
Scuola Normale Superiore di Pisa

Classe di Scienze

Université de Nice - Sophia Antipolis

Sensitivity Evaluation
in

Aerodynamic Optimal Design

Ph.D. Thesis

Candidate

Massimiliano Martinelli

Supervisors

François Beux

Alain Dervieux

Pisa, Italy - 2007





Contents

1 Flow modelling and CFD solver 7

1.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Numerical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Finite Volume method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Numerical Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.4 High-order approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.5 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Uncertainty Analysis and Robust Design 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Uncertainty propagation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Interval arithmetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Method of Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.4 Inexpensive Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Robust design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 First- and Second-Order Derivatives with Automatic Differentiation 37

3.1 Introduction to sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Principles of Automatic Differentiation . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Matrix-free methods for solving linear systems in the AD context . . . . . . . . . 45

3.4 Automatic Differentiation of constrained functionals . . . . . . . . . . . . . . . . 49

3.5 First-order derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Tangent mode differentiation . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.2 Reverse mode differentiation . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Second-order derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 Tangent-on-Tangent approach . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.2 Tangent-on-Reverse approach . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6.3 Comparison between ToT and ToR . . . . . . . . . . . . . . . . . . . . . . 70

3.7 Stack management issue for ToR approach . . . . . . . . . . . . . . . . . . . . . . 71

i



CONTENTS

3.8 ToR algorithm using the Reverse-on-Tangent differentiation . . . . . . . . . . . . 75

3.9 . . . putting ToT and ToR into the practice . . . . . . . . . . . . . . . . . . . . . . 78

3.10 TAPENADE commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 Multilevel optimization in aerodynamic shape design 91

4.1 Introduction to multilevel approaches in aerodynamic shape design . . . . . . . . 91

4.2 Optimum shape design problem in aerodynamics . . . . . . . . . . . . . . . . . . 93

4.2.1 The Optimal shape problem in a fully discrete context . . . . . . . . . . . 93

4.2.2 Computation of the sensitivity derivatives . . . . . . . . . . . . . . . . . . 93

4.2.3 Parametrisations for aerodynamic shape representation . . . . . . . . . . 94

4.3 Multilevel gradient-based approaches for shape design . . . . . . . . . . . . . . . 95

4.3.1 Change of Hilbert control space . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.2 A hierarchical parametrization based on shape grid-points . . . . . . . . . 97

4.3.3 Generalisation to other kinds of parametrization . . . . . . . . . . . . . . 97

4.4 Examples of alternative multi-level approaches . . . . . . . . . . . . . . . . . . . 99

4.4.1 Formulation based on Bézier control points . . . . . . . . . . . . . . . . . 99

4.4.2 Formulation based on shape functions basis . . . . . . . . . . . . . . . . . 101

4.5 Reinterpretation of the new multilevel approaches . . . . . . . . . . . . . . . . . . 102

4.5.1 Parametrization based on Bézier control points . . . . . . . . . . . . . . . 102

4.5.2 Parametrization based on shape functions . . . . . . . . . . . . . . . . . . 106

4.6 Computation of an approximate gradient . . . . . . . . . . . . . . . . . . . . . . 106

4.7 Reinterpretation of the approach proposed in [Désidéri, 2003] . . . . . . . . . . . 108

4.8 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.8.1 Parametrization and shape representations . . . . . . . . . . . . . . . . . 110

4.8.2 Numerical experiments on 2D inverse problems . . . . . . . . . . . . . . . 111

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Improvement of functional accuracy through adjoint-error correction 121

5.1 Adjoint error correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Gradient of the corrected functional . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 Algorithm for computing the gradient of the adjoint-corrected functional . . . . . 128

5.4 Gradient of the adjoint-correction term . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6 Numerical experiments using Automatic Differentiation 141

6.1 Study of efficiency of matrix-free methods to solve linear systems in the AD context143

6.2 Gradient and Hessian evaluation using AD . . . . . . . . . . . . . . . . . . . . . . 150

6.2.1 Testcase 1: wing shape geometry . . . . . . . . . . . . . . . . . . . . . . . 150

6.2.2 Testcase 2: SSBJ geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A Basic definitions in probability 169

ii



CONTENTS

B High-order approximations 171

C Bash Scripts and Makefile to perform differentiation using TAPENADE 175
C.1 First-order differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
C.2 Second-order differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
C.3 Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

iii





Context of the PhD thesis

The present PhD thesis has been done in the context of a cotutelle agreement between the
Scuola Normale Superiore di Pisa and the university of Nice - Sophia Antipolis1 for the award
of a single doctoral degree in Mathematics jointly-badged by the two institutions (a degree of
“docteur en Sciences/spécialité: Mathématiques” for the University of Nice - Sophia Antipolis
and a “diploma di perfezionamento in Matematica per la Tecnologia e l’Industria” for the Scuola
Normale Superiore di Pisa).

1In the framework of the french-italian University, and also, for the italian party, under the terms of the law
26/5/2000, n. 161.

v





Acknowledgements

I am very grateful to F. Beux for his help and suggestions in the supervision of my research, and
in particular for his contribution to Chapter 4 of the thesis. I am also grateful to A. Dervieux
for the opportunity he made for me to work at the research unit INRIA Sophia-Antipolis, and
for his supervision of my thesis. Thanks also to L. Hascoët and V. Pascual for the development
of the Automatic Differentiation tool TAPENADE and for their quick responses to my requests
for explanations/modifications of TAPENADE. Thanks to R. Duvigneau for the explanations
about the flow solver and for his useful suggestions.

I am very grateful to Professor M. Giles (Oxford University) and Professor M. Masmoudi
(Université Paul Sabatier, Toulouse), for their work in reading and correcting this thesis.

I would also thanks Professor J. Blum (Université de Nice - Sophia Antipolis) and Professor
S. Marmi (Scuola Normale Superiore di Pisa) for their participation to the examining committee.

Finally, I am extremely grateful to my family and friends for their assistance, support and
encouragement throughout my PhD.

This work was partially supported by the project NODESIM-CFD “Non-Deterministic Simu-
lation for CFD-based Design Methodologies” funded by the European Community represented
by the CEC, Research Directorate-General, in the 6th Framework Programme, under Contract
No. AST5-CT-2006-030959.

vii



Sommario

La possibilità di poter calcolare le derivate prime e seconde di funzionali soggetti a vincoli di
uguaglianza dati da equazioni di stato (ed in particolare da sistemi di equazioni alle derivate
parziali non lineari) permette l’utilizzo di tecniche efficienti per la soluzione di vari problemi di
tipo industriale. Tra le applicazioni possibili che richiedono la conoscenza di derivate ricordiamo:
l’ottimizzazione di forme in aerodinamica attraverso algoritmi di discesa basati sul gradiente,
lo studio della propagazione di incertezze attraverso tecniche perturbative, la definizione di
funzionali per l’ottimizzazione robusta e l’aumento dell’accuratezza di un funzionale attraverso
l’utilizzo dello stato aggiunto.

In questo lavoro verrano sviluppate ed analizzate diverse strategie per la valutazione di
derivate prime e seconde di funzionali vincolati, utilizzando tecniche basate sulla Differenziazione
Automatica. Inoltre, si descriverà un algoritmo di discesa per l’ottimizzazione di forme in aero-
dinamica basato su tecniche di gradiente multilivello ed applicabile a diversi tipi di parametriz-
zazione.

Résumé

La possibilité de calculer les dérivées premières et secondes de fonctionnelles soumises à des con-
traintes d’égalité données par des équations d’état (et notamment par des systèmes d’équations
aux dérivées partielles non linéaires) permet l’emploi de techniques efficaces pour la résolution
de plusieurs problèmes de nature industrielle. Parmi les applications possibles qui demandent
la connaissance des dérivées, on peut rappeler: l’optimisation de formes en aérodynamique par
des algorithmes de descente fondés sur le gradient, l’étude de la propagation des incertitudes
par des techniques de perturbation, la définition de fonctionnelles pour l’optimisation robuste
et l’augmentation de la précision d’une fonctionnelle par l’utilisation de l’état adjoint.

Dans ce travail, diverses stratégies pour l’évaluation de dérivées premières et secondes de
fonctionnelles soumises à des contraintes seront développées et analysées par l’emploi de tech-
niques basées sur la Différentiation Automatique. De plus, on décrira un algorithme de descente
pour l’optimisation de formes en aérodynamique fondé sur des techniques de gradient multi-
niveau et applicable à différents types de paramétrisations.



Introduction

Numerical optimization procedures are based on mathematical techniques for finding the ex-
tremum of an objective function subject to various contraints. When the costs associated with
evaluating the objective function and constraints are high (as in the case of nonlinear aero-
dynamic simulations), zero-th order methods (simplex methods, genetic algorithms, . . . ) are
usually prohibitively expensive and, thus, gradient-based design optimization procedure are fre-
quently adopted. These procedure requires the gradient of the objective function and constraints
(dependent variables) with respect to the design variables (independent variables). These gra-
dients, commonly referred to as sensitivity derivatives, provide the mechanism for changing the
design variables to improve the objective function without any violation of the given constraints.

Today, analysis and design methods in the aeronautical industry, particularly the aerody-
namic simulation tools based on Computational Fluid Dynamics (CFD), are based on simulations
with a unique set of input data and model variables. However, realistic operating conditions
are a superposition of numerous uncertainties under which the industrial products operate. The
presence of these uncertainties is the major source of risk in the design decision process, and
consequently, increases the level of risk of failure of a given component. Therefore, the actual
trend in the CFD community is to introduce these uncertainties within the simulation process by
applying non-deterministic methodologies in order to obtain, instead of a single predicted value,
an associated domain of variation of the predicted output quantities. One of these methodologies
(Method of Moments) uses a perturbative approach in order to quantify the output uncertainties
and therefore requires the knowledge of first- and second-order derivatives of the constrained
functional of interest.

The sensitivity derivatives can be obtained by the differentiation of the functional of interest
subject to satisfying an equality constraint defined by the flow equations. This task, if performed
by hand, can be highly tedious and error-prone since the governing equations are also involved
through the flow variables. These difficulties are magnified when high-fidelity models are used
as it typically happens for aerodynamic optimal design of practical interest. To avoid this exact
differentiation, the sensitivity derivatives can be approximated by finite differencing in which the
flow solver is used only as a black box. Thus, the resulting approach is very easy to implement
and can be applied in a rather general context. Nevertheless, this approach requires a careful
parameter monitoring in order to obtain an accurate gradient approximation, and on the other
hand, gives dramatic low computational performances as soon as not a low number of control
variables is used. Alternatively, in the direct differentiation or flow sensitivity approach, the

1



Introduction

Gâteaux derivatives with respect to each component direction are exactly computed. But, the
computational cost problem for a large number of control variables is still present, since, for one
gradient computation, n (n being the number of design parameters) linearised systems of large
dimension should be solved. Finally, an efficient computation of the exact discrete gradient can
be achieved through an adjoint formulation (see, e.g. [Giles and Pierce, 2000]). Indeed, the gra-
dient evaluation requires to solve only one extra linear system (the adjoint system), and thus, is
independently of the number of design variables. Consequently, at present, adjoint-based meth-
ods seem to be the more suitable way to solve complex aerodynamic shape optimization problem.
An alternative or additional approach, often used in presence of complex physical models and
numerical discretisation (Navier-Stokes equations with a turbulent model, high-order schemes,
non-structured meshes, etc.), is to freeze or approximate some steps in the differentiation of
the flow solver (see e.g. [Nemec and Zingg, 2002]). We refer to [Dwight and Brézillon, 2006;
Carpentieri et al., 2007] for a study on the effect on the gradient accuracy of the various ap-
proximations of the discrete adjoint computation. A more drastic approach has been introduced
in [Mohammadi, 1997], in which the adjoint computation is dropped out by, on the one hand,
adding some intermediate geometrical quantities in the differentiation, and on the other hand,
by neglecting the flow derivatives. This incomplete gradient formulation is based on the fact
that when the objective functional is defined as a boundary integral of quantities evaluated on
the shape, sensibilities with respect to the geometrical quantities give the main contribution
to the gradient value. In [de’ Michieli Vitturi and Beux, 2006] this approach has been coupled
with a multi-level method allowing to consider a completed gradient computation in which the
flow derivatives are also (at least partially) taken into account. Moreover, efficient approaches
based on finite-difference sensitivities have been also proposed; indeed, in [Catalano et al., 2005]
a progressive optimization coupled with a multigrid-aided finite-difference is considered while
an one-shot method coupled with a multi-level strategy is used in [Held et al., 2002]. Finally,
for more details and references on sensitivity analysis for aerodynamic shape optimization, we
refer, for instance, to [Newman III et al., 1999] and [Mohammadi and Pironneau, 2001].

Nevertheless, to avoid the very hard task of a differentiation implementation by hand-coding,
Automatic Differentiation (AD) tools have been also developed (see e.g. [Giering et al., 2005;
Hascoët et al., 2005]) and this seems to be the most promising approach to compute exact sen-
sitivities.

In order to improve the optimization efficiency, gradient-based methods can be used with
multilevel approach as described in [Beux and Dervieux, 1994]. In this preconditioned gradient
method, the minimisation is done alternatively on different subsets of control parameters ac-
cording to multigrid-like cycles. More particularly, using shape grid-point coordinates as design
variables, a hierarchical parametrization was defined considering different subsets of parameters
extracted from the complete parameterisation, which can be prolongated to the higher level by
linear mapping. This approach acts as a smoother and, on another hand, makes the convergence
rate of the gradient-based method low dependent of the number of control parameters. Another
type of multilevel approach based on a family of embedded parametrizations has been also pro-
posed in [Désidéri, 2003]. However, this formulation is based on a polynomial representation
of the shape through the use of Bézier curves, and is not specifically focused on gradient-based

2



Introduction

methods.
In the present study we propose a new multilevel strategy which generalizes the approach

proposed in [Beux and Dervieux, 1994] to other kinds of parametrizations. This extension, still
defined in the context of gradient-based methods, requires the elaboration of an adequate family
of sub-parametrizations, possibly embedded, associated to affine prolongation operators. Be-
tween the different parametrizations defined, one is grounded on some basic concepts already
proposed in [Désidéri, 2003], as, for instance, the degree elevation property of the Bézier curves.
Consequently, the associated approach can be also interpreted as a multilevel strategy in which
the control parameters are Bézier control points instead of shape grid-points building up, in this
way, an explicit link between two kinds of multi-levelling.

Moreover, the developments made during the last years of the three aspects mentioned above,
i.e. computational power, adjoint formulation and Automatic Differentiation tools, raised a lot
of interest and efforts by research community (like the European project NODESIM-CFD2) to
build a new (and more robust) approach to optimization that takes into account uncertainty
of the input parameters (e.g. uncertainties on geometry or on the model parameters): we are
moving from deterministic design toward robust design. Some of these new methodologies (i.e.
perturbation and adjoint-based methods, [Putko et al., 2001; Ghate and Giles, 2006]) are based
on Taylor expansion of the functional of interest around the mean (deterministic) value of the
uncertain variables and require the knowledge of second-order derivatives of the constrained
functional: in fact linear perturbation analysis predicts zero change in the expected value of
the mean if the random input perturbations are normalized to have zero mean. Although the
theory about uncertainty propagation is well-established (see for example [Walters and Huyse,
2002]), the problem regarding the evaluation of second-order derivatives (Hessian and related
quantities) of a functional subject to an equality constraint (typically a set of nonlinear PDE’s)
is still open.

There already exists several tools to evaluate high-order derivatives, all based on a Tangent
Linearization. In other words, these are higher-order derivatives in a particular direction corre-
sponding to a particular combination of changes in the input variables. On the other hand, the
Reverse mode of AD [Griewank, 2000] is a very efficient approach to computing gradients of a
functional with respect to all of the input variables, but the tools that perform Reverse Differen-
tiation (e.g. TAPENADE3, OpenAD4, TAF5, ADOL-C6) do so only for first-order derivatives.

Thus, we are interested in the study and development of methodologies and algorithms
to compute second-order derivatives of constrained functionals, using Automatic Differentiation
and adjoint formulation, and then, we plan to define the best strategies for building these deriva-
tives accordingly with the cardinality of independent variables and system size.

Adjoint methods have also been used for error analysis and correction [Pierce and Giles, 2000,
2004] and grid adaptation [Venditti and Darmofal, 2002]. The key idea of Pierce and Giles is to

2http://www.nodesim.eu
3http://www-sop.inria.fr/tropics/
4http://www-unix.mcs.anl.gov/~utke/OpenAD/
5http://www.fastopt.de/
6http://www.math.tu-dresden.de/~adol-c/

3

http://www.nodesim.eu
http://www-sop.inria.fr/tropics/
http://www-unix.mcs.anl.gov/~utke/OpenAD/
http://www.fastopt.de/
http://www.math.tu-dresden.de/~adol-c/


Introduction

use a quantity that depends on the numerical approximation of the adjoint solution to correct
the original (approximated) functional. Therefore, if we want to build a gradient-based algo-
rithm to minimize this corrected functional, we need to evaluate terms that involve derivatives
of the adjoint state and, due to the dependancy of the adjoint state on first-order derivatives, the
gradient of the corrected functional will involve second-order derivatives. Therefore, we want
develop an algorithm to evaluate the derivative of the adjoint-correction term using AD tools.

On order to afford the previous arguments, this work has the following structure:

• in Chapter 1 we describe the mathematical flow model and the numerical finite-volume
schemes implemented by our CFD codes (2D and 3D) in order to solve the steady Euler
equations. Note that, even if among the different high-fidelity models it not appears as
the more complete one, the system of Euler equations is already largely enough complex
to illustrate our purpose and moreover, it still exists problems of practical interest in
which turbulent and viscous phenomena can be neglected (as for instance, for studies on
supersonic jets);

• in Chapter 2 we describe some techniques developed for uncertainty analysis and propa-
gation, and we give some examples of techniques used for robust design in which first- and
second-order derviatives are needed;

• in Chapter 3 we start giving an overview of Automatic Differentiation and then we develop
first- and second-order differentiation of a functional subject to an equality constraint
that can be solved using fixed-point methods (like the steady Euler equations). Then we
recall an existing algorithm for the Hessian evaluation [Sherman et al., 1996] (Tangent-on-
Tangent, or forward-on-forward in [Ghate and Giles, 2007]) and we develop a new approach
based on Tangent-on-Reverse differentiation, then the performance of both method (that
are theoretically equivalents) will be compared. Moreover, we discuss some new AD issues
regarding the stack management for Tangent-on-Reverse mode and finally we describe
how to build a framework that permits the final users to organize the algorithms in a
library and reuse them for a broad range of different problems, resulting in a big saving of
development time;

• in Chapter 4 we present a new gradient-like approach for aerodynamic shape optimization
based on multilevel concepts for different kinds of parametrization (Bézier curves and
shape function basis) and we give some numerical experiments;

• in Chapter 5 we develop a new algorithm to compute the gradient of an adjoint-corrected
functional [Pierce and Giles, 2004, 2000]. The algorithm is based on Automatic Differen-
tiation techniques and introduce a new differentiation mode for second-order derivatives
(Reverse-on-Tangent);

• in Chapter 6 we present some numerical experiments regarding the application of the
algorithms developed in order to perform the gradient and Hessian evaluation of the drag
coefficient with respect to Mach number and angle of attack. For our tests we consider two
different 3D geometries and different orders of spatial accuracy of the solution. Moreover,

4



Introduction

we present some numerical experiments regarding the behaviour of the iterative linear
solvers built using Automatic Differentiation and some strategies for preconditioning.

Publications

• M. Martinelli, R. Duvigneau, “Comparison of second-order derivatives and metamodel-
based Monte-Carlo approaches to estimate statistics for robust design of a transonic wing”,
in preparation.

• M. Martinelli, F. Beux, “Multi-level gradient-based methods and parametrisation in aero-
dynamic shape design”, Revue Européenne de Mécanique Numérique - European Journal
of Computational Mechanics, vol.17/1-2, pp. 173-201, Hermès Science - Lavoisier Pub.,
2008.

• M. Martinelli, F. Beux, “Multilevel gradient-based methods in aerodynamic shape design”
ESAIM (European Series in Applied and Industrial Mathematics): Proceedings, 22:175-180
(2007), EDP Sciences.

Proceedings of conference

• M. Martinelli, A. Dervieux, L. Hascoët, “Strategies for computing second-order derivatives
in CFD design problems”, WEHSFF2007 conference, Moscow.

• M. Martinelli, F. Beux, “Multilevel gradient method with Bézier parametrisation for aero-
dynamic shape optimisation”, Applied and Industrial mathematics in Italy II, Series on
Advances in Mathematics for Applied Sciences - Vol. 75, pp. 432-443, V. Cutello et al.
Eds, World Scientific Publishing, 2007.

• M. Martinelli, F. Beux, “Optimum shape design through multilevel gradient-based method
using Bézier parametrisation”, The Fourth International Conference on Computational
Fluid Dynamics, 10-14 July 2006, Ghent, Belgium. in Computational Fluid Dynamics
2006, Springer, Engineering series, Deconinck and Dick (Eds).

European project

• Partecipation to the project NODESIM-CFD “Non-Deterministic Simulation for CFD-
based Design Methodologies” funded by the European Community represented by the
CEC, Research Directorate-General, in the 6th Framework Programme, under Contract
No. AST5-CT-2006-030959.

5



Introduction

Talks

• 2nd NODESIM meeting, INRIA, Sophia-Antipolis (France), 26-27 November 2007: talk
on “Second-order perturbation techniques in non-deterministic CFD simulations with Au-
tomatic Differentiation”.

• 8th European AD Workshop, INRIA-Sophia Antipolis, Sophia Antipolis (France), 15-16
November 2007: talk on “Second derivatives via Tangent-on-Tangent and Tangent-on-
Reverse”.

• 7th European AD Workshop, University of Hertfordshire, Hatfield (UK), 21-22 May 2007:
talk on “Hessian computation of constrained functionals using Automatic Differentiation”.

• 1st NODESIM meeting, Dassault Aviation, Paris (France), 10-11 May 2007: talk on “Per-
turbation techniques in non-deterministic simulations with Adjoint methods and Automatic
Differentiation”.

• 8th Congress of SIMAI, Baia Samuele (Italy), 22-26 May 2006: talk on “Multilevel gra-
dient method with Bézier parametrisation for aerodynamic shape optimisation”. during a
minisymposium in Optimization.

6



Chapter 1

Flow modelling and CFD solver

The first step in order to numerically solve an aerodynamic optimal design problem is the def-
inition of the governing equations and its corresponding discretization. Thus, in this chapter
we present the mathematical basis for the model used in our multilevel optimization proce-
dure (Chapter 4) and for the validation of the algorithms developed to evaluate second-order
derivatives (Chapters 3 and 6).

The model describes the steady flow of a compressible inviscid fluid (Euler equations) on
2D or 3D domains. The numerical approximation is a vertex-centered finite-volume method
on a dual mesh constructed from a finite element discretization of the computational domain
by triangle (2D) or tetrahedra (3D). The numerical fluxes are based on Flux Vector Splitting
[van Leer, 1982] for the 2D case and on Roe’s Flux Difference Splitting [Roe, 1981] for the 3D
case. In order to improve the spatial accuracy we can adopt a MUSCL (Monotonic Upstream
Scheme for system of Conservation Laws) scheme [van Leer, 1979; Fézoui and Dervieux, 1989],
while slope limiters can be used to keep the scheme non-oscillatory [Cournède et al., 2006]. The
pseudo-time iterations are performed applying a linearized implicit algorithm with first-order
exact Jacobian [Fézoui and Stoufflet, 1989].

1.1 Governing equations

Let D be an open subset of R
p, and let Fi, 1 ≤ i ≤ d, be d smooth functions from D into R

p;
the general form of a system of conservation laws in several space variables is

∂W(x, t)

∂t
+

d∑

i=0

∂

∂xi
Fi(W) = 0, x = (x1, . . . , xd) ∈ R

d, t > 0 (1.1)

where W(x, t) = (w1, . . . , wp)
T is a vector valued function from R

d × [0,+∞[ into D. The set
D is called the set of states and the functions Fi = (F1i, . . . , Fpi)

T are called the flux-functions.
The system (1.1) is said to be written in conservative form1.

1In the sequel, to keep the notation as light as possible, we omit to write the space and time dependancy for
the various quantities take in account. So, the state variable we write W instead of W(x, t). When we need to
refer to a specific time-step t = n∆t we write W

n instead of W(x, n∆t).

7



1.1 Governing equations

Formally, the system (1.1) expresses the conservation of the p quantities W1, . . . ,Wp. In fact,
let Ω an arbitrary domain of R

d, and let n̂ = (n̂1, . . . , n̂d)
T be the outward unit normal to the

boundary ∂Ω of Ω. Then, it follows from (1.1) that

∂

∂t

∫

Ω
W dΩ +

∫

∂Ω

d∑

i=0

Fin̂i dσ = 0. (1.2)

Sometimes the system (1.1) is said to be in divergence form, in fact if we introduce the new
vector F = (F1, . . . ,Fd)

T then its divergence is

divF = ∇ · F =

d∑

i=0

∂

∂xi
Fi

and the term
∑d

i=0 Fin̂i can be expressed as the dot product F · n̂. Then, for the Gauss-Green
theorem the system (1.2) is equivalent to

∂

∂t

∫

Ω
W dΩ +

∫

Ω
divF dΩ = 0. (1.3)

It is important to note that the systems (1.1) and (1.2) are equivalent in the sense of that
a regular solution that satisfies (1.1) then satisfies (1.2) and vice-versa, but the integral form
permits to consider more general solutions (weak solutions), and in particular, it takes into
account the possibility of discontinuous solutions.

2D Euler equations.

Using the previous notation, the 2D Euler equations in integral form is given by the (1.2) with
d = 2, p = 4 and

W =




ρ
ρu
ρv
E


 F1(W) =




ρu
ρu2 + p
ρuv

u(E + p)


 F2(W) =




ρv
ρuv

ρv2 + p
v(E + p)




where ρ is the density, v = (u, v)T is the velocity vector, E is the total energy per unit volume
and p is the pressure. If we assume that the fluid satisfies the perfect gas law, we have

p = (γ − 1)
(
E − 1

2
ρ||v||2

)
(1.4)

where γ is the ratio of specific heat and is equal to 1.4 for the air.

8



Chapter 1. Flow modelling and CFD solver

3D Euler equations.

Using the previous notation, the 3D Euler equations in integral form is given by the (1.2) with
d = 3, p = 5. For this case the state vector is defined to be as

W =




ρ
ρu
ρv
ρw
E




(1.5)

and the flux-functions are given by

F1(W) =




ρu
ρu2 + p
ρuv
ρuw

u(E + p)




F2(W) =




ρv
ρuv

ρv2 + p
ρvw

v(E + p)




F3(W) =




ρw
ρuw
ρvw

ρw2 + p
w(E + p)




(1.6)

As for the 2D case, the pression p is given by the (1.4), but the velocity vector is now v =
(u, v,w)T .

The vector W defined in (1.5) is commonly referred to as the “conservative” state vector
and the variables ρ, ρv, E are referred as conservative variables.

It can be shown [Toro, 1999; Godlewski and Raviart, 1996] that the 2D and the 3D Euler
equations are invariant under rotation: this fact permits us to choose a rotated reference frame
x̄ (respect to the original reference x) in which the multidimensional Euler equations can be
transformed in the x̄-split version

∂W̄

∂t
+

∂

∂x̄
F1(W̄) = 0. (1.7)

In other words, if W = (ρ, ρv, E)T , we can choose an invertible operator R such that

F(W) · n̂ = RF1(W̄) (1.8)

with W̄ = R−1W = (ρ, ρv̄, E)T . The rotation that transforms the original Euler equation (1.1)
into the x-split version (1.7), is the one that align the x̄-axis of the new reference frame along
the direction of n̂.

Moreover, the x-split Euler equations (1.7) with the ideal-gas equation of state (1.4) satisfy
the homogeneity property (e.g. [Toro, 1999])

F1(W̄) = A(W̄)W̄ (1.9)

where A(W̄) is the Jacobian matrix of the first component F1 of the flux functions F , namely
A(W̄) = ∂F1/∂W̄. Then, the differentiation of (1.8) writes as

A(W, n̂) =
∂F(W) · n̂

∂W
= R

∂F1(W̄)

∂W̄
R−1 = RA(W̄)R−1 (1.10)

9



1.2 Numerical approach

so that for any V = RV̄

A(W, n̂)V = RA(W̄)V̄

These properties of the Euler equations form the basis for the numerical schemes that we
will use in the following, i.e. Flux Splitting type methods.

1.1.1 Boundary conditions

In the sequel, to numerically solve the Euler equation, we consider bounded domains of com-
putation Ω related to external flow around bodies, so we have two kind of boundary (see the
Fig. 1.1):

• a physical boundary ΓB, i.e. the wall boundary of the body;

• the farfield boundary Γ∞ (this is an artificial boundary introducted to bound the diameter
of the computational domain Ω).

On the wall ∂ΩB we assume the following slip condition

v · n̂ = 0

in which v is the fluid velocity and n̂ is the unit vector normal to the wall. This condition states
that the particle fluid of velocity v cannot pass through the wall boundary. Remembering the
flux-function for the Euler equation, this condition gives us the system

∂

∂t

∫

Ω
W dΩ +

∫

∂Ω\ΓB

F · n̂ dσ +

∫

ΓB

p




0
n̂
0


 dσ = 0. (1.11)

For the farfield we assume the flow to be uniform at infinity and we prescribe an unitary
density ρ∞ = 1, and the velocity vector given by v∞ = (0,M∞ cosα,M∞ sinα, 0)T for the 2D
case and v∞ = (0,M∞ cosα,M∞ sinα, 0, 0)T for the 3D case, where α is the angle of attack
and M∞ denote the free-stream Mach number. The pression at infinity is computed with the
formula p∞ = 1

γM2
∞

.

1.2 Numerical approach

1.2.1 Finite Volume method

In the Finite Volume (FV) method, the computational domain Ω is composed of cells, or control
volumes, Ωi with the following properties

• Ω =
⋃
i Ωi;

•
◦

Ωi ∩
◦

Ωj = ∅ for i 6= j (non overlapping);

• ∂Ωi =
⋃
j Γij where Γij = Ωi ∩Ωj is the common boundary separating Ωi and Ωj.

10



Chapter 1. Flow modelling and CFD solver

n̂∞

−n̂B

Γ∞

ΓB

Ω

ρ∞
v∞
p∞

Figure 1.1: ΓB it the wall boundary and Γ∞ is the far-field boundary. The positive direction of
the boundary normals n̂∞, n̂∞ is toward the external of the computational domain Ω.

11



1.2 Numerical approach

On Ωi, W(·, t) is approximated by a constant W̃i(t), which should be considered as an approx-
imation of the mean value of W over the cell Ωi (and not the value of W at the center of the
cell Ωi)

W̃i(t) ≃
1

|Ωi|

∫

Ωi

W(x, t) dΩ.

where |Ωi| is the measure of the volumes Ωi. With these assumption, it’s clear that the relation
(1.11) should be verified on each control volumes Ωi and then the first term in the equation
(1.11) is approximated by

∂

∂t

∫

Ωi

W dΩ ≃ |Ωi|
∂W̃i

∂t
. (1.12)

The second term represents the flux across the boundary of the cell at time t and it can be
written ∫

∂Ωi\(∂Ωi∩ΓB)

F(W) · n̂ dσ =
∑

Γij⊂∂Ωi\(∂Ωi∩ΓB)

∫

Γij

F(W) · n̂ dσ (1.13)

where the sum is taken over all the edges of the cell Ωi that do not belong to the wall boundary
ΩB . We note that the flux across the farfield boundary is taken in account into (1.13), so we
can be more explicit writing the last relation as

∫

∂Ωi\(∂Ωi∩ΓB)

F(W) · n̂ dσ =
∑

Γij⊂∂Ωi\
(
∂Ωi∩(ΓB∪Γ∞)

)

∫

Γij

F(W) · n̂ dσ

+
∑

Γi∞⊂(∂Ωi∩Γ∞)

∫

Γi∞

F(W) · n̂ dσ
(1.14)

where the edge Γi∞ belongs to the cell Ωi and the farfield.
The flux across the wall boundary is taken in account by the third term in (1.11) and then

is approximated by

∫

∂Ωi∩ΓB

p(W)




0
n̂
0


 dσ ≃

∑

ΓiB⊂(∂Ωi∩ΓB)

p(W̃i)

∫

ΓiB




0
n̂
0


 dσ (1.15)

where the pression p(W̃i) is constant over the cell Ωi and the edges ΓiB belongs to the wall
boundary ΓB.

The problem is then to define the numerical fluxes approximating
∫
Γij
F(W) · n̂ dσ, using

only the values W̃i. For this purpose, we introduce the numerical flux-function Φ: (U,V,η) →
Φ(U,V,η) such that ∫

Γij

F(W) · n̂ dσ ≃ |ηij |Φ(W̃i,W̃j , η̂
ij) (1.16)

with the metric coefficient

|ηij | = ||ηij || , η̂
ij =

η
ij

||ηij || , η
ij =

∫

Γij

n̂ dσ (1.17)

12



Chapter 1. Flow modelling and CFD solver

and the normal n̂ to the boundary Γij is pointing outward to Ωi in the direction of Ωj
2. Further-

more, we assume that for two generic states U, V and for the generic direction n̂ the following
properties hold:

• Φ(U,V, n̂) is locally Lipshitz continuous with respect to U, V;

• Φ(U,V, n̂) is conservative:

Φ(U,V, n̂) = −Φ(V,U,−n̂)

• Φ(U,V, n̂) is consistent :
Φ(U,U, n̂) = F(U) · n̂

Before to define the meaning (and the formulation) for the numerical flux Φ, we can introduce
the ns-dimensional vector Ψ (with ns the number of cells that are in the computational domain)
in which the i-th is related to the cell Ωi

Ψi(W̃) =
1

|Ωi|

( ∑

Γij⊂∂Ωi\
(
∂Ωi∩(ΓB∪Γ∞)

)
|ηij |Φ(W̃i,W̃j , η̂

ij)+

+
∑

Γi∞⊂(∂Ωi∩Γ∞)

|ηi∞|Φ(W̃i,W̃∞, η̂
i∞) +

∑

ΓiB⊂∂Ωi∩ΓB

|ηiB |p(W̃i)




0
η̂
iB

0



) (1.19)

with this function, we can rewrite (1.2) in the more compact way

∂W̃

∂t
+ Ψ(W̃) = 0 (1.20)

1.2.2 Numerical Fluxes

The scheme adopted here to define the numerical flux, is based on the Flux Vector Splitting
Methods [Toro, 1999] which consists in decomposing the flux F in two part

F(W) · n̂ = F+
n̂
(W) + F−

n̂
(W)

As for the x-split case, for the multidimensional Euler equations (for perfect gas) the homogeneity
property holds

F(W) · n̂ = An̂(W)W

where An̂(W) = A(W, n̂) is the Jacobian matrix ∂(F · n̂)/∂W.

2With the introduction of the vector η̂
iB , i.e. the normal to the edge between the cell Ωi and wall boundary,

we can rewrite the total flux across the wall boundary (1.15) as

Z

∂Ωi∩ΓB

p(W)

0

@

0
n̂

0

1

A dσ ≃
X

ΓiB⊂(∂Ωi∩ΓB)

|ηiB |p(W̃i)

0

@

0

η̂
iB

0

1

A (1.18)

13



1.2 Numerical approach

Then, following [Steger and Warming, 1981] we can define

F±
n̂
(W) = A±

n̂
(W)W

and

Φ(WL,WR, n̂) = F+
n̂
(WL) + F−

n̂
(WR)

Due to the rotation-invariant property of the Euler equations and using the (1.10) we can
choose a reference frame in which holds A±

n̂
= RA±R−1 where A± = ∂F1/∂W, then we can

write (remembering that W̄ = R−1W)

Φ(WL,WR, n̂) = R
(
F+

1 (W̄L) + F−
1 (W̄R)

)
= RΦ(W̄L,W̄R, ê1) (1.21)

where ê1 is the versor parallel to the x̄-axis and the problem is therefore to define the numerical
fluxes F±

1 (W̄).

To specify the numerical fluxes, one ask that some condition must be verified. A classical
request is that the eigenvalues λ+

i and λ−i of the Jacobian matrices

A+ =
∂F+

1

∂W̄
, A− =

∂F−
1

∂W̄

satisfies the condition λ+
i ≥ 0 and λ−i ≤ 0. Moreover, the decomposition is also required

to reproduce regular upwinding when all the eigenvalues of the Jacobian matrix ∂F1/∂W̄ =
A(W) = R−1An̂(W)R are of the same sign, that is to say F+

1 = F1 (F−
1 = 0) if the eigenvalues

of A(W) are ≥ 0, and F−
1 = F1 (F+

1 = 0) if the eigenvalues of A(W) are ≤ 0. In this sense F+
1

represents the flux transported upstream, while F−
1 represents the flux transported downstream.

The definion of the F±
1 satisfying the previous restriction is not unique, therefore we have many

numerical schemes with different properties. Two of them are the van Leer’s flux splitting (used
in our 2D code) and the Roe’s scheme (used in our 3D code).

Van Leer flux vector splitting

Van Leer flux vector splitting [van Leer, 1982] satisfies the extra properties:

• the Jacobian matrices of the numerical flux A± = ∂F±
1 /∂W̄ are continuous;

• if the normal speed3 v · n̂ is supersonic then

{
v · n̂ ≥ a =⇒ F+

1 (W̄) = F1(W̄), F−
1 (W̄) = 0

v · n̂ ≤ −a =⇒ F+
1 (W̄) = 0, F−

1 (W̄) = F1(W̄)
(1.22)

where a is the sound speed (for a perfect gas a =
√
γp/ρ).

3In the rotated frame of reference, the normal speed is the first component (i.e. along the x̄-axis, let say ū) of
the velocity v̄, where W̄ = (ρ, ρv̄T , E)T = R

−1(ρ, ρvT , E)T .

14



Chapter 1. Flow modelling and CFD solver

Then, (for the 3D case) the flux splitting is defined as

F±
1 (W̄) = ±ρ(ū± a)

2

4a




1

(γ − 1)ū± 2a

γ

v̄

w̄

[(γ − 1)ū± 2a]2

2(γ2 − 1)
.




, |ū| < a. (1.23)

For the 2D case, the flux splitting is of the same form of (1.23), but without the fourth vector
element.

Roe’s flux difference splitting

Roe’s approach [Toro, 1999] represents a successful attempt to extend the exact linear wave
decomposition to non-linear hyperbolic equations, and consists in a quasi-linearization of the
flux F1(W̄) = A(W̄)W̄, replacing the Jacobian matrix A(W̄) by a constant Jacobian matrix

Ã = Ã(W̄L,W̄R)

which is a function of the data states W̄L, W̄R. At the interface between two adiacent cells,
the matrix Ã(W̄L,W̄R) is required to satisfy the following properties:

• Ã(W̄,W̄) = A(W̄) =
∂F1

∂W̄
(consistency with the exact Jacobian);

• Ã has a set of real eigenvalues λ̃i = λ̃i(W̄L,W̄R) and a complete set of linearly independent
right eigenvectors

Ã = K̃Λ̃K̃−1

where Λ̃ is the diagonal matrix whose non-zero coefficient are the eigenvalues of Ã and K̃
is the matrix in which the columns are the eigenvectors of Ã;

• F1(W̄R)− F1(W̄L) = Ã(W̄L,W̄R)(W̄R − W̄L) (consistency across discontinuities).

We define the following decomposition of Λ̃

Λ̃ = Λ̃+ + Λ̃− ; Λ̃+ =
Λ̃ + |Λ̃|

2
; Λ̃− =

Λ̃− |Λ̃|
2

where |Λ̃| is the diagonal matrix in which the nonzero coefficients are |λ̃i|, i = 1, . . . , p. We also
define the corresponding matrices

Ã± = K̃Λ̃±K̃−1 ; |Ã| = K̃|Λ̃|K̃−1

15



1.2 Numerical approach

Then, from the properties of the matrix Ã we obtain

F±
1 (W̄R)−F±

1 (W̄L) = Ã±(W̄L,W̄R)(W̄R − W̄L)

Remembering the definition of the numerical flux splitting (1.21) and with some algebra, the
following relations hold

{
Φ(W̄L,W̄R, ê1) = F1(W̄L) + Ã−(W̄L,W̄R)(W̄R − W̄L)

Φ(W̄L,W̄R, ê1) = F1(W̄R)− Ã+(W̄L,W̄R)(W̄R − W̄L)
(1.24)

Then, averaging the (1.24) we obtain

Φ(W̄L,W̄R, ê1) =
F1(W̄L) + F1(W̄R)

2
− 1

2
|Ã(W̄L,W̄R)|(W̄R − W̄L). (1.25)

The diffusive term |Ã(W̄L,W̄R)|(W̄R − W̄L) in the last equation can be expressed as linear
combination of the eigenvectors of Ã (see [Toro, 1999])

Φ(W̄L,W̄R, ê1) =
F1(W̄L) + F1(W̄R)

2
− 1

2

p∑

i=1

α̃i|λ̃i|k̃(i) (1.26)

where the quantities λ̃i (eigenvalues of Ã), k̃(i) (eigenvectors of Ã) and α̃i are function of the
two state W̄L, W̄R and depend on the specific hyperbolic problem under exam. Two approach
was developed in order to find α̃i, λ̃i and k̃(i), namely the original approach presented by Roe
[Roe, 1981] (in which the matrix Ã is sought and from that its eigenvalues and eigenvectors are
computed), and the Roe-Pike approach [Roe and Pike, 1985] in which the constrution of Ã is
avoided. The technical details and the algorithm for the two approach for a general hyperbolic
problem can be found (apart from the original article of Roe and Roe and Pike), for example in
[Toro, 1999] or in [Godlewski and Raviart, 1996].

The case of the 3D Euler equations for perfect gas, gives for the eigenvalues

λ̃1 = ũ− ã, λ̃2 = λ̃3 = λ̃4 = ũ, λ̃5 = ũ+ ã

and the corresponding right eigenvectors are

K̃ =
(
k̃(1), k̃(2), k̃(3), k̃(4), k̃(5)

)
=




1 1 0 0 1
ũ− ã ũ 0 0 ũ+ ã
ṽ ṽ 1 0 ṽ
w̃ w̃ 0 1 w̃

H̃ − ũã 1
2 ||ṽ||2 ṽ w̃ H̃ + ũã




where ||ṽ||2 = ũ2 + ṽ2 + w̃2 and ã =
[
(γ−1)

(
H̃− 1

2 ||ṽ||2
)] 1

2 . The tilde symbol over the variables
u, v, w and H denotes a “Roe average” for that variable. The Roe average (for, let say, the
specific entalpy H = (E + p)/ρ) is defined as follow

H̃ =

√
ρLHL +

√
ρRHR√

ρL +
√
ρR

(1.27)

16



Chapter 1. Flow modelling and CFD solver

where HL, HR are the specific enthalpies of the left and right states respectively. The wave
strenghts α̃i are given by





α̃1 =
1

2ã2

[
(pR − pL)− ρ̃ã(uR − uL)

]

α̃2 = (ρR − ρL)− 1

ã2
(pR − pL)

α̃3 = ρ̃(vR − vL)

α̃4 = ρ̃(wR − wL)

α̃5 =
1

2ã2

[
(pR − pL) + ρ̃ã(uR − uL)

]

where ρ̃ =
√
ρLρR.

Remark 1.1. The two approaches presented here (i.e. Van Leer flux vector splitting and Roe’s
flux difference splitting) can be used to solve numerically the Euler equations, but they have
different mathematical properties and performances:

• Van Leer flux vector splitting is fully differentiable (by construction) while the Roe’s
scheme is not. This non-differentiability is due to the presence of the absolute value
function into (1.26) and therefore the Roes’s scheme is only piecewise differentiable.

• Despite the lower regularity, Roe’s flux difference splitting is more accurate with respect
to Van Leer approach, which is more dissipative (see [van Leer et al., 1987]).

Remark 1.2. For the flux across the farfield boundary Γ∞, we used the flux-splitting of Steger
and Warming [Steger and Warming, 1981]

Φ(W̃i,W̃∞, η̂
i∞) =

(
A+

η̂i∞(W̃i)W̃i + A−
η̂i∞(W̃∞)W̃∞

)
.

Remark 1.3. In the following chapters we will need to differentiate (at first- and second-order)
the (1.19) and from Remark 1.1, if applied to Roe’s scheme, this differentiation seems to be not
justified. The fact that permits us to perform the differentiation is due to the discretize-then-
differentiate approach we used for this work. In this approach we differentiate the discretized
equations and therefore the not-differentiability can occur only if, for a given gridpoint, we have
for the variables Wi the exact numerical values for which (1.19) is not differentiable (although
this is a set of zero-measure, it can rarely happens that we have numerical values for which our
differentiation model is not justified: in these case we could have wrong numerical results). In our
experience, we have not encountered any of such problems for first-order differentiation, while
second-order differentiation it seems to be a little more sensitive to these issues (see Chapter 6
for some numerical experiments).

1.2.3 Spatial discretization

In this work, we use a vertex-centered finite-volume approximation on a dual mesh constructed
from a finite element discretization of the computational domain by triangle (2D) or tetrahedra
(3D). In the 2D case, the cells are delimited by the triangle medians (Figure. 1.2), and in 3D
the cells are delimited by planes through the middle of an edge (Figure. 1.3).

17



1.2 Numerical approach

Si

Ωi

Sj

Ωj

Γij

Figure 1.2: Control volumes in the 2D case. Triangular mesh (solid lines) and dual mesh (dashed
lins) build with the median segments. The thick red line is the boundary Γij common to the
cells Ωi, Ωj.

G

g1

g2

g3

I1

I2

I3

Figure 1.3: Control volume in the 3D case

18



Chapter 1. Flow modelling and CFD solver

1.2.4 High-order approximation

With constant-by-cell state variables W̃i, the above numerical split-flux integration will result
in schemes which are, at best, only first-order spatially-accurate [Godlewski and Raviart, 1996].

To improve the spatial accuracy we can adopt a MUSCL (Monotonic Upstream Scheme for
system of Conservation Laws) scheme introducted by [van Leer, 1979]. In this approach, the
order of the space-accuracy for the numerical flux function (1.19) is improved by using, not the
values Wi, Wj that are constants in the cells Ωi, Ωj, but some interpolated values Wij , Wji

at the interface Γij. In order to define Wij and Wji we use the upstream and downstream
triangles (or tetrahedra) Tij and Tji (see Figure 1.4 for the 2D case and Figure 1.5 for the 3D
case), as introducted in [Fézoui and Dervieux, 1989].

Element Tij is upstream to vertex Si with respect to edge SiSj if for any small enough real

number ǫ the vector −ǫ−→ij is inside the element Tij . Symmetrically, Tji is downstream to vertex

Si with respect to edge SiSj if for any small enough real number ǫ the vector ǫ
−→
ij is inside the

element Tij [Cournède et al., 2006].

Moreover, in order to keep the scheme non-oscillatory and positive, we have to introduce
slope limiters. The main idea behind the construction of slope limiter schemes is to limit the
spatial derivatives to realistic values and only come into operation when sharp wave fronts
are present. For smoothly changing waves, the slope limiters do not operate and the spatial
derivatives can be represented by higher order approximations without introducing unphysical
oscillations (see [Cournède et al., 2006] for an application to mixed-element-volume method).

Introducing the notation

∆−Wij = ∇W
∣∣
Tij
· −→ij , ∆0Wij = Wj −Wi , ∆+Wij = ∇W

∣∣
Tji
· −→ij

where the gradient ∇W
∣∣
T

is relative to the P1 (continuous and linear) interpolation of W over
the element T , the interpolated values Wij , Wji write as





Wij = Wi +
1

2
L(∆−Wij ,∆

0Wij)

Wji = Wj −
1

2
L(∆0Wij,∆

+Wji)

where L is the limiter function. Several definitions are possible for limiters (see for example
[Cournède et al., 2006]) and each one has different properties (e.g. differentiability) and are se-
lected according to the particular problem and solution scheme. Our 3D Euler solver implements
the so-called Van Albada-Van Leer limiter [van Leer, 1983]

L(x, y) =
x(y2 + ε) + y(x2 + ε)

x2 + y2 + 2ε

where ε is a small parameter to prevent division by zero (in our case ε = 10−15). Note that this
limiter is differentiable.

19



1.2 Numerical approach

Si

Ωi

Sj

Ωj

Γij

Tij

Tji

Figure 1.4: Downstream and upstream triangle respect to the boundary Γij are triangles having
Si and Sj as vertex and such that line SiSj intersects the opposite edge (see the Fig. 1.2 for a
comparison with the original mesh).

Si

Sj M’

M

Tji

Tij

Figure 1.5: Downstream and upstream tetrahedra are tetrahedra having respectively Si and Sj
as vertex and such that line SiSj intersects the opposite face.

20



Chapter 1. Flow modelling and CFD solver

1.2.5 Time discretization

The semi-discrete equations (1.20) can be discretized in time using a simple Euler scheme (for
a first-order time accuracy) as follows

δW̃n+1

∆tn
+ Ψ(W̃n) = 0

where δW̃n+1 = W̃n+1 − W̃n and W̃n is the approximation of W(tn). Nevertheless, explicit
time integration procedures are subject to a stability condition expressed in terms of a CFL
(Courant-Friedrichs-Lewy) number. An efficient time advancing strategy can be obtained by
means of an implicit linearized formulation such as the one described in [Fézoui and Stoufflet,
1989] and briefly outlined here. First, the implicit variant of the equation above writes as:

δW̃n+1

∆tn
+ Ψ(W̃n+1) = 0 .

Then, applying a first-order linearization through differentiation of the flux Ψ(W̃n+1) the fol-
lowing Newton-like formulation is obtained:

(
1

∆tn
I +

∂Ψ

∂W

∣∣∣∣
W̃n

)
δW̃n+1 = −Ψ(W̃n) (1.28)

where I is the identity matrix. Note that the resulting Euler implicit scheme tends to an iteration
of Newton algorithm when the time step ∆tn →∞. As a consequence, one can ensure that this
formulation will yield a quadratically converging method if very large time steps can be used.

If a first-order accuracy (both in space and time) is required, the first-order flux Ψ(1) and its
Jacobian should be used

A(W̃n)δW̃n+1 =

(
1

∆tn
I +

∂Ψ(1)

∂W

∣∣∣∣
W̃n

)
δW̃n+1 = −Ψ(1)(W̃n) .

On the other hand, in the case of schemes of second-order spatial accuracy, a possible ap-
proach usually used (see [Fézoui and Stoufflet, 1989]) is to avoid the computation of the exact
Jacobian of the second-order flux Ψ(2). Indeed, apart the fact that to define its exact expression
is a more tedious task then the case of the first-order Jacobian (but this issue can be overcome
using Automatic Differentiation, see Chapter 3), the biggest difficulty is the computational effort
required in terms of memory (for the storage of the Jacobian matrix) and CPU time (for its
inversion), which both increase notably with the order of accuracy. Thus we replace the exact

Jacobian of the second-order flux ∂Ψ(2)

∂W

∣∣
W̃n by the Jacobian matrix ∂Ψ(1)

∂W

∣∣
W̃n resulting from

the analytical differentiation of the first-order flux with respect to the cell-averaged states W̃n

(therefore we consider the first-order Jacobian matrix as an approximate second-order Jacobian)

A(W̃n)δW̃n+1 = −Ψ(2)(W̃n).

