A] =
∑

(∆As)
2 and [M,A] =

∑

∆Ms∆As from Proposition 1.34(1). Then the sum of

the last three terms is
∑

(∆Xs)
2. From 1.34, 4 we have [Xc, A] = 0. Finally, since Xc and

M are orthogonal, then < Xc,M >= 0. But [Xc,M ] is continuous, by Proposition 1.33(3),

thus it is equal to < Xc,M >= 0. This ends the proof. ¤

Corollary 1.37 Let X,Y be local martingales. Then

1. [X,Y ] = 0 if X is continuous and Y purely discontinuous.

2. [X,Y ] =< X, Y >= 0 if X and Y are continuous and orthogonal.

3. Let H be a locally bounded predictable process. If X is continuous, then
∫

HsdXs is

a continuous local martingale. If X is purely discontinuous, then
∫

HsdXs is a purely

discontinuous local martingale.

Proof. See Jacod and Shiryaev (1987), Corollary I.4.55. ¤

Maybe the most important application of quadratic variation in the field of stochastic pro-

cesses is Ito’s lemma. We state the univariate result, multivariate extension is straightfor-

ward. Both proofs can be found in Protter (1990), Chapter II.

Theorem 1.38 Let X be a semimartingale and f ∈ C2. Then f(X) is a semimartingale

and:

f(Xt)−f(X0) =

∫ t

0

f ′(Xs−)dXs+
1

2

∫ t

0

f ′′(Xs−)d[X,X]cs+
∑

0<s≤t

[f(Xs) − f(Xs−) − f ′(Xs−)∆Xs]

(1.14)

The following Theorems provide a characterization of Wiener processes and provide a change

of time result which will be useful in Chapter 5.
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Theorem 1.39 A stochastic process X is a standard Wiener process if and only if it is a

continuous local martingale with [X,X] = t.

Proof. The fact that, if W is a standard Wiener process then [W,W ] = t is already known.

To show sufficiency, define Zt = exp(iuXt + u2

2
t) for some u ∈ R. Using Ito’s lemma we get:

Zt = 1 + iu

∫ t

0

ZsdXs +
u2

2

∫ t

0

Zsds − u2

2

∫ t

0

Zsd[X,X]s = 1 + iu

∫ t

0

ZsdXs.

Then Z is a continuous complex local martingale, as well as any stopping of Z is a martingale.

Then we have, ∀u ∈ R:

E [exp(iu(Xt − Xs))|Fs] = exp

(

−u2

2
(s − t)

)

hence X is a standard Wiener process. ¤

Theorem 1.40 Let M be a continuous local martingale with M0 = 0 and such that lim
t→∞

[M,M ]t =

∞ a.s. and Ts = inft>0[M,M ]t > s. Define Gs = FTs
and Bs = MTs

. Then Bs is a standard

Wiener process with respect to the filtration Gs. Moreover [M,M ]t are stopping times for Gs

and Mt = B[M,M ]t.

Proof. See Protter (1990), Chapter II, Theorem 41. ¤

We finally state the following Theorem which is due to Knight (1971). It allows to transform

a vector of orthogonal square-integrable continuous martingales into a vector of independent

Brownian motions via a suitable time change.

Lemma 1.41 (Knight’s Theorem) Let M1, . . . ,Mn be orthogonal square-integrable martin-

gales, and consider the time changes:

Ti(t) =

{

inf
s

[Bi, Bi]s > t if this is finite

+∞ otherwise
(1.15)

Then the transformed variables:

Xi(t) =

{

Bi(Ti(t)) if Ti(t) < ∞
Bi(∞) + Wi(t − [Bi, Bi]∞) otherwise

(1.16)

where W1, . . . Wn is an n-dimensional Brownian motion independent of Xi, are an n-dimensional

Brownian motion relative to their generated filtration.
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1.1.8 Stochastic differential equations

In this subsection, we are concerned with the following equation:

X(t) = η +

∫ t

0

β(s,X(s))ds +

∫ t

0

σ(s,X(s))dW (s), (1.17)

where W (s) is the standard Wiener process, as defined in 1.22, and we look for an adapted

process X(t) ∈ L2(Ω). The functions β, σ are applications from [0, T ] × L2(Ω) → L2(Ω),

while η is an F0 measurable process in L2(Ω), that is the boundary condition. It is common

to write equation (1.17) in the shorthand notation:

{

dX(t) = β(t,X(t))dt + σ(t,X(t))dW (t)

X(0) = η
(1.18)

For a review of theory of stochastic differential equation of the kind (1.17), see Da Prato

(1998); Karatzas and Shreve (1988). For our purposes, it is sufficient to state the following

existence and uniqueness result.

Theorem 1.42 Assume the following assumptions hold:

1. β and σ are continuous.

2. There exists M > 0 such that:

||β(t, ζ)||2 + ||σ(t, ζ)||2 ≤ M2(1 + ||ζ||2) ∀t ∈ [0, T ], ζ ∈ L2(Ω)

||β(t, ζ1) − β(t, ζ2)|| + ||G(t, ζ1) − G(t, ζ2)|| ≤ M ||ζ1 − ζ2|| ∀t ∈ [0, T ], ζ1, ζ2 ∈ L2(Ω)

(1.19)

3. ∀t ∈ [0, T ], ζ ∈ L2(Ω) such that ζ is Ft-measurable, we have that β(t, ζ), σ(t, ζ) ∈ L2(Ω)

and are Ft-measurable.

Let η ∈ L2(Ω) and F0-measurable. Then there exist a unique (up to null sets) adapted process

X(t) ∈ L2(Ω) fulfilling equation (1.17).

Corollary 1.43 Assume the hypothesis of Theorem 1.42 hold. Then the (unique) solution

process X is a continuous semimartingale, and

[X,X]t =

∫ t

0

σ2(s,X(s))ds (1.20)
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Proof. The result come from the fact that η is F0-measurable and finite-valued,
∫ t

0
β(s,X(s))ds

is of finite variation and
∫ t

0
σ(s,X(s))dW (s) is a local martingale, since Wiener process is a

local martingale and using 1.28. For the continuity, see Da Prato (1998). ¤

We want now to investigate the link between quadratic variation and the covariance func-

tion of the difference process, following Andersen et al. (2003). Consider an R
d valued

semimartingale p(t) in [0, T ], and its unique decomposition according to Theorem 1.25,

p(t) = p(0) + M(t) + A(t). Let t ∈ [0, T ], h such that t + h < T , and denote the difference

process in the interval [t, t + h] by r(t, h) = p(t + h) − p(t). In financial economics, if p(t) is

the process of logarithmic prices, r(t, h) are called logarithmic returns. We can also define

the cumulative difference process r(t) = p(t) − p(0). It is clear that [r, r]t = [p, p]t. We then

have the following:

Proposition 1.44 Consider a semimartingale p(t). The conditional difference process co-

variance matrix at time t over [t, t + h] is given by

Cov(r(t, t+h)|Ft) = E [[r, r]t+h − [r, r]t|Ft]+ΓA(t, t+h)+ΓAM(t, t+h)+Γ′
AM(t, t+h) (1.21)

where ΓA(t, t + h) = Cov(A(t + h) − A(t)|Ft) and ΓAM(t, t + h) = E[A(t + h)(M(t + h) −
M(t))′|Ft.

Proof. See Proposition 2 of Andersen et al. (2003).

Proposition 1.44 decomposes the covariance matrix of the difference process in three parts.

The first is the contribution of quadratic variation, and it is simply given by its conditional

expectation. The second is the contribution of the drift term. The third is the contribution

of the covariance between drift and diffusion term. The last two terms disappear if, for

instance, the drift term is not stochastic. Even if the drift term is stochastic, so that the last

two terms are not null, they are still less relevant when compared to the quadratic variation

contribution. For example, we have:

Γij
AM(t, t + h) ≤

(

V ar[Ai(t + h) − Ai(t)|Ft]
)

1
2 ·

(

V ar[M j(t + h) − M j(t)|Ft]
)

1
2

and the latter terms are of order h and h
1
2 respectively, thus ΓAM is at most of order h

3
2 .

We finally state a proposition on the distribution of returns:

Proposition 1.45 Let X be the process satisfying (1.17), and consider the difference pro-

cess r(t, t + h) of X, and assumptions of Theorem 1.42 hold, and that β, σ are indepen-

dent of W (s) in the interval [t, t + h]. Then the law of r(t, t + h) conditional to Ft is

N
(

∫ t+h

t
β(s)ds,

∫ t+h

t
σ2(s)ds

)

.
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Proof. See Andersen et al. (2003), Theorem 2.

1.2 Convergence to a martingale with given quadratic

variation

Definition 1.46 A process with independent increments (PII) in a filtered probability space

is a cadlag adapted R-valued process X such that X0 = 0 and that ∀ 0 ≤ s ≤ t the variable

Xt − Xs is independent of Fs.

Definition 1.47 A truncation function h(x) is a bounded Borel real function with compact

support which behaves like x near the origin.

For every semimartingale X, we define its characteristics (B,C, ν) as follows. Let h be

a truncation function. We define X(h) = X − ∑

s≤t[∆Xs − h(∆Xs)]. X(h) is a special

semimartingale (since it has bounded jumps) and we can write its canonical decomposition:

X(h) = X0 + M(h) + B(h) (1.22)

where M(h) is a local martingale and B(h) a predictable process of finite variation.

Definition 1.48 The characteristics of X is the triplet (B,C, ν) defined by:

1. B = B(h) in (1.22)

2. C = [Xc, Xc] i.e. the quadratic variation of the continuous martingale part of X

3. ν is the compensator of the random measure associated with the jumps of X.

We then have that B is a predictable process of finite variation, C is a continuous process

of finite variation and ν is a predictable measure on R
+ × R. Extension to the multivariate

case is straightforward. If X is a PII with X0 = 0 and without fixed times of discontinuity,

then Levy-Kinthchine formula holds:

E[eiuXt ] = exp

(

iuBt −
u2

2
Ct +

∫

R+

(

eiux − 1 − iuh(x)
)

νt(dx)

)

. (1.23)

Then next theorem provides the characteristics of the processes of the following kind:

Yt =

[nt]
∑

i=1

Ui (1.24)

where [x] is the integer part of x and (Ui)i∈N is an adapted process.
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Theorem 1.49 Let h be any truncation function and g ≥ 0 Borel. Then



































Bt =

[nt]
∑

i=1

E[h(Ui)|Fi−1]

Ct = 0

g ∗ ν =

∫ ∫

[0,T ]×Ω

gdν =

[nt]
∑

i=1

E[g(Ui)I{Ui 6=0}|Fi−1]

(1.25)

If h2 ∗ ν < ∞, ∀t ∈ [0, T ], we can define the following:

C̃t = Ct + h2 ∗ νt −
∑

s≤t

(∆Bs)
2 (1.26)

We then have the following convergence theorem:

Theorem 1.50 Fix a truncation function h. Assume that Xn is a sequence of semimartin-

gales, and X is a PII semimartingale without fixed time of discontinuity. Denote by

(Bn, Cn, νn) the characteristics of Xn and by (B,C, ν) the characteristics of X. Define

C̃ by equation (1.26).Moreover assume the following:

1. sup
s≤t

|Bn
s − Bs| → 0 in probability, ∀t ∈ [0, T ]

2. C̃n
t → C̃t in probability , ∀t ∈ [0, T ]

3. g ∗ νn
t → g ∗ νt in probability, ∀t ∈ [0, T ], g ∈ C1(R)

Then Xn → X in distribution.

Proof. This is Theorem VIII.2.17 in Jacod and Shiryaev (1987). ¤

We then show the following Theorem, which will be useful in our analysis:

Theorem 1.51 Consider the process Y n
t defined in (1.24), with Ui bounded, and assume the

following:

1.

[nt]
∑

i=1

E[Ui|Fi−1] → 0 in probability
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2.

[nt]
∑

i=1

E[U2
i |Fi−1] → Vt in probability

3. ∀ ε > 0,

[nt]
∑

i=1

E[U2
i I{|Ui|>ε}|Fi−1] → 0 in probability (conditional Lindeberg condition)

Then Yt converges in distribution to the continuous martingale Mt with quadratic variation

[M,M ]t = Vt.

Proof. We have to prove conditions 1 − 3 of Theorem 1.50. We compute the characteris-

tics (Bn, Cn, νn) of Y n by theorem 1.49, with h(x) = x ∧ sup Ui and C̃ by (1.26). The

characteristics of Mt is (0, Vt, 0).

1. We have B′n = Bn. Since Ui is bounded, this follows directly.

2. Comes directly from the definition of C ′n and the fact that
∑

s≤t(∆Bs)
2 =

∑[nt]
i=1 E[U2

i |Fi−1] →
0 from 1.

3. If g ∈ C1 there exist real numbers k,K such that |g(x)| ≤ Kx2I{|x|>k}, thus the

conditional Lindeberg condition implies g ∗ νn → 0.

¤

1.3 Estimating quadratic variation

Different estimators for the integrated volatility have been proposed. Nowadays, the most

popular is realized volatility, which will be discussed thoroughly throughout. The idea behind

realized volatility hinges on Theorem 1.32. Let p(t) ∈ R
d be driven by the SDE (1.17) in the

interval [0, T ], and consider equally spaced observations pi
0, p

i
1, . . . , p

i
n, for i = 1, . . . d. Then

define ri
k = pi

k − pi
k−1. Then realized volatility is given by:

RV ij =
m

∑

k=1

ri
t+k/m · rj

t+k/m. (1.27)

The drift component is ignored since it can be set to zero for typical application. On the

statistical properties of realized volatility, see Andersen et al. (2003); Barndorff-Nielsen and
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Shephard (2002a). On the effectiveness of realized volatility as a measure of integrated

volatility, see Meddahi (2002).

The range is based on the following observation of Parkinson (1980): if p(t) is a one-

dimensional solution of of dp(t) = σdW (t), with σ ∈ R, and it is observed in [0, T ], then

σ2 = 0.361 · E
[

(

max
t∈[0,T ]

p(t) − min
t∈[0,T ]

p(t)

)2
]

(1.28)

This immediately provides an estimate of the variance, which is very popular among finance

practitioners, since the maximum and the minimum of the price (so-called high and low) are

always recorded.

It is simple to show that this idea can be extended to the full variance-covariance matrix,

see e.g. Brandt and Diebold (2004). This method has been refined using also open and close

price, see Garman and Klass (1980); Rogers and Satchell (1991); Yang and Zhang (2000).

Other methods have been proposed in the literature. Ball and Torous (1984, 2000) regard

volatility as a latent variable and estimate it via maximum likelihood; Genon-Catalot et al.

(1992) develop a wavelet estimator. Spectral methods have been devised by Thomakos et al.

(2002) and Curci and Corsi (2003). Finally, a spectral method has been worked out by

Malliavin and Mancino (2002), see Chapter 2. Andersen et al. (2003) is a nearly complete

review of this topic.

1.4 Quadratic variation in financial economics

The importance of quadratic variation in financial economics is widely recognized. The main

reason stems from the seminal contribution of Black and Scholes (1973) and Merton (1973),

who showed that option prices are a function of asset price volatility. In this Thesis, we will

circumvent the issue of derivative pricing, since we are more interested in the estimation of

quadratic variation from the observation of asset prices, which in the derivative field is called

historic volatility. It is well known that the implicit volatility, that is the volatility which

“prices” options, is very different from the historic one, and one very well known example is

the smile effect. In particular, we will concentrate on the use of the so-called high-frequency

data, whose use became customary in the last decade, see Goodhart and O’Hara (1997).

Historic volatility was paid a great attention in the financial economics literature. Here we

give just few examples of the main problems raised. Christie (1982) analyzes the relation
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between variance and leverage and variance and interest rates. The leverage effect has

been longly studied, since the contributions of Black (1976) and Cox and Ross (1976). The

asymmetric link between realized volatility and returns is studied in a recent paper by Bekaert

and Wu (2000), where a model of volatility feedback is introduced, see also Duffee (1995); Wu

(2001). French and Roll (1986) pose the problem that asset prices variance during trading

periods is higher than variance during non-trading periods, and link this finding to the role

of private information. The same approach has been followed by Amihud and Mendelson

(1987). French et al. (1987), assess the relation between volatility and expected risk premium

of stock returns. In the same line, Schwert (1989) studies volatility over more than a century,

shows that it is stochastic and tries to explain its movements with regard to macroeconomic

variables. In the same spirit, Campbell et al. (2001) study the phenomenon of increasing

volatility of stocks, explaining this via macroeconomic variables. Intraday volatility has been

studied by Lockwood and Linn (1990) and in Andersen and Bollerslev (1997), where a link

is posed between intraday periodicity and persistence.

Maybe the most important stylized fact on volatility is its persistence, or clustering. This

idea can be found already in Mandelbrot (1963) or Fama (1965). Poterba and Summers

(1986) highlight the importance of persistence on the data used by French et al. (1987).

Schwert and Seguin (1990) relate the degree of heteroskedasticity to size. Heteroskedasticity

leads to modeling persistence in order to get a good picture of asset prices evolution. The

result are the ARCH model of Engle (1982) and the GARCH model of Bollerslev (1986),

which are very popular nowadays, see Bollerslev et al. (1992) and Bollerslev et al. (1994)

for a review. Nelson (1992) assesses the relation between the variance estimated by an

ARCH model and the true quadratic variation, showing that the difference between the two

converges to zero when the time interval shrinks. The interest in volatility persistence stems

from its consequent predictability. Forecasting volatility is probably the main application of

the use of the concept of quadratic variation. A quite extensive review of this topic is Poon

and Granger (2003). On the importance of volatility forecasting for risk management, see

also Christoffersen and Diebold (2000); we will deal with this topic in Chapter 3. Quadratic

variation has been used in assessing the informational efficiency of implied volatility, see e.g.

Christensen and Prabhala (1998); Blair et al. (2001).

The financial literature on quadratic variation renewed after the contribution of Andersen

and Bollerslev (1998a). They show that the low forecasting performance of GARCH(1,1)

models, as found e.g. in Jorion (1995), is not due to the poor forecasting ability of these

models, but to the poor estimation of integrated volatility. Dating back to an idea of

Merton (1980), they show, using simulations and FX data, that it is possible to estimate

daily volatility using intraday transactions (high-frequency data), and that these estimates



1.4. QUADRATIC VARIATION IN FINANCIAL ECONOMICS 31

are by far more precise than just the daily squared return, and that GARCH forecasting

performance is good. They called the measure of volatility via cumulative squared returns

realized volatility. This parallels the work of Poterba and Summers (1986); French et al.

(1987); Schwert (1989); Schwert and Seguin (1990) who compute monthly volatility using

daily returns. In some sense, it introduces a new econometric variable, and this leaded to a

very large literature.

Within the same strand, Barndorff-Nielsen and Shephard (2002b) study the statistical prop-

erties of realized volatility. Hansen and Lunde (2004) compare a large class of autoregressive

models using realized volatility measures, concluding that GARCH(1,1) is very difficult to

be outperformed. Andersen et al. (2001) and Andersen et al. (2001) study the statistical

properties of realized volatility of stock prices and exchange rates respectively. Andersen

et al. (2000a) study the distribution of standardized returns. The purpose of this studies is

to assess the unconditional and conditional properties of volatility, for instance long mem-

ory. Similar studies have been conducted for different markets: see Taylor and Xu (1997),

Zhou (1996), Areal and Taylor (2002) for the FTSE, Andersen et al. (2000) for the Nikkei,

Bollerslev et al. (2000) for an application to interest rates, Bollen and Inder (2002), Martens

(2001), Martens (2002), Thomakos and Wang (2003) for futures markets and Renò and Rizza

(2003); Pasquale and Renò (2005); Bianco and Renò (2005) for the Italian futures market.

Using integrated volatility as an observable leads to modeling it directly. The simplest idea

to capture persistence is an autoregressive model. Andersen et al. (2003) propose an au-

toregressive model with long memory, end estimate it on foreign exchange rates and stock

returns. A similar model is proposed by Deo et al. (2003). The HAR-RV model of Corsi

(2003) is similar, but economically significant restrictions are imposed to the autoregressive

structure; long memory is attained using the intuition of Granger (1980), that is as the sum

of short memory components of different frequencies. Maheu and McCurdy (2002) study the

importance of non-linear components in the autoregressive structure of volatility dynamics,

while Maheu and McCurdy (2004) study the impact of jumps on volatility. Fleming et al.

(2001) show that using a dynamic volatility model instead of a static one, portfolio manage-

ment can improve substantially. Then, they refine their research using realized volatility as

an observable (Fleming et al., 2003) and find even better results.

Finally, integrated volatility has been used as an observable for estimating stochastic mod-

els. One example is Bollerslev and Zhou (2002), which estimates a model for exchange rates

using realized volatilities and GMM. In the same spirit, Pan (2002) uses GMM to estimate

a model for stock prices, using as observables the stock prices, option prices and realized

volatility. Barndorff-Nielsen and Shephard (2002a) suggest a maximum likelihood estimator

which uses realized volatilities; Galbraith and Zinde-Walsh (2000) use realize volatility to es-
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timate GARCH-like models. Alizadeh et al. (2002); Gallant et al. (1999) estimate integrated

volatility using the range, that is the squared difference between the high and low of an asset

price during a day, and show how to estimate stochastic volatility models including the range

as an observable. The range has been used to get more efficient estimates of EGARCH mod-

els (Brandt and Jones, 2002). Similar studies on the range have been conducted by Brunetti

and Lildholdt (2002a,b).



Chapter 2

Volatility estimate via Fourier

Analysis

2.1 Univariate case

We work in the filtered probability space (Ω,Ft,P) satisfying the usual conditions (Protter,

1990), and define Xt as the solution of the following process:

{

dXt = µ(t)dt + σ(t)dWt

X0 = x0

(2.1)

where σ(t), µ(t) are bounded deterministic functions of time, and Wt is a standard Brownian

motion.1 We will write Xt(ω) to explicit the dependence of X from t ∈ [0, T ] and ω ∈ Ω.

In this case Xt is a semimartingale, and its quadratic variation (Jacod and Shiryaev, 1987)

is given by:

[X,X]t =

∫ t

0

σ2(s)ds (2.2)

We can assume, without loss of generality, that the time interval is [0, 2π], and define the

1The restrictions that the drift and the diffusion coefficients be deterministic functions of time can be

relaxed, see Malliavin and Mancino (2005).
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Fourier coefficients of dX and σ2 as follows:

a0(dX) =
1

2π

∫ 2π

0

dXt a0(σ
2) =

1

2π

∫ 2π

0

σ2(t)dt

ak(dX) =
1

π

∫ 2π

0

cos(kt)dXt ak(σ
2) =

1

π

∫ 2π

0

cos(kt)σ2(t)dt

bk(dX) =
1

π

∫ 2π

0

sin(kt)dXt bk(σ
2) =

1

π

∫ 2π

0

sin(kt)σ2(t)dt

(2.3)

There are many ways to reconstruct σ2(t) given its Fourier coefficients. One way is the

Fourier-Fejer formula:

σ2(t) = lim
M→∞

M
∑

k=0

(

1 − k

M

)

[

ak(σ
2) cos(kt) + bk(σ

2) sin(kt)
]

(2.4)

Convergence of Fourier sums is in L2([0, 2π]) norm and it is pointwise where σ2(t) is analytic2.

We now state the main result:

Theorem 2.1 Consider a process Xt satisfying (2.1), and define the Fourier coefficients of

dX and σ2 as in (2.3). Given an integer n0 > 0, we have in L2:

a0(σ
2) = lim

N→∞

π

N + 1 − n0

N
∑

k=n0

a2
k(dX) = lim

N→∞

π

N + 1 − n0

N
∑

k=n0

b2
k(dX) (2.5)

aq(σ
2) = lim

N→∞

2π

N + 1 − n0

N
∑

k=n0

ak(dX)ak+q(dX) = lim
N→∞

2π

N + 1 − n0

N
∑

k=n0

bk(dX)bk+q(dX)

(2.6)

bq(σ
2) = lim

N→∞

2π

N + 1 − n0

N
∑

k=n0

ak(dX)bk+q(dX) = − lim
N→∞

2π

N + 1 − n0

N
∑

k=n0

bk(dX)ak+q(dX)

(2.7)

Proof. We follow the proof of Malliavin and Mancino (2002).

Consider first the case µ(t) = 0.

2Actually there are looser request for punctual convergence, but it is important to stress that continuity

is not sufficient.
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We choose k, h ∈ N such that k > h ≥ 1. We have:

E [ak(dX)ah(dX)] = E

[

1

π

∫ 2π

0

cos(kt)dXt ·
1

π

∫ 2π

0

cos(ht)dXt

]

=

= E

[

1

π2

∫ 2π

0

cos(kt)σ(t)dW (t) ·
∫ 2π

0

cos(ht)σ(t)dW (t)

]

=

=
1

π2

∫ 2π

0

σ2(t) cos(kt) cos(ht)dt.

(2.8)

by the contraction formula.

