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1.1 Inflammation and cancer 
The idea of a relationship between inflammation and cancer dates back 1863, 

when Rudolf Virchow observed leukocyte infiltration in neoplastic tissues and 

hypothesized that the origin of cancer was at sites of chronic inflammation. Yet, 

it was only during the last decade that numerous studies undoubtedly 

demonstrated the critical role of inflammation in tumorigenesis, and that some of 

the underlying molecular mechanisms have been elucidated [1]. Nowadays 

several lines of evidences [2-4] (Box 1) – based on a range of findings from 

epidemiological studies of patients to molecular studies of genetically modified 

mice – have led to a general acceptance that inflammation and cancer are linked. 

In pathological conditions, as 

after tissue injury, the 

inflammatory process is the first 

response of the body designed to 

“heal” the afflicted tissue. This 

involves activation and direct 

migration of leukocytes 

(neutrophils, monocytes and 

eosinophils) from the venous 

system to sites of damage. This cellular migration is controlled by a family of 

chemotactic cytokines, named chemokines, which possess a relatively high 

degree of specificity for specific leukocyte populations chemoattraction [5, 6], 

recruits downstream effector cells and dictates the natural evolution of the 

inflammatory response. 

Hence, inflammation is a fundamental process both for physiological 

conditions and to protect the body against different exogenous and/or 

endogenous treats and it is strictly controlled and self-limiting: the disregulation 

of this mechanism can become an health-treatening event. In fact, in chronically 
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inflamed tissues, a subversion of cell death and/or repair programmes might 

occur, resulting in uncontrolled proliferation of cells that carries DNA mutations 

and predisposes tissues for cancer development. 

Indeed, it is estimated that 20% of all cancers is associated with chronic 

infection and inflammation [7] and that underlying infections and inflammatory 

responses are linked to 15-20% of all deaths from cancer worldwide [8]. 

In addiction, a “smouldering” inflammation is present also in tumors not 

causally related to an obvious inflammatory process. Recent evidence have 

indeed demonstrated that different classes of oncogenes (e.g. RET [9], RAS and 

MYC) and tumor-suppressor genes (e.g.VHL, TGFβ and PTEN) regulate the 

expression of inflammation-related programs [10, 11]. 

As well as clinical correlations, also molecular evidences show that 

infiltrating leukocyte can be involved in carcinogenesis and/or tumor invasion 

and metastasis, [12-15] indicating inflammation as the “Seventh hallmark of 

cancer”(Fig.1)[16-18]. 

In some types of cancer, inflammatory conditions are present before a 

malignant change occurs (extrinsic pathway). Conversely, in other types of 

cancer, an oncogenic change induces an inflammatory microenvironment that 

promotes the development of tumours (intrinsic pathway) (Fig. 2). 

The extrinsic pathway starts with unresolved and prolonged inflammatory 

conditions that produce activation of transcription factors and DNA mutations 

with consequent alteration of the physiological cellular processes like 

proliferation, survival and apoptosis. 

On the other side, in the intrinsic pathway an early genetic event is necessary 

and sufficient for the development of tumor and directly promotes the build-up 

of an inflammatory microenvironment.  

The activation of transcription factors, mainly nuclear factor-κB (NF-κB), 

signal transducer and activator of transcription 3 (STAT3) and hypoxia-

inducible factor 1α (HIF1α), in tumour cells are the points in which the two 
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pathways converge and, as a consequence, link DNA mutations with the 

production of inflammatory mediators. These, in turn, recruit and activate 

various leukocytes, most notably cells of the myelomonocytic lineage, and 

activate the same key transcription factors in inflammatory cells, stromal cells 

and tumor cells, resulting in more inflammatory mediators being produced and a 

cancer-related inflammatory microenvironment being generated in a sort of 

positive feedback loop. This uncontrolled and non self-limiting cancer-related 

inflammation has many tumour-promoting effects including induction of 

genomic instability, alteration in epigenetic events and subsequent inappropriate 

gene expression, enhanced proliferation and resistance to apoptosis of initiated 

cells, induction of tumour angiogenesis and tissue remodelling with consequent 

promotion of tumour cells invasion and metastasis [19].  

 
Figure 1. Inflammation as the seventh hallmark of cancer 

In 2000, Hanahan and Weinberg proposed a model to define the six properties that a tumour acquires. These are 
unlimited replicative potential, ability to develop blood vessels (angiogenesis), evasion of programmed cell death 
(apoptosis), self-sufficiency in growth signals, insensitivity to inhibitors of growth, and tissue invasion and metastasis. 
Next studies indicate that this model should be revised to include cancer-related inflammation as an additional hallmark. 
Adapted from [17] and [18]. 
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Figure 2. Pathways that connect 

inflammation and cancer. 

Cancer and inflammation are connected 
by two pathways: the intrinsic pathway 
and the extrinsic pathway. The intrinsic 
pathway is activated by genetic events 
that cause neoplasia. These events 
include the activation of various types of 
oncogene by mutation, chromosomal 
rearrangement or amplification, and the 
inactivation of tumour-suppressor genes. 
Cells that are transformed in this manner 
produce inflammatory mediators, thereby 
generating an inflammatory 
microenvironment in tumours for which 
there is no underlying inflammatory 
condition (for example, breast tumours). 
By contrast, in the extrinsic pathway, 
inflammatory or infectious conditions 
augment the risk of developing cancer at 
certain anatomical sites (for example, the 
colon, prostate and pancreas). The two 
pathways converge, resulting in the 
activation of transcription factors, mainly 
nuclear factor- B (NF- B), signal 
transducer and activator of transcription 
3 (STAT3) and hypoxia-inducible factor 
1  (HIF1 ), in tumour cells. These 
transcription factors coordinate the 
production of inflammatory mediators, 
including cytokines and chemokines, as 
well as the production of cyclooxygenase 
2 (COX2) (which, in turn, results in the 
production of prostaglandins). These 
factors recruit and activate various 
leukocytes, most notably cells of the 
myelomonocytic lineage. The cytokines 
activate the same key transcription 
factors in inflammatory cells, stromal 
cells and tumour cells, resulting in more 
inflammatory mediators being produced 
and a cancer-related inflammatory 
microenvironment being generated. 
Smouldering cancer-related 
inflammation has many tumour-
promoting effects. From [19]. 

 

 

However, despite these evidences, genetic studies of mouse models have 

demonstrated that the inflammatory response supported by innate immune cells 

is crucial for the activation of an adaptive immune response capable of 

eliminating nascent tumors [20]. 

It is generally accepted that immune cells continuously recognize and destroy 

nascent tumor cells but, due to the genetic instability that characterized 
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neoplastic cells, the arising of new variants able to evade the immune 

surveillance results in tumor establishment and progression (immunoediting 

process; Fig.3) [21]. Only when tumor cells reach to escape the immune cells 

surveillance, the cancer-related inflammation develops. This is mostly 

dependent on cytokines and chemokines produced by tumor cells that subvert 

the anti-tumor activity of inflammatory cells toward a tumor-promoting 

condition. In this regard, several studies have emphasized that the 

“smouldering” inflammation associated with tumors is mainly oriented to tune 

the adaptive immune response. 
 

 
 

Figure 3. Immunoediting process 
Cancer immunoediting encompasses three processes: (a) Elimination corresponds to immunosurveillance. (b) 
Equilibrium represents the process by which the immune system iteratively selects and/or promotes the generation of 
tumor cell variants with increasing capacities to survive immune attack. (c) Escape is the process wherein the 
immunologically sculpted tumor expands in an uncontrolled manner in the immunocompetent host. In a) and b), 
developing tumor cells (blue), tumor cell variants (red) and underlying stroma and nontransformed cells (gray) are 
shown; in c, additional tumor variants (orange) that have formed as a result of the equilibrium process are shown. 
Different lymphocyte populations are as marked. The small orange circles represent cytokines and the white flashes 
represent cytotoxic activity of lymphocytes against tumor cells. From [21]. 

 
Myeloid cells in cancer 

Myeloid cells are the most abundant haematopoietic cells in the human body 

and have diverse functions. All myeloid cells arise from multipotent 

haematopoietic stem cells (HSCs) that develop into mature myeloid cells 

through sequential steps of differentiation. The three groups of terminally 

differentiated myeloid cells — macrophages, dendritic cells (DCs) and 
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granulocytes — are essential for the normal functions of the innate and adaptive 

immune systems [22]. 

In addition to their physiopatological roles, infiltrating myeloid cells are an 

abundant component of solid tumours. Thanks to molecular interactions with 

tumour and stroma, cells of the myeloid lineage recruited at tumour site change 

their transcriptional program toward a pro-tumoural phenotype that supports 

tumour growth inducing immunosuppression, angiogenesis and tissue 

remodeling. It is well recognized that tumor-derived factors (TDFs), such as 

cytokines, chemokines and inflammatory messengers like prostaglandins, act in 

paracrine or systemic fashion to ‘reprogram’ non-cancerous host cells to 

promote tumour progression. 

Myelopoiesis is a tightly regulated process of cellular development occurring 

in the bone marrow. Consequently, chronic exposure of the bone marrow 

microenvironment to non-physiologic levels of ordinarily tightly regulated 

myelopoietic-like growth factors corrupts the normal process of myeloid cell 

development and differentiation. This phenomenon drives the increase of 

circulating myeloid cells in tumour-bearing hosts, originally termed “emergency 

myelopoiesis”, and it is associated with a partial blockade of myeloid cell 

differentiation and a consequent accumulation of highly immunosuppressive, 

immature myeloid cells (iMCs) [17, 22]. Indeed, many TDFs are myelopoietic 

factors making the myeloid compartment a major target of this ‘tumour 

reconditioning’ [23]. For example, cytokines such as granulocyte–macrophage 

colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-

CSF), macrophage colony-stimulating factor (M-CSF), stem cell factor (SCF; 

also known as KIT ligand), vascular endothelial growth factor (VEGF) and IL-3 

are described to promote myelopoiesis and to contribute, in part, to a blockade 

of myeloid cell maturation. Myeloid deficiencies can occur at developmental 

and/or functional levels in essentially all myeloid lineages. To distinguish 

“normal” myeloid cells from their dysfunctional counterparts, the latter 
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populations have been variously renamed myeloid-derived suppressor cells 

(MDSCs), tumour-associated macrophages (TAMs), tumour-associated 

neutrophils (TANs), immature DCs or tolerogenic DCs (Fig.4). 
 

 
Figure 4. Myeloid cells 
in cancer. 
Factors produced in the 
tumour microenvironment 
by tumour cells and 
stromal cells promote the 
aberrant differentiation of 
myeloid lineage cells. The 
dotted lines show the 
normal pathways of 
myeloid cell 
differentiation from 
immature myeloid 
precursor cells to 
dendritic cells, 
macrophages and 
granulocytes. The solid 
bold lines indicate the 
aberrant pathways of 
myeloid cell 
differentiation that occur 
in cancer, in which the 
tumour environment can 
promote the development 
of various 

immunosuppressive 
populations, including 
monocytic MDSCs, 

polymorphonuclear 
MDSCs, suppressive DCs 
and TAMs and TANs. 
From [22]. 

 

 

 

 

 

 

 

These classifications are largely based on assays (in vitro and/or in vivo) that 

measure how these cells affect immune activation or tumour growth and on 

surface marker expression. Among these, for example, we have recently 

identified subsets of MDSCs and TAMs based on the expression of retinoic-
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acid-related orphan receptor (RORC1/RORγ) in human and mouse tumor 

bearers. In these disfunctyonal myeloid cells, RORC1 orchestrates myelopoiesis 

by suppressing negative (Socs3 and Bcl3) and promoting positive (C/EBPβ) 

regulators of the key transcriptional mediators of myeloid progenitor 

commitment and differentiation to the monocytic/macrophage lineage (IRF8 and 

PU.1). RORC1 supported tumor-promoting innate immunity by protecting 

MDSCs from apoptosis, mediating TAM differentiation and M2 polarization, 

and limiting tumor infiltration by mature neutrophils [24]. 

 
Figure 5. Role of RORC1 myelopoiesis associated with cancer. From [24] 
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1.2 The Transcription Factor NF-kB 

The NF-B transcription factor family is considered the central mediator of 

the inflammatory process and a key participant in innate and adaptive immune 

responses; moreover during the last years it has been proved to play a crucial 

role in cancer development [25]. 

NF-κB is an inducible transcription factor that regulates immediate and long-

lived cellular responses to environmental changes. NF-κB is evolutionarily 

conserved and plays a critical role in many biological systems, above all the 

immune system, where it acts as the major orchestrator of the transcriptional 

responses to many different stimuli. The engament of several immune receptors 

such as B and T cell receptor (BCR, TCR), Toll Like Receptors (TLRs), Tumor 

Necrosis Factor Receptor (TNFR) or CD40 triggers NF-kB activation which in 

turn results in the expression of cytokines, growth factors and effector enzymes 

[26-28]. NF-κB also regulates the expression of genes outside the immune 

system, playing a crucial role even in embryo, mammary gland, skin, bone and 

nervous system development and physiology [29-35]. At present, more than 150 

genes under control of NF-B have been identified, as a demonstration of its 

vast spectrum of biological functions [36]. Indeed, it is very well known that 

NF-B disregulaton is linked to various pathological situations. 

Misregulation of NF-κB activity, such as constitutive activation, could be 

associated with pathological conditions such as rheumatoid arthritis, asthma, 

intestinal bowel diseases (IBDs), multiple sclerosis and cancer [37-41]. 

Given this great variety of biological roles, a better understanding of NF-κB 

pathways could provide the basis for the development of therapeutic strategies 

with a relevant impact on human diseases. 
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NF-κB family 
NF-κB family is composed of five members: RELA (p65), RELB, cREL, 

NF-κB1 (p105-p50) and NF-κB2 (p100-p52). All these proteins possess a 

conserved 300-amino acid REL homology domain (RHD) that is located toward 

the N-terminus of the proteins and is responsible for dimerization, binding to 

inhibitors of nuclear factor κB (IκBs) and binding to DNA. Instead, the carboxy-

terminal non-homologous transactivation domain (TAD), which strongly 

activates the transcription of targeted genes, is present only in cREL, RELB and 

RELA. p105 and p100 after proteolytic degradation generate p50 and p52 [28] 

which lack the transactivation domain. Therefore if they form homodimers they 

still bind the DNA consensus sites, but they don’t activate transcription [16] 

(Fig.4). 

Each member of NF-κB family except for RELB can form homodimers as 

well as heterodimers with one another but the main activated form of NF-κB is 

the heterodimer composed by p65 and p50 or p52. 

Mice lacking cREL, NF-κB1 (p105-p50) or NF-κB2 (p100-p52) subunits 

display a normal development except some defects in lymphocytes activation, 

whereas p65 or RELB knockout mice are embryonic lethal by liver degeneration 

and died postnatally from multiorgan inflammation, respectively. Mice lacking 

more than one subunit, for instance p50-/-p52-/- or p50-/-RelB-/- display more 

severe phenotypes demonstrating redundancy between NF-κB members. 

 

NF-κB regulation: IκB proteins 
Inhibitor of nuclear factor κB (IκB) family comprises four members: IκBα, 

IκBβ, IκBε and BCL-3 (Fig.6). These proteins share ankyrin repeats which 

mediates protein-protein interactions [16]. 

IκBα, IκBβ and IκBε exhert their regulatory function binding NF-κB proteins 

and masking their Nuclear Localization Sequence (NLS). So, the complexes 

IκBs-NF-κB cannot translocate into the nucleus and are retained in the 
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cytoplasm in inactive forms. Unlike the other members of IκB family, BCL-3 

binds specifically to p50 and p52 homodimers and induce the transcription of 

NF-κB regulated genes [16, 42]. In addition, IκB proteins act only masking p65 

NLS, but p50 NLS remains accessible [43-46]. 

 
Figure 6: Mammalian NF-κB- and IκB-family members. 

A. NF-κB family comprises five members: RELA (p65), cREL, RELB, p105/p50 (NF-κB1) and p100/p52 
(NF-κB2). LZ: leucine-zipper motif. B. IκBs family contains IκBα, IκBβ, IκBε and BCL-3, and it is 
identified by the presence of many ankyrin (ANK) repeats. The amino-acid sequences of the sites of 
induced phosphorylation of IκBα, IκBβ, IκBε for their degradation are shown (DSGLDS, DSGLGS and 
DSGLES, respectively). Proteolytic processing of p105 and p100 at residues 435 and 405 (as indicated by 
arrows), respectively, generates the p50 and p52 NF-κB proteins. The glycine-rich region (GRR) and the 
carboxy-terminal sites of inducible phosphorylation (in the DSVCDS and EVKEDSAYGS sequences for 
p105 and p100, respectively) are required for processing. Phosphorylation of RELA at Ser276, Ser529 and 
Ser536 is important for its transactivation activity. The size of each human protein is shown on the right 
(number of amino acids). From [47]. 
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NF-κB Activation 
NF-κB activation is mainly dependent on IκBs degradation thus leaving NF-

κB complexes free to translocate into the nucleus, bind promoter and enhancer 

regions containing κB sites with the consensus sequence GGGRNNYYCC 

(N=any base, R=purine, Y=pyrimidine)  and activate gene transcription. In 

addition to IκBs, also post-translational modification, like acetylation or 

phosphorylation, can modulate NF-κB activation. For example, IL-1/TNFα-

induced phosphorylation of p65 Ser276 after IκBα degradation is essential for 

the efficient binding of p65 to the transcription co-activator CREB-binding 

protein (CBP) [4, 48]. Similarly, phosphorylation of p65 Ser529 enhances its 

transcriptional activity [4, 49] and the loss of p65 phosphorylation influences 

both its DNA binding and transactivation activities. 

Triggering of many different receptors can induce NF-κB activation that is 

initiated upon phosphorylation of IκBs by IκB Kinases (IKK). IKK is a complex 

made by kinase subunits IKKα and IKKβ and the regulatory subunit IKKγ or 

NEMO (NF-κB Essencial Modifier) [50, 51].  

Upon phosphorylation by IKKs, IκB proteins are recognized and 

ubiquitinated by ubiquitin ligases [52, 53] leading to NF-κB activation. 

NF-κB could be activated through two different pathways: classical and 

alternative (Fig.7). 

 

Classical pathway 

The common or classical NF-κB signalling pathway is particularly active in 

innate immunity [54, 55] and is activated predominantly by the subunit IKKβ in 

a NEMO dependent manner. The released NF-κB dimers, that in this pathway 

are predominantly p65-p50 heterodimers, go to the nucleus and activate gene 

transcription [51]. Many different pattern recognition receptors (PRRs) has 

evolved to recognize microbial invaders and are able to activate NF-κB classical 

pathway; among these, there are TLRs, members of the CATERPILLAR/NOD 
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family of cytoplasmic receptors, scavenger receptors and the complement 

system. 

TLRs are evolutionarily conserved PRRs that recognize molecules 

characteristic of various classes of microbes [56]. The function of TLRs as 

arbitrators of self/non-self discrimination highlights their central role in innate 

immunity as well as in the initiation of the adaptive immune response.  

Signalling through TLRs leads to activation of canonical IKKs complexes, 

degradation of IκBs and activation of RELA and cREL containing NF-κB 

dimers. TLR signalling to NF-κB is divided into two pathways: those that are 

MyD88 (myeloid differentiation primary response gene 88)-dependent and those 

that are MyD88-independent. 

The beginning of an inflammatory response is strictly dependent from NF-κB 

classical pathway. Signals coming from the environment lead to the recruitment 

and activation of effector cells, initially neutrophils and later macrophages and 

other leukocytes, resulting in the tissue changes characteristic of inflammation – 

rubor, calor, dolor and tumor (redness, heat, pain and swelling, respectively). 

 

Alternative pathway 

The alternative pathway of NF-κB activation (Fig.6) is particularly active in 

cells of the adaptive immunity, such as B and T lymphocytes. This pathway is 

independent of IKKβ and NEMO [57, 58], but it is dependent of IKKα 

homodimers, which selectively phosphorylate p100 associated with RELB. 

Therefore, the consequence is the release of active RELB-p52 heterodimers [59, 

60]. 

Activation of NF-κB downstream B cell receptor (BCR) and T cell receptor 

(TCR) is a critical step for mounting adaptive immune responses allowing 

antigen specific maturation and proliferation of lymphocytes into effector cells 

[61]. 
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Figure 7: Classical and alternative NF-κB pathway. 

Protein levels and activity of signalling molecules can be regulated through post-translational modifications 
such as phosphorylation, ubiquitylation and acetylation. The activation of nuclear factor-κB (NF-κB) 
ultimately results in the transcription of genes that encode pro-inflammatory factors and factors that 
influence cell proliferation. IκBα, NF-κB inhibitor-α (also known as NF-κBIα); IKK, IκB kinase; IL-1R, 
interleukin-1 receptor; NEMO, NF-κB essential modulator (also known as IKKγ); NIK, NF-κB-inducing 
kinase (also known as MAP3K14); TLR, Toll-like receptor; TNFR, TNF receptor. From [62]. 
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NF-κB and cancer 

NF-B exerts a great variety of biological roles; this means that 

disregulations of NF-B pathways can have broad deleterious consequences. 

For its function in activating the transcription of genes important for cell 

proliferation (e.g.  cyclin D1, c-Myc) survival (cIAPs, A1/BFL1, BCL-2, c-

FLIP) adhesion, and angiogenesis (e.g. IL-8, VEGF) [4], NF-B is considered a 

potential molecular bridge between inflammation and cancer [4]. 

In fact, as a master regulator of inflammation, NF-κB triggers the 

transcription of several proinflammatory mediators such as IL-1β, TNFα, IL-6 

and IL-8. These factors are able to induce higher NF-κB activation, thus 

providing a positive feedback loop at the site of inflammation which creates an 

environment in which  DNA damage, cell proliferation, transformation and 

survival and consequently cancer initiation, growth and progression are 

facilitated [36]. In addition, NF-κB is involved not only in tumor development at 

early stages, but also in the migration, invasion and metastasis of malignant 

cells. The invasive capacity of malignant cells can increase in the presence of 

inflammatory cytokines such as TNFα, IL-1β and IL6 [2]. In particular TNFα is 

a potent stimulator of epithelial-mesenchimal transition by breast cancer cells 

[63] for its ability of activate NF-κB signaling. NF-κB was also found to 

promote metastatization in a genetic mouse model of prostate cancer, in which 

inactivation of IKKα was found to reduce metastatic spread [64]. 

In many cancers, NF-κB is constitutively active, even if the exact mechanism 

that sustain this activation is not fully understood and several mechanisms have 

been proposed (Fig.8), such as IL-1β and TNFα production, shorter IκBα half 

life or IκBα mutations [65-69]. 

For these reasons, NF-κB represents an ideal therapeutic target for the 

development of new anti-tumor strategies. Proteasome inhibitors as well as IKK 

inhibitors block NF-κB activation. Similarly, inhibitors of histone acetylation 
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can inhibit NF-κB as well as stimulation of histone deacetylase like HDAC3[70] 

[70]. 

Another mechanism to block NF-κB activation is the transfer of mutated 

genes that encode for NF-κB inhibitory proteins, most commonly IκB genes. 

IκB are mutated at the site of phosphorylation or ubiquitination, therefore they 

cannot be degraded. 

In many studies, the super repressor of NF-κB was delivered into intestinal 

epithelial cells through adenoviral vectors and inhibition of NF-κB was very 

successful. These studies are very important because they provide a possible in 

vivo approach for the treatment of intestinal malignances [71]. 

 
Figure 8: Constitutive NF-B activation in tumours 

 

p50/NF-κB1 
The role of p50 and its precursor p105 in cell physiology and function is very 

complex. Although originally considered a repressor of transcription, p50 could 

also be a transcriptional activator: the balance between pro- and anti-

inflammatory activity of p50 depends on cell type and environmental conditions. 
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The NF-κB1 gene encodes two functional proteins: p50 and p105. It is 

thought that a third protein, IκBγ, could be generated by alternative splicing 

(Fig.9)[72]. 

p105 is the precursor of p50 which is the active form of the protein and could 

form dimers with itself and with other NF-κB subunits. 

Since p50 homodimers mainly act as repressors of transcription, and given 

the importance of NF-κB during inflammation, it is likely that they act also as 

repressors of inflammation. Indeed, it has been demonstrated that in LPS-

tolerant macrophages increased expression of the p50 subunit of NF-κB directly 

results in the downregulation of LPS-induced TNFα production, whereas in p50-

/- macrophages long-term pre-treatment with LPS was unable to induce 

tolerance. In line, our group has demonstrated that TAMs express a tolerant pro-

tumoral phenotype that is controlled by massive nuclear accumulation of p50 

NF-B [73].  

