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1.  The genome integrity network 

The survival of the organism is the meaning of life, which is thoroughly preserved 

inside the smallest biological unit: the cell.  

What survival demands is genetic stability that is essential for the inheritance of 

traits to offspring, indeed it requires not only an extremely accurate mechanism 

for replicating DNA, but also systems for repairing the many accidental lesions 

that continually occur on DNA. To counteract the genotoxic threat induced by 

endogenous cellular events and exogenous environmental agents, cells developed 

a complex network of surveillance processes, which is mainly constituted by three 

evolutionarily conserved cellular pathways: the chromosome replication pathway, 

which governs the accurate and unhindered replication of DNA1. The chromosome 

segregation pathway, that preserves the correct number of chromosomes during 

cell division2 and the DNA damage response (DDR), which ensures efficient repair 

of all types of damage3. Due to the existing crosstalk between these pathways, the 

disruption of one of them leads to the engagement of the others to protect 

genome integrity while maintaining cell homeostasis.  

As the in common genome integrity network-protagonist, chromatin is subjected 

to regulatory mechanisms, including covalent histone modifications able to 

function as a docking site for the recruitment of non-histone proteins. In addition, 

ATP-dependent chromatin remodelling enzymes prompt changes in nucleosome 

position permitting gene transcription as well as the eviction or the incorporation 

of histone variants. This eviction or incorporation provides several biophysical 

properties to the chromatin fibre regulating the different post-translational 

modifications (PTMs) options and the binding of chromatin-related proteins. All of 

these chromatin-based regulations are implicated in the maintenance of genome 

stability participating to the coordination of the correct signal spread.    
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2. DNA damage response 

DDR is an intricate cellular network able to detect DNA lesions, to signal their 

presence and to promote their repair by several proteins that act in concert as 

sensors, transducers and effectors4, 5 (Fig.1).  

The sensors directly recognize the aberrant DNA structures, induced by DNA 

damage or DNA replication stress, and activate the most upstream DDR kinases 

that are ATM (ataxia-telangiectasia mutated), ATR (ATM- and Rad3-Related), and 

DNA-PKcs (DNA-dependent protein kinase). These serine/threonine kinases are 

members of the phosphatidylinositol-3-kinase-like kinase family (PIKKs) and 

provide to amplify the signal by inducing the phosphorylation of a large number of 

proteins, which includes the checkpoint kinases (Chk) Chk1 and Chk26. Both the 

upstream kinases and the two Chk are the transducers of the pathway. Below 

them lie the effectors that execute the function of the DDR (DNA repair, 

transcription regulation and cell-cycle control) and, depending on the context, 

have multiple functions in the different pathways of the network.  

The hierarchical recruitment of these different proteins create a time window that 

allows the removal of the threat triggering a specific DNA repair pathway, 

inducing cell cycle arrest7,8 and activating the apoptotic machinery4. The biological 

importance of a functional DDR network is illustrated by the severe consequences, 

for the human health, of inherited defects in the factors involved in DNA Damage 

Response, which result in various diseases, including neurological degeneration, 

premature aging, immunodeficiency and cancer susceptibility9, 10.   
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FIGURE 1: MODEL FOR DDR. The presence of a lesion in the DNA is recognized by various 
sensor proteins. These sensors initiate signalling pathways that have an impact on a wide 
variety of cellular processes11. 

 
 

2.1  Insights into the molecular mechanisms of DNA repair 

The inheritance of an organism lies in the genetic information carefully kept into 

DNA, which is a dynamic chemical entity subject to several injuries. Any of these 

injuries can result in a damage that, if not repaired, will lead to mutation and 

possibly disease11.  

The types of lesion that can affect DNA are diverse and include the single strand 

breaks (SSBs) and the double strand breaks (DSBs) which are the most detrimental 

lesions since they do not leave an intact complementary strand to be used as a 

template for DNA repair and can lead to chromosome breaks and translocations11.  
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The intricate network of DNA damage response coordinates DNA repair and 

determines the fate of the cell after DNA damage. DDR is mainly composed of 

distinct evolutionarily selected DNA-repair mechanisms, which are induced by the 

wide diversity of DNA damage and divided into five categories (Fig.2): direct 

repair, base excision repair (BER), nucleotide excision repair (NER), double-strand 

break repair and repair of interstrand cross-links12. 

 

 

 
FIGURE 2: DAMAGING AGENTS, DNA DAMAGES AND REPAIR MECHANISMS. Common DNA 
damaging agents (top); examples of DNA lesions induced by these agents (middle) and 
the DNA repair mechanisms responsible for the removal of the lesions (bottom)9. 
 
 

While direct repair is a protein-mediated reversal, such as the methylguanine DNA 

methyltransferase that provides the removal of the O6-methyl group from O6-

methylguanine (O6MeGua), the other repairing mechanisms are based on a 

sequence of catalytic events mediated by multiple proteins. Among these 
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mechanisms, the repair of DSBs has been extensively studied, due to its 

deleterious effects and to its relevance in the physiological process of V(D)J 

recombination and immunoglobulin class-switching process. DSBs are produced 

by exogenous or endogenous sources, such as reactive oxygen species or 

replication fork arrest and collapse, and are repaired by either homologous 

recombination (HR) or non-homologous end-joining (NHEJ) mechanisms13 (Fig.3).  

HR is an error-free pathway and is based on the preferential use of a sister 

chromatid as template, which is present in late S- or G2-phase of the cell cycle, to 

repair the damaged DNA14. It also has a prominent role in the high-fidelity 

duplication of the genome by providing critical support for DNA replication and 

telomere maintenance14. In the HR signalling the DNA end-resection is recognized 

by the Mre11-Rad50-Nbn (MRN) complex, which recruits ATM that in turn triggers 

the pathway phosphorylating the histone H2A.X (Ɣ-H2A.X) and other proteins 

involved in reparation and checkpoints signalling15. The core steps of HR are 

homology search and DNA strand invasion by the Rad51 coupled to the single-

strand DNA (ssDNA) filament complex, positioning the invading 3’-end on a 

template duplex DNA. Initially, the ssDNA is recognized by the eukaryotic ssDNA-

binding factor, replication protein A (RPA), which displays higher affinity for both 

ssDNA and Rad5116, 17. Then RPA is replaced by Rad51 with the help of the 

mediator proteins of the pathway. Rad51 is the eukaryotic RecA homolog that, 

once loaded onto ssDNA, promotes homology search and DNA strand invasion in a 

reaction called synapsis18, 19, 20. During synapsis, Rad51 facilitates the formation of 

a physical connection between the invading DNA substrate and homologous 

duplex DNA template, leading to the generation of heteroduplex DNA (D-loop). 

Finally, when DNA is synthesized using the invading 3′-end as a primer, Rad51 

dissociates from the double stranded DNA (dsDNA) to expose the 3′-OH required 

for DNA synthesis21.  
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By contrast to HR, NHEJ occurs in all phases of the cell cycle and does not require 

a homologous template. It is an error-prone repair process promoting the fusion 

of the broken DNA ends together22. NHEJ is also essential for V(D)J recombination 

where DSBs are intentionally generated during T- and B-cell lymphocyte 

development23. The repairing process prompted by NHEJ is divided into four 

sequential steps: (I) recognition of the damage and assembly of the protein 

complexes at the DSBs; (II) bridging of the DNA ends and promotion of end 

stability; (III) DNA end processing; (IV) ligation of the broken ends and dissolution 

of the NHEJ complex24. The first step is the recognition and binding of the Ku 

heterodimer to the break, which is composed of the Ku70 and Ku80 subunits25, 26. 

Ku is massively expressed inside cells and has a high affinity for DNA ends 

interacting with DSBs in a sequence independent manner27. Once bounded to the 

DSBs, the Ku heterodimer functions both as a stabilizer, by binding the DNA ends 

in order to maintain their stability by protecting them from non-specific 

processing, and as a scaffold to recruit the other NHEJ factors, including DNA-

PKcs, to the damaged site. DNA-PKcs activates, through phosphorylation, a large 

number of substrates and prompts the formation of a synaptic complex that holds 

the two ends of the broken DNA molecule together. Among the proteins activated 

by DNA-PKcs there is ARTEMIS, which, thanks to its 5’ endonuclease activity, 

processes the DNA ends to create ligatable ends. The final step is the ligation of 

the broken ends, catalyzed by the DNA Lig IV in complex with XRCC4 and XLF, and 

the dissolution of the NHEJ complex24. 
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FIGURE 3: DOUBLE-STRAND BREAKS REPAIR. DSBs are predominantly repaired by either NHEJ or 
HR. In NHEJ the broken DNA ends are bound by the Ku70/Ku80 heterodimer, which 
recruits DNA-PKcs. The DNA ends are joined by the activity of polymerases and a ligase 
complex consisting of XRCC4, XLF and LigIV. Instead, in HR the MRN complex recognizes 
the DNA end-resection and recruits ATM, which phosphorylates the histone H2A.X 
triggering the pathway. ssDNA generated by DNA end-resection are bound by RAD51, 
which promotes the invasion of the ssDNA to a homologous dsDNA template, leading to 
synapsis, novel DNA synthesis, strand dissolution, and repair28.  

 
 

2.1.1 Formation of DDR foci 

When a damage occurs on DNA, DDR proteins accumulate at the sites of lesion 

forming detectable supramolecular structures, which encompass megabase 

lengths of DNA adjacent to the sites of breaks, called DDR foci or IRIF (ionizing 

radiation-induced foci)29 (Fig.4). 
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FIGURE 4: DDR FOCI. The figure shows a typical staining of phosphorylated histone H2A.X 
(named Ɣ-H2A.X) in U2Os cells before and after etoposide treatment, which induces DSBs 
by inhibiting Topoisomerase II. 

 
 
The first event occurring upon DNA damage is the phosphorylation on Ser139 of 

the histone variant H2A.X in the proximity of the lesion, induced by ATM, ATR and 

DNA-PKcs30, 31, 15. The resulting phospho-H2A.X, also referred as Ɣ-H2A.X, acts as a 

docking station for a number of downstream DDR factors. The creation of these 

high concentrations of proteins increases the efficiency of the DNA damage 

response and repair32. Once formed, foci function as dynamic structures due to 

the exchange of proteins from the damaged chromatin and the freely diffusing 

proteins29, 33. While the phosphorylation triggers the formation of the foci, these 

structures are also finely regulated by other PTMs, including ubiquitylation, 

sumoylation, methylation, acetylation, and PARylation34, 35. 

 

2.2 The role of post-translational modifications in DDR 

The importance of the maintenance of genome integrity is evident from the large 

investment that cells make in the number of proteins and mechanisms involved in 

DDR. Indeed, the assembly of the protein complexes at DNA breaks is tightly 
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organized by an intricate pathway of PTMs, prompted by several enzymes34, 35 

(Fig.5). PTMs are reversible modifications that have a key role in DDR in virtue of 

their ability to alter the activity of an existing protein without the necessity of de 

novo protein synthesis, in order to avoid transcription of damaged DNA. In 

addition, these modifications generate docking sites on target proteins at the 

damaged site, contributing to the formation of DDR foci34, 35.  

 

 

 
FIGURE 5: THE ORGANIZED AND INTRICATE PATHWAY OF PTMS IN DDR. The recruitment of DDR 
proteins to sites of DNA breaks is mediated by specific interactions between the PTMs 
and a dedicated binding module. BRCT and FHA domains, which are represented by red 
and green semicircles, bind phosphorylated serine or threonine residues; Tudor domains, 
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chromodomains, and PDH finger domains bind methylated histones; bromodomains 
(Bromo) bind acetylated histones; and UBDs bind ubiquitylated proteins. The PAR-binding 
domain can take the form of a basic stretch of aminoacids (Basic), a PAR-binding zinc 
finger (PBZ), or a macrodomain (Macro). The species of the proteins are indicated, unless 
only human proteins are listed. (H.s.) H. sapiens; (S.c.) S. cerevisiae; (S.p.) S. pombe36. 

 
 

As described above, phosphorylation is the first signalling device able to trigger 

the pathway inducing the formation of the DDR foci15. Due to its central role, 

hundreds of phosphorylated targets have been already identified by mass 

spectrometry-based screens37, 38, 39.  

DDR proteins frequently display phospho-binding motifs such as BRCT (breast 

cancer C-terminal) or FHA (Forkhead-associated) domains that mediate the 

phospho-dependent assembly of DDR protein complexes40, 41, 42, 43. Due to this, Ɣ-

H2A.X, being the prime substrate of the DDR kinases, directs the assembly of 

downstream DDR components, including checkpoint mediators such as MDC1 and 

MCPH1 (Microcephalin; also named BRIT1)44, 45. In addition, it recruits chromatin-

modifying complexes such as p400, a component of the NuA4 histone 

acetyltransferase complex46, 47. Once bound to Ɣ-H2A.X, MDC1 acts as a loading 

platform for other DDR components, which in turn recognize the phosphorylation 

on the mediator; the ATM-dependent phosphorylation of MDC1 on Thr-Gln-X-Phe 

(TQXF) motifs creates binding sites for the FHA domain of the ubiquitin ligase 

RNF8 (Ring Finger protein 8), which in turn promotes the focal accumulation of 

53BP1 and BRCA1 at DSBs sites33, 48, 49.  

In virtue of this role in the fine orchestration of the assembly of DDR proteins, 

ubiquitination stands up as a critical PTM in DNA repair50, 51. It was demonstrated 

that several ubiquitin ligases, such as BRCA156, RNF833, 48 , 49, RNF16854, 55, RAD1858, 

HERC257 and Polycomb-repressive complex 1 (PRC1)63 accumulate at the sites of 

DNA breaks, where they amplify the signal by recruiting the DDR transducers and 
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effectors52, 53, 59. Similarly to phosphorylation, ubiquitination can be recognized by 

specific domains: termed ubiquitin-binding domains (UBDs). It was demonstrated 

that ubiquitin is necessary to recruit the DDR proteins to the site of damage. For 

instance, when a damage occurs during DNA replication, the FA core complex 

mono-ubiquitinates the FA proteins FANCD2 and FANCI in a manner that 

promotes their recruitment to the HR foci60, 61.  

Other PTMs playing a role at DNA breaks are: SUMOylation, which consists of the 

addition of SUMO (small-ubiquitin-like modifier) to a substrate in order to 

increase the residence time of the target protein at damage foci62, 63, 64; 

PARylation, an early DDR process catalysed by PARP enzymes which promote the 

addition of ADP-ribose polymers to a substrate. These polymers contribute to the 

recruitment of the MRN complex  as well as the Polycomb complex34, 65, 66, 67. 

Moreover, several studies suggested a role for histone acetylation in the 

regulation of the dynamics of DDR factors68, 69, 70, 71, 72. Indeed, the acetylation 

status of histone proteins in the proximity of a DNA break can regulate the 

assembly of the proteins involved in DDR both indirectly by modulating chromatin 

compaction, and directly by creating binding sites. Finally, a necessary 

modification for the focal recruitment of DDR proteins in the site of damage is 

methylation73, 74. For instance, the recruitment of 53BP1 to the breaks is mediated 

by the recognition, through its tandem Tudor domains, of the methylated histone 

residues75.  

Once the DNA has been repaired, the DDR machinery must be switched off by the 

disassembling of the foci and this process appears to occur mainly by reversing 

PTMs. Indeed Ɣ-H2A.X dephosphorylation by several phosphatases plays an 

important role in terminating checkpoint signalling76, 77, 78 and in recruiting of 

histone acetyltransferase as Tip60, which promotes the acetylation-dependent 

eviction of H2A.X from chromatin79. Acting similarly to phosphatases, 
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deubiquitinating enzymes (DUBs) have also been implicated in the terminating 

process of DDR by antagonizing or suppressing the ubiquitin ligase-mediated 

ubiquitination. An example of this mechanism is given by OTUB1 (OUT domain 

ubiquitin aldehyde binding 1) which is a DUB that suppresses the RNF168-

mediated ubiquitination through direct inhibition of the E2 conjugating enzyme 

Ubc1380.  

 

3. Ubiquitination 

Ubiquitination, as suggested by the name, is a ubiquitous catalytic reaction that 

affects a plethora of cellular processes, such as cell growth, endocytosis, 

apoptosis, innate immune response, neuron degeneration and cellular trafficking. 

Moreover, several studies in the last years highlight the key role of ubiquitination 

as a modification that influences almost all aspects of DDR81, 82. The process of 

ubiquitination promotes the addition of a ubiquitin (ub) monomer to a target 

protein and occurs through three sequential steps catalysed by different enzymes: 

an (E1) ub-activating ezymes, an (E2) ub-conjugating enzymes and an (E3) ub-

ligases83. The first step is represented by the activation of a ub moiety in an ATP-

dependent two-step reaction prompted by an E1: initially a ub-adenylate 

intermediate is produced, followed by the reaction of this intermediate with an E1 

cysteine residue to form an E1-ub thioester. The following second step requires 

that the activated ub monomer is transferred from the E1 to an E2 in order to 

form an E2-thioester. At last, ub is added to a substrate through the formation of 

an isopeptide bond with the ub carboxyl-terminus and the ε-amino group of a 

lysine residue within the sequence of the target protein. In this step the E3, which 

binds both the E2 and the substrate, is crucial (Fig6). 
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FIGURE 6: THE UBIQUITINATION REACTION. Free ubiquitin (ub) is activated in an ATP-dependent 
manner with the formation of a thiol-ester linkage between E1 and the carboxyl terminus 
of ub. Ubiquitin is transferred to one of a number of different E2s. E2s associate with E3s. 
For HECT domain E3s, ubiquitin is next transferred to the active-site cysteine of the HECT 
domain followed by transfer to substrate (S) (as shown) or to a substrate-bound multi-
ubiquitin chain. For RING E3s, current evidence indicates that ubiquitin might be 
transferred directly from the E2 to the substrate84. 

  
 
The first clue of the complexity of ubiquitination is well represented by the high 

number of ubiquitinating enzymes. Indeed, the first step of the reaction can be 

catalyzed by two E1s, which can transfer the ub moiety to at least 40 different 

E2s, which then may serve more than 600 E3s. Moreover, the E3 ligases can be 

classified into three major groups depending on their catalytic domain: the HECT 

domain (Homologous to E6-associated protein C-terminus), the RING finger 

(Really Interesting New Gene) and the U-box E3s. Due to the different nature of 

the catalytic site, the E3s function differently: the HECT-type presents a catalytic 

cysteine residue, which accepts an ub moiety from the E2 before transferring it to 

the substrates.  Conversely, both the RING-finger and U-box types function as 

scaffolds between the E2 charged with ub and the substrates in order to facilitate 

the direct transfer of the ubiquitin from the E2 to the target protein.  
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The interesting pattern behind the E3s is their ability to be active in different 

cellular pathways suggesting a different mechanism of action. In DDR several RING 

finger E3, which possess a RING-finger domain with the following primary 

sequence: Cys-X2-Cys-X[9-39]-Cys-X[1-3]-His-X[2-3]-Cys-X2-Cys-X[4-48]-Cys-X2-

Cys, where “Cys” or “His” are respectively a conserved cysteine or histidine 

residue involved in zinc coordination and X is any aminoacid85, are well 

characterized. The three dimensional structure of this domain reveals that its 

conserved cysteine and histidine residues are buried within the core of the 

domain maintaining the overall structure (Fig.7). 

 

 
FIGURE 7: THE RING-FINGER DOMAIN. (A) Schematic representation of a C3HC4 RING finger. 
Most RING fingers contain two zinc atoms (yellow) coordinated with cysteine or 
cysteine/histidine-rich clusters (red). The general consensus sequence is: C-X2-C-X9–39-C-
X1–3-H-X2–3-C-X2-C-X4–48-C-X2-C, although some variations exist. (B) Overlay of crystal 
structure of the RING-finger domains found in c-CBL (blue) and RBX1 (red) reveals a 
significant degree of structural similarity in their E2-binding components. RBX, RING-box 
protein86. 
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3.1 Complexity of the ub system  

Ubiquitin is a 76-aminoacids long globular protein highly conserved throughout 

the eukaryotes. The secondary structure of this little protein is composed by five-

stranded β-turns and an α- helix, which confers a relative rigidity to the protein. 

Moreover, ub has an hydrophobic patch, centered on Ile44 and located in the 

middle of the domain formed by the α/β structure, which is an important 

interaction site87, 88 (Fig.8).  

 

 

 
FIGURE 8: THE UB STRUCTURE. (A) Backbone fold of ubiquitin, with secondary structure 
elements labelled. (B) Selected residues on ubiquitin are rendered as sticks and labelled. 
(C) The surface of ubiquitin, coloured by residue type. The colour scheme is gray for 
nonpolar, green for polar (uncharged), red for acidic, and blue for basic88. 

 

 

In spite of its little dimensions, ub has an incredible signalling power: it can form 

different polymeric chains through the addition of at least one ubiquitin molecule 

on any of the eight amino groups (the N terminus Methionine (M1) and the seven 

Lysines: K6, K11, K27, K29, K33, K48, and K63) present in the first monomer added 

to the target protein89, 90. This means that a substrate could be ubiquitinated on a 

single residue (mono-ubiquitination) or on multiple residues (multi-mono-

ubiquitination). Moreover, the substrate could be poly-ubiquitinated on a single 
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residue, forming different linkages that increase the complexity of the ub system, 

giving rise to ub chains with distinct topology, providing structural flexibility that 

results in a multitude of functional outcomes able to considerably affect cell life91, 

92 (Fig.9). 