Using the following identity:

2 cos(kt) cos(ht) = cos[(k − h)t] + cos[(k + h)t] (2.9)

we get:

E [ak(dX)ah(dX)] =
1

2π

[

ak−h(σ
2) + ak+h(σ

2)
]

(2.10)

Moreover we have:
∥

∥σ2
∥

∥

2

L2 =
+∞
∑

k=0

(

a2
k(σ

2) + b2
k(σ

2)
)

(2.11)

Now fix an integer n0 > 0 and define, for q ∈ N:

U q
N =

1

N + 1 − n0

N
∑

k=n0

ak(dX)ak+q(dX) (2.12)

Using (2.10) after taking expectations we get:

E[U q
N ] =

1

N + 1 − n0

1

2π

N
∑

k=n0

(

aq(σ
2) + a2k+q(σ

2)
)

=
1

2π
aq(σ

2) + RN . (2.13)

Where

|RN | =
1

N + 1 − n0

1

2π

∣

∣

∣

∣

∣

N
∑

k=n0

a2k+q(σ
2)

∣

∣

∣

∣

∣

≤ 1√
N + 1 − n0

∥

∥σ2
∥

∥

L2 (2.14)

by Schwartz inequality, thus

aq(σ
2) = 2π lim

N→∞
E[U q

N ]. (2.15)

We want now to prove that aq(σ
2) = 2π lim

N→∞
U q

N . To do so we compute:

E
2[U q

N ] =
1

(N + 1 − n0)2

∑

n0≤k1,k2≤N

E [ak1(dX)ak1+q(dX)] E [ak2(dX)ak2+q(dX)] (2.16)
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Using the fact that ak(dX) is a Gaussian random variable with mean 0, we use a well known

formula for the product of four Gaussian random variables to compute:

E[(U q
N)2] =

1

(N + 1 − n0)2

∑

n0≤k1,k2≤N

E [ak1(dX)ak1+q(dX)ak2(dX)ak2+q(dX)] =

=
1

(N + 1 − n0)2

∑

n0≤k1,k2≤N

(E [ak1(dX)ak1+q(dX)] E [ak2(dX)ak2+q(dX)] +

+E [ak1(dX)ak2(dX)] E [ak1+q(dX)ak2+q(dX)]

+ E [ak1(dX)ak2+q(dX)] E [ak1+q(dX)ak2(dX)])

(2.17)

We now use equation (2.10) to get:

E[(U q
N − E[U q

N ])2] =
1

4π2(N + 1 − n0)2
·

·
∑

n0≤k1,k2≤N

[(

ak1+k2(σ
2) + a|k1−k2|(σ

2)
) (

ak1+k2+2q(σ
2) + a|k1−k2|(σ

2)
)

+

+
(

ak1+k2+q(σ
2) + a|k1−k2−q|(σ

2)
) (

ak1+k2+q(σ
2) + a|k1−k2+q|(σ

2)
)]

(2.18)

Finally we use Cauchy-Schwartz:

E[(U q
N − E[U q

N ])2] ≤
≤ 1

4π2(N + 1 − n0)2
·

·





(

∑

n0≤k1,k2≤N

(

ak1+k2(σ
2) + a|k1−k2|(σ

2)
)2 ·

∑

n0≤k1,k2≤N

(

ak1+k2+2q(σ
2) + a|k1−k2|(σ

2)
)2

)
1
2

+

+

(

∑

n0≤k1,k2≤N

(

ak1+k2+q(σ
2) + a|k1−k2−q|(σ

2)
)2 ·

∑

n0≤k1,k2≤N

(

ak1+k2+q(σ
2) + a|k1−k2+q|(σ

2)
)2

)
1
2



 ≤

≤ 2

π2(N + 1 − n0)

∥

∥σ2
∥

∥

2

L2

(2.19)

The above inequality proves convergence in L2, then in probability.

If we now repeat the calculation (2.8) replacing ak, ah with ak, bh, we have:

E [ak(dX)bh(dX)] =

∫ 2π

0

σ2(t) cos(kt) sin(ht)dt. (2.20)

We now use the identity:

2 cos(kt) sin(ht) = sin[|k − h|t] + sin[(k + h)t] (2.21)

and we get:

E [ak(dX)bh(dX)] =
1

2π

[

bk−h(σ
2) + bk+h(σ

2)
]

(2.22)
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We then get formula (2.7) by computing the expected value of:

V q
N =

1

N + 1 − n0

N
∑

k=n0

ak(dX)bk+q(dX), W q
N =

1

N + 1 − n0

N
∑

k=n0

bk(dX)ak+q(dX) (2.23)

The second part of formula (2.6) comes in the same way from the identity:

2 sin(kt) sin(ht) = cos[|k − h|t] − cos[(k + h)t] (2.24)

Formula (2.5) comes in the same way from:

E[a2
k(dX)] = E[b2

k(dX)] =
1

2π

[

2a0(σ
2) − a2k(σ

2)
]

(2.25)

If µ(t) 6= 0, then in all previous computation we replace dX with dv defined by dv =

dX − µ(t)dt. Now, all the extra terms depending on µ vanish asymptotically since:

∫ 2π

0

µ2(t)dt =
+∞
∑

k=0

(

a2
k(µ) + b2

k(µ)
)

. (2.26)

¤

Corollary 2.2 The Fourier coefficients of σ2(t) can be computed in the L2 sense as:

a0(σ
2) = lim

N→∞

π

N + 1 − n0

N
∑

k=n0

1

2

(

a2
k(dX) + b2

k(dX)
)

(2.27)

aq(σ
2) = lim

N→∞

π

N + 1 − n0

N
∑

k=n0

(ak(dX)ak+q(dX) + bk(dX)bk+q(dX)) (2.28)

bq(σ
2) = lim

N→∞

π

N + 1 − n0

N
∑

k=n0

(ak(dX)bk+q(dX) − bk(dX)ak+q(dX)) (2.29)

From Theorem 2.1 we get immediately an estimator of the integrated volatility. Indeed:

∫ 2π

0

σ2(s)ds = 2πa0(σ
2) (2.30)

where a0(σ
2) is given by formula (2.5). The following Theorem provides asymptotic confi-

dence intervals for the Fourier coefficients of volatility, in the case of constant σ:



38 CHAPTER 2. VOLATILITY ESTIMATE VIA FOURIER ANALYSIS

Theorem 2.3 Assume volatility is a constant, σ(·) = σ ∈ R. As N → ∞, we have:

√

N + 1 − n0

(

a0(σ
2) − σ2

)

→ N
(

0, 2σ4
)

(2.31)

√

N + 1 − n0 aq(σ
2) → N

(

0, σ4
)

(2.32)
√

N + 1 − n0 bq(σ
2) → N

(

0, σ4
)

(2.33)

where the above limit is in distribution.

Proof. We have already shown in the proof of Theorem 2.1 that ak(dX), bk(dX) can be

replaced by ak(dv), bk(dv) where dv = dX−µ(t)dt, since all the contribution of the coefficients

of µ vanish a.s. as N → ∞. We start from the fact that ak(dv), bk(dv) are Gaussian random

variables with zero mean. Let σ(·) = σ. We then have:

E[a2
k(dv)] = E[b2

k(dv)] =
1

π
σ2 (2.34)

and

E[a4
k(dv)] = E[b4

k(dv)] =
3

π2
σ4 (2.35)

Moreover, from the orthogonality of the trigonometric base, if k 6= h, E[ak(dv)ah(dv)] =

E[bh(dv)bk(dv)] = 0 and, for every k, h, E[ak(dv)bk(dv)] = 0. Thus ak(dv), bh(dv) are all

independent, thus if k 6= h, a2
k(dv)+b2

k(dv) is independent of a2
h(dv)+b2

h(dv). Then standard

central limit theorem yields the result. We get the result for aq(σ
2), bq(σ

2) with the same

reasoning, since E[ak(dv)ak+q(dv)] = E[ak(dv)bk+q(dv)] = 0 and E[(ak(dv)ak+q(dv))2] =

σ4/π2. ¤

It is sometimes convenient to rewrite equation (2.4) as:

σ2(t) = lim
M→∞

M
∑

k=−M

(

1 − k

M

)

Ak(σ
2)eikt, (2.36)

where

Ak(σ
2) =











1
2
(ak(σ

2) − ibk(σ
2)), k ≥ 1

1
2
a0(σ

2), k = 0
1
2
(a|k|(σ

2) + ib|k|(σ
2)) k ≤ −1

(2.37)

For the implementation of the estimator, we adopt the following procedure. Since we observe

the process Xt only at discrete times t1, . . . , tn, we set Xt = Xti in the interval ti ≤ t < ti+1.

Using interpolation techniques different from this we get a bias in the volatility measurement

(Barucci and Renò, 2002b). Then the Fourier coefficients of the price can be computed as:

ak(dX) =
1

π

∫ 2π

0

cos(kt)dXt =
X2π − X0

π
− k

π

∫ 2π

0

sin(kt)Xtdt, (2.38)
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Figure 2.1: Top: Daily log-price of the Dow Jones Industrial average from

1896 to 1999. Bottom: Daily volatility of the same index, computed with the

Fourier method.

then using:

k

π

∫ ti+1

ti

sin(kt)Xt dt = Xti

k

π

∫ ti+1

ti

sin(kt)dt = Xti

1

π
[ cos(kti) − cos(kti+1) ] . (2.39)

Before computing (2.38), we add a linear trend such that we get X2π = X0, which does not

affect the volatility estimate. Then we stop the expansions (2.27-2.29) at a properly selected

frequency N . For equally spaced data, the maximum N which prevents aliasing effects is

N = n
2
, see Priestley (1979). Finally, we have to select the maximum M in (2.36). M should

be a function of N such that M(N) → ∞ when N → ∞.

In order to illustrate the potential of the method, we compute the volatility σ2(t) on a one

century long time series, that is the daily close price of the Dow Jones Industrial index,

from 26 May 1896 to 29 April 1999. We implemented the method with 5, 000 coefficients for

the price and 500 for volatility. Figure 2.1 shows the result, and how it is possible to link

volatility bursts and clustering to well defined periods.
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2.2 Multivariate case

The multivariate case is a straightforward extension of the previous analysis. In the usual

filtered probability space (Ω,Ft,P), define Xt ∈ R
d as the solution of the following process:

{

dXt = µ(t)dt + σ(t)dWt

X0 = x0

(2.40)

where σ(t) ∈ R
d×R

d, µ(t) ∈ R
d are bounded deterministic functions, and Wt is an R

d valued

Brownian motion. In this case, with continuous trajectories, quadratic variation is simply:

[X,X]t =

∫ t

0

σT (s)σ(s)ds (2.41)

We will then set:

σ2
ij(t) =

d
∑

k=1

σik(t)σkj(t), (2.42)

and we write σ2
ij(t) in the following way:

σ2
ij(t) = lim

n→∞

n
∑

k=0

(

1 − k

n

)

·
[

ak(σ
2
ij) cos(kt) + bk(σ

2
ij) sin(kt)

]

. (2.43)

We then have the following:

Corollary 2.4 Consider a process Xt satisfying (2.40), and define the component-wise Fourier

coefficients of dX and σ2 as in (2.3). Given an integer n0 > 0, we have in L2:

a0(σ
2
ij) = lim

N→∞

π

N + 1 − n0

N
∑

k=n0

1

2

(

ai
k(dX)aj

k(dX) + bi
k(dX)bj

k(dX)
)

(2.44)

aq(σ
2
ij) = lim

N→∞

π

N + 1 − n0

N
∑

k=n0

(

ai
k(dX)aj

k+q(dX) + bi
k(dX)bj

k+q(dX)
)

(2.45)

bq(σ
2
ij) = lim

N→∞

π

N + 1 − n0

N
∑

k=n0

(

ai
k(dX)bj

k+q(dX) + bi
k(dX)aj

k+q(dX)
)

(2.46)

Proof. We can use the polarization property (Proposition 1.31, 3), that is:

[X i, Xj] =
1

4
([X i + Xj, X i + Xj] − [X i − Xj, X i − Xj]) (2.47)

Using the fact that ak(dX i ± dXj) = ak(dX i) ± ak(dXj), we get a0(σ
2
ij) from (2.27) after

substituting a2
k(dX) with

1

4
(ak(dX i) + ak(dXj))2 − (ak(dX i) − ak(dXj))2 = ak(dX i)ak(dXj). (2.48)

which yields the result. ¤



Chapter 3

Univariate applications

3.1 Introduction

Volatility estimation and forecasting is a critical topic in the financial literature. Indeed, it

plays a crucial role in many different fields, e.g., risk management, time series forecasting

and contingent claim pricing.

In the last twenty years, starting out from empirical investigations showing that volatility

in financial time series is highly persistent with clustering phenomena, many models have

been proposed to describe volatility evolution. The literature is now quite large with several

specifications of auto-regressive models. Since empirical analysis have shown a high degree

of intertemporal volatility persistence, then forecasting with an autoregressive specification

should provide satisfactory results, but in many papers it has also been observed that fore-

casting with GARCH models can be extremely unsatisfactory when the daily volatility is

measured ex post by the squared (daily) return, see Andersen and Bollerslev (1998a); An-

dersen et al. (1999); Figlewski (1997); Pagan and Schwert (1990). Andersen and Bollerslev

(1998a) suggest that the main motivation of this failure is that the squared daily return is

a very noisy estimator of volatility. Monte Carlo experiments of diffusion processes, whose

parameters have been estimated on exchange rate time series (DM-$ and Yen-$), show that

the noise of the high frequency volatility estimator is much smaller than that of the daily

squared return. Then, they show as the forecasting performance of a GARCH(1,1) model

is improved when the daily volatility (integrated volatility) is measured by means of the cu-

mulative squared intraday returns. On this topic see also Barndorff-Nielsen and Shephard

(2002a,b).

41
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In this Chapter we address volatility estimation and forecasting in a GARCH setting with

high frequency data by applying the algorithm described in Chapter 2 to compute the volatil-

ity of a diffusion process. This method is based on Fourier analysis techniques (hereafter

Fourier method). The volatility of a diffusion process is defined as the limit of its quadratic

variation. This definition motivates standard volatility estimation methods based on a differ-

entiation procedure: equation (1.11) of a process with a given frequency (day, week, month)

is taken as a volatility estimate, see e.g. French et al. (1987). Extending this technique to

intraday data presents some drawbacks due to the peculiar structure of high frequency data.

For example, tick-by-tick data are not equally spaced. In the above cited papers an equally

spaced time series for intraday returns is constructed by linearly interpolating logarithmic

midpoints of bid-ask adjacent quotes or by taking the last quote before a given reference

time (henceforth called imputation method). This procedure induces some distortions in the

analysis, e.g. it may generate spurious returns autocorrelation, and it reduces the number

of observations. The method adopted in this Chapter avoids these problems; it is based on

integration of the time series, and it employs all the (irregularly spaced) observations. To

compute integrals, we assume the price to be piecewise constant, i.e. the price is constant

between two subsequent observations.

Volatility computation by using all the data with the Fourier method should then be more

precise. We illustrate this fact through Monte Carlo simulations of a continuous-time

GARCH(1,1) model with the parameters estimated in Andersen and Bollerslev (1998a).

We also extend the simulation framework to representative models belonging to the SR-

SARV(1) class (Andersen, 1994; Meddahi and Renault, 2004; Fleming and Kirby, 2003),

which includes GARCH(1,1) as a particular case. We show that, in some settings, the vari-

ance of our integrated volatility estimator is smaller than that of the cumulative squared

intraday returns. Moreover, the precision of the cumulative squared intraday returns in

measuring volatility depends on the procedure employed to build an equally spaced time se-

ries. Linear interpolation causes a downward bias which increases with sampling frequency.

The imputation method is immune from these drawbacks. When implementing the Fourier

method with linearly interpolated observations instead of assuming the price to be piecewise

constant, a strong downward bias arises as well.

Through Monte Carlo simulations, we show that, by measuring integrated volatility accord-

ing to the Fourier method, the forecasting performance of the GARCH(1,1) model, and

other models belonging to the SR-SARV(1) class, is better than that obtained by computing

volatility according to the cumulative squared intraday returns.

These results are confirmed when the method is applied to compute volatility of exchange

rate high frequency time series. We apply the Fourier method to the evaluation of the



3.2. MONTE CARLO EXPERIMENTS 43

forecasting performance of the daily GARCH model and of the intraday GARCH model, as

in Andersen et al. (1999). For both the time series considered, the GARCH model forecasts

are evaluated to be better if the Fourier method is employed as a volatility estimate instead

of the cumulative squared intraday returns.

We then turn to directly modeling volatility measures. A good forecasting model for daily

integrated volatility is crucial for VaR estimates. Traditional models regard volatility as

a latent factor; here we model it as an observable quantity through an AR(n) model esti-

mated by ordinary least squares. In spite of its simplicity, this model performs better than

traditional models (GARCH(1,1) and Riskmetrics).

Finally we investigate the relationship between market activity and volatility in the Italian

interbank overnight market. The interesting point is that this market is almost free of

information asymmetry-heterogeneity. As a matter of fact, the overnight interest rate market

is affected by liquidity conditions and by European Central Bank decisions, hence it is

almost impossible for a bank to detain private information on them. Banks trade for pure

hedging reasons. We show that definitely the number of contracts, and not trading volume,

is associated with interest rate volatility. Our results confirm that liquidity management is

the driving force of interest rate movements.

This Chapter is organized as follows. Section 3.2 describes the Monte Carlo experiments and

assesses the performance of the Fourier method in measuring and forecasting volatility of

simulated data. In Section 3.3 we turn to the analysis of foreign exchange rate data. Section

3.4 describes an application to Value at Risk measurement. In Section 3.5 we analyze the

interest rate and volatility dynamics of the Italian money market. Section 3.6 concludes.

3.2 Monte Carlo experiments

In Barucci et al. (2000) we tested the Fourier method on equally spaced data. Monte Carlo

experiments simulating a diffusion process with constant volatility showed that the method

allows to consistently estimate volatility in a univariate setting and cross-volatilities in a mul-

tivariate setting. The precision of the estimate is similar to that of classical methods. When

applied to the daily time series of the Dow Jones Industrial and Dow Jones Transporta-

tion Index, the Fourier method replicates the volatility estimates obtained by the classical

method. Then there is no difference between the Fourier method and classical methods on

equally spaced data.
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3.2.1 GARCH(1,1) process

Let p(t) = log S(t), where S(t) is a generic asset price. Following a large literature, we model

the asset price through the continuous-time GARCH model (Drost and Werker, 1996):

dp(t) = σ(t)dW1(t)

dσ2(t) = θ [ω − σ2(t)] dt +
√

2λθσ2(t)dW2(t),
(3.1)

where θ, ω, λ are constants and W1,W2 are two independent Brownian motions. Provided
∫

σ(t)dW (t) is a continuous martingale, our method allows for jumps in the process σ(t).

Jumps inserted directly in the differential equation driving the price evolution are not al-

lowed, since it would be impossible to disentangle the contribution to quadratic variation of

the diffusion coefficient from that of jumps, see Theorem 1.36.1.

Given a time window [0, 1] (a day, week, month), we wish to compute the integrated volatility

of the process, i.e.
∫ 1

0
σ2(t)dt. An unbiased estimator of this quantity is provided by [p(1)−

p(0)]2. However, this estimator is very noisy. As early examples, in Andersen and Bollerslev

(1998a) for exchange rates and in Martens (2002) for a stock index, it is shown that an

estimator with smaller noise is provided by the sum of squared intraday returns:

σ̂2(m) =
m

∑

i=2

[

p

(

i

m

)

− p

(

i − 1

m

)]2

. (3.2)

The daily squared return corresponds to the case m = 2. As described in Muller et al. (1990),

if p is not observed at time i/m, p(i/m) is computed as the linear interpolation of two adjacent

observations (one before and one after the time i/m). Theoretically, by increasing the

frequency of observations, an arbitrary precision in the estimate of the integrated volatility

can be reached. This could not be our case because of the interpolation procedure. In most

of the papers estimating volatility with high frequency data, (3.2) is computed with m = 288,

corresponding to 5 minute returns.

We adopt an alternative methodology. The method described in Chapter 2 gives us an esti-

mator of integrated volatility, that is equation (2.30). The computation of a0(σ
2) provides

an estimate of the integrated volatility using all the observations. To illustrate the validity

of the Fourier approach, we simulate the diffusion process (3.1) by a first-order Euler dis-

cretization scheme, see Kloeden and Platen (1992). We use the parameters θ = 0.035, ω =

0.636, λ = 0.296 estimated in Andersen and Bollerslev (1998a) on the daily return time series

of the Deutsch Mark-U.S. Dollar exchange rate. Existence of the exact discretization of the

1Recently, econometric techniques based on bipower variation have been developed to disentangle the

jump component from the volatility component: see Andersen et al. (2004); Barndorff-Nielsen and Shephard

(2004c,b).
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process (3.1) is guaranteed by Drost and Werker (1996) in a weak sense. On this topic, see

also the comprehensive results on temporal aggregation in Meddahi and Renault (2004).

Taking a day as a reference measure, we simulate 24 hours of trading2 with dt = 1/86400

when discretizing (3.1), which corresponds to an observation every second. In order to

simulate high frequency unevenly sampled observations, we select a subset of [1, 86400] by

extracting the time differences from an exponential distribution with the mean equal to 14

seconds. This choice is motivated by the fact that the empirical distribution of ti−ti−1 can be

approximated with an exponential shape and 14 seconds is the mean duration between quotes

in the DM-$ exchange rate time series. As a result, we get a data set (tk, p(tk), k = 1, . . . , N)

with tk unevenly sampled, and σ(t) recorded every second, so that the generated value of the

integrated volatility can be computed. Then we compute the integrated volatility according

to three estimators: the squared daily return, the cumulative five minute squared intraday

returns with linear interpolation of adjacent observations, and the Fourier estimator (2.27).

The implementation of the Fourier estimator is accomplished with the imputation method.

Since we observe the process p(t) only at discrete times t1, . . . , tn, we set p(t) = p(ti) in the

interval ti ≤ t < ti+1, see equation (2.39).

Results are illustrated in Figure 3.1, where the distribution of the normalized difference

between the integrated volatility and its estimate is shown. As expected, the squared daily

return is a very noisy estimator. As argued in Andersen and Bollerslev (1998a), when

estimating volatility with the cumulative squared intraday returns, we get a smaller variance.

However, by measuring volatility according to the Fourier method we get a further reduction

of the variance, as well as of the measurement bias.

With real data, as those analyzed later in this Chapter, when increasing the sampling fre-

quency of a financial time series we encounter problems related to microstructure effects.

In our setting (simulated time series) such effects are not present; as a consequence, by in-

creasing the return sampling frequency from five minutes to, say, one minute the cumulative

squared intraday return estimator should perform better. This is definitely not the case.

Figure 3.1 shows that increasing the frequency from five minutes to one minute the variance

of the cumulative squared intraday return estimator is reduced but a downward bias comes

in.

This downward bias does not depend on the estimation method. If we implement the Fourier

method by computing the integrals in (2.27) interpolating linearly the prices in the interval

[ti, ti+1], instead of assuming the price to be constant, we get again a downward biased

2Foreign exchange rates are traded 24 hours per day, weekends excluded. Roughly, each of the three

major markets (London, Tokyo and New York) is open when the other two are closed.



46 CHAPTER 3. UNIVARIATE APPLICATIONS

Figure 3.1: Distribution of
R

1

0
σ2(t)dt−σ̂2

R

1

0
σ2(t)dt

where σ̂2 is obtained with four dif-

ferent estimators of the integrated volatility: (a) σ̂2 = [p(1) − p(0)]2; (b)

σ̂2 =
∑288

i=2[p( i
288 )−p( i−1

288 )]2 (five minute estimator); (c) σ̂2 =
∑1440

i=2 [p( i
1440 )−

p( i−1
1440 )]2 (one minute estimator); (d) σ̂2 = 2πa0(σ

2) (Fourier estimator). In (b)

and (c) returns are linearly interpolated. For each distribution, we indicate its

mean and its standard deviation (Std). The distributions are computed with

10,000 “daily” replications of model (3.1).

estimator; on the simulation sample of Figure 3.1, we get a downward bias in the mean of

0.426. Linear interpolation induces spurious autocorrelation; in some sense, a straight line

is the “minimum variance” path between two observations.

The downward bias effect of linear interpolation was also conjectured in Corsi et al. (2001).

In that paper the authors suggest to use an imputation algorithm which coincides with our

piecewise constant assumption. As a matter of fact, taking the last observation before time

t as p(t) is equivalent to assume p(t) = p(ti) in the interval [ti, ti+1]. With this imputation

scheme, the cumulative squared intraday return estimator is unbiased, as shown in Figure

3.2 where the cumulative squared intraday returns with the adoption of the imputation

scheme is computed for a sampling frequency of two minutes, one minute and 14 seconds.

As suggested by the theory, increasing the sampling frequency the variance of this estimator
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Figure 3.2: Distribution of
R
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σ2(t)dt−σ̂2
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σ2(t)dt

where σ̂2 is obtained with four differ-

ent estimators of the integrated volatility: (a) 2-minute cumulative squared in-

traday returns; (b) 1-minute cumulative squared intraday returns; (c) 14-second

cumulative squared intraday returns; (d) Fourier estimator. In (a),(b),(c) re-

turns are obtained with an imputation scheme. For each distribution, we indi-

cate its mean and its standard deviation (Std). The distributions are computed

with 10,000 “daily” replications of model (3.1).

decreases. In the limit, it converges from above to the variance of the Fourier estimator.

The Fourier estimator is characterized by the smallest variance for any sampling frequency,

regardless of the adoption of the imputation or of the linear interpolation scheme for the

cumulative squared intraday return estimator. In what follows, when volatility is computed

according to the cumulative squared intraday returns, we will aggregate the data through

linear interpolation, as it is done in large part of literature.

We now resort to a new set of simulations. First note that the model (3.1) is closed under

temporal aggregation in a weak sense, see Drost and Werker (1996); Corradi (2000), and its
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discrete time analogous is given by:

rt = ζtεt

ζ2
t+1 = ψ + α · r2

t + β · ζ2
t

(3.3)

where εt are i.i.d. Normal random variables. The exact relation between (ψ, α, β) and

(θ, ω, λ) is derived in Drost and Werker (1996). We want to test the reliability of our

estimates when we change the values of α, β in (3.3). For these new experiments, we extract

the observation times in such a way that the time differences are drawn from an exponential

distribution with mean equal to τ = 45 seconds.

In this new simulation setting we will also compute the estimator (3.2) with m = 144,

corresponding to ten-minutes returns, and m = 720 corresponding to two-minutes returns;

we don’t increase further m since the mean time between transactions is 45 seconds. We

also include the range, as defined in equation (1.28). We will evaluate the performance of

the estimators (2.27) and (3.2) with m = 144, 288, 720 by the statistics:

µ = E

∫ 1

0
σ2(s)ds − σ̂2

∫ 1

0
σ2(s)ds

, std =



E

(

∫ 1

0
σ2(s)ds − σ̂2

∫ 1

0
σ2(s)ds

)2




1
2

,

where σ̂2 is the estimate and
∫ 1

0
σ2(s)ds is the integrated volatility generated in a simulation,

whose value is known in our simulation setting.