 

 
Figure 9: NF-κB1 gene and protein structure. 

A. NF-κB1 gene is 115.6 kb long and encodes a 3452 bp-long transcript containing 25 exons. B. Protein structure of 
p105, p50 and IκBγ. p105 is a 971 amino acids peptide containing a Rel homology domain (RHD), seven ankyrin 
repeats in the ankyrin repeat domain (ARD) and the death domain (DD). The RHD includes the N-terminal domain 
(NTD), dimerisation domain (DimD), nuclear localisation sequence (NLS) and glycine-rich region (GRR). p105 is 
phosphorylated at serine residues 927 and 932, a signal for poly-ubiquitination and subsequent degradation by the 26S 
proteasome releasing the active subunit p50. p50 spans amino acids 1–430 which encompass the RHD, in this form the 
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NLS is exposed and promotes p50 nuclear translocation. IκBγ spans amino acids 365–969 and contains the GRR, ARD 
and DD. From [74]. 
 

Even if p50 homodimers lack the transactivation domain, they may activate 

gene expression by recruiting trascritional co-activators. In particular, Cao et al. 

demonstrate that in LPS (or other TLRs agonists) stimulated macrophages, p50 

homodimers form complexes with the transcriptional co-activator CREB 

binding protein. This complex binds to the IL-10 promoter and stimulates 

transcription of this anti-inflammatory gene [75]. In fact, p50-/- mice display 

reduced IL-10 production and increased TNFα and IL-12 production [76]. 

Accordingly, we have shown that LPS stimulated p50-/- TAMs recover an IL-

12highTNFαhighIL-10low phenotype and that this correlates, in vivo, with tumor 

growth inhibition [73]. Further, a detailed analysis of the role of p50 NF-κB 

homodimer in macrophage functions revealed that its nuclear accumulation, 

both in TAMs and LPS-tolerant macrophages, not only mediates a status of 

unresponsiveness (tolerance) toward pro-inflammatory signals, but actually 

plays a role of key regulator of M2-driven inflammatory responses [77]. 

Accordingly, p50-deficient mice show exacerbated M1-driven inflammation and 

defective capacity to mount allergy and helminth-driven M2-polarized 

inflammatory reactions [77]. Hence p50 NF-κB regulates the orientation of 

macrophage polarization, playing a crucial role in the control of M1- vs M2-

driven inflammation. 

For all these reasons, p50 could represent a good therapeutic target for human 

diseases; in one way, p50 could be inhibited to enhance M1 pro-inflammatory 

response in situation when it is strongly required (e.g. tumours), whereas in the 

other way, its activity could be augmented to promote exhintion of exacerbates 

inflammatory conditions  (e.g. IBDs, rheumatoid arthritis, multiple sclerosis). 
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1.3 Macrophages 
A century ago Metchnikoff received the Nobel Prize for the discovery of 

macrophages and innate immunity. After their first discovery, macrophages 

acquired many different functions both immunological and non-immunological; 

they have roles in almost every aspect of an organism’s biology from 

developmet and homeostasis to repair through immunity. Resident macrophages 

regulate tissue homeostasis by acting as sentinels and responding to changes in 

physiology as well as challenges from outside. Unfortunately, in many cases, 

these homeostatic and reparative functions can be subverted by continuous 

insults, resulting in diseases such as chronic inflammation, autoimmune 

diseases, obesity and cancer (Fig.10). 

Macrophages play an indispensable role in the immune system with decisive 

functions in both innate and acquired immunity. In innate immunity, resident 

macrophages provide immediate defence against foreign pathogens and 

coordinate leukocyte infiltration [78]. Macrophages contribute to the balance 

between antigen availability and clearance through phagocytosis and subsequent 

degradation of senescent or apoptotic cells, microbes and possibly neoplastic 

cells. Their role is essential for triggering, instructing and terminating the 

adaptive immune response. Macrophages collaborate with T and B cells, 

through both cell-to-cell interactions and fluid-phase mediated mechanisms, 

based on the release of cytokines, chemokines, enzymes and reactive radicals. 

 

Macrophage origins and differentiation 
In mammalian, macrophages are found in all tissues and display great 

anatomical and functional diversity. The density of macrophages changes in 

many tissues during development [79]. 
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Macrophages are differentiated cells of mononuclear phagocytic lineage [80] 

that are characterized by a specific phenotype and by the expression of 

particular markers, none of which are entirely restricted to the lineage [81]. In 

mice, macrophages express CD11b, F4/80, CD68, colony-stimulating factor-1 

receptor (CSF-1R; CD115) and do not express Gr1. In humans they are 

described as CD68+CD33+CD14+ cells. 

 

 
 

Figure 10: Macrophages in Development, Homeostasis and Disease 
Macrophages play many developmental roles shaping the architecture of tissues ranging from the brain to bone to the 
mammary gland. Once development is over macrophages modulate homeostasis and normal physiology through 
regulating diverse activities including metabolism and neural connectivity and by detecting damage. These trophic and 
regulatory roles however, are often subverted by continuous insult and macrophages contribute to many diseases that are 
often associated with aging. EAE: Experimental Autoimmune Encephalomyelitis; IBD: Inflammatory Bowel Disease. 
From [82]. 
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The term “macrophage” comes from the Greek, emphasising the ability of 

these cells to phagocyte. Lots of definition were given to these cells during time; 

nowadays macrophages are classified basing on ontogeny and phagocytosis by 

the term mononuclear phagocytic system (MPS) [83]. It includes bone-marrow 

derived precursor cells, monocytes in peripheral blood and mature macrophages 

in tissues. In the MPS schema, adult macrophages are end cells of the 

mononuclear phagocytic lineage and tissue macrophages derive from circulating 

monocytes that originate in BM. 

More recently the classification of the MPS has been refined because several 

studies pointed out that macrophages have several origins during ontogeny and 

each of these different lineages persist into adulthood displaying great diversity 

[84]. In addition, some dendritic cell subsets can differentiate from monocytes 

and macrophages [85]. 

The origin of mononuclear phagocytic cells in ebryo is complex: in mice, the 

first population of macrophages is observed at embryonic day (E)7.5 and is of 

maternal origin [86]. Embryonic macrophages derive from the primitive 

ectoderm of the yolk sac and do not go through a monocytic stage but 

differentiate directly from mesenchymal progenitor cells [87]. By E10.5 to E11 

liver represents the main site of hematopoiesis followed then by a second wave 

of progenitor cells from the aorta-gonads-mesonephros region of embryo [88, 

89]. After birth, the bony structures are formed and, from that moment, the bone 

marrow become the source of circulating monocytes (resident Ly6C- and 

inflammatory Ly6C+ in mice) [90]; at this stage, the MPS is established [83].  

Nowadays, this first model of the MPS formation has been expanded. In fact, 

in a few tissue, such kidney and lung, macrophages were shown to have a 

chimeric origin (Hematopoietic Stem Cells [HSC]- and yolk sac-derived) as 

well as Langerans cells (LC) of the skin, which have a mixed origin from yolk 

sac and fetal liver [91, 92]. So it is possible to identify at least three lineages of  
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macrophages in mouse during different stages of development and persisting in 

the adult (Fig.11). 

 

 
Figure 11. Macrophage Lineages Re-Defined in Mice 

The mononuclear phagocytic system in adults derives from at least three sources. The first is the yolk sac (YS) that 
results in progenitors that populate all tissues and their progeny persist throughout life as F4/80 bright resident 
macrophages. These lineages are largely regulated by CSF1R. The second from the fetal liver is less well defined but 
seems to contribute to adult LCs perhaps through a progenitor derived from the YS. The third lineage derives from the 
bone marrow (BM) to give circulating monocytes and their progeny F4/80low macrophages and DCs. In this case the 
Ly6c+ monocytes give rise to classical DCs under the regulation of FLT3 and these are continuously replenished. Other 
macrophages that are F4/80low also emanate from Ly6c+ monocytes and in some cases such as kidney and lung, co-exist 
with those derived from YS to give chimeric organs. The exact role of the patrolling Ly6c+ macrophages remains 
unclear, as is the contribution of fetal liver to adult tissue macrophages. From [82]. 
 
 

Yolk sac macrophages first appear at E9.0 in both mouse and rat, and 

develop without passing through a monocytic intermediate stage [93]. They are 

the primary source of microglia, the resident macrophages of the central nervous 

system [91], and also give rise to a minor fraction of Langherans cells (LCs) 

[92]. The major fraction of adult LCs derives from fetal monocytes generated in 

the fetal liver from E12.5 and recruited into fetal skin around E14.5 [92]. Fetal 

monocytes also contribute to populations of adult macrophages in lung alveoli 

[94, 95] and in the heart [96]. Using fate-mapping to distinguish cells arising 

from primitive versus definitive hematopoiesis initially suggested that adult 
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macrophage populations in lung, dermis, and spleen arise predominantly from 

definitive hematopoiesis with negligible contribution from yolk sac-derived 

macrophages [91]. However, a new approach exploiting the differential 

dependence of macrophages on the transcription factor c-Myb has since 

indicated that c-Myb-independent yolk sac-derived macrophages may be the 

sole origin of macrophages in the lung, liver, and pancreas, as well as of 

microglia and LCs[97]. In this scenario it seems that the expression of c-Myb 

between early and late stage is different and many reports indicate that primitive 

hematopoiesis in yolk sac can occur in the absence of c-Myb [98] because the 

earliest yolk sac progenitors, which give rise to microglia, do not express c-Myb 

[99], whereas progenitors from definitive hematopoiesis both express and 

depend upon c-Myb [100-102]. Because fetal monocytes are absent in c-Myb-

deficient embryos [97, 103] and c-Myb expression is upregulated during fetal 

monopoiesis, it is likely that the change in the progenitors fate between the yolk 

sac and the fetal liver is orchestrated by c-Myb. Microglia represents an 

exception because it have a unique origin, arising from yolk sac macrophages 

that maintain themselves by proliferating in situ throughout adulthood, and not 

from fetal monocytes [91, 99].  

In addition, recent studies have shown that even in absence of hematopoietic 

stem cells, yolk sac progenitors were capable of giving rise to the major tissue 

resident population of macrophages in skin, spleen, pancreas, liver, brain and 

lung [97]. 

Hence, the idea that macrophages derive from circulating monocytes has 

been questioned. In fact, complete loss of CD16+ monocytes in humans appears 

to be of little consequence [104] and in this scenario the function of monocytes 

needs to be re-defined. It is possible that patrolling monocytes (Ly6C-) act to 

maintain vessel integrity and to detect pathogens while inflammatory monocytes 

(Ly6C+) are recruited only to site of infection or injury or to tissues that have 

continuous cyclical recruitment of macrophages such as the uterus. 
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The development of macrophages from monocytes is regulated by several 

growth factors. Early studies indicate that, in mice and rats at least, the most 

important of these was the colony stimulating factor 1 receptor (CSF1R) which 

not only drove the differentiation of macrophages from progenitors, but also 

controlled their proliferation and viability in vitro. More recent studies, basing 

on the ablation of Csf1r, demonstated a severe depletion of macrophages in 

many, but not all, tissues [105]. These new data opened a different scenario and 

following experiments confirmed that CSF1R is expressed both on yolk sac 

macrophages and fetal monocytes, but only the development of the former is 

dependent on CSF1R [91, 92]. In fact, for example, Hoeffel and Ginoux 

discovered that the major fraction of adult LCs is derived from fetal monocytes 

that are generated in the fetal liver independently of CSF-1R expression [91, 

92]. 

 

Macrophages in development 
Macrophages present important roles in tissue development as demonstrated 

by the cluster of abnormalities that characterize Csf1 null mice, which lack 

many macrophages populations. This mice survive to adulthood because of 

extra-medullary hematopoiesis in the spleen and liver [80]. 

As professional phagocytes, macrophages perform critical functions in the 

remodelling of tissues, both during development and in the adult animal. For 

istance, during erythropoiesis, maturing erythroblasts are surrounded by 

macrophages, which ingest the extruded erythrocyte nuclei. This function of 

macrophages is of critical importance because in its absence, erythropoiesis is 

blocked and lethality ensues [106]. Remodeling deficiencies in the absence of 

macrophages have been noted in many other tissues, suggesting a general 

requirement for macrophages in tissue remodeling and morphogenesis [80, 107]. 
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Macrophages also regulate angiogenesis through a variety of mechanisms, 

among which there is the synthesis and release of Wnt7b that delivers a cell 

death signal to the vascular endothelial cells (VEC) and either its absence or the 

absence of macrophages drives vascular over-growth [108]. This is not restricted 

to the vascular arm of the circulatory system since macrophages also play roles 

in lymphangiogenesis during development [109]. 

Also brain development is influenced by a specific population of 

macrophages called microglia, whose presence is dependent on CSF1R 

signalling [110, 111] that promotes neuron viability [80] , modulates neuronal 

activity [112], prunes synapse during development [113] as well as expresses a 

range of neuronal growth and survival factors including NGF [80]. 

 

Macrophage  phenotypes 
Peculiarity of macrophages is their plasticity, that means the ability to finely 

modulate their programs in response to different microenvironmental conditions 

[114]. 

The diversity of macrophages functions has led to various classification 

attempts. “Classical activated” M1 macrophages are characterized by high levels 

of inducible nitric oxide syntase (iNOS) and the production of reactive oxygen 

intermeadiateds (ROI). They are potent effector cells and strongly antigen 

presenters involved in T helper 1 (Th1)-cell-mediated immune resolution of 

infection [115]. Signals that led to M1 polarization (LPS, IFN) trigger the 

activation of NFκB- and STAT1- pathways with subsequent transcription of 

NFκB- and STAT1- dependent proinflammatory cytokines (e.g. IL-12 and IL-

23). On the contrary the “alternative activated” M2 macrophages, which respond 

to Th2-type cytokines, such as IL-4 and IL-13, are involved in fibrosis, scavenge 

debris, tissue remodelling and repair, angiogenesis and humoral immunity [116] 

and are able to tune inflammatory response. They show strong activation of 
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arginase pathway with generation of ornithine and polyamines [12] (Fig.12). 

M2-polarizing signals generally inhibit the expression of M1 cytokines and 

chemokines. These inhibitory effects principally relay on STAT-3 dependent 

mechanisms [117] and the direct inhibition of NF-κB [47]. 

 
 

Figure 12: M1 and M2 macrophages. 
In the presence of interferon (IFN)–, lipopolysaccharide and other microbial products, monocytes differentiate into M1 
macrophages. In the presence of macrophage colony-stimulating factor (CSF-1), interleukin (IL)-4, IL-13, IL-10 and 
immunocomplexes in association with either IL-1R or TLR-ligands, monocytes differentiate into M2 macrophages. M1 
and M2 subsets differ in term of phenotype and functions. M1 cells have microbial activity, immuno-stimulatory 
functions and tumor cytotoxicity. M2 cells have high scavenging ability, promote tissue repair and angiogenesis and 
favour tumor progression.  

Signals from the microenvironment are able to drive macrophages towards 

M1 or M2 polarization; moreover macrophages are exposed to a multiplicity of 

opposite signals in vivo with different temporal pattern. Nevertheless there is 

considerable plasticity between distinct types: M1 and M2 polarization states are 

often referred to as the extremes of a continuum (Fig.13) [116]. 

When tissues are damaged following infection or injury, inflammatory 

monocytes (Ly6C+ in mice) are recruited from the circulation and differentiate 

into macrophages as they migrate into the affected tissues [90]. These recruited 
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macrophages exhibit a M1 pro-inflammatory phenotype in the early stages of a 

wound healing response. 
 

Figure 13: M1 and 

M2 macrophages are 

the extremes of a 

continuum. 

M1 and M2 
macrophages, the 
extremes of a 
continuum. Essential 
properties of polarized 

macrophage 
populations are shown. 
For M1 cells, molecules 
induced by IFN-γ and 
LPS are shown in 
green. For M2 cells, 
molecules induced by 
IL-4 and IL-13 are 
shown in yellow, those 
induced by IL-10 in red 
and those induced both 
by IL-4 and IL-13, and 
IL-10, in blue. 
Macrophages exposed 
to the classic activation 
signals, IFN-γ and LPS, 
express opsonic 
receptors (e.g. 

FcγRIII/CD16), 
whereas type II 
macrophages are 
characterized by 
abundant levels of non-
opsonic receptors (e.g. 
the MR). M1 cells also 
have a higher ratio of 

reduced-to-oxidized 
glutathione, with 
opposite effects of IFN-
γ and IL-4 on the 
reductive status. 
Components of the IL-1 
system are differentially 
regulated in polarized 

macrophage 
populations. IL-4, IL-13 

and glucocorticoid hormones induce expression of the IL-1 type II decoy receptor, whereas IFN-γ and LPS inhibit it. 
IFN-γ and LPS upregulate the signaling type I receptor, and IL-1R accessory protein (IL-1RacP). IL-4 and IL-13 induce 
IL-1ra production and inhibit IL-1. Therefore, pro- and anti-inflammatory components of the IL-1 system are 
coordinately regulated by signals that polarize macrophages in a type I or type II direction. IL-10 upregulates the CC 
chemokine receptors CCR1, CCR2 and CCR5. By contrast, CXCR2 and CXCR4 are partially downregulated under the 
same conditions. An increase in CCR2 expression is also observed in monocytes exposed to dexamethasone. IL-4 and 
IL-13 do not modify the expression of CC chemokine receptors but induce functional CXCL8 (IL-8) receptors in human 
monocytes. By contrast, monocytes exposed to LPS or IFN-γ downregulated CCR1, CCR2 and CCR530. and 73.. 
Similar to what was reported for DCs, exposure of monocytes to classical proinflammatory signals induces the 
expression of functional CCR7 and the effect is inhibited by IL-10. Abbreviations: DC, dendritic cell; IFN, interferon; 
IL, interleukin; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide; MR, mannose receptor; ra, receptor 
agonist; ROI, reactive oxygen intermediates; TLR, toll-like receptor; TNF, tumor necrosis factor. From [116]. 
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Although these inflammatory macrophages are initially beneficial because 

they facilitate the clearance of invading organisms, they also trigger substantial 

collateral tissue damage because of the toxic activity of reactive oxygen and 

nitrogen species [118]. Indeed, if the inflammatory macrophage response is not 

quickly controlled, it can become pathogenic and contribute to disease 

progression, as seen in many chronic inflammatory and autoimmune diseases 

[119, 120]. 

To counteract the tissue damaging potential of the inflammatory macrophage 

response, macrophages undergo apoptosis or switch into a M2 anti-

inflammatory or suppressive phenotype that dampens the pro-inflammatory 

response, while facilitating wound healing [121]. 

So, the pathophysiological adaptations to regulate over-exuberant 

inflammation serve as an important mechanism for host protection and one of 

the classic examples of such a protective mechanism is endotoxin tolerance 

[122-126].  

Tolerance is a state of hyporesponsiveness acquired after prolonged exposure 

of macrophages to inflammatory agents including bacterial products such as 

LPS. Tolerant macrophages enter into a transient unresponsive state and are 

unable to respond to further challenges with endotoxin. This phenomenon has 

been observed both in vitro and in vivo in animal models as well as in humans 

[123, 124, 126-130]. Tolerance is caused by a profound “gene expression 

reprogramming” in macrophages [122, 126, 129] which develop poor 

inflammatory capacity coupled with upregulation of anti-inflammatory 

cytokines. Overall this characteristics contribute to protection against septic 

shock and increased phagocytosis allow efficient bacterial clearance (Fig.14). 

Interestingly, many of the characteristic of endotoxin-tolerant 

monocytes/macrophages resemble that of the immunosuppressive M2  

macrophages [77]. 
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Figure 14: phenotype of endotoxin tolerance monocytes/macrophages.                       

A. Upon endotoxin re-challenge with gram-negative bacteria or LPS, monocytes/macrophages show a drastic 
downregulation of inflammatory cytokines (e.g. TNFα, IL-6, IL-1β, IL-12) but an upregulation of anti-inflammatory 
cytokines like IL-10, TGFβ and IL-1RA as compared to non-tolerized cells challenged with the same stimuli. The 
tolerant monocytes/macrophages also show an impaired antigen presenting capacity correlated with decreased 
expression of HLA-DR and some co-stimulatory molecules. In contrast, these cells show upregulated expression of a 
number of scavenging/C-type lectin receptors like MARCO, CD64, CLEC4a 10 and 11 is linked to enhanced phagocytic 
capacity. Upregulation of negative regulators of TLR4 signaling like IRAK-M is also a characteristic of these cells. (+) 
denotes upregulation, while (-) denotes downregulation during ET. B. Schematic representation of the biphasic nature of 
sepsis wherein an initial overt inflammatory phase leads to a later phase of immunosuppression or 
“immunocompromise”. In parallel with these events, monocytes/macrophages also “switch” from an inflammatory 
phenotype to an endotoxin tolerant or refractory state. Monocytes respond to the systemic infection by triggering an 
inflammatory reaction characterized by overt levels of inflammatory cytokines and chemokines (e.g. TNFα and IL-6). 
However, as sepsis progresses, these monocytes become refractory to further endotoxin challenge whereby they fail to 
upregulate inflammatory cytokines. Instead, they start producing anti-inflammatory cytokines (TGFβ, IL-10) which 
promote immunosuppression. Under these conditions, there is a high risk of developing secondary infections, which may 
lead to mortality. From [131]. 

We previously demonstrated that, like M2 skewed macrophages, also tolerant 

macrophages display accumulation of p50 NF-κB subunit in the nucleus, and 

subsequent defective NF-κB activation (Fig.15) [132]. The importance of p50 

for the acquisition of a tolerant phenotype is also demonstrated by the fact that 
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lack of p50 in murine macrophages prevents the development of tolerance. 

Macrophages lacking p50 do not dowregulate pro-inflammatory cytokines and 

are not able to upregulate anti-inflammatory factors even after prolonged 

exposure to LPS [77].  

 

 
 

Figure 15: plasticity of NF-kB function in inflammation and endotoxin tolerance. 
This figure represents how different combinations of NF-kB hetero- and homodimers can switch-on or -off the same 
genes under inflammatory or endotoxin tolerant conditions. During overt inflammation (as seen in the first phase of 
sepsis), the p65/p50 NF-kB heterodimer is responsible for the transcription of inflammatory genes like TNFA, IL12 etc. 
During endotoxin tolerance, there is an overexpression of p50/p50 NF-kB homodimers, which lack a transcription 
activating domain. This causes p50/p50 NF-kB homodimers to occupy the promoters of inflammatory genes and thereby 
prevent p65/p50 NF-kB heterodimer binding and gene transcription. Conversely, p50/p50 NF-kB homodimer triggers 
the transcription of genes like IL10, TGFB1 and COX2 [133]. RelB/p65 NF-kB heterodimers present in the endotoxin 
tolerant cells also prevent the transcription of inflammatory genes. Finally, the accumulation of IkBa and IkBe in 
endotoxin tolerant cells also prevents NF-kB activation. From [131] 
 

Macrophages in cancer – Tumor Associated Macrophages 
The major population of leukocyte infiltrating tumors is represented by 

macrophages.  

In many cancers, these Tumor Associated Macrophages (TAMs) express an 
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M2-like phenotype which supports immune escape, tumor growth and 

malignancy exerting crucial tumor-promoting functions (e.g. induction of tumor 

cell proliferation and angiogenesis, incessant matrix turnover) [134, 135] and 

suppress the adaptive immune response [136, 137]. This activities ultimately 

have an important impact on disease progression [12]. Clinical studies have 

demonstrated a correlation between high frequency of TAM and the poor 

prognosis for many different human tumors including lymphoma, cervix, 

bladder, breast and lung cancers [138]. One of the most important characteristic 

of TAMs include their ability to directly affect tumor growth through promotion 

of tumor angiogenesis as well as the survival and metastasis of tumor cells [3, 

116, 139-141]. 

TAMs are recruited to the tumor by a tumor-derived chemotactic factor, 

originally identified as CCL2, also known as MCP-1. Actually, other 

chemokines and molecules active on TAMs were detected in neoplastic tissues 

such as M-CSF, VEGF and angiopoiein-2 [139]. These factors have been 

showed to promote macrophages recruitment as well as macrophages survival 

and proliferation and their expression correlates with tumor growth. 

Cytokines network at tumor site has a central role in TAMs recruiting and 

differentiation. Immunosuppressive cytokine IL-10 and transforming growth 

factor β (TGF β) as well as PGE2 produced by both cancer cells (ovary) and 

TAMs [116] contribute to a general suppression of anti-tumor activities. 

