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Abstract 

This thesis reports from a research study which investigates the role of 

technology rich environments in undergraduate engineering students’ processes 

of learning mathematics. The research is founded within a naturalistic research 

paradigm (Lincoln, 2007) and adopts a case study design (Yin, 2014). The two 

cases under consideration comprise a small group of undergraduate electronics 

engineering students, selected as participants, from an online and a blended 

learning environment (Borba et al., 2016). The first case study of online 

environment incorporates an online system, MyMathLab, for homework and 

assessment, and tutorial videos for the lectures in a calculus course. The second 

case study of blended environment involves group work using paper and pencil 

and face-to-face lectures instead of tutorial videos in the subsequent course for 

the same class. The incorporation of digital systems in mathematics, particularly 

with regard to students’ interactions, has not been researched enough (Borba et 

al., 2016). Qualitative approaches were adopted to collect and analyse the data, 

and empirical material was collected through multiple methods including student 

observations, interviews, field notes, and students’ weekly reports.   

The aim of the thesis is to analyse students’ interactions with these 

environments and to get insights into the factors which play a role in students’ 

engagement with mathematics. In doing so, the study explores dynamics that 

underlie students’ learning activities including students’ interactions with 

available resources, and macro and micro conditions of the learning environment. 

Cultural historical activity theory (CHAT) was used as an overarching theoretical 

framework for conceptualising students’ learning activities and for analysing the 

data. 

The thesis consists of four empirical studies which also portray the 

development of my work. The preliminary research report (Study 1) focuses on 

the manner in which the online environment afforded execution of mathematical 

competencies (Niss, 2003; Niss & Højgaard, 2011). The unit of analysis in this 

study was mediated action (Wertsch, 1998). Study 2 investigates the manner in 

which the students used several resources in their online work. The 

documentational approach to didactics (Gueudet & Pepin, 2016) was here used 

as the theoretical framework to analyse the nature of students’ techniques 

(Artigue, 2002) associated with several resources.  
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Study 3 explores affordances (Bærentsen & Trettvik, 2002) of the online 

environment through the holistic perspective of CHAT. In particular, 

Engeström’s (1987) extended triangular model of an activity system and 

Leont’ev’s (1974) hierarchical models of activity have been combined to analyse 

the macro and micro aspects of students’ activity in the online environment. The 

results illustrate that the macro conditions of the learning environment related to 

the organisation of the course play a part in how students interact with the 

mathematical tasks. Further, the results illustrate that the micro conditions of the 

online system led the students to focus only on getting the final answers of the 

mathematical tasks. The results show that the availability of the powerful 

computing tools also affects the manner in which students engage with 

mathematical tasks. The engagement depends upon the nature of tasks in relation 

to the functionalities of the tools. The study suggests the need to design such 

tasks which invite students to explore involved mathematical properties by using 

the dynamic properties of the digital tools instead of solely computing the final 

answers. 

Study 4 focuses on students’ reasoning processes with the use of both digital 

resources and paper and pencil. The data from both case studies, online and 

blended environment, were used in this study. By leaning on an existing research 

framework for mathematical reasoning (Lithner, 2008), the reasoning processes 

were modelled through a cultural historical perspective on learning (Engeström, 

1987). The developed model of the reasoning processes is illustrated Figure 5 in 

this thesis. The model facilitated the analysis of the factors of the learning 

environment which played a part in students’ reasoning.  

Overall, the thesis contributes to research in mathematics education, and 

suggests various implications for the use of technology in mathematics 

instruction generally and particularly for undergraduate engineering 

mathematics. Implications are also suggested for further research concerning the 

use of technology-based tools in mathematics education.  
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1 Introduction  

This doctoral thesis explores dynamics of undergraduate engineering students’ 

activities while learning mathematics in technology enhanced environments. The 

thesis is based on four empirical studies which explore different facets of students’ 

activities.  

This introductory chapter provides the background, rationale, and overview of the 

thesis. Section 1.1 presents a brief overview of research on technology use in 

mathematics education followed by the significance of technology use in engineering 

mathematics in Section 1.2. Section 1.3 provides details of the learning environments 

which serve as the empirical basis of my research. After that, the aims of the research 

and research questions are presented in Section 1.4. Finally, Section 1.5 gives an 

overview of the thesis. 

1.1 Technology in mathematics education 

With the rapid growth in the field of technology, human activities are becoming 

increasingly digitalized. This transformation has impact on the education sector and 

also on mathematics education. A wide variety of technology-based tools are used in 

today’s mathematics classrooms which may facilitate the processes of learning and 

teaching. In accordance with Hoyles and Noss (2009), the technology itself is unlikely 

to influence the mathematical development in any significant ways. It is how it is 

designed to support learning and how it is embedded in activities designed with some 

specific learning objectives that are crucial. Mathematical learning and cognition are 

linked with the physical and virtual tools through which mathematics is mediated. 

The huge variety of digital tools available at present offer various functionalities 

which are relevant to teaching and learning of mathematics. For instance, Hoyles and 

Noss (2009) suggested the following four categories that distinguish between different 

ways in which digital tools have potential to affect mathematical cognition: i) dynamic 

and graphic tools; ii) tools that outsource processing power; iii) new representational 

infrastructure; and iv) tools focusing on connectivity and shared mathematics. This 

categorisation is still useful after a decade although one might find examples of tools 

that fall under multiple categories at the same time. The first category of dynamic tools 

offer dynamic, graphic, and interactive functionalities through which learners can 

explore mathematical objects and relationship among them. These functions provide 
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students and teachers with opportunities to draw attention to those factors which 

remain unnoticed and to make explicit those which are often left unobserved (Noss & 

Hoyles, 1996). Examples of dynamic tools include GeoGebra, Cabri Geometry, and 

The Geometer’s Sketchpad. 

The key utility of the second category, tools that outsource processing power, is 

that the mathematical computation is taken over by technology. Computer algebra 

systems (CAS) such as Maple, Mathematica, Mathcad, Matlab, and Maxima represent 

examples of outsourcing tools. The third category of tools, such as programming 

languages, offer new representational infrastructure in relation to the paper and pencil 

media and thus have potential to affect students’ meaning making. The last category of 

tools is based on connectivity and offer a platform for collaboration between 

participants of the classroom and offer opportunities for communicating mathematical 

ideas, results, and reflections, both synchronously and asynchronously. The past years 

have shown tremendous development in these internet-based tools including recent 

functions of sharing mathematical content and automation of the online activities 

through assistance and feedback. The online system, MyMathLab, used in this 

research can be taken as an advanced example of such tools (for more details of MML, 

see Section 2.1.1). In the research reported in this thesis, tools including dynamic 

software (GeoGebra, first category), a computer algebra system (Maxima, second 

category), and an online interactive system (MyMathLab, fourth category) come under 

consideration.  

It is pointed out in several studies (e.g., Borba et al., 2016; Pepin, Choppin, 

Ruthven, & Sinclair, 2017) that the research in mathematics education is not keeping 

pace in exploring all aspects of implementation of different digital technologies. There 

are significant challenges linked to the use of technology in the learning and teaching 

of mathematics as well as to the related research. The most obvious difficulty is the 

rapid advance of the technology itself (Hoyles & Noss, 2009). The advanced digital 

tools afford new functionalities which requires adopting new research perspectives 

including theoretical and methodological stances within a short time span. For 

instance, Artigue (2002) points out challenges linked to implementation of computer 

algebra systems (CAS), among others, as to be handling aspects of tools including the 

complexities regarding the use of the tools themselves and the mathematical needs of 

their use, the problems arising with their connection to paper and pencil techniques, 

and their institutional management. Some of these aspects have also emerged in my 
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research when students employed several tools in their learning activities in 

mathematics.  

1.2 About the use of technology in engineering mathematics 

Engineering mathematics concerns applying mathematics to complex real-world 

problems. It is considered as a branch of applied mathematics which combines the 

theoretical and practical aspects of mathematics relevant to engineering and industry 

problems. It may seem that the engineers are more interested in applying the 

mathematical identities than studying the mathematical basis of these identities and the 

relationship among them. At the outset, it may look as if the mathematics is like a 

toolbox for the engineers who apply it in the practical contexts. Kent and Noss (2000), 

however, argue that the metaphor of application is not straightforward. Mathematics is 

shaped by its applications and it takes on meaning which is derived from the setting in 

which it is used. Therefore, there are certain aspects which demand attention while 

looking at the application metaphor such as: What is it that is applied? To what exactly 

is it applied? Do the different people, such as mathematicians and engineers, consider 

the applications in a similar manner or not? Moreover, previous research studies (for 

example, Gynnild, Tyssedal, & Lorentzen, 2005; Hirst, Williamson, & Bishop, 2004) 

also illustrate that engineering students experience difficulties in transferring specific 

mathematical skills into different practical contexts. 

In todays’ technology enhanced professional environments, professional engineers 

report the use of technology-based tools in order to solve mathematical tasks at work 

(Van der Wal, Bakker, & Drijvers, 2017). During their education, engineering students 

also get experience with more and more sophisticated technological tools such as 

Mathcad, Mathematica, Matlab, and Maple, etc. Kent and Noss (2000) highlight that 

the design of the technological tools as well as the didactical activities shape 

engineering students’ interactions with mathematics. These researchers argue that 

there is a need to consider the epistemology instead of restricting the issue to the use of 

technology in mathematics. The computational power underlying some of these tools 

let the students use mathematics in unprecedented manner through push button 

functions. In such cases, an appropriate question to ask is how the connections 

between mathematics and engineers can be made visible by using the computer 

software tools. The problem of technology use also comes down to what mathematics, 
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and in what forms, should be visible for engineers since different technological tools 

offer different symbolic and graphic representations. 

1.3 The online and blended learning environment 

The interaction and feedback possibilities in emerging digital systems allow creation 

of online and blended learning environments for students (Borba et al., 2016). The 

implementation of such systems leads to qualitatively different patterns of interactions 

between teachers and students, and between students and mathematics (Pepin et al., 

2017), than the usual classroom environment. There exists little to no research on 

students’ interactions with mathematics in such environments (Borba et al., 2016).  

In this thesis, a cultural practice of incorporation of a digital system, MyMathLab 

(for details, see Section 3.4). for undergraduate engineering mathematics is studied. 

During two consecutive semesters of 2017, the structure of mathematics courses for a 

class of undergraduate electronics engineering shifted from an online to a blended 

learning environment. This research study explores a small group of students’ 

activities in both learning environments. The learning environment is theorised 

through a cultural historical perspective (Cole, 1996; Engeström, 2014). Specifically, it 

is characterised by the extended triangular model of an activity system (Engeström, 

1987) (see Section 2.2.4, Section 2.2.5, and Study 3). This holistic view of the learning 

environment incorporates and takes the role of tools as well as the role of social 

relations into account for studying human learning and cognition.  

1.4 Aims and research questions 

The thesis aims to explore the impact of the learning environments, online and 

blended, for students’ engagement with mathematics. Different aspects of students’ 

activities are explored in order to make sense of the role of these environments. These 

research aims were formulated as the following research issues:  

A. How do undergraduate engineering students engage with mathematics in an 

online and a blended learning environment? 

B. How do factors from these learning environments contribute to students’ 

learning activities in mathematics? 

To comply with the empirical context, the aforementioned aims are operationalised 

into the following research questions (RQs), which have been addressed in the four 

resulting studies.  
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RQ1: What traces of mathematical competencies are observed in students’ 

work when they practice mathematics digitally? 

RQ2: How does this environment afford the execution of these mathematical 

competencies? 

RQ3: How do engineering students incorporate resources during their work in 

an online learning environment? 

RQ4: How do a small group of undergraduate engineering students interact 

with an online environment in their mathematical learning activity? 

RQ5:  In what manner does this environment afford students’ engagement with 

mathematics? 

RQ6: How do a small group of undergraduate engineering students accomplish 

mathematical reasoning processes in an online and a paper and pencil 

environment? 

The 6 research questions are addressed in four empirical studies in the following 

manner: Study 1 addresses the RQ1 and RQ2, Study 2 addresses RQ3, Study 3 addresses 

RQ4 and RQ5, and Study 4 addresses RQ6. 

1.5 Overview of the thesis 

The thesis consists of six chapters: Introduction (Chapter 1), Theoretical foundations 

(Chapter 2), Methodological approaches (Chapter 3), Summary of research papers 

(Chapter 4), Conclusion and discussion (Chapter 5), and Implications of research 

(Chapter 6).  

In the present chapter, I have provided the background and the aims of this 

research in relation to the empirical context. Chapter 2, elaborates the conceptual 

framework (Lester, 2005) which underlines the theoretical basis of this research study. 

For theorisation of the research problem(s), this chapter provides the details of the 

used theories as well as an argument for selecting the particular theories. The 

discussion of all the important terms and theoretical concepts relevant for the research 

study is included in this chapter, which consists of four sections. The first Section 2.1 

begins by providing theoretical foundations of the online digital curriculum resources, 

leading to an account of the documentational approach in mathematics education and 

its use in the present research, and ends by offering a rationale for adopting the cultural 

historical activity theory (CHAT) (Engeström, 2014; Leont'ev, 1974). Next, in Section 

2.2, CHAT is elaborated with a historical perspective by emphasizing the contributions 

by Leont’ev and Engeström as well as perspectives from researchers employing 
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CHAT in mathematics and science education (Jaworski & Potari, 2009; Roth, 2012, 

2014) and human computer interaction (Nardi, 1996; Kaptelinin, 1996). While CHAT 

serves as an overarching theoretical framework, it allows for analysing the societal and 

tool dimensions of students’ activities whereas there remains a room for interpretation 

of students’ work in mathematics. I attend to the issue of characterising students’ work 

with mathematics in Section 2.3. To achieve this purpose, I utilise the competence 

framework (Niss & Højgaard, 2011) (Study 1), action–operation dynamics in CHAT 

(Study 3), and then mathematical reasoning (Lithner, 2008) which is also a strand of 

the competence framework (Study 4). After that, I elaborate the theorisation of the 

mathematical reasoning processes through a cultural historical perspective (Leont'ev, 

1974). The concept of affordance (Study 3) is explained in Section 2.4. In the end, I 

present the previous research literature relevant to the research foci in my thesis in 

Section 2.5. 

Chapter 3 addresses the methodological approaches adopted in this research. The 

overall orientation of the research as being conducted within the naturalistic research 

paradigm is elaborated (Section 3.1) and the relationship between the theory(ies) and 

research is explicated (Section 3.2). The qualitative research strategy and the case 

study design are discussed in Section 3.3. The details about the two case studies 

regarding participants, the research method and the context are provided in Section 

3.4. The strategies for analysing data in the four studies are outlined in Section 3.5. 

Section 3.6 gives the details of the mathematical topics involved in this research. The 

issues concerning quality of research and research ethics are addressed in Section 3.7 

and Section 3.8. 

In the subsequent Chapter 4, I present summaries of the four research studies. 

Chapter 5 presents the finding of the research (Section 5.1–5.5). I reflect on the effects 

of the choice of the theoretical framework as well as the methods with respect to the 

research findings (Section 5.6). After that, the limitations of the presented research are 

discussed in Section 5.7. 

Chapter 6 presents implications of the research for further research (Section 6.1) 

and implications for instruction (Section 6.2). 
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2 Theoretical foundations 

My research project focuses on undergraduate engineering students’ learning of 

mathematics within activities in order to study the role of the conditions of the learning 

context. This chapter addresses the theoretical basis of my research. The chapter is 

divided into four sections. Section 2.1 addresses the general issues concerning 

theorisation of the inquiry. The section presents the theoretical foundations of 

personalised learning environments involved in this research and explains the rationale 

for first using the documentational approach to didactics and later adopting CHAT. 

Section 2.2 presents CHAT through a historical perspective and elaborates its key 

components and ideas pertinent to human learning. Section 2.3 describes the way in 

which students’ learning in mathematics is characterised in present research. The 

concept of the affordances is elaborated in Section 2.4. The research literature is 

presented in Section 2.5. 

2.1 Theorising the inquiry—learning mathematics while interacting with 

resources 

In my thesis, I incorporate various ideas from relevant empirical research as well as 

from theories, which can be encapsulated as the conceptual framework of this 

research. In the following text in this section, I first elaborate the notion of conceptual 

framework and then provide further details and justifications regarding the need for the 

conceptual framework in the context of my research. Section 2.1.1 elaborates the idea 

of personalised learning environment, which makes an integral part of my research. 

Section 2.1.2 discusses the concepts from documentational approach to didactics in my 

research, and Section 2.1.3 argues for the shift to the cultural historical approach.  

According to Lester (2005), a theoretical framework guides the research by its 

dependence on formal theory, i.e. the “theory which has been developed by using an 

established, coherent explanation of certain sorts of phenomena and relationships” (p. 

458). However, a single theory may not cope with the complexity of the realistic 

research problems. Compliance with one theory may lead to preferring some specific 

aspects while exempting or ignoring other aspects that may also be relevant to the 

actual research problem. To address such concerns in mathematics education research, 

Lester suggests devising a conceptual framework, which may be based on “different 
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theories, and various aspects of practitioner knowledge, depending upon what the 

researcher can argue will be relevant and important to address about a research 

problem” (p. 460). 

The conceptual framework is “a skeletal structure of justification, rather than a 

skeletal structure of explanation” (p. 460). The justification refers to the rationale or 

“the argument that the concepts chosen for investigation, and any anticipated 

relationships among them, will be appropriate and useful given the research problem 

under consideration” (p. 460). The conceptual framework should also explain why a 

research question is being proposed in a particular manner and why certain factors 

(e.g. context, rules, resources) are more important than others while answering this 

question. The conceptual frameworks in mathematics education can also be 

exemplified as the models created by integrating ideas from different theories (see 

Lesh & Sriraman, 2005). The models serve as systems of thinking about problems of 

mathematics learning. Models are considered bigger than the individual theories in the 

sense that they aim at solving the problems which lie outside the realm of particular 

theories. They are also perceived smaller than the theories, as they are created for 

specific purposes in specific situations. The models are considered “purposeful, 

situated, easily modifiable, sharable, re-usable, multi-disciplinary, and multi-media 

chunks of knowledge” (Lesh & Sriraman, 2005, p. 502). 

2.1.1 Digital curriculum resources and personalised learning environments 

In the process of teaching and learning, students and teachers make use of the 

curriculum resources to interact with mathematics. These resources can be categorised 

into text resources (e.g., textbooks), material resources (e.g., calculators), and ICT-

based resources (e.g., interactive textbooks) (Pepin & Gueudet, 2018). Pepin et al. 

(2017) put forth the notion of digital curriculum resources as “organised systems of 

digital resources in electronic formats that articulate a scope and sequence of curricular 

content” (p. 697). These resources facilitate in and focus on the process of teaching 

and learning by providing sequenced curricular content in electronic formats in a 

particular course of study (e.g., calculus) (Pepin et al., 2017). The attention to 

sequencing of content differentiates these resources from other types of digital 

resources (e.g., software). Ruthven (2018) argues that digital materials, due to 

advanced user interface and provisions of instantaneous feedback, lead to qualitatively 

different forms of interactions between the user and the medium than their non-digital 

counterparts.  
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Choppin and Borys (2017) conducted a survey on the existing trends on the design 

and dissemination of digital curriculum resources in mathematics education. The 

researchers identified different discourses around the design and use of curriculum 

materials emerging from the following four different perspectives: designer, policy, 

user, and private. The designer perspective conceptualises the design features based on 

research on learning and learning systems and places strong emphasis on the nature of 

tasks and collective interactions within in these materials. The policy perspective 

emphasizes the low cost of the materials and their ability to customize the content. The 

user perspective concerns the implementors of the digital media in the classrooms and 

emphasizes the pragmatic aspects of the digital materials to fit into existing practices 

as well as the abilities to reduce the management demands. The private perspective 

concerns the organisations which create the digital materials as products to appeal to 

the consumers. This perspective emphasizes the improvement of management 

practices about instruction and assessment. The digital curriculum materials emerging 

from the private sector are further divided into the following four categories: (1) 

comprehensive learning management systems with embedded digital content; (2) 

adaptive programs emphasising the mastery perspective for learners who progress 

through content via a series of assessments; (3) collection of lessons in form of 

presentations or videos linked to the practice problems and assessment problems; and 

(4) curated content embedded in an online assessment and curriculum resource site. 

The online repositories with static content, known as learning management 

systems (LMS) or virtual learning environments (VLEs), mark the earlier forms of 

digital curriculum resources. Lately, adaptive programs emphasising the mastery 

perspective embed more sophisticated features have emerged. Such programs are also 

termed as personalised learning environments (PLEs) (Borba et al., 2016). Based on 

the concept of personalisation, these online systems incorporate dynamic features of 

digital technologies to provide learner-centered instruction. That is, these 

environments offer adapted feedback and tailored help according to the learners’ 

needs. Buchem, Attwell, and Torres (2011) describe a personalised learning 

environment as a “concept related to the use of technology for learning focusing on the 

appropriation of tools and resources by the learner” (p. 1). My research involves the 

implementation of a personalised learning environment, namely Pearson’s 

MyMathLab (see details in Section 3.4.2). 
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PLEs are widely employed in teaching and learning of mathematics at university 

level. These systems can assist lecturers in assigning and marking the homework and 

assessments, thus aiding in efficiently managing their time. Students can also get 

instant help and feedback during their homework which might not always be the case 

in the lecture halls with a large number of students. However, the nature of the 

feedback and the kind of assistance depend upon the design of a learning environment. 

Moreover, these programs are implemented in varying manners in mathematics 

courses. For instance, a trend involving employment of PLEs in college-level 

mathematics courses, is widespread in the USA (Twigg, 2011; Webel, Krupa, & 

McManus, 2017). The mathematics courses are administered in computer labs with 

computer-based learning environments (PLEs) as the main source of instruction. 

During these sessions, the instructors remain present during the course sessions in case 

if students need further assistance in their work. My research also involves the 

implementation of a PLE (MML) creating the online environment such that all the 

homework and tests in one calculus course were administered through this program.  

2.1.2 The documentational approach in mathematics education for studying 

students’ rationale of using several resources 

The goal of my research project is to investigate engineering students’ learning of 

mathematics in the online environment created through employing MyMathLab and 

other resources (see details in Section 3.4.1). In an initial inquiry (Study 2), I explore 

students’ interaction with several resources and their rationales of using them while 

working with mathematics in the online environment. This study (Study 2) draws upon 

the documentational approach to didactics (Gueudet, Pepin, & Trouche, 2012; 

Gueudet & Trouche, 2009). Below, I provide a brief overview of the theoretical 

framework and I attend only to those ideas from the theory which I incorporated in my 

Study 2.  

The documentational approach is grounded on Rabardel’s work (2002) and 

extends the instrumental approach (Trouche, 2004) in mathematics education. The 

documentational approach conceptualises a teacher’s work as an interplay between a 

teacher and the set of resources in his/her use (Monaghan, Trouche, & Borwein, 2016). 

Recently, students’ use of resources has also been studied through this approach (e.g., 

Gueudet & Pepin, 2016, 2018). A resource is conceptualised as “both noun and verb, 

as both object and action that we draw on in our various practices” (Adler, 2000, p. 

207). Therefore, this idea of a resource takes into account various means including 
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material, human and cultural resources such as language, time, mathematics teachers, 

etc that intervene in students’ or teachers’ activity. 

Furthermore, a resource is never considered in isolation but in its relationship to a 

wider set of resources (Gueudet & Trouche, 2009). When an individual uses a resource 

in a particular manner, the resource evolves into a document. This process is called 

documentational genesis. In my Study 2, I used the noun sense of the resource and 

distinguished between classical and digital resources in students’ use. The subject of 

interest was to analyse the mediation of these resources in students’ work in 

mathematics. Therefore, I utilised the concept of techniques (Artigue, 2002) which 

denotes the manner of solving the mathematical tasks. The instrumented techniques 

refer to the techniques involved in the use of tools. As a first step of the inquiry, my 

initial focus was the general manner of using several resources in undergraduate 

engineering students’ mathematics work instead of focusing on specific resources and 

particular mathematical topics. Through students’ rationales linked to several 

resources, the mediation through resources was analysed as to be both pragmatic and 

epistemic. Pragmatic mediation refers to the practical uses of the tools to reach the 

solutions and get through the processes in solving tasks. Epistemic mediation refers to 

the uses of resources in order to learn the mathematical concepts. 

2.1.3 Rationale for adopting a cultural historical approach—shifting the focus to 

the learning environment  

I figured out during the data collection that the context of my study was under change 

owing to the expected variation in the structure of the mathematics course. This 

change later led to the shift from the online environment to the blended environment 

(for details of these environments, see Section 3.4). The new setting related to the 

blended environment did not require using resources similar to the online environment. 

I anticipated that this variation would lead to different forms of students’ activity, and 

therefore, I considered to keep track of the contextual conditions. I gave initial 

thoughts to using CHAT in order to study the effect of these changes in the learning 

environment on students’ way of working in mathematics. Roth, Lee, and Hsu (2009) 

regard cultural historical activity theory as “a theory for praxis as much as it is a praxis 

of theory” (p. 154). That is, it enables to make sense of human practice in real settings. 

Along these lines, the aim of the further research was thus to systematically analyse 

the practices as well as the influence of the change in the setting on students’ work in 

mathematics (Study 3 and Study 4).  
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Roth (2014) points out that CHAT requires a holistic approach, that is, it 

“integrates body and mind, on the one hand, and individual and collective, on the other 

hand” (p. 14). Moreover, CHAT acknowledges the cultural origins of human learning 

and cognition. The following comment by Roth (2012) clarifies the cultural historical 

stance on human learning and cognition: “[C]ultural-historical activity theory does not 

require us to make hypotheses about the contents of peoples’ minds but asks us to 

study societal relations that are the origin of anything that might be attributable to the 

individuals and their minds (p. 102)”.  

These expositions suggested considering the contextual factors as these could 

trigger certain forms of actions on the part of the students. The results of Study 2 also 

pointed towards the role of contextual factors in the way students interacted with the 

resources. Therefore, I expanded the focus of my research from considering the 

students’ use of resources to embracing the whole context in which these resources 

were embedded since I was to analyse students’ learning. In other words, the unit of 

analysis was expanded from studying the interaction among student-tool-mathematics 

(Study 2) to the interaction among student-context-mathematics (Study 3). In this 

regard, the cultural historical approach could facilitate in making sense of the context 

while making an account of the resources as well (for details, see section 2.2.4). I 

figured out that the research questions could be well answered by using CHAT within 

the context of my research project. The attribution to social and cultural origins of 

learning and cognition in CHAT also resonated well with my own views. It can be 

noted that I also took the contextual aspects into account in the first two studies (Study 

1 and Study 2) although in these studies I did not utilise the CHAT. The next section 

provides an exposition of the conceptualisation of context in CHAT and the role of the 

context in human learning. 

 Gueudet and Trouche (2012) suggested using the documentational approach to 

didactics along with CHAT in order to make sense of the social aspect in teachers’ 

activity with the resources. It implied that the similar use could be possible for 

students’ activity as in my research. 

2.2 Cultural historical activity theory (CHAT) 

CHAT traces back to dialectical materialism and the pioneering work of Vygotsky. 

Engeström (2001) notes that the development of CHAT can be organised into three 

generations. First generation CHAT was founded by Vygotsky (see e.g., 1978). 
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Further developments by Leont’ev (1974) and Engeström (1987) are known as second 

generation of CHAT. The third generation is based on subesquent developments by 

Engeström (2001). Roth (2014) suggests that CHAT can be organised into four 

generations. First generation was developed by Vygotsky and second generation is 

based on further developments by Leont’ev. The third generation consists of two 

strands: the Helsinki verson (Engeström, 2001), and the Berlin version by Holzkamp 

and colleagues. The fourth generation works by Roth and Radford (2011).  

In this thesis, however, I follow Engeström’s categorization, and the second 

generation of CHAT guides present research. In what follows, a historical account of 

the development of the second generation is provided (Section 2.2.1–Section 2.2.4) 

Key ideas from the second generation of CHAT pertinent to human learning 

incorporated in this research are also elaborated (Section 2.2.5–Section 2.2.6). 

2.2.1 Learning as mediated action—First-generation CHAT 

Vygotsky’s (1978) sociocultural approach is considered as the first generation of 

CHAT. Learning is considered as an interplay between individuals and their culture. 

Knowledge does not lie in peoples’ minds rather it circulates between people when 

they communicate. It is created in social interactions when people convert their 

experience and reflections into language (Säljö, 1999). Learning is seen as mediated 

through tools and artefacts which are developed in the culture. The idea of mediation 

is usually illustrated by the mediational triangle (Figure 1) in which tools take the 

intermediate position between the subject and the object of learning. Learning refers to 

how individuals appropriate the tools for thinking and acting which exist in a culture 

or society (Wertsch, 1991). In the first-generation CHAT, the focus is on individuals 

performing actions in a sociocultural setting (Engeström, Miettinen, & Punamäki, 

1999).  

 

Figure 1: Triangular model illustrating the idea of mediation. 

Subject Object 

Tools 
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Kozulin (1998) notes that “Vygotsky … made a principal distinction between the 

‘lower’, natural mental processes of perception, attention, memory, and will, and the 

‘higher’ or cultural psychological functions that appear under the influence of 

symbolic tools” (p. 14). Furthermore, “Vygotsky’s research program included studies 

of the transition from the natural to the cultural psychological functions of memory, 

perception, tension, will, counting and speech. These studies were conducted in three 

directions: instrumental, developmental, and cultural historical” (p. 16). The cultural 

historical dimension is what features the second generation of CHAT.  

2.2.2 Towards the concept of activity—Second-generation CHAT 

As discussed above, the second-generation CHAT is based on the work of Leont'ev 

(1974) and Engeström (1987) and incorporates “societal, cultural, and historical 

dimensions into an explication of human mental functioning” (Roth & Lee, 2007, p. 

189). Engeström (2014) discusses that the discourse in the first generation cultural-

historical approach has largely been on development of higher psychological 

functions. The later generations of CHAT allow expanding the analysis to horizontal 

directions by considering “issues of subjectivity, experiencing, personal sense, 

emotion, embodiment, identity, and moral commitment” (Engeström, 2014, p. xv).  

In line with first-generation, social interaction plays an important role in second- 

generation CHAT. Human psychological processes are regarded as originated in 

mutual interaction of individuals, as interpsychological processes which at a later stage 

happen to be carried out by individuals taking the form of intrapsychological 

processes. Social consciousness and language are considered as the origin of 

individual consciousness. Tools are considered of utmost importance in this regard. 

Tools are sociohistorically formed means and modes through which a person is 

connected to other people and assimilates the experiences of humanity. 

The concept of activity, put forth by Leont’ev (1974), refers to the subject–object 

interaction mediated through tools as well as societal relations. The object is related to 

the need behind the activity. In my research, the activity is conceptualised as the 

students’ interaction with mathematics (object) in their mathematics course(s). 

Leont’ev (1981a) argues that “human individual’s activity is a system in the 

system of the social relations (p. 47)”, and individual actions are “senseless and 

unjustified (p. 47)” without taking the collective activity into consideration. Leont’ev 

maintains that individual activity would not exist and would not have any structure if 

removed from the system of social relationships. However, it would be inadequate to 
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consider that society is the external world to which humans must adapt to survive, 

“rather these social conditions carry the motives and goals of the activity, its means 

and modes. In a word, society produces the activity of the individual it forms.” (pp. 

47-48). He, however, stresses that the activities do not embody the structure of a 

society and its culture. That is, there are complicated processes and transformations 

that play a part in the realisation of activities. Such transformations, he maintains, 

remain unrevealed in studying the individual mind in social world, and can be 

discovered by investigating the genesis of human activity and its inner structure.  

Leont'ev (1981a) points out that the circle of internal mental processes in broken in 

external object-oriented activities through which humans encounter other humans as 

well as tools. In other words, thinking develops when individuals engage in practical 

and object-oriented activities. The following example by Leont’ev underlines the 

importance of incorporating the practical activity in psychological research.  

 

Let us examine a very simple process: the perception of an object’s elasticity. This 

is an external motor process by which the agent enters into practical contact with 

the external object. This process can be aimed at carrying out the noncognitive and 

practical task of transforming the object’s shape. Of course, the image that 

emerges here is mental, and therefore a proper object of psychology. However, in 

order to understand this image, I must study the external, practical process by 

which it is generated. Whether or not I want this and whether or not it corresponds 

to my theoretical views, I must include the agent' s external, practical action in my 

psychological research. (p. 52) 

 

Summing up, the second-generation CHAT calls for shifting the focus of analysis from 

the individual tool-mediated action to the level of collective human activity. The 

following two subsections elaborate on the theoretical models of activities which serve 

as the tools for analysis in this research. 

2.2.3 Structure of an activity—Leont’ev’s hierarchical model 

Leont'ev (1974) presented a theoretical model which explicates the structure of human 

activities with regards to human functioning (Figure 2). According to this model, 

human functioning can be seen at three hierarchical layers (Figure 2). The top level 

concerns the whole activity which is driven by an object-related motive. In this sense, 

the object serves as the true motive of an activity, gives direction to an activity, and 
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distinguishes one activity from another. In the present research, the motive as to 

leaning of mathematics links to the object ‘mathematics’ of students’ activities under 

consideration (Study 3).  

 

 

Figure 2: Hierarchical levels of an activity (Leont'ev, 1974). 

 

Leont'ev (1981a) wrote, “the object of activity emerges in two ways: first and 

foremost, in its dependent existence as subordinating and transforming the subject’s 

activity, and secondly, as the mental image of the object, as the product of the 

subject’s detecting its properties” (p. 48). Thus, there cannot be an activity without a 

motive; the activity which is seemingly unmotivated has the motive concealed 

subjectively or objectively.  

