
SMART II: Android apps, cloud computing and mobile
device management as enablers for efficient operations

Frank T. Johnsena and Ida M. Frøsethb

aNorwegian Defence Research Establishment (FFI), Kjeller, Norway
bThe Norwegian Defence University College, Lillehammer, Norway

ABSTRACT

”SMART” – pervasive situational awareness at the individual soldier level – was a Concept Development and
Experimentation (CD&E) project carried out in Norway during 2016. The concept being tested was the use
of smart technology as a cheap and low-complexity platform for collaboration and situational awareness for
the Norwegian home guard (HV). SMART included building a prototype based on the Android platform. The
prototype was tested in several field trials. In general, the results from the activity strongly indicated that using
civilian smart technology yields an operational value. The SMART prototype and concept can provide cheap and
low-complexity communications to HV and others who may need this capability. The prototype has since 2016
further evolved, and was used in another CD&E project in 2018, the so-called ”SMART II”. Here, we focused on
necessary communication and computing infrastructure support for forces using smart devices to establish their
common operational picture. As part of the experiments, we evaluated approaches such as cloud computing and
mobile device management (MDM) when deploying and using the software. HV tested the prototype extensively
in 2018, with the culmination being its use during the Trident Juncture exercise by one of HV’s rapid response
forces. In this paper, we give an overview of our prototype, with emphasis on technology and our experiences
with the supporting infrastructure tools.

Keywords: Cloud computing, Mobile device management, Android, Situational awareness

Track 8: Information and Knowledge Systems

Paper ID 17

Point of contact

Frank T. Johnsen
Norwegian Defence Research Establishment (FFI)

P.O. Box 25, 2027 Kjeller, Norway
E-mail: Frank-Trethan.Johnsen@ffi.no



1. INTRODUCTION

At the Norwegian Defence Research Establishment (FFI) we are researching the mobile complex 1 for military use.
In this paper, we explore the mobile complex from a technology perspective, as opposed to the socio-cognitive
perspective.2 In short, the technology perspective of the mobile complex is the eco-system arising around smart
devices and the networks such devices utilize (e.g., the mobile Internet).

Several initiatives have examined the use of smart technology in military operations, one of which was the
Concept Development and Experimentation (CD&E) ”SMART” project in 2016.3 It differs from other military
smart experiments by focusing on users with limited resources and time for training, primarily the Norwegian
home guard (HV). The objective of the SMART project was to evaluate the operational value of using smart
technology as a tool for improving situational awareness at the squad level.

1.1 The Norwegian home guard

HV is one the branches of the Norwegian Armed Forces. Their main responsibility is territorial protection. HV
consist of 40,000 soldiers distributed in 4 regions, 11 districts and more than 200 areas covering all of Norway.4

HV constitutes a mobilization force, meaning that that the soldiers are not employed by the military, but train
on a regular basis. HV is organized as 12 Rapid-reaction Intervention Forces (ISTY) and 220 Area forces. While
the ISTY are capable of rapid response and consist of highly trained and equipped personnel, the Area forces
have longer reaction time, are less equipped and the personnel have less training. The SMART project aimed
at providing a secondary data-channel communication system for the Area forces, hence the concept had to be
cheap and require as little training and management as possible.3

As for any military unit, the command structure within an Area force is hierarchical, see Figure 1. The
smallest unit is a squad. Squads usually consist of eight squad members. Each squad member has a designated
task, and the squad is led by a squad leader (LF), who is supported by a second-in command (NLF). Three to five
squads are organized in one platoon, and three two five platoons are organized in one Area. Each organizational
level has one commander and one second in command. Additional roles like intelligence, operations, logistics,
plans etc. are found at the Area level and up. The typical HV soldier is a person who is 18-55 years old, and
has at a minimum fulfilled one year of mandatory conscription. This applies to both soldiers on the squad and
platoon level. The commanders at each level usually have more training than the average soldier.

In the SMART prototype, we aimed to support the Area force command structure. So, we designed a system
to separate concerns such that each area would have its own server. The area command would have ownership
of the operational picture, and full control over the server via a designated administrator’s interface. Soldiers

Figure 1: Area force command structure



in the field would be equipped with Android phones with a selection of applications (apps) to support their
communication needs. It should be noted that while we in SMART in 2016 experimented with several different
deployment approaches, we ended up recommending that phones should be made available down to the LF and
NLF, but not the remaining squad members. This way of equipping soldiers (down to and including the NLF)
was also used in ”SMART II” in 2018, the follow-on CD&E project to ”SMART”.

1.2 SMART concept prototype

Through the SMART CD&E, a prototype system that we at FFI referred to as Titans, was developed. Titans
included a back-end called Athena providing a Representational State Transfer (REST)5 service interface, a
web-based management user interface called Metis (to be used by the area command) and an Android app called
CAGED, short for Communication Application with Geographical Element Data. For persistence, PostgreSQL
was used on the server, and SQLite was used on Android. Since CAGED was the main development of the
project that was visible to the soldiers, the prototype came to be referred to as CAGED by HV personnel,
whereas software developers continued using the Titans code name. Figure 2 gives an overview of the prototype
architecture.