 

 

 
FIGURE 9: THE UB SYSTEM. (A) The ubiquitin modification has three general layouts: mono-
ubiquitination, multi-mono-ubiquitination and poly-ubiquitination. (B) Forms of 
homotypic poly-ubiquitination, where each ubiquitin chain contains a single linkage type. 
Individual linkages may lead to distinct ubiquitin chain structure93. 

 
 
For instance, the structural studies of the well characterized K48- and the K63-

linked ubiquitin chains highlight the different spatial conformation between the 
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two chain types, which is read by the other proteins in different ways. K48- poly-

ubiquitination is predominantly a mark to target proteins for 26S proteasomal 

degradation, the K63- linked ubiquitination instead mediates a variety of non-

degradative pathways, including DNA repair, transcriptional regulation, 

endocytosis and activation of protein kinases94, 95, 96, 97 (Fig.10). 

 

 

 
FIGURE 10: STRUCTURES OF K48- AND K63-LINKED UBIQUITIN CHAINS. (A) Structure of K48-linked 
tetra-ubiquitin. Proximal (white) and distal (black) molecules are labelled. Proximal/distal 
describes the position relative to the substrate, see cartoon on the left. In K48-linked 
chains, all ubiquitin molecules interact with each other, and the Ile44 patches are not 
exposed. (B) K63-linked ubiquitin chains display an open conformation, both in the crystal 
structure and in solution. The Ile44 patches (shown as blue surface on the molecules) are 
exposed, and can adopt different relative positions due to the flexibility in the ub chain93. 

 
 

A further level of complexity lies in the formation of the branched poly-ubiquitin 

chains, which are mixed-linkage ubiquitin chains that form bifurcations 98.  

The E3 ligases as well as the E2 conjugating enzymes control the formation of a 

specific ub chain on the substrate. The diverse combination of E3s with several 

E2s induces a specific signalling through the addition of a peculiar modification on 

a broad number of substrates, including the ubiquitin ligases itself. For instance, 
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the E3 ligase BRCA1 (Breast Cancer Susceptibility Gene 1) promotes auto mono-

ubiquitination by interacting with the E2s UbcH6, Ube2e2, UbcM2 and Ube2w, 

whereas it promotes K63- or K48-linked auto-poly-ubiquitination by interacting 

with Ubc13-Mms2 and Ube2k, respectively99. These diverse and potent signals, 

which intrinsically lie in the ub molecule, result in an actual intriguing ubiquitin 

“code”. 

 

4. Inside the double strand breaks: the RNF8/RNF168-

dependent signalling 

DSBs arise on DNA in response to radiomimetic drugs or ionizing radiation (IR) and 

also after treatment with Topoisomerase II inhibitors that prevent relegation of 

DNA strands broken by Topoisomerase II activity. They are naturally occurring, not 

only in lymphocytes as mentioned before, but also at chromosome ends, where 

they are associated with human cell aging11, 100.  

Over the last years, it has become clear that, even if the initial trigger of the DSBs 

repair pathway lies heavily on phosphorylation, a key step in the activation of the 

DDR machinery relies on histone ubiquitination101. Indeed, the early steps of the 

pathway induces the quick recruitment of RNF8, which is the first ubiquitin ligase 

recruited on the site of damage. The RNF8-dependent ubiquitination is assisted by 

HERC2 (HECT domain E3 ligase) which promotes the interaction between the RING 

finger ligase and the E2 conjugating enzyme Ubc13 that prompts the formation of 

K63-linked ubiquitin chains on chromatin at the damaged site57. Although the 

critical substrates of RNF8 and K63-linked ubiquitination remain elusive, very 

recently Thorslund et colleagues demonstrated that the concerted action of RNF8 

together with Ubc13 predominantly targets the H1-type linker histones, 

expanding the concept of “histone code”102. The local RNF8/Ubc13-mediated 
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histone ubiquitination renders the DSBs-flanking chromatin susceptible to 

assemble additional regulators, including RNF168 which through its UBDs 

recognizes the RNF8-dependent ubiquitination and uses it as docking site to 

localize itself in the site of damage33, 48, 49, 53, 54, 103.   

The ubiquitination prompted by RNF168 targets the histones H2A and H2A.X on 

the bidentate K13/15 site at the N-terminal tail104, 105. The RNF168-dependent 

ubiquitination, in turn, generates docking sites for the recruitment of the effectors 

of the pathway, such as BRCA1 and 53BP1 (p53 binding protein). Both proteins are 

able to recognize ub signals. BRCA1 accumulation depends on Rap80, which 

possesses two adjacent UBDs named UIM1 and UIM2 or tandem UIMs103, 106, 

instead 53BP1 localization at DSBs is due to its UDR (ubiquitination-dependent 

recruitment) motif which, together with the Tudor domain, reads a bivalent 

ubiquitination-methylation signal at damage sites107 (Fig11).  

The interplay between BRCA1 and 53BP1 determines the effective DSBs repair by 

one of the two major DSBs repair pathways. Indeed BRCA1 promotes HR while 

53BP1 commits to NHEJ108, 109, 110. 

 

 
 
FIGURE 11: THE RNF8/RNF168-DEPENDENT SIGNALLING. Schematic representation of the ATM-
mediated DDR pathway with a focus on RNF8/RNF168. In response to a DSB, ATM 
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phosphorylates the histone H2A.X, which is recognized by MDC1 that in turn recruits 
RNF8. Simultaneously, ATM phosphorylates HERC2, which stimulates the interaction 
between RNF8 and Ubc13 promoting the RNF8/Ubc13-mediated K63-linked ubiquitin 
chains on chromatin. This ubiquitination is fundamental for the recruitment of RNF168 
that recognizes the ubiquitin through its UBDs and using it as a docking site in order to 
stay in the site of damage amplifying the signal by ubiquitinating the bidentate K13/15 
site at the N-terminal tail of the histones H2A/H2A.X. In turn, this ubiquitination allows 
the recruitment of 53BP1 and BRCA1.     

 
 

4.1 The ub-mediated fine-tuning of the DSBs reparation   

The ubiquitin-dependent signalling during DDR is multifaceted, inasmuch being 

read by different proteins, through their UBDs, determining distinct outcomes in 

the pathway111. For instance, the PcG transcriptional repressor complex 

Ring1b/Bmi1, which is a part of the polycomb complex, induces the silencing of 

the transcription in response to DSBs by mono-ubiquitinating the Lys119 of both 

histones H2A and H2A.X (H2A/H2A.XK119ub)112, 113, 114, 115.  

It was recently found that both Ring1b/Bmi1- and RNF168-dependent 

ubiquitination on histones H2A/H2A.X depend on an intact nucleosome acidic 

patch which could function as a scaffold to integrate differential signals on H2A116.  

Also the ubiquitination of H2B on Lys120 (H2BK120ub) by RNF20 is involved in 

gene transcription after damage; unlike the Ring1b/Bmi1-dependent 

ubiquitination, H2BK120ub is linked to gene activation, in part through chromatin 

decompaction at transcribed regions117, 118. In addition, the physical proximity 

between K120 on H2B and the bidentate K13/15 site of H2A/H2A.X ubiquitinated 

by RNF168 within the nucleosome suggests a possible cooperation of these marks 

during DNA repair97, 105, 117.  

An important consideration is that the E3 ligases function not only as positive 

regulators of the pathway but also as modulators of the signal magnitude in order 

to contribute to the proper ub spread on chromatin at the damaged sites. Among 
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these E3s there is RNF169, a paralogous to RNF168, which negatively regulates 

the RNF8/RNF168-dependent signalling. Due to its UBDs, RNF169 is able to 

compete with 53BP1 and Rap80 for the binding to the RNF168-mediated 

chromatin ubiquitination at the sites of damage119. Intriguingly, this ability of 

RNF169 to function in a non-catalytic manner provides the first example of an E3 

ligase that, independently from its catalytic activity, is able to regulate the protein 

accumulation at DSBs-flanking chromatin.  

Other examples of magnitude regulators of the signal are the two HECT domain E3 

ligases: TRIP12 and UBR5. These two enzymes are able to control the 

accumulation of RNF168 at the site of damage by preventing its excessive spread 

and therefore an abnormal chromatin ubiquitination that could have deleterious 

consequences, including unscheduled transcriptional silencing or sequestering 

cellular pools of limiting genome caretakers120.  

Since one of the consequences of the RNF168-dependent ubiquitination is the 

conspicuous increase in chromatin retention of 53BP1, the NHEJ is preferred 

under these conditions108, 109, 121. This suggests a possible regulatory role for the 

two HECT domain E3s so to funnel the signal towards one of the two mechanisms 

of DSBs repair.  

Another important, yet not well-understood, aspect of the ubiquitin-dependent 

signalling in DDR is how the control of the spatio-temporal events is achieved. 

Particularly, it remains to be clarified in detail how the disassembly of the repair 

complexes occurs after the damage is solved, which enzymes are involved and 

how this impacts on termination of the DNA damage checkpoint and ultimately on 

genomic stability and survival. An example of such mechanisms could include the 

DUBs activity that seems functionally connected with the DSBs response97, 122. 
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5. Deubiquitinating enzymes at work 

Ubiquitination is a reversible process prompted by the deubiquitinating enzymes 

(DUBs, also known as deubiquitinases or deubiquitylating enzymes). They can be 

divided into five families: ubiquitin C-terminal hydrolases (UCHs), ubiquitin-

specific proteases (USPs), ovarian tumour proteases (OTUs), Josephins and 

JAB1/MPN/MOV34 metalloenzymes (JAMMs; also known as MPN (+) or 

JAMM/MPN (+)).  

In the last years the importance of the DUBs in the modulation of the ub-based 

DDR was highlighted by several studies on different deubiquitinases. These DUBs 

were found actively involved in the regulation of the recruitment of RNF168-

responsive factors, in checkpoint recovery and DSBs-induced transcriptional 

silencing53, 54, 103, 123, 124, 125 (Fig.12). Since then, an increasing body of evidence 

supports the reversal of DNA damage-induced chromatin ubiquitination by DUBs 

as a key aspect of the DSBs response97, 122; in particular, a great part of these 

enzymes has been implicated as regulatory components of the RNF8/RNF168-

mediated ubiquitination at DSBs.  

Different DUBs can have a positive or a negative effect on signalling. The negative 

regulators usually limit the RNF8/RNF168 pathway by reversing the ubiquitination 

catalysed by these ligases. Examples are given by USP3 and USP44, two 

chromatin-associated proteins able to prevent the recruitment of 53BP1 to the 

IRIFs by deubiquitinating histone H2A54, 123. BRCC36 (BRCC3), a JAMMs DUB, 

regulates negatively by acting on K63-linked ub chains at DSBs. BRCC36 is part of 

the BRCA1 complex and, together with Rap80, inhibits HR early upon DSBs 

induction126, 127. Instead, DUBs such as OTUB1 are able to attenuate ub-based DDR 

through non catalytic inhibition of RNF16880.  
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Another DUB that conversely acts as a positive regulator of DDR, through an 

indirect mechanism, is USP34 which removes degradative ub chains on RNF168, 

thereby stabilizing the E3 and promoting DDR signalling128. Similarly USP7 also 

promotes ubiquitin-dependent DNA damage signalling by stabilising RNF168 129.  

These findings suggest the importance of the regulation of the RNF8/RNF168 

signal magnitude that can be obtained by the tight balance between the positive 

and the negative feedback on the pathway. Moreover, for the fine orchestration 

of the DDR machinery, the DUB selectivity is critical in order to give the necessary 

diversity to the ubiquitin signals at DSBs.  

Hereto, there are DUBs not directly involved in the RNF8/RNF168-dependent 

ubiquitination but still involved in the regulation of the pathway. For instance, 

USP16 (also known as Ubp-M) counteracts PcG-mediated gene silencing through 

deubiquitination of H2AK119ub130, 131, 132. Local transcription inhibition is 

dependent on Ring1b/Bmi1  and is partially regulated through RNF8/RNF168-

dependent ubiquitination112, 113, 114, 115, 125. These findings place USP16 at the 

interplay between the DNA repair machinery and the transcriptional regulation. 

Also BRCA1-associated protein 1 (BAP1; also known as UCHL2) displays DUB 

activity towards H2AK119ub133. Until now, the functional characterization of this 

deubiquitination is not yet fully understood. Considering that BAP1 is recruited to 

DSBs together with the evolutionary conserved PcG repressive complex PR-DUB 

(formed by BAP1 and additional sex combs-like 1 (ASXL1)), it is thought that it is 

related to the regulation of the PcG-mediated gene silencing112, 114, 115, 125.  

At last it behoves us to mention the characteristic role of the POH1/PSMD14-

dependent deubiquitination. POH1/PSMD14 is a JAMMs DUB and is also the 

intrinsic DUB of the 19S proteasome lid134, which has a role in the restriction of 

the ub conjugates at sites of DNA damage, leading to a restrained accumulation of 

53BP1 and promoting Rad51 loading. These results suggest a cross-talk between 
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proteasome and DNA repair, where the proteasome has the capacity to fine-tune 

DNA repair by balancing the activity of the ubiquitin ligases.  

 

 

 
FIGURE 12: THE ROLE OF DEUBIQUITINATING ENZYMES IN THE CHROMATIN-BASED RESPONSE TO DNA 

DSBS. (A) OTUB1 opposes RNF168 activity by binding to the E2 ubiquitin-conjugating 
enzymes UBC13 and UbcH5. USP3, USP44, and Dub3 DUB activities impair RNF168 
recruitment, suggesting that they can target RNF8 substrates. These DUBs may also 
cleave RNF168-mediated ubiquitinated H2A/H2AX. Excessive RNF168-dependent 
chromatin ubiquitination is limited by the TRIP12 and UBR5 E3 ligases, which target 
RNF168 for proteasomal degradation. USP34, instead, counteracts DSBs-induced RNF168 
ubiquitination. DSBs also trigger the recruitment of the Polycomb group E3 RING1B/Bmi1 
which mono-ubiquitinates H2A on Lys119 (H2AK119Ub) to locally repress transcription. 
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USP16 and BAP1 target the H2AK119Ub mark, and USP16 activity is required for re-
activation of DSB-induced transcriptional silencing. USP3 and USP44 oppose to steady-
state mono-ubiquitinated H2A, which is primarily constituted by H2AK119Ub. (B) The 
DUBs BRCC36, POH1, and OTUB2 regulate DDR signalling by hydrolyzing DSB-induced 
K63-ub chains. Whether MYSM1, which also possesses K63-ub cleavage activity, 
participates in this step of DDR is an open question. Dashed lines indicate proposed 
protein–protein interactions. X indicates an unknown RNF8 substrate(s), and Y and W 
indicate unknown RNF168 substrates135. 
 
 

6. The DSBs-associated DUBs in cancer biology 

De-regulation of DDR mechanisms can contribute to cancer but may also promote 

functional decline of the stem cells with consequential deterioration in tissue 

function and aging11, 136, 137. Consistent with this and considering the importance 

of some DDR proteins in human cancer (e.g. BRCA1), in the last years several 

studies were addressed to the relationship between the DNA repair-dependent 

ubiquitination and cancer biology.  

Although much attention has been paid to the role of ubiquitin ligases in 

tumorigenesis, only recently it has been started to shed light on the mechanisms 

behind cancer prompted by the enzymes that reverse ubiquitination: the DUBs.  

By direct investigation of the consequences of inactivation of some DUBs in 

mouse models, a first step was done towards the identification of candidates 

which could be considered as future possible pharmaceutical targets. Notably, the 

screening highlights the ability of the engineered depleted mouse to develop 

neoplasia: Usp3-depleted mice develop a broad spectrum of tumour types with a 

latency of one year of age138. Further, MYSM1-deficent mice are tumour prone, 

developing thymic lymphoma with a latency of 4-6 months139. Moreover, USP44 

knock-out mice are prone to develop spontaneous tumours, displaying in 

particular an approximately nine-fold increase in adenomas of the lung compared 

to wild type upon aging140. More importantly, USP44 was also frequently found 
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down-regulated in human bronchial adenocarcinomas and patients with low 

USP44 expression had significantly shorter overall survival, underscoring a tumour 

suppressive function in human cancer140. Zhang and colleagues also reported in 

their study of 2012 that mouse cells lacking USP44 not only show a defect in 

silencing the mitotic checkpoint, but they mis-segregate their chromosomes and 

exhibit whole chromosome aneuploidy. These findings suggest that one 

mechanism by which USP44 suppresses tumorigenesis is by preventing 

aneuploidy, a feature commonly associated with human cancer140.  

But not all the DUBs act as tumour suppressors: for instance, BRCC36 is 

overexpressed in primary human breast tumours, suggesting that its excessive 

activity may predispose to tumorigenesis. In support of this hypothesis, a 

correlation between high levels of BRCC36 and some cancer type (e.g. bladder, 

ovary, prostate, breast cancer) was reported in the Oncomine database141.  

On the other hand USP10 is a rather controversial DUB which is stabilized upon 

DNA damage and acts as regulator of p53 degradation and activity by reversing 

Mdm-2-mediated K48-linked ubiquitination142. In cells expressing wild-type p53, 

USP10 acts as oncosuppressor by abolishing tumour cell proliferation. Therefore, 

cancer has selected a mechanism in order to induce a downregulation of USP10 

expression in cells expressing wild-type p53 or an upregulation of the 

deubiquitinase expression in p53-mutated cells142, 143, 144. 

Considering all this, it is clear that DUBs are involved in cancer-related pathways 

and that the current studies are only beginning to comprehend the molecular 

mechanisms behind the impact on organism physiology and human diseases. 

Gaining insight into the functional role of the DUBs could provide an important 

rationale to develop dedicated drugs for more specific therapeutic approaches. 
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OUTLINE OF THE THESIS  
DNA is damaged all the time by a plethora of injuries; in spite of this, only a few 

changes accumulate as mutations in the DNA sequence. This preservation of 

genome integrity is due to a large investment that cells make in the action of a 

complex network called DNA damage response (DDR), responsible for the DNA 

damage surveillance.  

When DNA damage occurs, an organized and complex pathway of post-

translational modifications (PTMs), prompted by several enzymes, regulates the 

fine orchestration of the repair machinery. PTMs are reversible modifications that 

are known to be essential to dynamically coordinate the signalling networks 

thanks to their ability to diversify the protein functions without the need of de 

novo protein synthesis. Moreover, PTMs generate docking sites on target proteins 

at the damaged site, contributing to the formation of supramolecular structures 

named DDR foci. Among the PTMs, ubiquitination stands up as a key modification 

that influences almost all aspects of DDR. The peculiarity of ubiquitination as a 

signalling device lies in the fact that ubiquitin (ub) can form different polymeric 

chains through the addition of ub molecules on any of the eight amine groups (the 

N-terminus (M1), K6, K11, K27, K29, K33, K48, and K63) present in the first 

monomer added to the target protein. The resulting chains will show a distinct 

topology that leads to different outcomes. Until now, the type of ub chain largely 

associated to genome maintenance has been the K63-linked that mediates 

protein-protein interaction in DDR.  

Currently our knowledge about the mechanisms behind the maintenance of 

genome integrity is predominantly based on the action of the ubiquitin ligases. It 

is well known the fundamental role of the two E3s RNF8 and RNF168, which 

induces extensive chromatin ubiquitination by targeting histones H2A and H2A.X. 

Interestingly, we recently discovered that RNF168 prompts an unusual 
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ubiquitination signalling by targeting the bidentate site K13/15 at the N-terminal 

tail of histones belonging to H2A family. This important finding demonstrates that 

RNF168 marks chromatin around DSBs using a unique ubiquitin mark, different 

from that promoted by Ring1b/Bmi1 at the C-terminal of the same histones.  

Starting from these unprecedented findings, which highlighted the peculiarity of 

the DSBs-induced RNF168-activity towards chromatin, our work focused on two 

main aspects. First: we aimed to better characterize the specific activity of RNF168 

in the context of DDR. Indeed, we demonstrated that RNF168 induces the atypical 

K27-linked ubiquitination on chromatin and that this modification is the major 

chromatin-ubiquitin mark after DSBs. In addition, we showed that RNF168-

dependent K27-linked ubiquitination targets the bidentate site of the histone 

H2A.X. Secondly, we strived to demonstrate that the RNF168-dependent K27-

ubiquitination is fundamental for the signal spread on chromatin. We found that 

K27-linked ubiquitination is strictly required for the proper activation of the DNA 

repair: it recruits, together with the K63-ubiquitination, 53BP1 and BRCA1 to the 

DDR foci. Moreover, we found that the DDR proteins recruited in RNF168-

dependent manner are able to recognize K27-linked ubiquitin chains, providing 

further evidence of the pivotal role of this linkage in the ub-based events that 

regulate DDR.  

