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ABSTRACT

Many persistent organic pollutants, such as polychlorinated biphenyls (PCBs), have high immunomodulat-
ing potentials. Exposure to them, in combination with virus infections, has been shown to aggravate out-
comes of the infection, leading to increased viral titers and host mortality. Expression of immune-related
microRNA (miR) signaling pathways (by host and/or virus) have been shown to be important in determin-
ing these outcomes; there is some evidence to suggest pollutants can cause dysregulation of miRNAs. It
was thus hypothesized here that modulation of miRNAs (and associated cytokine genes) by pollutants
exerts negative effects during viral infections. To test this, an in vitro study on chicken embryo fibroblasts
(CEF) exposed to a PCB mixture (Aroclor 1260) and then stimulated with a synthetic RNA virus (poly(l:C))
or infected with a lymphoma-causing DNA virus (Gallid Herpes Virus 2 [GaHV-2]) was conducted. Using
quantitative real-time PCR, expression patterns for mir-155, pro-inflammatory TNFo and IL-8, transcription
factor NF-xB1, and anti-inflammatory IL-4 were investigated 8, 12, and 18h after virus activation. The
study showed that Aroclor1260 modulated mir-155 expression, such that a down-regulation of mir-155 in
poly(l:C)-treated CEF was seen up to 12h. Aroclor1260 exposure also increased the mRNA expression of
pro-inflammatory genes after 8h in poly(l:C)-treated cells, but levels in GaHV-2-infected cells were
unaffected. In contrast to with Aroclor1260/poly(l:C), Aroclor1260/GaHV-2-infected cells displayed an
increase in mir-155 levels after 12h compared to levels seen with either individual treatment. While after
12h expression of most evaluated genes was down-regulated (independent of treatment regimen), by
18h, up-regulation was evident again. In conclusion, this study added evidence that mir-155 signaling
represents a sensitive pathway to chemically-induced immunomodulation and indicated that PCBs can
modulate highly-regulated innate immune system signaling pathways important in determining host
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immune response outcomes during viral infections.

Introduction

Persistent organic pollutants (POPs) like polychlorinated biphen-
yls (PCBs) and their Arochlor (Ars) commercial mixtures are
known to interfere with immune signaling pathways (Safe 1994;
Olsen 2005). POP production increased until the 1980s when
most were banned or regulated on a national basis
(Wohrnschimmel et al. 2016). Nonetheless, these persistent com-
pounds are still found today in the environment and in biota. A
peak in the incidence in infectious diseases between 1940 and
2004 was found in the 1980s (74.4% virus and bacteria); this was
mainly associated with an increased susceptibility of the host to
infections (Jones et al. 2008). These corresponding peaks (pollu-
tants and pathogens) could indicate an involvement of POPs in
outbreaks of infectious diseases; this further underlines the need
for a closer investigation of the immune system of hosts under
continuing exposures to POPs.

The innate immune system represents the first line of defense
in a host against pathogens; modulation of these pathways is
known to be detrimental (Muralidharan and Mandrekar 2013).

Together with cytokines, microRNAs (miRNA) are known to
play import roles in innate immune system signaling pathways
(Mehta and Baltimore 2016). miRNAs are short, single-stranded
non-coding sequences & 22-24 nucleotides (nt) in length that
are evolutionary highly conserved and expressed in multicellular
organisms as well as in viruses (Bartel 2004; Kozomara and
Griffiths-Jones 2011). It has been shown that post-transcriptional
modulation by miRNA is involved in regulating ~ 30% of the
human protein genome (Filipowicz et al. 2008), including genes
related to immune system function (Brennecke et al. 2003; He
et al. 2005; Xiao and Rajewsky 2009).

An important study system to investigate the role of miRNA
in infection and disease has been mir-155 and Gallid herpes virus
2 (GaHV-2; also known as Marek’s disease virus [MDV]). MD is
caused by chronic GaHV-2 infection in chickens (Gallus gallus
domesticus), which results in lymphoid tumors. mir-155 plays an
important role in the immune system by regulating cytokine pro-
duction, T-cell differentiation, T-cell-dependent antibody
responses, and B-cell proliferation (Thai et al. 2007). Moreover,
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Table 1. Primers used in assays.