We recall that without manipulating the data, we should observe smaller µ and std when

increasing the frequency. Figure 3.3 shows the results on simulated time series with α =

0.25, β = 0.7, ψ(1−α−β) = 1. Results are in line with those in Figure 3.1. The range is very

noisy, since it uses only two observations (the maximum and the minimum), and it is also

very skewed. The ten-minutes estimator (not shown) provides a downward biased estimate

of the integrated volatility, with a standard deviation larger than the bias. The five-minutes

is also downward biased, with a standard deviation of the same order of the bias in mean.

Increasing further the frequency, the estimator is characterized by less variance but a larger

bias is observed. The bias is removed if we use previous-tick interpolation instead of linear

interpolation. The Fourier estimator is characterized by the smallest bias in mean and by

a variance smaller than that of the 5-10 minutes estimate and slightly larger than that of

the 2 minutes estimate with linear interpolation. To check the robustness of these results,

we repeated the Monte Carlo experiments on a grid of values (α, β, ψ = (1−α− β)−1) with

2 and 5 minutes returns. The results, reported in Table 3.1, can be summarized as follows:

the estimator (3.2) turns out to be downward biased (µ > 0), with a bias increasing with

m, while the bias of the Fourier estimator is statistically null. If m is chosen in such a way

that the bias of (3.2) is less than its standard deviation, then the Fourier estimate provides

a smaller standard deviation.
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Figure 3.3: Distribution of
R

1

0
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, where σ̂2 are three different estima-

tors of the integrated volatility: (a) the range, equation (1.28); (b) estimator

(3.2) with m = 288; (the solid line refers to linear interpolation, the dashed line

to previous-tick interpolation) (c) estimator (3.2) with m = 720; (d) Fourier

estimator (2.27). The distribution is computed with 10,000 “daily” replications

of model (3.1).

3.2.2 SR-SARV(1) process

For completeness, we checked these results on the following auto-regressive diffusion models:

NGARCH(1, 1) model, Engle and Ng (1993) :

σ2
t+1 = ψ + α(rt − γσt)

2 + β · σ2
t

(3.4)

GJR − GARCH model, Glosten, Jagannathan and Runkle (1989) :

σ2
t+1 = ψ + α · r2

t + β · σ2
t + δθ(−rt)r

2
t

(3.5)

EGARCH model, Nelson (1991) :

log(σ2
t+1) = ψ + ασt · (|rt| + γ · rt) + β · log(σ2

t )
(3.6)

where the θ-function is given by θ(x) = 1 if x > 0 and θ(x) = 0 if x ≤ 0. All these models fall

in the general class of the SR − SARV (1) models of Andersen (1994), which have the nice

property to be closed under temporal aggregation, see Meddahi and Renault (2004); Duan

(1997), as well as Fleming and Kirby (2003) for its relation with the GARCH(1,1), so that a

continuous diffusion process exists, with the property that the corresponding discrete process
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Table 3.1: µ, std,R2 (multiplied by 100) for the three estimators: (3.2) with

m = 720 denoted by 2′, (3.2) with m = 188 denoted by 5′ and (2.27) denoted

by F , on a grid of values for (α, β) in (3.3), and ψ · (1 − α − β) = 1. All the

values are computed with 10000 ”daily” replications.
β ↓ α → 0.05 0.1 0.15 0.2 0.25

2′ 5′ F 2′ 5′ F 2′ 5′ F 2′ 5′ F 2′ 5′ F

µ 23.9 10.0 0.1 23.9 10.0 0.1 23.9 10.0 0.1 23.9 10.0 0.1 23.9 10.0 0.1

0.5 std 4.4 7.7 4.9 4.5 7.8 5.0 4.5 7.9 5.0 4.6 7.9 5.1 4.6 8.0 5.1

R2 4.92 4.79 4.98 9.58 9.44 9.70 14.0 13.9 14.2 18.6 18.5 18.8 23.8 23.8 24.0

µ 23.9 10.0 0.1 23.9 10.0 0.1 23.9 10.0 0.1 23.9 10.0 0.1 23.9 10.0 0.1

0.6 std 4.4 7.7 4.9 4.5 7.8 4.9 4.5 7.8 5.0 4.5 7.8 5.0 4.5 7.8 5.0

R2 6.79 6.62 6.88 13.8 13.7 14.0 21.9 21.8 22.1 32.5 32.5 33.0 44.6 44.5 45.6

µ 23.9 10.0 0.1 23.9 10.0 0.1 23.9 10.0 0.1 23.9 10.0 0.1 23.9 10.0 0.1

0.7 std 4.4 7.7 4.9 4.4 7.7 4.9 4.4 7.7 4.9 4.5 7.8 4.9 4.5 7.8 4.9

R2 9.67 9.43 9.79 21.5 21.3 21.7 38.2 37.9 38.7 51.3 51.1 52.2 48.2 48.1 48.8

µ 23.9 10.0 0.1 23.9 10.0 0.1 23.9 10.0 0.1

0.8 std 4.4 7.6 4.9 4.4 7.7 4.9 4.4 7.7 4.9

R2 15.2 14.7 15.3 36.9 36.5 37.2 54.3 53.8 54.5

µ 23.9 10.0 0.1

0.9 std 4.4 7.6 4.8

R2 30.8 29.9 30.9

Table 3.2: µ, std,R2 (multiplied by 100) for the three estimators, (3.2) with

m = 720 denoted by 2′, (3.2) with m = 288 denoted by 5′ and (2.27) denoted by

F , for the diffusion processes (3.4-3.5-3.6) with the reported parameter values.

All the values are computed with 10000 ”daily” replications.

GJR NGARCH EGARCH

ψ = 0.0587, α = 0.0312 ψ = 0.0554, α = 0.0952 ψ = −0.1491, α = 0.1786

β = 0.8275, δ = 0.1271 β = 0.8001, γ = 0.6048 β = 0.9512, γ = −0.4815

2′ 5′ F 2′ 5′ F 2′ 5′ F

µ 23.9 10.0 -0.3 23.9 10.0 -0.5 23.9 10.0 -0.2

std 4.4 7.6 4.9 4.4 7.6 5.0 4.4 7.6 4.9

R2 37.8 37.0 37.9 47.3 46.4 47.4 46.6 45.5 46.8

is its exact discretization. We simulated these processes with the parameters estimated in

Duan (1997) and reported in Table 3.2. Table 3.2 reports also µ, std,R2 for each model.

The results in Table 3.2 confirm those obtained with the continuous GARCH model, i.e. the

Fourier estimator has a smaller bias and an higher precision than the estimator (3.2).

3.2.3 Volatility forecasting evaluation

Following Drost and Nijman (1993); Drost and Werker (1996), the GARCH continuous time

diffusion (3.1) can be discretized, obtaining the weak GARCH(1,1) process (3.3). In this

setting, ζ2
t+1 provides us with an unbiased forecast of

∫ 1

0
σ2(t+ τ)dτ . While there is a strong

support in favor of a high persistence in the volatility dynamics, the one day ahead forecasting
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performance of the above model has been evaluated to be very poor in the literature (Jorion,

1995).

Using simulated time series, we employ the Fourier method to measure the realized integrated

volatility, and we evaluate the GARCH(1,1) model forecasting performance according to it.

The GARCH model performance with respect to this estimator is compared to that associ-

ated with the cumulative squared intraday returns with linearly interpolated observations.

Following Andersen and Bollerslev (1998a), the forecasting performance of the GARCH

model can be evaluated according to the R2 of the linear regression:

σ̂2
t = a + b · ζ2

t + εt, (3.7)

which is given by

R2 =
[

corr
(

σ̂2
t , ζ

2
t

)]2
, (3.8)

where σ̂2 is the ex post integrated volatility estimator.

We use the simulation setting described in Section 3.2.1. For the Y-$ time series we set

the mean duration equal to 52 seconds. The forecasting model is given by (3.3) with the

parameters as in Table 3.5 for m = 1, corresponding to those employed in the above Section

according to Drost and Werker (1996).

We point out that the R2 obtained in (3.8) must be compared to the R2 obtained when the

ex post integrated volatility measure is perfectly known; its value is given by

R2
∞ =

[

corr

(
∫ t

t−1

σ2(s)ds, ζ2
t

)]2

, (3.9)

a value that can be computed in our simulation setting.

Results are shown in Table 3.3: the Fourier estimator gives an R2 which is very close to R2
∞.

Employing the Fourier estimator, the GARCH forecasting performance is better than that

obtained by measuring integrated volatility through the sum of squared intraday returns.

The same analysis has been performed for different parameter values of the GARCH(1,1)

and the models (3.4),(3.5),(3.6). Results, shown in Tables 3.1 and 3.2 respectively confirm

the previous conclusions.

3.3 Foreign exchange rate analysis

The data set at hand consists of the one year (from October, 1st 1992 to September 30th 1993)

collection of tick-by-tick quotes (bid and ask) of the Deutsch Mark-U.S. Dollar exchange rate
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Table 3.3: R2 obtained on simulated data with different estimators of inte-

grated volatility. The values are computed through 50,000 “daily” replications.

The table reports also the estimates â, b̂ of the regression (3.7), together with

their standard errors (s.e.) and the Mean Square Error (MSE). Ljung-Box test

on the residuals (not reported) strongly reject the null of zero auto-correlation.

DM-$

Estimator R2 â s.e. b̂ s.e. MSE

(p(1) − p(0))2 0.062 -0.620 0.011 1.954 0.015 1.33
∑288

i=2

[

p
(

i
288

)

− p
(

i−1
288

)]2
0.476 -0.003 0.003 0.971 0.004 0.088

Fourier 0.489 -0.002 0.003 1.004 0.004 0.090

R2
∞ 0.491 -0.002 0.003 1.005 0.004 0.089

Y-$

Estimator R2 â s.e. b̂ s.e. MSE

(p(1) − p(0))2 0.092 -0.438 0.007 1.869 0.011 1.31
∑288

i=2

[

p
(

i
288

)

− p
(

i−1
288

)]2
0.488 -0.050 0.003 1.095 0.004 0.147

Fourier 0.501 -0.049 0.003 1.096 0.004 0.147

R2
∞ 0.505 -0.052 0.003 1.104 0.004 0.148

and of Japanese Yen-U.S. Dollar exchange rate, with time stamps rounded to the nearest

even second. The data set was collected and delivered by Olsen & Associates. This data set

has been extensively studied, e.g. see Andersen and Bollerslev (1997, 1998b,a); Andersen

et al. (2001, 1999); Guillaume et al. (1997); Muller et al. (1990, 1997); Zumbach (2000).

We define the price to be the mid-price between bid and ask quotes. The trading day is

chosen to begin and to end at 21:00 GMT. We excluded weekends and trading days with less

than 1000 quotes for the DM-$ and less than 320 quotes for the Y-$. Moreover we applied

the filter described in Dacorogna et al. (1993) which removes roughly 0.36 % of the quotes.

We end up with 1.466.944 quotes for the DM-$ and 567.758 quotes for Y-$, distributed over

258 trading days.

When applying the Fourier estimator to a high frequency time series, we compute a0(σ
2)

through the expansion (2.27) stopped at some frequency N . In the previous Section we

used the Nyquist frequency, N = n/2, where n is the number of data, see Priestley (1979).

With real data we encounter a severe difficulty: the diffusion model (3.1) does not hold

for small time steps because of microstructure effects such as price discreteness or bid-ask

bounce effect3. Microstructure effects jeopardize the computation of the Fourier coefficients

3See Madhavan (2000) for a survey. See also the recent papers of Bandi and Russell (2003); Ait-Sahalia

et al. (2003); Andreou and Ghysels (2004).
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Figure 3.4:
√

2πa0(σ2) computed according to (2.27) as a function of n for

the DM-$ exchange rate (October 1st, 1992). The dashed line indicates the

cut-off frequency that we adopt to compute integrated volatility.

at high frequencies. This fact is shown in Figure 3.4 where the square root of the integrated

volatility, computed according to (2.27), is plotted as a function of the highest frequency n

employed in the sum (2.27), with n ranging from n0 = 1 to N/2. The plot in Figure 3.4 can

be interpreted as the mean of the power spectrum of the exchange rate from frequency 0 to

n. If dp(t) is Normally distributed, as in a model like (3.1), then the spectrum of p should be

flat. Figure 3.4 shows that the power spectrum of p is not flat4; for a frequency larger than

a certain value (denoted by Ncut) the Fourier coefficients become considerably higher than

the lower frequency coefficients. In our setting, it turns out that Ncut ' 500 for the DM-$

exchange rate and Ncut ' 160 for the Y-$. These frequencies correspond roughly to a time

step, computed as 86400
2·Ncut

seconds, of 1.5 and 4.5 minutes respectively. We conclude that the

price process cannot be modeled by (3.1) for time steps smaller than two (five) minutes for

the DM-$ (Y-$) exchange rate.

This behavior of the exchange rate spectrum can be motivated by the fact that high frequency

returns are negatively correlated, a phenomenon that has been documented by Andersen

and Bollerslev (1997); Bollerslev and Domowitz (1993) among others. We can show this by

simulating the process










σ2
t+1 = ψ + α · p2

t + β · σ2
t

εt+1 = ρεt +
√

1 − ρ2ηt

pt+1 = σt+1εt,

(3.10)

where ρ is the first-order serial correlation coefficient and ηt is a sequence of i.i.d. Normal

distributed random variables with mean 0 and variance 1. Figure 3.5 shows the analogous of

Figure 3.4 for a time series simulated according to (3.10) with ρ = −0.985 and a time step of

4A plot analogous to Figure 3.4 can be found in Andersen et al. (2000b).
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Figure 3.5:
√

2πa0(σ2) for the simulated process (3.10) as a function of the

frequency n in (2.27).

one second: the phenomenon illustrated in Figure 3.4 occurs. According to our simulations,

smaller values of |ρ| would lead to a larger cut-off frequency. Such a negative correlation

can be linked to non-synchronous trading (Lo and MacKinlay, 1990), to the management of

inventory positions by market makers (Andersen and Bollerslev, 1997) and to the bid-ask

bounce effect (Madhavan, 2000). Oomen (2002) studies the impact of serial correlation on

realized volatility.

In what follows, we cut the highest frequencies in the computation of the integrated volatility,

i.e. we evaluate the Fourier coefficient (2.5) for n = min(N/2, Ncut). In the literature on

volatility computation with high frequency data, microstructure effects are attenuated by

aggregating the data through linear interpolation or an imputation scheme, building a five

minute return time series. With our method we do not interpolate nor aggregate the original

time series and we use all the data in order to compute the Fourier coefficients of dp, we

only stop expansion (2.27) properly.

We evaluate the GARCH(1,1) model forecasting performance, by looking at the one-step-

ahead daily forecasts, when the integrated volatility is computed according to the Fourier

method. The parameters of the model are those estimated in Andersen and Bollerslev

(1998a) on the same time series. In Figure 3.6, we show the forecasts of the GARCH model

together with the integrated volatility of the DM-$ exchange rate computed according to

the Fourier method. Table 3.4 shows the corresponding R2. We observe that the GARCH

model is evaluated to perform quite well in forecasting when the Fourier method is employed

to compute the integrated volatility. Its performance is better than that associated with

the cumulative squared intraday returns (with linear interpolation of observations) as an

integrated volatility measure. The poor performance on the Y-$ time series, when compared
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Table 3.4: R2 for the two foreign exchange rate time series. The table reports

also the estimates â, b̂ of the regression (3.7), together with their standard

errors (s.e.), the Mean Square Error (MSE) and the Ljung-Box test on residuals

at lag 10, LB(10).

DM-$

Estimator R2 â s.e. b̂ s.e. MSE LB(10)
∑288

i=2

[

p
(

i
288

)

− p
(

i−1
288

)]2
0.400 0.006 0.047 0.99 0.07 0.082 25.72

Fourier 0.470 0.098 0.042 1.00 0.06 0.081 40.64

Y-$

Estimator R2 â s.e. b̂ s.e. MSE LB(10)
∑288

i=2

[

p
(

i
288

)

− p
(

i−1
288

)]2
0.128 0.149 0.072 0.86 0.11 0.220 44.43

Fourier 0.143 0.070 0.070 0.89 0.11 0.210 41.72

Figure 3.6: Comparison between GARCH model forecasts and realized volatil-

ities for the DM-$ exchange rate, from October, 2th 1992 to September, 30th

1993. Realized volatility is measured with the Fourier estimator.

to that obtained in simulated data in Table 3.3, can be explained by the presence of few

days with very high volatility, see also Andersen and Bollerslev (1998a).
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Table 3.5: Coefficients of the GARCH(1,1) model at different frequencies,

obtained (according to Drost and Werker (1996)) from the continuous-time

coefficients θ = 0.035, ω = 0.636, λ = 0.296 for the DM-$ exchange rate and

θ = 0.054, ω = 0.476, λ = 0.480 for the Y-$ exchange rate as estimated in

Andersen and Bollerslev (1998a), ψm = σ2
m(1 − αm − βm).

DM-$ Y-$

m σ2
m αm βm m σ2

m αm βm

1 0.6365 0.0679 0.8978 1 0.4760 0.1043 0.8431

2 0.3180 0.0541 0.9285 2 0.2380 0.0840 0.8893

3 0.2122 0.0466 0.9418 3 0.1587 0.0726 0.9095

4 0.1590 0.0417 0.9496 4 0.1190 0.0651 0.9215

6 0.1061 0.0353 0.9589 6 0.0793 0.0553 0.9358

12 0.0530 0.0262 0.9709 12 0.0397 0.0411 0.9544

24 0.0265 0.0192 0.9794 24 0.0198 0.0302 0.9676

48 0.0133 0.0139 0.9854 48 0.0099 0.0219 0.9770

96 0.0066 0.0100 0.9896 96 0.0050 0.0157 0.9837

144 0.0044 0.0082 0.9915 144 0.0033 0.0130 0.9867

288 0.0022 0.0059 0.9940 288 0.0016 0.0093 0.9906

3.3.1 Forecasting daily exchange rate volatility using intraday re-

turns

Since temporal aggregation of the continuous-time GARCH process (3.1) holds, we can

discretize it at any frequency in a straightforward manner. Denote

rm(t) = p(t) − p

(

t − 1

m

)

,

then we can write:

ζ2
m(t) = ψm + αm · r2

m

(

t − 1

m

)

+ βm · ζ2
m

(

t − 1

m

)

, (3.11)

where ζ2
m(t) is the best linear predictor of r2

m(t) expressed as a linear combination of lagged

squared intraday returns. The relation between (ψm, αm, βm) in equation (3.11) and (ω, θ, λ)

in equation (3.1) can be obtained for every m in closed form following Drost and Werker

(1996); (3.3) corresponds to (3.11) with m = 1. Table 3.5 reports the GARCH(1,1) coeffi-

cients at different frequencies for the DM-$ and Y-$ exchange rate time series.
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Following Andersen et al. (1999), the forecast for the integrated volatility
( ∫ t+h

t
σ2(s)ds

)

using returns spaced by 1/m is given by

Fm,h(t) = mhσ2
m +

αm + βm

1 − αm − βm

[1 − (αm + βm)m·h](ζ2
m(t) − σ2

m), (3.12)

where σ2
m = ψm · (1−αm − βm)−1. The realized ex-post integrated volatility will be denoted

by σ̂2
h(t). In what follows, we will concentrate only on daily forecast evaluation (h = 1).

We choose to evaluate the GARCH(1,1) model forecasting performance with R2 and the

following statistics:

RMSE = E[(σ̂2
h(t) − Fm,h(t))

2]
1
2 ,

HRMSE = E[(1 − Fm,h(t)/σ̂
2
h(t))

2]
1
2 .

We analyze the GARCH(1,1) model forecasting performance using intraday returns both on

simulated time series and on the DM-$ and Y-$ exchange rate time series.

Using the technique described in Section 3.2.3, we simulate the time series with the param-

eters of the DM-$ exchange rate, setting the mean duration to 14 seconds and Ncut = 500.

The results, presented in Table 3.6, are in agreement with those in Andersen et al. (1999);

Martens (2001): increasing the sampling of intraday returns, an improvement of the fore-

casting performance is observed. We remark that the forecasting performance associated

with the Fourier estimator is better than that associated with the 5-minute estimator, with

the exception of RMSE which is slightly larger for m = 1, 2, 3. However, at frequencies

higher than m = 3 the GARCH model is evaluated to perform better when volatility is

estimated with the Fourier method, than when it is estimated with the cumulative squared

intraday returns. These results are confirmed for all the frequencies by adjusting the RMSE

for heteroskedasticity. In Table 3.6 we also report the results when the largest frequencies

are included in the computation. As expected, on simulated data this inclusion leads to a

performance improvement.

The above statistics are reported in Table 3.7 for the DM-$, and in Table 3.8 for the Y-$

time series, with σ̂2
h(t) computed as the sum of 5-minute squared intraday returns and with

the Fourier method. We stress that we are completely neglecting intraday patterns and

macro-economic announcement effects, which have been documented to be important at the

intraday level, see Andersen and Bollerslev (1998a); Martens (2001). We also stress that we

are neglecting the fact that temporal aggregation of the continuous time GARCH process

(3.1) has not been confirmed empirically, see for example Andersen and Bollerslev (1998c);

Zumbach (2000). Our results on the forecasting performance of the GARCH model as a

function of the sampling frequency are substantially in agreement with those reported in
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Table 3.6: Summary statistics of the GARCH(1,1) model forecasts for the

simulated time series of daily volatility when returns are spaced by 1/m days.

Between parenthesis we report the values when frequencies larger than Ncut

are included in the computation. Results are computed with 10,000 “daily”

replications.

5 minute returns Fourier Estimator

m R2 RMSE HRMSE m R2 RMSE HRMSE

1 0.374 0.293 0.542 1 0.376 (0.378) 0.296 (0.296) 0.371 (0.357)

2 0.540 0.250 0.461 2 0.544 (0.545) 0.251 (0.251) 0.423 (0.405)

3 0.584 0.238 0.425 3 0.589 (0.590) 0.239 (0.239) 0.390 (0.372)

4 0.640 0.222 0.391 4 0.646 (0.647) 0.222 (0.221) 0.357 (0.341)

6 0.696 0.203 0.356 6 0.704 (0.706) 0.202 (0.202) 0.323 (0.308)

12 0.766 0.179 0.304 12 0.777 (0.780) 0.176 (0.175) 0.272 (0.258)

24 0.815 0.158 0.263 24 0.827 (0.830) 0.154 (0.153) 0.233 (0.221)

48 0.853 0.141 0.228 48 0.866 (0.868) 0.136 (0.135) 0.199 (0.190)

96 0.877 0.128 0.201 96 0.891 (0.894) 0.122 (0.121) 0.173 (0.165)

144 0.893 0.120 0.186 144 0.906 (0.909) 0.113 (0.112) 0.159 (0.153)

288 0.906 0.111 0.165 288 0.921 (0.924) 0.105 (0.105) 0.141 (0.137)

Andersen et al. (1999); Martens (2001). Volatility forecasting improves when the GARCH

model is discretized at intraday frequencies, but this effect has an intrinsic limit due to the

fact that beyond a certain time scale intraday features and microstructure effects become

prominent. As in previous studies, we confirm the observation that such a time scale is

around few hours. This turns out to be true also for the Y-$ time series, which has not yet

been analyzed from this perspective. For the DM-$ time series the best R2 and HRMSE

are obtained at m = 4 (six hour returns) for both estimators, while on the Y-$ time series

the best R2 is obtained at m = 48 (two hours returns) and the best HRMSE is obtained

at m = 4 (six hours returns) for both estimators.

In general, the GARCH model forecasting performance associated with the Fourier estimator

is better than that associated with the cumulative squared intraday returns. For the DM-$

time series, the R2 associated with the Fourier estimator is higher than that of the five minute

returns at any m, while the HRMSE is largely lower. The RMSE reports similar results

for the two methods, this confirms what has been shown in Table 3.6 with simulated time

series. For the Y-$ exchange rate and m = 1, 2, 3, 6, 144, we find that the Fourier estimator

performs better than the cumulative squared intraday returns with all the statistics. For
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Table 3.7: Summary statistics of the GARCH(1,1) forecasts for the DM-$

daily volatility when returns are spaced by 1/m days.

5 minute returns Fourier Estimator

m R2 RMSE HRMSE m R2 RMSE HRMSE

1 0.400 0.299 0.619 1 0.470 0.292 0.377

2 0.413 0.296 0.545 2 0.491 0.300 0.362

3 0.414 0.307 0.516 3 0.490 0.311 0.362

4 0.445 0.293 0.469 4 0.513 0.308 0.355

6 0.434 0.308 0.522 6 0.502 0.313 0.384

12 0.424 0.311 0.486 12 0.494 0.323 0.389

24 0.422 0.314 0.549 24 0.484 0.326 0.430

48 0.415 0.324 0.565 48 0.473 0.329 0.431

96 0.403 0.331 0.653 96 0.453 0.326 0.473

144 0.406 0.336 0.678 144 0.449 0.320 0.469

288 0.404 0.380 0.798 288 0.436 0.356 0.558

Table 3.8: Summary statistics of the GARCH(1,1) forecasts for the Y-$ daily

volatility when returns are spaced by 1/m days.

5 minute returns Fourier Estimator

m R2 RMSE HRMSE m R2 RMSE HRMSE

1 0.128 0.503 0.588 1 0.143 0.493 0.562

2 0.129 0.521 0.535 2 0.138 0.514 0.531

3 0.169 0.536 0.662 3 0.171 0.532 0.632

4 0.237 0.479 0.454 4 0.235 0.478 0.461

6 0.219 0.520 0.559 6 0.221 0.517 0.548

12 0.263 0.479 0.484 12 0.261 0.477 0.477

24 0.275 0.474 0.507 24 0.270 0.473 0.504

48 0.290 0.466 0.513 48 0.283 0.466 0.513

96 0.266 0.478 0.581 96 0.255 0.480 0.595

144 0.233 0.511 0.664 144 0.236 0.507 0.660

288 0.220 0.520 0.765 288 0.219 0.517 0.758
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m = 4, 12, 24 the results are similar; with m = 96 the 5-minute estimator performs better. At

high frequency the results are not clear cut; this can be due to intraday patterns, low liquidity

of the time series and the breakdown of the GARCH temporal aggregation properties.

3.4 A linear model for volatility

The role played by volatility in most financial applications is crucial, especially in risk man-

agement, where Value at Risk (VaR) estimates are mandatory for regulatory reasons and

asset allocation decisions.