Also in terms of cytotoxicity and expression of inflammatory cytokines, 

TAMs resemble the M2 macrophages: both are poor producers of nitic oxide 

(NO) [142, 143] and of ROIs; both are poor antigen presenting cells and not 

only they are unable to trigger Th1 polarized immune responses, but also they 

induce T regulatory cells (Treg) [116] and suppress T cell activation and 

proliferation [116, 144]. Moreover TAMs are unable to produce IL-12, even 

upon stimulation with IFN and LPS [145]. TAMs express high levels of both 
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scavenger receptor-A (SR-A) [146] and the mannose receptor (MR) together 

with other M2 markers like Arginase I, YM1, FIZZ1, MGL2. 

Angiogenesis is an M2-associated function which represents a key event in 

tumor growth and progression. Lin and colleagues [147] demonstrated a slower 

rate of progression to malignancy and fewer pulmonary metastases in CSF-1 

null mutant mice (that lack macrophage population) bearing spontaneous 

mammary carcinoma, than in CSF-1 wild type mice. These data are consistent 

with clinical findings that high number of TAMs often correlate with increase 

tumor vascularization. In several human cancer, TAMs accumulation has been 

associated with angiogenesis and with the production of angiogenic factors such 

as VEGF and platelet-derived endothelial cell growth factor [8]. Additionally, 

TAMs participate to the proangiogenic process by producing the angiogenic 

factor thymidine phosphorylase (TP), which promotes endothelial cell migration 

in vitro and whose level of expression are associated with tumor 

neovascularisation [148]. These pro-angiogenic TAMs are known as Tie-2 

expressing monocytes (TEMs) because they are characterized by the expression 

of the angiopoietin receptor TIE2 [149, 150] and were found to constitute a 

small subpopulation of the total tumour infiltrating CD11b+ myeloid cells that 

could be distinguished from the majority of TAMs by their surface marker 

profile (Tie2+Sca-1+CD11b+), their preferential localization to areas of 

angiogenesis, and their marked pro-angiogenic activity [13, 14]. The selective 

elimination of these Tie2-expressing monocytes dramatically impaired 

angiogenesis in mouse tumours and induced substantial tumour regression. 

TAMs also express molecules which affect dissolution of connective tissues. 

These include enzymes which regulate the digestion of the extracellular matrix, 

such as MMPs, plasmin, urokinase-type plasminogen activator (uPA) and the 

uPA receptor (Fig.16). 

TAMs can also be potent immunosuppressors of the cytotoxic activity of 

CD8+ T cells in progressing tumors: a high stromal TAMs infiltration inversely 
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correlates with CD8+ T cell number [151]. This immunosuppression is 

mediated, at least in part, by nitrosylation of T cell receptors via ARG1, iNOS 

and peroxynitrite, inducing T cell apoptosis [22]. 

For these reasons TAMs have been described as “obligate partners for tumor-

cell migration, invasion and metastasis” [141]. 

 
            
             Figure 16: TAMs produce several factors that favour tumor growth and spreading. 
 

NF-kB in TAMs 
Activation of the transcriptional factor NF-κB is a necessary event promoting 

transcription of several proinflammatory genes. TAMs display a defective NF-

κB activation in response to M1 polarizing signals LPS and TNF [145]. The 

defect in NF-κB was shown to be associated to the over expression of nuclear 

p50 NF-κB homodimers which inhibit the transcription of proinflammatory 

genes [73]. The defective NF-κB activity was seen in TAMs isolated from 
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advanced stages tumors and it is in apparent contrast with TAMs NF-κB 

dependent pro-tumorigenic functions observed in murine models of 

inflammation-associated liver and colorectal cancer [152, 153]. This 

discrepancy might reflect a dynamic change in the tumor microenvironment 

during the transition from early-neoplastic events to advanced tumor stages, 

which would result in progressive modulation of the NF-κB activity expressed 

by infiltrating inflammatory cells and progressive conversion of the TAMs from 

an M1 to an M2 macrophage phenotype (Fig.17). 

 
 

 
Figure 17: tumor immunoediting and progression: macrophage polarization.  

During tumor progression a gradual switching of macrophage polarization, M1 versus M2, is paralleled by the gradual 
inhibition of NF-kB activity. These events concur to establish permissive conditions for tumor growth and spread. From 
[21]. 
 
 

Although these experimental and clinical results, some evidence does not fit 

into this general pattern. For example, in certain tumors or subset of tumors, the 

presence of inflammatory cells is associated with better prognosis (for example, 

eosinophilis in colon tumors and TAMs in a subset of breast tumors and 

pancreatic tumors). In fact, appropriately activated macrophages can kill tumor 

cells although in most cases their tumor-promoting properties prevail [144]. The 
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importance of this balance is evident in psoriasis where a marked chronic 

inflammatory response is not associated with an increased risk of developing 

skin cancer [154]. This because psoriasis is a M1/Th1-mediated disease and 

consequently the inflammatory microenvironment that develops has antitumor 

features. For these reason not only the ablation, but also the repolarization of 

TAMs from a M2 to a M1 status is considered an interesting therapeutic 

strategy.  

 

TAMs as therapeutic targets 
It is now clear that myeloid cells infiltrating in the tumor represent an 

important player that can initiate and support tumor development. In addition to 

these pro-tumoral activities, TAMs can also modulate the efficacy of various 

form of anticancer therapy. Based on this, both the recruitment and activation of 

TAMs are are considered putative targets for therapeutic intervention. 

The major strategy so far is based upon genetic experiments targeting genes 

specifically involved in pro-tumoral macrophages phenotype like CSF-1. In this 

case the approach is based on anti CSF-1 receptor neutralizing antibodies or 

small molecule inhibitors interfering with this pathway. For example, TAMs 

depletion by anti-CSF1 antibodies enhanced the efficacy of combination 

chemotherapy (cyclophosphamide, methotrexate, and 5-fluoro-uracil) in 

chemoresistant, human breast cancer xenografts grown in immunodeficient mice 

[151]. Similarly, TAMs depletion improved the efficacy of paclitaxel in mouse 

models of mammary tumors [155]. Small molecule inhibitors to CSF1R have 

also been shown to deplete some populations of TAMs and to dramatically 

enhance responses to chemotherapy. This effect is at least in part consequent to 

the removal of macrophage-mediated immunosuppression during the tumor 

recovery period [151, 156]. 
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Furthermore, low-dose irradiation of tumors activates macrophages to 

orchestrate T cell immunotherapy [157] while the therapeutic efficacy against 

tumors of Trabectedin in mouse model derives from its ability to directly kill 

mononuclear phagocytes, including monocytes and macrophages [158]. 

The role of macrophages in modulating the antitumor efficacy of 

chemotherapy is very complex and poor understood also because it can be based 

on both direct and indirect effects. In this regard, innate immune cells like 

macrophages, are known to activate local antigen presenting cells and increase 

the immunogenicity of the tumour by inducing the release of danger signals 

from the tumours cells [159]. These signals can stimulate innate immune 

responses by operating as adjuvants. This event has been defined as 

Immunogenic Cell Death (ICD). ICD is an immunogenic type of death that is 

characterized by a well-known series of events that include: the pre-apoptotic 

exposure of calreticulin (CRT) and other endoplasmic reticulum proteins at the 

cell surface (heat-shock proteins, HSPs), the increasing extracellular release of 

adenosine triphosphate (ATP) during the blebbing phase of apoptosis, and the 

post-apoptotic release of the chromatin-binding protein high-mobility group B1 

(HMGB1) [159]. These molecules act together to promote presentation of 

tumour antigens [160-162]. Once on the cell surface, CRT serves as an ‘‘eat-

me’’ signal, stimulating the engulfment of dying tumour cells and their 

apoptotic debris by macrophages and immature dendritic cells [160, 163, 164]. 

Similarly, HSP90 has been demonstrated to be a crucial mediator of 

immunogenicity [163]. ATP molecules released by dying cells constitute a 

potent chemotactic signal for myeloid cells including monocytes/macrophages 

[164] and DC precursors [165]. Cancer cells respond to ICD inducers by 

secreting ATP, lysosomal exocytosis, and plasma membrane blebbing [164, 

166]. Only a few chemotherapeutics are known to induce ICD and Doxorubicin 

is among them. 
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The contribution of TAMs to the modulation of tumor responses to 

chemotherapy can vary markedly among different cytotoxic agents and tumor 

models. For example, the antitumor activity of the taxane docetaxel involves the 

depletion of immunosuppressive (M2-like) TAMs and the concomitant 

activation or expansion of antitumoral (M1-like) monocytes. Indeed, in vivo T 

cell assays showed that docetaxel-treated monocytes/MDSCs are able to 

enhance tumor-specific cytotoxic T cell responses [167]. 

TAMs may also release “chemoprotective” factors. Shree and colleagues 

showed how lysosomal enzymes, cathepsins B and S, secreted by TAMs 

protected cancer cells from paclitaxel-induced cell death [168]. In addition, also 

the efficacy of Doxorubicin and Etoposide was seen to be reduced by these 

TAMs-secreted cathepsins. Furthemore, a recent study demonstrates how the 

release of these cathepsins from lysosomes by TAMs is induced after 5-fluoro-

uracil and Gemcitabine treatment [169]. The chemoprotection produced by 

cathepsins is correlated to an increase in the production of IL-1β by TAMs, 

which, in turn, stimulates the secretion of IL-17 by CD4+ T cells, blunting the 

anticancer effects of chemotherapy. 

TAMs may support tumor chemoprotection also by providing survival 

signals to tumor initiating/cancer stem cells (CSCs). For example, TAMs were 

found to protect lung and colon CSCs from Cisplatin by releasing milk fat 

globule-epidermal growth factor 8 protein (MFG-E8) which, in turn, activates 

STAT3 pathway [170]. In addition, TAMs depletion was demonstrated to 

improve T cell responses and the efficacy of chemotherapy in pancreatic cancer 

model, in part by decreasing the tumor-initiating capacity and STAT3 activation 

of CSCs [156]. 

Many studies demonstrate the contribution of TAMs to the cytotoxicity of 

therapeutic monoclonal antibodies (moAbs) [171]. In fact, TAMs express 

surface receptors for the Fc fragment of antibodies and enable them to engange 

in Ab-dependent cellular cytotoxicity/phagocytosis (ADCC/ADCP). 
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Trastuzumab, a moAb against the human epidermal growth factor receptor-2 

(HER2), not only interrupts HER2 signaling in breast cancer cells, thereby 

slowing their proliferation rate, but also induces Fcγ receptor (FcγR)-mediated 

activation of macrophage cytotoxicity [172] and priming of antigen-specific 

CD8+ T cell responses [173]. Macrophages also enhance lymphoma elimination 

in mice in response to rituximab, a moAb against CD20, primarly through FcγR-

dependent ADCP [174]. Furthemore, high number of TAMs correlates with 

better prognosis in rituximab-treated patients [175]. 

Tumor irradiation is widely used to treat many cancers types. Early studies 

correlated high TAM number in mouse with poor tumor responses to irradiation 

[176]. Recent data suggest that DNA damage induced by irradiation promotes 

the transcription of Csf1 via the v-abl Abelson murine leukemia viral oncogene 

homolog 1 (ABL1) kinase, which, in turn, recruits CSF1R-expressing myeloid 

cells (including TAMs) that enhance post-irradiation tumor regrowth. Indeed, a 

CSF1R inhibitor improved tumor response to radiotherapy in a prostate cancer 

model [177]. Antibody-mediated depletion of Cd11b+ myeloid cells in human 

head and neck tumors grown in immunodeficient mice also reduced tumor 

regrowth after therapy [178]. In a model of orthotopic human glioblastoma, 

local irradiation dramatically enhanced tumor infiltration by CD11b+ myeloid 

cells [179]. It has been proposed that TAMs activity in post-irradiated tumors is 

similar to that of M2-like macrophages driving tissue repair after injury [180]. 

TAMs drive reparative mechanisms in tumours after not only radiotherapy, but 

also treatment with vascular-targeting agents. 

Docetaxel have a strong antitumor activity dued to the depletion of 

immunosuppressive (M2-like) TAMs and the concomitant activation or 

expansion of antitumoral (M1-like) monocytes in 4T1-Neu mammary tumour 

implants [167]. Moreover, Trabectedin, a DNA-damaging agent approved for 

soft tissue sarcomas, inhibited the growth of mouse fibrosarcomas primarily by 

depleting mononuclear phagocytes, including monocytes and TAMs [158]. 
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Intriguingly, increasing data suggest that the efficacy of some forms of 

immunotherapy may also depend on effective reprogramming of TAMs toward 

an M1-like phenotype. For example, macrophage-mediated killing of bladder 

cancer cells relies on both direct effector-target cell contacts and the release of 

soluble cytotoxic factors, such as TNF-α, IFN-γ, and NO, from the macrophages 

[181]. An agonistic antibody to the TNF receptor superfamily member, CD40, 

was recently reported to bind to circulating monocytes, trigger their recruitment 

into mouse pancreatic tumors, and activate their tumoricidal functions. These 

CD40-activated, cytotoxic (M1-skewed) TAMs were also found to enhance the 

efficacy of gemcitabine in a small cohort of patients with surgically incurable 

pancreatic cancer [182]. Finally, macrophages and DCs express programmed 

cell death ligand-1 (PDL1, also known as B7-H1), a major negative regulatory 

ligand that suppresses T cell activation through its receptor-programmed cell 

death protein 1. 
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1.4 Colorectal cancer 
Colorectal cancer (CRC) is one of the most common tumor in industrialized 

countries and it represents the best example of pathological association between 

chronic inflammation and cancer development. In fact, only about 20% of CRC 

cases can be genertically attributed to familiar history [183], while a very 

important numbers of CRC are linked to a condition of chronic inflammation 

(Colitis Associated Cancer [CAC]) of different inflammatory bowel diseases 

(IBDs) like Chron’s disease (CD) or Ulcerative colitis (UC) [184-188]. Indeed it 

has been estimated that inflammatory bowel disease (IBD) patients show an 

almost 3 –fold higher risk to develop CRC than general population [189] and a 

“smoldering inflammation” is present even in sporadic and familial CRC tumors 

that are not causally related to an obvious inflammatory process [1]. In mouse 

models, only single injection of the carcinogen azoxymethane (AOM) give rise 

to multiple colonic tumors, when coupled to the induction of chronic colitis 

[190, 191], while it takes multiple injection of carcinogen and longer time for 

tumors to form when inflammation is absent. For these reasons, mouse models 

of  CAC are considered extremely valuable for our understanding of general 

mechanisms which connect inflammation and cancer [1, 192, 193]. 

In fact, like most solid tumours, CRC exhibits a characteristic inflammatory 

signature including the expression of inflammatory mediators and the infiltration 

of different leukocytes population. For example, Cyclooxygenase-2 (COX-2) is 

over expressed in up to 40% of colon adenomas and 85% of colon 

adenocarcinoma compared to matched control tissues [194, 195] and its tumor 

promoting role is supported by multiple independent trials based on the chronic 

use of non-steroidal anti-inflammatory drugs (NSAIDs) (e.g. aspirin or sulindac) 

in Familiar Adenomatous Polyposis (FAP) patients [196, 197]. In IBDs patients, 

long-term inflammation is thought to sustain cancer initiation by the continuous 
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release of reactive oxygen species (ROS), which are thought to ultimately cause 

DNA damage and the dysplastic degeneration of the repairing epithelium [198]. 

Several studies indicates NF-κB as link between genetic-dependent CRC and 

CAC. In fact in CRC tumorigenesis a series of genetic alterations happen and, 

among them, abnormal activation of Wnt/β-catenin pathway is present in over 

90% of CRCs. The most common mutations that influence Wnt/β-catenin 

pathway happen in adenomatous polyposis coli (APC) tumor suppressor gene, 

GSK3β, a kinase which controls APC and β-catenin stability and β-catenin itself 

[199-203]. 

Wnt/β-catenin signaling pathway is instrumental for the renewal of intestinal 

epithelium and is a critical regulator of normal and malignant cell proliferation. 

In mouse models of CAC activatory β-catenin mutations can be found [152], but 

mutations in APC or other activatory mutations happen rather late during the 

disease progression and follow earlier mutation in p53 and K-Ras, quite 

differently from what is observed during CRC development [187, 204, 205]. To 

explain how, despite its pivotal role in proliferation and tumor development, 

genetic alteration in Wnt/ β-catenin arm of signaling are observed late during 

CAC development, several line of evidence suggest that different inflammatory 

pathways can enhance β-catenin signaling in the absence of mutations. Mice 

deficient for IL-10 spontaneously develop colitis and, later on, colorectal tumors 

which tipically do not display APC mutation but exhibit elevated nuclear 

activity of β-catenin [206, 207]. In addition, several inflammatory pathways, 

including NF-κB, PI-3K and Akt pathways [208-210] can drive β-catenin 

nuclear accumulation even without any mutations in APC [211]. So, the initial 

step, which requires APC mutation to initiate CRC tumorigenesis, in some cases 

may be bypassed by inflammatory signals during CAC development. 

As described above, inflammation can temporarily bypass the mutation 

requirement for tumor initiation, but continuous inflammatory injuries are able 

to cause mutations. Indeed, IBD and colitis induces robust genotoxic response 
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[212]. In genetic search of early oncogenic events in CAC, mutations in p53 

gene have been identified, not only in dysplasia or carcinoma areas, but also in 

inflamed intestinal mucosa [213]. Further, the inflammatory infiltrate, mainly 

represented by T lymphocytes and macrophages, may exert divergent effects on 

CRC outcome. Similar to other solid cancers, high number of intra-tumoral 

macrophages correlates with CRC tumor malignant index [214] but high density 

of tumor associated macrophages (TAM) at the invasive front seems to be 

beneficial for patient outcome [215]. These controversial results may find an 

explanation in the plasticity that characterizes macrophages, underlining their 

ability to express either pro- or anti-tumoral programs [116]. The importance of 

polarized inflammation on CRC development was strengthen by the observation 

that different tumor infiltrating T cell subsets have opposite prognostic value 

[216]. Indeed, studying a large cohort of CRC patients, it has been observed that 

infiltrating CD4+ T-helper1 (Th1) cells and CD8+ cytotoxic T cells constitute a 

positive prognostic sign in CRC outcome [216, 217], whereas high expression of 

a cluster of genes associated with the T-helper interleukin (IL)-17-producing 

(Th17) cells is associated with a poor prognosis [216]. In line, IL-23 and IL-23R 

expression markedly increased from adenoma to CRC as compared to adjacent 

normal tissue suggesting that IL-23/IL23R pathway drives malignant 

progression [218]. Recently, the link between IL-23 and Th17 in CRC 

development was undoubtedly proved. Using a genetic model of CRC it has 

been shown that tumor associated myeloid cells are the major producers of IL-

23 which in turn stimulates IL-17-mediated tumor growth and progression 

[219]. Accordingly different pre-clinical studies have demonstrated the pro-

tumorigenic role of Th17-dependent inflammation even in colitis associated 

cancer (CAC). Indeed, using the AOM/DSS model, IL-17A-/- or IL-21-/- mice 

showed decreased inflammation and tumor development [220, 221]. These 

observations seem to be relevant also in human, indeed the IL23/Th17 pathway 

is recognized as one of the most important etiological factors in IBD [222] and 
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higher IL-21 was observed in the mucosa of both UC colitis and CAC patients 

[221]. 

On the other side, both T regulatory (Treg) cells and immunosuppressive 

cytokines (TGFβ and IL-10) are abundantly present in the healthy gut while 

their decreased number or activity is associated with chronic intestinal 

inflammation [223, 224]. It is well established that Tregs accumulation in tumor 

bearing promotes cancer growth by inhibiting antitumor immunity [225]. 

Accordingly, Treg accumulation in various human carcinomas is generally 

associated with a poor prognosis [226]. Strikingly several clinical studies 

demonstrated that high Treg-cell infiltration is associated with a favorable 

prognosis of CRC patients [216, 227]. This immune paradox, may find an 

explanation in the Treg mediated attenuation of Th17 pro-tumorigenic rather 

than Th1 anti-tumorigenic inflammation, but additional studies are required to 

address this issue. 

Although both IL-10 and TGFβ play a crucial role in the maintenance of 

intestinal immune homeostasis, their involvement in CRC development is 

controversial.    

Mouse studies indicate that ablation of IL-10 drives both colitis and CAC 

development in the presence of certain enteric bacteria [207, 228]. Accordingly, 

in genetic model of CRC, inhibition of IL-10 production and Treg generation 

result in increased inflammation and tumorigenesis [229]. In contrast human 

studies failed to find a correlation between IL-10 and CRC risk [230] or 

prognosis [216].  

CAC mouse studies in which TGFβ signaling was specifically modulated in 

CD4+ Tcells by using different approaches showed divergent results [231] [232].  

In human, sporadic CRC showed altered TGFβ signaling [233] but TGFβ levels 

were not predictive of CRC patient outcome [216]. TGFβ plays multiple roles in 

cancer related inflammation including regulation of epithelial cell differentiation 

and growth arrest, Th17-mediated immunity and Treg-mediated tolerance.  
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Inflammation and tolerance are two critical mechanisms in gut fisiology and 

the presence of STAT3-inducing cytokines, such as IL-6 or IL-23, tip the 

balance between them [234, 235]. Accordingly, several evidences indicate that 

IL-6 plays a crucial role in both intestinal inflammation and CRC development. 

Indeed blockade of IL-6 signaling ameliorated colitis in both mouse models and 

in a clinical trial of patients with Crohn’s disease [236]. Serum levels of IL-6 are 

linked to a higher risk of developing colorectal adenomas in IBD patients  [237] 

and significantly correlate with tumor staging and poorer survival rate of CRC 

patients [238]. Different mouse studies contributed to understand the molecular 

basis of IL-6 tumor promoting activities. Besides IL-6-induced-Th17 

differentiation, this cytokine links colonic inflammation with carcinogenesis 

through direct effects on IECs. Indeed, IL-6 promotes neoplastic transformation 

by regulating epigenetic tumor suppressor gene silencing [239] and stimulates 

the survival and proliferation of premalignant IECs, by inducing the oncogenic 

transcription factor STAT-3 [240]. Lamina propria myeloid cells are the major 

producers of IL-6 in an NF-κB-dependent manner.  

As a master regulator of inflammation, balanced NF-κB activity in intestinal 

epithelial cells versus innate immune cells is crucial to maintain tissue integrity 

and gut immune homeostasis [241]. Indeed impaired NF-κB activation in 

intestinal epithelial cells results in chronic inflammation [242-245] but also 

increased NF-κB activity, as observed in the inflamed intestinal mucosa (lamina 

propria and epithelial cells) of IBD patients [246, 247], has a central pathogenic 

role in chronic intestinal inflammation [248]. In addition, as a crucial 

orchestrator of cancer related inflammation, NF-B pathway drives CAC 

development (Fig.18) [4]. Cell specific inactivation of the IκB kinase/NF-κB 

pathway demonstrated that NF-κB activation in intestinal epithelial or in 

myeloid cells promotes tumor incidence and growth, respectively [152]. In fact, 

despite increased intestinal inflammation, these mice developed much fewer 

CAC tumors, presumably because inflammation can stimulate tumorigenesis 
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only as long as transformed cells retain their abililty to survive and proliferate 

amid adverse conditions. Because of the NF-κB inactivation, more epithelial 

cells underwent apoptosis and less transformed cells survived, in full agreement 

with the role of NF-κB as transcriptional regulator of anti-apoptotic gene 

expression program [1, 4].  

 

 
Figure 18. Inflammation and progression of CRC 

NF-κB promotes the development of CRC by acting in two different cells. (A) NF-κB activation in intestine epithelial 
cells (IEC) results in proliferation of IEC by upregulating survival gene such as CyclinD and Bcl-XL. (B) Activation of 
NF-κB in inflammatory cells also contributes to CRC development by inducing expression of angiogenic factors, 
chemokines and epithelial cell growth factors, such as IL-6. (C) Normal epithelium. Chronic inflammation in the IEC 
resulted from microbial infection, cytokines, and stress, can lead to gene mutation of IEC. (D) Carcinoma in situ. 
Activation of NF-κB induced production of chemokines and cytokines, which attract tumor associated macrophages 
(TAM) and regulatory T cells. The chemkines receptor can be induced on initialted cells, and be necessary for tumor cell 
proliferation and invasion. (E) Invasive cancer. The chemokines and cytokines mediated signaling promotes expression 
of genes associated with invasion and metastasis. From [249]. 
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In addition, inhibition of p65 expression in mice impedes IBD development 

[250] and many current therapies of IBD, such as sulfasalazione, mesalamine 

and methotrexate are directly or indirectly targeting NF-κB activation [204]. 

