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This paper considers a general state-space stock assessment modeling framework that integrates a population
model for a fish stock and a data model. This way observed data are linked to unobserved quantities in the
population model. Using this framework, we suggest two modifications to improve accuracy in results obtained
from the stock assessment model SAM and similar models. The first suggestion is to interpret the “process error”
in these models as stochastic variation in natural mortality, and therefore include it in the data model. The
second suggestion is to consider the observed catch as unbiased estimates of the true catch and modify the
observation error accordingly. We demonstrate the efficacy of these modifications using empirical data from 14
fish stocks. Our results indicate that the modifications lead to improved fits to data and prediction performance,

as well as reduced prediction bias.

1. Introduction

State-space models are a popular tool for fish stock assessments
(Gudmundsson, 1994; Aanes et al.,, 2007; Nielsen and Berg, 2014;
Cadigan, 2016; Miller et al., 2016; Aeberhard et al., 2018). Most of the
many variants consist of a population model for the fish stock and a
data model that links observations, such as catch data and survey in-
dices, to unobserved quantities in the population model. One such is
SAM (state-space assessment model, Nielsen and Berg, 2014; Berg and
Nielsen, 2016). This model, with many useful extensions, is im-
plemented in the flexible R package SAM (https://github.com/
fishfollower/SAM) within the Template Model Builder (TMB) frame-
work (Kristensen et al., 2016), and it is used by many ICES working
groups to assess fish stocks (e.g., ICES, 2017b,a, 2018).

Aldrin et al. (2019) presented the following comments about SAM:

1. The data model is in our opinion mis-specified, because the so called
“process error” is ignored when the catch data are linked to the true,
unknown catch in the population model by the catch equation.

2. The model formulation implies the assumption that the catch data
are biased upwards compared to the true catch.

3. The expected fishing mortality rate increases by a small, yearly
factor.

In their response, Nielsen and Berg (2019) stated that the difference in
formulations of the catch equation simply reflects two different model
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choices, and which model to choose should be based on comparing
model fit and prediction ability. Regarding our second concern, the
authors stated that SAM assumes that the catch data are median un-
biased. We agree with the authors’ reply that the expected increasing
fishing mortality rate was negligible in the short term. Given that the
logarithm of the fishing mortality is modelled as a random walk, we
recognise that our previous suggested modification has an unfortunate
side effect, and this is excluded from further discussion in this manu-
script.

We will therefore address the two first issues, which are not SAM
specific, but are related to other assessment models as well (e.g., Miller
et al., 2016). We suggest modifications, which will potentially (i) im-
prove fit, (ii) reduce bias and improve prediction performance for catch
data and survey indices, and (iii) increase estimated stock size, com-
pared to the present data model in SAM, if the population model is the
same. In addition, we believe that assessment models cannot be eval-
uated solely by their ability to fit or predict observed data well. Their
main purpose is to estimate some unobservable quantities, including
present and previous stock sizes. Therefore, it is essential to establish
clear and well-defined links between the observed data and the un-
observable quantities. This is possible due to the mechanistic structure
of SAM and similar models.

We present a rather general stock assessment model, and relate this
to SAM (Section 2). In a study on 14 fish stocks, we examine the im-
plications of the suggested modifications in terms of the log likelihood
and stock size estimate (Section 3). Furthermore, we perform a cross
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Table 1
Overview of notation. For simplicity, the term “of age a” is dropped from the
interpretation text, except for the first line.

Non-observable, true quantities

Notation Interpretation

Ng, True number of fish of age a at the start of year y

Cay True number of fish caught during year y; fishing
mortality

D,y True number of fish dying from other causes during year

y, natural mortality

True number of fish dying from all causes during year y,

total mortality

Fay Instantaneous fishing mortality rate during year y

corresponding to C,,,

Instantaneous natural mortality rate during year y

corresponding to D,

Instantaneous total mortality rate during year y

corresponding to Tg,

Ng,(d) True number of fish at the end of day d of year y

I, (d) “True” survey index proportional to N, (d)
Expectations from a perfect survey with full coverage

Tay = Cay + Day

M,y

Zay = Fay + May

Data, observations or “preliminary” estimates, to be updated when the assessment
model is estimated

Notation Interpretation

’C‘a . “Preliminary” estimate of C,,,

7, (@) Observed survey index, “preliminary” estimate of I, ,(d)
Mgy, Estimate or best guess of M,

validation study, predicting the catch data and survey indices (Section
3.2).