NF-xB1  Sense 5GCAACTATGTTGGACCTGCAAA" Ghareeb et al. (2013)
Anti-sense  5’ACCCACCAAGCTGTGAGCAT

28S rRNA  Sense 5GGTATGGGCCCGACGCT Neerukonda et al. (2016)
Anti-sense  5'CCGATGCCGACGCTCAT

IL-4 Sense 5GAGAGGTTTCCTGCGTCAAG  Xing et al. (2008)
Anti-sense  5'TGGTGGAAGAAGGTACGTAGG

IL-8 Sense 5CTGGCCCTCCTCCTGGTT Ghareeb et al. (2013)
Anti-sense  5'GCAGCTCATTCCCCATCTTTAC

TNFo Sense 5CCCCTACCCTGTCCCACAA Ghareeb et al. (2013)
Anti-sense  5'TGAGTACTGCGGAGGGTTCAT

mir-155 is substantially induced by the activation of the nuclear
factor ‘kappa-light-chain-enhancer’ of activated B-cells (NF-xB)
signaling pathway in response to toll-like receptor (TLR) signal-
ing (Mehta and Baltimore 2016). Interestingly, GaHV-2 is known
to replace and down-regulate mir-155 in host cells by its own
ortholog (miR-M4) to utilize mir-155 pathways (Morgan et al.
2008; Zhao et al. 2009).

The current study thus focused on the chicken/GaHV-2 sys-
tem using chicken embryo fibroblasts (CEFs) to investigate com-
bined effects of exposure to POPs and virus infection on the
expression of immunologically relevant genes and mir-155. CEFs
have been shown to be competent in inducing various genes that
encode for proteins involved in inflammation, as well as miRNA,
upon GaHV-2 infection (Burnside et al. 2006; Burnside and
Morgan 2007). Therefore, CEFs are widely used as suitable mod-
els for GaHV-2 infections (Haunshi and Cheng 2014; Hu et al.
2016). By analyzing the expression profile of NF-«xBI, tumor
necrosis factor (TNF)-o, IL-8, and IL-4 (mRNA), and mir-155 in
response to GaHV-2 or to the synthetic viral double-stranded
(ds) RNA analog polyinosinic-polycytidylic acid (poly I:C), the
present study sought to investigate natural defense mechanisms
by the cells as well as differences between a RNA virus analog
and an actual dsDNA virus infection.

Materials and methods

Cell culture, exposure to Ar1260, virus intermediate
inoculation, and GaHV-2 infection

All experiments were conducted with CEFs (ATCC CRL12203,
Gallus gallus embryo, spontaneously-transformed) of the same
passage to ensure comparable results. The CEF were cultivated
in Dulbecco’s modified Eagle’s medium (DMEM, Sigma, Oslo,
Norway), 5% fetal calf serum, 10pg gentamycin/ml, 100 units
penicillin/ml, and 100U streptomycin/ml (complete growth
medium) (Castano-Ortiz et al. 2019). The cells were seeded at a
density of 5.2 x 104 cells/ml in 96-well plates and incubated at
39°C with 5% CO, for 48h. Thereafter, the treatment groups
were cells exposed to Arl1260 (22.23 ppm dissolved in corn oil;
this concentration was chosen based on preliminary experiments
done to attain a sublethal concentration in the CEF) and control
cells that received vehicle only. Corn oil was used instead of
dimethyl sulfoxide (DMSO) due to both the known immunomo-
dulating as well anti-viral actions of DMSO (Aguilar et al. 2002;
Timm et al. 2013).

After 24h, the supernatant of each culture was removed and
a 1:10 dilution of GaHV-2-infected CEF stock (ATCC VR-2175)
was added to half of the cultured CEFs that had undergone the
Ar1260 (or vehicle) pre-exposure. The other half of the respect-
ive treatment group cultures received only complete medium in
place of the GaHV-2-infected CEF stock to account for volume
changes in each well. The GaHV-2 dilution used was chosen to
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ensure sufficient viral action on the CEF (Waugh et al. 2018).
The same approach as above was completed with poly(L:C), i.e.
after 24h, the supernatant of each CEF culture was removed and
fresh complete medium containing 2 pug poly(L:C)/ml was added
- with and without Ar1260 pre-exposure (Waugh et al. 2018). In
cultures that did not receive poly(I:C), volume change was com-
pensated for by addition of corn oil to the wells.

In all cases, cells were harvested 8, 12, and 18h (80, 84, 90h
post-seeding) after GaHV-2 infection or poly(I:C) inoculation by
trypsinization (two washes of cells with phosphate-buffered saline
[PBS], followed by addition of trypsin-EDTA (0.25%) for 5min
at 39 °C, before adding DMEM media). Each timepoint consisted
of eight biological replicates.

