
Computational and Structural Biotechnology Journal 13 (2015) 75–84

Contents lists available at ScienceDirect

journa l homepage: www.e lsev ie r .com/ locate /csb j

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by pub H-BRS - Publikationsserver der Hochschule Bonn-Rhein-Sieg
Mini Review
The role of purinergic receptors in stem cell differentiation
Constanze Kaebisch, Dorothee Schipper, Patrick Babczyk, Edda Tobiasch ⁎
Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359 Rheinbach, Germany
⁎ Corresponding author at: Bonn-Rhine-Sieg University
E-mail addresses: constanze.kaebisch@h-brs.de (C. Ka

(E. Tobiasch).

http://dx.doi.org/10.1016/j.csbj.2014.11.003
2001-0370/© 2014 Kaebisch et al. Published by Elsevier B.
BY license (http://creativecommons.org/licenses/by/3.0/).
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 30 August 2014
Received in revised form 31 October 2014
Accepted 3 November 2014
Available online 7 November 2014

Keywords:
P1 receptor
P2 receptor
Purinergic signaling
Regenerative medicine
Adipose tissue-derived stem cells
Bone marrow-derived stem cells
A major challenge modern society has to face is the increasing need for tissue regeneration due to degenerative
diseases or tumors, but also accidents or warlike conflicts. There is great hope that stem cell-based therapies
might improve current treatments of cardiovascular diseases, osteochondral defects or nerve injury due to the
unique properties of stem cells such as their self-renewal and differentiation potential. Since embryonic stem
cells raise severe ethical concerns and are prone to teratoma formation, adult stem cells are still in the focus of
research. Emphasis is placed on cellular signalingwithin these cells and in between them for a better understanding
of the complex processes regulating stem cell fate. One of the oldest signaling systems is based on nucleotides as
ligands for purinergic receptors playing an important role in a huge variety of cellular processes such as proliferation,
migration and differentiation. Besides their natural ligands, several artificial agonists and antagonists have been
identified for P1 and P2 receptors and are already used as drugs. This reviewoutlines purinergic receptor expression
and signaling in stem cells metabolism. We will briefly describe current findings in embryonic and induced
pluripotent stem cells as well as in cancer-, hematopoietic-, and neural crest-derived stem cells. The major
focus will be placed on recent findings of purinergic signaling in mesenchymal stem cells addressed in
in vitro and in vivo studies, since stem cell fate might be manipulated by this system guiding differentiation
towards the desired lineage in the future.

© 2014 Kaebisch et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

Over the last decades, stem cells have received considerable attention
due to their ability of self-renewal and their capacity to differentiate into a
wide range of specialized cell types [1]. They have been extensively
studied with respect to their applicability for treating a variety of clinical
pathologies such as myocardial infarction [2] or critical size bone defects
[3]. Especially in the field of tissue reconstruction and transplantation,
stem cell-based approaches display a promising tool for which
mesenchymal stem cells (MSCs) represent an attractive cell source.
Although there are numerous publications illustrating the interaction
of extracellular nucleotides and purinergic receptors, little is known
about their particular role in embryonic or adult stemcells. Uponbinding
to their natural ligands purinergic receptors implement a variety of
biological actions in many cell and tissue types [4]. Even though it is
known that purinergic downstream signaling plays an important role
in cellular processes such as proliferation, migration, and differentiation,
more detailed insights into these processes are obligatory for the
establishment of future clinical applications using the differentiation
potential of stem cells without undesired side effects [5]. This review
will outline the current state of knowledge on the role of purinergic
receptors and their ligands in different pluripotent and multipotent stem
cell types with main focus on MSC proliferation and differentiation.
2. Purinergic receptors—structure and distribution

Purinergic receptors are one of the evolutionary oldest receptors [9].
The receptor family can be found in almost everymammalian tissue and
was initially described in gut smooth muscle cells in the 1970s[7,8]. In
2014 the first purinergic receptor, namely DORN1, was discovered in
plants [6]. Purinergic receptors are divided into P1 receptors which
are preferentially activated by adenosine and P2 receptors which are
activated by a variety of nucleotides. The latter ones are subdivided
into ligand-gated ion channels (P2X) activated by ATP and G-protein-
coupled receptors (P2Y) which are activated by nucleotides, di- or
triphosphates, purines or pyrimidines (see Fig. 1) [10]. ATP released
Fig. 1. Purinergic receptors and their natural ligands. Purinergic receptors are divided into P2 re
ionotropic P2X receptors activated by ATP and the metabotropic G-protein-coupled receptors (
contrast, metabotropic P1 receptors are preferentially activated by adenosine. Recently, evidenc
found. 1: ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) e.g. CD39, 2: ecto-5
from cells by several mechanisms e.g. mechanical stimulation is rapidly
degraded to adenosine by ectonucleotidases [4]. This ligand receptor
system takes part in neurotransmission, mechanosensory transduction,
secretion and vasodilatation, as well as long-term signaling functions in
cell proliferation, differentiation, and death [4]. Recently, evidence for the
functional expression of adenine receptors, designated as P0 receptors,
has been found (Fig. 1)[11,12].