Figure 2: Titans overview

Third-party software was also used to enable text based instant messaging (aka chat) and to add transmission
confidentiality with a Virtual Private Network (VPN). The CAGED app was the main user interface for the
squad and platoon members and enabled them to share information related to the common understanding of
the situation. The app provides a map where all the other users locations are displayed. Various observations
added by the users are also shown. The users could communicate through observations by writing comments
or adding pictures. The location of a user was logged with the smart device Global Positioning System (GPS)
sensor, and the data was shared among the users through the REST server. Following SMART, Titans was
updated according to user feedback, and especially CAGED was improved. In particular, the user interface was
improved, the map was improved (switching from Open Streetmap to a Norwegian national map provider offering
more detail in rural areas), and the GPS positioning algorithm was improved.6 This improved the overall user
experience of the prototype in preparation for the SMART II experiments. Further, the new positioning algorithm
allowed for up to 50% less power consumption than the algorithm we had used in the SMART experiment.7 A
screenshot from this new, improved version of CAGED is shown in Figure 3. This version was the basis for the
experiments in SMART II in 2018, as discussed in this paper. In SMART II, the main focus of field trials was
on ease of management and software deployment, rather than on app development as it had been in SMART
in 2016. Hence, SMART II reused the prototype described here, but leveraging Cloud computing and Mobile
Device Management for added benefits.

1.3 Outline

The remainder of this paper is organized as follows: Section 2 discusses previous and related work. For those new
to the terms Cloud computing and Mobile Device Management (MDM), Section 3 introduces these concepts. The
experiments we conducted in SMART II and lessons learned from them are summarized in Section 4. Finally,
Section 5 concludes the paper.



(a) CAGED main user interface (b) Metis main user interface

Figure 3: Android (CAGED) and PC/Web (Metis) screenshots.

2. RELATED WORK

The Tactical Ground Reporting (TIGR) system developed by Darpa has been in use by the U.S. Army since
2007.8 It is a system for storing, and sharing tactical information on company level and below, and it is designed
to work in disconnected, intermittent and limited (DIL) network environments. The system has properties like
horizontal information flow, web technology, simple data models, and it is inspired by social media.

ATAK (sometimes referred to as the Android Tactical Assault Kit or the Android Team Awareness Kit)
is an Android app providing map functionality, a user interface providing the operational picture and other
functionality like a Geo-spatial infrastructure.9,10 The list of functionality includes online and offline maps,
sharing positioning information, navigation, communication and specific military functionality.11 In addition to
being a fielded system, ATAK is also used in demonstrations and experiments, for example in the context of
the recently concluded NATO research task group IST-147 ”Military application of Internet of Things”. There,
ATAK was used to show integration of military assets along with civilian sensor information as provided by
smart cities and their open APIs.12

The Platform Independent Sensor Application (PISA),13 was a prototype developed by FFI. It was a bi-
platform (targeting Android and iOS) app, enabling position- and observation reports in DIL environments. The
app provided only one-way communications (soldier to HQ) so that it could be used also in bring your own
device (BYOD) deployments where there was little or no trust in the platform. This allowed everyone to share
information with the HQ, but the HQ could not share information with the soldiers using this app.

Kings Eye14 was the evolution of PISA to a bi-directional app, allowing soldiers to share with the HQ and
vice versa. It was a prototype of a data centric social tactical reporting system, never put in operational use,
but tested with BYOD in an FFI experiment. The system was inspired by TIGR and how TIGR is designed to
build situational awareness through horizontal sharing of information about experiences in an operational area.
Experiments with PISA and Kings Eye have drawn attention to platform independence, intuitive user interfaces,
appropriate security and robust communication as critical BYOD enablers to military uses. However, platform
independence was shown also to come at a great cost when developing the app: One needed to maintain a
platform-independent basis, but still add on and maintain certain platform specific modules to leverage platform



specific capacities. These experiences led us to adopting more of an ATAK inspired approach for the SMART
prototype, where we concentrated our efforts on the Android platform. Hence, we ended up with the platform-
specific approach of CAGED described earlier in this paper.

FACNAV Mobile is a hand held command and control information system.15 It is a recent development by
the Norwegian company Teleplan Globe, replacing their old Dina system that was specific to Windows mobile.
FACNAV mobile is implemented as a multi-platform system. It was not available on the market when we started
the SMART series of experiments, otherwise we would have considered using this app in our trials rather than
building CAGED ourselves. CAGED and FACNAV Mobile have similar feature sets, but where CAGED is
geared more towards ease of use, FACNAV Mobile targets professional soldiers and promotes interoperability
to a larger extent. It supports NATO Friendly Force Identification (NFFI) (STANAG 5527) and also Variable
Message Format (VMF) (MIL-STD-2045-47001 and MIL-STD-6017). It should be mentioned that there exist
many different commercial alternatives on the market these days, both by domestic and international vendors,
so we present FACNAV Mobile here only as an example and do not intend to promote it in any way, as we do
not have any hands-on experiences with this system.

3. A BRIEF INTRODUCTION TO CLOUD AND MDM

Cloud computing is a trend in the time, often provided as a service by companies selling computing resources
to consumers. One of the major reasons for the popularity of cloud computing services is that you do not need
to own your own server, you can just buy the resources you need from someone else. This may seem like good
old server park hosting or renting access to large mainframe computers, but cloud computing also involves other
aspects that together make this a new, cost-efficient and very powerful way of deploying your software. An
overview of these aspects is given below in Section 3.1.

