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Abstract

Offshore wind power is a rapidly growing renewable energy industry and has a tremendous potential
of further expansion. Installation of offshore wind turbines is a challenging task. Floating wind
turbines are believed to be cost-effective solutions for deep water installation. This technology
is extremely sensitive to wave excitation during the installation process. As deep-water wind
farms often are located in areas exposed to rough weather, innovative methods of installation are
investigated. The floating dock concept has been proposed in recent studies in order to expand the
weather window for installing spar floating wind turbines. The idea is for the dock to shield the spar
from wave excitation. Previous studies show that a funnel-shaped dock potentially has a better
hydrodynamic performance compared to cylindrical and bottle-shaped docks. This master’s thesis
takes the previous studies into consideration and investigates how a parametric design optimisation
can be carried out for a funnel-shaped dock intended for installation of floating wind turbines. The
optimisation objective is defined as reduction of steel weight. While investigating how to best
predict the operational constraint of piston-mode periods, the Gaussian process regression model
appeared to be the best predictor. The study revealed that the heights; T1, T2 and T3, in addition
to the diameters, Di1 and Di2, are design parameters which significantly affect the piston-mode
period. The optima found in this study deviate from the predictions from the GPR based model as
the geometry is outside the trained model-area. This can be solved with a new model which also
includes bottle-shaped and cylindrical docks.
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1 | Introduction

Offshore wind power is a rapidly growing renewable energy industry. From 2009 to 2017, the
electricity produced from offshore wind power worldwide increased from approximately 4416 GWh
to 57331 GWh [16] and it has a tremendous potential of further expansion [17].

Installation of offshore wind turbines is a challenging task. The type of offshore wind turbine to
install is dependent on the geological and environmental conditions of the wind farm site. More
than 105 wind farms have been constructed in Europe to date, where the average water depth is
about 30 m at the farm locations [18]. Amongst these, most wind turbines are bottom fixed, and
only a few projects are floating wind turbines [18]. For water depths greater than 100 m, floating
wind turbines are believed to be cost-effective solutions.

Figure 1.1: Illustration of offshore wind floating foundation concepts [1].

There are three main concepts of foundations for floating wind turbines. They are spar, semi-
submersible and tension leg platforms. These are illustrated in Figure 1.1. For spar floating wind
turbines, the platform is usually upended first, and towed to a deep-water area sheltered from harsh
sea conditions, before the mating of the tower assembly with the spar platform is performed by a
crane vessel. An illustration of this is shown in Figure 1.2 and 1.3. This method was used in the
Hywind project before the floating wind turbines were towed to site and attached to the mooring
system [19].
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Figure 1.2: Transport of platform to deep-water area [2].

Figure 1.3: Mating of the tower assembly with the spar platform performed by a crane vessel [3].

As deep-water wind farms are often located in areas exposed to rough weather, other methods for
installation of floating wind turbines are sought-after to expand the weather window and avoid
delays. One recent idea is to use a wind turbine installation vessel for installation of pre-assembled
rotor-nacelle-tower assemblies onto spar platforms. This concept involves a catamaran, with sliding
and lifting grippers, which uses a dynamic positioning system to perform offshore installation in
open seas. In this concept the motions experienced by the spar platform should be compensated
during the mating process [20], [21], [22]. Another concept for installation of floating wind turbines
in open seas is the floating dock concept. It has recently been proposed to expand the weather
window for installing spar floating wind turbines and is further explained in Chapter 5 [23]. The
concept only considered cylindrical shapes and did not include piston-mode period as a constraint.
The pre-project of this master’s thesis worked on improving the floating dock concept by comparing
hydrodynamic analyses with alternative geometries. The result showed that a funnel-shaped dock
has the potential to have improved performance in operating sea state. This master’s thesis will
therefore investigate how a parametric design optimisation be carried out for a funnel-shaped dock
intended for installation of floating wind turbines.
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2 | Social Perspective

All people on Earth directly or indirectly depend on the ocean. The Norwegian economy has always
been one with especially close ties to the ocean. From the Vikings crossing the North Sea on their
wooden sailing ships, through the fishing industry – a thousand-year-old-industry producing a e
2.12 BN turnover in 2019 [24], to the offshore petroleum industry which is now the cornerstone
of the modern Norwegian economy. This is an industry expected to generate a net revenue of e
24.5 BN to the Norwegian state in 2020 [25][26]. Parallel to this, Norway has a proud history
exploring the arctic extremes of the Earth. A history which helped form a feeling of unity within
the Norwegian people following the secession from Swedish union in 1905 [27].

