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The lack of any abundant recruiting year class of Norwegian spring-spawning (NSS) herring between 2005 and 2015 contributed to an approx-
imate reduction of 40% in the spawning-stock biomass since 2009, i.e. from 7 to 4 million tonnes. Warming of the North Atlantic is suggested
to contribute to this reduction in recruitment. In the past, a warm phase induced by a positive Atlantic Multidecadal Oscillation (AMO) in
the North Atlantic was positively correlated to the NSS herring stock size. Recent unprecedented ocean warming in the Norwegian Sea eco-
system, besides elevated temperatures due to a positive AMO, seems to be outside optimal environmental conditions for early life history
stages of NSS herring. We analysed 28 years of survey data using generalized additive models to reconstruct environmental conditions for
drifting yolksac and preflexion stage larvae. Our results indicate that strong recruitment years were more likely when the larvae occurred si-
multaneously with a negative AMO during positive temperature anomalies. The transition from yolksac stages towards preflexion stages oc-
curred while there was a slow increase in water temperature during the larval drift. Weak recruitment years generally occurred when larvae
experienced elevated temperatures during the life stage transition under a positive AMO. These results augment evidence that the historical
positive relationship between AMO and stock dynamics is reversed between 1988 and 2015. Albeit not implying any specific mechanistic bio-
logical interactions, we can assume that the unprecedented warming has modified the ecosystem drivers that negatively affect drifting larvae.
Since 2016, the North Atlantic is shifting into a negative AMO phase, possibly resulting in the 10-year recruitment suppression of NSS herring
ending soon.
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Introduction
The survival of early life history stages was suggested by Hjort

(1914) to be the main determiner of the year-class strength in fish

populations. A slight shift in survival rates of these stages has

considerable effects on recruitment success (Houde, 1987). Every

life stage has specific requirements on the environment, and

changes will modify the chances of survival. In marine environ-

ments, fish species exhibit a dome-shaped relationship to many
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factors that control survival rates (e.g. Cury and Roy, 1989;

MacKenzie et al., 1994; Takasuka et al., 2007). In theory, early life

stages will survive best at the peak of the dome-shaped relation-

ship representing optimal environmental conditions. In the

course of ongoing climate changes, ocean warming will modify

the state of ecosystems (Bopp et al., 2013; Boyd et al., 2016).

This can lead to either positive, no, or negative impacts on the

productivity of fishes (Free et al., 2019). By shifting the tempera-

ture regime in the ocean, early life stages may encounter condi-

tions that are outside their optimal ranges for survival (Rijnsdorp

et al., 2009). In addition to other parts of the world oceans, the

North Atlantic has faced unprecedented ocean warming (Robson

et al., 2018; Hand et al., 2019). Comprehending climate change

effects on fish populations is difficult, since climate impacts a

variety of ocean processes that in turn influence a cascade of

processes at several biological organization levels (Lehodey et al.,

2006). In this study, we shed light on the historic and current cli-

mate effects affecting Norwegian spring-spawning (NSS) herring

(Clupea harengus) population dynamics, by investigating envi-

ronmental regimes during the very early larval stages between

1988 and 2015.

The long period without strong recruitment success and ongo-

ing fishing resulted in reductions in estimated NSS herring stock

size from 7 million tonnes in 2009 to 4 million tonnes in 2018

(ICES, 2018). This is attributed to a warming climate and a

reduction in the zooplankton production in the Norwegian Sea

ecosystem (Toresen et al., 2019). Similar observations were

reported for the North Sea herring stock since 2000 where a shift

of the zooplankton community is assumed to be a main driver of

recruitment suppression (Payne et al., 2008). In the Gulf of the

St. Lawrence, a decrease in the recruitment in spring-spawning

herring was concomitant with a long-term decline in cold-water

copepod abundances (Brosset et al., 2019). Historic observations

have shown that, when a stock size declines and fishing practices

are ongoing, stock collapses are possible (Dragesund et al., 1980).

The NSS herring stock collapse in the 1960s and 1970s coincided

with weak catch regulations during a period of poor recruitment

(Dragesund et al., 1980). Unfavourable environmental conditions

were suggested to suppress recruitment during a cold phase in the

Atlantic (Toresen and Østvedt, 2000). Recovery of the stock was

attributed to an exceptionally strong year class in 1983 along with

a fishing moratorium (Nakken, 2008; Gullstad et al., 2018). At

present, the stock is overseen by an operational harvest control

rule implying a management strategy with a relatively low fishing

pressure and with mechanisms to further reduce fishing effort

when the stock is declining to avoid future stock collapses (ICES,

2018). Until 1998, NSS herring stock dynamics positively corre-

lated with temperature regimes in North Atlantic waters (Toresen

and Østvedt, 2000). Thereby, a higher influx of Calanus finmarch-

icus was attributed to higher food availability for NSS herring lar-

vae (Aksnes and Blindheim, 1996). However, since 2002, an

exceptional warm phase in the North Atlantic indicates a shift

from a positive correlation to a negative correlation between

ocean temperature and stock size (Toresen et al., 2019).

Ocean temperature fluctuations are mainly governed by atmo-

spheric forcing and climate cycles. Two main drivers in the North

Atlantic are the Atlantic Multidecadal Oscillation (AMO)

(Schlesinger and Ramankutty, 1994) and the North Atlantic

Oscillation (NAO), both outlined below. These periodic oscilla-

tions have shown to be positively correlated with size of the

North Sea herring stock (Gröger et al., 2010). Since 2000,

however, an increase in ocean temperature seems to have sup-

pressed recruitment of the same stock (Payne et al., 2008; Corten,

2013). Until 2010, the NSS herring stock and other stocks of small

pelagic species in the North East Atlantic, for instance round sar-

dinella (Sardinella aurita) in the western and eastern

Mediterranean and European pilchard (Sardina pilchardus) in the

English Channel, were also positively correlated with the AMO,

whereas the Mediterranean anchovy (Engraulis encrasicolus) stock

seems to be negatively correlated (Alheit et al., 2014).