While cloud computing addresses the server side of a system, there is also a need to gain tight control over
the client devices owned by an enterprise. The main approach to such control is using one of the many available
MDM solutions on the market. MDM, among other things, enrolls smart devices (e.g., Android phones) under
a set of policies governed centrally by the enterprise. An overview of the features offered by MDM solutions is
provided in Section 3.2.

3.1 Cloud computing

Cloud computing arose more than a decade ago as a more rational approach to server deployment than self-
hosting, which requires a lot of expertise and capital expenses to buy hardware. By renting the resources from
someone else, you merely pay as you go and shift your need from capital expenses to operational expenses. This
is beneficial for new, small company startups, since it allows them to get up and running on the Internet without
having much capital to get started. As cloud computing has matured over the years, there are now many flavors,
depending on the needs of the customer. Figure 4 is adapted from the National Institute of Standards (NIST)
definition of cloud computing,16 with some highlighting added to show the properties of cloud computing we
found to be particularly useful to us.

As the figure shows, Cloud computing can be divided into several categories of aspects: Deployment models,
Service models, Essential characteristics, and Common characteristics. Let us explore each of these aspects in
turn.

3.1.1 Deployment models

The Deployment models illustrate different approaches to the way the Cloud computing infrastructure is deployed
and hosted. In the case of a Public Cloud, the resources are available to anyone who can pay for access. Public
Cloud services are offered by major vendors like Amazon, Microsoft and Google, and also a lot of national and
multi-national smaller companies. Of the three deployment models, it is usually the cheapest alternative for the
customer to choose, and also the most readily available.

A Community Cloud is Cloud computing restricted to a particular community. For example, a university may
have Cloud computing resources made available to staff and students for use in computer science teaching. So,
it is available to a certain community (those affiliated with the university), but none outside the community may



Figure 4: The NIST Cloud Definition Framework16 with added highlighting.

deploy their services there. Another example is considering NATO member nations as a community, and offering
Cloud computing resources to them. This approach is taken by the Joint Force Training Centre (JFTC), which
hosts a virtualized infrastructure. It is possible for nations participating in the Coalition Warrior Interoperability
eXploration, eXperimentation, eXamination eXercise (CWIX) to bring virtual machines, load these on the JFTC
infrastructure and leverage these virtualized computing resources during the exercise.

A Private Cloud is private to the entity using it. It may be a self-hosted Cloud computing approach for use
by an enterprise, or it can be a so-called Virtual Private Cloud hosted externally by a Cloud providing company,
but with dedicated resources to the customer and additional security measures like e.g., running on a dedicated
server (so no multi-tenancy, which is often considered a security issue17). Then, offering VPN access along with
a leased line with guaranteed capacity to the resources, making the Private cloud a trusted part of the enterprise
network. Private cloud is usually the most expensive option of Cloud computing, but also gives the best control
over the data, processing resources and network communication.

Finally, there is the possibility of Hybrid Clouds. Basically, this means using Cloud deployments that span
more than one of the above categories. For example, a government may choose to use a Private cloud approach
to contain sensitive data, while information to the general public can be offered from a Public cloud.

3.1.2 Service models

The choice of service model is orthogonal to the choice of deployment model that we discussed above, meaning
that any service model in principle can be combined with any deployment model.

The most basic service is Infrastructure as a Service (IaaS), where the provider hosts the infrastructure (so all
necessary hardware for processing, storage and networking, and provides you with a virtualized set of resources
to use). The provider may offer you a choice of different operating systems (OSs) to use on the IaaS, for example
Windows or one or more flavors of Linux. The customer will have to maintain the OS (security patches, etc)
and also any software installed along with the OS. IaaS can be had as a low cost service, but the customer must
be ready to maintain the installation on the infrastructure that is offered.

A more elaborate approach is Platform as a Service (PaaS), where the provider hosts the infrastructure and
the OS, hence providing a maintained platform to the customer. The provider is responsible for providing a
stable OS and a stable infrastructure. The customer can then use this platform to install own software, and



is limited to only having to maintain the software and not other components. Since this service includes more
hosted management than IaaS, PaaS is usually a more costly option to choose for the customer. On the other
hand, less security expertise and management is needed on the part of the customer.

Finally, Software as a Service (SaaS) is the most expensive but possibly also the most convenient service
model for a customer. Here, the provider does the same as in PaaS, but in addition also provides specific,
maintained software on the provided platform. The customer only needs to specify the software that is needed,
and the provider will handle the rest. An example of a potential customer class here is web bloggers, who are
interested in using Wordpress18 to drive their blogs but do not want to be concerned with maintaining servers,
OSs or software, only writing their articles and publishing them online. That said, examples exist of SaaS
being offered for free to consumer, like the many online e-mail services currently being offered (e.g., Gmail and
Hotmail). Instead of charging the user directly, these are financed indirectly through indexing the users’ e-mails,
building user profiles and providing them with targeted commercials.

3.1.3 Essential characteristics

The essential characteristics constitute the set of properties that is considered essential to calling a particular
system ”Cloud”. These characteristics are what distinguish today’s Cloud computing from the leased servers
and mainframes of previous times.

On-Demand Self-Service allows the customer to self-provision resources in the Cloud. An example here is an
online Cloud provider that provides a Web interface where a customer may log in and assign resources for use
without needing more than registering a PayPal account or credit card information. This approach is common
to many Public Cloud providers, where the low overhead of starting to use their services is considered a business
advantage. Other service models usually require a more elaborate and less automated approach to self-service,
in that one usually needs to get a legally binding Service Level Agreement (SLA) in place for such services.
Nevertheless, when the SLA is in place, the customer may either provision through customer service, or a self-
provisioning web portal or other, automated means (e.g., Terraform19). That said, a SLA may also be needed
for Public Cloud, depending on the Cloud provider in question.