RNA extraction, reverse transcription and quantitative PCR

Following manufacturer protocols, RNA extraction was per-
formed using miRNeasy Mini Kits (Qiagen, Oslo) for purifica-
tion of total RNA, including miRNA, from all the cells. All eight
biological replicates were pooled for RNA extraction to ensure
sufficient RNA. The extracted RNA was eluted into RNase-free
water and stored at —80°C. Reverse transcription of RNA into
cDNA was performed using the QIAGEN miScript II RT Kits
(#218160, 218161). cDNA were diluted to a final concentration
of 500 pg/pl with nuclease-free water and 3 ng of the final diluted
cDNA were used for amplification (run in two technical repli-
cates). Quantitative real-time polymerase chain reaction (qQPCR)
analyses were conducted using QIAGEN miScript SYBR green
PCR kits (#218073). SNORD68 was used as control gene for mir-
155 (miScript PCR controls, MS00033712, Qiagen); 28SrRNA
was used as a stable control gene for cytokine expression.

For analyzing the cDNA samples, a master mix containing
SYBR green, thermostable hot-start DNA polymerase, universal
primer (10puM) was produced in the case of mir-155 and
SNORDG68. For the analysis of all other immune genes (for NF-
kBI, TNFa, IL-8, IL-4 and 28 SrRNA), gene-specific forward and
reverse primers were added at a concentration of 10 pM instead.
The sense and anti-sense primers used are provided in Table 1.
qPCR was then done using SYBR green chemistry (as recom-
mended by manufacturer) on the Roche Light Cycler 96. The
respective temperature programs for each gene are given in
Table SI-1-SI-3. For the miRNA analysis, a gga-mir-155 miScript
custom assay (MSC0003997, Qiagen) was employed.

Statistics

Data analysis was performed in Rstudio (v3.4.0) using the speci-
alized package MCMC.qpcr (Matz et al. 2013) which presents
qPCR data (i.e. C; values) as molecular count data using general-
ized linear mixed models under Poisson-lognormal error. A
Markov Chain Monte Carlo (MCMC) algorithm was applied to
estimate effects of all random and fixed factors on the expression
of every gene. Control genes SNORD68 for mir-155 and
28SrRNA for NF-xB1, TNFo, IL-8 and IL-4 were included in the
study to minimize risk of bias (Matz et al. 2013). The control
gene stability for 285rRNA and SNORD68 is exemplary visualized
in Figure SI-1 for poly(I:C)-treated and GaHV-2-infected cells
after 8hr. Visualization of graphs was completed using the
Rstudio package ggplot2 and Inkscape 0.92.

Data analysis utilized a one-way design model in which the
different treatments are fitted as the single factor which is com-
pared to the control (media only) (Waugh et al. 2018). The sin-
gle response variable is the natural logarithm of transcript
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Figure 1. Gene expression rates for poly(l:C), Ar1260, and their combined treat-
ment in CEFs - relative to in the control (“media only”) — at 8, 12, and 18h
post-inoculation. SYBR green-labelled qPCR was performed with specific primers
for IL-4, IL-8, mir-155, NF-kB1, and TNFx. Whiskers denote 95% credible intervals
of the posterior distribution. Different letters indicate significant differences
among treatment groups (p < 0.05). *Value significantly different from control
(p < 0.05). Reactions were performed in two technical replicates.

counting rate. Different levels of expression between genes were
explained using the explanatory variable “gene”. Further on, the
model was calculated with gene-specific effects for the treatments
(gene:treatment), as well as random sources of variation on gene
expression in, for example, the biological and technical replicates
(sample) (Equation 1).

Ln (rate) ~ gene -+ gene: treatment + sample (1)

The Markov chain Monte Carlo was run with 14,000 itera-
tions, discarding the first 4000. The MCMC-based p-values and
95% credible intervals were calculated for each esti-
mated parameter.