While world leaders are trying to find a sustainable solution to a rapidly increasing energy demand,
our ever-increasing greenhouse gas-emissions are contributing to the smelting of the Earths Arctic
and Antarctic regions. The smelting of land-based ice heightens ocean-levels, changes water-streams
and interferes with the marine life as we know it today [28]. The Norwegian economy is heavily
dependent on an industry which is contributing to the demise of the parts of the world which made
Norway what it is today.

Although Norway is not by any means the world’s largest contributor to global greenhouse gas-
emissions, the Norwegian offshore petroleum industry did boost the Norwegian emissions of CO2-
equivalents to a total of 8.3 tons per capita in 2018. Compared to Sweden (4.1 tons per capita), a
comparable county without the dependency on the petroleum industry, this is an alarming num-
ber. These numbers are territorial, meaning only the production of petrochemicals on Norwegian
territory is included. The consumption of exported petrochemicals does not add to these emissions
[29].

As a possible solution to the excessive greenhouse gas-emissions, offshore wind power is a tech-
nology which may prove itself as a viable solution. The potential for energy harvest exceeds the
combined estimated energy demand of the world eightfold, and the Norwegian industry for offshore
constructions are world-leading – with the industry being very well managed and large sums having
been spent on research and development. According to Næringslivets Handelsorganisasjon (NHO),
there is a potential for employment of 130.000 people within the offshore wind power industry in
Norway come 2050 [30].

The offshore wind industry is being foretold to become a “$ 1 trillion industry” [31]. As the
industry needs rapid construction to reach it’s potential, investigating optimized dock geometries
is contributing to speedy growth. With a successful study, the installation of offshore wind turbines
may become possible in weather conditions previously unsuited for installation. Increasing wave-
and wind limits of the installation process, even by small amounts, may significantly reduce the
total installation times of large wind farms. In addition, the results may open for installation in
locations previously unavailable due to harsh weather conditions.
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3 | Theory

This chapter elaborates on the sea environment, linear wave theory, hydrodynamic loads and mo-
tions and responses for floating structures. The chapter will also introduce the theory behind the
chosen computing programs used to perform both hydrodynamic analyses and optimisation of the
structure presented in this study.

3.1 Sea Environment
This sub-chapter explores introductory theory of the sea environment and will cover wave heights,
wave periods and wave spectra.

3.1.1 Wave Height

The wave height is the vertical distance from the wave crest to the wave through on any given
wave. On a sinusoidal wave it is two times the wave amplitude. Significant wave height Hs is the
average of the highest 1

3 of the waves.

Figure 3.1: Illustration of technical terms used in sea environment [4].

3.1.2 Wave Period

The wave period T is the time, usually given in seconds, a wave uses to complete one cycle. I.e.
from one wave crest to the next one. This term is important for understanding of natural periods
and resonance modes covered later in this work. Wave period is inversely proportional to wave
frequency f .

T = 1
f

(3.1)
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3.1. SEA ENVIRONMENT

3.1.3 Wave Spectrum

A wave spectrum is a simplified way to describe the sea surface containing various waves with
different wave periods and wave heights by their energy contributions. Two of the most recognised
approaches are the Pierson-Moskowitz (PM) and The Joint North Sea Wave Project (JONSWAP).
The PM spectrum defines the energy distribution of waves with the respect to the wave frequency.
This approach is based on measurements of constant environmental conditions during an extended
time-period in the North Atlantic in 1964 [32]. A modified PM spectrum is described by the
equation

Spm (ω) = 5
16Hs

2ωp
4ω−5e

(− 5
4
ω
ωp

−4) (3.2)

Where ωp, the angular spectral peak, is equal to 2π
Tp

and Tp is the spectral peak period [5].

The JONSWAP approach is meant to describe the conditions of the North Sea. It is a modified
version of the PM spectrum and can be described by the equation

Sj (ω) = AySpm(ω)ye
0,5(

ω−ωp
ρωp

)2

(3.3)

Where Ay is a normalizing factor, y is a non-dimensional peak shape parameter and ρ is a spectral
width parameter. If y equals 1 it is reduced to the PM spectrum. Different y values are shown in
Figure 3.2 [5].

Figure 3.2: JONSWAP spectrum with variable peak shape parameter [5].