2.1. P1 purinoreceptors

P1 receptors are G-protein-coupled receptors expressed in nearly
all cell types and take part in a lot of physiological processes within
the heart, the cardiovascular system, the nervous system, during
inflammation and in pain. Adenosine acts as a natural ligand of P1
receptors and contributes to physiological processes such as cell
proliferation and migration in endothelial cells [126]. The P1 recep-
tors are structured into four receptor subtypes named A1, A2A, A2B
and A3 and consist of seven transmembrane domains. Next to adeno-
sine they can also be activated and inactivated by various artificial ago-
nists and antagonists (for details see the review of Fredholm et al. [13]).
P1 receptor expression in stem cells was reported by different working
groups and the understanding of the contribution of these receptors
to proliferation and differentiation is increasing [14–16].

2.2. P2 purinoreceptors

2.2.1. P2X receptors
P2X receptors are cation-permeable ligand-gated ion channels

which are activated by ATP. Almost every tissue and cell type shows
regulated release of ATPmainly via vesicular or conductivemechanisms,
whereby the latter ones involve nucleotide transport via hemichannels
e.g. pannexins [131]. To date, seven receptor subtypes (P2X1-7) are
known that form homomeric (P2X1-5) and heteromeric (P2X2/3 and
P2X1/5) receptors, with the exception of P2X6 that cannot form func-
tional homomeric and P2X7 that cannot form functional heteromeric re-
ceptors [17,18]. Each subunit consists of two transmembrane domains
ceptors which are activated by a variety of nucleotides and can be further subdivided into
P2Y) which are stimulated by nucleotides, di- or triphosphates, purines or pyrimidines. In
es for the functional expression of adenine receptors, designated as P0 receptors, have been
’-nucleotidase (CD73), 3: purine nucleoside phosphorylase (PNP).

Image of Fig. 1


Table 1
Involvement of P1 receptors during MSC differentiation.

P1 receptor Present in Involved in References

A1 (h) DPSCs Osteogenesis [97]
A1 (h) BM-derived

mononuclear cells
Osteogenesis [102]

A2A (m) BM-MSCs Osteogenesis,
chondrogenesis

[100]

A2A (m) BM-MSCs Adipogenesis [104]
A2A Mouse organism Enhancement of local

vessel sprouting
[112]

A2B (m) BM-MSCs Osteogenesis [101,104]
A2B (h) BM-MSCs Osteogenesis [93,102,103]
A2B (h) BM-derived

mononuclear cells
Osteoclasts [102]

Abbreviations: dental pulp-derived stem cells (DPSCs); bone marrow (BM); bone
marrow-derived mesenchymal stem cells (BM-MSCs); human (h); mouse (m).
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separated by an approximately 280 amino acid extracellular domain.
P2X receptors are abundantly distributed, and functional responses
have been described for neurons, glia cells, epithelial cells, endothelial
cells, bone, muscle, and hematopoietic tissues [19,20]. The receptors
are involved in a variety of physiological processes, e.g. the modulation
of vascular tone, chronic pain, contraction of urinary bladder, platelet ag-
gregation, macrophage activation, apoptosis and neuronal–glial interac-
tion [21–24]. The role of P2X receptors during proliferation of hMSCs
was described by Coppi and colleagues and the involvement of P2X5
and P2X7 in osteogenic differentiation was shown by Zippel and co-
workers [16,25].

2.2.2. P2Y receptors
P2Y receptors are G-protein-coupled receptors. In contrast to P1

receptors these receptors are activated by nucleotides like ATP, ADP,
UTP, UDP and UDP-glucose [10]. There are eight subtypes known in
human tissues named P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13,
and P2Y14. The missing numbers represent either non-mammalian
orthologs or receptors having some sequence homologywithout showing
functional responses to nucleotides [26]. Investigations of P2Y1 and P2Y2
have shown that some positively charged residues in transmembrane
domains (TM) 3, 6, and 7 are crucial for receptor activation by nucleotides
and that they share a H-X-X-R/K motif in TM6 [27,28]. The effect of P2Y
receptor activation depends on the coupling to downstream signaling
pathways, either via Gi, Gq/11 or Gs proteins. They are in the focus
of many studies using agonists and antagonists for future drug
development. For example they contribute to platelet aggregation
Table 2
Involvement of P2 receptors during MSC differentiation.