Afterwards, considering the emerging relevance of RNF168 in this process, we 

focused on the identification and characterization of its novel interacting partners 

and substrates. To this aim, we performed a quantitative proteomic screening 

based on the SILAC method, which identified several proteins involved in various 

biological processes. Interestingly, among them we found a poorly characterized 

deubiquitinating enzyme (DUB), involved in cancer biology, namely USP10. DUBs, 

which are enzymes able to reverse ubiquitination and process all types of ub-

chains, have a crucial role in many cellular processes, including DDR. Thus, we 
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concentrated our research activity on the characterization of the role of USP10 in 

the regulation of the RNF168-induced signalling, thereby participating in the DNA 

damage response. Our findings demonstrate that USP10 constitutively interacts 

with RNF168 and, in particular, we discovered that it is able to recognize the 

region on RNF168 that encompasses its RING-finger domain, which is responsible 

for the ubiquitin ligase activity, suggesting a possible modulatory role of USP10 on 

the E3 ub ligase. Indeed, we found that the deubiquitinase affects the 

ubiquitination status of RNF168 but does not affect its stabilization. Although at 

the moment the mechanism of action is not fully understood, our results suggest 

a catalytically-independent regulation of the activity of RNF168 by USP10. At last, 

we functionally characterized USP10 as a necessary player for the correct 

activation of DDR and DNA repair.  

Overall, our findings highlighted the intricate as well as fascinating DDR-signalling 

cascade, clearly indicating the importance of RNF168 as a key enzyme of the 

pathway. The characterization of the RNF168-dependent ubiquitination provides 

an additional signalling network able to reinforce the transmitted signal and give 

an idea on the potential of ub-crosstalk as a critical regulatory mechanism for 

genome maintenance. Moreover, our evidence on the action of USP10 on RNF168 

opened a new scenario which promises to shed light on the mechanisms that 

regulate the activation of RNF168. Thus it is of fundamental importance to 

investigate the fine-tuning of the pathway of USP10 in order to unravel the 

molecular interplay that lies behind the ub cascade in DDR. 

 

 



 

 



PAPER                                                                                                                                             CHAPTER 3 

 

45 
 

RNF168 PROMOTES NON-CANONICAL K27 UBIQUITINATION TO SIGNAL DNA 

DAMAGE 
 
Marco Gatti, Sabrina Pianto, Alessio Maiolica, Francesca Rocchio, Maria Giulia 
Prato, Ruedi Aebersold, Lorenza Penengo 
 
Published in Cell Reports, 2015 Jan 13; Vol. 10, Issue 2, p226-238. Epub 2015 Jan 8. 
 
 
SUMMARY 

Ubiquitination regulates numerous cellular processes by generating a versatile 

communication system based on eight structurally and functionally different 

chains linked through distinct residues. Except for K48 and K63, the biological 

relevance of different linkages is largely unclear. Here, we show that RNF168 

ubiquitin ligase promotes non-canonical K27-linked ubiquitination both in vivo and 

in vitro. We demonstrate that residue K27 of ubiquitin (ubK27) is required for 

RNF168-dependent chromatin ubiquitination, by targeting histones H2A/H2A.X, 

and that it is the major ubiquitin-based modification marking chromatin upon 

DNA damage. Indeed, ubK27 is strictly required for the proper activation of the 

DNA damage response (DDR) and is directly recognized by crucial DDR mediators, 

namely 53BP1, Rap80, RNF168, and RNF169. Mutation of ubK27 has dramatic 

consequences on DDR activation, preventing the recruitment of 53BP1 and BRCA1 

to DDR foci. Similarly to the DDR, atypical ubiquitin chains could play 

unanticipated roles in other crucial ubiquitin-mediated biological processes. 

 
INTRODUCTION 

Ubiquitination is a post translational modification widely used to regulate protein 

function in a dynamic and reversible manner. It is a multistep process involving an 

ubiquitin activating enzyme (E1) that activates the C terminus of free ubiquitin, 



PAPER                                                                                                                                                          CHAPTER 3 

 

46 
 

which in turn is passed to an E2-conjugating enzyme and finally, with the help of 

an E3 ubiquitin ligase, targets a Lys residue of the substrate. After the first 

ubiquitin monomer, additional ubiquitin molecules can be attached to the target 

protein through any of the eight amine groups in the first molecule - the N 

terminus (M1), K6, K11, K27, K29, K33, K48, and K63 - to form poly-ubiquitin 

chains. These different linkages increase the complexity of the ubiquitin system, 

giving rise to ubiquitin chains with distinct topology, providing structural flexibility 

that result in a multitude of functional outcomes. The functional roles of K48- and 

K63-linked ubiquitin chains have been widely investigated; K48- poly-

ubiquitination is extensively utilized to target proteins for 26S proteasomal 

degradation, whereas K63-linked ubiquitination mediates protein-protein 

interaction in different processes (Chen and Sun, 2009, Jackson and Durocher, 

2013, Woelk et al., 2007). Besides the relevance of K11 and M1 linkages in cell 

cycle regulation and NF-κB activation (Iwai and Tokunaga, 2009, Wickliffe et al., 

2009), respectively, little is known about the writers (ubiquitin ligases), the 

readers (ubiquitin receptors), and the functional consequences of the other non-

canonical ubiquitin chains. Recently, different groups reported the essential role 

of ubiquitination in the DNA damage response (DDR) and in several DNA repair 

mechanisms. A paradigmatic example of DDR coordination via ubiquitination is 

represented by the signalling pathway triggered by DNA double-strand breaks 

(DSBs). Activation of ATM induced by DSBs elicits a cascade of phosphorylation 

and ubiquitination events that promote the formation of supramolecular 

complexes, namely the DDR foci, which function in integrating and amplifying the 

signal to downstream effectors. These ubiquitination events are initiated by two 

ubiquitin ligases, RNF8 and RNF168, which modify chromatin ubiquitinating 

histones H2A and H2A.X in the proximity of the damage. The K63-specific E2-

conjugating enzyme Ubc13 has also been consistently implicated in these 
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processes (Doil et al., 2009, Huen et al., 2007, Kolas et al., 2007, Pinato et al., 

2009, Stewart et al., 2009, Wang and Elledge, 2007). Interestingly, it has been 

recently reported that the ubiquitin tag generated on chromatin by RNF168 upon 

genotoxic stress targets histone H2As on the unprecedented bidentate K13/K15 

site at its N-terminal tail (Gatti et al., 2012, Mattiroli et al., 2012). This intricate 

ubiquitin-based network drives the formation of signalling platforms to facilitate 

the recruitment to DDR foci of fundamental components of the pathway, such as 

53BP1 and BRCA1, required for the activation of downstream effectors (Huen et 

al., 2007, Kolas et al., 2007, Mailand et al., 2007). To ensure the fine-tuning of this 

ubiquitin-based communication system, a number of different mechanisms have 

evolved to constrain the activity of RNF8 and RNF168. These include the inhibitory 

effect of different deubiquitinating enzymes. Specifically, USP3 and USP16 

counteract H2A ubiquitination (Weake and Workman, 2008), BRCC36 displays 

selectivity for K6 and K63 modulating the signals generated by apical ubiquitin 

ligases (Sobhian et al., 2007), and OTUB1 suppresses RNF168-mediated 

ubiquitination independently of its catalytic activity, by inhibiting UBC13 (Nakada 

et al., 2010). An additional case of negative regulation of DDR signalling is 

provided by the two HECT-type ubiquitin ligases TRIP12 and UBR5, which control 

the accumulation of RNF168 to DDR foci, thereby preventing excessive histone 

ubiquitination (Gudjonsson et al., 2012). Finally, an alternative example of 

negative regulator of DDR is offered by RNF169, an ubiquitin ligase related to 

RNF168, which functions at the DDR foci by competing with 53BP1 and 

RAP80/BRCA1 for the binding to RNF168-modified chromatin, thus limiting their 

recruitment to DSBs (Chen et al., 2012, Poulsen et al., 2012). The involvement of 

the ubiquitination system in the DDR has been mainly linked to the role played by 

K63-ubiquitination. This is partly due to the pivotal role of Ubc13 in many aspects 

of the DDR and to the consequent development of specific investigation reagents 
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(K63-ubiquitin chains, linkage-specific antibodies, etc.). However, a detailed study 

of the role played by different ubiquitin chain linkages in the regulation of DDR 

and DNA repair is still missing. In this study, we adopted biochemical and mass 

spectrometry approaches, together with small interfering RNA (siRNA)-based 

ubiquitin knockdown, to survey the functional relevance of different types of 

ubiquitination in DDR. Our results reveal that the atypical K27-linked 

ubiquitination is surprisingly the major ubiquitin mark targeting chromatin after 

DSB induction. This modification is promoted by RNF168 and addresses histone 

H2A and H2A.X on chromatin. Importantly, in addition to K63, K27 ubiquitination 

is strictly required for the proper activation of the DDR. Ubiquitin mutants lacking 

this residue are largely defective in the recruitment of 53BP1 and BRCA1 to the 

DDR foci, whereas ubiquitin forms carrying only K27 and K63 residues are able to 

restore 53BP1 localization to DDR foci. Finally, we found that the DDR proteins 

accumulating on damaged chromatin in RNF168-dependent manner - i.e., Rap80, 

53BP1, RNF169, and RNF168 itself - are able to physically interact with synthetic 

K27-linked ubiquitin dimers. Overall, our data identify a crucial function for non-

canonical K27 ubiquitination in the DDR, determine the ubiquitin ligase that 

specifically builds K27 ubiquitin conjugates, and define key targets and readers of 

this modification. 

 
MATERIALS AND METHODS 

Cell culture and RNAi 

All culture media were supplemented with 10% fetal bovine serum and 2 mM L-

glutamine. U2OS cell line expressing the RNF168-targeting shRNA in a doxycycline-

inducible manner, kindly provided by J. Lukas, was cultured in Dulbecco’s modified 

Eagle’s medium supplemented with 10% fetal bovine serum tetracycline free 

(BioWest), 2 mM L-glutamine, 1 μg/ml puromycin (Sigma), and 5 μg/ml blasticidin 
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S (Sigma). Depletion of endogenous RNF168 was obtained by treating U2OS cells 

with 0.1 μg/ml doxycycline (Sigma) for 96 hr. RNAi is detailed in Supplemental 

Experimental Procedures. 

 
Targeted mass spectrometric analysis by SRM 

Sample preparation, development of SRM assay, and the detailed protocol are 

included in the Supplemental Experimental Procedures. 

 
Shotgun mass spectrometric analysis 

Detailed protocol for shotgun analysis is given in the Supplemental Experimental 

Procedures. 

 
Pull-down assays with synthetic di-ub 

Pull-downs were performed by incubating 1 μM of recombinant proteins with 

0.25 μg of ubiquitin dimers for 1 hr in a buffer containing 50 mM HEPES (pH 7.5), 

150 mM NaCl, 1% Triton X-100, 10% glycerol, 1 mM EDTA, and 1 mM EGTA. 

Samples were washed four times using high-salt buffer (500 mM NaCl), 

equilibrated in 150 mM NaCl, and then analyzed by SDS-PAGE and 

immunoblotting. Ubiquitin immunoblotting was performed using polyvinylidene 

difluoride membranes (Sigma-Aldrich), denatured in guanidinium chloride and 

immunoblotted using anti-ubiquitin (P4D1; Santa Cruz Biotechnology). 

 
In vitro ubiquitination assay 

Recombinant proteins were expressed as described in the Supplemental 

Experimental Procedures. For the reaction, 5 μg of purified RNF168 construct was 

incubated with 0.1 μg human recombinant E1 ub-activating enzyme, 0.2 μg of 

purified His-Ubc5Hc (kindly provided by E. Maspero), and 1 μg of ubiquitin in 25 

mM Tris-HCl (pH 7.4), 5 mM MgCl2, 100 mM NaCl, 1 μM dithiothreitol, and 2 mM 
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ATP (Sigma-Aldrich) at 30°C for 1 hr. ATP regeneration system (Sigma-Aldrich) was 

used to recycle ATP. 

 
In vivo detection of ubiquitinated chromatin and histones 

HEK293T cells expressing different ubiquitin mutants 48 hr after transfection were 

collected in PBS, containing protease inhibitor cocktail (Sigma-A;drich), 1 mM 

phenylmethylsulfonyl fluoride, and 20 μM N-ethylmaleimide. One-tenth of the 

samples were separately processed for protein normalization, whereas the 

remaining was subjected to acidic extraction. Then, samples were either directly 

analyzed by SDS-PAGE and western blotting or subjected to a second step of 

purification, by immunoprecipitating using the FLAG-resin, in the presence of 0.1% 

SDS. Samples were then eluted by glycine and processed for mass spectrometry 

analysis or by SDS-PAGE and immunoblot as indicated. 

 
Immunofluorescence analysis 

U2OS and HEK293T cells subjected to different transfections (plasmids and siRNA 

oligonucleotides) and drug treatments (etoposide) were processed as previously 

described (Pinato et al., 2011). Images were acquired by confocal scanning laser 

microscopy (Leica TCS2; Leica Lasertechnik).  

 
RESULTS 

RNF168 remodels chromatin by promoting K27-dependent ubiquitination 

It has been previously shown that expression of the histone ubiquitin ligase 

RNF168 induces extensive chromatin ubiquitination. However, the use of K63-

specific antibodies revealed that these ubiquitin signals are only partially 

explained by the formation of K63 ubiquitin chains on histone H2As (Doil et al., 

2009, Pinato et al., 2009, Stewart et al., 2009), suggesting that additional non-K63-

linked ubiquitination events are induced by RNF168 to remodel chromatin 
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structure. To further characterize RNF168-dependent chromatin ubiquitination, 

we first adopted a biochemical approach by using a panel of ubiquitin mutants 

carrying a single K/R mutation on each of the seven lysines in the ubiquitin 

sequence, potentially involved in the formation of poly-ubiquitin chains. These 

FLAG-tagged constructs were expressed in human embryonic kidney 293T 

(HEK293T) cells together with RNF168, in order to determine the Lys residue(s) 

critical for RNF168-induced chromatin ubiquitination. Analysis of chromatin after 

acidic extraction revealed that the expression of K63R mutant marginally altered 

the amount of ubiquitinated proteins in the extracts (see Figure 1A), suggesting 

that K63 is largely dispensable for RNF168-induced nucleosome ubiquitination. 

Although similar results were obtained with most other lysines, a significant 

reduction of chromatin ubiquitination is instead observed by using an ubiquitin 

mutant lacking K27 (K27R; Figure 1A). To further investigate the possible role of 

K27 linkage, we then asked whether the K27 residue of ubiquitin is by itself 

sufficient to sustain chromatin ubiquitination. We used a reciprocal series of 

mutants, where all the seven lysines of ubiquitin were converted to arginine, 

except one (K-only mutants). By using this approach, we observed that the 

ubiquitin construct depleted of all the lysines (K0 mutant) strongly impaired the 

formation of ubiquitin signal on chromatin, although it partially retained the 

ability to generate multi-mono-ubiquitination, by conjugating to target proteins 

via the C-terminal Gly76 (ub1 and ub2; Figure 1B). Remarkably, we found that the 

presence of the single K27 was sufficient to rescue the ubiquitination signal on 

chromatin at comparable levels to the wild-type protein, clearly indicating that 

RNF168 uses primarily this atypical ubiquitin linkage to target chromatin (Figure 

1B). In these experiments, we observed variability in the incorporation of different 

ubiquitin mutants, which is intrinsic to the system because mutants affecting 

distinct Lys residues could be differently conjugated into proteins (Figures S1A 
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and S1B). To exclude that the differences in ubiquitination signal were due to 

uneven expression/conjugation of the mutants, we normalized the samples in 

respect to the mono-ubiquitinated form of histones (Figures S1C and S1D). Also, 

in this case, the relevance of ubK27 is evident, both using the K/R and the K-only 

mutants of ubiquitin. To exclude that the K27R mutant might prevent per se 

ubiquitin conjugation, thereby resulting in an indirect reduction of the 

ubiquitination signal, we carried out two different experiments. First, we 

performed in vitro ubiquitination assays using different combinations of enzymes 

that specifically generate either K63- (Ubc13/Mms2 and UbcH5c/Nedd4; Figures 

S2A and S2B) or K48-linked chains (Ube2R1/Nedd4; Figure S2C; Maspero et al., 

2011), in the presence of ubiquitin wild-type, K0, K27R, K63R, or K48R mutants. In 

all cases, K27R mutant was able to generate ubiquitin conjugates at level 

comparable to wild-type protein. Then, to further support the functionality of 

K27R, we expressed either FLAG-tagged K48-only or K63-only mutants, in the 

presence of hemagglutinin (HA)-tagged wild-type, K27R, K63R, or K48R mutants in 

the context of ubiquitin depletion (Figures S2D and S2E). We observed that both 

K48 and K63 conjugates are formed in the presence of the K27R mutant construct 

(Figure S2E). Overall, these results indicate that ubK27 is largely responsible for 

RNF168-mediated chromatin ubiquitination and that the low incorporation 

observed when expressing the K27R mutant is not due to its intrinsic deficiency in 

ubiquitin conjugation. 

 
RNF168/UbcH5c complex forms K27-linked ubiquitin chains in vitro  

Although these results unambiguously support the relevance of the ubK27 for 

RNF168-dependent chromatin ubiquitination, they do not prove direct ability of 

RNF168 to promote K27-linked ubiquitination. To address this point, we 

performed in vitro ubiquitination assays with purified recombinant proteins, using 
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bacterially expressed RNF168 as E3 ubiquitin ligase, in the presence of wild-type 

ubiquitin or different mutants, i.e. K0, K63 only, and K27 only. As E2-conjugating 

enzyme, we opted for the use of UbcH5c, due to its low selectivity toward E3s and 

to its broad linkage specificity. Using this system, we ascertained that RNF168 is 

able to induce extensive auto-ubiquitination in the presence of wild-type ubiquitin 

(Figure 1C). In contrast, the K0 mutant highly impaired the formation of poly-

ubiquitin chains, generating a modest signal likely due to mono-ubiquitination on 

different sites of RNF168 itself. Notably, when the sole K27 was present, RNF168 

ubiquitination was completely recovered and comparable to wild-type levels 

(Figure 1C). The K63-only mutant retained the capacity to induce ubiquitination 

but at significantly lower levels than wild-type or K27-only ubiquitin. Overall, 

these results indicate that UbK27 is the favorite Lys residue utilized by RNF168 to 

induce non-canonical ubiquitination both in vivo and in vitro. 

 

 



PAPER                                                                                                                                                          CHAPTER 3 

 

54 
 

FIGURE 1: RNF168 INDUCES NONCANONICAL K27-LINKED UBIQUITINATION BOTH IN VIVO AND IN 

VITRO. (A) In vivo ubiquitination of chromatin was evaluated in HEK293T cells expressing 
exogenous RNF168, together with FLAG-tagged ubiquitin mutants carrying a single K/R 
substitution, as indicated. After acid extraction of core nucleosomes, samples were 
analyzed by SDS-PAGE. Immunoblotting (IB) with anti-FLAG revealed the presence of 
higher-molecular-weight proteins compatible with mono-, di-, and tri-ubiquitinated forms 
of histones (ub1, ub2, and ub3, respectively). Protein loading was detected by anti-H3 (on 
chromatin extracts) and anti-tubulin (on total cell lysates; TCL). RNF168 expression was 
verified by anti-RNF168 IB. WT, wild-type. (B) In vivo ubiquitination of chromatin was 
evaluated as in (A) by using the K-only set of ubiquitin mutants; samples were analyzed as 
in (A). (C) In vitro auto-ubiquitination assay was performed using purified E1, E2 (UbcH5c), 
and E3 (glutathione S-transferase [GST]-RNF168), in combination with the indicated 
ubiquitin mutants. IB was performed as indicated. Signals observed with ubiquitin (ub) IB 
correspond to ubiquitinated forms of RNF168 (top) and to free ubiquitin (bottom). See 
also Figures S1 and S2. 
 
 

Targeted mass spectrometric analysis reveals that RNF168 promotes the 

formation of K27-ubiquitinated conjugates into chromatin 

We next took a mass-spectrometry-based approach to test whether K27 non-

canonical ubiquitination normally occurs in RNF168-expressing cells. Therefore, 

we set up an analysis based on liquid chromatography coupled to selected 

reaction-monitoring mass spectrometry (LC-SRM; Maiolica et al., 2012) to 

unambiguously identify and quantify the tryptic di-Gly signature peptide indicative 

for K27-linked ubiquitination (TITLEVEPSDTIENVK[GlyGlyAK]; Figure 2A). To build 

the required specific and sensitive SRM assay for the K27-linked ubiquitin peptide, 

we digested synthetic K27-ramified di-ubiquitin with trypsin and analysed the 

resulting peptides. SRM identifies the targeted molecular entity based on a peak 

group formed by multiple co-eluting signal traces that are generated from 

fragment ions derived from the target molecule (transitions), in this case, the 

ubK27 di-Gly peptide (Figure 2A). The integrated peak area of all transition signals 

determines the quantity of the targeted peptide. To determine whether RNF168 

induces K27-linked ubiquitination, we expressed either wild-type FLAG-tagged 
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ubiquitin alone or together with RNF168 in HEK293T cells, extracted chromatin 

fraction, and enriched the FLAG-tagged ubiquitinated proteins (Figures 2B and 

2C). The resulting protein samples were treated with trypsin and analysed by SRM 

as described above. Remarkably, we found that the ubK27 di-Gly peptide is highly 

represented in samples where RNF168 is expressed but barely detectable when 

only the wild-type FLAG-ubiquitin is present (Figures 2D and 2E). This result 

clearly indicates that K27 ubiquitination is induced in cells by RNF168. 
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FIGURE 2: SRM ANALYSIS REVEALS THE FORMATION OF K27 CONJUGATES ON CHROMATIN IN CELLS 

EXPRESSING RNF168. (A) Development of the SRM assay for K27-ubiquitinated peptide 
detection. K27 di-ubiquitin was digested with trypsin and analysed by LC-SRM. Fifty-one 
transitions were monitored; the four most intense transitions corresponding to the ions 
y3, y5, y6, and b3 were selected for label-free quantification of the chromatin samples. 
(B) Schematic representation of the experimental procedure. HEK293T cells were co-
transfected with RNF168 or empty vector, together with FLAG-tagged ubiquitin wild-type; 
72 hr after transfection, cells were subjected to chromatin purification followed by FLAG 
immunoprecipitation (IP). (C) After glycine elution, samples were in part analysed by IB as 
indicated and in part subjected to trypsin digestion and processed for SRM analysis, as 
described in the Supplemental Experimental Procedures. (D) Representative 
chromatograms of ubiquitinated K27 peptide measured in digested chromatin samples. 
(E) SRM quantification of the chromatin samples. The bars in the graph indicate the sum 
of the areas of each of the four transitions measured to quantify the K27-ubiquitinated 
peptide in chromatin samples. Error bars represent SD. See also Figure S3. 