Indeed, in intestinal epithelial cells (IECs) NF-κB enhances the survival of 

newly emerging pre-malignant cells, whereas in myeloid cells it drives the 

expression of inflammatory cytokines that induce tumor growth [152]. Genetic 

ablation of NF-κB in intestinal epithelial cells blocks the expression of several 

anti-apoptotic genes, including Bcl-xL, Bcl-2 and c-IAP [152, 240, 251]. The 

observed increased epithelial cell death and tissue injury in the absence of NF-

κB in epithelium results in more severe colitis, which tipically would be 

expected to lead to enanched tumorigenesis. Remarkably, however, a very 

pronounced decrease in tumor number is observed [152, 240, 251]. The likely 

explanation is that inflammation through NF-κB enhances the resistance to cell 

death, and as more mutated pre-neoplastic cells are given a chance to survive, 

more tumors form.  

 

As described above, we can say that there are three kinds of molecules in 

IBD and CAC: 

1) The first group is composed by molecules whose inactivation leads to 

decrease intestinal inflammation concomitant with reduction in CAC; 

2) In the second group there are molecules whose inactivation results in 

exacerbation of both IBD and CAC; 

3) Third group of molecules regulates IBD in CAC in opposite directions, 

i.e. inactivation of such molecules aggravates IBD but, despite increased 

local inflammation, CAC tumorigenity is reduced. Such molecules can be 

deemed critical for the cross-talk between inflammation and oncogenesis. 

 

Undoubtedly, strategies aimed at blocking NF-κB have a great therapeutic 

potential but also relevant side effects; hence, the challenge is to design 
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therapeutic protocols that prevent the pathogenic effects of NF-κB without 

hindering its beneficial functions. For these reasons strategies to deplete TAMs 

or block cancer-induced M2-like macrophage programming may have the 

potential to enhance T cell-mediated antitumor responses and improve the 

efficacy of immunotherapies [252-254]. 

 

Therefore, different approaches have been explored to harness the potency of 

the immune system to target cancer. These have been essentially focused on 

enhancing the immunogenicity of the tumour or on the induction and expansion 

of immune effectors to potentially target and eradicate the tumour. However, till 

now, efforts to actively stimulate the immune system against tumours in patients 

have been largely disappointing despite substantial evidence that peripheral 

immune responses against tumour antigens can be generated. Moreover, 

immune-modulating activities of chemotherapeutic agents are often very 

complex to understand, in fact, the same molecules may play opposite roles 

depending on tumour type, immune contexture, and/or precise therapeutic 

strategy. For example, gemcitabine and 5-fluorouracil, have been reported to 

deplete immunosuppressive MDSCs but also to induce the release of cathepsin 

B from lysosomes and the activation of the NLRP3 inflammasome and caspase-

1, which causes IL-1β secretion from MDSCs, resulting in IL-17 production by 

T cells and promotion of tumour growth [169]. To overcome this limitation, a 

possible approach could be the combination of specific chemotherapeutic agents 

with specific immunotherapeutic approaches for cancer treatment: for example, 

IL-1 receptor antagonist was shown to enhance the antitumor effect of 5-

fluorouracil [255].  

These complexities underscore the need for an ever more profound 

comprehension of the dynamic changes in the tumour microenvironment and in 

systemic immune responses as tumours evolve, progress, and respond to 

therapy. An improved knowledge of these aspects will facilitate the rational 
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design of highly efficient, synergistic regimens that combine anticancer agents 

and immunotherapies. 

In addiction, the experimental data discussed above suggest that targeting 

TAMs either by ablation or repolarization can be beneficial in cancer therapy. 

This is an attractive approach because this diploid normal cells do not have the 

enhanced mutation rates of tumor cells and, for this reason, are less prone to 

develop drug resistance. On the other side the pan-macrophage therapeutic 

approaches will have systemic toxicities as they target all macrophages. 
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2. Outline of the thesis  
Macrophages are phagocytic cells with remarkable functional plasticity that 

play an essential role in the balance between immunity and immune tolerance.  

Because of their unique role in linking the innate and adaptive immunity, 

macrophage-based immunotherapy is widely considered in clinical trials with 

cancer patients. However, major problems remain as the tumor 

microenvironment expresses high levels of immunosuppressive cytokines (eg. 

IL-10, TGFβ) that drive the anti-tumor phenotype of macrophages towards 

tolerogenic. immunosuppressive and anti-tumor properties. As a consequence, a 

major challenge in optimizing macrophage-based immunotherapy is the 

identification of new mechanisms controlling macrophages polarization, 

compatible with protective antitumor immune responses. 

We have reported that massive nuclear localization of the p50 NF-κB 

inhibitory homodimers in Tumour Associated Macrophages correlates with 

impaired inflammatory functions and tumor promotion. More recently, we have 

reported that similarly to TAM, p50 NF-κB accumulation in 

monocytes/macrophages is essential for endotoxin tolerance as well as for M2 

polarized activation.  

Several evidence have demonstrated that physiologic levels of inflammation 

are necessary for intestinal tissue homeostasis and immune tolerance, but 

excessive inflammation is deleterious and is at the basis of inflammatory bowel 

disease (IBD) and inflammation-promoted colorectal cancer (CAC). A 

smoldering inflammation is present also in tumors not causally related to an 

obvious inflammatory process such as familial colorectal cancer (CRC). Hence 

intestinal tumor is considered one of the best model to elucidate cellular and 

molecular pathways underlying cancer-related inflammation.  

As a master regulator of inflammation and a key inducer of cell proliferation, 

survival, adhesion, differentiation and angiogenesis NF-κB represents a 
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molecular link between inflammation and cancer. Indeed, disregulated NF-κB 

activation in both intestinal epithelial cells and myeloid cells results in intestinal 

inflammation and colon cancer development. Strategies blocking NF-κB activity 

have a great therapeutic potential but also relevant side effects. Hence, the 

challenge is to design therapeutic protocols that block the pathogenic effects of 

NF-κB without hindering its beneficial functions.  

Based on this we decided to investigate the role of p50-driven polarized 

inflammation in CRC development and progression by using two distinct 

models of colitis-associated (CAC) and genetic- (ApcMin mice) cancer. 

Using a chemical model of CAC, we evaluated p50-/- as compared to wt mice 

in terms of both intestinal inflammation (as scored by weight loss, colon 

shortening and histology) and tumor development (as scored by tumor 

incidence, growth and stage). To elucidate the molecular basis linking p50-

dependent inflammation with tumor development we analysed the expression of 

several inflammatory genes in both early inflamed colon tissues and tumors. 

Similarly, to investigate the role of p50 in a genetic model of intestinal tumor 

development we crossed ApcMin and p50-/- mice, to obtained double mutant 

mice (ApcMin-p50-/-). We analysed mice survival, tumor multiplicity, size and 

histopathological stage, in ApcMin p50 sufficient versus p50 deficient mice. 

We also evaluated the accumulation of p50 NF-κB in the nuclei of TAMs 

from CRC patient biopsies and correlated this accumulation with the prognosis. 
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Abstract 

Plasticity is a key feature of macrophages, in both steady state and 

pathological conditions. In several types of human cancers, tumor associated 

macrophages (TAM) express an M2-skewed phenotype and are therefore, 

associated with unfavorable prognosis. However, the impact of TAM infiltration 

on colorectal cancer (CRC) development and outcome is still controversial. 

Since we previously demonstrated that in response to lipopolysaccharide, 

nuclear accumulation of p50 NF-κB drives M2-polarization, here we 

investigated whether p50 NF-κB-driven inflammation influences CRC 

development and progression. This study demonstrates, in murine models of 

both colitis-associated CRC (CAC) and spontaneous intestinal cancers that p50 

NF-κB is a crucial regulator of polarized inflammation associated with 

promotion of tumor development. Whereas progression from colitis to cancer 

was associated with up-regulation of M2-related genes, ablation of p50 NF-κB 

exacerbated the colitis score and reduced CRC development. This latter event 

was associated with reduced number of lamina propria and tumor-associated 

monocytes/macrophages, together with increased number of NK, NKT, CD8+ T 

cells and apoptotic cancer cells. Colons from p50-/- tumor bearers expressed 

enhanced levels of M1/Th1 cytokines, including IL-12 and CXCL10, whose 

administration in vivo restrained CAC development. Accordingly, analysis of 

tumor tissues in a cohort of CRC patients indicated that high nuclear p50 in 

TAM and low expression of M1/Th1 genes correlates with poor prognosis. 

Hence our study provides first evidence that both p50 nuclear accumulation in 

TAM and M1/Th1 cytokines may represent both prognostic indicators and 

promising therapeutic targets in CRC. 
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Introduction 

Colorectal cancer (CRC) represents one of the best example of pathological 

association between chronic inflammation and cancer development. Indeed, 

according to extrinsic and intrinsic pathways of cancer related inflammation [1] 

the risk to develop CRC is almost 3–fold higher in IBD patients than general 

population [2] and a “smoldering inflammation” is present even in sporadic and 

familial CRC tumors that are not causally related to an obvious inflammatory 

process [3, 4]. Hence, independent on their origins, CRCs exhibit a 

characteristic inflammatory signature, including the presence of inflammatory 

mediators and immune cells, associated with tumor promotion. For example, 

Cyclooxygenase-2 (COX-2) is over expressed in up to 40% of colon adenomas 

and 85% of colon adenocarcinoma compared to matched control tissues [5] and 

its tumor promoting role has been recognized since as early as 1981 when tumor 

suppressive effects of NSAIDs were originally reported [6]. Accordingly, 

several clinical trials confirmed that chronic use of high doses of COX-2 

inhibitors exerts chemopreventive effects for colorectal tumor development, 

unfortunately the severe side effects on cardiovascular system does not 

recommend their routine use in the general population [7].  

As a master regulator of inflammation, the transcription factor NF-κB is a 

key regulator of gut functions in both physiology and pathology.  Indeed, an 

aberrant activation of NF-κB was frequently found in human CRC [8, 9] where 

actually correlates with the occurrence of lymph node metastases [10]. 

Accordingly, in preclinical models of CRC, IKKβ-dependent activation of NF-

κB in neoplastic cells promotes their proliferation, survival and Epithelial-

Mesenchymal Transition (EMT) [10, 11]. Moreover, in myeloid cells IKKβ-

driven NF-κB activation induces the expression of inflammatory molecules like 

IL-6, which in turn activate further crucial pathways (e.g. STAT3) for 

proliferation and survival of cancer cells [12, 13]. The mechanisms underlying 

IKKα pro-tumorigenic functions further strengthen the importance of intestinal 
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epithelial cells (IEC)-myeloid cells cross-talk along with the complexity of NF-

κB regulated pathways. Indeed in IKKα deficient mice, IKKβ-driven NF-κB 

activation in IEC is essential for both myeloid cells recruitment and M1-skewed 

activation. In turn, macrophages restrain intestinal tumor development through 

the release of anti-tumor molecules such as interferon-γ (IFNγ), or directly, as 

effector cells [14]. Undoubtedly, NF-κB represents a promising target for CRC 

therapy however, being a central regulator of several physiological immune and 

non-immune functions, its systemic inhibition will lead to severe adverse effects 

[15-17]. Even locally, a balanced NF-κB activity in intestinal epithelial cells 

versus innate immune cells is crucial to maintain tissue integrity and gut 

immune homeostasis [18]. Indeed either an increase [19-21] or a block [22-25] 

of the canonical pathway of NF-κB activation lead to chronic intestinal 

inflammation. Hence, the challenge is to design therapeutic protocols that 

prevent the pathogenic effects of NF-κB without hindering its beneficial 

functions. 

Inflammatory cells abundantly infiltrate human cancers where depending on 

their functional activation may exert beneficial or detrimental activities [17, 26] 

Indeed, several experimental and clinical studies indicate that the high number 

of cytotoxic T cells, memory T cells and Th1 cells is positively associated with 

favorable CRC outcome whereas Th17 cells infiltration correlates with disease 

progression [27-32]. Accordingly, the immunoscore defined by type density and 

location of T cells has been widely recognized as a crucial predictive factor for 

CRC patients [33].  

Tumor Associated Macrophages (TAM) are the major population of leucocytes 

infiltrating tumors, despite their potential anti-tumor activities several evidence 

indicate that tumors generally co-opt macrophages to promote their own 

development, growth and malignant progression [34, 35]. Indeed, in established 

cancers TAMs largely express an M2-skewed phenotype, associated with 

suppression of adaptive immune functions and promotion of angiogenesis and 
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invasion [26]. Accordingly, high number of ΤΑΜs has been associated with 

poor prognosis in many human cancers [36]. However, due to the well known 

functional plasticity of macrophages, these cells can also express an M1 

phenotype, associated with anti-tumor activities [37]. As a consequence, in some 

studies (e.g. esophagous, gastric, prostate, lung cancers) TAMs appear to 

restrain rather than promote cancer progression [38]. The results are particularly 

conflicting in CRC [39-41]. Despite macrophages are the only innate immune 

cells associated with the T cell network, in both tumor center and invasive 

margin their presence tends to correlate with a bad outcome [31]. In contrast 

other studies suggest that TAMs exerts different biological activities in relation 

to their localization, in particular those located in the center of tumor mainly 

express pro-tumoral functions [42], while those situated at the invasive front 

exert beneficial activities [31, 39, 43]. Overall these controversial results could 

find an explanation in the high degree of plasticity that characterizes 

macrophages and that has not yet been investigated. M1 and M2 functional 

phenotypes are the extremes in a universe of different activation states [44], 

hence, in response to the complex tissue-derived signals that macrophages 

receive, cells in different functional states or with a mixed phenotype can 

coexist in the same tumor [45], consequently , in vivo, one or two markers are 

not sufficient to discriminate macrophage polarized activation [46]. 

Accordingly, simultaneous accumulation of NOS2+ (M1) and CD163+ (M2) 

macrophage populations as well as cells co-expressing both markers are 

observed in human CRC tumors [47].  As a reflection of dynamic changes 

occurring during the transition from early neoplastic events towards advanced 

tumor stages an M1 towards M2 switch of TAM functions could occur during 

tumor development [26]. Accordingly, using a pre-clinical model of colitis 

associated cancer it has been observed that M1 and M2 macrophages 

populations are dynamically recruited and functionally modulated during 

disease progression [48]. However, the molecular basis and the clinical 
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relevance of this dynamic “reprogramming” of macrophage polarization have 

not been fully elucidated. We have found that nuclear accumulation of p50 NF-

κB in macrophages is a key event controlling both tolerance in tumor associated 

macrophages [49] and alternative (M2) polarized activation [50]. Basis on these 

finding, we investigated the impact of p50 NF-κB-driven inflammation in two 

different murine models of intestinal tumor development and in human stage 

II/III CRC progression. 
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Results  

 

p50 NF-κB tunes intestinal inflammation and promotes divergent clinical 

outcomes in colitis versus colitis associated cancer (CAC) 

To investigate the role of p50 NF-κB in inflammation associated with CRC 

development we adopted the chemical model of colitis associated CRC (CAC) 

[51] that is based on a single intra-peritoneal injection of the pro-carcinogen 

azoxymethane (AOM) followed by three rounds of subministration of the 

chemical irritant dextran sodium sulphate (DSS) in drinking water. We first 

examined the inflammatory response mounted by wild type (wt) and p50-/- mice, 

after a single round of DSS-induced colitis. Mice drinking regular water were 

used as controls. Mice survival was daily monitored until day 15, when mice 

entered in the resolution phase [51]. No differences in colitis score were 

observed between wt and p50-/- mice drinking regular water (data not shown). In 

contrast, in response to DSS administration about 60% of p50-/- mice died by 8 

days, while, although with signs of colitis, wt mice were all alive. 

  At day 15, almost all wt mice (78,6% ) had survived to the DSS treatment, 

whereas only 7,1% of p50-/- mice were still alive (fig S1A). Due to the high 

sensitivity of p50-/- mice to DSS treatment, we decreased the percentage of the 

DSS in the drinking water, from 3% to 2%, and shortened the time of treatment 

from 7 to 5 days. The colitis score was monitored in terms of weight loss, for the 

entire period of DSS administration and additional 2 weeks (fig S1B). Colon 

length was monitored at day 8, in 5 mice/group (fig S1C). As results, control wt 

and p50-/- mice drinking regular water displayed similar body weight (data not 

shown) and colon length (fig S1C), whereas in response to DSS treatment, lack 

of p50 resulted in severe body weight loss (fig S1B) and colon shortening (fig 

S1C). Hence, p50 NF-κB appears to play an essential role in intestinal 

homeostasis during inflammatory conditions. 

To examine the role of p50 NF-κB in colitis-associated cancer, wt and p50-/- 
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mice treated with AOM were either untreated (control) or subjected to three 

rounds of treatment with DSS and next analyzed for colitis and tumor 

development. In agreement with the acute model of colitis, lack of p50 was 

associated with higher grade of intestinal inflammation even in this chronic 

setting (Fig 1). Indeed, as compared to wt mice, weight loss was more 

significantly pronounced in p50-/- mice, over the entire experimental period (Fig 

1A). In agreement, colon necropsy of p50-/- mice showed significant decrease in 

colon length, as compared to wt mice (Fig 1B), Moreover, histological analysis 

showed higher number of ulcers in colon tissues from p50-/- mice (Fig 1C), 

associated with an overall higher grade of colitis (Fig 1D). Conversely, both 

macroscopic (fig 1E) and histological (Fig 1F) analysis demonstrated lower 

numbers of neoplastic lesions, characterized by smaller size, in colons from p50-

/- mice, as compared to wt. 

Collectively these results indicate that the increased inflammatory response, 

resulting from p50 NF-κB depletion, impairs CRC development. 

 

Lack of p50 NF-κB impairs survival of colorectal cancer cells 

Since the absence of p50 NF-κB impaired tumor multiplicity and growth, we 

investigated its role in colonic cancer cells proliferation and survival. To this 

aim, colons were harvested from untreated and AOM/DSS treated mice and 

immunostained with anti-Ki-67 and anti-active caspase-3 antibodies. Strikingly, 

while in both untreated and AOM/DSS treated mice lack of p50 generated 

longer crypts with higher proliferation rate of colonic epithelial cells (Fig S2A), 

it did not affect cancer cell proliferation (Fig S2A). In agreement, as compared 

to wt mice, we observed higher expression of genes associated with cell cycle 

progression in the normal colonic mucosa from either untreated or AOM/DSS 

treated mice, whereas no differences were found in wt vs p50-/- cancer cells (Fig 

S2B). Along with NF-κB, STAT3 is a key orchestrator of cell proliferation and 

survival, which was found up-regulated in AOM/DSS induced CRC [12, 13]. 
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Figure 1: p50-/- mice developed higher colitis but less tumors after AOM/DSS administration. To induce 

CAC wild type (wt) and p50-/- mice were treated with AOM and DSS. To evaluate colitis, body weight loss 

was monitored every 2-3 days during the entire experimental period (t test, P<0.0001, N=16) (A); colon 

length was measured at the time of harvest (day 100) (B); ulceration (C) and overall degree of 

inflammation (D) were analyzed on colon swiss rolls sections stained with hematoxylin-eosin (H&E). To 

evaluate tumor development, colons were longitudinally opened and polyps were counted (E); 

representative images are shown (E). H&E stained sections of colon swiss rolls were histologically 

evaluated. The total number and the size of tumors were recorded, thus tumor burden for each mouse were 

calculated (F); representative images are shown (magnification 12.5x) (F). Data shown are mean±SEM of 

different mice or tumors. Error bars have been omitted from the weight loss data for clarity of presentation. 

(*P<0.05, **P<0.01, ***P<0.001,  Mann Whitney test, two-tailed, N≥9). 
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Immunohistochemical analysis of colon tissues showed similar increased levels 

of P-STAT3 in neoplastic cells from wt and p50-/- mice (Fig S3C) suggesting 

that in cancer cells, p50 does not alter the activation of STAT3 as well as cancer 

cells proliferation. In contrast, colon from AOM/DSS treated p50-/- mice showed 

increased number of cells expressing the activated form of caspase 3, indicating 

that lack of p50 impairs epithelial and cancer cell survival (Fig 2A). In line, 

tumors harvested from p50-/- mice expressed higher levels of the pro-apoptotic 

Bak gene and decreased levels of the pro-survival Bcl-XL gene (Fig 2B). No 

differences were found in the expression of the antiapoptotic genes Bcl2 and 

Survivin, as well as the proapoptotic Bax gene (Fig 2B). Colon from untreated 

wt and p50-/- mice showed similar levels of apoptotic cells (Fig 2A) and survival 

gene transcripts (Fig 2B). 

Overall these results indicate that under inflammatory conditions p50 NF-κB 

promotes survival of colonic epithelial and cancer cells, thus contributing to 

tumor development. 

 

p50 NF-κB tunes the balance between two differentially expressed clusters 

of inflammatory genes, respectively associated with inhibition and 

promotion of tumor  development.  

To evaluate the inflammatory profiles associated with CRC progression and 

resistance we analyzed the expression of several inflammatory genes in total 

RNA isolated from wt colon, tumors and adjacent healthy tissue in both colitis 

(9 days after the first DSS administration) and established tumors  (after 80-90 

days of treatment with DSS ). RNA from colon of untreated mice was used as 

control. By comparing inflammatory transcripts levels in colitis vs cancer, we 

identified two major clusters of inflammatory genes. Genes cluster 1 were 

similarly up-regulated in both colitis and in tumors as compared to control 

colons, whereas cluster 2 was even more expressed in established cancers than 

in colitis (Fig 3A). 
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Figure 2: Lack of p50 results in increased apoptosis of both colonic epithelial and tumor cells after 

AOM/DSS administration. Colon from AOM/DSS treated and untreated mice were formalin fixed and 

paraffine embedded. Colon sections were evaluated for apoptotic activity through cleaved-caspase 3 

immunohistochemistry and digital image analysis. 200x microscopic fields were randomly selected within 

the neoplastic lesions (“tumor”) and the adjacent non-neoplastic mucosa (“healthy”). Representative 

images are shown (magnification 20x). Data shown are mean±SEM of different fields (*P<0.05, **P<0.01, 

Mann Whitney test, one-tailed, N≥8) (A).  Transcripts levels of survival genes were evaluated in total RNA 

isolated from colon and tumor of untreated and AOM/DSS-treated mice. Normalized qPCR results are 

shown as fold induction over healthy untreated wt mice. Data shown are mean±SEM of different mice 

(*P<0.05, Mann Whitney test, one-tailed, N≥4) (B) 
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Of note, in the healthy tissue, near the tumor removed, expression levels of most 

of the analyzed inflammatory genes dropped to levels comparable with those 

observed in the colon of untreated mice. (Fig 3A). The selective increased 

expression of cluster 2 in tumor tissues suggested its tumor promoting activity. 

Of note, cluster 2 includes the well known tumor promoting genes COX2, TNFα 

and IL-23p19, along with several markers of M2 polarized inflammation (IL-10, 

TGFβ, ArgI, CCL17, CCL22) [45] (Fig 3A). In contrast, cluster 1 comprises a 

predominant expression of genes associated with M1/Th1-skewed immune 

profile (IL-1β, IL-6, IL-12p40, IL-12p35, IL-27p28, Ebi3, CXCL9, CXCL10, 

iNOS, IFNγ, IL-21, perforin 1, Granzyme B, FasL) (Fig 3A). Since progression 

from colitis towards cancer is paralleled by the upregulation of cluster 2, our 

results suggest that a type 1 versus type 2 shift of polarized inflammatory 

response occurs during the transition from colitis to cancer. To investigate the 

molecular basis of this event we focused our attention on macrophages, which 

are considered crucial orchestrators of cancer related inflammation. Since we 

previously described that nuclear accumulation of p50 in macrophages promotes 

M2-like transcriptional program [49, 50] , we analyzed the nuclear levels of the 

p50 and p65 NF-κB subunits in both lamina propria and tumor-associated 

macrophages. Confocal microscopy analysis showed a selective nuclear 

accumulation of p50 over p65 in TAM as compared lamina propria 

macrophages of control mice (Fig 3B) 

Next, we examined clusters 1 and 2 in the tumor resistant p50-deficient mice. 