The characteristics Rapid Elasticity and Measured Service go hand in hand, in that you scale up to as much
resources as you need and pay for them as you go. A Cloud provider can scale your resources rapidly, since
it is a matter of assigning more virtual resources to you out of the pool they have. This can be done much
faster than having to add on physical hardware resources in an actual on-premise server room as in previous
times. The price you have to pay is proportional to the amount of resources you consume, and can be measured
using metrics like processing (number of CPU cores used), memory (number of Gigabytes of RAM used), storage
(Gigabytes of virtual storage used), and network traffic (either total use, sustained bandwidth, or both).

From the provider’s viewpoint, offering Broad Network Access and using Resource Pooling is important.
Accessibility allows customers to use services from all over the world, whereas resource pooling makes the most
out of the hardware resources the company has on hand.

3.1.4 Common characteristics

The common characteristics are often found across Cloud providers, as these are either characteristics that are
in-demand from customers (like low cost and resilient computing) or help the providers offer a competitive and
profitable service (like virtualization and service orientation). Of importance to both provider and customer is
the advanced security measures a provider can employ to protect the Cloud computing facilities. The physical
and cyber security measures put in place by certain providers are quite elaborate, and better than an average
small company would be able to employ themselves.20

3.2 MDM

MDM allows for centralized management of a fleet of mobile devices. The MDM software solution (server side)
can be installed either on-premise, or offered as SaaS. Regardless of how the server side is deployed, the MDM
imposes several restrictions on the devices that are enrolled. This means potentially less freedom of use for
the consumer, but necessarily more control (and hence trust in the end-devices) for the enterprise. Concerning
mobile devices, there exist several different ownership models. Each such model may, or may not, work with



MDM. To clarify this aspect, we first look into ownership models, before discussing what MDM can and cannot
do.

3.2.1 Ownership models

There are different ownership models that all have benefits and drawbacks. These models can be explored from
different perspectives, and, as can be seen in Figure 5, more secure approaches are also more expensive.

Figure 5: Summary of the pros and cons of the different ownership models.21

As the figure shows, ownership models where the user either owns or shares ownership with the enterprise
are overall the cheapest approaches, both in terms of acquisition costs and also maintenance costs. These can
be categorized as BYOD. While desirable from a cost perspective, such approaches usually leave a high degree
of control to the user, with little means to employ advanced security measures. This again means that one can
have no (or very little) trust in the platform under such ownership models. In SMART, we explored the BYOD
approach as discussed in the experiment report.3 Conversely, in SMART II, we explored the enterprise ownership
approach to be able to enforce security policies not only for a single application, but for all applications and also
the platform itself. The latter category in the figure, that of a custom solution was considered too costly and
thus outside the scope of solutions that are viable for HV. For further discussions about security aspects within
each ownership model, please refer to the full report on modern mobile platforms from a security perspective.21

3.2.2 Managing mobile devices

MDM can be defined as follows:22

Mobile Device Management software are tools that are used for deploying, monitoring, securing and
managing the smartphones, tablets and laptops in the workplace that are involved in the distribution
of application data and configuration settings.

MDM can, in essence, be combined with any of the ownership models that we discussed in the previous
section. It is, however, important to note that depending on the ownership model, not all features may be fully
supported. For example, in the case of shared ownership, it is typical that the MDM software takes partial control
of the device, enforcing security in a so-called work partition. Conversely, under enterprise ownership, the MDM
software may take full control of the device, severely limiting how the user may interact with it. Examples here



include limiting applications that may be installed, enforcing VPN to always be enabled, etc. Under enterprise
ownership the MDM solution may also remotely wipe the entire phone if necessary (for example if the employee
loses it). Conversely, under shared ownership, the MDM software may in such circumstances only wipe the work
partition. Figure 6 gives an overview of the feature set typical MDM software provide. The figure was fetched
from an AlignMinds post.22

Figure 6: Typical MDM feature set.22

Figure 7 gives an overview of currently available MDM software. The overview was fetched from a PC Quest
article.23 All the solutions shown in the figure are readily available, and the MDM solution we used in SMART II
is included in this overview. As the figure shows, the feature sets of these solutions are similar (almost equal, one
might say), so the product we actually used shall remain nameless in the interest of not promoting any specific
vendor or solution.

The way we employed MDM in SMART II was to use the MDM software (provided as SaaS) to enroll all the
enterprise owned phones. This was done prior to deployment in the exercise, in that we factory reset each phone
and then immediately enrolled it as an Android enterprise device. Once enrolled, we were able to enforce the
security measures we deemed necessary: VPN always on and allowing only white-listed apps (which basically
meant that only apps pre-approved by us were available in the app store). In the following section we discuss
further details of the SMART II experiments.

4. SMART II EXPERIMENTS AND RESULTS

Both SMART and the follow-on SMART II projects were supported by the HV Training Centre (”Heimevernets
skole- og kompetansesenter (HVSKS)”). During SMART in 2016, we established that using Titans, the SMART
concept prototype, yielded an operational value:3 The soldiers were able to get a better understanding of the
situation, which again led to quicker and better decision-making.