Estimation of statistical significance

Significant fixed effects refer to those in which the 95% credible
interval (Bayesian analog to confidence interval) did not include
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Figure 2. Gene expression rates for GaHV-2, Ar1260, and their combined treat-
ment in CEFs - relative to in the control (“media only”) - at 8, 12, and 18-h
post-infection. SYBR green-labelled qPCR was performed with specific primers for
IL-4, IL-8, mir-155, NF-kB1, and TNFo. Whiskers denote 95% credible intervals of
the posterior distribution. Different letters indicate significant differences among
treatment groups (p < 0.05). *Value significantly different from control (p < 0.05).
Reactions were performed in two technical replicates.

zero. The credible interval contains the true value of the param-
eter within a set probability (0.95 in this case); confidence inter-
val refers to the range that included the true parameter value in
95% of the independent re-runs of an experiment (Matz et al.
2013). The MCMC.qpcer package calculated p-values for all
potential effects of interest and corrected for multiple testing. To
calculate p-values, posterior distribution of a parameter of inter-
est was assumed normally distributed for calculation of Bayesian
z-scores (mean of posterior/SD). A standard z-test was also per-
formed to derive a two-tailed p-value.

Results

Figure 1 presents log,-fold changes (relative to the untreated
control) from the poly(I:C) or GaHV-2, Arl260, Arl260/
poly(I:C), or Ar1260/GaHV-2 treatments at 8, 12, and 18h. All
fold-change and significant values for the treatments are given in



Supporting Tables SI-4-SI-18. Poly(I:C) or GaHV-2 alone repre-
sent responses of “non-polluted-infected” hosts to a virus.
Ar1260 represents a polluted host without a virus (polluted/unin-
fected). Ar1260/Poly(I:C) or Ar1260/GaHV-2 represent responses
of an “polluted/infected” host to a virus infection. Using this
approach, one can describe how presence of multiple stressors
(infection, pollution) significantly modulate natural immune
responses of hosts infected with RNA (poly(I:C)) or DNA
(GaHV-2) virus.

Effects of Ar1260 on expression of important immune
response genes

How Arl1260 alone modulated immune responses in the absence
of viral activation was evaluated first. Compared to untreated
control cells, CEF treated with Ar1260 showed significant modu-
lations across the time series. The most distinct was that miR-
155 was up-regulated at all timepoints (Figures 1 and 2; Tables
SI-6, SI-11, SI-16). At 8h, IL-8 was significantly up-regulated
(Table SI-5) but at 12h significantly down-regulated (Table SI-
10); by 18h it had returned to status quo (Table SI-15). In com-
parison, TNFx mRNA levels were significantly up-regulated at
18h (Table SI-18), but no earlier. Neither IL-4 nor NF-xBI
mRNA levels were modulated by Ar1260 at any timepoint.

Effects of Ar1260 in combination with virus analog poly (I:C)
on immune response genes

By the first harvest (8 hr), poly(I:C) caused a significant up-regu-
lation of mir-155 and IL-4 mRNA expression in poly(I:C) treated
cells (Figure 1). Expression patterns in the Ar1260/Poly(I:C)
hosts were significantly modulated from this baseline; specific-
ally, expression of mir-155 was significantly down-regulated
(Table SI-6) while that of all other immune genes analyzed were
significantly up-regulated.

In Ar1260/Poly(I:C) treated cells, expression of mir-155 con-
tinued to be significantly down-regulated at 12h compared to
levels seen with non-polluted/poly(I:C) treated cells (Table SI-
11), indicating continued suppression of a normal immune
response to virus infection. However, the modulation of the
other immune genes had returned to a similar expression pattern
to that seen in non-polluted/poly(I:C) treated cells. By 18h,
expression patterns were largely similar between treatments,
demonstrating that the majority of the effect occurred early dur-
ing exposure and infection (Figure 1).