The middle level concerns the individual actions, which translate an activity into 

reality. The development of an activity into separate actions often results due to 

division of labour among the participants of an activity. The social relations “leads to 

isolation of the separate partial results, which are achieved by the separate participants 

in the collective labour activity, but do not in and of themselves satisfy their needs” (p. 

60). The separate partial results are referred to as goals to which actions are directed. 

The actions are also energized by the motive, and “isolation of goals and the 

formation of actions subordinated to them lead to a division of functions that were 

formerly interwoven in the motive” (Leont'ev, 1981a, p. 60). Selection and conscious 

perception of the goals are by no means automatic or instantaneous acts. Rather they 

are a long process of testing goals through actions and fleshing them out. He 

explained, an “important aspect of the process of goal formation is making the goal 

concrete or selecting the conditions of its attainment” (p. 62). The goal can exist in 
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isolation from the situation in the consciousness of the subject whereas the action 

cannot.  

In present research (Study 3), the examples of identified actions in students’ 

learning activities include: reading through the textbook, searching for formulas, 

getting questions from the textbook, working on homework, and solving questions. 

The examples of identified goals are to solve the tasks in an assessment, to recall 

certain topics, and to get the general idea of the topic. 

An action has operational aspects which are defined by the objective circumstances 

under which the action is carried out. The bottom level (Figure 2) deals with the 

operational aspects or operations, i.e. the methods by which goal-directed actions are 

carried out. The conditions of the environment and specifically the tools affect how the 

operations are executed. If the goal remains the same and the conditions concerning 

the attainment of actions changes, then the operational compositions also change. In 

Study 3, I also look at how the availability of tools in the online environment affects 

the execution of the operations in students’ activity. If the students engage in the acts 

of solving an integration task in MyMathLab and Maxima, they need to perform some 

operations. The focus at this level is to identify what operations are formed in 

students’ activity when they employ these tools, and in turn how these affect their 

engagement with mathematics. 

2.2.4 The activity system—Engeström’s extended triangular model 

Engeström (1987) contributed to the further development of CHAT based on his 

interpretation of Leont’ev’s (1974) work. He presented an extended triangular model 

of an activity system (Figure 3), which incorporates the tool mediation and the societal 

mediations in an activity, as proposed by Leont’ev. This model is obtained by adding 

societal dimensions in the triangular model of tool mediation (Figure 1). In this 

triangle, “the visible tip of the iceberg of collective activity” refers to the tool 

mediations whereas “the hidden bottom part” (Engeström, 1990, p. 172) refers to 

societal mediations through rules, division of labour, and the community. The upper 

sub-triangle (subject-tool-object) depicts the individual actions whereas the bottom 

sub-triangles represent the societal relationships influencing the individual actions.  
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Figure 3: The human activity system adapted from Engeström (1990). 

 

The model also portrays the complex mediational structure of human activities. The 

sub-triangles point to multiple mediations in an activity system. For example, rules 

mediate between subject and community, and the community mediates between 

subject and the object, and so on. In this model, the rules represent norms, 

conventions, or social traditions that are established by the community to govern its 

members (Engeström, 1998). The Rules regulate an activity by setting standards for 

human actions. Researchers in mathematics education have distinguished between 

implicit and explicit rules (Núñez, 2009). Explicit rules refer to the conditions set by 

authorities. Examples of explicit rules can be assessments, format of examination, 

including groupwork in the university students’ activity. Implicit rules refer to 

normative understandings regarding acceptable and unacceptable argumentation in a 

mathematics classroom, for example, social and sociomathematical norms (Yackel & 

Cobb, 1996). The community signifies other members of the society which have direct 

or indirect interaction with the subjects. The examples of community for students’ 

activities can be their class fellows, teacher, group members, and other students at the 

university. Division of labour specifies the way in which participants in an activity 

divide the task to reach the object of the activity.  

According to Engeström (2014), this model is the simplest unit that carries “the 

essential unity and the integral quality behind the human activity” (p. 65). The nodes 

of the triangular model represent the minimum constituent elements to be taken into 

consideration while analysing a concrete human activity system. Transforming this 

   Tools 

     Subject Object  Outcome  

     Rules Community Division of labour 
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model to concrete activities, inner relationships between the constituent element of the 

activity system as well as the historical change in an activity system can be analysed.   

Engeström (1987) proposed looking at such relationships by considering the 

systematic whole rather than just separate connections. Leont'ev (1981a) also 

emphasized that the analysis of an activity should not aim for separating living activity 

but revealing the inner relations which characterise it. Multi-voicedness is an essential 

feature of activities in that it contains the variety of viewpoints of the participants of an 

activity. Furthermore, layers of historically accumulated artefacts, rules and patterns of 

division of labour are also significant parts of an activity system.  

Engeström (2014) writes, “we may well speak of the activity of the individual, but 

never of individual activity; only actions are individual” (p. 54). At a later point, he 

cites Leont’ev, “when we are dealing with joint activity, we can with full justification 

speak of a collective subject or of a total subject of this activity, whose interrelation 

with the ‘individual’ subjects can only be comprehended through a psychological 

analysis of the structure of the joint activity” (p. 57). The demarcation between the 

individual and the collective subject relates to the level at which the activity system is 

analysed. That is, the subject is considered as individual at the level of actions whereas 

it is considered as collective at the level of collective activity. This point becomes 

clearer in Section 2.2.6. 

According to Cole (1996), the context of learning and teaching can be determined 

by the activity system while using CHAT. In my research, I use the term learning 

environment which is characterised through the activity system (Figure 3). In Study 3, 

the elements of the learning environment are described through the extended triangular 

model of the activity system. That is, the rules, division of labour, and community are 

described at the level of the mathematics course. It allowed in analysing the macro 

structure of students’ collective activity in the mathematics course. The micro analysis 

is done through using Leont’ev’s hierarchical levels of the activity (see for example, 

Jaworski & Potari, 2009). Combining the macro and micro view facilitated in zooming 

in and out in the activity. In turn, it made it possible to trace the effects of the 

collective conditions on students’ micro level interactions with the resources and 

hence with mathematics.  

2.2.5 The mediational means—Tools, resources, or instruments 

My study involves a variety of mediating means which students interacted with in their 

learning activity in mathematics. Therefore, I attend to the concept of mediating means 
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in light of the existing literature in mathematics education and in CHAT. In this thesis, 

I use alternating terms such as tools, resources, and instruments. According to 

Monaghan et al. (2016), an artefact is a material object which is made by humans for 

specific purposes. When the artefacts have some users and the purpose of the use 

linked with them, they are considered as tools (Trouche, 2004). Tools and artefacts can 

be considered as two faces of the same coin. That is, when an artefact is used in a goal-

directed action, it becomes a tool (Cole, 1996). Also, “artefacts are often, but not 

always, the physical objects” (Drijvers et al., 2009, p. 108). In this sense, an artefact 

can be a paper, compass, or even an algorithm. The instrument, according to Trouche 

(2004), are those artefacts which the subjects have integrated in their activities. This 

suggests that tools and instruments are used interchangeably in the literature with 

similar meanings. The meaning of the term ‘resource’ is already discussed in Section 

2.1.2. 

As seen earlier, the tool mediations occupy a vital position in the studies of human 

activities (Figure 3). In categorising the mediational means, CHAT emphasizes the 

manner in which the mediational means objectify human needs in addition to their 

properties itself. In first generation CHAT, Vygotsky (1978) distinguishes between 

two types of tools: material/physical, and psychological. Material or physical tools 

refer to the artefacts which people use to accomplish tasks at hand, e.g., a ruler for 

drawing lines or geometrical shapes, a pencil for writing. The psychological tools are 

artificial formations directed towards the mastery of mental processes. Examples of 

these can be: “language, various systems for counting, mnemonic techniques, 

algebraic symbol systems, works of art, writing, schemes, diagrams, maps, and 

mechanical drawings, all sorts of conventional signs, etc.” (Vygotsky, 1981, p. 137). 

The distinction between the two kinds of tools lies in the fact that the former are 

“directed toward producing one or another set of changes in the object itself” whereas 

the latter “directs the mind and behaviour” (p. 138). 

In the case of computers and information and communication technologies, Säljö 

(1999) argues that they represent an example of an interrelationship between physical 

and psychological tools, on the one hand. A computer can be perceived as a physical 

tool when using the push button functions and, at the same time, as a psychological 

tool when using several incorporated features such as figures, simulations, 

computations, etc. On the other hand, the emerging software with features of feedback 

and response can be perceived halfway between a human and a tool. The feedback has 
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potential to invoke reflections on the part of the learner, which may be qualitatively 

different in each software. This argument applies to the digital system under 

consideration in this thesis (see Study 3) which is a virtual learning environment.  

In second generation CHAT (Engeström, 2014), the notion of tools is viewed at 

three levels which corresponds to Wartofksy’s primary, secondary and tertiary 

artefacts. Primary artefacts are those which are used in production. Cole (1996) argues 

that the idea of a primary artefact is closely linked to the concept of artefact as a matter 

transformed by prior human activity. The examples of primary artefacts given by 

Wartofsky as “axes, clubs, needles, bowls” (Wartofsky, 1979, p. 201) point to their use 

in material production, whereas in the production of social life, primary artefacts are 

thought of as “words, writing instruments, telecommunication network” (p. 121).  

Secondary artefacts are used in preserving and transmitting modes of action or praxis 

through which the production in carried out. That is, secondary artefacts are “reflexive 

embodiments of forms of actions …. and therefore understood as images of such forms 

of actions—or, if you like, pictures or models of them” (Wartofsky, 1979, p. 201). The 

mode of these representations may be gestural, oral, or visual. However, these 

representations are not the mental entities as residing in the mind, rather they are 

externally embodied representations.  

Engeström (2014) deems secondary artefacts as parallel to Vygotsky’s 

psychological tools as “the essence of psychological tools is that they are originally 

instruments for cooperative, communicative, and self-conscious shaping and 

controlling of the procedures of using and making technical tools” (p. 49). Examples 

of secondary artefacts, according to Cole, include “recipes, traditional beliefs, norms, 

constitutions, and the like” (Cole, 1996, p. 121).  

In a nutshell, CHAT suggests viewing tools and resources with respect to their 

incorporation at the functioning levels in the activity. A resource may therefore be 

considered as a primary artefact or a part of a secondary artefact according to how it 

objectifies the human needs. In Study 3 in which I study students’ incorporation of 

several resources in the activity of learning mathematics, each resource objectifies 

different purposes at different moments in the students’ activities. For instance, when a 

website is used in searching for relevant information for solving a task, it is involved 

in the mode of carrying out an action, and thus the website is considered as a 

secondary artefact. Similarly, a resource such as GeoGebra facilitates in executing 

mathematical operations. It can thus be regarded as a primary artefact as well as 
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partially a secondary artefact as it is involved in the models for carrying out actions. 

However, I confined the analysis to the incorporation of primary artefacts (Wartofsky, 

1979). The notion of tools in relation to the activity under consideration is further 

treated in the upcoming Section 2.2.6. 

Kaptelinin (1996) discusses that the notion of tool mediation becomes problematic 

in the case of virtual environments as the border between the tool and reality is 

merged. In Study 3, for the operationalisation of a personalised learning environment 

(MML), while the system is considered as a resource for production in the students’ 

activity, other conditions of the environment are incorporated in the analysis of the 

activity system as seen as contributing to the rules and division of labour. In Study 4, I 

also consider the incorporation of digital tools in secondary artefacts (Wartofsky, 

1979), i.e. as modes of actions. 

2.2.6 Learning while participating in object-oriented activities 

Engeström (2014) discusses that the object-oriented activities serve as methodology 

for learning activities. In an educational institute such as a school, reading, writing, 

communicating with language, and mathematics constitute examples of object-

oriented activities in which learning is manifested. My study involves mathematics as 

the object of students’ learning activity in a university setting. In this regard, Roth 

(2014) writes, “activity theory explains learning as a by-product in the production of 

grades. It does not account for mathematical activity as if it could occur outside and 

independent of the schooling context (p. 13)”.  

These claims point to the significance of considering the activity system while 

analysing students’ learning. Now, the question arises about what is meant by learning 

in CHAT. To answer this question, I turn to Engeström (2014) who, drawing upon 

Bateson’s (1972) theory of learning, argues that an activity involves three types of 

human learning. Each type corresponds to a layer in Leont’ev’s (1974) model of 

human functioning (see Figure 2) and to three different levels of human subjects—

nonconscious, individual and collective. The corresponding elements of an activity 

system at each of the three levels are illustrated in Table 1. 

The bottom layer of operations relates to Learning I (Bateson, 1972). Learning I is 

equivalent to the formation of nonconscious operations “in the course of simple 

adaptation to existing external conditions” (Engeström, 2014, p. 115). The object 

presents itself as mere resistance. The instrument at this level refer to Wartofsky’s 

primary artefacts, i.e. those used in the production. The subject uses the instrument 
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upon the object making repetitive corrections. The object and the instrument are not 

consciously separated by the subject. The instrument and the object both are 

 

Table 1: The proposed hierarchical structure of activity (Engeström, 2014, p. 122) 

Subject Instruments   Object Community Rules Division of 

labour 

Collective 

subject 

Methodology, 

Ideology 

  We in the 

world 

Societal 

network of 

activities 

Societal (state, 

law, religion) 

Societal 

division of 

labour 

Individual 

subject 

Models   Problem 

task 

Collective 

organisation 

Organisational 

rules 

Organisational 

division of 

labour 

Nonconscious Tools   Resistance Immediate 

primary 

group 

Interpersonal 

rules 

Interpersonal 

division of 

labour 

 

considered as given. The possible examples involving Learning I can be thought of 

as when a student applies an algorithm or performs simple mathematical operations 

such as an addition or subtraction algorithm with respect to three-digit numbers. 

Provided that the student is familiar with the algorithm and the subtraction concept, he 

or she applies this algorithm (tool) on the given numbers (object) to obtain the 

outcome. In this process, the student performs nonconscious operations involving 

simple calculations such as 5−4 or 3−2, while new operations are formed 

simultaneously. The examples in terms of use of physical tools can be thought of as 

using a pencil to write an intended expression. In this process, the subject deals with 

simple conditions such as the thickness of the paper and sharpness of the pencil to 

reach to the object of having written the expression. The nonconscious operations are 

formed which deal with being able to use paper and pencil for writing. Another 

example can be thought of when using the calculator for performing mathematical 

operations such as addition, multiplication, and so on.  

The formation and execution of the action–goal layer in Leont’ev’s scheme (see 

Figure 2) involves Learning II which corresponds to the individual subject (see Table 

1). In Learning II, the object is perceived as a problem demanding specific efforts from 

the subject, who is no more a nonconscious agent but an individual under conscious 
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self-assessment. The instruments at this level are deemed as Wartofsky’s (1979) 

secondary artifacts, which “refer to the preservation and transmission of the acquired 

skills or modes of action or praxis by which this production is carried out. Secondary 

artefacts are therefore representations of such modes of action” (Wartofsky, 1979, p. 

202). The instrument is found by the subject. The instrument is regarded as a model 

which is a tacit representation of the way of accomplishing the tasks produced on the 

basis of Learning I.  

Furthermore, the automatic operations are also formed at the action–goal layer, i.e. 

from the top down. These operations, in contrast to nonconscious operations, are in 

principle capable of becoming subjected to conscious elaboration in case the normal 

conditions of performance are altered. It means that Learning I and II are intertwined 

and cannot be separated. 

Depending on the method of finding the instruments, Learning II can be regarded 

as a) reproductive, or b) productive. In the reproductive type, Learning IIa, the 

instrument is found through trial and error and with blind search among previously 

known means. In the productive type, Learning IIb, the instrument is invented through 

experimentation. In this sense, the former leads to empirical generalisations and the 

latter may lead to the theoretical generalisations. From Learning I to Learning II, from 

specific to the general, represents a developmental step in an activity. For example, if 

the students solve a mathematical task by using the previously known methods or 

through trial and error methods, they engage in the reproductive learning (IIa). On the 

other hand, if the students invent the methods themselves by careful experimentation 

which is also mathematically grounded, they engage in productive learning (IIb). 

In Learning III, the collective subject becomes conscious and gains an imaginative 

and thus potentially also a practical mastery of whole systems of activity in terms of 

the past, present, and the future (Engeström, 2014). Learning III results due to the 

double bind situations. At this level, the problem or the task itself must be created. The 

subject is immersed in the object system and the quality of the subject changes 

radically. Learning III may now be characterized as the construction and application of 

world outlooks, ideologies, however, it is not confined to imaginary production.  

From the discussion so far and Table 1, it can be deduced that the Learning III 

concerns the network of activities whereas Learning I and Learning II concern a single 

activity system. According to Engeström (2014), Learning I and Learning II represent 
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what is commonly understood as learning while Learning III represents development 

(Vygotsky, 1978) which involves both Learning I and Learning II.  

In my thesis, I confine my attention within the separate activity systems which 

concern an online and a blended learning environment (for details, see in Section 3.4). 

That is, the object of interest is the dynamics within activity systems instead of the 

interaction between the activity systems. In the language of CHAT, it is to say that the 

interest is to capture learning (Learning I and Learning II) which is woven into action–

operation dynamics as evident through the foregoing discussion. Therefore, the focus 

remains on the bottom two layers (see Table 1) while analysing students’ learning 

activity in mathematics (Study 3 and Study 4). In particular, I analyse action and 

operation dynamics associated with the use of available resources which correspond to 

individual and nonconscious subjects (Table 1). Through this analysis, I make sense of 

the role of the factors such as tools and social actors in students’ learning of 

mathematics.  

2.3 Characterising students’ work in mathematics 

From the discussion so far, it can be noted that CHAT provides the methodology of 

learning irrespective of the object of learning. Mathematics being the object of an 

activity has its own inner structure and characteristics. In the field of mathematics 

education, learning of mathematics is characterised in several ways. Among others, the 

competence framework (Niss & Højgaard, 2011) puts forth eight significant areas 

encapsulating the learning of mathematics (Figure 4). In what follows, I briefly 

describe the constituents of the framework and its use in my thesis. In Section 2.3.1, I 

give an account for the competence framework of Niss and Højgaard (2011). In 

Section 2.3.2, I discuss the notions of mathematical reasoning and argumentation. In 

Section 2.3.3, I argue a link between mathematical reasoning and the learning 

environments that I study. 

2.3.1 Competence framework 

The notion of mathematical competence is considered as “a well-informed readiness to 

act appropriately in situations involving a certain type of mathematical challenge” 

(Niss & Højgaard, 2011, p. 49). The eight sub-competencies, as depicted in Figure 4, 

comprise two groups. The first group (to the left) concerns asking and answering 

questions, in, with, about mathematics, whereas the second group (to the right) 

concerns dealing with mathematical language and tools.   



 

26 

 

 

Figure 4: A visual representation of the competence framework (Niss & Højgaard, 

2011, p. 51). 

 

The first group of asking and answering questions comprise the sub-competencies of 

mathematical thinking, problem tackling, mathematical modelling, and mathematical 

reasoning. The mathematical thinking competency deals with familiarity with the type 

of questions that characterise mathematics, the ability to pose effective questions, and 

the awareness about the type and form of the expected answers. The problem tackling 

competency comprises with the ability to identify, formulate, and specify the scope of 

different mathematical problems. The modelling competency deals with performing 

active modelling in the given contexts, analysing the properties of existing models, 

assessing their range of application, and identifying the conditions of their validity. 

Mathematical reasoning competency deals with devising formal and informal 

arguments in support of claims about the mathematical tasks and following and 

assessing mathematical reasoning put forward by others both in written and oral forms. 

The second group of dealing with mathematical language and tools comprises the 

competencies of representing, symbol and formalism, communicating, and using aids 

and tools. The competency of representing deals with the ability to interpret and utilise 

different forms of representations of mathematical objects and phenomena including 

symbolic, algebraic, visual, and verbal depictions. The competency of symbol and 

formalism deals with the ability to interpret symbol and formal mathematical 

language, including symbolic statements, expressions, and formulas, and to translate 

back and forth between mathematical symbolic language and natural language. The 
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competency of communicating deals with expressing oneself in various ways 

including oral, written, and visual, and with different level of theoretical or technical 

precision about mathematical matters. The competency of tools and aids deals with 

having awareness about relevant tools used in mathematics and using those tools 

reflectively while being aware of their possibilities and limitations in certain situations. 

Niss and Højgaard (2011) point out that the competency description of 

mathematics can be used to describe the subject in two different ways. It can be 

applied normatively, i.e., for determining the main instruments in mathematics 

curricula. Such normative use of the competence framework can be seen in the 

mathematics curricula for engineering education (see Alpers et al., 2013). The 

mathematics curricula for engineering mathematics (Alpers et al., 2013) suggest 

integrating technology in mathematics courses for engineers in order to enhance 

students’ mathematical competencies. The other use of competencies is suggested as 

descriptive, i.e. to describe the ongoing teaching and learning of mathematics.  

The description of individual competencies by Niss and Højgaard (2011) includes 

the word ‘ability’, which hints that the competencies are properties of the individuals. 

In this regard, Niss and Højgaard state that the use of the word ‘ability’ is merely an 

alternative way to denote ‘being able to’ due to linguistic substantive and that the term 

is “by no means a psychological term aimed at referring to a person’s mental 

personality” (p. 50). In light of these suggestions, I used the competence framework as 

an analytical tool to look at how students engaged with mathematics in the online 

environment (for details about the online environment, see section 3.4) in Study 1. The 

focus was on how the aspects of the environment enabled the students to execute 

different competencies.  

2.3.2 Mathematical reasoning and argumentation 

In Study 4, I narrow down the focus to mathematical reasoning as the characterisation 

of students’ engagement with mathematics, which is a strand of the competence 

framework (see Figure 4). The following text sheds light on the perspectives about 

mathematical reasoning taken in my research.  

In the competence framework, mathematical reasoning is regarded as “a chain of 

arguments …. in writing or orally, in support of a claim” (Niss & Højgaard, 2011, p. 

60). Lithner (2000) conceptualises mathematical reasoning as “the line of thought, the 

way of thinking, adopted to produce assertions and reach conclusions” (p. 166). The 
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argumentation, thus, is considered as “the part of the reasoning that aims at convincing 

oneself, or someone else, that the reasoning is appropriate” (p. 166).  

Lithner (2008) devised a research framework to characterise university students’ 

mathematical reasoning. In his framework, solving a task is seen as comprising four 

steps:  

i) identifying a problematic situation,  

ii) choosing (recalling, guessing, discovering, etc.) a strategy (local approach or 

the general procedures),  

iii) implementing the strategy, and  

iv) reaching to a conclusion. 

 

The reasoning is involved in the second and the third step of the above task solving 

sequence. The second step may be supported by predictive argumentation, i.e. why the 

selected strategy will solve the task. The third step includes verificative argumentation, 

i.e. why the selected strategy did solve the task. 

Lithner’s framework takes into account any type of reasoning as long as it is 

sensible to the reasoner. That is, it does not confine reasoning to the sense of a strict 

proof. On the basis of the mathematical nature of the assertions and claims, the 

reasoning is characterised as either imitative or creative. The reasoning based on 

surface properties of involved mathematical components is classified as imitative 

reasoning. In the imitative type of reasoning, the epistemic value, the degree of trust 

(likely, true, absurd, unreal, or obvious) the reasoner has in a claim, lies in the 

authority of the sources of the imitated information. The imitative reasoning is further 

classified into memorized reasoning, algorithmic reasoning, familiar algorithmic 

reasoning, delimiting algorithmic reasoning, and guided (text or teacher) algorithmic 

reasoning.  

In contrast, a sequence of reasoning is considered as creative mathematically 

founded reasoning (CMR) if it fulfils the following criteria: creativity, plausibility, and 

anchoring of arguments in intrinsic properties of the mathematical components 

involved. Plausibility refers to distinguishing a more reasonable guess from a less 

reasonable guess, in predictive and verificative argumentation, based on deductive 

logic (in a less strict sense than proof). The epistemic value of CMR lies in the 

plausibility and the logic of the reasoning itself (Lithner, 2008).  
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2.3.3 Processes of mathematical reasoning with respect to the role of the learning 

environment 

In Lithner’s framework (2008), reasoning is manifested in the steps of selecting and 

implementing strategies while solving a task. It is believed that the environment in 

which students practice mathematical tasks plays a role on the formation of reasoning. 

However, the manner in which the learning environment affects the reasoning has not 

been investigated. In my Study 4, I seek to investigate the role of the learning 

environment in the formation of students’ mathematical reasoning. To achieve this 

purpose, the reasoning has to be considered as a process instead of a product in such a 

way that the students are engaged with the reasoning in their learning activities. To 

trace the roots of the reasoning process in the environment, I make use of the 

principles of CHAT that facilitate in analysing reasoning with regards to the conditions 

of the environment (discussed in detail in section 2.2.6). In the following text, I 

provide details about how reasoning is conceptualised as a process (depicted in Figure 

5) in the light of CHAT.  

In my research, the process of reasoning is seen as comprising the main steps of 

selecting and implementing strategies, described by Lithner (2008) as the significant 

steps in the sequence of task solving activity. These steps are crucial as they involve 

the decisions pertinent to solving a task. A mathematical task can be seen as a problem 

for a student in the perspective of CHAT, which corresponds to the level of action–

goal of the students’ activity. To solve this problem (task), it is required that the 

student develop a model of the necessary step of the process (see Section 2.2.6). The 

model is similar to what is called a strategy in Lithner’s framework. In turn, solving a 

task comprises, in CHAT terms, a combination of action(s) and operations.  

Concerning the reasoning process, the step of selecting a strategy is parallel to 

selecting a model for carrying out the action(s) involved in solving the task (more 

details in section 2.2.6), which is entailed in the action–goal layer of the activity. The 

analysis of this layer enables to make sense of the basis of the selection of the models, 

i.e. if those are created or selected from the previously known ones. In turn, it 

facilitates in making sense of the factors of the environment that contribute to the 

selection of models, if any.  

The step of implementing the strategy involves executing mathematical operations. 

This step is thus considered parallel to the operation–condition layer (Leont'ev, 1974), 
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which relates to the use of tools. This step enables to analyse the role of available tools 

in the execution of the operations while implementing the strategy.  

 

 

 

 

Figure 5: A model for reasoning processes in mathematics. 

 

The principle of transformation between actions and operations in CHAT (see section 

2.2.3) implies that the steps of selecting and implementing strategies are connected. 

That is, the initially selected models, upon enough execution and over time, result in 

the formation of consciously controlled operations. Conversely, based on 

implementation of the models at the operation–condition layer, the forthcoming 

selection of models is affected. The visual representation of the process of reasoning is 

shown in Figure 5. 

As shown in the foregoing text, the model builds upon and extends an existing 

research framework concerning mathematical reasoning (Lithner, 2008). The model 

adds another dimension of the effect of the learning environment into the analysis of 

reasoning, thereby considering reasoning as a process. The above model serves as a 
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tool to analyse the formation of reasoning processes and allows looking at the role of 

the learning environment (tasks, tools, etc.) in this regard.  

2.4 The concept of affordance 

This section explains the concept of affordance which concerns Study 3 in this thesis. 

The concept of affordance was first introduced by Gibson (1977) to denote the 

relationship between an organism and its environment. The affordances are 

characterized as the action possibilities provided by the environment.  

Greeno (1994) argues that an affordance has to be a property of an object that 

interacts with a property of an agent in such a way that an activity is supported. In 

other words, those attributes of the environment that contribute to the kind of 

interaction that takes place between the agent and the environment. A system that 

provides an affordance through certain attributes does not imply that the activity will 

occur, although it contributes to the possibility of the activity. Other aspects of the 

agent’s activity, including motivation and perception, are contributing factors in 

realisation of affordances. Motivation relates to what the person is doing at a general 

level and to the needs of the individual. For instance, if a person is engaged in the 

activity of going to attend a class, then the action of entering into the classroom is a 

significant part of that activity. It will make the person attentive to the aspects of the 

environment such as a door for passing from one side of the partition to another. The 

affordance of passing is only realized when the person’s width corresponds to the 

width of the door. 

In the case of university students’ mathematical activity, lectures, for instance, 

might provide affordances such as: attending the lectures, interact with the lecturer and 

classmates on a regular basis, questioning about the mathematics, or exploration of 

mathematical concepts. There are many factors involved for these affordances to be 

realized. On the one hand, if such opportunities exist in the lectures depending upon 

how the lectures are being organised. On the other hand, the realisation of affordances 

depends if students’ needs correspond to the content and organisation of the lectures.  

The issue of perception relates to how the agent picks up information about 

affordances of the environment. Greeno (1994) argues that the affordance of passing 

through a door is perceived by picking up visual information that specifies the physical 

width of the door. However, the affordance of a mailbox for posting letters is not 

directly perceived by the physical attributes of the mailbox. For the classification of 
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this function of the mailbox, the required information has to be in the form of symbols 

or words which would mediate the perception of the physical box as a mailbox.  

Similar to the above considerations, Bærentsen and Trettvik (2002) advocate an 

activity-theoretical perspective of affordances that considers the motivational level as 

well as the operational level of an agent’s activity in the study of affordances. The 

consideration of functional facets such as passing through the doorway or grasping an 

object are called operational aspects of affordances. These aspects only relate to the 

operational level of the activity and thus to the physical attributes of the environment. 

The motivational aspects of affordances refer to the agents’ motives for using the 

artefacts in their actions. Different motives of different users may lead to uses other 

than the intended uses of an artefact. For instance, a hammer has at least an intended 

use while many other uses are possible depending upon the user’s activity. 

Motivational aspects are thus important to investigate all the uses of an artefact in an 

activity. The motivational aspects relate to the goal-directed actions in an agent’ 

activity. In the case of computer programs as involved in this study, Bærentsen and 

Trettvik argue: “It is often assumed that the motivational or goal-directed structure of 

the users’ activity is identical to the designer’s or it is assumed that it is given by the 

design of the operational structure. But as clearly documented by Suchman (1987) this 

is not necessarily so, and unless we understand what motivates people to use 

something, we cannot even begin to understand why they succeed or fail to realize it” 

(Bærentsen & Trettvik, 2002, p. 59). 

It follows that the intended affordances as well as the actual affordance of a 

computer software in use are important to consider in order to make sense of the 

effectiveness of a software. In line with these suggestions, I analyse the affordances of 

an online system (Study 3) considering the intentional and operational aspects of the 

students’ activity. I relate the motivational aspects with the action–goal layer of the 

students’ activity whereas the operational aspects are studied through the analysis of 

the operation– condition layer of the students’ activity.  

2.5 Research related to the use of technology-based tools in students’ 

learning of mathematics 

In this section, I present a short research literature review by dividing it around two 

themes: student’s use of digital and classical resources and its link with certain aspects 

of students’ learning activities (2.5.1), and the relationship between mathematical 
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reasoning and the digital tools and other aspects such as tasks (2.5.2). The studies 

given an account of below, are considered highly relevant for my research, as these 

studies theoretical stances, research foci, and partly types of students, coincide with 

mine. 

2.5.1 Students’ use of classical and digital resources 

Several studies have investigated students’ use of multiple resources, such as 

institutionally provided classical and digital resources, and other available resources in 

mathematics. For instance, Gueudet and Pepin (2018) explored, through a case study 

design, how university students interacted with several provided resources in their 

mathematics work. The study focused on the link between the rules set by the 

institution and the teachers about the students’ use of resources and the students’ 

actual use of those resources. Adopting, among others, the Documentational Approach 

to Didactics, similar to the theoretical approach I adopted in Study 2, Gueudet and 

Pepin observed discrepancies between students’ actual use of provided resources, such 

as textbook, lectures, own notes, and MyMathLab, and lecturers’ expectations with 

respect to their use. For example, the lecturers expected the students to focus on the 

content of the lectures particularly the proofs whereas the students searched for solved 

examples. Similarly, the students did not make much use of the digital resources 

offered by the institution, but they used other Internet-based resources to search for the 

methods to work on mathematical tasks. Gueudet and Pepin suggested the need for the 

teachers to be more explicit about their expectations of the use of provided resources 

as well as Internet resources and to support an appropriate use by the students.   

 Anastasakis, Robinson, and Lerman (2017) investigated the links between 

undergraduate engineering students’ goals and their choice of resources. The data were 

collected through a survey from 201 students followed by in-depth interviews of six 

students. The study utilised Leont’ev’s (1974) model of the structure of an activity and 

mainly focused on the action–goal layer of the participants’ activities, similar to my 

use of this theoretical approach in Study 3. The analysis of the survey responses 

showed that while students used external resources to some degree including online 

videos, WolframAlpha (an online computing engine), and online encyclopaedias, they 

dominantly incorporated the institutionally provided resources such as textbooks, the 

university’s virtual learning system, the mathematics support centres, etc. The 

interviews further illustrated that the students’ choices of resources were driven by 

exam-related goals.  



 

34 

 

Concerning digital resources, Jaworski, Robinson, Matthews, and Croft (2012) 

focused on the incorporation of the dynamic software called GeoGebra in the 

mathematics teaching and learning of undergraduate engineering students. The study 

addressed the issues between teachers’ intentions behind the incorporation of 

GeoGebra and students’ responses, engagement, and performance regarding this 

approach. The elements of the collective activity systems (Engeström, 2014) for both 

teachers and students were analysed. The action and operation layers of students’ 

activities of learning mathematics, using Leont’ev’s (1974) hierarchical model of an 

activity, were also identified. Thus, Jaworski et al. (2012) adopted the similar 

theoretical approach as I did in Study 3. The results showed that there were differences 

in teachers’ and students’ ways of perceiving the value and the quality of 

understanding, and thus of perceiving the purpose of, the incorporation of GeoGebra. 