Although climate cycles can control stock variations (Skern-

Mauritzen et al., 2016), climate warming-induced changes in re-

cruitment characteristics are becoming more apparent (Rijnsdorp

et al., 2009). Shifting of spawning grounds, lengthened migrations,

habitat displacements, and changes in plankton communities are

only a few examples that can be related to human-induced changes

in the ocean climate (Sundby and Nakken, 2008; Barton et al.,

2016; Boyd et al., 2016; Morley et al., 2018). Thus, ignoring anthro-

pogenically driven ocean warming would suggest that environmen-

tally driven population dynamics will be controlled by naturally

occurring climate fluctuations. However, a rapid increase in ocean

temperature may counteract and may even have the potential to re-

verse a long-time correlation (Toresen et al., 2019). As one of the

main bottlenecks for successful recruitment is based on the survival

of early life history stages of fishes, our aim was to model environ-

mental conditions during the drift of yolksac and preflexion larvae

to understanding what environments may lead to variation in re-

cruitment success between 1988 and 2015. The main research ques-

tion we address here is whether early larval stages experienced

different environmental regimes that resulted in years of strong,

moderate, and weak recruitment. We discuss our results with un-

derlying mechanisms that may control NSS herring recruitment

from top-down and bottom-up processes that may be caused by

this marked temperature shift since 2002 in the Norwegian Sea eco-

system (Robson et al., 2018).

Material and methods
Larval NSS herring drift along the Norwegian Coast
To the west of the Norwegian coastline is a narrow, 40–200 km,

continental shelf (Figure 1). The main spawning grounds of NSS

herring (<250 m bottom depth) are on the continental shelf

where the substratum consists of sandy, gravelly, stony, and

rocky bottoms (Runnström, 1941). Spawning occurs mainly off

Møre, at Haltenbanken, and at Røstbanken in February and

March (Sætre et al., 2002a); however, other suitable spawning

grounds are also utilized to a variable degree, e.g. off Lofoten

(Dragesund et al., 1980). The benthic eggs develop in bottom

temperatures 7.5�C (winter temperature at Møre; Sætre, 2007),

hatching after 15–20 d (Russell, 1976). Yolksac larvae ascend to

the surface and both yolksac and subsequently preflexion larvae

are primarily carried by the Norwegian Coastal Current north-

wards in March and April (Vikebø et al., 2010; Stenevik et al.,

2012; Skagseth et al., 2015). Farther offshore off the Norwegian

coast flow branches of the Atlantic Current carrying additional

larvae. Both currents enter the Barents Sea releasing larvae into

their main nursery areas.

Sea surface temperature anomalies, AMO and NAO
between 1988 and 2015
We report on changes in the Norwegian Sea climate and the

link to NSS herring larvae using different indices for the period
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1988–2015. Sea surface temperature (SST) and anomalies (SSTa)

were extracted from the fifth version of the extended recon-

structed SST data set ERSSTv5 (Huang et al., 2017). In the

ERSSTv5 data set, monthly SSTa values are converted from

monthly SST observations by subtracting in situ monthly SST cli-

matology between 1971 and 2000. Monthly SST and SSTa data

were compiled for the central Norwegian Sea at 69�N 2�E using

the SeaDAS software version 7.5.1. (https://seadas.gsfc.nasa.gov/),

where the purpose is to feature general trends related to the re-

cruitment success of NSS herring. Unsmoothed and detrended

monthly indices of the AMO were extracted from a time series

based on Kaplan’s SST dataset (Kaplan et al., 1998; Enfield et al.,

2001). The AMO is a term for a periodic occurring variation in

the ocean current based on SSTs in the North Atlantic. A periodic

duration between 50 and 70 years comprises a positive phase and

a negative phase driven by changes in the circulation velocities of

the global thermohaline circulation. A positive phase of the AMO

is characterized by an accelerated warm water mass transport

from the tropics into high latitudes, while a negative phase is

characterized by a decelerated transport (Delworth and Mann,

2000). Monthly indices of the NAO were extracted from https://

crudata.uea.ac.uk/cru/data/nao/, Jones et al., 1997). The NAO is a

climate cycle fluctuating in atmospheric pressures at sea level be-

tween the Azores High and the Icelandic Low. A positive NAO is

characterized by a strong contrast between the high and the low.

It facilitates westerly winds over the North Atlantic transporting

warm and stormy weather. A negative phase is characterized by a

relatively small contrast between the two air pressure centres

leading to calm wind conditions and low temperatures in the

North Atlantic.