Effects of Ar1260 and DNA virus (GaHV-2) on immune
response genes

After 8h of GaHV-2 infection, in non-polluted cells the majority
of immune response genes showed a significant up-regulation
(Figure 2) indicating they are important in non-polluted/infected
hosts for responding to this DNA virus. miR-155 was not signifi-
cantly up-regulated in non-polluted/infected vs. non-polluted/
uninfected control cells (Table SI-21). There were no differences
in these profiles in the polluted/infected (Ar1260/GaHV-2) cells
compared to the non-polluted/infected (GaHV-2) cells at 8h.
Whereas expression profiles with these two treatments did not
significantly differ, they did differ from polluted/uninfected cells,
suggesting the virus may be over-riding any response to
the pollutant.
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By 12-h post infection, the expression profiles switched from
largely immune response gene-regulated to an mir-155-domi-
nated pattern (Figure 2). mir-155 expression was significantly
up-regulated by all treatments (Table SI-26), with the effect sig-
nificantly greater in polluted/infected (Ar1260/GaHV-2) cells
than in either non-polluted/GaHV-2-infected or polluted/unin-
fected cells (Table SI-26). On the other hand, IL-4, IL-8, NF-kBI,
and TNFo mRNA expression tended toward down-regulation
after 12h in the Arl1260/GaHV-2 and unpolluted/GaHV-2-
infected cells (Table SI-24-28). An outcome that contrasted with
the observations at 8 hr. While TNFx was the only gene signifi-
cantly down-regulated in Ar1260/GaHV-2-treated cells, the regu-
lation did not differ significantly compared to the other
treatments (Table SI-28). Further, the down-regulations of IL-4
and IL-8 mRNA were significant in the non-polluted/GaHV-2-
infected cells (Table SI-24, SI-25).

At 18-h post infection, the expression of mir-155 and the
other immune response genes in Ar1260/GaHV-2- and GaHV-2-
treated cells did not significantly differ from the non-treated
control cells (Table SI-29-33). Taken together, this indicated
largely that the important modulations, and the immune
response, occurred early on in infection, i.e. within first 12 h.

Discussion

This study investigated effects of PCBs on important immune
response genes as well as on the immune response to virus infec-
tions. This study looked at both RNA (virus analog poly(I:C))
and DNA (GaHV-2) virus examples. This study also had a large
focus on mir-155 as this has been suggested in previous work
(see Waugh et al. 2018) to be a potentially under-described com-
ponent of select innate immune system signaling pathway that
could be modulated in response to PCBs.

Responses after treatment with Ar1260

Unlike where mir-155 expression was seen as down-regulated
after 48h in primary CEFs exposed to Arl250 (Waugh et al.
2018), here, 24h exposure to Arl260 resulted in up-regulated
mir-155 levels at all harvesting timepoints examined. The previ-
ously described disruption of mir-155 expression was assumed to
be related to an Aroclor-mediated disruption of NF-kB signaling.
In the current study, NF-xBl mRNA levels were down-regulated
by 36h post-exposure (12h post-infection) whereas there was
up-regulation at all the other timepoints. As such, one could
assume other Aroclor-mediated induction pathways might be a
basis for the observed up-regulation. For example, Ar1260 is able
to bind the aryl hydrocarbon receptor (AhR) (Safe 1994; Luthe
et al. 2008; Wahlang et al. 2014) and AhR ligands are known to
activate c-Jun N-terminal kinase (JNK) signaling, which might
be a basis for increased induction of mir-155 by Arl260
(Henklova et al. 2008; Wahlang et al. 2014). In the end, it is pos-
sible that these observed differences between the present study
and Waugh et al. (2018) results might be timepoint-specific,
solvent-related (corn oil vs. DMSO), due to percentage chlorine
(by weight in Ar1250 vs. Ar1260), or because of the use of pri-
mary CEF vs. a CEF cell line.

Interestingly, TNFax mRNA levels in Arl1260-treated cells
showed the same regulation trend as NF-xBl - but the TNFu
underwent significant up-regulation after 18 h. TNFa is known
to be expressed upon NF-kB signaling; as TNFuo itself strongly
activates NF-kB it thus plays a central role in amplifying and
extending inflammatory processes (Wallach et al. 1999). Levels of
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IL-4 reflected a similar regulation trend as with NF-xBI and
TNFo, suggesting similarities in induction pathways (Zamorano
et al. 2001). The significant increase in IL-8 at 32h post-exposure
(8-h post-infection) might be associated with activation of AhR,
since human macrophage IL-8 levels increase in response to AhR
ligands (Vogel et al. 2005).

Responses to RNA virus analog (poly(I:C))

The demonstrated significant up-regulation of mir-155 in non-
polluted/poly(I:C)-treated cells seen here was consistent with pre-
vious studies (Hu et al. 2015; Waugh et al. 2018). Up-regulation
of mir-155 during viral infections is regarded as beneficial due to
an enhanced anti-viral immunity (Tili et al. 2013; Mehta and
Baltimore 2016). However, it should be noted that over-expres-
sion of mir-155 is linked to the oncogenicity of viruses
(O’Connell et al. 2009; Zhao et al. 2011). Therefore, mir-155 lev-
els must be tightly regulated in response to infections.