The researchers concluded that the teachers needed to make the expectations and 

purposes regarding the use of GeoGebra clear to the students. Another study, by 

Rønning (2017), explored the effects of an automated program called Maple T.A. on 

undergraduate engineering students’ ways of working in mathematics. Maple T.A. 

presents a set of problems or tasks to students and can evaluate the solutions using the 

incorporated functionality of Maple CAS. This computer program was used to 

administer mathematics tests to the engineering students. The data in this study were 

collected through six surveys from large cohorts of students (N > 500) followed by 

focused group interviews. The survey responses were analysed against the backdrop of 

the collective activity system (Engeström, 2014) in which the students participated, 

and the factors affecting students’ engagement of mathematics were identified. 

Regarding the effect of Maple T.A., Rønning concluded that the system promoted the 

quest for final solutions among the students, which in turn affected their deep learning 

of mathematics.  

The impact of the online and automated systems for homeworks in students’ 

learning of mathematics has been explored in various manners in previous research. 

For instance, a strand of research employed quantitative approaches for evaluating the 

effectiveness of online systems. (e.g., Callahan, 2016; Jonsdottir, Bjornsdottir, & 

Stefansson, 2017; Kodippili & Senaratne, 2008; Potocka, 2010). These studies 

determined the effectiveness of these systems by adopting criteria such as grades, cost 

effectiveness, and passing rates. In a comparative study, Krupa, Webel, and McManus 

(2015) analysed the impact of computer-based (CB) and face-to-face (F2F) instruction 
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in a college algebra course. They used a quasi-experimental match design and 

compared the student related predictors at three levels. The first level concerned the 

comparison of the exam results of two large groups (NF2F = 192, NCB =134), and the 

second level included some other student-level predictors (NF2F = 73, NCB = 50). The 

third level concerned quantitative analysis of students’ solution strategies for some 

open response tasks (NF2F = 38, NCB = 24). The results showed that the CB group 

performed better on the exam than the F2F group. The analysis of students’ responses 

to the open-ended tasks, however, indicated that the students from CB group 

experienced problems in interpreting and relating algebraic symbols to contextual 

situations effectively in comparison to their F2F peers. The students in CB group were 

better able to select appropriate symbolic procedures, whereas students in F2F group 

adopted the guess and check methods and were less likely to get the correct answer. 

Moreover, the students in CB groups were less persistent in attempts to solve 

contextual problems in comparison to their peers in F2F group. Overall, the study 

raised concerns about the students’ use of algebraic symbols in new situations in both 

settings.  

Webel et al. (2017) performed a study that investigated the implementation of a 

Math Emporium (ME), an instructional model for teaching and learning of 

mathematics using computer-based programs. ME was used with students in an 

introductory college algebra course and the study took a mixed methods approach to 

data collection and data analysis. Webel et al. focused on the following three themes: 

(1) whether the emporium is more helpful to a certain group of students; (2) the nature 

of mathematical learning in this setting; and (3) the students’ perceptions about the 

emporium style courses. Webel and colleagues concluded that the emporium style 

served the students with higher mathematics achievement and those who less strongly 

believed that mathematics is about memorising. The findings of their study also 

suggested that the setting enabled students to focus on getting correct answers more 

than developing algebraic meanings. Regarding students’ perceptions, Webel et al. 

found that some students did not like the autonomy and flexibility offered by this 

setting. These findings led the researchers to question if examination grades and 

passing rates are the appropriate indicators of the impact of such settings. The 

researchers recommended that future studies should focus on students’ interactions and 

mathematical reasoning afforded by these environments. 



 

36 

 

The interactional stance for exploring the impact of some online and automated 

systems has also been adopted in some past studies (e.g., Cazes & Vandebrouck, 2013; 

Gueudet, 2006). For instance, Cazes, Gueudet, Hersant, and Vandebrouck (2006) 

investigated university students’ strategies while working on different tasks posed in 

three electronic-exercise bases (EEB), that are programs similar to automated systems 

such as MML. The study took place during an experimental implementation of EEB 

environments. The data were collected through direct observations of individual 

students’ work on the assigned tasks and through electronically generated logs of 

students’ activities. The results of this study illustrated that the students’ actual 

strategies may differ from the expected strategies in EEBs. Cazes et al. (2006) 

recommend these environments for direct application task, those in which the 

strategies are given, as there were found no mismatches between students’ activities 

and the effective ones in such task situations. In the case of advanced tasks, the tasks 

in which the strategies were not explicitly provided through the help functions, and 

students often developed unexpected strategies. This is due to the reason that programs 

EEBs could not evaluate students’ strategies as the programs only evaluate the final 

responses.  

2.5.2 Mathematical reasoning and the use of digital tools 

The relationship between the availability of resources, including classical resources 

(e.g. textbooks) and digital resources (e.g. GeoGebra), and students’ mathematical 

reasoning has also been the object of study in previous research. For instance, 

Granberg and Olsson (2015) explored the effect of using GeoGebra on upper 

secondary school students’ collaboration and creative reasoning. The study involved 

36 students and was conducted during a 45-minute long session outside the classroom. 

The participating students worked in pairs and solved a task on linear functions using 

GeoGebra. The findings illustrated that GeoGebra facilitated the students in 

visualising, testing, and monitoring while sharing their ideas, strategies, and the state 

of the problem with each other. GeoGebra served as an interactive partner for students 

to visualise their strategies. Moreover, since GeoGebra did not offer feedback in the 

form of final solutions, the students had to interpret and evaluate the feedback through 

verificative arguments (cf. Lithner, 2008) as to why an idea did or did not work. The 

students’ evaluation thus served as the basis for their creative reasoning. Zembat 

(2008) compared pre-service teachers’ mathematical reasoning in a paper and pencil 
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environment with their mathematical reasoning in a technology supported learning 

environment. The technological environment comprised of The Geometer’s 

Sketchpad, spreadsheet, and T1 83 calculator. In this study, the analysis focused on the 

following three types of reasoning: analytical reasoning relating to the use of 

mathematical formulas, creative reasoning referring to invention of methods for 

thinking about problems, and practical reasoning referring to the practical applications 

of the involved concepts. Zembat found that the participants’ focus was confined to 

analytical reasoning in the paper and pencil environment. However, the participants’ 

focus was shifted from analytical reasoning to practical reasoning in the technology 

supported learning environment. This shift was possible due to the facility of the tool 

functions such as dragging, graphing, etc in The Geometer’s Sketchpad. Consequently, 

the pre-service teachers’ misconceptions about the concepts of function, slope and 

derivative were revealed in the paper and pencil environment while these were partly 

overcome in the technological environment. This was because the availability of the 

tools in the technologically enhanced environment allowed the teachers to reason in 

alternate ways about the mathematical object in contrast to the paper and pencil 

environment. 

Other aspects of the learning environment, such as properties of the tasks in 

textbooks (Lithner, 2003) and in assessments (Boesen, Lithner, & Palm, 2010), have 

also been linked with the nature of students’ reasoning. Norqvist (2018) studied the 

role of different kinds of task which is partly involved in my Study 4. Norqvist 

compared the effect of three kinds of tasks involving creative reasoning, algorithmic 

reasoning, and explained reasoning. The study included administering pre- and post-

tests for three group of students, each of whom worked on creative, algorithmic, and 

explained algorithmic reasoning tasks. The statistical analysis of the three groups’ 

performance on the pre- and post-tests illustrated that the students who practiced 

creative mathematical reasoning tasks outperformed those who practiced explained 

reasoning and algorithmic reasoning tasks. Also, the added explanation did not 

contribute to increase the learning efficiency of algorithmic reasoning tasks. The use 

of programming and its link with the reasoning is not studied, according to my 

knowledge.  
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3 Methodological approaches 

This chapter deals with the methodological approaches concerning my research 

project. The chapter opens with a presentation of the research paradigm in Section 3.1. 

Next, Section 3.2 elaborates on the relationships between theory and methodology, 

followed by an elaboration of the adopted research strategy and research design 

contained in Section 3.3. Section 3.4 further elaborates on the context and the research 

methods adopted to collect the data for research. This section also sheds light on my 

role as a researcher during the process of data collection. Subsequently, Section 3.5 

briefly addresses the strategies concerning the analysis of data within the arising 

studies. Section 3.6 is devoted to the mathematical context of this research. Section 3.7 

discusses quality criteria of the research with respect to the conducted studies, 

followed by ethical considerations in Section 3.8. 

3.1 Research paradigm  

A research paradigm is thought of as “a network of coherent ideas about the nature of 

the world and of the functions of the researchers which, adhered to by a group of 

researchers, conditions the patterns of their thinking and underpins their research 

actions” (Bassey, 1999, p. 42). In other words, research paradigms represent various 

established models in a research community within which researchers align 

themselves, according to their beliefs, to make sense of the phenomena to be 

investigated. A paradigm is a set of assumptions related to ontology, epistemology and 

the methodology of the research (Lincoln & Guba, 2000). The ontology is concerned 

with the postures on reality, the epistemology with the ways of coming to know the 

reality, and the methodology with the means of knowing the reality (Lincoln, 2007). 

The research reported in this thesis is situated within a naturalistic research 

paradigm (Lincoln, 2007), also referred to as an interpretative, constructive or 

constructionist paradigm (Bryman, 2015). This position regards the difference in the 

subjects of social sciences and the natural sciences in  the sense that human beings—

unlike the objects of the natural sciences—have meanings associated with the social 

reality which serve as the basis of their actions. The research questions as well as the 

theoretical stance in my study allow me to take a constructionist stance because the 

elements of the students’ activity system in mathematics are hard to quantify 

objectively and some sort of subjectiveness has to be involved.  
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With regard to the ontological assumptions in the naturalistic paradigm, reality is 

seen as extending beyond the measurable variables to also include the constructions of 

the perceptions and actions of the human beings. The social constructions hold an 

equal ontological status as physical realities. “Constructions are the mental and 

sensemaking processes and products which humans engage as they make sense of, and 

organize, the physical realities, sensory data, situations, contexts, experiences, 

attitudes, values, beliefs, expectations, and the like which swirl around them” (Lincoln, 

2007, Metaphyics and the Paradigm section, para. 1). My research also considers the 

reality as to be comprising social constructions in addition to physical quantities. For 

instance, while studying the students’ use of resources (Study 2, Study 3) or the 

reasoning processes (Study 4), I consider actions, operations, contextual conditions, 

etc. as comprising the reality.  

The epistemological issues determine “the ways of coming to know the reality” 

(Bryman, 2015, p. 24). In a naturalistic paradigm, an interpretivist stance is required to 

reach to research findings. Bryman (2015) notes that in interpretative research, three 

levels of interpretations are involved. At the first two levels, the researcher provides 

the interpretation of others’ interpretations. That is, the constructivist researcher grasps 

meanings and interprets those from the subjects’ point of view. At the third level, “the 

researcher’s interpretations have to be further interpreted in terms of the concepts, 

beliefs, and literature of a discipline” (Bryman, 2015, p. 28). In this sense, the 

constructionist account of a social phenomenon is also dependent on a researcher’s 

way of perceiving the reality. In my work, in study 3 and study 4, the third level is 

achieved when I interpret participants’ interpretations according to the theoretical 

framework of CHAT.  

The methodology or the means of coming to know the reality in my research 

relates to the research questions, theoretical guidelines, and the context of research. 

The forthcoming sections address these relationships in detail.  

3.2 Relationship between theory and methodology 

As discussed in the previous chapter, the conceptual framework of this research 

incorporates multiple theories (see Chapter 2, Section 2.1). The use of each theory can 

be regarded as what Simon (2009) calls lenses: “When one looks at a situation through 

a particular theoretical lens, some phenomena are prominent while others are not (e.g., 

cultural practices from a sociocultural perspective, prior knowledge from a cognitive 
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perspective)” (Simon, 2009, p. 482). With respect to my research, the theoretical lens 

of documentational approach in didactics aided in characterising students’ use of 

resources (Study 2). In Study 1, the first generation of CHAT was adopted to analyse 

execution of mathematical competencies when students incorporated resources in their 

learning actions. In Study 3 and Study 4, I employ the theoretical lens of second 

generation CHAT (Engeström, 1987; Leont'ev, 1974) to characterise the inner 

dynamics of the students’ activity system in varying manners. In particular, Study 3 

focuses on the role of resources at the action and operation layers, whereas Study 4 

looks at the processes of reasoning in relation to the conditions of the environment. 

Overall, second generation CHAT acts as the overarching theoretical framework to 

characterise the practice under consideration. CHAT guides on certain aspects of the 

research methodology. First, in this regard, is the recommendation that taking an 

activity system as a unit of analysis should complement the system view and the 

subject’s view. To achieve this purpose, the researcher looks at the system from above 

and at the same time through the eyes and interpretations of a subject, the member of 

the local activity, to understand the activity system (Engeström, 1999). In Study 3, 

while looking at the students’ use of resources, I incorporate students’ input regarding 

the usage of resources while keeping in view the whole activity system (cf. Figure 3). 

Second, CHAT proposes studying the dynamic motion in activities across time and 

generations. Human activities are considered as evolving over long periods of time. 

They are not short-lived events or actions which have a clear-cut temporal beginning 

and an end. Studying an activity system historically requires appropriate periodization, 

which means that the stream of historical events must be divided into larger patterns 

which have meaningful characteristics of their own (Engeström & Miettinen, 1999). 

Shchedrovitskii (as cited in Engeström, Miettinen, & Punamäki,1999), a Soviet 

activity theorist concerned with the development of collective activity systems, 

pointed out that “it is quite natural to endeavour to represent reproduction as cycles 

resulting in the formation of a new social structure on the basis of some preceding 

one” (p. 33). These cyclic time structures called expansive cycles need not to be 

repetitive but can lead to the emergence of new structures. 

The new activity system does not emerge out of the blue, but it requires reflective 

analysis of the existing culturally advanced models and tools that offer ways out of the 

internal contradictions. According to Engeström (2001), expansive transformation 

takes place when “the object and the motive of the activity are reconceptualised to 
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embrace radically wider horizon of possibilities than in previous mode of the activity” 

(p. 137). Engeström (1999) recommends that studying expansive cycles is the best 

methodology for understanding transformations going on in the human activity 

systems. He wrote: 

 

I want to suggest that such a methodology is best developed when researchers 

enter actual activity systems undergoing such transformations. I am not suggesting 

a return to naive forms of action research, idealizing so-called spontaneous ideas 

and efforts coming from practitioners. To the contrary, the type of methodology I 

have in mind requires that general ideas of activity theory be put to the acid test of 

practical validity and relevance in interventions that aim at the construction of new 

models of activity jointly with the local participants. (p. 35) 

 

The empirical basis of this thesis involves changes in an activity system which may 

account for an expansive cycle as discussed above (see more details in Section 3.4). 

Furthermore, I draw upon the following four methodological implications, suggested 

by Nardi (1996), which she derives from CHAT for conducting research in human–

computer interaction. Firstly, the research frame of analysis should be long enough to 

understand the user’s object. This implication stems from the claim that the activities 

are longer term formations and the objects are transformed into outcomes through a 

process of several phases rather than single steps. This suggestion led me to consider 

the data set spanned over long time when analysing certain aspects of the activity 

system, for instance, student’s use of resources (Study 3). Secondly, the attention must 

be given to broad patterns or the bigger picture of activity rather than narrow episodic 

fragments. The small episodes may prove useful, but not in isolation from the overall 

situation. This second suggestion led me to choose the events for analysis in relation to 

the whole activity system (Study 3). Thirdly, the data collection techniques should be 

varied including video observations, interviews, historical materials without undue 

reliance on any one of the data sets. The data is collected using multiple methods (cf. 

Section 3.4). The fourth and the last consideration underscores that a researcher should 

be committed to understand the object from the user’s point of view. Nardi (1996) 

writes: 
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It is severely limiting to ignore motive and consciousness in human activity and 

constricting to confine analyses to observable moment by moment interaction. 

Aiming for a broader, deeper account of what people are up to as activity unfolds 

over time and reaching for a way to incorporate subjective accounts of why people 

do what they do and how prior knowledge shapes the experience of a given 

situation is the more satisfying path in the long run. (p. 94) 

 

This last suggestion implied taking students’ views into consideration while analysing 

their use of several resources in their actions (see Study 3). 

3.3 Research strategy and research design  

A research strategy describes the general orientation to the research. The nature of the 

research questions addressed in this thesis requires adopting a qualitative research 

strategy (cf. Bryman, 2015). The research design serves as a “blueprint” for any 

research which serves not only as a work plan but also safeguards against the situation 

in which evidence does not address the initial research questions (Yin, 2014). 

According to Yin, the three factors which are important to consider while selecting a 

research design are: (a) the type of research questions; (b) the extent to which a 

researcher has control over actual behaviour events; and (c) the degree of focus on 

contemporary or historical events (p. 9). Moreover, a case study research design is 

preferred when “a ‘how’ or ‘why’ question is being asked about a contemporary set of 

events, and over which the researcher has little or no control” (p. 14). This is because 

the ‘how’ and/or ‘why’ questions require more explanations and need exploring the 

operational links traced over time instead of measuring just frequencies. Such 

questions can be answered using a case study, an experiment, or a history (Yin, 2014). 

In case study research, the researcher is interested in exploring the unique features of 

the case whereas in other designs, the interest is to generate statements applicable 

regardless of time and space (Bryman, 2015). The case study design facilitates me to 

address the research questions formulated for my thesis (see Section 1.4). It enables 

me to make sense of affordances of an online environment through studying students’ 

interactions with the resources (Study 3) and to analyse the factors in the environment 

which contribute to students’ reasoning processes (Study 4). 

According to Yin (2014), multiple-case studies with more than one carefully 

chosen case generate more compelling results than single-case studies. The selection 
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of the cases should be done using replication designs instead of sampling design. That 

is, the cases should be selected based on some theoretical interests rather than on the 

surface properties of the cases such as the number of participants or the context. Each 

case is carefully selected so that it “either predicts similar results (a literal replication) 

or predicts contrasting results but for anticipatable reason (a theoretical replication)” 

(p. 57). A further suggestion concerns the number of cases deemed necessary in a 

multiple case study design, which depends on the number of replications considered 

necessary to acquire the desired level of certainty about the findings of the research.  

A two-case study research design has been adopted in this thesis. This is also in 

line with methodological implications of CHAT. Two phases of an activity system or 

the expansive cycles (see details in Section 3.4) serve as the cases under consideration. 

The point of distinction between the two cases is the varied structure of the 

mathematics course during two consecutive semesters. Each case answers different 

research questions. The first three studies (Study 1, Study 2, and Study 3) arise from 

the first case study, while the fourth (Study 4) concerns analyses of both case studies.  

The sampling in the case studies reported in this thesis is done at two levels: the 

context, and the participants (Yin, 2014). The first level of sampling is considered as 

purposive in the sense that the context is selected that is relevant for answering the 

research questions. The next level of sampling of participants is considered as random. 

The students who were willing to take part in the study were involved as participants. 

The drawback of such sampling at the participant level is that it becomes difficult to 

generalise the results to a broader population. The sampling serves the purposes of my 

research which is to document the processes of students’ learning and significant 

factors which play a role in these processes. Generalisation in a quantitative sense is 

thus neither possible nor of particular interest in my research. 

3.4 Context  

The techniques for collecting data are considered as research methods. The examples 

of research methods can be questionnaires, structured observations, participant 

observations, etc. (Bryman, 2015). As stated earlier, the research reported in this thesis 

is based upon two case studies. In each case study, I used a different scheme of data 

collection methods which related to the addressed research questions as well as to the 

context of the research. In this section, I present the details about the context and the 

methods of data collection in each of the case studies, the online environment (3.4.1), 
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specifications of the online, interactive educational system used (3.4.2), an account of 

the tutorial videos available for the students (3.4.3), and an account of the blended 

environment in the second case study (3.4.4) In the end, I also reflect on my role being 

the researcher during the process of conducting the research (3.4.5). 

3.4.1 Case study 1—The online environment 

The first round of data collection took place in Spring 2017. All the students from the 

class of electronics engineering were informed about the project. These students were 

in their second semester of an undergraduate engineering programme. Four students, 

Per, Jan, Tor, and Ole volunteered to participate in the study (See Appendices 1 for 

Letter of information and Letter of consent).  

The mathematics course was organised by offering lectures in the form of tutorial 

videos. The homework and assessments were administered through MyMathLab 

(details in section 3.4.2). The final examination was digital, and students had access to 

the provided resources (textbook, calculator) as well as to the resources on Internet. 

The course spanned over the first two semesters (Autumn 2016, Spring 2017) in the 

first year of the undergraduate electronics engineering program. In the second semester 

(Spring 2017), the topics included differentiation, applications of differentiation, 

integration, applications of integration, and sequences and series.  

The participants were requested to work together on campus. For the group work 

sessions, the group study rooms on campus were used. I used to book the group study 

room and inform the students through email. Those sessions were video recorded. As 

the course progressed, students’ activity was becoming increasingly computer-based. I 

then asked the students to record their screen activity using the freeware, Camstudio 

(see Appendix 4 for the Camstudio settings). 

Weekly journals were included to explore students’ use of tutorial videos and I 

asked them to specify the manner in which they used videos or other resources in their 

work. After about two weeks, I provided them a table format for the weekly journals 

(attached as Appendix 3). Three of the students submitted their weekly journals. The 

journals were sent to me through email. In total, I received 34 journals (Per: 9, Jan: 12, 

Tor: 9). Semi-structured interviews were also conducted occasionally in order to 

complement the data in journals. The interviews were also focused on students’ use of 

resources and the general manner of their work organisation (see Appendix 7 for the 

interview guide). In the group work sessions, students communicated with each other 

in Norwegian. The weekly journals and the interviews were conducted in English.  
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3.4.2 Specifications of MyMathLab 

MyMathLab (MML) is an online interactive and educational system designed 

by Pearson Education to accompany its published mathematics textbooks. The system 

serves as a personalised learning environment (Borba et al., 2016) for mathematics. In 

both phases of the data collection, the homework and assessments were administered 

through MML.  

In MML, the set of tasks in each homework is linked with corresponding sections 

in the textbook (Croft & Davison, 2015). The Question Help feature offers five options 

through a drop-down menu: help me solve this, view an example, textbook, calculator, 

and print. Through help me solve this, the learner receives the step by step assistance 

to solve the task at hand. The learner needs to perform the involved operations in order 

to proceed through the task. The view an example feature offers a solved example with 

slight changes in involved numbers or function in the task. The features, textbook, 

calculator and print, direct the users to these resources. Upon solving the task, a 

feature check answer specifies whether the answer is correct. If the answer is not 

correct, the feedback is provided by specifying the strategy to solve the task. If the 

answer is correct, the learner is proceeded to the next task.  

3.4.3 Tutorial videos  

The tutorial videos provided in this course replaced the lectures. The videos were 

created by the lecturer using a document camera. Each video was linked to a section in 

the textbook (see Figure 6). The videos were of varied length depending upon the 

topics the videos dealt with. Moreover, mathematical concepts were explained, and 

examples were provided in the videos. 

 

 

Figure 6: A screenshot from a tutorial video provided in the course. 

https://en.wikipedia.org/wiki/Pearson_Education
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3.4.4 Case study 2—The blended environment 

The second phase of the data collection was carried out in Autumn 2017, in the same 

class. The three participants from the previous phase, Per, Jan and Tor, continued their 

participation in my research. Only one participant, Dag, was new in this phase of the 

data collection. The participants were now in their third semester of their studies.  

The topics included in this course were: differential equations, functions of several 

variables and partial differentiation, Laplace transformation, and introduction to 

Fourier series and Fourier transformation. The organisation of this course differed 

from the previous course in certain aspects. This course included the weekly face-face 

lectures instead of video lectures. The group work was included occasionally during 

the lectures. The lecturer assigned the mathematical tasks and encouraged the students 

to work collaboratively on the tasks using paper and pencil. Moreover, the final 

examination was changed to written format in this semester. The homework and the 

tests were administered through MML as in the previous course.  

For collection of data, I video recorded the lectures, as well as the group works, 

assigned corresponding with the lectures. During the group work sessions, two 

LiveScribe1 Smartpens were provided to the participants. The LiveScribe Smartpens 

capture the writing activity along with the sound and record them synchronously in the 

form of pencasts. When students used the Smartpens during their group work, it 

facilitated in tracing their writing on the paper together with their utterances. 

Participants also worked in pairs, each having one pen, leading to more interactions 

among the group members. Semi-structured interviews were also conducted during 

this semester. The interviews were focused on the organisation of the course in both of 

the semesters, the differences and similarities in the use of resources in students’ work. 

An overview of the data collected can be seen in Appendix 2. 

Apart from these two case studies, I also collected data from another group of 

students from the electronics engineering students during Spring 2018. Those data 

have not been analysed so far due to the limitations of time as well as of personal 

resources for doing the translations to the English language. 

 

 

 
1 https://us.livescribe.com/ 

https://us.livescribe.com/
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3.4.5 My role as a researcher 

When I began collecting the data, I had completed six months of the PhD program. At 

that time, I had very limited knowledge of the Norwegian language. During the video 

observations, when students communicated with each other in Norwegian, I could 

observe to some extent what the students were doing but I was unable to grasp all of 

the exchanges among them. Therefore, I was mostly an observer, and I did not 

intervene in their mathematics work. However, I used to have short discussions at the 

end or the beginning of the sessions depending upon if I had to convey some further 

plans or wanted to ask what they were doing in those sessions. I believe that my 

presence along with the video camera might have had some effect on their ways of 

working and on the group dynamics. For instance, I observed in the initial sessions of 

group observation that the students were apparently conscious of being recorded with 

the video camera. Such an effect due to the presence of the researcher is known as the 

Hawthorne effect in the literature (cf. Sowder, 1998).  

The lecturer enrolled me in MyMathLab as a student, so I had access to the weekly 

assignments in MML, important dates and tests in the progression of the course. 

Nevertheless, it was through students’ journals and the screen recordings that I was 

able to make sense of their task solving processes. Towards the end of the first phase 

of data collection, I had a meeting with the lecturer of the course and informed him 

about the general observations I had at that time. The lecturer, probably based on my 

observations and own reflections, revised the structure of the course which concerns 

the second case study. I was informed about the changes in the upcoming course 

structure during the first phase of data collection. 

3.5 Structuring and analysing the data 

In the four studies arising from this research, the methods of analysing differed 

according to the foci of the addressed research questions. The data sources were 

selected and utilised accordingly. For instance, Study 3 concerns a holistic view of 

students’ activity afforded in the online environment, and all the sources of data from 

the first case study were utilised for the purpose of analysis in this study. Below, I 

provide details of how each source of data was analysed and in each study. 

3.5.1 Students’ weekly journals and semi-structured interviews 

The students’ journals were analysed in Study 2 and Study 3. Study 2 focuses on 

students’ use of resources and the manner in which these resources mediated between 
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the mathematics and the students in their mathematics work. The main sources of data 

utilised were the weekly journals and one semi-structured interview. The students’ 

responses regarding their use of several resources in their work were analysed, to 

differentiate between the epistemic and the pragmatic mediation by way of the 

resources used. For instance, when a student wrote that he used the tutorial videos to 

understand a concept. This was identified as an epistemic mediation. The uses such as 

the “got the questions”, “double-checked the answers” were regarded as pragmatic 

mediation. From one semi-structured interview, I compared the students’ use of 

MyMathLab and tutorial videos. From the second phase, the interviews have not been 

included in the analysis so far.  

In Study 3, using the CHAT framework, the journals were analysed to make sense 

of the uses of resources of the action–goal layer of the activity. Through students’ 

responses, I identified students’ actions as something which was done by students. The 

indicators such as “I solved…” and “I got information…” were used to identify 

students’ actions related to each of the resources. The goals were identified from those 

responses where they expressed what they wanted to achieve by using each resource. 

The responses such as “Use(d) the textbook to find the formulas for the different 

expansion series” indicated about the action as well as the goal of the student. 

Appendix 3 provides the document containing analysis of students’ journals. The 

reason why the journals were used are theoretical. As indicated elsewhere, the actions 

are considered as in the conscious awareness of subjects of activity in contrast to the 

operations (Leont'ev, 1981b). 

3.5.2 Video-recorded observations 

The video data from the first case study were transcribed in English by a native 

speaker of Norwegian (see Appendix 6, for example). The screen recordings were 

attached to the respective video recordings. From the second phase, three group works 

were transcribed and translated into English (see Appendix 6). Electronic copies of the 

task sheets and the solution sheets were created. The mathematics tasks which the 

students solved in the three group work sessions can be seen in Appendix 5. Also, 

Livescribe PDFs and pencasts of students’ written work were collected.  

Study 1 focuses on the execution of mathematical competencies in the online 

environment. The primary data set used in this study was the video recordings of 

student group work from the first case study. From those sessions, the instances where 

the students used various digital resources were identified and analysed. 
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Study 4 focuses on students’ reasoning processes (see section 2.3.2) in an online 

environment and a paper and pencil environment. The video recorded observations 

from both cases were utilised in this study. The video recorded group works from both 

case studies served as the primary source of data in this study. I search for instances of 

mathematical reasoning in students’ work by going through transcriptions of video 

recordings, screen recordings, and students’ written work (for details, see the summary 

of Study 4). According to Figure 5, the steps of selecting and implementing models 

were analysed. In this regard, the instances of students’work on complete tasks were 

searched from both environments. After that, the focus was placed on the differences 

between the two steps among the two settings.  

3.6 The mathematical context 

As mentioned above, the data collected in both case studies cover a wide range of 

mathematical topics. However, the instances for analysis were selected according to 

the foci of the research questions associated with each of the four studies. These 

instances (Study 1, Study 3, and Study 4) encompass students’ work on techniques of 

integration, applications of integration, and stationary points of the functions of two 

variables. The subsections below treat these topics separately.  

3.6.1 Integration by parts 

Integrating by parts refers to a technique for finding a primitive of a given function. 

The following formula, based on the product rule for differentiation, is applied to carry 

out integration by parts, 

∫ 𝑢 (
𝑑𝑣

𝑑𝑥
) 𝑑𝑥 = 𝑢𝑣 − ∫ 𝑣 (

𝑑𝑢

𝑑𝑥
)𝑑𝑥. (1) 

 

In this formula, the integrand is seen as the product of the terms 𝑢 and 
𝑑𝑣

𝑑𝑥
. The term 𝑢 

must be differentiable in order to find 
𝑑𝑢

𝑑𝑥
. The term 

𝑑𝑣

𝑑𝑥
 must be integrable to be able to 

find 𝑣. The intention is to replace the given integral on the left-hand side of (1) with 

the one on the right-hand side, selecting 𝑢 and 
𝑑𝑣

𝑑𝑥
 so that the integral on the right hand 

side becomes simpler than the initial integral. As an example, consider ∫ 𝑥𝑒𝑥𝑑𝑥. Here, 

both the terms 𝑥 and 𝑒𝑥 are differentiable and integrable functions. If we let 𝑢 = 𝑒𝑥, 

and 
𝑑𝑣

𝑑𝑥
= 𝑥. Then, 

𝑑𝑢

𝑑𝑥
= 𝑒𝑥, 𝑣 =

𝑥2

2
. Using (1), we get 
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∫ 𝑥𝑒𝑥𝑑𝑥 =  𝑒𝑥 ∙  
𝑥2

2
− ∫

𝑥2

2
∙ 𝑒𝑥𝑑𝑥 

= 
𝑥2𝑒𝑥

2
−

1

2
∫ 𝑥2𝑒𝑥𝑑𝑥. 

The integral on the right-hand side is more complicated than the one on the left-hand 

side, so this was not a wise choice. Now, let 𝑢 = 𝑥, and 
𝑑𝑣

𝑑𝑥
= 𝑒𝑥. Then, 

𝑑𝑢

𝑑𝑥
= 1, 𝑣 =

𝑒𝑥. Using (1), we get 

∫ 𝑥𝑒𝑥𝑑𝑥 =  𝑥𝑒𝑥 − ∫ 𝑒𝑥 ∙ 1𝑑𝑥 

= 𝑥𝑒𝑥 − 𝑒𝑥. 

3.6.2 The integral as the limit of a sum 

This treatment defines the integral as the limit of a sum. This method relates to the 

concept of Riemann sum introduced by German mathematician, Bernhard Riemann 

(Bressoud, 2019). The idea behind this treatment is illustrated below.  

Consider the graph of a positive function 𝑦(𝑥) as shown in Figure 7 (a) below. An 

approximation to the area under the curve between 𝑥 = 𝑎 and 𝑥 = 𝑏 can be found by 

first dividing the area into strips of equal width 𝛿𝑥 and then approximating these strips 

by rectangles. The area of one such rectangular strip, with its left endpoint at 𝑥 = 𝑥𝑘 

will then be y(𝑥𝑘)( 𝛿𝑥) (Figure 7(b)). 