The larval NSS herring survey
To model the environmental window of yolksac and preflexion

larvae, we used annual larval NSS herring survey data from 1988

to 2015 (Figure 1). In these surveys, larvae were sampled in spring

(March–April) during their drift in the Norwegian Coastal

Current and Atlantic Current. Perpendicular transects to the

coastline were set up, 15–20 nautical miles apart, with sampling

stations established approximately five nautical miles apart. The

direction of the surveys was either from the north southward or

vice versa (Stenevik et al., 2012). Sampling along each transect

was undertaken until reaching the first station offshore with zero

observation of NSS herring larvae. Before 1992, a vertical towed

T-80 ring net (80 cm diameter with 375mm net, retrieval speed

0.5 m s�1) or a double oblique towed Gulf III (nose-cone diame-

ter 20 cm, mesh size 375mm, towed at 2.6 m s�1) (Gehringer,

1952) collected larvae (Stenevik et al., 2012). Since 1992, the T-80

was only deployed during the night while the Gulf III during the

day to reduce larval net avoidance, which was detected by com-

paring sampling performance during daytime of both gears (Gulf

III was tenfold more efficient, pilot study). However, night-time

sampling resulted in similar larval numbers and size-classes so

that T-80 night-time sampling was continued as this gear collects

larvae in better condition. Larval staging (yolksac approximately

at age 3–13 and preflexion at 14–65 d) is based on Doyle (1977)

with the addition of a stage (1 d) representing larvae with no yolk

remains and absent dorsal fin anlagen (Øiestad, 1983). Data on

physical parameters [in situ temperature (�C) and salinity], loca-

tion (see below), and bottom depth were collected during the lar-

val surveys.

Defining strong, moderate, and weak recruitment years
between 1988 and 2015 by recruitment strength
Recent stock assessment estimates from the International Council

for the Exploration of the Sea were used to relate numbers at age

2 years (Rage2) to spawning-stock biomass (SSB) (in tonnes).

More specifically, SSB was lagged back 2 years to compute recruit-

ment success (Rst-2) for the period 1988–2015 (ICES, 2018)

(Figure 2a); Rst-2 ¼ Rage2/SSBt-2. This period covers the larval sur-

vey data available. Within this period, 32% (n¼ 9 years) of the

years (with the highest Rage2/SSBt-2 relationship) were assigned as

years of “strong” recruitment. Another 32% (n¼ 9 year) (with

the lowest Rage2/SSBt-2 relationship) were assigned as years of

“weak” recruitment. The remaining years (n¼ 10 years) were

used to model environmental conditions of “moderate” recruit-

ment years.

Modelling environmental windows of drifting NSS
herring larvae
Environmental windows for yolksac and preflexion larvae for

strong, moderate, and weak recruitment years were reconstructed

using generalized additive models (GAMs). GAMs were com-

puted using the mgcv package (Wood, 2006) in R version 3.5.1

(R Development Core Team, 2016). Before splitting the time se-

ries data set, a GAM was performed on all 28 years using a factor

variable according to “years” of recruitment using the same set of

co-variables described in the following. The factor variable

Figure 1. Map of sampling stations during the drift phase of yolksac
and preflexion larvae of Norwegian spring-spawning herring during
the period 1988–2015. Sampling station colour codes are based on
recruitment years (Figure 2a, blue ¼ strong, yellow ¼ moderate, and
red ¼ weak). The representation of the Atlantic Current (AC) and
Norwegian Coastal Current (NCC) is sketched only.
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“years” represents the split into strong, moderate, and weak re-

cruitment to verify if the split is reasonable. A significant effect of

the factor variable allowed a further split of the year-specific larval

data sets to address single effects of the tested co-variables on re-

cruitment success related to the two life history stages.

GAMs were fitted with observations from 4544 sampling sta-

tions in the full model, 1230 sampling stations in the strong years,

1975 in moderate years, and 1339 in the weak years of recruit-

ment model (Figure 1). Based on niche theory (Holt, 2009), thin-

plate regression splines (bs ¼ “tp”) were used to produce ideally

dome-shaped regressions for the following explanatory variables:

bottom depth, temperature at 20 m depth, and salinity at 20 m

depth. The latter two represent ambient larval conditions as they

are mainly distributed above the thermocline, although larvae can

occur 30–40 m deeper during daytime and 10–20 m shallower

during night-time (Ferreira et al., 2012). Bottom depth is used

because spawning occurs on the continental shelf limited at bot-

tom depths of approximately <250 m, see above. To produce op-

timal environmental windows for the three parameters, smooth

terms were constrained using maximum possible degrees of free-

dom of k¼ 3 in the model construction. This allowed the compu-

tation of either dome-shaped or linear relationships between

larval count data (i), yolksac (stage I) and (ii) preflexion larvae

(stage II) avoiding overfitting of single effects.

Another type of thin-plate regression splines (bs ¼ “ts”) was

used for the co-variable location expressed as a two-dimensional

term s(latitude � longitude) in the GAM. The co-variable loca-

tion was used to correct for spatial autocorrelation that naturally

appears in survey data (Wood, 2003). Pseudo replication due to

sampling the same cohort was possible, but according to the

coarse sampling grid, we assume less impact on spatial patchiness.

Temporal autocorrelation was addressed using monthly

detrended AMO and NAO indices at time of the surveys. The

AMO index accounts for temporal autocorrelation on a multide-

cadal basis and the NAO on an interdecadal basis. Both co-

variables signify a cycle (used as a cyclic smooth term here) and

address autocorrelation in the residuals (Wood, 2006). Both

parameters were used in the GAM construction as the main cli-

mate cycles in the North Atlantic. Smooth terms for climate cycle

indices in the GAMs were constrained using maximum possible

degrees of freedom of k¼ 4 in the model construction (see

above). This enables an S-curved, dome-shaped, or linear rela-

tionship between dependent and independent variables avoiding

overfitting.