The matrix A(W̃n) is structurally-symmetric block-sparse and has the suitable properties
(diagonal dominance in the scalar case) allowing the use of relaxation procedure (e.g. associated

21



1.3 Synthesis

with Jacobi or Gauss-Seidel iterations) in order to solve the involved linear system. The above
implicit time integration approach, which is a particular case of defect-correction technique
[Barrett et al., 1988; Koren, 1988; Skeel, 1981; Stetter, 1978] is well suitable for steady flows
calculations (we refer to [Désidéri and Hemker, 1995] for a study of convergence properties);
for unsteady flow computation, this first-order time accurate scheme is generally unacceptably
dissipative. Note that second-order defect-correction schemes for unsteady problems have been
also developed (see [Martin and Guillard, 1996])

Nevertheless, in the following, we will refer only to the steady solution of the equation (1.20).

1.3 Synthesis

The numerical algorithm presented here will be used in the following chapters for the application
of a gradient-based algorithm for multilevel optimization (Chapter 4) and for the application of
some Automatic Differentiaton algorithms to compute the gradient and Hessian of a functional
in which the flow variables are used (Chapter 3). From the description made in this chapter we
emphasize two aspects:

• if we use the Roe’s scheme (this is the case for our 3D code) the numerical scheme is not
differentiable. The same remark applies to the Steger-Warming fluxes used for the farfield
boundary treatment;

• the scheme is implicit and relies on a preconditioned iteration in which a linearization of
the first-order accurate numerical flux is used. This operator presents the two interesting
properties of

– compactness (only neighbouring nodes are linked by non-zero coefficients);

– positivity (extended version of diagonal dominance).

These aspects will have to be considered in the AD developments.

22



Chapter 2

Uncertainty Analysis and Robust
Design

2.1 Introduction

Due to the high complexity reached by computational fluid dynamics codes combined with the
rapid advance of computational power, research in the field of the aerodynamical shape design
has experienced a large development in the last years, allowing to deal with more and more com-
plex optimization problems. However, high fidelity models are generally directly used only in de-
terministic design loops, which assume a perfect knowledge of the environmental and operational
parameters. In reality, uncertainty can arise in many aspects of the entire design-production-
operational process: from the assumptions done in the mathematical model describing the un-
derlying physical process, to the manufacturing tolerances, and to the operational parameters
and conditions that could be affected by unpredictable factors (e.g. atmospheric conditions).
Exact and approximate techniques for propagating these uncertainties require additional com-
putational effort but are progressively well established ([Putko et al., 2001], [Walters and Huyse,
2002], [Ghate and Giles, 2006]) and could be applied to many optimization problems in order
to improve the robustness of the design (see for instance [Beyer and Sendhoff, 2007] for an ex-
cellent survey or [Huyse, 2001] for a shape optimization application). In addition, a systematic
uncertainty analysis can lead to the identification of the key sources of uncertainty which merit
further research, as well as the source of uncertainty that are not important with respect to
a given response. The review proposed here is part of a contribution to the NODESIM-CFD
European project, focused on non-deterministic simulation in CFD.

Before embarking on the study of these issues, a discussion on nomenclature is useful. We
consider a modeling activity which tends to predict some events assuming some initial knowl-
edge. We propose to adopt the definitions for uncertainty and error by the AIAA Guidelines
[G-077-1998, 1998]:

Uncertainty: “A potential deficiency in any phase or activity of the modeling process that is
due to the lack of knowledge.”

23



2.1 Introduction

Error: “A recognizable deficiency in any phase or activity of modeling and simulation that is
not due to lack of knowledge.”

The key words differentiating the definitions of uncertainty and error are lack of knowledge:
since error is a recognizable deficiency, all errors could be corrected (at least in principle), so it
is deterministic1. To the opposite, uncertainty is due to a lack of knowledge and therefore it
cannot be eliminated, we can only quantify our “degree of ignorance” about the real value and
analyze the impact that this lack of knowledge will have on the output of our model or simulation.

In a physical phenomena governed by PDE’s (e.g. fluid dynamics), errors and uncertainties
arising from the simulation can arise from different sources that can be grouped in four broad
categories and many other sub-categories [Oberkampf and Blottner, 1998]:

• Physical Models

– Inviscid flow

– Viscous flow

– Incompressible flow

– Chemically reacting gas

– Transitional/turbulent flow

– Auxiliary physical models

∗ Equation of state

∗ Thermodynamic properties

∗ Transport properties

∗ Chemical models, rates

∗ Turbulence model

– Boundary conditions

∗ Wall, e.g., roughness

∗ Open, e.g., far-field

∗ Free surface

∗ Geometry representation

– Initial conditions

• Discretization and solution

- Truncation error (spatial and temporal)

- Iterative convergence error

1The definition of error presented here is different than that an experimentalist may use, which is “the difference
between the measured value and the exact value”. Experimentalist usually define uncertainty as “the estimate of
error”. These definitions are inadequate for computational simulations because the exact value is typically not
known.

24



Chapter 2. Uncertainty Analysis and Robust Design

• Round-off error

• Programmer and user error

In particular, for aerodynamical problems, it could be some operational uncertainties due to
unpredictable factors that can alter the flow condition for a given geometry, for example:

• the angle of attack may vary during the flight due to atmospheric conditions

• instrumentation errors, or changes in flight profile compared to the scenario, or atmospheric
condition could give uncertainty on Mach number

• variation in altitude due to instrumentation errors or changes in flight plan (or, again,
variations of atmospheric conditions) could give uncertainty on Reynolds number.

It should be noted that geometric uncertainty, in addition to manifacturing tolerances, can arise
during the working cycle also:

• temporary geometric variations, due to factors as icing or deformation under the weight-
loads

• transient or permanent geometric variation due to the motion regime (e.g. blades in
compressors)

• permanent geometric variation due to degradation (erosion,. . . ).

Errors being not due to a lack of initial knowledge can be reduced. We shall be interested
by truncation errors.

Uncertainty being due to a lack of initial knowledge must be modeled and propagated into
the information processing.

We gather some of the existing methods to apply this programme and explain how pertur-
bation methods can help in realizing it.

2.2 Uncertainty propagation techniques

In optimization problems, uncertainty propagation analysis concerns the study of the cost func-
tional

j(γ) = J(γ,W ) ∈ R (2.1)

where all varying parameters are represented by the control variables γ ∈ R
n and the state

variables W = W (γ) ∈ R
N are solution of the (nonlinear) state equation

Ψ(γ,W ) = 0 ∈ R
N . (2.2)

It is important to note that the state equation (2.2) contains the governing PDE of the mathe-
matical model of the physical system of interest (for example the stationary part of the Euler or
Navier-Stokes equations) and due to its nonlinearity is usually solved with iterative fixed-point
methods (using, for example, Jacobian-free Newton-Krylov methods [Knoll and Keyes, 2004]).

25



2.2 Uncertainty propagation techniques

Because of the complexity of the equations (2.2), the only way to study the behaviour of the
functional (2.1) when the control γ is affected by uncertainties δγ (here γ and its uncertainty
δγ are relative to a general control, i.e. the design/geometrical variables and/or the model
parameters), is through simulation of these uncertainties and/or transforming the equations
(2.1)-(2.2) in a way such the uncertainties are kept into account (introducing appropriate models
or parameters that should characterize them).

The two main type of approaches for analyzing the propagation of uncertainties are the
deterministic approach (mainly using the interval arithmetic) and the probabilistic one (Monte
Carlo-like methods and the Method of Moments). Both approaches rely on the fact that we
cannot assign a single value to a quantity affected by an uncertainty, but we should instead keep
in account the different values that the quantities under consideration could have.

2.2.1 Interval arithmetics

The main idea with interval arithmetics is to assume uncertain parameters “unknow but bounded”:
every uncertain value is then described by an interval without a probability structure [Schweppe,
1973]. Then we can define an arithmetic defined on sets of intervals, rather than sets of real
numbers [Moore, 1962]

x ⋄ y = {x ⋄ y | x ∈ x and y ∈ y} for ⋄ ∈ {+,−,×,÷} (2.3)

where x = [x, x] and y = [y, y] with x ≤ x and y ≤ y. Thus, the image of each one of the four
basic interval operation is the exact image of the corresponding real operation. It’s no difficult
to see that the definition (2.3) is analogous to the operational definitions

x + y = [x+ y, x+ y]

x− y = [x− y, x− y]
x× y = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}]

1

x
= [1/x, 1/x] if x > 0 or x < 0

x÷ y = x× 1

y

(2.4)

If such operations are composed, bounds on the ranges of real functions can be obtained
[Kearfoot, 1996]. Since every function in the program used to solve the state equation (2.2)
and compute the functional (2.1) can be expressed as composition of the four basic arithmetic
operations, we can compute the interval bounds of the variables involved in the program, in
particular the bounds of the interval for the ouput variable. This method is therefore fully
deterministic, and interval result for uncertainty propagation represents maximal error bounds
(i.e. worst case result).

It should be noted that intervals appearing in rational expression as denominator, cannot
contain the values 0 (zero), otherwise result interval will be of the form [a,∞), (−∞, a] or
(−∞,∞) (correct from a mathematical point of view, but not very useful for computations).

The appealing feature about interval arithmetic is that it can be implemented in a existing
CFD code in systematic way, with the aim of specific computational tool developed for different

26



Chapter 2. Uncertainty Analysis and Robust Design

languages like FORTRAN or C/C++ but special attention should be paid to implementations
due to the fact that the interval result depends on the order of the operation: in particular, for
interval arithmetics the distributive property does not hold anymore [Moore, 1962].

The main criticism made to interval arithmetic approach for uncertainty propagation is that
it can lead to overestimates the output intervals [Walters and Huyse, 2002]. Another criticism is
that it does not assume any probabilistic structure for the uncertainty of input variables where,
in real contexts involving measured data, one usually does (for example assuming that extremal
values have low probability to occur, or assuming some correlations between the uncertainties).
Some extensive references about this subject could be found at the page

http://www.cs.utep.edu/interval-comp/

2.2.2 Monte Carlo methods

Rewieving the existing literature, the most straightforward, general and accurate method to
study the uncertainty propagation is full nonlinear Monte Carlo technique, see for example [Liu,
2001] or [Garzon, 2003]).

This method is not new: it is based on statistical sampling and an early application could
be found in [Hall, 1873] where is used to determinate the value of π. Despite that the idea was
quite old, the method could not be used for real problems until 1947, when the first electronical
computer were available for researcher involved in the development of the nuclear weapons
[Metropolis, 1987].

The basic idea behind Monte Carlo methods is to generate a sample of independent states
of the input variables γ1, γ2, . . . , γNmc with known distribution and analyze the distribution
of the output j(γ1), j(γ2), . . . , j(γNmc). Despite the fact that this Monte Carlo algorithm is
simple to implement (the solver can be used as a black box ) and intrinsically parallel (any
evaluation of j(γi) is totally independent of the others), for CFD computation is prohibitively
expensive in terms of CPU time required, due to the fact that to construct a statistic, i.e.
computing a Cumulative Distribution Function (CDF) or a Probability Density Function (PDF)
(see Appendix A), for the γi we need a rather high number of (costly) nonlinear simulations
(tipically Nmc > 103). Therefore there is a need for computationally inexpensive high fidelity
methods for uncertainty propagation.

2.2.3 Method of Moments

In the previous section, we have seen that a full nonlinear Monte Carlo method gives us complete
and exact information about uncertainty propagation in the form of its PDF (or CDF), but
with a prohibitively expensive cost in terms of CPU time. To reduce the computational cost,
we may think to use only some (derivate) quantities characterizing the distribution of the input
variables instead of an entire sample drawn from a population with a given PDF. Therefore,
the idea behind the Method of Moments is based on the Taylor series expansion of the original
nonlinear functional (2.1) around the mean value of the input control (µγ = E[γ]), and then
computing some statistical moments of the output (usually mean and variance). In this way, we
are assuming that the input control γ can be decomposed as sum of a fully deterministic quantity

27

http://www.cs.utep.edu/interval-comp/


2.2 Uncertainty propagation techniques

µγ with a stochastic perturbation δγ with the property E[δγ] = 0. With these definitions, the
Taylor series expansion of the functional j(γ) around the mean value µγ is

j(γ) = j(µγ + δγ) = j(µγ) +Gδγ +
1

2
δγ∗Hδγ +O(||δγ||3) (2.5)

where G =
∂j

∂γ

∣∣∣
µγ

is the gradient of the functional with respect to the uncertain variables and

H =
∂2j

∂γ2

∣∣∣
µγ

is the Hessian matrix, both evaluated at the mean of the input variables µγ .

By considering various orders of the Taylor expansion (2.5) and taking the first and the second
statistical moment, we can approximate the mean µj and the variance σ2

j of the functional j(γ)
in terms of its derivatives evaluated at µγ and in terms of statistical moments of the control γ
(see the Appendix A for the definitions and Appendix B for the computation using the Taylor
expansion).

First-order moment methods:




µj = j(µγ) +O

(
E
[
δγ2
])

σ2
j = E

[(
Gδγ

)2]
+O

(
E
[
δγ3
]) (2.6)

Second-order moment methods:




µj = j(µγ) +
1

2
E
[
δγ∗Hδγ

]
+O

(
E
[
δγ3
])

σ2
j = E

[(
Gδγ

)2]
+ E

[(
Gδγ

)(
δγ∗Hδγ

)]
− 1

4
E
[
δγ∗Hδγ

]2
+

+
1

4
E
[(
δγ∗Hδγ

)2]
+O

(
E
[
δγ4
])

(2.7)

With this method it is clear that we are using only some partial informations about the input
uncertainties, in fact we are using only some statistical moments of the control variable instead of
full information available with its PDF, and we will not have anymore the PDF of the propagated
uncertainty, but only its approximate mean and variance. Another important point is that the
Method of Moments is applicable only for small uncertainties, due to the local nature of Taylor
expansion approximation.

Two things should be noted here: the first one is that for applying the Method of Moments,
we need the derivatives of the functional with respect to the control variables affected by uncer-
tainties: in particular we need the gradient for the first-order method, and gradient and Hessian
for the second order method. Due to the fact that j(γ) = J(γ,W ), where W = W (γ) is solution
of the state equation (2.2) we have for the derivative

dj

dγ
=
∂J

∂γ
+

∂J

∂W

∂W

∂γ

Since we know the solution W (γ) by its numerical values as result of a program (implementing
an appropriate method, e.g. fixed point method), it is a mandatory task the use of Automatic

28



Chapter 2. Uncertainty Analysis and Robust Design

Differentiation tools (like TAPENADE, [Hascoët and Pascual, 2004]) in order to obtain the
needed derivatives. The same remarks apply to the computation of the Hessian matrix. In
particular we note that the derivatives are computed at the mean value of the control µγ , so
they are fully deterministic and can be picked out from the expectations in the equations (2.6)
or (2.7). In other words we can write

E
[(
Gδγ

)2]
=
∑

i,k

GiGkE
[
δγ(i)δγ(k)

]
=
∑

i,k

GiGkCik

E
[
δγ∗Hδγ

]
=
∑

i,k

HikE
[
δγ(i)δγ(k)

]
=
∑

i,k

HikCik

E
[(
Gδγ

)(
δγ∗Hδγ

)]
=
∑

i,k,l

GlHikE
[
δγ(i)δγ(k)δγ(l)

]

E
[(
δγ∗Hδγ

)2]
=
∑

i,k,l,m

HikHlmE
[
δγ(i)δγ(k)δγ(l)δγ(m)

]

(2.8)

where Gi =
dj

dγ(i)

∣∣∣
µγ

are the elements of the gradient, Hik =
d2j

dγ(i)dγ(k)

∣∣∣
µγ

are the elements of

the Hessian matrix and Cik = E
[
δγ(i)δγ(k)

]
= cov(γ(i), γ(k)) are the elements of the covariance

matrix. Every expectation term E[. . . ] in the equations (2.8), is defined by the statistical model
of the uncertainties and could be computed in a preprocessing phase.

For example, for the important case where the uncertainties are random and normally dis-
tributed, we have:

E
[
δγ(i)δγ(k)δγ(l)

]
= 0

E
[
δγ(i)δγ(k)δγ(l)δγ(m)

]
= CikClm + CilCkm + CimCkl

and if these (normal) uncertainties are independents, then holds the relation Cik = σ2
i δik where

σ2
i = E

[
δγ(i)δγ(i)

]
and the equations (2.8) become

E
[(
Gδγ

)2]
=
∑

i

G2
i σ

2
i

E
[
δγ∗Hδγ

]
=
∑

i

Hiiσ
2
i

E
[(
Gδγ

)(
δγ∗Hδγ

)]
= 0

E
[(
δγ∗Hδγ

)2]
=
∑

i,k

(
HiiHkk + 2H2

ik

)
σ2
i σ

2
k

(2.9)

The second comment to do for the Method of Moments, concerns the equation of the variance
for second-order moment (2.7): although we have taken into account the term E

[(
δγ∗Hδγ

)2]
/4,

the error is still of the order of E
[
δγ4
]
. This is because the other terms of the same kind require

the knowledge of order of derivatives higher than the second. In fact, it can be shown (see
Appendix B) that the fourth order term in O(E

[
δγ4
]
) depends on the third derivative of the

functional.

29



2.2 Uncertainty propagation techniques

From the previous discussion, it is clear that in order to apply the Method of Moments
we need to solve only one (expensive) nonlinear system with derivatives (at the mean µγ) and
then apply the (inexpensive) equations (2.6) or (2.7) where, for the fully nonlinear Monte Carlo
approach of the previous section, we need to solve N ≫ 1 nonlinear systems (2.2).

An application of this method for Aerospace applications can be found in [Putko et al., 2001].

2.2.4 Inexpensive Monte Carlo

This method, developed by [Ghate and Giles, 2006], is based on the idea of adjoint error correc-
tion as proposed by [Pierce and Giles, 2000] and it could be viewed at midpoint of Monte Carlo
and Method of Moments.

As usual, let W = W (γ) the solution of the state equation

Ψ(γ,W ) = 0 (2.10)

and j(γ) = J(γ,W ) a smooth functional. The discrete adjoint equation corresponding to the
last equation is (

∂Ψ

∂W

)∗
Π =

(
∂J

∂W

)∗
(2.11)

where Π is the adjoint solution. The key here is to perform a Taylor series expansion for the
functional and for the state equation with respect to the state variables W , and then using the
adjoint equation (2.11).

For the functional, the first-order Taylor expansion with respect to the generic state W0 is

J(γ,W ) = J(γ,W0) +
∂J

∂W

∣∣∣
(γ,W0)

(W −W0) +O
(
||W −W0||2

)

Using the adjoint equation (2.11), we have

J(γ,W ) = J(γ,W0) +

(
Π∗ ∂Ψ

∂W

)∣∣∣
(γ,W0)

(W −W0) +O
(
||W −W0||2

)
(2.12)

A first-order Taylor expansion of the state equation (2.10), gives us

0 = Ψ(γ,W ) = Ψ(γ,W0) +
∂Ψ

∂W

∣∣∣
(γ,W0)

(W −W0) +O
(
||W −W0||2

)

Replacing the first-order derivative in the (2.12) with the analogous term in the last equation,
we obtain

J(γ,W ) = J(γ,W0)−
(
Π∗Ψ

)∣∣
(γ,W0)

+O
(
||W −W0||2

)
(2.13)

where the state equation Ψ and the adjoint solution Π∗ are both evaluated at the point (γ,W0).
Finally if we use an approximate adjoint solution Π∗ = Π̃∗ + O(||Π − Π̃||) instead of the exact
one, we have

J(γ,W ) = J(γ,W0)− Π̃∗Ψ(γ,W0) +O
(
||W −W0||2, ||W −W0|| ||Π− Π̃||

)
(2.14)

30



Chapter 2. Uncertainty Analysis and Robust Design

From the equation (2.11) we can see the adjoint solution Π as a function of the variables γ
and W , then, remembering that the state variables depend on the control (W = W (γ)) through
the state equation (2.10) we have

Π(γ,W ) = Π(γ,W (γ)) = π(γ)

Thus, if we expand at the first-order the latter equation around the mean value of the control
µγ (as we did in the previous section for the method of moment), we obtain

Π(γ,W ) = π(µγ) +O(||δγ||) = Π(µγ ,W (µγ)) +O(||δγ||) (2.15)

where δγ is the stochastic perturbation defined in Sec. 2.2.3 and where π(µγ) = Π(µγ ,W (µγ)) is
the solution of the adjoint system (2.11) with the derivatives computed at the point (µγ ,W (µγ)).
It is clear that considering Π as a function of the only variable γ and identifying the approximate
adjoint solution Π̃ with π = Π(µγ ,W (µγ)) we have O(||Π − Π̃||) = O(||δγ||), and the equation
(2.14) becomes

J(γ,W ) = J(γ,W0)− π∗Ψ(γ,W0) +O
(
||W −W0||2, ||W −W0|| ||δγ||

)
(2.16)

Now it only remains to decide how to choose the approximation W0. As usual, we perform
a first-order Taylor expansion of W (γ) around µγ

W (γ) = W (µγ) +
dW

dγ

∣∣∣
µγ

δγ +O(||δγ||2)

then, we have two natural options for the choice of W0

IMC1 W0 = W (µγ) and then

J(γ,W ) = J(γ,W (µγ))− π∗Ψ(γ,W (µγ)) +O
(
||δγ||2

)
(2.17)

IMC2 W0 = W (µγ) +
dW

dγ

∣∣∣
µγ

δγ and then

J(γ,W ) = J(γ,W0)− π∗Ψ(γ,W0) +O
(
||δγ||3

)
(2.18)

where the first approach has an overall leading error of second-order, while the second approach
has an overall leading error of third order.

Respect to the fully nonlinear Monte Carlo, where has to be solved one nonlinear system
Ψ(γ,W ) = 0 for each sample point γi = µγ + δγi, in the Inexpensive Monte Carlo we evaluate
the residual Ψ(γi,W0) for each sampling point, resulting in a computationally less expensive
method.

To be clear, the algorithm is summarized as follows:

• choose the mean control µγ and solve the nonlinear system Ψ(µγ ,W ) = 0

• solve the adjoint linear system

(
∂Ψ

∂W

∣∣∣
(µγ ,W (µγ))

)∗
π =

(
∂J

∂W

∣∣∣
(µγ ,W (µγ))

)∗

31



2.3 Robust design

• (if we use the IMC2) compute the matrix
∂W

∂γ

∣∣∣
µγ

(this is could be done solving n linear

systems, where γ ∈ R
n)

• for each i = 1, . . . , Nmc

– construct the sampling point γi = µγ + δγi

– (if we use the IMC1) set W0,i = W (µγ)

– (if we use the IMC2) compute the extrapolation of the state variables W0,i = W (µγ)+
∂W

∂γ

∣∣∣
µγ

δγi

– compute Ψ(γi,W0,i)

– compute the value j(γi) using the equation (2.17) for IMC1 or the equation (2.18)
for IMC2

Note that the relationship with the Method of Moments (equations (2.6)–(2.7)) can be
established. Indeed, in eqs. (2.17)–(2.18) there are two terms (J and Ψ) as function of γ that
could be expanded up to the first-order without increase the error order, i.e.

J(γ,W ) = J(µγ ,W (µγ)) +
∂J

∂γ

∣∣∣
(µγ ,W (µγ))

δγ − π∗Ψ(γ,W (µγ)) +O
(
||δγ||2

)

= j(µγ) +
∂J

∂γ

∣∣∣
(µγ ,W (µγ))

δγ − π∗ ∂Ψ

∂γ

∣∣∣
(µγ ,W (µγ))

δγ +O
(
||δγ||2

) (2.19)

where we used the property Ψ(µγ ,W (µγ)) = 0. Taking the expectation (and remembering that
E[δγ] = 0) we have

µj = j(µγ) +O
(
E
[
δγ2
])

(2.20)

i.e. the same equation for the mean of the functional obtained with the first-order moment
method (2.6).

2.3 Robust design

Simulation-based design optimization in aerodynamics has been an active research topic for the
last years and is now applied to industrial problems. For a long time, optimization exercises
were carried out neglecting uncertainty. However, application of such deterministic methods
can lead to unexpected performance losses and, in practice, to unacceptable results. Indeed, the
prescribed optimized design is subject to inherent geometrical variations due to manufacturing
tolerances. Moreover, as we have seen in Section 2.1, operating conditions (such as Mach number
or angle of attack) are subject to variability and random fluctuations. As consequence of such
geometrical and operational uncertainties, the fitness of the optimal design predicted by CFD is
usually not obtained in practice. To overcome this difficulty, robust-based design methods are
developed in order to minimize the performance loss due to everyday fluctuations.

32



Chapter 2. Uncertainty Analysis and Robust Design

Remark 2.1. In order to specify the different approaches used for geometrical/design uncer-
tainties and operative condition fluctuation, we refer them with a different notation with respect
to the previous sections. In the following the geometrical/design variables will be denoted by γ,
while the variables describing the operative conditions will be denoted by α.

Robust design can be regarded as an optimization approach which tries to account for un-
certainties, generally through the construction of a robust counterparts jR of the original per-
formance or objective functional j.

For example in [Su and Renaud, 1997], the authors use for their robust optimization strategy,
a sensitivity information for the objective functional

jR(γ) = j(γ) + ε

√√√√∑

i

(
dj

dγ(i)
σi

)2

that corresponds to the functional jR(γ) = j(γ) + εσj when a first-order moment method is
used for the approximation of the variance σ2

j (and the independence between the uncertain
variables is assumed). Moreover, if we assume that σi = σ for each i (and this is reasonable for
geometrical uncertainties that arise from manifacturing tolerances), the above expression writes
as

jR(γ) = j(γ) + εσ

√√√√∑

i

(
dj

dγ(i)

)2

= j(γ) + εσ|| dj
dγ
||. (2.21)

Therefore, if we are interested to build a gradient-based algorithm for optimization, we need to
evaluate the gradient of the robust functional jR, namely

(
djR

dγ

)∗
=

(
dj

dγ

)∗
+ εσ

H
(
dj
dγ

)∗

|| dj
dγ
||

(2.22)

where H is the Hessian matrix of the functional j with respect to the variable γ. It is clear
that to build the robust functional jR we need to know the gradient

(
dj
dγ

)∗
of the original func-

tional j. Moreover, to compute the gradient (2.22) we need to evaluate the Hessian-by-vector
multiplication H

(
dj
dγ

)∗
(an algorithm for this purpose is given by the Lemma 3.1 in Section 3.6.2).

Another possibility to achieve robustness is to adopt the statistical approach according to
the Von Neumann-Morgenstern decision theory [Bandemer, 2006; Huyse et al., 2002], in which
the best choice in presence of uncertainty is to select the design which leads to the best expected
fitness. This is commonly known as the Maximum Expected Value (MEV) criterion.

As we have seen, a deterministic simulation-based shape optimization problem consists in
minimizing (or maximizing) a functional J : (γ,W ) 7→ J(γ,W ), which depends on the shape Γ
(parametrized by the design variables γ) and on the state variable W : (γ, α) 7→W (γ, α) which
is implicitly defined through the state equation Ψ(γ, α,W ) = 0. Here the symbol α denotes the
variables that define the operational conditions, e.g. the Mach number or the angle of attack. In

33



2.3 Robust design

this context, the usual design problem for the functional J (and for a given operational condition
α0) writes as {

find γ∗ such that j(γ∗) = min
γ
j(γ)

where j(γ) = J(γ,W ) subject to Ψ(γ, α0,W ) = 0

The non-deterministic MEV approach in the case of geometrical uncertainties becomes





find γ∗ such that µj(γ
∗) = min

γ̄
µj(γ̄)

where µj(γ̄) =

∫
J(γ,W )fγ̄(γ) dγ subject to Ψ(γ, α0,W ) = 0

(2.23)

and for the operational uncertainty writes as





find γ∗ such that µj(γ
∗) = min

γ
µj(γ)

where µj(γ) =

∫
J(γ,W )fᾱ(α) dα subject to Ψ(γ, α,W ) = 0

(2.24)

where fγ̄ , fᾱ are the Probability Density Function (PDF) for the uncertain variables γ, α with
expected values γ̄, ᾱ respectively. With these definitions, the integral in (2.23)–(2.24) is the
expectation value for the functional J(γ,W ) with respect to a probability measure for the
uncertain variable.

The robust design problem is now considered within a rigorous statistical framework. This
allows to take into account the random fluctuations of the fitness in the optimization problem,
but also take care about the probability of occurrence of the events, via the PDFs. However,
problems (2.23)–(2.24) does not address the variability of the fitness. For engineering problems,
one also would like to select a design for which the fitness is not subject to a large variations.
Then, a second criterion is often joined to the MEV criterion, that relies on the minimization
of the variance of the functional





σ2
j (γ̄) =

∫
J2(γ,W )fγ̄(γ) dγ − µ2

j(γ̄)

where µj(γ̄) =

∫
J(γ,W )fγ̄(γ) dγ subject to Ψ(γ, α0,W ) = 0

(2.25)

for the problem (2.23) or





σ2
j (γ) =

∫
J2(γ,W )fᾱ(α) dα − µ2

j(γ)

where µj(γ) =

∫
J(γ,W )fᾱ(α) dα subject to Ψ(γ, α,W ) = 0

(2.26)

for the problem (2.24).

The problem of finding a design γ∗ that minimizes both the mean value and the variance
might not have any solution at all (in fact they can represent conflicting goals [Beyer and Sendhoff,
2007]), so we are forced to decide about the trade-off between the expected fitness and the ex-
pected fitness variation, choosing for example between the different optimal designs in the Pareto

34



Chapter 2. Uncertainty Analysis and Robust Design

frontier, or defining a robust functional that is the convex combination of the mean and the stan-
dard deviation (i.e. the square root of the variance), namely jR(γ) = (1 − β)µj(γ) + βσj(γ),
with 0 ≤ β ≤ 1.

The practical difficulty with formulations (2.23)–(2.25) or (2.24)–(2.26) is that the integra-
tions under the probability measure (fγ̄ or fᾱ) that define the mean and the variance of the
objective function, are required in each of the optimization steps (for each design). Since in CFD
simulations the nonlinear equation Ψ = 0 is computationally expensive to solve (and thus the
evaluation of the objective function J), the use of a brute–force numerical integration method
or Monte-Carlo analysis would become prohibitively expensive. Therefore, we need to introduce
some techniques that permit us to have an an approximate expectation value and variance of
the functional.

A possible approach for the above integration of is with the use of metamodels [Duvigneau,
2007], in which the functional J(γ,W ) in (2.24) is approximated with a function that depends
only on the uncertain variables and whose evaluations are inexpensive.

Another possible approach for the integration of (2.23)–(2.24) and/or (2.25)–(2.26) is through
the application of the Methods of Moment presented in Section 2.2.3 (see also [Huyse et al.,
2002; Beyer and Sendhoff, 2007]). In other words, we perform a Taylor series expansion of the
functional J(γ,W ) inside the above integrals around the mean value of the uncertain variable
(that could be the design variable γ or the operative condition α, in fact we need to remember
that W : (γ, α) 7→ W (γ, α) is implicitly defined by the state equation Ψ(γ, α,W )). Therefore,
we can compute the integrals that define the mean and variance of the objective function j, i.e.
µj and σ2

j , as Taylor expansion of the objective around the (deterministic) mean value of the
uncertain variable: for this purpose we need to have first- and second-order derivatives of the
functional j. As final remark, we want to emphasize the fact that using this approach we need
to solve the nonlinear state equation Ψ = 0 only one time, resulting in a less expensive method
with respect to the Monte-Carlo integration.

35



2.3 Robust design

36



Chapter 3

First- and Second-Order Derivatives
with Automatic Differentiation

3.1 Introduction to sensitivity analysis

Sensitivity analysis consists of a set of tools that can be utilized in the context of optimization,
optimal design, uncertainty analysis, robust design, or simply system analysis to assess the influ-
ence of control parameters γ (input) on the state of the system (output) [Stanley and Stewart,
2002]. In all these contexts, and regardless the goal that has to be accomplished, the common
ingredients are the presence of a functional j (output) that depends on some control parameters
and possibly subject to satisfy some constraints (see Figure 3.1 for an example).

In this sense we consider the (discretized) steady Euler equations

Ψ(γ,W ) = 0

introduced in Chapter 1, as the equality constraint for a functional (that could be the lift, the
drag, or whatever quantity of interest)

j : γ 7→ j(γ) := J(γ,W ) ∈ R

where γ ∈ R
n and W = W (γ) ∈ R

N . In other words, the state variable W : γ 7→ W (γ) is an
implicit function of the control γ through the equation Ψ = 0. To be more specific regarding the
control γ, its definition depends on the problem at hand: if we are dealing with optimal shape
design problems (Chapter 4) , γ could be a parametrization of the physical wall boundary ΓB
that we want to optimize (see Figure 1.1); if we are interested in the study of the effect of the
operational conditions on the functional, γ could be for example the Mach number or the angle
of attack (Chapter 2), etc.

Then, the sensitivities can be used like building blocks of different methods and techniques
developed in order to solve a specific problem: for example they can be used for gradient-based
algorithms in order obtain a local extrema of the functional (e.g. multilevel optimization and
optimal design, Chapter 4), or used to give some informations on the output when the control
is affected by a lack of knowledge (uncertainty analysis and robust design, Chapter 2). Again,

37



3.1 Introduction to sensitivity analysis

the sensitivities can be used in order to improve the accuracy of the functional itself using the
adjoint-correction approach by [Pierce and Giles, 2004, 2000] (in Chapter 5 we develop a strat-
egy to compute the gradient of this corrected functional) or used for defect correction techniques
[Barrett et al., 1988; Koren, 1988; Skeel, 1981; Stetter, 1978] or for mesh adaptation approach
[Becker et al., 2000; Becker and Rannacher, 2001; Venditti and Darmofal, 2002], etc.

γ

Control variables:
− boundary geometry;
− boundary conditions;
− model parameters;
− . . .

Ψ(γ,W ) = 0

State equation:
− Euler equations;
− . . .

W

State variables:
− density;
− moments;
− energy;
− . . .

J(γ,W )

Functional :
− lift;
− drag;
− . . .

Figure 3.1: Definitions and relations between the building blocks for an optimal control problem.
Starting from the definition of the control variable γ (input) we compute the state variable W
solving the equation Ψ(γ,W ) = 0 (that could be the Euler equations or any other mathematical
model for the problem at hand). Then, the control γ and the state W are inputs for the
evaluation of a given functional J .

Regardless the applications of the sensitivities, the tough question is: “How to obtain them?”.
From a general point of view and for a given problem at hand, maybe the most straightforward
way is to go back to the equations that led to the program used to solve them: in other words
we suppose that a certain result is defined by some equations, and the program solve these
equations to obtain this result. Then one can write a new set of equations, whose solutions
are the derivatives of the initial result (this task can be performed by computers using symbolic
differentiation programs, like Maple1 or Mathematica2). Consequently, one can write a new
program that solves these new equations for the desired derivatives. This is mathematically
very sound, but it probably is the most expensive way, since it implies the discretization of a
new set equations, then we need to write a new program. We all know how difficult this is, and
how many errors can be done! Moreover, in some cases there are no simple original equations,
and only the program to solve them is at hand.

Therefore we are looking for another way, more economical and that possibly uses only the
original program and not the underlying equations.

The last requirement is obviously satisfied if we decide to compute sensitivities using divided
differences. For a given set of program’s inputs, u, the program P compute a result Φ(u) = v.
In the general case, both u and v are vectors, i.e. are composed of several real numbers. Given
now a direction δu in the space of the inputs, one can run the program P again, on the new
input u+ ǫδu (or u− ǫδu), where ǫ is some very small positive number. Then an approximation

1http://www.maplesoft.com/
2http://www.wolfram.com/

38

http://www.maplesoft.com/
http://www.wolfram.com/


Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

of the directional derivative along δu is computed easily by:

dΦ

du

∣∣∣∣
u

δu ≃ Φ(u+ ǫδu) − Φ(u)

ǫ
or

dΦ

du

∣∣∣∣
u

δu ≃ Φ(u)− Φ(u− ǫδu)
ǫ

.

In order to have a better approximation, we can use the centered divided differences, namely:

dΦ

du

∣∣∣∣
u

δu ≃ Φ(u+ ǫδu) − Φ(u− ǫδu)
2ǫ

but this approach cost an additional evaluation of the function Φ (and therefore an additional
execution of the program P). Of course divided differences give us just an approximation of the
derivatives: ideally, the exact derivative is the limit of these formulas, when ǫ tends to zero. But
this makes no sense on a real computer, since very small values of ǫ lead to truncation errors,
and therefore to erroneous derivatives. This is a serious drawback of divided differences: some
tradeoff must be found between truncation errors and approximation errors. Finding the best
ǫ requires numerous executions of the program, and even then the computed derivatives are
just approximations. To be honest, we have to say that divided differences are the only way to
compute derivatives when we have not access to the program source for P (e.g. the program is
considered like a black box ): divided differences approach requires to know only the result of the
program on a given input and not how the result is obtained.

Another approach to compute derivatives is the “complex variable method” [Squire and Trapp,
1998; Newman III et al., 1998]. The idea relies on the Taylor expansion of the function Φ using
a complex increment iǫδu, namely

Φ(u+ iǫδu) = Φ(u) + iǫ
dΦ

du

∣∣∣∣
u

δu+ . . .

and therefore the derivative is obtained as

dΦ

du

∣∣∣∣
u

δu =
Im
[
Φ(u+ iǫδu)

]

ǫ
+O(ǫ2)

where the notation Im
[
. . .
]

denotes the imaginary part of a complex quantity. Thus, evaluat-
ing the function numerically with a complex argument, both the (real) function value and its
derivative are obtained, without the subtractive cancellation errors present in finite difference
approximation. Some work should be done by the user in the program in order to evaluate
the function with complex arguments (whereas the original function had real arguments). The
drawback of this approach remains that, as for the divided difference method, it gives us only
directional derivatives, and therefore if Φ is a functional depending on n variables, to compute
its gradient we need to evaluate the (complex-valued) functional Φ exactly n times.

A more flexible and efficient approach is given by Automatic Differentiation. In mathematics
and computer algebra, Automatic Differentiation, or AD (sometimes alternatively called algo-
rithmic differentiation), is a method to numerically evaluate the derivative of a function specified
by a computer program. Automatic Differentiation solves all of the mentioned problems:

39



3.2 Principles of Automatic Differentiation

• it does not require the underlying equation but only its program implementation;

• the computed derivatives are exact (at machine level representation), i.e. we do not per-
form any approximation to compute the derivatives;

• it is (reasonably) fast : we don’t need to perform any additional run of the program to
tune parameters;

• some AD tools are able to compute the gradient of a functional at a cost that is independent
from the number of input variables (see Reverse mode in the following Section 3.2).

AD exploits the fact that any computer program that implements a vector function v = Φ(u)
(generally) can be decomposed into a sequence of elementary assignments, any one of which may
be trivially differentiated by a simple table lookup. These elemental partial derivatives, evalu-
ated at a particular argument, are combined in accordance with the chain rule from derivative
calculus to form some derivative information for Φ (such as gradients, directional derivatives, the
Jacobian matrix, etc.). This process yields exact (to numerical accuracy) derivatives. Because
the symbolic transformation occurs only at the most basic level, AD avoids the computational
problems inherent in complex symbolic computation. Moreover, as we will see, AD permits to
obtain the gradient of a functional in a direct way and its computational cost is independent
from the dimension of the input variable: this property is quite astonishing, in fact the usual way
to compute gradients of functionals (e.g. with divided differences) is component-by-component
evaluating the derivatives along the directions defined by the canonical basis, and therefore the
cost is proportional to the dimension of the input space. The main drawback of AD approach
is that it requires to know the source of the program P and needs a certain amount of work by
the final user to perform a correct differentiation.

The rest of the chapter is devoted to the study of different approaches to compute first- and
second-order derivatives of constrained functionals using Automatic Differentiation, and it refers
in particular to the AD tool TAPENADE3.

3.2 Principles of Automatic Differentiation

Given a program P computing a function Φ

Φ: R
n → R

m

u 7→ v
(3.1)

we want to build a program that computes the derivatives of Φ. Specifically, we want the
derivatives of the dependent (i.e. some variables in v) with respect to the independent (i.e.
some variables in u). For the sake of simplicity, let’s assume that the program P is a sequence
of instructions I1, I2, . . . , Ip that can be identified with a composition of functions, where each
simple istruction Ik is a function φk : R

qk−1 → R
qk . Thus we see P : {I1, I2, . . . , Ip} as

u 7→ v = Φ(u) = φp ◦ φp−1 ◦ · · · ◦ φ1(u)

3http://www-sop.inria.fr/tropics/

40

http://www-sop.inria.fr/tropics/


Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

where each φk is the elementary function implemented by the instruction Ik. In general, the
functions implemented by the arithmetic of the programming language are indeed differentiable4.

Finally, AD simply applies the chain rule to obtain derivatives of Φ

∂Φ

∂u

∣∣∣∣
u

=(φ′p ◦ φp−1 ◦ · · · ◦ φ1(u))·

·(φ′p−1 ◦ · · · ◦ φ1(u))·
· · · · ·
·φ′1(u)

or in a more compact way

∂Φ

∂u

∣∣∣∣
u

= φ′p(wp−1)φ
′
p−1(wp−2) · · ·φ′1(w0)

where w0 = u and wk = φk(wk−1). The last equation can be mechanically translated back into
a sequence of instructions I′k and these sequences inserted back into a copy of the control of P,
yielding a differentiated program P′ [Hascoët and Pascual, 2004].

We note here that if we are not interested in the full Jacobian (that is expensive to compute
and store because its computation involves matrix-by-matrix multiplications), we can compute
the derivatives along some directions using matrix-by-vector multiplications. In general, given
a matrix A ∈ R

n,m and two (column) vector x ∈ R
m, y ∈ R

n , we can perform the matrix-
by-vector multiplication in a twofold manner: by right, i.e. computing b = Ax, b ∈ R

n; or
by left, i.e. computing cT = yTA, c ∈ R

m (and the multiplication can be viewed as the right
multiplication using the transpose5 matrix AT , namely c = AT y). In order to use the two
multiplications, many Automatic Differentiation packages (TAPENADE [Hascoët and Pascual,
2004], OpenAD6 [Utke, 2004], TAF7 [Giering et al., 2005], ADOL-C8 [Griewank et al., 1996])
have two differentiation modes:

• the Tangent mode applied to a routine computing Φ produces another routine comput-
ing, from u and from an arbitrary direction u̇ (of same dimension as u), the derivative in
direction u̇:

u, u̇ 7→ ∂Φ

∂u

∣∣∣∣
u

u̇ = φ′p(wp−1)φ
′
p−1(wp−2) · · · φ′1(w0)u̇ (3.2)

4However in some rare case, this is not true. For example the square root is defined for the null value, and its
derivative is not.

Moreover, due to the finite representation of numbers in computers, we could have problem not only for isolated
values, but for intervals. In fact, if the derivative of a real function f(x) is not finite at x0 (i.e. lim

x→x
+
0

f
′(x) = ±∞

or lim
x→x

−

0

f
′(x) = ±∞) we cannot numerically represent the value of the derivative in the interval [x0−ε−, x0 +ε+]

in which the value of f ′(x) is greater (smaller) than the maximum (minimum) represententable number.
5Due to the discrete approach used for this work, in the following we identify the adjoint with the transpose,

namely A∗ = AT .
6http://www-unix.mcs.anl.gov/~utke/OpenAD/
7http://www.fastopt.de/
8http://www.math.tu-dresden.de/~adol-c/

41

http://www-unix.mcs.anl.gov/~utke/OpenAD/
http://www.fastopt.de/
http://www.math.tu-dresden.de/~adol-c/


3.2 Principles of Automatic Differentiation

In order to use matrix-by-vector multiplications, the obtained routine computes the deriva-
tives in the same order as the initial routine computes the original values (right to left
in the equation (3.2)) and its cost is 1 < αT < 4 times greater with respect to the cost
needed by the original routine to evaluate the function Φ(u) [Griewank, 2000]. We note
that tangent mode delivers only one real number if Φ is a real valued functional.

• the Reverse mode when applied to the previous initial routine computing Φ produces a
routine which computes, from u and from an arbitrary direction Φ̄ (of same dimension as
v = Φ(u)), the following product of same dimension as u:

u, Φ̄ 7→
(
∂Φ

∂u

∣∣∣∣
u

)∗
Φ̄ = φ′∗1 (w0)φ

′∗
p−1(wp−2) · · · φ′∗p (wp−1)Φ̄ (3.3)

For a functional of n variables, the routine produced by the reverse mode delivers n
numbers and to compute the gradient of the functional, it can be (at least theoretically
[Griewank, 2000]) n times more efficient than the tangent mode. In particular, the compu-
tation time required to evaluate

(
∂Φ
∂u

∣∣
u

)∗
Φ̄ is only a small multiple αR (usually 1 < αR . 5

[Griewank, 2000]) of the run time to evaluate Φ(u), and it is independent from the number
of the input parameters n, which can be very large.

However, we observe in the equation (3.3) that, in order to use matrix-by-vector multi-
plications, the wk are required in the reverse of their computation order. If the original
program overwrites a part of wk, the differentiated program must restore wp before it
is used by φ′∗k+1(wk). This is the main drawback of the Reverse mode of AD. The two
classical strategies to cope with that are

– Recompute-All (RA), in which the wk are recomputed when needed, restarting the
original (not-differentiated) program P on input w0 until instruction Ik. This strategy
has a quadratic time cost with respect to the total number of run-time instruction p;

– Store-All (SA), in which the wk are restored from a stack when needed. This stack is
filled (with a PUSH function) during a preliminary run (usually called forward sweep)
of P that additionally stores variables on the stack just before they are overwritten,
and then the differentiation take place in a backward sweep in which the stored values
are taken from the stack (with a POP function) and used for the evaluation of (3.3).
This strategy is used by TAPENADE ([Hascoët and Pascual, 2004]), and it has linear
memory cost with respect to p.

A simple example of Tangent and Reverse differentiation with TAPENADE is given in Figure 3.2.

Remark 3.1. From the previous definitions, if Φ is a functional (i.e. m = 1), the tangent
mode differentiation gives us a directional derivative while the reverse mode gives us a gradient
(choosing Φ̄ = 1).

To better understand how AD works in practice, we introduce a special notation (similar in
some way to the notation in [Griewank et al., 2008]) that will help us for a correct implementa-
tion. First of all, we assume that the function

f : R
nx × R

ny → R
m

(x, y) 7→ f(x, y)

42



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

is implemented by the routine func(f,x,y), where x and y are the variables that should contain
the x ∈ R

nx and y ∈ R
ny respectively, and f is the variables where will be stored the result

f(x, y) ∈ R
m (i.e. func(f,x,y) is a “subroutine” in FORTRAN language or a “void function”

in C/C++ terminology).

For differentiation, we need to know which are the independent variables (that are input
parameters of the function) and which are the dependent variables (output parameters). For
this purpose, we use an arrow over any parameter containing the independent variable and an
arrow under any parameter containing the dependent variable, thus, if we want to specify that
the routine func(f,x,y) (implementing the function f(x, y)) has f as output and x, y as input
we write

func(f
↓
,
↓
x,

↓
y) (3.4)

Furthermore, if we would specify that the function is evaluated with some specific values x = x0

and y = y0 we’ll write

func( f
f(x0,y0)

,
x0
x,

y0
y)

where the value written over a parameter means “value taken by the input variable” and the
value under a parameter means “value stored in the output variable”.

The last step is (to) specify which mode we use for differentiation and study the output
generated by the AD tool (TAPENADE in our case [Hascoët and Pascual, 2004]) that performs
the differentiation required. First of all, we must keep in account that for each independent
variable with respect to which we differentiate, we’ll have a corresponding dual variable that
will be of the same kind (input) if we use Tangent mode, and of the opposite kind (output) if we
use the Reverse mode. The same thing happens for the dependent (output) variables: the dual
variables will be output variables in the case of Tangent mode and input variables for Reverse
mode.

Using the notation previously introduced, Tangent mode differentiation for the case (3.4)
respect all the independent variables x and y gives us

func d(f,fd,x,xd,y,yd)

where the new parameters fd (output), xd (input) and yd (input) are the dual variables of f, x
and y (the d character after the variables and function name means “dot”). If we give at the
new input parameters xd and yd the values ẋ ∈ R

nx and ẏ ∈ R
ny respectively, we obtain

func d( f
f(x0,y0)

, fd(
∂f
∂x

∣∣
(x0,y0)

)
ẋ+
(

∂f
∂y

∣∣
(x0,y0)

)
ẏ

,
x0
x,

ẋ
xd,

y0
y,

ẏ

yd)

where the output parameter fd contains the value ḟ =
(
∂f
∂x

∣∣
(x0,y0)

)
ẋ+

(
∂f
∂y

∣∣
(x0,y0)

)
ẏ with ḟ ∈ R

m

(and the derivatives ∂f
∂x

and ∂f
∂y

are both evaluated at (x0, y0)).

Reverse mode differentiation of (3.4) gives us

func b(f,fb,x,xb,y,yb)

43



3.2 Principles of Automatic Differentiation

where now we have a new input parameter fb and two new output parameters xb and yb (the
b character after the variables and function name means “bar”). Storing the value f̄ ∈ R

m in
the parameter fb, we obtain

func b( f
f(x0,y0)

,
f̄

fb,
x0
x, xb(

∂f
∂x

∣∣
(x0,y0)

)∗
f̄

,
y0
y, yb(

∂f
∂y

∣∣
(x0,y0)

)∗
f̄

)

i.e. the output parameters xb and yb will contain the values x̄f =
(
∂f
∂x

∣∣
(x0,y0)

)∗
f̄ and ȳf =

(
∂f
∂y

∣∣
(x0,y0)

)∗
f̄ respectively (with x̄f ∈ R

nx , ȳf ∈ R
ny and the derivatives ∂f

∂x
, ∂f
∂y

both evaluated

at (x0, y0)). The subscript on the output variables stands to remind which is the differentiate
function: this will be useful when we need to differentiate (in reverse-mode) routines having
some common input variables.

For the case where we are differentiating with respect to only some independent variables (x
for example) we obtain for Tangent mode

func dx d( f
f(x0,y0)

, fd x
ḟx=
(

∂f
∂x

∣∣
(x0,y0)

)
ẋ

,
x0
x,

ẋ
xd,

y0
y) (3.5)

where we use the notation ḟx = fd x (and the suffix dx in the name of the differentiated
routine) to specify that the Tangent mode differentiation is performed only with respect to the
independent variable x. In the same manner, we have for the Reverse mode

func dx b( f
f(x0,y0)

,
f̄

fb,
x0
x, xb(

∂f
∂x

∣∣
(x0,y0)

)∗
f̄

,
y0
y) . (3.6)

Remark 3.2. Before continuing, it is important to introduce a notation that will help us to
keep the formalism as simple as possible.

For the case of Tangent mode differentiation, we use a dot over the differentiated (dependent)
output if the derivative is performed with respect only one independent variable (i.e. we are
computing the partial derivative and not the total one) we use a pedix with the name of the
variable we are considering. To be more clear, if Ψ: (γ,W ) 7→ Ψ(γ,W ) and J : (γ,W ) 7→
J(γ,W ), for Tangent mode differentiation we could have the following possibilities

Ψ̇γ =

(
∂Ψ

∂γ

)
γ̇ ; Ψ̇W =

(
∂Ψ

∂W

)
Ẇ ; Ψ̇ =

(
∂Ψ

∂γ

)
γ̇ +

(
∂Ψ

∂W

)
Ẇ

J̇γ =

(
∂J

∂γ

)
γ̇ ; J̇W =

(
∂J

∂W

)
Ẇ ; J̇ =

(
∂J

∂γ

)
γ̇ +

(
∂J

∂W

)
Ẇ .

The dotted quantities γ̇ and Ẇ are the new input variables corresponding to the independent
variables we are considering for the differentiation.