Purinergic receptor Present in In

P2X4 (r) ATSCs Sc
P2X5 (h) ATSCs, DFCs Os
P2X6 (h) ATSCs Os
P2X7 (h) ATSCs, DFCs Os
P2X7 (h) Adipocytes Ad
P2X7 (m) Adipocytes Ad
P2X7 (r) ATSCs Sc
P2X7 Mouse organism Os
P2Y1 (h) ATSCs, DFCs Os
P2Y1 (h) BM-MSCs Ad
P2Y2 (h) ATSCs, DFCs Os
P2Y4 (h) ATSCs Os
P2Y4 (h) BM-MSCs Ad
P2Y4 (h) ATSCs En
P2Y11 (h) ATSCs Ad
P2Y13 (m) BM-MSCs Os
P2Y13 (m) Osteoblasts Os
P2Y14 (h) ATSCs Os
P2Y14 (h) ATSCs En

Abbreviations: Adipose tissue-derived stem cells (ATSCs); bonemarrow-derivedmesenchymal
(P2Y1 and P2Y12), pulmonary diseases (P2Y2 andP2Y4), hematopoiesis
and immunity (P2Y11) [10,26]. P2Y receptors have been reported to be
involved in the adipogenic and osteogenic differentiation of hMSCs as
well as the differentiation towards vascular lineages [25,29].

3. Stem cells

Stem cells are pluripotent or multipotent cells with two typical
features: the capability of self-renewal and the potential to differentiate
towards cell types of the human body. Depending on the source they
are derived from, stem cells can be classified into embryonic and adult
stem cells, the latter comprising mainly hematopoietic, neural crest-
derived and mesenchymal stem cells. Recently, a new source of stem
cells has been created, known as induced pluripotent stem cells. Another
controversial discussed issue is the existence of so called cancer stem cells
(see Fig. 2).

3.1. Pluripotent stem cells

3.1.1. Embryonic stem cells
Embryonic stem cells (ESCs) are derived from the inner cell mass of

blastocysts. The advantage of pluripotency and the potential to
differentiate into cells of all three germ layers is coupled with several
disadvantages, such as ethical problems and teratoma formation [30,
31]. Purinergic signaling in ESCs has been described by Burnstock
and Ulrich [32] in 2011. In mouse embryonic stem cells P2 receptors
seem to be crucial for proliferation [33,34].

3.1.2. Induced pluripotent stem cells
Takahashi and colleagues [35,36] induced pluripotency in mouse

embryonic and adult fibroblasts via viral introduction of the transcription
factors Oct3/4, Sox2, c-Myc and Klf-4. The obtained cells showed ESC-like
morphology. Wernig and coworkers [37] showed that induced
pluripotent stem (iPS) cells are similar but not identical to ESCs
regarding methylation and the chromatin state. Stadtfeld's group [38]
used nonintegrating adenoviruses transiently expressing the stem cell
factors Oct3/4, Sox2, Klf4, and c-Myc. Kim and coworkers [39] only
used the factors Oct3/4, and c-Myc or Klf4. Yu and colleagues [40]
induced pluripotency and an ESC phenotype in human somatic cells
and differentiated the cells into cells of the three germ layers. In the
meantime, iPS cells induced with two factors (Oct3/4 and Sox2) and
even with only one factor (Oct3/4) have been produced. The number
of necessary factors depends on the cells source. Progenitor cells or
even stem cells need fewer transcription factors for the reprogramming
volved in References

hwann-like cell differentiation [129]
teogenesis [25]
teogenesis, adipogenesis [25]
teogenesis [25]
ipogenesis [122]
ipogenesis [121]
hwann-like cell differentiation [129]
teogenesis [113,114]
teogenesis [25]
ipogenesis [93]
teogenesis [25]
teogenesis, adipogenesis [25]
ipogenesis [93]
dothelial and smooth muscle cell differentiation [123]
ipogenesis [25]
teogenesis, adipogenesis [116]
teogenesis [117]
teogenesis, adipogenesis [25]
dothelial and smooth muscle cell differentiation [123]

stem cells (BM-MSCs); dental follicle-derived cells (DFCs); human (h);mouse (m); rat (r).



Fig. 2.Differentiation potential of pluripotent stem cells. Pluripotent stemcells like embryonic stem cells (ESC), cancer stemcells (CSCs) or induced pluripotent stemcells (iPSC) are able to
differentiate into all cell types of the three germ layers: ectoderm (such as pigment, neuronal and skin cells),mesoderm (such as hematopoietic andmesenchymal stemcells ormuscle and
endothelial progenitor cells) and endoderm (such as lung-, thyroid- and pancreatic cells).
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process [41]. First evidence for purinergic signaling in human iPS cells
was reported by the group of Mastrangelo [42] in 2012.
3.2. Cancer stem cells

Despite immense progress in the clinical treatment of various types
of cancer, resistance to chemotherapeutic drugs, cancer metastasis and
tumor recurrence are important issues in oncology. A recent hypothesis
suggests that these difficulties are related to cancer stem cells (CSCs)
within the tumor [43]. This small population of cells is thought to be
responsible for tumor propagation and maintenance due to its self-
renewal capacity and multilineage differentiation potential [44,45]. In
contrast to normal tissue renewal, the cancer precursor cells fail to
undergomaturation and thus accumulate, resulting in tumor formation
[46]. This new paradigm of cellular differentiation is now understood as
a plastic phenotypic shift of cancer cells into more primitive cells with
stem-like properties [47].