Log-transformed filtered water volume from larval sampling

was treated as offset in the GAMs. The offset functions as a fixed

vector added to the linear predictor (Wood, 2006). This enables

the usage of models based on count data. Due to a high degree of

zero counts, we used a negative binomial approach with a log-

link between the dependent variable (larval count data ¼ number

of larvae at each station) and the co-variables. All four GAMs

produced dispersal parameters close to 1.0 (Table 1). A dispersal

parameter of 1.0 means that the statistical model can predict data

with the same variability as the empirical data. Multicollinearity

was tested by the variance inflation factor (VIF). All independent

variables used in the GAM construction produced VIF values <2

indicating that multicollinearity was not an issue of major con-

cern (Supplementary SI1). Smoothness selection was based on

the Generalized Cross Validation method. Full models with all

co-variables included resulted in best GAMs using the Akaike in-

formation criterion as model selection method. Diagnostic plots

of the residuals (Supplementary Sl2–4) were produced for model

Figure 2. Climate indices of the period 1988–2015 and (a) recruitment considered as numbers at age 2 years (Rage2)/SSB at t-2 (SSBt-2)
relationship with colour-coded years indicating strong in blue, moderate in yellow, and weak years of recruitment in red; (b) SST with linear
trend and 95% confidence interval and (c) anomalies ¼ SSTa of the central Norwegian Sea 69�N 2�E; (d) detrended AMO and (e) NAO.
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inspection testing homogeneity of variance and autocorrelation

(residual plots), normality (Q–Q plots), and outliers (Cook dis-

tance). With the use of the cyclic smooth terms, we could

improve residual plots substantially, but a rest of the temporal

autocorrelation was left in the final models (Supplementary SI2).

Results
Norwegian Sea climate between 1988 and 2015
The central Norwegian Sea has experienced an overall increase in

SST of 1.2�C between 1988 and 2015 (Figure 2b). This increase is

reflected in the SSTa time series with alternating negative and

Table 1. Test statistics of generalized additive models including full models Yolksacall and Preflexionall, in particular testing the factor variable
“Year” (strong, moderate, and weak recruitment year) with other explanatory variables.

Responds variable Explanatory variables EDF p-Value Obs. (n) ZI (%) Disp. Total ED (%)

Yolksacall Yearf na <0.001 4,544 64.9 1.26 27.4
Long � lat 27.39 <0.001 – – – –
T20 m 1.98 <0.001 – – – –
S20 m 1.95 <0.001 – – – –
Bottomdepth 1.00 <0.001 – – – –
AMOmonth 2.81 <0.001 – – – –
NAOmonth 2.94 <0.001 – – – –

Preflexionall Yearf na <0.001 4,544 33.0 1.00 32.6
Long � lat 25.09 <0.001 – – – –
T20 m 1.87 <0.001 – – – –
S20 m 1.96 <0.001 – – – –
Bottomdepth 1.07 <0.001 – – – –
AMOmonth 2.92 <0.001 – – – –
NAOmonth 2.99 <0.001 – – – –

Yolksacstrong Long � lat 21.74 <0.001 1,230 61.3 1.14 54.8
T20 m 1.00 >0.05 – – – –
S20 m 1.87 <0.05 – – – –
Bottomdepth 1.17 <0.001 – – – –
AMOmonth 2.77 <0.001 – – – –
NAOmonth 2.92 <0.001 – – – –

Yolksacmoderate Long � lat 25.77 <0.001 1,975 97.3 1.21 29.8
T20 m 1.93 <0.01 – – – –
S20 m 1.91 <0.01 – – – –
Bottomdepth 1.00 <0.001 – – – –
AMOmonth 2.27 <0.05 – – – –
NAOmonth 2.84 <0.001 – – – –

Yolksacweak Long � lat 25.31 <0.001 1,339 66.6 1.00 39.3
T20 m 1.98 <0.001 – – – –
S20 m 2.00 <0.001 – – – –
Bottomdepth 1.00 <0.001 – – – –
AMOmonth 2.74 <0.001 – – – –
NAOmonth 2.88 <0.001 – – – –

Preflexionstrong Long � lat 21.81 <0.001 1,230 28.0 1.03 45.8
T20 m 1.87 <0.05 – – – –
S20 m 1.79 <0.001 – – – –
Bottomdepth 1.00 <0.01 – – – –
AMOmonth 2.02 <0.001 – – – –
NAOmonth 2.96 <0.001 – – – –

Preflexionmoderate Long � lat 21.12 <0.001 1,975 40.2 0.98 46.6
T20 m 1.00 <0.001 – – – –
S20 m 1.88 <0.001 – – – –
Bottomdepth 1.00 <0.001 – – – –
AMOmonth 2.98 <0.001 – – – –
NAOmonth 2.99 <0.001 – – – –

Preflexionweak Long � lat 22.84 <0.001 1,339 27.0 1.03 46.6
T20 m 1.91 <0.001 – – – –
S20 m 1.88 <0.001 – – – –
Bottomdepth 1.01 <0.001 – – – –
AMOmonth 2.95 <0.001 – – – –
NAOmonth 2.96 <0.001 – – – –

Long � lat, longitude � latitude; T20 m, temperature at 20 m water depth; S20 m, salinity at 20 m water depth; Bottomdepth, bottom depth, AMOmonth,
detrended AMO index; NAOmonth, detrended NAO index, as well as models without the factor variable “Yearf” (Yolksacstrong, Yolksacweak, Yolksacmoderate,
Preflexionstrong, Preflexionweak, Preflexionmoderate); EDF, estimated degrees of freedom; Obs., observations; ZI, zero-inflation; Disp., dispersion parameter (over-/
underdispersion); ED, explained deviance; na, not available.
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positive anomalies before 2002 and almost constant positive

anomalies since 2002 (Figure 2c). The period after 2002 is charac-

terized by anomalies frequently exceeding 1�C. The monthly

detrended AMO time series shows a shift from a predominately

negative phase in 1988–1998 to a predominately positive phase in

1999–2015 (Figure 2d). The monthly NAO time series indicates

alternating negative and positive phases over the whole period

(Figure 2e).