2. Models

We first present the data for analysis, followed by definition of a
general stock assessment model consisting of two sub models; a popu-
lation model for the fish stock and a data model that links observed data
to the population model. We then describe SAM. Table 1 gives an
overview of relevant variables.

2.1. Data

We consider two types of data, estimates of yearly age-specific
catches and observed age-specific survey index data. Let ’C\a,y denote an
estimate of the true, but unknown, number of fish C,, of age a caught
during year y. Let ﬁ,y (d) denote an observed survey index for fish of age
a for a survey conducted at the end of day d of year y. It is convenient to
think of a hypothetical, “true” survey index, resulting from surveys with
full coverage, where the observed index estimates the true value I, ,(d).
We assume I, ,(d) to be proportional to the true number of fish N, (d)
of day d, defined as

Ia,y (d) = QaZVa,y(d)s (€D)]

where Q, is an unknown, time-independent, proportionality constant
called catchability, to be estimated. Note that, if Q,+1 = Qg, the true
index at the start of the first day in a year is exactly the same as it was at
the previous year, i.e.

Ia+1,y+1 (O) = Ia,y (365)~ (2)

2.2. A general stock assessment model

The model is essentially a state space model, where the population
model constitutes the state or system equations and the data model
constitutes the measurement equations. This is also a hierarchical
model, with sub models to be specified for certain population and data
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model parts.

2.2.1. The population model
From one year to the next, fish in a cohort may be caught, die from
other causes or survive. This defines the naive population model

Na+1,y+1 = Na,y - Ta,y = Na,y - Ca,y - Da,ys 3)

where N, and N, 1,, ;1 are respectively, the number of fish in a cohort
at the start of year y, and the following year, and C,,, is the catch during
year y, whereas D, is the number of fish that died from other causes,
called natural mortality. Finally, To, = Cq, + D, is the total number
of fish that died during year y. In a closed population (no migration),
Dyy = 0. We allow for migration, i.e. an unrestricted D,,. Then, the
interpretation of D,, and T,, change, but the equations remain un-
altered. For simplicity we use the term natural mortality for D, and
total mortality for T,,. Eq. (3), with recruitment specified and possibly
adjusted for a plus group, is sufficient if we only consider catch data.

For given values of Ny 1y+1, Nay, Coy and Dy, there exist unique
corresponding instantaneous mortality rates, F,, M,, and

Zgy = Foy + My, for fishing, natural, and total mortality, respectively
(see Appendix A). We interpret this so that fishing and natural mortality
occur simultaneously with constant rates throughout a year. While this,
for the moment, is not a necessary assumption, it facilitates writing the
model in a more familiar way.

Replacing the numbers of fish that died, C,,, D,,, and T,,, by their
corresponding mortality rates, Eq. (3) can equivalently be written as
Na+1,y+1 = eXP(—(Fa,y + Ma,y))Na,y = exp(_Za,y)Na,y (4)

The numbers of fish that died is uniquely given by the mortality
rates and the stock size at the start of the year by the following equa-
tions:

n,y = Na,y - Na+1,y+1 = (1 - eXp(_Za,y))Na,y, 5)
Ca,y = (Ez,y/Za,y)Tt‘z,ya 6)
Doy = Tay = Cay = May/Za ) Tay.- @

Eq. (6) is the so called Baranov equation (e.g., Quinn and Deriso,
1999). This equation is also valid when Z,, < 0, i.e. when immigration
is larger than the total mortality. Furthermore, in the limit when
Zay = 0, then Cqy = FyNg,.