CSCs can be identified based on the expression of specific cell surface
markers such as CD24, CD29, CD44, CD133, and CD166 [48]. Particularly
with regard to cancer treatment strategies targeting CSC-associated
marker proteins, it has to be considered that the expression level and
nature of these markers is very heterogeneous [49].

A CSC subpopulation that is substantial for survival of an aggressive
tumor in the CNS can be obtained from glioblastoma [50]. Morrone
and colleagues [51] studied several models of glioma tumor growth
and suggested that endogenous ATP release can induce glioma cell
proliferation via both, P1 and P2 purinoreceptor signaling. In addition,
ATP-mediated signaling was shown to be essential during neuronal
differentiation of the murine embryonal carcinoma cell line P19 [52].
Based upon these findings, Ledur and coworkers [50] investigated the
role of ATP and purinergic receptors in human and rat glioma CSCs.
They could show that ATP treatment altered the expression pattern
of purinergic receptors compared to adherent cells and decreased
tumor sphere formation. The P2X6 and P2X7 receptor subtypes were
up-regulated in attached cells, whereas P2X4, P2Y1, and P2Y14 were
found increased in tumor spheres. Further, ATP reduced the expression
of the glioma CSC markers CD133, Oct-4, and Nanog indicating a
decreased cancer stem cell population. Taken together, the purinergic
system has to be considered as potential pharmacological target for
cancer therapy [50,53].
3.3. Multipotent stem cells

3.3.1. Hematopoietic stem cells
Hematopoietic stem cells (HSCs) are multipotent adult stem

cells that can differentiate into all types of mature blood cells such as
macrophages, monocytes, dendritic cells, erythrocytes, lymphocytes,
andplatelets [54,55]. They canbeobtained frombonemarrow, peripheral
blood and umbilical cord/placenta blood and are characterized with
positive expression of CD34, Thy1, CD133, and C-kit and lack of cell
surface markers CD38, Lin, and CD45 [54,56,57]. With regard to adult
stem cells, HSCs are among the best characterized and they are the only
stem cells routinely used in the clinical setting [54].

So far, numerous data exist with regard to P1 and P2 receptor
expression and signaling pathways in HSCs. Hofer and colleagues
reported that adenosine A1 receptor stimulation inhibited whereas
adenosine A3 receptor activation enhanced the proliferation of
committed hematopoietic progenitor cells but showed no effect on
more primitive cell populations indicating that adenosine receptor
signaling is restricted to more mature cell compartments [58].

Next to P1 receptors, several functional P2 receptor subtypes have
been found to be expressed in CD34+ HSCs [59]. Further, endogenous
ATP release reduced hematopoietic progenitor proliferation and was
therefore suggested to be a key regulator of HSCs pool size [60]. P2X
receptors also seem to be involved in the differentiation of HSCs as
their expression is up-regulated in early hematopoietic precursors
from umbilical cord blood compared to adult human blood cells [61].
Based on data obtained from knockoutmice studies, Cho and coworkers
suggested that the P2Y14 receptormight be a keymediator for hemato-
poietic stem and progenitor cell regenerative response to tissue stress.
Animals lacking this receptor subtype displayed enhanced hematologi-
cal stress-induced cell senescence coincidedwith increased ROS, elevat-
ed p16(INK4a) expression, and hypophosphorylated Rb [132]. In the
future, the animal model system might be utilized to achieve a
better understanding for which regulatory molecules are involved in
the onset of stress-induced senescence within the HSC compartment
[133].
3.3.2. Neural crest-derived stem cells
Neural crest-derived stem and progenitor cells have been identified

not only in the central but also in the peripheral nervous system of

Image of Fig. 2
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vertebrates [62]. During embryogenesis multipotent neural crest
cells invade almost all tissues, both neural and non-neural. Later
they undergo differentiation towards neurons and glial cells of the
peripheral nervous system as well as cells of the craniofacial skeleton,
endocrine cells, and melanocytes or persist in adult organs and tissues
[62–64]. Recently, neural crest derivates have also been found in adult
bone marrow, carotid body and heart [65–67]. Stem cells in neural
crest-derived adult tissues are characterized by the expression of diverse
biomarkers such as the transcription factor Sox10, the neurotrophin
receptor p75, Nestin and Slug [68,69]. Recently, connexin 43 was
suggested as a novelmarker protein to selectively isolate remnant neural
crest-derived stem cells from human adult periodontal ligament [70].