Strong, moderate, and weak recruitment years
Based on the Rage2/SSBt-2 relationship, all the strongest recruit-

ment years between 1988 and 2015 happened before 2005, i.e. in

1990–1993, 1998, 1999, and 2002–2004 (Figure 2a). The biggest

ratio of 18.9 was observed in 1992, compared to an average rela-

tionship of 9.6 6 5.8. In stark contrast to this pattern, weak re-

cruitment years with an average relationship of 1.0 6 0.3 were

primarily observed after 2005, i.e. in 2007, 2008, 2010–2012,

2014, and 2015, with the lowest relationship of 0.5 observed in

2008. Two years of weak recruitment occurred before 2005, which

were 1995 and 1997. Moderate years with an average relationship

of 2.4 6 0.6 occurred throughout the whole period, i.e. in the

years 1988, 1989, 1994, 1996, 2000, 2001, 2005, 2006, 2009, and

2013. In 2004 and earlier, strong years of recruitment matched

with positive SSTa either in negative or positive AMO phases.

After 2005, the combination of positive SSTa and a positive AMO

phase yielded only moderate or weak recruitment.

Environmental windows of drifting NSS herring larvae in
strong, moderate, and weak years of recruitment
between 1988 and 2015
Using all 28 years of the time series, the GAM outputs evidenced

yolksac and preflexion larval distribution patterns being affected

by all environmental variables tested (Table 1). A significant effect

of the factor variable “Year” representing the different recruit-

ment years indicates the feasibility of a split of the time series into

strong, moderate, and weak recruitment years. The combination

of temperature, salinity, AMO, and NAO windows differs be-

tween drifting yolksac and preflexion stages amongst years of dif-

ferent recruitment success (Figures 3–7). Regarding temperature

variation in strong recruitment years, the insignificant and almost

flat regression for yolksac larvae suggests a widespread occurrence

(Figure 3a), whereas the transition to preflexion larvae indicates

increased occurrence at temperatures between 5.7 and 7.7�C
(Figure 3b). The overall temperature effect implies stable temper-

ature conditions and homogenously spread larvae for both life

stages indicated by low effect sizes. Similar temperature condi-

tions are experienced by yolksac larvae in years of moderate re-

cruitment (Figure 3c). However, a stronger shift of the

temperature regime from yolksac to preflexion larvae reveals

greater differences compared to strong years. This difference is

also observed in weak years with much higher effect sizes indicat-

ing a very strong shift of the temperature regime from yolksac to

preflexion stages (Figure 3e–f).

Water masses during the larval drift from strong years of re-

cruitment are influenced by freshwater input (Figure 4a and b).

For both early life history stages, lower salinity conditions (<34)

characterized the environment and no shift towards elevated sal-

inities are observed in years of strong recruitment. Larvae drifting

in moderate years of recruitment show a relation to water masses

with a lower salinity, but the yolksac stages indicate both drift in

higher and lower salinity water masses (Figure 4c and d). This

pattern changes in weak recruitment years when yolksac staged

larvae first occur under strongly marine conditions (>34.1)

switching to lower salinity conditions during the preflexion stage

drift period (Figure 4e and f).

A negative phase of the AMO characterizes the climate cycle of

drifting yolksac stages that resulted in strong years of recruitment

(Figure 5a). This type of negative-phase influence was markedly

less noticeable at the preflexion stage (Figure 5b). In moderate

years, the regression of the AMO follows a similar pattern to the

strong years of recruitment, but the size of the effect is very small

(Figure 5c). There is a tendency in moderate years that preflexion

larvae experience a positive AMO phase (Figure 5d). The opposite

situation for yolksac staged larvae occurred during weak years of

recruitment where most larvae were observed during a positive

AMO phase (Figure 5e and f). This is also indicated during the

preflexion stage drift but is less pronounced as the regression also

indicates a year where most of the preflexion larvae occurred dur-

ing a negative AMO phase.

A positive correlation of yolksac and preflexion larvae and an

NAO close to zero is apparent from strong years of recruitment

(Figure 6a and b). Another positive correlation with a strong

Figure 3. Generalized additive model output of the relationship
between temperature at 20 m depth (Temperature20 m) and
densities of yolksac (left) and preflexion larvae (right); (a, b) strong,
(c, d) moderate, and (e, f) weak years of recruitment. Vertical dashed
lines denote intercept of positive and negative temperature effects
on larval densities.
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NAO is modelled for yolksac larvae. In moderate years, larvae

mostly experience a negative NAO (Figure 6c and d). Thereby,

yolksac larvae occur almost exclusively during a negative NAO,

whereas a slight shift of the NAO towards a slight positive NAO is

observed for preflexion stages. A distinct shift from a positive cor-

relation between yolksac larvae towards a negative correlation for

preflexion larvae characterizes the NAO effect for weak years

(Figure 6e and f). This indicates again a strong environmental

change during the transition between these early life history stages.

Larvae in all years indicate peak occurrences in relatively

shallow water (<250 m) over the continental shelf (Figure 7).

Partial plots of bottom depth indicate a higher degree of yolksac

stages being present above the continental shelf, whereas regres-

sions for preflexion larvae, compared to yolksac larvae, flatten

with bottom depth indicating some larval dispersal towards

oceanic regions. However, larvae are rarely observed at bottom

depths >250 m and indicate main drift along the coast. Larvae

from strong years of recruitment are observed over slightly shal-

lower bottom depths than larvae in weak and moderate years.