So far, we have made no model assumptions. Egs. (3)-(7) are exact,
except that the conversion from rates to numbers of fish ignores that
these numbers should be integers. We must specify the model for the
age plus group (see Appendix A), and we need stochastic sub models for
recruitment, fishing and natural mortality rates. There are many sen-
sible choices for these sub models. To enable a direct comparison with
SAM, we choose only among those available in SAM, but with an ad-
ditional alternative for the natural mortality model to handle non-mi-
gration. Unless otherwise stated, we assume that all normal or trun-
cated normal variables (¢'s) below are independent between years and
ages.

To model recruitment into a minimum age a = 0, we use

Namin v = Namin -1 eXp(E,fy), (8)

X, ~ N(0, op o). 9)

which is a random walk process on the logarithmic scale.
The fishing mortality rate model is also a random walk process on
the logarithmic scale,

Ez,y = Ez,y—lexp(zfy)’ (10)

Eay ~ N0, 07 o). (1n

We assume that the ¢, ,'s are positively correlated between ages
within the same year, with an AR(1) correlation structure over ages as
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in Nielsen and Berg (2014), but independent between years. Then,
corr(efy, €)= 0" where p is a correlation parameter to be esti-
mated.

We assume existence of information about the natural mortality
rates, that are summarily defined by the fixed values M, for each age
and year. These may be simply based on a best guess, or some more
quantitative prior information.

For the natural mortality rate, we use the model

M,y = Mg, + Ea,My* (12)
eay ~ N0, oy o). 13)

M, is the expected natural mortality rate. Note that Nielsen and
Berg (2014) prefer to reserve the term “natural mortality rate” for M,
alone and use the term “process error” for sa,My. We interpret the sum of
these two terms as the actual natural mortality rate.

Now, M,, may become negative, and one can argue that Sa,N; then
accounts for both stochastic variations in natural mortality and for
migration to or from the considered area. Then zero or negative values
of Z,, can occur. As mentioned above, the Baranov catch equation is
still valid.

As an alternative, we also consider a model without migration,
where Mg, = 0, but still with E(M,,,) = M. This is so far not possible
in the SAM program. Then, we assume that &7
normal distribution, where Eq. (13) is replaced by

follows a truncated

M ~ Niune (0, 07y o) truncatedat + M. 14)

Truncating symmetrically both below and above ensures that
E(M,,) = M;,, and that the parameter g}, controls only the variance
of Mg, If the truncation above were removed, E(M,,) > M;y and crf,,’a
would control both the expectation and the variance of Mg,.

The model presented so far describes what happens from the start of
one year to the start of the next, and it is sufficient if we only have
yearly catch data. If we also consider survey indices observed within
years, we must model the stock size within a year. Then, we need the
following assumption: Fishing and natural mortality occur simulta-
neously and are constant during a year. The number of fish of age a at
the end of day d of year y is then

Nay(d) = exp(—(d/365)Z4,,)Ny,y. 15)

We emphasise that the population model part of SAM is defined by
the Egs. (4), (8) (one out of three options in SAM) and (9)—(13), even
though Nielsen and Berg (2014) present some of these on the loga-
rithmic scale.

2.2.2. The data model

The data model relates observations to the true, unknown, quan-
tities in the population model. If we assume that the catch data ,C\a,y are
(mean-)unbiased estimates of the true catch (i.e. that E(a,,y) = Cqy)
and log-normally distributed, the data model for the catch can be
written as

~

Cay = Cayexp(eg,), 16)
eoy ~ N(=1/202 4, &) a7)

P
We could alternatively, assume C,, to be a median-unbiased esti-

mate of the true catch (median(alyy) = C,,). The corresponding ex-
pectation of E(fy should be 0, i.e. Eq. (17) should be replaced by

sy~ N, ). 18)

This implies that the catch data are mean-biased upwards by a
factor exp(1/20¢ ,) compared to the true catch, due to the nature of the
log-normal distribution. Hence, when the model is fitted to data, the
average of the estimated catches, will tend to be lower than the average
of the catch data. Furthermore, to assume that the age-specific catch
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data are median-unbiased, implies that the corresponding observation
for the total catch in a year, a, =2, ’C\a,y, is assumed to be both mean-
biased and median-biased upwards compared to the true total catch.