Purinergic receptors have been shown to be involved in neuronal
development [71]. Suyama and coworkers [72] studied the role of
extracellular purinergic signaling in cell-cell communications as
well as physical cell-cell contacts during the proliferation and fate
determination of neural stem cells (NSCs), which are persisting in
the subventricular zone (SVZ) of adult mammalian brain. Based on
their findings they suggested that purinergic signaling via the P2Y1
receptor promotes the proliferation of cells in the SVZ niche and
thus is important for maintenance of adult neuronal differentiation
in this niche. NSCs develop into neural progenitor cells (NPCs)
which possess a limited self-renewal capacity and can differentiate
towards neurons and glia [73]. ATP has been described as stimulating
factor for NSC migration and NPC proliferation as well as negative
regulator of terminal neuronal differentiation through P2 receptor
signaling [74,75]. Moreover, axonal elongation was shown to be
modulated through a crosstalk between P2X7, P2Y1, and P2Y13 receptor
subtypes [76].

3.3.3. Mesenchymal stem cells
Mesenchymal stem cells (MSC) are multipotent cells that can be

obtained from several tissues including bone marrow, umbilical cord,
peripheral blood, wisdom teeth, and fat [5,77–80]. To define these
cells most researchers agree and rely on the minimal criteria defined
by the International Society of Cellular Therapy where MSCs should
adhere to plastic under standard culture conditions, and must be able
to differentiate into osteoblasts, adipocytes and chondroblasts under
standard in vitro differentiating conditions, as confirmed by specific
stainings. Additionally, a positive expression pattern (N95% of the
cells) of CD73, CD90, and CD105 is required as well as the absent
expression (N98% of the cells) of CD45, CD34, CD14 or CD11b, CD79
or CD19, and HLA-DR [81]. Purinergic signaling in mesenchymal
stem cells aroused keenness interest because of the high availability
of these cells due to their sources named above.

4. Purinergic receptors in mesenchymal stem cells

Mesenchymal stem cells play an important role in maintaining the
homeostasis of mesodermal tissues throughout the adult body.
Furthermore MSCs produce signaling molecules that are required
for their active crosstalk in tissue environments. Among them are
extracellular nucleotides and their metabolites which are more and
more the focus of attention [82]. These molecules activate both,
ionotropic andmetabotropic receptors and therebymediate fundamental
cellular processes such as MSC proliferation, differentiation, and survival
[32,83]. In detail, Kawano and colleagues [15] reported that ATP
autocrine/paracrine signaling induced calcium oscillations in undifferen-
tiated human MSCs. Enzymatical hydrolysis of extracellular nucleotides
by ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases)
and ecto-5'-nucleotidase (CD73) generates a cellular signaling cascade
essential for development and maintenance of MSCs [84]. Several
research groups described an immunsuppressive effect of MSCs based
on an increased adenosine production (mainly mediated by CD39,
CD73, and adenosine deaminase) and signaling via adenosine A2A
receptor [85–87]. Huicong and coworkers [88] found that targeted
MSC transplantation corrected the imbalanced expression between
adenosine A1 and A2A receptors in an epilepsy model.

Only recently, it has been shown that MSC cell surface bound
purinergic receptors and nucleotide processing ectoenzymes are also
involved in the regulation of stem cell fate [55,89]. MSC commitment
towards a desired stem cell-derived tissue cell type might be induced
by using selective purinergic receptor ligands. The better understanding
of the mechanisms underlying MSC proliferation and differentiation
might lead to an improved application ofMSCs in regenerativemedicine
(Fig. 3) [5].

4.1. Purinergic receptors during MSC proliferation

Since ATP can be found in almost every living cell [90] and purinergic
signalingwas shown to be involved in stem cell development, there is a
growing interest in this research area [32].

For example, several studies have indicated that ATP is spontaneously
released fromhumanMSCs (hMSCs) in culture [91]. Coppi and colleagues
[16] demonstrated a decreasing proliferation rate in hMSCs upon ATP
release which stimulated P2Y and P2X receptors. Similar, in another
study the finding of a decreased proliferation rate of hMSCs after
spontaneous ATP release in early stages of culture has been confirmed.
There it was hypothesized that increased hMSC differentiationmight be
responsible for an ATP-induced decrease in proliferation [91]. Based on
data from studies focusing on gene expression profiling it could also be
shown that genes involved in cell proliferation of hMSCs were down-
regulated upon ATP-stimulation, supporting the hypothesis that
ATP decreases cell proliferation of hMSCs. Additionally, a strong up-
regulation of genes involved in cell migration was found [92], which
was confirmed in a more recent in vivo and in vitro study using bone
marrow-derived mesenchymal stem cells (BM-MSC) [93]. By contrast,
Riddle and coworkers [94] found that ATP increases cellular proliferation
of bone marrow stromal cells, suggesting that extracellular ATP is
required for fluid flow-induced increases in intracellular calcium
concentration activating proliferation. The role of calcium was also
investigated in an earlier study demonstrating that an ATP dependent
autocrine/paracrine signaling pathway is involved in calcium ion
oscillations that are known to play a pivotal role in differentiation and
proliferation of hMSCs. ATP was found to stimulate P2Y1 receptors
activating PLC-β to produce IP3 which induces calcium release [15]. In
a more recent study it was demonstrated that NAD+ activates the
P2Y11 receptor and a cAMP/cyclic ADP-ribose/[Ca2+](i) signaling cascade
which leads to the opening of L-type calcium channels. Furthermore it
was shown that NAD+, either extracellularly added or autocrinally
released, stimulates MSC functions, among them proliferation [95].