44



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

In the case of Reverse mode, due to the fact that the additional output variables are always
derivatives performed with respect only one single variable, we use a bar over the independent
variable we are considering and the name of the dependent variable as pedix. With the same
definition for Ψ and J above, we could have

γ̄Ψ =

(
∂Ψ

∂γ

)∗
Ψ̄ ; W̄Ψ =

(
∂Ψ

∂W

)∗
Ψ̄

γ̄J =

(
∂J

∂γ

)∗
J̄ ; W̄J =

(
∂J

∂W

)∗
J̄ ,

where Ψ̄ and J̄ are the new input quantities corresponding to the dependent variables Ψ and J
respectively.

3.3 Matrix-free methods for solving linear systems in the AD
context

Before going into the description of the algorithms to compute the first (or second) order deriva-
tives of a constrained functional, we make a little disgression that will be very useful for the
computation and that we will use extensively in the sequel.

Suppose that we want to solve a linear system of the kind

Aξ = b such that A =
(
∂f
∂x

∣∣
(x0,y0)

)
or A =

(
∂f
∂x

∣∣
(x0,y0)

)∗
(3.7)

where
f : R

nx × R
ny −→ R

nx

(x, y) 7−→ f(x, y)
(3.8)

is a differentiable function and b ∈ R
nx is a known vector (from the previous definition A is a

square matrix, namely A ∈ R
nx,nx).

A possible strategy is to compute (with AD tools for example) and store the matrix A and
then apply one of the many algorithms (direct or iterative) developed for solving linear systems.

However, with the analysis done in Section 3.2 to study how the application of the two
AD modes on a routine looks like, we could perform the matrix-by-vector multiplication in
(3.7) using the derivatives obtained by AD like in (3.5) or (3.6) and therefore we can solve the
linear system (3.7) without storing the matrix A. In fact we could use iterative algorithms (like
GMRES, see e.g. [Saad, 1996]) that do not need to know the matrix A, but only its effect on
a given vector ξi, i.e. the matrix-by-vector multiplication Aξi (we call such kind of algorithms
“matrix-free methods”).

In other words, given a general linear solver that implements a matrix-free method, we need
to replace any matrix-by-vector occurrence of the kind Aξi with the corresponding routine (3.5)
or (3.6), depending on the definition of A: we shall use the Tangent mode derivative (3.5) if
A =

(
∂f
∂x

∣∣
(x0,y0)

)
and the Reverse mode derivative (3.6) if A =

(
∂f
∂x

∣∣
(x0,y0)

)∗
.

45



3.3 Matrix-free methods for solving linear systems in the AD context

Original Tangent Reverse

F : a, b, c 7→ r Ḟ : a, ȧ, b, ḃ, c, ċ 7→ r, ṙ F : a, b, c, r 7→ a, b, c

x = 2.0

r = x*a

x += c

r += x*b

x = 3.0

r += x*c

ẋ = 0.0

x = 2.0

ṙ = x*ȧ+ẋ*a

r = x*a

ẋ += ċ

x += c

ṙ += ẋ*b+x*ḃ

r += x*b

ẋ = 0.0

x = 3.0

ṙ += x*ċ+ẋ*c

r += x*c

a = 0.0

b = 0.0

c = 0.0

x = 2.0

r = x*a

PUSH(x)

x += c

PUSH(r)

r += x*b

PUSH(x)

x = 3.0

PUSH(r)

r += x*c

x= c*r

POP(r)

c+= x*r

POP(x)

x= 0.0

x= b*r

POP(r)

b+= x*r

POP(x)

c+= x

x+= a*r

a+= x*r

x= 0.0

Figure 3.2: Tangent and Reverse differentiation on a small code. Left: Original code, middle:
Tangent code, right: Reverse code. Tangent-differentiated variables are shown with a dot above,
as in ẋ. Reverse-differentiated variables are shown with a bar above, as in x. The tangent
mode adds differentiate instruction before the original one, therefore the original structure of
the program is maintained. The reverse mode performs a forward sweep (in which the stack is
filled with PUSH functions) then a reverse sweep (in which the variable are taken from the stack
with POP functions). The reverse code produced with TAPENADE is actually shorter because
of static data-flow analysis: the code in light grey is stripped away, but this has no influence on
the demonstration.

46



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

In our case, we choose the so-called GMRES-RCI, i.e. the GMRES implementation made
by CERFACS [Frayssé et al., 2003] in which a Reverse Communication Interface is implemented
[Dongarra et al., 1995]. The primary aim of Reverse Communication is to isolate the matrix-
by-vector multiplications that the user supplies on data structures that are most natural to
the problem at hand [Dongarra et al., 1995], so it is a natural paradigm when the matrix-
by-vector multiplication is performed by a differentiated routine. The typical flow chart for
Reverse Communication is given in Figure 3.3 where we note that all the phases of a typical
iterative solver (matrix-by-vector multiplication, preconditioning, etc.) are kept separated, and
the subroutine does not need to know anything about the data structure of the problem but use
only the result of the various phases to drive the algorithm.

To solve the two case of (3.7) we have implemented two versions of the same GMRES-RCI
routine with only a difference regarding the way to compute the matrix-by-vector multiplication
Ax:

• the first version (that we have called matrixfree solve linearsystem) performs the
matrix-by-vector multiplications using the routine (3.5) and therefore solves the linear
system

(
∂f
∂x

∣∣
(x0,y0)

)
ξ = b;

• the second version (that we have called matrixfree solve adjointlinearsystem) per-
forms the matrix-by-vector multiplications using the routine (3.6) and therefore solves the
adjoint linear system

(
∂f
∂x

∣∣
(x0,y0)

)∗
ξ = b.

However, for the “matrix-free methods” (and for the iterative methods in general) it is a
mandatory task to use an appropriate preconditioner, in order to accelerate the velocity of
convergence to the solution of the system [Saad, 1996]. The problem here is that to build a
preconditioner usually we need to know the matrix A and not only its effect on a vector. This
request seems to be in contrast with our purpose of building a matrix-free linear solver, but it
is not always the case. As we have seen in the Section 1.2.5, many CFD solvers use an implicit
Newton-like algorithm to converge to the steady solution Wh, and this algorithm takes the form
of a defect-correction iteration [Barrett et al., 1988; Koren, 1988; Skeel, 1981; Stetter, 1978]





[
1

∆tn
+

(
∂Ψ(1)

∂W

∣∣∣∣
(γ,Wn)

)]
δW n = −Ψ(2)(γ,W n)

W n+1 = W n + δW n

(3.9)

in which the Jacobian matrix A(1) =
(
∂Ψ(1)

∂W

∣∣
(γ,Wn)

)
is referred to the first-order approximation

of the state function Ψ(1)(γ,W ) and is obtained in some way (by exact hand-code differentiation,
for example) and stored in the memory. Moreover, due to the fact that a preconditioner is only
an approximate inverse of the original matrix that represents the linear system to solve, we can
start from the first-order accurate Jacobian matrix A(1), build a preconditioner

(
P (1)

)−1
and

then use this preconditioner to solve the second-order accurate linear system

(
∂Ψ(2)

∂W

∣∣∣∣
(γ,Wh)

)
ξ = b (3.10)

47



3.3 Matrix-free methods for solving linear systems in the AD context

Inizialization
z ← b

Drive RCI
x← Θ(z)

Matrix-by-vector multiplication
z ← Ax

Left Preconditioning

z ← P−1
L x

Right Preconditioning

z ← P−1
R x

Scalar product
z ← x · y

Exit
job==0

job==4

job==3

job==2

job==1

case(job):

Figure 3.3: The Reverse Communication Interface. The block Drive RCI is the driver for the
algorithm and contains all the operations that define the iterative solver (GMRES, etc.) and the
test to verify the stopping criteria. PL and PR are the left and right-preconditioner respectively
and are input arguments for the routine.

48



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

with the matrix-free algorithm above, in which the differentiated routine are referred to the
second-order approximation. In the case of the adjoint linear system

(
∂Ψ(2)

∂W

∣∣∣∣
(γ,Wh)

)∗
ξ = c (3.11)

we need to use the preconditioner
(
P (1)∗)−1

built from the transposed matrix A(1)∗.
Obviously, we expect that the number of iteration needed to solve one of the systems in

(3.10)–(3.11) with such first-order preconditioners will be greater that the corrispondent first-
order linear system. We have made some numerical tests on with different preconditioners and
different dimensions for the Krylov space and the results confirmed our hypothesis (see the
Section 6.1 for details).

3.4 Automatic Differentiation of constrained functionals

We are interested in obtaining the first and second derivatives of a functional j depending on
the control γ ∈ R

n, and expressed in terms of a state W (γ) ∈ R
N as follows:

j : γ 7→ j(γ) := J(γ,W ) with W : γ 7→W (γ) such that Ψ(γ,W ) = 0 (3.12)

and where J : R
n × R

N → R.

We observe that W : γ → W (γ) is a function implicitly defined through the state equation
Ψ(γ,W (γ)) = 0, and the functional j(γ) := J(γ,W (γ)) is evaluated at the solution W (γ) for
the state equation. In general, the solution for the state equation can be found only numerically,
i.e. we have a program that takes a value γh for the control and gives us the corresponding state
Wh that satisfies the constraint Ψ(γh,Wh) = 0. Therefore our problem is how to compute the

gradient dj
dγ

∣∣
γh

and the Hessian d2j
dγ2

∣∣
γh

at the point γh.

We can consider two different points of view:

• Implicit (brute-force) differentiation: it consists in differentiating directly the implicit func-
tion j as a function of the control variable γ. This means that the entire process, involving
the solution algorithm for state equation and the evaluation of the functional, is considered
to be implemented by the single program func implicit(j,gamma) and it is differentiated
as a whole (Fig. 3.4).

• Differentiation of explicit parts: the second point of view is to consider the solution algo-
rithm for state equation and the functional evaluation as separated processes, and applying
differentiation only to the routines which compute explicit functions (that are functions
implementing the state residual Ψ and the functional J). A typical structure for a pro-
gram that performs the evaluation of a functional where the state equation Ψ(γ,W ) = 0
is solved with a fixed-point algorithm is given in the Fig. 3.5, in which the subroutine im-
plementing the state residual is called state residuals(psi,gamma,w) and the routine
implementing the evaluation of the functional is called functional(j,gamma,w).

49



3.4 Automatic Differentiation of constrained functionals

The underlying idea is that an explicit function is implemented by a sequence of arithmetic
computations, whereas implicit functions are implemented using solvers and other iterative algo-
rithms. Explicit functions basically have a fixed computational graph therefore the underlying
function can be considered continuous and differentiable and the AD theory is well-founded in
this case. The computational graph of implicit functions is dynamic (this is the case where
we have branches or controls depending on active variables), where a small change of the dif-
ferentiable input may change completely this computational graph: the function is then only
piecewise-continuous and in correspondence to these discontinuity points we are getting out of
the framework for which the AD is fully justified, resulting in the possibility of wrong results.
AD should be used with extreme care for programs having dynamic computational graph.

In the first approach, differentiating the entire program implementing j can be performed
with either Tangent or Reverse mode (see Section 3.2). It directly produces a differentiated
program, in a black box manner. The risk is that this program is sometimes not reliable and it
often exhibits very poor performance.

To analyze this last issue, we observe that since the program implementing j contains the
iterative solver method for the state equation, the differentiated program will contain this solver
in differentiated form. Let’s assume that we need niter iterations to obtain the nonlinear solution,
and that each iteration costs (1 + c), where we assume an unit runtime cost for the evaluation
of the residual Ψ(γ,W ) and a cost c > 0 for the remaining part of the iteration (that contains
the algorithm for updating the solution to the next step): the total cost is then niter(1 + c).

Tangent mode produces a program that we need to apply n times for computing the entire
gradient. The cost is n(niterαT )(1+c) where αT is the overhead associated with the differentiated
code with respect to the original one. One has usually 1 < αT < 4, see for example [Griewank,
2000]. Further, the memory requirements will be about twice the memory needed by the original
code.

With Reverse mode, we are able to obtain the entire gradient with a single evaluation of the
differentiated routine. But, as we have seen in Section 3.2, the Reverse mode with the Store-All
(SA) strategy produces a code which involves two successive parts [Hascoët and Pascual, 2004]:

- a forward sweep close to original code,

- a backward sweep performed in the reverse order of the original code.

The problem is that the backward sweep needs data computed in the forward sweep, but in the
reverse order. In the SA strategy, these data are stored in a stack during the forward sweep (using
a PUSH function) and taken from the stack during the backward sweep (using a POP function).

The total cost (in terms of CPU time and memory) strongly depends on the strategy applied
by the AD tool to solve the problem of making the intermediate values available in reverse order
(see Section 3.2). For the case of SA strategy, the CPU cost to evaluate the gradient will be
(niterαR)(1 + c) with 1 < αR < 5, i.e. αR times the original code, but there is an additional
cost in memory to store values on the stack. This stack size is proportional to niter and it can
quickly exceed the available memory. For a Recompute-All (RA) strategy the memory will be of
the same order as the original routine, but the CPU cost will be (n2

iterαR)(1 + c), i.e. (niterαR)
times the nonlinear solution.

50



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

For real large programs, neither SA or RA strategy can usually work (SA requires too much
memory and RA requires too much runtime), so we need a special storage/recomputation trade-
off in order to be efficient using checkpoints (see [Hascoët and Pascual, 2004]). The idea is to
store enough variables (snapshots) to be able to restart execution of the backward sweep from a
given point, in order to reduce the stack size for the SA strategy or the lenght of recomputation
sequence for the RA strategy.

Obviously, the runtime cost of SA strategy with checkpointing will be greater than the pure
SA strategy (with the benefit of a smaller stack). However in many cases we can keep this
cost reasonably low. For example in the case of iterative processes of fixed lenght niter, it has
been shown [Griewank, 1992] that the runtime cost of the differentiated code is of the order of
s
√
niter(niterαR)(1 + c) and the stack size grows as s

√
niter (where s is the number of snapshots

available). To the opposite, RA with checkpointing results in a lower runtime (and higher
memory requirements) with respect the pure RA.

In many cases, these checkpointing strategies are the only way to go. This is the case for
unsteady nonlinear systems, where we have not a steady solution but a time-dependent solution
which depends on the initial conditions, and for which we do not know a strategy working without
the intermediate-time state variable values. Checkpointing can be applied quasi-automatically
by the Automatic Differentiator or applied by hand-coding (see [Tber et al., 2007] for an appli-
cation of checkpointing to an Oceanographic code).

In contrast to the brute force approach, we consider the case where the iterative algo-
rithm is a fixed point one, e.g. when we have stationary problems (see the Fig. 3.5). In this
case we can avoid the differentiation of the iterative algorithms (implemented in the routine
flow solver(gamma,w) in Fig. 3.5) that could come from the pseudo-time advancing scheme,
but we differentiate only the routines implementing the state residuals computation and the
functional evaluation (that we assume not containing any iterative algorithm), and we will use
only the final state Wh. This strategy results in a differentiated code that is faster and that
does not suffer from reliability problems. Moreover, in the context of the fixed-point algorithms
the solution does not depend on the initial guess W 0: therefore in the Reverse mode only the
final state variable Wh is necessary for the backward sweep, resulting in a smaller stack size and
therefore in a lower memory requirement.

For the above reasons, in case of fixed-point algorithms, we recommend the differentiation
of explicit parts instead of the implicit (brute-force) approach. Moreover, as we will see in the
following sections, with an appropriate design of the interfaces of the routine implementing the
state residual Ψ and the functional J , we can provide a framework that frees the user from the
complex task of organizing the algorithms needed for the gradient and Hessian evaluation.

We present now in more details this strategy: we go back to the mathematical equations of the
constrained functional, then manipulate them to obtain equations for the required derivatives,
and from there we deduce our architecture of the differentiated code that avoids the problems
above.

51



3.4 Automatic Differentiation of constrained functionals

Initialize γh,W
0

Compute Ψi = Ψ(γh,W
i)

Compute δW i = F (Ψi) (implicit or explicit)

Update W i+1 = W i + δW i

Test ||δW i|| < ε
False

i = i+ 1

True

Wh = W i+1

Compute j = J(γh,Wh)

func implicit(j,gamma)

Figure 3.4: Typical structure for a program that performs the evaluation of a functional with a
fixed-point algorithm. In this case the entire process (solution algorithm for the state equation
and the evaluation of the functional) is considered to be implemented by the single program
func implicit(j,gamma): the functional is considered as an implicit function only of the con-
trol variable γ, i.e. a function containing iterative algorithms. The application of Automatic
Differentiation on this kind of program could give incorrect results, due to the presence of the
iterative algorithms for which the AD framework is not fully justified.

52



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

Initialize γh,W
0

Compute Ψi = Ψ(γh,W
i)

Compute δW i = F (Ψi) (implicit or explicit)

Update W i+1 = W i + δW i

Test ||δW i|| < ε
False

i = i+ 1

flow solver(gamma,w)

True

state residuals(psi,gamma,w)

Wh = W i+1

Compute j = J(γh,Wh) functional(j,gamma,w)

Figure 3.5: Typical structure for a program that performs the evaluation of a functional with a
fixed-point algorithm. The iterative flow-solver can be viewed as the composition of two phases:
the evaluation of the residual (performed by the subroutine state residuals(psi,gamma,w))
that does not contain any iterative algorithm, and the evolution (with implicit or explicit meth-
ods) to the next step. In our strategy we want to avoid the differentiation of iterative algorithms
(for which the application of AD is not fully justified), therefore we differentiate only the state
residual and the routine functional(j,gamma,w) that performs the evaluation of the functional.

53



3.5 First-order derivative

3.5 First-order derivative

As we have seen in the previous section, to compute the gradient of a function using AD, we can
choose between two modes: Tangent and Reverse mode differentiation. Now we want compute
the gradient j′ of the constrained functional (3.12) using the differentiation of explicit parts
implementing Ψ and J with the two differentiation modes.

Using the chain rule, the differential of the functional j is given in terms of Ψ and J by

dj

dγ
=
∂J

∂γ
+

∂J

∂W

dW

dγ
(3.13)

where the derivatives of the state variables W (γ), that we remeber is an implicit function, could
be obtained through the differentiating the state equation Ψ(γ,W ) = 0, namely:

∂Ψ

∂γ
+
∂Ψ

∂W

dW

dγ
= 0 (3.14)

and therefore

dW

dγ
= −

(
∂Ψ

∂W

)−1∂Ψ

∂γ
.

3.5.1 Tangent mode differentiation

It consists in computing the Gâteaux-derivatives with respect to each component direction ei
with i = 1, . . . , n (ei = (0, . . . 0, 1, 0, . . . , 0)T , where 1 is at the i-th component):

dj

dγi
=
dj

dγ
ei =

∂J

∂γ
ei +

∂J

∂W

dW

dγ
ei (3.15)

where dW
dγ
ei is the solution of the linear system:

∂Ψ

∂W

dW

dγ
ei = −∂Ψ

∂γ
ei . (3.16)

In order to get the gradient, (3.16) must be solved and (3.15) has to be evaluated at the point
(γh,Wh) for each vector ei of the canonical basis, i.e. n times and the main cost is due to the
solution of n linearised N -dimensional systems.

If we choose to solve the single system (3.16) with the iterative matrix-free method presented
in Section 3.3, and the solution is obtained after niter,T steps, the total cost will be of the order
of αTniter,T , i.e. niter,T evaluation of the matrix-by-vector operation ∂Ψ

∂W
x, where we assume

that each evaluation costs αT times the evaluation of the state residual Ψ(γ,W ) (and the cost
of the state residual is taken as reference equal to 1). Therefore, the cost of the full gradient
will be nαTniter,T .

54



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

3.5.2 Reverse mode differentiation

If we perform the trasposition of (3.13) and using the (3.14), the complete gradient can be
expressed by the equation (

dj

dγ

)∗
=

(
∂J

∂γ

)∗
−
(
∂Ψ

∂γ

)∗
Π (3.17)

where Π: (γ,W ) 7→ Π(γ,W ) (the adjoint state) is the solution of the linear system

(
∂Ψ

∂W

)∗
Π =

(
∂J

∂W

)∗
. (3.18)

It is important to note that the above formulation permits us to obtain all the derivatives needed
by (3.17)-(3.18) using Reverse mode differentiation of the programs implementing J(γ,W ) and
Ψ(γ,W ).

To compute the gradient j′ with this approach we need to solve only one linearised N -
dimensional system: the adjoint system (3.18). If we choose to solve the adjoint system with an
iterative matrix-free method, we can apply the same estimate as in the case of the Tangent mode
differentiation, but this time the overhead associated with the evaluation of the matrix-by-vector
operation

(
∂Ψ
∂W

)∗
x with respect to the state residual evaluation will be αR (and usually αR > αT )

and the number of iterations niter,R for the convergence of the solution could be different from
niter,T of the previous case (in our experience, the number of iterations needed by GMRES to
solve the system Ax = b and ATx = c are of the same order, see the Section 6.1): therefore the
total runtime cost cost for the gradient will be αRniter,R.

From the previous arguments it clearly appears that, if we need to compute the gradient j′

only, the Reverse mode is cheaper in terms of CPU time respect to the Tangent mode if n≫ 1.
Nevertheless, the Tangent mode algorithm in Section 3.5.1 will be used in the following because
it is the basis for the Hessian computation with the Tangent-on-Tangent approach.

3.6 Second-order derivative

In the same manner as the computation of the gradient, for second derivatives we have different
possibilities, which are theoretically equivalent, but they differ in the computational cost and
the best strategy depends, in the end, on the number n of the control variables for the given
functional. Moreover, the best strategy depends on which use of the second-order derivative we
need, i.e. the best strategy to obtain the full Hessian matrix could be different from the best
strategy to obtain its diagonal part or the multiplication of the Hessian matrix by a vector.

The first method to obtain the second-order differentiation of a constrained functional per-
forms two successive Tangent mode differentiations for both the functional and the state residuals
and use the adjoint state to compute each single element in the Hessian matrix [Ghate and Giles,
2007]: we call this approach Tangent-on-Tangent (ToT). The second approach (Tangent-on-
Reverse, ToR) performs a Tangent mode differentiation over the gradient (3.17) obtained with
Reverse differentiation.

55



3.6 Second-order derivative

3.6.1 Tangent-on-Tangent approach

This methods was initially investigated by [Sherman et al., 1996] along with various other al-
gorithms, but the publication does not go into the implementation details for a generic fluid
dynamic code. Here we present the mathematical background behind the idea and the efficient
AD implementation of [Ghate and Giles, 2007] but with a different analysis of the computational
cost.

Starting from the i-th element of the gradient (3.15), we perform another differentiation with
respect to the variable γk obtaining the i-k element of the Hessian matrix

(
d2j

dγ2

)

i,k

=
d2j

dγidγk
= D2

i,kJ +
∂J

∂W

d2W

dγidγk
(3.19)

where

D2
i,kJ =

∂

∂γ

(
∂J

∂γ
ei

)
ek +

∂

∂W

(
∂J

∂γ
ei

)
dW

dγk
+

∂

∂W

(
∂J

∂γ
ek

)
dW

dγi
+

∂

∂W

(
∂J

∂W

dW

dγi

)
dW

dγk
.

Differentiating the equation (3.16) we get

D2
i,kΨ +

∂Ψ

∂W

d2W

dγidγk
= 0 (3.20)

where

D2
i,kΨ =

∂

∂γ

(
∂Ψ

∂γ
ei

)
ek +

∂

∂W

(
∂Ψ

∂γ
ei

)
dW

dγk
+

∂

∂W

(
∂Ψ

∂γ
ek

)
dW

dγi
+

∂

∂W

(
∂Ψ

∂W

dW

dγi

)
dW

dγk

and ei (ek) is the usual vector of the canonical basis with 1 at the i-th (k-th) component and zero
otherwise. Substituting the second derivatives of the state with respect to the control variables
d2W
dγidγk

in equation (3.19) from equation (3.20) we get

d2j

dγidγk
= D2

i,kJ −
∂J

∂W

(
∂Ψ

∂W

)−1

D2
i,kΨ

= D2
i,kJ −Π∗D2

i,kΨ

(3.21)

where Π is the solution of the adjoint system (3.18). The i-k element of the Hessian matrix(
d2j
dγ2

∣∣
γh

)
is then obtained evaluating the (3.21) at the point (γh,Wh) solution of the state equation

Ψ = 0, namely (
d2j

dγ2

∣∣∣∣
γh

)

i,k

=
(
D2
i,kJ

)∣∣
(γh,Wh)

−Π∗
h

(
D2
i,kΨ

)∣∣
(γh,Wh)

(3.22)

where Πh ∈ R
N is the solution of the adjoint linear system

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
Πh =

(
∂J

∂W

∣∣∣∣
(γh,Wh)

)∗
.

56



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

The n derivatives
dW

dγi
in the formulas for D2

i,kJ and D2
i,kΨ, should be computed (and stored)

solving the linear systems

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)
dW

dγi
= −

(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)
ei i = 1, . . . , n

and this task can be performed using the routine matrixfree solver linearsystem as in Sec-
tion 3.3. We assume the number of iterations needed for the iterative linear solver to the
convergence of the solution to be niter,T , and each iteration calls a tangent-differentiated routine
(namely state residuals dw d) implementing the matrix-by-vector multiplication ∂Ψ

∂W
x whose

cost is αT times the cost of the original routine implementing the evaluation of the state residuals
Ψ(γ,W ).

Implementation. Now the question is: how can we obtain the quantities
(
D2
i,kΨ

)∣∣
(γh,Wh)

and(
D2
i,kJ

)∣∣
(γh,Wh)

in (3.22) using Automatic Differentiation? As we will see soon, if we perform

two successive Tangent-mode differentiation of the routine implementing Ψ (J) we will able to
compute

(
D2
i,kΨ

)∣∣
(γh,Wh)

(or the same quantity relative to J) with a single invocation of the

resulting double-differentiated routine. Let us suppose that the subroutine computing the state
residual Ψ(γ,W ) is state residuals(psi,gamma,w), where the input variables are gamma and
w, and the output variable is psi.

state residuals(psi
↓
,

↓
gamma,

↓
w)

Automatic Differentiation in Tangent mode with respect to the input variables gamma and w

builds subroutine:

state residuals d(psi
↓
, psid

↓
,

↓
gamma,

↓
gammad,

↓
w,

↓
wd)

that has the additional output psid = Ψ̇ =
(
∂Ψ
∂γ

)
γ̇ +

(
∂Ψ
∂W

)
Ẇ , calling gammad = γ̇ and wd = Ẇ

the additional input variables.

Now we differentiate the routine state residuals d in tangent mode considering psid as
the output variable and with respect to gamma and w, obtaining

state residuals d d(psi
↓
, psid

↓
, psidd

↓
,

↓
gamma,

↓
gammad0,

↓
gammad,

↓
w,

↓
wd0,

↓
wd) (3.23)

the additional output of which is

psidd = ˙̇Ψ =
∂

∂γ

(
∂Ψ

∂γ
γ̇

)
γ̇0 +

∂

∂W

(
∂Ψ

∂γ
γ̇

)
Ẇ0 +

∂

∂W

(
∂Ψ

∂γ
γ̇0

)
Ẇ +

∂

∂W

(
∂Ψ

∂W
Ẇ

)
Ẇ0

and where gammad0 = γ̇0 and wd0 = Ẇ0 are additional input variables.

57



3.6 Second-order derivative

In order to evaluate the term D2
i,kΨ at the point (γh,Wh) we must call the routine (3.23)

with the appropriate arguments, that is:

state residuals d d(psi
Ψ
, psid

Ψ̇

, psidd
˙̇Ψ

,
γh

gamma,
ek

gammad0,
ei

gammad,
Wh
w ,

dW
dγk

wd0,

dW
dγi

wd) (3.24)

where the derivative of the state variables with respect to the control dW
dγi

is obtained as solution
of the linear system (3.16) and the resulting output variable is

psidd = ˙̇Ψ = D2
i,kΨ

∣∣
(γh,Wh)

.

Therefore, the Tangent-on-Tangent approach is the application of two successive tangent-
mode differentiations: the first differentiation acts on the original routine, the second one acts
on the result of the first differentiation.

The same argument applies to the evaluation of the term D2
i,kJ . In this case, we perform a

Tangent-on-Tangent derivative of the routine

functional(j
↓
,

↓
gamma,

↓
w)

and we get

functional d d(j
J

, jd
J̇

, jdd
˙̇
J

,
γh

gamma,
ek

gammad0,
ei

gammad,
Wh
w ,

dW
dγk

wd0,

dW
dγi

wd) (3.25)

where the resulting jdd = ˙̇J is the value of
(
D2
i,kJ

)∣∣
(γh,Wh)

.

It is useful to note that the n derivatives of the state with respect to the control dW
dγi

must be

evaluated and stored before any evaluation of D2
i,kJ or D2

i,kΨ. If the number of state variables N
and/or the number of control variables n are high, the previous strategy could be not applicable.
One possible solution for this problem could be to store the vectors dW

dγi
on the hard-disk instead

of keeping them into the RAM, but this strategy could have negative impact on the performance
of the computation due to the I/O overhead.

Description of the algorithm for the Hessian matrix with the ToT approach. The
algorithm to compute the Hessian matrix with the ToT approach can be summarized as follow:

1. compute the state Wh such that Ψ(γh,Wh) = 0;

2. compute W̄J =

(
∂J

∂W

∣∣∣∣
(γh,Wh)

)∗

3. compute the adjoint state Πh solving the linear system

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
Πh = W̄J ;

4. for each element of the canonical basis ei, i = 1, . . . , n

58



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

Solve

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
Πh =

(
∂J

∂W

∣∣∣∣
(γh,Wh)

)∗

Initialize ei

Solve ∀ i
(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)
θ
(i)
h = −

(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)
ei

i = 1, . . . , n

(
D2
i,kJ

)∣∣
(γh,Wh)

=

[
∂

∂γ

(
∂J

∂γ
ei

)]∣∣∣∣
(γh,Wh)

ek +

[
∂

∂W

(
∂J

∂γ
ei

)]∣∣∣∣
(γh,Wh)

θ
(k)
h +

+

[
∂

∂W

(
∂J

∂γ
ek

)]∣∣∣∣
(γh,Wh)

θ
(i)
h +

[
∂

∂W

(
∂J

∂W
θ
(i)
h

)]∣∣∣∣
(γh,Wh)

θ
(k)
h

(
D2
i,kΨ

)∣∣
(γh,Wh)

=

[
∂

∂γ

(
∂Ψ

∂γ
ei

)]∣∣∣∣
(γh,Wh)

ek +

[
∂

∂W

(
∂Ψ

∂γ
ei

)]∣∣∣∣
(γh,Wh)

θ
(k)
h +

+

[
∂

∂W

(
∂Ψ

∂γ
ek

)]∣∣∣∣
(γh,Wh)

θ
(i)
h +

[
∂

∂W

(
∂Ψ

∂W
θ
(i)
h

)]∣∣∣∣
(γh,Wh)

θ
(k)
h

i = 1, . . . , n

k = i, . . . , n

(
d2j

dγ2

∣∣∣∣
γh

)

i,k

=
(
D2
i,kJ

)∣∣
(γh,Wh)

−Π∗
h

(
D2
i,kΨ

)∣∣
(γh,Wh)

Figure 3.6: Tangent-on-Tangent algorithm for the full Hessian matrix.

59



3.6 Second-order derivative

(a) compute Ψ̇(i)
γ =

(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)
ei

(b) compute (and store) the vector θ
(i)
h solution of the linear system

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)
θ
(i)
h = −Ψ̇(i)

γ (3.26)

5. for i = 1, . . . , n and k = i, . . . , n

(a) compute
(
D2
i,kΨ

)∣∣
(γh,Wh)

using the subroutine 3.24;

(b) compute
(
D2
i,kJ

)∣∣
(γh,Wh)

using the subroutine 3.25;

(c) compute

(
d2j

dγ2

∣∣∣∣
γh

)

i,k

=
(
D2
i,kJ

)∣∣
(γh,Wh)

−Π∗
h

(
D2
i,kΨ

)∣∣
(γh,Wh)

.

From equation (3.22) we see that the ToT approach gives us a single element i-k of the
Hessian matrix at time, then using the symmetry property of the Hessian we can compute the
full n×n matrix applying n(n+1)

2 time the steps 5a–5c in the algorithm above.

For each element i-k we need to know the vectors θ
(i)
h = dW

dγi
and θ

(k)
h = dW

dγk
obtained solving

the linear system (3.26) whose cost is αTniter,T (for simplicity we assume that the number of
iterations needed to solve the linear system is independent from the right hand side: some
numerical experiments are shown in Section 6.1). These linear systems could be solved using
the matrix-free algorithm matrixfree solve linearsystem (see Section 3.3).

Moreover, the quantity
(
D2
i,kΨ

)∣∣
(γh,Wh)

(step 5a) can be obtained with a single invocation of

the differentiated-twice subroutine (3.24) and its cost is α2
T times the cost of the evaluation of

the residual Ψ(γ,W ) (that it is assumed to be unitary). The analogous quantity relative to the
functional

(
D2
i,kJ

)∣∣
(γh,Wh)

(step 5b) can be obtained with a single invocation of the differentiated-

twice subroutine (3.25) and its cost is negligible respect to (3.24), being negligible the cost to
evaluate the subroutine functional(j,gamma,w) respect to state residuals(psi,gamma,w).

Therefore, assuming the adjoint state Πh to be available, the evaluation of the full Hessian
with the ToT approach costs

nαT
[
niter,T +

(n+ 1)

2
αT
]

and we note that the cost is quadratic respect to the dimension of the control variables but, if the
we have niter,T ≫ n the main contribution could be from the cost to solve the n linear systems
(3.26). Therefore, if the dimension of the control variables n is small, the cost is dominated by
the solution of the linear systems, otherwise (and assuming the number of iterations niter to be
independent from n) the main cost is due to the differentiated-twice subroutines.

Another important thing to note is the fact that with ToT we can compute the diagonal of
the Hessian without computing the extra-diagonal values, due to the fact that the Hessian is
built element-by-element: this fact results in a cost for the entire diagonal of

nαT
[
niter,T + αT

]

60



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

(i.e. one linear system (3.26) and one evaluation of the differentiated-twice routines in the
steps 5a-5c for each element of the diagonal).

Remark 3.3. If we want to evaluate the multiplication of the Hessian by a vector δ ∈ R
n,

we can evaluate the resulting vector element-by-element, using the Tangent differentiation of
derivative (3.15) along the direction δ instead of ek. This results in the algorithm in Figure 3.7
where we have the single loop over i = 1, . . . , n and where the derivative of the state dW

dγk
= dW

dγ
ek

is substituted with dW
dγ
δ. This last quantity can be obtained from the computed dW

dγk
using the

fact that the vector δ can be considered as linear combination of vector ek of the canonical basis.
Thus, the resulting cost for the Hessian-by-vector evaluation is

nαT
[
niter,T + αT

]
.

3.6.2 Tangent-on-Reverse approach

This consists in the direct derivation in any direction ei, i = 1, . . . , n of the (non-scalar) function:

(
dj

dγ

)∗
=

(
∂J

∂γ

)∗
−
(
∂Ψ

∂γ

)∗
Π

where W : γ 7→ W (γ) such that Ψ(γ,W ) = 0 and Π: (γ,W ) 7→ Π(γ,W ) is the adjoint state
defined as

Π =

(
∂Ψ

∂W

)−∗( ∂J

∂W

)∗
.

To build the algorithm to compute the Hessian in the present context we need the following

Lemma 3.1 (Hessian-by-vector). Let γh ∈ R
n and Wh ∈ R

N such that Ψ(γh,Wh) = 0 and
let

j : R
n −→ R

γ 7−→ j(γ) := J(γ,W )

then the projection of the Hessian

(
d2j

dγ2

∣∣∣∣
γh

)
∈ R

n×n along a direction δ ∈ R
n is given by

(
d2j

dγ2

∣∣∣∣
γh

)
δ =

[
∂

∂γ

(
∂J

∂γ

)∗]∣∣∣∣
(γh,Wh)

δ +

[
∂

∂W

(
∂J

∂γ

)∗]∣∣∣∣
(γh,Wh)

θh+

−
[
∂

∂γ

((
∂Ψ

∂γ

)∗
Πh

)]∣∣∣∣
(γh,Wh)

δ −
[
∂

∂W

((
∂Ψ

∂γ

)∗
Πh

)]∣∣∣∣
(γh,Wh)

θh+

−
(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)∗
λh

61



3.6 Second-order derivative

Solve

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
Πh =

(
∂J

∂W

∣∣∣∣
(γh,Wh)

)∗

Initialize ei

Solve ∀ i
(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)
θ
(i)
h = −

(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)
ei

i = 1, . . . , n

(
D2
i J
)∣∣

(γh,Wh)
=

[
∂

∂γ

(
∂J

∂γ
ei

)]∣∣∣∣
(γh,Wh)

δ +

[
∂

∂W

(
∂J

∂γ
ei

)]∣∣∣∣
(γh,Wh)

θh+

+

[
∂

∂W

(
∂J

∂γ
δ

)]∣∣∣∣
(γh,Wh)

θ
(i)
h +

[
∂

∂W

(
∂J

∂W
θ
(i)
h

)]∣∣∣∣
(γh,Wh)

θh

(
D2
iΨ
)∣∣

(γh,Wh)
=

[
∂

∂γ

(
∂Ψ

∂γ
ei

)]∣∣∣∣
(γh,Wh)

δ +

[
∂

∂W

(
∂Ψ

∂γ
ei

)]∣∣∣∣
(γh,Wh)

θh+

+

[
∂

∂W

(
∂Ψ

∂γ
δ

)]∣∣∣∣
(γh,Wh)

θ
(i)
h +

[
∂

∂W

(
∂Ψ

∂W
θ
(i)
h

)]∣∣∣∣
(γh,Wh)

θh

i = 1, . . . , n

(
d2j

dγ2

∣∣∣∣
γh

δ

)

i

=
(
D2
i J
)∣∣

(γh,Wh)
−Π∗

h

(
D2
iΨ
)∣∣

(γh,Wh)

Figure 3.7: Tangent-on-Tangent algorithm for the Hessian-by-vector multiplication. The vector
θh is the solution of the linear system

(
∂Ψ
∂W

)
θh = −

(
∂Ψ
∂γ

)
δ and it could be obtained as linear

combination of the vector θ
(i)
h , namely θh =

∑n
i δiθ

(i)
h where δi is the i-th component of the

vector δ.

62



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

where Πh, θh, λh ∈ R
N satisfy





(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
Πh =

(
∂J

∂W

∣∣∣∣
(γh,Wh)

)∗

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)
θh = −

(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)
δ

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
λh =

∂

∂γ

(
∂J

∂W

)∗
δ +

∂

∂W

(
∂J

∂W

)∗
θh+

− ∂

∂γ

[(
∂Ψ

∂W

)∗
Πh

]
δ − ∂

∂W

[(
∂Ψ

∂W

)∗
Πh

]
θh .

Proof. First of all, we note that the tangent derivative along the direction δ of a (n-dimensional)
function j : γ 7→ j(γ) := J(γ,W ) subject to Ψ(γ,W ) = 0, is given by

dj

dγ
δ =

∂J

∂γ
δ +

∂J

∂W

dW

dγ
δ

=
∂J

∂γ
δ − ∂J

∂W

(
∂Ψ

∂W

)−1∂Ψ

∂γ
δ

=
∂J

∂γ
δ +

∂J

∂W
θ

where θ : (γ,W ) 7→ θ(γ,W ) is the solution of the linear system

∂Ψ

∂W
θ = −∂Ψ

∂γ
δ .

Now we can perform the tangent derivative (along the direction δ) of
(
dj
dγ

)∗

(
d2j

dγ2

)
δ =

d

dγ

(
dj

dγ

)∗
δ =

d

dγ

(
∂J

∂γ

)∗
δ − d

dγ

[(
∂Ψ

∂γ

)∗
Π

]
δ (3.27)

The first term is
d

dγ

(
∂J

∂γ

)∗
δ =

∂

∂γ

(
∂J

∂γ

)∗
δ +

∂

∂W

(
∂J

∂γ

)∗
θ (3.28)

while the second one is

d

dγ

[(
∂Ψ

∂γ

)∗
Π

]
δ =

[
d

dγ

(
∂Ψ

∂γ

)∗
Π

]
δ +

(
∂Ψ

∂γ

)∗dΠ
dγ
δ . (3.29)

Performing a tangent derivative of the adjoint equation
(
∂Ψ
∂W

)∗
Π−

(
∂J
∂W

)∗
= 0 along the direction

δ we obtain

0 =
d

dγ

[(
∂Ψ

∂W

)∗
Π−

(
∂J

∂W

)∗]
δ =

=

[
d

dγ

(
∂Ψ

∂W

)∗
Π

]
δ +

(
∂Ψ

∂W

)∗dΠ
dγ
δ − ∂

∂γ

(
∂J

∂W

)∗
δ − ∂

∂W

(
∂J

∂W

)∗
θ

63



3.6 Second-order derivative

and therefore

dΠ

dγ
δ =

(
∂Ψ

∂W

)−∗{ ∂

∂γ

(
∂J

∂W

)∗
δ +

∂

∂W

(
∂J

∂W

)∗
θ −

[
d

dγ

(
∂Ψ

∂W

)∗
Π

]
δ

}
. (3.30)

Putting the (3.28)–(3.30) into the (3.27) we obtain the projection of the Hessian d2j
dγ2 along a

generic direction δ

(
d2j

dγ2

)
δ =

d

dγ

(
∂J

∂γ

)∗
δ − d

dγ

[(
∂Ψ

∂γ

)∗
Π

]
δ =

=
∂

∂γ

(
∂J

∂γ

)∗
δ +

∂

∂W

(
∂J

∂γ

)∗
θ −

[
d

dγ

(
∂Ψ

∂γ

)∗
Π

]
δ+

−
(
∂Ψ

∂γ

)∗( ∂Ψ

∂W

)−∗{ ∂

∂γ

(
∂J

∂W

)∗
δ +

∂

∂W

(
∂J

∂W

)∗
θ −

[
d

dγ

(
∂Ψ

∂W

)∗
Π

]
δ

}
.

Evaluating this last expression at the point (γh,Wh) and remembering that for x = {γ,W} we
have

[
d

dγ

(
∂Ψ

∂x

)∗
Π

]∣∣∣∣
(γh,Wh)

=

[
d

dγ

(
∂Ψ

∂x

)∗
Πh

]∣∣∣∣
(γh,Wh)

=

[
d

dγ

((
∂Ψ

∂x

)∗
Πh

)]∣∣∣∣
(γh,Wh)

we obtain the multiplication of the Hessian matrix j′′ by the vector δ

(
d2j

dγ2

∣∣∣∣
γh

)
δ =

[
∂

∂γ

(
∂J

∂γ

)∗]∣∣∣∣
(γh,Wh)

δ +

[
∂

∂W

(
∂J

∂γ

)∗]∣∣∣∣
(γh,Wh)

θh+

−
[
∂

∂γ

((
∂Ψ

∂γ

)∗
Πh

)]∣∣∣∣
(γh,Wh)

δ −
[
∂

∂W

((
∂Ψ

∂γ

)∗
Πh

)]∣∣∣∣
(γh,Wh)

θh+

−
(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)∗
λh

where θh is the solution of the linear system

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh))

)
θh = −

(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh))

)
δ

and λh =

(
dΠ

dγ

∣∣∣∣
(γh,Wh)

)
δ can be computed solving the linear system

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
λh =

[
∂

∂γ

(
∂J

∂W

)∗]∣∣∣∣
(γh,Wh)

δ +

[
∂

∂W

(
∂J

∂W

)∗]∣∣∣∣
(γh,Wh)

θh+

−
[
∂

∂γ

((
∂Ψ

∂W

)∗
Πh

)]∣∣∣∣
(γh,Wh)

δ −
[
∂

∂W

((
∂Ψ

∂W

)∗
Πh

)]∣∣∣∣
(γh,Wh)

θh .

64



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

If we apply the Lemma 3.1 using δ = ei (where ei = (0, . . . , 1, . . . , 0)T is the vector having
the only not-zero value at the i-th position, i.e. the i-th element of the canonical basis of R

n), it
means that we are computing the i-th column (and, by symmetry, the i-th row) of the Hessian,
obtaining

(
d2j

dγ2

∣∣∣∣
γh

)
ei =

[
∂

∂γ

(
∂J

∂γ

)∗]∣∣∣∣
(γh,Wh)

ei +

[
∂

∂W

(
∂J

∂γ

)∗]∣∣∣∣
(γh,Wh)

θ
(i)
h +

−
[
∂

∂γ

((
∂Ψ

∂γ

)∗
Πh

)]∣∣∣∣
(γh,Wh)

ei −
[
∂

∂W

((
∂Ψ

∂γ

)∗
Πh

)]∣∣∣∣
(γh,Wh)

θ
(i)
h +

−
(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)∗
λ

(i)
h

(3.31)

Then, to compute the full Hessian, we need to apply the Hessian-by-vector multiplication (3.31)
to each component of the canonical basis of R

n.

For each i = 1, . . . , n, the equation (3.31) needs the adjoint state Πh, solution of the adjoint
system (

∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
Πh =

(
∂J

∂W

∣∣∣∣
(γh,Wh)

)∗
(3.32)

and the arrays θ
(i)
h , λ

(i)
h solutions of the linear systems:





(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)
θ
(i)
h = −

(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)
ei

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
λ

(i)
h =

[
∂

∂γ

(
∂J

∂W

)∗]∣∣∣∣
(γh,Wh)

ei +

[
∂

∂W

(
∂J

∂W

)∗]∣∣∣∣
(γh,Wh)

θ
(i)
h +

−
[
∂

∂γ

((
∂Ψ

∂W

)∗
Πh

)]∣∣∣∣
(γh,Wh)

ei −
[
∂

∂W

((
∂Ψ

∂W

)∗
Πh

)]∣∣∣∣
(γh,Wh)

θ
(i)
h

(3.33)
where all the derivatives in the equations (3.31)–(3.33) are evalued at the final state Wh. More-
over, the second linear system in (3.33) is of the same type of the adjoint system (3.32) but
with a different right hand side, so we can use the same matrix-free algorithm and the same
preconditioner (but with different right hand sides) for both equations.

Implementation of the Tangent-on-Reverse derivatives As we have done in Section 3.6.1
for ToT approach, let us suppose that the subroutine computing the state residual Ψ(γ,W ) is
state residuals(psi,gamma,w), where the input variables are gamma and w, and the output
variable is psi.

state residuals(psi
↓
,

↓
gamma,

↓
w)

65



3.6 Second-order derivative

If we perform a differentiation in reverse mode with respect to the input variables gamma and w

we have

state residuals b(psi
↓
,

↓
psib,

↓
gamma, gammab

↓
,
↓
w, wb

↓
)

where gammab = γ̄Ψ =
(
∂Ψ
∂γ

)∗
Ψ̄ and wb = W̄Ψ =

(
∂Ψ
∂W

)∗
Ψ̄ are the new output variables and

calling psib = Ψ̄ the additional input variable.
Now we differentiate the routine state residuals b in tangent mode (with respect to the

same input variables gamma and w) considering gammab and wb as output variables, obtaining

state residuals b d(psi
↓
,

↓
psib,

↓
gamma,

↓
gammad, gammab

↓
, gammabd

↓
,
↓
w,

↓
wd, wb

↓
, wbd

↓
) (3.34)

where gammad = γ̇, wd = Ẇ and the second-order derivatives are in the variables

gammabd = ˙̄γΨ =
∂

∂γ

[(
∂Ψ

∂γ

)∗
Ψ̄

]
γ̇ +

∂

∂W

[(
∂Ψ

∂γ

)∗
Ψ̄

]
Ẇ

wbd = ˙̄WΨ =
∂

∂γ

[(
∂Ψ

∂W

)∗
Ψ̄

]
γ̇ +

∂

∂W

[(
∂Ψ

∂W

)∗
Ψ̄

]
Ẇ .

(3.35)

In order to solve the equations equations (3.31)–(3.33) we should call the routine (3.34) with
the right arguments:

state residuals b d(psi
Ψ
,

Πh

psib,
γh

gamma,
ei

gammad, gammab(
∂Ψ
∂γ

)∗
Πh

, gammabd
˙̄γΨ

,
Wh
w ,

θ
(i)
h

wd, wb(
∂Ψ
∂W

)∗
Πh

, wbd
˙̄WΨ

)

(3.36)
where

˙̄γΨ =

[
∂

∂γ

((
∂Ψ

∂γ

)∗
Πh

)]∣∣∣∣
(γh,Wh)

ei +

[
∂

∂W

((
∂Ψ

∂γ

)∗
Πh

)]∣∣∣∣
(γh,Wh)

θ
(i)
h

˙̄WΨ =

[
∂

∂γ

((
∂Ψ

∂W

)∗
Πh

)]∣∣∣∣
(γh,Wh)

ei +

[
∂

∂W

((
∂Ψ

∂W

)∗
Πh

)]∣∣∣∣
(γh,Wh)

θ
(i)
h .

If the subroutine computing the functional J(γ,W ) is

functional(j
↓
,

↓
gamma,

↓
w)

performing a reverse mode differentiation with respect to gamma and w

functional b(j
↓
,

↓
jb,

↓
gamma, gammab

↓
,
↓
w, wb

↓
)

and then a tangent mode differentiation of the output variables gammab and wb with respect to
gamma and w

functional b d(j
↓
,

↓
jb,

↓
gamma,

↓
gammad, gammab

↓
, gammabd

↓
,
↓
w,

↓
wd, wb

↓
, wbd

↓
) (3.37)

66



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

where jb = J̄ , gammad = γ̇, wd = Ẇ and

gammabd = ˙̄γJ =
∂

∂γ

[(
∂J

∂γ

)∗
J̄

]
γ̇ +

∂

∂W

[(
∂J

∂γ

)∗
J̄

]
Ẇ

wbd = ˙̄WJ =
∂

∂γ

[(
∂J

∂W

)∗
J̄

]
γ̇ +

∂

∂W

[(
∂J

∂W

)∗
J̄

]
Ẇ .

As usual, we call the routine above with the right arguments to obtain needed quantities in the
equations (3.31) and (3.33), i.e.

functional b d(j
J

,
1.0
jb,

γh
gamma,

ei

gammad, gammab(
∂J
∂γ

)∗ , gammabd˙̄γJ

,
Wh
w ,

θ
(i)
h

wd, wb(
∂J
∂W

)∗, wbd˙̄WJ

) (3.38)

where

˙̄γJ =

[
∂

∂γ

(
∂J

∂γ

)∗]∣∣∣∣
(γh,Wh)

ei +

[
∂

∂W

(
∂J

∂γ

)∗]∣∣∣∣
(γh,Wh)

θ
(i)
h

˙̄WJ =

[
∂

∂γ

(
∂J

∂W

)∗]∣∣∣∣
(γh,Wh)

ei +

[
∂

∂W

(
∂J

∂W

)∗]∣∣∣∣
(γh,Wh)

θ
(i)
h .