In the recent years, literature focused on the role of integrated volatility; the importance of

integrated daily volatility in VaR applications relies on two facts. First of all, it has been

shown that it is possible to measure it by using intra-day data with very good precision, see

Andersen and Bollerslev (1998a); Barucci and Renò (2002a,b), paralleling the use of daily

returns in computing monthly volatility, see e.g. French et al. (1987); Schwert (1989, 1990,

1998). Second, empirical studies (Andersen et al., 2000a; Bollen and Inder, 2002) showed

that the distribution of returns divided by the square root of the integrated volatility can

be well approximated by a Gaussian distribution with zero mean and variance equal to one.

This fact means that VaR estimates are linked to integrated volatility forecasting, since the

quantiles of the return distribution can be extracted by a Gaussian distribution with zero

mean and variance given by the integrated volatility.

On the other hand, persistence properties displayed by volatility suggest that daily volatility

can be forecasted with reliable precision. Typically, volatility models regard it as a latent

factor which drives asset prices-returns (ARCH, GARCH models). This is the approach

followed also in Beltratti and Morana (1999), where high frequency data are used to estimate

the dynamical model for latent volatility (FIGARCH model) and to compute VaR.

In this Section, we will model directly the integrated volatility as an observable quantity

through a simple AR(n) model. A similar approach has been proposed by Corsi et al. (2001)

and Andersen et al. (2003) in a multivariate setting. The main difference is provided by the

computation method of the integrated volatility. In the above papers, integrated volatility

is computed by using an equally spaced high frequency time series (typically five minute

returns) as the sum of squared intraday logarithmic returns. Our procedure instead is based

on the Fourier method.

We will compare the performance of this model to that of the GARCH(1,1) model or Risk-

metrics, which is very popular among practitioners. We show that, though the AR(n) is
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quite simple, it performs better than traditional models in forecasting daily volatility. Our

findings suggest that constructing directly a model for volatility based on the measurements

of daily integrated volatility, instead of modeling volatility as a latent factor, can be a good

modeling tool.

The model and results

Being able to measure daily volatility with good precision, we try to model integrated volatil-

ity as an observed quantity, instead of a latent factor as in GARCH models. We use the

simplest possible model for the time evolution of the integrated volatility, i.e. an AR(n)

model:

σ̂2
t = σ2

0 +
n

∑

i=1

αiσ̂
2
t−i + εt (3.13)

with E[εt] = 0, E[ε2
t ] = Σ2. The parameters σ2

0, Σ
2, α1, . . . , αn can be estimated by ordinary

least squares (OLS) and σ̂2
t is measured by the integrated volatility estimator in (2.27). We

will use (3.13) to forecast volatility.

We compare this very simple volatility forecasting model with two models largely used by

practitioners, the GARCH(1,1) model, where future volatility is estimated as:

σ̂2
t+1 = ψ + α · r2

t + β · σ̂2
t , (3.14)

where r(t) = p(t) − p(t − 1) is the daily return, and the model used by RiskMetrics, which

estimates the future volatility as a sum of past realizations with exponentially declining

weights:

σ̂2
t+1 =

M−1
∑

i=0

λi

(

rt−i −
1

M

M−1
∑

i=0

rt−i

)2

M−1
∑

i=0

λi

(3.15)

where λ = 0.94.

Other authors try to model the integrated volatility, measuring it via the sum of squared

intraday returns. In Corsi et al. (2001) it is found that a EMA-HAR model for the integrated

volatility performs better than Riskmetrics. In Andersen et al. (2003) a tri-variate vector

auto-regression (VAR), which incorporates long memory effects, is fitted on the DM-$ and

Y-$ foreign exchange time-series. These authors choose a polynomial of lag 5, and find that

this model performs largely better than GARCH(1,1) and Riskmetrics.
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Figure 3.7: Out-of-sample measured integrated volatility for the DM-$ time

series (solid line) together with the forecast (dashed line) of the GARCH(1,1)

model (top), Riskmetrics (center) and AR(1) model (bottom).

The data set under study in this Section is again the one-year collection of bid-ask quotes

of the Deutshche Mark-U.S. Dollar and Japanese Yen-U.S. Dollar exchange rates, as they

appeared on the Reuters screen from October, 1st 1992 to September, 30th 1993. In the

expansion (2.27) we use N as in Barucci and Renò (2002a), i.e. N = 500 for the DM-$ time

series and N = 160 for the Y-$ time series. We discard days in which the observations are

less than 1000 and 320 respectively; we end up with 258 daily volatility measurements for

the DM-$ time series and 259 for the Y-$ time series. We divide our samples in 160 days for

in-sample model estimate and the remainder for out-of-sample comparison.

Table 3.9 shows the OLS in-sample estimates of model (3.13), together with standard errors,

the in-sample R2 and the R2 adjusted for degrees of freedom. For the model (3.3) we use

the estimates given in Andersen and Bollerslev (1998a), i.e. ψ = 0.022, α = 0.068, β = 0.898

for the DM-$ time series and ψ = 0.026, α = 0.104, β = 0.844 for the Y-$ time series. For

the model (3.15) we will use M = 160, i.e. the largest M at our disposal.

Table 3.10 compares the forecasting performance. In spite of its simplicity, model (3.13)

performs considerably better than (3.3) and (3.15). For the DM-$ time series, it is already

true with n = 1; however, by increasing the order of the auto-regressive model, we find better

results. We interpret this finding as an evidence of long-memory effects in the volatility

evolution. For the Y-$ time series it is necessary to employ n = 2, while the best result

is obtained with n = 5. Figure 3.7 and 3.8 show the comparison between the integrated

out-of-sample volatilities and the forecasts of the three models for the two exchange rate
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Figure 3.8: Out-of-sample measured integrated volatility for the Y-$ time

series (solid line) together with the forecast (dashed line) of the GARCH(1,1)

model (top), Riskmetrics (center) and AR(2) model (bottom).

time series. Also visual inspection confirms that the simple AR(1), AR(2) model does a

good job in tracking the volatility time series. We interpret the results of our simple exercise

as a confirmation that the use of high frequency data in measuring volatility, and directly

modeling the integrated volatility dynamics, can substantially improve volatility forecasting,

thus Value at Risk estimates.

3.5 The volatility of the Italian overnight market

What are the driving forces of short term interest rate movements?

This Section tries to answer this question in two steps. First, the so-called martingale

hypothesis is tested, which predicts that interest rate changes should not be predictable

within the so-called maintenance period5. Then, it is investigated the relationship between

interest rate movements and several market activity measures: trading volume, number

of contracts, payments values and order flow. The analysis concerns the Italian overnight

interest rate time series since the start of the EMU.

5During the maintenance period banks have to keep the required reserve of the accounts they hold with

the central bank. The requirement is determined as a percentage of the previous calendar period deposits

(a month in the EMU). The required balance can be mobilized by banks on a daily basis, but must be kept

on average over the maintenance period.
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Table 3.9: OLS in-sample estimates and R2 of model (3.13) for the two time

series. In parenthesis, we report the standard error and the R2 adjusted by the

degrees of freedom.

Model FX σ2
0 α1 α2 α3 α4 α5 R2 (R2

adj)

AR( 1 ) DM-$ 0.209 0.728 0.245

( 0.048) ( 0.051) ( 0.245 )

AR( 2 ) DM-$ 0.225 0.575 0.122 0.246

( 0.047) ( 0.075) ( 0.072) ( 0.242 )

AR( 3 ) DM-$ 0.194 0.541 -0.018 0.209 0.240

( 0.050) ( 0.079) ( 0.086) ( 0.072) ( 0.230 )

AR( 4 ) DM-$ 0.159 0.487 0.007 0.064 0.215 0.248

( 0.051) ( 0.079) ( 0.088) ( 0.084) ( 0.072) ( 0.233 )

AR( 5 ) DM-$ 0.152 0.461 -0.004 0.068 0.158 0.096 0.250

( 0.053) ( 0.082) ( 0.088) ( 0.088) ( 0.084) ( 0.074) ( 0.231 )

AR( 1 ) Y-$ 0.299 0.381 0.150

( 0.043) ( 0.074) ( 0.150 )

AR( 2 ) Y-$ 0.216 0.276 0.267 0.217

( 0.048) ( 0.077) ( 0.077) ( 0.212 )

AR( 3 ) Y-$ 0.204 0.272 0.252 0.047 0.219

( 0.051) ( 0.081) ( 0.080) ( 0.080) ( 0.209 )

AR( 4 ) Y-$ 0.192 0.264 0.250 0.032 0.052 0.221

( 0.054) ( 0.081) ( 0.084) ( 0.083) ( 0.080) ( 0.206 )

AR( 5 ) Y-$ 0.188 0.262 0.248 0.030 0.046 0.023 0.222

( 0.056) ( 0.082) ( 0.085) ( 0.087) ( 0.084) ( 0.081) ( 0.201 )

Table 3.10: Root Mean Square Error (RMSE) and Mean Absolute Error

(MAE) for the AR(n) model (till the best n plus one), the GARCH(1,1) model

and the Riskmetrics model, for the two time series

DM-$ time series Y-$ time series

Model RMSE MAE RMSE MAE

GARCH(1,1) 0.272 0.199 0.508 0.346

RiskMetrics 0.267 0.205 0.486 0.344

AR( 1 ) 0.256 0.179 0.497 0.344

AR( 2 ) 0.245 0.170 0.472 0.340

AR( 3 ) 0.241 0.168 0.467 0.339

AR( 4 ) 0.242 0.167 0.461 0.335

AR( 5 ) 0.234 0.160 0.457 0.332

AR( 6 ) 0.229 0.155 0.458 0.334

AR( 7 ) 0.230 0.156
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The reference model on the day-to-day behavior of the overnight interest rate is the martin-

gale model, which exploits standard no arbitrage arguments. According to it, banks consider

funds with different maturities as perfect substitutes; therefore no patterns should be ob-

served in the interest rate time series within a reserve maintenance period. The argument

is simple: if interest rate changes were predictable within the maintenance period, then

banks would exploit this feature to minimize reserve requirement costs. The implicit cost

of reserve requirement is represented by the differential between the money market rate and

the reserves remuneration rate. Thus, banks would like to detain reserves to satisfy their

requirements when the interest rate is low compared to other days.

The literature on the interbank market is wide, but most of it concerns the US federal

funds market; the analysis of the Euro money market is still limited. Several empirical

investigations on the US market have shown that the interest rate does not satisfy the

restrictions imposed by no arbitrage-equilibrium conditions. In particular, the rate follows

regular patterns both over the maintenance period and on an intra-week basis. Among

others, Campbell (1987); Hamilton (1996); Bartolini et al. (2001, 2002) have shown that the

federal funds rate rises at the end of the maintenance period (EOM) with a slight decline

over the first days of each period 6. Models explaining these results through transaction costs

and credit line limits have been proposed in Campbell (1987); Hamilton (1996); Bartolini

et al. (2001, 2002). On an intraweek basis, the rate tends to fall slightly on Friday and to

rise on Monday, see Hamilton (1996). Interest rate volatility patterns are also observed: it is

significantly higher on EOM days and at the end of the business day (Spindt and Hoffmeister,

1988; Griffiths and Winters, 1995).

Not all of the above results are confirmed all over the world7. In particular, interest rate

patterns over the maintenance period exhibit wide differences, but the martingale hypothesis

is in general rejected and higher volatility on EOM days is usually confirmed.

Turning to the Euro-area money market, Angelini (2000) analyzes the Italian screen-based

overnight market (e-MID) considering hourly observations in the period 1993 − 1996. He

does not detect any significant pattern for the interest rate during the maintenance period

and during the day. Quiros and Mendizabal (2000) compare the behavior of the German

money market rate before the start of the EMU and that of EONIA rate afterward. They

find that till 1998 EOM days were characterized by higher rates and volatility than other

days. Since 1999, volatility on EOM days is lower than before and the interest rate does

6Bartolini et al. (2001) assess an increase of 18 basis point. According to Taylor (2000), this tendency

has been reverted since 1998, with lower rates at EOM days.
7Prati et al. (2003) perform an empirical analysis on the overnight interest rate in G-7 countries and the

Eurozone.



66 CHAPTER 3. UNIVARIATE APPLICATIONS

not increase. After the start of EMU the martingale hypothesis is still rejected, though

the interest rate pattern has become closer to it; authors claim that this effect may be due

to the stabilizing role played by deposit facilities. Angelini and Silipo (2001) focus on the

EONIA rate, discovering the presence of weak seasonality. There is some evidence against

the martingale hypothesis but it is weaker than in the US market; no effect associated with

the EOM period is observed. Barucci et al. (2003) find evidence against the martingale

hypothesis in the e-MID, too, and show intramaintenance patterns for the Italian overnight

rate, with certain settlement (e.g. for Treasury operations) and calendar (e.g end of the

year) dates being significant.

Given the evidence generally against the martingale hypothesis, it is worthwhile to investigate

the relation between interest rate movements and market activity. Five measures of market

activity are considered in our analysis: large-value payments value, number of contracts,

average size of contracts, trading volume, order flow.

There is a large literature on the relationship between price changes-volatility and market

activity, mainly analyzing the stock market. A well established regularity has shown that

trading volume and volatility are positively correlated, with price changes leading trading

volume, see Gallant et al. (1993); Karpoff (1987). In this perspective, some authors argue

that the number of contracts, and not trading volume, is associated with volatility, see

Jones et al. (1994). An analysis of exchange rate changes and signed volume (order flow) is

provided in Evans and Lyons (2002). No results are available on the money market. The

main reason for this lack is that in the US and in the majority of European countries the

interbank market is of the OTC kind (exchanges occur through brokers) and therefore no

official data on trading volume are available (Cyree and Winters, 2001).

In a stock market there is a hedging or a speculative motivation for trading. In the first

case agents trade to cope with non optimal risk-portfolio allocations, while in the second

case they trade to exploit private information. This is not the case in screen-based markets

(like the Italian e-MID, see Barucci et al. (2003)), where by definition all the relevant infor-

mation is publicly available and banks trade to meet reserve targets by minimizing reserve

requirement costs. Banks trade for two main reasons, none of which is speculative in nature:

execution of large value payments in the real-time-gross-settlement set up, and compliance

with the compulsory reserves requirement. The market is mainly driven by aggregate liquid-

ity conditions and by the monetary policy of the ECB, it is almost impossible for a bank to

detain private information on these items. Note that all the theoretical literature on stock

markets explains the relation between price changes and volume through (private and/or

public) information arrival (Harris and Raviv, 1993; Kim and Verrecchia, 1991; Kandel and

Pearson, 1995; Wang, 1994; He and Wang, 1995). To our knowledge this is the first contri-
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bution dealing with the relationship between market price movements and trading activity

in absence of a speculative component.

As far as the martingale hypothesis is concerned, similarities with the US Federal Funds

market emerge in our analysis, together with some peculiarities. The overnight interest

rate follows a clear pattern during the maintenance period, with a decline during the last

days and a peak at the end of the calendar month. Only the second effect is statistically

significant. Other calendar regularities are detected. Previous evidence (Angelini and Silipo,

2001; Angelini, 2000; Quiros and Mendizabal, 2000) is only partially confirmed; overall,

results against the martingale hypothesis are much stronger.

As far as the relationship between interest rate movements and e-MID activity is concerned,

results are similar to those reported in (Jones et al., 1994). It is definitely shown that

volatility is affected by the number of contracts, rather than by trading volume. The number

of contracts turns out to be the relevant market activity measure also when including the

order flow or the large-value payments value.

3.5.1 The data set

The empirical analysis is based on daily and high frequency data. Data span the four-

year period 1999 − 2002, thus from the starting of the EMU, for a total of 1, 022 working

days. Intraday data start on April 1st, 1999. The data set includes overnight exchanges

and average interest rates; daily data on e-MID are recorded by S.I.A. (Società Italiana

per l’Automazione) and are splitted into exchanges generated by applying either a “bid”

or an “ask” price. Furthermore, daily data include large-value payment flows, recorded

by Bank of Italy. Two broad kinds of operations are considered and separately handled:

BI-REL domestic debit flows and cross border debit and credit payments. The first time

series includes payments stemming from customers’ orders and interbank transfers of various

kinds. The second one encompasses cross border inflows and outflows channeled through the

European system TARGET; only the interbank component is considered, the most reactive

to interest rate differentials and to shocks.

Figure 3.9 shows the time series of the overnight rate. The average sample value is 3.6248.

The daily rate shows the usual spikes due to liquidity effect at the EOM period. Figure 3.10

shows the time series of daily trading volume: the average trading volume per day amounts to

11.814 billions of Euro, and the time series displays a slight increase with time. As explained

later, intraday data are used to compute daily volatility. Figure 3.11 shows daily volatility

in the data sample. Table 3.11 reports summary statistics on trading volume, volatility and
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Figure 3.9: Daily mean overnight e-MID rate from January, 4th 1999 to De-

cember, 30th 2002.

interest rate level, divided by day of the week. Figure 3.12 shows the patterns of the relevant

variables over the maintenance period. It has to be noted the deep difference among EOM

and other trading days. The interest rate declines during the last day of a maintenance

period (as it is also visible in Figure 3.9). Volatility and bid-ask spread suddenly increase

during EOM days. Trading volume displays a slight decline on EOM days, while the number

of contracts slightly increases on last maintenance days. Payment activity presents a double-

peak pattern, end of the month and EOM days, respectively. For further discussion and a

thorough description of the institutional setting, see Barucci et al. (2003, 2004).

3.5.2 Testing the martingale hypothesis

This section focuses on the dynamics of overnight interest rates in the Italian money market.

To this aim, it is necessary to define reliable volatility measures.

Measuring volatility is an awkward task. Estimating it via daily observations (typically, by

the squared interest rate difference or its absolute value) provides an unbiased but very noisy
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Figure 3.10: Daily overnight exchanges in e-MID from January, 4th 1999 to

December, 30th 2002.

estimate. Intraday observations can be used to overcome these problems, as suggested in

Andersen and Bollerslev (1998a), who propose to estimate the daily (integrated) volatility

as the cumulative squared intraday returns. By exploiting this procedure, it is possible to

estimate more precisely daily volatility, and to handle it as an observable variable instead

of a latent one. Andersen et al. (2003); Barucci and Renò (2002c) follow this route to

forecast volatility through a simple autoregressive model; their results show that, in spite of

its simplicity, the forecasting performance of such a model is better than that of alternative,

classical models, like GARCH(1,1) or Riskmetrics.

In this Section we follow this strand of literature, adopting the method described in Chapter

2 to compute daily volatility. As already discussed, the method turns out to be particularly

well suited to estimate volatility through high-frequency data using all the observations with

no aggregation. The dynamics of daily volatility is shown in Figure 3.11.

To test the martingale hypothesis, the following equation has been estimated

it − it−1 =

ni
∑

k=1

βk (it−k − it−k−1) + mt + ηt (3.16)
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Figure 3.11: Daily overnight e-MID rate volatility from April, 1st 1999 to

December, 30th 2002.

where it is the overnight rate at day t, ni is the number of lags, and mt is of the form:

mt =

ndi
∑

k=1

αkXk (3.17)

where Xk are dummy variables listed in Table 3.12 (ndi denotes the number of dummy

variables), which are inserted to incorporate calendar effects, ηt are i.i.d. random variables

with zero mean.

We first estimate equation (3.16) via OLS (Table 3.12).8 This provides consistent estimates,

which however are inefficient because of the pronounced heteroskedasticity of the overnight

rate (Figure 3.11). Indeed, OLS estimation residuals are clearly heteroskedastic: both Ljung-

Box and ARCH effects tests on squared residuals significantly reject the null hypothesis of

zero serial correlation. This observation has induced many authors, e.g. Hamilton (1996), to

model the rate via a GARCH-like model. We follow a different approach. If it were possible

8In all the estimations, standard errors are computed using Newey-West corrections for heteroskedasticity

and residual autocorrelation. Specification tests are run in the form of Ljung-Box portmanteau tests on

residuals and on squared residuals, as well as with the ARCH effect test.
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Week day Number of days Volume Rate Volatility

Mon 178 12002.2 3.61056 3.11666

Tue 185 11858.0 3.62361 3.28784

Wed 184 11796.6 3.63581 3.19133

Thu 186 11540.8 3.62838 3.60023

Fri 185 11881.3 3.62557 4.16813

Table 3.11: Summary statistics for the days of the week (full sample average)

to observe the variance of ηt, efficiency could be achieved via GLS. Daily volatility, measured

as described in Malliavin and Mancino (2002), can be used as a proxy of the variance. Then,

WLS estimation of equation (3.16) has been performed, using as weights the inverse of the

estimate of σt, where σt is the daily volatility. With WLS estimation, the Ljung-Box test

on squared residuals decreases from 89.63 to 8.38 and is no longer significant, as well as the

ARCH effect test, which decreases from 76.53 to 4.60. Results are shown in Table 3.12; now

the values of the tests are compatible with the absence of autocorrelation in residuals and

in squared residuals.

This analysis provides some interesting results. The overnight rate shows remarkable pat-

terns over the maintenance period, see Table 3.12 and Figure 3.12. The rate is low on the

first day of a maintenance period, increases significantly until the end of the month (day 8

in the figure), then behaves approximately like a martingale, with a decline on the EOM

day. While the decrease during EOM days is not statistically significant, the increase during

the last day of the month is significant. There are other calendar effects: the rate rises after

and before 3-4 holiday days and declines significantly on the first day of the year. Note that

the martingale hypothesis does not provide any insight on interest rate movements during

the first day of a maintenance period. As in Angelini and Silipo (2001), there is a clear

break in the auto-regressive pattern: during the last day of a period and the first day of the

subsequent one the overnight rate recovers fully all the decline occurred one and two days

before EOM days. Note that coefficients associated with lagged interest rate movements

are statistically significant. The above pattern contrasts in part the evidence detected for

the EONIA and other Eurozone rates by several authors, who did not discover any signifi-

cant pattern in the interest rate over the maintenance period, see Angelini (2000); Angelini

and Silipo (2001); Quiros and Mendizabal (2000); Prati et al. (2003). Overall the evidence

against of the martingale hypothesis is strong.
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Figure 3.12: Patterns in the maintenance period; averages over the full sample

3.5.3 Interest rate volatility and market activity

Let σt be the integrated volatility over day t; to include calendar effects on volatility evolution

the following autoregressive model is estimated:

log σt =
nr

∑

k=1

αk log σt−k + µt + εt (3.18)
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OLS WLS

Regressor Coefficient Standard Er-

ror

Coefficient Standard Er-

ror

it−1 − it−2 -0.10051∗∗∗ 0.03042 -0.20601∗∗∗ 0.02135

it−2 − it−3 -0.03968 0.02930 -0.10317∗∗∗ 0.01930

it−3 − it−4 -0.04269 0.02926 -0.05952∗∗∗ 0.01752

it−4 − it−5 -0.01455 0.02911 -0.03087∗ 0.01802

it−5 − it−6 -0.01282 0.02732 -0.03607∗∗ 0.01528

constant -0.00363 0.00864 0.02305∗∗ 0.01011

EOM t- 0 -0.03485∗ 0.01788 -0.02162 0.06025

EOM t- 1 0.00567 0.01748 0.01128 0.01947

EOM t- 2 -0.01971 0.01764 -0.00423 0.01232

(it−1 − it−2)*Dummy first maint. day -0.96620∗∗∗ 0.08333 -0.91629∗∗∗ 0.04957

(it−2 − it−3)*Dummy first maint. day -0.68810∗∗∗ 0.13212 -0.59036∗∗∗ 0.09547

(it−3 − it−4)*Dummy first maint. day -0.79251∗∗∗ 0.13889 -0.84677∗∗∗ 0.09124

(it−4 − it−5)*Dummy first maint. day -0.67077∗∗∗ 0.15332 -0.80833∗∗∗ 0.09163

(it−5 − it−6)*Dummy first maint. day -1.83120∗∗∗ 0.25549 -1.45441∗∗∗ 0.14770

End of month 0.05971∗∗∗ 0.01906 0.04254∗∗∗ 0.01282

End of quarter 0.02965 0.02259 0.02685∗ 0.01486

End of year 0.55069∗∗∗ 0.08612 0.53969∗ 0.30789

First day month 0.01215 0.01807 0.00641 0.00900

First day of the year -0.66312∗∗∗ 0.08576 -0.57763∗∗∗ 0.04353

Before 3-4 holiday 0.07452∗∗ 0.02969 -0.00045∗∗∗ 0.00014

After 3-4 Holiday -0.01327 0.02971 0.00000 0.00000

Tuesday -0.00029 0.01190 0.02987∗ 0.01617

Wednesday 0.00755 0.01184 0.01754 0.01784

Thursday -0.01220 0.01189 0.00201 0.00609

Friday 0.00048 0.01203 -0.00009 0.00606

Table 3.12: Estimates of the model (3.16) (one star, 90%, two stars, 95 %,

three stars 99% significance). OLS estimation: R2 = 41.74%, Ljung-Box on

residuals: L(10) = 18.80, Ljung-Box on squared residuals: L(10) = 89.63,

ARCH effect test: 76.53. WLS estimation: R2 = 70.42%. Ljung-Box on resid-

uals: L(10) = 28.61, Ljung-Box on squared residuals: L(10) = 8.38, ARCH

effect test: 4.60

where nr is the number of lags in the auto-regressive setting,

µt =

nd
∑

k=1

βkXk (3.19)

and Xk, k = 1, . . . , nd, is a set of nd variables reported in Table 3.13, εt are random variables

with zero mean.
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Regressor Coefficient Standard Error

log(σt−1) 0.47290∗∗∗ 0.03172

log(σt−2) 0.08005∗∗∗ 0.02278

constant -1.15417∗∗∗ 0.07407

EOM t- 0 1.64744∗∗∗ 0.07444

EOM t- 1 0.84872∗∗∗ 0.06741

EOM t- 2 0.39937∗∗∗ 0.06697

EOM t- 3 0.31659∗∗∗ 0.06646

EOM t- 4 0.18463∗∗∗ 0.06794

First maintenance day -0.86765∗∗∗ 0.09173

Bce (THURSDAY) 0.53430∗∗∗ 0.12920

Bce (FRIDAY) -0.06664 0.13064

End of quarter 0.43128∗∗∗ 0.09730

First day of a new quarter 0.10983 0.10496

End of month 0.28605∗∗∗ 0.07139

First day month -0.24701∗∗∗ 0.07429

End of year 0.11726 0.32859

First day of the year -1.06540∗∗∗ 0.32479

Before 3-4 holiday 0.06818 0.11020

After 3-4 holiday 0.02383 0.11088

Tuesday 0.12143∗∗∗ 0.04446

Wednesday 0.09768∗∗ 0.04421

Thursday 0.12890∗∗∗ 0.04491

Friday 0.10430∗∗ 0.04518

Table 3.13: Overnight rate volatility fit, equation (3.18) (one star, 90%, two

stars, 95 %, three stars 99% significance); R2 = 67.37% ; Ljung-Box on resid-

uals: L(10) = 8.22; Ljung-Box on squared residuals: L(10) = 27.78.