Induction of mir-155 was previously assumed to be related to
TNFo autocrine/paracrine signaling (O’Connell et al. 2007).
However, in the current study, TNFx mRNA expression was not
up-regulated along with miR155 in poly(I:C)-activated cells at
the later timepoints evaluated (i.e., 12 and 18 h). Therefore, other
mechanisms of mir-155 induction in CEF are probably involved
during the later stages, i.e. the J]NK pathway through transcrip-
tional activation of mir-155-encoding bic gene and the AP-1
complex (O’Connell et al. 2007; Tili et al. 2013). Moreover, mir-
155 targets the suppressor of cytokine signaling 1 (SOCS1) and
SH2 domain-containing inositol 5phosphatase 1 (SHIP1), thereby
regulating NF-xB activity (Mann et al. 2017). However, in the
current study, NF-kBI mRNA expression was comparable to that
of TNFx mRNA along with mir-155 only during the early stages
(8h) of exposure to poly(I:C).

The up-regulation of IL-8 mRNA levels after 8h in unpol-
luted/poly(I:C)-treated cells was in agreement with a previous
study (Haunshi and Cheng 2014). This outcome was assumed to
be related to TLR3 signaling and regarded as an important
mechanism in host resistance against viral infections (Abdul-
Careem et al. 2009; Haunshi and Cheng 2014). Lastly, the signifi-
cant up-regulation of IL-4 mRNA levels seen in the current study
at 8h is regarded as beneficial as measure to control inflamma-
tory signaling (Ghiasi et al. 1999; Zamorano et al. 2001).

Taken together, these results indicated that during the early
stages of an infection (i.e., up to 8hr), mir-155 possibly contrib-
uted to a feed-forward loop that amplified NF-kB/TNFa signal-
ing whereas after 12h regulatory mechanisms seemed to take
over to down-regulate pro-inflammatory cytokine expression
induced by poly(I:C). In a viral infection in situ, this would pos-
sibly be useful to help a host avoid developing excessive or
chronic inflammation.

Effect of Ar1260 on responses to poly(l:C)

Whereas CEF seemed to react to poly(I:C) by up-regulating mir-
155 levels, the combination with Ar1260 resulted in a disruption
of mir-155-inducing pathways after 8 and 12h (mir-155 was sig-
nificantly down-regulated). mir-155 deficiency in mice resulted
in defective B- and T-cell responses that were linked to impaired
antigen presentation and reduced antibody production (Faraoni
et al. 2009). Further, a previous study demonstrated that mir-155
deficiency in mice ultimately resulted in reduced competence to
fight infections; this was associated with the role of mir-155 as
an inflammatory amplifier (Mann et al. 2017). The disruption of

mir-155 expression therefore indicates that continuous exposure
to Ar1260 results in reduced host immunity and aggravated out-
comes during RNA virus infections. The observed down-regula-
tion of mir-155 expression seen here was in agreement with
findings by Waugh et al. (2018) wherein mir-155 was signifi-
cantly down-regulated compared to control and to poly(L:C)-
treated cells after 24 hr. However, in contrast to that study, the
present study demonstrated a down-regulation of mir-155 only
with the combined treatment. Interestingly, at 18h after
poly(I:C) treatment, the cells showed a significant up-regulation
in all treatments, opposite to the previously described effects
after 24h (Waugh et al. 2018).

Except for IL-4, all investigated immune response genes
showed an increased expression due to the Arl260 in combin-
ation with the poly(I:C) after 8h. This indicated that Ar1260-
mediated disruption of NF-xB signaling was not occurring dur-
ing early stages, as was seen by Waugh et al. (2018). Rather, the
results here indicated that DAMPs generated at a sublethal
Ar1260 concentration synergistically increased NF-«kB signaling
in the early stages. Further, sensing dsRNA via TLR3 in the case
of poly(I:C) might not be sufficient to substantially activate NF-
kB signaling. During later stages (i.e., 12 and 18h), poly(Il:C)-
treated cells here showed a comparable regulation pattern of the
investigated genes irrespective of Ar1260 exposure. This might
be associated to the fact that in situ influxing immune cells - like
macrophages - might be major sources of pro-inflammatory sig-
nals during later stages of infection.

Interestingly, Ar1260/poly(I:C)-treated cells displayed signifi-
cant down-regulation of TNFo mRNA levels after 12h. PCB mix-
tures have previously shown to dampen LPS-induced TNFa
expression in murine macrophages after 24h, which was
assumed to be related to suppression of inflammatory enzyme
production at the transcriptional level (Santoro et al. 2015).