Description of the algorithm for the Hessian matrix with the ToR approach. The
algorithm to compute the Hessian matrix wit the ToR approach can be summarized as follow:

1. compute the state Wh such that Ψ(γh,Wh) = 0;

2. compute W̄J =

(
∂J

∂W

∣∣∣∣
(γh,Wh)

)∗

3. compute the adjoint state Πh solving the linear system

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
Πh = W̄J ;

4. for each element of the canonical basis ei, i = 1, . . . , n:

(a) compute Ψ̇γ =

(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)
ei;

(b) compute the vector θ
(i)
h solving the linear system

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)
θ
(i)
h = −Ψ̇γ ;

(c) compute ˙̄WJ =

[
∂

∂γ

(
∂J

∂W

)∗]∣∣∣∣
(γh,Wh)

ei +

[
∂

∂W

(
∂J

∂W

)∗]∣∣∣∣
(γh,Wh)

θ
(i)
h ;

(d) compute ˙̄γJ =

[
∂

∂γ

(
∂J

∂γ

)∗]∣∣∣∣
(γh,Wh)

ei +

[
∂

∂W

(
∂J

∂γ

)∗]∣∣∣∣
(γh,Wh)

θ
(i)
h ;

(e) compute ˙̄WΨ =

[
∂

∂γ

((
∂Ψ

∂W

)∗
Πh

)]∣∣∣∣
(γh,Wh)

ei +

[
∂

∂W

((
∂Ψ

∂W

)∗
Πh

)]∣∣∣∣
(γh,Wh)

θ
(i)
h ;

67



3.6 Second-order derivative

Solve

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
Πh =

(
∂J

∂W

∣∣∣∣
(γh,Wh)

)∗

Initialize ei

Solve

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)
θ
(i)
h = −

(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)
ei





˙̄γJ =

[
∂

∂γ

(
∂J

∂γ

)∗]∣∣∣∣
(γh,Wh)

ei +

[
∂

∂W

(
∂J

∂γ

)∗]∣∣∣∣
(γh,Wh)

θ
(i)
h

˙̄WJ =

[
∂

∂γ

(
∂J

∂W

)∗]∣∣∣∣
(γh,Wh)

ei +

[
∂

∂W

(
∂J

∂W

)∗]∣∣∣∣
(γh,Wh)

θ
(i)
h





˙̄γΨ =

[
∂

∂γ

((
∂Ψ

∂γ

)∗
Πh

)]∣∣∣∣
(γh,Wh)

ei +

[
∂

∂W

((
∂Ψ

∂γ

)∗
Πh

)]∣∣∣∣
(γh,Wh)

θ
(i)
h

˙̄WΨ =

[
∂

∂γ

((
∂Ψ

∂W

)∗
Πh

)]∣∣∣∣
(γh,Wh)

ei +

[
∂

∂W

((
∂Ψ

∂W

)∗
Πh

)]∣∣∣∣
(γh,Wh)

θ
(i)
h

Solve

(
∂Ψ

∂W

)∗
λ

(i)
h = ˙̄WJ − ˙̄WΨ

(
d2j

dγ2

∣∣∣∣
γh

)
ei = ˙̄γJ − ˙̄γΨ −

(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)∗
λ

(i)
h

i = i+ 1

Figure 3.8: Tangent-on-Reverse algorithm

68



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

(f) compute ˙̄γΨ =

[
∂

∂γ

((
∂Ψ

∂γ

)∗
Πh

)]∣∣∣∣
(γh,Wh)

ei +

[
∂

∂W

((
∂Ψ

∂γ

)∗
Πh

)]∣∣∣∣
(γh,Wh)

θ
(i)
h ;

(g) compute the vector λ
(i)
h solving the linear system

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
λ

(i)
h = ˙̄WJ − ˙̄WΨ ;

(h) compute γ̄Ψ =

(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)
λ

(i)
h ;

(i) compute the i-th column (or row) of the Hessian matrix:
(
dj

dγ

∣∣∣∣
γh

)
ei = ˙̄γJ − ˙̄γΨ − γ̄Ψ .

From the previous algorithm we see that for each column of the Hessian matrix we need to
solve 2 linear systems:

• one is to compute the vector θ
(i)
h (step 4b) and can be solved with the matrix-free algorithm

matrixfree solve linearsystem (see Section 3.3);

• the other is to compute the vector λ
(i)
h (step 4g) and can be solved with the matrix-free

algorithm matrixfree solve adjointlinearsystem (see Section 3.3).

Moreover, the quantities ˙̄WJ , ˙̄γJ (steps 4c and 4d) could be obtained with a single invocation of

the twice-differentiated subroutine (3.38); while the quantities ˙̄WΨ, ˙̄γΨ (steps 4e and 4f) could
be obtained with a single invocation of the differentiated-twice subroutine (3.36).

The computational cost for a single Hessian-by-vector multiplication, evaluated with the
Tangent-on-Reverse approach, can be estimated with the same assumptions made in Section 3.6.1,
and is due to the following contributions:

• αTniter,T for computing the derivatives of the state variables respect to the control θ
(i)
h =

dW
dγi

(step 4b), where niter,T is the number of iterations needed by the matrix-free algorithm
to solve the linear system;

• αRαT for evaluating the quantities ˙̄WΨ, ˙̄γΨ (steps 4e and 4f) with the single invocation of
the subroutine (3.36);

• αRniter,R for computing the vector λ
(i)
h (step 4g), where niter,R is the number of iterations

needed by the matrix-free algorithm to solve adjoint systems.

Therefore the full Hessian evaluation with ToR costs

nαT
(
niter,T + αR +

αR
αT

niter,R

)

and we note that the major contribution is due to the solution of the linear systems, usually
being the number of iterations to the convergence ≫ αR .

69



3.6 Second-order derivative

Another important thing to note is the fact that with ToR we cannot compute the diagonal
of the Hessian without computing the extra-diagonal values, due to the fact that the Hessian is
built column-by-column (or, by symmetry, row-by-row) using the Lemma 3.1 on the elements
of the canonical basis.

As minor remark, ToR approach for the full Hessian does not need to store the derivatives

of the state variables respect to the control θ
(i)
h = dW

dγi
for all i = 1, . . . , n, but it can use the

same memory locations for the various θ
(i)
h , resulting in a memory saving and in a serialization

of the algorithm, while using a different location for each vector results in an easily paralleliz-
able algorithm (each Hessian-by-vector multiplication is independent from the others, so each
evaluation can be run in parallel).

3.6.3 Comparison between ToT and ToR

At this point, the natural question arising from the previous analysis is about the choice of the
method that is less expensive for a given problem. The cost to evaluate the full Hessian, its
diagonal part and the Hessian-by-vector multiplication for the two different strategies is given
in the Table 3.1, where we do not take into account the cost to solve the state equation Ψ = 0
and to solve the adjoint system (3.18).

Hessian (full) Hessian (diagonal) Hessian-by-vector

ToT nαT
[
niter,T +

(n+ 1)

2
αT
]

nαT
[
niter,T + αT

]
nαT

[
niter,T + αT

]

ToR nαT
(
niter,T + αR +

αR
αT

niter,R

)
— αT

(
niter,T + αR +

αR
αT

niter,R

)

Table 3.1: ToT and ToR comparison. Computational cost for the evaluation of the full n×n
Hessian matrix, only its diagonal part and the Hessian-by-vector multiplication. αT , αR are
the overheads associated with the tangent- and reverse-mode differentiation for the subroutine
implementing the evaluation of the state residual. niter,T , niter,R are the number of iterations
needed for the matrix-free algorithm to solve the tangent and adjoint linear system, respectively.
The values in the table do not take into account the runtime cost to compute the adjoint state
Πh, that is assumed to be available. The cost to compute the adjoint state Πh as solution of the
adjoint linear system (3.18) can be estimated as αRniter,R.

From the algorithms in Sections 3.6.1 and 3.6.2 we note that the two approaches to evaluate
the full Hessian share a common part, namely the computation of the derivatives of the state
variables respect to the control dW

dγi
(i = 1, . . . , n) as solution of the linear system

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)
dW

dγi
= −

(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)
ei .

70



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

This cost appears in Table 3.1 as the nαTniter,T term, therefore the characteristic cost grows as
n(n+1)

2 α2
T for the ToT approach and nαR

(
αT + niter,R

)
for ToR. Thus we can say that, using a

single strategy to compute the full Hessian, ToT has a lower computational cost with respect to
ToR if

n < 2
αR
αT

(
1 +

niter,R

αT

)
− 1.

Therefore ToT is cheaper than ToR if the dimension n of the control γ is small. This last result,
can be used to build better strategy (i.e. less time-consuming) for the full Hessian using ToT
and ToR for the evaluation of different parts of the Hessian.

Let us consider n̄, a given number not directly dependent on n, the key idea is to use,
when the Hessian dimension is larger then n̄ ToT to build the upper triangular part of the
Hessian until the n̄-th column and then evaluate the remaining n− n̄ columns with ToR (using
the Hessian-by-vector multiplication). On the other hand, only ToT is used when the Hessian
dimension is smaller then n̄. The cost of this mixed strategy can be evaluated as





nαTniter,T +
n(n+ 1)

2
α2
T for n ≤ n̄

nαTniter,T +
n̄(n̄+ 1)

2
α2
T + (n− n̄)αR

(
αT + niter,R

)
for n > n̄

where optimal value for n̄ is found to be n̄ =
αR
αT

(
1 +

niter,R

αT

)
. For a given problem we can

assume that the values αT , αR can be obtained with not too much effort in a preprocessing
phase using program profiling. Much more difficult could be the estimate of niter,R, the number
of iterations needed to solve the adjoint linear system, in fact this number depends on many
factors: the dimension of the problem itself, the dimension of the Krylov space, the kind of
preconditioner used, etc. A comparison for the cost of the full Hessian using different strategies
is given in Figure 3.9 where we assumed niter,R = niter,T = 300 for the number of iterations
needed to solve the linear systems (direct and adjoint) and αT = 2, αR = 4 for the overhead
associated with the Tangent- and Reverse-differentiation (obtaining the corresponding treshold
value for the mixed strategy n̄ = 302).

3.7 Stack management issue for ToR approach

The ToT strategy is very simple to implement and very well managed by TAPENADE, in fact
a single Tangent-mode differentiation adds only extra code that is executed in the same order
of the original: this means that the differentiated code is considered as “normal” code for the
second differentiation and therefore this strategy could be used without any difficulty to obtain
higher-order derivatives.

To the opposite, Tangent-on-Reverse differentiation raises some Automatic Differentiation
issues because of the specific structure of reverse differentiated programs. As we saw in Sec-
tion 3.2, programs differentiated in reverse with the Store-All approach make heavy use of PUSH
and POP primitives to store and retrieve intermediate values. In comparison, the Recompute-All

71



3.7 Stack management issue for ToR approach

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0  100  200  300  400  500  600  700  800  900  1000

R
un

tim
e 

co
st

n

Cost for evaluating the full Hessian with different strategies

ToT approach
ToR approach

ToT + ToR approach

Figure 3.9: Comparison for the cost of the full Hessian using different strategies as a function of
n, the dimension of the control variable γ. We assumed niter,R = niter,T = 300 for the number of
iterations needed to solve the linear systems (tangent and adjoint) and αT = 2, αR = 4 for the
overhead associated with the Tangent- and Reverse-differentiation (obtaining the corresponding
treshold value for the mixed strategy n̄ = 302).

72



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

approach does not a priori use PUSH and POP’s. However both approaches must use checkpoint-
ing for nontrivial applications, which means storing and retrieving snapshots, which boils down
to PUSH and POP’s in the end.

Thus the structure of a reverse-differentiated program is unusual. Indeed we never found
a similar structure in the numerical applications that we have differentiated so far. It is true
that AD tools claim to be able to differentiate any program, and this claim is motivated by the
general theory sketched in Section 3.2 (in which we assume that a program ca be considered
as a sequence of instruction that can be identified as a composition of differentiable functions).
There exist a few documented limitations to this theory, such as switches in the control-flow
that may cause local non-differentiability, but nothing related to stack management. Still, we
felt a little anxious when it came to differentiate reverse programs, and rightly so.

Calls to PUSH and POP communicate values through a stack, which is a hidden global variable.
Moreover, the source code of PUSH and POP belongs to an external library and is not given to
the AD tool. The classical way to handle these “black-box” routines in AD tools is to provide
the tool with just enough information about how the so-called “activity” propagates across the
black-boxes. Activity is a boolean information attached to each occurrence of a variable in the
code, which is true when the variable has a nontrivial derivative and false otherwise. During
differentiation, the AD tool generates calls to differentiated black-box routines, that the end-user
must code by hand in the end. This black-box mechanism is very general, and has been used
many times on real codes. For example, this is how calls to MPI communication routines are
handled by AD tools. However this mechanism requires extreme care, as we will see. Making
this mechanism easier and safer needs further research.

First, we characterize how activity propagates across PUSH and POP. There are two variables
involved:

• the first argument of the PUSH (resp. POP) is the program variable stored (resp. retrieved).
Let us call it V.

• the hidden stack that keeps all the stored values can be thought of as an array. Let us call
it S. Initial stack S is empty and therefore not active a priori.

A PUSH does not change the value nor the activity of V. On the other hand if V is active, then S

becomes or remains active. Unfortunately, activity of S is a single boolean that mixes or blurs
the activity of all stored values, therefore the effect of a POP can not be described very accurately.
We say that a POP never changes the activity of S, and it returns an active V if and only if S is
active.

Figure 3.10 illustrates Tangent-on-Reverse differentiation on a small example code, dis-
played on the left. The reverse differentiated code has the usual two-sweeps structure, with
two PUSH/POP pairs because the value of x needs to be restored. The tangent differentiation that
follows begins with activity analysis. Examining the reverse code, one can check that x first
receives a constant and thus is non active. The first PUSH, having non active arguments, does
not need to be differentiated. When x is incremented by c, it becomes active and so the second
PUSH makes the stack active. During the reverse sweep, the first POP has an active stack and thus
returns an active x and a still active stack. Since the stack is active, the second POP also returns
an x which is considered active. After activity analysis, tangent differentiation produces the

73



3.7 Stack management issue for ToR approach

code in the third column. The important point is that there is now an unexpected PUSH/POP D

pair. In a naive first attempt we implemented PUSH D and POP D using the same stack to store
the value and its derivative, and the second POP D causes a segmentation fault because the stack
is empty. In more complex examples, the POP D might even pop the next top of stack which was
expected to be read by a subsequent POP.

Original Reverse Tangent-on-Reverse

F : a, b, c 7→ r F : a, b, c, r 7→ a, b, c Ḟ : a, ȧ, b, ḃ, c, ċ, r, ṙ

7→ a, ȧ, b, ḃ, c, ċ

x = 2.0

r = x*a

x += c

r += x*b

x = 3.0

r += x*c

x = 2.0

r = x*a

PUSH(x)

x += c

r += x*b

PUSH(x)

x = 3.0

r += x*c

x= c*r

c+= x*r

POP(x)

x= 0.0

x= b*r

b+= x*r

POP(x)

c+= x

x+= a*r

a+= x*r

x= 0.0

ẋ= 0.0

x = 2.0

PUSH(x)

ẋ= ċ

x += c

PUSH D(x,ẋ)

ẋ= 0.0

x = 3.0

ċ+= x*ṙ

c+= x*r

POP D(x,ẋ)

ẋ= ḃ*r+b*ṙ

x= b*r

ḃ+= ẋ*r+x*ṙ

b+= x*r

POP D(x,ẋ)

ċ+= ẋ

c+= x

ȧ+= ẋ*r+x*ṙ

a+= x*r

Figure 3.10: Tangent-on-Reverse differentiation on a small code. Left: Original code, middle:
Reverse code, right: ToR code. Reverse-differentiated variables are shown with a bar above, as
in x. Tangent-differentiated variables are shown with a dot above, as in ẋ and ẋ. The reverse
code produced with TAPENADE is actually shorter because of static data-flow analysis: the
code in light grey is stripped away, but this has no influence on the demonstration.

What has gone wrong? Could it be an error in the tangent differentiation model? To check
that, we considered an equivalent reversed program, with the source of PUSH and POP made
explicit, using a simple array to store the values. Then the Tangent-on-Reverse program works

74



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

fine. We notice that it has produced a differentiated array to store differentiated values. Thus,
the problem does not lie with the differentiation model, but rather with the hand-written code
for PUSH D and POP D that use the same stack for x and ẋ. With two different stacks, the
second POP D finds an empty stack and returns 0.0, which is consistent with the fact that this x
is actually non active. Equivalently, we can simply decide that if at any time activity actually
propagates across the hidden communication variable, then the communication variable is active
right from the beginning. This would turn the first PUSH into a PUSH D. This is what we did for
this work, and the Tangent-on-Reverse strategy now produces correct results.

A much more elegant solution would be to keep the information on matching PUSH/POP
pairs in the Reverse code. So we would know when a POP returns a non-active variable. Pairs
PUSH D/POP D would be reserved for really active variables, therefore reducing the stack size for
the Tangent-on-Reverse strategy. We are considering to implement this feature in TAPENADE.

Table 3.2 illustrates these two solutions. Top of the table corresponds to the wrong result
that TAPENADE returns if the stack is not activated. The middle solution is what we obtain
when activating the stack. The bottom solution is the desidered better solution if TAPENADE
was able to keep track of matching PUSH/POP.

3.8 ToR algorithm using the Reverse-on-Tangent differentiation

It is interesting to note that the double-differentiated quantities needed by the ToR approach

(namely ˙̄γΨ, ˙̄WΨ, ˙̄γJ ,
˙̄WJ), can be obtained in a different way using a Reverse-on-Tangent

approach, thus avoiding the differentiation of the PUSH/POP pairs (see also Remark 5.5). To
show this result, we use the following lemma

Lemma 3.2. Let Ψ: (γ,W ) 7→ Ψ(γ,W ) a C2 function on R
n × R

N into R
N . Let Ẇ, ¯̇Ψ ∈ R

N

and x = {γ,W}, then hold

{
∂

∂x

[(
∂Ψ

∂W

)
Ẇ

]}∗
¯̇Ψ =

∂

∂W

[(
∂Ψ

∂x

)∗
¯̇Ψ

]
Ẇ (3.39)

and {
∂

∂x

[(
∂Ψ

∂γ

)
γ̇

]}∗
¯̇Ψ =

∂

∂γ

[(
∂Ψ

∂x

)∗
¯̇Ψ

]
γ̇ . (3.40)

Proof. Let us consider the formula (3.39).

{
∂

∂x

[(
∂Ψ

∂W

)
Ẇ

]}∗
¯̇Ψ =

[
∂

∂x

(∑

k

∂Ψ

∂Wk
Ẇk

)]∗
¯̇Ψ =

∑

j

∑

k

∂2Ψj

∂Wk∂x
Ẇk

¯̇Ψj

=
∑

k

∂

∂Wk

(∑

j

∂Ψj

∂x
¯̇Ψj

)
Ẇk =

∑

k

∂

∂Wk

[(
∂Ψ

∂x

)∗
¯̇Ψ

]
Ẇk

=
∂

∂W

[(
∂Ψ

∂x

)∗
¯̇Ψ

]
Ẇ .

The proof of (3.40) is analogous.

75



3.8 ToR algorithm using the Reverse-on-Tangent differentiation

Reverse Tangent-on-Reverse

... ...

PUSH(a) PUSH(a)

... ...

PUSH(b) PUSH D(b,bd)

...
Tangent-mode differentiation−−−−−−−−−−−−−−−−−−→ ...

POP(b) POP D(b,bd)

... ...

POP(a) POP D(a,ad)

... ...

Reverse Tangent-on-Reverse

... ...

PUSH(a) PUSH D(a,ad)

... ...

PUSH(b) PUSH D(b,bd)

...
Tangent-mode differentiation−−−−−−−−−−−−−−−−−−→ ...

POP(b) POP D(b,bd)

... ...

POP(a) POP D(a,ad)

... ...

Reverse Tangent-on-Reverse

... ...

PUSH(a) PUSH(a)

... ...

PUSH(b) PUSH D(b,bd)

...
Tangent-mode differentiation−−−−−−−−−−−−−−−−−−→ ...

POP(b) POP D(b,bd)

... ...

POP(a) POP(a)

... ...

Table 3.2: Stack management problem for ToR with TAPENADE. Assuming that b (in the
Reverse-differentiated program) is an active variable (and a is inactive) for the Tangent-mode
differentiation, the correct ToR program is shown at the bottom, while on top is what we get
from the current version of TAPENADE (2.2.3-r1955) if we do not activate the initial stack: note
the PUSH/POP D pair on the variable a. In the middle is shown the straight (and not-so-elegant)
solution that we used: we activate the stack from the beginning, storing the unneeded variable
ad in order to have a correct matching between PUSH D and POP D functions.

76



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

From the previous lemma, and using the relation Ψ̇ =
(
∂Ψ
∂γ

)
γ̇ +

(
∂Ψ
∂W

)
Ẇ we can write

γ̄Ψ̇ =

(
∂Ψ̇

∂γ

)∗
¯̇Ψ =

{
∂

∂γ

[(
∂Ψ

∂γ

)
γ̇

]}∗
¯̇Ψ +

{
∂

∂γ

[(
∂Ψ

∂W

)
Ẇ

]}∗
¯̇Ψ =

=
∂

∂γ

[(
∂Ψ

∂γ

)∗
¯̇Ψ

]
γ̇ +

∂

∂W

[(
∂Ψ

∂γ

)∗
¯̇Ψ

]
Ẇ = ˙̄γΨ

W̄Ψ̇ =

(
∂Ψ̇

∂W

)∗
¯̇Ψ =

{
∂

∂W

[(
∂Ψ

∂γ

)
γ̇

]}∗
¯̇Ψ +

{
∂

∂W

[(
∂Ψ

∂W

)
Ẇ

]}∗
¯̇Ψ =

=
∂

∂γ

[(
∂Ψ

∂W

)∗
¯̇Ψ

]
γ̇ +

∂

∂W

[(
∂Ψ

∂W

)∗
¯̇Ψ

]
Ẇ = ˙̄WΨ .

(3.41)

If we perform the same for the function J(γ,W ) we obtain the following equivalence between
quantities computed with ToR and RoT differentiation

˙̄γΨ = γ̄Ψ̇
˙̄WΨ = W̄Ψ̇
˙̄γJ = γ̄J̇
˙̄WJ = W̄J̇

where the role of the Ψ̄ in the definition of the ToR quantities is now taken by ¯̇Ψ. We can
summarize the previous result with the following lemma

Lemma 3.3. Let Ψ: (γ,W ) 7→ Ψ(γ,W ) a C2 function on R
n×R

N into R
N . Let ˙̄γΨ,

˙̄WΨ ∈ R
N

defined by the (3.35) where Ẇ, Ψ̄ ∈ R
N and γ̇ ∈ R

n. If ¯̇Ψ ∈ R
N and ¯̇Ψ = Ψ̄ then the following

equivalences hold {
˙̄γΨ = γ̄Ψ̇
˙̄WΨ = W̄Ψ̇

.

The previous lemma applies for the function J : (γ,W ) 7→ J(γ,W ), subtituting the function
Ψ with the function J in the quantities involved by the lemma.

Implementation using the Reverse-on-Tangent differentiation As previously done for
the ToT and ToR differentiation, let us suppose that the subroutine computing the state residual
Ψ(γ,W ) is state residuals(psi,gamma,w), where the input variables are gamma and w, and
the output variable is psi.

state residuals(psi
↓
,

↓
gamma,

↓
w)

If we perform a differentiation in Tangent mode with respect to the input variables gamma and
w we have

state residuals d(psi
↓
, psid

↓
,

↓
gamma,

↓
gammad,

↓
w,

↓
wd)

77



3.9 . . . putting ToT and ToR into the practice

where psid = Ψ̇ =
(
∂Ψ
∂γ

)
γ̇+
(
∂Ψ
∂W

)
Ẇ is the new output variable and calling gammad = γ̇, wd = Ẇ

the additional input variables.
Now we differentiate the routine state residuals d in Reverse mode considering only psid

as the output variable and with respect to the input variables gamma and w, obtaining

state residuals d dpsid b(psi
↓
, psid

↓
,

↓
psidb,

↓
gamma, gammab

↓
,

↓
gammad,

↓
w, wb

↓
,

↓
wd) (3.42)

where psidb = ¯̇Ψ, and the second-order derivatives are in the variables gammab = γ̄Ψ̇ and
wb = W̄Ψ̇ defined by the (3.41). Therefore, if we want to compute the quantities ˙̄γΨ = γ̄Ψ̇,
˙̄WΨ = W̄Ψ̇ needed by the Hessian-by-vector algorithm (page 67), we need to invoke the routine

(3.42) with the following arguments

state residuals d dpsid b(psi
Ψ
, psid

Ψ̇

,
Πh

psidb,
γh

gamma, gammab
γ̄Ψ̇

,
ei

gammad,
Wh
w , wb

W̄Ψ̇

,
θ
(i)
h

wd)

The same arguments apply for the routine implementing J(γ,W ). In this case, to obtain the

quantities ˙̄γJ = γ̄J̇ ,
˙̄WJ = W̄J̇ in the ToR algorithm for the Hessian-by-vector multiplication,

we need to use

functional d djd b(j
J

, jd
J̇

,
1.0
jdb,

γh
gamma, gammab

γ̄J̇

,
ei

gammad,
Wh
w , wb

W̄J̇

,
θ
(i)
h

wd) .

3.9 . . . putting ToT and ToR into the practice

In Sections 3.6.1-3.6.2 we have presented two approaches to compute the Hessian and Hessian-
related quantities (like its diagonal part or Hessian-by-vector multiplication) of a constrained
functional, and at first sight it could appear very complicated to put in practice for codes of
industrial complexity-level. This is not (entirely) true.

From the equations involved in the algorithms, we note that all the quantities used in
both approaches are combination of derivatives of the state residual Ψ and the functional J ,
therefore we can implement the algorithms (ToT , ToR, mixed ToT/ToR, matrix-free meth-
ods for solving linear systems, routines for validation, etc.) referring to the subroutines for
the generic functions (and a priori not defined yet) Ψ(γ,W ) and J(γ,W ) that we have called
state residual(psi,gamma,w) and functional(j,gamma,w) respectively. In this way we are
considering the framework as composed by two parts: one is relative to the implementation of
the algorithms and the other is relative to the implementation of the differentiated routines (see
Figure 3.11). The algorithms side is independent from the definition of Ψ and J , so we can build
(and compile) a library containing all the algorithms above, and when a specific problem has
to be solved, the user has to take care of the derivatives side only, i.e. implement the correct
residual and the functional and then compute (with an AD tool) the corresponding differentiated
routines.

This approach results in a very flexible scheme and in a rapid application to a given problem:
the final user must only

78



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

• provide its definitions for the functional and the state residual (in our experience this is
the most difficult task, due to the fact that the state residual usually must be extracted
from bad-written existing codes);

• run two scripts to drive the differentiation tool TAPENADE (one script is devoted to the
first-order differentiation, the other one to the second-order differentiation);

• compile the resulting differentiated subroutines;

• link them with the library containing the algorithm for the derivatives;

• use the API within to compute the quantities of interests (i.e. gradient, Hessian, etc.);

where the three steps in the middle could be accomplished automatically using Makefile.
Following this framework, the user has only to respect one constraint: the subroutines that

implement the residual and the functional evaluation must have the same interface used in the
library containing the algorithms (in fact the library will refer to the differentiated routine by
their interface).

Moreover, this constraint affects the name of the variables: in our examples, the user must
use the name gamma for the control variables and w for the state variables, that are the names
we used for the variables in the interface of the subroutines state residuals and functional

referred by the library. The possible complication with this strategy is when the implementation
for the state residual (or for the functional) uses the dependent and independent variables
in global space (i.e. COMMON blocks in FORTRAN programs): when it happens, a possible
solution is to copy the state and control variables (that are stored in the global space) to the
corresponding w and gamma variables just before the invocation of the differentiated routines, and
the inverse assignment (from the local w and gamma to the global state and control variables) as
first instruction inside state residuals(psi,gamma,W) and functional(J,gamma,W).

79



3.9 . . . putting ToT and ToR into the practice

State residual and
Functional sources

TAPENADE

1st-order derivatives
sources

1st-order derivatives
library

Compile

TAPENADE

2nd-order derivatives
sources

2nd-order derivatives
library

Compile

Derivatives side

Algorithms side

Linear solver
(Matrix-free) sources

Linear solver
(Matrix-free) library

Compile

Algorithms sources Algorithms library
Main program

object

Compile Link

Validation sources Validation library
Compile

Figure 3.11: Framework for the implementation of the first and second-order derivatives. For
each new definition for functional or the state residual, only the upper part (Derivatives side) is
re-evaluated: the algorithms side is unchanged. To do that, we are forced to use a fixed interface
for the subroutines implementing the functional and the state residual.

80



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

3.10 TAPENADE commands

In this section we give the TAPENADE commands to perform the different differentations needed
by the algorithms (ToT and ToR) presented in Sections 3.6.1-3.6.2. See the TAPENADE user’s
guide [Hascoët and Pascual, 2004] for extra details.

• tapenade -d -root state residuals -outvars "psi" -vars "gamma w"

-difffuncname d -fixinterface

Result state residuals d(psi,psid,gamma,gammad,w,wd)

Input





gamma = γ
gammad = γ̇
w = W

wd = Ẇ

Output





psi = Ψ

psid = Ψ̇ =
∂Ψ

∂γ
γ̇ +

∂Ψ

∂W
Ẇ

• tapenade -d -root state residuals -outvars "psi" -vars "gamma"

-difffuncname dgamma d -fixinterface

Result state residuals dgamma d(psi,psid,gamma,gammad,w)

Input





gamma = γ
gammad = γ̇
w = W

Output





psi = Ψ

psid = Ψ̇γ =
∂Ψ

∂γ
γ̇

81



3.10 TAPENADE commands

• tapenade -d -root state residuals -outvars "psi" -vars "w"

-difffuncname dw d -fixinterface

Result state residuals dw d(psi,psid,gamma,w,wd)

Input





gamma = γ
w = W

wd = Ẇ

Output

{
psi = Ψ

psid = Ψ̇W =
∂Ψ

∂W
Ẇ

• tapenade -b -root state residuals -outvars "psi" -vars "gamma w"

-difffuncname b -fixinterface

Result state residuals b(psi,psib,gamma,gammab,w,wb)

Input





gamma = γ
w = W
psib = Ψ̄

Output





psi = Ψ

gammab = γ̄Ψ =

(
∂Ψ

∂γ

)T
Ψ̄

wb = W̄Ψ =

(
∂Ψ

∂W

)T
Ψ̄

82



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

• tapenade -b -root state residuals -outvars "psi" -vars "gamma"

-difffuncname dgamma b -fixinterface

Result state residuals dgamma b(psi,psib,gamma,gammab,w)

Input





gamma = γ
w = W
psib = Ψ̄

Output





psi = Ψ

gammab = γ̄Ψ =

(
∂Ψ

∂γ

)T
Ψ̄

• tapenade -b -root state residuals -outvars "psi" -vars "w"

-difffuncname dw b -fixinterface

Result state residuals dw b(psi,psib,gamma,gammab,w)

Input





gamma = γ
w = W
psib = Ψ̄

Output





psi = Ψ

wb = W̄Ψ =

(
∂Ψ

∂W

)T
Ψ̄

83



3.10 TAPENADE commands

• tapenade -d -root state residual d -outvars "psid" -vars "gamma w"

-difffuncname d -fixinterface

Result state residuals d d(psi,psid,psidd,gamma,gammad0,gammad,w,wd0,wd)

Input





gamma = γ
gammad0 = γ̇0

gammad = γ̇
w = W

wd0 = Ẇ0

wd = Ẇ

Output





psi = Ψ

psid = Ψ̇ =
∂Ψ

∂γ
γ̇ +

∂Ψ

∂W
Ẇ

psidd = ˙̇Ψ =
∂

∂γ

(
∂Ψ

∂γ
γ̇

)
γ̇0 +

∂

∂W

(
∂Ψ

∂γ
γ̇

)
Ẇ0 +

∂

∂W

(
∂Ψ

∂γ
γ̇0

)
Ẇ+

+
∂

∂W

(
∂Ψ

∂W
Ẇ

)
Ẇ0

• tapenade -d -root state residual b -outvars "gammab wb" -vars "gamma w"

-difffuncname d -ext PUSHPOPGeneralLib -extAD PUSHPOPADLib-fixinterface

Result state residuals b d(psi,psib,gamma,gammad,gammab,gammabd,w,wd,wb,wbd)

Input





gamma = γ
psib = Ψ̄
gammad = γ̇
w = W

wd = Ẇ

Output





psi = Ψ

gammab = γ̄Ψ =

(
∂Ψ

∂γ

)T
Ψ̄

wb = W̄Ψ =

(
∂Ψ

∂W

)T
Ψ̄

gammabd = ˙̄γΨ =
∂

∂γ

[(
∂Ψ

∂γ

)T
Ψ̄

]
γ̇ +

∂

∂W

[(
∂Ψ

∂γ

)T
Ψ̄

]
Ẇ

wbd = ˙̄WΨ =
∂

∂γ

[(
∂Ψ

∂W

)T
Ψ̄

]
γ̇ +

∂

∂W

[(
∂Ψ

∂W

)T
Ψ̄

]
Ẇ

84



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

• tapenade -d -root functional -outvars "j" -vars "gamma w"

-difffuncname d -fixinterface

Result functional d(j,jd,gamma,gammad,w,wd)

Input





gamma = γ
gammad = γ̇
w = W

wd = Ẇ

Output





j = J

jd = J̇ =
∂J

∂γ
γ̇ +

∂J

∂W
Ẇ

• tapenade -d -root functional -outvars "j" -vars "gamma"

-difffuncname dgamma d -fixinterface

Result functional dgamma d(j,jd,gamma,gammad,w)

Input





gamma = γ
gammad = γ̇
w = W

Output





j = J

jd = J̇γ =
∂J

∂γ
γ̇

• tapenade -d -root functional -outvars "j" -vars "w"

-difffuncname dw d -fixinterface

Result functional dw d(j,jd,gamma,w,wd)

Input





gamma = γ
w = W

wd = Ẇ

Output

{
j = J

jd = J̇W =
∂J

∂W
Ẇ

85



3.10 TAPENADE commands

• tapenade -b -root functional -outvars "j" -vars "gamma w"

-difffuncname b -fixinterface

Result functional b(j,jb,gamma,gammab,w,wb)

Input





gamma = γ
w = W
jb = J̄

Output





j = J

gammab = γ̄J =

(
∂J

∂γ

)T
J̄

wb = W̄J =

(
∂J

∂W

)T
J̄

• tapenade -b -root functional -outvars "j" -vars "gamma"

-difffuncname dgamma b -fixinterface

Result functional dgamma b(j,jb,gamma,gammab,w)

Input





gamma = γ
w = W
jb = J̄

Output





j = J

gammab = γ̄J =

(
∂J

∂γ

)T
J̄

86



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

• tapenade -b -root functional -outvars "j" -vars "w"

-difffuncname dw b -fixinterface

Result functional dw b(j,jb,gamma,gammab,w)

Input





gamma = γ
w = W
jb = J̄

Output





j = J

wb = W̄J =

(
∂J

∂W

)T
J̄

• tapenade -d -root state residual d -outvars "jd" -vars "gamma w"

-difffuncname d -fixinterface

Result functional d d(j,jd,jdd,gamma,gammad0,gammad,w,wd0,wd)

Input





gamma = γ
gammad0 = γ̇0

gammad = γ̇
w = W

wd0 = Ẇ0

wd = Ẇ

Output





j = J

jd = J̇ =
∂J

∂γ
γ̇ +

∂J

∂W
Ẇ

jdd = ˙̇J =
∂

∂γ

(
∂J

∂γ
γ̇

)
γ̇0 +

∂

∂W

(
∂J

∂γ
γ̇

)
Ẇ0 +

∂

∂W

(
∂J

∂γ
γ̇0

)
Ẇ+

+
∂

∂W

(
∂J

∂W
Ẇ

)
Ẇ0

87



3.11 Conclusion

• tapenade -d -root state residual b -outvars "gammab wb" -vars "gamma w"

-difffuncname d -ext PUSHPOPGeneralLib -extAD PUSHPOPADLib-fixinterface

Result functional b d(j,jb,gamma,gammad,gammab,gammabd,w,wd,wb,wbd)

Input





gamma = γ
jb = J̄
gammad = γ̇
w = W

wd = Ẇ

Output





j = J

gammab = γ̄J =

(
∂J

∂γ

)T
J̄

wb = W̄J =

(
∂J

∂W

)T
J̄

gammabd = ˙̄γJ =
∂

∂γ

[(
∂J

∂γ

)T
J̄

]
γ̇ +

∂

∂W

[(
∂J

∂γ

)T
J̄

]
Ẇ

wbd = ˙̄WJ =
∂

∂γ

[(
∂J

∂W

)T
J̄

]
γ̇ +

∂

∂W

[(
∂J

∂W

)T
J̄

]
Ẇ

3.11 Conclusion

In this chapter we have studied two approaches for computing second-order derivatives of a
constrained functional, in which the constraint is assumed to be solved with a fixed-point method.
Both approaches rely on the knowledge and availability of the adjoint state Πh, solution of the
adjoint linear system (3.18).

The first approach (Tangent-on-Tangent, [Ghate and Giles, 2007] and Section 3.6.1) permits
us to have a single element of the Hessian matrix at time, and its runtime cost is due to
two main contributions: the solution of n linear systems (in order to compute the derivative

of the state respect to the contol) and the evaluation of n(n+1)
2 double-differentiated routines.

These facts result in an appealing strategy for problems requiring the full Hessian (or a part
of it, like the diagonal) when the dimension of the control space is moderate (. 103). The
double differentiation required by this approach could be performed in automatic way using AD
tools and its implementation is straightforward, due to the fact that in each differentation the
computational graph and the program structure remain frozen: any PUSH/POP pair is added to
the code, resulting in a very robust (and easy to implement) approach to compute the Hessian
matrix.

88



Chapter 3. First- and Second-Order Derivatives with Automatic Differentiation

The second approach (Tangent-on-Reverse, Section 3.6.2) builds the Hessian matrix using the
multiplication of the Hessian matrix by a vector, and the runtime cost of this Hessian-by-vector
multiplication is mainly due to the solution of two linear systems (3.33). Moreover, the runtime
cost to obtain the Hessian-by-vector multiplication is independent from the dimension n of the
control space. In order to obtain the full Hessian matrix, we need to apply the Hessian-by-vector
multiplication to each element of the canonical basis, resulting in a cost that is proportional to
the dimension n. The fact that ToR builds the Hessian column-by-column (or, by symmetry,
row-by-row) results in the impossibility to obtain separately the diagonal part of the Hessian.
Due to the requirement of the solution of an extra linear system for each column, the ToR
approach to compute the full Hessian is cheaper than ToT when the dimension of the control
space is high (& 103). This approach raises some new AD issues because of the special structure
of Reverse-differentiated programs, and the correct Tangent-differentiation of such programs is
not perfectly performed yet by TAPENADE (the user needs to make some little adjustments on
the ToR-differentiated code). Alternatively, the Reverse-on-Tangent differentiation can be used
to obtain the second order derivatives involved in the ToR algorithm for the Hessian-by-vector
multiplication, without any PUSH/POP differentiation.

Exploiting the characteristics of the two approaches above, to obtain the full Hessian we
can build a mixed strategy that uses the ToT and ToR strategies to compute different parts of
the Hessian matrix. This approach results in a cheaper strategy not only respect to the pure
ToR approach, but even for medium-size problems for which the single ToT strategy is preferred
respect to ToR.

Using a clever strategy for the definition of the programs interfaces, we can use a separate
compilation and late-linking approach, resulting in a easy and rapid implementation of the
algorithms above for existing industrial and research codes.

89



3.11 Conclusion

90



Chapter 4

Multilevel optimization in
aerodynamic shape design

4.1 Introduction to multilevel approaches in aerodynamic shape

design

Due to the ripeness reached by computational fluid dynamics (CFD) combined with the rapid
advances of computational power, research in the field of aerodynamic shape design has expe-
rienced a large development in the last years, allowing to deal with more and more complex
optimization problems. However, shape optimization for aerodynamic applications remains a
costly task since the system of governing flow equations (as, for instance, Euler or Navier-Stokes
equations) should be solved, many times during the whole procedure. Thus, even if significant
progress have been done for optimization tools and related techniques (as, for instance, the use of
adjoint approaches in the context of gradient-based methods), the improvement of optimization
algorithm efficiency still appears as an important goal.

On another hand, to deal with complex engineering design optimization, different multi-
level or multi-scale approaches, in which the whole problem is decomposed in several sim-
pler sub-problems to be solved in a predetermined sequence, have been developed (see e.g.
[Migdalas et al., 1997; Schwabacher and Gelsey, 1998]). Each optimization sub-problem can
differ according to objective function, constraints, design space and/or optimization algorithm
allowing a better treatment of complex systems (multidisciplinary design, multiple local optima,
large-scale system, multi-objective optimization, ...). Alternatively, efficiency can be also in-
creased using various degrees of fidelity, i.e. varying the complexity of the physical modelling
and/or the accuracy of the numerical approach (see e.g. [Alexandrov et al., 2001]). Note that
a particular case of low fidelity model can be obtained through the use of coarse meshes, in
which the flow solution is computed more easily and at a lower cost. For instance, in the
field of aerodynamic design optimization, in [Feng and Pulliam, 1995], a reduced Hessian SQP
algorithm is combined with a solution refinement, while in [Dadone and Grossman, 2000], a
progressive optimization is proposed in which starting from a low accurate computation of the
sensitivity derivatives (using coarse mesh and partially converged flow solutions) the degree of

91



4.1 Introduction to multilevel approaches in aerodynamic shape design

accuracy is progressively increased during the optimization process. A similar idea is proposed
in [Pironneau and Polak, 2002] (see also Chapter 6 of [Mohammadi and Pironneau, 2001]), in
which mesh refinement is combined with approximate gradients in order to speed up the con-
vergence on the finest mesh of the descent algorithm. Note that, in this case, the use of coarse
grids in the optimisation process is based on the consistent approximation theory introduced in
[Polak, 1997]. Methods based on multigrid principles can be the successive step; some works can
be found in literature in which multigrid-like techniques have been applied to optimal control
problems involving partial differential equations. For instance, the MG/Opt algorithm [Nash,
2000] recursively uses coarse resolution problems (coarse mesh) to generate search directions at
a cheaper cost for finer resolution problems. For further examples, we refer, for instance, to
[Gelman and Mandel, 1990; Dreyer et al., 2000; Borzi, 2003; Gratton et al., 2004]. In the con-
text of aerodynamic design optimization, in [Kuruvila et al., 1994] a one-shot method, in which
the flow and the sensitivities are simultaneously solved, is coupled with a multigrid approach.
In this formulation, the design variables corresponding to low-frequencies of the shape are up-
dated on a coarse level (i.e., a coarse mesh) while the other design variables are updated on a
finer level. Finally, in [Catalano et al., 2005, 2008], the progressive optimization, introduced in
[Dadone and Grossman, 2000], is coupled with a multigrid-aided finite-difference approach, in
which the gradient is obtained through finite-difference sensitivities computed using only flow
solutions on a coarse mesh.

Another approach, also based on multilevel concepts and ideated for gradient-like methods,
has been introduced in [Beux and Dervieux, 1994]. In this preconditioned gradient method,
the minimisation is done alternatively on different subsets of control parameters according to
multigrid-like cycles. More particularly, using shape grid-point coordinates as design variables,
a hierarchical parametrization was defined considering different subsets of parameters extracted
from the complete parameterisation, which can be prolongated to the higher level by linear map-
ping. This approach acts as a smoother and also makes the convergence rate of the gradient-
based method low dependent of the number of control parameters. The good behaviour observed
in different numerical experiments [Beux, 1994; Beux and Dervieux, 1994], have been also cor-
roborated by a theoretical view point in [Guillard, 1993; Guillard and Marco, 1995]. Note that,
contrary to the other approaches based on multigrid concepts, only one computational mesh
is employed since the coarseness acts only on the number of design parameters. The increase
of efficiency is only related to the faster convergence obtained considering less degrees of free-
dom and to the improvement on convergence rate typical of multigrid techniques. Different
extensions of the original approach have been, successively, proposed: in [Held et al., 2002] the
same hierarchical parametrization is associated with a finite-difference/one-shot formulation, in
[Marco and Dervieux, 1999] the generalisation to 3D case involving unstructured meshes is done
through the use of agglomeration technique while an additive multilevel preconditioner has been
also defined in [Koobus et al., 1997; Courty and Dervieux, 2006].

Another multilevel approach based on a family of embedded parametrizations has also
been proposed in [Désidéri, 2003] (see also successive works, as e.g. [Abou El Majd et al.;
Désidéri, 2007; Abou El Majd et al., 2008]). However, contrary to the method introduced in
[Beux and Dervieux, 1994] and its different extensions, this approach is based on a polynomial
representation of the shape through the use of Bézier curves, and is not specifically focused on

92



Chapter 4. Multilevel optimization in aerodynamic shape design

gradient-based methods.

4.2 Optimum shape design problem in aerodynamics

4.2.1 The Optimal shape problem in a fully discrete context

The optimal shape problem consists in minimising a cost functional j with respect to some
control variables α, which should characterise the shape. Moreover, for aerodynamic shape
optimization, j can not be expressed directly in a explicit way as a function of α since it also
depends on the flow variables. Indeed, for each shape configuration, and thus, for each choice
of α, a particular flow is obtained by solving the governing equations, i.e typically Euler or
Navier-Stokes equations. Note that we consider an optimization in a discrete context in which
the optimization algorithm is applied to the problem already fully discretised, i.e. with both the
discrete governing equations and the discrete cost functional. Then, the unconstrained optimal
shape problem can be written as follows:

Find αopt ∈ R
p such that j(αopt) = min

α∈Rp
j(α) (4.1)

in which the cost functional j can be defined introducing J : R
p ×R

N → R such that:

∀α ∈ R
p j(α) = J(α,W (α)) (4.2)

where α is a discrete set of parameters (see Sec. 4.2.3) while W represents the values of the flow
variables at each point of the computational mesh.

Furthermore, the discretised shape is fully determined by the coordinates of the grid-points
localised on the shape. Thus, the control variables influence the discrete cost functional only
through these coordinates, which can be introduced as intermediate variables. More precisely,
let us consider L : R

p → R
q, the operator which, for each set of control parameters, furnishes the

corresponding set of shape grid-points coordinates. Then, instead of (4.2) the cost functional
can be expressed as follows:

∀α ∈ R
p j(α) = I(L(α)) = I

(
L(α),W (L(α))

)
(4.3)

in which I : R
q → R and I : R

q × R
N → R are defined by j = I ◦ L and J = I ◦ L respectively.

4.2.2 Computation of the sensitivity derivatives

In the present study, an exact hand-coding discrete adjoint approach is used for a 2D-Euler sta-
tionary flow solver based on an unstructured finite-volume first-order spatial discretisation and a
pseudo-unsteady approach associated with a linearised implicit algorithm. Finite-difference sen-
sitivities through the formulation proposed in [Held et al., 2002] are also considered in Sec. 4.6.

93



4.2 Optimum shape design problem in aerodynamics

4.2.3 Parametrisations for aerodynamic shape representation

An important ingredient which should be also specified in the optimization process is the rep-
resentation of the shape, which is defined through the choice of the control parameters. Indeed,
the shape parametrization plays a crucial role for the shape optimization since it directly acts on
the accuracy of the final solution and on the efficiency of the particular optimization strategy.

The use of shape grid-point coordinates as design variables appears the more natural ap-
proach since, in this case, the parameterisation is directly correlated with the explicit repre-
sentation of the discrete shape. Furthermore, for optimization algorithms based on an exact
discrete gradient, the computation of the sensitivity derivatives are simplified since, in this case,
(4.2) and (4.3) coincide. Nevertheless, since the geometry is modified by moving individual grid
points, non-smooth profiles are often obtained, particularly during intermediate phases of the
convergence to optimum (see, e.g. [Beux and Dervieux, 1992]). Moreover, the large number of
variables involved in this case has a negative effect on the computational cost (slow convergence
and, possibly, large number of cost functional evaluations). As a matter of fact, the multi-
level strategy introduced in [Beux and Dervieux, 1994] and described in Sec. 4.3.2 was defined
exactly in order to reduce these drawbacks. Note that the lack of shape smoothness, particu-
larly critical for shape grid-points parametrization, can be also linked with a regularity loss of
the gradient with respect to the control variables, already verified in the continuous case (see,
e.g. [Courty and Dervieux, 2006]). To avoid oscillations, in many works dealing with a shape
grid-point parameterisation, a smoothing is applied (see e.g. [Mohammadi and Pironneau, 2001;
Reuther and Jameson, 1995]).

On the other hand, a classical approach for the parameterisation of the shape is to use
a polynomial representation which permits a compact description of the shape with only few
parameters. For instance, Bézier control points, i.e. coefficients in a basis of Bernstein polyno-
mials, can be used as design variables. The Bézier representation has suitable properties at an
algorithmic level (efficient recursive algorithms) but also is well adapted to deal with geometric
constraints (see, e.g. [Farin, 1990]). Furthermore, the Bézier curves act as a basic tool to define
other representations as B-splines and non-uniform rational B-spline (NURBS) more suitable
for high-degree polynomial and non smooth geometries respectively.

Another possible choice, frequently considered in the context aerodynamic shape design (typ-
ically, for airfoil or wing design), is to represent the shape through a linear combination of given
geometric shapes. The control variables are, then, the coefficients in this basis of shape functions.
In this case, few parameters are sufficient to obtain a good shape representation, but, on the
other hand, the final solution is highly related to the choice of the particular basis. Thus, this
representation yields a priori a smaller design space with respect to the parametrizations based
on shape grid-points or polynomial control points. The basis is, in general, composed of existing
geometric shapes or alternatively, a given base shape and a set of modified shapes obtained from
the first one through some perturbation functions, such as the Hicks-Henne analytical functions
(see [Hicks and Henne, 1978]). Moreover, in order to improve the completeness of the design
space and thus, avoid the presence of nearly linear dependent functions, some authors use orthog-
onal functions obtained through a Gram-Schmidt orthogonalisation (see, [Kuruvila et al., 1994;
Chang et al., 1995; Catalano et al., 2005]) or analytically (e.g., through the use of Chebychev
polynomials in [Carpentieri et al., 2007]).

94



Chapter 4. Multilevel optimization in aerodynamic shape design

The three kinds of parametrizations, described here, represent a large range of widely used
approaches, and, have been considered in this study in the framework of multilevel methods. For
a more complete overview of possible shape parametrizations, we refer, as example, to [Samareh,
2001] or [Selmin, 2008].

4.3 Multilevel gradient-based approaches for shape design

4.3.1 Change of Hilbert control space

Multi-level methods in the context of optimum shape design, as initially proposed in [Beux and Dervieux,
1994], are based on a change of control space. More precisely, let us consider the optimization
of a differentiable functional j : U → R in a Hilbert space U . Then, instead of a direct minimi-
sation of j in U , one can also envisage a minimisation of j in the subset f(V ) ⊂ U , in which V
is a second Hilbert space and f an application from V to U . It can be formulated, equivalently,
as the minimisation of J = j ◦ f in V , i.e.:

Find αopt ∈ V such that J (αopt) = min
α∈V

[j ◦ f ](α) (4.4)

The Fréchet derivative of J at α ∈ V can be expressed as follows:

∀h ∈ V J ′(α)(h) = [j ◦ f ]′(α)(h) = j′ (f(α))
(
f ′(α)(h)

)

Since f ′(α) ∈ L(V,U), i.e is a linear continuous application from V to U , the following relation
can be also obtained in terms of gradient for any h ∈ V :

〈gradV J (α), h〉V = 〈gradU j(γ), f ′(α)h〉U

= 〈
(
f ′(α)

)∗
gradU j(γ), h〉V

(4.5)

where γ = f(α),
(
f ′(α)

)∗ ∈ L(U, V ) is the adjoint of f ′(α) and 〈., .〉U and 〈., .〉V are the inner
products associated to U and V respectively.