 

 

 

 

 

 

 

 

 

 

Figure 7: (a) Approximation of area by rectangles, (b) dimensions of one rectangle 

(Croft & Davison, 2015, p. 861). 
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Adding the areas of all the rectangular strips formed between 𝑥1 = 𝑎 and 𝑥𝑛 = 𝑏 −

𝛿𝑥 , the sum ∑ 𝑦(𝑥𝑘)(𝛿𝑥)𝑛
𝑘=1  provides an estimate for the area under the curve. This 

sum is a special case of Riemann sum. In this sum, when the width of the rectangles 

gets smaller, i.e. 𝛿𝑥 approaches zero and the number of rectangles 𝑛 tends to infinity, 

the limiting value of the sum provides the exact area under the curve. Thus, the 

limiting value, lim
𝑛→∞

∑ 𝑦(𝑥𝑘)( 𝛿𝑥),𝑛
𝑘=1  becomes equal to the definite integral of the 

function 𝑦(𝑥) from 𝑎 to 𝑏. A function is said to be integrable if the limit, 

lim
𝑛→∞

∑ 𝑦(𝑥𝑘)( 𝛿𝑥)𝑛
𝑘=1  exists. And,  

 lim
𝑛→∞

∑ 𝑦(𝑥𝑘)( 𝛿𝑥) = ∫ 𝑦(𝑥)𝑑𝑥 
𝑏

𝑎
𝑛
𝑘=1  

Thus, a definite integral can be expressed as a limit of a sum using the above 

treatment. Study 3 involves students’ work on a task requiring the limit of sums 

method to solve a definite integral. 

3.6.3 Using integrals to compute volumes: The Disk Method and the Shell Method 

The idea of seeing the definite integral as the limit of a sum lies behind the application 

of integrals to compute areas, volumes, and other physical quantities. Below, the two 

methods for finding volumes, commonly termed as the Disc Method and the Shell 

Method, are treated in detail. These methods are relevant to the students’ work in the 

first case study (see Study 3). 

In these methods, the solid whose volume is to be found is generated by revolving 

an area bounded by the curve between two points about a given axis. This solid is, 

therefore, termed as a solid of revolution. Consider the area bounded by the curve 𝑦 =

𝑓(𝑥) > 0, 𝑥 = 𝑐 ≥ 0, 𝑥 = 𝑑 > 𝑐, and the 𝑥-axis (see Figure 8(a)) and let this area be 

rotated about the 𝑥-axis. The volume of the resulting solid can be seen as a sum of 

circular disks of equal thickness 𝛿𝑥 and radius y (see Figure 8(a)). 

The volume of one such disc formed at 𝑥 = 𝑥𝑘  becomes π𝑦𝑘
2𝛿𝑥. Adding the volumes 

of these vertical discs provides an estimation of the total volume of the solid. If the 

number of the circular disks 𝑛 → ∞, that is the thickness of one such disk 𝛿𝑥 →0, the 

limit of the sum provides the exact volume of the solid.  

lim
𝑛→∞

∑π𝑦𝑘
2𝛿𝑥

𝑛

𝑘=1
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Figure 8: An illustration of the Disk Method when the solid is formed by revolution 

around (a) 𝑥 -axis, (b) y-axis (adapted from Croft & Davison, 2015, p. 871). 

 

Using the idea that the limit of a sum is equal to an integral, this summation equals the 

integral ∫ π𝑦2𝑑𝑥
𝑑

𝑐
 = ∫ π𝑓(𝑥)2𝑑𝑥.

𝑑

𝑐
 The volume, therefore, can be found by 

evaluating this integral. This method is termed the Disc Method on account of the 

discs yielding the whole solid.  

Consider, the curve of the equation of the form 𝑥 = 𝑔(𝑦) > 0 and the area 

bounded by 𝑥 = 𝑔(𝑦) > 0, 𝑦 = 𝑐 ≥ 0, 𝑦 = 𝑑 > 𝑐, and the 𝑦-axis (see Figure 8(b)) 

and let this area be rotated about the 𝑦-axis. The volume of the resulting solid can now 

be seen as a sum of circular disks of equal thickness 𝛿𝑦 and radius x (see Figure 8(b)). 

The formed disks will be horizontal, and therefore the integration will be carried out 

along the y-axis. The role of x and y will be interchanged in the integration. The 

integral formula will thus become ∫ π𝑥2𝑑𝑦
𝑑

𝑐
 =∫ π𝑔(𝑦)2𝑑𝑦.

𝑑

𝑐
 

The Shell Method is applicable when the generated solid of revolution (see Figure 

9) can be seen as a sum of cylindrical shells. Suppose that the same area i.e., the area 

between the curve 𝑦 = 𝑓(𝑥) > 0 and the x-axis, say from 𝑥 = 𝑐 ≥ 0  and 𝑥 = 𝑑 > 𝑐,  

is rotated around the 𝑦-axis (see Figure 9), the generated solid in this case (shown with 

dotted lines in Figure 9) can be seen as composed of cylindrical shells of thickness 𝛿𝑥.                                                                            
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Figure 9: An illustration of the Shell Method of revolution.  

 

The volume of one such shell formed at 𝑥 = 𝑥𝑘 having radius 𝑥𝑘 and width 𝛿𝑥 will be 

2π𝑥𝑘 ∙ 𝑓(𝑥𝑘) ∙ 𝛿𝑥. The sum of these volumes when 𝛿𝑥 → 0, then becomes 

lim
𝑛→∞

∑2π𝑥𝑘𝑓(𝑥𝑘)𝛿𝑥

𝑛

𝑘=1

, 

which gives the total volume of the solid, as the integral ∫ 2π𝑥𝑓(𝑥)𝑑𝑥
𝑑

𝑐
=

 2π∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑑

𝑐
.  

Consider the case when an area is bounded by a curve with equation of the form 

𝑥 = 𝑔(𝑦) > 0 and the y- axis, say from 𝑦 = 𝑐 ≥ 0 and 𝑦 = 𝑑 > 𝑐, is rotated around 

the 𝑥-axis . In this case, the cylindrical shells will have radius 𝑦 = 𝑦𝑘 and height 𝑥𝑘(=

𝑔(𝑦𝑘)). The volume of one such shell with thickness 𝛿𝑦 will be 2π𝑦𝑘 ∙ 𝑔(𝑦𝑘) ∙  𝛿𝑦. 

Following the same steps as above, the integral will take the form 2π∫ 𝑦𝑓(𝑦)𝑑𝑦
𝑑

𝑐
. 

From the above illustrations of the Disk Method and the Shell Method, it can be 

noted that the integration is carried out along the axis of revolution in the Disk 

Method. In contrast, in the Shell Method, the integration is carried out perpendicular to 

the axis of revolution.  

3.6.4 Stationary points of a function of two variables 

In the second case study, one task involves investigating the nature of stationary points 

of a function of two variables (see Appendix 5). At stationary points, the graph of a 

function is neither increasing nor decreasing. That is, the gradient of the function at 

these points is the zero vector. The location of these points for a given function is 
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found by equating where the first-order partial derivatives of the function are zero. 

That is 

𝜕𝑓

𝜕𝑥
= 0,

𝜕𝑓

𝜕𝑦
= 0  

                           

                                  

           

 

Figure 10: A is a minimum point of 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2; B is a maximum point 

of  𝑓(𝑥, 𝑦) = −𝑥2 − 𝑦2; and C is a saddle point of 𝑓(𝑥, 𝑦) = 3𝑥𝑦 + 𝑥 + 𝑦. 

 

Moreover, the graph of a function at stationary points either has the highest value, 

lowest value, or saddle-like behavior. Accordingly, the points are termed as a local 

maximum point, a local minimum point, or a saddle point. For illustration purposes, 

the maximum point, the minimum point, and the saddle point for three different 

functions are shown in Figure 10. 

After finding stationary points using the first-order partial derivatives, the nature of 

the stationary points can be investigated through the following test (Croft & Davison, 

2015). 
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For a stationary point (x, y), if 

𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑦2
− (

𝜕2𝑓

𝜕𝑥𝜕𝑦
)
2

< 0, (x, y) is a saddle point 

𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑦2
− (

𝜕2𝑓

𝜕𝑥𝜕𝑦
)
2

> 0 and 
𝜕2𝑓

𝜕𝑥2
> 0, (x, y) is a minimum point 

𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑦2
− (

𝜕2𝑓

𝜕𝑥𝜕𝑦
)
2

> 0 and 
𝜕2𝑓

𝜕𝑥2
< 0, (x, y) is a maximum point 

𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑦2
− (

𝜕2𝑓

𝜕𝑥𝜕𝑦
)
2

= 0, no conclusion can be drawn 

3.7 Quality criteria in my research 

According to Bryman (2015), three main criteria for evaluating the quality of 

quantitative, social research are reliability, replicability, and internal and external 

validity. Reliability addresses the question of whether the measures of the concepts 

under investigation are consistent. Replicability deals with the replication of the 

research, i.e. the research results must be replicable to address the concerns such as 

when the generated results do not match with the existing evidence. In order for a 

study to be replicable, the operationalisation of the research must be clear enough or 

consistent. That is, the study must be reliable in the selection of the measures to study. 

Thus, the criterion of replicability relates to that of reliability. Validity is concerned 

with the integrity of the conclusions that are generated from a piece of research.  

In the case of qualitative research, the parallel of these three criteria are suggested 

as credibility, transferability, dependability and confirmability, which come under the 

umbrella term of trustworthiness (cf. Bryman, 2015). The criterion of credibility 

parallels the internal validity, which deals with the question whether the conclusions of 

the research about a causal relationship between two variables holds true. 

Transferability parallels the external validity, which concerns the issue if the findings 

apply to other contexts. Dependability parallels reliability and deals with the questions 

whether the findings can be applied at other times. Confirmability concerns objectivity 

of the research and relates to the question whether the researcher has allowed the 

personal values and beliefs intrude to a high degree. 

In case study research design, as in my thesis, Yin (2014) calls for the following 

four quality tests: construct validity, internal validity, external validity, and reliability. 

These quality criteria may be achieved by adopting some tactics at different stages of 
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the case studies. For instance, construct validity calls for developing the operational set 

of measures of the concepts for collecting the data rather than the subjective 

judgements; it parallels objectivity in Bryman’s (2015) terms. It is achievable by using 

multiple sources of data which establish a chain of evidence which makes case study 

findings more convincing and accurate. If the triangulation of data sources is aimed to 

develop a convergent evidence, it helps to increase the construct validity. In the first 

case study, I used multiple methods of data collection, referred to as triangulation of 

methods (Yin, 2014), in order to develop converging lines of inquiry. These multiple 

data collection methods generated different data sources which aided in establishing 

the chain of evidence about the layers of the activity while analysing the dynamics of 

the activity system. For instance, in Study 3, the video recordings aided in looking at 

the operation–condition and the operational aspects of students’ activity, and the 

students’ journals were used to analyse the action–goal layer and the intentional 

aspects of the students’ activity. The use of different sources of data was driven by the 

theoretical guidelines of activity theory to study the constructs of actions and 

operations (see also Section 2.2.3). The findings from both sources of the data 

converged in the sense that the stated actions and goals in the journals were traceable 

to their corresponding operations in the video data. 

Internal validity is relevant when causal relationships need to be established, 

mainly in explanatory studies, by considering all the hidden variables thus avoiding 

the spurious relationships. Internal validity also improves if the construct validity of 

the research is clear and well established. I believe that this is clear in Study 3, which 

illustrates links between the levels (activity, action, and operation) of students’ online 

learning activity.  

Concerning external validity, Yin (2014) states that the purpose of case studies is 

not to generalize to a wider public as in the survey analysis. Rather, case studies are 

meant to produce rich descriptions of the cases being studied. The goal is to expand or 

generalize theories and not to extrapolate probabilities. Yin calls this analytic 

generaliation rather than statistical generalization. In my research, the aim is for 

analytic generalisation on account of the consideration of a specific learning 

environment and hence certain tools and conditions. 

As mentioned, reliability concerns whether the operations of the study are 

repeatable. In case study research, achieving reliability is only possible when all the 

procedures are operationalised to the most possible level so that it is likely for 
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someone else to be able to understand and repeat the study. The replication does not 

mean to replicate the results of one case study by doing another case study but doing 

the same case over again. I argue that I have made the operationalisations of the case 

studies understandable for replication, i.e. in terms of application of activity theory as 

discussed before. 

3.8 Ethical considerations for my study 

My PhD research involved voluntary participation from undergraduate electronics 

engineering students. Initially, the project was aimed at investigating the role of the 

tutorial videos in engineering students’ learning of mathematics. The project was 

registered with NSD—Norwegian Centre for Research Data (http://www.nsd.uib.no/) 

and fulfilled their requirements. I informed all the students in the class of electronics 

engineering students about this project. I asked the students if they wanted to 

participate in my project. Only four students volunteered to participate in the project. 

These students signed the consent form (see Appendix 1). Also, they were informed 

that they could withdraw from the project at any later point (stated in the information 

letter). 

In the first meeting with the four participants, I informed them more about the 

plans of my data collection and asked the students regarding their general manner of 

working in the course. My impression after the initial discussion was that the students 

were not using the tutorial videos in any rigorous manner. Rather they mentioned 

using MyMathLab and other resources (see Study 2, Study 3). Therefore, I decided to 

focus on other resources as well, in addition to the tutorial videos, in my project. In 

this meeting, the students also told me that there were no regular lectures and they 

preferred to work from home. Therefore, the weekly journals were added at this point 

to get glimpses into the use of resources in students’ work in a systematic manner, 

which was not initially planned for. 

Bryman (2015), with reference to Diener and Crandall, suggests to pay attention to 

the following four ethical concerns in a research project: (a) harm to the participants; 

(b) lack of informed consent; (c) invasion of privacy; and (d) involvement of 

deception. Considering my own research, I believe that the possible harm in my study 

could be the extra time they had to spend on writing the weekly journals in addition to 

their normal course work. My presence in the group room and my observations may 

also have caused disturbances in the students’ mathematical work that may have not 

http://www.nsd.uib.no/
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been there without my presence. The use of a video camera may likewise have caused 

stress amongst the students. However, my experience from being present in the group 

room with the camera tells me that this ethical principle was not violated. With respect 

to informed consent, I gave the students an information letter (Appendix 1) and I 

informed them orally as well. Regarding the invasion of privacy, no data were 

collected involving sensitive information. The names of the participants are 

anonymised, and other details are treated confidentially. For the last point, I informed 

students that the aim of the current project was to explore the role of the resources in 

their learning of mathematics. I argue that studies 1–4, as well as this extended 

abstract, reveal that this ethical principle is not violated in my research. I have indeed 

explored the role of resources and students’ use of these in their mathematics work. 
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4 Summary of research papers  

In this chapter, I present summaries of the four studies which constitute the empirical 

research basis of this thesis. The studies are presented in the chronological order in 

which they were written. The sequence of the papers also portrays the path which I 

have taken during my PhD and the gradual development of myself as a researcher. 

Study 1 (Section 4.1) is a preliminary report based on the initial analysis from the first 

case study and focuses on the execution of mathematical competencies in the online 

environment. Study 2 (Section 4.2) focuses on students’ use of resources in the online 

environment and adopts the theoretical framework of documentational approach to 

didactics. In Study 3 (Section 4.3), I focus on affordances of the online environment 

adopting a holistic view upon the activity system within which the students participate. 

The last summary, Study 4 (Section 4.4), focuses on the students’ reasoning processes 

in the online environment and the paper and pencil environment and utilises the 

empirical material from both case studies.  

4.1 Study 1: Mathematical competencies and e-learning: a case study of 

engineering students’ use of digital resources2 

This preliminary research report analyses the manner in which the online learning 

environment under consideration supports execution of mathematical competencies 

(cf. RQ1 and RQ2 in Section 1.4). The framework of mathematical competencies 

(Niss, 2003; Niss & Højgaard, 2011), as explicated in Section 2.3, was used to guide 

the analysis of mathematical aspects of students’ work while working in a 

technological environment. The framework divides the mathematical competencies 

into two groups: the ability to ask and answer questions in and with mathematics, and 

the ability to deal with mathematical language and tools.  

In this study, I only utilised video-recorded group works and looked for the short 

instances which provided evidence for the execution of mathematical competencies 

with the use of digital tools in students’ work. The unit of analysis was taken as 

mediated action (Wertsch, 1991). The analyses of the selected instances show that 

 

 

 
2 This study was submitted and published as a preliminary research report in the proceedings of the Research in 

Undergraduate Mathematics Education (RUME) conference held in 2018. 



 

62 

 

multiple competencies were in action at the same time. However, in this initial 

analysis I kept my focus on distinguishing between the two sets of competencies rather 

than disentangling all the 8 competencies in Niss and Højgaard’s (2011) framework.  

The analysis illustrated that the students in my study utilised multiple tools such as 

WolframAlpha, GeoGebra, and Maxima while solving the tasks in the online 

environment. The students used these tools to handle mathematical symbolism and 

formalism as well as for mathematical reasoning, and problem tackling. For example, 

when Maxima provided a solution in a form which the students could not comprehend, 

they used WolframAlpha to confirm if their solution obtained in Maxima was correct. 

WolframAlpha supported students’ reasoning about finding and validating the final 

answers. That is, the competency of using tools facilitated in executing these 

competencies from the first group. However, the analyses show that the students used 

these tools by relating to surface mathematical properties involved in the tasks. For 

example, the students used tools such as Maxima and WolframAlpha for deciding 

about the final solution, rather than exploring the mathematical aspects in depth. Based 

on rather short analyses, I conjecture that there were more traces of the second group 

of competencies in the students’ work and the environment afforded more of the use of 

different tools for solving the assigned tasks. Moreover, the use of resources had 

twofold effects for execution of mathematical competencies of mathematical 

reasoning, which related to the nature of the resources in the students’ use. That is, 

when the resources facilitated in calculating and providing answers, the possibilities of 

exploration of mathematical properties were limited. On the other hand, when the 

resources were used to comprehend the tasks at hand, there was more potential for 

engaging with the intrinsic mathematical properties. 

The paper concluded with this reflecting question: How to devise a better systematic 

scheme for analysing mathematical competencies in this environment? My next goal 

was to come up with a narrowed down theme for analysing students’ engagement with 

mathematics in the online environment. This goal led me to conduct the research 

resulting in Study 2 below. 
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4.2 Study 2: Engineering students’ engagement with resources in an online 

learning environment3 

This study focuses on the undergraduate engineering students’ manner of using 

resources in their online learning activity (cf. RQ3 in Section 1.4). The theoretical lens 

of documental approach to didactics (Gueudet & Trouche, 2009) has been used in this 

study. The data set used comprises students’ journals, semi structured interview(s), and 

screen recordings of their online work in mathematics from the first case study. 

Through these data, I analysed general features of students’ techniques while 

solving the tasks in the online environment. A technique is regarded as the manner of 

solving a task (Artigue, 2002). Techniques are characterised as having either 

pragmatic or epistemic value based on the nature of the tool mediation as well as the 

engagement with the involved mathematics. A technique with a pragmatic value refers 

to the use of tools in reaching to end results or solution of the tasks. A technique with 

an epistemic value refers to making sense of the involved concepts while solving the 

tasks. In my study, I identified the pragmatic and the epistemic values of students’ 

techniques through students’ weekly journals, although the attention was not confined 

to particular mathematical tasks.  

As evident from the previous section, the students in my study employed several 

other resources to solve the tasks, including online tools such as WolframAlpha, online 

calculators, YouTube videos, webpages, as well as programming in Maxima in their 

techniques, in addition to the provided resources including the textbook, tutorial 

videos and accompanying notes. The provided resources such as tutorial videos, 

textbook, and MyMathLab suggested the paper and pencil-based techniques for 

solving the given tasks in these resources. The analysis shows that the students opted 

more for the instrumented techniques with the progression of the mathematics course.  

The students used the resources in various manners which linked to the potential 

and function of each of the resources. The students linked the use of WolframAlpha 

 

 

 

3 This study was published in the proceedings of the International Network for 

Didactic Research in University Mathematics (INDRUM) conference held in 2018.  
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and other computing tools with the pragmatic purposes. For instance, the students used 

WolframAlpha to doublecheck the answers obtained from Maxima, as a shortcut to 

solve the tasks and to get help with the difficult questions. The online calculators were 

used to solve the tasks in homeworks as well as tests which are considered as a 

pragmatic purpose. During a project in the mathematics course, students were required 

to program some tasks in Maxima. Later, they used Maxima to solve the assigned 

tasks in homeworks and tests. While students apparently associated the pragmatic 

purposes of obtaining the solutions with the use of Maxima, they expressed that it was 

hard for them to develop the Maxima code for the first time. Therefore, I concluded 

that the use of Maxima was not merely pragmatic as the students needed to 

comprehend the mathematical tasks as well as the programming language for making 

the programs. The students in my study preferred using MyMathLab over tutorial 

videos. They expressed that MyMathLab was the source of quick and most relevant 

help for them. This can be explained by the fact that the features in MyMathLab 

offered immediate assistance on the tasks at hand whereas the videos required more 

time in order to search for the required information. Also, they associated the use of 

tutorial videos with the epistemic purposes as they used the videos to make sense of 

the mathematical concepts.  

The findings of this study suggest that the students’ unexpected use of some 

resources (online calculators) and the techniques was linked to the conditions of 

MyMathLab and the general features of the setting, particularly the combination of the 

online homework and assessment. 

4.3 Study 3: Exploring affordances of an online environment: a case-study 

of electronics engineering undergraduate students’ activity in mathematics4 

This study seeks to explore affordances (Bærentsen & Trettvik, 2002) of the online 

learning environment for undergraduate engineering students’ activity in mathematics 

(cf. RQ4 and RQ5 in Section 1.4). This study adopts a holistic view on the online 

environment which involves administration of homework and assessments through 

MyMathLab, lectures through tutorial videos, and the final examination in an 

 

 

 
4  This study was published in International Journal for Research in Undergraduate Mathematics Education 

(IJRUME) in 2020 (vol: 6(1), pp. 42-64). 
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electronic format. Moreover, this study complements the findings from the previous 

studies (Study 1, Study 2) and analyses students’ use of resources in greater depth.  

In this study, students’ choices of different resources and in turn their engagement 

with mathematical tasks, have been studied by considering both the macro features and 

the micro features of the learning environment. The macro view of the learning 

environment is taken as the level of the mathematics course. Engeström’s (2014) 

extended triangular model of an activity system was used to conceptualise the learning 

environment and the triangular model was also used as the unit of analysis. The 

extended triangular model takes into account the societal mediations and tool 

mediations in human activities. The societal mediations, rules, community, and 

division of labour, were considered at the level of the mathematics course in this study. 

In this manner, it allowed analysing the macro features of the learning environment 

and their relationships with students’ engagement with mathematics. The micro 

features in this study concern the conditions of the MyMathLab system as well as of 

other tools in students’ use which affected the students’ engagement with the 

mathematical tasks. 

Leont'ev’s (1974) theoretical model of activity structure facilitated in analysing the 

micro features of the students’ interactions with several tools. According to this model 

(shown in Figure 2 in Section 2.2), an activity can be analysed at three levels: activity–

motive, actions–goals, and operations–conditions. In my study, the two bottom layers 

were analysed using different sources of data which aided in making sense of both 

intentional and operational aspects of students’ use of resources. I used students’ 

journals for the analysis of their actions and goals, linked with the use of several 

reported resources.  

As seen in the previous two studies (Study 1, Study 2), the students incorporated 

several tools and resources to solve the assigned tasks. The analysis of students’ 

journals showed students’ actions as well as goals linked to the use of each resource. 

The analysis led to the identification of the association of students’ goals and actions 

with the elements of the collective activity system. For instance, the students’ goals 

linked to Maxima were to make templates, to make the work easier for them, as well 

as to prepare themselves in accordance with the final digital examination. These goals 

pointed towards the explicit rule concerning the final examination in the digital format. 

This rule led the students to use this resource. 
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The intentional aspects of the students’ selection of some resources pointed 

towards the features of the collective activity system, i.e. the conditions of the learning 

environment at the level of the mathematics course. The students used some of the 

resources such as Maxima in order to prepare themselves according to the conditions 

of the final examination as well as conditions of the homeworks and the tests. The 

operational aspects at the operation-condition level of the students’ activity were 

analysed through students’ recorded group work sessions. Particularly, the micro 

conditions of the MyMathLab system and other resources in the students’ engagement 

with the mathematical operations in the assigned tasks have been analysed. The micro 

analysis shows that the conditions of MyMathLab allowed students to proceed through 

the tasks by providing the final solutions of the tasks regardless of the process of 

reaching to those solutions. In some instances, where students solved the mathematical 

tasks by using different resources, they did not engage with the mathematical 

operations according to the requirements of tasks. For instance, they computed an 

integral using Maxima without engaging with the required process of integration. The 

nature of the tasks in MyMathLab was also a contributing factor to the manner of the 

students’ engagement with the mathematical operations. That is, with respect to the 

procedural tasks, which could be solved in single steps using online calculators, the 

involved mathematics was black-boxed (Anderson, 1999) for students as there 

remained no need for them to engage with mathematical operations. However, the 

students engaged relatively more with the mathematical operations in the tasks which 

demanded explorations instead of applying given procedures. In such tasks, the 

students utilised the potential of several tools for exploring relationships, visualising 

the mathematical objects, etc. instead of computing final solutions.  

4.4 Study 4: Undergraduate engineering students’ mathematical reasoning 

processes in an online and a paper and pencil environment 5 

This study seeks to characterise undergraduate engineering students’ reasoning 

processes in an online environment and a paper and pencil environment (cf. RQ6 in 

Section 1.4). The aim of the study is to analyse the role of these environments in 

 

 

 
5 This is a manuscript under preparation and the manuscript is attached in the appendices in the form in which it 

currently is, at the time of delivery. 
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students’ mathematical reasoning (Lithner, 2003). In order to do so, the study leans on 

the existing research on mathematical reasoning (Lithner, 2008), and adds another 

dimension of the environment in the study of mathematical reasoning. This additional 

dimension of the environment was added using the action–operation dynamics from 

CHAT. The process of reasoning is seen as comprising the steps of selecting and 

implementing strategies in solving a task (Lithner, 2003). Through a cultural-historical 

perspective, solving a task is seen as a combination of actions and operations which 

entail the selection and implementation of strategies (see Figure 5, Section 2.3.3). The 

selection of strategy is considered as selecting a model that refers to the method for 

carrying out actions of solving the tasks. The implementation of strategy entails 

execution of mathematical operations involved in a task which relate to the conditions 

of the tools in use.  

In CHAT, an action is considered as conscious whereas an operation is 

nonconscious or consciously controlled (Leont'ev, 1981b). Against this background, a 

mathematical operation may initially be an action which becomes a consciously 

controlled operation later. The nonconscious operations are also relevant for the 

execution of consciously controlled mathematical operations. In my study, the actions 

and operations are identified from the data in the form of students’ utterances, 

writings, button clicks within the software, shifting between the computer windows, 

etc. The distinction between the operations and actions has been made through the 

identification of students’ focus on some parts of the tasks. That is, those parts which 

came under discussion were considered as actions and others which were carried out 

without paying much attention were considered as operations.  

The data utilised in this study were the video-recorded observations of students’ 

group work from both case studies. The analysis illustrates similarities as well as 

differences in the students’ processes of reasoning in the two environments, which 

relate to the nature of the tasks and the tools in students’ use. Regarding the nature of 

the tasks, the analysis shows that when the models were given in the form of 

mathematical formulas, the students engaged in implementing given formulas and 

hence in formation and execution of the involved operations.  

However, if the models were not given, the students searched for them using the 

potential of the resources at hand and by engaging with the mathematical properties of 

the task. This example concerns the Shell Method task: Use shell method to find the 
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volume generated by revolving the region bounded by   𝑥 = 16𝑦 − 𝑦2  and  𝑥 = 0 

about the 𝑥-axis. 

 

 

Figure 11: Per’s search on Internet in the Shell Method task 

 

When model was not available in the Shell Method task,Per first applied a model 

previously used in the Disk Method task without considering the involved 

mathematical aspects in the Shell Method. 

 

 

Figure 12. Per’s use of GeoGebra in the Shell Method task 

 



 

69 

 

When this strategy failed, Per started to experiment by considering intrinsic 

properties to reach a solution of the task. In other words, the student started by a trial 

and error approach, and when this strategy did not work, he later started utilising the 

potential of the resources at hand, i.e. GeoGebra, Internet, and Maxima, to gradually 

make a new model and to reach to the solution of the task (see Figure 11 and Figure 

12). 

The analysis in this study illustrates that when the students solved tasks using the 

programming in Maxima, their actions were focused on finding commands to compute 

the integral. For instance, in the case of an integration task, the model they used 

comprised the conversion of an integral formula into programming in Maxima. The 

operations were executed in Maxima. The students obtained the correct solution, but 

they experienced trouble in validating the solution. This was due to the fact that the 

solution was in a different format due to appearance of additional terms in Maxima.  

On the other hand, the students managed a similar situation successfully in the 

paper and pencil environment. Upon encountering a mistake in the final solutions, they 

checked back the performed operations and sorted out the mistake in the process. This 

contrast was explained by the fact that the mathematical operations were visible in the 

paper and pencil environment, which provided the students a basis to reason about the 

validity of the solutions. That is, the operations were visible and available for students 

to engage with contrary to the case of Maxima.  
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5 Conclusions and discussion 

In this chapter, I discuss the results of my research with respect to the research 

literature presented and the theories adopted, and I present conclusions of my research. 

The chapter begins by revisiting the research questions in Section 5.1. In Sections 5.2–

5.5, I summarise and discuss the findings with regards to the addressed research 

questions. This is done through a synthesis of concepts selected for analysis and the 

results presented in the four arising studies. In Sections 5.6, I reflect on the adopted 

theoretical and methodological approaches and their links with the research results. 

The chapter is ended with Section 5.7, which gives an account of the limitations of my 

research. 

5.1 Revisiting the research questions 

This thesis aims to provide deeper insights into the factors of the learning environment 

which play a role in undergraduate engineering students’ engagement with 

mathematics. Two case studies have been performed which take into consideration an 

online learning environment and a blended learning environment. The case studies 

generate theoretical generalisations (Yin, 2014) which is in line with the goals of this 

research project. The research questions addressed in this thesis are given below.  

RQ1: What traces of mathematical competencies are observed in students’ 

work when they practice mathematics digitally? 

RQ2: How does this (online) environment afford the execution of these 

mathematical competencies? 

RQ3: How do engineering students incorporate resources during their work in 

an online learning environment? 

RQ4: How do a small group of undergraduate engineering students interact 

with an online environment in their mathematical learning activity? 

RQ5:  In what manner does this environment afford students’ engagement with 

mathematics? 

RQ6: How do a small group of undergraduate engineering students accomplish 

mathematical reasoning processes in an online and a paper and pencil 

environment? 

 

In the following sections, I outline the research outcomes with respect to the foci of 

each of the research questions presented above.  
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5.2 Mathematical competencies in the online learning environment—RQ1 

and RQ2 

To make sense of the way the online learning environment afforded students’ 

engagement with mathematics, I utilised the lens of a competence framework (Niss & 

Højgaard, 2011). This competence framework divides the notion of mathematical 

competence into two subgroups: (1) asking and answering question in mathematics, 

and (2) using mathematical language and tools. In Section 2.3.1, I elaborated these 

subgroups and illustrated how this competence framework facilitated in characterising 

the studied students’ mathematics work.  

The online learning environment under consideration afforded students’ use of 

many resources in their mathematics work, including WolframAlpha, GeoGebra, 

online calculators, Webpages, etc. (see further details in Section 5.3). I focused on the 

instances in which the students used several resources in solving the mathematical 

tasks. The analytical findings (see Study 1) illustrate that the students handled 

mathematical symbolism and related issues of mathematical language by 

simultaneously employing multiple tools. For instance, when WolframAlpha and 

Maxima were used together to solve one mathematical task and to validate the 

obtained solution of the task. In order to make sense of the output generated by 

Maxima, the students made use of WolframAlpha to check if the obtained solution was 

correct. I argued that the competency of tool-use was in action in these instances and 

the students used the functionalities of the tools to reason and argue about 

mathematical tasks.  

Zembat’s (2008) conclusion that a technological environment supported students’ 

shifting from analytical reasoning to practical reasoning due to available 

functionalities of the tools is partially supported in my research. Although the 

functionalities of the tools were used by the students in my study to reason in practical 

ways, the objects of reasoning were often the outputs generated or the syntax related 

issues in the tools-in-use. Therefore, I regarded this approach as engagement with 

superficial features of the mathematical tasks at hand, as the students concentrated 

more on the use of tools and resources to tackle arising issues than to reason about the 

underlying mathematical properties.  

Overall, the competencies of asking and answering questions were dominated by 

the tool using competency in the online environment (cf. Niss & Højgaard, 2011). This 

online environment facilitated the unfolding and revealing of the competencies of 
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using mathematical language and tools to a greater extent than the competencies of 

asking and answering questions in mathematics. The results thus point toward the risk 

that using tools with computational power might hinder students’ engagement with 

mathematical thinking, reasoning, and problem tackling. An implication which arises 

from this result is that the online environment should be designed in such a way that 

the students get to explore the intrinsic mathematical properties. That is, the students 

in the online environment should engage with the tasks involving competencies of 

asking and answering questions. The relationship between tools and tasks are of 

crucial importance to consider in this regard. By doing so, the recommendations by 

standards of the curriculum document for engineering mathematics regarding the use 

of technology can also be addressed in an appropriate manner (Alpers, 2011).  

5.3 Engineering students’ incorporation of resources in the online learning 

environment—RQ3 

The third research question addresses the manner in which undergraduate engineering 

students incorporated resources in their mathematics work. The students’ use of the 

resources will be discussed with respect to the distinction between pragmatic and 

epistemic purposes (Artigue, 2002), linked with the resources in students’ techniques. 