Discussion
The GAM analyses undertaken here on 28 years of larval NSS her-

ring survey data reveal distinct variation between environmental

conditions (windows) for yolksac and preflexion stages from

strong, moderate, and weak years of recruitment. In years with

strong recruitment, larvae experienced a slight temperature differ-

ence during a negative AMO when shifting from yolksac to pre-

flexion stages. This augments evidence that, during the early

larval drift, a slower increase in water temperature in spring to-

wards summer is coincident with heightened recruitment. This is

also in line with larvae experiencing a moderate NAO that indu-

ces a slow temperature increase with moderate westerly winds.

The relationships between the two larval stages and temperature

as well as salinity in strong years of recruitment are flattened and

are in stark contrast with the relationships in weak years. The flat-

tened relationships suggest that larvae are more widespread along

their drift routes and the slight shift of the regimes between the

two stages indicates a much slower change in their environmental

regimes than in weak years. This evidences that, in the last almost

three decades, a slow changing regime in ocean properties during

the transition from yolksac to preflexion stages benefitted recruit-

ment. On the contrary, abrupt changes during the very early tran-

sition of NSS herring larvae suggest negative effects on

recruitment.

The state of both climate cycles (negative AMO and NAO close

to zero) generally fosters slower warming of water masses, which

Figure 4. Generalized additive model output of the relationship
between salinity at 20 m depth (Salinity20 m) and densities of yolksac
(left) and preflexion larvae (right); (a, b) strong, (c, d) moderate, and
(e, f) weak years of recruitment. Vertical dashed lines denote
intercept of positive and negative salinity effects on larval densities.

Figure 5. Generalized additive model output of the relationship
between monthly AMO (AMOmonth) and densities of yolksac (left)
and preflexion larvae (right); (a, b) strong, (c, d) moderate, and (e, f)
weak years of recruitment. Vertical dashed lines denote intercept of
positive and negative AMO effects on larval densities.
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can be transported in a northward pulse of the Norwegian

Coastal Current. Such characteristic pulses can be observed

through low-salinity anomalies northwards along the Norwegian

coast (Skagseth et al., 2015). Low-salinity anomalies were associ-

ated with exceptionally high recruitment years between 1935 and

2009 (Skagseth et al., 2015). An enhanced Norwegian Coastal

Current is evidenced by salinities of <35 (Sætre and Ljøen, 1971).

The partial plot of the GAM output for strong years of recruit-

ment indicates a positive relationship between yolksac and pre-

flexion stages with water masses of salinities <34. That suggests

that an enhanced Norwegian Coastal Current and a reduced in-

fluence of Atlantic water (salinities >35) were apparent in years

that resulted in strong years of recruitment. Furthermore, a

strengthened northward flow would suggest that larvae are rap-

idly transported towards nursery grounds either in fjords or in

their main nurseries in the Barents Sea. This is consistent with a

positive correlation between an accelerated larval drift and en-

hanced recruitment (Dragesund, 1970; Skagseth et al., 2015). A

more rapid drift is assumed to decrease the probabilities of a spa-

tiotemporal overlap between predators that increase in number

while the year progresses and herring larvae become a potential

prey (Husebø et al., 2009). In this context, it is suggested that,

when spawning occurs early in the year, this contributes to

improved larval survival (Vikebø et al., 2010; Slotte et al., 2019).

Even though evidence is rich that an accelerated larval transport

increases recruitment success, larval retention may happen on the

prominent banks along the drift route of herring larvae along the

Norwegian coast or in other parts of the North Atlantic (Sætre

et al., 2002b; Sinclair and Power, 2015). The debate on whether

larval retention or transport is beneficial for larval survival is on-

going (Cowen and Sponaugle, 2009; Deschepper et al., 2020).

While in certain ecosystems like upwelling or reef ecosystems lar-

val retention may be beneficial (Bakun, 2006; Woodson et al.,

2012), in others transport is key (Pineda et al., 2007). For in-

stance, successful transport of herring larvae in the North Sea has

been addressed to be key for heightened recruitment (Corten,

2013). However, in all years covered in this study, the model out-

puts suggest that larvae are retained or transported mostly above

the continental shelf indicated by a positive relationship between

the two larval stages and areas shallower than �250 m. It seems

that larvae disperse above bottom depths where the main spawn-

ing grounds are normally observed (Runnström, 1941). Hence,

larval offshore transport implies a minor process in determining

year-class strength for NSS herring. In other ecosystems, a larval

offshore transport can be an important process to replenish local

stocks, for instance the European pilchard stock near the Canary

Figure 6. Generalized additive model output of the relationship
between monthly NAO (NAOmonth) and densities of yolksac (left)
and preflexion larvae (right); (a, b) strong, (c, d) moderate, and (e, f)
weak years of recruitment. Vertical dashed lines denote intercept of
positive and negative NAO effects on larval densities.

Figure 7. Generalized additive model output of the relationship
between bottom depth and densities of yolksac (left) and preflexion
larvae (right); (a, b) strong, (c, d) moderate, and (e, f) weak years of
recruitment. Vertical dashed lines denote intercept of positive and
negative bottom depth effects on larval densities.
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Islands (Rodrı�guez et al., 1999). In every ecosystem and in those

years, in which many contributing factors of increased offspring

survival concur, the higher the chance is for a large year class.

Exceptionally large year classes in herring populations are, how-

ever, seldom compared to years in which recruitment is weak

(McQuinn, 1997; Nash and Dickey-Collas, 2005; Skagseth et al.,

2015).

Coinciding negative AMO phases with peak recruitment in the

years 1988–2015 poses questions. Before 2000, the NSS herring

stock size was positively correlated with the AMO, so a beneficial

effect of a warmer ocean (Alheit et al., 2014). This was also shown

by a reasonably close co-variation between ocean temperature

from the Barents Sea (Kola hydrographic transect time series)

and stock status represented by SSB (Toresen and Østvedt, 2000).