The main drawback was the limited battery capacity of the mobile devices used. Hence, for SMART II we
ensured that every phone came with a wall-plug charger. Naturally, not all deployments will be able to make use
of a wall-plug charger, so we also issued pre-charged powerbanks together with the phones as well as cigarette-
plug type chargers for vehicles. For the main exercise, i.e., Trident Juncture (TRJE), we were also able to obtain
a few vehicle chargers that fitted the military vehicles (the normal cigarette-plug style charger cannot be used



Figure 7: Comparison of nine MDM tools, both open source and commercial.23

there) – this allowed recharging phones and powerbanks in the field for the soldiers who were operating out of
vehicles.

The goal of the SMART II experiments was to investigate Cloud computing and MDM in context of the
mobile complex. Ideally, using these techniques should ease the load on the administrative part of deploying and
maintaining Titans. In addition, they should ideally have no negative impact on the use of the system.

4.1 Experiments

Table 1 gives an overview of the experiments performed during SMART II. The experiments prior to TRJE should
be considered technical trials where we tested Titans in different settings as preparation for TRJE, which was
the main exercise and evaluation arena. Experiments were geared towards testing aspects of Cloud deployment
models (Private cloud, Public cloud), and management aspects like a private app store (we used F-droid∗ for
this) and MDM (with MDM, we used the built-in Android Enterprise app store rather than F-droid).

The three first experiments were performed with support from HVSKS. The fourth was performed with
support from the Norwegian Cyber Defence and the Norwegian Defence University College as part of a thesis24

for the Bachelor degree. In the first test, we set up and evaluated a private app store together with Titans. The
setup was as illustrated in Figure 8.

∗F-Droid is a software repository for Android system, similar to the Google Play store. We did not use the openly
hosted repository for our experiments, but set up our own F-Droid repository in our cloud deployment, along with Openfire
(open source XMPP chat server) and our own Athena. In doing this, we were able to provide a private app store for HV
with pre-approved apps like CAGED and others. We also compiled our own F-droid app set to communicate with our
F-Droid server rather than the open repository. For more on F-Droid, see: https://www.f-droid.org/

https://www.f-droid.org/


Test venue Timeframe Purpose
Course at HVSKS, Domb̊as, Norway April 2018 Private cloud, F-droid app store
Exercise, Heistadmoen, Norway August 2018 Public cloud, F-droid app store
TRJE with ISTY, Oppdal, Norway November 2018 Private cloud, MDM
TRJE with Norwegan Cyber Defence, Northern Norway November 2018 Public cloud and Docker

Table 1: Experiment activity in context of SMART II.

Figure 8: Server and Android phone deployment for experiments.

As the figure shows, we used a combination of third-party software and in-house developed solutions. Where
possible, we used Free and Open-Source Software (FOSS) as the third-party solutions. Athena was built on the
Java Spring Boot25 framework. We used the FOSS OpenFire26 as our chat server, and the FOSS OpenVPN 27

as our VPN solution in all experiments except the one including MDM. There, due to tight integration and
ease of configuration, a commercial solution (offering the same features as OpenVPN) was used together with
the MDM solution. During the course of the SMART experiment we tested several chat apps, and found that
our users preferred AstraChat out of the freely available clients we tested from Google play store. Hence, we
used AstraChat in all the SMART II experiments. That said, basically any XMPP-capable client can be used,
since OpenFire implements the XMPP standard. Twilight was also freely available in Google Play store, and
preserves night vision by applying a red filter on the screen and reducing screen intensity. In addition to these,
either the F-Droid client (or the MDM software) was installed on the Android phones, depending on the specific
experiment being performed. F-Droid was not needed together with MDM, since the MDM solution allowed us
to control which apps were available via the built-in app store.

Security considerations for SMART II were as for the predecessor SMART, which can be summarized as
follows:

• Communication must be protected to ensure data integrity and confidentiality.

• Data can be aggregated on the server, but should be disseminated to phones on a need-to-know basis.

• Data can be aggregated only on a per-deployment basis.

• Data should remain in Norway or in a NATO member country.



To accommodate these security requirements we protected communication using a combination of VPN and
Transport Layer Security (TLS) as shown in Figure 8. The reason for exposing chat outside VPN protected
only with TLS was to ensure that we could provide tech-support over chat also supporting any VPN issues.
That said, with VPN active, also chat would be routed through the established VPN tunnel, benefiting from
this added security measure. We set up OpenVPN with individual client certificates, enabling us to revoke the
certificate of a certain device if it were lost. The server implemented fine grained access control, which allowed
us to distribute data to users on a per squad level. This meant that if a device was lost, only data relevant to
that particular squad would be on the phone and not the entire operational picture of the HV area. For the
experiment with MDM, we also had the opportunity of remotely wiping any phone that was lost. As for the
per-deployment aggregation, we adhered to that by wiping the database between experiments (if we reused the
server) or installing a new server from scratch. As for the hosting of data, this was done in various ways in our
experiments (see Table 1) For the Private cloud experiments we used the Information Infrastructure virtualized
laboratory (INI lab) at FFI. This meant full control over the Cloud infrastructure, and ensuring that data stayed
on our servers in Norway. For the Public cloud experiment at Heistadmoen we used a Norwegian cloud provider
to host data. This provider offered several different deployment and service models, from which we chose Public
cloud IaaS with the added restriction that data had to remain in Norway. For the Public cloud experiment in
November, an international provider of Public cloud IaaS was chosen. This provider is multi-national and offers
Cloud computing resources in many countries. For that experiment we used resources hosted in London, UK
since it was a location that is both relatively close to Norway (considering latency over 4G Internet) and to fulfill
the requirement of having data in a NATO member country.