Furthermore, let us consider the particular case in which f affine, and thus, it exists b ∈ U
and P ∈ L(V,U) such that f : α→ Pα + b. Then, since in this case f ′(α) = P for any α ∈ V ,
solving the minimisation problem (4.4) through a gradient descent method corresponds to the
following iterative algorithm:

α0 ∈ V given, for r ≥ 0 αr+1 = αr − ωrP ∗gradU j(f(αr))

Nevertheless, applying the operator f permits to go back to space U , and thus, to obtain:

f(αr+1) = Pαr+1 + b = f(αr)− ωrPP ∗gradU j(f(αr))

Thus, considering as initial solution γ0 = f(α0), the following iterative algorithm is finally
defined in U :

for r ≥ 0 γr+1 = γr − ωrPP ∗gradU j(γr) (4.6)

95



4.3 Multilevel gradient-based approaches for shape design

Lemma 4.1. Let α ∈ V . If gradV J (α) 6= 0 then ∃ ω̄ ∈ R
+ such that for 0 < ω < ω̄ holds

J (α− ω gradV J (α)) < J (α). If gradV J (α) = 0 then J (α− ω gradV J (α)) = J (α).

Proof. Let gradV J (α) 6= 0. Using the Taylor expansion of J (α−ωgradV J ) around α we obtain

J (α− ωgradV J (α)) = J (α)− ω 〈gradV J (α), gradV J (α)〉V + o
(
ω||gradV J (α)||

)

= J (α)− ω||gradV J (α)||2V + o
(
ω||gradV J (α)||

)

by the hypotesis on the gradient we have ||gradV J (α)||2V 6= 0, and therefore, if we choose
ω > 0 small enough we have J (α − ω gradV J (α)) < J (α). The second part of the Lemma is
obvious.

Theorem 1. If α ∈ V , b ∈ U , P ∈ L(V,U) and γ = Pα+ b then

∃ ω̄ ∈ R
+ such that for 0 < ω < ω̄ holds j(γ − ωPP ∗ gradU j(γ))) ≤ j(γ).

Proof. Remembering that J (α) = [j ◦ f ](α) and f : α→ Pα+ b (where P is a linear operator),
we have

J (α− ωgradV J (α)) = [j ◦ f ](α− ωgradV J (α))

= j
(
P (α− ω gradV J (α)) + b

)

= j
(
Pα+ b− ωP gradV J (α)

)

= j
(
γ − ωP gradV J (α)

)

= j
(
γ − ωPP ∗ gradU j(γ)

)

where for the last term we used the relation (4.5), namely gradV J (α) = P ∗ gradU j(γ). Using
Lemma 4.1 and remembering the equivalence of J (α) = j(γ) the theorem is proved.

Remark 4.1. Theorem 1 states that −P gradV J (α) = −PP ∗ gradU j(γ) is a weak descent
direction for j(γ), that is j(γ − ωPP ∗ gradj(γ)) ≤ j(γ) because, without further requirements
for P other than linearity and boundedness, there could be γ̄ such that P ∗gradU j(γ̄) = 0.

For Theorem 1 the algorithm in (4.6) is a weak descent method in U , and can be also
interpreted as a preconditioned gradient method.

Furthermore, since we are interested to the shape optimization problem (4.1) in a discrete
context, U = R

p while the second Hilbert space is, typically, V = R
p̄ with p̄ < p. Then, the

linear operator P and its adjoint P ∗ are associated to a matrix M ∈ R
p×p̄ and its transpose

respectively, and thus, the algorithm can be simply rewritten as:

for r ≥ 0 γr+1 = γr − ωrMMT gr (4.7)

with gr = grad j(γr) ∈ R
p.

Note that MMT , the matrix which is used as preconditioner for the gradient, is, by con-
struction, a square symmetrical positive semidefinite matrix. This implies that MMT gr is a
weak descent direction; a result already ensured by Theorem 1 in a more general context.

96



Chapter 4. Multilevel optimization in aerodynamic shape design

4.3.2 A hierarchical parametrization based on shape grid-points

An optimization algorithm based on control space change as presented in Sec. 4.3.1 has been
initially proposed in [Beux and Dervieux, 1994] for the case of a linear operator, i.e. for f = P .
In this study, the ordinates of the grid-points, localised on the shape which should be optimised,
have been chosen as control variables γ. Then, a set of points, extracted from the complete set of
shape grid-points, is considered as sub-parametrization α while a Hermitian cubic interpolation
is defined as prolongation operator f .

Moreover, instead of considering a single space V , the cost functional is minimised alterna-
tively on different control subspaces of decreasing dimension. More precisely, a family of embed-
ded sub-parametrizations is considered, in which for each increase of level the number of points
is doubled. At a particular level, the prolongation operator is defined by P (l) = PLL−1 ◦ · · · ◦P l+1

l

where L corresponds to the finest level, i.e. to the complete parametrization, while P i+1
i is the

cubic interpolation used for the prolongation from level i to the next one. In practice, at each
optimization iteration r corresponds a particular level l, and following (4.6), minimising on this

coarse level l corresponds to replace the gradient gr by the descent direction p
(l)
r = P (l)(P (l))∗ gr.

The choice of the particular subspace is determinate by a strategy of level changes similar to
multilevel/multigrid strategies used for the resolution of partial differential equations (as, for
instance, V-cycles).

Note that the multilevel approach elaborated in [Beux and Dervieux, 1994] is strongly linked
to the particular type of parametrization used. Nevertheless, the formulation described in Sec.
4.3.1 is rather more general since, providing that the prolongation operator be affine, any type
of design variables and sub-parametrizations can be proposed.

4.3.3 Generalisation to other kinds of parametrization

The multi-level method, as described in the previous sections, is based on the idea of control
space change. Moreover, it also need the definition of a family of sub-parametrizations and the
corresponding prolongation operators. In Sec. 4.3.2, a set of sub-parametrizations has been
found in a natural way considering shape grid-points as control parameters.

More generally, let us, now, consider an optimal shape design associated to α, a generic set of
control variables. Nevertheless, as pointed out in Sec. 4.2, the shape grid-points coordinates can
be used as intermediate variables. Then, since the cost functional can be expressed as j = I ◦L,
the following relation between the gradients of j and I can be obtained in a similar way as done
to obtain (4.5):

∀α ∈ R
p gradαj(α) =

(
L′(α)

)∗
gradγI (L(α))

where the subscript α and γ denote, here, that the gradient is in R
p and R

q respectively. Thus,
the gradient descent method for the minimisation of j with respect to α corresponds to the
following iterative algorithm:

α0 ∈ R
p given, for r ≥ 0 αr+1 = αr − ωr

(
L′(αr)

)∗
gradγ I(L(αr))

After the computation of αr+1, the shape grid-points coordinates should be also updated. This
updating is done through L, which lies the control variables to the shape grid-points coordinates

97



4.3 Multilevel gradient-based approaches for shape design

γ, in the following way:

for r ≥ 0, γr+1 = L(αr+1) = L
(
αr − ωr

(
L′(αr)

)∗
gradγ I(γr)

)
(4.8)

with γ0 = L(α0).
Note that, if the shape parametrization is relied to the coordinates of the shape grid-points

by an affine application, and thus, in particular, it exists a matrix M ∈ R
q×p such that for any

h ∈ R
p we have

[
L′(αr)

]
(h) = Mh, then (4.8) can be rewritten as follows:

γr+1 = γr − ωrMMT gradγ I(γr)

In this case, a descent direction is obtained considering as control variables α as well as γ. From
the point of view of an optimization with respect to γ, α acts as a sub-parametrization, and, we
exactly recover the formulation of Sec. 4.3.1 taking, here, f = L, j = I and J = j. Thus, the
approach proposed in [Beux and Dervieux, 1994] corresponds to choose as control parameters
the coordinates of a subset of the shape grid-points.

On another hand, if it is possible to find an affine application from R
p̄ to R

p (associated to
a matrix D ∈ R

p×p̄), then, as done in Sec. 4.3.1, a preconditioned gradient method can be also
defined for the optimization of j with respect to α. It corresponds to the following iterative
algorithm:

α0 ∈ R
p given, for r ≥ 0 αr+1 = αr − ωrDDT gradα j(αr) (4.9)

Thus, two possible ways can be envisaged to generalize the multi-level approach: considering
α as control variables as done in (4.9), or alternatively, considering γ as control variables if L is
affine. In this last case, one can also combined the two kinds of preconditioners. Indeed, (4.9)
can be expressed in terms of shape grid-points as follows:

γr+1 = L
(
αr − ωrDDT

(
L′(αr)

)∗
gradγ I(γr)

)

Then, if L is an affine application, it can be also rewritten as:

γr+1 = γr − ωrMD(MD)T gradγ I(γr) (4.10)

In this case, the same algorithm can be interpreted as a preconditioned gradient method
considering as control variables α (through (4.9)) as well as γ (through (4.10)). In particular,
let us consider a parametrization α with L affine and an adequate set of sub-levels associated
to the matrices D(l), l = 1, · · · , L. Then, (4.10) furnishes a practical way to define the different
preconditioning matrices for the optimization with respect to γ taking M (l) = MD(l).

Note that, in order to really define a multi-level strategy, one should also introduce a notion
of coarseness for the sub-levels. In particular, we should be able to define a family of sub-
parametrizations with a decreasing number of parameters. Furthermore, a coarser level should
correspond to a representation of the shape with lower frequencies. Finally, it will be also
interesting to define, as done for the original formulation [Beux and Dervieux, 1994], a family
of embedded parametrizations in which the passage from a given level to the finest one, can be
done progressively considering successively the different intermediate sub-levels.

98



Chapter 4. Multilevel optimization in aerodynamic shape design

4.4 Examples of alternative multi-level approaches

In the framework of the formulation defined in Sec. 4.3.3, we propose, here, to elaborate alter-
native multi-level approaches based on some classical shape parametrizations. More precisely,
parameters, which can be related by linear or affine application to the set of shape grid points,
are individualized, and then, used to define an adequate family of sub-parametrizations. Note
that, as done in [Beux and Dervieux, 1994], we consider the case in which the design control
acts only on the ordinates of the shape grid points whereas the abscissas xΓ

0 , · · · , xΓ
m are defined

by the knowledge of the initial mesh and frozen during the optimization process. In the con-
text of aerodynamic shape optimization, this approach is often chosen, and does not appear so
restrictive as long as only slender bodies are considered.

4.4.1 Formulation based on Bézier control points

Shape representation through Bézier curves

A Bézier curve of degree n can be defined as follows:

S(t) = (x(t), y(t))T =

n∑

q=0

Bn
q (t)Sq with t ∈ [0, 1] (4.11)

where Sq = (xq, yq)
T is the q-th Bézier control point while Bn

q (t) corresponds to the q-th Bern-
stein polynomial of degree n.

Thus, for a given set of parameters (tk)k=0,m with t0 = 0 < t1 < · · · < tm = 1, the ordinates
of the Bézier control points are directly related through a linear application with the ordinates
of the shape grid-points, yΓ

0 , · · · , yΓ
m. Indeed, applying (4.11) with y(tk) = yΓ

k , we obtain:




yΓ
0 = y(0) = y0

yΓ
k = y(tk) =

n−1∑

q=1

Bn
q (tk)yq + sn(tk) for k = 1,m− 1

yΓ
m = y(1) = yn

(4.12)

in which sn(tk) = Bn
0 (tk)y0 +Bn

n(tk)yn.
Nevertheless, geometrical constraints are often imposed at the extremities of the shape which

should be optimised. For instance, the shape extremities are in general fixed; it corresponds,

here, to freeze yΓ
0 and yΓ

m. Then, α =
(
y1, · · · , yn−1

)T
are related to γ = (yΓ

1 , · · · , yΓ
m−1)

T by
the following affine operator 1:

f : R
n−1 −→ R

m−1

α 7−→ γ = Mα+ b b ∈ R
m−1,M ∈ R

m−1×n−1

where 



Mkq = Bn
q (tk), for q = 1, n − 1 and k = 1,m− 1

bk = sn(tk) = (1− tk)nyΓ
m + (tk)

nyΓ
0 , for k = 1,m− 1

1note that we choose, here, to follow the notations introduced in Sec. 4.3.1 of instead of the ones used in Sec.
4.2.1 and 4.3.3, i.e. to call the affine operator f instead of L.

99



4.4 Examples of alternative multi-level approaches

Thus, according to Sec. 4.3.1, it can be envisaged to define a strategy similar to the original
multilevel approach [Beux and Dervieux, 1994]. Indeed, if the ordinates of the shape grid-points
are taken as control variables, each sub-parametrization is chosen as a set of Bézier control points
instead of a subset of boundary grid-points. Then, the following descent direction is obtained
at iteration r and level l:

d(l)
r = M (l)(M (l))T gr with M

(l)
ij = B

nl
j (t

(l)
i ). (4.13)

To fully describe the different sub-parametrizations, at each sub-level X(l) = (x
(l)
0 , · · · , x(l)

nl)
T

with nl > nl−1 and T (l) = (t
(l)
0 , · · · , t(l)m )T should be defined. Furthermore, this definition should

be done consistently with (4.11), i.e.:

xΓ
k = x(t

(l)
k ) =

nl∑

q=0

Bnlq (t
(l)
k )x(l)

q for k = 0, · · · ,m (4.14)

in which the abscissas of shape grid-points ({xΓ
k}k=0,m) are given.

Note that the definition of the different sub-parametrizations is not dependent of the partic-
ular optimization iteration r, and thus, should be done as a preprocessing.

Sub-parametrizations based on the degree-elevation property

In order to define an adequate parametrization at level l, the classical degree-elevation property
of the Bézier curves (see, e.g. [Farin, 1990])), which allows to increase the degree and the number
of control points, is used here. Note that the good features of the degree-elevation property have
been pointed out, and, already, employed to construct an embedded parametrization in [Désidéri,
2003] .

Given a Bézier curve of degree s associated to the s + 1 control points Sq = (xq, yq)
T , the

same geometrical curve can be also understood as a Bézier curve of degree s + 1 considering a
new set of s+ 2 control points S̄q = (x̄q, ȳq)

T obtained from Sq as follows:

S̄q =
q

s+ 1
Sq−1 +

(
1− q

s+ 1

)
Sq for q = 0, · · · , s+ 1 (4.15)

An interesting feature is that the distribution of the parameters t over the Bézier curve does not
change by degree elevation, and thus:

s∑

q=0

Bs
q(t) xq =

s+1∑

q=0

Bs+1
q (t) x̄q ∀t ∈ [0, 1] (4.16)

Consequently, if the parametrization on the coarsest level has been yet defined with X(0) and
T (0) consistent, i.e. with (4.14) verified for l = 0, then, thanks to (4.16), keeping the parameters
tk unchanged on all the levels, i.e. T (l) = T (0) for all l > 0, the consistency is preserved by
applying successively the degree-elevation algorithm starting from X(0). More precisely, X(l) is
obtained from X(l−1) by applying nl − nl−1 times the degree-elevation algorithm, and thus, we

100



Chapter 4. Multilevel optimization in aerodynamic shape design

obtain a family of embedded sub-parametrizations with a progressive increase of the number of
control points.

Note that, the conditions at the endpoints x
(l)
0 = xΓ

0 and x(l)
n = xΓ

m are automatically verified
at each level if these relations occur for l = 0. Furthermore, additional geometrical constraints
are often imposed on the shape: for instance, a vertical tangent at the origin is a standard
constraint at the leading edge for airfoil profiles. With a Bézier curve, the derivatives at the
endpoints can be easily managed, and in particular, a vertical tangent at the origin can be
enforced by the condition x0 = x1. It is easy to see that the degree elevation also preserves this
condition. Thus, using the present procedure, the different sub-levels are fully determined by
the construction of a consistent coarsest sub-level.

Construction of a consistent coarsest sub-level

The simplest way to construct an initial set of abscissas for Bézier control points is to consider
the set reduced to the endpoints, i.e. X̃0 = (xΓ

0 , x
Γ
m). In this case, eq. (3.14) with nl = 1 gives

the following expression for the parameters tk:

tk =
xΓ
k − xΓ

0

xΓ
m − xΓ

0

for k = 0, · · · ,m.

On another hand, any X̃l obtained by applying successively the degree-elevation process starting
from X̃0 yields an uniform distribution of points on the interval [xΓ

0 , x
Γ
m]. Furthermore, if, as

for the case of the nozzle inverse problem presented in Sec. 4.8.2 (test-case 1), the (xΓ
k )k=0,m are

uniformly distributed, it directly follows that the parameters tk are also uniformly distributed.
Thus, a consistent coarsest level can be easily obtained by simply choosing an uniform distribu-
tion for both X(0) and T (0).

Let us, now, consider the case in which a vertical tangent should be imposed at the origin
(as for instance, the airfoil inverse problem of Sec. 4.8.2 (test-case 2)). In this case, X̃0 =
(xΓ

0 , x
Γ
0 , x

Γ
m)T gives the simplest initial set of abscissas for Bézier control points. X̃0 is associated

to the following distribution of the parameters tk:

tk =

√
xΓ
k − xΓ

0

xΓ
m − xΓ

0

for k = 0, · · · ,m. (4.17)

A consistent coarsest level is then obtained considering T (0) defined by (4.17) and X(0) being
any X̃l obtained from X̃0 by applying successively the degree-elevation process.

4.4.2 Formulation based on shape functions basis

Shape representation through analytical shape functions

As pointed out in Sec. 4.2.3, another classical choice of parametrization for aerodynamic shape
design is to consider the curve coefficients in some basis of shape functions. Then, given
(xΓ
k )k=0,m, the shape grid-points abscissas and the particular basis (fq)q=1,n, the basis coef-

ficients α(n) = (α1, · · · , αn)T can be easily related to the ordinates of the shape grid-points γ

101



4.5 Reinterpretation of the new multilevel approaches

by:

y(xΓ
k ) =

n∑

q=1

αqfq(x
Γ
k ) ∀k = 1, · · · ,m− 1 (4.18)

Then, thanks to the linearity between α(n) and γ, it is still possible to define a multilevel
strategy as done previously for the Bézier points, i.e. considering γ as control variables. Here,
a sub-level is simply obtained considering only a subset of the basis shape functions. More
precisely, taking the first l coefficients, i.e., α(l) = (α1, · · · , αl)T , the preconditioning matrix
M (l)(M (l))T to apply in (4.7) is determinate by:

M
(l)
ij = fj(x

Γ
i ) for j = 1, l and i = 1,m− 1. (4.19)

Sub-parametrizations based on orthonormal shape functions

As pointed out in Sec. 4.3.3, the number of freedom degrees considered is not enough to well de-
fine the notion of level coarseness. More specifically, to define a coarser level by taking less shape
functions as done previously, does not make sense if a hierarchy between the different shape func-
tions can not be established. This difficulty can be avoided by considering orthonormal shape
functions since these functions are increasingly oscillatory (see Fig. 4.1), and consequently, each
shape function can be arranged with respect to its degree of high-frequency. The interest of using
orthonormal functions associated to multigrid approach has been pointed out in [Kuruvila et al.,
1994] in which four orthogonal functions have been defined starting from a NACA 0012 airfoil
(this set of shape functions has been successively extended to ten by [Chang et al., 1995] in order
to represent a supercritical wing). More recently, in [Catalano et al., 2005] a family of orthonor-
mal shape functions based on Bézier curves has been defined and associated to a multigrid-aided
finite-difference method.

Let us, here, consider the following family of functions which just corresponds to consider
the functions defined by [Kuruvila et al., 1994] for any degree:

g1(x) =
√
x− x and gq = xq−1(1− x) for q ≥ 2

Then, the orthonormal shape functions (with respect to L2
(
[0, 1]

)
scalar product) (fq)q=1,n are

obtained by applying a classical Gram-Schmidt procedure. Note that, here, the orthonormali-
sation is not done numerically but analytically through symbolic calculus. In this way, we have
access possibly to the exact derivatives, which can be useful, for instance, for imposing some
geometrical constraints. The analytical expressions for the orthonormal shape functions (fq)
with q = 1, . . . , 9 are given in Table 4.1.

4.5 Reinterpretation of the new multilevel approaches

4.5.1 Parametrization based on Bézier control points

In the present formulation, even if each sub-parametrization corresponds to the ordinates of a
set of Bézier control points, these control points do not explicitly appear in the definition of the
descent direction since only the parameters (tk)k=0,m are directly involved in (4.13). Thus, the

102



Chapter 4. Multilevel optimization in aerodynamic shape design

f1(x) =
√

30(
√
x− x)

f2(x) =

√
10

3
(−13

√
x+ 27x− 14x2)

f3(x) =

√
1190

51
(35
√
x− 108x + 154x2 − 81x3)

f4(x) =
3
√

442

221
(−123

√
x+ 500x− 1330x2 + 1701x3 − 748x4)

f5(x) =

√
10582

1443
(671
√
x− 3375x + 14210x2 − 31752x3 + 32076x4 − 11830x5)

f6(x) =

√
962

111
(−221

√
x+ 1323x − 8036x2 + 27216x3 − 46332x4 + 38038x5 − 11988x6)

f7(x) =

√
78

13
(113
√
x− 784x+ 6468x2 − 30618x3 + 76956x4 − 104104x5 + 71604x6+

− 19635x7)

f8(x) =

√
90610

1599
(−493

√
x+ 3888x − 41748x2 + 261954x3 − 901692x4 + 1769768x5+

− 1975428x6 + 1166319x7 − 282568x8)

f9(x) =

√
157358

12423
(3439

√
x− 30375x + 411180x2 − 3293136x3 + 14779908x4+

− 39169130x5 + 62653500x6 − 59376240x7 + 30669496x8 − 6648642x9)

Table 4.1: Analytical expression of the orthonormal shape functions fq with q = 1, . . . , 9.

103



4.5 Reinterpretation of the new multilevel approaches

-3

-2

-1

 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1

x/chord

f1
f2
f3

-3

-2

-1

 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1

x/chord

f4
f5
f6

-3

-2

-1

 0

 1

 2

 3

 0  0.2  0.4  0.6  0.8  1

x/chord

f7
f8
f9

Figure 4.1: Orthonormal shape functions: the 1-2-3 (top-left), the 4-5-6 (top-right) and the
7-8-9 (bottom) basis functions.

104



Chapter 4. Multilevel optimization in aerodynamic shape design

knowledge of the particular position of the Bézier control points is not required in the practical
algorithm implementation. Nevertheless, an explicitly dependence on these control points can
be, also, reintroduced in the formulation.

Let us consider a particular level l, with 0 ≤ l < L, L corresponding to the finest level of
Bézier control points.

for k = 1,m− 1 yΓ
k =

nl−1∑

q=1

Bnl
q (tk) y(l)

q + b
(l)
k =

nL−1∑

q=1

BnL
q (tk)y

(L)
q + b

(L)
k

The last equality is due to the fact that (y
(L)
q )q=0,nL

is obtained from (y
(l)
q )q=0,nl

by a degree-
elevation process, i.e. using iteratively the relation (4.16) for the ordinates. Thus, the prolon-
gation operator at level l, i.e. f (l) : α 7−→ γ = M (l)α+ b(l), verifies

f (l) = f (L) ◦ dLl

in which f (L) : β 7−→ γ = M (L)β + b(L) is the operator relating the finest level of Bézier control
points to the shape grid-points while dLl corresponds to the prolongation operator from level l
to level L.

Note that the degree-elevation process is linear, and thus, excluding the endpoints, the
application ds, which furnishes s internal control points from s−1 ones, is affine. More precisely,
ds is defined by:

ds : R
s−1 −→ R

s

α 7−→ Dsα+ λs
with





λs =
1

s+ 1
(yΓ

0 , 0, · · · , 0, yΓ
m)T

(Ds)ij =
1

s+ 1

(
(s+ 1− i)δij + iδ(i−1)j

)

Consequently, the prolongation operator from level l to the finest level L of Bézier control points
can be expressed as dLl = dnL−1 ◦ · · · ◦ dnl

, and thus, is an affine application associated to the
matrix DLl = DnL−1 · · ·Dnl+1Dnl

. In conclusion, at a particular level l, one can directly relate
the current set of Bézier control points with the shape grid-points through f (l), or alternatively,
apply successively the operators dLl and f (L). The two ways are equivalent from a theoretical
view point, even if they can differ in the implementation. Thus, the following algorithm can be
used instead of eqs. (4.7) and (4.13):

γr+1 = γr − ωrM (L)DLl (DLl )T (M (L))T gr (4.20)

The algorithm (4.20) exactly corresponds to (4.10) of Sec. 4.3.3, in which M = M (L) and
D(l) = DLl . Thus, the approach described in Sec. 4.4.1 can be also interpreted as a multilevel
gradient-based method in which the Bézier control points (on the finest level L) are taken
as control variables. Then, (4.9) corresponds, in this specific case, to the following iterative
algorithm (expressed, here, at iteration r + 1 and sub-level l):

βr+1 = βr − ωr DLl (DLl )T Gr (4.21)

105



4.6 Computation of an approximate gradient

where β = α(L) = (y1, · · · , ynL−1)
T and Gr = (M (L))T gr is the functional gradient with respect

to β at iteration r.

Note that this pointed out a strong analogy with the approach proposed in [Désidéri, 2003]
since, in the both algorithms, the degree-elevation property is directly used to prolongate from
a coarse level to the complete set of design variables, which are Bézier control points (a more
detailed comparison between the two approaches is proposed in Sec. 4.7).

4.5.2 Parametrization based on shape functions

The degree-elevation property, which has been used as prolongation operator for the Bézier-
based embedded parametrization, allows to consider the same geometrical curve as an element
of a larger space, An analogous operation can be done here; indeed, the curve with coordi-
nates (α1, · · · , αl)T in the basis (f1, · · · , fl)T is exactly equal to the curve with coordinates
(α1, · · · , αl, 0, · · · , 0)T in the basis (f1, · · · , fn)T . This simple way to prolongate an element of
R
l in R

n corresponds to consider the linear prolongation operator, which is associated with the
rectangular matrix Nn

l ∈ R
n×l defined by

(
Nn
l

)
ij

= δij for i = 1, n and j = 1, l

Then, taking β = α(n) as control variables, a multilevel preconditioned gradient method can be
defined as follows:

βr+1 = βr − ωrNn
l

(
Nn
l

)T
gradβj(βr)

and the corresponding updating of the shape grid-points is expressed as:

γr+1 = γr − ωrM (n)Nn
l

(
M (n)Nn

l

)T
gradγj(γr)

in which M (n) is defined by (4.19) with l = n.

Thus, as for Bézier-based parametrization, a direct correlation between the different sub-level
has been established allowing the definition of an algorithm as (4.10).

4.6 Computation of an approximate gradient

As previously pointed out, an adjoint approach seems to be the more suitable way to compute the
sensitivities. However, an approximate gradient, computed using finite-differences sensitivities,
remains interesting as far as the exact differentiation is a too complex task or some problems of
non-differentiability are present. Note that a multilevel method, as described in this study, is a
priori independent of the way in which the discrete gradient is computed. Nevertheless, in the
case of an approximate gradient, the computational cost can be noticeably reduced by coupling
with a multilevel approach in which the finite differences are applied on the coarser levels (see
[Beux and Dervieux, 1994]). This multi-level/finite-differences formulation has been used in
[Held et al., 2002] coupled with a one-shot approach while, in [de’ Michieli Vitturi and Beux,
2006], a multilevel adjoint-free gradient formulation is proposed in which finite differences are
used to approximate the flow sensitivities.

106



Chapter 4. Multilevel optimization in aerodynamic shape design

Sections 4.3.3 and 4.5 show that there are two possible ways to prolongate from a particular
level l to γ, the shape grid-points ordinates. Indeed, it can be directly applied f (l) or, alterna-
tively, used successively the affine operators dLl and f (L), i.e. in terms of functional, it signifies
that J (l) = j ◦ f (l) can be also expressed as J (L) ◦ dLl . Consequently, there are also two possible
ways to compute its Gâteaux derivative. More precisely, for all h in R

nl−1, we have:

[
J (l)

]′
(α)(h) = j′(γ)

(
M (l)h

)
= lim

θ→0+

j
(
γ + θM (l)h

)
− j(γ)

θ
(4.22)

and [
J (l)

]′
(α)(h) =

(
J (L)

)′
(β)
(
DLl h

)
= lim

θ→0+

J (L)
(
β + θDLl h

)
− J (L)(β)

θ
(4.23)

with γ = M (l)α ∈ R
m−1 and β = DLl α ∈ R

nL−1 respectively.
Consequently, two different algorithms can be proposed in the context of an approximate

gradient. The first one is obtained considering the ordinates of the shape grid-points as design
variables, and can be expressed as follows:

γr+1 = γr − ωrM (l) g̃(l)
r (ǫ) (4.24)

in which g̃
(l)
r (ǫ) is an approximation of

(
M (l)

)T
gr obtained using (4.22), and thus, is defined by:

∀i = 1, · · · , nl − 1

(
g̃(l)
r (ǫ)

)

i

=
1

ǫ

[
j

(
γr + ǫM (l)ei

)
− j(γr)

]

in which ei is the i-th element of the canonical basis of R
nl−1 and ǫ a small given parameter.

On another hand, from (4.21) the following algorithm is obtained if the ordinates of the
Bézier control points2 are directly used as design variables:

βr+1 = βr − ωrDLl G̃(l)
r (ǫ) (4.25)

in which G̃(l)
r (ǫ) approximates

(
DLl
)T Gr using (4.23), and thus:

∀i = 1, · · · , nl − 1

(
G̃(l)
r (ǫ)

)

i

=
1

ǫ

[
J (L)

(
βr + ǫDLl ei

)
− J (L)(βr)

]

Since M (l) = M (L)DLl , applying the affine operator f (L) to (4.25) one can easily recover algo-
rithm (4.24) in which γr = f (L)(βr). Thus, according to what happens for an exact gradient
computation, the two algorithms are equivalent, and moreover, in the both cases, at level l, only
nl − 1 evaluations of the cost function are needed.

In order to illustrate the interest of the multilevel approximate gradient formulation, some
results presented in [Martinelli and Beux, 2007] are reported in Fig. 4.2. For an inverse problem
similar to the one presented in Sec. 4.8.2, V-cycle three-levels approaches are applied both

2note that the notations are, here, coherent with the ones used in Sec. 4.3.1 and successively in Sec. 4.5.1.
Obviously, the results of this section are also true for the case of a parametrization based on shape functions as
described in sections 4.4.2 and 4.5.2.

107



4.7 Reinterpretation of the approach proposed in [Désidéri, 2003]

0 50 100 150 200 250 300 350 400
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Equiv. flow evaluations

L
o
g
( 

F
u
n
c
ti
o
n
a
l 
)

Bezier 15−10−5 exact gradient

Bezier 15−10−5 oneshot

Shape pts. 15−7−3 exact gradient    

Shape pts. 15−7−3 oneshot

0 50 100 150 200 250 300 350 400

−6

−5

−4

−3

−2

−1

0

1

Equiv. flow evaluations
L
o
g
(|

|d
e
s
c
e
n
t 
d
ir
e
c
ti
o
n
||
)

Bezier 15−10−5 exact gradient

Bezier 15−10−5 oneshot

Shape pts. 15−7−3 exact gradient

Shape pts. 15−7−3 oneshot

Figure 4.2: Convergence histories for j(γr) (left) and d
(l)
r (right) (shape grid-points and Bézier-

based parametrizations): comparison between the exact adjoint gradient computation and the
gradient approximated by divided differences associated with a one-shot approach.

for the adjoint method and the finite-differences one associated with a one-shot approach (as
described in [Held et al., 2002]). The good behaviour of the one-shot approach without adjoint,
already obtained in [Held et al., 2002], is also confirmed for the Bézier-based parametrization.
Moreover, the same improvement obtained by using the Bézier parametrization instead of the
shape grid-points is observed with the multilevel/finite-differences one-shot approach.

4.7 Reinterpretation of the approach proposed in [Désidéri, 2003]

As previously pointed out, the present Bézier-based multilevel approach has strong similarities
with the approach proposed by [Désidéri, 2003]. This approach has been defined independently
of the specific optimization algorithm, and thus, is a priori gradient-free. Nevertheless, in order
to try to better see the analogies, let us consider a two-level algorithm, in which a steepest-
descent-like method is used both for the finest level and for the sub-level (see [Désidéri, 2007;
Abou El Majd et al., 2008]). It consists in alternate a relaxation phase on the upper-level of
Bézier parametrization (few shape optimization iterations) with a coarse-level correction phase,
in which the shape perturbation is parametrised on a coarse Bézier sub-parametrization. Then,
the cycle c of the algorithm can be rewritten with the notations used in the present study as:

1. Upper level: given β
(c)
0 ∈ R

nL−1 from the previous cycle, iterate:

for r = 1, rL β(c)
r = β

(c)
r−1 − ω̃rgradβ(β

(c)
r−1) (4.26)

108



Chapter 4. Multilevel optimization in aerodynamic shape design

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Iter. 1

Iter. 5

Iter. 13

Iter. 25

Target

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Iter. 1

Iter. 5

Iter. 13

Iter. 25

Target

Figure 4.3: One-shot/multilevel approach using Bézier parametrization: successive shapes (left)
and Bézier control points (right). Comparison between the target solution and solutions after
1, 2, 4 and 7 V-cycles (i.e., after 1, 5, 13 and 25 optimization iterations).

2. Solve the following minimisation problem on the coarser level:

Find δ̄(c)α = Argmin
δα
I(c)(δα) (4.27)

in which I(c)(δα) = J (L)
(
β(c)
rL

+ d̃Ll (δα)
)

for δα ∈ R
nl−1.

3. A new cycle can be, then, computed starting from β
(c+1)
0 = β

(c)
rL + d̃Ll

(
δ̄(c)α
)

on the upper
level.

d̃Ll is the prolongation operator from level l to L based on degree-elevation property, which
depends on the particular choice of T (l) and X(l). Furthermore, since we are working, here,
on shape perturbations, the conditions at the endpoints are (δα)0 = 0 and (δα)nl

= 0, and
consequently, d̃Ll is linear, i.e. d̃Ll (δα) = D̃Ll δα.

To solve (4.27) and obtain an approximation of δ̄
(c)
α , sl (sl ≫ rL) iterations of a steepest-

descent method are performed starting from a given initial solution (δα)0:

s = 1, sl (δα)s = (δα)s−1 − ω̃s−1 gradδαI(c)
(
(δα)s−1

)

Furthermore, let us define ϕ
(c)
rL by ϕ

(c)
rL (δα) = β

(c)
rL + D̃Ll δα, since I = J (L) ◦ ϕ(c)

rL with ϕ
(c)
rL affine,

we have:

gradδαI(δα) = (D̃Ll )T gradβJ (L)
(
ϕ(c)
rL

(δα)
)
.

109



4.8 Numerical experiments

Consequently, the Bézier control points on the finer level are obtained at the end of the cycle
by:

β
(c+1)
0 = β

(c)
rL + D̃Ll

(
δα
)
sl

= β
(c)
rL − D̃Ll

(
D̃Ll
)T

sl−1∑

i=0

ω̃i gradβJ (L)

(
β(c)
rL

+ D̃Ll (δα)i

)
− D̃Ll (δα)0

Let us consider, now, the approach defined in sections 4.4.1 and 4.5.1, associated with a
two-level algorithm with rl and sl iterations for the upper and coarser levels respectively. From
(4.21), the following expression is obtained for the Bézier control points on the finest level are
obtained at the end of the cycle c:

β̄
(c+1)
0 = β[r0(c)+sl] = βr0(c) −DLl

(
DLl
)T

sl−1∑

i=0

ωi G[r0(c)+i]

with r0(c) = (c− 1)(rL + sl) + rL.

Proposition 4.1. With an adequate choice of the parameters which characterize the two-level
algorithms, the two strategies coincide at the end of each cycle, i.e.

β
(c+1)
0 = β̄

(c+1)
0 for each cycle c

Proof. Let us consider that the same choice of family of embedded sub-parametrizations, i.e.
the same choice of T (l) and X(l) at each sub-level, is done, and thus, in particular D̃Ll = DLl .

• If the two algorithms start from the same shape configuration, then β
(1)
0 = β̄

(1)
0 .

• Let us suppose, now, that β
(c)
0 = β̄

(c)
0 for c ≥ 1.

If the same 1D search strategy (i.e., the same scalar parameter ω) is employed, the iterative
algorithms on the upper level, i.e. (4.21) and (4.26), coincide, and thus, we have that
βr0(c) = β(c)

rL
. Moreover, choosing (δα)0 = 0 and supposing that ω̃i = ω[r0(c)+i] at each

iteration on the lower level, we obtain that

β[r0(c)+i] = ϕ(c)
rL

(
(δα)i

)
for i = 0, sl

and consequently

β
(c+1)
0 = β̄

(c+1)
0

4.8 Numerical experiments

4.8.1 Parametrization and shape representations

Since in a multi-level approach, different levels of coarseness are involved, it should be interesting
to evaluate the capability of shape representation of each level. For instance, let us investigate

110



Chapter 4. Multilevel optimization in aerodynamic shape design

on the accuracy in which a cambered RAE2822 profile can be represented by a parametrization
based on Bézier control points. At a level l, the Bézier curvefit, at the discrete least-squares sense,

is obtained minimising with respect to α(l) =
(
y1, · · · , ynl−1

)T
the Euclidean norm in R

m−1 of

the residual Res
(
α(l)
)

=
[
M (l)α(l) − b(l)

]
− γtarget. On another hand, for the parametrization

defined in Sec. 4.4.2, since we consider an orthonormal basis, the reconstruction of a given shape
f , known at xΓ

0 , · · · , xΓ
m, on a sub-level l is obtained as

∑l
i〈f, fi〉 fi in which 〈., .〉 is an adequate

discrete approximation of the L2
(
[xΓ

0 , x
Γ
m]
)

scalar product.

The curvefit error with respect to the number of parameters3 is plotted in Fig. 4.4. A very
similar behaviour is observed for the two kinds of parametrization. A rather good representation
of the RAE2822 profile is already furnished with few degrees of freedom (as, also, shown in Fig.
4.5 with the plot of profiles for small number of parameters) whereas for more than 8 parameters
a plateau is obtained with an error value of about 2 10−4. Obviously, the capability of shape
representation is strongly correlated to the choice of the particular configuration (e.g. for the
case of a symmetric NACA0012 profile, a Bézier curvefit error minor than 10−8 is obtained).
Note that, an increase of the number of Bézier control points amplifies the irregularity of the
control polygon (see Fig. 4.6). Consequently, a very small variation in the solution space (shape)
can correspond to a large variation in the design space (Bézier control points). This depends on
the particular shape (with the NACA0012, very regular control polygons are obtained), but also,
on the particular construction of the sub-parametrizations, i.e. on the choice of T (l) and X(l).
This problem has been already pointed out in [Tang and Désidéri, 2002; Abou El Majd et al.],
in which a procedure of parametrization adaptation is also proposed which acts dynamically
during the optimization procedure.

4.8.2 Numerical experiments on 2D inverse problems

Test-case 1: a 2D nozzle inverse problem

The first test-case, already used for the multilevel approach associated to shape grid-point
coordinates parametrization [Beux, 1994; Beux and Dervieux, 1992, 1994; Held et al., 2002], is a
2D convergent-divergent nozzle inverse problem for inviscid subsonic flows (the flow is modelled,
here, by the Euler equations). Here, the particular inverse problem is characterised by an initial
constant-section nozzle and a target sine shape. For the considered mesh of 1900 nodes (see
Fig. 4.7), 63 shape grid-points are available. Since, the abscissas of the shape grid-points
points are uniformly distributed, an uniform distribution is also taken for the abscissas of the
Bézier control points at each level. Fig. 4.8a shows the convergence history obtained using the
original shape grid-points parametrization. It clearly shows the effect of each level, indeed, the
lower is the number of control parameters involved, the lower is the accuracy of the solution,
but also, the faster is the convergence to the solution. Note that, the one-level method with 31
parameters already corresponds to a preconditioned gradient method since 63 degrees of freedom
are available for the present mesh. Then, advantaging of the speed-up on the coarser levels, the
multilevel approach largely improves the convergence rate to reach an accurate solution given

3Two Bézier curves are considered: one for the upper side and one for the lower one. Thus, the number of
variables really involved is two times more. In particular, 30 parameters are globally used on the finest level of
parametrization.

111



4.8 Numerical experiments

-4

-3.5

-3

-2.5

-2

-1.5

 0  2  4  6  8  10  12  14  16

Lo
g(

 ||
 r

es
id

ua
ls

 ||
 )

parameters

Bernstein
Shape func.

Figure 4.4: Curvefit error (log ‖Res(
(
α(l))

)
‖∞) with respect to the number of parameters for

the two kinds of parametrizations.

by the higher levels. Concerning the new set of sub-parametrization based on Bézier control
points (see Fig. 4.8b), even the one-level approach with 10 or 15 parameters gives interesting
results. The corresponding multilevel strategy yields ulterior improvements in the final part of
the convergence history. Nevertheless, interpreted as an optimization with respect to the Bézier
control points, this multilevelling appears less impressive. Indeed, it seems that the principal
gain is due to the use of a Bézier-based parametrization more than the change of control sub-
spaces. This can be explained by the lack of convergence speed-up of the coarser level as shown
in Fig. 4.8b.

Test-case 2: an airfoil inverse problem

In this second test-case, starting from a symmetric NACA0012 airfoil, the cambered RAE2822
should be rebuilt. The initial flow conditions are characterised by a far-field Mach number of
0.734 and an angle of incidence of 2.79o. Furthermore, as in the previous test-case, only inviscid
flows are considered. A mixed unstructured/structured mesh of 3282 nodes has been generated
on a circular computational domain centred on the airfoil (see Fig. 4.9). The definition of
the Bézier-based sub-parametrizations have been done, here, imposing a vertical tangent at the
leading edge, and thus, following the procedure proposed in Sec. 4.4.1.

The direct use of the parametrization based on shape grid-points seems more difficult for this
optimization problem, in particular, near the training edge where the upper and lower profiles
may be crossed over. This problem can be solved by imposing geometrical constraints, consid-
ering only coarser sub-levels in order to increase the smoothing or/and modifying the criterion
for the choice of the descent step ωr. Nevertheless, we choose, here, to consider only the other
sub-parametrizations. Fig. 4.10a shows the convergence behaviour for one-level strategies as
well as a V-cycle multilevel strategy on three sub-levels (5, 10 and 15 parameters) in the case of

112



Chapter 4. Multilevel optimization in aerodynamic shape design

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0  0.2  0.4  0.6  0.8  1

x/chord

RAE2822

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0  0.2  0.4  0.6  0.8  1

x/chord

RAE2822

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0  0.2  0.4  0.6  0.8  1

x/chord

RAE2822

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0  0.2  0.4  0.6  0.8  1

x/chord

RAE2822

Figure 4.5: Curvefits of RAE2822 profile by orthonormal shape functions: using 2 (top-left), 3
(top-right), 4 (bottom-left) and 5 (bottom-right) parameters respectively.

113



4.8 Numerical experiments

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.2  0.4  0.6  0.8  1

x/chord

control pts. top
control pts. bottom

RAE2822

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.2  0.4  0.6  0.8  1

x/chord

control pts. top
control pts. bottom

RAE2822

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.2  0.4  0.6  0.8  1

x/chord

control pts. top
control pts. bottom

RAE2822

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1

x/chord

control pts. top
control pts. bottom

RAE2822

Figure 4.6: RAE2822 curvefits with 2 (top-left), 4 (top-right), 8 (bottom-left) and 15 (bottom-
right) Bézier control points: profiles and corresponding control polygons.

114



Chapter 4. Multilevel optimization in aerodynamic shape design

−2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Initial

−2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Target

Figure 4.7: Test-case 1: computational mesh: initial (top) and target configuration (bottom)

a Bézier-based parametrization. The behaviour observed with the previous test-case is magni-
fied, here, since the finer is the level, the more accurate is the solution but without any lost in
convergence speed. Consequently, a very good behaviour is obtained with the one-level approach
with 15 parameters, but on another hand, the multilevel algorithm does not improve the con-
vergence rate. Fig. 4.10b shows the convergence behaviour obtained with the parametrization
based on the orthonormal shape functions. As expected from the results obtained in Sec. 4.8.1,
the same kind of behaviour is obtained between the two kinds of parametrization in terms of
solution accuracy, for the one-level approaches. However, since, here, the increase of number of
parameters corresponds to a decrease of terms of convergence, the multilevel strategy yields an
important improvement of the convergence behaviour.

4.9 Conclusion

In the present study, the description of multilevel gradient-based methods for aerodynamic
shape design is addressed. Starting from an existing formulation [Beux and Dervieux, 1994]
based on an embedded parametrization of shape grid-points and on interpolation operators, a
possible generalisation to other kinds of parametrizations is described. This extension requires
the elaboration of an adequate family of sub-parametrizations, possibly embedded, associated to
affine prolongation operators. Two particular examples are then presented, and since the shape
grid-points are yet used as control variables, the resulting approaches can be interpreted as
multilevel strategies as defined in [Beux and Dervieux, 1994], in which a particular prolongation
operator (i.e. with a particular preconditioning) is applied. However, it can also be reinterpreted
directly as multilevel approaches with respect to the new family of shape parametrization. In the
first example, the sub-levels are defined through the use of Bézier control points, and starting
from a consistent coarsest level, the degree-elevation property of Bézier curves is applied to
successively define the different finer levels. In this context, even if, in practice, the Bézier
control points can be not explicitly computed, the proposed algorithm can be also interpreted

115



4.9 Conclusion

-4

-3

-2

-1

 0

 0  20  40  60  80  100  120  140

Lo
g(

 F
un

ct
io

na
l )

Iterations

Shape pts. 1
Shape pts. 3
Shape pts. 7

Shape pts. 15
Shape pts. 31

Shape pts. 15-7-3

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0  20  40  60  80  100  120  140

Lo
g(

 F
un

ct
io

na
l )

Iterations

Bezier 5
Bezier 10
Bezier 15

Bezier 5-10-15

Figure 4.8: Test-case 1: Convergence history for one-level and V-cycle three-level strategies (a)
shape grid-points (b) Bézier-based parametrization.

116



Chapter 4. Multilevel optimization in aerodynamic shape design

mach

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Figure 4.9: Target configuration for test-case 2: computational mesh (left) and Mach contours
plot (right).

as a descent method for Bézier control points as control variables. Thus, the present descent
method seems very close to the approach proposed in [Désidéri, 2003], even if, this last one has
been defined independently of the specific optimization algorithm. Indeed, we prove that, under
specific conditions, the two approaches can be equivalent. Thus, in this study, it has been built
up an explicit link between two kinds of multilevelling: on the one hand, the preconditioned
gradient-based method defined [Beux and Dervieux, 1994] and its successive generalisations,
and on the other hand, the multilevel algorithm for parametric shape optimization presented in
[Désidéri, 2003] and its successive extensions. In the second example, the definition of the set
of sub-parametrizations is based on the use of an orthonormal basis of shape functions as shape
representation. As for the case of Bézier-based parametrization, a descent direction is obtained
considering as control parameters the ordinates of the shape grid-points as well as the finest
sub-parametrization.

The numerical experiments shows that the new families of sub-parametrizations have suitable
effects, if there are understood as an alternative gradient preconditioning for the optimization
with respect to the shape grid-points. Nevertheless, to extend the range of interest of this
kind of methods, it should be interpreted as a descent method in which the control variables
are taken through the new set of parameters. Note that, in this case, we start with a less
inefficient non preconditioned algorithm4 since the lack of shape smoothness, typical of shape
grid-points parametrization, has been avoided. Nevertheless, for the parametrization based on
orthonormal shape functions, the multilevel strategy still yields an interesting speed-up of the
convergence. Concerning the Bézier-based parametrization, the results are more disappointing

4indeed, with respect to the shape grid-points, it can be viewed as a method already preconditioned but
associated to a one-level strategy.

117



4.9 Conclusion

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

 0  20  40  60  80  100  120  140

Lo
g(

 F
un

ct
io

na
l )

Iterations

Bezier 3
Bezier 5

Bezier 10
Bezier 15

Bezier 15-10-5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

 0  20  40  60  80  100  120  140

Lo
g(

 F
un

ct
io

na
l )

Iterations

N. functions 3
N. functions 5
N. functions 7

N. functions 10
N. functions 15

N. functions 5-10-15

Figure 4.10: Test-case 2: Convergence history for one-level and V-cycle three-level strategies:
Bézier-based parametrization (top) and parametrization based on orthonormal shape functions
(bottom).

118



Chapter 4. Multilevel optimization in aerodynamic shape design

since the multilevelling seems poorly efficient. This is due, here, to a good convergence behaviour
on the finest levels while the coarsest levels do not yield any additional speed-up, and thus,
the basic conditions are not present to apply effectively the multilevel/multigrid principles.
Thus, such additional investigation should be performed in order to better understand the
present behaviour, which is also inconsistent with the results obtained by J.-A. Désidéri and
collaborators. If more attractive results can be obtained for Bézier-based parametrization, since
the Bézier curves act as a basic tool for polynomial shape representation, one can also envisage
to extend the formulation to more complex shape representation as B-splines (which also have
properties of degree-elevation), and also, to 3D case through, for instance, tensorial Bézier
parametrization. In the both examples of parametrizations presented in this study, the shape
parameters are related by linear or affine application to the set of shape grid-points. Nevertheless,
more general cases can be also envisaged since, even if it appears the simplest way to behave, it is
not indispensable (the algorithm should not be obligatorily a descent direction with respect to the
shape grid-points). Finally, note that the multilevel gradient-based method is not strictly limited
to steepest descent approach. Nevertheless, an additive multilevel preconditioner, which can be
defined as soon as a set of embedded sub-parametrizations is available, seems more suitable, for
instance, to be use with a BFGS-type formulation (see [Courty and Dervieux, 2006]).

119



4.9 Conclusion

120



Chapter 5

Improvement of functional accuracy
through adjoint-error correction

In several applications of CFD, the main task is to compute scalar quantities that are typically
defined by integrals over the entire surface of the object being considered (wing, airplane, etc.),
like lift and drag coefficient [Moran, 1984], and in the context of shape optimization we want
to obtain better performances of such quantities finding an extremum of the functional (for
example a minimum of the drag or a maximum of the lift) depending on quantities that define
the shape of the object.

Regardless the application, when integral functionals based on approximated PDE solutions
are of significant interest, it is worth to consider approaches for enhancing the accuracy of these
functional approximations.

An interesting and promising approach is studied and developed in [Pierce and Giles, 2004,
2000] (see also [Venditti and Darmofal, 2002] for combination with mesh adaptation strategies).
Pierce and Giles use a numerical approximation of the adjoint solution Πh and primal residual
error Ψex(γh,Wh) to correct the functional J(γh,Wh) and to obtain a new estimate

Jc(γh,Wh,Πh) := J(γh,Wh)− 〈Πh,Ψex(γh,Wh)〉 (5.1)

for the true value J(γ,Wex) that is superconvergent in the sense that the remaining error is of
smaller convergence order respect to J(γh,Wh)− J(γ,Wex), being proportional to the product
of the error in the primal and adjoint solutions.

Another approach to improve the accuracy of a functional is to improve the whole solution
using defect-correction [Barrett et al., 1988; Koren, 1988; Skeel, 1981; Stetter, 1978], in which

high-order discretization Ψ
(2)
h is used to define a residual error that acts as a source term in

calculating a higher order approximation W
(2)
h using lower order discretization Ψ

(1)
h :

Ψ
(1)
h (γh,W

(2)
h )−Ψ

(1)
h (γh,W

(1)
h ) = −Ψ

(2)
h (γh,W

(1)
h ).

where W
(1)
h is the low-order approximation.