A shift from a negative to a positive AMO phase characterized the

North Atlantic climate around the year 1998. This would have

suggested that some strong recruitment years between 2005 and

2015 should have emerged if the historical positive relationship

between a warmer phase (positive AMO) and stock size persisted.

However, the absence of strong year classes was seen and resulted

in an estimated SSB decline of about 3 million tonnes (ICES,

2018). So, in contrast to expectations, the strongest recruitment

years before the 10-year recruitment suppression occurred during

a negative AMO phase. A negative AMO phase is normally ac-

countable for a colder regime in the North Atlantic (Delworth

and Mann, 2000). However, during a negative AMO, temperature

anomalies can still be positive. Here, we show that in years of

strong recruitment, NSS herring larvae experienced a negative

AMO phase, but largely within positive SST anomalies. This

emphasizes that an earlier “warmer” environment under a nega-

tive AMO has benefitted the survival of drifting larvae (Vikebø

et al., 2010).

So far, we observe species dynamics driven by climate cycles,

e.g. NAO and AMO driving herring populations (Gröger et al.,

2010) and other stocks in the Atlantic (Alheit et al., 2014), as well

as the Pacific Decadal Oscillation and El Nino-Southern

Oscillation driving anchovy and sardine populations (Chavez

et al., 2003; Lehodey et al., 2006). The term “warmer” in this con-

text, however, can be misleading. Basing a “warmer” state only on

historic climate cycles like the AMO would not properly account

for today’s ocean warming triggered by anthropogenic sources.

For the 10-year recruitment suppression, a question arises what

the recently unprecedented temperature increase in the

Norwegian Sea ecosystem implies for ocean life. From our results

we can infer that only weak and moderate recruitment years

emerged from larvae that experienced a positive AMO along with

positive SST anomalies. In addition, a strong shift of the NAO for

larvae in weak recruitment years and a corresponding distinct

shift from colder to warmer temperature regimes during the tran-

sition from yolksac to preflexion stages prevailed. When an eco-

system changes quickly in hydrographic traits, e.g. temperature, it

has consequences for the whole ecosystem accelerating a change

in biological interactions. For example, a change in temperature

can modify the occurrence of the phytoplankton bloom in spring

(Bissinger et al., 2008). Timing of the bloom and the onset of

spawning is essential for larval survival during the critical period

when first-feeding larvae are depended on sufficient food supply

(Hjort, 1914). Considering the whole spawning area, the onset of

the phytoplankton bloom in southern regions like Møre or more

northern regions like Røstbanken can differ by up to �40 d

(Vikebø et al., 2012). Therefore, in years where increased

temperature rises occur, the onset of the bloom may change and

may ensure either matching predator–prey situations or vice

versa (Cushing, 1969). Between 1998 and 2007, the phytoplank-

ton bloom matched the area of larval occurrence in southern

regions, e.g. Møre (Vikebø et al., 2012). In more northern

regions, e.g. Røstbanken, the years 1998, 1999, 2006, and 2007

were years of a match of NSS herring larvae and the phytoplank-

ton bloom while a mismatch in the years 2000–2005 (Vikebø

et al., 2012). While the years 1998, 1999, 2002–2004 resulted in

strong years of recruitment, weak or moderate year classes

emerged in 2000, 2001, 2005, and 2006. That implies that match–

mismatch conditions between fish larvae and their prey are only

one of several possible factors affecting recruitment dynamics in

NSS herring. Although the phytoplankton bloom is a plausible in-

dicator for the onset of critical feeding periods of herring larvae,

other larval life stage periods (Denis et al., 2016) and considering

all possible prey communities (Bils et al., 2017) are essential to

identify a match–mismatch between predator and prey.

In changing environments, the total carrying capacity of an

ecosystem can vary (Woodworth-Jefcoats et al., 2017). A shift of

the Calanus spp. communities in the southwestern Norwegian

Sea was observed in 2003 (Kristiansen et al., 2016). Calanus spp.

is the main food source for all life history stages of NSS herring

(Dalpadado et al., 2000; Prokopchuk, 2009; Ferreira et al., 2012;

Bachiller et al., 2016). In 2003, C. finmarchicus decreased in num-

bers of the overwintering stock and Calanus hyperboreus disap-

peared. These shifts were observed with increasing temperature

and salinity regimes (Kristiansen et al., 2016) and provide further

indications of a distinct change in the Norwegian Sea ecosystem

since 2004. The zooplankton production seems to have changed

after 2002 along the drift route of NSS herring larvae and may

have contributed to the 10-year suppressed recruitment (Toresen

et al., 2019). In the North Sea, warming triggered a plankton

community change coincident with two recruitment suppression

events of herring in the 1980s and 2000s (Payne et al., 2008). In

the Gulf of St. Lawrence, a decline in cold-water copepod abun-

dances was concomitant with a decrease in herring recruitment

between 1971 and 2014 (Brosset et al., 2019). In Newfoundland, a

shift of the copepod Pseudocalanus sp., a main diet of Atlantic

herring larvae (standard length >13 mm), has shifted its peak oc-

currence from spring to autumn probably decreasing feeding suc-

cess since the mid-2000s (Wilson et al., 2018). Further ocean

warming is predicted to increase the temporal mismatch between

sandeel (Ammodytes marinus) larvae and their prey (Régnier

et al., 2019). The present study including the above-mentioned

studies relates bottom-up controlled effects on larval fish survival.

However, an important next step is to investigate how climate

change effects top-down processes on early life history stages, the

second major source of recruitment variability (Bailey and

Houde, 1989), as discussed in the following paragraph.