5



3.2. HYDROSTATICS OF MARINE STRUCTURES

3.2 Hydrostatics of Marine Structures
This sub-chapter aims to serve as a brief introduction to some of the definitions, stability calcula-
tions and considerations needed to verify the structural integrity of a marine structure.

3.2.1 Hydrostatic Stability

The centre of gravity, G, is defined as the imaginable point within the structure where all mass may
be concentrated to a force vector in the negative z-direction. The center of buoyancy, B may be
defined as an imaginable centre of volume for the submerged parts a structure [33] where buoyancy
may be simplified to a force vector in positive z-direction. The metacentre, M , is defined as the
point where a vertical line through a heeled centre of buoyancy crosses the line of the original vertical
centre of buoyancy. See figure 3.3 for illustration. The metacentric height, GM , is the distance
between the centre of gravity and the metacentre. A larger metacentric height will initially give a
larger righting moment in a heeled state [34]. Righting moment refers to the righting arm between
G and B1 in figure 3.3, and if this is poorly designed the marine structure may capsize.

Figure 3.3: Some of the parameters influencing the hydrostatic stability of a floating body.

3.2.2 States of Operation

There are three main states of a marine structure:

• Operational state, where the structure is being used as intended.

• Transit state, where the structure is being transported to an installation site. For ships,
transit and operations may coincide.

• Survivability state, where the structure is imagined caught in severe weather conditions, with
50- or 100-year return periods, and is no longer in operation or in transport. The constraints
in the survivability state are not as strict as in the other states.
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3.3. LINEAR WAVE THEORY

3.3 Linear Wave Theory

Linear wave theory, also known as Airy wave theory, is often used for modelling of random sea
states in ocean engineering. One of the main reasons to use linear wave theory in modelling is that
irregular waves can be described by adding together regular waves with different properties.

Given that the seabed is horizontal and infinite in the horizontal direction, airy wave theory can
be deduced using the derivatives of the flow potential φ(x, z, t), the continuity equation for incom-
pressible flows, boundary conditions at seabed and free surface boundary conditions.

The flow velocity:

vx = ∂φw
∂x

and vz = ∂φw
∂z

(3.4)

The continuity equation:

∂2φw
∂x2 + ∂2φw

∂z2 = 0 (3.5)

Boundary condition for the seabed:

∂φw
∂x

= 0 for z = −h (3.6)

This means that the seabed is impermeable and the vertical flow velocities of water particles at the
seabed is zero.

Boundary condition for the free surface dynamic:

∂φw
∂t

+ gζ = 0 for z = ζ (3.7)

where constants are included in ∂φw
∂t .

The free surface pressure is equal to the atmospheric pressure at the surface of the fluid z = ζ,
and the free surface dynamic boundary condition can be deduced from the Bernoulli equation for
unstationary irrotational flow. ζ is equal to the free surface elevation.

Boundary condition for the free surface kinematic:

∂z

∂t
+ 1
g

∂2φw
∂t2

= 0 for z = 0 (3.8)

The water particles on the free surface and the free surface itself has the same vertical velocity
due to no leak condition. The free surface kinematic condition is known as the Cauchy-Poisson
condition. ∂z

∂t is equal to the vertical velocity of the wave surface and ∂2φw
∂t2 is equal to the flow

acceleration.

These boundary conditions are used in boundary element method to calculate hydrostatic and
hydrodynamic problems [6] [35].
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3.4. HYDRODYNAMIC LOADS

3.4 Hydrodynamic Loads
This sub-section explains how hydrodynamic loads on a floating structure can be simplified by
superposition due to linear theory and how added mass and radiation damping is found.

3.4.1 Radiation and Diffraction

Multiple loads acting on a floating body is a complex problem. This can, however, be simplified
using the concept of superposition from linear theory. A floating structure is affected by both
passing waves, and waves generated by the structure itself due to oscillation. Radiation is connected
to the added mass, damping and restoring loads. This can be understood by picturing the floating
structure being forced to oscillate in still water. The radiating waves represent the energy taken
out of the system. The diffraction loads are from the passing waves acting on the structure given
that it is fixed.

Figure 3.4: Superposition of wave excitation, added mass, damping and restoring loads [6].