 
 
Histones are substrates of RNF168-induced K27 ubiquitination 

It has been shown that histones belonging to the H2A family are ubiquitinated by 

RNF168 (Doil et al., 2009, Gatti et al., 2012, Mattiroli et al., 2012, Pinato et al., 

2009, Stewart et al., 2009). Given that we now observed that RNF168 remodels 

chromatin via ubK27, we asked whether histones are also targets of this 

modification. We transfected HEK293T cells with FLAG-tagged K27-only ubiquitin 

mutant, together with RNF168 or the vector alone (Figure S3A), and applied the 

experimental protocol used in Figure 2B. This allowed us to highly enrich the 

sample with K27-linked ubiquitin conjugates, as indicated by the amount of K27 

di-Gly peptides detected (Figures S3B and S3C). Then we analysed these samples 

by shotgun mass spectrometry, in order to identify, among all the proteins pulled 

down with K27 conjugates, those that are subjected to ubiquitination, as indicated 

by the presence of the di-Gly signature within their sequence (see Table 1). As 

expected, we obtained a significant number of peptides, conjugated to di-Gly 

mark and corresponding to different histones, including H2As, together with other 
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putative targets of K27 ubiquitination. Due to their fundamental role in the 

activation of DDR, we focused on histone H2A and H2A.X for further analysis. 

 

Peptide Prophet Probability Peptide Protein 

0.99 K.LLGGVTIAQGGVLPNIQAVLLPKK[GlyGly].T H2A (Q8IUE6) 

0.99 K.VTIAQGGVLPNIQAVLLPK[GlyGly]K.T H2A (P0C0S8) 

1 K.VTIAQGGVLPNIQAVLLPKKTESHHK[GlyGly].A H2A 

0.99 K.AVTK[GlyGly]YTSSK.- H2B (P33778) 

0.99 R.EIAQDFK[GlyGly]TDLR.F H33 (P84243) 

0.99 M.PEPAK[GlyGly]SAPAPK.K H2B (P06899) 

1 R.K[GlyGly]ASGPPVSELITK.A H13 (P10412) 

1 R.TLSDYNIQK[GlyGly]ESTLHLVLR.L ubiquitin (P0CG47) 

0.99 R.LIFAGK[GlyGly]QLEDGR.T ubiquitin (P0CG47) 

1 G.K[GlyGly]PEPPAMPQPVPTA.- RS3 (P23396) 

0.96 R.VQCCLYFIAPSGHGLK[GlyGly]PLDIEFMK[GlyGly]R.L SEPT7 (Q16181) 

0.91 R.VAGGPVTPRK[GlyGly]GPPK.F CNRG (P18545) 

0.91 K.SGK[GlyGly]YVLGYK.Q RL30 (P62888) 

0.89 N.K[GlyGly]PGPYSSVPPPSAPPPK.K NOLC1 (Q14978) 

0.86 K.VLK[GlyGly]YAGHPPFEHSPIR.F PER3 (P56645) 

1 A.DQLTEEQIAEFK[GlyGly]EAFSLFDKDGDGTITTK.E CALM HUMAN 
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0.92 K.K[GlyGly]ISSSGALMALGV.- MYLK2 (Q9H1R3) 

0.95 K.AYIDK[GlyGly]EIEALQDK[GlyGly]IK.N SULF1 (Q8IWU6) 

0.94 K.EFVK[GlyGly]SSVACK.W CD37L (Q7L3B6) 

0.91 K.LVEALDLFERQMLK[GlyGly].E PTCD1 (O75127) 

 
TABLE 1: IDENTIFICATION OF UBIQUITINATED PROTEINS DERIVED FROM K27-UBIQUITIN-ENRICHED 

CHROMATIN EXTRACTS. A selected list of di-Gly-marked peptides, identified by mass 
spectrometry analysis (see Experimental Procedures for details), reveals the presence of a 
high number of peptides corresponding to histone proteins. 

 
 
More specifically, we aimed to verify if H2As are substrates of K27 ubiquitination 

and to assess the specificity for ubK27 in respect to other chain linkages. We 

expressed a panel of K-only mutants of ubiquitin in HEK293T cells, together with 

RNF168, and performed biochemical analysis. Ubiquitinated proteins derived from 

chromatin extracts were immunopurified by using FLAG resin and subjected to 

immunoblotting using antibodies directed to histones H2A and H2A.X (Figure 3A). 

Notably, we found that, in the presence of wild-type and K27-only ubiquitin, both 

histones H2A and H2A.X are markedly ubiquitinated. Conversely, the expression of 

the mutants K0, K63-only, and K33-only did not assist RNF168-mediated 

ubiquitination of H2As. Overall, these results indicate that ubK27 is required to 

ubiquitinate histone H2As in vivo. We next asked whether inactivation of the 

K13/K15 site - specifically targeted by RNF168 - prevents ubK27-mediated histone 

ubiquitination. We tested different mutants of H2A.X targeting either the N-

terminal (K13/15Q) or the C-terminal (K118/119Q) ubiquitination site (Figure 3B). 

Extending previous reports (Gatti et al., 2012, Mattiroli et al., 2012), we found 

that inactivation of K13/K15 site abolished K27-dependent ubiquitination induced 

by RNF168, which is instead recovered by the mutant affecting the C-terminal site. 
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This result indicates that RNF168-dependent K27 ubiquitination is required for 

histone ubiquitination at K13/K15 site. However, because histone H2As have at 

least four different Lys that can be theoretically simultaneously targeted by 

ubiquitin, the detected ubiquitin conjugates could result from multi-mono-

ubiquitination on different sites, poly-ubiquitination, or a combination of the two. 

To elucidate this aspect, we generated mutants of H2A.X where a single Lys of the 

K13/K15 site is present (see Figure 3C) and expressed them together with wild-

type and the K27-only ubiquitin. Then, chromatin fractions were subjected to 

FLAG-immunoprecipitation in order to enrich the samples with ubiquitinated 

nucleosomes. The multi-mono-ubiquitination hypothesis would predict that these 

mutants (no. 2 and no. 3; Figure 3D) undergo only mono-ubiquitination (ub1). 

Instead, we also clearly observed the di-ubiquitinated form (no. 3; ub2-H2A.X; 

Figure 3D). Although in principle it is possible that alternative Lys residues are 

ubiquitinated by RNF168, in addition to K13/K15/K118/K119, this is improbable 

because the ubiquitination signal is almost abolished when all the sites are 

substituted (no. 4; Figure 3D). Similarly, we can exclude that the ubiquitin signal 

observed derives from ubiquitination of different histones - i.e., H2B - or other 

tightly bound proteins, because we performed FLAG-ubiquitin 

immunoprecipitation followed by HA-H2A.X immunoblot. This result likely 

indicates that histone H2As are targets of K27 ubiquitination in vivo. 
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FIGURE 3: HISTONES H2A AND H2A.X ARE TARGETS OF RNF168-INDUCED UBK27. (A) Chromatin 
fractions derived from HEK293T cells expressing exogenous RNF168 together with the 
indicated K-only ubiquitin mutants were immunoprecipitated with the FLAG resin. FLAG, 
H2A, and H2A.X IB revealed the presence of higher-molecular-weight proteins compatible 
with mono-, di-, and tri-ubiquitinated forms (ub1, ub2, and ub3) of histones. Empty and 
full circles represent the incorporation of endogenous and exogenous (FLAG-tagged) 
ubiquitin, respectively. Protein loading was verified by FLAG, tubulin, and RNF168 IB on 
TCL. (B) In vivo ubiquitination assay of histone H2A.X was evaluated in HEK293T cells 
expressing exogenous RNF168 and indicated FLAG-tagged ubiquitin constructs, together 
with HA-H2A.X wild-type and its N- and C-terminal mutants (K13,15Q and K118,119Q, 
respectively). Forty-eight hours post-transfection, samples were subjected to acid 
extraction and analysed by SDS-PAGE. Anti-HA IB shows the ubiquitination status of the 
histone forms. Protein loading was normalized by anti-H3 IB on chromatin extracts (top) 
and by anti-tubulin on TCL. (C) Schematic representation of the H2A.X mutants used in 
(D). (D) HEK293T cells were co-transfected with either wild-type or K27-only mutant of 
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ubiquitin, together with the mutated forms of H2A.X, in the presence of RNF168. After 48 
hr, cells were subjected to chromatin extraction followed by FLAG IP in the presence of 
SDS. Samples were subjected to IB as indicated. 
 
 
Chromatin ubiquitination induced by DSBs is dependent on ubK27 

As RNF168, together with RNF8, has been clearly implicated in DDR activation via 

chromatin ubiquitination, our findings suggested RNF168-dependent K27 

ubiquitination of histones H2A and H2A.X as key molecular events in response to 

DNA damage. To investigate directly if K27 ubiquitination forms on chromatin 

upon genotoxic stress, we expressed the different ubiquitin mutants in HEK293T 

cells. We then induced the formation of DSBs and analysed the level of chromatin 

ubiquitination. As expected, cells exposed to etoposide (inhibitor of 

Topoisomerase II) markedly increased the ubiquitin signal on chromatin (Figure 

4A). This effect is dependent on ubiquitin integrity, because the K0 mutant 

showed a very low level of ubiquitination, which is not altered by etoposide 

treatment. Although differences in ubiquitin incorporation are detected using 

different mutants, we observed a clear induction of chromatin ubiquitination with 

K27-only ubiquitin, slightly lower than with wild-type ubiquitin (Figure 4A). 

Conversely, the presence of the sole K63 failed to complement chromatin 

ubiquitination, suggesting that this type of modification by itself is not sufficient 

to induce nucleosome ubiquitination upon DNA damage. We further observed 

that the ubiquitin mutant carrying both K27 and K63 residues was able to fully 

recover chromatin ubiquitination (Figure 4A), thereby suggesting a synergistic 

effect between K27 and K63 in regulating ubiquitination events on chromatin 

upon DSBs. Similar conclusions can be drawn from the analysis of the K/R mutants 

(Figure 4B). Mutants lacking K27 (K27R and K27,63R) were unable to sustain DNA-

damage-induced chromatin ubiquitination, whereas mutation of the other Lys 

residues (K63R and K33R) did not exert any significant effect. Overall, this set of 
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data clearly shows that chromatin is mainly remodeled upon DNA damage by K27-

dependent ubiquitination. Next, to assess whether etoposide-induced K27 

ubiquitination depends on the well-characterized ATM/RNF168-signalling 

pathway, we tested the ubiquitination status of damaged chromatin upon RNF168 

depletion and ATM inhibition. Importantly, knockdown of RNF168 obtained by 

siRNA transfection (Figure 4D) remarkably impaired the ubK27 signal on 

chromatin, as shown in Figure 4C. Similar abrogation of ubiquitin signals was 

obtained in cells pretreated with the ATM inhibitor (KU55933; Figure 4E), 

although the signal corresponding to phosphorylated form of H2A.X (γ-H2A.X) is 

still high because of the presence of other kinases of the family (DNA-PK and ATR) 

not inhibited by KU55933 and the high dose of etoposide we used (30 μM). 

 

 
 
FIGURE 4: K27 UBIQUITINATION IS INDUCED ON CHROMATIN UPON FORMATION OF DSBS.  
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FIGURE 4. K27 UBIQUITINATION IS INDUCED ON CHROMATIN UPON FORMATION OF DSBS (A and B) 
HEK293T cells expressing FLAG-tagged ubiquitin K/R or K-only mutants were treated with 
etoposide (30 μM) for 1 hr. After 3 hr, chromatin was extracted from cells and analyzed 
by IB as indicated. Equal loading and H2A.X phosphorylation (γ-H2A.X) were verified by IB 
to H3 and to phospho-Ser139 of H2A.X, respectively (top). Expression of ubiquitin 
mutants was detected by FLAG IB on TCL (bottom). (C) HEK293T cells were transfected 
with siRNA-targeting RNF168 and control siRNA together with FLAG-tagged ubiquitin K27 
only. Ninety-six hours after siRNA transfection, cells were treated with etoposide (30 μM) 
for 1 hr. After 3 hr, cells were subjected to chromatin extraction. IB was performed as 
indicated. (D) Expression of RNF168 mRNA detected by real-time PCR. Total RNA was 
extracted from HEK293T cells processed as in (C) and subjected to quantitative real-time 
PCR. The amount of RNF168 RNA relative to 18 s rRNA is shown. Results were expressed 
relative to the siRNA control in absence of etoposide (siCTR−) that were arbitrarily 
assigned a value of 1.0. Error bars represent SD. (E) HEK293T cells expressing FLAG-tagged 
K27 only were pretreated with ATMi (KU55933; 10 μM) for 30 min. Cells were then 
treated and processed as in (C). Asterisk (∗) indicates the di-ubiquitinated form of H2A.X, 
abrogated by ATMi. 

 
 
Ubiquitin knockdown impairs the recruitment of 53BP1 and BRCA1 to DDR foci 

Chromatin ubiquitination is required for proper formation of DDR foci and for 

activation of the signalling cascade. Because we found that ubK27 is essential for 

both RNF168- and DNA-damage-induced ubiquitination, we reckoned that it could 

be required to effectively trigger this process. To assess the role of the different 

Lys residues of ubiquitin in the formation of DDR foci, we set up experimental 

conditions to markedly reduce ubiquitin expression levels in U2OS cells while 

retaining cell viability. By using a combination of two different siRNAs, targeting 

the ubiquitin precursors UBA52 and RPS27A (Adam et al., 2013), we achieved a 

significant reduction in the formation of ubiquitin conjugates (Figures S4A and 

S4B) and tested how the ubiquitin knockdown impacts the formation of DDR foci. 

Upon etoposide treatment, we obtained comparable levels of H2A.X 

phosphorylation and MDC1 accumulation at DDR foci in cells transfected with the 

siRNAs targeting ubiquitin and with control siRNAs (Figures S4C, S4D, and S4G). 

Conversely, 53BP1 and BRCA1 recruitment to DDR foci - which are reportedly 
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dependent on chromatin ubiquitination - were dramatically reduced (Figures S4E - 

S4G). To corroborate these results, we reintroduced a siRNA-resistant form of 

ubiquitin (WTRes) and largely restored proper localization of 53BP1 and BRCA1 to 

DDR foci (Figures S4E–S4G). Albeit predictable from the literature, this represents 

a direct demonstration that siRNA-based ubiquitin depletion selectively impairs 

the recruitment of DDR factors downstream of the ubiquitin-dependent step, 

without affecting upstream, phosphorylation-dependent events. 

 
UbK27 is strictly required for the proper formation of DDR foci 

Next, we employed the ubiquitin knockdown system to explore the functional 

relevance of the different Lys residues of ubiquitin in the activation of the DDR 

pathway, by using the siRNA-resistant form of the K/R ubiquitin mutants. In 

keeping with the reported involvement of the K63-specific ubiquitin-conjugating 

enzyme Ubc13 (Huen et al., 2007, Kolas et al., 2007, Stewart et al., 2009, Wang 

and Elledge, 2007), expression of the K63R mutant failed to restore 53BP1 and 

BRCA1 recruitment to the sites of lesions (Figures 5A and 5B ). However, the 

single substitution K27R - which does not affect K63 ubiquitination - showed an 

equally marked defect in restoring these DDR events, and the double substitution 

displayed only marginal additional defects (Figures 5A and 5B). This effect is 

highly specific because the other mutants tested (K48R and K33R) performed as 

wild-type ubiquitin, indicating that they are not directly involved in the 

accumulation of DDR proteins at the sites of damage. Then we asked whether the 

use of the K27R and K63R ubiquitin mutants per se altered the ability of cells to 

respond to genotoxic agents, impacting also upstream events induced by DSBs. In 

our experimental conditions, we found that both MDC1 recruitment and H2A.X 

phosphorylation were similar in all K/R mutants and comparable to control cells, 

confirming that the phosphorylation-dependent events induced by DNA damage 
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upstream of RNF168-induced ubiquitination were not affected by the expression 

of mutant forms of ubiquitin (Figures S5A and S5B). Similar conclusions were 

reached by an independent set of results. We transfected the FLAG-tagged 

ubiquitin constructs in HEK293T cells in order to obtain an elevated expression of 

the proteins, aiming to compete with the endogenous form. Using this system, we 

confirmed that overexpression of the ubiquitin mutants carrying either K27R or 

K63R substitutions impaired the accumulation of 53BP1 and BRCA1 at DDR foci 

(Figures S5C - S5F). 

 
K27,63-only mutant partially rescues the localization of 53BP1 to DDR foci 

The above results indicate that K27 and K63 linkages are required for the 

generation of ubiquitin-dependent signals upon DSB formation. Hence, we asked 

whether they are sufficient to support the formation of DDR foci. To this purpose, 

we expressed K27-only, K63-only, and K27,63-only mutants in the context of 

ubiquitin depletion, and we assessed the recruitment of 53BP1 and BRCA1 to the 

sites of damage. Remarkably, the simultaneous presence of K27 and K63 of 

ubiquitin was sufficient to significantly restore etoposide-induced 53BP1-positive 

foci, whereas the sole presence of K27 or K63 had incomplete effects (Figure 5C). 

However, none of these constructs was able to restore BRCA1-positive foci (data 

not shown), suggesting the contribution of additional ubiquitin linkages, besides 

K27 and K63, in its recruitment. Consistent with the data in Figure 4E, we found 

that the K27,63-dependent formation of 53BP1 foci upon etoposide treatment is 

prevented by ATM inhibition (Figure 5D). Similarly, by using U2OS cells 

conditionally expressing RNF168-targeting small hairpin RNA (shRNA) (Doil et al., 

2009), we found that depletion of RNF168 completely abolished the accumulation 

of 53BP1 to DDR foci, even in the presence of K27,63-only mutant (Figure S6A), 

and reduced the formation of ubiquitin conjugates within the nucleus (Figure 
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S6B). Collectively, our results indicate that K63 and K27 linkages are necessary, 

and sufficient in combination, to recruit key players of the DDR (i.e., 53BP1) and 

that these ubiquitin-mediated events are dependent on ATM and RNF168 activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
FIGURE 5: UBK27 IS ESSENTIAL FOR THE ASSEMBLY OF DDR FOCI. (A and B) U2OS cells were 
transfected with siRNA-resistant forms of wild-type ubiquitin and a panel of K/R mutants, 
as indicated. Ubiquitin knockdown was obtained by transfecting two siRNAs targeting 
ubiquitin in a 1:1 combination (see the Supplemental Experimental Procedures). Eighteen 
hours later, cells were treated with etoposide (5 μM) before fixing. Immunostaining was 
performed with the indicated antibodies. (C) U2OS cells were transfected with siRNA-
resistant FLAG-tagged ubiquitin WT and K-only mutants and then transfected with 
ubiquitin siRNAs, as in (A) and (B). Cells were treated with etoposide (5 μM) for 1 hr 
before fixing. Immunostaining was performed with FLAG and 53BP1 antibodies. (D) U2OS 
cells expressing siRNA-resistant FLAG-tagged K27,63-only ubiquitin were transfected with 
two siRNAs targeting ubiquitin for 18 hr and then treated or not with etoposide as in (A)–
(C) (top and middle) and in the presence of ATM inhibitor (ATMi KU55933; 10 μM) before 
fixing. Immunostaining was performed as in (C). (A–D) Quantification of the FLAG-positive 
cells with more than five foci labeled with the indicated antibodies. At least 50 cells per 
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condition were counted. The graphs are a summary of three independent experiments; 
each value represents the mean ± SD of three separated experiments. ∗p < 0.05; ∗∗p < 
0.01. The scale bars represent 1 μm. See also Figures S2 and S4–S6. 