An advantage of handling volatility as an observable variable is that equation (3.18) can

be simply estimated by OLS, thus avoiding all numerical problems of maximum likelihood

estimation associated with standard volatility models. When εt are i.i.d., OLS also provides

efficient estimates. Regression results are shown in Table 3.13, while daily volatility estimates

for the full sample are reported in Figure 3.11. Ljung-Box tests on residuals and squared

residuals show that the autocorrelation has been removed.

Estimation results can be summarized as follows. Volatility changes remarkably during the

month, with a high degree of persistence; the autoregressive component is highly significant.

The main regularities on volatility are shown in Figure 3.12: the last four days of a mainte-

nance period are characterized by a sharp increase; volatility is also high on the last day of

a month and of a year, while it is substantially low on the first day of the year and of the
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log(σt−1) 0.458∗∗∗ 0.469∗∗∗ 0.475∗∗∗ 0.456∗∗∗ 0.457∗∗∗ 0.462∗∗∗ 0.473∗∗∗ 0.452∗∗∗ 0.449∗∗∗

log(σt−2) 0.075∗∗∗ 0.080∗∗∗ 0.081∗∗∗ 0.075∗∗∗ 0.075∗∗∗ 0.077∗∗∗ 0.080∗∗∗ 0.074∗∗∗ 0.070∗∗∗

constant -1.599∗∗∗ -1.234∗∗∗ -1.014∗∗∗ -1.630∗∗∗ -1.621∗∗∗ -1.372∗∗∗ -1.142∗∗∗ -1.714∗∗∗ -1.776∗∗∗

EOM t- 0 1.538∗∗∗ 1.654∗∗∗ 1.596∗∗∗ 1.545∗∗∗ 1.539∗∗∗ 1.630∗∗∗ 1.640∗∗∗ 1.536∗∗∗ 1.487∗∗∗

EOM t- 1 0.790∗∗∗ 0.843∗∗∗ 0.815∗∗∗ 0.793∗∗∗ 0.790∗∗∗ 0.836∗∗∗ 0.838∗∗∗ 0.790∗∗∗ 0.768∗∗∗

EOM t- 2 0.352∗∗∗ 0.390∗∗∗ 0.377∗∗∗ 0.352∗∗∗ 0.352∗∗∗ 0.386∗∗∗ 0.389∗∗∗ 0.351∗∗∗ 0.331∗∗∗

EOM t- 3 0.282∗∗∗ 0.306∗∗∗ 0.304∗∗∗ 0.281∗∗∗ 0.282∗∗∗ 0.308∗∗∗ 0.309∗∗∗ 0.282∗∗∗ 0.268∗∗∗

EOM t- 4 0.166∗∗ 0.174∗∗ 0.178∗∗∗ 0.164∗∗ 0.165∗∗ 0.177∗∗∗ 0.177∗∗∗ 0.166∗∗ 0.158∗∗

First maintenance day -0.846∗∗∗ -0.865∗∗∗ -0.885∗∗∗ -0.842∗∗∗ -0.845∗∗∗ -0.873∗∗∗ -0.876∗∗∗ -0.845∗∗∗ -0.832∗∗∗

Bce (THURSDAY) 0.459∗∗∗ 0.499∗∗∗ 0.504∗∗∗ 0.456∗∗∗ 0.458∗∗∗ 0.493∗∗∗ 0.512∗∗∗ 0.452∗∗∗ 0.460∗∗∗

First day of a new quarter 0.316∗∗∗ 0.365∗∗∗ 0.351∗∗∗ 0.317∗∗∗ 0.316∗∗∗ 0.342∗∗∗ 0.368∗∗∗ 0.305∗∗∗ 0.314∗∗∗

End of month 0.370∗∗∗ 0.387∗∗∗ 0.374∗∗∗ 0.372∗∗∗ 0.371∗∗∗ 0.321∗∗∗ 0.382∗∗∗ 0.334∗∗∗ 0.357∗∗∗

First day month -0.314∗∗∗ -0.330∗∗∗ -0.318∗∗∗ -0.315∗∗∗ -0.315∗∗∗ -0.347∗∗∗ -0.329∗∗∗ -0.326∗∗∗ -0.312∗∗∗

First day of the year -1.190∗∗∗ -1.220∗∗∗ -1.225∗∗∗ -1.189∗∗∗ -1.189∗∗∗ -1.176∗∗∗ -1.221∗∗∗ -1.163∗∗∗ -1.157∗∗∗

Tuesday 0.128∗∗∗ 0.127∗∗∗ 0.127∗∗∗ 0.129∗∗∗ 0.128∗∗∗ 0.137∗∗∗ 0.127∗∗∗ 0.135∗∗∗ 0.132∗∗∗

Wednesday 0.112∗∗ 0.106∗∗ 0.109∗∗ 0.112∗∗ 0.112∗∗ 0.100∗∗ 0.105∗∗ 0.108∗∗ 0.114∗∗∗

Thursday 0.154∗∗∗ 0.146∗∗∗ 0.146∗∗∗ 0.155∗∗∗ 0.154∗∗∗ 0.150∗∗∗ 0.143∗∗∗ 0.158∗∗∗ 0.157∗∗∗

Friday 0.096∗∗ 0.108∗∗ 0.108∗∗ 0.096∗∗ 0.095∗∗ 0.112∗∗ 0.109∗∗ 0.098∗∗ 0.089∗∗

Number of Contracts 0.745∗∗∗ 0.735∗∗∗ 0.763∗∗∗ 0.716∗∗∗ 1.089∗∗∗

( 0.153) ( 0.155) ( 0.182) ( 0.155) ( 0.177)

Volume 0.006 0.003

( 0.006) ( 0.006)

Average size -5.747∗∗ 0.478

( 2.323) ( 2.741)

Payment volume 2.021∗ 1.195

( 1.061) ( 1.064)

Order flow -0.020 -0.115∗∗∗

( 0.027) ( 0.030)

Table 3.14: Overnight rate volatility fit, equation (3.18) with the inclusion of

activity variables (one star, 90%, two stars, 95 %, three stars 99% significance);

R2 values are between 66.81% (min) and 67.53% (max). Ljung-Box on residuals

at lag 10 is between 6.52 and 11.16. On squared residuals, same lag, is between

19.35 and 24.16.

maintenance period.

The data-set allows us to consider several variables as proxy of market activity on a daily

basis:

• trading volume

• number of contracts

• average size of contracts

• large-value domestic payments volume

• order flow, in absolute value (defined as |qask − qbid|, where qask, qbid are the quantities

exchanged at the ask and the bid price, respectively)

Jones et al. (1994) tested the influence of the number of contracts and trading volume on stock

prices volatility, concluding that it is the number of contracts which mainly influences it.

On foreign exchange markets, Evans and Lyons (2002) show a close correspondence between
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exchange rate movements and order flow. Finally, on the U.S. money market Furfine (2000)

provides evidence of a significant relation between interest rate volatility and both large

value payments value and volatility.

Equation (3.18) has then been estimated again adding the selected indicators of market

activity as regressors. In this new set of regressions, we only include dummy variables which

resulted significant in the previous analysis. When including contemporaneous variables,

OLS is not any more efficient, but t-statistics are still valid and can be used for inference.

Results of a first set of regressions, with market activity indicators included one by one, are

displayed in Table 3.14. Number of contracts and payments value positively and significantly

affect interest rate volatility. No relationship between interest rate and trading volume or

order flow is detected. To disentangle the effect of the number of contracts and volume,

Jones et al. (1994) consider both the number of contracts and the average size of contracts

during a day as exogenous variables. Confirming the results obtained above, when volatility

is regressed on number of contracts and average size we find that the number of contracts

turns out to be significant and the average size does not. Moreover note that the average

size alone negatively affects the interest rate volatility. The result in Furfine (2000) about a

positive significant relation between payments value and interest rate volatility is confirmed.

However, this relations fades when payments are regressed with the number of contracts; the

correlation between the two quantities is 0.25.

The number of contracts still retains its explicative power even if it is regressed jointly with

trading volume and average size of contracts. The result for the average size of contracts,

which is largely significant and negative alone and not significant when it is regressed jointly

with the number of contracts, can be explained by the strong anti-collinearity; indeed, the

linear correlation coefficient between the number and the average size of contracts is −0.58.

This apparently striking result can be properly understood considering the difference between

speculative and pure hedging markets. Stock and exchange markets have both features,

while the interbank market is a pure hedging one. As a matter of fact, since it is almost

impossible for banks to detain private information on either future system liquidity conditions

or interest rates policy decisions, we can assess that the interbank market is almost free

of information asymmetry-heterogeneity. Speculative markets are characterized by agents

endowed with private information. As discussed in the Introduction, the literature has shown

that information arrival (either private or public) creates a link between trading volume-

number of contracts and volatility: agents trade both for speculative and hedging reasons

and therefore trading volume and price changes are linked. On the other hand, money market

exchanges satisfy the need of funds replenishment or storage in view of two kinds of needs,
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none of which is speculative in nature: the execution of large value payments in the real-

time-gross-settlement set up, and the compliance with the compulsory reserves requirements.

These needs crucially depend on technical dates (e.g., the EOM or the payments to the State

Treasury). Banks who are affected by major liquidity shocks (either positive or negative)

and/or make mistakes in their liquidity forecasts within the maintenance period come to

negotiate (positive or negative) excess funds in proximity of those dates, with much lower

demand elasticity. Often, in particular during EOM days, excess funds and/or forecast

errors are small and so we have many contracts for a small amount of funds. This feature

makes compatible low trading volume, high number of contracts and high volatility. Also

the positive coefficient associated with payments value confirms that liquidity management

drives interest rate volatility.

Thus, the number of contracts play a prior role as an indicator of market activity. In order

to check if its effect is different during EOM days, when the interest rate dynamics is sub-

stantially different from that of other days, the following experiment has been run. Consider

the market activity indicator Nt (say the number of contracts), interest rate volatility is

regressed on the two orthogonal variables Nt(1−Yt) and NtYt, where Yt is a dummy variable

whose value is 1 in the last two maintenance days and 0 otherwise. The results are reported

in Table 3.15. They confirm those obtained on the full data set; moreover all the variables

have a stronger influence on EOM days, as the interpretation provided above would suggest.

Note that payments value is not significant in non EOM days. Number and average size of

contracts were regressed jointly, but separately for EOM and non-EOM days. Again, when

considered jointly, the number of contracts is significant over all the period, while the average

size is never significant.

To further investigate the relationship between market activity and price volatility, we esti-

mate equation (3.18) measuring daily volatility as it is done in Jones et al. (1994), i.e., as

the absolute value of the residuals of equation (3.16).

Results of the regression with market activity variables are reproduced in Table 3.16. They

are not qualitatively different from those obtained measuring volatility with high frequency

data: the number of contracts still play the main role. The only notable difference is that

payment volume retains its significance when regressed with the number of contracts.
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log(σt−1) 0.461∗∗∗ 0.472∗∗∗ 0.469∗∗∗ 0.454∗∗∗ 0.469∗∗∗ 0.454∗∗∗

log(σt−2) 0.078∗∗∗ 0.079∗∗∗ 0.081∗∗∗ 0.077∗∗∗ 0.079∗∗∗ 0.077∗∗∗

constant -1.341∗∗∗ -1.047∗∗∗ -1.225∗∗∗ -1.524∗∗∗ -1.148∗∗∗ -1.521∗∗∗

EOM t- 0 1.257∗∗∗ 1.981∗∗∗ 1.558∗∗∗ 0.472 1.591∗∗∗ 0.539

EOM t- 1 0.489 1.293∗∗∗ 0.740∗∗∗ -0.145 0.781∗∗∗ -0.074

EOM t- 2 0.389∗∗∗ 0.380∗∗∗ 0.390∗∗∗ 0.362∗∗∗ 0.390∗∗∗ 0.362∗∗∗

EOM t- 3 0.308∗∗∗ 0.305∗∗∗ 0.307∗∗∗ 0.289∗∗∗ 0.309∗∗∗ 0.289∗∗∗

EOM t- 4 0.177∗∗∗ 0.177∗∗∗ 0.174∗∗ 0.168∗∗ 0.176∗∗∗ 0.168∗∗

First maintenance day -0.866∗∗∗ -0.876∗∗∗ -0.867∗∗∗ -0.836∗∗∗ -0.868∗∗∗ -0.836∗∗∗

Bce (THURSDAY) 0.495∗∗∗ 0.507∗∗∗ 0.499∗∗∗ 0.469∗∗∗ 0.517∗∗∗ 0.469∗∗∗

First day of a new quarter 0.348∗∗∗ 0.355∗∗∗ 0.365∗∗∗ 0.329∗∗∗ 0.373∗∗∗ 0.329∗∗∗

End of month 0.333∗∗∗ 0.376∗∗∗ 0.387∗∗∗ 0.376∗∗∗ 0.381∗∗∗ 0.375∗∗∗

First day month -0.341∗∗∗ -0.318∗∗∗ -0.330∗∗∗ -0.314∗∗∗ -0.328∗∗∗ -0.314∗∗∗

First day of the year -1.182∗∗∗ -1.219∗∗∗ -1.221∗∗∗ -1.189∗∗∗ -1.213∗∗∗ -1.189∗∗∗

Tuesday 0.138∗∗∗ 0.127∗∗∗ 0.127∗∗∗ 0.128∗∗∗ 0.125∗∗∗ 0.128∗∗∗

Wednesday 0.101∗∗ 0.108∗∗ 0.106∗∗ 0.111∗∗ 0.103∗∗ 0.111∗∗

Thursday 0.151∗∗∗ 0.145∗∗∗ 0.146∗∗∗ 0.154∗∗∗ 0.141∗∗∗ 0.154∗∗∗

Friday 0.114∗∗ 0.109∗∗ 0.108∗∗ 0.097∗∗ 0.111∗∗ 0.098∗∗

Payment volume 1.663

( 1.111)

Average size -4.789∗∗ -0.070

( 2.365) ( 2.792)

Volume 0.006

( 0.006)

Number of Contracts 0.594∗∗∗ 0.592∗∗∗

( 0.160) ( 0.191)

Order flow -0.036

( 0.028)

Payment volume EOM 5.257∗

( 3.175)

Average size EOM -29.565∗∗ -2.269

( 11.922) ( 13.983)

Volume EOM 0.015

( 0.023)

Number of Contracts EOM 2.138∗∗∗ 2.089∗∗∗

( 0.478) ( 0.567)

Order flow EOM 0.142

( 0.089)

Table 3.15: Overnight rate volatility fit, equation (3.18) with the inclusion of

activity variables divided in last two maintenance days and others (one star,

90%, two stars, 95 %, three stars 99% significance); R2 values are between

66.81% (min) and 67.53% (max). Ljung-Box on residuals at lag 10 is between

6.52 and 11.16. On squared residuals, same lag, it is between 19.35 and 24.16.

3.6 Conclusions

Recently, a large literature has been devoted to compute-forecast volatility for financial time

series. In this field, the importance of high frequency data has been stressed, in particular

to evaluate the forecasting performance of GARCH models.

In this Chapter we use a new method to compute volatility, that is the method described in

Chapter 2. The main feature of this method is that it is based upon integration instead of

differentiation of the time series, so that it naturally exploits the time structure of high fre-

quency data by including all the observations in the volatility computation. Using simulated

time series, we illustrated that, when realized volatility is computed using linear interpo-

lation, the Fourier method performs better than realized volatility in measuring integrated
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sigma t- 1 0.303∗∗∗ 0.311∗∗∗ 0.306∗∗∗ 0.303∗∗∗ 0.303∗∗∗ 0.294∗∗∗ 0.306∗∗∗ 0.290∗∗∗ 0.302∗∗∗

sigma t- 2 0.031 0.027 0.033 0.031 0.030 0.021 0.023 0.024 0.029

constant -0.042∗∗ 0.003 0.032∗∗ -0.044∗∗ -0.043 -0.077∗∗∗ 0.010 -0.108∗∗∗ -0.037∗

EOM t- 0 0.104∗∗∗ 0.122∗∗∗ 0.115∗∗∗ 0.105∗∗∗ 0.104∗∗∗ 0.110∗∗∗ 0.121∗∗∗ 0.099∗∗∗ 0.106∗∗∗

EOM t- 1 0.041∗∗∗ 0.049∗∗∗ 0.045∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.045∗∗∗ 0.048∗∗∗ 0.039∗∗∗ 0.041∗∗∗

EOM t- 2 0.040∗∗∗ 0.046∗∗∗ 0.045∗∗∗ 0.040∗∗∗ 0.040∗∗∗ 0.043∗∗∗ 0.046∗∗∗ 0.039∗∗∗ 0.041∗∗∗

EOM t- 3 0.024∗ 0.028∗∗ 0.028∗∗ 0.024∗ 0.024∗ 0.027∗∗ 0.028∗∗ 0.024∗ 0.025∗

EOM t- 4 0.007 0.008 0.009 0.007 0.007 0.009 0.009 0.008 0.007

First maintenance day 0.031∗∗ 0.031∗∗ 0.031∗∗ 0.031∗∗ 0.031∗∗ 0.022 0.032∗∗ 0.022 0.031∗∗

Bce (THURSDAY) -0.026 -0.021 -0.019 -0.026 -0.026 -0.027 -0.021 -0.031 -0.026

First day of a new quarter 0.065∗∗∗ 0.072∗∗∗ 0.071∗∗∗ 0.065∗∗∗ 0.065∗∗∗ 0.060∗∗∗ 0.070∗∗∗ 0.055∗∗∗ 0.065∗∗∗

End of month 0.010 0.013 0.011 0.010 0.010 -0.019 0.013 -0.018 0.010

First day month 0.052∗∗∗ 0.050∗∗∗ 0.053∗∗∗ 0.052∗∗∗ 0.052∗∗∗ 0.039∗∗∗ 0.051∗∗∗ 0.042∗∗∗ 0.052∗∗∗

First day of the year -0.094 -0.096 -0.096 -0.094 -0.094 -0.080 -0.096 -0.080 -0.095

Tuesday 0.011 0.011 0.011 0.011 0.011 0.017∗ 0.011 0.017∗ 0.011

Wednesday 0.005 0.004 0.004 0.005 0.005 0.002 0.004 0.003 0.005

Thursday 0.015 0.013 0.013 0.015 0.015 0.017∗ 0.013 0.017∗ 0.015

Friday 0.001 0.002 0.002 0.001 0.001 0.004 0.003 0.003 0.001

Number of Contracts 0.102∗∗∗ 0.101∗∗∗ 0.103∗∗∗ 0.076∗∗ 0.092∗∗∗

( 0.030) ( 0.031) ( 0.036) ( 0.031) ( 0.035)

Volume 0.001

( 0.001) ( 0.001)

Volume average -0.807∗ 0.030

( 0.470) ( 0.551)

Payment volume 0.966∗∗∗ 0.860∗∗∗

( 0.204) ( 0.208)

Order flow 0.012∗∗ 0.004

( 0.005) ( 0.006)

Table 3.16: Overnight rate volatility fit, equation (3.18), with volatility mea-

sured as absolute value of residuals as in Jones et al. (1994), with the inclusion

of activity variables (one star, 90%, two stars, 95 %, three stars 99% signifi-

cance)

volatility and that, by adopting it, the forecasting performance of the GARCH model can

be better evaluated.

We showed that linear interpolation of the time series induces a downward bias in the

volatility estimate, and this effect is avoided by assuming the price process to be piecewise

constant. On the other hand, relying upon Monte Carlo simulations of models belonging

to the SR-SARV(1) class, which includes the GARCH(1,1), we have shown that the Fourier

estimator is unbiased and its variance is smaller than that of the cumulative squared intraday

returns, when the latter is chosen with a reasonable bias in mean. Moreover, when the Fourier

method is employed to evaluate the forecasting performance of the models, their performance

is better than that obtained by employing the cumulative intraday squared returns.

We applied this method to two exchange rate time series. On real data one has to deal with

microstructure effects, which become dominant when the return sampling frequency becomes

comparable to the frequency of tick-by-tick quotes. We gave a precise estimate of the time

step above which these effects can be neglected, and we showed how to remove microstructure

distortions: since the Fourier estimator is given by an expansion of the Fourier coefficients,

it is enough to cut the highest frequencies in a suitable way. When employing the Fourier
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method, GARCH forecasts turn out to be more accurate than those associated with the sum

of squared intraday returns.

We used the Fourier method to evaluate the forecasting performance of the GARCH(1,1)

model when it is discretized at intraday frequencies; the results obtained in the recent litera-

ture are confirmed, moreover the forecasting properties of the GARCH model are evaluated

to be better if the Fourier estimator is employed, instead of the cumulative squared intraday

returns, to measure integrated volatility.

The importance of volatility measuring in risk management is increasing. Providing a good

forecasting model for daily integrated volatility is essential in calculating reliable VaR esti-

mates. Recently, it has been shown that the use of high frequency data allows to measure

daily integrated volatility with high precision. This suggests that, instead of using mod-

els in which the volatility is a latent factor, like for example GARCH(1,1), one can try

to model directly the dynamics of integrated volatility. In this Chapter we build a simple

forecasting AR(n) model for integrated volatility, estimated by OLS, and we show that it

performs considerably better than traditional models. We conclude that modeling directly

integrated volatility, measured by high frequency data, can be a promising direction for risk

management.

Finally we evaluate the relationship between volatility and market activity in a market with

liquidity-hedging trading, that is the Italian money market. As a matter of fact, banks

trade in the interbank money market only for liquidity reasons because it is difficult for

a bank to detain private information on variables affecting future interest rate (liquidity

conditions, ECB decisions). We have shown that the number of contracts and payment

volume are associated with interest rate volatility, while trading volume is not. Our result

can be explained by the fact that banks trade to cope with liquidity needs, that may be small

in particular when the end of the maintenance period approaches. The fact that liquidity

management lies behind the relation between market activity and volatility is confirmed by

the fact that the relation is stronger during end of maintenance days.



Chapter 4

Multivariate applications

4.1 Introduction

Volatility computation is one of the most challenging problems in financial mathematics.

Indeed, unlike other quantities of interest in financial markets (price, volume), volatility

cannot be directly observed and it has to be inferred from price evolution. On the other

hand, volatility plays a crucial role in a variety of applications.

The literature on the estimate of volatility is mainly based on the quadratic variation for-

mula. Nevertheless, the use of this formula has some disadvantages in the implementation

because, since it is based on a differentiation procedure so it needs equally and regularly

spaced data. This fact becomes more evident when considering cross volatilities, since the

construction of an evenly sampled time series automatically biases the correlation estimates

toward zero. Typically, results on volatility modeling are still substantially low-dimensional,

if not univariate (Andersen et al., 2003; Bollerslev et al., 1994; Ghysels et al., 1996).

In this Chapter, we start from the Fourier series method of Malliavin and Mancino (2002)

developing the analysis in the multivariate case. In Barucci et al. (2003) the Fourier method

for computing cross-volatilities has been applied to determine a time dependent elasticity

matrix, which is an indicator of market stability. In this Chapter we first study the perfor-

mance of the method in the bivariate case using Monte Carlo simulations of high frequency

asset prices, extending the framework of Barucci and Renò (2002a) to a bi-variate case.

In the second part, we investigate the so-called Epps effect. Epps (1979) reported empirical

evidence that stock correlations decrease when sampling frequency increases. This phe-

nomenon has been observed in several markets. In our analysis, the dynamics underlying

81
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the Epps effect are investigated. Using Monte Carlo simulations and the analysis of high

frequency foreign exchange rate and stock price data, it is shown that the Epps effect can

largely be explained by two factors: the non-synchronicity of price observations and the

existing lead-lag relationship between asset prices. In order to compute co-volatilities, the

method based upon the Fourier analysis is adopted, since it performs well in estimating

correlations precisely, as illustrated by simulated experiments. Being naturally embedded in

the frequency domain, this estimator is well suited to the study of the Epps effect.

In the third part of this chapter we proceed to a dynamic principal component analysis.

Making mild assumptions on the multivariate price behavior (bounded quadratic variation),

we get by the Fourier method multivariate volatilities as a time dependent quadratic form.

We suggest a method to construct an abstract curve which contains the essential information

coming from multivariate volatilities. Analyzing the time evolution of this curve can be

important to decipher the interaction of an asset with the whole market. We illustrate these

ideas via the analysis of two months of high-frequency data for 98 stocks; our results point

out the need of a time-dependent analysis versus a static one, since the variance-covariance

eigenvalues structure turns out to be deeply time-varying. In particular, we find some days

in which correlations are widely distributed, thus less factors are needed to explain the

variance-covariance structure. We then introduce the concept of reference assets, an asset

whose volatility is mainly due to the market volatility instead of its idiosyncratic noise.

This Chapter is structured in the following way: Section 4.2 illustrates, via Monte Carlo

experiments, how the Fourier estimator performs better than classical estimators. Section

4.3 investigates the Epps effect both on simulated and real data. Section 4.4 depicts a

geometrical interpretation of the multivariate analysis and outlines some empirical results;

Section 4.5 concludes.

4.2 Performance on simulated data

As in the previous Chapter, we start with Monte Carlo simulation of high frequency asset

prices, extending the framework of Barucci and Renò (2002a) to a bi-variate analysis.