As compared to the wt counterpart, in p50-/- tumors we observed strong 

inhibition of IL-23p19 expression, paralleled by significant upregulation of 

M1/Th1 inflammatory genes (IL-12p40, IL-27p28, Ebi3, CXCL9, CXCL10, 

iNOS, IFNγ, Perforin 1, Granzyme B, FasL, IL-21) (Fig 3C). These results 

identify group 2 as the inflammatory profile rising during the transition from 

colitis to cancer and indicate p50 NF-B as the main regulator of this 

transcriptional reprogramming. 
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Figure 3: p50 controls the expression of different cluster of inflammatory genes associated with different 

outcome. The expression of selected inflammatory genes was analyzed in total RNA extracted from colon 

after 1 cycle of DSS administration (colitis), tumors and adjacent healthy tissue at the end of the 

AOM/DSS experiment. RNA from colon of untreated mice (control) was used as control.  Normalized 

qPCR results are shown as fold increase over control. Cluster 1 includes genes which were similarly up-

regulated in colitis and in tumors as compared to control colons. Cluster 2 includes genes which showed 

increased levels of expression during progression from colitis towards cancer. Data shown are mean±SEM 

of different mice (*P<0.05, Mann-Whitney one-tailed N≥5) (A). Immunofluorescent analysis of p50 and 

p65 nuclear levels in colonic and tumor associated macrophages (B). RNA from tumors of AOM/DSS 

treated p50-/- mice were analyzed for the expression of the genes clusters 1 and 2. Results are expressed as 

fold over the levels of wt tumors.   Data shown are mean±SEM of different mice (*P<0.05, **P<0.01, 

***P<0.001 Mann Whitney test, one-tailed, N≥13).  
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M1/Th1-skewed inflammation inhibits CAC development 

To formally prove the antitumor properties of selected members of cluster 1, 

AOM/DSS-treated mice underwent systemic (intra-peritoneal) or local (intra-

rectal) administration of IL-12 (100ng) and CXCL10 (500ng), once a week (Fig 

4A). Control AOM/DSS-treated mice received only vehicle (Fig 4A). Despite 

control mice (vehicle), IL-12- and CXCL10-treated mice showed similar body 

weight loss (Fig 4B) and colon length (Fig 4C), a significant reduction of tumor 

multiplicity was observed in response to IL-12 and CXCL10 treatments (Fig 

4D). These results strongly support the concept that activation of the M1/Th1 

immune profile may restrains CAC development and disclose the therapeutic 

potential of IL-12 and CXCL10 in CRC. 

 

Lack of p50 NF-κB shapes tumor-associated immune infiltrate by 

restraining macrophages and by enhancing cytotoxic effectors cells  

In p50-/- mice, increased expression of M1/Th1 genes along with higher rate 

of colonic and cancer cells apoptosis indicate that p50 activity impairs cytotoxic 

type 1-skewed inflammatory responses. To further investigate whether p50 

could alter the composition of the tumor associated immune infiltrate, colons of 

untreated and AOM/DSS-treated wt and p50 deficient mice were analyzed for 

the presence and distribution of the different leukocytes populations. 

The results showed a similar number of tumor and lamina propria associated 

neutrophils (Ly6G+ cells) in wt vs p50-/- mice, while in absence of p50 we 

observed a reduction of tumor- and lamina propria- (LP) associated monocytes 

(Ly6C+ cells) and macrophages (F4/80+ cells), along with increased number of T 

lymphocytes (CD3+ cells), NK (NKp46+CD3-) and NKT (NKp46+CD3+) cells, 

in both tumors and adjacent healthy tissue (fig 5A, B). In absence of p50, the 

number of mucosal monocytes and macrophages is significantly reduced even in 

untreated mice, while colonic NK, NKT and T cells are similarly present in wt 

and p50-/- mice (Fig S3). 
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Figure 4: M1 cytokines treatment inhibits CAC development. Schema of treatments with IL-12 and 

CXCL10 during CAC induction (A) Analysis of body weight loss (B) and colon length (C) of the different 

groups of mice (vehicle, IL-12, CXCL10). At day 80 tumor development was analyzed by evaluation of 

longitudinally opened colons for the number of polyps. Representative images are shown (D). Data shown 

are mean±SEM of different mice (*P<0.05 Mann Whitney test, one-tailed, N≥5) 

 

These data were confirmed by both FACS and expression analysis of genes 

encoding for markers of the different leukocyte populations (data not shown). 

Further, in absence of p50, we found an increased expression of CD8 and Tbx-

21 (Tbet), while both CD4 and the transcription factors which are typically 

induced in Th2/ILC2 (GATA-3), Th17/ILC3 (RORc) and Treg (FOXP3) cells, 

are similarly expressed (Fig 5C). 

These results further suggest that ablation of p50 shapes gut associated 

lymphoid cells towards cytotoxic innate (NK, NKT, ILC1) and adaptive (CD8, 

Th1) effector cells. 

Therefore to rule out whether, in p50-/- mice, T cells responses are needed for 

tumor resistance, mice were weekly i.p. injected with anti-CD4 and anti-CD8 
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antibodies, during the entire AOM/DSS treatment. Whereas depletion of CD4+ 

and CD8+ T cells results in a similar light increased of intestinal inflammation in 

both wt and p50-/- mice, tumor multiplicity augmented in p50-/- mice reaching 

the extent of wt mice (Fig 5D). Hence these findings indicate that lack of p50 

NF-κB subunit restrains CAC development by enhancing the inflammatory 

circuits associated with T cells dependent immune surveillance. 

 

p50 NF-κB inhibits tumor development even in a genetic model of intestinal 

carcinogenesis  

As demonstrated for the adaptor protein MyD88, the role played by the 

molecular determinant of intestinal carcinogenesis developed in presence or 

absence of a pre-existing chronic inflammation may differ [52-54]. Therefore, 

we decided to evaluate the role of p50 NF-κB in the spontaneous model of 

intestinal cancerogenesis. Human germline APC mutations are a cause of 

familiar adenomatous polyposis, but APC gene is also mutated in over 80% of 

human cancer, indicating that ApcMin mice represent a useful pre-clinical model 

to study sporadic cancer [55]. Hence, ApcMin mice were crossed with p50-/- 

mice, in order to generate ApcMin/p50-/- mice. Next, small intestine and colon 

were harvested from both ApcMin and ApcMin/p50-/- mice at different ages (12 

and 18 weeks) and analyzed for the presence of tumor lesions. As expected, both 

tumor multiplicity and size increased with mice aging. However, as compared to 

ApcMin mice, we observed a significant inhibition of both tumor incidence and 

growth in the ApcMin/p50-/- group (Fig 6A), which was associated with increased 

survival, from 6 months of age (mean 22 weeks) to 10 months (mean 41 weeks) 

respectively (fig 6B). The role of p50 was examined at different stages of tumor 

progression (Fig S4A). As results, the absence of p50 was associated with fewer 

(Fig S4B) and smaller (Fig S4C, D) tumor lesions, at all stages of tumor 

development. 
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Figure 5 Panels A and B: p50 NF-κB shapes the composition of gut associated immune cells . Colon 

from AOM/DSS treated and untreated (-) mice were evaluated for the number of both lamina propria and 

tumor associated immune cells populations. Sections of formalin fixed and paraffine embedded colons 

were evaluated for the number of macrophages (F4/80), monocytes (Ly6C), neutrophils (Ly6G) and T 

lymphocytes (CD3) by immunohistochemistry (A). Immunofluorescent staining of frozen colonic samples 
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with anti-NKp46 (green) and CD3 (red) antibodies. Nuclei were stained with DAPI (blue). White and 

yellow arrows indicate NK (CD3-NKp46+) and NKT  (CD3+NKp46+) cells, respectively (B). 

Representative images are shown (scale bars are 60 μm). Data shown are mean±SEM of different tumors or 

fields (**P<0.01, ***P<0.001 Mann Whitney test, one-tailed, N≥5 tumors N≥8 fields). 

 
Figure 5 Panels C and D: Transcript levels of genes encoding for markers of different leukocytes 

populations were evaluated in total RNA isolated from colon and tumors of untreated and AOM/DSS-

treated mice. Results are shown as fold induction over healthy untreated wt mice. Data shown are 

mean±SEM of different mice (*P<0.05, Mann Whitney test, one-tailed, N≥4) (C) T cells were depleted 

from wt and p50-/- mice during the entire experimental period by i.p. injections of anti-CD4 and anti-CD8 
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antibodies. Control mice received vehicle only. Body weight loss, colon shortening an tumor development 

are evaluated. Representative images of longitudinally opened colons at day 80 are shown. Data shown are 

mean±SEM of different mice (*P<0.05 Mann Whitney test, one-tailed, N≥7) (D). 

 

Our data underlie the relevance of p50 NF-κB activity in the promotion and 

progression of intestinal cancerogenesis, from the initial events of 

carcinogenesis (GIN) towards advanced stages (LGA, HGA, C).  

Next we investigated whether the inflammatory circuits observed in the CAC 

tumor model were also expressed during the spontaneous intestinal 

carcinogenesis occurring in ApcMin mice. Hence, tumors from ApcMin and 

ApcMinp50-/- mice were analyzed for the density of TAMs and for the expression 

levels of the gene clusters 1 and 2. In agreement with the CAC model, in the 

absence of p50 we observed a reduction of TAMs at any stage of tumor 

development (Fig 6C) thus confirming the importance of p50 in the circuits 

controlling TAMs accumulation and confirming the low density of TAMs as a 

favorable prognostic indicator. Next, we analyzed the inflammatory gene profile 

of CRC lesions. Since ApcMin mice largely develop tumors in the small intestine, 

CRC lesions were obtained from the colon of 20 weeks old mice, when 

polyposis is so extended that CRC arises also at the large intestine [56]. 

Similarly with the CAC model, most of the genes belonging to cluster 1 and 2 

were upregulated in tumor tissues as compared to the adjacent healthy mucosa 

(Fig 6D).  Interestingly, lack of p50 confirmed the selective reduction of the 

tumor-promoting IL-23p19 gene transcript along with enhanced expression of 

M1/Th1 inflammatory genes (Fig 6E).   

Collectively, these results indicate that irrespective of the etiological events 

triggering CRC development, the p50 NF-κB subunit promotes intestinal cancer 

development by favoring TAMs accumulation and an M2-type tumor promoting 

inflammation. 
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Low levels of nuclear p50 in TAMs and high levels of type 1 gene expression 

in human CRC are associated with better prognosis.  

To explore the potential relevance in human CRC of p50 NF-κB modulation 

in CD68+ TAMs, we assessed its nuclear expression in tissue specimens from 

patients with stage II and III tumor. The percentage of nuclear p50+CD68+ 

TAMs at the invasion front or within the tumor nests did not differ between 

stage II and stage III CRCs. As to disease progression, the percentage of nuclear 

p50+CD68+ TAMs at the invasive tumor front was significantly higher 

(p=0.003) in patients with than in those without post-surgical progression (Fig. 

7A). Besides the frequency of intra-tumoral p50+CD68+ TAM is directly 

correlated (Correlation coefficient (r)= 0,733161; r2 = 0,537524) with those at 

the invasive tumor front, the rate of nuclear p50+ cells in TAMs within the tumor 

did not differ significantly according to the outcome (Fig 7A). Consistently, the 

presence of high p50+ TAMs at the tumor invasion (but not within the tumor), 

was associated with a significantly worse disease-free survival (Log-rank test, 

p=0.004). 

Also the expression levels of the mRNAs coding for type 1 inflammatory 

genes (IL-12p35, Tbx-21, CXCL9, IL-21, CXCL10, and IL12p40) in tumor 

tissues did not differ between stage II and III CRCs. However, with respect to 

patients’ outcome, low mRNA levels of inflammatory genes (IL-12p35, Tbx-21, 

CXCL9, and IL-21) were associated with a significantly worse (all p-

values<0.05) or tending to be worse  (CXCL10 and IL12p40) disease free 

survival (Fig. 7B).  

Our results indicate that high expression of p50 in TAMs at the invasive 

margin and low levels of type 1 inflammatory genes, are associated with a 

significantly worse post-surgical survival, and are a signature of increased 

metastatic potential in human CRC.    
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Figure 6: lack of p50 inhibits spontaneous intestinal tumor development. Histological analysis of small gut 

and colon harvested from ApcMin and ApcMin-p50-/- mice at 12 or 18 weeks of age. Number and size of 

tumors was recorded, then tumor burden was calculated for each mouse. Data shown are mean±SEM  of 

different mice or tumors (*P<0.05, **P<0.01, ***P<0.001  Mann Whitney test, one-tailed, N≥7). (A). 

ApcMin and ApcMin-p50-/- mice were passively monitored for their survival (**P<0.01; N≥ 27). (B). To 

evaluate tumor associated macrophages gut sections were immunohistochemical stained with anti-F4/80 

antibody. Semi-quantitative analysis of F4/80+ cells were performed on the entire gut sections. 

Representative images are shown (magnification 20x) Data shown are the mean±SEM of different tumor 

lesions. Low grade adenoma (LGA), high grade adenoma (HGA) and carcinoma (C)  (*P<0,05; Mann 
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Whitney test, one-tailed, LGA, N≥44; HGA, N≥18; K, N≥3). (C). Analysis of the expression of the above 

identified gene cluster 1 and 2 in CRC isolated from ApcMin mice as compared to adjacent healthy colonic 

mucosa (D) Analysis of CRC from ApcMin and ApcMin-p50-/- mice for the genes clusters identified as 

previously described (E) . Data shown are the mean±SEM of different mice (*P<0,05; Mann Whitney test, 

one-tailed, N=6).  

 
Figure 7: Both nuclear levels of p50 in TAMs and expression levels of type 1 inflammatory genes could 

predict better CRC outcome. Immunofluorescent staining of 28 stage II and III CRC specimens for CD68 

and p50. Analysis of the percentage of p50+ TAM at both invasive margin and tumor center in relation to 

tumor relapse. Good or bad outcome are defined as tumor recurrence or not by 5 years follow up. Kaplan-

Meier curves show disease free survival (DFS) of CRC patients in relation of high (>mean) or low (<mean)  

p50+ TAM. Representative images are shown (A) Analysis of selected type 1 inflammatory genes 
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expression in total RNA from 47 stage II and III CRC specimens. Results are normalized over β-actin as 

housekeeping gene.  For each gene transcript, cut–off value was extrapolated by ROC curve analysis (IL-

12p35 4.28e-5; IL-12p40 7.88e-5; iNOS 1.56e-2; CXCL9 3.72e-3; CXCL10 8.32e-3; IL-21 1.13e-4 ) than 

Kaplan-Meier curves show disease free survival (DFS) of CRC patients in relation of the expression levels 

of the selected type 1 inflammatory genes in tumor samples. (B). 

 

 

Discussion 

Owing the importance of inflammatory tumor microenvironment on the 

development and progression of colorectal cancer [3], type density and location 

of immune infiltrate, the so called “immunoscore”, has been recently suggested 

as a better predictor of CRC patients outcome than other methods for staging 

[33]. Among inflammatory cells, tumor associated macrophages (TAMs) has 

long been recognized as the major orchestrators of cancer related inflammation 

[1, 57] and predictors of poor prognosis for many different human tumors [36, 

58, 59]. However, the impact of macrophages on colorectal cancer (CRC) 

outcome is controversial, likely because of its anatomical site. In addition to 

tumor-derived signals, CRC-associated macrophages activation can be 

influenced by unique local microenvironmental signals (e.g. microbial products) 

to whom they are exposed [28] and consequently multiple macrophages 

populations with either pro- or anti-tumoral activities could co-exist in CRC. In 

vivo evaluation of macrophages polarized activation is challenging. To dissect 

the complexity of functional macrophages heterogeneity, a panel of genes which 

are typically induced in response to M1 and M2 signals, should be evaluated 

[46]. Alternatively, macrophages polarized activation could be easier and more 

feasible investigated by addressing the activation of transcription factors that 

selectively control the expression of M1 and M2 transcription programs. We 

have previously demonstrated that p50 NF-κB is a key orchestrator of M1 

versus M2 macrophages polarized activation, in different pre-clinical models of 

infections (sepsis, helminth infections), allergic inflammation (asthma) and 
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cancer [49, 50].  Here we originally find that high accumulation of p50 NF-κB 

in the nuclei of TAMs located at the invasive margin of human stage II/III CRC 

could be successfully used to predict disease recurrence. Despite the percentage 

of nuclear p50+ TAMs in the stroma is significantly associated with those at the 

invasive margin, the predictive value of p50 in TAM situated at the center of 

tumor did not reach statistic significance. This results suggest that macrophages 

located at the invasive margin are more potent than those situated in the center 

in inducing immune reactions against neoplastic cells. Accordingly, a positive 

association between the number of FasL expressing macrophages at the invasive 

margin of CRC and apoptotic cancer cells has been reported  [60].  

Whereas a type 1 inflammatory profile is predictor of beneficial outcome for 

CRC patients (fig 7 B) [61], the unfavorable prognostic significance of p50 

nuclear accumulation in TAM is likely associated with its M2-skewing ability, 

as we previously demonstrated in murine established tumors [49] and we 

confirmed, here in both a chemical model of colitis associated CRC 

(AOM/DSS) and in a genetic model of intestinal tumorigenesis (ApcMin mice).  

Although an M1 towards M2 switch of TAM functions has been suggested 

during tumor development [26] the molecular basis and the clinical relevance of 

this dynamic “reprogramming” of macrophage polarization have not been fully 

elucidated. In particular, whereas in established cancers M2-skewed activation 

has been mainly associated with tumor growth and progression, at tumor 

initiation stage, the impact of M1 macrophages seems to be dual: through the 

release of genotoxic molecules (e.g. ROS and NOS) and growth factors (e.g. IL-

6) they could support both neoplastic transformation and proliferation of 

initiated cells [11, 62] while as effector cells, they likely contribute to immune 

surveillance by eliminating pre-malignant cells [14, 63]. Since both AOM/DSS 

treatment in C57BL6 mice strain and ApcMin mice mainly results in the 

development of multiple benign polyps [55, 64, 65] both models are suitable to 

investigate how p50-driven inflammation support CRC initiation.  Our results 
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coherently support a model in which, independent on their triggers, an M1 

towards M2 switch of polarized inflammation is driven by p50 accumulation in 

macrophages and associated with intestinal tumors development. Indeed, 

exploring the molecular mechanisms linking p50-driven inflammation with 

colitis associated CRC development we identified two clusters of inflammatory 

genes, which are differentially modulated by p50 and whose relative expression 

impact on disease outcome. In particular, whereas both gene clusters are up-

regulated in early inflamed colons, during disease progression, nuclear 

accumulation of p50 in TAM is associated with the selective increased 

expression of gene cluster 2 which includes several M2-related genes (e.g. IL-

10, TGFβ, ArgI, CCL17, CCL22) along with other intestinal tumor promoting 

genes (e.g. COX2, IL-23p19, TNFα). In contrast, enhanced expression of gene 

cluster 1, which includes M1/Th1 inflammatory genes only, occurred in p50-/- 

tumors and is associated with tumor resistance.  Hence, despite p50-/- mice 

showed an increased gut inflammation, both tumor multiplicity and size are 

strongly reduced. In absence of p50, also ApcMin mice showed a reduced tumor 

development associated with selective increased expression of M1/Th1 

inflammatory genes. Hence our findings indicate that in both models, intestinal 

cancer development is promoted by an M2 shift of polarized inflammation and 

identify p50 NF-κB as the crucial molecule that skews polarized inflammation 

towards pro-tumoral functions.  

Lack of p50 profoundly modifies immune cells infiltration too. Besides p50-/- 

tumors express higher levels of monocytes chemoattractants  (e.g. CCL2, CCL5 

and MCSF) (Fig 3 and data not shown) TAM accumulation is strongly reduced 

in both intestinal tumor models. Lamina propria macrophages and monocytes 

are also less present in p50-/- than in wt mice, both untreated and AOM/DSS 

treated. Since, gut macrophages are constantly replenished by bone marrow-

derived monocytes [66], overall these results suggest that p50 are required for 

monocytes/macrophages recruitment. This hypothesis is also supported by the 
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observation that, ex-vivo, migration of p50-/- peritoneal macrophages towards 

several different chemoattractants is severely impaired (unpublished data). In 

contrast, innate and adaptive lymphoid cells migration seems to be functional in 

absence of p50. Indeed, at steady state NK, NKT and T cells are similarly 

present in the lamina propria of wt and p50-/- mice and are increased in p50-/- 

colons and tumors of AOM/DSS treated mice. According to the accumulation of 

cytotoxic lymphoid cells, in p50-/- tumors we observed an increased expression 

of type 1-specific chemoattractants (e.g. CXCL9, CXCL10), cytokines (IL-

12p35, IL-12p40, IL-27p28, IL-21) and effector molecules (IFN, Prf 1, Gzm B, 

FasL). Although IL-21 can support CAC by promoting Th17-driven 

inflammation [67, 68], IL-21 can also exert anti-tumor effects [69-72]. Indeed, 

IL-21 drives CD8+ CTL differentiation via the actions of the transcription factor 

T-bet [73] and stimulates multiple other lymphocyte subsets, including follicular 

Th cells, B cells and NK cells [74].  In our p50-/- mice, IL-21 induction does not 

correlate with increased  expression of IL-17 or RORc, but with augmented 

levels of genes (e. g. IFN, Prf 1, Gzm B, FasL, Tbx-21/Tbet) expressed by NK 

and CTL cells.  Hence we can speculate that ablation of p50 selectively 

enhanced anti-tumor effects of IL-21 without engaging pro-tumoral Th17 driven 

inflammation. Indeed, in absence of p50, both bone-marrow-derived dendritic 

cells and peritoneal macrophages showed a defective LPS-induced expression of 

IL-23p19 [75]. Noteworthy IL-23 drives Th17 cells expansion and functions 

[76] but also exert other pro-tumoral effects including inhibition of NK cells 

effector functions [77]. In response to gut microbial products, tumor associated 

myeloid cells are recognized as the major orchestrators of pro-tumoral IL-23 and 

IL-17 responses [28]. Accordingly IL-23p19 expression increased during 

progression from colitis to tumor, while it is strongly inhibited in p50-/- CRC. 

Consistently, in tumors from  ApcMinp50-/- mice, IL-23p19 transcript levels are 

also significant reduced further suggesting that, lack of p50 contributes to tumor 

resistance by inhibiting IL-23-driven inflammatory circuits. 
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In contrast lack of p50 enhances cytotoxic immune responses that in turn 

restrain tumor development by eliminating neoplastic cells. Indeed, p50-/- tumor 

cells are more apoptotic than the wt counterpart. Although ablation of p50 can 

impair colonic cancer cell survival also in a cell autonomous manner [78] 

adaptive immune-surveillance seems to be crucial for p50-/- mice anti-tumor 

activities, because depletion of CD4/CD8 abolished colitis-associated CRC 

resistance. 

Overall our results in mice and human indicate that p50-driven M2 

inflammation promotes both CRC development and progression. Hence p50 

could be exploit both as novel prognostic indicator and therapeutic target for 

CRC patients. Although different human [79, 80] and mouse [81] studies 

suggests a link between decreased levels of p50 and an higher risk to develop 

colitis, at steady state, both p50-/- mice and ApcMinp50-/- mice did not shown any 

signs of intestinal inflammation. In contrast, DSS treatment exacerbated 

inflammatory response in p50-/- mice indicating that for the small percentage 

(1%-4%) of human CRC cases that are associated to colitis [82] the anti-tumor 

efficacy of p50 targeting approaches could be limited by serious intestinal 

adverse drug reaction and alternative strategies to enhance type 1 inflammation 

should be adopted. In this regards our preclinical studies identified both IL-12 

and CXCL10 as a potential immunotherapeutic drugs capable to limit CRC 

development without worsening colitis. 
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Materials and Methods 

 

Mice 

p50 NF-κB-deficient mice were generated by Prof. Michael Karin (46), 

whereas ApcMin mice were from Jackson Laboratories (Bar Harbor, Maine, 

USA). The ApcMin mice will be crossed with p50-/- mice in order to generate 

ApcMinp50-/- mice. All mice were on the same C57BL6 background. In all 

experiments mice bred in the same SPF animal facility were used.   

The study was designed in compliance with principles set out in the 

following laws, regulations and policies governing the care and use of 

laboratory animals: Italian Governing Law (Legislative Decree 116 of Jan. 27, 

1992); EU directives and guidelines (EEC Council Directive 86/609, OJ L 358, 

12/12/1986); Legislative Decree September 19, 1994, n. 626 (89/391/CEE, 

89/654/CEE, 89/655/CEE, 89/656/CEE, 90/269/CEE, 90/270/CEE, 

90/394/CEE, 90/679/CEE); the NIH Guide for the Care and Use of Laboratory 

Animals (1996 edition). The study was approved by the scientific board of 

Humanitas Clinical and Research Center. Humanitas Clinical and Research 

Center Institutional Regulations and Policies providing internal authorization for 

persons conducting animal experiments. Animals were maintained in a specific-

pathogen-free environment and tested negative for pathogens in routine 

screening. Mice have been monitored daily and euthanized when displaying 

excessive discomfort. To assess overall survival, ApcMin and ApcMinp50-/- mice 

were continuously monitored for a period up 40 weeks. 