3.4.2 Added Mass and Radiation Damping

Added mass and damping can be explained from forced harmonic rigid body motions in steady-
state conditions. This motion generates outgoing waves from the structure and results in oscillating
fluid pressure on the body surface. Resulting forces and moments can be found by integration of
the fluid pressure over the body surface. This means that added mass is not affected by excitation
loads, so a fixed dock will have the same added mass as a floating dock.
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3.5. MOTIONS AND RESPONSES OF FLOATING STRUCTURES

3.5 Motions and Responses of Floating Structures
This section shows the degrees of freedom of a floating structure and explains how the equation
of motion can be used to calculate motions, natural periods and response amplitude operators. It
also explains what piston mode excitation and linear sloshing look like.

3.5.1 Degrees of Freedom

Floating structures in ocean environment have six degrees of freedom (DOF). The six DOFs con-
sist of three directions like the Cartesian coordinate system (Surge, Sway and Heave), and three
rotations around these, respectively Roll, Pitch and Yaw. Hydrostatic and hydrodynamic pressures
acts on the rigid structure and will exert forces and moments which try to move or rotate the body
in its given DOF.

Figure 3.5: The six DOF shown on a cylindrical floating dock.
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3.5. MOTIONS AND RESPONSES OF FLOATING STRUCTURES

3.5.2 Equation of Motion

The equation of motion is used to describe the motions of the system. It is derived from Newtons
second law. The basic equation of motion is given by

(M +A)ẍ+Bẋ+ Cx = Fexc (3.9)

where Fexc is the exciting force, A is the added mass, B is the damping and C is the hydrostatic
restoring force.

For six DOF the formula can be written as:

6∑
j=1

[(Mj +Aj) ẍ+Bj ẋ+ Cjx] = Feiωet (3.10)

This formula can be used to calculate body motions in all six DOFs.

3.5.3 Natural Periods

Natural periods of a system with multiple DOFs can be found by first guessing an answer for the
second-order differential equation, which is a variant of Newton’s second law for a spring system.

M ẍ+ Kx = 0 (3.11)

Here guessing

x = Φ cos(ωt+ ϕ) (3.12)

Where Φ is the eigenvectors, ω is the angular eigenfrequency, t is the time and ϕ is the phase of
the oscillation.

Through double differentiation of eq. 3.11 and insertion of the guessed solution x from eq. 3.12,
an equation for natural periods emerge:

(K − ω2M)φ = 0 (3.13)

Where K is the stiffness matrix.

To solve this equation for the system when it is in motion the solution is when K − ω2M = 0.
This means that the matrix is singular and the solution can be written as

det
∣∣∣K − ω2M

∣∣∣ = 0 (3.14)
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3.5. MOTIONS AND RESPONSES OF FLOATING STRUCTURES

3.5.4 Response Amplitude Operator

The response surface amplitude (RAO) are the transfer functions which determine the effects
different sea states will have on the motion of a floating structure.

For regular wave conditions RAO can be calculated by dividing the response amplitude by the
excitation amplitude. In this case this can be done by dividing the dock motion by the wave
amplitude.

(M +A)ẍ+Bẋ+ Cx = Fexc (3.15)

With x = aeiωt and Fexc = F0ζae
iωt

Where a is the distance the dock has moved and ζa is the wave amplitude. Figure 3.6 shows an
example for surge.

Figure 3.6: RAO variables surge [7].

Inserting for Fexc, x and its derivatives give:

(M +A)(−ω2aeiωt) +B(iωaeiωt) + C(aeiωt) = F0ζae
iωt (3.16)

And as RAO is the dock motion divided by the wave amplitude this gives:

RAO = a

ζa
= F0
−ω2(M +A) + iωB + C

(3.17)

11



3.5. MOTIONS AND RESPONSES OF FLOATING STRUCTURES

3.5.5 Piston Mode Exication

The piston-mode excitation is a resonance oscillation where the water surface moves as a rigid
body in the heave direction. When studying the floating dock, piston-mode is one of the important
resonance modes. Piston-mode can cause trouble if it is on wave periods that occur during install-
ation. When wave periods are in the vicinity of the period that piston mode occurs, the water
surface inside the dock oscillates significantly.

Figure 3.7: Example of piston-mode oscillation inside a floating dock.

The period of the piston mode excitation can be predicted by looking at the added mass in heave
direction for the structure.

Figure 3.8: Example of how piston-mode is predicted by looking at added mass in heave.
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3.5. MOTIONS AND RESPONSES OF FLOATING STRUCTURES

It can be predicted by Molin’s formula that has proven to provide good accuracy for simple cyl-
indrical docks [23].