We simulate two correlated asset price diffusions with the bi-variate continuous GARCH(1,1)
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model:
dp1(t) = σ1(t)dW1(t),

dp2(t) = σ2(t)dW2(t),

dσ2
1(t) = λ1[ω1 − σ2

1(t)]dt +
√

2λ1θ1σ
2
1(t)dW3(t),

dσ2
2(t) = λ2[ω2 − σ2

2(t)]dt +
√

2λ2θ2σ
2
2(t)dW4(t),

corr(dW1, dW2) = ρ,

(4.1)

and all other correlations between the Brownian motions W1,W2,W3,W4 set to zero. The

choice of this particular model comes from the fact that it is the continuous time limit of the

very popular GARCH(1,1) model, and it has been studied extensively in the literature, e.g.

see Kroner and Ng (1998). We will use the parameter values estimated by Andersen and

Bollerslev (1998a) on foreign exchange rates, i.e. θ1 = 0.035, ω1 = 0.636, λ1 = 0.296, θ2 =

0.054, ω2 = 0.476, λ2 = 0.480. We will instead analyze two mirror cases for the correlation

coefficient: ρ = 0.35 and ρ = −0.35.

To get a representation of high-frequency tick-by-tick data, after discretizing (4.1) by a first-

order Euler discretization scheme with a time step of one second, we extract observation times

drawing the durations from an exponential distribution with mean 60 seconds. Observation

times are the same for the two time series, thus we avoid the problems linked to the Epps

effect, which appear when increasing frequency due to non-synchronous quotes and which

will be discussed later.

After simulating the process (4.1), we compute daily (86400 seconds, corresponding to 24

hours of trading, as for currencies) variance-covariance matrix according to the Fourier

method of Chapter 2, and according to the realized volatility measure of Andersen et al.

(2000a, 2003) given by

σ2
ij =

m−1
∑

j=1

[

pi

(

t +
k + 1

m

)

− pi

(

t +
k

m

)] [

pj

(

t +
k + 1

m

)

− pj

(

t +
k

m

)]

. (4.2)

Barndorff-Nielsen and Shephard (2004a) develop a full asymptotic theory for this estimator.

The choice of m in (4.2) comes from a tradeoff between increasing precision and cutting

out microstructure distortions. A typical value is m = 288, corresponding to five minute

returns. Since the time series p(t) is not observed in continuous time, one has to resort to

interpolation techniques to obtain the values p
(

t + k
m

)

in (4.2) at equally spaced times, when

these values are not observed directly. Two alternatives have been followed in the literature:

linear interpolation between adjacent observations, and previous-tick interpolation, i.e. the

price at time t is equal to the price of the last observation.

We implement both these interpolation schemes, for m = 288, 96, 48 (corresponding respec-

tively to 5,15,30 minute returns), when measuring correlations on Monte Carlo experiments.
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Table 4.1: Average correlation on 10,000 Monte Carlo replications of the

model (4.1). Two generated values of the correlation are considered, ρ = 0.35

and ρ = −0.35. We compute the variance-covariance matrix via the Fourier

estimator and via the realized volatility estimator (4.2). L.I. means Linear

Interpolation, while P.T. means Previous Tick interpolation. Standard devia-

tions of in-sample measurements are reported in the columns named Std. The

standard error on the mean is the standard deviation divided by 100.

Generated correlation Generated correlation

Estimator ρ = 0.35 ρ = −0.35

Measured Std Measured Std

Fourier 0.350 0.039 -0.349 0.039

Realized 5′, L.I. 0.204 0.058 -0.203 0.055

Realized 5′, P.T. 0.181 0.060 -0.180 0.058

Realized 15′, L.I. 0.338 0.090 -0.337 0.090

Realized 15′, P.T. 0.329 0.091 -0.328 0.092

Realized 30′, L.I. 0.345 0.127 -0.344 0.126

Realized 30′, P.T. 0.342 0.127 -0.341 0.126

Table 4.1 shows the results. First of all we notice that the Fourier estimator performs

considerably better than realized volatility, which is biased toward zero. The bias in the

correlation measurement of realized volatility is more and more severe as the sampling fre-

quency increases. For the five-minute estimator with the previous-tick interpolation, we get

a mean value of 0.181 (−0.180), which is quite far from the true value of 0.35 (−0.35); this

bias is completely due to the use of interpolated prices on the evenly spaced grid. Realized

volatility with linearly interpolated returns is closer to the right value, but this is because

of the downward bias in the volatility measurement due to the linear interpolation docu-

mented in Barucci and Renò (2002a,b). In these papers, the authors show that the spurious

positive serial correlation induced by the linear interpolation technique lowers the volatility

estimates. Since variances are spuriously measured to be lower, correlations turn out to be

spuriously higher, thus compensating in some way the bias due to non-synchronicity. This

is also true, but to a much lower extent, for the 15-minute and 30-minute realized volatility

estimator. The precision of the Fourier estimator, as measured by the standard deviation

of measurements across Monte Carlo replications, is always better than that obtained with

the realized volatility estimator. We implemented the Fourier estimator with N = 500 coef-

ficients for the first time series, N = 160 coefficients for the second and N = 160 coefficients

for the computation of covariance. Increasing the number of coefficients would increase the

measurement precision. On the other hand, even the gain in precision of the realized covari-
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ance measurement obtained when increasing the sampling frequently is canceled out by the

bias.

Thus, even if the Fourier estimator is comparable to realized volatility when using the

previous-tick interpolation scheme, it is remarkably better in computing covariances.

4.3 Investigating the Epps effect

In his 1979 paper, Epps reported empirical evidence of a dramatic drop in correlations

between stocks when decreasing the sampling time horizon. This phenomenon has been

observed across different markets, see for example Bonanno et al. (2001); Zebedee (2001)

for stock prices, Lundin et al. (1999); Muthuswamy et al. (2001) for foreign exchange rates.

On the other hand Andersen et al. (2001) and Andersen et al. (2001), with regard to stock

prices and foreign exchange rates respectively, report correlations significantly different from

zero when computed using five minute returns.

In this Section, as the title suggests, there is an attempt to understand the dynamics un-

derlying the Epps effect better. For this purpose, we adopt the Fourier variance-covariance

estimator set out in Chapter 2. This estimator has two appealing features: first, it uses all

the tick-by-tick observations with no need to change their time structure. Second, all the

other estimators developed so far (Andersen and Bollerslev, 1998a; de Jong and Nijman,

1997; Lundin et al., 1999; Ball and Torous, 2000) are constructed in the time domain, while

the Fourier estimator is naturally embedded in the frequency domain. The Epps effect deals

with the behavior of correlations as a function of the sampling frequency, so the Fourier

estimator is well suited for its inspection.

The main idea pursued in this Section is that correlation measurements are always biased

toward zero when observations are not perfectly synchronous. Two main statistical features

of the data may produce this effect: asynchronous trading and lead-lag relationships. The

impact of asynchronous data on covariance measurement has been widely studied: two

examples are Lo and MacKinlay (1990) and, previously, Scholes and Williams (1977). In

addition to this, it is sometimes suggested that the Epps effect may depend upon the fact

that correlations are lagged1, so that when reducing the sampling frequency under time

scales comparable to this lag, the correlation measurements turn out to be lower.

The motivation of this work is to assess the following questions:

1It is worth to remark that non-synchronous trading itself could be a source of spurious lead-lag relations,

see Chan (1992, 1993).
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• what is the relative magnitude of the impact of asynchronous trading and lead-lag

relationships?

• are these two features sufficient to explain the Epps effect?

In the literature, we have found mixed answers to these two questions. For example, Zebedee

(2001) argues that the Epps effect is mainly due to the lead-lag relationship, maintaining

that as frequency increases, correlation is shifting to other nearby time intervals. On the

other hand, Lundin et al. (1999) claim that different actors play different roles at different

frequencies, so that it is not possible to recover the same correlation at different time scales.

However, it is not clear which kind of price formation process could lead to the Epps effect.

Moreover, Lundin et al. (1999) find a significant inverse relation between correlation and

activity: the more an asset is traded, less evident is the Epps effect. Again this seems

to enforce the importance of synchronicity in explaining the correlation decrease at higher

frequencies.

In our analysis, we will primarily make use of Monte Carlo simulation, showing that, if price

observations of two traded assets are synchronous, and if there is no lead-lag relationship, no

frequency effects should be observed in the correlation measurements. Non-synchronicity and

lags are then introduced, and the results show that both have a substantial effect (although

it is mostly due to synchronicity), and thus are good candidates to explain the Epps effect.

We then turn to the analysis of foreign exchange rates and stock prices, showing that, when

applying adjustment techniques based only on these two factors, a significant attenuation of

the drop in correlation measurement at high frequencies is observed.

4.3.1 Monte Carlo experiments

The purpose of this study is to analyze the behavior of correlations between high frequency

asset prices, as a function of the sampling frequency. We first start with studying Monte

Carlo experiments. The simulation of two correlated asset price diffusions is accomplished via

the bivariate continuous-time GARCH(1,1) model (4.1) with the parameters as in Andersen

and Bollerslev (1998a). The value of the correlation is set to ρ = 0.35.

If we could observe the process (4.1) continuously, we would not have problems in computing

the variance-covariance matrix and recover the exact value of the correlation. Here we want

to study the impact of two main features of high-frequency data:

• intraday asset prices are recorded in form of tick-by-tick transactions or quotes, which
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are unevenly spaced and whose frequency depends on the liquidity of the asset;

• correlation may be lagged, due to different liquidity, economic significance or recording

effects.

Using the Monte Carlo simulation, we should be able to disentangle the impact of these

two effects on correlation measurements. We will proceed as follows: first, the bivariate

process (4.1) is discretized using a first-order Euler discretization scheme with a time step

of one second. This mimics continuous time synchronous record. Then, two kind of samples

are simulated: in the first one, tick-by-tick durations are extracted from an exponential

distribution with mean equal to 15 seconds for the first time series and to 45 seconds for

the second time series. The choice of the average duration again comes from the average

durations of DEM-USD and JPY-USD respectively. In order to illustrate the effect of non-

synchronicity of high frequency data, we use a second kind of sample in which the durations

of both the time series are extracted from an exponential distribution with mean equal

to 45 seconds, thus forcing the first time series to be observed exactly at the same times

as the second time series. These two simulated time series are labeled asynchronous and

synchronous respectively.

In order to introduce lagging, we use the sample described above, but shift all the observation

times of the second time series backward by 8 seconds, a choice motivated by subsequent data

analysis. These two new samples are labeled synchronous-lagged and asynchronous-lagged

respectively.

In these Monte Carlo experiments, daily (86400 seconds) covariance matrices are computed

according to (2.44), as a function of frequency M . Figure 4.1 shows the resulting average

daily realized correlation as a function of the sampling frequency M used in the computation,

for the four different samples. Let us look at the asynchronous-lagged sample first, which

is thought to be closer to actual data. Even if we do not go in the deep high frequency

regime, for further comparison with FX data, the Epps effect is clearly displayed. Correlation

begins to drop above a certain frequency, going far from the “true” generated value. If we

increase the sampling frequency, then correlation goes to zero (not displayed). If we look

at asynchronous (not lagged) data, we see that the Epps effect is still present, but slightly

less relevant. It is evident that, in this Monte Carlo setting, microstructure effects are not

present, so we can see that asynchronous quoting can be a very important factor explaining

the reduction of the correlation measurements by itself. The effect of non-synchronicity

on the correlation estimates of daily stock prices, which are typically recorded at slightly

different closing hours, has been analyzed by Burns et al. (1998); Martens and Poon (2001)

among others; these studies also show that this effect, which may look negligible at first
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Figure 4.1: Average correlation between two Monte Carlo simulations of asset

prices, according to (4.1), as a function of the sampling frequency M in (2.44).

Boxes: simulated observation times are drawn independently. Crosses: simu-

lated observation times are drawn independently and the correlation is lagged

by 8 seconds. Triangles: simulated observation times are forced to be the same

and the correlation is lagged by 8 seconds. Circles: simulated observation times

are forced to be the same, no lag. The generated value of the correlation is

ρ = 0.35, corresponding to the dashed line in the figure. Error bars are com-

puted according to the Normal distribution. These results are obtained with

10,000 replications.

glance, can seriously affect the correlation estimates.

We now turn to the analysis of synchronous data. From Figure 4.1, we observe that the

Epps effect is dramatically reduced. However, we find another relevant source of the Epps

effect. When we consider lagged data, we still observe a substantial drop in correlation, even

if it appears to be smaller than that caused by non-synchronicity. The effect is visible even if

the introduced lag, i.e. 8 seconds, is very small, at least when compared with the frequency

M = 160, which corresponds to 3.5 minutes in the time domain.

In contrast, if data are synchronous and not lagged, we clearly observe that correlations do

not drop at higher frequencies. Moreover, as expected, by increasing the sampling frequency

we increase the measurement precision. To give a quantitative idea of the magnitude of this

effect, we should link the correlation drop to the level of non-synchronicity or lag. Monte

Carlo experiments were repeated keeping fixed the average duration of the second time series,
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Table 4.2: Correlation estimates on Monte Carlo experiments with asyn-

chronous data. The second time series observations are extracted with an

average duration of 45 seconds, while we report estimates at different values of

the average duration τ1 of the first time series, at three different frequencies.

All estimates are obtained with 1,000 replications.

τ1 → 15 25 35 45 55 65 75

M = 100 0.3452 0.3452 0.3437 0.3417 0.3384 0.3345 0.3297

M = 130 0.3373 0.3371 0.3354 0.3323 0.3279 0.3227 0.3162

M = 160 0.3311 0.3312 0.3288 0.3244 0.3184 0.3110 0.3028

Table 4.3: Correlation estimates on Monte Carlo experiments with syn-

chronous lagged data. Both the time series observations are extracted with

an average duration of 45 seconds, while we report estimates at different val-

ues of backward lag (in seconds) for the second time series, at three different

frequencies. All estimates are obtained with 1,000 replications.

LAG → 4 8 12 16 20 24 28

M = 100 0.3512 0.3496 0.3485 0.3476 0.3479 0.3456 0.3441

M = 130 0.3488 0.3465 0.3442 0.3435 0.3431 0.3399 0.3382

M = 160 0.3487 0.3449 0.3421 0.3398 0.3383 0.3343 0.3329

set to τ2 = 45 seconds, and varying the average duration of the first, named τ1. Clearly,

increasing τ1 will decrease the activity of the first time series, and consequently the number

of synchronous quotes. Table 4.2 shows the results for the frequencies M = 100, 130, 160.

Not surprisingly, we confirm the inverse relation between activity and correlation drop found

in Lundin et al. (1999). We repeat these experiments by keeping fixed the durations of the

two time series to 45 seconds, and backward the second time series backward by a variable

lag. Table 4.3 shows the results for different frequencies M , as above. As expected, we

observe a larger drop in correspondence with a larger lag.

It is important to determine the significance of these results. If we look at the standard

deviation of measurements across the Monte Carlo sample at M = 160, which provides a

reasonable estimate of the error, we find that it is around 0.05 for all four data sample.

With 10,000 replications, this corresponds to a standard deviation of the mean a hundred

times smaller. Thus, on the basis of a simple variance ratio test for the mean at 95%
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level, when comparing the correlations between the synchronous (not lagged) sample and

the two asynchronous (lagged and not lagged) samples, we reject equality for M ≥ 60, while

when comparing the synchronous sample with the synchronous lagged, we reject equality

for M ≥ 100. Kolmogorov-Smirnoff tests of equality among the distributions were also

performed2, and they confirmed these results.

Finally, it seems quite interesting that the variance of the measurements is nearly the same3

across the four samples. This finding indicates that synchronicity plays an important role

also in the precision of the Fourier estimator. Indeed, switching from asynchronous to

synchronous data, we reduce the number of observations of the first time series by one third,

but the standard deviation of measurements remains nearly the same.

The question now becomes whether the Epps effect observed in the literature can be ex-

plained only by means of the non-synchronicity of quotes and lead-lag relationship. The

following Section tries to address this point by looking at market data.

4.3.2 Data analysis

The first data sample under study is the very well known collection of DEM-USD and JPY-

USD exchange rate quotes as they appeared on the Reuters screen from October, 1st 1992 to

September 30th 1993. The price is defined as the bid-ask midpoint. This data set has been

collected and distributed by Olsen & Associates, and it has been extensively studied in the

high frequency data literature.

The analysis in Barucci and Renò (2002a) suggests that the highest M that can be used

in (2.27), in order to prevent microstructure effects from distorting our results, is given

by M = 500 for the DEM-USD time series and M = 160 for the JPY-USD time series.

These values will be used when computing variances, while when computing covariances,

since the two time series are analyzed jointly, M ≤ 160 will be always used. This frequency

corresponds to roughly 3.5 minutes in the time domain. Figure 4.2 shows the average daily4

correlation as a function of the sampling frequency. Clearly the Epps effect is again in action,

shifting the correlations downward above a given frequency. In order to investigate the effect

of non-synchronicity, our measurements are repeated using only synchronous data, i.e. quotes

which have the same time stamp. This kind of data are about 16% of DEM-USD quotes and

2Detailed results on the tests are available from the author upon request.
3The standard deviation at M = 160 is 0.0519 for asynchronous data, 0.0525 for synchronous data, 0.0522

for asynchronous lagged data, 0.0530 for synchronous lagged data.
4We define one day starts and ends at 21:00 GMT.
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Figure 4.2: Average realized daily correlation between DEM-USD and JPY-

USD foreign exchange rate, from October 1st 1992 to September 30th 1993, as

a function of the sampling frequency M in (2.44). Crosses: all observations

are included in the computation. Triangles: Only synchronous observations

are included in the computation. Boxes: all observations are included, JPY-

USD time series is shifted backward by 8 seconds. Circles: Only synchronous

observations are included in the computation after shifting the JPY-USD time

series backward by 8 seconds.

42% of JPY-USD quotes, so we have a substantial reduction of our data sample5. Results are

again plotted in Figure 4.2. The reader may be confused by the different levels of correlation

measurements in the different cases. These are due to the statistical fluctuations induced

by the scarcity of observations, especially when using only synchronous data. The standard

deviation of measurements ranges from 0.14 for asynchronous data to 0.18 for synchronous

lagged data, thus, with 256 data points, standard error estimates are around 0.01. Thus

the observed rise of correlation measurements when only synchronous observations are taken

in account is not statistically significant. Figure 4.2 is redrawn in Figure 4.3 in a different

fashion: while Figure 4.2 plots ρ(M), Figure 4.3 plots [ρ(M) − ρ(64)] /ρ(64), where M is the

sampling frequency. We choose ρ(64) to normalize since it is the highest measured correlation

5Actually, the number of synchronous quotes is surprisingly high. Indeed, we have on average 5653 DEM-

USD quotes per day, and 2186 JPY-USD quotes per day. Taking into account that in our data sample quote

times are rounded to the nearest even second, and assuming independent quoting, we expect on average 286

synchronous quotes per day, while we find 909! Clearly the assumption of independence is violated. For

example, it is plausible that market makers post all their quotes contemporaneously.
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Figure 4.3: Shows [ρ(M) − ρ(64)] /ρ(64) as a function of M , where M is the

sampling frequency in (2.44). Crosses: all observations are included in the

computation. Triangles: Only synchronous observations are included in the

computation. Boxes: all observations are included, JPY-USD time series is

shifted backward by 8 seconds. Circles: Only synchronous observations are

included in the computation after shifting the JPY-USD time series backward

by 8 seconds.

in all the four cases.

We observe that the effect of correlation reduction when the sampling frequency increases

is less strong. However, this effect is not completely canceled out. This result shows that

the non-synchronicity of quotes plays a substantial role in the Epps effect, but other effects

must be taken into account when trying to explain it.

The presence of lead-lag effect in our exchange rate data sample is checked by computing

the daily lagged correlation:

ρ(τ) =

∫ 2π

0

corr [p1(t)p2(t + τ)] dt, (4.3)

as a function of τ , where p1 and p2 denote DEM-USD and JPY-USD exchange rate respec-

tively, and the interval [0, 2π] denotes one day. Similar studies on lead-lag correlation have

been conducted, for example, by Chan (1992); Ballocchi et al. (1999); Muller et al. (1997),

using a much longer time scales than that analyzed in this Section. In the present analysis,

again the Fourier method was used when computing (4.3), by computing the correlation after
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Figure 4.4: Average daily lagged correlation (4.3) between JPY-USD and

DEM-USD exchange rates, as a function of τ ; a negative τ indicates that JPY-

USD leads DEM-USD.

shifting the second time series temporally by τ . Covariance is computed at M = 64. Results

are shown in Figure 4.4. In our data sample the JPY-USD exchange rate leads DEM-USD

by nearly 8 seconds. This lead-lag relationship looks very small when compared to the time

scale we are investigating (M = 160, corresponding to nearly 4 minutes), but, as shown with

Monte Carlo experiments, this could be enough to explain the drop in correlation measure-

ments. Given that the two time series are both very liquid, and that the lag is found to be

of the same order of magnitude of the average durations, we argue that this lag is likely to

be due to non-synchronicity effects only.

The measurement of daily correlation between DEM-USD and JPY-USD is then repeated

after shifting the JPY-USD time series backward by 8 seconds. These measurements are

performed using all the observations and synchronous observations only (after shifting), as

in the previous case. Results are shown in Figure 4.2: by removing the joint effect of lead-lag

relationship and non-synchronicity (white circles) a strong reduction of the Epps effect is

obtained. This is in agreement with what we found on Monte Carlo experiments (see Figure

4.1) on simulated time series. The lead-lag relation causes the Epps effect, even if we repeat

the experiment forcing the two time series to be observed at the same time.

Figure 4.3 shows more clearly that using synchronous quotes, and adding a lag of 8 seconds,

the Epps effect is strongly reduced. Comparing the measurements at M = 160 with those
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at M = 64, we obtain a 12.9% drop if we do not apply any correction; a 12.7% drop when

lagging backward the DEM-USD time series; a 9.0% drop when using only synchronous ob-

servations and a 5.3% drop when using only synchronous observations after lagging backward

by 8 seconds the DEM-USD time series. This drop is found to be statistically significant.

Equivalence tests on the mean of [ρ(M) − ρ(64)] are performed across the samples: at 95%

level, we reject the equality of the measurements on the synchronous-lagged sample for

M ≥ 124 with the full sample, for M ≥ 131 with the lagged sample, and for M ≥ 156

with the synchronous (not lagged) sample. In order to further explain that 5.3% drop, it

seems that other factors should be taken into account. The failure of continuous-time models

to describe high-frequency data is the first factor under suspicion. However, a larger data

sample should be used to understand these second-order effects.

All these results can be checked by repeating all the measurements on two much less fre-

quently traded asset prices. The second data set under study consists of the high frequency

trades of the stock prices of Exxon and Mobil, from January 1995 to April 1995 for a total

of 82 trading days. Only trades from 9:30 to 16:00 at the NYSE time were used. We have

on average 397 Mobil trades and 724 Exxon trades per day. These two stocks belong to

the same economic sector (oil) and were eventually merged into the same firm on November

30th 1999, so there are good reasons to suppose that a substantial correlation should exist

between the two time series considered. We start by checking the presence of a lead-lag

effect of the same kind of that observed on FX rates. We use M = 20 when computing the

variances of both stock prices, and M = 10 when computing the covariance.

Figure 4.5 shows that the lead-lag effect is again present, and in a more substantial way:

the Mobil price leads Exxon by roughly a couple of minutes. On the basis of these results,

we performed the correlation measurements on the raw data sample, on synchronous data

only and on the data sample and only synchronous data after shifting the Exxon time series

backward by 70 seconds, corresponding to the largest correlation in figure 4.5. Figure 4.6

presents the results. We notice immediately that large fluctuations among measurements are

present, due to the fact that the number of trades (and especially of synchronous trades) is

considerably smaller than exchange rate quotes. We have on average 20 synchronous trades

per day, and 12 synchronous trades per day after shifting. The standard deviation of the

means is estimated around 0.02 for asynchronous data, and 0.04 for synchronous data, both

lagged and not lagged. The Epps effect is again evident when computing correlations with

all the trades, and again using only synchronous trades drastically reduces the effect. When

using synchronous trades after shifting backward the Exxon time series, the Epps effect is

no longer observed, and correlations remain stable in the range 10 ≤ M ≤ 20. Thus, the

analysis of stock prices confirms the results obtained with FX rates.
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Figure 4.5: Average daily lagged correlation (4.3) between Mobil and Exxon

stock prices, as a function of τ ; a positive τ indicates that Mobil leads Exxon.

These results can be very important from the risk management point of view. It is clear

that a correct assessment of risk management strategies has to take care of correlations, and

especially of the stochastic nature of correlations (Ball and Torous, 2000). Our results suggest

that, even if continuous-time multivariate models fail to describe the dynamics of asset

prices at the very high frequencies, it is still possible to use them to compute variances and

correlations precisely with high frequency data, just taking into account non-synchronicity

and lead-lag relationships. From this perspective, the Fourier estimator turns out to be a

promising tool.

4.4 Dynamic principal component analysis

In the previous Sections multivariate volatilities provided us a time dependent quadratic

form on which we want to proceed to a time dependent principal component analysis.

Principal component analysis has been proposed as a natural statistical tool to analyze

stock prices in the framework of factor models, as the APT of Ross (1976), or approximate

factor models, as in Chamberlain and Rothschild (1983). Mostly, it has been used for the

highly correlated bond of different maturities (Litterman and Scheinkman, 1991); in a recent

application, Scherer and Avellaneda (2002) also analyzed the term structure via PCA in a
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Figure 4.6: Average realized daily correlation between Exxon and Mobil stock

prices, from January 1st 1995 to April 30th 1995, as a function of the sam-

pling frequency M in (2.44). Crosses: all observations are included in the

computation. Triangles: Only synchronous observations are included in the

computation. Boxes: all observations are included, Exxon time series is shifted

backward by 70 seconds. Circles: Only synchronous observations are included

in the computation after shifting the Exxon time series backward by 70 seconds.

dynamic way. See also the work of Laloux et al. (1999); Plerou et al. (1999), who analyze via

PCA a large covariance matrix of stock returns to separate noisy eigenvectors from significant

eigenvectors.