Responses to infection with GaHV-2

The up-regulation of mir-155 after GaHV-2 infection in non-pol-
luted CEF seen here is in agreement with data from the study of
Hu et al. (2016). The ability of CEF to react to GaHV-2 by
inducing miRNA was previously demonstrated by sequence ana-
lysis; host miRNA represented the dominant form of miRNA
induced in CEF during GaHV-2 infections (81%), whereas only
0.6% contributed to GaHV-2-encoded miRNA (Burnside and
Morgan 2007). In T-cells, where GaHV-2 is known to induce
malignant transformations, the regulation of host miRNA only
contributed to 32% of all miRNA and GaHV-2-encoded miRNA
represented 51% of the total pool (Yao et al. 2008). Of all the
miRNA, mir-155 was especially down-regulated in virus-trans-
formed T-lymphoma cell lines; up-regulation of its ortholog
miR-M4 was regarded as major determinant of GaHV-2 onco-
genicity (Yao et al. 2009; Zhao et al. 2011). Thus, up-regulation
of mir-155 seems to represent an important mechanism for cells
to not only fight GaHV-2 infection but also to avoid transform-
ation events induced by GaHV-2.

All the immune response genes investigated here were up-
regulated after 8h of GaHV-2 infection and showed, except for
mir-155, an enhanced expression compared to levels seen in
unpolluted/poly(I:C)-treated cells. Interestingly, both GaHV-2
and poly(I:C) are known to significantly up-regulate TLR3
mRNA in primary CEF after 8h (Haunshi and Cheng 2014; Hu
et al. 2016). However, additional signals provided by GaHV-2,
like the production of DAMPs, might (in contrast to in
poly(I:C)-treated cells) be a reason for the significant expression



of TLR3-induced defense mechanisms like the activation of NF-
kB signaling. One study revealed that TLR3-mediated anti-viral
effects in GaHV-2-infected CEF were associated with production
of inflammatory cytokines (Zou et al. 2017). Therefore, modula-
tion of NF-kB signaling pathways was expected to represent an
important target during GaHV-2 infection. After 8h, the CEF
here were still able to induce NF-kBI in response to GaHV-2-
infection. During later stages, a modulation of NF-xBI signaling
might be a cause for the general down-regulation observed after
12 hr, since GaHV-2 has been shown to be able to down-regulate
TLR3 protein expression in CEF (by a targeting TLR3 via miR-
M4; Hu et al. [2015]).

The regulation of TNFa in GaHV-2-infected cells showed
an expected similar regulation pattern to that for NF-xBI.
Since TNFo exerts anti-viral properties against herpesviruses
(Seo and Webster 2002), an up-regulation here after 8h is
expected to be a beneficial event in that it helps to inhibit
GaHV-2 replication. The up-regulation of IL-8 mRNA expres-
sion here after 8 h is in agreement with a previous study where
IL-8 was up-regulated after 8h in GaHV-2-infected CEF. This
outcome is regarded as beneficial event during GaHV-2 infec-
tion due to the chemo-static properties of IL-8 that are
assumed to be linked to resistance against GaHV-2 (Parcells
et al. 2001; Haunshi and Cheng 2014). Interestingly, GaHV-2
has been shown to produce its own ortholog (vIL-8), which in
contrast to chicken IL-8, attracts B- and T-cells (main hosts of
GaHV-2) but fails to attract heterophils (Parcells et al. 2001;
Engel et al. 2012). Thus, any active down-regulation effects
induced by GaHV-2 might be a cause for the observed signifi-
cant down-regulation of IL-8 seen after 12h. IL-4 mRNA
underwent a significant down-regulation in GaHV-2-infected
cells after 12 h; this further indicated that GaHV-2 was capable
of actively down-regulating expression of several key immune
response genes in CEF. A down-regulation of IL-4 is assumed
to have a negative impact on the adaptive immunity due to the
function of IL-4 in the differentiation of antigen-naive T-cells
(Xing et al. 2008).