In the online learning environment (for details, see Section 3.4.1), MyMathLab 

(MML) served as the central resource as it offered the tasks, assistance in solving the 

tasks, and feedback on the solutions of those tasks. In addition, the textbook, the 

tutorial videos, and the notes accompanying the videos were provided by the lecturer. 

The analytical findings (cf. Study 2) indicate that while students employed the 

provided resources in their general techniques (Artigue, 2002), they also employed 

other resources, including GeoGebra, WolframAlpha, Webpages, Maxima, YouTube 

videos, and online calculators. The analyses show different purposes linked with the 

students’ use of these resources according to their needs and the functions of each 

resource. For instance, they used online calculators and WolframAlpha in order to 

produce solutions of the tasks at hand or for related purposes such as double checking 

the obtained solutions. Therefore, I described the students’ use of Maxima, online 

calculators, and WolframAlpha as having pragmatic purposes (cf. Artigue, 2002). On 

the other hand, the use of the textbook was associated with both pragmatic and 

epistemic purposes in the parlance of Artigue, as they used the textbook to learn about 

mathematical concepts as well as to get the tasks and to check the solutions of those 
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tasks. Moreover, through the analysis it also became evident that the students’ use of 

the tutorial videos fulfilled epistemic purposes as they watched the videos to learn 

about the mathematical concepts. However, they preferred MML over watching the 

videos. That was due to the fact that MML provided immediate help and feedback 

related to the tasks at hand, whereas tutorial videos required using more time in order 

to fetch the required information. The results pinpointed that the students’ use of the 

resources was related to their needs as well as to the functions of each resource. The 

resources, such as tutorial videos, linked with epistemic purposes were not extensively 

used compared with the ones linked with pragmatic purposes. My results thus coincide 

with the results provided in the study of Gueudet and Pepin (2016). The results point 

toward the needs to clarify the purpose of the use of each of the resources by the 

teachers, as suggested by Gueudet and Pepin (2018).  

5.4 Engineering students’ learning activity in an online environment—RQ4 

and RQ5  

To make sense of the factors of the online learning environment that played a role in 

students’ engagement with mathematics, I adopted a holistic perspective of students’ 

activity (Engeström, 2014; Leont'ev, 1974), i.e. Cultural Historical Activity Theory 

(CHAT). This perspective allowed combining the macro view and micro view of 

students’ activity (Jaworski & Potari, 2009) in the online learning environment and 

facilitated in tracing the relationships between the system level factors and students’ 

interactions with the mathematical tasks.  

The analyses (see Study 3) illustrate that the macro conditions pertaining to the 

collective activity system (Engeström, 2014) played an important role in students’ 

choice of resources and tools. In particular, the collective rule of the final digital 

examination led the students to opt for and use several resources, such as Maxima and 

the online calculators. For example, the analyses in Study 3 show that the students 

used Maxima with the goals to solve the tasks at hand and to make templates for the 

future use during the examination. The goal of examination was linked with the 

students’ use of resources, a result confirming a finding in an earlier study by 

(Anastasakis et al., 2017). With the progression of the mathematics course, the use of 

Maxima and other online tools became dominant in students’ work with the tasks.  

The availability of powerful online tools allowed many action possibilities for 

students, from searching for required information and exploring mathematical 
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properties to finding solutions of tasks. The resources such as GeoGebra aided in 

exploring the properties of the mathematical objects, whereas the online calculators 

provided final answers to the tasks. The Google search engine was used to search for 

various sorts of information, such as mathematical formulas and syntax in Maxima. In 

turn, the choices of these resources affected their micro level interactions with the 

mathematical tasks in MML. 

Moreover, the micro conditions of MML along with the demands of the tasks also 

played a role in how students employed the resources in solving the tasks. In 

particular, the MML system allowed the students to proceed through the tasks by 

entering final solutions of individual tasks. Despite the fact that the system offered 

assistance in the process of solving tasks in the form of solution steps, the only 

requirement for the students was to provide the final answer of tasks. The analytical 

findings show that the students focused more on finding the solutions than to engage 

with the process. This concern of administering an online program is documented in 

earlier studies (cf. Rønning, 2017; Webel et al., 2017). The analysis indicates that 

students in my study obtained the final answers by varying techniques, such as using 

programming in Maxima, through the use of online calculators, or by following the 

solution steps given in MML. It showed that these students managed the search of 

symbolic procedures, also found by Krupa et al. (2015). However, most of the times, 

their activity deviated from the required activity. In line with the results of Cazes and 

Vandebrouck (2013) who observed that the students’ activity was sometimes similar 

but often varied from the expected activity in the automated programs namely 

Electronic Exercise Bases (EEBs). However, the variation in Cazes and 

Vandebrouck’s study did not involve the use of resources in students’ activity, rather it 

referred to the deviation in the sequence of operations.  

In some of the tasks where programming was used, the students had to convert 

mathematical formulas into Maxima codes which required tackling the syntax in 

Maxima. For example, in the task concerning the evaluation of an integral using the 

limit of sum method (see Section 3.6.2), students converted the integral formula into a 

Maxima code and obtained the final solution. As a result, the object of this task was 

shifted from the process of integration to the computation of the final answer. This 

shift was due to the fact that the students could not engage with the required process of 

integration using the limit of sum method and the involved operations. Similarly, with 

respect to the Disk Method (see Section 3.6.3), where the mathematical formula was 
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stated together with the task, a conversion of the mathematical formula into Maxima 

code was required. Students’ focus shifted from intrinsic mathematical properties to 

surface properties of these tasks. In contrast, the tasks that required use of the Shell 

Method, where the mathematical formula which concerned application of integrals 

such as in the Shell Method was not provided, the students had to first comprehend the 

mathematical task in order to write the command in Maxima. They needed to extract 

the relevant information from the task to use in the Maxima code in order to obtain the 

solution of the task. This allowed them to use the tools while engaging with the 

mathematical properties of the task. That is, they searched on the Internet for the 

correct mathematical formula by taking into account the demands of the task. 

Similarly, they used GeoGebra to find the points of intersection of the given curve 

with a coordinate axis, which later served as the limits of the integration.  

It also emerged that the tasks in the MML program were mostly in the form of 

direct application tasks, with the terminology coined by Cazes and Vandebrouck 

(2013). Cazes and Vandebrouck found the automated programs more useful for direct 

application tasks, i.e. those in which the strategies were explicitly mentioned. The 

programs in their study administered several types of tasks including the direct 

application and more demanding tasks. They observed gaps between students’ activity 

and expected activity in those tasks which were not direct application tasks, in those 

tasks where the information was not explicit, or when the tasks were difficult to 

comprehend in the programs. On the contrary, the tasks involved in MML, analysed in 

my research (Study 3), were mostly direct application tasks and there were often 

deviations found in students’ activity from the expected activity. The gaps documented 

in Cazes and Vandebrouck’s study were associated with deviation from the correct 

strategy in terms of incorrect sequence of operations, obstacles, etc., whereas the 

deviation observed in my study was the inappropriate use of the resources leading to 

skipping the mathematical operations. However, the difference between my findings 

and those of Cazes and Vandebrouck can be explained by two reasons. First, the tasks 

administered in EEBs were mostly of a technical nature. These tasks required actions 

such as dragging points on a graph, and therefore, the use of calculators and 

programming was omitted automatically. Moreover, in their study, the students 

worked in presence of teachers, which might have had an impact in keeping students 

to use other tools in solving the tasks.  
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The findings of my research suggest administering the tasks which are not direct 

application tasks in order to avoid the use of calculators and computing tools to reach 

the solutions. In this way, the students could engage with the objects of the tasks. The 

example of the Shell Method illustrates that the student used the tools with relatively 

more rigour. Moreover, the findings also point towards the need for the lecturers to 

give clear instructions regarding the task solving process in the online programs. The 

deviation in students’ activity may also be minimised if the teachers remain present 

and monitor students’ progress.  

5.5 Processes of mathematical reasoning in an online environment and a 

paper and pencil environment—RQ6 

As stated earlier, this thesis aimed to make sense of the undergraduate engineering 

students’ engagement with mathematics in two different environments and to make 

sense of the contributing factors from both environments. The last research question 

(RQ6) utilises the construct of mathematical reasoning to characterise students’ 

engagement with mathematics, and it is addressed in Study 4. The thesis thus offers 

empirical and theoretical insights into mathematical reasoning. Theoretically, leaning 

on the existing research on mathematical reasoning (Lithner, 2008), the processes of 

mathematical reasoning are documented in the light of the CHAT perspective 

(Leont'ev, 1974). This perspective facilitates in considering the mathematical 

reasoning as a process and accounts for the relevant conditions of the learning 

environment (tools, task, etc.) in the process. In Section 2.3.2, I discussed that 

mathematical reasoning processes comprise the steps of selecting a strategy and 

implementing the strategy while solving a task, in accordance with Lithner (2008). 

These steps are entailed in the action and operation layers of students’ learning 

activities (Leont'ev, 1974), which are linked to students’ goals and conditions of the 

environment. That is, the selection of a strategy takes place when students search for a 

method to carry out certain goal-directed actions for solving a task. The 

implementation of the strategy takes place through the execution of operations, which 

relate to conditions of the tools in use. A visual representation of this process is 

illustrated in Figure 5.  

Lithner’s (2008) reasoning framework, which serves as a basis of the development 

of reasoning processes in this thesis, differentiates between imitative and creative 

forms of student reasoning. The imitative reasoning involves applying previously 
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known methods or the ones obtained from other resources, such as the textbook. In 

contrast, creative mathematical reasoning refers to the formation of new ways to 

approach the tasks (Lithner, 2000). Creative mathematical reasoning is the desired 

form of reasoning, and it is linked to improved mathematics learning of students (see, 

for example, Jonsson, Norqvist, Liljekvist, & Lithner, 2014). In this regard, a CHAT 

perspective on learning offers implications for the imitative and creative reasoning 

processes. It considers trial and error and experimentation approaches as determining 

factors for the quality of learning. Based on these considerations, I argued that 

experimentation is a necessary condition for the formation of new methods in creative 

mathematical reasoning processes. The experimentation approach deals with finding of 

new methods that work successfully while taking into account the mathematical 

aspects involved in the tasks. Careful experimentation is linked to creative reasoning 

when the intrinsic mathematical properties are considered to find new strategies. The 

trial and error approach addresses the implementation of previously known methods in 

new task situations without taking into account the details of the tasks. Therefore, I 

argue that the trial and error approach is linked to imitative reasoning as the underlying 

mathematical properties are not considered in this approach.  

The empirical findings show similarities as well as differences between the 

processes of students’ reasoning in the two learning environments. The selection of 

strategy was made in similar ways in both environments in all tasks except in the Shell 

Method task. The strategies were searchable in the given resources in almost all of the 

tasks except the Shell Method task. The implementation of strategies in both 

environments varied in both environments. In the online environment, the use of 

Maxima, as well as paper and pencil, was found.  

In the online learning environment, where students used Maxima, the selection of 

strategy involved finding the mathematical formula to be used in Maxima. The 

implementation of the strategy involved converting the mathematical formula into 

programming language to make a program and executing the program. The extent to 

which the students attended to each step was found to be related to the demands of 

mathematical tasks. That is, in the case of tasks where the strategy was the direct 

conversion of a mathematical formula into a programming code, the students did not 

have to extract the information from the task. As an example, in evaluating the definite 

integral ∫ 𝑒−𝑗𝜔𝑡1

−1
𝑑𝑡, the selection of strategy involved the conversion of this integral 

formula into the following Maxima code: “j: sqrt (−1); A: e^( −j*w*t); integrate (A, 
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t, −1, 1)”. The students searched for the Maxima syntax on the Internet to write this 

code. The implementation of this strategy was done in one click by running the 

command. On the other hand, in the Shell Method task, when the integral formula was 

not explicitly given in the task, the students had to search for the strategy. The strategy 

was the conversion of an integral formula into Maxima code. In order to find the 

integral formula, they needed to comprehend the relationship between the integration 

and the volume of the solid. In this task, the students extracted the information from 

the task and employed several resources to select and implement the strategy. The 

strategy was again implemented by running the devised command in Maxima.  

Regarding the dynamic tools, a rather brief occurrence of the use of GeoGebra is 

found in my study. The student performed an operation crucial in the task solving. 

That is, GeoGebra facilitated in students’ actions instead of taking over the 

computation or providing solutions, as Granberg and Olsson (2015) have also 

reported.  

An important difference that became apparent in the two learning environments is 

the validation of the obtained solutions of the tasks. The students in my study 

experienced problems in reasoning about validity of the obtained answers when the 

operations were conducted in Maxima. In the paper and pencil environment, the 

students reasoned about the validity of the solutions by relating back to the performed 

mathematical operations.  

As discussed above, while using Maxima in the direct application tasks, the task 

for the students was to write the code and execute it. In such tasks, the students needed 

to deal more with the syntax in Maxima than with the involved mathematics as 

Maxima took over the computation. Therefore, they could not interpret the final 

solution, as discussed earlier. In the task where the solution method was not provided, 

the task for the student was more than converting a given mathematical expression into 

Maxima code. That is, they first had to search for the integral formula and comprehend 

it. This task demanded experimentation and therefore invited the students to creative 

reasoning to a certain degree. Although the issue of interpretation in these tasks did not 

arise in students’ activity. 

Based on these, I argue that the validation of solutions in the paper and pencil 

environment was achieved because the focus was on executing the operations. It made 

the operations visible, contrary to the case of using Maxima. Moreover, the students 

also were not familiar with the syntax in Maxima and therefore encountered issues in 
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comprehending the outputs in Maxima. This also added to the difficulty in making 

sense of the solution. Here the argument by Kent and Noss (2000) is applicable, which 

calls for paying attention to epistemology instead of mere use of the tools so that the 

intended mathematical objectives do not become invisible or black-boxed (Anderson, 

1999).  

Previous research points out that the tasks play a role in students’ reasoning as to 

be imitative or creative (Boesen et al., 2010; Lithner, 2003, 2008, 2017). For instance, 

the algorithmic tasks with the given strategies are not found fruitful for students’ 

creative reasoning (cf. Norqvist, 2018). The results in my study show that the students 

started careful experimentation in their reasoning processes when the trial and error 

approach did not work. In the example where the Shell Method was to be used to solve 

the task, and the strategy was not searchable in the given resources, the students began 

solving the task with a trial and error use of a previously known formula, which did 

not result in a correct solution. Consequently, the students started experimenting, and 

they searched for the correct model by utilising the potentialities of the resources at 

hand while engaging with the mathematical properties of the task. That is, the students 

found the description of the Shell Method, the correct integral formula, and the limits 

of integration by using a step by step approach. I argue that the condition which 

prompted the experimentation and eventually, the formation of a new method for the 

students was the appearance of a different nature of the task in the task sequence. 

5.6 Reflections on the use of theoretical perspectives and their link with the 

research findings 

In this section, I reflect on possible consequences of the different theoretical 

frameworks adopted and the research methods used with respect to the findings of my 

research. I adopted CHAT as an overarching framework which led me to come up to 

conclusions of my research. CHAT, as Roth et al. (2009) call it, is not only a praxis of 

the theory but also a theory of praxis. It offered me an analytical mechanism to follow, 

by way of the extended mediated triangle (cf. Engeström, 2014) and the three-layer 

model (cf. Leont’ev, 1974) of structure of an activity. The combination of these two 

complementary models allowed me to focus at different levels of the activities from 

time to time and from study to study in my research.  

CHAT also pointed towards the necessary dimensions to take into consideration 

for conducting research about engineering students’ learning activities. With reference 
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to Nardi (1996), the theory makes it possible to adopt multiple methods in order to 

conduct research about a particular phenomenon. On these lines, the theory offered me 

the methodology of my research. Adopting CHAT has led me to take a holistic 

approach (cf. Jaworski & Potari, 2009) where I counted on multiple sources of the data 

which added to the epistemological foundations of my research. For instance, if I had 

not included both sources of data including students’ reports and the video recorded 

observations in the analysis, I could not have come up to draw the present conclusions 

about relationships among several aspects of the students’ activity. The point I want to 

make is that the individual sources of data provided partial view of the students’ 

activity. For instance, using one source of data, such as video-recorded observations, 

made me able to describe the students’ work with the tools and tasks but without 

tracing the role of the factors from the collective activity system point of view. 

Similarly, when I analysed students’ reports along with the interviews in Study 2, the 

results provided insights into aspects of the use of resources based on students’ inputs. 

Although the results were partly similar to those in Study 3, they lacked the 

operational aspects of students’ work in mathematics. In Study 2, the Documentational 

approach to Didactics allowed me to characterise students’ use of resources in an 

effective manner. Due to the variations in the empirical context, I had to shift my focus 

in further studies on the wider perspective of students’ activity.  

Moreover, CHAT offers a general perspective on learning with regards to the 

interplay between the subject and the social aspects involved in the activities. The 

theory itself does not offer a characterisation of the learning of mathematics, in 

particular. Similar is the case with the analysis of mediated action which concerns the 

Study 1, that it does not specify the characteristics of ‘mathematical’ actions. 

Therefore, in my case, it was required to use middle range theories for the 

characterisation of learning of mathematics. For instance, in Study 1, I made use of the 

competence framework to characterise the ongoing activity. The use of the framework, 

although not in a quite extensive analysis, allowed to make sense of students’ ongoing 

practices. This led me further narrow down the analysis in Study 4. In Study 4, I have 

used the reasoning framework (Lithner, 2003) which is established and recognised by 

mathematics education researchers. Using CHAT in parallel with the reasoning 

framework allowed me to analyse the genesis of students’ reasoning in addition to the 

characterisation of the reasoning process. For the reasoning processes (Study 4), the 

purpose of my research was not only to characterise students’ reasoning but to identify 
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the contributing factors of the two learning environments. To achieve this purpose, an 

analytical tool was needed which could scrutinise the formation of students’ reasoning 

in view of the conditions of the environments. That is, the one which viewed reasoning 

as a process instead of a product. The need for such an analytical tool corresponded 

with the empirical basis of this thesis as the students in my study were engaged in 

learning the concepts instead of being assessed on already covered topics. I created a 

systematic model (see Figure 5) by the synthesis of a research framework of reasoning 

(Lithner, 2008) and the principles of CHAT (cf. Study 4). This model complements the 

existing research (Granberg & Olsson, 2015; Kieran & Saldanha, 2005) in the sense 

that it adds an environmental dimension to the analysis of the mathematical reasoning 

process in a systematic manner. This model does not solely confine reasoning as the 

property of the learning student, but also to the conditions of the particular learning 

environment. The contributing factors from the environment become apparent through 

the analysis of students’ realised activity.  

5.7 Limitations of the research 

The issue of limitations of research is important to attend to in order to evaluate the 

quality of the conducted research. The research reported in this thesis arises from in-

depth analyses of two case studies involving specific contextual conditions. Both cases 

involve a small number of participants in the selected contexts. Therefore, the findings 

drawn from this research have clear contextual influence such as with respect to the 

automatic program used, the format of examination, the structure of the course, etc. 

The participant sampling was random whereas the context of research was 

purposefully selected in the case studies. Therefore, the results cannot be 

quantitatively generalised, for instance, to all engineering students’ activity. Other 

participants could have organised their activity in a different manner, leading to 

different observations concerning their use of resources or the processes of reasoning. 

However, the conditions of the environment, which became evident, can be 

generalised in the sense that these point to the significant aspects of engineering 

students’ activities. Due to such issues, the case studies are often criticised for the lack 

of generalisability of the results produced. In response to this criticism, Flyvbjerg 

(2006) points out that case studies provide a generalisation through the “force of 

example”. This argument applies to my research, which offers an example of 

engineering students’ activities and the conditions which became evident through the 
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research. The generalisation can be considered as what Bassey (1999) calls “fuzzy 

generalisation” in the sense that the results arising from this case might occur in other 

situations as well.  

Regarding the research methods for analysing students’ reasoning in my thesis, my 

choices have some limitations. The use of video-recorded observations in parallel with 

student written reports and semi-structured interviews revealed extensive insights into 

the engineering students’ use of resources and their difficulties in solving the provided 

mathematical tasks. However, stimulated recall interviews could have been conducted 

in order to investigate further the students’ perspectives on the actions and the 

operations they performed during their task solving. In this manner, the analysis could 

be further enriched, owing to additional information from the students. In the analysis 

that I performed for this thesis, certain aspects where the empirical material collected 

was not enough to conclude about students’ choices. On some occasions, I had to leave 

instances without interpretation. For instance, when the students claimed about an 

output in Maxima which was not apparent, this could have been taken up in a 

stimulated recall interview. 

Another limitation of my research is related to my limited acquaintance with the 

students’ native language. Although I conducted the semi-structured interviews in 

English, I believe the interviews would have been more beneficial and purposeful if 

those had been conducted in the students’ native language. Moreover, I had to involve 

a native transcriber of the student dialogues, as these took place in Norwegian. Thus, I 

both had to trust that the transcriber transcribed the oral talk appropriately and to trust 

that the translation into English was appropriate. Some aspects of this limitation were 

addressed and met when certain student expressions and utterances were to be 

analysed in the studies. These analyses were discussed with my supervisors, both 

native Norwegian speakers and mathematics education researchers familiar with 

transcription issues as well as translation issues from Norwegian to English. 

Another limitation with research involving humans as participants is what is called 

the Hawthorne effect (Cook, 1962). This relates to the influence of the researcher (and 

the video camera) on the manner of participants’ research responses, and it is 

considered as an unavoidable effect. However, I tried not to intervene in students’ 

work and let them work independently. I observed during the video recordings that the 

students engaged in their usual talks, which indicates that they seemed not to be 

inappropriately affected by my presence.  
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6 Implications 

In this chapter I propose some implications of my research for further research in 

Section 6.1 and implications for the practice involving technology integration in the 

teaching and learning of (engineering) mathematics in Section 6.2.  

6.1 Implications for further research 

The four studies of this thesis attend to different objects of study which may all be 

further researched in the future with different perspectives.  

Regarding engineering students’ use of different resources in online learning 

environments, the data in this study comprised three students’ reports about their use 

of several resources over the period of one semester. The study may be replicated by 

involving more participants, over longer periods of time, to analyse their use of 

resources to gain more insights about students’ manner of working in todays’ 

technology rich environments. Results of such studies might complement the findings 

of my research in this respect. 

An object of study in this thesis is to analyse the affordances of the online learning 

environments regarding the engineering students’ mathematical activity. Further 

research may be conducted by adopting the theory and methodology of CHAT 

involving different learning environments including the online systems and settings. 

Depending upon the researcher’s interest and the object of study, the focus of research 

can also be narrowed down to micro interactions with mathematics in such 

environments. 

Another important contribution of this thesis is the attribution of the learning 

environment in students’ reasoning processes. This finding provides several prospects 

for further research. A prototype model of the reasoning processes (Figure 5) is 

presented in this thesis; a model that can be tested in other environments by including 

other participants. Using this model as an analytical tool, the role of different factors 

can be analysed by keeping some factors fixed and varying others. For instance, by 

keeping the tasks fixed and changing the dynamic tools, it may allow making sense of 

the effect of the tools in students’ reasoning processes.  

 6.2 Implications for instruction 

The findings of this thesis suggest the need to ensure students’ engagement with the 

mathematical tasks for students to be able to practice different competencies. In this 
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regard, the attention must be paid to (at least) two aspects: overall setting and the 

relationship between mathematical tasks and tools-in-use. The design of the collective 

setting is crucial for providing conditions for students to work according to objectives 

of the mathematics course. Particularly, the rules of the setting play an important role 

in how students’ activity is realised. The format of the examinations and relevant 

conditions affects the manner in which students engaged with mathematical tasks.  

Regarding the second aspect, students’ interactions with the required mathematical 

objectives can be achieved if the potential of the available tools conforms with the task 

requirements. This research shows that the object of the task changes with the 

available tools in the environment. For instance, if the goal is to engage students in the 

process of integration, then using programming for computing integration will not 

automatically allow them to engage with the mathematical subtleties of the integration 

process and make sense of integration.  The teachers need to be aware of all the 

possible ways in which the students may engage with the tasks and the aspects of 

mathematics that they will eventually be working with while using different 

technology-based tools (cf. Kent & Noss, 2000). In other words, the issue of black 

boxing needs to be considered while administering tasks in online environments. The 

tasks also need to be rich in the sense that they are well-grounded mathematically, and 

they can demand more than the application of known and devised algorithms.  

Furthermore, when the students are invited to provide the final answers of the 

tasks, it causes them to shift their focus away from the process. In order to engage 

students in creative mathematical reasoning (cf. Lithner, 2008), the tasks are to be 

administered in such a way that the students are invited to find solution strategies 

themselves. That is, if solution methods or algorithms are provided to the students, 

they plausibly engage with the application of those methods. While earning algorithms 

is also considered significant in teaching and learning mathematics to some extent, the 

learning should not be reduced to only this manner of working with mathematics. On 

the other hand, if the students are invited to elaborate their methods of working on the 

tasks, it allows them to experiment with the tools at hand and gives them opportunities 

to engage with creative ways of working on the tasks. In this manner, the students may 

utilise the potential of the tools for engaging with the intrinsic mathematical properties 

of tasks. For instance, a dynamic geometry software such as GeoGebra, may be used 

to explore properties of the mathematical objects by visualising those properties. In a 

nutshell, for designing an online or a technological environment, it is essential to carry 
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out an a priori analysis of the tasks in relation to the potential of the tools available, in 

order to ensure students’ engagement with the mathematics incorporated in the tasks. 

Regarding the use of programming mathematics, the research results imply the 

need to make students attain mastery of the language and syntax in the programs. In 

this way, the shift from the paper and pencil to using programming can be smooth in 

the sense that the students might also interpret obtained inputs. The research findings 

also illustrate the need for the lecturers to emphasise the involved mathematics more 

than the use of technological tools. The goal of technology use should be to enhance 

the learning environment and inquire about the mathematical properties more deeply. 

The teachers ought to emphasise the mathematical actions that can be performed 

through various tools. Moreover, collaboration and communication among the students 

about the involved mathematics need to be emphasised.  
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8 Appendices 

8.1 Appendix 1: The letter of consent 

Request for participation in the research project 

"University Students’ Mathematics Learning Using Digital Tools: The Impact of 

Tutorial Videos" 

 

Background and purpose 

The aim of my project is to find the impact of tutorial videos when used as the main 

source for teaching mathematics at undergraduate level. The idea is to explore such 

situations with respect to students’ experiences with videos which are particularly 

designed for teaching purposes. It is of main interest in my study to see how such 

digital videos contribute to students’ mathematical learning. The interactions between 

students, videos and mathematical concepts will be studied. 

It is a PhD project which will be conducted at University of Agder within the scope of 

MatRIC, the Centre for Research, Innovation and Coordination of Mathematics 

Teaching. MatRIC is hosted by the University of Agder and it is the centre of 

excellence for mathematics education in Norway. 

The requirement of the project is to observe those university students who are 

practicing this innovative method for learning mathematics through tutorial videos, 

and for this reason Electronics Engineering undergraduate students have been 

particularly requested to take part in this project. 

What does participation in the project imply? 

Participation in this project requires to be willing to take part in questionnaire survey, 

observations and interviews. The questions in survey and interviews will be concerned 

with the participants’ experiences with videos in terms of mathematical learning. In 

the same manner, the group observations will also be carried out to explore the role of 

videos in students’ mathematical sense-making. The data for observation will be 

collected via video recordings. 

What will happen to the information about you? 

All personal data will be treated confidentially. The data will be stored at University of 

Agder’s system which will be password protected to ensure the confidentiality. Access 

to the collected data will be limited to me and my supervisors: Professor Frode 

Rønning and Associate Professor Martin Carlsen. If any further viewers will be 
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required to have access to this data at any point in future, participants will be asked 

before doing so. 

The project was started in August, 2016 and it is scheduled for completion by August, 

2019. However, I will start observations and other data collection in January, 2017. 

The collected video recordings will be stored till 2025 for further analysis and 

research. After 2025, all data collected will be anonymized. 

Voluntary participation 

It is voluntary to participate in the project, and you can at any time choose to withdraw 

your consent without stating any reason. If you decide to withdraw, all your personal 

data will be made anonymous.  

If you would like to participate or if you have any questions concerning the project, 

please contact me or my supervisors. 

 

Shaista Kanwal                             

PhD student  

Department of Mathematical Sciences,   

Faculty of Engineering and Sciences 

University of Agder                                         

Postbox 422, 4604 Kristiansand S                                     

Tlf:  38142405  

Email: Shaista.Kanwal@uia.no                                                                  

Martin Carlsen                    

Supervisor 

Department of Mathematical Sciences,   

Faculty of Engineering and Sciences   

University of Agder,   

Postbox 422, 4604 Kristiansand S 

Tlf:  38141659                                                                 

Email: Martin.Carlsen@uia.no                                      

Frode Rønning 

Supervisor 

NTNU, Department of Mathematical Sciences.                                                         

Alfred Getz vei 1, Sentralbygg II, 7491 Trondheim                             

Tlf: 73550256                                                                 

Email: Frode.Ronning@math.ntnu.no 

 

The study has been notified to the Data Protection Official for Research, NSD - 

Norwegian Centre for Research Data. 

Consent for participation in the study 
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I ………………….  have received information about the project and,     

a)    I agree to participate in the questionnaire survey.          Yes/No 

b)    I agree to participate in the interview and observation.       Yes/No 

 

--------------------------------------------------------------------------------------- 

(Signed by participant, date) 
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8.2 Appendix 2: Overview of collected data 

Spring 2017 

 

 

Details of the data collected in Autumn 2017 

 

Week Lecture/topic Groupwork Interview 

35 

1
0

:1
5

-

1
2

:0
0

 

 1
5

 

st
u

d
en

ts
 

Ch 12: Matrices 2 tasks within the lecture: 10 and 

15 min 

---- 

36 

1
0

:1
5

-

1
2

:0
0

 

 1
1

 

st
u

d
en

ts
 Ch 13: Applications 

of matrices Block 

1,2,3 

1 task: 5 minutes   

Semeste   Lectures  Group work 

observations 

 

Screen 

recordings 

Interviews  Weekly 

journals 

Sp
ri

n
g,

 2
0

1
7

  

P
ar

ti
ci

p
an

ts
: 4

 

------ - 7 weeks  

- Approx. 50 

min.  each 

- working on 

weekly 

assignments 

From 

week 9 

onwards 

- group 

discussions 

- almost during 

every 

observation 

  

- Over the 

semester 

 

A
u

tu
m

n
 , 

2
0

1
7

 

P
ar

ti
ci

p
an

ts
: 4

  

- 5 

lectures 

- Approx. 

1 hr 30 

minutes 

each 

 

- 4 sessions of 

group work on 

tasks assigned 

by the teacher  

 

- Over the 

semester 

while 

doing 

online 

homework 

remotely 

One semi 

structured 

interview: 

Approx. 15 min 

with each 

participant 

----- 



 

101 

 

37 

1
0

:1
5

-

1
2

:0
0

 

 

Ch13: Applications 

of matrices. Block 

4,5 

---------------  

38 
1

0
:1

5
-

1
2

:0
0

 

8
 s

tu
d

n
e

ts
 

   

Ch 22: Laplace 

transformations 

Block 1 &2 

---------------  

39 

1
1

 

st
u

d
en

ts
  

Ch 20: Differential 

equations 

3 tasks about Matrices  

42 

 

---------------- -------------- 15 min each 

    44 

Th
u

rs
d

ay
 

1
2

:1
5

-2
:0

0
 

 

Revision of Kap. 20 

Block 1-4 

Tuesday 10.15-12:00  

7-8 students in total 

 

Ch 20 Differential equations 

 

45 

 

Ch. 20 block 5, 6 Ch 20 Differential equations 

Block 5 & 6 

 

46 

Th
u

rs
d

ay
 1

2
:1

5
-

2
:0

0
 

Revision of Ch 21 & 

24 

-7 students  

 

Ch 21 & 24: 

Function of several variables and 

Fourier series 
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8.3 Appendix 3: Student’s weekly journals  

Journal for learning mathematics, week___. Topic:                   Name:                                            

 

 

 

 

Days What have I 

done today? 

Which of these resources have I used?  

How did the 

use of each 

resource help 

in my work? 

Resources Yes

/No 

Details and 

time spent  

Monday  Tutorial videos    

My MathLab    

Textbook    

Any other     

Tuesday  Tutorial videos    

My MathLab    

Textbook    

Any other    

Wednesda

y 

 Tutorial videos    

My MathLab    

Textbook    

Any other    

Thursday  Tutorial videos    

My MathLab    

Textbook    

Any other    

Friday  Tutorial videos    

My MathLab    

Textbook    

Any other    
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Analysis of journal data 

Colour guide: The descriptions by Jan: Black ; Tor: Red; Per: Green 

Aims/expectations/goals: Yellow 

Actions/Operations: blue 

Views about a resource: Grey 

Overview of usage of resources  

Resource Using resources General comments 

Tutorial 

videos  

 

 

 

 

 

 

 

 

 

 

 

 

 

- They could learn me the necessary 

rules and methods to solve the 

questions I got. I only watched those 

videos I thought could learn me a more 

difficult theme. by watching these two 

videos I got enough information to 

complete almost all questions for the 

work at week 3. Still there was some 

questions with higher difficulty at the 

end which I used MyLabs for.  

 

In the videos he explains how to proceed in 

solving problems, with some videos 

containing multiple examples 

 

-I needed very much help with block 7, 

and some help understanding at block 

8. 

-Watched the video to try understand 

how to calculate the length of a line, 

but will have to watch it some more 

before I understand it. 