Our analysis is model free and it is oriented toward dynamical description. Classical PCA

provides a linear sub-manifold of smaller dimension which carries the essential information

coming from the data. Dynamic PCA will produce an abstract curve, which we call the

Core, which allows us to determine the eigenvectors of multivariate volatility in continuous

time.

Consider the curve p(t) describing the assets in R
n. The geometric construction of the Core

is the following: we consider the n×n multivariate volatility matrix Σ(t) on the time window

[0, 2π]. Denote by Gij = Σij the inverse matrix of Σij. It is known (Levi-Civita, 1925) that

Gij(t) defines a Riemannian metric, because Σij(t) transforms as a contravariant 2-tensor.

We fix an integer q with q ¿ n, independent of t. Consider the q eigenvectors of Σ(t)

associated to the q largest eigenvalues. Denote by V (t) the q-dimensional space spanned by
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these q eigenvectors. We emphasize that, because Σij(t) is a contravariant 2-tensor, then

V (t) is a subspace of the cotangent vectors. Therefore V (t) has to be considered as the

cotangent space (that is the dual space to the tangent space) to the curve of interest, which

we call the Core at time t. The restriction to V (t) of the quadratic form defined by Σ(t)

defines a Riemannian metric on the Core.

In order to analyze the contribution of a given asset to volatility, we consider its projection

on the Core. We choose an orthonormal basis of V (t):

dφs =
n

∑

j=1

γj
s(t)dpj 1 ≤ s ≤ q. (4.4)

Then (dφs)1≤s≤q is a basis for V (t) which, we recall, is a space of cotangent vectors. The

projection of the asset p1 on the Core is given:

dψ =

q
∑

s=1

θsdφs (4.5)

where θs is the scalar product du1 ∗ dφs. Finally consider

dU1 = dp1 − dψ,

and analogous construction for Ui, i = 1, . . . , n. Then Ui can be interpreted as the genuine

fluctuation of the asset with price pi. The value of Ui provides a measure of the idiosyncratic

noise of the i-th asset, since it is the noise which cannot be accounted by the principal

component eigenvalues. We say that the i-th asset is a ”reference asset” if the function Ui is

relatively small, according to a given criterion. We define in this way a basket of reference

assets. In our dynamic setting it could be important to decipher if an asset suddenly gets

outside the basket of reference assets.

4.4.1 Empirical Results

The data set at our disposal consists of the whole set of stock transactions, as recorded by

NYSE and collected in the TAQ database, for the months of April and May, 2001. Given the

huge quantity of data, we restrict our attention to 98 stocks, chosen among the most liquid

ones; the selected stocks all belong to the S&P 100 index. In our sample, the most heavily

traded stock is Cisco Systems, with one transaction every 1.21 seconds; the less frequently

traded is Allegheny Technologies, with one transaction every 95 seconds.

On the whole, we analyze 42 days; for each day, we compute the variance-covariance matrix

using the Fourier method described in Chapter 2. It is important to choose the frequency at
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which to stop the expansion (2.44); as already remarked, we cannot choose it arbitrarily large

because of microstructure effects. We adopt a unique value for all stocks; when computing

variances, we use M = 150, corresponding to a time scale of a couple of minutes. When

computing covariances, as mentioned earlier, we encounter the additional problem that, since

stocks do not trade simultaneously, the covariance drops at larger frequency (Renò, 2003).

Thus we have to use an ad hoc smaller frequency; guided by the data, we choose M = 50.6

Figure 4.7 shows the time series of correlations among some selected stocks, and it illustrates

the variety of patterns which can be observed in a stock market. Stocks in the same economic

sector usually display larger positive correlation; sometimes, but rarely, negative correlation

arises between stocks. Let us remark the peculiar behavior around the 12th and the 32th day,

corresponding to April 18th and May 16th, 2001. In both these days, the Federal Reserve

cutted the federal funds rate. The cut on April 18th was particurarly unexpected.

The thick line in Figure 4.8 shows the distribution of correlations across all stocks for all

days in our sample; since we have n = 98 stocks, in total we have n2

2
−n = 4753 correlations

per day. The plot shows that correlations among stocks are rather weak; the average value

is 0.1732, thus it is not possible to conjecture that few factors could explain the behavior

of the market, as in the case of interest rates with different maturities (Litterman and

Scheinkman, 1991). However, the correlation distribution changes substantially from day to

day; in particular, there are two days (those corresponding to the FED cut) in our sample in

which correlations are sparse, indicating that most of the stocks are more strongly correlated,

but some other become more negatively correlated.

We start by performing PCA for every different day, after normalizing the variance-covariance

matrix in order to have the variance of every stock equal to 1. Figure 4.9 shows the percentage

of the variance explained by 1, 5, 10, 20, 30 factors. We see that the first factor explains, in

average, 25.79% of the movements; this is not that much, and it is in line with the small

average correlation coefficient. Anyway in some days the first factor’s weight can be as large

as 56.09% (April, 18th) and 73.26% (May, 16th). Moreover, and more interestingly for any

financial application, this phenomenon seems to present some degree of persistence.

In the second step of our analysis, we define the Core of the market as the vector subspace

spanned by the first 30 eigenvectors, and we divide our 42 market days into 6 periods of

7 market days each. In each subperiod, we perform principal component analysis on the

aggregate variance-covariance matrix, and we obtain the coordinates of the Core. In each

6The use of different frequencies for variances and covariances could, in principle, result in measured

correlations larger than one. It is instead straightforward to show that, choosing the same frequency for all

the elements of the variance-covariance matrix, the Fourier estimator for the correlation lies between −1 and

1.
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Figure 4.7: Time series of correlation (42 daily measurements) for differ-

ent stocks; stocks in the same economic sector (Microsoft-Cisco or Honeywell-

General Electric) display stronger positive correlation.

subperiod, we define 15 reference assets as those who have the largest projection onto the

Core. We interpret these assets as those who are more correlated with the market itself,

or alternatively as the basic constituents of the market. The list of the reference assets in

any subperiod is shown in Table 4.4. Given the low value of the average correlation, we

expect that the basket of reference assets is quite variable, given the unalienable noise in

the correlation measurements. This is indeed the case. The month of April shows more

persistence: 4 reference assets in the first period, out of 15, are in the second period too;

and 6 of the second are still reference assets in the third. The month of May shows much

more variability, or less “market integration”; only two stocks are reference assets in the

third and fourth period, only one in the fourth and fifth period and none out of 15 in the

fifth and sixth period. Looking at individual stocks, AES Corporation is a reference asset

in the whole sample, with the exception of the sixth period, and in three periods it is the

asset with the largest absolute projection on the Core. Table 4.4 also shows the percentage

projection on the Core, and the five assets, in any period, with the lowest projection onto it.

For example, in period 2, 93.3% of the variance of AES can be considered to be driven by
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Figure 4.8: The tick solid line shows the cumulative distribution of correla-

tions across the 98 stocks considered. The narrow solid line shows the distribu-

tion on April 18th, 2001, while the dashed line shows the distribution on May

16th, 2001. In these two days, the FED lowered the federal funds rate.

the market, and 6.7% is explained by idiosyncratic fluctuation; thus AES essentially lies on

the Core, which is the subspace which explains most of the variance of the whole market; on

the other hand, in the same period for Coca-Cola (KO), only 35.1% of its variance is driven

by the market, while 64.9% is independent fluctuation.

Summarizing, out of the 98 assets, 32 are never reference assets; 46 are only once; 18 are

twice, Johnson & Johnson (JNJ) is thrice and AES is five times. Then our analysis identifies

nearly 20 assets which had a major role in market integration. In the set of this 20 assets,

8 are among the 20 most capitalized; thus capitalization plays an important role in defining

leading assets, but it is not the only factor to be taken in account. For example, in our

analysis AES turned out to be the most important stock, but its capitalization (measured

as market value) is only about 0.5 % of the capitalization of Microsoft, the most capitalized

stock in our sample.
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Figure 4.9: Percentage of eigenfactors variance explanations, for n =

1, 5, 10, 20, 30 factors, for the 42 days considered.

4.5 Conclusions

In this Chapter, we outline a new procedure, stemming from the contribution in Malli-

avin and Mancino (2002), to compute pointwise variance-covariance matrices among assets.

Monte Carlo experiments illustrate how this procedure performs better than other commonly

used estimators in the literature.

An investigation of the so-called Epps effect (Epps, 1979) is attempted. To this aim, we

adopt the Fourier estimator to compute cross-correlations. This estimator is well suited to

the time structure of high frequency data and to our frequency analysis. When tested on

Monte Carlo bivariate experiments, the Fourier estimator proves to be a good candidate for

computing correlations in a precise way. In our Monte Carlo experiments, price diffusions

are simulated by a continuous-time model, namely the GARCH(1,1) continuous-time model.

The results show that the Epps effect may be explained by the non-synchronicity of quotes

and by lead-lag relationships.

Further evidence for the Epps effect is derived from foreign exchange data. When considering
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Table 4.4: Lists the reference assets by ticker name in the six subperiods

considered. They are ranked according to their projection on the core, which

is reported in brackets. Also the five assets with the smallest projection on the

Core are listed. Each subperiod is composed of 7 market days. In bold face,

we indicate those stocks who remain reference assets in the subsequent period

Periods

1 2 3 4 5 6

F (74.4%) AES (93.3%) AES (84.0%) WY (72.2%) AES (88.9%) HON (86.4%)

CCU (72.2%) AOL (86.1%) WFC (77.1%) TOY (72.1%) HIG (78.7%) GM (74.7%)

AOL (71.1%) INTC(84.1%) ATI (73.9%) AES (72.0%) HAL (76.7%) DOW (72.1%)

INTC(70.0%) AA (82.0%) LU (73.4%) WMB (68.2%) WMT (71.8%) IBM (70.4%)

AES (69.5%) JPM (80.0%) AEP (72.5%) CSC (67.7%) HWP (71.7%) GE (70.4%)

PHA (68.8%) IBM (79.9%) AVP (72.2%) XOM (67.2%) TYC (70.9%) LTD (70.4%)

IP (64.6%) JNJ (78.5%) TXN (70.3%) MSFT(66.3%) ONE (68.8%) BUD (69.7%)

UTX (64.1%) AEP (77.5%) BUD (69.8%) PFE (65.8%) HNZ (68.3%) FDX (68.4%)

CPB (64.0%) ATI (74.8%) AIG (67.2%) PEP (65.1%) F (68.1%) JNJ (67.6%)

GE (63.7%) MRK (70.5%) MRK (64.9%) CSCO(65.1%) UTX (67.3%) MAY (67.1%)

TYC (63.6%) IP (70.0%) LTD (64.8%) BAX (64.4%) HCA (66.8%) MSFT(66.4%)

EK (63.2%) T (69.6%) AMGN(64.7%) BMY (64.3%) ORCL(66.1%) AIG (65.5%)

VZ (62.0%) MCD (67.7%) MDT (63.5%) SLB (63.1%) HET (65.5%) ETR (65.3%)

BNI (62.0%) LU (67.5%) JNJ (61.7%) WFC (63.1%) DIS (64.9%) MMM (64.6%)

UIS (61.6%) MEDI(66.6%) EMC (61.5%) ETR (62.8%) VIAB(64.1%) AXP (63.3%)

BMY (43.0%) USB (35.9%) BNI (41.4%) IBM (40.4%) MER (37.4%) HCA (37.4%)

AXP (42.8%) HWP (35.2%) HON (39.7%) IP (40.3%) LU (36.3%) PFE (36.9%)

MMM (42.0%) S (35.2%) DIS (38.1%) LEH (38.3%) NT (34.4%) SLE (36.7%)

MSFT(39.1%) KO (35.1%) IBM (37.9%) AIG (37.6%) AA (34.3%) VIAB(35.4%)

MAY (37.4%) GD (33.1%) DD (37.5%) HD (31.0%) WFC (30.9%) CL (34.6%)

BAX (37.0%) VZ (28.5%) T (29.1%) T (30.3%) HON (28.0%) AES (30.2%)

only synchronous quotes, the effect is reduced but not eliminated. It is shown that in our

sample there is a lead-lag relationship of 8 seconds. However, this very short time scale is

enough to generate a frequency effect on correlations. If the measurements are performed

using synchronous quotes after shifting one time series by 8 seconds, the Epps effect is

drastically reduced. All these results are confirmed by the analysis of stock price data,

where the lag is found to be around 70 seconds.

We conclude that even if other factors, apart from non-synchronicity and lead-lag relation-

ships, which clearly play the main role, concur in the Epps effect, their effect is negligible. It

remains questionable if these factors can be explained in the framework of continuous-time

models.

It would be also interesting to find precise laws which relate the magnitude of the Epps
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effect to, say, correlation, average durations, lag, cut-off frequency. A Monte Carlo approach

would turn out to be too time-consuming, given the number of parameters which affect the

correlation estimates, and an analytic answer, as in Scholes and Williams (1977), would be

desirable. We leave this topic for future research.

Finally, we provide a geometrical interpretation of our results in term of dynamic principal

component analysis. We illustrate the reliability and the potential of the method, by an-

alyzing two months of high-frequency data. Our results show that, since correlations are

time-varying, also principal component analysis can be addressed in a time-varying fashion.

In particular, the number of factors needed to explain the co-movements in the market varies

dramatically with time and it is influenced by macroeconomic announcements, such as the

FED decisions.

We introduce the definition of reference assets, as those which are more integrated with the

market. Our analysis, though preliminary, shows that capitalization plays an important role

in defining a reference asset, but other factors must be taken into account.

In this Chapter, we concentrated on contemporaneous correlation, while a structural feature

of the market is to exhibit delayed or lead-lag correlations. It could be important to construct

an estimator which takes into account this delay: we leave this problem to further research.
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Chapter 5

Nonparametric estimation

In this Chapter a new fully nonparametric estimator of the diffusion coefficient is introduced,

based on Fourier analysis of the observed trajectory. The proposed estimator is proved to be

consistent and asymptotically normally distributed. After testing the estimator on Monte

Carlo simulations, we use it to estimate an univariate model of the short rate with available

interest rate data. Data analysis helps shedding new light on the functional form of the

diffusion coefficient.

5.1 Introduction

The last decade witnessed a growing literature in the field of the diffusion coefficient estima-

tion. The main motivation underlying this strand of research is that the diffusion coefficient,

which is called volatility, plays a fundamental role in practically every financial application.

We concentrate on univariate models of the kind:

dXt = µ(Xt)dt + σ(Xt)dWt (5.1)

where Wt is a standard real Brownian motion and the real functions µ(x) and σ(x) are such

that a unique solution Xt of the stochastic differential equation (5.1) exists. Xt can be any

variable; however, in this Chapter we concentrate on short rate modeling, that is Xt = rt.

Our specific problem is then to estimate the diffusion term σ(r) when we observe a discrete

realization of the process r, namely n observation r̂t1 , . . . , r̂tn in the interval [0, T ].

The methods for measuring volatility can be coarsely divided into parametric and nonpara-

metric. The parametric approach consists in specifying the function σ(r) = σ(r; ~θ), with ~θ
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being a vector of real parameters. As a popular example, a large parametric class has been

explored by Chan et al. (1992), who study the following model:

drt = β(α − rt)dt + σrγ
t dWt,

where β, α, σ, γ are real numbers. This specification nests many popular one-factor models,

like the constant variance model of Vasicek (1977), for γ = 0 or the square-root diffusion of

Cox et al. (1985), for γ = 0.5. The methodology is to estimate ~θ through point estimation.

For interest rates diffusions, this can be done via maximum likelihood (Duffie et al., 2002) or

GMM, direct (Chan et al., 1992) or simulated (Gallant and Tauchen, 1996; Dai and Singleton,

2000). The advantage of parametric models is that closed form solutions exist for bond and

derivative pricing. On the other hand, the advantage of nonparametric specification is clearly

its flexibility. For example, Jiang (1998) shows that the nonparametric specification provides

more accurate prices for bonds and derivatives. However, for bond and derivative pricing

one has to resort to Monte Carlo simulations since closed form solutions are out of reach.

One important example of nonparametric estimator for the diffusion coefficient is that pro-

posed by Ait-Sahalia (1996a). The Ait-Sahalia estimator is based on the fact that, if the

spot rate rt is driven by equation (5.1), then we have:

σ2(r) =

2

∫ r

−∞

µ(y)π(y)dy

π(r)
(5.2)

where π(r) is the unconditional distribution of r. Equation (5.2) allows, given two out of

the three functions µ(r), σ(r), π(r), to obtain the third after integration or derivation. This

estimator is not fully nonparametric, since to get an estimate of the variance a specification

of the drift term is needed. Ait-Sahalia (1996a) suggests to specify the drift µ(r) as an

affine function of r, then to estimate the conditional variance σ(r). Given the drift µ(r),

the estimator (5.2) still depends on the unconditional distribution π(r). However, we can

obtain an estimate of π(r) with a nonparametric technique (Scott, 1992) and replace π(r)

in (5.2) with its estimate. Suppose our observations are equally spaced, and denote them by

r̂i, i = 1, . . . , n. Then the nonparametric estimator of the density is given by:

π̂(r) =
1

nh

n
∑

i=1

K

(

r − r̂i

h

)

(5.3)

where K(·) is the kernel function and h a bandwidth parameter which depends on n. One

popular way of estimating densities through formula (5.3) is the histogram, where the kernel

function is an indicator function of a compact real interval centered around zero.
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Ait-Sahalia (1996a) estimation results on interest rate data show that a departure from

classical univariate models (e.g. CIR and Vasicek) is observed. In a related paper, Ait-

Sahalia (1996b) rejected almost all the most popular one-factor model used for modeling

interest rates. However this rejection is very controversial. The problem is that estimating

(5.3) in finite samples can be problematic if the mean reversion is low. For example, Pritsker

(1998) shows that the rejection of the most popular parametric models comes from severe

underestimation of confidence interval for testing the null in small samples.

The most remarkable example of a fully nonparametric estimator of the diffusion coefficient

can be found in Florens-Zmirou (1993). She introduces an estimator which is conceptually

different from that used in Ait-Sahalia (1996a), since it does not need any assumption on

the drift. Florens-Zmirou (1993) shows that, given discretely sampled data, the diffusion

coefficients in (5.1) may be estimated by:

σ̂2(r) =

n

n−1
∑

i=1

(r̂i+1 − r̂i)
2K

(

r − r̂i

h

)

T
n

∑

i=1

K

(

r − r̂i

h

)

. (5.4)

The variance estimator (5.4) looks more appealing since there is the same kernel in the

numerator and in the denominator, so biases in finite samples coming from nonparametric

estimation of the density could cancel out. The estimator (5.4) has been used by Jiang and

Knight (1997) on Canadian interest rates, and by Stanton (1997) on U.S. interest rates. In

both those papers, the Authors conclude in favor of a departure from standard models, and

they suggest a strong mean reversion for values of the spot rate r less than 3% and larger

than 15%, see Chapman and Pearson (2000) for a discussion on these results.

An estimator similar to that of Florens-Zmirou (1993) has been proposed by Bandi and

Phillips (2003), and studied in Bandi (2002). The estimator proposed in Bandi and Phillips

(2003) is the following:

σ̂2(r) =

n

n
∑

i=1

K

(

r − r̂i

h

)

(

1

mi

mi
∑

j=0

[

r̂ti,j+1 − r̂ti,j

]2

)

T

n
∑

i=1

K

(

r − r̂i

h

)

(5.5)

where ti,j is a subset of indexes such that

ti,0 = inf {t ≥ 0 : |r̂t − r̂i| ≤ εs} ,

and

ti,j+1 = inf {t ≥ ti,j + ∆t : |r̂t − r̂i| ≤ εs} ,
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mi is the number of times that |r̂t−r̂i| ≤ εs, εs is a parameter to be selected and ∆t is the time

step between adjacent observations. We refer the reader to the cited paper for details. It is

important to remark that Bandi and Phillips do not require the process (5.1) to be stationary,

but only the weaker condition to be recurrent. This condition can be important theoretically,

since Bandi (2002) and many others, e.g. Ball and Torous (1996), show that there is no

strong support to the assumption of stationarity of interest rate data. Watching carefully

expressions (5.4) and (5.5), we can see that the difference between Florens-Zmirou and Bandi-

Phillips estimators is that, while the Florens-Zmirou estimator weights the observation rt

with the quadratic variation at time t, the Bandi-Phillips estimator weights the observation

rt with the average quadratic variation at all observations which are “close” to rt.

Other estimators have been proposed, in a more general framework, by Jacod (1999). Hoff-

mann (1999) proposes a wavelet estimator which is consistent in Lp. Both these authors

study convergence rate properties for their estimator, showing that the Florens-Zmirou

(1993) estimator is not optimal. However, asymptotic distribution can only be assessed

for the estimator (5.4).

In this Chapter we introduce a new fully nonparametric estimator of the diffusion coefficient

of an univariate stochastic differential equation. The estimator is fully nonparametric in the

sense that we do not impose any restriction on the functional form of the drift term. More-

over, it is developed under mild regularity conditions for the stochastic differential equation

(5.1). As for the estimator in Bandi and Phillips (2003), the stationarity assumption is not

strictly required, being substituted by the milder assumption of recurrency. The estimator

is proved to be consistent in the L2 sense, and asymptotically normally distributed. In order

to assess the asymptotic properties, we borrow from the limit theory for semimartingales,

and in particular of the convergence of a semimartingale to a process with independent in-

crements. The asymptotic distribution turns out to be identical to that of Florens-Zmirou

(1993). However, the estimator is basically different, and this allows us to re-examine the

estimation of the diffusion coefficient with the available interest rate data.

This Chapter is structured as follows. Section 5.2 presents the estimator, and shows its

consistency and asymptotic normality, using limit theory for semimartingales. In Section

5.3 the estimator is implemented on Monte Carlo experiments of the Vasicek model, and

compared with the estimator of Florens-Zmirou (1993). In Section 5.4 we implement the

estimator for measuring the variance of the diffusion of short interest rates, and compare

our results to those in the literature, and in particular with the results of Stanton (1997).

Finally, Section 5.5 concludes.
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5.2 Nonparametric estimation of the diffusion coeffi-

cient

We consider the SDE:
{

dXt = µ(Xt)dt + σ(Xt)dWt

X0 = x0

(5.6)

in the filtered probability space (Ω, (Ft)0≤t≤T , P ) satisfying the usual conditions. We will

write Xt(ω) to explicit the dependence of X from t ∈ [0, T ] and ω ∈ Ω. We assume the

following:

Assumption 5.1 Given the SDE (2.1), we have:

1. x0 ∈ L2(Ω) is independent of Wt, t ∈ [0, T ] and measurable with respect to F0.

2. µ(x) and σ(x) are defined on a compact interval I. µ(x) is once continuously differen-

tiable, σ(x) is thrice continuously differentiable.

3. There exists a constant K such that 0 < σ(x) ≤ K and |µ(x)| ≤ K.

4. (Feller condition for non-explosion). Given:

S(α) =

∫ α

0

e
R y

0 −
2µ(x)

σ2(x)
dx

dy, (5.7)

V (α) =

∫ α

0

S ′(y)

∫ y

0

2

S ′(x)σ2(x)
dxdy, (5.8)

then V (α) diverges at the boundaries of I.

Assumption 5.1 insures existence and uniqueness of a strong solution. Asking for the Feller

condition allows to deal with models which, as noted by Ait-Sahalia (1996a), do not satisfy

global Lipschitz and growth condition (e.g. CIR). Moreover, Feller condition is necessary and

sufficient for recurrence in I, see the discussion in Bandi and Phillips (2003). Alternatively,

one can ask for global Lipschitz and growth conditions on µ and σ (Karatzas and Shreve,

1988).

Asking for a bounded volatility (and drift) is harmless from an econometric point of view,

since we always observe a finite, thus bounded, set of observations. For example, in the

CIR model the variance is unbounded and proportional to
√

Xt. However, since estimation

is on a finite sample, the observations X̂i are bounded and
√

Xt is indistinguishable from

min(
√

Xt,
√

max X̂i).
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Moreover we will consider a kernel function for nonparametric estimation with the following

properties:

Assumption 5.2 We define a kernel K(·) a bounded function in L2(R) which is continu-

ously differentiable, with bounded first derivative, positive, with
∫

R
K(s)ds = 1 and such that

lim
s→±∞

K(s) = 0 faster than any inverse polynomial.

A typical choice is the Gaussian kernel:

K(s) =
1√
2π

e−
s2

2 (5.9)

We will moreover consider a sequence hn such that:

Assumption 5.3 (hn)n∈N is a real sequence such that, as n → ∞, we have hn → 0 and

nhn → ∞.

An example which is very popular in applications (Scott, 1992) is the following:

hn = hsσ̂n− 1
5 (5.10)

where hs is a real constant to be tuned, and σ̂ is the sample standard deviation. We will

assume 5.1,5.2,5.3 holding throughout all the analysis.

Consider the solution process Xt with t ∈ [0, T ]. We now consider the fact that the process

Xt is usually recorded at equally spaced times. When subdividing the interval in n steps

of equal length, we use, as shorthand notation, Xi = XiT/n, that is X0 = x0, Xn = XT .

Moreover, we set ti = iT/n. Assumption 5.1 implies that Xt is a continuous semimartingale,

thus we can define its local time (Revuz and Yor, 1998) as:

Lt(x) = lim
ε→0

1

2ε

∫ t

0

I]x−ε,x+ε[(Xτ )dτ (5.11)

We can estimate the local time of a diffusion via the following approximation:

Ln
t (x) =

1

nhn

[nt]
∑

i=1

K

(

Xi − x

hn

)

(5.12)

where [x] is the integer part of x. We have indeed:

Proposition 5.4 If, as n → ∞ we have nh4
n → 0, then Ln

t (x) → Lt(x) in the L2 sense.

The convergence is almost sure if log n
nh2

n
→ 0.
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Proof. These are Propositions 1 and 2 in Florens-Zmirou (1993). ¤

The estimator of the diffusion coefficient proposed in Florens-Zmirou (1993); Stanton (1997);

Jiang and Knight (1997) is based on the following quantity:

V n
t (x) =

1

Thn

n−1
∑

i=0

K

(

Xi − x

hn

)

(Xi+1 − Xi)
2 (5.13)

We have indeed,

Proposition 5.5 If nh4
n → 0 as n → ∞, then V n

t (x) converges to σ2(x)Lt(x) in the L2

sense.