The assumptions about the expected values of sfy will not only in-
fluence the fitted catch values, but also the estimates of the population
sizes Nq,. Unfortunately, whether we should use Eq. (17) or Eq. (18)
cannot be guided by their fit to data, and their likelihood values will be
exactly equal if oc, is equal for all ages. Instead, the choice between
these alternatives depends on our belief about how the catch data re-
lates to the true catch, which further depends on how the catch data are
constructed. Usually, the yearly catch of age data are point estimates
based on more detailed data, including for instance age data from
samples of fish. Hence the optimal model choice depends on the
properties of these point estimates. As an example, Norwegian catch of
age estimates are often based on the Bayesian ECA (estimating catch of
age) model (Hirst et al., 2004, 2005, 2012). This model reports the
posterior means, which we believe are more mean-unbiased than
median-unbiased.

The data model for the survey index can be written

Toy (@) = Ly (d)exp(el ), (19)
€4y~ N(=1/207,, of,), (20)

if we assume that the observed survey index is an unbiased estimate of
the true survey index, or with Eq. (20) replaced by

€ay ~ N(0, 070 1)

if we assume it is median-unbiased. The choice between these two is
usually not of practical relevance, since the expected value is con-
founded with the catchability. The contrary is true, however, if one uses
the model to predict an observed index ’I\a,y (d), for instance in a cross
validation experiment as in Section 3.2.

2.3. The data model in SAM

In SAM, catch observations are modelled as

Cay = oy exp(egy), (22)
where
CotM = (Fy!/ By + M)A — exp(—(Fy + Mi,)))Nays (23)

= (El,y/Z:,y)(l - eXP(—Z:,y))Na,y,

is the definition of catch in SAM. Here, Z;, = F,, + M;,, so z(%,, the
variation in natural mortality or the process error, is ignored here. The
quantity Cs5™ is different from the true catch, which explains why we
refer to the data model in SAM as “mis-specified”. These quantities are
related by

CaS,I;M = (Za,y/Za*,y)[(l - eXP(—Z;y))/(l - exp(_Za,y))]Ca,y- (24)
The corresponding number of fish that dies from other causes is

Doy = Nay = Nawaysn) = Cap™ = Toy — G5 (25)

= [(1 - exp(_Za,y)) - (Ez,y/Z:,y)(l - exp(_Z;y)]Na,y

Note the lack of similarity between the expressions for C33™ and
DS"M | as opposed to the definitions of C,,, and D, in Eqgs. (6) and (7).

ay

The SAM data model for the survey index is

Ty (@ = M (exp(el ), (26)
where
M) = Qqexp(—(d/365)Z )Ny 27)

= exp[(d/365)e2% ] 1oy (d)
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is SAM's definition of a survey index, where ¢ is ignored here as well.
The value of this index at the end of a year differs from its value for the
same cohort at the start of the next year, i.e.

B L1(0) # I53M(365), (28)

even if Q,+1 = Qg as opposed to the true survey index, given in Eq. (2).
The corresponding stock size at the end of a year is

N3SM(365) = exp(—Z3, )Ny, (29)

whereas the stock size for the same cohort at the start of the following
year is

Nysry+1 = exp(—eM)NSM(365). (30)

Therefore, our interpretation of SAM is this: Until the end of a year,
there is a constant fishing and natural mortality that occur simulta-
neously. Then in addition, at the eve of a new year, fish may either die
due to additional natural mortality, or migrate to, or from the area.

Finally, in SAM, the expectation of -, and ., are set to 0. Hence
observations in SAM are assumed to be median-unbiased, but mean-
biased, compared to the corresponding true values.

2.3.1. Estimation

We estimate unknown quantities in the model from the observed
data by maximum likelihood as in SAM, using the TMB software for
optimisation. We obtain estimates of the model parameters of the
fishing and natural mortalities and of the population sizes. We also
obtain updated estimates of the catches C,, and of the hypothetical
indices I,,(d), here termed 5” and I~a'y (d) to distinguish them from the

observations (regarded as preliminary estimates) a,,y and f,,y (a.
3. Empirical study based on 14 fish stocks

We consider the model alternatives given in Section 2.2, divided
into two experiments, with the natural mortality rate being unrestricted
in the first experiment and non-negative in the other. For both, we
explore three data model specifications. The log likelihoods are com-
parable because all the models have the same number of parameters
and use the same type data distribution. We also consider four measures
of prediction performance based on cross validation.