 
 

K27 ubiquitination is recognized by DDR proteins - Rap80, 53BP1, RNF168, and 

RNF169 

Our experiments collectively indicate a pivotal role for K27 linkage in the 

ubiquitin-based events regulating the DDR, promoting the accumulation of 53BP1 

and BRCA1 to the damage sites. We would thus expect that these proteins be 

recruited to DDR foci via ubK27 signal. It has been described that BRCA1 is 

relocated to DNA damage by means of Rap80, which contains two adjacent 

ubiquitin-binding domains (UBDs) named UIM1-UIM2 or tandem UIMs (Sato et al., 

2009, Sobhian et al., 2007). We thought that, although Rap80-UIMs show 

specificity for K63 over K48 chains, they might be able to interact with additional 

types of chains, as previously shown (K6) (Sobhian et al., 2007). Thus, we tested 

the ability of the Rap80-UIMs to recognize K27-ubiquitinated proteins in a purified 

system. We performed a pull-down assay using the synthetic K27-linked ubiquitin 

dimers (diubK27), besides diubK63 and diubK48 as positive and negative 

reference, respectively. As control of specificity, we used the defective mutant of 

UIMs (Rap80-UIM∗∗) carrying two aminoacid substitutions (A88S and A113S). As 

shown in Figure 6A, we found that the Rap80-UIMs interact with diubK27, 

whereas the mutant does not. Next, we focused on another crucial DDR protein, 

namely 53BP1, whose recruitment to DDR foci is dependent on two different 

histone modifications, methylation on K20 of histone H4 and ubiquitination on 

K15 of histone H2A (H2AK15ub). The binding to H2AK15ub is dependent on the 

ubiquitination-dependent recruitment (UDR) motif of 53BP1, which recognizes the 

ubiquitinated H2A on K15 but does not directly interact with ubiquitin monomer 
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(Fradet-Turcotte et al., 2013). By performing similar experiments as in Figure 6A, 

we tested the UDR motif of 53BP1 and a mutant form unable to localize to DDR 

foci (L1619A and R1627A; Fradet-Turcotte et al., 2013) in a pull-down assay with 

ubiquitin dimers (Figure 6B). Strikingly, we found that the sole UDR motif is able 

to bind diubK27 and diubK63, but not diubK48, whereas the mutant UDR∗∗ 

completely failed to bind diubK27 and reduced the interaction with diubK63. 

Finally, we tested two additional DDR proteins that are recruited/stabilized on 

chromatin upon DNA damage by interacting with RNF168-dependent ubiquitin 

conjugates; i.e., RNF168 itself and the closely related RING finger protein RNF169. 

As shown in Figures 6C and 6D, the two ubiquitin ligases can interact with the 

K27-linked ubiquitin dimeric peptide. Overall, these results show that K27 

ubiquitination is widely recognized by crucial players of the DDR. 

 

 

 
FIGURE 6: 53BP1, RAP80, RNF169, AND RNF168 DIRECTLY INTERACT WITH K27-LINKED UBIQUITIN 

DIMERS. (A–D) Pull-down assays performed using different recombinant proteins 
incubated with synthetic K27, K48, and K63-linked ubiquitin dimers (diub); in (A), GST-
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tagged Rap80-UIMs and Rap80-UIMs∗∗ (A88S and A113S); in (B), GST-tagged 53BP1-UDR 
wild-type or and GST-53BP1-UDR∗∗ mutant (L1619A and R1627A); in (C) and (D), GST-
tagged RNF168 and MBP-tagged RNF169 as full-length proteins. Proteins were solved by 
SDS-PAGE, and IB was performed with ubiquitin antibody (P4D1). Ponceau staining 
revealed equal loading. 

 

DISCUSSION 

In this study, we report a key biological function for the non-canonical K27 

ubiquitin linkage. We show that ubK27 is required to promote chromatin 

ubiquitination following DNA damage, and this is strictly dependent on the activity 

of the ubiquitin ligase RNF168. Moreover, we find that histones belonging to the 

H2A family are targets of this modification on the K13/K15 site and that crucial 

players of DDR - including Rap80 and 53BP1 - directly interact with the K27-linked 

ubiquitin mark. 

 
Role of K27 ubiquitination in the cellular response to DNA damage 

Here, we disclose the biological relevance of K27 ubiquitination, being essential 

for the proper activation of the signalling cascade induced by genotoxic stress. We 

show that ubiquitin mutants lacking ubK27 exhibit dramatic defects in the 

recruitment of DDR proteins, which act downstream of the ubiquitination-

dependent step (i.e., 53BP1 and BRCA1). In keeping with the literature, we 

confirmed an essential role for K63 linkage in the activation of the DDR pathway. 

However, our studies reveal that this modification is only moderately involved in 

RNF168- and DNA-damage-induced ubiquitination of core histones and thus 

presumably targets other important mediators of the DDR. The essential role of 

K27 and K63 linkage in DDR is further corroborated by the observation that ubK27 

and UbK63 in combination are sufficient to rescue the formation of 53BP1-

positive foci. Interestingly, we did not observe the same result with BRCA1, 

implying additional complexity in its mode of recruitment to chromatin, possibly 
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involving K6 linkage (Nishikawa et al., 2004, Wu-Baer et al., 2003). Overall, our 

results highlight the importance to generate specific and univocal signals on 

chromatin to alert cells to genotoxic stress. Others and we recently reported that, 

upon DSBs, RNF168 ubiquitinates a site on the N-terminal tail of histone H2As 

(K13/K15; Gatti et al., 2012, Mattiroli et al., 2012), which is distinct from the 

canonical K118/K119 site. We now provide additional mechanistic insight into the 

emerging theme of ubiquitin diversity, by demonstrating that RNF168 marks 

chromatin histones with an atypical ubiquitin linkage, which could act as a 

different language to reinforce the peculiarity of the transmitted signal. These 

findings redefine a crucial step of the cellular mechanisms maintaining genome 

stability and will likely foster further molecular investigations in this area. 

 
Targets and readers of K27-linked ubiquitin mark on chromatin 

Even though it has been reported that K27 ubiquitination can be assembled in 

different cellular contexts (Ben-Saadon et al., 2006, Peng et al., 2011, Zucchelli et 

al., 2010), its functional relevance in specific processes has been elusive. Similarly, 

a direct connection between enzymes promoting this modification and their 

putative targets could not be established to date. In this respect, our finding that 

the DDR ubiquitin ligase RNF168 specifically induces K27 ubiquitination on 

chromatin histones is highly relevant, encourages new studies in this direction, 

and opens a number of crucial questions. First, it is predictable that, aside from 

H2A and H2A.X, other factors are targets of RNF168-mediated K27 ubiquitination. 

One candidate to be investigated is 53BP1, because it has been recently 

demonstrated to be targeted by RNF168’s activity (Bohgaki et al., 2013). Another 

interesting candidate is the polycomb protein Ring1b. Ciechanover and colleagues 

demonstrated that Ring1b promotes auto-ubiquitination through mixed poly-

ubiquitin chains (K6, K27, and K48) and this is a prerequisite for Ring1B to mono-
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ubiquitinate in vitro the histone H2A (Ben-Saadon et al., 2006). In our 

experiments, we observed that the substitution of K27 of ubiquitin markedly 

affects ubiquitin chains but also the formation of mono-ubiquitinated histone 

H2As. A tantalizing hypothesis is that RNF168 could modulate the activity of 

Ring1b by promoting its K27-linked ubiquitination, drawing a direct connection 

between RNF168 activity and the regulation of gene silencing. A multitude of 

ubiquitin-interacting motifs play an essential role in this ubiquitin-based 

communication system, allowing the recruitment of DDR proteins to damaged 

chromatin by binding to the products of RNF168 activity (Doil et al., 2009, Fradet-

Turcotte et al., 2013, Panier et al., 2012, Penengo et al., 2006, Pinato et al., 2009, 

Pinato et al., 2011, Sato et al., 2009, Stewart et al., 2009). In this study, we provide 

clear evidence that different DDR proteins - Rap80, RNF169, and RNF168 itself - 

directly interact with K27-linked ubiquitin dimers. These data indicate that the 

histone ubiquitin code is far more complex than previously predicted and that a 

number of ubiquitin-dependent events in the DDR can be driven directly by K27 

ubiquitination. Another relevant observation relates to 53BP1. It has been 

recently demonstrated that the UDR domain of 53BP1 (Fradet-Turcotte et al., 

2013) binds to ubiquitinated histone H2A on K15. Now, we show that the UDR is 

sufficient to directly interact with K27 and K63 ubiquitin dimers. This is a 

remarkable finding because it reveals that 53BP1 UDR is bona fide a UBD, further 

supporting its crucial role as reader of chromatin ubiquitination induced by DNA 

damage. 

 
RNF168 as a writer of K27 ubiquitination  

K27 linkage is used by RNF168 to induce extensive chromatin ubiquitination. 

Nevertheless, this K27 ubiquitin signal does not target proteins for proteasomal 

degradation (Figure S7) but rather generates the docking sites for different 
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downstream signalling effectors. Remarkably, our data show that RNF168 

significantly increases the level of mono-ubiquitinated and multi-mono-

ubiquitinated histones, indicating that ubK27 affects the general ubiquitination 

status of chromatin. In line with this, it has been suggested that the stable 

accumulation of RNF168 to DDR foci depends on the binding of its UBDs to 

ubiquitin conjugates promoted by RNF168 itself (Panier et al., 2012). Thus, 

RNF168, by promoting chromatin ubiquitination, generates the docking sites for 

itself and stabilizes its accumulation at DDR foci in a positive feedback loop. Our 

identification of atypical K27 ubiquitination as key mediators of a central 

biological process like the DDR will likely encourage a thorough, unbiased analysis 

of different ubiquitin linkages also in other crucial cellular pathways regulated by 

ubiquitin, where alternative modifications may have as yet escaped systematic in 

vitro and in vivo analysis. 
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SUPPLEMENTAL INFORMATION 
 
SUPPLEMENTAL FIGURES 
 
FIGURE S1: RELATED TO FIGURE 1. EXPRESSION LEVELS OF THE DIFFERENT UBIQUITIN MUTANTS. 
 

 

 
 (A and B) One tenth of HEK293T cells expressing exogenous RNF168, together with FLAG-
tagged K/R (A) and K-only (B) mutants of ubiquitin, were lysed directly with Laemmli 
buffer and analyzed by SDS-PAGE. IB with anti-FLAG antibody revealed the level of 
expression of different ubiquitin mutants (upper panels). Protein loading was visualized 
by anti-tubulin IB. (C and D) Chromatin extracts from HEK293T cells expressing exogenous 
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RNF168, together with FLAG-tagged K/R (C) and K-only (D) mutants of ubiquitin, were 
normalized based on the signal corresponding to the mono-ubiquitinated forms of 
histones, instead of on the quantity of chromatin extracts loaded on the gel. IB with anti-
FLAG antibody revealed the level of expression (TCL, lower panels) and incorporation into 
chromatin (chromatin extracts, upper panels) of different ubiquitin mutants. Protein 
loading was visualized by anti-H3 and anti-tubulin IB. 
 
FIGURE S2: RELATED TO FIGURE 1 AND 5. K27R DOES NOT HAMPER THE FORMATION OF K63 AND K48 

POLY-UBIQUITIN CHAINS IN VITRO AND IN VIVO.  

 

 
 

 

(A-C) In vitro ubiquitination assay performed using different pairings of E2/E3 in 
combination with the indicated ubiquitin constructs. (A) Ubc13/Mms2 and GST-RNF168; 
(B) UbcH5c and HECT domain of Nedd4; (C) Ube2R1 and HECT domain of Nedd4. In all 
cases ubiquitin conjugates were revealed by ubiquitin IB. (D) HEK293T cells were 
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transfected with siRNAs targeting ubiquitin (siUb) or with control siRNA (siCTR), and lysed 
after 20 hours in RIPA buffer. (E) HEK293T cells treated with ubiquitin siRNAs were 
transfected with the indicated constructs and processed as in (D). IB was performed using 
FLAG IB to reveal the formation of K63 and K48 conjugates. Expression/conjugation of K/R 
mutants are revealed by HA IB (lower panels). Tubulin was used as loading control. 
 
 
FIGURE S3: RELATED TO FIGURE 2. SRM ANALYSIS ON CELLS EXPRESSING K27-ONLY MUTANT OF 

UBIQUITIN. 
 

 
(A) HEK293T cells expressing exogenous RNF168 together with FLAG-Ubiquitin K27-only 
were subjected to chromatin extraction followed by FLAG IP. Samples were then eluted 
with glycine and subjected either to SDS-PAGE and IB as indicated, or to trypsin digestion 
and processed for SRM analysis. See Extended Experimental Procedures for details. (B) 
SRM quantification of the chromatin samples. The bars in the graph indicate the sum of 
the areas of each of the four transitions measured to quantify the K27 ubiquitinated 
peptide in chromatin samples. Error bars represent SD. (C) Representative 
chromatograms of ubiquitinated K27 peptide measured in digested chromatin samples. 
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FIGURE S4:  RELATED TO FIGURE 5. UBIQUITIN KNOCKDOWN, OBTAINED BY USING SIRNA 

OLIGONUCLEOTIDES, HIGHLY AFFECTS THE DDR SIGNALLING CASCADE.  
 

 

 
 
(A) U2OS cells were transiently transfected with two different siRNAs targeting ubiquitin 
at two different concentrations (50 nM and 100 nM). After 18 hours, cells were lysed in 
RIPA buffer and protein extracts were subjected to SDS-PAGE and IB using anti-ubiquitin 
antibody (P4D1). (B) U2OS cells transfected as in (A) were treated with etoposide (5 µM) 
for 1 hour before fixing and immunostained using anti-ubiquitin antibody (FK2); nucleus 
were stained with To-Pro3. Scale bars, 10 µm. (C-F) siRNA-resistant FLAG-tagged ubiquitin 
(WTRes) was expressed in U2OS cells. Cells were then transfected with siRNAs to induce 
ubiquitin knockdown. After 18 hours cells were treated with etoposide (5 µM) before 
fixing. Immunostaining was performed as indicated. Scale bars, 1 µm. (G) Quantitation of 
cells expressing FLAG-ubiquitin with more than 5 foci positive for the indicated DDR 
proteins. The graphs are a summary from three independent experiments; error bars 
represent SD. 
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FIGURE S5:  RELATED TO FIGURE 5. K27R MUTANT DOES NOT AFFECT THE PHOSPHO-DEPENDENT EVENTS 

UPSTREAM OF RNF168 LIGASE, BUT IMPAIRS THE RECRUITMENT OF 53BP1 AND BRCA1 AT DDR FOCI 

IN HEK293T CELLS. 
 

 
 
(A and B) U2OS cells were transfected with siRNA-resistant forms of wild-type ubiquitin 
and K/R mutants, as indicated. Ubiquitin knockdown was obtained by transfection of 
siRNAs targeting ubiquitin. After 18 hours, cells were treated with etoposide (5 µM) 
before fixing. Immunostaining was performed with the indicated antibodies. Scale bars, 1 
µm. (C-F) HEK293T cells were transfected with the indicated FLAG-tagged ubiquitin K/R 



PAPER                                                                                                                                                          CHAPTER 3 

 

78 
 

mutants. 48 hours after transfection cells were treated for 1 hour with etoposide (5µM) 
before fixing. Immunostaining was performed as indicated. Scale bars, 5 µm. (F) At least 
150 cells per condition were counted. The graphs are a summary of three independent 
experiments; each value represents the mean ± SD of three separated experiments. 
**P<0.01, ***P<0.001. 
 

 
FIGURE S6:  RELATED TO FIGURE 5. RNF168 DEPLETION AFFECTS UBK27- AND UBK63-DEPENDENT 

RECRUITMENT OF 53BP1 TO DDR FOCI AND REDUCES THE SIGNAL OF UBK27 CONJUGATES WITHIN THE 

NUCLEUS.  

 

 
 
(A and B) U2OS cells conditionally expressing RNF168 targeting shRNA, treated or not 
with doxycycline (Dox) to induce RNF168 depletion, were transfected with the indicated 
siRNAresistant forms of FLAG-tagged wild-type ubiquitin (WTRes) and K-only mutants, 
and then subjected to ubiquitin knockdown. After 18 hours, cells were treated with 
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etoposide (5 µM, 1 hour) and fixed. Immunostaining was performed using FLAG, 53BP1 
and ubiquitin (FK2) antibodies. At least 50 cells per condition were counted. The graph is 
a summary of three independent experiments; each value represents the mean ± SD. 
***P<0.001. Scale bars, 1 µm. 

 
 
FIGURE S7: RELATED TO FIGURE 5. K27 UBIQUITINATION DOES NOT TARGET HISTONES FOR 

PROTEASOMAL DEGRADATION. 

 

 
 
HEK293T cells expressing exogenous RNF168, together with the indicated FLAG-tagged 
ubiquitins, were treated or not with MG132 (10 µM) for 4 hours, and lysed. FLAG IB 
revealed the formation of ubiquitin conjugates in cells upon transfection of the ubiquitin 
constructs. Anti-H2A and anti-H2A.X IB revealed the expression level of histones in cells in 
different experimental conditions. The mono-ubiquitinated form of H2A (Ub1-H2A) is 
reduced upon proteasome inhibition. 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
Plasmids and constructs 
The full-length cDNA of RNF168 (clone IRATp970F1053D) was cloned into 
pcDNA3.1 (Invitrogen) and pGEX6P2. Ubiquitin cDNA derived from UBC gene (ID: 
NM_021009.5). K/R mutants of ubiquitin were generated by site-directed 
mutagenesis. K-only and K0 were kindly provided by E. Maspero and S. Polo. 
Plasmids encoding HA-H2A.X were already described (Pinato et al., 2009). Point 
mutations were introduced by site-specific mutagenesis. The RAP80-UIMs were 
amplified by PCR from the full-length protein (a gift of S. Elledge) and cloned into 
pGEX6p2 vector. The aminoacid substitutions A88SA113S were introduced by site 
directed mutagenesis. The cDNA of 53BP1-UDR was synthesized by Eurofins and 
cloned into pGEX6P2. The L1619A and R1627A mutations were introduced by site-
specific mutagenesis. MBP-RNF169 full-length was kindly provided by D. 
Durocher. Oligonucleotides sequences are given below. All constructs were 
sequence verified. 
 
In vitro ubiquitination assay 
Each reaction was performed in a buffer containing 25 mM Tris-HCl pH 7.4, 5 mM 
MgCl2, 100 mM NaCl, 1 µM dithiothreitol (DTT), and 2 mM ATP (Sigma). ATP 
regeneration system (Sigma) was used to recycle ATP. Purified ubiquitin wild-type 
and mutants (1 µg) were added to the reaction mixture. For each specific 
reactions, we incubated 5 µg of purified RNF168 with 0.1 µg human recombinant 
E1 Ub-activating enzyme, 0.25 µg each of purified Ubc13/Mms2, at 30°C for one 
hour. Purified HECT domain of Nedd4 (1 µg) was incubated with E1 (0.1 µg), 
UbcH5c (0.25 µg) at 37°C for 30 minutes. Alternatively, purified HECT domain of 
Nedd4 (1 µg) was incubated with E1 (0.1 µg) and with purified Ube2R1 (0.8 µg) for 
one hour at 37°C. 
 
Sample preparation for mass spectrometric analyses 
Protein Disulfide bonds were reduced with TCEP (Thermo) at a final concentration 
of 10 mM at room temperature for 1 hour. Free thiols were alkylated with 10 mM 
iodoacetamide at room temperature for 30 min in the dark. Protein samples were 
digested with trypsin (1:50 w/w) for 10 hours at 35°C (Promega) in a solution 
containing 50mM ammonium bicarbonate (Sigma), 1 M UREA (Sigma) at pH 8. 
Peptides were desalted on a C18 Sep-Pak cartridge (Waters), dried under vacuum 
and reconstituted with a solution containing 2% acetonitrile (AcN) and 0.1% 
formic acid (FA) and analyzed by LC-SRM. Chromatographic separation of peptides 
was carried out with an Eksigent (Eksigent Technologies) and NanoLC system 
connected to a 15-cm fused-silica emitter with 75-µm inner diameter (BGB 
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Analytik) packed in-house with a Magic C18 AQ 3-µm resin (Michrom 
BioResources). 
 
Targeted mass spectrometric analysis by selected reaction monitoring (SRM) 
For assay development, the optimal transitions for the detection of the K27 
ubiquinated peptide (TITLEVEPSDTIENVK[GlyGly]AK) were determined by SRM 
analysis of the tryptic digested K27 poly-ubiquitin chain. The peptide samples 
were analyzed by LCSRM analysis using a linear gradient ranging from 95% solvent 
A (98% H20,2% acetonitrile, 0.1% formic acid) to 35% solvent B (98% acetonitrile, 
2% H2O, 0.1% formic acid) over 40 min at a flow rate of 300 nl/min. Mass spectra 
were acquired in SRM mode on triple quadrupole/ion trap mass spectrometer 
(5500QTrap, ABSciex, Concord, Canada) where Q1 and Q3 operated at unit 
resolution and with a dwell time of 50 and 250 ms for assay development and 
chromatin sample measurements, respectively. We experimentally tested in SRM 
mode 51 transitions, calculated using the tool Skyline (MacLean et al., 2010) and 
corresponding to singly charged y- b-ions from doubly or triply charged 
precursors. The most four intense transitions were selected for the analysis of the 
chromatin samples (y3+, y5+ y6+, b3+). Collision energies were calculated as 
suggested by the vendor. Accurate retention time of the ubiquitinated K27 
peptide was determined using the iRT concept as described in (Escher et al., 
2012). Duplicate injections were performed for each chromatin sample and the 
sum of the areas of each transition were used for peptide quantification. 
 