It is interesting to note that defect-correction is a global improvement of the original so-
lution, while the adjoint-error correction is an improvement of the functional only. Moreover,

121



5.1 Adjoint error correction

defect-correction needs the design and derivatives of high-order approximation residual (that is
complicated and computationally expensive for unstructured grids) and this task usually must
be accomplished with extra development of the flow solver (to increase the order of the dis-
cretization). To the opposite, adjoint-correction can be easily developed with AD tools (see
Chapter 3) working almost exclusively with the existing solver (i.e. we don’t need to modify the
solver itself, but we use it as building-block to obtain its adjoint state).

However, adjoint error correction and defect correction are not mutually exclusive; the best
accuracy is to be achieved through the simultaneous use of both techniques [Giles and Pierce,
2002].

Once a correction term involving an adjoint state is added to the original functional J(γ,W ),
the development of its gradient for optimization may appear much more complex respect to the
not-corrected case (as we have done in Chapter 3, see eq. (3.17)), therefore in this chapter we
want to address the issues related to the evaluation of gradient for the corrected functional (5.1).

5.1 Adjoint error correction

Suppose that we want to evaluate a nonlinear functional J : (γ,W ) 7→ J(γ,W ) at the values
(γ,Wex(γ)), where γ is a control variable and Wex(γ) is the solution of the nonlinear equation

Ψex(γ,W ) = 0.

Given an approximate equation1 Ψh = Ψ(γ,W ) = 0, we define Wh(γ) as the solution for Ψ = 0
and therefore an approximate solution for Ψex = 0.

If we define the solution error for the problem Ψex = 0 to be δW

δW := Wh −Wex,

and then linearize both the nonlinear equations and the functional around the true solution Wex,
we obtain

Ψex(γ,Wh) = Ψex(γ,Wex + δW ) ≃ ∂Ψex

∂W

∣∣∣∣
(γ,Wex)

δW

and

J(γ,Wh) = J(γ,Wex + δW ) = J(γ,Wex) +
∂J

∂W

∣∣∣∣
(γ,Wex)

δW +O
(
||δW ||2

)
.

These can be rewritten as





∂Ψex

∂W

∣∣∣∣
(γ,Wex)

δW ≃ Ψex(γ,Wh)

J(γ,Wex) = J(γ,Wh)−
∂J

∂W

∣∣∣∣
(γ,Wex)

δW +O
(
||δW ||2

)

1In the sequel, to maintain the formalism as readable as possible, we omit the subscript h for the approximate
equation Ψh(γ, W ) = 0. In this way, the notation will be consistent with the one used in Chapter 3.

122



Chapter 5. Improvement of functional accuracy through adjoint-error correction

If Πex is defined as solving the adjoint equation
(
∂Ψex

∂W

∣∣∣∣
(γ,Wex)

)∗
Πex =

(
∂J

∂W

∣∣∣∣
(γ,Wex)

)∗
(5.2)

then we obtain

J(γ,Wex) = J(γ,Wh)−
〈
Πex,Ψex(γ,Wh)

〉
+O

(
||δW ||2

)
.

Now we note that the correction term
〈
Πex,Ψex(γ,Wh)

〉
correspond to the ∂J

∂W

∣∣
(γ,Wex)

δW term

in the Taylor expansion of the exact value J(γ,Wex), so we can say that the corrected functional

J(γ,Wh)−
〈
Πex,Ψex(γ,Wh)

〉
(5.3)

is a more accurate estimate for the true (and unknown) J(γ,Wex) respect to J(γ,Wh) alone.
It is important to note that the adjoint state Πex in (5.3) is referred to the true solution

Wex and not to the approximate solution Wh, in fact the linear adjoint operators
(
∂Ψ
∂W

)∗
and(

∂J
∂W

)∗
in (5.2) are both evaluated at the state Wex. For this reason, the true solution Wex being

unknown, the true adjoint state Πex is unknown as well.
In [Pierce and Giles, 2004], it is shown that in the corrected functional (5.3) we can use the

approximated adjoint state Πh referred to the approximate equation Ψ = 0 and its solution Wh,
namely (

∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
Πh =

(
∂J

∂W

∣∣∣∣
(γh,Wh)

)∗
, (5.4)

due to the fact that the error on the adjoint 〈Πh −Πex,Ψex(γh,Wh)〉 is of higher order with
respect to the correction

〈
Πh,Ψex(γh,Wh)

〉
. To be more precise, if the solution errors for the

nonlinear primal problem (i.e. Wh−Wex) and the solution errors for the linear adjoint problem
(i.e. Πh − Πex) are of the same order, and they are both sufficiently smooth that the corre-
sponding residual errors are also of the same order, then the order of accuracy of the functional
approximations after making the adjoint correction is twice the order of the primal and adjoint
solution [Pierce and Giles, 2004].

Summarizing, we can obtain a better estimate for the true value of the functional J(γ,Wex)
using, instead of the estimate J(γh,Wh) for the original functional

J : (γ,W ) 7→ J(γ,W ) with W : γ 7→W (γ) such that Ψ(γ,W ) = 0,

the estimate Jc(γh,Wh,Πh) for the corrected functional

Jc : (γ,W,Π) 7→ Jc(γ,W,Π) := J(γ,W )−
〈
Π,Ψex(γ,W )

〉
(5.5)

subject to




W : γ 7→W (γ) such that Ψ(γ,W ) = 0

Π: (γ,W ) 7→ Π(γ,W ) such that

(
∂Ψ

∂W

∣∣∣∣
(γ,W )

)∗
Π =

(
∂J

∂W

∣∣∣∣
(γ,W )

)∗ . (5.6)

123



5.2 Gradient of the corrected functional

Remark 5.1. It is important to note that the quantities needed for the estimate Jc(γh,Wh,Πh)
are computables, in fact the approximate (and continuous) primal and dual solutions Wh and
Πh might be created as P1 interpolation through computed (and discrete) values at grid nodes
obtained, for example, solving the approximate problem Ψ(γ,W ) = 0 with a finite volumes
method and the corrispondent adjoint system (5.4).

Remark 5.2. Due to the fact that the variable W (γ) depends on the control γ through the state
equation Ψ(γ,W (γ)) = 0 (and the same thing holds for the adjoint state Π), we can consider
the functionals J(γ,W ) and Jc(γ,W,Π) as functions of γ only, namely

j : γ 7→ j(γ) := J(γ,W (γ)) with W (γ) such that ψ(γ) := Ψ(γ,W (γ)) = 0 (5.7)

and

jc : γ 7→ jc(γ) := J(γ,W (γ)) −
〈
π(γ),Ψex(γ,W (γ))

〉
(5.8)

subject to





W : γ 7→W (γ) such that ψ(γ) := Ψ(γ,W (γ)) = 0

π : γ 7→ π(γ) := Π(γ,W (γ)) such that

(
∂Ψ

∂W

∣∣∣∣
(γ,W (γ))

)∗
π =

(
∂J

∂W

∣∣∣∣
(γ,W (γ))

)∗ . (5.9)

Remark 5.3. The difference between the W , Π and the corresponding quantities with a sub-
script Wh, Πh (or Wex, Πex) is that W , Π are formal arguments of the various functions and
express a dependancy, while Wh, Πh (or Wex, Πex) are the solutions of the nonlinear constraint
Ψ = 0 (Ψex = 0) and its associated adjoint equation. In this sense jc(γ) = Jc(γ,W,Π) is
a functional (therefore the question about how compute its derivatives is well-posed), while
Jc(γh,Wh,Πh) is a real value.

The rest of the chapter it is devoted to the computation of the gradient
(
djc

dγ

∣∣
γ

)∗
in order to

build a gradient-based algorithms for the optimization problem

Find γopt ∈ G such that jc(γopt) = min
γ∈G

jc(γ)

where the functional jc(γ) is defined as in (5.8) and subject to the constraints (5.9).

5.2 Gradient of the corrected functional

In Chapter 3 we have seen that to obtain the first-order derivatives of a functional j(γ) = J(γ,W )
respect to the control variable γ and such that the state variable W (γ) satisfies the nonlinear
constraint Ψ(γ,W ) = 0, we can use an approach based on the adjoint formulation that gives

(
dj

dγ

∣∣∣∣
γ

)∗
=

(
∂J

∂γ

∣∣∣∣
(γ,W )

)∗
−
(
∂Ψ

∂γ

∣∣∣∣
(γ,W )

)∗
Π (5.10)

124



Chapter 5. Improvement of functional accuracy through adjoint-error correction

where Π: (γ,W ) 7→ Π(γ,W ) is the function of γ and W satisfying the adjoint equation

(
∂Ψ

∂W

∣∣∣∣
(γ,W )

)∗
Π =

(
∂J

∂W

∣∣∣∣
(γ,W )

)∗
. (5.11)

The adjoint-corrected functional (5.5) can be rewritten as

jc(γ) = Jc(γ,W,Π) = J(γ,W ) + F (γ,W,Π) (5.12)

where we have introduced the functional F : (γ,W,Π) 7→ F (γ,W,Π) that corresponds to the
correction term

〈
Π,Ψex(W )

〉
, namely F (γh,Wh,Πh) = −

〈
Πh,Ψex(Wh)

〉
. Then, due to the

linearity of the differential operator d
dγ

and using the chain rule and the properties of the adjoints
operators (AB)∗ = B∗A∗ on the function f such that f(γ) = F (γ,W (γ),Π(γ,W (γ))), we have

(
djc

dγ

∣∣∣∣
γ

)∗
=

(
dj

dγ

∣∣∣∣
γ

)∗
+

(
df

dγ

∣∣∣∣
γ

)∗

=

(
dj

dγ

∣∣∣∣
γ

)∗
+

(
∂F

∂γ

∣∣∣∣
(γ,W,Π)

)∗
+

(
dW

dγ

∣∣∣∣
γ

)∗( ∂F
∂W

∣∣∣∣
(γ,W,Π)

)∗
+

+

(
dΠ

dγ

∣∣∣∣
(γ,W,Π)

)∗(∂F
∂Π

∣∣∣∣
(γ,W,Π)

)∗

(5.13)

where the first term
(
dj
dγ

∣∣
γ

)∗
is the gradient of the original functional and could be computed

firstly solving the adjoint system (5.11) and then using the (5.10), in the same way we have done
in Section 3.5.2.

An important remark is that the derivative of the adjoint state
(
dΠ
dγ

∣∣
(γ,W,Π)

)∗
needs second-

order derivatives in order to be evaluated (see Section 5.4).

It is interesting to note that the result (5.13) could be obtained from another point of view.
In the case of the original (uncorrected) functional, the dependencies was on the design variable
γ and on the state variable W and this last variable (that depends on γ) is defined implicitly
through the state equation Ψ(γ,W ) = 0. In the case of the corrected functional, we have the
additional dependancy on the adjoint state Π (that, to be more precise, should be written like
Π(γ,W ), i.e. a function of γ and W ) obtained solving the adjoint equation (5.11). In this
way, we can consider the variable Π as another state variable for the corrected functional, and
we can say that its dependencies are, other than the control γ, on the extended state variable
Ŵ = (W,Π) where this last variable is defined implicitly through the approximate extended state
equation

Ψ̂(γ, Ŵ ) :=

(
Ψs(γ,W )

Ψa(γ,W,Π)

)
=

(
Ψ(γ,W )(

∂Ψ
∂W

∣∣
(γ,W )

)∗
Π−

(
∂J
∂W

∣∣
(γ,W )

)∗
)

=

(
0
0

)
. (5.14)

In other words, for the corrected functional, Π becomes a state variable together with the original
state variable W , and therefore the adjoint system becomes an additional equality constraint to
be satisfied.

125



5.2 Gradient of the corrected functional

From the definition above, Ψs(γ,W ) = 0 correspond tho the original state equation Ψ(γ,W ) =
0 and Ψa(γ,W,Π) = 0 correspond to the original adjoint equation (5.11). With the notation
introduced in the previous section, we say that Ŵh = (Wh,Πh) is the solution of the approx-
imate extended state equation (5.14). Since Ψs(·) does not depends on Π, the function W (γ)
can be first computed independently from Π (solving Ψ(γ,W ) = 0) and then Π(γ,W ) (solving
the adjoint equation Ψa(γ,W,Π) = 0).

With these definitions, we can apply the adjoint approach to the corrected functional Jc and
to the extended state function Ψ̂ (where for the original case we used J and Ψ) and obtain

(
djc

dγ

∣∣∣∣
γ

)∗
=

(
∂Jc

∂γ

∣∣∣∣
(γ,Ŵ )

)∗
−
(
∂Ψ̂

∂γ

∣∣∣∣
(γ,Ŵ )

)∗
Π̂ (5.15)

where the extended adjoint state Π̂ : (γ, Ŵ ) 7→ Π̂(γ, Ŵ ) satisfies the new adjoint equation

(
∂Ψ̂

∂Ŵ

∣∣∣∣
(γ,Ŵ )

)∗
Π̂ =

(
∂Jc

∂Ŵ

∣∣∣∣
(γ,Ŵ )

)∗
. (5.16)

To show the equivalence of the two different approaches introduced above, we need the
following lemma

Lemma 5.1. Let W : γ 7→ W (γ) and Π: (γ,W ) 7→ Π(γ,W ) functions such that verify the
equation Ψa(γ,W,Π) = 0 where

Ψa : (γ,W,Π) 7→
(
∂Ψ

∂W

∣∣∣∣
(γ,W )

)∗
Π−

(
∂J

∂W

∣∣∣∣
(γ,W )

)∗

and Ψ: (γ,W ) 7→ Ψ(γ,W ). Then holds

(
dΠ

dγ

∣∣∣∣
(γ,W )

)∗
= −

[(
dW

dγ

∣∣∣∣
γ

)∗(∂Ψa

∂W

∣∣∣∣
(γ,W,Π)

)∗
+

(
∂Ψa

∂γ

∣∣∣∣
(γ,W,Π)

)∗]( ∂Ψ

∂W

∣∣∣∣
(γ,W )

)−1

. (5.17)

Proof. Due to the dependency of W and Π on γ (Π(γ,W ) = Π(γ,W (γ)) = π(γ)) through
the implicit equation Ψa(γ,W,Π) = 0, we can consider Ψa depending solely on γ, namely
Ψa(γ,W,Π) = ψa(γ) = 0 and therefore holds dψa

dγ

∣∣
γ

= 0. Using the chain rule we have

0 =

(
∂Ψa

∂γ

∣∣∣∣
(γ,W,Π)

)
+

(
∂Ψa

∂W

∣∣∣∣
(γ,W,Π)

)(
dW

dγ

∣∣∣∣
γ

)
+

(
∂Ψa

∂Π

∣∣∣∣
(γ,W,Π)

)(
dΠ

dγ

∣∣∣∣
(γ,W )

)

=

(
∂Ψa

∂γ

∣∣∣∣
(γ,W,Π)

)
+

(
∂Ψa

∂W

∣∣∣∣
(γ,W,Π)

)(
dW

dγ

∣∣∣∣
γ

)
+

(
∂Ψ

∂W

∣∣∣∣
(γ,W )

)∗(dΠ
dγ

∣∣∣∣
(γ,W )

)

where we used the fact that the function Ψa is linear in Π.
Rearranging the terms in the last equation and using the property of the adjoint operators

(AB)∗ = B∗A∗ and (A∗)∗ = A, we obtain
(
dΠ

dγ

∣∣∣∣
(γ,W )

)∗( ∂Ψ

∂W

∣∣∣∣
(γ,W )

)
= −

(
dW

dγ

∣∣∣∣
γ

)∗(∂Ψa

∂W

∣∣∣∣
(γ,W,Π)

)∗
−
(
∂Ψa

∂γ

∣∣∣∣
(γ,W,Π)

)∗

126



Chapter 5. Improvement of functional accuracy through adjoint-error correction

and right-multiplying both sides of the previous equation by
(
∂Ψ
∂W

∣∣
(γ,W )

)−1
, the (5.17) is verified.

To show the equivalence of the (5.11)–(5.13) and the (5.14)–(5.16) we write the extended

adjoint state Π̂ =

(
Πs

Πa

)
where the subscript are referred accordingly with the definition (5.14).

Differentiating the (5.14) and the (5.12) we obtain




(
∂Ψ̂

∂Ŵ

∣∣∣∣
(γ,Ŵ )

)∗
=




(
∂Ψs

∂W

∣∣∣∣
(γ,W )

)∗ (
∂Ψa

∂W

∣∣∣∣
(γ,Ŵ )

)∗

0

(
∂Ψa

∂Π

∣∣∣∣
(γ,Ŵ )

)∗




(
∂Ψ̂

∂γ

∣∣∣∣
(γ,Ŵ )

)∗
=

((
∂Ψs

∂γ

∣∣∣∣
(γ,W )

)∗
,

(
∂Ψa

∂γ

∣∣∣∣
(γ,Ŵ )

)∗)

and 



(
∂Jc

∂Ŵ

∣∣∣∣
(γ,Ŵ )

)∗
=




(
∂J

∂W

∣∣∣∣
(γ,W )

)∗
+

(
∂F

∂W

∣∣∣∣
(γ,Ŵ )

)∗

(
∂F

∂Π

∣∣∣∣
(γ,Ŵ )

)∗




(
∂Jc

∂γ

∣∣∣∣
(γ,Ŵ )

)∗
=

(
∂J

∂γ

∣∣∣∣
(γ,W )

)∗
+

(
∂F

∂γ

∣∣∣∣
(γ,Ŵ )

)∗

Due to the adjoint equation (5.16) and the block-triangular nature of the Jacobian matrix
(
∂Ψ̂
∂Ŵ

)∗
,

we observe that Πa can be computed first, then Πs. In fact the system (5.16) writes




(
∂Ψs

∂W

∣∣∣∣
(γ,W )

)∗
Πs +

(
∂Ψa

∂W

∣∣∣∣
(γ,W,Π)

)∗
Πa =

(
∂J

∂W

∣∣∣∣
(γ,W )

)∗
+

(
∂F

∂W

∣∣∣∣
(γ,W,Π)

)∗

(
∂Ψa

∂Π

∣∣∣∣
(γ,W,Π)

)∗
Πa =

(
∂F

∂Π

∣∣∣∣
(γ,W,Π)

)∗

and we can compute the extended adjoint state as

Π̂ =

(
Πs

Πa

)
=




(
∂Ψs

∂W

∣∣∣∣
(γ,W )

)−∗[( ∂J

∂W

∣∣∣∣
(γ,W )

)∗
+

(
∂F

∂W

∣∣∣∣
(γ,W,Π)

)∗
+

−
(
∂Ψa

∂W

∣∣∣∣
(γ,W,Π)

)∗(∂Ψa

∂Π

∣∣∣∣
(γ,W,Π)

)−∗(∂F
∂Π

∣∣∣∣
(γ,W,Π)

)∗]

(
∂Ψa

∂Π

∣∣∣∣
(γ,W,Π)

)−∗(∂F
∂Π

∣∣∣∣
(γ,W,Π)

)∗




.

127



5.3 Algorithm for computing the gradient of the adjoint-corrected functional

Therefore, remembering that Ψs := Ψ, the equation (5.15) becomes
(
djc

dγ

∣∣∣∣
γ

)∗
=

(
∂Jc

∂γ

∣∣∣∣
(γ,W,Π)

)∗
−
(
∂Ψ̂

∂γ

∣∣∣∣
(γ,W,Π)

)∗
Π̂

=

(
∂J

∂γ

∣∣∣∣
(γ,W )

)∗
+

(
∂F

∂γ

∣∣∣∣
(γ,W,Π)

)∗
+

−
{(

∂Ψ

∂γ

∣∣∣∣
(γ,W )

)∗( ∂Ψ

∂W

∣∣∣∣
(γ,W )

)−∗[( ∂J

∂W

∣∣∣∣
(γ,W )

)∗
+

(
∂F

∂W

∣∣∣∣
(γ,W,Π)

)∗
+

−
(
∂Ψa

∂W

∣∣∣∣
(γ,W,Π)

)∗(∂Ψa

∂Π

∣∣∣∣
(γ,W,Π)

)−∗(∂F
∂Π

∣∣∣∣
(γ,W,Π)

)∗]
+

+

(
∂Ψa

∂γ

∣∣∣∣
(γ,W,Π)

)∗(∂Ψa

∂Π

∣∣∣∣
(γ,W,Π)

)−∗(∂F
∂Π

∣∣∣∣
(γ,W,Π)

)∗}

The adjoint equation (5.11) is linear respect to Π so the equivalence
(
∂Ψa

∂Π

)∗
= ∂Ψ

∂W
holds.

Moreover, from dΨ
dγ

= 0 we can express the derivative of the state variable W respect to the
control γ as

dW

dγ

∣∣∣∣
γ

= −
(
∂Ψ

∂W

∣∣∣∣
(γ,W )

)−1(∂Ψ

∂γ

∣∣∣∣
(γ,W )

)

and finally we can write
(
djc

dγ

∣∣∣∣
γ

)∗
=

(
∂J

∂γ

∣∣∣∣
(γ,W )

)∗
+

(
∂F

∂γ

∣∣∣∣
(γ,W,Π)

)∗
+

{(
dW

dγ

∣∣∣∣
γ

)∗[( ∂J

∂W

∣∣∣∣
(γ,W )

)∗
+

+

(
∂F

∂W

∣∣∣∣
(γ,W,Π)

)∗
−
(
∂Ψa

∂W

∣∣∣∣
∗

(γ,W,Π)

)(
∂Ψ

∂W

∣∣∣∣
(γ,W )

)−1(∂F
∂Π

∣∣∣∣
(γ,W,Π)

)∗]
+

−
(
∂Ψa

∂γ

∣∣∣∣
(γ,W,Π)

)∗( ∂Ψ

∂W

∣∣∣∣
(γ,W )

)−1(∂F
∂Π

∣∣∣∣
(γ,W,Π)

)∗}

and after some rearrangements we obtain
(
djc

dγ

∣∣∣∣
γ

)∗
=

(
dj

dγ

∣∣∣∣
γ

)∗
+

(
∂F

∂γ

∣∣∣∣
(γ,W,Π)

)∗
+

(
dW

dγ

∣∣∣∣
γ

)∗( ∂F
∂W

∣∣∣∣
(γ,W,Π)

)∗
+

−
[(

dW

dγ

∣∣∣∣
γ

)∗(∂Ψ∗
a

∂W

∣∣∣∣
(γ,W,Π)

)
+

(
∂Ψa

∂γ

∣∣∣∣
(γ,W,Π)

)∗]( ∂Ψ

∂W

∣∣∣∣
(γ,W )

)−1(∂F
∂Π

∣∣∣∣
(γ,W,Π)

)∗

(5.18)
that is equal to the (5.13) by the Lemma 5.1.

5.3 Algorithm for computing the gradient of the adjoint-corrected
functional

Despite the fact that the two approaches presented in the Section 5.2 are theoretically equiva-
lents, their implementations in the discrete case with the AD tools are significantly differents.

128



Chapter 5. Improvement of functional accuracy through adjoint-error correction

The first approach is based on the definition a new scalar function f(γ) = F (γ,W,Π) that
acts as an additive correction for the original functional j(γ); in this sense (by the linearity of
the differential operator d

dγ
) the resulting gradient

(
djc

dγ

∣∣
γ

)∗
is considered to be the sum of two

different contributions (eq. 5.13):

• the gradient of the original (not-corrected) functional, namely

(
dj

dγ

∣∣∣∣
γ

)∗
and

• the term

(
df

dγ

∣∣∣∣
γ

)∗
that is the gradient of the adjoint correction −

〈
Π,Ψex(γ,W )

〉
.

Thus, the algorithm for the first approach could be splitted in two part: the first one is devoted to
the computation of

(
dj
dγ

∣∣
γ

)∗
(and this task requires only first-order derivatives, see Section 3.5.2

for details) and the second one is the computation of
(
df
dγ

∣∣
γ

)∗
(requiring, as we will see in the

Section 5.4, second-order derivatives).

The second approach is based on the definition of a new (extended) state function Ψ̂(γ, Ŵ )
and considering the original adjoint state Π as part of the new state variable Ŵ , and then
computing the gradient

(
djc

dγ

∣∣
γ

)∗
considering the corrected functional jc(γ) as a whole. The

difficulties here rely on the fact that the extended state functions contain a routine that is dif-
ferentiated in Reverse-mode, namely the Reverse-mode differentiation of the Ψ̂(γ, Ŵ ), that is
required for the computation of the extended adjoint state Π̂ (solution of the equation (5.16)).
The Reverse differentiation of the routine implementing such extended state function, results in
a differentiation mode (Reverse-on-Reverse), which is not studied yet.

For the above reasons we implemented the first approach, which a possible algorithm is
summarized as follows (see also Fig. 5.1):

1. compute the state Wh such that Ψ(γh,Wh) = 0;

2. compute W̄J =

(
∂J

∂W

∣∣∣∣
(γh,Wh)

)∗

3. compute the adjoint Πh solving the linear system

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
Πh = W̄J ;

4. compute the gradient

(
dj

dγ

∣∣∣∣
γ

)∗
with the following steps:

(a) compute γ̄J =

(
∂J

∂γ

∣∣∣∣
(γh,Wh)

)∗
;

(b) compute γ̄Ψ =

(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)∗
Πh;

129



5.4 Gradient of the adjoint-correction term

(c) evaluate

(
dj

dγ

∣∣∣∣
γ

)∗
= γ̄J − γ̄Ψ;

5. compute γ̄F =

(
∂F

∂γ

∣∣∣∣
(γh,Wh,Πh)

)∗
, W̄F =

(
∂F

∂W

∣∣∣∣
(γh,Wh,Πh)

)∗
and Π̄F =

(
∂F

∂Π

∣∣∣∣
(γh,Wh,Πh)

)∗
;

6. compute g =

(
dW

dγ

∣∣∣∣
γ

)∗
W̄F with the following steps:

(a) compute the vector l solving the linear system

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
l = W̄F ;

(b) compute g = −
(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)∗
l

7. compute m =

(
dΠ

dγ

∣∣∣∣
(γh,Wh,Πh)

)∗
Π̄F (see the Section 5.4);

8. evaluate the gradient of the corrected functional as

(
djc

dγ

∣∣∣∣
γ

)∗
=

(
dj

dγ

∣∣∣∣
γ

)∗
+ γ̄F + g +m

Regarding the computational cost to obtain the gradient of the adjoint-corrected functional,
we can see from the previous algorithm that the main contribution is due to the solution of two
adjoint linear systems (step 3 to compute the adjoint state Πh and step 6a) in addition to the
evaluation of the term

(
dΠ
dγ

)∗
Π̄F , which cost will be estimated in the next section.

If we apply the matrix-free strategy defined in Chapter 3 and we use the same estimates for
the overhead associated with the differentiated code (i.e. αT for the Tangent mode differentiation
and αR for the Reverse mode) and for the number of iterations to the convergence (niter,R

iteration so solve and adjoint linear system), we have for step 3 and step 6a a runtime cost of
2αRniter,R.

5.4 Gradient of the adjoint-correction term

In the previous section, we have seen that the algorithm to compute the gradient (respect to
the control variable γ) of the corrected functional (5.12), involves the evaluation of the quantity
m =

(
dΠ
dγ

∣∣
(γh,Wh)

)∗
Π̄F (step 7), where the adjoint state Π is the function (of the control γ ∈ R

n

and the state variables W ∈ R
N ) that solves the linear system

(
∂Ψ
∂W

)∗
Π =

(
∂J
∂W

)∗
. How can we

perform this task using Automatic Differentiation?
In the demonstration of Lemma 3.1 on page 61, we have seen that λh =

(
dΠ
dγ

∣∣
(γh,Wh)

)
δ is the

solution of the linear system
(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
λh =

∂

∂γ

(
∂J

∂W

)∗∣∣∣∣
(γh,Wh)

δ +
∂

∂W

(
∂J

∂W

)∗∣∣∣∣
(γh,Wh)

θh+

− ∂

∂γ

[(
∂Ψ

∂W

)∗
Πh

]∣∣∣∣
(γh,Wh)

δ − ∂

∂W

[(
∂Ψ

∂W

)∗
Πh

]∣∣∣∣
(γh,Wh)

θh

(5.19)

130



Chapter 5. Improvement of functional accuracy through adjoint-error correction

Solve

(
∂Ψ

∂W

∣∣∣∣
(γ,Wh)

)∗
Πh =

(
∂J

∂W

∣∣∣∣
(γ,Wh)

)∗

Compute γ̄J =

(
∂J

∂γ

∣∣∣∣
(γ,Wh)

)∗

Compute γ̄Ψ =

(
∂Ψ

∂γ

∣∣∣∣
(γ,Wh)

)∗
Πh

Compute

(
dj

dγ

∣∣∣∣
γ

)∗
= γ̄J − γ̄Ψ

Compute





γ̄F =

(
∂F

∂γ

∣∣∣∣
(γ,Wh)

)∗

W̄F =

(
∂F

∂W

∣∣∣∣
(γ,Wh)

)∗

Π̄F =

(
∂F

∂Π

∣∣∣∣
(γ,Wh)

)∗

Solve

(
∂Ψ

∂W

∣∣∣∣
(γ,Wh)

)∗
l = W̄F

Compute m =

(
dΠ

dγ

∣∣∣∣
(γ,Wh,Πh)

)∗
Π̄F

Compute g = −
(
∂Ψ

∂γ

∣∣∣∣
(γ,Wh)

)∗
l

Compute

(
djc

dγ

∣∣∣∣
γ

)∗
=

(
dj

dγ

∣∣∣∣
γ

)∗
+ γ̄F + g +m

Figure 5.1: The algorithm to compute the
(
dJc

dγ

∣∣
(γ,Wh)

)∗
, the gradient of the corrected functional

jc(γ) (see Section 5.4).

131



5.4 Gradient of the adjoint-correction term

and with θh ∈ R
N solution of the linear system

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)
θh = −

(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)
δ . (5.20)

Then, one possibility is computing the N × n matrix dΠ
dγ

∣∣
(γ,Wh)

column-by-column using the

relation λi = dΠ
dγ

∣∣
(γh,Wh)

ei (where ei ∈ R
n is the column-vector with the value 1 at the i-th

position and 0 otherwise). The drawback of this approach is that it requires the solution of 2n
linear systems (5.19)–(5.20), so when n≫ 1 it will be prohibitively expensive.

The key idea here is to perform a transposition of the equation (5.19) in order to obtain an
expression for λ∗h (that is δ∗

(
dΠ
dγ

∣∣
(γh,Wh)

)∗
), and then reassembling the various terms in a way

that permits us to compute the quantity
(
dΠ
dγ

∣∣
(γh,Wh)

)∗
χ (where χ is a generic vector of R

N )

using the differentiation modes availables with the AD tools. It can be done considering the
following lemma

Lemma 5.2. If the following quantities are defined

• ηh =

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)−1

χ

• Πh =

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)−∗( ∂J

∂W

∣∣∣∣
(γh,Wh)

)∗

• γ̄ξ =

[
∂

∂γ

(
J̇W −

〈
Πh, Ψ̇W

〉)]∣∣∣∣
∗

(γh,Wh)

and W̄ξ =

[
∂

∂W

(
J̇W −

〈
Πh, Ψ̇W

〉)]∣∣∣∣
∗

(γh,Wh)

where are

defined the functions J̇W (γ,W ) =

(
∂J

∂W

∣∣∣∣
(γ,W )

)
ηh and Ψ̇W (γ,W ) =

(
∂Ψ

∂W

∣∣∣∣
(γ,W )

)
ηh

• ϕh =

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)−∗
W̄ξ

then holds (
dΠ

dγ

∣∣∣∣
(γh,Wh)

)∗
χ = γ̄ξ −

(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)∗
ϕh . (5.21)

Proof. Let a(γ,W ) =
(
∂J
∂W

∣∣
(γ,W )

)∗
and b(γ,W ) =

(
∂Ψ
∂W

∣∣
(γ,W )

)∗
Πh, then the equation (5.19)

becomes
(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
λ =

∂a

∂γ

∣∣∣∣
(γh,Wh)

δ +
∂a

∂W

∣∣∣∣
(γh,Wh)

θh −
∂b

∂γ

∣∣∣∣
(γh,Wh)

δ − ∂b

∂W

∣∣∣∣
(γh,Wh)

θh

and remembering the properties of the trasposition (AB)∗ = B∗A∗, we have

λ∗
(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)
= δ∗

(
∂a∗

∂γ
− ∂b∗

∂γ

)∣∣∣∣
(γh,Wh)

+ θ∗h

(
∂a∗

∂W
− ∂b∗

∂W

)∣∣∣∣
(γh,Wh)

132



Chapter 5. Improvement of functional accuracy through adjoint-error correction

Being θh the solution of the linear system
(
∂Ψ
∂W

∣∣
(γh,Wh)

)
θ = −

(
∂Ψ
∂γ

∣∣
(γh,Wh)

)
δ, we can express its

adjoint as

θ∗h = −δ∗
(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)∗( ∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)−∗

then

λ∗h = δ∗
[(

∂a∗

∂γ
− ∂b∗

∂γ

)∣∣∣∣
(γh,Wh)

+

−
(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)∗( ∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)−∗( ∂a∗
∂W

− ∂b∗

∂W

)∣∣∣∣
(γh,Wh)

](
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)−1

remembering that λ∗h = δ∗
(
dΠ
dγ

∣∣
(γh,Wh)

)∗
, we can express the quantity

(
dΠ
dγ

∣∣
(γh,Wh)

)∗
χ as

(
dΠ

dγ

∣∣∣∣
(γh,Wh)

)∗
χ =

[(
∂a∗

∂γ
− ∂b∗

∂γ

)∣∣∣∣
(γh,Wh)

+

−
(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)∗( ∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)−∗( ∂a∗
∂W

− ∂b∗

∂W

)∣∣∣∣
(γh,Wh)

](
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)−1

χ

(5.22)
From a computationally point of view, the last equation should be evaluated right-to-left (in
order to use matrix-by-vector operation only) and the explicit computation of the inverse oper-

ators
(
∂Ψ
∂W

∣∣
(γh,Wh)

)−1
and

(
∂Ψ
∂W

∣∣
(γh,Wh)

)−∗
can be avoided, considering the application of these

inverse operator on a vector as the solution of a certain linear system. For the specific case, if we
put ηh =

(
∂Ψ
∂W

∣∣
(γh,Wh)

)−1
χ and ϕh =

(
∂Ψ
∂W

∣∣
(γh,Wh)

)−∗( ∂a∗
∂W
− ∂b∗

∂W

)∣∣
(γh,Wh)

ηh, we can first compute

ηh as the solution of the linear system
(
∂Ψ
∂W

∣∣
(γh,Wh)

)
ηh = χ and then ϕh as the solution of the

adjoint linear system
(
∂Ψ
∂W

∣∣
(γh,Wh)

)∗
ϕh =

(
∂a∗

∂W
− ∂b∗

∂W

)∣∣
(γh,Wh)

ηh. Therefore the equation (5.22)

becomes 



ηh =

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)−1

χ

ϕh =

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)−∗( ∂a∗
∂W

− ∂b∗

∂W

)∣∣∣∣
(γh,Wh)

ηh

(
dΠ

dγ

∣∣∣∣
(γh,Wh)

)∗
χ =

(
∂a∗

∂γ
− ∂b∗

∂γ

)∣∣∣∣
(γh,Wh)

ηh −
(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)∗
ϕh

(5.23)

The next step is to replace a(γ,W ) =
(
∂J
∂W

∣∣
(γ,W )

)∗
and b(γ,W ) =

(
∂Ψ
∂W

∣∣
(γ,W )

)∗
Πh into the

equation (5.23) and evaluate them at the solution (γh,Wh). Due to the fact that ηh is a specific
value (and not a function on γ or W ) we can write

(
∂a

∂γ

∣∣∣∣
(γ,W )

)∗
ηh =

[
∂

∂γ

(
∂J

∂W

∣∣∣∣
(γ,W )

)∗]∗
ηh =

[
∂

∂γ

(〈
ηh,

(
∂J

∂W

∣∣∣∣
(γ,W )

)∗〉)]∗

133



5.4 Gradient of the adjoint-correction term

but
〈
ηh,
(
∂J
∂W

∣∣
(γ,W )

)∗〉
=
〈(

∂J
∂W

∣∣
(γ,W )

)
ηh, 1

〉
=
(
∂J
∂W

∣∣
(γ,W )

)
ηh and this last term can be considered

to be a real-valued functional of the variables γ and W , then we obtain

(
∂a

∂γ

∣∣∣∣
(γh,Wh)

)∗
ηh =

[
∂

∂γ

((
∂J

∂W

∣∣∣∣
(γ,W )

)
ηh

)]∣∣∣∣
∗

(γh,Wh)

=

(
∂J̇W
∂γ

∣∣∣∣
(γh,Wh)

)∗
(5.24)

where J̇W (γ,W ) =
(
∂J
∂W

∣∣
(γ,W )

)
ηh. The derivative involving the b function is analogous to the

previous one, namely

(
∂b

∂γ

∣∣∣∣
(γh,Wh)

)∗
η0 =

[
∂

∂γ

((
∂Ψ

∂W

∣∣∣∣
(γ,W )

)∗
Πh

)]∣∣∣∣
∗

(γh,Wh)

ηh

=

[
∂

∂γ

(〈
ηh,

(
∂Ψ

∂W

∣∣∣∣
(γ,W )

)∗
Πh

〉)]∣∣∣∣
∗

(γh,Wh)

=

[
∂

∂γ

(〈
Πh,

(
∂Ψ

∂W

∣∣∣∣
(γ,W )

)
ηh
〉)]∣∣∣∣

∗

(γh,Wh)

=

[
∂

∂γ

(〈
Πh, Ψ̇W

〉)]∣∣∣∣
∗

(γh,Wh)

(5.25)

where Ψ̇W (γ,W ) =
(
∂Ψ
∂W

∣∣
(γ,W )

)
ηh. With the same arguments we have

(
∂a

∂W

∣∣∣∣
(γh,Wh)

)∗
ηh =

(
∂J̇W
∂W

∣∣∣∣
(γh,Wh)

)∗
(5.26)

(
∂b

∂W

∣∣∣∣
(γh,Wh)

)∗
ηh =

[
∂

∂W

(〈
Πh, Ψ̇W

〉)]∣∣∣∣
∗

(γh,Wh)

(5.27)

Putting the equations (5.24)–(5.27) into the (5.23) we obtain the (5.21) ending, in this way, the
proof of Lemma 5.2.

Summarizing, the algorithm to compute
(
dΠ
dγ

∣∣
(γh,Wh)

)∗
χ is then the following (see also Fig. 5.2):

1. compute the state Wh such that Ψ(γh,Wh) = 0;

2. compute W̄J =

(
∂J

∂W

∣∣∣∣
(γh,Wh)

)∗

3. compute the adjoint state Πh solving the linear system

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
Πh = W̄J ;

4. compute ηh as solution of the linear system

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)
ηh = χ

5. let J̇W (γ,W ) =

(
∂J

∂W

∣∣∣∣
(γ,W )

)
ηh and Ψ̇W (γ,W ) =

(
∂Ψ

∂W

∣∣∣∣
(γ,W )

)
ηh, then

134



Chapter 5. Improvement of functional accuracy through adjoint-error correction

(a) compute the quantity γ̄ξ =

[
∂

∂γ

(
J̇W −

〈
Πh, Ψ̇W

〉)]∣∣∣∣
∗

(γh,Wh)

(b) compute the quantity W̄ξ =

[
∂

∂W

(
J̇W −

〈
Πh, Ψ̇W

〉)]∣∣∣∣
∗

(γh,Wh)

6. compute ϕh as solution of the adjoint linear system

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
ϕh = W̄ξ

7. compute

(
dΠ

dγ

∣∣∣∣
(γh,Wh)

)∗
χ = γ̄ξ −

(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)∗
ϕh

Remark 5.4. It it important to mention the fact that the terms J̇W (γ,W ) =
(
∂J
∂W

∣∣
(γ,W )

)
ηh

and Ψ̇W (γ,W ) =
(
∂Ψ
∂W

∣∣
(γ,W )

)
ηh are the directional derivatives of J and Ψ respect to W (along

the direction ηh) and therefore can be obtained using AD with Tangent-mode differentiation.
In this way the terms

(
∂a

∂γ

∣∣∣∣
(γh,Wh)

)∗
ηh =

(
∂J̇W
∂γ

∣∣∣∣
(γh,Wh)

)∗
(5.28)

(
∂a

∂W

∣∣∣∣
(γh,Wh)

)∗
ηh =

(
∂J̇W
∂W

∣∣∣∣
(γh,Wh)

)∗
(5.29)

can be easily computed using the Reverse mode differentiation of a routine differentiated in
Tangent mode: for this reason we call this double-differentiation mode Reverse-on-Tangent
(RoT). Regarding the terms involving the scalar product of the adjoint state Πh with Ψ̇W ,
namely

(
∂b

∂γ

∣∣∣∣
(γh,Wh)

)∗
ηh =

[
∂

∂γ

(〈
Πh, Ψ̇W

〉)]∣∣∣∣
∗

(γh,Wh)

(5.30)

and

(
∂b

∂W

∣∣∣∣
(γh,Wh)

)∗
ηh =

[
∂

∂W

(〈
Πh, Ψ̇W

〉)]∣∣∣∣
∗

(γh,Wh)

, (5.31)

we note that the Reverse mode differentiation of a vectorial function Φ: x 7→ Φ(x), with x,Φ(x) ∈
R
N writes as

x̄Φ =

(
dΦ

dx

)∗
Φ̄ =




. . .
N∑

k=1

dΦk

dxi
Φ̄k

. . .


 =




. . .
d
〈
Φ̄,Φ

〉

dxi
. . .


 =

(
d
〈
Φ̄,Φ

〉

dx

)∗

with x̄Φ, Φ̄ ∈ R
n. The last relation means that the Reverse mode differentiation can be viewed

as the differentiation of a scalar product and this is exactly what we need to compute in the

135



5.4 Gradient of the adjoint-correction term

right hand side of (5.30)-(5.31), where the role of the function Φ is assumed by Ψ̇W (i.e. the
Tangent mode differentiation of Ψ respect to W and along the direction ηh) and the vector Φ̄
is substituted by the adjoint state Πh. Again, as we have done above, this approach could be
viewed like a Reverse-on-Tangent mode differentiation.

Remark 5.5. In Section 3.7 we have seen that Tangent-on-Reverse differentiation raises some
Automatic Differentiation issues for TAPENADE. The problem relies on the implementation of
the differentiated PUSH/POP routines (i.e. PUSH D/POP D) that use the same stack for the original
and differentiated variables (at present, to overcome this error the user must fix this problem
by hand on the ToR code, activating the stack from the beginning of the program).

Then, due to the fact that now we are dealing with Reverse-on-Tangent, i.e. a double
differentiation in which one mode will add PUSH/POP pairs, the natural question could be: “Will
I have also problems to perform RoT with TAPENADE ?”. The answer is: “No”. The reason
is simple: we perform Reverse differentiation after the Tangent one, so the PUSH/POP pairs will
be eventually added at the second stage of differentiation (it is worth to remember that Tangent
mode adds the differentiated code mantaining the same program structure, without the necessity
of a stack).

Remark 5.6. The cost of RoT differentiation (steps 5a-5b), that could be estimated as αRαT ,
is negligible respect to the cost for computing with an iterative matrix-free method the solution
of the involved linear systems (αT < αR ≪ niter). Thus, provided the adjoint state Πh, the main
contribution in terms of run-time cost for the evaluation of

(
dΠ
dγ

)∗
Π̄F is due to the solution of

two linear systems: one is in Tangent form (step 4) which cost is αTniter,T , and the other one
(step 6) is in adjoint form and its cost can be estimated as αRniter,R.

5.4.1 Implementation

In the same manner we have done for ToT and ToR (Sections 3.6.1 and 3.6.2) we would go into
the practical details of the implementation for RoT, and how the differentiated routine should
be invoked to have te correct results. As usual, let us suppose that the routine computing the
state residual Ψ(γ,W ) is state residuals(psi,gamma,w), where the input variables are gamma
and w, and the output variable is psi

state residuals(psi
↓
,

↓
gamma,

↓
w) .

Automatic Differentiation in Tangent mode with respect to the input variables w builds the
subroutine

state residuals dw d(psi
↓
, psid

↓
,

↓
gamma,

↓
w,

↓
wd)

that has the additional output psid = Ψ̇W =
(
∂Ψ
∂W

)
Ẇ and where wd = Ẇ is the additional

input variable. Now we differentiate the last routine in Reverse mode considering psid as the
output variable and with respect to gamma and w, obtaining

state residuals dw d b(psi
↓
, psid

↓
,

↓
psidb,

↓
gamma, gammab

↓
,
↓
w, wb

↓
,

↓
wd) (5.32)

136



Chapter 5. Improvement of functional accuracy through adjoint-error correction

Compute Wh such that Ψ(γh,Wh) = 0

Solve

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
Πh =

(
∂J

∂W

∣∣∣∣
(γh,Wh)

)∗
Solve

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)
ηh = χ

Compute





γ̄ξ =

[
∂

∂γ

(
J̇W −

〈
Πh, Ψ̇W

〉)]∣∣∣∣
∗

(γh,Wh)

W̄ξ =

[
∂

∂W

(
J̇W −

〈
Πh, Ψ̇W

〉)]∣∣∣∣
∗

(γh,Wh)

where





J̇W (γ,W ) =

(
∂J

∂W

∣∣∣∣
(γ,W )

)
ηh

Ψ̇W (γ,W ) =

(
∂Ψ

∂W

∣∣∣∣
(γ,W )

)
ηh

Solve

(
∂Ψ

∂W

∣∣∣∣
(γh,Wh)

)∗
ϕh = W̄ξ

Compute

(
dΠ

dγ

∣∣∣∣
(γh,Wh)

)∗
χ = γ̄ξ −

(
∂Ψ

∂γ

∣∣∣∣
(γh,Wh)

)∗
ϕh

Figure 5.2: The algorithm to compute
(
dΠ
dγ

∣∣
(γh,Wh)

)∗
χ: it needs the solutions of 2 linear systems

+ the adjoint state Πh. Note that this algorithm use Reverse-on-Tangent differentiation in order
to compute the quantities γ̄ξ, W̄ξ.

137



5.4 Gradient of the adjoint-correction term

where psidb = ¯̇Ψ is the additional input variable and

gammab = γ̄Ψ̇W
=

[
∂

∂γ

(〈 ¯̇Ψ,
(
∂Ψ

∂W

)
Ẇ
〉)]∗

wb = W̄Ψ̇W
=

[
∂

∂W

(〈 ¯̇Ψ,

(
∂Ψ

∂W

)
Ẇ
〉)]∗

are the additional outputs. In order to compute the quantities (5.30)-(5.31) needed by the algo-
rithm for computing

(
dΠ
dγ

∣∣
(γh,Wh)

)∗
χ, we must call the routine (5.32) with the right arguments,

namely

state residuals dw d b(psi
Ψ
, psid

Ψ̇W

,
Πh

psidb,
γh

gamma, gammab
γ̄Ψ̇W

,
Wh
w , wb

W̄Ψ̇W

,
ηh

wd)

in this way the output variables γ̄Ψ̇W
, W̄Ψ̇W

write as

γ̄Ψ̇W
=

[
∂

∂γ

(〈
Πh,

(
∂Ψ

∂W

)
ηh
〉)]∣∣∣∣

∗

(γh,Wh)

W̄Ψ̇W
=

[
∂

∂W

(〈
Πh,

(
∂Ψ

∂W

)
ηh
〉)]∣∣∣∣

∗

(γh,Wh)

,

that are exactly the quantities defined in (5.25)-(5.27).

The same previous approach can be used for the terms
(
∂J̇W

∂γ

)∗
and

(
∂J̇W

∂W

)∗
. In this case we

start from the function that computes the functional J(γ,W )

functional(j
↓
,

↓
gamma,

↓
w)

which Automatic Differentiation in Tangent mode with respect to the variable w builds the
routine

functional dw d(j
↓
, jd

↓
,

↓
gamma,

↓
w,

↓
wd)

where the additional input is wd = Ẇ and the additional output is jd = J̇W =
(
∂J
∂W

)
Ẇ . If

we finally perform a Reverse mode differentiation of the routine above, considering the output
variable to be jd and with respect to gamma and w, we obtain

functional dw d b(j
↓
, jd

↓
,

↓
jdb,

↓
gamma, gammab

↓
,
↓
w, wb

↓
,

↓
wd) (5.33)

where jdb = ¯̇J is an input variable and

gammab = γ̄J̇W
=

[
∂

∂γ

(〈 ¯̇J,
( ∂J
∂W

)
Ẇ
〉)]∗

wb = W̄J̇W
=

[
∂

∂W

(〈 ¯̇J,
( ∂J
∂W

)
Ẇ
〉)]∗

138



Chapter 5. Improvement of functional accuracy through adjoint-error correction

are output variables. In order to compute the quantities (5.28)-(5.29) needed by equation (5.23),
we must call the routine (5.32) using the right arguments, namely

functional dw d b(j
J

, jd
J̇W

,
1.0
jdb,

γh
gamma, gammab

γ̄J̇W

,
Wh
w , wb

W̄
J̇W

,
ηh

wd) .

Using the scheme above, we obtain the output variables

γ̄J̇W
=

[
∂

∂γ

(
∂J

∂W
ηh

)]∣∣∣∣
∗

(γh,Wh)

W̄J̇W
=

[
∂

∂W

(
∂J

∂W
ηh

)]∣∣∣∣
∗

(γh,Wh)

that are exactly the quantities defined by (5.28)-(5.29).

5.5 Conclusion

For the evaluation of the gradient dj
dγ

the main contribution to the cost is due to the computation
of the adjoint state Πh and this cost is estimated to be αRniter,R, where niter,R is the number
of iterations needed to solve the adjoint linear system and αR is the overhead associated with
the Reverse mode differentiation of the state residual Ψ(γ,W ) (for which we assume an unitary
cost). For the gradient of the correction term, df

dγ
, the main contribution to the runtime cost

is due to the solution of three linear systems (2 adjoint + 1 tangent) for an estimated cost of
2αRniter,R + αTniter,T , where we assumed niter,T to be the number of iterations needed to solve
the tangent linear system and αR is the overhead associated with the Tangent mode differentia-
tion of the state residual Ψ(γ,W ). Therefore the total cost for the computation of the gradient
for the adjoint-corrected functional can be estimated 3αRniter,R +αTniter,T (see also Table 5.1).

At the present time we have no numerical experiments, but we have planned to apply this
strategy in order to build a gradient-based optimization algorithm for the adjoint-corrected
functional, in which we’ll use the 3D Euler solver presented in Chapter 1.

139



5.5 Conclusion

Main contribution to the cost Approx. runtime cost

dj

dγ
Πh =

(
∂Ψ

∂W

)−∗
W̄J αRniter,R

l =

(
∂Ψ

∂W

)−∗
W̄F αRniter,R

df

dγ
ηh =

(
∂Ψ

∂W

)−1

Π̄F αTniter,T

ϕh =

(
∂Ψ

∂W

)−∗
W̄ξ αRniter,R

3 adjoint linear systems
djc

dγ
=
dj

dγ
+
df

dγ
+ 3αRniter,R + αTniter,T

1 tangent linear system

Table 5.1: Runtime cost for the adjoint-corrected functional. niter,T (niter,R) is the number
of iterations needed to solve the tangent (adjoint) linear system and αT (αR) is the overhead
associated with the Tangent-mode (Reverse-mode) differentiation of the state residual Ψ(γ,W )
(for which we assume an unitary cost).

140



Chapter 6

Numerical experiments using
Automatic Differentiation

In Chapter 3 we have presented two algorithms based on Automatic Differentiation (ToT and
ToR) for computing the Hessian matrix of a functional subject to satisfy an equality constraint.
In this chapter, we want to present some numerical experiments we have done in order to val-
idate the two approaches and to give an idea about the cost for the evaluation of the Hessian
matrix with Automatic Differentiation on a three-dimensional CFD code. Moreover, we want to
analyze the performances of linear solvers built following the matrix-free approach as described
in Section 3.3.