3.1. Data on 14 fish stocks

The data encompass (i) the single data set used in Nielsen and Berg
(2014), (ii) two data sets from the ICES Arctic Fisheries Working Group
2017 report (ICES, 2017b), and (iii) eleven data sets at stock-
assesment.org (2019) with status “final” on the 19th of October 2018,

Table 2
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excluding duplicate data sets (Table 2). We use the catch series and one
survey index series from each dataset, and ignore all other data. The
assessments are only for model comparison, and not stock assessment
suggestions.

3.2. Cross validation

The main purpose of stock assessment is to estimate the number of
fish and the spawning stock biomass. Model evaluation is challenging
since the true values of these parameters are unknown. We could si-
mulate from a model, and use the simulated data as the “truth”, but this
would favour models close to the “true” simulation model. An alter-
native is to investigate how well the models can predict the observed
catch and index data. Hopefully, a method that predicts well is also
suitable for fish abundance estimation.

We perform cross validation for each data set, leaving out both
catch data and indices for one year at a time, i.e. splitting the data into
training and test data. We estimate the model on the training data, and
predict the left out catch and index data. Data for each year are left out
once, except for the first year, which is always included in the training
data. We calculate two root-mean-square measures of prediction per-
formance for catch, one per age and year (CV’®), and another for total
catch in a year (CV?), and two corresponding measures for the indices
(CV?,cV):

CvCay = \/(1/ncay) E z (,C\a,y - 5[1,),,(,},))2,
y a

(31)
“‘ 2
CVe = \/(l/ncy) Z (Z ,C\a,y - Z al.y.(—y)) ’
>4 ” (32)
Ccviay = \j(l/nlay) z Z (’I:z,y - Ta,y,(fy))z >
>4 (33)
“ 2
cvl = \/(1/nly) Z [Z ,I;,y - Z Ta,y,(—y)) ’
>\ ” (34)

where n is the number of elements in each sum, and the subscript (—y)
means that catch and index data for year y was not used for estimation.

3.3. Set up for two experiments

In Experiment 1, the basic model is SAM given in Section 2 with
unrestricted M, (includes possible migration), here termed S. We de-
fine two alternatives with different data models:

Overview of data sets used. The name of the dataset is given if the data source is stockassesment.org (2019). The name of the survey index is given if several indices
were available. The minimum and plus ages are the ones used in the models. To save computation time, we have ignored catch data before 1961 for North-East

Atlantic cod.

Short name Data source Area Species Years catch Years index Min. age plus age Survey index
NSC Nielsen and Berg (2014) North Sea Cod 1963-2011 1983-2012 1-7

CC ICES (2017b) Coast of Norway Cod 1984-2016 1995-2016 2-10 Table T26, p. 69
NEAC ICES (2017b) North-East Atlantic Cod 1961-2016 1981-2017 3-15 Table A3, p. 180
BW BW_2018 Widely distributed Blue whiting 1981-2018 2004-2018 1-10

NSSOLE sole2024_newidx North Sea Sole 1984-2017 2004-2017 1-9 Fisherman
FSAITHE sam-tmb-fsaithe-2017-01 Faroe Plateau Saithe 1961-2017 1994-2018 3-15 Spring