Shotgun mass spectrometric analysis 
Shotgun analysis of the chromatin samples was carried out on LTQ-Orbitrap XL 
mass spectrometer (Thermo Scientific) equipped with a nanoelectrospray ion 
source (Thermo Scientific). Chromatographyx separation of the peptides was 
achieved with a Proxeon (Proxeon Biosystems) NanoLC system connected to a 15-
cm fused-silica emitter with 75-µm inner diameter (BGB Analytik) packed in-house 
with a Magic C18 AQ 3-µm resin (Michrom BioResources). The digested chromatin 
samples were analyzed by LC–tandem MS (LC-MS/MS) with a linear gradient 
ranging from 95% solvent A (98% H20,2% acetonitrile, 0.1% formic acid) to 35% 
solvent B (98% acetonitrile, 2% H2O, 0.1% formic acid) over 90 min at a flow rate 
of 300 nl/min. Mass spectra were acquired in a data-dependent manner, with an 
automatic switch between MS and MS/MS scans. Highresolution MS scans were 
acquired in the Orbitrap (60,000 FWHM, target value 106) to monitor peptide ions 
in the mass range of 350–1,650 m/z, followed by collision-induced dissociation 
MS/MS scans in the ion trap (minimum signal threshold 150, target value 104, 
isolation width 2 m/z) of the five most intense precursor ions. The precursor ion 
masses of scanned ions were dynamically excluded from MS/MS analysis for 10 s. 
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Singly charged ions and ions with unassigned charge states were excluded from 
triggering MS2 events. 
 
Database searching of shotgun mass spectrometric data 
Raw data were converted to the open mzXML format with ReAdW (version 4.3.1). 
mzXML files were searched by the SEQUEST via Sorcerer Software 4.2.0 against 
UniProtKB/Swiss-Prot protein databases (release 2012_11, containing 20,243 
proteins) concatenated with reverse sequences. For in silico digestion, trypsin was 
used as the protease and was assumed to cleave after lysine (K) and arginine (R) 
unless followed by proline (P). Two missed cleavage sites and one non- tryptic 
terminus were allowed per peptide. The precursor ion tolerance was set to 50 
parts per million (ppm), and fragment ion tolerance was set to 0.5 dalton. The 
data were searched allowing ubiquitination of lysine, as a variable modification 
and carboxy-amidomethylation of cysteine residues as a fixed modification. 
Finally, The identification results were statistically analyzed with the 
PeptideProphet algorithm (v 4.6). For peptide identification the false discovery 
rate (FDR) was maintained below 1%. 
 
Antibodies 
Antibodies used in this study included mouse monoclonal anti-ubiquitin (P4D1, 
Santa Cruz Biotechnology) and FK2 (Stressgen Bioreagents), mouse monoclonal 
anti-FLAG (M2, Sigma), rabbit polyclonal anti-FLAG (Sigma), mouse monoclonal 
anti-HA.11 (16B12, Covance), rabbit polyclonal anti-HA (Abcam), anti-phospho-
histone H2AX (Ser139, γ-H2A.X, Upstate), rabbit polyclonal anti-histone H2A 
(Abcam), rabbit polyclonal anti-histone H3 (Abcam), rabbit polyclonal anti-histone 
H2A.X (Abcam), rabbit polyclonal anti-53BP1 (Abcam), mouse monoclonal anti-
BRCA1 (Santa Cruz Biotechnology), mouse monoclonal anti-MDC1 (Abcam), 
mouse monoclonal anti-α-Tubulin (Sigma). The linkage-specific antibodies 
directed to K48 (Apu2.07) and K63 (Apu3.A8) were from Genentech. Mouse anti-
53BP1 was a gift from T. Halazonetis and anti-RNF168 polyclonal antibody was 
made in house. 
 
Expression of recombinant proteins 
Recombinant GST-fusion proteins (RNF168, UDR and RAP80 UIM) were expressed 
in E. coli strain BL21 pLys by a 16 hours induction with 1 mM IPTG at 18°C and 
produced 
as previously described (Pinato et al., 2011). The GST-UDR were extracted by using 
8M Urea and re-folded by four dialysis steps. Recombinant MBP fusion protein 
was expressed in E. coli strain BL21 pLys by a three hours induction with 1 mM 
IPTG at 37°C in Luria Bertani broth enriched with 0,2% glucose and purified using 
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amylose resin (New England Biolabs). Ube2R1, Ubc13, Mms2 and the HECT 
domain of Nedd4 were kindly provided by E. Maspero and S. Polo. 
 
RNA interference 
The siRNAs (Invitrogen) targeting UBA52 and RPS27A precursors of ubiquitin were 
used for ubiquitin knockdown. siRNA-resistant form of the different ubiquitin 
mutants were obtained by site-directed mutagenesis and sequence verified. 
Transfections of siRNAs (targeting ubiquitin or RNF168) were performed using 
oligofectamine reagent (Invitrogen) in U2OS cells and jetPRIME® Transfection 
Reagent (Polyplus) in HEK293T cells. All the siRNAs and oligonucleotide sequences 
are included below. 
 
siRNA sequences 
Ubiquitin UBA52: ACACCATTGAGAATGTCAA 
Ubiquitin RPS27A: AGGCCAAGATCCAGGATAA 
RNF168: CGTGGAACTGTGGACGATAATTCAA 
 
Quantitative real-time PCR 
Total RNA was extracted from HEK293T cells using TRIzol® (Invitrogen). To 
eliminate residual genomic DNA, the samples were treated with DNase I 
(Promega). The cDNA was synthesized from 1 µg of total RNA using ImProm-IITM 
Reverse Transcription System (Promega) according to the manufacturer’s 
instructions in an amplification cycler. Sixteen nanograms of each cDNA sample 
were used as template for the amplification reaction that was performed using 
SYBR® Green Mastermix (BIO-RAD). PCR amplifications were performed in 
triplicates and the ΔΔCT method was used to calculate the relative quantity; 18S 
rRNA was used for normalization. 
 
RT-PCR primers 
RNF168 for-TCAGCCAGTTCGTCTGCTCAGT 
RNF168 rev-TCTTCTTCCTCGCTGGCCCGT 
18S for-TGCGAGTACTCAACACCAACA 
18S rev-CTGCTTTCCTCAACACCACA 
 
Oligonucleotides for mutagenesis 
H2A.X: K13Q for-GCAAGGCCCGCGCCCAGGCCAAGTCGCGCTCG 
H2A.X: K15Q for-CCGCGCCAAGGCCCAGTCGCGCTCGTCGCGC 
H2A.X: K13,15Q for -CGGCAAGGCCCGCGCCCAGGCCCAGTCGCGCTCGTCGCGC 
H2A.X: K118,119Q for-GCCGTGCTGCTGCCCCAGCAGACCAGCGCCACCGTG 
RAP80-UIMs: A88S for-GAACAGTTTGCTCTGTCTCTCAAAATGAGTGAG 
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RAP80-UIMs: A113S for-GAGCTCTTGAGGAAATCCATTGCTGAAAGCCTG 
53BP1-UDR: L1619A for-GCAGCGGACATTAGCGCGGATAACCTGGTGGAA 
53BP1-UDR: R1627A for-CTGGTGGAAGGTAAGGCCAAACGTCGCTCGTAA 
 
Oligonucleotides for the generation of siRNA-resistant forms of ubiquitin 
Ub siRNA-resistant (UbRes) on K6R, K11R, K33R, K48R and K63R: 
for-GAGCCGAGTGATACGATCGAAAACGTCAAGGCAAAATCCA 
Ub siRNA-resistant (UbRes) on K27R: 
for-GAGCCGAGTGATACGATCGAAAACGTCCGCGCAAAGATCCA 
Ub siRNA-resistant (UbRes) on K29R: 
for- GAGCCGAGTGATACGATCGAAAACGTCAAGGCACGCATCCA 
 
SUPPLEMENTAL REFERENCES 
 
Escher, C., Reiter, L., MacLean, B., Ossola, R., Herzog, F., Chilton, J., MacCoss, M.J., 
and Rinner, O. (2012). Using iRT, a normalized retention time for more targeted 
measurement of peptides. Proteomics 12, 1111-1121. 
 
Maclean, B., Tomazela, D.M., Abbatiello, S.E., Zhang, S., Whiteaker, J.R., Paulovich, 
A.G., Carr, S.A., and Maccoss, M.J. (2010). Effect of collision energy optimization 
on the measurement of peptides by selected reaction monitoring (SRM) mass 
spectrometry. Anal Chem 82, 10116-10124. 
 
REFERENCES 
 
1. Adam, S., Polo, S.E., and Almouzni, G.Transcription recovery after DNA damage 

requires chromatin priming by the H3.3 histone chaperone HIRA. Cell. 2013; 155: 94–
106 

 
2. Ben-Saadon, R., Zaaroor, D., Ziv, T., and Ciechanover, A. (2006). The polycomb protein 

Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone 
H2A ligase activity. Mol. Cell 24, 701–711. 

 
3. Bohgaki, M., Bohgaki, T., El Ghamrasni, S., Srikumar, T., Maire, G., Panier, S., Fradet-

Turcotte, A., Stewart, G.S., Raught, B., Hakem, A., and Hakem, R. (2013). RNF168 
ubiquitylates 53BP1 and controls its response to DNA double-strand breaks. Proc. 
Natl. Acad. Sci. USA 110, 20982–20987. 

 
4. Chen, Z.J., and Sun, L.J. (2009). Nonproteolytic functions of ubiquitin in cell signaling. 

Mol. Cell 33, 275–286. 



PAPER                                                                                                                                                          CHAPTER 3 

 

85 
 

5. Chen, J., Feng, W., Jiang, J., Deng, Y., and Huen, M.S. (2012). Ring finger protein 
RNF169 antagonizes the ubiquitin-dependent signaling cascade at sites of DNA 
damage. J. Biol. Chem. 287, 27715–27722. 

 
6. Doil, C., Mailand, N., Bekker-Jensen, S., Menard, P., Larsen, D.H., Pepperkok, R., 

Ellenberg, J., Panier, S., Durocher, D., Bartek, J., et al. (2009). RNF168 binds and 
amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of 
repair proteins. Cell 136, 435–446. 

 
7. Fradet-Turcotte, A., Canny, M.D., Escribano-Dı´az, C., Orthwein, A., Leung, C.C., 

Huang, H., Landry, M.C., Kitevski-LeBlanc, J., Noordermeer, S.M., Sicheri, F., and 
Durocher, D. (2013). 53BP1 is a reader of the DNA-damageinduced H2A Lys 15 
ubiquitin mark. Nature 499, 50–54. 

 
8. Gatti, M., Pinato, S., Maspero, E., Soffientini, P., Polo, S., and Penengo, L. (2012). A 

novel ubiquitin mark at the N-terminal tail of histone H2As targeted by RNF168 
ubiquitin ligase. Cell Cycle 11, 2538–2544. 

 
9. Gudjonsson, T., Altmeyer, M., Savic, V., Toledo, L., Dinant, C., Grøfte, M., Bartkova, J., 

Poulsen, M., Oka, Y., Bekker-Jensen, S., et al. (2012). TRIP12 and UBR5 suppress 
spreading of chromatin ubiquitylation at damaged chromosomes. Cell 150, 697–709. 

 
10. Huen, M.S., Grant, R., Manke, I., Minn, K., Yu, X., Yaffe, M.B., and Chen, J. (2007). 

RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint 
protein assembly. Cell 131, 901–914. 

 
11. Iwai, K., and Tokunaga, F. (2009). Linear polyubiquitination: a new regulator of NF-

kappaB activation. EMBO Rep. 10, 706–713. 
 
12. Jackson, S.P., and Durocher, D. (2013). Regulation of DNA damage responses by 

ubiquitin and SUMO. Mol. Cell 49, 795–807. 
 
13. Kolas, N.K., Chapman, J.R., Nakada, S., Ylanko, J., Chahwan, R., Sweeney, F.D., Panier, 

S., Mendez, M., Wildenhain, J., Thomson, T.M., et al. (2007). Orchestration of the 
DNA-damage response by the RNF8 ubiquitin ligase. 

 
14. Science 318, 1637–1640. 
 
15. Mailand, N., Bekker-Jensen, S., Faustrup, H., Melander, F., Bartek, J., Lukas, C., and 

Lukas, J. (2007). RNF8 ubiquitylates histones at DNA double-strand breaks and 
promotes assembly of repair proteins. Cell 131, 887–900. 

 



PAPER                                                                                                                                                          CHAPTER 3 

 

86 
 

16. Maiolica, A., Ju¨ nger, M.A., Ezkurdia, I., and Aebersold, R. (2012). Targeted proteome 
investigation via selected reaction monitoring mass spectrometry. J. Proteomics 75, 
3495–3513. 

 
17. Maspero, E., Mari, S., Valentini, E., Musacchio, A., Fish, A., Pasqualato, S., and Polo, S. 

(2011). Structure of the HECT:ubiquitin complex and its role in ubiquitin chain 
elongation. EMBO Rep. 12, 342–349. 

 
18. Mattiroli, F., Vissers, J.H., van Dijk, W.J., Ikpa, P., Citterio, E., Vermeulen, W., Marteijn, 

J.A., and Sixma, T.K. (2012). RNF168 ubiquitinates K13-15 on H2A/ H2AX to drive DNA 
damage signaling. Cell 150, 1182–1195. 

 
19. Nakada, S., Tai, I., Panier, S., Al-Hakim, A., Iemura, S., Juang, Y.C., O’Donnell, L., 

Kumakubo, A., Munro, M., Sicheri, F., et al. (2010). Non-canonical inhibition of DNA 
damage-dependent ubiquitination by OTUB1. Nature 466, 941–946. 

 
20. Nishikawa, H., Ooka, S., Sato, K., Arima, K., Okamoto, J., Klevit, R.E., Fukuda, M., and 

Ohta, T. (2004). Mass spectrometric and mutational analyses reveal Lys-6-linked 
polyubiquitin chains catalyzed by BRCA1-BARD1 ubiquitin ligase. J. Biol. Chem. 279, 
3916–3924. 

 
21. Panier, S., Ichijima, Y., Fradet-Turcotte, A., Leung, C.C., Kaustov, L., Arrowsmith, C.H., 

and Durocher, D. (2012). Tandem protein interaction modules organize the ubiquitin-
dependent response to DNA double-strand breaks. 

 
22. Mol. Cell 47, 383–395. 
 
23. Penengo, L., Mapelli, M., Murachelli, A.G., Confalonieri, S., Magri, L., Musacchio, A., Di 

Fiore, P.P., Polo, S., and Schneider, T.R. (2006). Crystal structure of the ubiquitin 
binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Cell 124, 
1183–1195. 

 
24. Peng, D.J., Zeng, M., Muromoto, R., Matsuda, T., Shimoda, K., Subramaniam, M., 

Spelsberg, T.C., Wei, W.Z., and Venuprasad, K. (2011). Noncanonical K27-linked 
polyubiquitination of TIEG1 regulates Foxp3 expression and tumor growth. J. 
Immunol. 186, 5638–5647. 

 
25. Pinato, S., Scandiuzzi, C., Arnaudo, N., Citterio, E., Gaudino, G., and Penengo, L. 

(2009). RNF168, a new RING finger, MIU-containing protein that modifies chromatin 
by ubiquitination of histones H2A and H2AX. BMC Mol. Biol. 10, 55. 

 
26. Pinato, S., Gatti, M., Scandiuzzi, C., Confalonieri, S., and Penengo, L. (2011). UMI, a 

novel RNF168 ubiquitin binding domain involved in the DNA damage signaling 
pathway. Mol. Cell. Biol. 31, 118–126. 



PAPER                                                                                                                                                          CHAPTER 3 

 

87 
 

 
27. Poulsen, M., Lukas, C., Lukas, J., Bekker-Jensen, S., and Mailand, N. (2012). Human 

RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-
strand breaks. J. Cell Biol. 197, 189–199. 

 
28. Sato, Y., Yoshikawa, A., Mimura, H., Yamashita, M., Yamagata, A., and Fukai, S. (2009). 

Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by 
tandem UIMs of RAP80. EMBO J. 28, 2461–2468. 

 
29. Sobhian, B., Shao, G., Lilli, D.R., Culhane, A.C., Moreau, L.A., Xia, B., Livingston, D.M., 

and Greenberg, R.A. (2007). RAP80 targets BRCA1 to specific ubiquitin structures at 
DNA damage sites. Science 316, 1198–1202. 

 
30. Stewart, G.S., Panier, S., Townsend, K., Al-Hakim, A.K., Kolas, N.K., Miller, E.S., 

Nakada, S., Ylanko, J., Olivarius, S., Mendez, M., et al. (2009). The RIDDLE syndrome 
protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. 
Cell 136, 420–434. 

 
31. Wang, B., and Elledge, S.J. (2007). Ubc13/Rnf8 ubiquitin ligases control foci formation 

of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc. Natl. 
Acad. Sci. USA 104, 20759–20763. 

 
32. Weake, V.M., and Workman, J.L. (2008). Histone ubiquitination: triggering gene 

activity. Mol. Cell 29, 653–663. 
 
33. Wickliffe, K., Williamson, A., Jin, L., and Rape, M. (2009). The multiple layers of 

ubiquitin-dependent cell cycle control. Chem. Rev. 109, 1537–1548. 
 
34. Woelk, T., Sigismund, S., Penengo, L., and Polo, S. (2007). The ubiquitination code: a 

signalling problem. Cell Div. 2, 11. 
 
35. Wu-Baer, F., Lagrazon, K., Yuan, W., and Baer, R. (2003). The BRCA1/BARD1 

heterodimer assembles polyubiquitin chains through an unconventional linkage 
involving lysine residue K6 of ubiquitin. J. Biol. Chem. 278, 34743–34746. 

 
36. Zucchelli, S., Codrich, M., Marcuzzi, F., Pinto, M., Vilotti, S., Biagioli, M., Ferrer, I., and 

Gustincich, S. (2010). TRAF6 promotes atypical ubiquitination of mutant DJ-1 and 
alpha-synuclein and is localized to Lewy bodies in sporadic Parkinson’s disease brains. 
Hum. Mol. Genet. 19, 3759–3770. 

 

 



 

 
 



UNPUBLISHED RESULTS                                                                                               CHAPTER 4 

 

89 
 

USP10 REGULATES THE RNF168-DEPENDENT SIGNALLING BY AFFECTING ITS 

UBIQUITINATION STATUS 

 
Francesca Rocchio, Sabrina Pinato, Marco Gatti and Lorenza Penengo 

 
 
SUMMARY 

RNF168 is an E3 ubiquitin ligase that induces extensive chromatin ubiquitination 

after double strand breaks (DSBs) induction. The RNF168-dependent 

ubiquitination is a critical event in DNA damage response (DDR) by promoting the 

focal accumulation of the downstream DDR proteins to DSBs-flanking chromatin. 

Our current knowledge is predominantly based on the RNF168-mediated 

signalling, but how this E3 is fine-tuned is not yet clear and under intense 

investigation. Here we report that a poorly characterized deubiquitinating 

enzyme (DUB), named USP10, is a new interactor of RNF168. We show that 

USP10 constitutively interacts with RNF168 and recognizes the RING-finger 

domain of the ubiquitin ligase. We demonstrate that USP10 regulates the 

ubiquitination status of RNF168, without affecting its stability. Interestingly, 

chromatin ubiquitination is also highly regulated by USP10. Indeed, USP10 

depletion markedly reduces RNF168-mediated chromatin ubiquitination, while its 

ectopic expression promotes it. In line with these results, we observe that in cells 

depleted of USP10, the recruitment of 53BP1 to DDR foci is significantly impaired. 

These findings revealed a novel role of USP10 in the fine-tuning of chromatin 

ubiquitination, through the regulation of RNF168 ubiquitination status. 

 
INTRODUCTION 

Genome integrity is essential to prevent genetic alterations that can lead to 

carcinogenesis1, 2, 3. DNA is continuously subjected to random changes but only 
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few of them accumulate as mutations in the DNA sequence, thanks to the 

preserving action of a complex network called DNA damage response (DDR). DDR 

is responsible for the DNA damage surveillance that includes a set of processes 

such as DNA repair, chromatin remodelling, cell-cycle checkpoints and apoptosis4. 

When a damage occurs on DNA, the initial trigger of DDR is the phosphorylation 

of the histone H2A.X (that in this form is known as γ-H2A.X)5 by the action of a 

family of kinases named PIKKs, which includes ATM (for Double Strand Breaks), 

ATR (for Single Strand Breaks)3, 6, 7, 8. Phosphorylation is one of the reversible 

modifications known as post-translational modifications (PTMs)9, 10. PTMs have a 

crucial role in DDR in virtue of their ability to both alter the activity of an existing 

protein and to generate docking sites on target proteins at the damaged sites, 

contributing to the formation of supramolecular structures named DDR foci9, 10. 

While phosphorylation initiates the pathway, ubiquitination, another PTM, is 

fundamental to sustain the signalling11, 12, 13. A major breakthrough in recent 

years has been that ubiquitination gives rise to diverse polymeric chains with 

distinct topology leading to an intricate code14, 15. Ubiquitination is a three steps 

reaction that involves the concerted action of ubiquitin activating enzyme (E1), 

ubiquitin conjugating enzyme (E2) and ubiquitin ligase (E3). In DDR RNF8 and 

RNF168, two E3 ubiquitin ligases, target histone H2A and H2A.X allowing the 

efficient local assembly of DNA damage-repair factors16, 17, 18, 19. RNF8 is quickly 

recruited to the damaged chromatin and its recruitment is in turn fundamental 

for the focal accumulation of RNF168. As we recently reported, RNF168 promotes 

the non-canonical K27-ubiquitination on histones H2A and H2A.X at the bidentate 

K13/15 site at their N-terminal18, 19 by providing to uniquely mark the substrates.  