- To understand the calculation behind 

the math 

- The hardest part with this week’s 

exercises was that the problems tend 

to become really long and it was quite 

easy to make sloppy mistakes. I felt 

that the videos helped me the most this 

week, it was a bit hard to follow along 

with the examples in the textbook.  

It’s a long time since I last did any 

integration problems, so I watched 

From block 8 I learned that most answers 

come from rules, and is very hard to 

calculate by hand. I will probably need to 

watch it several times if we get more tasks at 

this theme.  

From block 7 I still did not understand how to 

calculate after watching the video’s. I will 

have to study this part much more in order 

to solve it. 

- I easily understand it when someone 

explains me the way of solving a problem. 
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lecturer’s “Kapittel 17 1.2 Integrasjon” 

just to refresh the basic. 

-I needed a reminder of how to 

integrate by substitution. 

MatRIC videos -I watched the videos at 1.25% speed 

because I didn’t heave the need to 

learn it from scratch, I simply needed a 

reminder of how derivation worked. 

-thinking I should rejuvenate my feeble 

understanding of integration.  

 

I don’t watch the videos because I want to, 

but because I need to. 

 

Own notes -As help for the test, I used my previous 

notes from earlier homework, which is 

many similar tasks with different 

numbers. 

- In the start, it was hard to remember 

how to solve the problems, since it was 

2 weeks since I last solved any 

derivation problems. But after looking 

through my notes and solving a couple 

of problems, I remembered most the 

problems. 

 

Textbook  -I (only) used the book to find rules on 

different integrations. 

Because it helped me with basic 

integration rules. 

- In order to understand more from 

each block I read through the little 

information I had from the book. 

- I got the questions from the book as 

well as some help with formulas. 

-Got many formulas to work with and 

help to use MAXIMA GUI. 

-Formulas for the homework this week 

- Used the textbook to find the 

formulas for the different expansion 

series. 
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Use the textbook to find the formulas 

for the different expansion series. 

 

 

Mathway, 

WolframAlpha 

-It helped me with some more difficult 

integrations, where I couldn’t see the 

solution. 

-After manually doing the problems for 

a while, I got the gist of it, and 

preceded by taking “shortcuts”, using 

the calculators WolframAlpha to simply 

solve the problems for me. 

-Used Wolfram to compare answers we 

got in Maxima. 

-Used it only to double check my 

answers for the Stack project.   

- I mostly used Wolfram Alpha and/or 

GeoGebra to solve the problems. I also 

did some by hand to check the answer I 

got in WA or GeoGebra. The first time I 

did the test I got 80% right. And the 

second time I did it I got 93%. 

- I used it for the problems I didn’t 

understand how to solve. Some 

problems I can’t get right even if I get 

help from My Mathlab. Then I use 

wolfram alpha to compare my answer 

to what WA says the answer is. Then I 

can look for what I did wrong and how 

to get it right next time. I also used it 

for solving definite integrals because it 

takes so long time by hand and it is 

easy to do stupid mistakes. 

 

-(Also,) great when I need an expression and 

not numbers for my answer. 

Very fast at definite integration. 

- I learned that wolfram is significantly easier 

to use than maxima.  

- Because it goes faster than punching in 

everything in on the calculator. 

MyMathLab - I learned the basics of integration. 

- Used it for inspiration to what tasks I 

could use for the project, when it came 

to different ways to integrate. 

-I made a mental note concerning MyLabs: If 

only more mathematic subject were done 

this way. In my opinion it would be so much 

easier to learn and understand. I would argue 
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- Worked on homework with the group 

- Worked on the homework for week 

13, and made some progress. Further 

on I think I will need to read more in 

the book and see more videos. 

-Worked on my homework for ca. 2h 

and used the helping option for some 

questions 

- Got the gist of trapezium rule 

- I did a quick overview of the test. 

Which chapters I needed to recap and 

what tasks I would need to repeat 

before attempting the partial-test. 

- I opened homework and the partial 

test in different browsers to swap 

between for comparing questions.  

By comparing the questions in the test 

with the ones from homework, I can 

easily access help and/or examples to 

similar questions, and by compare 

results and to doublecheck what kind of 

answer they are looking for - if the 

given answer is similar or very different 

from the ones from homework I could 

quickly know if I’m very wrong or on 

the right track. Using this method gives 

me a great advantage both in efficiency 

and time used. 

- I used my mathlab quite active to help 

learn how to solve the problems. It 

took some time to get some problems 

right but I eventually understood how 

to solve them, I learned how to 

integrate by parts (I used it actively for 

this topic) and got a lot of help to 

understand how to solve the other 

topics for this week.  

that the diversity and “fluidity” of challenges 

MyLabs might throw at you is superior to the 

standard textbook recipe. Where there is a 

set of tasks which increases in difficulty but 

with rigid variables, preventing the possibility 

to redo a certain problem without already 

knowing the answer and thereby weakening 

your understanding altogether. 

- Tried to solve some of the problems using 

maxima, but I considered learning mathlab 

instead. Given it’s a more powerful tool and 

it’s easier to attain help and information 

online. 

- Not much to report. Doing the homework 

without much trouble 

- Going for a new strategy: going slow and 

thorough, taking notes and making solutions 

as I go. The downside is that it takes forever. 

After an hour, I completed maybe 2-3 tasks. 

This was a bad idea, since I lack fortitude. 
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- I need to use My MathLab for doing 

the homework 

Internet -I made the first question in our stack 

project 

-I made the question 2 and 4 in our 

stack project. I also edited a bit on Tor’s 

question 3, and added one more 

feedback. 

- Maxima is new to us so we used the 

internet to search for how to solve the 

problems and learn the maxima 

programming language. 

 

Maxima -Did one of the tasks in our maxima 

project about trapezoid rule. 

-Solved some problems using maxima, 

but will need more learning before I 

can solve these problems with it. 

-With formulas from the textbook I 

solved almost every questions. 

-Made a formula to calculate the 

problems with ‘’binominal formula’’, so 

I don’t have to calculate everything by 

hand. 

-I somewhat understood the use for 

maxima. If used correctly it could save 

me a lot of trouble down the line 

-Tried to solve some of the problems 

using maxima, but I considered learning 

mathlab instead. Given it’s a more 

powerful tool and it’s easier to attain 

help and information online. 

-I also used Maxima to solve a handful 

of other tasks ( in partial test) which 

were too complex for a simple browser 

calculator. 

-Tried to solve a few tasks in Maxima, 

but I reckoned that it would be swifter 

to do them the easier ones by hand.  

-It would be easier in the long run. If I could 

make a template for each question, then I 

would have a severer advantage on the 

upcoming exam. I would only have to plot in 

the variables to get the correct answer on 

each question. 
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-We are working on a project where we 

need to solve problems in maxima, so 

obviously we needed to use maxima to 

do this. 

-Tried to use maxima while doing the 

homework 

- I used Maxima to do the homework, 

and also to finish the Maxima project. 

- Tried to use maxima while doing the 

homework 

- I tried to learn some more Maxima 

while doing the homework. (This took 

some time) 

- Used maxima to make a program to 

solve the problems in an easy way. This 

is hard to make, but when it is done, all 

the problems are easy to solve. 

 

Lecturer’s 

notes 

-After stumbling on a few tasks, not 

being able to comprehend some of the 

tasks. I skimmed through Lecturer’s 

notes 

-I read  lecturer’s notes on parametric 

derivation and skimmed trough a video 

with Per on the same topic. 

- Skimmed through and stole a few 

examples he had previously used. I 

learnt the formulas for integration or 

technique of partial integration 

-I skimmed through Lecturer’s notes  

only to get a general idea of the subject 

(3 min) 

 

 

 -because those notes are “tailored” for the 

tasks at hand. 

 

- I also believe that I get a deeper 

understanding through continuously trying to 

understand and solve a problem, repeating it 

until completion. 

- Because it would be the most relevant piece 

of information it this subject. 
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Youtube  -I have skimmed through a few videos 

on basic Maxima tutorials on Youtube, 

-I learned from the video how to partial 

integrate and to just refresh long 

forgotten memories 

 

(Learned?)Not much, It would seem it is 

more proficient to simply “play around” on 

your own in maxima than to watch youtube-

videos. 

Mathway -I used a website called mathway to 

solve almost every task in the partial-

test. I did not learn anything doing this, 

but it severely increases the probability 

to get the correct answer, and 

therefore the overall score…. I googled 

trapezium- and simpson’s rule 

calculators instead of solving them by 

hand. 

 

Online 

calculators 

-I found online calculators for 

Maclaurin and Taylor series which 

made some of the tougher questions 

significantly easier. I did try to solve 

them by hand first, only to get the feel 

and gist of it. 

 

 

Stacks -We had a lecture in Stacks and 

afterwards we tried to make some easy 

questions using Stacks 

 

 

 



 

 

8.4 Appendix 4: Settings used for Camstudio 

Interface  

 

 

The settings used: 

 

 

 

 

 



 

111 

 

8.5 Appendix 5: Mathematical tasks used in the group work sessions, 

Autumn 2017  

 

Week 39 

Task 1a): Given matrices, A and B. Find product A and B and write up the 

transpose 𝐴T. 

 A = [
1 3 1
5 4 2

]. B = [
2 5
1 3
2 1

]. 

 

Task 1b): Here you find a little challenge.   

(Remember: Area of a triangle made up of the vectors a⃗  and b⃗  is  

A =
1

2
|det(a⃗ , b⃗ )| 

You need to find the area of the triangle with the vertices at the points c =

(−1, 2), d = (4, 8), and e = (2, −3). Hint: Find two vectors and set them in the 

matrix form. 

 

Task 2: Given the following matrix: A = [
0 3 −6 −14
3 −7 8 −5
3 −9 12 9

]. Find all the 

solutions of the system of equations Ax = 0. Also write the solution in vector 

form. 

Task 3: Given following matrix. A =  [
5 4
1 2

]. Find eigen values and associated 

eigen vectors of the matrix. 

Week 45 

 

Task 1:  

a) Write down the homogeneous form of the equation 
ⅆ2y

ⅆx2
+ 15

ⅆy

ⅆx
− 6y =

2sinx 

b) Which of the following are the constant-coefficient equations? Which are 

homogeneous? 

i) 
ⅆ2y

ⅆx2
+ 10

ⅆy

ⅆx
+ 12y = e−13x   

ii)  x
ⅆ2y

ⅆx2
+ 13y = 0 
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iii) 
ⅆ2x

ⅆt2
+ 12

ⅆx

ⅆt
+ 9x = 0 

iv) 
ⅆ2y

ⅆx2
+ 10

ⅆy

ⅆx
+ 10y = 0 

Task 2: 

a) Obtain the general solution, that is the complementary function, of the 

homogeneous equation 
ⅆ2y

ⅆx2
− 4

ⅆy

ⅆx
+ 3y = 0 

b) Obtain the general solution of the homogeneous equation  
ⅆ2x

ⅆt2
+ 11

ⅆx

ⅆt
+

30x = 0 

 

Task 3:  

a) Find a particular integral for the equation 
ⅆ2x

ⅆt2
− 2

ⅆx

ⅆt
+ 10x = 12e4t 

b) Find the general solution of  
ⅆ2x

ⅆt2
+ 13

ⅆx

ⅆt
+ 40x = 5t 

 

Week 46 

Task 1: 

a) Find all the second-order partial derivatives of  𝑧 = 3𝑒2𝑦𝑐𝑜𝑠6𝑥. 

b)  Find all stationary points and determine the type of points for the function 

f(x, y) =
1

x
+

1

y
−

7

xy
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8.6 Appendix 6: Examples of transcriptions 

Phase 1 

Transcription week 9, Participants: Per, Jan and Tor. 

Length: 1:02:29 (screencast). 23:39+23:38+7:10 (room view). 

Times below are screencast time. Screencast is of Per’s screen. Screencast 

recording starts 35 seconds later than room recording. 

Brief summary: Students are working on project in which they are supposed to 

program the tasks in Maxima. 

What is said?  Comments on what is being done? 

1 Per: I doubt that you have done much since 

last time. 

2 Tor: I actually tried visiting those… Matrix 

things. 

3 Per: Matrix? 

4 Tor: The thing that codes math. 

5 Per: The stack thing? 

6 Tor: No, it’s not stack yet. 

7 Per: Isn’t it stack when you want to code 

math? 

8 Tor: No, the first code language, isn’t it… 

9 Per: It is Maxima that… 

10 Tor (conclusively): Maxima! 

11 Per: Well, do you have a masters now. 

12 Tor: What? 

13 Per: Do you have a masters? 

14 Tor: No, it is complicated. I think it’s so 

fucking uvant*. 

15 Per: Yeah 

16 Tor: It’s a stupid program, compared to 

Wolfram. 

17 Per: Yeah, Wolfram would have been 

nice… If we had it. 

18 Tor: Yeah [short laugh] 

Discussion regarding the programs, 

Maxima and STACK related to the 

project. 

 

 

*TRANSLATION NOTE: To be Vant to 

something is to be used to it. The 

letter u gives it the opposite 

meaning. 113tar113ring to 

something as uvant means that it is 

different from what the person 

speaking is used to, and will affect 

them in some way and to some 

extent. For instance, one may feel 

weird about what one is not used to, 

or as here, worry that one is less 

proficient with what one is used to. 

 

 

 

*TRANSLATION NOTE: In Norwegian 

there is one word for the singular 

version of the word you, and one for 

the plural. I will normally translate 
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19 Per: Shall we just finish that… ‘Gruppe 

Primero’ [reading heading of the document 

on screen]? Did you edit that? 

20 Tor: We are group one, you know. 

21 Per: Oh, right. Have you-all* sent a mail to 

that guy… 

22 Tor: What? Oh, to Amar? Yes. 

23 Per: Yeah, with group? 

24 Tor: Yeah, I sent a mail right away. 

25 Per: Okay. Have you [inaudible]? 

26 Tor: That one we shall have, that one not. 

27 Per: Yeah. 

28 Tor: We’ll not have that one. 

29 Per: A lot of those thing pops up where you 

need to press [inaudible] 

30 Tor: Yeah, I pressed because I thought it 

was [inaudible]. 

31 Per: Yeah, it’s often like that. 

32 Tor: Okay. 

the plural version of the word to 

you, but when it would be hard to 

tell from context that the person 

uses the plural version, I will instead 

translate to you-all. 

 

 

33 Per (while scrolling through the 

document): So, we have done exercise 3… 

34 Tor: How about those? [inaudible] 

35 Per: You must have those. You are to 

delete that thing… Delete what comes up 

there 

36 Tor: Alright. 

[Per is logging onto fronter] 

37 Per: Microsoft [inaudible] have the kind of 

thing… A thing you have to have, you 

know… To get the program to work. 

38 Tor: Yeah… That’s what’s so awful if you 

suddenly deleted something like that. 

Then… 

Talking about the task 3 and then 

again about Maxima. 
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39 Per: Yeah. 

40 Tor: [inaudible] 

41 Jan: Do you have… You know the thing if 

you go to Maxima, then you can 

download… ? 

42 Tor: Command line? I think that was a bit 

stro… A bit better for solving… 

43 Per: Is it better? 

44 Tor: Yeah… [inaudible] said that he had 

used it for something. [pause] But… 

[inaudible] I didn’t get any more… 

45 Per: Yeah… Yeah, I saw that last time, but… 

46 Tor: Who of you is it that have solved the… 

Is it you who have solved exercise 3 twice? 

47 Per: Have we solved exercise 3 twice? 

48 Tor: Yes. 

49 Per: Let’s see… [Checks document, 

timestamp 2:15] Yes. Cause we have two 

different answers. 

50 Jan: But that is correct. 

51 Per: Is that correct?  

52 Jan: At least according to the book I think it 

is correct. 

53 Per: Okay, [scrolls up a bit] but do you see 

the difference there? 

54 Jan: No, man, that’s what I don’t. There’s 

no difference. 

55 Per: There I have written that… Right, I 

forgot the multiplication sign… up there. 

Just wrote it wrong. 

Discussion regarding exercise 3 ( 

they solved it in Maxima and in 

Wolfram and get different answers) 
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Phase 2: an example 

Transcriptions 

Video: Week 45 – MVI 0080, MVI 0081 and MVI 0082                                                                 

Persons: O: Lecturer, D: Dag, J: Jan, S: Shaista,  

Transcriptions Keys: 

…    Unfinished sentence 

() or (uhørbart)  Unheard 

(uhørbart ord)  One unheard word  

(?)    Unsure of what the word is (said/translated) 

words in red  Unsure of translation 

Task 1 (see appendix 5) 

c) Write down the homogeneous form of the equation 
ⅆ2y

ⅆx2
+ 15

ⅆy

ⅆx
− 6y =

2sinx 

d) Which of the following are the constant-coefficient equations? Which are 

homogeneous? 

v) 
ⅆ2y

ⅆx2
+ 10

ⅆy

ⅆx
+ 12y = e−13x   

vi)  x
ⅆ2y

ⅆx2
+ 13y = 0 

vii) 
ⅆ2x

ⅆt2
+ 12

ⅆx

ⅆt
+ 9x = 0 

viii) 
ⅆ2y

ⅆx2
+ 10

ⅆy

ⅆx
+ 10y = 0 

 

Turn

/Ti

me 

Person What is said (Norsk) What is said (English) What is done. 

 

0:20 

Task 

1 

1 D Ja, skal vi bare skrive… Yes, shall we just write…  

 2 J Ja, prøve på det.  Yes, lets try that.   

Task 

1 

3 D Skal vi se. Den her… 

første oppgaven er å 

bare skrive den 

homogene formelen av 

den da. 

Lets see. This one here… 

the first task is about just 

writing the homogeneous 

formula of that one then.  

Points on task sheet 
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 4 J Mhm. Mhm.  

 5 D Og det er jo… Da skal 

det være… bare y. Og 

så den deriverte av y.  

And that is…. It is 

supposed to be… just y. 

and then the derivative of 

y. 

 

 6 J Ja. Yes.  

 7 D Og så koeffisientene 

foran. Og så alt annet 

skal liksom være… 

And the coefficients in 

front. And everything else 

shall be… 

Gesture  

 

 

 8 J Ja. Så det blir y i andre 

blir det ikke det, 

pluss… 

Yes. So it will be y 

squared doesn’t it, plus… 

Points on task sheet 

 9 D Ja, det blir den der 

er lik 0 bare.  

Yes, it will be this one 

equals 0. 

Circles around a part on task 

sheet 

(right hand side of the 

equation 

 10 J Ja. Jeg skjønte det. Yes. I understood it.  

 11 D Ja, for etter at du har 

den kan du skrive den 

karakteristiske linja vet 

du.  

Yes, because after you 

have this one, you can 

write the characteristic 

line you know. 

 

 12 J Ja. Yes.  

 13 D Skal jeg bare skrive da? Shall I just write then?  

 14 J Ja, bare… Yes, just…  

 15 D Du kan skrive du og. You can also write. Starts writing 

 16 J Ja (uhørbart) Yes ()  

 17 D Jeg kan teste da. Du 

kan få lov til å prøve 

etterpå.  

I can test then. You can 

try afterwards. 
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 18 J Ja, det er ikke så veldig 

farlig men… 

Yes, it is not important, 

but… 

 

 19 D Nei, men jeg har lyst til 

å se det… 

No, but I want to see 

the… 

 

 20 J (noe latter) (uhørt) (some laughter) ()  

 21 D Se… Skal jeg bare 

skrive svaret med en 

gang da? 

See… Shall I just write the 

answer straight away 

then? 

 

 22 J Eh….du må vel skrive 

opp… bare skrive det. 

Ja. 

Eh… you need to write… 

just write that. Yes. 

 

01:5

3 

23 D Eh… Føler et press å 

skrive med denne 

pennen her. 

Eh… feeling a pressure by 

writing with these pens 

here. 

Keeps writing 

 24 J Mhm. (uhørbart) For å 

si det sånn. 

Mhm (). To put it like 

that. 

 

02:1

1 

25 D Sånn. Like that.   

 26 J Ja. Vil det si at alle 

disse her kommer 

igjen? Og den er… 

koeffisient? 

Yes. Does that mean that 

all these here come 

again? And this one is… 

coefficient? 

Points at task sheet under 

the grey area 

 27 D Ehhhh… ja? Faktisk. 

Eller… jo, den…  

Ehhh…yes? In fact. Or… 

yes, it… 

Points at task sheet 

 

 28 J (uhørbart) Jeg vet ikke 

hva som er kravet.  

() I don’t know what is 

the requirement. 

 

 29 D Det burde gå fint det. It should be fine.   

 30 J Ja, det burde jo det. 

Jeg vet ikke om du kan 

skrive x foran, men 

det… 

Yes, it should. I don’t 

know if you can write x in 

front, but it… 
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 31 D Men går det an å… Ja, 

nei det…altså, det 

burde gå fint. Det 

119tar bare 0… 

But you can do… Yes, no 

it… well, it should be fine. 

It’s only 0… 
 

 32 J Mhm. Mhm.  

 33 D …foran den…det 

mellomste leddet der.  

… in front of it… the 

middle term there.  

 

 34 J Så står det jo en x og 

foran der da, men… Jeg 

vet ikke om det gjør 

noe.  

Then it stands a x also in 

front of that, but…. I 

don’t know if it matters. 

Points at task sheet 

 

 35 D Ja, det er sant. Nei, jeg 

tror ikke den… noen av 

delene faktisk.  

Yes, that is true. No, I 

don’t it… some parts 

actually. 

 

 36 J Nei (noe latter). No (some laughter).   

 37 D Hvis du deler med x 

på… her sånn, så får 

du… 13 eh… x foran 

den. Det er noe annet 

(uhørbart ord).  

If you divide by x on… 

here, you will get… 13 

eh… x in front of it. It is 

something else (). 

Points at task sheet
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8.7 Appendix 7: Interview guide 

Autumn 2017 

The following themes have been addressed in the interview with each student. 

Each theme was extended based on students’ responses. 

1. Which resources you use mostly in this mathematics course? 

2. Leading to more questions about the nature of help from the resources as 

well as views on each resource. Do you use paper and pencil or digital 

tools for solving the tasks in MML? 

3. Do you see any difference in ways of working on mathematical tasks in 

this course than in previous semester? 

4. How do you see the inclusion of lectures in this course? 
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Mathematical Competencies and E-Learning: A Case Study of Engineering Students’ Use of 
Digital Resources 

 
Shaista Kanwal 

University of Agder 
 

This paper explores how an e-learning environment affords the execution of mathematical 
competencies in an undergraduate engineering context. Considering the students’ 
mathematical practice as action mediated by the digital resources in a sociocultural sense, 
we employ the competence framework by (Niss & Højgaard, 2011) to make sense of students’ 
learning. Case-study research design has been implemented to thoroughly observe the 
mathematical practices of a small group of participants. Observing students’ group work and 
following their mathematical discussions elucidated the way this environment afforded the 
execution of competencies. Closer analysis revealed that the availability of online tools in 
this environment has the twofold effects on mathematical thinking, mathematical reasoning 
and problem-tackling competencies. 

Keywords:  Calculus, Engineering mathematics, E-learning, Mathematical competencies. 

Introduction 
The use of digital resources in mathematics education has started since the development 

of such tools and is still being researched to study its impact on mathematical learning. 
Increased dependence on digital tools for practicing mathematics is transforming the 
mathematics education, and to learn mathematics is not the same as it was before the 
introduction of digital technology. The use of digital resources is of particular relevance in 
engineering mathematics in the sense that modern-day engineers during their professional 
activities rely on technology for mathematical tasks (van der Wal, Bakker, & Drijvers, 2017). 
The framework for mathematics curricula in engineering (Alpers et al., 2013) also 
recommends how technology should contribute towards fostering the engineering students’ 
mathematical competencies (Alpers et al., 2013). The notion of mathematical competence 
from the Danish KOM project (Niss, 2003; Niss & Højgaard, 2011) has been adopted to 
make sense of the engineering students’ mathematical learning.  

Previous research studies have also employed this competence framework, either to make 
sense of students’ learning in mathematics or to analyse how these competencies are 
developed in particular situations or through certain activities. For instance, Jaworski (2012) 
used Niss’s idea of mathematical competencies to design and analyse the tasks and to 
recognise the engineering students’ mathematical learning. Jaworski pointed out that a 
potential use of the competence framework may be to create opportunities for students to 
achieve certain competencies (Jaworski, 2013). Furthermore, Albano and Pierri (2014) used a 
role play activity and identified the first-year engineering students’ mathematical 
competencies through the questions students asked. Albano and Pierri concluded that students 
seemed to possess all the competencies by Niss (2003) which were evident through the words 
they used in their questions. García, García, Del Rey, Rodríguez, and De La Villa (2014) 
presented a model for the integrated use of CAS which they implemented and analysed in 
engineering classrooms. They suggested that the use of CAS in all learning and assessment 
activities has the potential to positively influence the development of mathematical 
competencies. Recently, Queiruga-Dios et al. (2016) analysed the development of 
mathematical competencies among industrial engineering students through their teamwork 
which included the use of CAS for solving mathematical problems as an integral part. While 
their main aim was to integrate these mathematical competencies with the required 
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engineering competencies in Spain, they claimed that the students acquired all the 
mathematical competencies during this task. 

Our study focuses particularly on nature of mathematical competence afforded by an e-
learning environment. Realising the contemporary and the future state of mathematics 
education, we attempt to add to the research literature within the context of engineering 
mathematics education. In this paper, we analyse engineering students’ engagement within a 
calculus course to report on how their mathematical competencies are supported within an e-
learning situation. We attempt to answer the following research questions: What traces of 
mathematical competencies are observed in students’ work when they practice mathematics 
digitally? How does this environment afford the execution of these mathematical 
competencies? 

Theoretical perspective 
We consider students’ mathematical practice in the present situation as mediated action in 

sociocultural terms (Vygotsky, 1978). The provided resources which support the learning of 
mathematics serve as mediating artefacts between students and the mathematical concepts. 
The mediating artefacts used in the present situation are MyMathLab, tutorial videos, 
textbook, Maxima for programming, and other internet-based resources. The students’ 
homework and eventually the students’ assessments are done digitally. There were no regular 
face-to face lectures thus the situation is considered as e-learning in which students remotely 
work with the resources. A brief introduction of these resources follows. 

MyMathLab is an online interactive learning environment for practicing mathematics 
digitally. While the main aim of this resource is to provide a platform for digital homework 
and assessments, it also facilitates in solving the tasks by providing illustrated worked 
examples and personalised feedback. The tutorial videos replace traditional university 
lectures and are linked topic-wise with the textbook sections. The videos are recorded by the 
mathematics teacher using a document camera, and they consist introduction to each 
mathematical topic along with worked examples. The tutorial videos and the homework in 
MyMathLab were clearly linked with the chapters in the textbook.  

We employ the competence framework by Niss and Højgaard (2011) to make sense of 
engineering students’ mathematical learning (Jaworski, 2012, 2013). The framework is 
complemented by sociocultural notion of resource mediation. The Danish KOM project (Niss 
& Højgaard, 2011) enlisted eight mathematical competencies, divided into two groups as 
follows (Figure 1): 

 
Figure 1: A visual representation of eight mathematical competencies (Niss & Højgaard, 2011, p. 51). 

The Ability to Ask and Answer Questions in and with Mathematics 
The first group comprises the competencies of mathematical thinking, mathematical 

reasoning, problem tackling, and mathematical modelling. Mathematical thinking 
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competency involves “awareness of the types of questions which characterise mathematics” 
(Niss & Højgaard, 2011, p. 52) and “being able to recognise, understand and deal with scope 
of given mathematical concepts” (Niss & Højgaard, 2011, p. 53). Mathematical reasoning 
includes following and assessing chains of arguments, comprehending a mathematical proof, 
and devising formal and informal mathematical arguments (Niss, 2003). In the present study, 
the proofs were not a part of the mathematics curriculum. Thus, the reasoning competency is 
only observed within the context of problem solving. Mathematical modelling is neither a 
part of the curriculum in the present situation. 

The Ability to Deal with Mathematical Language and Tools 
The second group includes the competencies of representing mathematical entities, 

handling mathematical symbols and formalism, communicating in, with and about 
mathematics, and making use of aids and tools. 

Research Design and Methods 
This study is carried out following a case study design (Yin, 2013) and the data has been 

collected in a Norwegian public university. A small group of three male students, enrolled in 
the first year of an electronics engineering program, has been observed over the whole 
semester. The methods used to generate data include group observations, group interviews, 
individual weekly journals and field notes by the researcher. 

For the participant observations, video recordings of their group work, and screen 
recordings to follow the activity on computer screens have been collected. Additionally, 
participants provided screen recordings of their individual work, and weekly journals 
containing self-reports about the use of resources for practicing mathematics. In this paper, 
we analyse three episodes of the students’ group work in order to look for how these 
competencies are supported in an e-learning environment.  

                                                             Analysis 
The two sets of competencies are not mutually disjoint, in general, and are intertwined 

which is evident from the so-called competency flower. Although each competency has a 
well-defined identity in theory, execution of each competency in practical will draw on some 
other competencies. This makes it empirically challenging to disentangle one competency 
from the others (Niss, Bruder, Planas, Turner, & Villa-Ochoa, 2016). We adhere to these 
considerations and our purpose here is to rather we look for possibilities in which e-learning 
influences each sets of competencies.   

In the quest for finding correct answers to the given tasks in present situation, participants 
needed to go through certain procedures where they could demonstrate these competencies. 
Geogebra (https://www.geogebra.org/) and WolframAlpha (https://www.wolframalpha.com/) 
were main tools used by the students to make sense of various mathematical functions, 
checking for the functions’ behaviour and to look at the solutions of the tasks. Textbook 
served as a main written help material in terms of consulting for mathematical formulas, 
explanations or illustrations, and for checking whether their solutions were correct by 
comparing these with the answers to tasks provided in the end of textbook. At several 
occasions, the textbook served as an aid to get acquainted with the mathematical topics, as 
the students read the textbook to understand the mathematics. The introduction of Maxima 
was done in a project in this course, and the purpose was to make engineering students 
capable of using this programming language to solve mathematical problems thus it also 
served as a resource.  
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The exposure to Google and different online calculators, in this case, for finding solutions 
of the given tasks, has shared the role for computing and calculating the solutions. We 
noticed that in participants’ arguments, the element of tool dependence was evident.   

In this regard, WolframAlpha and GeoGebra have a central role, since it in the present 
situation supported students in making sense of the functions, expressions and mathematical 
concepts in different ways. For example, when the students were not able to solve an integral 
∫ 𝐬𝐢𝐧⁡(𝐱)

𝐱
𝐝𝐱1

0  by programming with Maxima, they started wondering whether it was solvable at 
all, and they used WolframAlpha to make sense of the scope of the task or to know the 
answer: 

 
Per: (…) Maybe it… (we) can’t solve it?  Have you tried Wolfram? [Per is addressing Jan 

and visits WolframAlpha website himself. Per has looked up ∫ 𝐬𝐢𝐧⁡(𝐱)
𝐱

𝐝𝐱1
0  on 

WolframAlpha (Figure 2)] 
  Per:  No, you’re supposed to get an answer. 
 
In this example, when asked by Jan, Per was trying to handle the scope of this integral. 

He used WolframAlpha to see what this integral is all about, and based on the output, he 
decided that it could be solved. This example illuminates how the mathematical thinking and 
problem-tackling competencies are being executed along with the obviously observed aids 
and tools competency. 

 

 
 

Figure 2: Screenshot of a participant’s work on WolframAlpha. 

The online tools mediated in the students’ abilities to think and reason mathematically 
either by providing the complete calculations or the opportunities to explore the tasks at hand. 
By using paper and pencil techniques, both of these functions require a different kind of 
knowledge and skills as it says in the competence framework. 

The following excerpt indicates how this environment is supporting the competencies of 
dealing with mathematical language and tools. While trying to solve a definite integral 
∫ 𝑒−√−1𝑤𝑡1
−1 𝑑𝑡 using Maxima, they got apparently a different outcome than what it said in 

the book. 
 
Per: It is the same? It is the same thing, just written in a different way. 
Jan: Yeah     
Per: Simplify [Per tries to use the “simplify” command on the expression in Maxima] 
Jan: Yeah, it just looks that much nicer when you do it in… 
Per: In Wolfram. 
Jan: Yeah. Yeah, or at that. Did you get…You got the same in Wolfram? 
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Per: Nnn… I haven’t checked it. I assume I get what it says in the book. 
        [Per looks up ∫ 𝑒−√−1𝑤𝑡1

−1 𝑑𝑡 in WolframAlpha.] 
Per: Then I get sine w to…2 sine w divided by w, and that’s exactly the same as it says in 

the book. 
Jan: There, it… If you go back. Wolfram has moved -1 outside. 
        [Jan is trying to make Per aware how WolframAlpha has changed the 

representation.] 
Per: Where? 
Jan: Put the square root outside the parentheses.  
Per: Yeah, but that’s just if… I don’t think it matters if... 
        [Meanwhile Per writes the original expression slightly differently in Maxima and  
        gets the same output] 
Per: It is exactly the same. I think it is correct. 
 
Here, Per and Jan were trying to make sense of the different representations of the 

expression when both resources offered the result in a slightly different manner. The second 
set of competencies concerning representing mathematical entities, handling mathematical 
symbols and formalism, communicating in, with and about mathematics, and making use of 
aids and tools are in action. 

 An interplay of different resources had also been helping to approach a given task from 
different perspectives and to gain more information about the task in hand. Also, the use of 
Maxima apparently seemed as a short cut for getting ready-made answers. However, it has 
been observed that it required some effort from the students to decode the mathematical 
language into programming language. 