FCOD sam-tmb-fcod-2017-01 Faroe Plateau Cod 1959-2017 1996-2017 1-10 Summer

NSW NSwhiting 2018 North Sea Whiting 1978-2017 1983-2017 0-8 IBTS-Q1
ICEEGCOD codEastNWWG2018 Iceland/East Greenland Cod 1973-2017 1982-2017 1-10 WH
FHADDOCK sam-tmb-fhaddock-2017-01 Faroe Plateau Haddock 1957-2017 1996-2017 1-10 Summer
BSHERRING WBSS_mf_004_CB_corrCF Baltic Sea Herring 1991-2016 1991-2016 0-8 HERAS
BSPLAICE PLE2123_ WGBFAS2017_Final run Baltic Sea Plaice 1999-2016 1999-2017 1-10 1Q IBTS +BITS
MACKEREL WGWIDE2017.V2 Widely distributed Mackerel 1980-2016 2010-2017 0-12 Swept-idx
BSCOD WBcod_2017 Baltic Sea Cod 1994-2016 2001-2016 0-7 SD2224w_4Q
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1. M (Modified catch and index equations): Include Ex, in the catch and
index data models, i.e. replace Egs. (22) and (26) by Egs. (16) and
19).

2. Mu (Modified plus Unbiased observations): Also change E(Elfy) and
E(e,,) from O to — 1/20, and — 1/207,, respectively, i.e. assume the
observations to be unbiased with respect to the corresponding true
values.

While Experiment 2 is similar to Experiment 1, the natural mortality
rate M, is non-negative, and modelled by a truncated normal dis-
tribution given by Eq. (14).

We estimate models for the 14 fish stocks, both for the complete
data set and sub-data sets in the cross validation analyses. To enable
reasonably good model fits for the different fish stocks, we apply a
common, yet flexible, model structure for all stocks and for experi-
ments. Consequently, the model choice might not be optimal for every
data set.

The standard deviations for the fishing mortality rates, op4, are
equal for all ages. The logarithms of the standard deviations o¢ , and o,
and the catchability parameters Q, are allowed to vary smoothly over
ages by quadratic functions of age. For instance, the standard deviations
of catch is given by

dca = exp(B5€ + BC(a — @) + B;¢(a — @)?), (35)

where @ is the average age, and the f3's are parameters to be estimated.
This formulation allows the standard deviations and catchabilities to be
age-specific and smooth, but with only three parameters for each
equation. This flexible, yet parsimonious, formulation is useful when
we fit many data sets automatically. We add a penalty term of the form
(B)? + (B5€)? for each of the three quadratic terms to the log like-
lihood to ensure identifiability and numerical stability This shrinks the
age-specific standard deviations and catchabilities slightly towards an
average value for all ages.

We do no direct comparison between the two experiments, because
the main focus is the impact of the data model specification, and not on
population sub-models. The experimental setups with data and com-
puter code are given in Appendix B.

3.4. Results for Experiment 1

In fitting the full data sets, the log likelihood improves for 75% of
the data sets by applying model M instead of S, i.e. instead of a “pro-
cess” error at the end of each year, we apply a stochastic variation in
natural mortality and migration (Fig. 1, panel (a). The potential gain in
log likelihood is larger than the potential loss. When we consider model
Mu, the log likelihoods do not change much compared to model M. This
is as expected, as these bias adjustments for the catch and index data

a) Gain in —log(L)

b) Gain in —log(L) in Mu vs. sd(PE) in S
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are confounded with other model factors, and the potential value of
these changes cannot be judged by the likelihood. Most of the gain in
applying Mu instead of S is hence achieved by changing from model S to
M. The total gain in the log likelihoods by applying model Mu instead of
S has no systematic relationship with the estimated size of the standard
deviation oy, in Mu (Fig. 1, panel (b). The estimates of oM are slightly
larger in model Mu than in model S (Fig. 1, panel (c).

Panel (a) in Fig. 2 shows the relative (to model Mu) changes in the
cross validated root mean squared errors (RMSEs) CV°Y for predictions
of age-and-year specific catch, when changing from one model to an-
other. The RMSEs tend to decrease slightly with model M instead of S,
and further with model Mu. By applying model Mu instead of S, we tend
to get a moderate improvement in the RMSEs CV°?. When we consider
the RMSEs CV for predictions of year specific total catch (panel b), the
tendency is even clearer, with an improvement for most data sets when
considering model Mu instead of S. Finally, the relative bias in pre-
dictions for each model is given in panel (c). The predictions for models
S and M are biased downwards (too low), as expected.