4.2 Results

In the first experiment (April) several users reported on trouble using the system. They had problems logging
on CAGED, and when logged on reports from others were spurious and updates were slow. These results did
not inspire confidence in our Private cloud setup, which led us to investigate closer. These results were puzzling
at first, since we had performed pre-trials in 2017 where the system functioned as it should using the same
infrastructure. However, we found that prior to this experiment our INI lab had received upgrades and security
patches. Among the patches were means to mitigate the Spectre and Meltdown vulnerabilities28 that recently
had been discovered. The means necessary to mitigate these attacks are known to reduce performance of the
software running on the server. So, the means necessary to increase the security of our lab had negatively
impacted the user experience, due to having a performance impact on our virtualized infrastructure. Following
this experiment we were able to get the system running as it had before by assigning more CPU cores (in essence,
more computing power) to our VMs.

In the second experiment (August) the server was hosted by a Norwegian cloud provider. Here, we experienced
no ill effects on the server side, and the users reported no significant technical problems (so no problems that
could not be solved during the experiment via our tech-support chat channel). The app store we had set up
worked well, and our users were able to install and update apps from it. Some did report, however, that they
found it a bit confusing to have two different app stores on the phone (i.e., they should use F-Droid, but they
still had and could use Google Play store).

The third experiment (November) had yet again the INI lab as the Private cloud with IaaS. This time the
server side had enough processing power to accommodate the server load, and Titans performed admirably.
The users were overall very satisfied with using the phones as a communications aid, and reported that the tool
provided them with timely and relevant information. Also, the users found that using the Android Enterprise app
store (essentially Google Play store, but only with our white-listed apps in it) was easy. Other than imposing a
restriction on the apps they could install, the users did not notice any other impact of having the devices enrolled
in MDM. From the administrative point of view, MDM made it significantly easier and also less time-consuming
(see Table 2) to set up and manage the smart phones.

In the fourth experiment (November) two bachelor degree students at the Norwegian Defence University
College, supervised by Frøseth and Johnsen, investigated applying Titans as a means to keep track of Norwegian
Cyber Defence personnel during TRJE.24 Specifically, they used the Titans demonstrator as-is, and deployed it
in a IaaS Public cloud for use. In addition, the students performed comparative evaluation of setting up the



Experiment Number of phones MDM in use Time spent on phone admin.
HVSKS 60 NO Two days
Heistadmoen 25 NO One day
Oppdal 20 YES Two hours
Northern Norway 20 NO One day

Table 2: Time spent setting up and administering phones for the experiments

demonstrator on IaaS from scratch, and setting up on IaaS from pre-made Docker images. Simply put, Docker
is a software containerization platform, adding an extra abstraction layer to virualization when used together
with Cloud computing.29 As Table 3 shows, employing Docker significantly reduced the time it took to set up a
new server.

Personnel Activity Time
New, complete server setup:

FFI Athena, Metis, OpenFire, 3–4 days
OpenVPN and F-Droid

Reference New, partial server setup: None completed
group 1 Athena and Metis only. during the allotted time.
Reference New, partial server setup: All completed
group 2 Athena and Metis from Docker images. in less than a day.

Table 3: Time spent setting up a new server instance.

In the table, setting up a new server involves doing a new server setup once the IaaS is provided. Here,
Ubuntu 16.04 LTS was used as the OS. The personnel categories were FFI, which included researchers and
developers directly involved in the SMART II experiments. This group knows the software very well, but still
needs a few days to set it up correctly. More time is needed for larger setups, since the server setup also includes
configuring the software once the components are installed (e.g., adding users, setting up user groups, etc), hence
the timespan of 3–4 days. As for the reference groups, these consisted of technically competent students from the
Norwegian Defence University College. So, they had basic knowlegde of server setup, but no prior knowledge of
the Titans prototype and collection of third-party applications we used. These groups were tasked with setting
up a new server (on IaaS) with only the Athena and Metis components. For the reference groups (two groups
in each category, so four in total), we allowed them one week (7 days) to attempt to fulfill their tasks. For
the first reference group category, this meant installing Java, Maven (build tool), PostgreSQL (database), then
building Athena, followed by installing node.js (JavaScript server), npm (Node package manager), and using
these to fetch necessary libraries and building Metis. When this was done, the group should use Metis to log on
to and administer Athena. The details of installing these components were left to the groups to find out, but
the necessary components and a step-by-step high-level installation guide was provided along with the prototype
software. However, none of the two groups assigned to this task were able to finish setting up the new server
within the allotted time. For the second reference group category, the setup involved installing Docker on the
Ubuntu server, then fetching, installing and running the Athena and Metis images. No instructions on using
Docker were provided, so the groups had to read up on this tool as part of the assignment. They were provided
with the address and login details to fetch the images once they had installed Docker. In this category, both the
reference groups were able to finish, in fact both of them finished this task in less than a day. So, we can conclude
that setting up the Titans software is a complex task, but using Docker significantly reduces the complexity (and
hence time needed) to set up a new server.