During their development, NSS herring eggs and larvae are ex-

posed to different fish predators like haddock (Melanogrammus

aeglefinus) feeding on the demersal eggs (Toresen, 1991) and pe-

lagic predators like saithe (Pollachius virens) (Nedreaas, 1985),

adult NSS herring (Holst, 1992), or Atlantic mackerel (Scomber

scomburs) (Skaret et al., 2015) during the larval stages. When an

ecosystem warms, it allows species to migrate into habitats of

their preferred temperature ranges (Perry et al., 2005). In spring–

summer, Atlantic mackerel expands along the Norwegian coast.

In recent years, this species has increased their migration west-

ward and northward constrained by ambient temperatures
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between 5 and 15�C, with preferred temperatures 9–12�C

(Nikolioudakis et al., 2019; Olafsdottir et al., 2019). Early in the

year, environments steadily become warmer, especially in recent

years of suppressed recruitment of NSS herring. This is particu-

larly indicated by the noted difference in environments that NSS

herring larvae experience during their transition from yolksac to

preflexion stages in weak years of recruitment. Early in the year,

this temperature acceleration may provide earlier access for

Atlantic mackerel along the Norwegian coast and, thus, along the

drift route of herring larvae. This may result in a broadened spa-

tiotemporal overlap of adult Atlantic mackerel and NSS herring

larvae. If this overlap occurs, potentially high feeding rates upon

herring larvae may be expected (Skaret et al., 2015). Any mecha-

nistic interactions were not examined in this study but may pro-

vide an additional causal coherence between this long-time

recruitment suppression of NSS herring with the marked habitat

expansion of Atlantic mackerel. In this context, a quantification

of predation on early life history stages of NSS herring is needed.

However, field-based estimates of total predation mortality are

difficult to assess (Bailey and Houde, 1989). Molecular methods

quantifying predation mortality from the field may contribute to

our understanding of top-down controlled recruitment processes

(King et al., 2008).

Current causes of recruitment suppression in NSS herring are

uncertain, but a fast-changing environment seems to have trig-

gered an abrupt alteration in typical ecological patterns in the

Norwegian Sea ecosystem. In this study, we investigated recruit-

ment dynamics of NSS herring by analysing environmental con-

ditions encountered by drifting yolksac and preflexion stages over

the last three decades (28 years). Survival of these stages is as-

sumed to be a main regulator of recruitment success of this stock

(Sætre et al., 2002a). Recruitment success is improved under opti-

mal environmental conditions with low predation and enough

food supply. However, if recruitment is suppressed in consecutive

years, like in recent years (2005–2015), a reduction in the stock

size is expected through ongoing fishing practices and natural

mortality, even with a reduction in fishing effort, as in the exist-

ing management strategy (ICES, 2018). Here, we could identify

general environmental conditions that occurred simultaneously

with successful recruitment years. We show that, in the last deca-

des, recruitment success of NSS herring is concomitant with a

negative AMO, a moderate NAO, a strong Norwegian Coastal

Current, and slow temperature increases during the early larval

drift. The potential for better recruitment in a given year is in-

creased since the AMO has turned into a negative phase since

2016 (Frajka-Williams et al., 2017) and may increase the chances

of a good year class after this long period of suppression.

Currently, the management of stocks still largely focuses on stock

productivity and thereby to a lesser degree on climate influences

(Skern-Mauritzen et al., 2016). This is particularly true when it

comes to underlying processes attributed to anthropogenic cli-

mate change (Gaines et al., 2018). Hence, in dynamic altering

ecosystems, management practices need to adapt accordingly to

maintain long-term sustainable harvest regimes.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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Vikebø, F. B., Husebø, Å., Slotte, A., Stenevik, E. K., and Lien, S. V.
2010. Effect of hatching date, vertical distribution, and interan-
nual variation in physical forcing on northward displacement and
temperature conditions of Norwegian spring-spawning herring
larvae. ICES Journal of Marine Science, 67: 1948–1956.

Vikebø, F. B., Korosov, A., Stenevik, E. K., Husebø, Å., and Slotte, A.
2012. Spatio-temporal overlap of hatching in Norwegian
spring-spawning herring and the spring phytoplankton bloom at
available spawning substrata. ICES Journal of Marine Science, 69:
1298–1302.

Wilson, C. J., Murphy, H. M., Bourne, C., Pepin, P., and Robert, D.
2018. Feeding ecology of autumn-spawned Atlantic herring
(Clupea harengus) larvae in Trinity Bay, Newfoundland: is

12 M. Tiedemann et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsaa072/5828450 by Fiskeridirektoratet. Biblioteket. user on 28 August 2020



recruitment linked to main prey availability? Journal of Plankton
Research, 40: 255–268.

Wood, S. N. 2003. Thin-plate regression splines. Journal of the Royal
Statistical Society, 65: 95–114.

Wood, S. N. 2006. Generalized Additive Models: An Introduction
with R. Taylor & Francis Group, Boca Raton. 392 pp.

Woodson, C. B., McManus, M. A., Tyburczy, J. A., Barth, J. A.,
Washburn, L., Caselle, J. E., Carr, M. H. et al. 2012. Coastal fronts

set recruitment and connectivity patterns across multiple taxa.
Limnology and Oceanography, 57: 582–596.

Woodworth-Jefcoats, P. A., Polovina, J. J., and Drazen, J. C. 2017.
Climate change is projected to reduce carrying capacity and redis-
tribute species richness in North Pacific pelagic marine ecosys-
tems. Global Change Biology, 23: 1000–1008.

Handling editor: Dominique Robert

Recent constraints in herring recruitment 13

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsaa072/5828450 by Fiskeridirektoratet. Biblioteket. user on 28 August 2020


	fsaa072-TF1