The lower panels in Fig. 2 correspond to the upper ones, but for the
indices. The effects of applying model M or Mu instead of S are similar
to those for the catch.

We find that applying model Mu tends to result in a better fit and
improved catch predictions compared to applying model S. Does this
give an important change in what is the focus of the stock assessment,
to estimate the stock size? To address this, we calculate the relative
changes in the averaged estimated number of fish in the stocks, by
applying models M and Mu instead of S, using all data in each data set.

The estimated stock size tends to be slightly lower using model M
instead of S (Fig. 3). Considering model Mu instead of M gives an in-
crease in stock size estimates, at most 10% increase. Overall, the esti-
mated stock sizes increase for all data sets by applying model Mu in-
stead of S.

For illustration, we give some detailed results for the Iceland and
East Greenland Cod (Gadus morhua) stock. This stock has the highest
estimated standard deviation for the natural mortality (o, = 0.28 for
all ages) and the highest standard deviation for the catch data for the
average age (¢ = 0.49). Both models S and M have some predictive
capacity (Fig. 4). Considering model S, both predicted and fitted catch
is in average lower than the observed catch, as expected.

We also conduct a simulation test (Deroba et al., 2015) for model
Mu based on its fitted model for this fish stock, and estimate the stock
sizes, catch and survey indices well (see Appendix A).

3.5. Results for Experiment 2

Figs. 5-7 summarise results of Experiment 2. Applying model M
instead of S has much less effect now. This is natural, as the stochastic
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Fig. 1. Experiment 1: Changes in —log likelihood and in oy, comparing model alternatives. Panel (a) Box plots of difference in —log likelihood by changing from
models S to M, from M to Mu and in total from S to Mu. Panel (b) Difference in —log likelihood by changing from model S to Mu vs. the estimated value of the
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c) Relative bias in C, CV-Cb
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Fig. 3. Experiment 1: Percentage change in estimated average total stock size
by changing from model S to M, from model M to Mu and in total from model S
to Mu.

variation of the natural mortality or the “process error” is restricted.
There is still a tendency for a small gain in the likelihoods and slightly
lower estimated stock size with model M vs. S, with RMSEs being

almost identical. Still, the effect of applying model Mu instead of M is
similar to the corresponding results in Experiment 1. Hence, the effect
of applying model Mu instead of model S is also similar to the effect in
Experiment 1.

4. Conclusions

We present a general stock assessment model, composed of a po-
pulation model for a fish stock, and a data model that links observed
data to the unobserved quantities in the population model.

We focus on catch and survey index data, but other types of data
may also be considered. Several variants of this model structure exist in
the literature. We focus on the popular model of Nielsen and Berg
(2014), and suggest some modifications for improvement, some of
which have been previously used by others. Both Aanes et al. (2007)
and Cadigan (2016) use a stochastic natural mortality (then with a
multiplicative lognormal error) instead of a “process error” at the end of
the year, and Aanes et al. (2007) assume that the catch observations are
unbiased, i.e. they used a lognormal error term with mean 1. In the
empirical study of 14 fish stock datasets, our suggested modifications of
the data model tend to improve the fit and the prediction performance,
and reduce the prediction bias. Finally, we show that the modifications
jointly have an impact on the estimated stock size, and that the two
modifications alone have opposite effects on the stock size estimates.
We made a prototype software with computer code for the two ex-
periments, to be downloaded from Appendix B. Our hope is that our
modifications will be included in the SAM package, as we regard this
package well developed with many useful features, and we see no
reasons for an alternative software package.

We use an additive model for the natural mortality rate. Since F,, is
modelled by a multiplicative model, it is natural to also consider
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b) Predicted catch, model S
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c) Relative bias in C. CV-Cb
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Fig. 7. Experiment 2: Percentage change in estimated average total stock size.
This figure corresponds to Fig. 3.

multiplicative models for M, in the case without migration, since F,,
and M, enters the population model (4) symmetrically. We experiment
with a lognormal random variation for the natural mortality rate, and
the effect on the estimated stock sizes becomes larger. But we experi-
enced convergence problems for some data sets. The specification and
selection of models for F,, and M, should hence be subject for further
research.
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