ωpiston =
√√√√ g

T0(1 +
Di( 3

2 +ln D0
2Di

)
πT0

)
(3.18)

Where g is the gravity, Di is the inner diameter, D0 is the outer diameter and T0 is the height of
the part of the dock that is submerged.

This gives

Tpiston = 2π
ωpiston

(3.19)

3.5.6 Linear Sloshing

Sloshing effects occur when a liquid with a free surface is inside a vehicle or a structure and it is
moved and can be a result of resonant excitation of the tank liquid. Sloshing can also be a result of
transient motions like when coffee gets spilled form a coffee cup [36]. This study focuses on linear
sloshing and not nonlinear sloshing like swirling. Linear sloshing is an important resonance mode
coupled to surge and pitch motions. When waves hit the period that the linear sloshing mode
occurs the water surface inside the dock gets higher on one side while it gets lower on the other
symmetrical around the middle of the dock and shifts.

Figure 3.9: Example of linear sloshing oscillation inside a floating dock.

For a 2d case a good estimation of the linear sloshing period for a rectangular planar tank is equal
to the cylindric one, and can be found with the following equation with i = 1

Ti = 2π√
gπi

tanh πih
l

l

(3.20)

Where g is the gravity, h is the height of the water and l is the breadth of the tank [36].

For a 3d case the linear sloshing period for an upright cylindric tank can be estimated with

T1.1 = 2π√
gl1.1

tanh l1.1h
R0

R0

(3.21)

Where l1.1 = 1.841, g is the gravity, h is the height of the water and R0 is the inner diameter [36].
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3.5. MOTIONS AND RESPONSES OF FLOATING STRUCTURES

3.5.7 Wave Particle Transfer Function

The sloshing and piston period can also be found by inspecting the movement of the docks and the
water surface elevation inside the docks for every frequency for every case in the Xtract program
[37]. This program can generate animations of motions of the buoy with radiated and diffracted
waves around it for every wave frequency and makes it easy to visually investigate the piston and
sloshing phenomena. Figure 3.10 and 3.11 shows examples where piston and sloshing period is found
from the animation. This method is referred to further in this paper as from wave particle transfer
function. The wave particle transfer function can be regarded as the most direct representation of
the physical phenomena of linear sloshing and piston mode resonance, whereas the added mass in
heave or pitch is an assisting indicator since it is only relating to a hydrodynamic force from the
radiation problem.

Figure 3.10: illustration of piston mode resonance found from wave particle transfer function.

Figure 3.11: illustration of linear sloshing mode found from wave particle transfer function.
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3.6. DESIGN OF EXPERIMENTS

3.6 Design of Experiments

Design of experiments (DOE) refers to the process of planning an experiment so that the appropriate
data is collected and analyzed by statistical methods, resulting in a valid and objective conclusion
[38]. When analyzing a process, experiments are often used to evaluate which inputs have a
significant impact on the output, and what the target level of those inputs should be to achieve the
desired output. In addition to understanding how a particular variable affects product performance,
interactions between different process and product variables are identified. The observations made
are never exactly representative of the process we think we are observing. Mathematically, this is
conceptualized as:

measured value = true value± error[39] (3.22)

The process involved in conducting a successful DOE can be broken down into five steps:

1. Define the problem.

2. Plan the experiment.

3. Run the experiment.

4. Analyze the data with the help of statistical methods.

5. Report the results.

Figure 3.12: Flowchart for the DOE process.

3.6.1 Problem Definition

It is important to verify that the problem is properly defined and clearly understood before starting
any work. Usually, it is collected input from concerned parties with insight regarding the problem.
Questions that are recommended to get asked are:

• Do dimensional changes occur in the x, y, or z direction over time?

• Is one dimension outside the specification limit, and is this temperature related?

• Do the parts warp inconsistently from piece to piece?

• Do the dimensions change in a controlled manner over time?

• Have the dimensions changed because of a change in raw materials?

• Are the dimensional issues due to shrinkage caused by the raw materials?

• Are the dimensions different from run to run because of process changes?

Before deciding on the course of action it is critical to fully understand the problem. To understand
the problem is critical in order to solve it.
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3.6. DESIGN OF EXPERIMENTS

3.6.2 Experiment Planning

After the problem is defined, it is important to define and select the independent variables with
limits for the evaluation and dependent variables. Independent variables or factors are parameters of
either processing or product that are set at specific values (levels) and controlled in the experimental
design. Independent variables are usually quantitative. However, in some experimental designs,
the independent variables are qualitative in the form of a control variable is yes or no, or high or
low setting is used. It is better to use quantitative factors if possible. With quantitative variables,
the high and low levels for each factor are defined [39].