The role of P1 receptors in MSC proliferation is not well studied.
There is some evidence suggesting that adenosine and the adenosine
A2A receptor are important mediators in stimulating proliferation and
differentiation of mouse BM-MSCs [96]. Whereas in another study
the addition of an A1 receptor agonist (2-chloro-N(6)-cyclopentyl-
adenosine, CCPA) to undifferentiated dental pulp-derived mesenchymal
stem cells (DPSCs) showed no modification of proliferation in contrast
to DPSCs induced towards the osteogenic lineage that revealed a signifi-
cantly increased proliferation after eight days in vitro [97].

4.2. P1 receptors during MSC differentiation

Over the last decade, the presence and functionof adenosine receptors
on the plasma membrane of MSCs has been investigated in several
studies. Adenosine, the natural ligand of the P1 receptors, can either be
endogenously released or generated via enzymatic degradation of
adenine nucleotides by E-NTPDases and ecto-5’-nucleotidase (CD73)
[14,84]. Upon stimulation, MSCs have been reported to actively secrete
nucleotides such as ATP and NAD+ in order to modulate MSC functions
e.g. proliferation, migration, and immunosuppression of activated T
lymphocytes [16,95].



Fig. 3. Distribution of purinergic receptors during MSC proliferation and differentiation. Summarized are data for purinergic receptors during proliferation and differentiation of MSCs
originating from different sources. Dental pulp-derived stem cells (DPSCs), adipose tissue-derived stem cells (ATSC), bone marrow-derived mesenchymal stem cells (BM-MSC), dental
follicle-derived cells (DFC), (m) mouse, (h) human, (r) rat, if not stated otherwise: human, on top P1 and P2X, underneath the arrow P2Y.
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Since some time there has been increased interest for the role of
adenosine and its receptors in bone formation and remodeling [98]. It
has been demonstrated that adenosine receptor signaling via cyclic
AMP contributes to MSC differentiation towards chondrocytes and
osteoblasts [99]. Cyclic-compressive loading of murine BM-MSCs
reduced the expression of the ecto-5′-nucleotidase which acts as a
regulatory factor in osteo-/chondrogenic differentiation via adenosine
A2A receptor signaling [100]. Furthermore, it has been reported in
several in vitro or in vivo studies that adenosine acts as an autocrine/
paracrine signaling molecule that induces osteogenic differentiation
of murine as well as human BM-MSCs via adenosine A2B receptor
stimulation [93,101–103]. Gharibi and colleagues [104] showed a
predominant association of the osteoblast differentiation of murine
BM-MSCs with adenosine A2B receptor expression and activation
promoting the three stages of initiation,maturation andmineralization.
The influence of the adenosine A1 receptor in osteogenesis is not quite
clear until now. D’Alimonte and coworkers observed that stimulation of
the adenosine A1 receptor enhanced the differentiation of human
DPSCs towards osteoblasts via activation of the Wnt receptor signaling
pathway [97]. In contrast to that, adenosine A1 receptor-knockout
mice revealed no changes in osteoblastmorphology and bone formation
rates [105]. Moreover, it appeared that adenosine A1 receptor blockade
or deletion could prevent ovariectomy-induced bone loss through
diminishing osteoclast differentiation and function. This, in turn,
is in line with a study performed by He and colleagues [102].
They found that osteoclast differentiation of human bone marrow-
derivedmononuclear cells from patients with osteolytic bone lesions
was inhibited when treated with the adenosine A1 receptor antagonist
rolofylline and A2B receptor agonist BAY60-6583.

Besides fat storage, adipose tissue is since some time considered to
exert endocrine functions [106]. Adipocytes secrete adipokines such as
adiponectin which has anti-inflammatory effects and seems to protect
against atherosclerosis [107]. Exploring the underlying signaling
pathways of adipogenesis is fundamental to a better understanding
of adipose tissue development and remodeling [108]. Gharibi and
colleagues investigated the expression of adenosine receptors during
MSC adipogenesis and found that the adenosine A1 receptor is mainly
involved in the lipogenic activity of adipocytes whereas the expression
of the adenosine A2A receptor enhanced adipocytic differentiation and
lipid accumulation [104]. Recently it was reported that the A2B receptor
subtype mediates inhibition of adipogenesis through a novel signaling
pathway involving Krüppel-like factor 4, a known regulator of stem
cell maintenance [109,110].