 

Azoxymethane (AOM)/ Dextran sodium sulfate (DSS)-induced colorectal 

cancer 

6-8 weeks old wt and p50-/- mice were injected intraperitoneally (i.p.) with a 

single dose (10 mg/kg) of the mutagenic agent azoxymethane (Sigma) and 

maintained on regular diet and water for 5 days. After 5 days, mice received 
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water with 1,5-2% dextran sodium sulfate (DSS) (MP Biomedicals molecular 

mass, 40 kDa) for 5 days. After this, mice were maintained on regular water for 

14 days and subjected to two more DSS treatment cycles.  

When specified, starting from day 15 (e.g. recovery phase of the first DSS 

cycle), wt mice underwent i.p. administration of IL-12 (100ng) or intra-rectal 

injection of CXCL10 (500ng), once a week. As control mice received vehicle 

only. 

When specified, starting from the day before the first DSS treatment, wt and 

p50-/- mice received an i.p injection of 0,3mg anti-mouse CD4 (clone GK1.5; 

BioXcell) and 0,3mg anti-mouse CD8 (clone 2.43, BioXcell), once a week for 

the entire experimental period. FACS analysis of peripheral blood samples 

confirmed CD4+ and CD8+ cells depletion for 7 days.  

The clinical course of colitis was evaluated by monitoring mice body weight 

during the course of the experiment and by measuring colon length at 

necroscopy. At the time of harvest mice were euthanized, colons were resected, 

flushed with PBS, opened longitudinally and macroscopically evaluated for 

tumors number. 

 

Histologic analysis 

At the end of AOM/DSS experiments, mice were euthanized, colons were 

resected, flushed with PBS, opened longitudinally and rolled up. At the 

indicated age, ApcMin and ApcMinp50-/- mice were euthanized, both small gut and 

colons were harvested, flushed with PBS and prepared according to swiss and 

roll technique. Gut samples were fixed in 10% neutral buffered formalin for 24h 

and paraffin embedded, next 4 μm H&E-stained serial tissue sections were used 

for pathologic evaluation in a blinded fashion by a pathologist. Intestinal lesions 

were classified as gastrointestinal intraepithelial neoplasia (GIN), low-grade 

(LGA) and high-grade adenoma (HGA) and adenocarcinoma (C). Histological 

evaluation of grade of colitis was performed according to the score of Cooper et 
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al. (1993), and Suzuki et al. (2005), only slightly modified to adapt it to the 

findings of present study. The scoring of colitis was made at 40x magnification 

on the entire colon swiss roll with or without proliferative lesions and expressed 

as mean score/mouse. Additionally, the number of ulcers, and total number and 

size of the neoplastic lesions was recorded. 

 

Analysis of immune cell infiltrate by immunohistochemistry or 

immunofluorescence 

10 μm colonic slides were deparaffinized and rehydrated. Antigen unmasking 

was carried out by incubation in a decloaker chamber at 125°C for 3 minutes 

and 90°C for 10 minutes in Diva Decloaker retrieval solution (#902-2004C-

012611 Biocare). Immunohistochemistry was done with the following 

antibodies: rat anti-mouse F4/80 (clone CI:A3-1, AbD Serotec), rat anti-mouse 

Ly6G (clone 1A8 BD Bioscences), rat anti-mouse Ly6C (clone ER-MP20, 

ThermoFisher), Rabbit anti-human CD3 (#A0452, DAKO). Secondary antibody 

used was Rat or Mouse HRP-Polymer Kit (Biocare medical). Sections were 

stained with the chromogen 3,3’- diaminobenzidine (DAB) and nuclei were 

counterstained with hematoxilin. Next slides were mounted with Eukitt and 

analyzed.  

The total antigen+ area (μm2) and fraction area (total antigen+ area/total area 

of field at 200x) were evaluated using the ImageJ analysis program 

(http://rsb.info.nih.gov/ij/) in 200x microscopic fields selected within the 

neoplastic lesions (“tumor”) and the adjacent non-neoplastic mucosa (“non-

tumor”).  

 

8 μm of cryostat colonic sections were fixed for 3 min in cold 

Aceton:Cloroform 3:1. Immunostaining were carried out with Rabbit anti-

human CD3 (#A0452, DAKO) and goat anti-mouse NKp46 (#AF2225 R&D). 

Donkey anti Rabbit AlexaFluor 647 conjugated and Donkey anti Goat 
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AlexaFluor 488 conjugated were used as secondary antibodies. Nuclei were 

stained with DAPI (4',6-diamidino-2-phenylindole) (#D1306 Life Technologies) 

and then mounted with ProLong Antifade Gold Reagent (P-36931 Life 

Technologies). Slides were analyzed with Olympus Fluoview FV1000 laser 

scanning confocal microscope with 60X (N.A.0.4) and single cell count was 

performed (n≥5 field for every sample; n≥3 for every condition). 

 

Analysis of p50 nuclear accumulation in murine and human TAM:  

10 μm  murine and 3 μm  of human colonic  sections were deparaffinized and 

rehydrated. Human slides were priory exposed to UV radiation over night. 

Antigen unmasking was carried out by incubation in a decloaker chamber at 

125°C for 3 minutes and 90°C for 10 minutes in Diva Decloaker retrieval 

solution (#902-2004C-012611 Biocare). Unspecific binding sites were blocked 

with BSA 2% + Triton X-100 0,1% in PBS+/+ Tween20 0,05% for 1h. For 

murine samples,  mouse monoclonal anti-p65 NF-κB antibody (#6956 Cell 

Signaling), rabbit monoclonal anti-p50 NF-κB antibody (#AB32360 Abcam) 

and rat monoclonal anti-mouse F4/80 (clone CI:A3-1, AbD Serotec), was used. 

Goat anti mouse AlexaFluor 555 conjugated, Goat anti Rabbit AlexaFluor 647 

conjugated and Goat anti rat AlexaFluor488 conjugated were used as secondary 

antibodies. For human samples, primary Monoclonal Mouse Anti-Human CD68 

(clone M0814, Dako), rabbit monoclonal anti human p50 NF-κB (clone E381 

Abcam) was used. Goat anti mouse AlexaFluor 488 conjugated and Goat anti 

Rabbit AlexaFluor 647 conjugated were used as secondary antibodies. Nuclei 

were stained with DAPI (4',6-diamidino-2-phenylindole) (#D1306 Life 

Technologies) and then mounted with ProLong Antifade Gold Reagent (P-

36931 Life Technologies). Slides were analyzed with Olympus Fluorview 

FV1000 confocal microscope with 60X (N.A.0.4) and single cell count was 

performed (n≥8 field for every sample; n≥3 for every condition).  
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Immunohistologic analysis of colonic cancer cells apoptosis 

To assess the number of apoptotic cells, 4 μm paraffin-embedded sections of 

colon swiss roll were immunostained with a primary rabbit polyclonal antibody 

against cleaved-caspase 3 antigen (Cell Signaling, #Asp175). The number of 

apoptotic cells were counted using the ImageJ analysis program 

(http://rsb.info.nih.gov/ij/) in 200x microscopic fields selected within the 

neoplastic lesions (“tumor”) and the adjacent non-neoplastic mucosa (“non-

tumor”). 

 

Real-Time PCR Analysis 

At the end of AOM/DSS treatment colons were washed with ice-cold saline 

then macroscopic tumors and the adjacent healthy tissue were harvested and 

maintained in RNA stabilization solution (RNAlater, Ambion). Colons from 

untreated mice were used as control. Similarly, macroscopic colonic tumors and 

the adjacent healthy tissue were harvested from 20-24 weeks old ApcMin and 

ApcMinp50-/- mice. Total RNA was extracted from tissues through the 

TissueLyser II (Qiagen) and RNeasy Lipid Tissue Mini Kit (Qiagen). RNA was 

reverse transcribed by the cDNA Archive kit (Applied Biosystem), amplified 

usingGOTAQ qPCR Master Mix (Promega), and detected by the CFX96 Real-

Time System (Biorad). Expression data were normalized to Actin or 18S mRNA 

expression. 

 

Statistical analysis 

Data are expressed as mean ± SEM. Statistical significance between groups 

was assessed by unpaired one- or two-tailed Student’s t test or Mann Whytney 

(Prism software) as specifies. P ≤ 0.05 was considered significant. Experiments 

were repeated at least two times. 
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Supplementary materials and methods 

 

Dextran sodium sulfate (DSS)-induced colitis 

To induce acute colitis, 6-8 weeks old wt and p50-/- mice were treated for 5 

days with 2-3% of dextran sodium sulfate (DSS; MP Biomedicals molecular 

mass, 40 kDa) in drinking water followed by 2 weeks of regular water. The 

clinical course of colitis was evaluated by monitoring mice body weight during 

the course of the experiment and by measuring colon length at necroscopy. For 

survival studies, mice were treated for 7 days with 3% of DSS in drinking water 

followed by 5 days of regular water to allow recovery. Mice were daily 

monitored for their survival until day 12, when mice start the resolution phase. 

 

Immunohistochemistry 

To assess the extent of the proliferative activity, 4 μm paraffin-embedded 

sections of colon swiss roll were immunostained with a primary rabbit 

monoclonal antibody against Ki-67 antigen (LabVision; #RM-9106-S). The 

number of Ki67-positive and Ki67- negative nuclei were counted using the 

ImageJ analysis program (http://rsb.info.nih.gov/ij/) in 400x microscopic fields 

randomly selected within the neoplastic lesions (“tumor”) and in 200x 

microscopic fields randomly selected within the adjacent non-neoplastic mucosa 

(“non-tumor”), where only entirely visible crypts were considered. 

To evaluate STAT3 activation, immunohistochemistry with primary rabbit 

polyclonal antibody against murine pSTAT3 Tyr705 (#9145S Cell Signaling) 

was performed. Analysis was performed with randomized double blind 

immunoscore from (-) to (+++) according to less to more observed positivity 

(n≥3). 
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Supplemental data 

Supplemental figure 1. p50-/- display exacerbated DSS-induced colitis. Mice 

survival upon 3% of DSS administration in drinking water for 7 days. One of 

three different experiments is shown. (P<0.0001, N=14) (A). Mice received 

1.8% of DSS in drinking water for 5 days and regular water for the following 14 

days. Weight loss was monitored every 2-3 days. (B). At day 9, DSS-treated and 

sham (saline) mice were euthanized; colons were resected and measured (C). 

Data shown are mean±SEM of different mice (t test, P<0.01, P<0.0001, N= 5) 
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Supplemental figure 2. Wt and p50-/- mice showed similar levels of 

proliferative colonic cancer cells. Colon from AOM/DSS treated and untreated 

mice were formalin fixed and paraffine embedded. Colon sections were 

evaluated for proliferative index through ki-67 immunohistochemistry. The 

number of Ki67-positive and Ki67-negative nuclei were counted in 400x 

microscopic fields randomly selected within the neoplastic lesions (“tumor”) 

and in 200x microscopic fields randomly selected within the adjacent non-

neoplastic mucosa (“healthy”), where only entirely visible crypts were 

considered. Data shown are mean±SEM of different fields (*P<0.05, Mann 

Whitney test, one-tailed, N≥8) (A). Transcripts levels of proliferative genes 

were evaluated in total RNA isolated from colon and tumor of untreated and 

AOM/DSS-treated mice. Normalized qPCR results are shown as fold induction 

over healthy untreated wt mice. Data shown are mean±SEM of different mice 

(*P<0.05, Mann Whitney test, one-tailed, N≥4) (B). Colon sections were 

immunostained with anti-P-Stat-3 antibodies. Data shown are mean±SEM of 

different fields (magnification 20x) (C). 
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Supplemental figure 3. At steady state, lack of p50 selectively impairs lamina 

propria monocytes/macrophages accumulation. Immunohistochemical analysis 

of paraffine embedded colon sections from untreated wt and p50-/- mice were 

evaluated for monocytes (Ly6C+), macrophages (F4/80), T lymphocytes (CD3+). 

(A) Confocal microscopy analysis of NK (CD3-NKp46+) and NKT 

(CD3+Nkp46-) cells in slides from frozen wt and p50-/- control colons (B). Data 

shown are mean±SEM from 3 different mice. Representative images are shown. 
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Supplemental figure 4. Lack of p50 impairs tumor development and 

advancement. Tumors were classified as: gastrointestinal neoplasia (GIN), low 

grade adenoma (LGA), high grade adenoma (HGA) and carcinoma (C) (A), next 

tumor incidence (B), size (C) and burden (D) were evaluated in relation to the 

tumor stage. The results shown are the mean±SEM of different tumor lesions 

(*P<0,05 N≥13) 
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Abstract 

Myeloid-derived suppressor cells (MDSC) comprise monocytic (Ly6C+) and 

polymorphonuclear (Ly6G+) populations, sharing an immature state and the 

ability to suppress adaptive immunity. Surprisingly, monocytic Ly6C+MDSC 

express the immunosuppressive molecule nitric oxide (NO) in response to 

Interferon-γ (IFNγ), a “macrophage-activating factor” also able to induce 

inflammatory and antitumor responses. By investigating the mechanisms 

controlling these opposing activities elicited by IFNγ on myeloid cells, we 

demonstrate that mouse and human tumors induce selective nuclear 

accumulation of p50 NF-κB in the monocytic MDSC subset, diverting their 

response towards NO-mediated immunosuppression. Genomic and epigenetic 

studies demonstrated that p50 NF-κB promotes chromatin changes necessary 

for IFNγ-induced binding of STAT1 onto regulatory regions of several IFNγ-

dependent genes, including inducible nitric oxide synthase (iNOS). In 

agreement, ablation of p50 in Ly6C+MDSC abolished their NO-mediated 

suppressive activity and restored IFNγ-mediated antitumor activity in vivo. 

Thus, tumors alter the epigenetic gene regulation of myeloid cells through 

increased p50 nuclear levels, promoting differentiation of suppressive 

Ly6C+MDSC and limiting the anticancer properties of IFNγ. 
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Introduction 

Microenvironmental signals are sensed by myeloid cells through specific 

cytokine and/or innate immune receptors, whose activation leads to the 

expression of different polarized programs of inflammation [1, 2]. This 

functional plasticity is exemplified in the M1 vs M2 extremes of macrophage 

polarization[3] and is considered to have a major impact on the orchestration of 

cancer-related inflammation[4-6]. Myeloid cell plasticity goes beyond the nature 

of the encountered signal, as a long exposure to inflammatory signals (e.g. LPS-

tolerance) promotes a time-dependent reprogramming from M1 to M2 polarized 

programs, with relevance in the onset and resolution of inflammation [7, 8]. 

Interestingly, LPS-induced tolerance in macrophages is characterized by 

increased nuclear levels of the p50 NF-κB subunit [8] and results in altered 

macrophage responses to cytokines (eg. IFNγ, IL-4) [8]. This observation 

implies that exposure to chronic inflammatory conditions, such as those 

associated with infection and cancer, may functionally reprogram myeloid cells, 

thereby affecting their responses to different agonists, including cytokines.  

Dynamic changes in myeloid cell functions have been reported to parallel 

tumor progression [4, 9] and different populations of myeloid cells have been 

found in various tumors [10]. Cancer fuels this heterogeneity by promoting 

sustained myelopoiesis and accumulation of myelomonocytic cells, which 

support the angiogenesis and stroma remodeling needed for their growth [9, 10]. 

Eventually, these events may affect the efficacy of cytokine-mediated 

immunotherapy, as heterogeneous polarized populations may respond with 

different functional outcomes. Indeed, in both preclinical and clinical cancer 

settings, divergent outcomes have been reported in response to cytokines [11-

14]. IFNγ, originally termed “macrophage activating factor” [15], was 

paradoxically shown to be equally necessary for melanoma development and 

rejection [11]. IFNγ has pleiotropic effects on the tumor microenvironment, 

including anti-angiogenic activities, suppression of pro-tumorigenic properties 
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and enhancement of tumoricidal activity of macrophages, and processing and 

presentation of tumor antigens to T lymphocytes [14, 16]. However, IFNγ also 

promotes immunosuppressive functions in myeloid cells associated with cancer 

[10], mainly through the induced expression of the immunosuppressive enzymes 

indoleamine 2,3 dioxygenase (Ido) and inducible nitric oxide synthase (iNOS, 

encoded by the Nos2 gene), respectively involved in the catabolism of L-

tryptophan [17] and L-arginine [9]. IFNγ also induces the expression of the 

ligand programmed-death receptor-ligand 1 (PD-L1, B7-H1) [18]. Strikingly, 

such puzzling scenarios have been confirmed in the clinic, where mixed 

responses to IFNγ treatment were reported in different malignancies[13, 14, 19]. 

Hence, it is necessary to clarify whether reprogramming of myeloid cell 

functions occurring in cancer progression may contribute to failure of cytokine-

mediated immunotherapy.  

Tumors alter myeloid cells and convert them into potent immunosuppressive 

cells, MDSC in particular, which are considered new anticancer targets[10]. A 

major NO-dependent pathway of immunosuppression is promoted by IFNγ in 

the M-MDSC subset[10, 20], which results in enhanced production of reactive 

nitrogen species that suppress CD8+ T cells through promotion of signaling 

defects[9]. M-MDSC share common myeloid precursors and a similar M2-like 

gene profile with tumor-associated macrophages (TAM)[9, 21].  Since we 

previously reported that accumulation of nuclear p50 NF-κB plays an essential 

role in the orientation of M2 polarized functions[8, 22], we investigated its role 

in M-MDSC differentiation. 
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Results 

 

p50 NF-κB controls M-MDSC suppressive function in response to IFNγ and 

regulates differentiation of monocytic and granulocytic precursors. 

We have previously shown that p50 NF-κB nuclear accumulation, occurring 

in tumor-associated macrophages (TAM) and LPS-tolerant macrophages, 

impairs M1 polarization, as well as antitumor properties[8, 22]. Since tumor 

growth is supported by the expansion of suppressive leukocyte populations, 

among which MDSC play a major role[20], we first investigated whether p50 

NF-κB could promote their suppressive phenotype in a mouse model of 

fibrosarcoma (MN/MCA1). According to our previous findings[22], C57BL/6 

p50-/- mice injected with MN/MCA1 cells displayed both reduced tumor growth 

and metastasis number, as compared to Wt mice (Figure 1A). As MDSC 

accumulate preferentially in secondary lymphoid organs[9, 10], we evaluated 

their number in the spleen of tumor-bearing mice, at different times of tumor 

growth (i.e. 11 and 21 days, corresponding to tumor volumes of 2 and 3 cm3). In 

apparent contrast with the reduced tumor growth, the number of CD11b+Gr1+ 

splenic MDSC (21 days) was significantly higher in p50-/- tumor-bearing mice, 

(Figure 1B). IFN-γ is a major inducer of NO-mediated suppressive activity by 

MDSC [9, 23], therefore we measured the level of Nos2 mRNA expression in 

IFNγ-treated Wt and p50-/- MDSC, isolated at different times of tumor growth 

(11 and 21 days). IFNγ treatment induced a sharp increase of Nos2 mRNA 

levels in splenic Wt, but not in p50-/- CD11b+Gr1+ MDSC, isolated 21 days after 

tumor cells injection (Figure 1C). Consistently, IFNγ did not induce NO 

production in p50-/- MDSC (Figure 1D). The arginase I (Arg1) enzyme is 

involved in the metabolism of the amino acid L-Arg[10] and promotes the 

suppressive function of G-MDSC[9]. Analysis of the mRNA expression levels 

of Arg1 did not reveal consistent differences between Wt and p50-/- MDSC (data 

not shown) and therefore it was not further investigated. Next, we determined 
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the nuclear levels of the p50 and p65/RelA NF-κB subunits in magnetically 

sorted splenic CD11b+Gr1+ MDSC. Similarly to tumor free mice (day 0), p50 

and p65 were poorly or not detectable in splenic CD11b+Gr1+ MDSC isolated at 

early stages of tumor development (11 days) (Figure 1E). However, a striking 

and selective increase in nuclear p50 was observed in CD11b+Gr1+ MDSC 

isolated at later stages (21 days), which correlated with the IFNγ-mediated 

induction of Nos2 mRNA (Figure 1C). 

 
Figure 1. Role of p50 NF-κB in the IFNγ-dependent production of NO by MDSC. (A) Left, inhibition of 

both tumor growth (MN/MCA1) and metastasis formation in p50 NF-κB–deficient mice (n=7 mice/group; 

*P<.05, **P<.01). (B) Increased number of splenic CD11+Gr1+ MDSC in p50-/- tumor-bearing mice (n=5 

mice/group; *P<.05). (C) Lack of p50 in MDSC impairs Nos2 mRNA expression in response to IFNγ. (D) 

Lack of p50 in MDSC impairs NO production in response to IFNγ(n=5; ***P<.001) (E) Western blot 

showing the time-dependent nuclear accumulation of p50 in splenic CD11+Gr1+ MDSC isolated from 

tumor-bearing mice.  
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The granulocytic G-MDSC(Ly6G+Ly6Clow) and monocytic M-MDSC 

(Ly6G-Ly6Chigh) subsets can separately or synergistically act to alter T cell 

functions[9]. Analysis of both populations in Wt and p50-/- mice showed a 

marked expansion of M-MDSC in the spleen of tumor bearing p50-/- mice, but 

not of G-MDSC (Figure 2A). Consistent with these results, p50 nuclear 

accumulation, as evaluated by confocal microscopy, selectively occurred in M-

MDSC and only at advanced stages of tumor development (day 21; Figure 2B). 

Conversely, the p65 NF-κB subunit was either poorly or not detectable (Figure 

2B). In agreement with the selective accumulation of nuclear p50 in M-MDSC, 

only this subset produced significant levels of NO in response to IFNγ, and this 

was robustly and significantly reduced in the absence of p50 NF-κB (Figure 

2C).  Figure S1 shows the degree of purity of the monocytic and granulocytic 

MDSC subsets, following cell sorting from the spleen of tumor-bearing mice. 

To establish the actual role of p50 NF-κB in the suppressive activity of M-

MDSC, cells were activated with IFNγ, loaded with ovalbumin and then co-

cultured for three days with total splenocytes purified from either spleen or 

lymph nodes of OT-1 transgenic mice, expressing the T cell receptor specific for 

the ovalbumin antigen. In keeping with the data above, p50-/- M-MDSC 

displayed reduced suppressive activity (Figure 2D), estimated as proliferation of 

co-cultured OT1 splenocytes, which correlated with decreased levels of NO in 

the co-culture supernatants (Figure 2E). Inhibition of T cell proliferation was 

NO-dependent, as addition of the nitric oxide synthase inhibitor L-NMMA in 

the co-culture abolished both T cell suppression (Figure 2D) and NO production 

(Figure 2E). These data suggest that the NO-dependent suppressive capacity of 

M-MDSC in response to IFNγ is gradually acquired during tumor development 

and that it occurs in a p50-dependent manner. 



 

128 
 

 
Figure 2. Selective up-regulation of nuclear p50 NF-κB in M-MDSC correlates with their IFNγ-dependent 

NO production and suppressive activity. (A) Increased number of M-MDSC in the spleen of p50-/- tumor-

bearing mice(n=5 mice/group; *P<.05). (B) Confocal microscopy showing selective up-regulation of 

nuclear p50 NF-κB in M-MDSC during tumor growth (day 21). (C) Reduced IFNγ-mediated NO 

production in p50-/- M-MDSC. (D) Decreased antigen-specific suppressive activity of p50-/- M-MDSC in 

response to IFN-γ, at different MDSC:OT1 splenocytes ratio. (E) decreased NO production in the co-

culture supernatants of IFNγ-treated p50-/- M-MDSC, as compared to Wt M-MDSC. L-NMMA, nitric 

oxide synthase inhibitor. (n=3; *P<.05, ***P<.001). 