Effect of Ar1260 on responses to GaHV-2 infection

Ar1260/GaHV-2 treated cells showed an increased upregulation
of mir-155 after 8 and 12h compared to Ar1260 polluted/unin-
fected cells, indicating a GaHV-2-related induction of mir-155
during early stages. After 12hr, mir-155 expression in the
Ar1260/GaHV-2-treated cells was significantly higher compared
to that seen with both individual treatments; this demonstrated a
synergism with respect to the expression of mir-155. Therefore,
opposite to what was seen in Ar1260/poly(I:C)-treated cells, these
CEF seemed to react to the combined treatment with an over-
expression of mir-155, which has been linked to malign transfor-
mations by targeting oncogenic suppressors or anti-inflammatory
signaling pathways such as SOCS1 and SHIP1 (O’Connell et al.
2009; Tili et al. 2013). The present results suggest that expression
of mir-155 can be induced by various pathways, i.e. GaHV-2
seemed to induce a different pathway that was itself enhanced by
Arl1260 pre-exposure — whereas the poly(I:C)-induced pathway
seemed to be disturbed in the Arl260 pre-exposed cells. An
over-expression of mir-155 has not only been linked to chronic
inflammation and cancer, but also to autoimmune disorders as
well as cardio-vascular diseases (Faraoni et al. 2009). The com-
bination of continous host exposure to persistent immunomodu-
lating pollutants together with an infection by a DNA virus that
is capable of inter-fering with highly-regulated innate immune
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system pathways is therefore expected to represent an important
link between chronic inflammation and cancer.

All of the immune response genes investigated here were
comparably up-regulated after 8h in Ar1260/GaHV-2-treated
and in unpolluted/GaHV-2-infected cells. These results indicated
that GaHV-2 was the main agent involved in induction of NF-
kB-dependent signaling after 8h, since Ar1260 polluted/unin-
fected cells did not significantly up-regulate expression of any of
the investigated genes. Similar observations were made in a study
of perfluorooctane sulfonate (PFOS)/GaHV-2-infected CEF,
wherein the combined treatment resulted in a similar expression
of NF-kBI, TNFa, IL-8, and IL-4 compared to unpolluted/
GaHV-2-infected CEF (Castano-Ortiz et al. 2019).

After 12 and 18h, most of the investigated genes showed
comparable levels with and without Ar1260 pre-exposure — with
the exception of IL-8 after 12h in Ar1260/GaHV-2 treated cells,
which was significantly different from levels seen in both indi-
vidual treatments. This observation indicated that pre-exposure
to Ar1260 may prevent GaHV-2-mediated down-regulation of
some genes in CEF. Similar observations were made for IL-4, i.e.
unpolluted/GaHV-2-infected CEF had significantly down-regu-
lated IL-4 levels after 12h whereas in cells that under-went a
combined exposure there was only a slight down-regulation. The
results at 18 h further indicated that most cytokine regulation in
GaHV-2-infected CEF took place during the early stages (i.e., up
to 12 hr), since none of the investigated mRNA were significantly
up- or down-regulated by this time.

Conclusions

The results of the study demonstrate how the PCB mixture
Aroclor - in combination with RNA and DNA virus infections,
modulates the expression of tightly-regulated innate immune sys-
tem signaling pathways. Such modulations are expected to have
even long-term detrimental effects for hosts including for
example chronic inflammation and cancer, and might ultimately
contribute to outbreaks of infectious diseases in polluted areas.

The combination of poly(I:C) and Ar1260 revealed a dis-
ruption of mir-155 expression up to 12h after poly(I:C) treat-
ment, which likely poses a deleterious effect for a host due to
involvement of mir-155 in inducing early anti-viral responses.
In contrast, exposure to Ar1260 resulted in increased mir-155
expression after 12h in GaHV-2-infected cells. Over-expres-
sion of mir-155 is known to be detrimental to host immunity
and could ultimately also potentiate cell transformations. Due
to the observed differences in poly(I:C)-treated and GaHV-2-
infected cells, the results lead us to conclude that GaHV-2-
infected cells induce mir-155 independent of TLR3 signaling.
Further, differences between a viral analog and an actual viral
infection highlight the importance of testing multiple stres-
sors when assessing immunotoxic potentials of chemicals and
adds important new evidence that mir-155 signaling repre-
sents a sensitive pathway subject to chemical-induced
(immuno)modulation.

Future studies of other early signals during viral infections
(like CXCL9, CXCL10, interferons or miR-146a) in combination
with expression patterns of proteins (to account for any post-
transcriptional modulation) might yield further insights into the
regulation of signaling pathways induced by poly(I:C) or GaHV-
2 and their potential modulation by PCB mixtures.
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