In addition to its prominent role in regulating MSC osteogenesis
versus adipogenesis, adenosine has also been shown to induce the
expression of hepatocyte-specific genes in mouse and human BM-MSCs
in vitro [111]. Mohamadnejad and coworkers demonstrated that the
inhibition of the hepatocyte growth factor-induced chemotaxis of

Image of Fig. 3


81C. Kaebisch et al. / Computational and Structural Biotechnology Journal 13 (2015) 75–84
BM-MSCs is mediated via adenosine A2A receptor signaling. Moreover,
topical application of an exogenous adenosine A2A receptor agonist has
been reported to promote wound healing via enhancement of local
vessel sprouting and vasculogenesis in the early stages of tissue
regeneration through recruitment of bone marrow-derived endothelial
cells [112] (Table 1).

4.3. P2 receptors during MSC differentiation

Only quite recently, researchers working on adult stem cells have
given more attention to endogenous release of nucleotides and the
role of purinergic 2 receptors during MSC differentiation. A better
understanding of the cellular and molecular mechanisms underlying
MSC differentiation is crucial for safe application of adult stem cells in
regenerative medicine.

In 2003 first data indicated that purinergic receptors are involved in
stem cell lineage commitment towards osteoblasts. Ke and colleagues
showed that P2X7 receptor knockoutmice displayed a reduced periosteal
bone formation rate and an increased trabecular bone resorption. [113]. Li
and collaborators [114] demonstrated shortly after that themechanically
induced release of prostaglandins by MC3T3-E1 osteoblasts and MLO-Y4
osteocytes is also mediated via P2X7 receptor signaling. In another study
it was published that preincubation of proliferating preadipose cell line
3 T3-L1 cells with extracellular ATP before addition of adipogenic
induction medium resulted in an enhanced migration as well as an in-
creased gene expression of adipose protein 2 compared to preadipocytes
without ATP pretreatment [115]. Further, cell migration assays revealed
that ATP induced actin filament reorganization and membrane ruffling,
both mediated through P2Y receptor signaling, in a concentration
dependent manner.

Recently, we investigated the role of several P2 receptors
during differentiation of adipose tissue-derived MSCs (ATSCs) and
ectomesenchymal dental follicle-derived cells (DFCs) [25]. In particular,
we found the receptor subtypes P2X6, P2Y4 and P2Y14 to be key regu-
lators in early lineage commitment, as they were regulated on gene
and protein level at the branching point of adipogenic and osteogenic
differentiation. Furthermore, P2X5, P2X7, P2Y1 and P2Y2 seem to
be crucial for osteogenesis, whereas P2Y11 is involved in differentiation
towards adipocytes. Since then, the number of data focusing on P2
receptor signaling inMSC differentiation is continuously rising. Ciciarello
and collaborators [93] described that adipogenesis of BM-MSCs ismainly
mediated through P2Y1 and P2Y4 receptor signaling. During stem cell
differentiation towards adipocytes, ATP significantly increased the gene
expression level of peroxisome proliferator-activated receptor-gamma
(PPARγ2) and the accumulation of lipid droplets. Biver’s group reported
that adipogenic induced bonemarrow stromal cells derived from P2Y13
receptor-deficient mice (P2Y13R(−/−)) displayed an increased gene
expression level of the adipogenic markers PPARγ2 and Adipsin and a
higher number of adipocytes compared to P2Y13R(+/+)-derived
MSCs [116]. In contrast, ADP stimulation of P2Y13R(−/−)-derived
MSCs resulted in an decreased gene expression of the osteoblastic
markers osterix, alkaline phosphatase, and type I collagen. Taken
together, the receptor subtype P2Y13 seemed to be a notable key factor
in the forking of osteoblast and adipocyte differentiation of bone
marrow progenitors. In further studies a probable connection between
MSC osteogenesis and P2Y13 receptor signaling was reaffirmed.
Mechanical loading of knockout P2Y13R(−/−) mice tibiae resulted in
increased bone formation and mineral accumulation rates compared
to wild type control animals [117]. More recent data evidenced an
age-dependent change of the skeletal phenotype in P2Y13 receptor-
knockout mice compared to wild type control animals which was associ-
ated with altered serum fibroblast growth factor 23 and phosphorus
levels [118].