Proof. This is Proposition 3 in Florens-Zmirou (1993). ¤

Thus dividing V n
t (x) by Ln

t (x) we get a consistent estimator of σ2(x). In our analysis, relying

on the result of Chapter 2, we want to substitute the quantity (5.13) with the following:

Un
t (x) =

1

Tnhn

n−1
∑

i=0

K

(

Xi − x

hn

)

σ̂2(ti) (5.14)

where σ̂2(ti) is computed via (2.4) on the observed trajectory of Xt.

We then define the estimator:

Sn(x) =

n
∑

i=1

K

(

Xi − x

hn

)

σ̂2(ti)

T
n

∑

i=1

K

(

Xi − x

hn

)

(5.15)

We now prove that Sn(x) is a consistent estimator of σ2(x).

Theorem 5.6 If nh4
n → 0 as n → ∞, then Sn(x) is a consistent estimator of σ2(x) in the

L2 sense.

Proof. Suppose µ(x) = 0 in (2.1). For every ω ∈ Ω, consider the solution Xt(ω) of equation

(2.1), and define the process Y ω
t defined by:

dY ω
t = σ(Xt(ω))dW ′

t (5.16)
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where W ′
t is a standard Brownian in an auxiliary probability space (Ω′, (F ′

t)0≤t≤T , P ′), and

σ(Xt(ω)) is the realization of σ(Xt). Assumption (5.1) guarantees the existence of the

solution of (5.16). Then we can construct random variables in Ω by taking expectations in

Ω′. We denote by E ′ the expected value in Ω′ and by E the expected value in Ω.

Using equation (2.36), we get for 0 ≤ t < s ≤ T and almost surely in Ω:

1

s − t
E ′[(Y ω

t − Y ω
s )2] =

1

s − t

∫ s

t

σ2(Xu(ω))du =

=
1

s − t

∫ s

t

+∞
∑

q=−∞

Aq(σ
2)eiqudu =

=
+∞
∑

q=−∞

Aq(σ
2)eiqt e

iq(s−t) − 1

iq(s − t)
=

= σ2(Xt(ω)) +
+∞
∑

q=−∞

Aq(σ
2)eiqt

(

eiq(s−t) − 1

iq(s − t)
− 1

)

=

= σ2(Xt(ω)) + F (s, t)

(5.17)

since the Fourier series can be integrated term by term. Moreover, since the integral of a

Fourier series converges uniformly, we have almost surely in Ω:

lim
s→t

F (s, t) = 0 (5.18)

Now it is simple to prove that, almost surely:

E
[

E ′[(Y ω
t − Y ω

s )2]|Fs

]

= E[(Xt − Xs)
2|Fs], (5.19)

where X is the solution of (2.1), since both are equal to
∫ t

s
E[σ2(Xu)|Fs]du. Moreover, using

E[(Xt − Xs)
4|Fs] = 3E

2[
∫ t

s
σ2(Xu)du|Fs] and Cauchy-Schwartz inequality, we get almost

surely:

E
[

E ′2[(Y ω
t − Y ω

s )2]|Fs

]

≤ E[(Xt − Xs)
4|Fs], (5.20)

Now, let us denote the L2(Ω) norm of X by ‖X‖2 = E[X2]. We then use almost sure identity

(5.17) and get:

∥

∥

∥

∥

Un
t (x) − σ2(x)Ln

t (x)

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

1

Thn

[nt]−1
∑

i=1

K

(

Xi − x

hn

)

E ′
[

(

Y ω
i+1 − Y ω

i

)2
]

+

−σ2(x)Ln
t (x) − 1

Tnhn

[nt]−1
∑

i=1

K

(

Xi − x

hn

)

F (ti, ti+1)

∥

∥

∥

∥

∥

∥

(5.21)
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When expanding the square in the norm (5.21), we can use the fact that E[X] = E[E[X|Fti ]],

then use (5.19) and (5.20), to get:

∥

∥

∥

∥

Un(x) − σ2(x)Ln(x)

∥

∥

∥

∥

≤

≤

∥

∥

∥

∥

∥

∥

V n(x) − σ2(x)Ln(x) − 1

Tnhn

[nt]−1
∑

i=1

K

(

Xi − x

hn

)

F (ti, ti+1)

∥

∥

∥

∥

∥

∥

≤

≤
∥

∥

∥

∥

V n(x) − σ2(x)Ln
t (x)

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

1

Tnhn

[nt]−1
∑

i=1

K

(

Xi − x

hn

)

F (ti, ti+1)

∥

∥

∥

∥

∥

∥

.

(5.22)

Both terms converge to zero: the first, because of Proposition 5.5; the second given Propo-

sition 5.4 and since F (ti, ti+1) = o
(

1
n

)

.

If µ(x) 6= 0, then (5.19) becomes:

E
[

E ′[(Y ω
t − Y ω

s )2]
]

= E[(Xt − Xs)
2] − E

[

(
∫ t

s

µ(Xu)du

)2
]

, (5.23)

and the second term of the r.h.s vanishes as s → t i.e. n → ∞. ¤

We want now to assess the asymptotic normality of Sn(x). We first state two lemmas.

Lemma 5.7 If nh3
n → 0 when n → ∞, then,

[nt]
∑

i=1

E

[

n

hn

(

K

(

Xi − x

hn

)

[(Xi+1 − Xi)
2 − σ2(x)/n]

)2
∣

∣

∣

∣

∣

Fi−1

]

→ σ4(x)Lt(x) (5.24)

where the above convergence is in probability.

Proof. This is Lemma 2(b) in Florens-Zmirou (1993). ¤

Lemma 5.8 Let g(x) : R → R be a continuously differentiable bounded function, with

bounded first derivative. Let nh3
n → 0 when n → ∞. Consider:

Gt(x) =
1√
nhn

[nt]
∑

i=1

K

(

Xi − x

hn

)

[g(Xi) − g(x)] (5.25)

then, as n → ∞, Gt(x) → 0 in the L1 sense, and thus in probability.
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Proof. We have:

E[|Gt(x)|] ≤ E





1√
nhn

[nt]
∑

i=1

K

(

Xi − x

hn

)

|g(Xi) − g(x)|



 (5.26)

We now divide the sum in terms such that |Xi − x| ≤ n− 1
3 and their complementary. Then:

E[|G(x)|] ≤ E







1√
nhn

sup
|Xi−x|≤n− 1

3

|g(Xi) − g(x)|
∑

|Xi−x|≤n− 1
3

K

(

Xi − x

hn

)

+

+
1√
nhn

∑

|Xi−x|>n− 1
3

K

(

Xi − x

hn

)

|g(Xi) − g(x)|






≤

≤ E





√

nhn sup
|Xi−x|≤n− 1

3

|g(Xi) − g(x)|
[nt]
∑

i=1

1

nhn

K

(

Xi − x

hn

)

+

+
1√
nhn

sup
|Xi−x|>n− 1

3

|g(Xi) − g(x)|
∑

|Xi−x|>n− 1
3

K

(

Xi − x

hn

)







(5.27)

Now, using Taylor’s rule, and given the boundedness of the first derivative of g(·), we get

that sup
|Xi−x|≤n− 1

3
|g(Xi) − g(x)| = o(n− 1

3 ). Then, using Proposition 5.4, we have that

the first term goes as (nh3
n)

1
6 , then it goes to zero as n → ∞. The second term goes to

zero given the boundedness of g, the fact that the argument of the kernel is greater than

1/n
1
3 hn = 1/(nh3

n)
1
3 , and the fact that the kernel goes to zero faster than inverse polynomials

when its argument goes to infinity, as in this case.

¤

We finally state the main result of this Chapter. The idea is still to substitute n(Xi+1−Xi)
2

with σ̂2(ti) in (5.24), with the remainder vanishing in probability.

Theorem 5.9 If nh3
n → 0 then

√

nhn

(

Sn(x)

σ2(x)
− 1

)

−→L 1
√

LT (x)
N (0, 1) , (5.28)

where the above convergence is in law, and N (0, 1) is a standard Normal variable.

Proof. Consider the discrete filtration Fi = Fti , i = 0, . . . , n. Define the following:

Θi+1 =

√

1

nhn

K

(

Xi − x

hn

)

[

σ2(Xi) − σ2(x)
]

(5.29)
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Since σ2(·) is bounded, Θi is bounded, and it is adapted to Fi−1 (it is actually a constant

with respect to Fi−1). We want now to verify the conditions of Theorem 1.51. In the limit

n → ∞, we have the following:

1.

[nt]−1
∑

i=0

E[Θi+1|Fi] =

[nt]−1
∑

i=0

Θi+1 which tends to 0 in probability, given Lemma 5.8.

2. We have to prove that
∑[nt]−1

i=0 E[Θ2
i+1|Fi] → 0. We can use formula (5.17) and use the

same reasoning leading to the proof of Theorem 5.6 getting:

[nt]−1
∑

i=0

E
[

Θ2
i+1|Fi

]

=

[nt]−1
∑

i=0

E

[

1

Tnhn

{

K

(

Xi − x

hn

)

[

nE ′
[

(Y ω
i+1 − Y ω

i )2
]

− F (ti, ti+1) − σ2(x)
]

}2
∣

∣

∣

∣

∣

Fi

]

≤

≤
[nt]−1
∑

i=0

E

[

1

Tnhn

{

K

(

Xi − x

hn

)

[

n(Xi+1 − Xi)
2 − F (ti, ti+1) − σ2(x)

]

}2
∣

∣

∣

∣

∣

Fi

]

(5.30)

From this inequality and Lemma 5.7 we get the result.

3. We have to prove conditional Lindeberg condition. We have:

E
[∣

∣E
[

Θ2
i |Fi−1

]∣

∣

]

=
∑

|Θi|>ε

Θ2
i . (5.31)

Now, the sum (5.31) is bounded by σ4(x)Lt(x); moreover, we can rewrite |Θi| > ε as:

K

(

Xi − x

hn

)

|σ2(Xi) − σ2(x)| > ε
√

nhn (5.32)

The l.h.s of equation (5.32) is bounded, thus as n → ∞ we have ε
√

nhn → ∞ and the

sum (5.31) vanishes in probability.

Thus, we fulfill the assumptions of Theorem 1.51, then if we define Y n
t (x) as:

Y n
t (x) =

[nt]−1
∑

i=0

Θi+1(x) (5.33)

than we have that Y n
t (x) converges in law to the continuous martingale Mt with quadratic

variation [M,M ]t = σ4(x)Lt(x). We then set Mt = B(σ4(x)Lt(x)), where B(t) is a standard

Brownian motion. Now consider:

Zn
t (x) =

[nt]−1
∑

i=0

(

Wti+1
− Wti

)

(5.34)
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where Wt is the standard Brownian motion in (2.1). It is clear that Zn
t (x) converges in law

to the standard Brownian motion Wt. Moreover we have:

[nt]−1
∑

i=0

E
[

Θi+1

(

Wti+1
− Wti

)

|Fi

]

= 0 (5.35)

By equation (5.35), we get that Mt and Wt are orthogonal. We can also write B(t) = MT (t),

where T (t) = infs

(

s
σ4(x)Ls(x)

)

. Then, by Knight’s Theorem 1.41 we get that B(t) and

Wt are independent Brownian motions. Then B(t) and Lt(x) are independent, since the

filtration generated by Xt is included in the filtration generated by Wt. We then have

that Y n
t (x) →

√

Lt(x)σ2(x)N (0, 1), where N (0, 1) is a standard normal random variable

independent of L(x). Since Ln
t (x) converges in probability to Lt(x), we have the desired

result. ¤

The above result can be easily generalized to a multivariate framework, and, more impor-

tantly, if the observations Xi are not equally spaced, but if they are such that, as n → ∞,

then we have sup|ti − ti−1| → 0.

5.3 Small sample properties

In the previous Section we assessed the asymptotic properties of the estimator (5.15). We now

turn to the analysis of small sample properties, analyzing them via Monte Carlo simulations.

The selected model for simulations is the very popular Vasicek (1977) model:

drt = k(α − r)dt + σdWt, (5.36)

which displays mean reversion and constant variance. As it is well known, the unconditional

distribution of rt implied in equation (5.36) is Normal with mean α and variance σ2/2k.

While it is universally known that the Vasicek model does not provide a satisfactory de-

scription of real world interest rates, it is still useful in our framework as a first step. Our

purpose is to estimate the variance, and starting with the simpler model in this sense, that is

constant variance, we should be able to disentangle small sample peculiarities coming from

the estimator from those which are a statistical product of the model.

We simulate the model with parameters resembling actual interest rates distribution. For

example, the annualized variance of 3-months T-bill is around 3%, so we keep this value

throughout all our simulations. From previous literature, it is well known that two param-

eters play a crucial role: the choice of the bandwidth parameter hs in (5.10), and the mean

reversion parameter k.
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The choice of the bandwidth parameter has been long debated in the literature. While

consistency of nonparametric estimators is independent of hs, convergence rates and small

sample properties depend crucially on it. Scott (1992) suggests the choice of hs = 1.06, as

it is optimal with respect to the mean integrated standard error criterion. Anyway, typical

choices in the literature were larger than this value. For example, Stanton (1997) uses hs = 4,

while Ait-Sahalia (1996a) uses hs = 5.

The role of mean-reversion is even more debated. The strength of mean reversion is measured

by the parameter k. Estimates of k in the literature range around 0.1, which is a very low

value. Thus many studies argue that in the available interest rate data there is no mean

reversion at all, if not for extreme values (Ait-Sahalia, 1996a; Bandi, 2002). Chapman and

Pearson (2000) show, via Monte Carlo evidence, that nonparametric methods could be biased

toward finding non-linearities in the drift even if the drift is linear. Jones (2003) concludes

in a similar way, and he argues that mean reversion in available interest rate data is so weak,

if present, that its detection is very difficult with any statistical method.

We then select a grid of (hs, k) ranging across the values of interest. We will select hs =

1.06, 3, 5 and k = 0.05, 0.5, 5.0. In all the replications of the model (5.36), we draw the

starting value from the marginal distribution, and we use sample of n = 8, 000 observations,

for comparison with the data set in the next Section. For every value of hs and k, we use

5, 000 replications.

Figure 5.1 shows the average measurements on Monte Carlo replications, together with

estimated confidence intervals, obtained with the estimator (5.15). Simulations show that

the Fourier estimator is unbiased in small samples for the selected parameters. As expected,

confidence intervals are broader for smaller mean reversion and smaller bandwidth parameter,

and broader for large and small interest rates, which are less frequent.

We now turn to the comparison with the classical estimator (5.4). We choose to compare

with this instead of the Ait-Sahalia estimator or the estimator (5.5) since Renò et al. (2004)

show that the first one performs very badly for low levels of mean reversion, while the second

one produces results which are almost identical to those obtained with the Florens-Zmirou

estimator.

When comparing the estimators in small sample, we have to check not only unbiasedness and

precision of the estimator, but the reliability of the asymptotic confidence intervals, since

those are the ones actually used to draw inference. Thus it is also important to check the

normality of the distribution of the estimators in finite samples. We will then compute the
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standard deviations, skewness and kurtosis1 on the estimates on replications.

In the case of the Vasicek model, asymptotic standard errors for the estimator (5.15), which

are the same for the classical estimator, are easily computed and, denoting the asymptotic

standard deviation by s(r), it is given by:

s2(r) =

√
2πσ4

hsn
4
5

√
2ke−k

(r−α)2

σ2

(5.39)

where n = 8, 000 is the length of every simulation. We will then plot standardized estimates,

skewness and kurtosis. Under normality of the distributions we would get standardized

variance equal to 1, skewness equal to 0 and kurtosis equal to 3. Figure 5.2 shows the

results for the standardized variance. In small samples, we observe deviations from the

asymptotic values. In the case of high mean reversion (k = 5.0) the two estimators performs

nearly in the same way, overestimating the asymptotic variance. The same conclusion can

be drawn in the case of average mean reversion k = 0.5, but in this case the two estimator

underestimate the asymptotic variance. The most interesting case, which is the closer to

actual data, is the case of small mean reversion (k = 0.05). The estimator of Florens-

Zmirou (1993) considerably underestimates the asymptotic variance, thus leading to wrongly

narrower confidence intervals. The Fourier estimator performs in a completely different way:

it overestimates the variance for large and small values of r, while performs like the classical

estimator in the center of the distribution. These results seem to suggest a choice of hs in

the range 1 − 3 when implementing the Fourier estimator.

The reasons for this underestimation can be guessed looking at the small sample skewness

and kurtosis, plotted in Figures 5.3 and 5.4 respectively. While the skewness for both the

estimators is close to the normal value of zero for high and average mean reversion, in the

case of small mean reversion the skewness of the classical estimator is always positive, while

that of the Fourier estimator oscillates around zero. On the other hand, the kurtosis of the

two estimators is comparable, with the Fourier estimator being more leptokurtic in the case

of high and average mean reversion in the tails, but less leptokurtic in the center in the case

1Given N observations x1, . . . xn, whose sample mean is µ, define the j-th moment (j > 2) as:

µj =
1

N

N
∑

i=1

(xi − µ)j (5.37)

Then we define the skewness ν and the kurtosis κ as:

ν =
µ3

(µ2)
3

2

, κ =
µ4

(µ2)2
. (5.38)

Under the assumption of normality, standard errors for skewness and kurtosis are
√

6/N and
√

24/N re-

spectively.
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of small mean reversion.

5.4 Data Analysis

In this Section, we turn to the analysis of interest rate data. Our aim is to estimate the

diffusion coefficient of the univariate model:

drt = µ(rt)dt + σ(rt)dWt (5.40)

when discretely observing the short rate rt in a time interval [0, T ]. Since the spot rate

is inherently unobservable, we use proxies for it, typically the three-months rate as it is

common in the literature, see Duffee (1996); Chapman et al. (1999). Alternatively, one can

regard the model (5.40) as a model for the three-months rate itself.

We first test the methodology on the same data set in Jiang (1998), that is the daily time

series of the annualized yields of the three-months U.S. Treasury Bill, from January 1962

to January 1996, for a total of 8, 503 observations. The minimum and the maximum of the

yield in this time span are 2.61 % and 17.14 %, thus the estimates of the diffusion coefficient

outside of this interval are an artifact of the nonparametric estimation procedure. Figure

5.5 shows the estimation results. The estimate obtained with the Fourier estimator (5.15),

using as bandwidth parameter (5.10) with hs = 4, is the solid line. Confidence intervals are

computed according to (5.28), using estimated local times via equation (5.12). The Fourier

estimator is implemented with the maximal N = n/2 and with M = n/4. The Fourier

estimator confirms the departure from standard parametric models, such as the Vasicek

variance σ2(r) = k, or the CIR variance σ2(r) = kr. In order to better clarify this point, we

consider the parametric model of Chan et al. (1992) which nests many popular one-factor

models including CIR and Vasicek:

drt = µ(α − rt)dt + σrγ
t dWt. (5.41)

This model has been estimated in Jiang (1998) on the same data set using indirect infer-

ence. Parameter estimates are α = 0.079(0.044), µ = 0.093(0.100), γ = 1.474(0.008), σ =

0.794(0.019), where standard errors are in brackets. Figure 5.5 shows the function σrγ for

comparison with the nonparametric estimate. While the shape of the two estimates is in-

creasing in both case, and the two estimates are compatible for r around 8%, we get a

significantly higher estimate at low interest rates, and a significantly lower estimate at high

interest rates when using the nonparametric method. It is clear that we are exploiting the

flexibility provided by the nonparametric methodology.
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We then compare the estimates with those obtained with other nonparametric estimators.

To this purpose, we use the same data set used in Stanton (1997), that is the daily time

series of the annualized yields of the three-months U.S. Treasury Bill, from January 1965

to July 1995, for a total of n = 7, 975 observations (minimum 2.61 %, maximum 17.15 %).

Thus, we can directly compare our results with those obtained in Stanton (1997). From

this perspective, we use the same value hs = 4 used by Stanton. Figure 5.6 shows that the

two estimates are quite different. With respect to the estimate obtained in Stanton (1997),

the Fourier estimate coincides only in the central part of the distribution, i.e. r ' 11%,

while it is higher for smaller values of r and considerably smaller for larger values of r.

For larger values of r confidence intervals are wider, since the local time is small for the

paucity of observations in that zone. For further comparison purposes, we also estimate the

variance with the nonparametric estimator proposed in Bandi and Phillips (2003), with the

same bandwidth parameter hs = 4.0 and εs = 1.5% in (5.5). The result obtained with the

estimator proposed in Bandi and Phillips (2003) is almost identical to that obtained with

the Stanton estimator, confirming that the empirical performance of the two estimators is

nearly the same. We do not report the estimate obtained with the Ait-Sahalia method, since

it is very different from those obtained here, and it is very unstable at the level of mean

reversion displayed by three-months interest rates, see Renò et al. (2004).

Finally, we estimate the diffusion coefficient on the full data set at our disposal, that is the

daily yields on the three-months Treasury Bill from from 4 February 1960 to 11 December

2003, for a total of 10, 944 observation (minimum 0.79% on 19 June 2003, maximum 17.14%

on 11 December 1980) and the daily yields on the ten-years Treasury Note from 2 February

1962 to 11 December 2003, for a total of 10, 447 observations (minimum 3.10% on 13 June

2003, maximum 15.51% on 4 September 1981). Figure 5.7 shows the results which are

in line with the previous findings. We also find that the volatility of the longer maturity

contract is less than the shorter one, as it is well known. We leave the reader the judgment

on the opportunity for using such a long data set when estimating the model, given the

heterogeneity of the economic conditions which drove the interest rate evolution: it is quite

clear that the answer to this question depends on the specific application.

5.5 Conclusions

In this Chapter a new nonparametric estimator for the diffusion coefficient based on discrete

observations is introduced. This estimator is based on a result on volatility estimation derived

in Malliavin and Mancino (2002). The estimator is proved to be asymptotically consistent

and normally distributed, and asymptotic confidence intervals are provided. The estimator
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Figure 5.1: Variance σ̂2(r) obtained with the Fourier estimator (5.15) on

5, 000 replications of 8, 000 observations of the Vasicek model (5.36), with dif-

ferent values of h and k, and α = 10.5%,
√

σ2/2k = 3%. Solid line: the

generated variance σ2. Dashed line: average estimates. Dotted lines: 5% and

95% confidence intervals.

is then compared to the estimator proposed in Florens-Zmirou (1993) and discussed in Jiang

and Knight (1997) and Stanton (1997), via Monte Carlo simulations of the Vasicek model.

Our results are quite mixed, indicating the difficulty of assessing small sample properties

of nonparametric estimators. Anyway, our Monte Carlo evidence shows that the Fourier

estimator is more symmetric than the classical one, and this could lead to better inference.

This nonparametric estimators, as well others, can be used in a variety of applications. We

used it to compute the diffusion coefficient for a daily time series of short interest rates.

Our results are in line with those in the literature, but with some peculiarity. We show

that our nonparametric estimates is quite different from standard parametric specifications.

Moreover, the estimate with the Fourier estimator provides larger variances for interest rates

smaller than 9% and smaller variances for interest rates larger than 12% than the variances

obtained on the same data set by Stanton (1997). We conclude that the estimator proposed

here can be a very useful tool in the problem of correctly specifying the diffusion term of

interest rate stochastic models.

On the other hand, a serious limitation of this approach is that the assumption of a univariate

process (5.1) for interest rate modelling, and in general for asset price modelling, is too

restrictive. It is well known that stochastic volatility is a salient feature of asset price

diffusions. It would be then desiderable to extend the results presented in this Chapter
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Figure 5.2: Standardized standard deviation, with the asymptotic standard

deviation (5.39), of the estimates σ̂2(r) obtained with the Fourier estimator

(5.15) (dashed line) and the classical estimator (5.4) (solid line) on 5, 000 repli-

cations of 8, 000 observations of the Vasicek model (5.36), with different values

of h and k, and α = 10.5%,
√

σ2/2k = 3%. Solid line: the classical estimator.

We also plot the asymptotic value of 1.

to multivariate diffusions in which volatility is a latent factor. This topic is now under

investigation.
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Figure 5.3: Skewness of the estimates σ̂2(r) obtained with the Fourier estima-

tor (5.15) (dashed line) and the classical estimator (5.4) (solid line) on 5, 000

replications of 8, 000 observations of the Vasicek model (5.36), with different

values of h and k, and α = 10.5%,
√

σ2/2k = 3%. Solid line: the classical

estimator. We also plot the asymptotic value of 0.

Figure 5.4: Kurtosis of the estimates σ̂2(r) obtained with the Fourier estima-

tor (5.15) (dashed line) and the classical estimator (5.4) (solid line) on 5, 000

replications of 8, 000 observations of the Vasicek model (5.36), with different

values of h and k, and α = 10.5%,
√

σ2/2k = 3%. Solid line: the classical

estimator. We also plot the asymptotic value of 3.
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Figure 5.5: Estimate of the diffusion coefficient σ2(r) on Jiang (1998) data set.

Solid line: Fourier estimate. Dashed lines: 5% and 95% confidence intervals.

Dotted line: estimate obtained with the parametric model (5.41). In the inset,

the time series of the yields on three-months T-bill under study, from January

1962 to January 1996.
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Figure 5.6: Estimate of the diffusion coefficient σ2(r) on Stanton data set.

Solid line: Fourier estimate. Dashed lines: 5% and 95% confidence intervals.

Dashed-dotted line: Stanton estimate. Dotted line: estimate obtained with the

estimator (5.5) of Bandi and Phillips. In the inset, the time series of the yields

on three-months T-bill under study, from January 1965 to July 1995.
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Figure 5.7: Estimate of the diffusion coefficient σ2(r) on the full 1960-2003

data set. Solid line: diffusion coefficient of the yield of the 3-months Treasury

Bill. Dashed-dotted line: diffusion coefficient of the yield of the 10-year Trea-

sury Note (from 1962). Dashed lines: 5% and 95% confidence intervals. In the

inset, the time series under study.
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Renò, R. (2004). Nonparametric estimation of the diffusion coefficient via Fourier analysis,

with an application to short interest rates. Working Paper, Università di Siena.
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