Discussion   
We intended to look for the execution of mathematical competencies in an e-learning 

environment in our case, and the findings of this study differ from the previous findings by 
(García et al., 2014). We found that while this environment supports some competencies, it 
does not ensure enhancing all of these in all learning environments. The way in which this 
online learning environment provides possibilities for practicing mathematics makes it 
different from the traditional way of doing mathematics in a paper and pencil environment. 

For instance, from the first set, when the competencies of thinking and reasoning 
mathematically have to be executed in an online environment. We conjecture that the effects 
are twofold. On one hand, the resources are facilitating in computing, calculating and 
providing answers requiring less effort from the students thus limiting the possibilities for 
exploration. However, on the other hand, when used for comprehension of the tasks at hand 
they have potential to enhance the possibilities of exploration. We further observed that e-
learning is certainly not on the same lines as it means to think and reason mathematically in a 
traditional way. In a traditional paper and pencil environment, students use their own 
knowledge and skills for performing the tasks at the hand.    

The second set of competencies has more scope in the present context owing to the use of 
different tools and aids for practicing mathematics. When students used different tools for 
practicing mathematics, and each one of those tools uses different symbolism which provides 
some opportunities for the students to experience and handle varied mathematical formalism 
in a way.  

Question for discussion: How to devise a better systematic scheme for analysing 
mathematical competencies in this environment?
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Engineering students’ engagement with resources in an online learning 

environment  

Shaista Kanwal 

University of Agder, Norway, shaista.kanwal@uia.no   

In this paper, we investigate how undergraduate engineering students interact with 

an online learning environment provided to them in a Calculus course. The 

constituent resources of this environment include tutorial videos, textbook and 

MyMathLab – an online interactive system for mathematics. A qualitative case study 

involving a small group of students has been conducted. We investigated which 

resources these students used and the manner in which they incorporated these 

resources in their online mathematical work. 

Keywords: Students’ interactions with resources, the role of digital and other 

resources in university mathematics education, mathematics for engineers. 

INTRODUCTION 

In recent years, digital resources are increasingly used for teaching and learning of 

mathematics (Borba et al., 2016; Pepin, Choppin, Ruthven, & Sinclair, 2017). The 

presence of wide range of digital resources in terms of their functionalities allows 

various possibilities of creating digital environments for students to learn 

mathematics. Each digital environment might afford unique interactive and learning 

opportunities; therefore, empirical research closely looking at students’ engagement 

and the opportunities for their learning in such environments is well needed. This 

study deals with one digital learning environment provided to undergraduate 

engineering students for practicing mathematics. The aim is to explore students’ 

interactions with the constituent resources of this environment to elucidate the 

learning opportunities in this environment.  

Adler (2000) introduced the term resource to embrace several agents such as 

physical, human and cultural tools and aids intervening in a teacher’s activity. In this 

paper, however, we distinguish between digital and classical resources and focus on 

students’ work with resources. The use of digital resources is relevant in the context 

of engineering mathematics in the sense that engineers during their professional 

activities rely on technology for solving mathematical tasks (van der Wal, Bakker, & 

Drijvers, 2017). The framework for mathematics curricula in engineering education 

(Alpers et al., 2013) recommends the use of technology aimed at fostering 

engineering students’ mathematical competencies. In the next section, we present the 

theoretical framework, and the subsequent section contains introduction to the 

constituent resources of the online learning environment. 
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THEORETICAL PERSPECTIVE 

In order to study students’ interactions with the resources, we employ the 

documentational approach to didactics (Gueudet, Pepin, & Trouche, 2012; Gueudet 

& Trouche, 2009) which is grounded on Rabardel’s work (Rabardel, 2002) and 

enlarges the instrumental approach (Trouche, 2004) in mathematics education. One 

important distinction between the two approaches lies in the extension of the concept 

of artefact, in the former approach, to resource which allows considering wider set 

of materials intervening in the teachers’ and students’ activities. A resource can be 

conceptualised “as both noun and verb, as both object and action that we draw on in 

our various practices (Adler, 2000, p. 207)”. Thus, the approach has the potential to 

take in consideration material, human and cultural resources such as language, time, 

mathematics teachers, etc. Moreover, a resource is never isolated but belongs to the 

wider set of resources (Gueudet & Trouche, 2009).  

While one focus of this approach is on the teacher’s work with the resources, the 

study of students’ use of resources can provide the overview of their actual use 

(Gueudet & Pepin, 2016). Also, this approach has the potential to provide rich 

analyses if used to evaluate students’ work in terms of interactions with different 

resource systems (Trouche & Pepin, 2014) or with a particular resource (Aldon, 

2010). We will employ this approach to analyse how students interact with available 

resources. 

In particular, we analyse students’ techniques when working digitally in mathematics 

(Artigue, 2002). A technique is perceived as “a manner of solving a task (Artigue, 

2002, p. 248)”. While students work on mathematical tasks in a digital environment, 

they might adopt paper and pencil based techniques or instrumented techniques. The 

obvious and easily observable objective of each technique is to reach the goal of the 

activity i.e. to produce the results whereas the contribution of a technique to the 

learning of involved mathematical concepts might not be easily recognisable. The 

former corresponds to pragmatic value while the latter corresponds to 

epistemological value liked to each technique. 

We seek to explore the kind of techniques implemented by the students in the digital 

environment to make sense of how students interact with this environment while 

working on mathematical tasks. Furthermore, realisation of the values attached to the 

students’ instrumented techniques will also help to understand the role of digital 

resources in their learning (Guin, Ruthven, & Trouche, 2005). There are several 

resources involved in present situation, therefore, we confine to the general features 

of corresponding techniques in the present paper. By this, we mean to consider 

students’ general organisation of digital work with several resources related to all 

contents in a Calculus course. We ask the following question: How do engineering 

students incorporate resources during their work in an online learning environment? 



  

THE SETTING 

This study took place in a Norwegian public university during the spring of 2017. 

Undergraduate students enrolled in electronics engineering program participated in 

this study. In their Calculus course, students were offered an online learning 

environment such that they could work remotely by interacting with the provided 

resources. These resources were made available to them electronically to work and 

proceed through the course. There were no mandatory lectures, and they could access 

the lecturer in the case they needed additional support. The final examination was 

also in digital format where the students were allowed the access to tools and aids.   

The resource system comprised MyMathLab environment, tutorial videos coupled 

with the notes, and the textbook. The students’ homework and the formative 

assessments were administered online through MyMathLab system. MyMathLab is 

an interactive learning system for practicing mathematics online (figure 1). While 

this system provides an online platform for homework and assessments, it also 

facilitates students in solving the tasks by providing help and feedback. Students can 

seek help through utilising “help me solve this” or “view an example” functions in 

the system. The former lets the student solve a similar task by guiding on each step 

whereas the latter shows a similar worked-example. The interactive nature of 

MyMathLab system allows considering it as a resource which can potentially 

influence students’ activity in this course. 

 

 

Figure 1.  Interface of MyMathLab environment. 

The tutorial videos are created by the lecturer, and recorded by using a document 

camera. Each video deals with a specific section in the book and is named 



  

accordingly.  In these videos, the lecturer explained the topics in the book and 

worked through the relevant examples occasionally. The notes pertaining to the 

video tutorials were available online. The length of these videos varies depending on 

nature of the concerned topics. The tutorial videos replaced lectures and it was 

expected that students would watch the videos to learn mathematical topics. The 

textbook served as the central resource in the sense that MyMathLab and tutorial 

videos were based on contents in the book. 

In this course, a compulsory task was the group project in which students were 

required to prepare a question bank related to integration. That question bank was 

needed to be programmed in the STACK environment, a computer aided assessment 

platform. Maxima is the programming language used in the STACK, thus they were 

required to learn Maxima to complete the project. The intention was to make 

students familiar with programming language and its use in mathematics. 

RESEARCH DESIGN AND METHODS 

The case study research design (Yin, 2013) has been followed in this study. A group 

of three students has been observed over the semester. The methods used to generate 

data include group observations, semi-structured interviews, individual weekly 

journals and field notes. Using multiple methods for data collection contributed to 

triangulation of data.  

In order to be able to observe participants’ activity, we requested them to work at 

campus each week for which they agreed. During these sessions, they worked on 

their routine work including homework and assessments. Video recordings of their 

group work accompanied with the screen recordings to follow the activity on their 

computer screens have been collected. Screen recordings of their individual work 

external to these group sessions have also been collected. Furthermore, weekly 

journals containing self-reports about their use of resources were included to get the 

detailed overview. The journal was provided to participants in tabular format which 

they filled and submitted electronically each week. In the journal, they were asked to 

specify the resources they used and state how the use of a particular resource helped 

them in their work each week. The semi-structured interviews were held occasionally 

to understand the emerging patterns in their use of resources. During the group work 

sessions, participants communicated in their native language whereas the interviews 

were held in English. Both the group sessions and the interviews were transcribed. 

We analyse participants’ weekly journals, a semi-structured interview in the middle 

of the semester, screen recordings, and the field notes for reporting on students’ use 

of resources in their work. This interview is being counted on because the 

participants were inquired about the general manner in which they used the 

resources. The observations, screen recordings and the field notes are being counted 

on while identifying participants’ techniques during their work. 



  

ANALYSIS 

Participants’ weekly self-reports about use of resources 

Table 1 presents the overview of participants’ use of several resources as they 

reported in their journals.  The manner in which they used them in their work and 

their evaluations of resources have been extracted from their journal inscriptions. 

Table 1: Overview of participants’ use of resources. 

Resource used How they incorporated resources 

in their work  

Comments about resources (if any) 

Tutorial videos Watched to get information to 

complete homework 

Easy to understand through videos  

MatRIC videos  Skimmed through the video at 

amplified speed 

 

Own note Used the already solved similar 

problems in the notes, to recall the 

problems (methods for solution) 

 

Textbook Read through the book, found 

formulas to work on homework, got 

questions from book (during project) 

 

Maxima Programmed tasks in Maxima for the 

project, used while doing homework, 

solved tasks using Maxima 

Programming in Maxima is hard but 

when it is done, all the problems are 

easy to solve 

WolframAlpha Used as a shortcut to get answers, 

compared answers obtained from 

Maxima, got help with solving 

difficult tasks 

Easier to use than Maxima, Faster 

than using calculator, useful when the 

answer is in the form of expression 

instead of numbers 

MyMathLab Worked on homework, learnt 

specific topic, solved some questions 

with higher difficulty 

Powerful tool, easier to get help and 

information online 

Internet   

Lecturer’s notes  Tailored” for the tasks at hand, the 

most relevant piece of information 

Youtube vidoes  Watched Maxima tutorials  

Mathway and 

other online 

calulators 

Solved questions Severely increase the probability to 

get the correct answer, and therefore 

the overall score. 

STACKS Made some questions in STACKS  



  

The three participants, Tor, Per and Jan, used MyMathLab almost every week 

because homework and assessments were required to be done in this system. As 

regards the textbook, Tor did not report the textbook in the journals rather he used 

the lecturer’s notes. While in Per and Jan’s weekly reports, they pointed out few 

ways in which they used the textbook on different occasions. The textbook served as 

a source of getting questions, checking answers to those questions, getting help with 

formulas, and going through examples in the book. During their project work, they 

consulted the book to take questions and subsequently checked the answers for those 

questions. 

The tutorial videos were reported to be used by Jan and Per during their work. Jan 

occasionally watched the videos and when specifying about the kind of help, he used 

the word understand linked with this resource such as “to try to understand how to 

calculate…” and “to understand the calculation behind the math”. Per has also 

mentioned the use of videos and commented, “I easily understand it when someone 

explains me the way of solving a problem”. Tor did not mention any tutorial video 

provided by the lecturer, however he watched few videos on other platforms, 

MatRIC TV (an online resource containing videos aiming to support students in their 

transition from high school to university) and YouTube, once for getting introduction 

to partial integration and at another occasion to learn Maxima – the programming 

language. 

It can be seen that participants used some other resources in their work such as 

online calculators, WolframAlpha, Maxima and internet (cf. Table 1). Tor named 

several online calculators including Mathway (https://www.mathway.com) and 

WolframAlpha (https://www.wolframalpha.com) to solve the tasks and to compare 

the answers they got in Maxima while working on the project. He mentioned that he 

used online calculators for saving time, however, he wrote, “I did not learn anything 

doing this, but it severely increases the probability to get the correct answer, and 

therefore the overall score”. Wolfram Alpha has also been used by Per and Jan in 

order to verify whether the answers they got were correct. While working on the 

project, they picked some questions from the book and programmed in Maxima. To 

check the answers to those questions, they used WolframAlpha.  

After completing the group project that involved learning Maxima, this programming 

language became an important resource for them to solve tasks in homework and 

assessments. Both Per and Jan began making programs for solving each task to 

liberate themselves from calculations. Per inscribed in a weekly journal, “(I) used 

Maxima to make a program to solve the problems in an easy way. This is hard to 

make, but when it is done, all the problems are easy to solve”. Tor did not seem to 

use Maxima a lot, he spent some time on learning how to use Maxima for solving 

tasks in one week, and then spending some more time in the next week, he rather 

chose to focus on MyMathLab. He inscribed that, “it’s (MyMathLab) a more 

powerful tool and it’s easier to attain help and information online”. 

https://www.mathway.com/
https://www.wolframalpha.com/


  

In response to a question about using videos in a semi-structured interview, Per 

explained his way of working on homework using the provided resources. 

Per:             These topics I think are quite hard to learn all by yourself. When I get a new 

topic, I first try to solve it myself, if I can’t do that I try to look at the 

examples in MyMathLab… and if I don’t completely understand the 

examples I take a look at Olav’s (lecturer) video…mainly the examples’ 

videos because then I get to see the practical kind of way to do..to solve 

questions. 

Int:              How would you rank the provided resources? Which one do you first consult 

with? 

Per:               First, I will try to do it myself because then I think I… remember and learn it 

the best because then I have to think and ….and if I can’t do it that 

way…then I will try to look at example just to get a few hints. If that does 

not work then I watch the videos because I can’t look at the notes (provided 

by the lecturer)…I have to get explanation of what he is doing step by step.  

Tor’s response was somewhat similar as he replied: 

Int:                 Did you use any video while working on last week’s homework? 

Tor:                No, I think MyMathLab seemed sufficient so far. 

Int:                Ok. So which resource did you use for getting introduction to the new topic? 

Tor:                I tried first MyMathLab but it went fine so I just carried on. …I check the   

                       notes and watch the videos if I get stuck.. 

Int:                So, you turn to the videos when you get stuck. 

Tor:              When it is a new topic, then I just skim through his notes, but since we have 

integration from a couple of weeks now, I am pretty confident and go 

straight with it. 

While Jan responded to the same question as follows. 

Jan:            I did not watch that many videos. I mostly use MyMathLab and just see the 

examples…and if I can’t get it from there then I go to…to the book because 

it is faster… and eventually go to the videos if I do not get constructive help 

from there. 

The participants preferred MyMathLab during their work for being the source of 

quick and most relevant help in comparison to the other available resources. This 

approach of working on the tasks saved them time and effort to search for the 

required piece of information from other resources such as the videos and the 

textbook. However, the use of MyMathLab can be considered more pragmatic as 

both Per and Jan mentioned that the kind of help they get from MyMathLab is in the 

form of examples which contributes more towards producing the results.  



  

Another approach was to watch the videos when the help from MyMathLab was not 

sufficient as evident through participants’ responses in the interview. The use of 

videos has not been preferred much but participants reported that they consulted the 

videos when they needed to understand something. As discussed earlier, the help and 

feedback in MyMathLab concern the task only as it offers the formula and solution- 

steps for the task. They might have needed to consult the videos to learn the concepts 

involved in those tasks in case when just knowing the solution steps in a question did 

not work. In the journal data, Jan and Per wrote that they used the videos to 

understand thus it indicates the epistemic value linked to usage of videos. 

Observing participants’ activity helped in finding that the use of different resources 

affected their manner of working on tasks i.e. techniques. We seek to categorise the 

participants’ techniques pertaining to different resources they used, and by 

considering their motives behind use of each resource helped in recognising the 

pragmatic and epistemic value of their techniques. It is found that they increasingly 

used the digital tools to solve the tasks in MyMathLab environment with the 

progression in the course. This led to the use of more instrumented techniques 

instead of paper and pencil techniques promoted in the lecturer’s videos and through 

MyMathLab. For instance, Tor mentioned in his weekly journals and it is observed 

in the screen recordings of his individual work that he used several calculators to 

work on homework as well as assessments. The participants themselves perceived 

this technique of using online calculators to solve the task as pragmatic. 

Two of the participants used Maxima in their work as evident from journals and 

could be seen through the screen recordings of their work. They wanted to be 

pragmatic in order to make their future work easier. Making programs for each task 

for the first time can not be considered as merely pragmatic as Per mentioned that he 

found it hard. The difficulty in making programs may be linked to their knowledge of 

programming in order to code mathematical tasks. However, the extent to which it 

contributes epistemically in learning mathematics is not covered in present paper. 

DISCUSSION AND CONCLUSION 

In this study, we observed how a small group of three students interacted with the 

resources when provided with an online learning environment in their Calculus 

course. The environment allowed self-regulated learning and students could work 

remotely on their homework and assessments. To make sense of the opportunities for 

students’ learning with resources in this environment, we explored their manner of 

incorporating the resources in general organisation of their digital work. 

Furthermore, we discussed the epistemic and pragmatic potential of participants’ 

techniques. 

In terms of resource usage and the corresponding techniques, participants opted for 

the resources and the techniques which were pragmatic in terms of producing results 

for the assigned tasks. Pragmatic techniques involved the use of online calculators, 



  

using help in the MyMathLab to produce the results for tasks.  Watching videos for 

learning mathematical concepts seemed to be time consuming and hence not 

preferred much. Participants appropriated the programming language to work on the 

tasks with the motive to be more pragmatic and produce results easily in their work. 

An important factor which is likely to cause the preference for more pragmatic 

instrumented techniques was the online final examination where they could use the 

resources. As for students, it is quite important to prepare according to the 

examination to be able to score better.  

This case study provides an example of a self-regulated learning environment created 

for students to work independently. Our findings suggest some general prospects 

which are worth paying attention when assigning online homework to students. 

Combination of an online homework with online examination is likely to cause 

students to use unexpected use of resources and techniques, for instance, online 

calculators and solution tools in the present case. This observation also relates to the 

nature of tasks posed in an online homework environment. Variety in the nature of 

tasks, such as open-ended tasks, may lead students to interact with resources 

epistemically.  
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Abstract Online learning environments are being used for teaching and learning of mathematics at 

university level. Exploiting the potential of digital technology, these Internet-based environments 

administer computer-generated homework, assistance and feedback for students. This article presents 

a case-study of a small group of ִundergraduate engineering students’ learning activity in mathematics 

in an online environment. The study focuses on students’ interactions with the online environment to 

make sense of the affordances of this environment. Utilizing multiple sources of data aid in analyzing 

the intentional and the operational aspects of students’ interactions with several resources in this 

environment. With regard to both of these aspects, the affordances are thus viewed as features of the 

environment which support students’ engagement with the mathematical tasks. The analyses show 

that the students incorporated several online resources for solving the tasks posed in the automated 

system. Students met requirements of final answers in the automated system through varying 

sequences of mathematical operations for the posed tasks. The conditions of the automated system as 

well as the rules of the collective activity system played a role in students’ interactions with the 

mathematical tasks. 

 

Keywords Online learning activity ⸱ Calculus ⸱ Engineering students ⸱ Interaction with resources ⸱ 

Affordances 

 

Introduction  

In recent years, online education has become a common feature of university level courses (Rosa and 

Lerman 2011). While several Internet-based applications are being employed to facilitate the process 

of teaching and learning of mathematics, personalized learning environments (PLEs) mark the latest 

trend in e-learning (Borba et al. 2016; Gadanidis and Geiger 2010). The PLEs represent the automated 

online systems which not only deliver the instructional materials but also provide tailored assistance 

to students. So far, there is a dearth of research exploring the potential of such environments for 

students’ learning of mathematics and students’ interactions with these online environments (Borba 

et al. 2016; Webel, Krupa, and McManus 2017).  

 
1 This is a post-peer-review, pre-copyedit version of an article published in International Journal of Research in 

Undergraduate Mathematics Education, (volume 6, pp. 42-64, 2020). The final authenticated version is available online 

at: https://link.springer.com/article/10.1007/s40753-019-00100-w 
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To address these gaps, this article seeks to characterize undergraduate engineering students’ activity 

in an online learning environment (Engeström 1987; Leont'ev 1978), which involves Pearson’s 

MyMathLab (MML) as a PLE and a collection of electronically accessible resources (e.g., tutorial  

videos, notes). MML is an automated system which serves as an online platform for homework and 

assessments for students and provides assistance and feedback through its built-in functions. The aim 

of this article is to illuminate the affordances of this environment for students’ learning activity.  

An online environment (or the PLE) has previously been defined as the collection of “tools, artifacts, 

processes, and physical connections that allow learners to control and manage their learning” (Borba 

et al. 2016, p. 602).  Learning in such an environment involves “focusing on the appropriation of tools 

and resources by the learner” (Buchem, Attwell, and Torres 2011, p. 1). In this article, I will focus on 

students’ interactions with the constituent resources of the environment during their online learning 

activity in mathematics. 

Students’ Activity in an Online Environment 

This study adopts the theoretical perspectives of cultural-historical activity theory (CHAT) 

(Engeström 1987; Leont'ev 1981) which is rooted in the sociocultural theory of learning and 

development (Vygotsky 1978). The concept of activity was introduced by Leont'ev (1978) to 

represent the subject-object interaction mediated by tools. Mediation refers to the intermediate 

position of tools between the subject and the object of an activity.  An activity is realized when a 

subject, an individual or a group, acts on an object, through tools, in order to transform it into an 

outcome. The object, material or ideal, is closely linked to the need behind the activity and 

differentiates one activity from another. Leont’ev devised a theoretical model explaining 

macrostructure of human activities (Fig. 1). 

 

 

 

Fig. 1 Hierarchical levels of an activity (Leont'ev 1981) 

 

In this model, Leont'ev (1981) discerned three hierarchical layers of human functioning at which an 

activity can be analyzed: the activity itself, the actions, and the operations. At the top level, the whole 

activity is viewed to be directed towards the object, which serves as the driving force or motive for 

the activity. It is through the lower levels that the object is transformed into the desired outcome. The 
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middle level corresponds to goal-directed actions which realize the activity; the goals and actions 

represent the functions formerly merged in the motive. The bottom level concerns the operations  

“which depend directly on the conditions under which a specific goal is to be achieved” (Leont'ev 

1974, p. 27). The nature of operations is also related to the conditions of the tools in use. Initially, the 

subject performs an action being conscious of the minute details concerning its execution. With 

enough practice, the action takes the form of a subconscious operation. The newly formed operation 

becomes part of another action which has a broader scope. If conditions concerning the execution of 

this operation change, it rises to the level of conscious action again.  These changes are also resonated 

at the upper level of activity where the object/motive is reflected, questioned and transformed 

accordingly. The boundary between these levels of activity is dynamic – changing and developing all 

the time.  

Kuutti (1996) notes that action-operation dynamics portray a basic feature of development in human 

functioning, and “to become more skilled in something operations must be developed so that one’s 

scope of actions can become broader (p. 31)”. Relevant to the tool-mediated learning actions in 

mathematics, Leont'ev (1974) specified, “when one uses a calculating device to solve a problem, the 

action is not interrupted by this extracerebral link; the action is realized through this link, as it is 

through its other links” (p. 27). Regarding operations, he wrote, “assume that a man was confronted 

with the goal of graphically representing some kind of dependences . . . . to do this, he must apply 

one method or another of constructing graphs – he must realize specific operation” (Leont'ev 1978, 

p. 66).  

In this article, undergraduate students’ (subject) activity in a Calculus (object) course mediated 

through several resources in an online environment is under consideration. The notion of resources 

corresponds to Wartofsky’s primary artifacts, “those directly used in . . . production” (Wartofsky 

1979, as cited in Engeström 2014, p. 49)”, in accordance with Anastasakis, Robinson, and Lerman 

(2017). In the present case of students’ activity, such production may be understood as to reaching 

the goals of the actions like solving the tasks. Leont’ev’s model of activity (Fig. 1) is utilized in 

analyzing the structure of students’ activity in relation to their interactions with resources. Leont'ev 

(1978) discussed that “a tool considered apart from a goal becomes the same kind of abstraction as 

an operation considered apart from the action that it realizes” (p. 65). In this view, I link students’ use 

of resources with the action-goal layer (Fig. 1) i.e. the actions performed by using various resources 

and associated goals with incorporating those resources. The operation-condition layer is then 

analyzed to make sense of the nature of (mathematical) operations conditioned by those resources.  

Leont'ev (1981) asserted that analysis of human action is not complete without considering it into the 

system of societal relations, and he described human activity to be “a system in the system of the 

social relations” (p. 47). On these lines, Engeström (1987) devised a unified model of collective 

activity system incorporating multiple mediations through tools and social relations in human 

activities (see Fig. 2). Engeström (2014) wrote, “the object-oriented and artifact-mediated collective 

activity system is the prime unit of analysis” (p. xvi). The model (Fig. 2) represents the “most simple 

unit that still preserves the essential unity and the integral quality behind the human activity” 

(Engeström 2014, p. 65). 



 

4 

 

According to Engeström (1990), the upper part of this model refers to individual tool-mediated 

actions which are “the visible tip of the iceberg of collective activity (p. 172)” whereas “the hidden 

bottom part (p. 172)” refers to societal mediations in the form of rules, division of labor, and 

community. The rules represent the explicit or implicit norms which needs to be followed during an 

activity and thus affect the realization of the activity. Division of labor specifies the way in which 

whole task of the activity is divided among the participants to reach the outcome. The community 

signifies the other human beings with which the subject has direct or indirect relations. 

 

 

 

Fig. 2 The extended triangular model of human activity system (Engeström 1990) 

 

According to Cole (1996), “in activity theory . . . contexts are activity systems” (p. 141). In this study,  

the online learning environment is characterized using Engeström’s model (see Fig. 2). Engeström 

(2014) suggests analyzing the relationships between elements of the activity system by considering 

the systematic whole. In this regard, the model facilitates in analyzing the dynamics of students’ 

activity with regards to features of the learning environment.  

Engeström (2014) specified, “we may well speak of the activity of the individual, but never of 

individual activity” (p. 54). With reference to Roth (2012), the dialectical stance of CHAT “allows 

us to understand the person as a singularity and as collective phenomenon simultaneously without 

reducing it to one of its observable moments” (p. 97). In this sense, a student is considered as both an 

individual and a collective subject whose activity is regulated by features of the joint activity system.  

An Activity-Theoretical Perspective on Affordances 

The concept of affordance was introduced by Gibson (1977) to denote the action possibilities 

provided by the environment to an agent. The affordances are constituted in the meaningful 

relationship between the agent and the environment. According to Greeno (1994), the affordances are 

realized when attributes of the environment relate to the capabilities of the agent in such a way that 

an activity is supported. This view of affordances concerns the operational aspects of activity. 

Bærentsen and Trettvik (2002) argue for an activity-theoretical perspective for studying affordances 

of the environment. This perspective suggests considering the needs as well as the capabilities of the 

  Tools 

     Subject Object  Outcome  
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agent in relation to attributes of the environment. According to Bærentsen and Trettvik (2002), the 

affordances of computer software and programs should be studied in the processes of object-oriented 

activities of the intended users of such programs. Also, in addition to operational aspects, motivational 

and intentional aspects of users’ activities should also be considered.  

Studying affordances for students’ mathematical activity in an online environment is essential to 

figure out the learning opportunities in such environments. Leont'ev (1981) argued that the external 

objective activity has particular implications for the inner psychological activity as, “mental reflection 

or consciousness is generated by the agent’s objective activity” (p. 52). With regard to the role of the 

environment, Leont'ev (1981) stressed that “society produces the activity of the individual it forms”, 

in the sense that, “social conditions carry the motives and goals of the activity, its means and modes” 

(p. 48). However, he emphasized that human activity is not the simple personification of the relations 

of society and its culture. There are complex transformations which need to be discovered through 

investigating the genesis of activities.  

With these considerations, the research questions posed in this study are as follows. 

 

    RQ1:        How do a small group of undergraduate students interact with an online environment  

           during their learning activity in mathematics?  

RQ2:          In what manner does this environment afford students’ learning activity in  mathematics? 

 

To answer RQ1, I first characterize the collective activity system in the present situation (Engeström 

1987). Next, I investigate the structure of students’ activity with regards to their interactions with this 

environment (Leont'ev 1981). In particular, I explore students’ goals for which they use certain 

resources in their learning actions and analyze how this environment conditions the operational level 

of students’ activity. Consequently, I discuss the answer to RQ2 i.e. the affordances of this 

environment in view of intentional and operational aspects of students’ activity. 

Previous Research Concerning Online Environments in University Mathematics 

Several studies have sought to evaluate the impact of automated systems quantitatively by analyzing 

examination grades, cost effectiveness, and passing rates (e.g., Callahan 2016; Jonsdottir, 

Bjornsdottir, and Stefansson 2017; Kodippili and Senaratne 2008; Potocka 2010). Krupa, Webel, and 

McManus (2015) compared the impact of computer-based (CB) and face-to-face (F2F) instruction in 

an intermediate college algebra course. They used a quasi-experimental match design with the sample 

consisting of three levels of participants enrolled in the course. At the first level, they compared the 

exam results of two large groups ( 𝑁𝐹2𝐹 = 192, 𝑁𝐶𝐵 = 134), and the second level included some 

other student-level predictors (𝑁𝐹2𝐹 = 73,  𝑁𝐶𝐵 = 50).  The third level concerned the quantitative 

analysis of students’ solution strategies for some open response (𝑁𝐹2𝐹 = 38,  𝑁𝐶𝐵 = 24). The results 

on the first two levels showed that students from the CB group performed better on the exam whereas 

they showed limited ability to interpret and relate algebraic equations to contextual situations. To 

follow up, Webel et al. (2017) investigated the implementation of a Math Emporium (ME), a model 

for teaching and learning of mathematics using computer-based programs, in an introductory college 
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algebra course using mixed methods. They investigated: (1) whether the emporium is more helpful 

to a certain group of students; (2) the nature of mathematical learning in this setting; and (3) the 

students’ perceptions about the emporium style courses. Webel et al. (2017) concluded that the 

emporium style served the students with higher mathematics achievement and those who less strongly 

believed that mathematics is about memorizing. Their findings suggested that the setting enabled 

students to focus on getting correct answers more than developing algebraic meanings. Regarding 

students’ perceptions, they found that some students did not like the autonomy and flexibility offered 

by this setting. These findings led the researchers to question if examination grades and passing rates 

are the appropriate indicators of the impact of such settings. They recommended that future studies 

should focus on students’ interactions and mathematical reasoning afforded by these environments. 

With regards to students’ activity in online environments for mathematics, Cazes, Gueudet, Hersant, 

and Vandebrouck (2006) focused on university students’ strategies for different kinds of tasks posedin 

three Electronic-exercise bases (EEB) – similar to automated system. Through direct observation of 

individual students’ work and electronically generated activity logs of their activity in these programs, 

they observed that students often developed unexpected strategies. The study took place during the 

experimental implementation of such environments and the conditions within each automated system 

affecting students’ solution strategies were discussed. 

From a CHAT perspective, Rønning (2017) explored the influence of such an automated program 

(Maple T.A.) on undergraduate engineering students’ engagement with mathematics. The data set in 

this study included six surveys of large cohorts (𝑛 > 500) followed by focus-group interviews 

between the years 2013 and 2016. Students’ responses were used to analyze the factors pertinent to 

the collective activity system affecting their actions while participating in the activity. Rønning 

(2017) discussed that the system promoted quest of correct answers among students which hindered 

the deep learning of mathematics.  

The brief literature review presented above indicates lack of research on students’ interactions with 

the resources during their learning activity in online environment in mathematics. In particular, the 

analysis of students’ activity in such settings taking into consideration the macro and micro-level 

factors (cf. Jaworski and Potari 2009) has, to the best of my knowledge, not been done so far. As an 

example, in case of a blended learning environment, a partially relevant study (Anastasakis et al. 

2017) focused on students’ interactions with several resources at the action-goal layer of their activity 

i.e. the type of resources used by undergraduate students and the relationship between students’ goals 

and their choice of resources. Anastasakis et al. (2017) surveyed a cohort of 201 engineering 

undergraduate students followed by interviewing 6 students to get a deeper insight. From the survey 

responses, they found that students incorporated institutionally provided resources dominantly but 

also used some other resources such as online videos, WolframAlpha, and online encyclopedias. They 

concluded, from the analysis of interviews, that students’ choice of resources was driven by exam-

related goals. The operational details of students’ activity were not addressed in this study.  

Differentiating between different types of resources (e.g., social, material, digital), a strand of 

research (see Gueudet and Pepin 2016) focuses on students’ use of resources in mathematics. From 

this strand, a relevant report in the context of university mathematics by Gueudet and Pepin (2018) 

investigated how university students interact with several resources in their general mathematical 
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work. Through case-studies, Gueudet and Pepin (2018) observed discrepancies between students’ 

actual use of several resources and the lecturers’ expectations of students’ use of those resources. 

With regard to evaluating impact of automated systems on students’ learning, Gueudet (2006) 

suggested that the students’ activity with such resources should be observed at two levels: the 

particular exercise level when students solve the task, and the global level i.e. patterns of work during 

a session. 