The numerical code we used, is a FORTRAN77 implementation of the finite-volume method
for 3D unstructured meshes presented in Chapter 1, in which a steady solution for the Euler
equations is searched. The numerical algorithm uses the Roe’s scheme for the numerical fluxes
in the inner domain and a Steger-Warming flux-splitting for the farfield boundary, resulting in
a method with first-order spatial accuracy. Moreover, it permits to have second-order spatial
accuracy using a MUSCL scheme associated with the Van Albada-Van Leer limiter.

Remark 6.1. From a mathematical point of view Roe’s scheme is not differentiable, but only
piecewise differentiable.

In order to follow the approach presented in Section 3.9, the required work has been divided
in three phases:

• first of all we wrote the two scripts (see Appendix C) that drives TAPENADE to perform
the first- and second-order differentiations required by the various algorithms;

• then we have implemented (and validated) the libraries containing the algorithms in which
the differentiated functions are used;

• finally we have implemented the specific functional of interest (in our case the drag coeffi-
cient) and the state residual in two routines which interfaces are functional(j,gamma,w)
and state residual(psi,gamma,w). The implementation is made recognizing and ex-
tracting the required quantities and procedures from the CFD code.

141



From the scheme above, we note that the CFD solver is not modified: our algorithms need
only to know the state solution Wh and some procedures from the solver. However, we have
made some modification into the code in order to permit our algorithms to work efficiently.
The original code uses Jacobi (or Gauss-Seidel) iterations for the relaxation procedure and, in
order to converge faster, it uses as preconditioner the inverse-diagonal of the Jacobian matrix
∂Ψ(1)

∂W
. This approach, although is easy and cheap to build, is not well-suited to be used in

the algorithms for computing the gradient and the Hessian matrix. The problem rely on the
fact that the computational cost of such algorithms depends strongly on the cost to solve the
linear system inside them, and therefore we need to use more sophisticaded approaches to build
a good preconditioner and a fast (and robust) linear solver. For this reason we have modified
the code introducing the routines to compute ILU(p) factorization (see [Saad, 1996]) of the

first-order Jacobian (and the ILU(p) factorization of the transpose
(
∂Ψ(1)

∂W

)T
) that we use as pre-

conditioners for the GMRES-RCI linear solvers in our algorithms. The ILU(p) implementation
we used is from the Y. Saad’s SPARSKIT1 library [Saad, 1994]. In Section 6.1 is presented a
study of the efficiency of the linear solver using various levels of fill for the ILU(p) preconditioner.

Summarizing, we have implemented in the library for the gradient and Hessian evaluation
the following methods:

• the GMRES-RCI solvers for the tangent linear system
(
∂Ψ
∂W

)
ξ = b and the adjoint linear

system
(
∂Ψ
∂W

)T
ξ = c, using the “matrix-free” approach as described in Section 3.3;

• the routine for the computation of the adjoint state Πh and the gradient of the constrained
functional dj

dγ
, accordingly with equations (3.18) and (3.17);

• the full Hessian evaluation using ToT approach, as described in Section 3.6.1 (see also
Fig. 3.6);

• the diagonal part of the Hessian using ToT approach;

• the Hessian-by-vector multiplication using ToR differentiated functions (Lemma 3.1);

• the full Hessian evaluation using ToR approach, as described in Section 3.6.2 (see also
Fig. 3.8).

Moreover, we have implemented the algorithms to validate of first- and secon-order differenti-
ated routines. The validation strategies use finite differences for the tangent mode differentiation
and a “dot-product” test for Reverse differentiation, as explained in [Hascoët and Pascual, 2004].

The numerical experiments involve the study of efficency of linear solvers using a matrix-free
approach in which AD is used to perform matrix-by-vector multiplications, and the computation
of the gradient and the Hessian matrix of the drag coefficient, respect to the angle of attack and
the Mach number, for two different geometries and different flow regimes.

1http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html

142

http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html


Chapter 6. Numerical experiments using Automatic Differentiation

Figure 6.1: Wing shape and mesh in the symmetry plane.

6.1 Study of efficiency of matrix-free methods to solve linear
systems in the AD context

The testcase considered here corresponds to the wing shape of a business aircraft (courtesy of
Piaggio Aero Industries), for a transonic regime. The nominal operating conditions are defined
by the free-stream Mach number M∞ = 0.83 and the incidence α = 2◦. The wing section
correspond to the NACA0012 airfoil and a picture is given in Figure 6.1. The 3D unstructured
mesh has 31124 nodes and 173445 elements (see [Andreoli et al., 2003] for the details about the
wing geometry and the mesh generation).

For the experiments we have used a GMRES algorithm with restart [Frayssé et al., 2003;
Saad, 1996], and we studied the impact of different preconditioners and different dimensions of

the Krylov space for solving the first- and second-order accurate linear system
(
∂Ψ(1,2)

∂W

)
ξ = b

and the corresponding adjoint
(
∂Ψ(1,2)

∂W

)∗
ξ = c.

For the preconditioning we have used an Incomplete LU factorization with different levels

of fill (ILU(p), [Saad, 1996]) applied on the first-order Jacobian A(1) =
(
∂Ψ(1)

∂W

)
(for the adjoint

linear system we have factorized its transposte A(1)T ). The first-order Jacobian A(1) is a block-
sparse structurally-symmetric matrix and for our mesh it has 449028 5×5-blocks (31124 blocks
on the diagonal and 417904 off-diagonal): its sparsity pattern is shown in the Figure 6.2.

For each configuration of the parameters (order of spatial accuracy, type of preconditioner,
dimension of the Krylov space) we have solved two linear systems

(
∂Ψ
∂W

)
ξ = b (i.e. we have

143



6.1 Study of efficiency of matrix-free methods to solve linear systems in the AD context

Figure 6.2: Sparsity pattern of the first-order Jacobian matrix ∂Ψ(1)

∂W
for the 3D unstructured

mesh corresponding to the wing geometry in Fig. 6.1. The matrix has a block-sparse structurally-
symmetric pattern, with 449028 5 × 5-blocks (31124 blocks on the diagonal and 417904 off-
diagonal).

144



Chapter 6. Numerical experiments using Automatic Differentiation

found the solution ξ for two different values of the right hand side b) and three adjoint linear
systems

(
∂Ψ
∂W

)∗
ξ = c. To be more precise, for the first case we have used the quantities b = −∂Ψ

∂α

and b = − ∂Ψ
∂M

(where α is the angle of attack and M the free-stream Mach number), while for

the adjoint linear system we have used c =
(
∂cD
∂W

)T
(where cD is the drag coefficient) and other

two quantities that are needed to obtain the Hessian matrix of the drag coefficient (respect to
the angle of attack and the Mach number) using the Tangent-on-Reverse algorithm (see the
Section 3.6.2).

Moreover, due to the availability of the block-diagonal inverse D−1 of the matrix A(1), we

have applied the above strategy to te equivalent systems D−1A(1,2)ξ = D−1b and D−TA(1,2)T ξ =
D−T c. The stopping criterion for the GMRES algorithm is based on the backward error for the
preconditioned system and was set to ε = 10−12.

For the different runs, we have used a 2.66 GHz-64bit Intel Xeon processor (5150 series) with
4 MB of L2-cache memory and 8 GB of RAM. All the computation are performed with double
precision (8 Bytes) floating point numbers.

ILU(p) preconditioning. The preconditioners are built using 3 different levels of fill: ILU(0)
(i.e. no fill respect the original structure), ILU(1) and ILU(2). The computational cost in terms
of CPU time and memory to build each preconditioner is shown in Table 6.1.

CPU time Memory

ILU(0) 3 sec. ∼ 86 MB
ILU(1) 21 sec. ∼ 170 MB
ILU(2) 69 sec. ∼ 350 MB

Table 6.1: Computational cost (time and memory requirements) for different levels of fill for the
Incomplete LU factorization. The original matrix is relative on a mesh with 31124 nodes and it
has 449028 5×5 blocks resulting in a memory requirement of ∼ 86 MB.

Krylov space dimension. We have used 3 different dimensions for the Krylov space: 15
(Tables 6.3, 6.6), 30 (Tables 6.4, 6.7) and 200 (Tables 6.5, 6.8). The results show that, as
expected, the number of iterations needed for convergence decrease as the dimension of the
Krylov space increase, but at a cost of a greater memory requirement. In the implementation
of GMRES that we have used, the dimension dwork of the workspace depends on the dimension
of the solution n and the dimension of Krylov space dK and, for the implementation we used, it
should be not less than dK(dK +n+5)+6n+2 [Frayssé et al., 2003]. In our case, the dimension
of the solution was n = 5 × 31124 and the corresponding dimension for the workspace respect
to the Krylov space is shown in the Table 6.2.

Order 1

For the case in which the matrix A is the first-order accurate Jacobian ∂Ψ(1)

∂W
, we note that the

number of iterations needed to converge to the solution is nearly independent from the right

145



6.1 Study of efficiency of matrix-free methods to solve linear systems in the AD context

dK dwork Memory

15 3268322 26146576 Byte (∼ 25 MB)
30 5603372 44826976 Byte (∼ 43 MB)
200 32877847 263022776 Byte (∼ 251 MB)

Table 6.2: Minimum dimension for the workspace respect to the dimension of the Krylov space
dK in the GMRES algorithm. The dimension for the workspace depends on the particular
implementation and in our case must be dwork ≥ dK(dK + n+ 5) + 6n+ 2 [Frayssé et al., 2003],
where n is the dimension of the right hand side of the linear system.

hand side and generally (if we use the same preconditioner) the system Aξ = b requires more
iteration for the convergence respect to the transposed one AT ξ = c (Tables 6.3–6.5).

Due to the strategy that we have adopted for the matrix-by-vector multiplication inside the
GMRES solver (see Section 3.3) and by the overhead associated with the differentiated code
(in this case for the tangent mode differentiation we had αT ≃ 2.2, while for the reverse mode
αR ≃ 4.6), we have for the adjoint linear system a cost-for-iteration about twice larger respect
to the tangent linear system.

Regarding the preconditioner, we note that when increasing the level of filling we need a
smaller number of iterations to converge, but this fact does not give a proportional saving for
the computational cost, due to the greater number of nonzero elements of the preconditioner
itself (in other words the application of the ILU(p+1) preconditioner on a vector has a higher cost
respect to the application of ILU(p)). This fact results in a comparable performance between
the ILU(1) and ILU(2), but as we have seen above, the ILU(2) requires a lot more memory and
a greater computational cost to be built.

For the dimension of the Krylov space, we have obtained similar cost between dK = 15 and
dK = 30 using ILU(1) and ILU(2). For ILU(0) we note an improvement for the performance
using dK = 30 only for the solution of the direct system Aξ = b. As expected, the case dK = 200
result in the lowest computational time, but with a greater cost in terms of memory.

Using the equivalent linear system built with the left-multiplication of the matrix A (AT )
and the right-hand-side b (c) by the block-inverse matrix D−1 (D−T ) to compute the solution
ξ, does not affect in a significative way the performance of the solver.

Order 2

As for case of the first-order accurate Jacobian, when we solve the second-order accurate linear

system Aξ = b (or the adjoint linear system AT ξ = c) with A = ∂Ψ(2)

∂W
and using a preconditioner

built for the first-order accurate problem, we have a number of iterations nearly independent
from the right hand side and generally a higher number of iterations for the tangent linear
system respect to the adjoint one (Tables 6.6–6.8).

In this case the overhead associated with the differentiated code is αT ≃ 2.0 for the tangent
mode and αR ≃ 3.3 for the reverse mode, resulting in a cost-for-iteration for the solution of the
adjoint linear system that is about 1.65 times greater respect to the analogous operation for the
tangent linear system.

146



Chapter 6. Numerical experiments using Automatic Differentiation

The choice of the preconditioner is more crucial here respect to the first-order accurate
problem: in fact if the Krylov space is too small the ILU(0) preconditioner results in a lack
of convergence (at least until our limit of 600 iterations) for the tangent linear system. Using
ILU(1) and ILU(2) we note the same behaviour in terms of number of iterations (i.e. for a given
system ILU(1) requires more iterations than ILU(2)) and in terms of computational time in some
cases we have obtained better performances for ILU(1) respect to ILU(2). For these reasons,
together with the considerations about the computational time to build the preconditioner and
the memory requirements, the better strategy for the preconditioner seems to be the ILU(1)
respect to ILU(2).

Regarding the Krylov space, we note a stronger influence on the number of iteration respect
to the first-order case (where dK = 15 and dK = 30 result in a similar cost and the case dK = 200
result in a saving in terms of computational time of ∼ 15%). In this case (and considering the
ILU(1) strategy for the preconditioner) moving from dK = 15 to dK = 30 results in a save of
∼ 15%, and from dK = 30 to dK = 200 results in the saving of the computational time of a factor
> 2. The major drawback of a such great dimension for the Krylov space is, as we have seen,
the memory requirements for the workspace of the GMRES solver, therefore the best strategy
seems to be in choosing the higher possible dimension such that the workspace for the GMRES
routine is contained in the RAM of the system.

Using the alternative formulation for the linear system with the multiplication of both side
by the block inverse matrix (D−1 for the tangent linear system an D−T for the adjoint) results
in a lower number of iterations to the convergence, especially for the tangent case.

147



6.1 Study of efficiency of matrix-free methods to solve linear systems in the AD context

A D−1A AT D−TAT

ILU(0) 295 + 302 (71.7) 295 + 302 (71.6) 173 + 172 + 174 (66.7) 173 + 172 + 174 (63.9)
ILU(1) 113 + 106 (35.9) 113 + 104 (35.4) 91 + 92 + 95 (44.2) 91 + 92 + 92 (44.8)
ILU(2) 91 + 82 (39.0) 78 + 80 (33.0) 64 + 67 + 68 (36.7) 64 + 67 + 68 (37.7)

Table 6.3: Order 1, Krylov= 15. Iteration needed to GMRES for the convergence of the various
linear systems and different preconditioners: the columns 2 and 3 regard the solution of Aξ = b,
while the columns 3 and 4 regard the solution of AT ξ = c. In the parenthesis is shown the
average time (in seconds) to solve a linear system. The bold value is the minimum time (without
considering the ILU(p) factorization) to solve the linear system.

A D−1A AT D−TAT

ILU(0) 205 + 199 (49.2) 205 + 198 (48.9) 167 + 169 + 172 (66.7) 167 + 169 + 172 (64.7)
ILU(1) 103 + 101 (33.4) 103 + 100 (33.7) 87 + 87 + 87 (42.6) 87 + 87 + 87 (41.1)
ILU(2) 91 + 70 (37.3) 74 + 69 (30.1) 62 + 64 + 66 (37.10) 62 + 64 + 66 (36.7)

Table 6.4: Order 1, Krylov= 30. Iteration needed to GMRES for the convergence of the various
linear systems and different preconditioners: the columns 2 and 3 regard the solution of Aξ = b,
while the columns 3 and 4 regard the solution of AT ξ = c. In the parenthesis is shown the
average time (in seconds) to solve a linear system. The bold value is the minimum time (without
considering the ILU(p) factorization) to solve the linear system.

A D−1A AT D−TAT

ILU(0) 148 + 148 (38.1) 148 + 148 (38.6) 134 + 137 + 138 (55.1) 134 + 137 + 138 (54.2)
ILU(1) 81 + 80 (27.7) 81 + 79 (28.2) 73 + 74 + 75 (36.8) 73 + 74 + 75 (37.1)
ILU(2) 108 + 60 (45.0) 61 + 59 (25.6) 54 + 57 + 57 (31.8) 54 + 57 + 57 (31.9)

Table 6.5: Order 1, Krylov= 200. Iteration needed to GMRES for the convergence of the
various linear systems and different preconditioners: the columns 2 and 3 regard the solution of
Aξ = b, while the columns 3 and 4 regard the solution of AT ξ = c. In the parenthesis is shown
the average time (in seconds) to solve a linear system. The bold value is the minimum time
(without considering the ILU(p) factorization) to solve the linear system.

148



Chapter 6. Numerical experiments using Automatic Differentiation

A D−1A AT D−TAT

ILU(0) −− −− 454 453
ILU(1) 458 + 421 (168.7) 447 + 408 (167.3) 354 + 365 + 392 (239.5) 353 + 364 + 388 (250.1)
ILU(2) 379 + 357 (171.2) 374 + 356 (170.0) 329 + 352 + 349 (250.1) 329 + 349 + 348 (250.4)

Table 6.6: Order 2, Krylov= 15. Iteration needed to GMRES for the convergence of the various
linear systems and different preconditioners: the columns 2 and 3 regard the solution of Aξ = b,
while the columns 3 and 4 regard the solution of AT ξ = c. In the parenthesis is shown the
average time (in seconds) to solve a linear system. The bold value is the minimum time (with-
out considering the ILU(p) factorization) to solve the linear system. For ILU(0) the GMRES
algorithm to solve Ax = b does not converge.

A D−1A AT D−TAT

ILU(0) 562 + 511 (163.0) 560 + 501 (158.0) 438 + 504 + 469 (262.0) 438 + 500 + 466 (258.0)
ILU(1) 431 + 361 (154.27) 412 + 345 (143.9) 307 + 317 + 314 (210.7) 307 + 315 + 313 (203.8)
ILU(2) 361 + 301 (157.0) 350 + 300 (151.9) 244 + 271 + 268 (199.5) 244 + 266 + 267 (186.25)

Table 6.7: Order 2, Krylov= 30. Iteration needed to GMRES for the convergence of the various
linear systems and different preconditioners: the columns 2 and 3 regard the solution of Aξ = b,
while the columns 3 and 4 regard the solution of AT ξ = c. In the parenthesis is shown the
average time (in seconds) to solve a linear system. The bold value is the minimum time (without
considering the ILU(p) factorization) to solve the linear system.

A D−1A AT D−TAT

ILU(0) 240 + 270 (82.6) 232 + 262 (78.8) 195 + 212 + 217 (121.5) 195 + 211 + 211 (122.9)
ILU(1) 210 + 201 (103.7) 152 + 148 (60.7) 133 + 141 + 141 (92.5) 133 + 140 + 140 (95.0)
ILU(2) 201 + 127 (96.1) 129 + 126 (61.7) 113 + 121 + 120 (89.5) 113 + 120 + 120 (89.4)

Table 6.8: Order 2, Krylov= 200. Iteration needed to GMRES for the convergence of the
various linear systems and different preconditioners: the columns 2 and 3 regard the solution of
Aξ = b, while the columns 3 and 4 regard the solution of AT ξ = c. In the parenthesis is shown
the average time (in seconds) to solve a linear system. The bold value is the minimum time
(without considering the ILU(p) factorization) to solve the linear system.

149



6.2 Gradient and Hessian evaluation using AD

6.2 Gradient and Hessian evaluation using AD

For the following tests, we have computed the gradient and the Hessian matrix of the drag
coefficient (our functional) with respect to the free-stream Mach number and incidence angle.
For the gradient we used the adjoint approach as explained in Section 3.5.2, while for the Hessian
we used ToT and ToR approach, as explained in Sections 3.6.1 and 3.6.2. For the solution of the
linear system involved in the various algorithms, we used the matrix-free approach (Sections 3.3
and 6.1) and for the preconditioners an ILU(1) strategy applied to the first-order accurate

Jacobian
(
∂Ψ(1)

∂W

)
(and to the corresponding transpose

(
∂Ψ(1)

∂W

)T
for the adjoint case).

6.2.1 Testcase 1: wing shape geometry

The Testcase 1 corresponds to the same wing shape and the same nominal operating conditions
we used in the previous section (i.e. free-stream Mach number M∞ = 0.83 and incidence angle
α = 2◦). For this testcase we have computed the gradient and the Hessian using the CFD solver
with first- and second-order spatial accuracy. Moreover, to validate and compare our results,
we have built a database of drag coefficients corresponding to a 21×21 grid in the α-M∞ plane
around the nominal value (α = 2◦,M∞ = 0.83): in other words we have solved 441 steady Euler
equations Ψ(γ,W ) = 0.

As shown in Fig 6.3, using first-order spatial accuracy (i.e. without MUSCL scheme and
limiters) we have obtained the correct gradient and Hessian (both validated using divided dif-
ferences). In this figure, we note a very good agreement between the results obtained with a
second-order Taylor expansion (Fig 6.3 on bottom-left) and the values obtained with nonlinear
simulations (Fig 6.3 on top-left). The relative difference between the two approaches is shown
in Fig 6.3 on the bottom-right position.

To give a rough idea of the computational cost, we need about 60 seconds on a 2.66 GHz-64bit
Intel Xeon workstation to solve the nonlinear equation Ψ(γ,W ) = 0 and evaluate the functional
at the nominal values M∞ = 0.83, α = 2◦ (this cost depends on the flow regime: with higher
Mach numbers the solver needs more iterations to achieve, if possible, the same error level on
the residual), while to compute the adjoint state and the gradient we spent about 45 seconds.
Regarding the Hessian, ToT and ToR gave us the same numerical results but, as expected their
cost differs: ToT required about 75 seconds while ToR required about 162 seconds. Therefore,
to obtain the second-order Taylor expansion we used ToT and the runtime cost was about 3
minutes, while to built the fully nonlinear database the runtime cost was more than 7.5 hours.

Using the second-order spatial accuracy (with MUSCL approach and Van Albada-Van Leer
limiter) and the same operational conditions, we have obtained the correct gradient (Fig 6.4
in the top-right position) but wrong Hessian (Fig 6.4 in the bottom position). This is not a
problem of the implementation of the algorithms: ToT and ToR gave us the same numerical
results and all linear systems involved for the Hessian evaluation converged to the solution with
an error level on the residual of 10−12.

We think that the reason of this strange behaviour could rely on numerical truncation errors
on the double-differentiated code. An example of this issue is given considering the function

150



Chapter 6. Numerical experiments using Automatic Differentiation

 0.045
 0.05
 0.055
 0.06
 0.065
 0.07
 0.075
 0.08
 0.085
 0.09

 0.78
 0.8

 0.82
 0.84

 0.86
 0.88

 1.6
 1.8

 2
 2.2

 2.4

 0.045
 0.05

 0.055
 0.06

 0.065
 0.07

 0.075
 0.08

 0.085
 0.09

Drag

Nonlinear simulations

Mach

Angle of attack

Drag

 0.045
 0.05
 0.055
 0.06
 0.065
 0.07
 0.075
 0.08
 0.085
 0.09

 0.78
 0.8

 0.82
 0.84

 0.86
 0.88

 1.6
 1.8

 2
 2.2

 2.4

 0.045
 0.05

 0.055
 0.06

 0.065
 0.07

 0.075
 0.08

 0.085
 0.09

Drag

Taylor 1st order (α=2.0, M=0.83)

Mach

Angle of attack

Drag

 0.045
 0.05
 0.055
 0.06
 0.065
 0.07
 0.075
 0.08
 0.085
 0.09

 0.78
 0.8

 0.82
 0.84

 0.86
 0.88

 1.6
 1.8

 2
 2.2

 2.4

 0.045
 0.05

 0.055
 0.06

 0.065
 0.07

 0.075
 0.08

 0.085
 0.09

Drag

Taylor 2nd order (α=2.0, M=0.83)

Mach

Angle of attack

Drag

-3

-2

-1

 0

 1

 2

 3

 0.78
 0.8

 0.82
 0.84

 0.86
 0.88

 1.6
 1.8

 2
 2.2

 2.4

-3

-2

-1

 0

 1

 2

 3

Relative difference (%)

Relative Difference: Nonlinear vs. Taylor 2nd order

Mach

Angle of attack

Relative difference (%)

Figure 6.3: Drag coefficient vs. Mach number and angle of attack (first-order spatial accuracy)
for the Piaggio wing: nonlinear simulations (top-left); first-order (top-right) and second-order
(bottom-left) Taylor approximation around α = 2◦ and M = 0.83; relative difference between
the nonlinear simulations and the second-order Taylor approximation (bottom-right).

151



6.2 Gradient and Hessian evaluation using AD

f(x) = x
√
x that is continuous and differentiable in the domain

[
0,+∞

)
while its derivative

f ′(x) = 3
2

√
x is continuous but differentiable only for x ∈

(
0,+∞

)
. For the second deriva-

tive f ′′(x) = 3
4

1√
x

holds in fact limx→0+ f ′′(x) = +∞. Thus, if we run the code implementing

f ′′(x) = 3
4

1√
x

with x > 0 but very small, due to the finite representation of numbers in comput-

ers, we could have some numerical problems. We emphasize the fact that the problem is not
necessarily due to the non-differentiability of the Roe’s scheme used by the solver: we have the
same feature for the first-order case and the results are correct (moreover, in the second-order
case the gradient is correct). Another test made is the Hessian evaluation using a lower and an
higher Mach number: in the lower case (with M = 0.5) the Hessian is correct, while with the
higher values of M = 0.87 the Hessian computed is wrong (with exactly the same executable
program and the same mesh). This problem merits further research.

Regarding the computational cost, we need about 3 minutes to solve the nonlinear equation
Ψ(γ,W ) = 0 and evaluate the functional at the nominal values M∞ = 0.83, α = 2◦ (this cost
depends on the flow regime: with higher Mach number the solver needs more iterations to
achieve, if possible, the same error level on the residual), while to compute the adjoint state and
the gradient we spent about 4 minutes. Regarding the Hessian, ToT and ToR gave us the same
(wrong) numerical results but, as expected their cost differs: ToT required about 5.5 minutes
while ToR required about 13 minutes. Therefore, to obtain the second-order Taylor expansion
we used ToT and the runtime cost was about 13 minutes, while to built the fully nonlinear
database the runtime cost was more than 23 hours.

It is interesting to note in this case that the ratio between the runtime cost for the gradient
(or the cost for the Hessian) and the runtime cost for the nonlinear solution is higher with respect
the first-order accuracy: this is due to the fact that the linear system in the algorithms for the
gradient and the Hessian are solved using the preconditioner built with the first-order Jacobian,
thus such second-order linear systems require more iterations to achieve the convergence (see
Section 6.1 and Tables 6.3-6.8)

6.2.2 Testcase 2: SSBJ geometry

The Testcase 2 corresponds to the Supersonic Business Jet geometry (courtesy of Dassault
Aviation), and a picture is given in Figure 6.5. The corresponding 3D unstructured mesh has
31643 nodes and 169161 elements, where its connectivity can be obtained by the the sparsity
pattern of the first-order accurate Jacobian and is shown in Fig. 6.6.

Motivated by the problem encountered in the Testcase 1 when we used the second-order
accurate scheme for the flow solver, we have evaluated the gradient and the Hessian of the
drag coefficient respect to the angle of attack and the free-stream Mach number in different
flow regimes. The angle of attack was α = 3◦ and the various regimes are given by different
values for free-stream Mach numbers: from a transonic flow with M = 0.8 to a supersonic
flow with M = 1.6. Due to the high computational cost, we didn’t compute the databases of
values obtained solving the Euler equations, but we validated the gradient and the Hessian using
divided differences.

Quite surprisingly, this time we obtained the correct Hessian matrix for the whole set of

152



Chapter 6. Numerical experiments using Automatic Differentiation

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.78
 0.8

 0.82
 0.84

 0.86
 0.88

 1.6
 1.8

 2
 2.2

 2.4

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

Drag

Nonlinear simulations

Mach

Angle of attack

Drag

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.78
 0.8

 0.82
 0.84

 0.86
 0.88

 1.6
 1.8

 2
 2.2

 2.4

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

Drag

Taylor 1st order

Mach

Angle of attack

Drag

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.78
 0.8

 0.82
 0.84

 0.86
 0.88

 1.6
 1.8

 2
 2.2

 2.4

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

Drag

Taylor 2nd order

Mach

Angle of attack

Drag

Figure 6.4: Drag coefficient vs. Mach number and angle of attack (second-order spatial accuracy)
for the Piaggio wing: nonlinear simulations (top-left); first-order (top-right) and second-order
(bottom-left) Taylor approximation around α = 2◦ and M = 0.83. The second-order Taylor
approximation is not accurate!.

153



6.3 Conclusions

free-stream Mach numbers, even for the critical value M = 1.0. Some plots of the first- and
second-order Taylor expansion of the drag coefficient in function of the free-stream Mach number
and angle of attack are given in Figs. 6.7-6.9.

This result enforces our suspect about the possibility of numerical truncation errors for the
Hessian evaluation in the Testcase 1. However, we plan to repeat Hessian evaluation for the
same geometry and flow regime of the Testcase 1 but with a different (finer) mesh.

6.3 Conclusions

In this Chapter we have presented some numerical experiments regarding the application of
AD technique to solve linear systems and to compute first- and second-order derivatives of a
functional subject to satisfy a set of nonlinear PDEs (the steady Euler equations).

For the solution of the linear systems (in which the matrix is a Jacobian) we have tested
the matrix-free approach described in Section 3.3 in which a GMRES-RCI approach is used.
The tests made involve the study of the ILU(p) preconditioner and of the dimension of the
Krylov space. Regarding the level of filling in the ILU(p) strategies, we found that a too high
value results in an algorithm that requires less iterations to converge but, due to the increased
number of non-zero elements in the factorization, each iteration has an higher run-time cost;
while a too low value results in a less robust algorithm. Regarding the dimension of the Krylov
space dK , we found that higher values give better performances but the algorithm require much
memory. Due to the fact that we know in advance the quantity of memory needed by the
GMRES algorithm, a good strategy for the choice of dK could be the use of the highest possible
value that is compatible with the available computational resources.

For the first- and second-order derivatives, we have tested and verified the algorithms in
Chapter 3 for two grids and several flow regimes, but in one case the Hessian was not correct
(ToT and ToR gave the same result). We think that this problem relies on numerical truncation
errors. As we have seen, the run-time cost for the “gradient + complete Hessian” evaluation
depends on the number of variables, and in our case (using ToT) we have obtained a cost that
is 2÷ 3 times the cost required for the solution of the steady Euler equations.

154



Chapter 6. Numerical experiments using Automatic Differentiation

Figure 6.5: SSBJ geometry: pressure field on body+wings

155



6.3 Conclusions

Figure 6.6: Sparsity pattern of the first-order Jacobian matrix ∂Ψ(1)

∂W
for the 3D unstruc-

tured mesh corresponding to the SSBJ geometry in Fig. 6.5. The matrix has a block-sparse
structurally-symmetric pattern, with 448037 5 × 5-blocks (31643 blocks on the diagonal and
416394 off-diagonal).

156



Chapter 6. Numerical experiments using Automatic Differentiation

 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9

 0.76
 0.78

 0.8
 0.82

 0.84  2.6
 2.8

 3
 3.2

 3.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

Drag

Taylor 1st order (α=3.0, M=0.8)

Mach

Angle of attack

Drag

 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9

 0.76
 0.78

 0.8
 0.82

 0.84  2.6
 2.8

 3
 3.2

 3.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

Drag

Taylor 2nd order (α=3.0, M=0.8)

Mach

Angle of attack

Drag

 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9

 0.86
 0.88

 0.9
 0.92

 0.94  2.6
 2.8

 3
 3.2

 3.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

Drag

Taylor 1st order (α=3.0, M=0.9)

Mach

Angle of attack

Drag

 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9

 0.86
 0.88

 0.9
 0.92

 0.94  2.6
 2.8

 3
 3.2

 3.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

Drag

Taylor 2nd order (α=3.0, M=0.9)

Mach

Angle of attack

Drag

 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9

 0.96
 0.98

 1
 1.02

 1.04  2.6
 2.8

 3
 3.2

 3.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

Drag

Taylor 1st order (α=3.0, M=1.0)

Mach

Angle of attack

Drag

 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85
 0.9

 0.96
 0.98

 1
 1.02

 1.04  2.6
 2.8

 3
 3.2

 3.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

Drag

Taylor 2nd order (α=3.0, M=1.0)

Mach

Angle of attack

Drag

Figure 6.7: Drag coefficient vs. Mach number and angle of attack (second-order spatial ac-
curacy) for the SSBJ mesh: first-order (left column) and second-order (right column) Taylor
approximation around α = 3◦ and M = 0.8 (top), M = 0.9 (center), M = 1.0 (bottom).

157



6.3 Conclusions

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1.06
 1.08

 1.1
 1.12

 1.14  2.6
 2.8

 3
 3.2

 3.4

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

Drag

Taylor 1st order (α=3.0, M=1.1)

Mach

Angle of attack

Drag

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1.06
 1.08

 1.1
 1.12

 1.14  2.6
 2.8

 3
 3.2

 3.4

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

Drag

Taylor 2nd order (α=3.0, M=1.1)

Mach

Angle of attack

Drag

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1.16
 1.18

 1.2
 1.22

 1.24  2.6
 2.8

 3
 3.2

 3.4

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

Drag

Taylor 1st order (α=3.0, M=1.2)

Mach

Angle of attack

Drag

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1.16
 1.18

 1.2
 1.22

 1.24  2.6
 2.8

 3
 3.2

 3.4

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

Drag

Taylor 2nd order (α=3.0, M=1.2)

Mach

Angle of attack

Drag

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1.36
 1.38

 1.4
 1.42

 1.44  2.6
 2.8

 3
 3.2

 3.4

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

Drag

Taylor 1st order (α=3.0, M=1.4)

Mach

Angle of attack

Drag

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1.36
 1.38

 1.4
 1.42

 1.44  2.6
 2.8

 3
 3.2

 3.4

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

Drag

Taylor 2nd order (α=3.0, M=1.4)

Mach

Angle of attack

Drag

Figure 6.8: Drag coefficient vs. Mach number and angle of attack (second-order spatial ac-
curacy) for the SSBJ mesh: first-order (left column) and second-order (right column) Taylor
approximation around α = 3◦ and M = 1.1 (top), M = 1.2 (center), M = 1.4 (bottom).

158



Chapter 6. Numerical experiments using Automatic Differentiation

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1.56
 1.58

 1.6
 1.62

 1.64  2.6
 2.8

 3
 3.2

 3.4

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

Drag

Taylor 1st order (α=3.0, M=1.6)

Mach

Angle of attack

Drag

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1.56
 1.58

 1.6
 1.62

 1.64  2.6
 2.8

 3
 3.2

 3.4

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

Drag

Taylor 2nd order (α=3.0, M=1.6)

Mach

Angle of attack

Drag

Figure 6.9: Drag coefficient vs. Mach number and angle of attack (second-order spatial accuracy)
for the SSBJ mesh: first-order (left) and second-order (right) Taylor approximation around
α = 3◦ and M = 1.6.

159



6.3 Conclusions

160



Conclusions and future work

In this work we studied some algorithms and applications of first- and second-order derivatives
in aerodynamic optimal design.

• In Chapter 1 we have described the mathematical flow model and the numerical finite-
volume schemes implemented by our CFD codes (2D and 3D) for solving the steady Euler
equations: this solution is implicit and relies on a preconditioned iteration.

• In Chapter 2 we have described some techniques developed for uncertainty analysis and
propagation, and we have given some examples of techniques used for robust design, in
which first- and second-order derivatives are required.

• In Chapter 3 we have started giving a brief description of the two differentiation mode
of AD (Tangent and Reverse), then we have analyzed two different approaches for the
differentiation of a functional subject to satisfy an equality constraint given by equations
solved with fixed-point methods (like the steady Euler equations). In the first approach the
entire process, involving the solution algorithm for the state equation and the evaluation of
the functional, is considered to be implemented by a single program and it is differentiated
as a whole. Conversely, the second approach (differentiation of explicit parts) considers
the solution algorithm for the state equation and the functional evaluation as separate
processes, and applies differentiation only to the routines which compute the state residual
and the functional (in which the computational graph is assumed to be fixed). The first
approach is easy to implement but has some reliability and performance problems: due
to the presence of iterative processes to solve the state equations, we have not a fixed
computational graph and therefore the AD theory is not well-founded. Moreover, if the
differentiation would be correct, this approach requires the differentiation of an iterative
algorithm that is very costly (in terms of CPU time and memory). To the opposite, the
second approach results in a robust and cheaper way to perform differentiation (we need
to evaluate the differentiated routines only at the final state) and it is designed to produce
a matrix-by-vector output for the assembly of adjoint system.

In Section 3.3 we have motivated and presented an approach (matrix-free methods) to
solve the linear system Aξ = b (or AT ξ = b) when the matrix A is the Jacobian of
some function. The key idea is to use iterative solvers (like GMRES) that do not require
to know the matrix A but only the result of the matrix-by-vector multiplication. The
availability of a preconditioner (built from the first-order Jacobian used for the pseudo-time

161



6.3 Conclusions

iteration in the flow solver) is used to accelerate the convergence velocity. Some numerical
experiments are presented in Section 6.1 in which we tested some ILU(p) factorizations
for the preconditioner and different sizes for the Krylov space.

In Section 3.5 we recalled two strategies for computing the gradient of a constrained
functional with AD: the first approach uses Tangent mode differentiation and its run-time
cost is proportional to the number of independent variables; while the second approach
is based on the adjoint formulation and uses Reverse mode differentiation resulting in a
run-time cost that is independent from the number of independent variables.

Section 3.6.1 is devoted to describe an existing algorithm [Sherman et al., 1996], called
Tangent-on-Tangent (forward-on-forward in [Ghate and Giles, 2007]) for computing the
Hessian matrix. This approach is based on an adjoint formulation and requires a double
Tangent-differentiation of the routines implementing the functional evaluation and the
state residual. This approach computes the Hessian matrix element-by-element and for
the full Hessian its run-time cost is due mainly to the sum of two different contributions:
the solution of n linear systems (where n is the number of independent variables) and the
evaluation of n

2 (n + 1) double-differentiated routines. Due to the presence of a quadratic
term in the expression for the cost, this approach is suited for the Hessian evaluation when
the number of independent variables is not too high (. 1000).

In Section 3.5 we have developed a new approach based on Tangent-on-Reverse differenti-
ation of the routines implementing the functional evaluation and the state residual. This
approach builds the full Hessian matrix column-by-column, using Hessian-by-vector multi-
plication, in which the run-time cost of this multiplication is independent from the number
of variables but it requires the solution of two linear systems. Therefore the run-time cost
of this algorithm to evaluate the full Hessian is proportional to the number of independent
variables.

From the previous arguments regarding the run-time cost, we have defined a mixed strategy
for the full Hessian evaluation that combines the advantages of the two approaches. The
proposed formulation coincides with pure ToT when the number of independent variables
are small while the ToT/ToR strategy results more efficient than both ToT and ToR for
a larger number of variables.

Using Tangent-on-Reverse differentiation we had some problems regarding the stack man-
agement performed by TAPENADE (the software used to perform Automatic Differenti-
ation). In Section 3.7 we have described this issue and how to fix it by hand. Finally,
in Section 3.9 we have described how to build a general framework that frees the user
to implement the various algorithms for a specific problem, resulting in a smaller time
requirement for the development and the implementation on existing codes.

Some numerical experiments regarding the first- and second-order differentiation using the
previous algorithms on a 3D CFD code are presented in Sections 6.2.1 and 6.2.2.

• In Chapter 4 we have presented a new multilevel gradient-based method for aerodynamic
shape design. Starting from an existing formulation [Beux and Dervieux, 1994] based
on an embedded parametrization of shape grid-points and on interpolation operators, a

162



Chapter 6. Numerical experiments using Automatic Differentiation

possible generalisation to other kinds of parametrizations is described. Two particular
examples of parametrizations are then presented, and since the shape grid-points are used
as control variables, the resulting approaches can be interpreted as multilevel strategies
as defined in [Beux and Dervieux, 1994], in which a particular prolongation operator (i.e.
with a particular preconditioning) is applied. However, it can also be reinterpreted directly
as multilevel approaches with respect to the new family of shape parametrization. In the
first example, the sub-levels are defined through the use of Bézier control points, and
starting from a consistent coarsest level, the degree-elevation property of Bézier curves is
applied to successively define the different finer levels. In this context, even if, in practice,
the Bézier control points can be not explicitly computed, the proposed algorithm can be
also interpreted as a descent method for Bézier control points as control variables. In the
second example, the definition of the set of sub-parametrizations is based on the use of an
orthonormal basis of shape functions as shape representation. As for the case of Bézier-
based parametrization, a descent direction is obtained considering as control parameters
the ordinates of the shape grid-points as well as the finest sub-parametrization.

The numerical experiments shows that the new families of sub-parametrizations have suit-
able effects, if there are understood as an alternative gradient preconditioning for the
optimization with respect to the shape grid-points. Nevertheless, to extend the range of
interest of this kind of methods, they should be interpreted as descent methods in which the
control variables are taken through the new set of parameters. Concerning the Bézier-based
parametrization, the results are more disappointing with respect to the parametrization
based on orthonormal shape functions, since the multilevelling seems poorly efficient. This
is due, here, to a good convergence behaviour on the finest levels while the coarsest levels
do not yield any additional speed-up, and thus, the basic conditions are not present to
apply effectively the multilevel/multigrid principles. Thus, such additional investigation
should be performed in order to better understand the present behaviour which is also
inconsistent with the results obtained by J.-A. Désidéri and collaborators. If more at-
tractive results can be obtained for Bézier-based parametrization, since the Bézier curves
act as a basic tool for polynomial shape representation, one can also envisage to extend
the formulation to more complex shape representation as B-splines (which also have prop-
erties of degree-elevation), and also, to 3D case through, for instance, tensorial Bézier
parametrization. In the both examples of parametrizations presented in this study, the
shape parameters are related by linear or affine application to the set of shape grid-points.

• In Chapter 5 we have developed a new algorithm to compute the gradient of an improved
functional built as the sum of the original functional and an adjoint-correction term as
defined in [Pierce and Giles, 2004, 2000]. The resulting algorithm uses Automatic Differen-
tiation techniques and needs to evaluate the first-order derivative of the adjoint state, and
therefore involves the evaluation of second-order derivatives of the original functional and
state residual but in a new differentiation mode: Reverse-on-Tangent. The run-time cost
for this algorithm is independent from the number of variables and is due mainly to the
solution of four linear systems: one of them is for the gradient of the original functional
while the others three are required for the gradient evaluation of the adjoint-correction

163



6.3 Conclusions

term.

Due to the fact that the Reverse differentiation is performed after the Tangent one, and due
to the fact that the Tangent differentiation does not change the structure of the original
program, the Reverse-on-Tangent mode does not suffer from the stack management issue
we have encountered for Tangent-on-Reverse.

We plan to use this algorithm to build a gradient-based descent method for optimal shape
design. At this time we do not have numerical results.

• in Chapter 6 we have presented some numerical experiments regarding the application of
Tangent-on-Tangent and Tangent-on-Reverse algorithm in order to evaluate the gradient
and Hessian evaluation of the drag coefficient with respect to Mach number and angle of
attack in which we used the 3D Euler solver described in Chapter 1. For our tests we
have considered two different 3D geometries and different orders of spatial accuracy of the
solution.

As expected, the two algorithms for the Hessian evaluation gave the same numerical results,
but with different runtime-costs: in our case with only two independent variables, the ToT
approach was 2 ÷ 2.5 times faster with respect to ToR. We have obtained correct results
apart one case in which we had inaccurate values for the Hessian (but correct values for the
gradient). We think that this problem could be due to some numerical truncation errors in
the double differentiated routine, and we planned to perform further computations, using
the same flow regime and geometry but with a different (and more refined) mesh.

Moreover, we have presented some numerical experiments regarding the behaviour of the
iterative linear solvers built using Automatic Differentiation and some ILU(p) strategies
for preconditioning. We have solved tangent and adjoint linear systems using GMRES on
first- and second-order accurate Jacobian (obtained by AD) in which the preconditioner is
built from first-order accurate Jacobian (defect-correction approach). We have observed
that the in our case the better strategy for preconditioning in terms of run-time cost is
given by ILU(1) (while ILU(2) needs less iterations to converge but a greater run-time
cost for each iteration). Regarding the performances difference between the solution of
the tangent linear system Aξ = b and the corresponding adjoint linear system AT ξ = c,
we have observed that the first case generally requires a greater number of iterations with
respect the second one but a lower run-time cost, due to the fact that the matrix-by-
vector multiplication is performed with differentiated routines and the cost of Tangent
mode differentiation is usually lower with respect to Reverse mode.

The work done, demonstrates that Automatic Differentiation is mature enough to be used
in a variety of applications and moreover, this Thesis describe in details the steps to apply. We
recommend the proposed techniques for the Hessian evaluation for the following purposes:

• robust optimization: with the availability of the Hessian matrix we can build a gradient-
based algorithm for shape optimization using the robust functional (2.21) and we can
afford the Maximum Expected Value approach for robustness (Section 2.3);

164



Chapter 6. Numerical experiments using Automatic Differentiation

• adjoint-corrected functionals: we want to build and use a gradient-based shape optimiza-
tion algorithm for the adjoint-corrected functional (5.8)

Much more ambitious is the development of Automatic Differentiation techniques for the com-
putation of second-order derivatives in the case of unsteady flows (e.g. Naviers-Stokes with
turbulence models). Until now, only first-order differentiation has been performed for this kind
of problems (see [Tber et al., 2007] for an Oceanographic application), and thus, the Hessian
computation still represents a big challenge.

165



6.3 Conclusions

166



Appendices

167





Appendix A

Basic definitions in probability

The cumulative distribution function (CDF) of random variable X is defined as F (x) = P (X ≤
x). The mathematical expectation of a function of X, say h(X) is defined as

E[h(X)] =

∫
h(x)dF (x)

where the notation
∫

should be understood as a Stieltjes integral. In most applications, two
cases are important:

• F is differentiable, in which case X is a continuous random variable and f(x) = dF (x)/dx
is called probability density function (PDF) of X. In such cases

E[h(X)] =

∫
h(x)f(h)dx

• F is a step function with countably many jumps of size p1, p2, . . . at x1, x2, . . . respectively,
in which case X is a discrete random variable and

E[h(X)] =
∞∑

i=1

pih(xi)

The mean of a random variable X is defined as its expectation value µ = E[X]. The centered
moment of order r is defined as

E[(X − µ)r] (A.1)

From the definition of expectation and because of the properties of the integrals, the centered
moment of order 1 is always equal to zero. The centered moment of order 2 is called variance
and holds σ2 = E[(X − µ)2] = E[X2]− µ2.

Theorem 2 (Chebyshev’s inequality). Let X be a random variable with expected value µ
and finite variance σ2. Then for any real number k > 0,

Pr(|X − µ| ≥ kσ) ≤ 1

k2
(A.2)

169



Proof. For any event X, let χ(X) be the indicator random variable of X, i.e. χ(X) equals 1 if
X occurs and 0 otherwise. Then

Pr(|X − µ| ≥ kσ) = E
[
χ
(
|X − µ| ≥ kσ

)]
= E

[
χ
(
(X − µ)2/k2σ2 ≥ 1

)]

≤ E
[
(X − µ)2

k2σ2

]
=

1

k2σ2
E
[
(X − µ)2

]
=

1

k2

(A.3)

The theorem can be useful despite loose bounds because it applies to random variables
of any distribution, and because these bounds can be calculated knowing no more about the
distribution than the mean and variance.

Definition A.1. The sequence ξi (i = 1, 2, . . . ) of random variables converges P -a.s. (almost
surely or with probability one) to the random variable ξ if P{ξi → ξ} = 1, i.e. if the set for
which ξi does not converge to ξ has probability zero.

Theorem 3 (Strong Law of Large Numbers). Let ξi (i = 1, 2, . . . ) a sequence of independent
identically distribuited random variables with E

[
|ξi|
]
<∞. Then

lim
N→∞

1

N

N∑

i=1

ξi = µ (P -a.s.)

where µ = E
[
ξi
]
.

Proof. See [Shirayev, 1996].

170



Appendix B

High-order approximations

Let j ∈ C∞(Ω,R) and Ω ⊆ R
n. The Taylor series expansion of j at the deterministic point

µγ ∈ Ω could be written as

j(γ) = A0 +A1 +A2 +A3 +A4 +O(||δγ||5) (B.1)

where γ = µγ + δγ is a random vector such that E
[
γ
]

= µγ and





A0 = j(µγ)

A1 =
∑

i

dj

dγ(i)

∣∣∣
µγ

δγ(i)

A2 =
1

2!

∑

i,k

d2j

dγ(i)dγ(k)

∣∣∣
µγ

δγ(i)δγ(k)

A3 =
1

3!

∑

i,k,l

d3j

dγ(i)dγ(k)dγ(l)

∣∣∣
µγ

δγ(i)δγ(k)δγ(l)

A4 =
1

4!

∑

i,k,l,m

d4j

dγ(i)dγ(k)dγ(l)dγ(m)

∣∣∣
µγ

δγ(i)δγ(k)δγ(l)δγ(m)

(B.2)

where all derivatives are ealuated at µγ and the upperscript means δγ(i) for the i-th element
of the vector δγ ∈ R

n. From the above definitions, and remembering that the expectation acts
only on the non-deterministic variables (i.e. on the δγ), we have the following properties





E
[
A0

]
= A0

E
[
A1

]
= 0

E
[
Ai
]

= O
(
E
[
δγi
])

for i ≥ 2

E
[
AiAk

]
= O

(
E
[
δγi+k

])
for i, k ≥ 1

(B.3)

The mean value of the functional is then

µj = E
[
j
]

= A0 +E
[
A2

]
+ E

[
A3

]
+ E

[
A4

]
+O

(
E
[
δγ5
])

(B.4)

171



or in a more explicit way

µj = j(µγ) +
1

2!

∑

i,k

d2j

dγ(i)dγ(k)

∣∣∣
µγ

E
[
δγ(i)δγ(k)

]
+

+
1

3!

∑

i,k,l

d3j

dγ(i)dγ(k)dγ(l)

∣∣∣
µγ

E
[
δγ(i)δγ(k)δγ(l)

]
+

+
1

4!

∑

i,k,l,m

d4j

dγ(i)dγ(k)dγ(l)dγ(m)

∣∣∣
µγ

[
δγ(i)δγ(k)δγ(l)δγ(m)

]
+O

(
E
[
δγ5
])

In order to compute the variance of j we need to multiply the equation (B.1) by itself, and
keeping the lower order terms we obtain

j2(γ) = A2
0 +A2

1 +A2
2 + 2A0(A1 +A2 +A3 +A4) + 2A1(A2 +A3) +O(||δγ||5)

Using some algebra and the properties (B.3)

E
[
j2
]

= A2
0 + E

[
A2

1

]
+ 2A0E

[
A2

]
+ 2E

[
A1A2

]
+ 2A0E

[
A3

]
+

+ E
[
A2

2

]
+ 2E

[
A1A3

]
+ 2A0E

[
A4

]
+O

(
E
[
δγ5
])

E
[
j
]2

= A2
0 + E

[
A2

](
E
[
A2

]
+ 2A0

)
+ E

[
A3

](
E
[
A3

]
+ 2E

[
A2

]
+ 2A0

)

+ E
[
A4

](
E
[
A4

]
+ 2E

[
A3

]
+ 2E

[
A2

]
+ 2A0

)
+O

(
E
[
δγ5
])

and finally the variance

σ2
j = E

[
j2
]
− E

[
j
]2

=

= E
[
A2

1

]
− E

[
A2

]2
+ 2E

[
A1A2

]
− E

[
A3

](
E
[
A3

]
+ 2E

[
A2

])
+

+ E
[
A2

2

]
+ 2E

[
A1A3

]
− E

[
A4

](
E
[
A4

]
+ 2E

[
A3

]
+ 2E

[
A2

])
+O

(
E
[
δγ5
])

(B.5)

It is interesting note here that if δγ are normally distribuited then the moments of odd-order
are zero [Shirayev, 1996]

E
[
δγ2k−1

]
= 0 ⇒

{
E
[
A2k−1

]
= 0 for k ≥ 1

E
[
AiAk

]
= 0 for i+ k odd

and the mean and the variance approximations become

µj = E
[
j
]

= A0 + E
[
A2

]
+ E

[
A4

]
+O

(
E
[
δγ6
])

σ2
j = E

[
A2

1

]
− E

[
A2

]2
+ E

[
A2

2

]
+ 2E

[
A1A3

]
+

− E
[
A4

](
E
[
A4

]
+ 2E

[
A2

])
+O

(
E
[
δγ6
])

(B.6)

If δγ is unidimensional then E[δγ2k] = (2k)!
2kk!