The   RNF168-mediated ubiquitination is necessary for the recruitment of the 

effectors of the pathway, such as BRCA1 and 53BP1, which contain ubiquitin 

binding domains able to recognize and use ubiquitin as a docking site to stay
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anchored to chromatin16, 20, 21. Although a lot is known about the effects of 

RNF168-mediated ubiquitination, less is known about its activation after DSBs 

induction. Recently, different groups reported the importance of the 

deubiquitinating enzymes in the modulation of DDR. These DUBs were found 

actively involved in the regulation of the recruitment of the RNF168-responsive 

factors, in checkpoint recovery and DSB-induced transcriptional silencing22, 23, 24, 25, 

26, 27. Moreover, it was discovered their involvement as regulatory components in 

the RNF8/RNF168-mediated ubiquitination28, 29, 30.  

In this study we describe the identification of USP10, a deubiquitinating enzyme 

known to regulate p53 activation31, as a new interactor of RNF168. We show that 

USP10 forms a complex with RNF168 and modulates its ubiquitination status. We 

provide data suggesting that USP10 is recruited onto chromatin after DNA 

damage, where it is able to regulate RNF168-dependent ubiquitination. Consistent 

with these data, we demonstrate that USP10 positively regulates the recruitment 

of 53BP1 to DDR foci.  

 
MATERIALS AND METHODS 

SILAC combined MS 

HeLa cells were grown in MEM containing 13C6
15N4 L-Arginine (H-heavy isotope), 

13C6
14N4 L-Arginine (M-medium isotope) or non-labeled 12C6

14N4 L-Arginine (L-light 

isotope). Then cells maintained in M and H medium were transiently transfected 

with FLAG- tagged RNF168 while cells maintained in L medium were transfected 

with the empty vector, both using Lipofectamine 2000 reagent (ThermoFisher). 24 

hours after transfection cells were treated with 30µM etoposide (Sigma) for 1 

hour or left untreated. 3 hours after treatment cells were subjected to cellular 

fractionation in order to separate the nuclear from the cytosolic fraction. Then the 

two fractions from the diverse arginine labelling cell cultures were mixed in a 
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1:1:1 ratio. The FLAG immunocomplexes were isolated using the anti-FLAG affinity 

gel (M2, Sigma) for 3 hours at 4°C and washed one time with NETN buffer and 3 

times with HNTG buffer (20mM Hepes pH7.5, 150mM NaCl, 0.1% Triton X-100, 

10% Glycerol 10%) and then eluted by glycine. Afterwards, samples were digested 

with trypsin and processed to LC-MS analysis. 

 
Cell culture and transfection 

HeLa cells were grown in MEM (Gibco) supplemented with 10% fetal bovine 

serum (Gibco), 2mM L-Glutamine (Sigma), 1mM Sodyum Pyruvate (Sigma) and 1% 

non-essential amino acid solution (Sigma). HEK293T cells were grown in 

Dulbecco’s Modified Eagle’s Medium (Sigma-Aldrich) supplemented with 10% 

fetal bovine serum (Gibco), 2mM L-Glutamine (Sigma). U2OS cell line was cultured 

in Dulbecco’s Modified Eagle’s Medium (Sigma-Aldrich) supplemented with 10% 

fetal bovine serum (Gibco), 2 mM L-glutamine (Sigma). U2OS cell line stably 

transfected with pAc-GFP-RNF168 was cultured in Dulbecco’s Modified Eagle’s 

Medium (Sigma-Aldrich) supplemented with 10% fetal bovine serum tetracycline 

free (BioWest), 2 mM L-glutamine (Sigma), 300µg/ml G418 disulfate salt solution 

(Sigma) and 1% PEN-STREP (BioWhittaker). Plasmid transfections were performed 

using Lipofectamine 2000 reagent (ThermoFisher) in HeLa cells, Calcium-

Phosphate in HE293T cells and FuGENE reagent (Roche) in U2OS cell lines. siRNAs-

targeting USP10 transfections were performed using Oligofectamine reagent (Life 

Technologies) in U2Os cell lines and JetPRIME Transfection Reagent (Polyplus).  

 
DNA constructs and antibodies 

The full-length human RNF168 cDNA was purchased from RZPD (clone 

IRATp970F1053D) and cloned into pGEX6P2 (GE Helthcare) and FLAG-pcDNA3.1 

(Invitrogen). The truncated forms of RNF168 constructs were generated by PCR 
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amplification followed by cloning into pGEX6P2 vector. The oligonucleotide 

sequences are available upon request. The full-length human USP10 cDNA was 

kindly provided by Zhenkun Lou and cloned into pcDNA3.1 (Invitrogen). Its 

catalytic mutant was obtained by site-direct point-mutation using the following 

oligonucleotides: forward: AAT AAA GGG AAC TGG GCC TAC ATT AAT GCT ACA; 

reverse: TGT AGC ATT AAT GTA GGC CCA GTT CCC TTT ATT. HA-tagged ubiquitin 

cDNA derived from UBC gene (ID: NM_021009.5) and kindly provided by Josef 

Yarden was cloned into pcDNA3-TOPO (invitrogen). All constructs were sequence 

verified. Antibodies used: rabbit polyclonal anti-USP10, anti-53BP1 and anti-HA-

tag (Abcam); rabbit-polyclonal anti-FLAG (TM) and anti-FLAG affinity gel (M2) 

(Sigma). Monoclonal-mouse anti-Ɣ-H2A.X (Ser139, Millipore), mouse-monoclonal 

anti-GFP and anti-p53 (DO-1; sc-126) (SantaCruz).   

 
RNA interference 

The siRNAs-targeting USP10 (Invitrogen) were used for USP10 knockdown. 

Transfections of siRNAs were performed using oligofectamine reagent (Invitrogen) 

in U2OS cells and jetPRIME® Transfection Reagent (Polyplus) in HEK293T cells. All 

the siRNAs and oligonucleotide sequences are included below.  

 
siRNA sequences 

siRNA SCR: UAACGACGAGUCACGAAAGAGAGGG 

siRNA #1: UAAAGAGCCACUAAAGAGAGGCGGG 

siRNA #2: UGCAAAGGGAGAAAGAGUUUCUCUC 

siRNA #3: GAGAAACUCUUUCUCCCUUUGCAAA 

 
GST pull-down assays 

Recombinant GST fusion proteins were expressed in E. coli strain BL21 pLys by a 3 

hours induction with 1mM IPTG at 37°C. Bacterial cells were harvested, 
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resuspended in PBS supplemented with Protease Inhibitor Cocktail (Sigma) and 

1mM PMSF and sonicated. Lysates were incubated with 1% Triton X-100 for 30 

min at room temperature and then centrifuged (14000rpm for 30 min a 4°C). GST-

tagged proteins were purified with Glutathione-Sepharose resin (GE healthcare) 

as by manufacturer’s instructions. For the pull-down experiments with cellular 

lysates, HeLa cells were lysed in NETN buffer (50mM TrisHCl pH 7.5, 500mM NaCl, 

1mMSodium Pyruvate, 50mM NaF, 1mM Na3PO4, 20µM NEM, protease inhibitor 

cocktail (Sigma), 80 U/ml benzonase), and clarified by centrifugation at 13000rpm 

for 30 min at 4°C. 1µM of GST fusion proteins, immobilized onto GSH beads, were 

incubated with 500µg of lysates for 2 hours at 4°C. Specifically bound proteins 

were resolved on SDS-PAGE (10%) and transferred onto nitrocellulose membranes 

and analysed by immunoblotting as indicated.     

 
Co-immunoprecipitation and immunoprecipitation 

For the co-immunoprecipitation experiments FLAG-tagged RNF168 was transiently 

expressed in HeLa cells using Lipofectamine 2000 reagent (ThermoFisher).  24 

hours after transfection cells were treated with 30µM etoposide (Sigma) for 1 

hour or left untreated. Then, cells were lysed in NETN buffer (50mM TrisHCl pH 

7.5, 500mM NaCl, 1mMSodium Pyruvate, 50mM NaF, 1mM Na3PO4, 20µM NEM, 

protease inhibitor cocktail (Sigma), 80 U/ml benzonase), and clarified by 

centrifugation at 13000rpm for 30 min at 4°C. Lysates were incubated with the 

anti-FLAG affinity gel (M2, Sigma) for 3 hours at 4°C and washed one time with 

NETN buffer and 3 times with HNTG buffer (20mM Hepes pH7.5, 150mM NaCl, 

0.1% Triton X-100, 10% Glycerol 10%). The bound proteins were released by 

boiling in Laemmli sample buffer and examined by Western blotting. For the 

immunoprecipitation experiments FLAG-tagged RNF168 was transiently expressed 

in HEK293T cells together with HA-tagged ubiquitin and USP10, or its catalytic 
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mutant using Calcium-Phosphate; or USP10 was depleted from cells using 

jetPRIME® Reagent (Polyplus) transfection of siRNAs-targeting USP10. 48 hours 

after, FLAG-tagged RNF168 was transiently expressed in cells together with HA-

tagged ubiquitin by 48-hours transfection using Calcium-Phosphate. Then, cells 

were lysed in RIPA buffer (50mM TrisHCl pH 7.5, 500mM NaCl, 1%  1mM Sodium 

Pyruvate, 50mM NaF, 1mM Na3PO4, 20µM NEM, protease inhibitor cocktail 

(Sigma), 80 U/ml benzonase), and clarified by centrifugation at 13000rpm for 30 

min at 4°C. Lysates were incubated with the anti-FLAG affinity gel (M2, Sigma) for 

3 hours at 4°C and washed one time with NETN buffer and 3 times with HNTG 

buffer (20mM Hepes pH7.5, 150mM NaCl, 0.1% Triton X-100, 10% Glycerol 10%). 

The bound proteins were released by boiling in Laemmli sample buffer and 

examined by Western blotting.   

 
Immunofluorescence 

U2OS cell line transfected with siRNAs-targeting USP10 or Scramble siRNA 

(Invitrogen) were grown on glass coverslips. 72 hours after transfection, cells were 

treated with etoposide (5µM, 1 hour) and left for another 24 hours before fixing 

and staining them; or 96 hours after transfection, cells were treated with 

etoposide (5µM, 1 hour) and then fixed and stained. Cells were fixed in 4% 

paraformaldehyde, permeabilized by a 10-minutes treatment with 0.5% Triton X-

100 in BSA, blocked with PBG (PBS, BSA, gelatin) for 1 hour and immunoprobed 

with the appropriate antibody for 1 hour at RT. Incubation with secondary 

antibodies (Alexa fluor 488 anti-mouse IgG, Alexa Fluor 555 anti-rabbit IgG 

(Invitrogen)), was performed for 30 min at RT. Nuclei were stained with 0.2µM To-

PRO3 for 10 minutes. Images were acquired by confocal scanning laser 

microscope (Leica TCS2; Leica Lasertechnik, Heidelberg, Germany). 
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In vivo detection of ubiquitinated chromatin 

HEK293T cells treated at different time points with 30µM Etoposide for 1 hour, or 

expressing different constructs were collected in PBS, containing protease 

inhibitor cocktail (Sigma-A;drich), 1 mM phenylmethylsulfonyl fluoride, and 20 

mM N-ethylmaleimide. One-tenth of the samples were separately processed for 

protein normalization, whereas the remaining were subjected to acidic extraction 

as previously described (Citterio, E. et al.; Mol Cell Biol, 2004). Then, samples were 

either directly analysed by SDS-PAGE and western blotting. 

 
RESULTS   

USP10 directly interacts with RNF168 

As extensively described, RNF168 is a key enzyme in DDR, which induces 

chromatin ubiquitination at DSBs18, 19, 25. Considering its importance in genome 

integrity, we decided to gain more insights into the comprehension of this process 

by searching for new RNF168-interacting proteins. Thus, we performed a 

quantitative proteomic analysis based on the SILAC method. As shown in figure 

1A, we cultured HeLa cells in media supplemented with Arginine containing 

different isotopes of carbon and nitrogen, 13C6
15N4 (H-heavy isotope), 13C6

14N4 (M-

medium isotope) or non-labeled 12C6
14N4 (L-light isotope). Then, cells maintained 

both in M and H medium were transfected with FLAG-tagged RNF168, while cells 

grown in L medium were transfected with the empty vector. Afterwards we 

treated cells with etoposide (inhibitor of Topoisomerase II) to induce DSBs or left 

them untreated as indicated in figure 1A. Consequently, the cells from the diverse 

arginine labelled cultures were subjected to fractionation, in order to separate the 

nuclear from the cytosolic fraction, and therefore mixed in a 1:1:1 ratio. FLAG 

immunocomplexes were purified from the nuclear fractions and, after glycine 

elution (Fig. 1B), were analysed by mass spectrometry. The screening identified 
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proteins involved in various biological processes, including several already known 

to be associated to RNF168 (Tab.1) thereby proving the sensitivity and reliability 

of the screen. Interestingly, among the identified interactors we found a poorly 

characterized deubiquitinating enzyme (DUB), namely USP10, a 798 amino acids 

long protein that is localized in the cytoplasm where it regulates p53 homeostasis; 

after genotoxic stress a fraction of USP10 translocates to the nucleus to stabilize 

and activate p5331. The tumour suppressor p53 is involved in a variety of cellular 

functions, including DNA repair. Due to its deubiquitinating activity and its 

involvement in cancer biology as p53 regulator, we considered USP10 a good 

candidate to regulate the RNF168-based signalling, thereby participating in the 

DNA damage response.  

 
id Protein Name Gene Name

Peptides 

(seq)

Sequence 

Coverage [%]

Mol. Weight 

[kDa]
Ratio M/L Ratio H/L Ratio H/M

56 Histone H2B  HIST2H2BA 2 14,5 18,804 1,0656 1,364 1,2179

188 E3 ubiquitin-protein ligase RNF8 RNF8 5 11,5 55,462 3,7266 4,3078 0,9255

191 Valosin-containing protein p97 VCP 11 14,8 89,321 1,0547 1,5207 1,248

322 Histone H1.5 HIST1H1B 3 17,3 22,58 1,3109 1,4512 1,1736

368
Ubiquitin carboxyl-terminal 

hydrolase 10
USP10 2 2,8 87,133 1,3508 1,9082 1,1384

380
DNA-dependent protein kinase 

catalytic subunit
PRKDC 4 1 469,08 1,2611 1,4762 1,1257

462
Tripartite motif-containing protein 

28;Nuclear corepressor KAP-1
TRIM28;KAP1 3 4,3 88,549 1,7511 1,5983 0,87361

481 Nucleolin NCL 26 29,2 76,613 1,8734 2,2822 1,1182

486 DNA repair protein XRCC6 XRCC6; KU70 3 5,7 69,842 1,0663 1,2608 0,95379  

 
TABLE 1: IDENTIFICATION OF RNF168 INTERACTORS FROM RNF168-ENRICHED NUCLEAR AND 

CYTOSOLIC FRACTIONS. A selected list of interactors of RNF168, identified by SILAC-combined 
mass spectrometry analysis; 13C6

15N4 L-Arginine (H-heavy isotope), 13C6
14N4 L-Arginine (M-

medium isotope) or non-labeled 12C6
14N4 L-Arginine (L-light isotope). 

  
 
In order to confirm that USP10 is an interactor of RNF168, we adopted a 

biochemical approach by expressing FLAG-tagged RNF168 in HeLa cells and 

treated or not with etoposide. Then cells were lysed in mild conditions and 

protein extracts were subjected to FLAG immunoprecipitation. USP10 

immunoblotting (IB) clearly reveals that endogenous USP10 is able to interact with 
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RNF168 in vivo (Fig.1C). Remarkably, as displayed in figure 1C, USP10 is able to 

interact with FLAG-RNF168 under both genotoxic stress and physiological 

conditions. To further demonstrate that USP10 directly interacts with RNF168, we 

performed an in vitro pull-down assay using recombinant GST-tagged RNF168 

expressed in bacteria. As shown in figure 1D, GST-RNF168 was able to pull-down 

USP10 derived from HeLa cell extracts. 
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FIGURE 1: USP10 INTERACTS WITH RNF168 BOTH IN VIVO AND IN VITRO. (A) Schematic 
representation of the experimental procedure. HeLa cells were grown in medium 
supplemented with Arginine containing the indicated isotopes of carbon and nitrogen. 
Afterwards, cells were transfected with FLAG-RNF168 or the empty vector, treated or not 
with etoposide for 1 hr and subjected to fractioning in order to separate the cytosolic 
fraction from the nuclear components. Then, samples were mixed in a 1:1:1 ratio 
followed by FLAG immunoprecipitation (IP). (B) After glycine elution, samples were in part 
analyzed by IB as indicated and in part subjected to trypsin digestion and processed for 
LC-MS analysis. (C) In vivo validation of the USP10/RNF168 interaction. HeLa cells 
expressing the indicated constructs were treated or not with etoposide (30 µM) for 1 h. 
After 3 hrs, cells were lysated and subjected to co-immunoprecipitation (Co-IP) with FLAG 
resin; IB was performed using the indicated antibodies. (D) Demonstrating the direct 
interaction between USP10 and RNF168. In vitro pull-down assay was perfomerd using 
GST-tagged RNF168 and HeLa cells lysates. IB was performed with anti-USP10. 

 
 
USP10 interacts with multiple regions within RNF168 in vitro 

To further characterize the physical association between USP10 and RNF168, we 

mapped the region(s) within RNF168 that interact with USP10. To this aim, we 

produced a panel of different GST-RNF168 deletion mutants encompassing the 

whole protein (Fig. 2A) that were incubated with HeLa cells extracts in an in vitro 

pull down-assay. The results obtained revealed that USP10 is able to interact with 

full-length GST-tagged RNF168-construct, while the GST-tagged RNF168-deleted 

construct lacking the RING-finger domain (57-571(Δ57)) weakly interacts with 

USP10 (Fig. 2B). Interestingly, also the C-terminus of the RNF168 (439-571(MIU2-

Cterm)) seems to retain the ability to associate with USP10. In addition, as shown in 

figure 2B, the GST-tagged RNF168 sequence between aminoacids 168 and 462 

(168-462(MIU1-MIU2)), which contains the two ubiquitin binding domains (UBDs), 

MIU1 and the MIU2, also interacts with USP10, although more weakly than the 

other constructs, suggesting that the two UBDs might be involved. Unexpectedly, 

the GST-tagged mutant encompassing the RING-finger domain and the MIU1 (1-

180(RF-MIU1)) does not associate with USP10 (Fig. 2B). Trying to further characterize 

the interaction, we performed the pull-down using the GST-tagged deletion 
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constructs in the RING-finger domain of RNF168. Notably, as shown in figure 2C 

we found that USP10 binds the isolated RING finger domain (1-57) but not its 

fragments (1-15 and 15-57). These results show that both regions are strictly 

required for the recognition by USP10, suggesting a specific mechanism where the 

short loop (1-15) and the RING finger form a functional domain able to drive the 

interaction between these two proteins. 

Overall these results indicate that USP10 can interact with multiple regions within 

RNF168, including the RING-finger domain and the C-terminal suggesting a 

possible dual mode of interaction between the two proteins. 
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FIGURE 2: IN VITRO USP10 INTERACTS WITH MULTIPLE REGIONS ON RNF168, INCLUDING ITS RING-
FINGER DOMAIN. (A) Schematic representation of RNF168 and its deleted constructs used in 
pull-down experiments (numbers refer to the aminoacid position within the sequence; 
RF, RING-finger domain; NLS, nuclear localization sequences; UMI, UIM and MIU-related 
ub binding domain; MIU1 and MIU2, motifs interacting with ub 1 and 2; LRM1 and LRM2, 
LR-motifs 1 and 2). (B-C) Mapping the region(s) of RNF168 recognized by USP10. In vitro 
pull-down assay was performed using the indicated GST-tagged deleted constructs of 
RNF168 and HeLa cells lysates. The GST alone was used as control. IB was performed with 
anti-USP10.  
 
 

After DNA damage, USP10 is recruited on chromatin in a time-dependent 

manner 

Yuan and colleagues demonstrate that USP10 is a cytoplasmic protein that, 

following DNA damage, translocates into the nucleus in an ATM-dependent 

manner31. Since we found that RNF168 and USP10 form a complex, we asked 

ourselves whether USP10 is loaded onto damaged chromatin following genotoxic 

stress. To address this point, HEK293T cells were treated or not at different time 

points with etoposide as indicated in figure 3, and then subjected to chromatin 

extraction. Immunoblotting revealed that, after DNA damage, USP10 is recruited 

to chromatin in a time-dependent manner, similarly to 53BP1 (Fig. 3 upper 

panels). Interestingly, both proteins display a unexpected biphasic recruitment, 

suggesting an additional mechanism able to regulate the access of the DDR 

protein to chromatin. Moreover, we found that a little portion of USP10 is also 

localised into chromatin in untreated conditions. 
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FIGURE 3: AFTER DSBS-INDUCTION USP10 IS LOADED ONTO CHROMATIN IN A BIPHASIC-FASHION. 
Evaluation of USP10 chromatin loading after genotoxic stress. HEK293T cells were treated 
with etoposide (30µM) for 1h and then harvested at the indicated time points. Samples 
were subjected to chromatin extraction and separated by SDS-PAGE. IB was performed  
as indicated. 