5. CONCLUSION

In SMART in 2016, the main goal was to determine whether commercial smart technology, namely the Android
platform, was a viable tool for soldiers to get a better understanding of their surroundings, which again could
help improve their situational awareness. The SMART project specifically targeted the needs of the HV Area
forces. Due to the large number of the Area forces, and the limited time these forces have for training, Titans was



developed as the technical solution that aimed to accommodate their communications needs. Titans targeted
only data exchange, as voice was left for traditional radio communication. The result was a simple and intuitive
communications concept, that came at a low cost due to the empasis on consumer electronics. During the
SMART project, experiments were performed using Titans where we gathered information from the users about
their experiences using questionnaires. The respondents not only expected, but actually experienced a more rapid
and efficient execution of their missions using Titans. Additionally, the respondents offered a lot of suggestions
for improvements, several of which we did include in an updated version of Titans.

In SMART II in 2018, we used the updated Titans prototype we had as an example blue force tracking and
collaboration tool in a set of experiments. These experiments were mainly devised to evaluate the use of Cloud
computing and MDM for military applications. Our conclusions were that Cloud computing and MDM offered
significant benefits from a management perspective, while employing these techniques did not negatively impact
the users’ experiences of the system.

ACKNOWLEDGMENTS

The authors would especially like to thank Trude H. Bloebaum, Marianne R. Brannsten, Federico Mancini and
Ann-Kristin Elstad, and also all the other contributors (who are too many to name individually here) to the
SMART and SMART II projects for their efforts.

REFERENCES

[1] Reitan, B. K., Fidjeland, M., Hafnor, H., and Darisiro, R., “Approaching the mobile complex – in search of
new ways of doing things.” 17th International Command and Control Research and Technology Symposium
(ICCRTS), Fairfax, VA, USA (2012).

[2] Karud, C. R., Johnsen, F. T., and Bloebaum, T. H., “A socio-cognitive perspective on implementation and
use of smart technology in the Norwegian home guard.” 24th International Command and Control Research
and Technology Symposium (ICCRTS), Laurel, MD, USA (2019).

[3] Johnsen, F. T., Brannsten, M. R., Elstad, A.-K., Bloebaum, T. H., and Mancini, F., “SMART: Situational
awareness experiments with the Norwegian home guard using Android.” FFI-Report 17/00735, https:

//www.ffi.no/no/Rapporter/17-00735.pdf (2017).

[4] Forsvaret, “The Home Guard.” Retrieved 5 June 2019, https://forsvaret.no/en/organisation/

home-guard.

[5] Fielding, R., “REST: Architectural Styles and the Design of Network-based Software Architectures.” Uni-
versity of California, Irvine, Doctoral dissertation (2000).

[6] Frøseth, I. M., “CAGED 2.0: Know you enemy.” Master thesis, University of Oslo, Norway, http://urn.
nb.no/URN:NBN:no-60823 (2017).

[7] Frøseth, I. M., Johnsen, F. T., and Bloebaum, T. H., “Battery Efficient Location Strategy on Android.”
IEEE International Conference on Military Communications and Information Systems (ICMCIS) 14–15th
May 2019, Budva, Montenegro (2019).

[8] Evans, J. B., Ewy, B. J., Swink, M. T., Pennington, S. G., Siquieros, D. J., and Earp, S. L., “TIGR: the
tactical ground reporting system.” IEEE Communications Magazine, vol. 51, pp. 42-49, 2013 (2013).

[9] Homeland Security, “Snapshot: ATAK increases situational awareness, com-
munication and alters understanding of actions across agencies.” Retrieved
5 June 2019, https://www.dhs.gov/science-and-technology/news/2017/11/17/

snapshot-atak-increases-situational-awareness-communication, published 17 November 2017
(2017).

[10] Stonewall Defense, “ATAK.” Retrieved 5 June 2019, https://www.stonewall-defense.com/atak.

[11] King Jr., S., “Defenders go mobile with new comm system.” Retrieved 7 June 2019, https://www.af.mil/
News/Article-Display/Article/1575959/defenders-go-mobile-with-new-comm-system/, published
16 July 2018 (2018).

https://www.ffi.no/no/Rapporter/17-00735.pdf
https://www.ffi.no/no/Rapporter/17-00735.pdf
https://forsvaret.no/en/organisation/home-guard
https://forsvaret.no/en/organisation/home-guard
http://urn.nb.no/URN:NBN:no-60823
http://urn.nb.no/URN:NBN:no-60823
https://www.dhs.gov/science-and-technology/news/2017/11/17/snapshot-atak-increases-situational-awareness-communication
https://www.dhs.gov/science-and-technology/news/2017/11/17/snapshot-atak-increases-situational-awareness-communication
https://www.stonewall-defense.com/atak
https://www.af.mil/News/Article-Display/Article/1575959/defenders-go-mobile-with-new-comm-system/
https://www.af.mil/News/Article-Display/Article/1575959/defenders-go-mobile-with-new-comm-system/


[12] Johnsen, F. T., Zielinski, Z., Wrona, K., Suri, N., Fuchs, C., Pradhan, M., Furtak, J., Vasilache, B.,
Pellegrini, V., Dyk, M., Marks, M., and Krzyszton, M., “Application of IoT in Military Operations in a Smart
City.” IEEE International Conference on Military Communications and Information Systems (ICMCIS) 22–
23 May 2018, Warsaw, Poland (2018).