σ2k
γ [Shirayev, 1996] and then we can study the

needed derivatives for a given error order. Namely,

µj σ2
j

O(σ2
γ) 0 −−

O(σ4
γ) 0, 2 1

O(σ6
γ) 0, 2, 4 1, 2, 3

172



Appendix B. High-order approximations

where the numbers are the order of the derivatives needed for the required error order (the 0-th
derivative is the functional itself).

To be more explicit, for the case where the uncertainties are random and normally dis-
tribuited, we have

E
[
A2

1

]
=
∑

i,k

GiGkCik

E
[
A2

2

]
−A

[
A2

]2
=

1

4

∑

i,k,l,m

HikHlm(CilCkm + CimCkl)
(B.7)

where Gi =
∂j

∂γ(i)

∣∣∣
µγ

are the elements of the gradient, Hik =
d2j

dγ(i)dγ(k)

∣∣∣
µγ

are the elements of

the Hessian matrix and Cik = E
[
δγ

(i)
u δγ

(k)
u

]
= cov(γ

(i)
u , γ

(k)
u ) are the elements of the covariance

matrix. Furthermore, if the (normal) uncertainties are independents, then the relation Cik =
σ2
i δij holds, where σ2

i = E
[
δγ(i)δγ(i)

]
and Equations (B.7) become

E
[
A2

1

]
=
∑

i

G2
i σ

2
i

E
[
A2

2

]
−A

[
A2

]2
=

1

2

∑

i,k

H2
ikσ

2
i σ

2
k

(B.8)

The last two equations are usually used in literature to define the First-Order and Second-Order
Moments Method, where the term containing the third-order derivative E

[
A1A3

]
is neglected,

namely

First-Order Moments Method 



µj = j(µγ)

σ2
j =

∑

i

G2
i σ

2
i

Second-Order Moments Method





µj = j(µγ) +
1

2

∑

i

Hiiσ
2
i

σ2
j =

∑

i

G2
i σ

2
i +

1

2

∑

i,k

H2
ikσ

2
i σ

2
k

173



174



Appendix C

Bash Scripts and Makefile to
perform differentiation using
TAPENADE

C.1 First-order differentiation

WORKDIR="/user/masmarti/home/Hessian_pgm_v2"

# TAPENADE command

TAPENADE="$1"

# name of the program

PROGRAM_NAME="$2"

# name of the directory containing the program to differentiate

PROGRAMDIR=$WORKDIR/"$3"

# name of the directory for the differentiated source code (first and second order)

WORKDIR_DIFF=$WORKDIR/"$4"

# name of the directory containing the link to the source code and headers files

SOURCE_DIR=$WORKDIR/"$5"

# name of the directory for the first order differentiated source code

FIRST_ORDER_DIR=$WORKDIR/"$6"

# name of the directory for the second order differentiated source code

# (not used in this script)

SECOND_ORDER_DIR=$WORKDIR/"$7"

# name of the file containing the implementation of

# the functional and the state residual

INPUT_FILE="$8"

175



C.1 First-order differentiation

# extension of the file $INPUT_FILE containing the implementation of

# the functional and the state residual

INPUT_FILE_EXTENSION="$9"

LOGFILE=$WORKDIR_DIFF"/first_order_derivatives.log"

# remove the existing directories for differentiated code

rm -r $WORKDIR_DIFF

mkdir $WORKDIR_DIFF

mkdir $SOURCE_DIR

mkdir $FIRST_ORDER_DIR

#INPUT_FILE="functional_and_state_residuals.f90"

ln -s $PROGRAMDIR"/"$INPUT_FILE $SOURCE_DIR"/"

# find the *.f files in the directoy $PROGRAMDIR and in its subdirectory

file_list_f=$(find $PROGRAMDIR"/" -name "*.f")

# find the *.h files in the directoy $PROGRAMDIR and in its subdirectory

file_list_h=$(find $PROGRAMDIR"/" -name "*.h")

# find the *.f90 files in the directoy $PROGRAMDIR and in its subdirectory

file_list_f90=$(find $PROGRAMDIR"/" -name "*.f90")

file_list=$file_list_f" "$file_list_h" "$file_list_f90

# make a soft link of the previous files (fortran sources and headers)

# in the directory $SOURCE_DIR

for file in $file_list

do

ln -s $file $SOURCE_DIR"/"

done

# make a list of the *.f files

file_list_f=$(find $SOURCE_DIR"/" -name "*.f")

# make a list of the *.f90 files

file_list_f90=$(find $SOURCE_DIR"/" -name "*.f90")

file_list=$file_list_f" "$file_list_f90

# output directory for first_order_derivatives

OUTPUT_DIR=$FIRST_ORDER_DIR

LIST_VARIABLE_IN="gamma w"

LIST_VARIABLE_OUT="j psi"

176



Appendix C. Bash Scripts and Makefile to perform differentiation using TAPENADE

LIST_SUBROUTINE="state_residuals func"

SUFFIX_TANGENT="_d"

SUFFIX_REVERSE="_b"

MSGLEVEL="20"

#FIXINTERFACE=""

FIXINTERFACE="-fixinterface"

# Copy the empty differentiated functions in the case of inactive input variables

# due to the fact that the ToT and/or ToR methods will refer to these functions.

# In other words, you MUST have these functions (empty or not) to properly link with

# the libraries

case $INPUT_FILE_EXTENSION in

"f" ) EMPTYFILES_DIR=$WORKDIR"/Empty_files/fortran77" ;;

"f90" ) EMPTYFILES_DIR=$WORKDIR"/Empty_files/fortran90" ;;

esac

cp $(find $EMPTYFILES_DIR"/first_order_derivatives/" -name \

"*."$INPUT_FILE_EXTENSION) $FIRST_ORDER_DIR"/"

#

# Call TAPENADE to differentiate the source code

#

# The routines differentiated in TANGENT mode respect all its input

# variables will have the suffix "_d" after the name and the suffix "d"

# for the dot variables

# Example: if we have the routine

# func(j,gamma,w)

# where J is an output variables and gamma and W are input variables,

# the tangent mode differentiated version will be

# func_d(j, jd, gamma, gammad, w, wd)

#

# The routines differentiated in REVERSE mode respect all its input

# variables will have the suffix "_b" after the name and the suffix "b"

# for the bar variables

# Example: if we have the routine

# func(j,gamma,w)

# where J is an output variables and gamma and W are input variables,

# the reverse mode differentiated version will be

# func_b(j, jb, gamma, gammab, w, wb)

#

# In the case of differentiation (in tangent or reverse mode) of only one

# input variable, the name of the differentiated function will have the

# suffix "_d$nameofvariables" and then the suffix "_d" for the tangent mode

# and the suffix "_b" for the reverse mode

# Example: the function func_dw_b(j, jb, gamma, w, wb, n_control, n_state) means

# that the function func(j, gamma, w, n_control, n_state) is

# differentiated with respect to the variable w (_dw) in reverse mode (_b)

177



C.1 First-order differentiation

#

#

for SUBROUTINE in $LIST_SUBROUTINE

do

# Separate differentiation respect to the variables "gamma" and "w"

if [ "$SUBROUTINE" = "state_residuals" ]

then

VARIABLE_OUT="psi"

elif [ "$SUBROUTINE" = "functional" ]

then

VARIABLE_OUT="j"

fi

for VARIABLE_IN in $LIST_VARIABLE_IN

do

NAME="_d"$VARIABLE_IN$SUFFIX_TANGENT

$TAPENADE -d \

-root $SUBROUTINE \

-outvars $VARIABLE_OUT \

-vars $VARIABLE_IN \

-difffuncname $NAME \

-O $OUTPUT_DIR \

$FIXINTERFACE \

-msglevel $MSGLEVEL \

$file_list >> $LOGFILE

done

for VARIABLE_IN in $LIST_VARIABLE_IN

do

NAME="_d"$VARIABLE_IN$SUFFIX_REVERSE

$TAPENADE -b \

-root $SUBROUTINE \

-outvars $VARIABLE_OUT \

-vars $VARIABLE_IN \

-difffuncname $NAME \

-O $OUTPUT_DIR \

$FIXINTERFACE \

-numberpushpops \

-msglevel $MSGLEVEL \

$file_list >> $LOGFILE

done

$TAPENADE -b \

-root $SUBROUTINE \

-outvars $VARIABLE_OUT \

-vars """ $LIST_VARIABLE_IN """ \

-difffuncname $SUFFIX_REVERSE \

-O $OUTPUT_DIR \

$FIXINTERFACE \

178



Appendix C. Bash Scripts and Makefile to perform differentiation using TAPENADE

-msglevel $MSGLEVEL \

-numberpushpops \

$file_list >> $LOGFILE

$TAPENADE -d \

-root $SUBROUTINE \

-outvars $VARIABLE_OUT \

-vars """ $LIST_VARIABLE_IN """ \

-difffuncname $SUFFIX_TANGENT \

-O $OUTPUT_DIR \

$FIXINTERFACE \

-msglevel $MSGLEVEL \

$file_list >> $LOGFILE

done

C.2 Second-order differentiation

WORKDIR=‘pwd‘

# TAPENADE command

TAPENADE="$1"

# name of the program

PROGRAM_NAME="$2"

# name of the directory containing the program to differentiate

PROGRAMDIR=$WORKDIR/"$3"

# name of the directory for the differentiated source code (first and second order)

WORKDIR_DIFF=$WORKDIR/"$4"

# name of the directory containing the link to the source code and headers files

SOURCE_DIR=$WORKDIR/"$5"

# name of the directory for the first order differentiated source code

FIRST_ORDER_DIR=$WORKDIR/"$6"

# name of the directory for the second order differentiated source code

# (not used in this script)

SECOND_ORDER_DIR=$WORKDIR/"$7"

# name of the file containing the implementation of the functional

# and the state residual

INPUT_FILE="$8"

# extension of the file $INPUT_FILE containing the implementation of the functional

# and the state residual

INPUT_FILE_EXTENSION="$9"

179



C.2 Second-order differentiation

LOGFILE=$WORKDIR_DIFF"/second_order_derivatives.log"

EMPTYFILES_DIR=$WORKDIR"/Empty_files/second_order_derivatives"

TAPENADEMISC_DIR=$WORKDIR"/TapenadeMisc"

rm -r $SECOND_ORDER_DIR

mkdir $SECOND_ORDER_DIR

# find the *.f files in the directoy $FIRST_ORDER_DIR and in its subdirectory

file_list_f=$(find $FIRST_ORDER_DIR"/" -name "*.f")

# find the *.h files in the directoy $FIRST_ORDER_DIR and in its subdirectory

file_list_h=$(find $FIRST_ORDER_DIR"/" -name "*.h")

# find the *.f90 files in the directoy $FIRST_ORDER_DIR and in its subdirectory

file_list_f90=$(find $FIRST_ORDER_DIR"/" -name "*.f90")

file_list=$file_list_f" "$file_list_h" "$file_list_f90

# make a soft link of the previous files (fortran sources and headers)

# in the directory $SOURCE_DIR

for file in $file_list

do

ln -s $file $SOURCE_DIR"/"

done

# find the *.f files

file_list_f=$(find $SOURCE_DIR"/" -name "*.f")

# find the *.f90 files

file_list_f90=$(find $SOURCE_DIR"/" -name "*.f90")

file_list=$file_list_f" "$file_list_f90

OUTPUT_DIR=$SECOND_ORDER_DIR

LIST_VARIABLE_IN="gamma w"

LIST_SUBROUTINE="state_residuals func"

LIST_VARIABLE_OUT="gammab wb"

SUFFIX_TANGENT="_d"

SUFFIX_REVERSE="_b"

SUFFIX_TANGENT_W="_dw_d"

MSGLEVEL="20"

#FIXINTERFACE=""

FIXINTERFACE="-fixinterface"

180



Appendix C. Bash Scripts and Makefile to perform differentiation using TAPENADE

# Copy the empty differentiated functions in the case of inactive input variables

# due to the fact that the ToT and/or ToR methods will refer to these functions.

# In other words, you MUST have these functions (empty or not) to properly link with

# the libraries

case $INPUT_FILE_EXTENSION in

"f" ) EMPTYFILES_DIR=$WORKDIR"/Empty_files/fortran77" ;;

"f90" ) EMPTYFILES_DIR=$WORKDIR"/Empty_files/fortran90" ;;

esac

cp $(find $EMPTYFILES_DIR"/second_order_derivatives/" -name "*."$INPUT_FILE_EXTENSION) \

$SECOND_ORDER_DIR"/"

# Tangent on Reverse differentiation

for SUBROUTINE in $LIST_SUBROUTINE

do

THIS_SUBROUTINE=$SUBROUTINE$SUFFIX_REVERSE

$TAPENADE -d \

-root $THIS_SUBROUTINE \

-outvars """ $LIST_VARIABLE_OUT """ \

-vars """ $LIST_VARIABLE_IN """ \

-difffuncname $SUFFIX_TANGENT

-ext $TAPENADEMISC_DIR"/PUSHPOPGeneralLib" \

-extAD $TAPENADEMISC_DIR"/PUSHPOPADLib" \

-O $OUTPUT_DIR \

$FIXINTERFACE \

-msglevel $MSGLEVEL \

$file_list >> $LOGFILE

done

# Tangent on Tangent differentiation

for SUBROUTINE in $LIST_SUBROUTINE

do

if [ "$SUBROUTINE" = "state_residuals" ]

then

VARIABLE_OUT="psid"

elif [ "$SUBROUTINE" = "functional" ]

then

VARIABLE_OUT="jd"

fi

THIS_SUBROUTINE=$SUBROUTINE$SUFFIX_TANGENT

$TAPENADE -d \

-root $THIS_SUBROUTINE \

-outvars """ $VARIABLE_OUT """ \

-vars """ $LIST_VARIABLE_IN """ \

-difffuncname $SUFFIX_TANGENT \

-ext $TAPENADEMISC_DIR"/PUSHPOPGeneralLib" \

-extAD $TAPENADEMISC_DIR"/PUSHPOPADLib" \

-O $OUTPUT_DIR \

181



C.3 Makefile

$FIXINTERFACE \

-msglevel $MSGLEVEL \

$file_list >> $LOGFILE

done

# Reverse on Tangent differentiation

for SUBROUTINE in $LIST_SUBROUTINE

do

if [ "$SUBROUTINE" = "state_residuals" ]

then

VARIABLE_OUT="psid"

elif [ "$SUBROUTINE" = "functional" ]

then

VARIABLE_OUT="jd"

fi

THIS_SUBROUTINE=$SUBROUTINE$SUFFIX_TANGENT_W

$TAPENADE -b \

-root $THIS_SUBROUTINE \

-outvars """ $VARIABLE_OUT """ \

-vars """ $LIST_VARIABLE_IN """ \

-difffuncname $SUFFIX_REVERSE \

-ext $TAPENADEMISC_DIR"/PUSHPOPGeneralLib" \

-extAD $TAPENADEMISC_DIR"/PUSHPOPADLib" \

-O $OUTPUT_DIR \

$FIXINTERFACE \

-msglevel $MSGLEVEL \

$file_list >> $LOGFILE

done

C.3 Makefile

WORKDIR :=

PROGRAM_NAME := famosa

INPUT_FILE_NAME := functional_and_state_residuals

INPUT_FILE_EXTENSION := f

INPUT_FILE := $(INPUT_FILE_NAME).$(INPUT_FILE_EXTENSION)

PROGRAMDIR := $(PROGRAM_NAME)

RELEASE := Yes

TAPENADE_PATH := /user/masmarti/home/Tapenade/sources/topLevel

TAPENADE := $(TAPENADE_PATH)/mytapenade

SHELL := /bin/sh

182



Appendix C. Bash Scripts and Makefile to perform differentiation using TAPENADE

AR := ar

CC := icc

CFLAGS = -shared-intel -mcmodel=large -parallel

FC := ifort

FFLAGS = -shared-intel -mcmodel=large -autodouble -132 -Warn -parallel

IPOFLAGS = -c

ifeq ($(RELEASE),Yes)

CFLAGS += -O3 -xT -align

FFLAGS += -O3 -xT -align all

IPOFLAGS +=

else

CFLAGS += -O0

FFLAGS += -fp-model strict -O0 -check

endif

F90 := $(FC)

F90FLAGS := $(FFLAGS)

%.o : %.f

$(FC) $(FFLAGS) $(IPOFLAGS) -o $@ $<

%.o : %.f90

$(F90) $(F90FLAGS) $(IPOFLAGS) -o $@ $<

%.o : %.c

$(CC) $(CFLAGS) $(IPOFLAGS) -o $@ $<

(%.o) : %.f

$(FC) $(FFLAGS) $(IPOFLAGS) $< -o $*.o

$(AR) r $@ $*.o

(%.o) : %.f90

$(F90) $(F90FLAGS) $(IPOFLAGS) $< -o $*.o

$(AR) r $@ $*.o

(%.o) : %.c

$(CC) $(CFLAGS) $(IPOFLAGS) $< -o $*.o

$(AR) r $@ $*.o

#-----------------------------------------------------------------------------

WORKDIR_DIFF := $(PROGRAMDIR)_diff

SOURCE_DIR := $(WORKDIR_DIFF)/src

FIRST_ORDER_DIR := $(WORKDIR_DIFF)/first_order_derivatives

SECOND_ORDER_DIR := $(WORKDIR_DIFF)/second_order_derivatives

LIB_DERIVATIVES_DIR := $(WORKDIR_DIFF)

183



C.3 Makefile

LIB_FIRSTDERIVATIVES := $(LIB_DERIVATIVES_DIR)/libfirstderivatives.a

LIB_SECONDDERIVATIVES := $(LIB_DERIVATIVES_DIR)/libsecondderivatives.a

.PHONY: all

all:

make derivatives

make all_libraries

.PHONY: all_libraries

all_libraries:

make library_derivatives

make library_algorithms

make library_tapenademisc

.PHONY: derivatives

derivatives: $(PROGRAMDIR)/$(INPUT_FILE)

make firstderivatives

make secondderivatives

.PHONY: firstderivatives

firstderivatives: firstorder_derivatives.sh

. firstorder_derivatives.sh $(TAPENADE) \

$(PROGRAM_NAME) \

$(PROGRAMDIR) \

$(WORKDIR_DIFF) \

$(SOURCE_DIR) \

$(FIRST_ORDER_DIR) \

$(SECOND_ORDER_DIR) \

$(INPUT_FILE) \

$(INPUT_FILE_EXTENSION)

.PHONY: secondderivatives

secondderivatives: secondorder_derivatives.sh

. secondorder_derivatives.sh $(TAPENADE) \

$(PROGRAM_NAME) \

$(PROGRAMDIR) \

$(WORKDIR_DIFF) \

$(SOURCE_DIR) \

$(FIRST_ORDER_DIR) \

$(SECOND_ORDER_DIR) \

$(INPUT_FILE) \

$(INPUT_FILE_EXTENSION)

$(LIB_FIRSTDERIVATIVES): first_order_derivatives_sources_f := \

$(wildcard $(FIRST_ORDER_DIR)/*.f)

$(LIB_FIRSTDERIVATIVES): first_order_derivatives_objects_f := \

$(patsubst %.f, %.o, $(first_order_derivatives_sources_f))

$(LIB_FIRSTDERIVATIVES): first_order_derivatives_sources_f90 := \

184



Appendix C. Bash Scripts and Makefile to perform differentiation using TAPENADE

$(wildcard $(FIRST_ORDER_DIR)/*.f90)

$(LIB_FIRSTDERIVATIVES): first_order_derivatives_objects_f90 := \

$(patsubst %.f90, %.o, $(first_order_derivatives_sources_f90))

$(LIB_FIRSTDERIVATIVES): first_order_derivatives_objects := \

$(first_order_derivatives_objects_f) $(first_order_derivatives_objects_f90)

$(LIB_SECONDDERIVATIVES): second_order_derivatives_sources_f := \

$(wildcard $(SECOND_ORDER_DIR)/*.f)

$(LIB_SECONDDERIVATIVES): second_order_derivatives_objects_f := \

$(patsubst %.f, %.o, $(second_order_derivatives_sources_f))

$(LIB_SECONDDERIVATIVES): second_order_derivatives_sources_f90 := \

$(wildcard $(SECOND_ORDER_DIR)/*.f90)

$(LIB_SECONDDERIVATIVES): second_order_derivatives_objects_f90 := \

$(patsubst %.f90, %.o, $(second_order_derivatives_sources_f90))

$(LIB_SECONDDERIVATIVES): second_order_derivatives_objects := \

$(second_order_derivatives_objects_f) $(second_order_derivatives_objects_f90)

$(LIB_FIRSTDERIVATIVES):

for object in $(first_order_derivatives_objects) ; do \

make "$(LIB_FIRSTDERIVATIVES)($$object)" ; \

done

rm $(first_order_derivatives_objects)

$(LIB_SECONDDERIVATIVES):

for object in $(second_order_derivatives_objects) ; do \

make "$(LIB_SECONDDERIVATIVES)($$object)" ; \

done

rm $(second_order_derivatives_objects)

.PHONY: library_derivatives

library_derivatives: $(LIB_FIRSTDERIVATIVES) $(LIB_SECONDDERIVATIVES)

#-----------------------------------------------------

#-----------------------------------------------------

MATRIXFREE_DIR := Matrixfree_solvers

LIB_MATRIXFREE_DIR := $(MATRIXFREE_DIR)/Lib

LIB_MATRIXFREE := $(LIB_MATRIXFREE_DIR)/libmatrixfreesolvers.a

matrixfree_sources_f := $(wildcard $(MATRIXFREE_DIR)/*.f)

matrixfree_objects_f := $(patsubst %.f, %.o, $(matrixfree_sources_f))

matrixfree_sources_f90 := $(wildcard $(MATRIXFREE_DIR)/*.f90)

matrixfree_objects_f90 := $(patsubst %.f90, %.o, $(matrixfree_sources_f90))

matrixfree_objects := $(matrixfree_objects_f) $(matrixfree_objects_f90)

$(LIB_MATRIXFREE): $(LIB_MATRIXFREE)($(matrixfree_objects))

.PHONY: library_matrixfreesolvers

library_matrixfreesolvers: $(LIB_MATRIXFREE)

185



C.3 Makefile

#-----------------------------------------------------

#-----------------------------------------------------

GRADIENTHESSIAN_DIR := Gradient_Hessian

LIB_GRADIENTHESSIAN_DIR := $(GRADIENTHESSIAN_DIR)/Lib

LIB_GRADIENTHESSIAN := $(LIB_GRADIENTHESSIAN_DIR)/libgradienthessian.a

gradienthessian_sources_f := $(wildcard $(GRADIENTHESSIAN_DIR)/*.f)

gradienthessian_objects_f := $(patsubst %.f, %.o, $(gradienthessian_sources_f))

gradienthessian_sources_f90 := $(wildcard $(GRADIENTHESSIAN_DIR)/*.f90)

gradienthessian_objects_f90 := $(patsubst %.f90, %.o, $(gradienthessian_sources_f90))

gradienthessian_objects := $(gradienthessian_objects_f) $(gradienthessian_objects_f90)

$(LIB_GRADIENTHESSIAN): $(LIB_GRADIENTHESSIAN)($(gradienthessian_objects))

.PHONY: library_gradienthessian

library_gradienthessian: $(LIB_GRADIENTHESSIAN)

#-----------------------------------------------------

#-----------------------------------------------------

ADJOINTCORRECTION_DIR := AdjointCorrection

LIB_ADJOINTCORRECTION_DIR := $(ADJOINTCORRECTION_DIR)/Lib

LIB_ADJOINTCORRECTION := $(LIB_ADJOINTCORRECTION_DIR)/libadjointcorrection.a

adjointcorrection_sources_f := $(wildcard $(ADJOINTCORRECTION_DIR)/*.f)

adjointcorrection_objects_f := $(patsubst %.f, %.o, $(adjointcorrection_sources_f))

adjointcorrection_sources_f90 := $(wildcard $(ADJOINTCORRECTION_DIR)/*.f90)

adjointcorrection_objects_f90 := $(patsubst %.f90, %.o, $(adjointcorrection_sources_f90))

adjointcorrection_objects := $(adjointcorrection_objects_f) $(adjointcorrection_objects_f90)

$(LIB_ADJOINTCORRECTION): $(LIB_ADJOINTCORRECTION)($(adjointcorrection_objects))

.PHONY: library_adjointcorrection

library_adjointcorrection: $(LIB_ADJOINTCORRECTION)

#-----------------------------------------------------

#-----------------------------------------------------

VALIDATION_DIR := Validation

LIB_VALIDATION_DIR := $(VALIDATION_DIR)/Lib

LIB_VALIDATION := $(LIB_VALIDATION_DIR)/libvalidation.a

validation_sources_f := $(wildcard $(VALIDATION_DIR)/*.f)

validation_objects_f := $(patsubst %.f, %.o, $(validation_sources_f))

validation_sources_f90 := $(wildcard $(VALIDATION_DIR)/*.f90)

validation_objects_f90 := $(patsubst %.f90, %.o, $(validation_sources_f90))

validation_objects := $(validation_objects_f) $(validation_objects_f90)

$(LIB_VALIDATION): $(LIB_VALIDATION)($(validation_objects))

186



Appendix C. Bash Scripts and Makefile to perform differentiation using TAPENADE

.PHONY: library_validation

library_validation: $(LIB_VALIDATION)

#-----------------------------------------------------

#---------------------------------------------------

library_algorithms:

make library_matrixfreesolvers

make library_gradienthessian

make library_adjointcorrection

make library_validation

#---------------------------------------------------

#-----------------------------------------------------------------------------

TAPENADEMISC_DIR := TapenadeMisc

LIB_TAPENADEMISC_DIR := $(TAPENADEMISC_DIR)/Lib

LIB_TAPENADEMISC := $(LIB_TAPENADEMISC_DIR)/libtapenademisc.a

tapenademisc_objects := $(TAPENADEMISC_DIR)/adBuffer.o \

$(TAPENADEMISC_DIR)/adStack.o \

$(TAPENADEMISC_DIR)/PUSHPOPDiff.o

$(LIB_TAPENADEMISC): $(LIB_TAPENADEMISC)($(tapenademisc_objects))

.PHONY: library_tapenademisc

library_tapenademisc: $(LIB_TAPENADEMISC)

#-----------------------------------------------------------------------------

#-----------------------------------------------------------------------------

FUNCTIONAL_AND_STATE_RESIDUALS_DIR := .

LIB_FUNCTIONAL_AND_STATE_RESIDUALS_DIR := $(FUNCTIONAL_AND_STATE_RESIDUALS_DIR)

LIB_FUNCTIONAL_AND_STATE_RESIDUALS := \

$(LIB_FUNCTIONAL_AND_STATE_RESIDUALS_DIR)/libfuncttional_and_state_residuals.a

.PHONY: library_functional_and_state_residuals

library_functional_and_state_residuals: \

$(LIB_FUNCTIONAL_AND_STATE_RESIDUALS)(functional_and_state_residuals.o)

#-----------------------------------------------------------------------------

#-----------------------------------------------------------------------------

LIB_SPARSKIT_DIR := /home/masmarti/MatrixLibs/SPARSKIT2

#-----------------------------------------------------------------------------

#-----------------------------------------------------------------------------

LIB_MKL_DIR= /user/masmarti/home/intel/mkl/9.1/lib/32

MKL_LIB= $(LIB_MKL_DIR)/libmkl_lapack.a \

$(LIB_MKL_DIR)/libmkl_ia32.a \

$(LIB_MKL_DIR)/libguide.so \

/lib/libpthread.so.0 -lm

#-----------------------------------------------------------------------------

187



C.3 Makefile

#-----------------------------------------------------------------------------

.Phony: Test

LIBRARY_DIRS := -L$(LIB_VALIDATION_DIR)/ \

-L$(LIB_GRADIENTHESSIAN_DIR)/ \

-L$(LIB_MATRIXFREE_DIR)/ \

-L$(LIB_DERIVATIVES_DIR)/ \

-L$(LIB_TAPENADEMISC_DIR) \

-L$(LIB_SPARSKIT_DIR)

LIBRARY_FILES := $(LIB_VALIDATION)/ \

$(LIB_GRADIENTHESSIAN) \

$(LIB_MATRIXFREE) \

$(LIB_SECONDDERIVATIVES) \

$(LIB_FIRSTDERIVATIVES) \

$(LIB_TAPENADEMISC)

LIBRARY_DEPS := $(LIBRARY_FILES)

LIBRARIES:= -lvalidation \

-lgradienthessian \

-lmatrixfreesolvers \

-lsecondderivatives \

-lfirstderivatives \

-ltapenademisc \

-lskit \

$(MKL_LIB)

Test: Test/flux_solver.o \

Test/program_with_gradient.o \

$(PROGRAMDIR)/$(INPUT_FILE_NAME).o \

$(LIBRARY_DEPS)

$(F90) $(F90FLAGS) -o Test/Test_hessian Test/program_with_gradient.o \

Test/flux_solver.o \

$(PROGRAMDIR)/$(INPUT_FILE_NAME).o \

$(LIBRARY_DIRS) $(LIBRARIES)

#----------------------------------------------------

.PHONY: cleanall

cleanall:

-rm -r $(WORKDIR_DIFF)

make clean

make removelibs

.PHONY: clean

clean:

-rm $(PROGRAMDIR)/*.o

-rm $(PROGRAMDIR)/*.*~

188



Appendix C. Bash Scripts and Makefile to perform differentiation using TAPENADE

.PHONY: removelibs

removelibs:

-rm $(WORKDIR_DIFF)/*.a

-rm $(LIB_VALIDATION_DIR)/*.a

-rm $(LIB_GRADIENTHESSIAN_DIR)/*.a

-rm $(LIB_MATRIXFREE_DIR)/*.a

-rm $(LIB_TAPENADEMISC_DIR)/*.a

-rm $(LIB_ADJOINTCORRECTION_DIR)/*.a

make removeobjects

.PHONY: removeobjects

removeobjects:

-rm $(VALIDATION_DIR)/*.o

-rm $(GRADIENTHESSIAN_DIR)/*.o

-rm $(MATRIXFREE_DIR)/*.o

-rm $(TAPENADEMISC_DIR)/*.o

-rm $(ADJOINTCORRECTION_DIR)/*.o

189



C.3 Makefile

190



Bibliography

B. Abou El Majd, J.-A. Désidéri, and A. Janka. Nested and self-adaptive Bézier parametrization
for shape optimization. In International Conference on Control, Partial Differential Equations
and Scientific Computing, Bejiing, China. 13-16 September 2004.

B. Abou El Majd, J.-A. Désidéri, and R. Duvigneau. Multilevel strategies for parametric shape
optimizations in Aerodynamics. Revue Européenne de Mécanique Numérique - European
Journal of Computational Mechanics, 17(1-2):153–172, 2008.

N. Alexandrov, R. Lewis, C. Gumbert, L. Green, and P. Newman. Approximations and model
management in aerodynamic optimisation with variable-fidelity models. Journal of Aircraft,
38(6):1093–1110, 2001.

M. Andreoli, A. Janka, and J.-A. Désidéri. Free-form deformation parametrization for multilevel
3D shape optimization in aerodynamics. Technical Report 5019, INRIA, November 2003.

H. Bandemer. Mathematics of Uncertainty. Springer, 2006.

J. W. Barrett, G. Moore, and K. W. Morton. Optimal recovery in the finite element method, part
2: Defect correction for ordinary differential equations. IMA Journal of Numerical Analysis,
8:527–540, 1988.

R. Becker and R. Rannacher. An optimal control approach to error control and mesh adaptation.
Cambridge University Press, 2001.

R. Becker, H. Kapp, and R. Rannacher. Adaptive finite element methods for optimal control
of partial differential equations: basic concepts. SIAM Journal of Control and Optimization,
(39):113–132, 2000.

F. Beux. Shape optimization of an Euler flow in a nozzle. Notes on Numerical Fluid Mechanics,
55:115–131, 1994.

F. Beux and A. Dervieux. Exact-gradient shape optimization for a 2-D Euler flow. Finite
Elements in Analysis and Design, 12(3-4):281–302, 1992.

F. Beux and A. Dervieux. A hierarchical approach for shape optimization. Engineering Com-
putations, 11(6):25–38, 1994.

191



BIBLIOGRAPHY

H.-G. Beyer and B. Sendhoff. Robust optimization – A comprehensive survey. Comput. Methods
Appl. Mech. Engrg., 196:3190–3218, 2007.

A. Borzi. Multigrid methods for optimality systems. Habilitation thesis. Univ. Graz, 2003.

G. Carpentieri, M. van Tooren, and B. Koren. Adjoint-based aerodynamic shape optimization
on unstructured meshes. Journal of Computational Physics, 22(1):267–287, May 2007. ISSN
0021-9991.

L. Catalano, A. Dadone, and V. Dalosio. Progressive optimization on unstructured grid using
multigrid-aided finite-difference sensitivities. International Journal for Numerical Methods in
Fluids, 47(10-11):1383–1391, 2005.

L. Catalano, A. Dadone, and V. Dalosio. Turbine cascade design via multigrid-aided finite-
difference progressive sensitivities. Revue Européenne de Mécanique Numérique - European
Journal of Computational Mechanics, 17(1-2):203–220, 2008.

I. Chang, F. Torres, and C. Tung. Geometric analysis of wing sections. Technical Report 110346,
NASA, April 1995.

P. H. Cournède, B. Koobus, and A. Dervieux. Positivity statements for a mixed-element-volume
scheme on fixed and moving grids. Revue Européenne de Mécanique Numérique - European
Journal of Computational Mechanics, 15(7-8):767–798, 2006.

F. Courty and A. Dervieux. Multilevel functional preconditioning for shape optimization. In-
ternational Journal of Computational Fluid Dynamics, 20(7):481–490, 2006.

A. Dadone and B. Grossman. Progressive optimization of inverse fluid dynamic design problems.
Computaters and Fluids, 29(1):1–32, 2000.

M. de’ Michieli Vitturi and F. Beux. A discrete gradient-based approach for aerodynamic shape
optimisation in turbulent viscous flows. Finite Elements in Analysis and Design, 43(1):68–80,
2006.

J.-A. Désidéri. Hierarchical optimum-shape alghorithms using embedded Bézier parametrizations.
CIMNE, Barcelona, 2003.

J.-A. Désidéri. Two-level ideal alghorithm for parametric shape optimizations. to appear in
Journal of Numerical Mathematics, 2007.

J.-A. Désidéri and P. W. Hemker. Analysis of the convergence of iterative implicit and defect-
correction algorithms for hyperbolic problems. SIAM Journal of Scientific Computation, 16
(1):88–118, 1995.

J. Dongarra, V. Eijkhout, and A. Kalhan. Reverse Communication Interface for Linear Algebra
Templates for Iterative Methods. Technical Report UT-CS-95-291, May 1995.

T. Dreyer, B. Maar, and V. Schulz. Multigrid optimization in applications. J. Comp. Appl.,
120:67–84, 2000.

192



BIBLIOGRAPHY

R. Duvigneau. Aerodynamic Shape Optimization with Uncertain Operating Conditions Using
Metamodels. Technical Report 6143, INRIA, March 2007.

R Dwight and J. Brézillon. Effect of various approximations of the discrete adjoint on gradient-
based optimization. AIAA Journal, 44(12):3022–3071, December 2006.

G. Farin. Curves and surfaces for computer-aided geometric design – A practical guide. Academic
Press, 1990.

D. Feng and T. Pulliam. Aerodynamic design optimization via reduced Hessian SQP with
solution refining. Technical Report 95-24, Research Institute for Advanced Computer Science
(RIACS), NASA Ames Research Center, 1995.

L. Fézoui and A. Dervieux. Finite-element non oscillatory schemes for compressible flows. In
Computational Mathematics and Applications. Proceedings of 8th France-U.S.S.R.-Italy Joint
Symposium., number 730, Pavia, 1989. C.N.R.-Istituto di Analisi Numerica.

L. Fézoui and B. Stoufflet. A class of implicit upwind schemes for Euler simulations with
unstructured meshes. Journal of Computational Physics, 84:174–206, 1989.

V. Frayssé, L. Giraud, S. Gratton, and J. Langou. A Set of GMRES Routines for Real and
Complex Arithmetics on High Performance Computers. Technical Report TR/PA/03/3, CER-
FACS, 2003.

G-077-1998. AIAA Guide for the Verification and Validation of Computational Fluid Dynamics
Simulations. American Institute of Aeronautics & Astronautics, 1998. ISBN 1563472856.

V. E. Garzon. Probabilistic Aerothermal Design of Compressor Airfoils. PhD thesis, MIT, 2003.

E. Gelman and J. Mandel. On multilevel iterative methods for optimization problems. Mathe-
matical Programming, 48(1):1–17, 1990.

D. Ghate and M. B. Giles. Inexpensive Monte Carlo uncertainty analysis, pages 203–210. Recent
Trends in Aerospace Design and Optimization. Tata McGraw-Hill, New Delhi, 2006.

D. Ghate and M. B. Giles. Efficient Hessian Calculation Using Automatic Differentiation. Num-
ber 2007-4059. AIAA, June 2007. 25th Applied Aerodynamics Conference, Miami (Florida).

R. Giering, T. Kaminski, and T. Slawig. Generating efficient derivative code wit TAF: adjoint
and tangent linear Euler flow around an airfoil. Future generation computer systems, 21(8):
1345–1355, 2005.

M. B. Giles and N. A. Pierce. Adjoint error correction for integral outputs. In T. Barth and
H. Deconinck, editors, Error Estimation and Adaptive Discretization Methods in Computa-
tional Fluid Dynamics, volume 25 of Lecture Notes in Computational Science and Engineering,
pages 47–96. Springer-Verlag, 2002.

M. B. Giles and N. A. Pierce. An introduction to the adjoint approach to design. Flow,
Turbulence and Combustion, 65:393–415, 2000.

193



BIBLIOGRAPHY

E. Godlewski and P. A. Raviart. Numerical Approximation of Hyperbolic Systems of Conserva-
tion Laws. Springer, 1996. ISBN 0-387-94529-6.

S. Gratton, A. Sartenaer, and P. Toint. Recursive trust-region methods for multilevel nonlinear
optimization (part I): global convergence and complexity. Technical Report 04/06, Dep. Math.
Univ. Namur, 2004.

A. Griewank. Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation,
volume 19 of Frontiers in Applied Mathematics. SIAM Philadelphia, 2000.

A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse au-
tomatic differentiation. Optimization Methods and Software, 1:35–54, 1992.

A. Griewank, D. Juedes, H. Mitev, J. Utke, O. Vogel, and Walther A. ADOL-C: A Package for
the Automatic Differentiation of Algorithms Written in C/C++. ACM TOMS, 22(2):131–
167, 1996. The updated article is available online at http://www.math.tu-dresden.de/∼adol-
c/adolc110.ps.

A. Griewank, N. R. Gauger, and Riehme J. Extension of fixed point PDE solvers for optimal de-
sign by single-step one-shot method. Revue Européenne de Mécanique Numérique - European
Journal of Computational Mechanics, 17(1-2):87–103, 2008.

H. Guillard. Convergence analysis of a multi-level relaxation method. Technical Report 1884,
INRIA, 1993.

H. Guillard and N. Marco. Some aspects of multigrid methods on non-structured meshes. In
Proceedings of the Conference of Copper Mountains on Multigrid Methods. NASA, April 1995.

A. Hall. On an experimental determination of π. Messeng. Math., (2):113–114, 1873.

L. Hascoët and V. Pascual. TAPENADE 2.1 user’s guide. Technical Report 0300, INRIA, Sep
2004.

L. Hascoët, R.-M. Greborio, and V. Pascual. Computing Adjoints by Automatic Differentiation
with TAPENADE. Springer, 2005.

C. Held, , and A. Dervieux. One-Shot airfoil optimization without adjoint. Computaters and
Fluids, 31(8):1015–1049, 2002.

R. Hicks and P. Henne. Wing design by numerical optimisation. Journal of Aircraft, 15(7):
407–413, 1978.

L. Huyse. Free-form airfoil shape optimization under uncertainty using maximum expected value
and second-order second-moment strategies. Technical Report 2001-211020, NASA, Jun 2001.
ICASE Report No. 2001-18.

L. Huyse, S. L. Padula, R. Michael Lewis, and W. Li. Probabilistic approach to free-form airfoil
shape optimization under uncertainty. AIAA Journal, 40(9):1764–1772, 2002.

194



BIBLIOGRAPHY

R. B. Kearfoot. Interval copmputations: Introduction, uses and resources. Euromath Bullettin,
2(1):95–112, 1996.

D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylov methods: a survey of approaches
and applications. Journal of Computational Physics, 193(2):357–397, 2004.

B. Koobus, N. Marco, and A. Dervieux. An additive multilevel preconditioning method. Journal
of Scientific Computing, 12(3):233–251, 1997.

B. Koren. Defect correction and multigrid for an efficient and accurate computation of airfoil
flows. Journal of Computational Physics, 76, 1988.

G. Kuruvila, S. Ta’asan, and M. Salas. Airfoil optimization by the one-shot method. Von
Karman Institute Lecture, 1994.

J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer-Verlag, 2001. ISBN 0-387-
95230-6.

N. Marco and A. Dervieux. Multilevel parametrization for aerodynamical optimization of 3D
shapes. Finite Elements in Analysis and Design, 26:259–277, 1999.

R. Martin and H. Guillard. Second-order defect-correction scheme for unsteady problems. Com-
puter & Fluids, 25(1):9–27, 1996.

M. Martinelli and F. Beux. Multilevel gradient-based methods in aerodynamic shape design.
ESAIM (European Series in Applied and Industrial Mathematics): proceedings, 22:175–180,
2007.

N. Metropolis. The beginning of the Monte Carlo method. Los Alamos Science, (15):125–130,
1987.

A. Migdalas, P. pardalos, and P. Värbrand. Multilevel optimization: algorithms and applications.
Luwer Academic, 1997.

B. Mohammadi. A new optimal shape design procedure for inviscid and viscous turbulent flows.
International Journal for Numerical Methods in Fluids, 25:183–203, 1997.

B. Mohammadi and O. Pironneau. Applied Shape Optimization for Fluids. Oxford University
press, 2001.

R. E. Moore. Interval Arithmetic and Automatic Error Analysis in Digital Computing. PhD
thesis, Stanford University, 1962.

J. Moran. An Introduction to Theoretical and Computational Aerodynamics. John Wiley, 1984.

S. Nash. A multigrid approach to discretized optimization problems. Journal of Optimization
Methods and Software, 14:99–116, 2000.

N. Nemec and D. Zingg. Newton-Krylov algorithm for aerodynamic design under the Navier-
Stokes equations. AIAA Journal, 37:1146–1154, 2002.

195



BIBLIOGRAPHY

J. Newman III, A. C. Taylor III, R. Barnwell, P. A. Newman, and G.-W. Hou. Overview of
sensitivity analysis and shape optimization for complex aerodynamic configurations. Journal
of Aircraft, 36(1):87–96, 1999.

J. C. Newman III, W. K. Anderson, and D. L. Whitfield. Multidisciplinary sensitivity deriva-
tives using complex variables. Technical Report MSSU-COE-ERC-98-08, Mississippi State
University, July 1998.

W. L. Oberkampf and F. G. Blottner. Issues in computational fluid dynamics code verification
and validation. AIAA Journal, 36(5):687–695, 1998.

N. A. Pierce and M. B. Giles. Adjoint recovery of superconvergent functionals from PDE
approximations. SIAM Review, 42(2):247–264, 2000.

N. A. Pierce and M. B. Giles. Adjoint and defect error bounding and correction for functional
estimates. Journal of Computational Physics, 200:769–794, 2004.

O. Pironneau and E. Polak. Consistent approximations and approximate functions and gradients
in optimal control. SIAM Journal on Control and Optimization, 41(2):487–510, 2002.

E. Polak. Optimization: algorithms and consistent approximations, volume 24 of Applied Math-
ematical Sciences. Springer-Verlag, New York, 1997.

M. M. Putko, P. A. Newman, A. C. Taylor III, and L. L. Green. Approach for uncertainty
propagation and robust design in CFD using sensitivity derivatives. Technical Report 2528,
AIAA, 2001.

J. Reuther and A. Jameson. Aerodynamic shape optimization of wing and wing-body configu-
rations using control theory. AIAA Paper, (95-0123), 1995.

P. L. Roe. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of
Computational Physics, 43:357–372, 1981.

P.L. Roe and J. Pike. Efficient construction and utilisation of approximate riemann solutions. In
Proceedings of 6th international symposium on computing methods in applied sciences and en-
gineering, Computing Methods in Applied Science and Engineering, pages 499–518, Versailles,
France, 1985. Springer.

Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, 1996. ISBN
0-534-94776-X.

Y. Saad. SPARSKIT: a basic tool kit for sparse matrix computations. Technical report, 1994.
Avalaible online at http://www-users.cs.umn.edu/∼saad/software/SPARSKIT/paper.ps.

J. Samareh. Survey of shape parametrization techniques for high-fidelity multidisciplinary shape
optimization. AIAA Journal, 39(5):387–397, 2001.

M. Schwabacher and A. Gelsey. Multilevel simulation and numerical optimization of complex
engineering designs. Journal of Aircraft, 35(3):387–397, 1998.

196



BIBLIOGRAPHY

F. C. Schweppe. Uncertain Dynamical Systems. Prentice Hall, Engelwood Cliffs, 1973.

V. Selmin. Geometry modelling and industrial parametrisation issues. Revue Européenne
de Mécanique Numérique - European Journal of Computational Mechanics, 17(1-2):131–152,
2008.

L. L. Sherman, A. C. Taylor III, L. L. Green, and P. A. Newman. First and second-order
aerodynamic sensitivity derivatives via automatic differentiation with incremental iterative
methods. Journal of Computational Physics, 129:307–331, 1996.

A. N. Shirayev. Probability. Springer-Verlag, second edition, 1996. ISBN 0-387-94549-0.

R. D. Skeel. A theoretical framework for proving accuracy results for deferred corrections. SIAM
Journal of Numerical Analysis, 19:171–196, 1981.

W. Squire and G. Trapp. Using complex variables to estimate derivatives of real functions.
SIAM Rev., 10(1):110–112, 1998.

L. G. Stanley and D. L. Stewart. Design Sensitivity Analysis. SIAM, 2002. ISBN 0-89871-524-5.

J. Steger and J. F. Warming. Flux vector splitting of the inviscid gas dynamics equation with
application to finite difference methods. Journal of Computational Physics, 40:263–293, 1981.

H. J. Stetter. The defect correction principle and discretization methods. Numerical Mathemat-
ics, 29:425–443, 1978.

L. Su and J. E. Renaud. Automatic Differentiation in Robust Optimization. AIAA Journal, 35
(6), 1997.

Z. Tang and J.-A. Désidéri. Towards self-adaptive parametrization of Bézier curves for airfoil
aerodynamic design. Technical Report 4572, INRIA, 2002.

M. H. Tber, L. Hascoët, A. Vidard, and B. Dauvergne. Building the Tangent and Adjoint
codes of the Ocean General Circulation Model OPA with the Automatic Differentiation tool
TAPENADE. Technical report, INRIA, Sep 2007.

E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, 1999. ISBN
3-540-65966-8.

J. Utke. OpenAD: Algorithm implementation user guide. Technical Memorandum ANL/MCS–
TM–274, Mathematics and Computer Science Division, Argonne National Laboratory, Ar-
gonne, IL., 2004. Avalaible online at ftp://info.mcs.anl.gov/pub/tech reports/reports/TM-
274.pdf.

B. van Leer. Computational methods for ideal compressible flow. Von Karman Institute for
Fluid Dynamics. Lecture Series 1983-1984. Computational Fluid Dynamics, 1983.

B. van Leer. Flux-vector splitting for the Euler equations. Eighth International Conference of
Numerical Methods in Fluid Dynamics, Lecture Note in Physics, 170:505–512, 1982.

197



BIBLIOGRAPHY

B. van Leer. Towards the ultimate conservative difference scheme, V. A second-order sequel to
Godunov’s method. Journal of Computational Physics, 32:101–136, 1979.

B. van Leer, J. L. Thomas, P. L. Roe, and R. W. Newsome. A comparison of numerical flux
formulas for the Euler and Navier-Stokes equations. Technical Report 87-1104, AIAA, 1987.

A. Venditti and D. L. Darmofal. Grid adaptation for functional outputs: Applications to two-
dimensional inviscid flows. Journal of Computational Physics, 176:40–69, 2002.

R. W. Walters and L. Huyse. Uncertainty analysis for fluid mechanics with applications. Tech-
nical Report 2002-211449, NASA, Feb 2002. ICASE Report No. 2002-1.

198


	Flow modelling and CFD solver
	Governing equations
	Boundary conditions

	Numerical approach
	Finite Volume method
	Numerical Fluxes
	Spatial discretization
	High-order approximation
	Time discretization

	Synthesis

	Uncertainty Analysis and Robust Design
	Introduction
	Uncertainty propagation techniques
	Interval arithmetics
	Monte Carlo methods
	Method of Moments
	Inexpensive Monte Carlo

	Robust design

	First- and Second-Order Derivatives with Automatic Differentiation
	Introduction to sensitivity analysis
	Principles of Automatic Differentiation
	Matrix-free methods for solving linear systems in the AD context
	Automatic Differentiation of constrained functionals
	First-order derivative
	Tangent mode differentiation
	Reverse mode differentiation

	Second-order derivative
	Tangent-on-Tangent approach
	Tangent-on-Reverse approach
	Comparison between ToT and ToR

	Stack management issue for ToR approach
	ToR algorithm using the Reverse-on-Tangent differentiation
	…putting ToT and ToR into the practice
	TAPENADE commands
	Conclusion

	Multilevel optimization in aerodynamic shape design
	Introduction to multilevel approaches in aerodynamic shape design
	Optimum shape design problem in aerodynamics
	The Optimal shape problem in a fully discrete context
	Computation of the sensitivity derivatives
	Parametrisations for aerodynamic shape representation

	Multilevel gradient-based approaches for shape design
	Change of Hilbert control space
	A hierarchical parametrization based on shape grid-points
	Generalisation to other kinds of parametrization

	Examples of alternative multi-level approaches
	Formulation based on Bézier control points
	Formulation based on shape functions basis

	Reinterpretation of the new multilevel approaches
	Parametrization based on Bézier control points
	Parametrization based on shape functions

	Computation of an approximate gradient
	Reinterpretation of the approach proposed in [Désidéri, 2003]
	Numerical experiments
	Parametrization and shape representations
	Numerical experiments on 2D inverse problems

	Conclusion

	Improvement of functional accuracy through adjoint-error correction
	Adjoint error correction
	Gradient of the corrected functional
	Algorithm for computing the gradient of the adjoint-corrected functional
	Gradient of the adjoint-correction term
	Implementation

	Conclusion

	Numerical experiments using Automatic Differentiation
	Study of efficiency of matrix-free methods to solve linear systems in the AD context
	Gradient and Hessian evaluation using AD
	Testcase 1: wing shape geometry
	Testcase 2: SSBJ geometry

	Conclusions

	Basic definitions in probability
	High-order approximations
	Bash Scripts and Makefile to perform differentiation using TAPENADE
	First-order differentiation
	Second-order differentiation
	Makefile