 
 
USP10 depletion induces an aberrant recruitment of 53BP1 to DDR foci  

Upon genotoxic stress, the phosphorylation of histone H2A.X and the 

accumulation of 53BP1 form characteristic DDR foci at the site of DNA damage16, 

20, 32, 33, 34, which are easily detectable by immunofluorescence techniques. We 

took advantage of this in order to explore the functional relevance of USP10 in 

both DDR foci formation and DNA repair. First, we set up USP10 knockdown in 

U2OS cells by using different siRNA oligonucleotides (Fig. 4A). Afterwards, we 

evaluated the impact of USP10 depletion in the activation of DDR. Cells were 

treated with etoposide at two different time points to measure both the early 

activation of the DDR (1 hr) and the DNA repair (24 hrs), and then fixed and 
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subjected to immunofluorescence (Fig. 4B). Notably, after 1 hour of treatment we 

found that the USP10-defective cells show a significantly impaired focal 

recruitment of 53BP1 to the damaged chromatin (Fig. 4B; middle panel and Fig. 

4C). Moreover, the same cells displayed a totally delocalized Ɣ-H2A.X inside the 

nucleus and the shape of its DDR foci appears smaller compared to the foci in 

control cells. In line with this result, 24 hours after treatment USP10-depleted 

cells still display Ɣ-H2A.X foci compared to the control cells, suggesting a mild 

delay in DNA repair (Fig. 4B, lower panel). 
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FIGURE 4: USP10 IS ESSENTIAL FOR THE RECRUITMENT OF 53BP1 TO THE DDR FOCI. (A-C) Functional 
characterization of the role of USP10 in DDR. (A) Evaluation of USP10 expression in U2OS-
depleted cells (B) U2OS cells were transfected with the indicated USP10-targeting siRNA. 
72hrs after transfection, cells were treated with etoposide (5 µM) for 1 hr and fixed and 
stained or left for 24 hrs before fixing and staining them. Immunostaining was performed 
with the indicated antibodies. (C) Quantification of 53BP1 foci-positive cells (more than 
five foci). At least 100 cells per condition were counted. Each value represents the mean ± 
SD. *p < 0.05;   

 
 
USP10 modulates the activity of RNF168  

RNF168-dependent chromatin ubiquitination is required for the proper DDR-

signalling16, 20, 21. Since we found that USP10 depletion in U2OS markedly impairs 

the recruitment of 53BP1 to the DDR foci, we hypothesized that USP10 might 

regulate RNF168-dependent chromatin-ubiquitination. Therefore we expressed 

USP10, or its catalytically-inactive mutant C42A, together with HA-tagged 

ubiquitin and FLAG-tagged RNF168 in HEK293T cells. Cells were then lysed and 

either total cell extracts (Fig. 5A) or chromatin fractions (Fig. 5C) were analysed by 

IB. Surprisingly, we found that the ectopic expression of USP10 induces an 

increase in ubiquitination, which seems to not be dependent upon its catalytic 

activity, as highlighted by the effect prompted by the catalytically-inactive mutant 

(Fig.5A and 5C). Conversely, we observed that depletion of USP10 significantly 

reduces the ubiquitination status of cells (Fig. 5B). The analysis of chromatin 

fractions reported in figure 5C confirmed that the expression of USP10 markedly 

enhanced chromatin ubiquitination induced by RNF168.  

Overall, these results indicate that USP10 regulates RNF168-activity, likely in a 

non-catalytic manner.  
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FIGURE 5: USP10 REMODELS CHROMATIN BY INDUCING RNF168-DEPENDENT UBIQUITINATION. (A-B) 
Assessment of the USP10 effects on RNF168-dependent ubiquitination status of cells. (A) 
HEK293T cells were transfected with the indicated constructs. After 48 hrs cells were 
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lysed and analysed by SDS-PAGE. IB was performed as indicated. (B) USP10 was depleted 
from HEK293T cells and then transfected the indicated constructs. 96 hrs after the siRNA-
targeting USP10 transfection cells were lysed and analysed by IB as indicated. (C)  In vivo 
evaluation of RNF168-mediated chromatin ubiquitination after USP10 expression. 
HEK293T cells were transfected with the indicated constructs. 48 hrs after transfection, 
chromatin was purified and analysed by SDS-PAGE. IB was performed as indicated. 
 
 

USP10 induces an increase of the RNF168-ubiquitination status 

Since USP10 is important for the correct DDR signal and affects RNF168-mediated 

chromatin ubiquitination, we next investigated if those effects are consequent to 

an USP10-dependent RNF168-stabilization. Thus, U2OS cells stably expressing 

GFP-tagged RNF168 were transfected with an increasing amount of USP10, lysed 

and subjected to biochemical analysis. Results demonstrate that overexpression 

of USP10 does not affect the expression levels of RNF168 (Fig. S1A). The same 

result was obtained by depleting USP10 from cells as well (Fig.S1B), 

demonstrating that USP10 is not involved in the protection of RNF168 from 

proteasome degradation. In virtue of the deubiquitinating activity of USP10 and 

considering its direct interaction with RNF168, we investigated if USP10 was able 

to affect the ubiquitination status of RNF168. To corroborate this hypothesis we 

either transfected HEK293T cells with HA-tagged ubiquitin and RNF168 together 

with USP10 (Fig.6A), or depleted it by using siRNAs (Fig.6B). Then the enriched 

FLAG-tagged RNF168 samples were subjected to IB to evaluate the ubiquitination 

status of RNF168 (Fig. 6A and 6B). Unexpectedly, we found that the expression of 

USP10 induces a marked increase of the poly-ubiquitinated forms of RNF168, 

while its depletion highly reduces them. Remarkably, as shows in figure 6A, the 

catalytic mutant of USP10 also displays the ability to induce ubiquitination of 

RNF168, which further supports the non-catalytic regulation of USP10 on RNF168. 

To confirm these results in a more physiological system, we depleted USP10 from 

U2OS cells stably expressing GFP-tagged RNF168. Then lysates were subjected to 
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GFP-immunoprecipitation, in order to enrich samples with RNF168, and 

immunoblotted with anti-ubiquitin. Once again we observed a significant 

reduction of the RNF168-ubiquitination after USP10 depletion, clearly 

demonstrating that USP10 regulates the formation of the ubiquitin-conjugates on 

RNF168 (Fig.6C).   

Taken together, these results demonstrate that USP10 is a new player in DDR, 

being recruited onto chromatin after DNA damage and involved in DDR foci 

formation. Moreover, we found that USP10 is an interactor of RNF168 able to 

regulate both its ubiquitination status and its chromatin-dependent 

ubiquitination. 

 

 

 
 

FIGURE 6: USP10 AFFECTS THE UBIQUITINATION STATUS OF RNF168. (A-C)  Evaluation of RNF168 
ubiquitination status. (A-B) HEK293T cells, transfected with the indicating constructs, 
were lysed and subjected to FLAG immunoprecipitation (IP). IB was performed using the 
indicated antibodies (C424A, USP10 catalytically-inactive mutant; the number is referred 
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to the catalytic Cys converted to Ala). (C) U2OS cells or U2OS cells stably expressing GFP-
tagged RNF168 were transfected with the indicated constructs. Then cells were lysed and 
subjected to GFP-IP and analysed by SDS-PAGE. IB was performed as indicated.  

  
 
DISCUSSION 

Here we uncovered an USP10-dependent mechanism that provides a new level of 

regulation of RNF168-induced DNA damage signalling. USP10 was previously 

characterized as a cytoplasmic ubiquitin-specific protease that deubiquitinates 

p53, reversing Mdm2-induced p53 nuclear export and degradation31. Yuan and 

colleagues also discovered that USP10 translocates into the nucleus after ATM-

dependent phosphorylation. Our report revealed a new intriguing role for USP10 

in cellular homeostasis by integrating the previous model. Indeed we discovered 

that USP10 is loaded onto chromatin in untreated cells and its chromatin 

accumulation is enhanced upon induction of DSBs. We showed that its retention 

on chromatin follows a biphasic-fashion, as well as 53BP1. A similar mechanism 

was reported for both BRCA135, 36 and Bmi137, where their recruitment to DSBs is a 

kinetically biphasic process comprised of an early γ-H2A.X-independent stage and 

a late γ-H2A.X-dependent stage. Moreover, it was described by Miller and 

colleagues that histone acetylation changes also occur in a similar fashion 

following DSBs-induction, in order to regulate DNA repair38. It will be enthralling 

to investigate the relations between the chromatin states and the regulation of 

the protein assembling at the DSBs. In addition, we found that a small portion of 

USP10 lies on chromatin even in the untreated cells, which could be a reservoir 

ready to go into action following DNA damage-induction. Mechanistically we 

demonstrate that USP10 constitutively interacts with RNF168; this might indicate 

that the chromatin loaded USP10 is in complex with RNF168. The effect of this 

interaction is quite unexpected: we observed that USP10 overexpression induces 

extensive RNF168-dependent chromatin ubiquitination. Au contraire, USP10-
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depleted cells show a marked reduction of their general ubiquitination status. 

RNF168 is fundamental for the focal accumulation of 53BP1 at the DDR foci, which 

in turn means that RNF168-disruption induces 53BP1 nuclear focus formation 

impairment16, 20, 21, 39. As revealed by the immunofluorescence analysis, we found 

that USP10-depleted cells show an aberrant focal recruitment of 53BP1 at the 

chromatin-flanking DSBs in the early steps of the pathway, suggesting an 

impairment in RNF168 function. These results point towards two possible 

hypotheses: the first is that USP10 induces stabilization of RNF168, the second 

entails a role for USP10 in RNF168 activation. As we demonstrated that USP10 

does not induce the stabilization of RNF168, we can exclude the first hypothesis. 

Instead, our evidences suggest a USP10-mediated regulation on RNF168, which is 

independent on its proteolytic activity. In fact, the ability of the catalytically-

inactive mutant of USP10 to induce RNF168-dependent ubiquitination similarly to 

the wild type clearly supports an alternative RNF168 regulation. Interestingly, this 

catalytically independent mechanism of action is also shared with another DUB 

acting in the DDR pathway. Indeed, Durocher and colleagues demonstrated that 

the deubiquitinating enzyme OTUB1 inhibits RNF168-dependent chromatin 

ubiquitination upon DSBs independently of its catalytic activity30. They showed 

that OTUB1 binds to and inhibits UBC13, an E2 conjugating enzyme crucial for the 

activation of DDR30. Conversely, here we propose that USP10 is directly involved in 

the activation of the ubiquitin ligase, in a catalytically inactive manner. In support 

of this, we found that the ubiquitin-conjugates on RNF168 are significantly 

increased in presence of ectopic USP10. Considering that once coupled with an E2 

conjugating enzyme RNF168 is able to induce extensive auto-ubiquitination, we 

think that USP10 could regulate this phenomenon by stabilizing an E2, although 

we can not exclude an USP10-mediated modulation towards the RING-finger 

domain of RNF168. To our knowledge, no proves have been published to 
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corroborate both hypotheses while our mapping results only suggest an 

interaction model. Further investigations are required to unravel that mechanism. 

In addition, USP10 possesses two domains: an ubiquitin carboxyl-terminal 

hydrolase (UCH; from the aminoacid 412 to the aminoacid 79240) and an ataxin 2-

like carboxyl-terminal domain (Ataxin 2C; from the aminoacid 78 to the aminoacid 

9541). While the UCH domain identifies thiol proteases that recognise and 

hydrolyse the peptide bond at the C-terminal glycine of ubiquitin, the Ataxin 2C 

domain, found in various eukaryotic proteins41, interacts with poly(A)-binding 

proteins (PABPs), which are involved in gene expression42. It will be interesting to 

further examine the dynamics behind the function of both domains in order to 

understand whether USP10 may serve as a bridging molecule that functionally 

links the regulation of gene expression with DNA damage response.  

In summary, our results identify USP10 as a new player in DDR by modulating 

RNF168-dependent ubiquitination at DSBs. These results reveal the existence of 

an additional layer of regulation in the ubiquitin-dependent signalling and 

highlight the complex dynamics behind the proteins involved in DDR in order to 

guarantee the maintenance of genome integrity.          

 
AUTHOR CONTRIBUTIONS 

FR performed the biochemical and the immunofluorescence analysis. SP 

generated the GFP-tagged RNF168 depleted constructs. LP performed the SILAC 

analysis. LP and MG prepared samples for MS analysis. LP supervised the 

experiments. FR and LP designed the experiments and wrote the manuscript. 

   

ACKNOWLEDGMENTS 

Authors thank Prof Jiri Lukas for kindly providing U2OS stably expressing GFP-

tagged RNF168 cell lines.  



UNPUBLISHED RESULTS                                                                                                                           CHAPTER 4 

 

111 
 

SUPPLEMENTAL INFORMATION 

FIGURE S1.  USP10 DOES NOT AFFECT RNF168 STABILIZATION 

 

 

 
(A-B)  Evaluation of RNF168 stabilization by USP10. (A) U2OS cells stably expressing GFP-
RNF168 were transfected with the indicating µg of USP10. 48 hrs after transfection, cells 
were lysed and the GFP-RNF168 expression levels were analysed by SDS-PAGE. IB was 
performed as indicated. (B) USP10-targeting siRNA was transfected in U2OS stably 
expressing GFP-RNF168. After 96 hrs cells were lysed and analysed by immunoblotting as 
indicated. 
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DISCUSSION 

Nothing is more fundamental than the maintenance of genome integrity for the 

existence of all living beings. Recent discoveries revealed that changes in the 

human genome, regardless of being inherited or induced, can result in diseases 

that either significantly shorten lives (as seen in cancer) or dramatically affect the 

quality of lives (often seen in neurodegenerative diseases)1, 2.  

To maintain the integrity of their own genome, cells developed a complex 

network of surveillance processes, giving rise to the genome integrity network3, 4. 

5. Among these processes, the one responsible for the proper processing of the 

different DNA damage, caused by various endogenous or exogenous agents, is the 

DNA damage response (DDR).  

The function of the DDR network is to drive cells towards a decision: repair the 

damage or commit suicide, in order to counteract possible threats to the survival 

of the organism6, 7, 8. The damages that could occur on DNA are diverse but the 

most detrimental are the double strand breaks (DSBs) since they do not leave an 

intact complementary strand to be used as a template for DNA repair and can lead 

to chromosome breaks and translocations1. When a damage occurs on DNA, an 

organized and complex pathway of post-translational modifications (PTMs) 

regulates the fine-orchestration of the repair machinery allowing a rapid and 

dynamic recruitment of the DDR proteins to the damaged sites and therefore 

contributing to the formation of the DDR foci9, 10.   

Among the various types of PTMs, ubiquitination stands up as an important 

regulator of DDR; indeed it is able to both target key DDR proteins for 

proteasomal degradation and to function as a signalling device.  Due to its eight 

amine groups - the N-terminus (M1), K6, K11, K27, K29, K33, K48, and K63 - 

present on its peptidic sequence, which are available for the addition of other 
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ubiquitin moieties to the first added to the substrate, ubiquitin (ub) has a 

powerful signalling potential.  

Until now, the K48- and the K63-linked ub chains have been widely investigated. 

Indeed, it is well known in the “state of the art” that the K48- polyubiquitination is 

utilised to target proteins for 26S proteasomal degradation, while the K63-

ubiquitination mediates protein-protein interaction in a plethora of processes, 

including DDR11, 12, 13. Conversely, little is known about the functional roles of 

other ub linkages, also referred as “non-canonical”.  

With the aim to explore the biological relevance of the different types of ub-

linkages in DDR, we centred our research activity on the characterization of the 

RNF168-dependent K-linkage ubiquitination on chromatin. RNF168 is an E3 

ubiquitin ligase, which is fundamental for the proper DNA repair after DSBs. Using 

biochemical and mass spectrometry approaches, together with small interfering 

RNA (siRNA)-based ubiquitin knockdown, we revealed that, following genotoxic 

stress, the major ub mark on chromatin is the non-canonical K27-linked 

ubiquitination and that this ubiquitination is prompted by RNF168. This result 

opened a novel scenario in the field, since it was assumed that RNF8/RNF168 

cascade was based on the sole K63-linked ubiquitination14, 15, 16, 17, 18. We also 

added new crucial insights to the literature records by finding that this atypical 

ubiquitination functions in concert with the K63-linkage to sustain the DDR-

signalling and to allow recruitment of 53BP1 to the DDR foci. These findings 

highlight the complexity of the system and the relevance of generating specific 

and univocal signals on chromatin to allow the correct DNA repair. This 

requirement of diversification is also emphasized, as we and others 

demonstrated, by the ability of RNF168 to ubiquitinate the bidentate K13/15 site 

at the N-terminal tail of histone H2A19, 20, which is distinct from the Ring1b/Bmi1-

dependent mono-ubiquitination on K118/119 site. Our latest findings revealed 
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that the bidentate K13/15 is targeted by the RNF168-dependent K27-

ubiquitination, providing additional evidence in support of the highly specific 

regulation of chromatin ubiquitination. Moreover, considering the complexity of 

the system, which merges both the ub and the histone codes, it will be interesting 

to clarify the molecular events that define the DNA damage-dependent H2A 

ubiquitination orchestrated by RNF168 and Ring1b/Bmi1. The dimer Ring1b/Bmi1 

is a portion of the polycomb group protein complex that acts as a transcriptional 

repressor and recently was found involved in DSBs repair21, 22, 23, 24, 25. Since we 

observed in our experiment a marked reduction of the histone H2A mono-

ubiquitination when the K27 of ub was mutated, we suppose a possible 

modulatory role of RNF168 on Ring1b/Bmi1. This hypothesis could be an 

important step forward in the DDR riddle, connecting transcriptional regulation 

with RNF168-mediated remodelling activity. At this point it will be interesting to 

identify other possible targets of the RNF168-mediated K27-ubiquitination in 

order to better characterize the functional relevance of K27-linked ubiquitination 

in DDR. Until now there are indications of additional candidate targets; for 

instance Bohgaki and colleagues recently demonstrate that 53BP1 is targeted by 

RNF16826. 53BP1 is known to be a reader of the RNF168-dependent ubiquitination 

on K15 of histone H2A27. Indeed it was demonstrated that the UDR domain of 

53BP1 recognizes the peculiar ub mark at the N-terminal tail of the histone H2A 

permitting its pull-down with the nucleosomes. In line with this, we showed that 

the UDR of 53BP1 is able to directly interact with both K27- and K63-ub dimers 

revealing that it is a bona fide UBD. Moreover we clearly demonstrated that the 

diubK27 is directly recognized by Rap80, RNF169 and RNF168 itself. Thus RNF168 

accumulates to DDR foci not only by binding, through its UBDs, the RNF8-

mediated ubiquitination, but also by recognizing ub conjugates that RNF168 

generates on chromatin.   
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Taken together these results represent an unprecedented discovery that 

emphasizes the complexity of the “code” behind the DDR network, and places 

RNF168 as an important regulator of genome integrity.  

Thus, to further investigate the DSBs-induced RNF168-signalling cascade and 

searching for RNF168 new interactors, we performed a quantitative proteomic 

screening, based on the SILAC method, which identified many proteins involved in 

various biological processes, such as transcriptional regulation, interferon 

signalling and RNA/DNA editing, suggesting the cross role of RNF168 into the cell. 

Among these interactors we found USP10, which is a poorly characterized 

deubiquitinase (DUB). In 2010, was demonstrated that USP10 is able to stabilize 

p53 by deubiquitinating it28. Since then USP10 was put in the middle of the 

discussion related to cancer biology. Using biochemical and immunofluorescence 

approaches, we found that USP10 is involved in the mechanism that regulates 

DNA repair. Indeed it is loaded onto chromatin after genotoxic stress and its 

depletion impairs the recruitment of 53BP1 to DDR foci. These findings integrate 

the model outlined by Yuan and colleagues, giving to USP10 an important role in 

the regulation of the cellular homeostasis.  In addition we discovered that USP10 

remodels the ub-conjugates on RNF168 and the ubiquitination status of chromatin 

as well. So far the USP10-mediated mechanism of action able to induce the 

phenotype is unclear and further investigations will be needed to clarify this point. 

Although we can not exclude a modulation of the activity of RNF168 through the 

recognition of its RING-finger by USP10, our evidences suggest an USP10-

mediated non-catalytic regulation of RNF168, which through tethering could 

induce a conformational modification able to activate the E3 ubiquitin ligase29, 30. 

In last instance, it behoves us to mention that USP10, in addition to the UCH 

domain (ubiquitin carboxyl-terminal hydrolase), possesses an Ataxin 2C (ataxin 2-

like carboxyl-terminal domain), which is identified in proteins involved in gene 
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expression31, 32. Given that, it will be interesting to investigate the possible 

involvement of USP10 in the regulation of gene expression and its possible role as 

a connector between this pathway and DNA repair.  

Overall these results revealed that USP10 is a new player in DDR and uncovered a 

USP10-dependent mechanism that provides a novel regulatory level of the 

RNF168-induced signalling.  

Our findings started to shed light on the complexity of the DDR network and 

provide some evidences that underlining proteins, such as USP10, could be used 

as translational pharmaceutical targets for better therapeutic interventions. 
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