Uracil nucleotides have been reported to regulate the osteogenic
differentiation of primary bone marrow stromal cells from postmeno-
pausal women, predominantly through stimulation of the P2Y6 receptor
subtype which is linked to an increased intracellular Ca2+ level [119].
Next to this certain polymorphic variants of the P2X7 receptor gene are
associated with low lumbar spine bonemineral density and a greater
risk of developing osteoporosis in post-menopausal women [120]. In
addition the loss of P2X7 receptor function resulted in an altered
adipocyte distribution and lipid accumulation in male but not in female
mice in vivo [121]. Beaucage and coworkers revealed that the P2X7
receptor subtype might be involved in an age- and gender-dependent
regulation of adipogenesis and lipid metabolism. Upon stimulation with
extracellular ATP, adipocytes release several proinflammatory cytokines
such as TNFα and IL-6 [122]. The characteristical inflammatory status
of patients with metabolic syndrome has therefore been associated
with an enhanced adipocyte P2X7 receptor expression in these sub-
jects. Taken together P2X7 seems to be a major factor in adipogenic
differentiation.

Endothelial and smoothmuscle cells are themain cell types involved
in cardiovascular physiology [123]. Damage or dysfunction of these cells
may result in pathological processes such as atherosclerosis and
hypertension, leading to cardiovascular diseases i.e. heart attack and
stroke. MSCs have been extensively explored for their application in
vascular tissue engineering [124,125]. There is some evidence for the
role of purinergic signaling in vascular cell proliferation and death [87,
126], but little is known with respect to the participation of purinergic
receptors inMSC commitment towards endothelial and smoothmuscle
cells. Very recent data, achieved by using P2 receptor agonists and
antagonists, gave new insights into the functional role of purinergic
receptor regulation during endothelial and smoothmuscle cell differen-
tiation of adipose tissue-derived MSCs. We reported the up-regulation
of the P2Y4 and P2Y14 receptor subtypes in both differentiation
processes suggesting that these two receptors are important in early
lineage commitment of MSCs towards vascular cell types [123].

The presence of Schwann cells is a critical limiting factor in nerve
injury recovery. As an alternative source for peripheral nerve tissue
engineering, MSCs were evaluated for their differentiation potential
towards a Schwann cell phenotype [127]. Although there are several
publications addressing purinergic signaling in primary Schwann cells,
only fewdata existwith regard to the involvement of purinergic signaling
during the developmental process ofMSCs towards this phenotype [128].
During differentiation of adipose tissue-derived MSCs towards that
specific cell lineage, the gene expression of P2X4 and P2X7 receptor was
found to be upregulated [129]. ATP stimulation of these purinoreceptors
triggers intracellular Ca2+ signals and indicated towards the presence of
a functional P2X7 receptor which is involved in control of cell death and
survival. This is in line with the finding that P2X7 receptor signaling
contributes to the death of Schwann cells transplanted into the spinal
cord [130] (Table 2).

5. Summary and outlook

Over the last decade there was much progress in stem cell research.
Especially, mesenchymal stem cells obtained from several adult tissues
have been extensively studied with respect to their characterization,
differentiation potential and immunomodulatory properties. In addition,
signaling molecules that are involved in the determination of stem cell
fate such as growth factors, Hox gene proteins, and chemokines have
been well studied and already applied in clinical trials. Even though
purinergic receptors are expressed in a wide range of cell types and
huge amounts of data on the members of this family in various cellular
functions have been published so far, there still is only sparse information
on the role of purinergic receptor expression and regulation during stem
cell proliferation and differentiation.

In this review, we outlined the latest results of the involvement of
purinergic receptors inMSCs undergoing differentiation towards different
distinct cell types e.g. adipocytes, osteoblasts, endothelial cells, smooth
muscle cells or hepatocytes butmore research is clearly needed. Unveiling
the crosstalk of signaling pathways downstream of receptor activation



82 C. Kaebisch et al. / Computational and Structural Biotechnology Journal 13 (2015) 75–84
will help to better understand how these ubiquitous expressed receptors
exert their impact in (patho)physiological processes based on stem cell
actions. More details on the cellular and molecular level still need to be
attained to define new targets for drug development and to establish
novel medical approaches with these cells. In the future, MSCs might be
applied routinely to reconstruct or replace a variety of tissues and organs.
Triggering them towards the desired lineage by using artificial purinergic
receptor ligands might be an additional step to diminish the risk that a
minor percentage of the stem cells stay undifferentiated andmay develop
towards a tumor. Regarding diseases or disorders originating from
purinergic receptor dysfunction, the creation of iPS cells of patients
suffering from such a disease might help to recapitulate the underlying
cellular processes and clarify unclear issues. Later on, an improved
stem cell lineage commitment combined with natural or synthetic
scaffolds mimicking the tissues natural microenvironment will provide
innovative stem cell-based regenerative approaches for futuremedicine.
Last not least it should be noted that at the moment the benefit of MSCs
in clinical trials seems not to be due to cell replacement but paracrine
signaling which might involve secreted nucleotides.
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