 

The predominance of the M-MDSC subset in the spleen of tumor-bearing 

mice might result from their accelerated proliferation rate or preferential 

skewing of their precursors. To study the implication of p50 in normal 
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hematopoiesis we evaluated the BM for composition in hematopoietic stem cells 

(HSC), along with their proliferation and differentiation potential. HSC are 

immunophenotipically defined as cells lacking lineage specific markers (Lin-) 

but expressing Sca-1 and c-Kit (Lin-Sca-1+c-kit+, LSK), while the 

methylcellulose based colony-forming unit (CFU) assay allow to quantify their 

derived progenitors in vitro. We observed striking differences in BM 

myelopoietic potential between p50-/- and control Wt mice. As shown (Figure 

3A and B), hematopoietic cells from the BM of p50-/- mice were enriched in 

LSK progenitors as compared with Wt counterpart. The clonogenic potential of 

HSC from p50-/- was significantly higher than from Wt BM (Figure 3C), 

specifically: both GM-CFU and M-CFU progenitors were significantly 

increased in the BM of p50-/- than Wt mice, whereas G-CFU did not varied 

significantly (Figure 3C). These results indicate in the BM of p50-/- mice a 

preferential skewing of HSC towards the monocytic branch at the 

myeloid/granulocytic bifurcation. Accordingly, histopathological analysis 

showed a severe impairment of terminal granulopoiesis in the BM of p50-/- 

mice, associated with increased number of immature myeloid precursors (Figure 

3D). Actually, the hematopoietic parenchyma of p50-/- mice was characterized 

by the marked reduction of mature segmented granulocytes and by the 

expansion of myeloid blasts showing abnormal interstitial localization and 

aggregation in clusters (Figure 3D). Monocytic differentiation was preserved in 

the BM of p50-/- mice as testified by the presence of cells with mature 

monocytic morphology and by the normal density of hemosiderin-laden 

macrophages (Figure S2). Similarly, no impairment was observed in the 

erythropoiesis and megakaryocitopoiesis of p50-/- mice (not shown). Consistent 

with the contraction of the granulocytic compartment and expansion of the 

myeloid blasts observed by histopathology, flow cytometry revealed a neat 

decrease in the Gr1+c-Kit- granulocytic population and a paralleled increase in 

Gr1+c-kit+ myeloblasts in p50-/-, as compared to control Wt BM (Figure 3E). In 
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addition, morphologic analysis of peripheral blood smears of 12 weeks-old p50-

/- and Wt mice (6 mice per group) showed that circulating granulocytes from 

p50-/- mice were enriched in immature and blast-like forms compared with 

circulating granulocytes from Wt controls (Figure 3F). Overall, these results 

demonstrate that p50 deficiency is associated with defective granulocytic 

differentiation in favor of the myeloid lineage, that in tumor bearing mice might 

foster the accumulation of splenic M-MDSC.  

 

Tumor-derived factors prime M-MDSC for higher IFNγ-mediated NO 

production.  

To establish whether the expression of p50 NF-κB in the hematopoietic 

compartment was uniquely responsible for the suppressive activity of M-MDSC, 

BM cells from either Wt or p50-/- mice were transplanted into sub-lethally 

irradiated C57BL/6 Wt and p50-/- mice. Chimeric mice were next implanted 

with the MN/MCA1 fibrosarcoma and then monitored for MDSC functions. As 

shown (Figure 4A), M-MDSC isolated from the spleen of mice transplanted 

with p50-/- bone marrow cells, and subsequently activated with IFNγ, were 

strongly impaired in their capacity to suppress T cell proliferation, as well as in 

NO production. In the attempt to identify tumor-derived signals controlling 

nuclear p50 levels, the levels of IL-10, TGFβ, GM-CSF, G-CSF and M-CSF 

were estimated by ELISA in the tumor supernatants (TSN) (Figure 4B). Next, 

BM-MDSC were cultured for 48 h in the presence of either tumor supernatant 

(TSN) or colony growth factors driving myeloid cell differentiation (GM-CSF, 

G-CSF). Confocal microscopy confirmed the induction of p50 by TSN, whereas 

neither GM- or G-CSF were able to induce this event (Figure 4C). 
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Figure 3. p50 deficiency in the BM stroma associates with enhanced myelopoiesis. BM cells from Wt and 

p50-/- mice were stained with mAb to c-Kit, Sca-1 and lineage- specific markers (CD3, CD11b, CD11c, Gr-

1, B220, ter119). LSK progenitors were defined as Sca1+ cells within the gate of lin-c-Kit+ cells. (A) 

Representative FACS analysis of LSK progenitors in Wt and p50-/- BM. (B) Collective data showing that 

the fraction of LSK progenitors is increased in p50−/− mice (n=6 mice/group; **P < 0.001). (C) 

Hematopoiesis was analyzed using a clonogenic colony culture assay. The relative number of total BM-

CFU, GM-CFU and M-CFU myeloid colonies was significantly increased in p50-/- mice compared to the 

Wt counterpart. **P < .01. ***P< .001. (D) Histopathological analysis (H&E) of the BM of p50-/- and 

control Wt mice. The BM hematopoietic parenchyma of p50-/- mice is characterized by the marked 

Sca-1 
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impairment of terminal granulopoiesis and by the increase in the density of immature myeloid precursors 

and blasts that show aggregation in clusters. Red arrows indicate myeloid blasts. Original magnifications: 

upper panels, x400; lower panels, x630. (E) Fraction of mature Gr-1+c-kit- and immature Gr-1+c-Kit+ 

granulocytes in BM from Wt and p50-/- mice.  The fraction of immature granulocytes is increased in the 

absence of p50 in comparison to the Wt counterpart.  **P < 0.001. (F) Morphologic analysis (left) and 

quantification (right) of Giemsa-stained PB smears from 12 weeks-old p50-/- and Wt mice (6 mice per 

group) showing that circulating granulocytes from p50-/- mice are enriched in immature and blast-like 

forms. 

 

Next, we tested the capacity of TSN to prime MDSC for IFNγ-induced NO 

production (Figure 4D). Noteworthy, when M-MDSC were primed with TSN 

and subsequently treated with IFNγ, they showed higher levels of both Nos2 

mRNA and NO production.  In addition, BM-MDSC were treated with IL-10, as 

this cytokine was significantly secreted in the TSN (Figure 4B) and previously 

demonstrated to promote nuclear accumulation of p50 in macrophages[22]. As 

results, IL-10 induced a significant induction of nuclear p50, with poor effect on 

p65 (Figure 4E). Moreover, similarly with TSN, IL-10 primed IFNγ-treated 

MDSC for enhanced expression of Nos2 mRNA expression and NO 

production(Figure 4E). In spite of this, incubation of TSN with neutralizing anti-

IL-10 antibodies only marginally reduced its priming activity (not shown), 

suggesting that additional tumor-derived signals may cooperate to this event. 

To establish whether nuclear accumulation of p50 in M-MDSC was common 

to other tumor types, we investigated a murine model of spontaneous 

hepatocellular carcinoma (HCC), due to the absence of the Mdr2 hepatocyte 

membrane transporter (mdr2-/- mice)[24] (Figure S3). Only M-MDSC isolated 

from the spleen of 14 months-old, tumor bearing mdr2-/- mice, showed 

accumulation of nuclear p50 NF-κB, while no p50 accumulation was observed 

in the nucleus of G-MDSC cells (Figure 5A). 
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Figure 4. Priming of M-MDSC with tumor supernatant (TNS) enhances NO production in response to 

IFNγ. (A) Splenic M-MDSC from p50-/- BM-transplanted mice display reduced suppressive activity (left) 

and NO production (right) in response to IFNγ. Proliferation was assessed by 3H-thymidine incorporation 

and expressed in cpm (n=3; *P<.05; **P<.01; ***P<.001). (B) Levels of IL-10, TGFβ, GM-CSF, G-CSF 

and M-CSF estimated by ELISA in TSN. (C, left) Confocal microscopy of p50 and p65/RelA NF-κB in 

BM-derived M-MDSC conditioned with either TSN, M-CSF, G-CSF or M-CSF plus G-CSF (M/G-CSF). 
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(C, right) Mean fluorescence intensity (M.F.I.) of nuclear p50 and p65 in BM-derived M-MDSC 

conditioned with either TSN, M-CSF, G-CSF, M-CSF plus G-CSF (M/G-CSF) or LPS, as indicated.  PEC 

stimulated for 2h with LPS were used as positive controls. (D) TSN primes IFNγ-treated MDSC for 

enhanced expression of Nos2 and NO production (n=3; ***P<.001). (E, top-left) Confocal microscopy of 

p50 and p65/RelA NF-κB in untreated (-) and IL-10-conditioned BM-derived M-MDSC. (E, top-right) 

Nuclear p50/p65 ratio in BM-derived M-MDSC conditioned with IL-10.  (E, low) IL-10 primes IFNγ-

treated MDSC for enhanced expression of Nos2 and NO production (n=3; ***P<.001).  

 

In addition, we determined the p50 nuclear levels in human peripheral blood 

CD14+HLA-DRlow/- M-MDSC cells[10, 25], from colorectal cancer (CRC) 

patients. Compared to healthy donors, we observed an increased number of 

blood CD14+HLA-DRlow/- cells in CRC patients (Figure 5B, left). Furthermore, 

confocal microscopy analysis, demonstrated higher levels of nuclear p50 NF-κB 

in CD14+HLA-DRlow/- cells, purified from peripheral blood of cancer patients 

(Figure 5B, center and right), as compared to peripheral CD14+ mononuclear 

cells from healthy donors. 

 

Ablation of p50 NF-κB in M-MDSC restores the antitumor activity of IFNγ 

in vivo. 

Overall, these results indicate that accumulation of p50 NF-κB in monocytic 

MDSC drives their capacity to elicit suppressive activity, through an IFNγ-

mediated NO-dependent mechanism. This observation also suggests that 

increased nuclear p50 NF-κB in M-MDSC could limit the antitumor activity of 

IFNγ in vivo. Hence, we tested the antitumor activity of IFNγ in vivo, both in Wt 

and p50-deficient tumor-bearing mice. As shown in figure 6A, while IFNγ 

treatment of Wt tumor-bearing mice did not result in tumor inhibition, p50-/- 

tumor-bearing mice treated with IFNγ displayed significant inhibition of both 

tumor growth and metastasis formation, paralleled by an increased number of 

both CD4+ and CD8+ T cells in both spleen and primary tumor tissues, as well as 

by increased IFNγ production by tumor infiltrating CD4+ and CD8+ T cells 

(Figure 6B). 
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Figure 5. Increased nuclear levels of p50 in M-MDSC from mouse and human tumor bearers. (A, left) 

Confocal analysis of nuclear p50 in splenic M-MDSC isolated from hepatocellular carcinoma (HCC) 

tumor-bearing mice (mdr2-/- mice). (A, right) Dot plot representation of nucleus vs cytoplasm ratio of p50 

in M-MSDC vs G-MDSC from mdr2-/- mice (**P<.01). (B, left) Increased number of blood CD14+HLA-

DRlow/- cells from colorectal carcinoma (CRC) patients (n=4 *P<.05). (B, center) Representative confocal 

microscopy on nuclear p50 in peripheral blood CD14+HLA-DRlow/- cells from CRC patients, as compared 

to peripheral blood mononuclear CD14+ cells from healthy donors. (B, right). M.F.I. of nuclear p50 and 

nuclear vs cytoplasmic ratio in CD14+HLA-DRlow/- cells from CRC patients (n=20 **P<.01; ***P<0,001). 

 

Finally, we investigated whether lack of IFNγ antitumor activity observed in 

Wt tumor-bearing mice was mediated by p50 NF-κB expressing M-MDSC. To 

address this issue, p50-/- tumor-bearing mice were adoptively transferred with 

Wt M-MDSC (1x106) and treated daily with IFNγ (10U). Transfer of Wt M-

MDSC in p50-/- tumor-bearing mice inhibited IFNγ antitumor activity, resulting 

in restoration of both tumor growth and metastasis formation, as well as in 

decreased production of IFNγ by CD8+ T cells, both in the spleen and primary 

tumor (Figure 6C). These data demonstrate that tumor-mediated induction of 
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nuclear p50 in M-MDSC is a key event driving their suppressive functions and 

limiting the antitumor activity of IFNγ in vivo. 

 

p50 influences IFNγ-induced Stat1 recruitment to a subset of p50-

dependent genes. 

Along with MDSC, macrophages produce NO in response to IFNγ, which 

mediate either their immunosuppressive[4] or tumoricidal capacity[26]. Hence, 

we investigated whether p50 NF-κB could modulate NO-production in IFNγ-

treated thioglycollate elicited macrophages (PEC).  Similarly to M-MDSC, 

IFNγ-treated PEC expressed high levels of inducible Nos2 mRNA and increased 

NO production (Figure S4A), both of which were strongly decreased in p50-/- 

cells. Furthermore, as compared to IFNγ-treated PEC, LPS-tolerant PEC (L/M), 

characterized by increased nuclear levels of p50 NF-κB[8] (Figure S4B), 

expressed higher levels of Nos2 mRNA in response to IFNγ (L/IFNγ), but not to 

LPS (L/L) (Figure S4C), further suggesting the 

role of nuclear p50 in controlling the magnitude of IFNγ-mediated NO 

production. In analogy, TSN-primed PEC produced higher level of NO in 

response to IFNγ, in a p50-dependent manner (Figure S4D).  Based on these 

results, as well as on the high number of cells required for mechanistic studies, 

we addressed the epigenetic events by which p50 controls IFNγ-dependent 

responses in PEC.  We initially tested if p50 modulates IFNγ-induced STAT1 

activation. Wt and p50-/- PEC were activated with IFNγ for different times and 

STAT1 phosphorylation determined by western blot. As shown in figure 7A, 

lack of p50 did not prevent or reduce STAT1 phosphorylation, suggesting that 

downstream events occurring in p50-/- cells could be responsible for defective 

IFNγ-mediated Nos2 expression. To directly assess this hypothesis in 

macrophages, we generated mRNA sequencing (mRNA-Seq) data sets of wild-

type and p50-/- macrophages (PEC) treated with IFNγ for 4 hours. 
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Figure 6. Ablation of p50 NF-κB in M-MDSC restores IFNγ-mediated antitumor activity in vivo. (A) 

Antitumor effects of IFNγ in Wt vs p50-/- mice (n=7 mice per group, *P<.05, **P<.01). (B) Increased 

number of CD4+ and CD8+ T cells and increased IFNγ production, in both spleen and tumor tissues of p50-

/- mice (n=7, *P<.05, **P<.01, ***P<.001). (C) Adoptive transfer of Wt M-MDSC in p50-/- tumor-bearing 

mice abolishes the antitumor activity of IFNγ in vivo, promoting tumor growth and metastasis formation. 

The panel also shows the M.F.I. of IFNγ expression determined by FACS in both spleen and tumor-

associated CD8+ T cells. Wt, tumor growth in Wt mice; p50-/-, tumor growth in p50-/- mice; p50-/- + Wt M-

MDSC, tumor growth in p50-/- mice adoptively transferred with Wt M-MDSC (n=7 mice per group, 

*P<.05, **P<.01, ***P<.001). 
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Data obtained with two biological replicates were highly correlated (r2>0.96) 

(Figure S4E), indicating high reproducibility between samples. Overall, p50-/- 

macrophages showed selective gene expression defects in response to IFNγ 

stimulation as compared to wild-type controls (Figure 7B and supplementary 

table 1). Using as cutoffs a log2(fold change) ≥ 1 and a FDR ≤ 0.01, of the 681 

genes induced by IFNγ in wild-type macrophages, 85 (12.5%, cluster 2) were 

impaired in p50-/- cells, whereas 27 (3.9%, cluster 1) were hyperinduced. Genes 

whose maximal induction required p50 included known regulators of 

inflammatory responses and M1 macrophage marker genes such as Nos2, Cxcl9, 

Ptgs2 and Ciita. On the other hand, p50 deficiency resulted in an increased 

induction of Irf8 (encoding the monopoiesis-inducing transcription factor 

IRF8)[27] (supplementary table 1) and Socs3 (which encodes for a negative 

regulator of the Jak-Stat pathways). Gene repression in response to IFNγ was 

also affected in p50-/- macrophages, with 47 genes (7.2% of all repressed genes, 

cluster 5) showing a defective down-regulation that was often associated with 

basally higher expression levels (Figure 7B). Collectively, our data highlight a 

specific function of p50 in controlling a subset of functionally relevant genes in 

response to IFNγ stimulation. Since transcriptional responses to IFNγ 

predominantly rely on the Stat1 transcription factor, we explored the possibility 

that p50 may selectively influence Stat1 recruitment to a subset of p50-

dependent genes. To this aim, we stimulated wild-type and p50-/- macrophages 

with IFNγ for 2 hours and then performed Chromatin Immunoprecipitation 

coupled to next-generation sequencing (ChIP-Seq) using a validated antibody 

directed against Stat1[28]. Almost all DNA binding events occurred only after 

Stat1 activation, with ≈ 30,000 Stat1 peaks detected in IFNγ-treated cells 

(supplementary table 2). Furthermore, Stat1 binding positively correlated with 

IFNγ-induced gene expression in a statistically significant manner (Figure 7C), 

highlighting the prominent role of Stat1 as a transcriptional activator. 
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Figure 7. Effects of p50 deficiency on gene expression and Stat1 binding in macrophages treated with 

IFNγ. (A) STAT1 phosphorylaiton in Wt vs p50-/- PEC in response to IFNγ treatment. (B) Heatmap 

showing selective gene expression defects in p50-/- macrophages (PEC) stimulated with IFNγ for 4 hours 

(two biological replicates). The number of genes belonging to each of the six clusters is indicated on the 

left. (C) Genomic distances between genes induced and repressed by IFNγ and the nearest Stat1 peak. (D) 

A representative snapshot of three genes (Upp1, Cxcl9 and Nos2) with impaired mRNA induction and 

Stat1 recruitment at their regulatory elements in p50-/- macrophages stimulated with IFNγ. Arrows and 

black bars indicate sites of defective Stat1 occupancy. (E) Box plot of the genomic distances between p50-

dependent (or p50–independent) genes and p50-dependent (or p50-independent) Stat1 peaks, showing a 

direct correlation between transcriptional defects and reduced Stat1 binding in p50-/- macrophages treated 

with IFNγ. Wilcoxon test was used to calculate p values in C and E. 
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A discrete fraction of the Stat1 cistrome was selectively affected by p50 

deficiency, with an abrogation or reduction of Stat1 occupancy at 2573 sites 

(8.3% of all inducible peaks) in p50-/- macrophages relative to wild-type 

controls. Loss of Stat1 binding in p50-/- macrophages frequently occurred at 

regulatory elements of p50-dependent genes. For instance, Stat1 was not 

efficiently recruited to either promoters or  enhancers of Upp1, Cxcl9 and Nos2 

genes in  

p50-/- macrophages, and this was associated with the reduced induction of these 

genes in response to IFNγ (Figure 7D). These observations were then validated 

at a genomic scale by computationally integrating our ChIP-Seq and mRNA-Seq 

datasets (supplementary table 3). As shown in figure 7E, p50-dependent genes 

were located at shorter distances from p50-dependent Stat1 peaks than p50-

independent genes. Conversely, p50-independent genes were closer to p50-

independent Stat1 peaks. Altogether, these findings identify a role for p50 in 

controlling IFNγ-induced gene expression, and are consistent with a model of 

p50-dependent assistance of Stat1 recruitment to selected p50-dependent genes 

in response to IFNγ treatment in macrophages. 
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Discussion 

Activation and resolution are highly integrated phases of the inflammatory 

response that in a dynamic fashion requires concerted differentiation, maturation 

and actions of innate immune cells, including neutrophils, monocytes and 

macrophages [29]. In cancer, aberrant expansion of myeloid cells takes place, 

resulting in the generation of the tumor-supporting populations TAM and 

MDSC, respectively accumulating at the tumor site and in secondary lymphoid 

organs [4, 9, 30]. Moreover, MDSC dramatically increase under different 

inflammatory conditions, including autoimmune diseases, trauma, burns and 

sepsis [10], to promote resolution of both inflammation and immunity. MDSC 

and TAM share common myeloid precursors[9, 10] and phenotypic traits, 

including the expression of M2 polarized genes[21]. Here we demonstrate, in 

vitro and in vivo, that the differentiation of functionally suppressive M-MDSC 

during cancer growth is controlled by nuclear accumulation of the p50 NF-κB 

subunit, a key event in the resolution phase of the inflammatory response[8]. We 

show that accumulation of nuclear p50 NF-κB results in a selective 

transcriptional reprogramming, diverting the response of IFNγ-activated 

myeloid cells towards enhanced NO-mediated suppressive functions. We also 

indicate that this event is likely to represent a major impairment for successful 

cytokine-mediated cancer immunotherapy, as ablation of p50 NF-κB reinstates 

both IFNγ-mediated antitumor activity in vivo and the expansion of both CD4+ 

and CD8+ IFNγ producing T cells, in both spleen and tumor tissues. We also 

observed increased nuclear localization of p50 in blood CD14+HLA-DRlow/- 

MDSC from colorectal cancer patients. This observation may be clinically 

relevant, as IFNγ is currently under evaluation in immunotherapeutic protocols 

against various human tumors, including colorectal cancer, soft tissue sarcoma, 

melanoma and plasma cell neoplasms[13]. Despite a number of studies 

previously reported either moderate or poor success in the clinical use of 

IFNγ[11, 14, 31], studies in tumor mouse models (fibrosarcoma) demonstrated 
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the requirement of both IFNγ and IFNγR for the control of tumor development 

and progression[16, 32, 33]. This ambiguous scenarios is reminiscent of the dual 

controversial immunological activities of IFNγ, which from one side promotes 

transcription of STAT1-dependent genes involved in the activation of the 

immune response (eg. MHC class I and class II, IL-12)[34] and, in contrast, 

induces immunosuppressive pathways, including expression of the inhibitory 

molecule B7-H1 in antigen-presenting cells[35, 36] and expression of 

immunosuppressive enzymes IDO[17] and iNOS[9] [10].  The biologically 

active form of IFNγ promotes auto-phosphorylation of the receptor subunits 

IFNγR1and IFNγR2 through the non-receptor tyrosine kinases Janus activated 

kinase (JAK)1 and JAK2, leading to phosphorylation and nuclear translocation 

of the homodimer STAT1, which eventually binds to gamma activated sequence 

(GAS) sites on the promoters of downstream target genes[37], including 

Nos2[38]. Our results indicate that accumulation of p50 NF-κB does not 

interfere with IFNγ-dependent STAT1 phosphorylation, but rather controls the 

chromatin landscape of myeloid cells to promote binding of STAT1 onto 

specific gene regulatory elements of IFNγ-responsive genes, including Nos2. 

Our observation that lack of p50 results in increased M-MDSC numbers in the 

spleen of tumor-bearing mice, with low NO production capacity,  as well as in 

the preferential skewing of HSC towards the monocytic branch in the bone 

marrow, is in agreement with the Irf8high/Nos2low profile observed in p50 

deficient macrophages, since IRF8 is considered a cell fate switching factor 

driving terminal differentiation of macrophages[27].  Collectively our data 

indicate the tumor-induced nuclear p50 NF-κB accumulation in myeloid cells as 

a tumor-escaping strategy promoting immunosuppression through the induction 

of epigenetic alterations associated with enhanced IFNγ/STAT1-dependent 

induction of Nos2. 
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Materials and Methods 

Mice and ethics statement. The study was designed in compliance with: Italian 

Governing Law (Legislative Decree 116 of Jan. 27, 1992); EU directives and 

guidelines (EEC Council Directive 86/609, OJ L 358, 12/12/1986); Legislative 

Decree September 19, 1994, n. 626 (89/391/CEE, 89/654/CEE, 89/655/CEE, 

89/656/CEE, 90/269/CEE, 90/270/CEE, 90/394/CEE, 90/679/CEE); the NIH 

Guide for the Care and Use of Laboratory Animals (1996 edition); 

Authorization n. 11/2006-A issued January 23, 2006 by Ministry of Health. The 

study was approved by the scientific board of Humanitas Clinical and Research 

Center. Mice have been monitored daily and euthanized when displaying 

excessive discomfort. p50 NF-κB deficient mice were available in the 

laboratory. OT-I mice were obtained from Jackson Laboratories (Bar Harbor, 

Maine, USA). Mdr2-knockout mouse were kindly donated by Dr. Pikarsky E 

(Hadassah-Hebrew University Medical Center, Jerusalem, Israel).  