This article adopts a holistic perspective on students’ activity with special attention to students’ 

interactions with the resources in an online environment. That is, the micro aspects concerning 

operational characteristics (Fig. 1) of students’ activity and macro aspects of the collective activity 

system (Fig. 2) have been combined. 

Methodology 

Context  

This study was carried out at a Norwegian university administering several engineering programs at 

undergraduate level. The students from an undergraduate electronics engineering program 

participated in this study. An online learning environment was created for the students in their 

calculus course. This course spans both semesters of the first year of the program. The study took 

place during the second semester.  

In this course, instruction, homework and assessments were administered electronically. Lectures 

were provided to students in the form of tutorial videos. The tutorial videos were created by the 

lecturer and were recorded using a document camera capturing his writing-activity on paper 

accompanied by the explanation. Each tutorial video dealt with specific topics from the textbook and 

contained explanations of those topics. The written notes associated with these videos were also made 

available for students through the learning management system (LMS) used at the university. Face-

to-face interactions with the lecturer were possible in case students required additional help, and they 

could contact the lecturer electronically or in person. 

Homework and assessment were conducted through Pearson’s MyMathLab (MML), based on the 

textbook Mathematics for engineers by Croft and Davison (2015). Each week’s homework in MML 

was linked to specific sections in the textbook. MML aids the users in solving tasks through two 

embedded functions: ‘help me solve this’ and ‘view an example’. The former option breaks down a 

similar task into several steps and prompts students to perform calculations in each step. The latter 

option illustrates a worked example. In addition, it provides feedback by indicating that the answer is 

correct or wrong. In case the answer is wrong, it offers hints about the solution procedure.  

Three formative tests were administered through MML in this course. The course involved a group 

project in which students were required to make a question bank on the topic of integration and 

program those questions using Maxima – a computer algebra system (CAS). The final examination 

was also in a digital format allowing the use of resources. The final grade was calculated from a 

weighted average of tests, project work and the final examination. 
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Research Design and Methods 

This research is founded within a naturalistic research paradigm (Guba and Lincoln 1982) in the sense 

that participants’ everyday work in a natural setting is observed. Four students (pseudonyms: Per, 

Jan, Tor, and Ole) volunteered to participate in this research. Following a case-study research design 

(Yin 2014), the case under consideration is the activity of the small group of participants in the online 

learning environment. 

In order to understand an activity system, Engeström (1999) recommended that the researcher should 

look at the system from the above and at the same time through the eyes and interpretations of a 

subject, thereby complementing the system view and the subject’s view. Nardi (1996) articulated 

general methodological implications deriving from the principles of activity theory for empirical 

research in the field of human-computer interaction. First, the frame of analysis should be long 

enough to understand the subject’s object. This implication arises from the claim that the activities 

are long term formations and the objects are transformed into outcomes through a process of several 

phases. Second, the attention must be given to broad patterns or bigger picture of the activity instead 

of narrow episodic fragments. The small episodes may prove useful, but not in isolation from the 

overall situation. Third, various methods for collecting data should be used without unjustified 

reliance on any one form of the data. Fourth, the researcher should be committed to understand the 

object from the subjects’ perspective. 

The methods used for data collection in this study are in line with the considerations discussed above. 

Multiple methods including observations of students’ group work, weekly journals, semi-structured 

interviews and field notes were used to collect the data. Weekly journals and interviews facilitated in 

gaining students’ input regarding their interaction with the resources. Observational data provided 

micro details of students’ activity concerning mathematical operations and corresponding conditions 

in this environment. The data were collected during the spring of 2017. 

In weekly journals, students were asked to specify the resources they used and how they used each 

resource in their work. Only three of the participants (Per, Jan, and Tor) submitted the journal 

regularly. For observations, participants were requested to work together on campus for 

approximately an hour-long session in one week. During these sessions, they worked on their weekly 

assignments (homework, tests or the project) and communicated with each other in Norwegian. With 

the progression of the course, the participants’ activity was becoming increasingly computer-based. 

I asked them to record their computer screen activity using Camstudio,2 a freeware screen recorder. 

Semi-structured interviews were held to complement the data from journals and observations to gain 

further details about their usage of resources. The interviews were conducted in English. I kept field 

notes when I visited the students on campus. 

Data Analysis 

The field notes, semi-structured interviews, students’ journals and my own observations aided in 

identifying elements of the collective activity system (Fig. 2) in the present setting (see Table 1). The 

rules, community and division of labor were mainly identified from my observations in the form of 

 
2 http://camstudio.org/ 

http://camstudio.org/
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field notes and through interviews with students. The resources and the outcome were identified 

through students’ journals.  

For the analysis of the action-goal layer in Leont’ev’s model (Fig. 1), weekly journals and interviews 

served as the main sources of data. The individual students’ journals were analyzed to identify various 

manners in which each resource was used by the group of students collectively. In the first step, I 

extracted each students’ descriptions linked to each resource from every journal and listed them 

across the resources in a single document. In the next step, I discerned students’ goals and actions 

linked with each resource from those descriptions. Leont'ev (1974) defined an action to be “a process 

that is structured by a mental representation of the result to be achieved, i.e. a process structured by 

a conscious goal” (p. 23). In this sense, a statement such as “to try to understand how to calculate the 

length of a line” refers to the goal that the student wanted to achieve by incorporating a particular 

resource in her action. The statement such as “I got the questions from the book as well as some help 

with formulas” points to the actions mediated through the book. In some cases, I delineated the actions 

and the goals from single statements where applicable. Often, students also described some other 

aspects regarding their general manner of work organization such as their strategies, deviations in 

plans, and comments regarding the nature of resources. I extracted students’ comments about the 

resources to see how they perceived each resource. The collective summary of the use of resources is 

presented in Table 2. The entries in Table 2 are not shared among the three participants. 

Regarding the operation-condition layer in Leont’ev’s model (Fig. 1), the operational details are 

considered as “not often consciously reflected by the subject” (Engeström 2014, p. 54). Nardi (1996) 

discussed that some minute details about the operations can be retrieved through careful questioning 

during interviews. In this study, students’ responses in the journals and interviews did not account for 

the operational details. For such details, video-recorded observations of the group work were utilized.   

During the group work sessions, students worked independently for significant amount of time 

interacting with their computer screens. The discussions were initiated when they faced some 

problem, for instance, when the feedback from the program was difficult to comprehend. For the 

analysis, I first searched for the episodes with relatively active communication among the group 

members. Five out of seven group work sessions were translated into English by a native speaker of 

Norwegian. Further, I selected one episode for the purpose of illustration from the twelfth week when 

the activity system had developed enough. The episode is selected as it involves: the use of various 

resources in participants’ work, and varying conditions in the sequence of tasks thus ensuring 

variation and richness in mathematical contents. I utilized the screen recording as well for the analysis 

of this episode. 

Results and Discussion 

The following sections present the answer to RQ1. The answer to RQ2 is presented in the last section.  

Characteristics of the Collective Activity System 

The analytical account of the characteristic elements of the students’ collective activity system (see 

Fig. 2) in the present setting is given in Table 1.  The collective activity system is conceptualized at 

the level of mathematics course. Therefore, the object of the activity is considered to be including 
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topics covered in the course (see Table 1). In addition to the provided resources, the three students 

reported using a variety of other resources during their learning activity (see Table 1). Division of 

labor in this case made students in charge of their own learning process. Students had more choices 

to make in terms of selecting resources, suitable time, and place to work. The lecturer’s duties in the 

course were mainly performed electronically. The explicit rules at the level of activity, mainly the 

test-deadlines, aided in maintaining students’ pace with the course. The test scores were also included 

in the aggregation of the final grade; therefore, students were motivated to complete their homework 

in order to take tests before the deadlines. The implicit rules correspond to the specifications in 

MyMathLab, i.e. the manner in which it conditioned the micro interactions at the level of tasks. For 

instance, the number of attempts allowed, the form in which it required solution of tasks, the nature 

of feedback, and the syntax in which it accepted the answers.  

 

Table 1 Elements of the collective activity system 

 

a https://www.matric.no/tv; An online repository of short mathematical videos for first-year undergraduate students in 

Norway aimed to support their transition from upper secondary school to university; b A computer aided assessment 

platform which they were required to use in their project; c https://www.wolframalpha.com; d https://www.mathway.com 

 

Students’ Interaction with the Environment – Actions, Goals and Resources 

The collective summary of three participants’ weekly journals illustrating the action-goal layer in 

participants’ activity (Leont'ev 1981) is presented in Table 2.  

Regarding the provided resources, Per and Jan reported textbook use repeatedly in their actions as a 

means to get questions (during their project), to find mathematical formulas related to the tasks, and 

to acquire help on specific topics. Tor, however, did not report using the textbook in the journals, he 

rather reported using the lecturer’s notes. The only form of lecturing in this course was through the 

Elements of activity Analytical description 

Subject A group of electronics engineering students 

 

Tools 

 

Tutorial videos, Textbook, MyMathLab features, lecturer’s notes, Maxima, own notes, 

MatRIC TVa, YouTube, GeoGebra, STACK environmentb, WolframAlphac, Mathwayd other 

calculators, and Internet (Google search) 

Object Calculus (differentiation, applications of differentiation, integration, applications of 

integration, and sequences and series) 

Outcome Learning Calculus, passing the exam, getting good grades 

Rules Work on homework, test deadlines, final digital examinations, specifications in MML 

Division of labor Students’ work according to the rules of the course taking the responsibility for own 

learning.  

Lecturer organizes the online course making use of MML program by integrating it with the 

tutorial videos. 

MML features aid in distribution and collection of homework and providing instant help and 

feedback to students; other resources (Maxima, Internet, calculators) affect the manner in 

which students engage with mathematical tasks. 

 

Community Other engineering students, lecturer 

https://www.matric.no/tv
https://www.wolframalpha.com/
https://www.mathway.com/
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videos, and the goals associated with the use of this resource were linked with learning of certain 

mathematical topics. For instance, Jan used the videos with the goals: “to try to understand how to 

calculate…”, and “to understand the calculation behind the math”. I noticed a gradual decrease in the 

use of videos through the students’ weekly journals, and I therefore held a semi-structured interview 

to know more about this trend. I asked the participants regarding their manner of working on the 

homework tasks to which Per responded first, followed by Tor and Jan. 

 

Per:  These topics I think are quite hard to learn all by yourself. When I get a new topic, I 

first try to solve it myself, if I can’t do that I try to look at the examples in MML… 

and if I don’t completely understand the examples I take a look at Olav’s (lecturer) 

video…mainly the examples’ videos because then I get to see the practical kind of 

way to do…to solve questions. 

Tor’s response was somewhat similar as follows:  

 

Int:  Did you use any video while working on last week’s homework?  

Tor:  No, I think MML seemed sufficient so far.  

Int:  Ok. So which resource did you use for getting introduction to the new topic?  

Tor:  I tried first MML but it went fine so I just carried on. …I check the notes and watch 

the videos if I get stuck.  

 

While Jan responded as follows.  

 

Jan: I did not watch that many videos. I mostly use MML and just see the examples …and 

if I can’t get it from there then I go to…to the book because it is faster… and eventually 

go to the videos if I do not get constructive help from there. 

 

These excerpts from the interviews indicate participants’ preference for MML features. As Per 

mentioned, “When I get a new topic … I try to look at the examples in MML”. Tor stated, “MML 

seemed sufficient so far” and “I tried first MML but it went fine” while Jan mentioned “I mostly use 

MML”. Tor wrote in a journal, “it’s a more powerful tool and it’s easier to attain help and information 

online”. This preference for MML may be attributed to the immediate help available in the program 

for the tasks at hand whereas in the textbook and in the videos, students were required to search for 

the relevant information themselves.  

Wertsch (1998) argues that the analysis of the goals of mediated action depends on the circumference 

of the context under consideration. In the case of multiplying two numbers, he explicated, the goal 

will be “ ‘to get the right answer within the confines of a particular way of setting up the problem’ 

(i.e., using Arabic numerals, using the syntax of multiplication outlined, not using a calculator, and 
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so forth)” (p. 33). Moreover, “the goal of obtaining the right answer needs to be coordinated with 

other aspects of the sociocultural setting as well” (Wertsch 1998, p. 34).  

In this study, students’ goals linked to the use of WolframAlpha, Mathway, and Maxima point to 

features of the collective activity system (see Table 2). The online resources WolframAlpha and  

Table 2 Incorporation of resources in participants mathematical activity - Summary of students’ journals 

 

 

Resources Goals for using each resource  Performed actions Students’ comments about 

resources  

Textbook To find formulas for specific 

topics, to understand a topic 

Read through the book, 

found formulas to work on 

homework, got questions 

from book (during project) 

 

Maxima To avoid calculating everything 

by hand, to solve problems in 

an easy way, to make the work 

easier in the long run 

Programmed tasks in 

Maxima for the project, 

used while doing 

homework, solved tasks 

using Maxima 

Programming in Maxima is 

hard but when it is done, all 

the problems are easy to solve 

MatRIC videos To recall certain topics Skimmed through the video 

at an amplified speed 

 

MyMathLab To learn how to solve problems, 

to get inspiration for making 

questions in the project, to get 

an overview before taking test 

Worked on homework, 

learnt specific topic, solved 

some questions with higher 

difficulty 

Powerful tool, easier to get 

help and information online 

    

Lecturer’s 

notes 

To get the general idea of the 

topic 

 Tailored for the tasks at hand, 

the most relevant piece of 

information 

WolframAlpha To solve problems by using 

shortcuts 

Used as a shortcut to get 

answers, compared answers 

got from Maxima, got help 

with solving difficult tasks 

Easier to use than Maxima, 

faster than using calculator, 

useful when the answer is in 

the form of expression instead 

of numbers 

YouTube 

videos  

To recall a certain topic Watched Maxima tutorials  

Mathway and 

other online 

calculators 

To solve tasks in assessment Solved questions Severely increase the 

probability to get the correct 

answer, and therefore the 

overall score. 

STACK To make questions in STACK  Made some questions in 

STACK 

 

Internet To learn Maxima, to search for 

how to solve the problems 

  

Tutorial videos To learn rules and methods, 

understanding a specific topic, 

to recall previously done 

content 

Watched to get information 

to complete homework 

Easy to understand through 

videos  
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Mathway aid in the task solving processes. Tor reported using WolframAlpha and Mathway for 

solving the tasks in homework and tests. WolframAlpha was incorporated by Per and Jan to double 

check the answers, to solve the tasks by short-cut methods, and to get help with the difficult questions. 

Regarding Maxima, students learnt programming in Maxima as a part of the course, which they later 

used in their task solving activity in MML. Per and Jan started to make programs for each task in the 

homework with the goal to liberate themselves from calculations. Per inscribed in a weekly journal, 

“(I) used Maxima to make a program to solve the problems in an easy way. This is hard to make, but 

when it is done, all the problems are easy to solve”. Tor wrote, “if I could make a template for each 

question, then I would have severer [sic] advantage on the upcoming exam”.  

Students’ use of these computing tools can be ascribed to the rules of the activity system. Within the 

confines of this setting, students had to learn mathematics with regards to the implicit conditions in 

MML. At the same time, they also had to take part in the digital examination, which was the explicit 

rule of their activity system. From students’ reports, it appears that the use of these resources let the 

students meet implicit as well as explicit rules of the activity system. Students’ motive in the activity 

is thus taken as to learn mathematics and to perform well on the tests and in the final examination.  

The nature of Mathematical Operations in Students’ Online Learning Activity 

This section focuses on incorporation of several resources (Maxima, GeoGebra, Internet and MML 

help) in mathematical operations in students’ activity (Leont'ev 1981). Below, I analyze a part of a 

group work session in which the participants began working on their weekly homework dealing with 

applications of integration. I divide the analysis with respect to the three kinds of tasks involved in 

the homework. While narrating the group work, I follow Per’s screen recording since he led the 

activity in the sense that he was ahead of the other participants. 

Engaging with the Integral as Limit of a Sum.  The first task required using the limit of sums for 

calculating the area under a curve (see Fig. 3). This task involves identifying the area under 𝑦 = 𝑥 +

1 between 𝑥 = 0 and 𝑥 = 9, dividing it into rectangles of equal width, and summing the areas of 

these rectangles. Applying the limit to the number of rectangles in the summation gives the definite 

integral ∫ (𝑥 + 1)𝑑𝑥.
9

0
 This value then represents the area under the curve. In MML, the worked 

example for this task suggested the sequence of involved mathematical operations. 

 

  
Fig. 3 The first task 

 

In this task, Per began by performing an operation in Maxima as observed through his screen 

recording (see Fig. 4). He entered the obtained number into MML which affirmed him that his answer 

was correct.  

 

Find the area under 𝑦 =  𝑥 + 1 from 𝑥 = 0 to 𝑥 = 9 using the limit of a sum. 
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Fig. 4 Per’s solution strategy using Maxima 

Jan, who was working with his paper notebook while getting questions from the MML opened on his 

computer screen, posed a question regarding the first task to which Per responded as follows. 

 

02  Per:  […] You must take the integral from 0 to 9. Or from 0… From the smallest            

   value to the largest value. 

03  Jan:  Yeah. You are to split it up [emphasis added].  

04 Per:  I don’t think so. 

 

The discussion stopped at this point and Jan continued working in his notebook. It appears that the 

two participants were performing different operations. Per’s operation in Maxima let him find the 

required area by calculating the involved integral whereas the task required using method of the limit 

of sums. The automated system (MML), being the main source of help and assistance in this case, 

provided Per feedback that his answer was correct. Jan seemed to be following the steps suggested in 

MML (also in the textbook) as he pointed towards dividing the area into rectangles (03). As Per had 

reached the immediate goal of getting the final answer, he did not agree with Jan (03). From (04), it 

seems that Per was unaware that he missed the mathematical operations in this task. 

The next three tasks in MML also concerned using the limit of sum method for calculating area under 

different curves. Per solved these tasks using the same command in Maxima. 

Engaging with the Disk Method.  The next task in MML dealt with the application of integration 

for finding the volume of a solid formed by revolving a given area around an axis (Fig. 5). This task 

involves identifying the area to be revolved bounded by 𝑦 = 𝑥2,  𝑥 = 1 and  𝑥 = 7, and then dividing 

it into the strips of infinitesimal width, say, 𝑑𝑥. These strips, upon revolving around the x-axis, take 

the form of cylindrical disks of radius 𝑦 and height dx. The volume of one such disk becomes 

𝜋𝑦2𝑑𝑥 = 𝜋𝑥4𝑑𝑥. The limit of the sums of these volumes becomes the integral ∫ 𝜋 𝑥47

1
𝑑𝑥 , which 

gives the volume of the whole solid. 

 

 
Fig. 5 The disk method task 

 

(%i1)  integrate (x+1, x, 0, 9); 

(%o1)  
99

2
 

Find the volume of the solid formed when the area under 𝑦 = 𝑥2  between  𝑥 = 1 and  𝑥 = 7 is rotated 

about the x-axis. 



 

15 

 

Fig. 6 Per’s solution in Maxima 

 

Upon getting this task in MML, Per’s first action was reading in the book for a while where the disk 

method for finding the volume of revolution was given. Next, he calculated the involved integral by 

performing an operation in Maxima (Fig. 6) which resulted in the correct answer. 

The next task was similar and Per obtained the solution by performing similar operation in Maxima 

for computing the integral. However, the subsequent task was phrased slightly differently (see Fig. 

7).  

 

Fig. 7 Another disk method task 

 

This task asked for “bounded region” instead of “area under the curve”. Therefore, it included four 

bounds on the area to be revolved instead of three in the previous tasks (see Fig. 5). In this sense, the 

conditions for reaching to the solution of this task were apparently different from the earlier tasks. In 

Per’s actions, he adjusted his Maxima command which he used in the previous task (see Fig. 6) by 

halving the integrand (see Fig. 8). This action did not yield in the correct answer, and MML provided 

him the feedback (see Fig. 9). 

 

Fig. 8 Per’s command in Maxima 

 

Fig. 9 Feedback from MML regarding disk method task 

 

(%i9)  integrate (%pi*(x^2)^2, x, 1, 7); 

(%o9)  (
16806π

5
) 

Find the volume of the solid of revolution formed by rotating about the x-axis the region bounded by the 

curves 𝑓(𝑥) = 3𝑥2,  𝑦 = 0 ,  𝑥 = 1 , and  𝑥 = 4 . 

(%i13)  integrate (%pi/2*(3*x^2)^2, x, 1, 4); 

(%o13)  (
9207π

10
) 

Remember that, if f(x) is nonnegative and R is the region between f(x) and the x-axis from x=a to x=b, the 

volume of the solid formed by rotating R about the x-axis is given by  ∫ 𝜋 [𝑓(𝑥)]2𝑏

𝑎
𝑑𝑥. Make sure that you 

are correctly setting up and evaluating the integral. Check your work carefully. Please try again. 
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After looking at the feedback for a while, Per plotted the curve in GeoGebra, and then removed the 

1 2⁄  in his Maxima command. Per reflected on these actions later, which can be seen in the excerpt 

below. 

 

16 Per:  This exercise here (showing his laptop screen). You are to integrate that  

  formula and find the volume.      

17 Ole:  Mm  

18        Per:  And then 𝑦 = 0, then I thought, rather than rotating it the whole way, you  

  know, should just rotate it down till 𝑦 = 0  because that is here. (Illustrating  

  the revolution while making a gesture through his hands) 

19 Ole:  Mm. 

20 Per:  But that wasn’t it, it was just as we do. Like on the previous task. 

 

Here, Per’s action of intercalating the 1 2⁄  factor in the integrand in his Maxima command were based 

on his misinterpretation of the conditions of this task. Instead of considering 𝑦 = 0 as a bound on the 

region to be revolved as specified in the task, Per considered it as a bound on revolution. He thought 

that the area had to be revolved in such a way that it did not need to go below the x-axis (18). 

Assuming that the revolution stops halfway, and then the generated volume will also be halved, he 

multiplied the integrand by 1 2⁄  (see Fig. 8) which did not result in the correct answer. He then 

excluded the 1 2⁄  factor and obtained the correct solution. The Maxima command now had become 

similar to the one he used in the previous task (see Fig. 6).  

Although Per seemed aware of the revolution involved in these tasks, he could not realize the 

implications of the slightly different formulation of both tasks. As the same operation let him reach 

the solution in both tasks, he reached to the faulty conclusion that they needed to do the same (process) 

as they did in the previous task (20).  

Engaging with the Shell Method. The next task concerned finding the volume of a solid using the 

shell method of revolution (see Fig. 10). This task requires the identification of the region to be 

revolved and dividing it into rectangles of infinitesimal width 𝑑𝑦, as in the disk method. The 

rectangles should then be revolved around the x-axis in such a way that the solid formed is a 

cylindrical shell (instead of a disk) of radius 𝑦, height 𝑥, and thickness 𝑑𝑦. The volume of one such 

shell is 2𝜋𝑦𝑥𝑑𝑦 = 2𝜋𝑦(16𝑦 − 𝑦2)𝑑𝑦. The limit of sums of these volumes becomes the integral 

2𝜋 ∫ 𝑦(16𝑦 − 𝑦2)
16

0
𝑑𝑦, which gives the volume of the whole solid. 

 

Fig. 10 The shell method task 

Use the shell method to find the volume generated by revolving the region bounded by   𝑥 = 16𝑦 − 𝑦2  and  

𝑥 = 0 about the x-axis. 
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In this task, Per adjusted the Maxima command from the disk method task (see Fig. 8) by replacing 

the integral to 16𝑥 − 𝑥2 (see Fig. 11). The integral formula and the limits of integration remained the 

same. He then entered the obtained answer into the MML window which responded that the answer 

was not correct and provided him the feedback shown in Fig. 12. 

 

Fig. 11 Per’s command in Maxima 

 

Fig. 12 Feedback in MML regarding the shell method task 

 

Looking at the feedback for a while, Per opened GeoGebra and plotted the curve. He then searched 

on Google and found a Web page containing description concerning the shell method (see Fig. 13).  

 

 

 

(%i15)  integrate (%pi*(16*x-x^2)^2, x, 1, 4); 

(%o15)  (
17703π

5
) 

Volume, V, as determined by the shell method with rotation about a line parallel to the x-axis is: V = 

∫ 2𝜋 ቀ
shell
radius

ቁ
𝑏

𝑎
൬
shell

height
൰ 𝑑𝑦. The limits of integration are y-values at which 𝑥 = 0  and  𝑥 = 16𝑦 − 𝑦2 intersect. 
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Fig. 13  Web Page explaining the shell method 

 

Meanwhile another participant, Ole, asked him about this task. 

52 Ole: You didn’t just put it into the calculator? (Referring to Maxima) 

53 Per: No, it’s something else, but it says nothing about it there. 

54 Ole: Can’t grasp why it is like that… 

55 Per: Yes, 2𝜋𝑟 times ℎ. …That’s not quite the same. (Reading from the Web page  

   shown in Fig. 13) 

 

In the next moment, he navigated back to the GeoGebra window and checked for the points of 

intersection of the curve with the y-axis (Fig. 14).  

 

 

Fig. 14 Per’s activity in GeoGebra 

 

In his Maxima command (see Fig. 11), Per then changed the limits from 0 to 16 and inserted the term 

2𝑥 in the formula which did not result in correct answer. Per navigated back to the Web page and 

scrolled down a bit (see Fig. 15). 

Jan posed a question at this moment. 

 

66  Jan:  Did you figure out that shell method? 

    67  Per:  I’m reading on it, but I think I got it. The formula for it is 2𝜋𝑥 times the 
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    function. 

68  Jan:  2𝜋𝑥 times the function. (Repeats the formula) 

69 Per:  But it is also like this. 2𝜋 …times 𝑟 times ℎ. Got to read a bit on it. 

 

 

Fig. 15 Scrolling down the Web page 

 

Next, looking at the Web page, he removed the square in his Maxima command (see Fig. 11) and 

eventually got the correct answer. In the next moment, Ole again inquired about this question. 

 

70 Ole:  Did you get exercise 8 right, with the shell method? 

71 Per:  Yeah. I did it just now. 

72 [] 

73 Ole:  Is it to find the bounds or something? 

75 Per:  Yeah, you find that out by… where 𝑦 and 𝑥 = 0 intersect. 

76 Ole:  So, you need to have 𝑥 = 0 and 𝑦 = 0 ? 
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77       Per:  It’s like this, kind of. When it intersects there. (Points at his GeoGebra  

  window exactly where the curve intersects y-axis (see Fig. 14)) 

 

In this task, Per began by trying the similar operation used in the disk method task which did not 

result in the correct answer. The feedback from the program offered the integral formula (see Fig. 12) 

which required using the shell height and shell radius for calculating its volume. For applying this 

formula, one needs to know where and how the shell is formed, which was not discussed in the 

feedback. 

It may be due to this lack of clarity in the feedback which conditioned to Per’s action of searching 

the Internet. He opened a Web page which contained details regarding: the mathematical formula for 

calculating the volume of a shell  𝑉𝑠ℎ𝑒𝑙𝑙 = 2𝜋𝑟ℎ𝑑𝑥, discussion of how the shell is formed by revolving 

an area around the y-axis, and the derivation of the integral formula,  2𝜋 ∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑎

0
 (see Fig. 13 and 

Fig. 15). Per initially tried to comprehend which one of these two formulae was relevant to the task 

or why these two were different (55 and 69). Per used the correct integral formula in his Maxima 

command and obtained the volume of revolution. The axis of revolution in the Web page illustration 

was the y-axis whereas the task in MML concerned revolution around the x-axis. Per managed this 

by using dummy variables in his Maxima command. For the limits of integration, Per employed 

GeoGebra to find the points of intersection of the given curve with the y-axis.  

Summarizing the activity. The three kinds of tasks analyzed above can be thought to embody 

development in terms of the involved mathematical operations. The first task, for instance, introduces 

that an integral is equal to the limit of sums. The next two tasks involved this idea as an operation 

while widening the scope of its application to the case of finding volumes. The shell method task 

involves progression in the involved revolution in the disk method task.  

The above analysis show that the students performed different sequences of mathematical operations 

in these tasks. In the first task, for instance, Jan seemed to be performing the sequence of operations 

suggested in MML. Per, however, skipped required mathematical operations and obtained the 

solution by employing Maxima. The Maxima command was concerned with computing the value of 

the involved integral. In the case of disk method tasks, Per again calculated the involved integrals 

through Maxima. In the shell method task, the integral to be calculated was not given explicitly. In 

this task, Per found the integral formula by searching on the Internet and calculated the integral in 

Maxima. The limits of integration were found by using GeoGebra. 

By employing Maxima, Per met the requirement of final solutions to proceed through the tasks in 

MML. The mathematical operations were not necessarily in accordance with the requirements of the 

tasks. The conditions in MML were not concerned whether the students realized the involved 

mathematical operations to reach to the solutions of the tasks. 

Affordances of the Online Environment 

In this study, I set out to investigate students’ interactions with an online environment during their 

learning activity in mathematics to make sense of affordances of this environment. The online 

environment under consideration involves implementation of an automated system (MML) with 
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specific contextual aspects i.e. rules, division of labor, and community (see Table 1). The automated 

system (MML) offered the tasks, worked-examples with the sequence of mathematical operations, 

and instant feedback for regulating the students’ online learning activity. The implementation of 

MML together with the contextual aspects (rules, division of labor, community) of this setting 

afforded self-regulated learning for students. 

Concerning intentional aspects of students’ interactions, students reported in their journals the use of 

some other resources in addition to the provided resources (see Table 2). The finding regarding  

undergraduate students’ use of explanatory YouTube videos, Web pages and WolframAlpha is 

consistent with an earlier study (Anastasakis et al. 2017). In this study, the students also reported the 

use of Maxima, GeoGebra and online calculators in their activity. The students incorporated these 

resources in their learning actions with the goals to get immediate assistance and to prepare according 

to the final digital examination. The role of examination in shaping the students’ use of resources is 

also reported in other studies (Anastasakis et al. 2017; Gueudet and Pepin 2018).  

Regarding the operational aspects, the incorporation of several resources afforded various actions and 

operations (Leont'ev 1974) conditioned by the nature of each resource. In case of Web pages or 

videos, for instance, the afforded actions were making sense of the involved mathematical concepts. 

The use of calculators was linked to short-cut methods for solving the tasks posed in the program. 

The closer analysis of students’ activity showed that the individual students worked on the same tasks 

by performing different mathematical operations. The automated system offered the relevant 

sequence of mathematical operations for the posed tasks while the students did not necessarily follow 

those steps. This result is also supported in the study by Cazes et al. (2006) that students’ activity 

deviated from the desired mathematical activity. In the present study, the use of powerful computing 

tools affording the solution of tasks in single steps also led to diverting students’ attention from the 

required mathematical operations in those tasks.  

With respect to the conditions within automated system, the observed deviation in students’ realized 

activity can be attributed to two specifications in MML. Firstly, the acceptance of the final answers 

in MML without accounting for the process of getting those solutions led students to focus more on 

getting the correct answers, which is also reported in the study by Rønning (2017). The program 

allowed students to proceed even when the mathematical operations were not in accordance with the 

demands of the tasks. Secondly, the mathematical tasks posed in the program could be solved using 

online calculators. This led to realization of students’ actions and goals linked to solving the tasks 

while the operations were performed by the powerful computing tools. In this regard, Borba (2007) 

asserted that the nature of available media conditions the mathematical tasks. To explicate, Borba 

(2007) argued that a task such as “draw the graph of a function” represents an obstacle for students 

in a paper-and-pencil environment because students need to find the coordinates to plot the curve. 

The same task does not represent an obstacle in a technologically rich environment. Therefore, it 

needs to be shifted to an open-ended task such as “why does the graph of a function behave in a 

particular way?” in order to realize a meaningful obstacle. Thus, employing powerful computing tools 

for solving the procedural tasks may lead the mathematics to be black-boxed (Anderson 1999). 

The participants in this study were undergraduate engineering students. It is generally recommended 

to integrate technology in mathematics courses (Alpers et al. 2013) to prepare future engineers 
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according to the professional needs of today’s technologically rich work environments. According to 

previous research, professional engineers emphasize the significance of mathematics for analytical 

and logical thinking although they reported using technology for mathematical tasks at work (Van 

der Wal, Bakker, and Drijvers 2017). In this view, the emphasis on the processes of solving the tasks 

instead of using the powerful computing tools needs to be ensured in order for involved mathematics 

not to be black-boxed for students.  

From the features of the collective activity system, the rule concerning digital examination together 

with the conditions of the automated system led to students’ choice and use of resources such as 

Maxima and calculators. That is, the students used these resources to meet the requirements of the 

MML and to prepare for the final digital examination. In turn, it affected students’ engagement with 

the mathematical tasks.  

The automated systems serve as the platform for managing (delivering, assigning, and evaluating) 

the homework and tests electronically. The findings of this study suggest that the implementation of 

this environment does not ensure that the students engage with the mathematical tasks in the expected 

manner. In addition to the conditions within the automated system, contextual aspects pertinent to 

students’ activity, examination in the digital format as found in this case, also play an important role 

in students’ interactions with this environment. 

This study investigates implementation of an automated system for undergraduate mathematics in a 

specific manner: the digital final examination, and the division of labor managed through the 

resources in an online environment. Also, the findings are based on the analysis of the small number 

of participants’ activity. Other students’ activity in similar contexts may not unfold in the particular 

manner as observed in this study. However, the present study contributes to make explicit the role of 

factors at the wider level of the activity system in students’ interactions with the automated system. 

The theoretical stance of CHAT (Engeström 2014; Leont'ev 1974) capturing the collective activity 

system in addition to the micro details of interactions offers a systematic way to analyze affordances 

of such systems for students’ learning activity. 
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