[13] Krog, M. A., Johnsen, F. T., Bloebaum, T. H., Brannsten, M. R., and Reitan, B. K., “PISA: Platform In-
dependent Sensor Application.” International Command and Control Research and Technology Symposium
(ICCRTS), CCRP publication, USA, June, 2015 (2015).

[14] Brannsten, M. R., Bloebaum, T. H., Johnsen, F. T., and Reitan, B. K., “Kings Eye: Platform Indepen-
dent Situational Awareness.” IEEE International Conference on Military Communications and Information
Systems (ICMCIS) 15–16th May 2017, Oulu, Finland (2017).

[15] Teleplan Globe, “FACNAV MOBILE – Handheld C2IS.” Retrieved 5 June 2019, https://www.

teleplanglobe.no/defence/facnavmobile.

[16] NIST, “The NIST Definition of Cloud Computing.” NIST Special Publication 800-145, Final 9/28/2011,
https://doi.org/10.6028/NIST.SP.800-145 (2011).

[17] Wainewright, P., “Security risks of multi-tenancy.” Retrieved 6 June 2019, https://www.zdnet.com/

article/security-risks-of-multi-tenancy/, published 18 March 2010 (2010).

[18] Prot, A., “Is SaaS the Future of WordPress?.” Retrieved 6 June 2019, https://torquemag.io/2017/08/
saas-future-wordpress/, published 11 August 2017 (2017).

[19] HashiCorp, “HashiCorp Terraform – Write, Plan, and Create Infrastructure as Code.” Retrieved 6 June
2019, https://www.terraform.io/.

[20] Sensei Enterprises Inc., “Google Clouds Defense In Depth Includes Physi-
cal Security.” Retrieved 6 June 2019, https://senseient.com/ridethelightning/

google-clouds-defense-in-depth-includes-physical-security/, published 28 August 2018 (2018).

[21] Mancini, F., “Modern mobile platforms from a security perspective.” Retrieved 7 June 2019, FFI-
Report 16/00319, ISBN P: 978-82-464-2752-2 E: 978-82-464-2753-9, https://www.ffi.no/no/Rapporter/
16-00319.pdf, published 2 May 2016 (2016).

[22] Sebastian, E. J., “What is key to an effective Mobile Device Management
(MDM) strategy?.” Retrieved 7 June 2019, http://www.alignminds.com/blog/

what-is-key-to-an-effective-mobile-device-management-strategy/, published 30 March 2015
(2015).

[23] Maurya, R. K., “Some Commercial and Open Source MDM Software.” Retrieved 7 June 2019, https://
www.pcquest.com/some-commercial-and-open-source-mdm-software/, published 5 March 2015 (2015).

[24] Aasen, O. J. and Paulsen, B.-A., “Skybasert tjenesteinfrastruktur.” (in Norwegian) Thesis for the Bachelor
Degree, The Norwegian Defence University College, Lillehammer, Norway (2018).

[25] Pivotal, “Spring Boot.” Retrieved 11 June 2019, https://spring.io/projects/spring-boot (2019).

[26] Ignite Realtime, “Openfire.” Retrieved 11 June 2019, https://www.igniterealtime.org/projects/

openfire/, published 31 January 2019 (2019).

[27] OpenVPN Inc, “A business vpn to access network resources securely.” Retrieved 11 June 2019, https:

//openvpn.net/ (2019).

[28] Graz University of Technology, “Meltdown and Spectre.” Retrieved 11 June 2019, https://

meltdownattack.com/ (2018).

[29] “Docker: The Modern Platform for High-Velocity Innovation.” Retrieved 11 June 2019, https://www.

docker.com/why-docker (2019).

https://www.teleplanglobe.no/defence/facnavmobile
https://www.teleplanglobe.no/defence/facnavmobile
https://doi.org/10.6028/NIST.SP.800-145
https://www.zdnet.com/article/security-risks-of-multi-tenancy/
https://www.zdnet.com/article/security-risks-of-multi-tenancy/
https://torquemag.io/2017/08/saas-future-wordpress/
https://torquemag.io/2017/08/saas-future-wordpress/
https://www.terraform.io/
https://senseient.com/ridethelightning/google-clouds-defense-in-depth-includes-physical-security/
https://senseient.com/ridethelightning/google-clouds-defense-in-depth-includes-physical-security/
https://www.ffi.no/no/Rapporter/16-00319.pdf
https://www.ffi.no/no/Rapporter/16-00319.pdf
http://www.alignminds.com/blog/what-is-key-to-an-effective-mobile-device-management-strategy/
http://www.alignminds.com/blog/what-is-key-to-an-effective-mobile-device-management-strategy/
https://www.pcquest.com/some-commercial-and-open-source-mdm-software/
https://www.pcquest.com/some-commercial-and-open-source-mdm-software/
https://spring.io/projects/spring-boot
https://www.igniterealtime.org/projects/openfire/
https://www.igniterealtime.org/projects/openfire/
https://openvpn.net/
https://openvpn.net/
https://meltdownattack.com/
https://meltdownattack.com/
https://www.docker.com/why-docker
https://www.docker.com/why-docker

	INTRODUCTION
	The Norwegian home guard
	SMART concept prototype
	Outline

	Related work
	A brief introduction to Cloud and MDM
	Cloud computing
	Deployment models
	Service models
	Essential characteristics
	Common characteristics

	MDM
	Ownership models
	Managing mobile devices


	SMART II experiments and results
	Experiments
	Results

	Conclusion