 

Cell culture and reagents. Bone marrow MDSC (BM MDSC) were derived 

from bone marrows of C57BL/6 mice as previously described[39]. Bone 

marrow cells were cultured for 4 days in RPMI1640 containing 10% FBS, 

supplemented with 40ng/ml of murine recombinant IL6, GM-CSF and G-CSF 

(Peprotech). Peritoneal Exudate Macrophages (PEC) and Tumor Associated 

Macrophages (TAM) were obtained as previously described[21]. The 

concentration for the different treatments were as follows: MN/MCA1 tumor 

supernatant, dilution ratio 1:1 to medium, PGE2 (Sigma) 10-5 mol/L, murine 

recombinant IL10 (Peprotech) 20ng/ml, TGFβ (Peprotech) 20ng/ml, , M-CSF 

(Peprotech) 20ng/ml, GM-CSF (Peprotech) 20ng/ml, GCSF (Peprotech) 

20ng/ml. 
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Tumor. 8 weeks old p50-/- mice and Wt littermate controls were injected 

intramuscularly in the left leg with 105 cells of murine fibrosarcoma 

(MN/MCA1). Tumor growth was monitored 3 times a week with a caliper.  

 

In vivo treatment with IFNγ. Mice were injected daily with 10U of murine 

recombinant IFNγ (Peprotech) or vehicle intramuscularly, starting from day 3 

after tumor injection.  

 

MDSC purification. CD11b+ GR1+ cells were purified by magnetic separation 

(MACS Miltenyi) from the spleens of tumor-bearing mice. In details, myeloid 

suppressor populations were first enriched by consequent serial negative 

selections with CD19 and CD11c microbeads, according to manufacturer’s 

instruction. Then Ly6G+ cells were positively selected with Ly6G microbeads 

kit. Remaining cells were positively selected with CD11b+ microbeads, which 

all stained positive for the Ly6C marker. The purity of the cell populations 

evaluated by flow cytometry exceeded 90%. 

 

Nitrite production. 2*105 MDSC or PEC were plated and stimulated with IFNγ 

(200U/ml) for indicated time points. NO was estimated by Griess reagent 

system (Promega). 

 

Suppression assay. Cells were then stimulated with IFNγ (200U/ml), in the 

presence or absence of 500µM of L-NG-monomethylarginine (L-NMMA, 

Calbiochem). At day 1 (PEC) or day 3 (MDSC), 50 µl of supernatant were 

tested for NO production (as control) and 2*105 splenocytes from OT-I mice 

were added for additional 72h in the presence of 250 µg/ml of OVA antigen 

(Sigma). [3H] thymidine was added for the last 16 hours of culture and its 

incorporation was analyzed by MicroBeta plate counter (Perkin Elmer).  
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Quantification of circulating granulocytes in peripheral blood smears. Cell 

counts were visually performed on five May-Grunwald Giemsa-stained smears 

on high-power microscopic fields (x400 magnification) and the average number 

of total and immature granulocytes was determined by averaging the counts. 

 

Bone-marrow transfer. 5*106 CD45.1 WT and p50-/- bone marrow cells were 

injected intravenously in sub-lethally irradiated (900cGy) CD45.2 p50-/- mice 

and littermates controls. Bone marrow reconstitution was evaluated 8 weeks 

after transplantation by flow cytometry on peripheral blood and was over 90%. 

 

LPS-Tolerance in PEC. To induce LPS tolerance, PEC were treated as 

previously described[8].  

 

Real-time PCR. Real-time PCR was performed as previously described[21]. The 

sequences of the murine iNOS gene-specific primers are: (Fw: 

gccaccaacaatggcaaca Rev: cgtaccggatgagctgtgaatt).  

 

Western Blot Analysis. For NF-κB, nuclear and cytosolic extracts were 

analyzed by SDS-PAGE (10% acrylamide) as described [22]. Immunoblotting 

was performed with rabbit anti-p50 (no. 1141) and anti-p65 (no. 1226) 

antisera[40], anti-phospho-STAT1 (tyr701 or ser727) (Cell Signaling 

Technologies) and anti-actin antibody (Santa Cruz Biotechnologies).  

 

Flow cytometry and sorting. 1*106 cells/ml were re-suspended in HBSS 

(Hank’s balanced salt solution, Lonza) supplemented with 0.5% BSA (Sigma). 

Staining was performed at 4°C for 20 minutes, with the following antibodies: 

anti-mouse Ly6G and Ly6C from Miltenyi Biotec; anti-mouse/human CD11b 

(clone M1/70), anti-mouse CD45 (clone 30-F11), anti-human CD45 (clone 

HI30), anti-mouse CD8, anti-mouse CD4, anti-mouse IFN-γ (Biolegend San 
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Diego, CA), anti-human HLA-DR, anti-human CD14 (BD biosciences, San 

Diego, CA). For intracellular staining Cytofix/Cytoperm and Permwash staining 

kit (BD Pharmigen) were used. Cells were detected using the BD FACS Canto 

cytofluorimeter and analyzed with BD FACS Diva Software. Cell sorting was 

performed using a BD FACS Aria cell sorter.  

 

Adoptive cell transfer. 8 weeks old C57BL/6 Wt and p50-/- mice were injected 

intramuscularly in the left leg with 105 cells of MN/MCA1 and treated with 

IFNγ as described above. One week after tumor injection p50-/- mice were 

adoptively transferred, via i.v. injection, with 1*106 Wt Ly6C+ MDSC, that were 

immune magnetically purified from the spleen of tumor-bearing mice.  

 

Isolation of MDSC from colorectal cancer (CRC) patients. 30 ml of peripheral 

blood were collected from either healthy donors or CRC patients and stratified 

on Percoll gradient to separate peripheral blood mononuclear cells (PBMC). 

Cells were stained and sorted to obtain CD14+ HLA-DRneg population and 

subsequently analyzed by confocal microscopy.  

 

Confocal Microscopy. Cells were prepared as previously described[21] and 

stained with the following primary antibodies: rabbit policlonal anti-p50 (#C-20, 

1µg/ml; Santa Cruz Biotech) and anti-p65 (#NLS, 1µg/ml; Santa Cruz Biotech), 

rat monoclonal anti-Ly6C (#AL-21, 2µg/ml; BD Biosciences) and anti-Ly6G 

(#1A8, 2µg/ml; BD Biosciences). After 1h of incubation, the detection 

antibodies goat anti-rabbit IgG Alexa® 488 and goat anti-rat IgG Alexa® 647 

(Invitrogen, Molecular Probes) were used. For DNA detection DAPI 

(Invitrogen, Molecular Probes) was used.  
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Enzyme-linked Immunosorbent Assay (ELISA). Murine GM-CSF, G-CSF, M-

CSF, IL6, IL-10, IL1β and TGF-β were tested by ELISA kits purchased from 

R&D Systems.  

 

Chromatin Immunoprecipitation and Sequencing (ChIP-Seq). ChIP was 

carried out with a previously described high-throughput protocol[28, 41]. 

Illumina-compatible ChIP-Seq libraries were generated starting from from 1-5 

ng of DNA [41] and sequenced on a HiSeq2000 (Illumina). 

 

mRNA Sequencing (mRNA-Seq) 

Total RNA was extracted from 1-5* 106 macrophages (RNeasy kit, Quiagen), 

and 2-5 µg were used to generate sequencing libraries with a Truseq RNA 

Sample Prep Kit V2 (Illumina) according to the manufacturer’s instructions. 

Sequencing was performed on a HiSeq2000 (Illumina).  

 

Computational Methods: 

ChIP-Seq analysis. After quality filtering according to the Illumina pipeline, 

short reads (51 bp), were mapped to the mm9 genome using Bowtie v0.12.7[42 

]. Only uniquely mapping reads with two or fewer mismatches (-m 1 –v 2) were 

retained. Peak calling was performed using MACS v1.4[43] with default 

parameters and bw = 100. Each ChIP was compared to input DNA derived from 

bone marrow-derived macrophages (GEO accession: GSM499415). We defined 

as IFNγ-inducible those peaks induced in treated vs. untreated samples 

(threshold of 1e−10 for peak calling) that in at least one of the two samples were 

enriched relative to the input genomic DNA (threshold of 1e−5). p50-dependent 

Stat1peaks were called using a threshold of 1e−5. 

RNA-Seq analysis. After quality filtering according to the Illumina pipeline, 

paired-end reads (51 bp) were mapped to the mm9 reference genome (Ensembl 

build 63,) and to the Mus musculus transcriptome (Illumina's iGenomes) using 
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TopHat[44]. We allowed up to two mismatches and specified a mean distance 

between pairs (-r) of 250 bp. FPKMs (fragments per kilobase of exon per 

million fragments mapped) and fragment counts of multiple reads were scaled 

via upper-quartile normalization using Cuffdiff from Cufflinks v2.1.1[45]. 

Differential expression analysis between Wt and p50-/- samples was evaluated 

with an exact test for the negative binomially distributed counts using EdgeR 

(Bioconductor package)[46, 47]. Differentially expressed genes were selected 

using an FDR ≤ 0.01, FC (fold change) >=1, fpkm >= 0.1.Tracks for the UCSC 

genome browser[48] were generated using the uniquely alignable reads. Tracks 

were linearly rescaled to the same sequencing depth. 
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Supplemental data 

Supplemental figure 1. The scatterplot shows the purity of the monocytic and 

granulocytic MDSC subsets, following cell sorting from the spleen of tumor-

bearing mice. 

 
 

 

 

Supplemental figure 2. Monocytic differentiation is preserved in the BM of 

p50-/- mice, as testified by the presence of cells with mature monocytic 

morphology and by the normal density of hemosiderin-laden macrophages 

 



 

154 
 

Supplemental figure 3. H&E-stained liver’s section from livers of mdr2-/- 

knockout mouse, that developed hepatocellular carcinoma (HCC) lesions 

(arrow). 

 
 

 

 

 

 

 

Supplemental figure 4. Lack of p50 NF-κB in PEC inhibits NO production in 

response to IFNγ. (A) Decreased Nos2 mRNA expression (left) and NO 

production (right) by IFNγ-treated p50-/- PEC. (B) Increased nuclear levels of 

p50 NF-κB in LPS-tolerant PEC (LPS 20 hrs). (C) LPS-tolerant PEC (L/M) 

display enhanced Nos2 mRNA expression in response to IFNγ (L/IFNγ). M/M, 

medium; M/L, PEC activated 4hrs with LPS; L/L, LPS-tolerant PEC 

rechallenged 4 hrs with LPS. (D) TNS primes IFNγ-treated PEC for higher 

production of NO, in a p50 dependent manner (n=3 **P<.01; ***P<0,001). (E) 

Reproducibility of RNA-Seq biological duplicates. Pearson’s correlation plots 

between replicates for each experimental conditions and calculated R2.  
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5. Discussion 
 

Activation and resolution are highly integrated phases of the inflammatory 

response that in a dynamic fashion requires concerted differentiation, maturation 

and actions of innate immune cells, including neutrophils, monocytes and 

macrophages [1]. Inflammatory cells abundantly infiltrate human cancers where 

depending on their functional activation may exert beneficial or detrimental 

activities [12]. Indeed type density and location of immune infiltrate, the so 

called “immunoscore”, has been recently suggested as a better predictor of CRC 

patients outcome than other methods for staging [13]. Among inflammatory 

cells, tumor associated macrophages (TAMs) has long been recognized as the 

major orchestrators of cancer related inflammation [4, 14] and predictors of poor 

prognosis for many different human tumors [15-17]. However, the impact of 

macrophages on colorectal cancer (CRC) outcome is controversial, likely 

because of its anatomical site. In addition to tumor-derived signals, CRC-

associated macrophages activation can be influenced by unique local 

microenvironmental signals (e.g. microbial products) to whom they are exposed 

[12] and consequently multiple macrophages populations with either pro- or 

anti-tumoral activities could co-exist in CRC. In vivo evaluation of macrophage 

polarized activation is challenging. To dissect the complexity of functional 

macrophage heterogeneity, a panel of genes which are typically induced in 

response to M1 and M2 signals, should be evaluated [18]. Alternatively, 

macrophage polarized activation could be easier and more easily investigated by 

addressing the activation of transcription factors that selectively control the 

expression of M1 and M2 transcription programs.  Here we originally find that 

high accumulation of p50 NF-κB in the nuclei of TAMs located at the invasive 

margin of human stage II/III CRC can be successfully used to predict disease 

recurrence. Despite the percentage of nuclear p50+ TAMs in the stroma is 
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significantly associated with those at the invasive margin, the predictive value of 

p50 in TAM situated at the center of tumor did not reach statistic significance. 

This results suggest that macrophages located at the invasive margin critically 

control immune reactions against neoplastic cells. Accordingly, a positive 

association between the number of FasL expressing macrophages at the invasive 

margin of CRC and apoptotic cancer cells has been reported  [19].  

Whereas a type 1 inflammatory profile is predictor of beneficial outcome for 

CRC patients [20], the unfavourable prognostic significance of p50 nuclear 

accumulation in TAM is likely associated with an M2-skewing ability, as we 

previously demonstrated in murine tumors [10] and confirmed here in both a 

chemical model of colitis associated CRC (AOM/DSS) and in a genetic model 

of intestinal tumorigenesis (ApcMin mice).  

Although an M1 towards M2 switch of TAM functions has been suggested 

during tumor development [3] the molecular basis and the clinical relevance of 

this dynamic “reprogramming” of macrophage polarization have not been fully 

elucidated. In particular, whereas in established cancers M2-skewed activation 

has been mainly associated with tumor growth and progression, during the 

tumor initiation stage the impact of M1 macrophages seems to be dual: through 

the release of genotoxic molecules (e.g. ROS and NOS) and growth factors (e.g. 

IL-6) they can support both neoplastic transformation and proliferation of 

initiated cells [21, 22], while as cytotoxic effector cells they can contribute to 

the elimination of pre-malignant cells [23, 24]. Since both AOM/DSS treatment 

of both C57BL6 and ApcMin mice mainly results in the development of multiple 

benign polyps [25-27] both models are suitable to investigate how p50-driven 

inflammation support CRC initiation. Our results coherently support a model in 

which, independent of the triggering signals, an M1 towards M2 switch of 

polarized inflammation is driven by p50 accumulation in macrophages and 

associates with intestinal tumors development. Indeed, exploring the molecular 

mechanisms linking p50-driven inflammation with colitis associated CRC 
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development we identified two clusters of inflammatory genes, which are 

differentially modulated by p50 and whose relative expression impact on disease 

outcome. In particular, whereas both gene clusters are up-regulated in early 

inflamed colons, during disease progression nuclear accumulation of p50 in 

TAM was associated with the selective increased expression of gene cluster 2, 

which includes several M2-related genes (e.g. IL-10, TGFβ, ArgI, CCL17, 

CCL22) along with other intestinal tumor promoting genes (e.g. COX2, IL-

23p19, TNFα). In contrast, enhanced expression of gene cluster 1, which 

includes M1/Th1 inflammatory genes only, occurred in p50-/- tumors and was 

associated with tumor resistance.  Hence, despite p50-/- mice showed an 

increased gut inflammation, both tumor multiplicity and size are strongly 

reduced. In absence of p50, also ApcMin mice showed reduced tumor 

development associated with selective increased expression of M1/Th1 

inflammatory genes. Hence our findings indicate that intestinal cancer 

development is promoted by an M2 shift of polarized inflammation and identify 

p50 NF-κB as the crucial molecule that skews polarized inflammation towards 

pro-tumoral functions.  

We aslo observed that lack of p50 also modifies immune cells infiltration. 

Besides p50-/- tumors express higher levels of monocytes chemoattractants  (e.g. 

CCL2, CCL5 and MCSF) TAM accumulation was strongly reduced in both 

intestinal tumor models. Lamina propria macrophages and monocytes were also 

decreased in p50-/- than in wt mice, both in untreated and AOM/DSS treated 

conditions. Since, gut macrophages are constantly replenished by bone marrow-

derived monocytes [28], these results suggest that p50 is required for 

monocytes/macrophages recruitment. This hypothesis is also supported by the 

observation that, ex-vivo, migration of p50-/- peritoneal macrophages towards 

several different chemoattractants is severely impaired (unpublished data). In 

contrast, innate and adaptive lymphoid cells migration seems to be functional in 

absence of p50. Indeed, in steady state conditions the number of lamina propria 
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NK, NKT and T cells observed in wt and p50-/- mice was similar, while they 

increased in p50-/- colons and tumors of AOM/DSS treated mice. According to 

the accumulation of cytotoxic lymphoid cells, in p50-/- tumors we observed an 

increased expression of type 1-specific chemoattractants (e.g. CXCL9, 

CXCL10), cytokines (IL-12p35, IL-12p40, IL-27p28, IL-21) and effector 

molecules (IFN, Prf 1, Gzm B, FasL). Although IL-21 can support CAC by 

promoting Th17-driven inflammation [29, 30], IL-21 can also exert anti-tumor 

effects [31-34]. Indeed, IL-21 drives CD8+ CTL differentiation via the actions of 

the transcription factor T-bet [35] and stimulates multiple other lymphocyte 

subsets, including follicular Th cells, B cells and NK cells [36]. In our p50-/- 

mice, IL-21 induction does not correlate with increased expression of IL-17 or 

RORc, but with augmented levels of genes (e.g. IFN, Prf 1, Gzm B, FasL, Tbx-

21/Tbet) expressed by NK and CTL cells. Hence, we can speculate that ablation 

of p50 selectively enhanced anti-tumor effects of IL-21 without engaging pro-

tumoral Th17 driven inflammation. In agreement, in the absence of p50 both 

bone-marrow-derived dendritic cells and peritoneal macrophages showed 

defective LPS-induced expression of IL-23p19 [11]. Noteworthy IL-23 drives 

Th17 cells expansion and functions [37] but also exert other pro-tumoral effects 

including inhibition of NK cell effector functions [38]. In response to gut 

microbial products, tumor associated myeloid cells are recognized as the major 

orchestrators of pro-tumoral IL-23 and IL-17 responses [39]. Accordingly IL-

23p19 expression increased during progression from colitis to tumor, while it is 

strongly inhibited in p50-/- CRC. Consistently, in tumors from  ApcMinp50-/- mice 

IL-23p19 transcript levels were also significantly reduced, further suggesting 

that lack of p50 contributes to tumor resistance by inhibiting IL-23-driven 

inflammatory circuits. 

In contrast, lack of p50 enhances cytotoxic immune responses that in turn 

restrain tumor development by eliminating neoplastic cells. Indeed, p50-/- tumor 

cells are more apoptotic than the wt counterpart. Although ablation of p50 can 
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impair colonic cancer cell survival, also in a cell autonomous manner [40], 

adaptive immune-surveillance seems to be crucial for p50-/- mice anti-tumor 

activities, as depletion of CD4/CD8 abolished colitis-associated CRC resistance. 

Overall our results in mice and human indicate that p50-driven M2 

inflammation promotes both CRC development and progression. Hence p50 

could be exploited both as novel prognostic indicator and therapeutic target for 

CRC patients. Although different human [41, 42] and mouse [43] studies 

suggests a link between decreased levels of p50 and an higher risk to develop 

colitis, at steady state both p50-/- mice and ApcMinp50-/- mice did not show signs 

of intestinal inflammation. In contrast, DSS treatment exacerbated the 

inflammatory response in p50-/- mice, indicating that for the small percentage of 

human CRC cases associated to colitis (1%-4%) [44] the anti-tumor efficacy of 

p50 targeting approaches could be limited by serious intestinal adverse drug 

reactions. In this regards our preclinical studies identified both IL-12 and 

CXCL10 as a potential immunotherapeutic drugs capable to limit CRC 

development without worsening colitis. 

 

In addition to TAM, cancer triggers an aberrant expansion of an heterogenous 

population of immature and suppressive myeloid cells, called  Myeloid Derived 

Suppressor Cells (MDSC), which mainly accumulate in secondary lymphoid 

organs [2-4]. MDSC and TAM share common myeloid precursors [2, 5] and 

phenotypic traits, including the expression of M2 polarized genes [6]. 

Here we demonstrate, in vitro and in vivo, that the differentiation of 

functionally suppressive M-MDSC during cancer growth is controlled by 

nuclear accumulation of the p50 NF-κB subunit, a key event in the resolution 

phase of the inflammatory response [8]. We show that accumulation of nuclear 

p50 NF-κB results in a selective transcriptional reprogramming, diverting the 

response of IFNγ-activated myeloid cells towards enhanced NO-mediated 

suppressive functions. We also indicate that this event is likely to represent a 
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major impairment for successful cytokine-mediated cancer immunotherapy, as 

ablation of p50 NF-κB reinstates both IFNγ-mediated antitumor activity in vivo 

and the expansion of both CD4+ and CD8+ IFNγ producing T cells, in both 

spleen and tumor tissues. We also observed increased nuclear localization of 

p50 in blood CD14+HLA-DRlow/- MDSC from colorectal cancer patients. This 

observation may be clinically relevant, as IFNγ is currently under evaluation in 

immunotherapeutic protocols against various human tumors, including 

colorectal cancer, soft tissue sarcoma, melanoma and plasma cell neoplasms 

[46]. Despite a number of studies previously reported either moderate or poor 

success in the clinical use of IFNγ [47-49], studies in tumor mouse models 

(fibrosarcoma) demonstrated the requirement of both IFNγ and IFNγR for the 

control of tumor development and progression [50-52]. This ambiguous 

scenarios is reminiscent of the dual controversial immunological activities of 

IFNγ, which from one side promotes transcription of STAT1-dependent genes 

involved in the activation of the immune response (eg. MHC class I and class II, 

IL-12) [53] and, in contrast, induces immunosuppressive pathways, including 

expression of the inhibitory molecule B7-H1 in antigen-presenting cells [54, 55] 

and expression of immunosuppressive enzymes IDO [56] and iNOS [2, 5].  The 

biologically active form of IFNγ promotes auto-phosphorylation of the receptor 

subunits IFNγR1and IFNγR2 through the non-receptor tyrosine kinases Janus 

activated kinase (JAK)1 and JAK2, leading to phosphorylation and nuclear 

translocation of the homodimer STAT1, which eventually binds to gamma 

activated sequence (GAS) sites on the promoters of downstream target genes 

[57], including Nos2 [58] Our results indicate that accumulation of p50 NF-κB 

does not interfere with IFNγ-dependent STAT1 phosphorylation, but rather 

controls the chromatin landscape of myeloid cells to promote binding of STAT1 

onto specific gene regulatory elements of IFNγ-responsive genes, including 

Nos2. Our observation that lack of p50 results in increased M-MDSC numbers 

in the spleen of tumor-bearing mice, with low NO production capacity, as well 
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as in the preferential skewing of HSC towards the monocytic branch in the bone 

marrow, is in agreement with the Irf8high/Nos2low profile observed in p50 

deficient macrophages, since IRF8 is considered a cell fate switching factor 

driving terminal differentiation of macrophages [59]. 

 

Nowadays anticancer therapies are not only directed against cancer cells, but 

they are associated with strategies intending to reduce cancer-mediated 

immunosuppression. Different approaches have been explored to harness the 

potency of the immune system to target cancer. These have been essentially 

focused on enhancing the immunogenicity of the tumour or on the induction and 

expansion of immune effectors to potentially target and eradicate the tumour. 

However, till now, efforts to actively stimulate the immune system against 

tumours in patients have been largely disappointing despite substantial evidence 

that peripheral immune responses against tumour antigens can be generated. 

Moreover, immune-modulating activities of chemotherapeutic agents are often 

very complex to understand, in fact the same molecules may play opposite roles 

depending on tumour type, immune contexture, and/or precise therapeutic 

strategy. To overcome this limitation, a possible approach might be the 

combination of chemo/radiotherapy with specific immunostimulatory agents. 

These complexities underscore the need for an ever more profound 

comprehension of the dynamic changes in the tumour microenvironment and in 

systemic immune response as tumours evolve, progress and respond to therapy. 

An improved knowledge of these aspects will facilitate the rational design of 

highly efficient, synergistic regimens that combine anticancer agents and 

immunotherapies. 

In this scenario, our studies are intended to clarify some of the molecular 

mechanisms that underlie the cross-talk between cancer and myeloid cells and 

collectively our data indicate the tumor-induced nuclear p50 NF-κB 

accumulation in myeloid cells as a tumor-escaping strategy promoting 
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immunosuppression through the induction of both M2-like polarization of TAM 

and alterations of the epigenetic landscape of MDSC resulting in enhanced 

IFNγ/STAT1-dependent expression of the suppressive enzyme Nos2. 
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Non so come il mondo potrà giudicarmi ma a me sembra 

soltanto di essere un bambino che gioca sulla spiaggia, e di 

essermi divertito a trovare ogni tanto un sasso o una 

conchiglia più bella del solito, mentre l’oceano della verità 

giaceva inesplorato davanti a me. 

(Sir Isaac Newton) 

 

 

 
 