Dependent variables or factors are the responses being measured for each experiment to determine
whether the independent variables have an effect on properties or processing conditions being eval-
uated. Dependent variables or responses are easy to measure and evaluate when using quantitative
tests, which provide very specific values for each experiment. In some situations, responses are
more qualitative than quantitative. Normal qualitative responses such as pass/fail, good/bad, or
yes/no do not provide a good response to model. The number of data points evaluated for each
experimental response depends on the number of tests required for statistical significance, based
on the precision and accuracy of the test [38].

3.6.3 Data Run and Collection

The third step in the process is data collection. Once the experiments are defined, it is time to
execute the experiments and collect the data. It is easier to run the experiments in a nonrandom
order, however, this may result in errors that can lead to the wrong conclusion. Randomize the
experimental order as much as possible and do not run all the replicates or duplicate experiments
one after the other. Collect all available processing data during the experimental phase on both the
fixed and manipulated independent variables. Measure the response variables for each experimental
test condition.

3.6.4 Analysis

There are good computer programs available to analyze the data. Computer programs like MAT-
LAB predict which independent factors and interactions are significant for a particular response
, generate models to predict the dependent response at any experimental point or composition
within the experimental matrix, plot the model equations to provide a visual comparison of the
data, predict the experimental process condition or composition where the response is maximum,
and predict or define an experimental operating range or composition where the properties meet
the specifications or desired values[38].

3.6.5 Result Report

The final step is to report the obtained results. Without a summary report, the work will probably
be repeated in the future because people will not remember that the work was done or the results
were generated. Graphical methods are often useful in this stage, particularly in presenting the
results to others. Follow-up runs and confirmation testing should also be performed to validate the
conclusions from the experiment [38].
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3.7. RESPONSE SURFACE METHODS

3.7 Response Surface Methods
Response surface methods are well-established statistical and mathematical ways of visualizing
and mapping correlations between a set of variables and an interesting output. In engineering and
optimisation RSM is often used for reducing material use, production times and cost during the
design process. This chapter elaborates on the three types of respnse surfaces used in this thesis.

3.7.1 Polynomial Response Surfaces

This sub-chapter will elaborate on different kinds of regressions and interpolations suitable for
fitting and visualizing piston-mode period as a function of two different design variables.

Linear Regression

Figure 3.13: Visual representation of linear regression [8].

As a line is given on the form y = a0 + a1 xj , where an are unknown constants placing the line in
the plane, one needs to calculate |yj − (a0 + a1 xj)| for j number of values of data. Where a0...an
are random constants. One needs to decide a0 through an such that the squares of these values are
of the lowest possible value [40]. This sum is put on the following form and is referred to as lowest
mean squares;

qmin =
n∑
j=1

(yj − a0 + a1xj )2 (3.23)

For a lowest possible value, we have:

∂q

∂a0
= 0 and ∂q

∂a1
= 0 (3.24)

Nonlinear Regression

Similar to linear regression, the technique of calculation is the same. Although the mathematical
shape of the curve is not the same. A polynomial to the nth degree is a curve in 2D is described
by:

y = β0 + β1 x+ β2 x
2 . . . βn x

n + ε (3.25)

Where ε is the unobserved random error and β0...βn are constants.

The rest of the regression methodology is similar to the linear regression-method - β-values need
to be chosen so that y fits the data sets [41].
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3.7. RESPONSE SURFACE METHODS

Figure 3.14: Visual representation of nonlinear regression [9].

Interpolation

As with regression, interpolation may be done in both linear and polynomial terms. Linear inter-
polation assumes a linear relation between data sets. Using data points 1 and 2, one may create
the straight line between any data points on figure 3.15a utilizing:

f(x) = f1 + (f2 − f1)(x− x1)
x2 − x1

(3.26)

Polynomial interpolation as illustrated in 3.15b is done by choosing a polynomial such that:

f(x) = ax+ bx2...+ nxn (3.27)

when working with a (n + 1)-sized data set, polynomial interpolation is possible for a nth degree
polynomial. Spline interpolation is a generalization of linear interpolation, where one may utilize the
simplicity of linear interpolation between points and the sophistication of polynomial interpolation.
This method of interpolation creates a polynomial interpolation between all data sets, removing the
need of a high-order polynomial to create curvature. A quadratic function may very well provide
a reasonable result for a data set with a high number of data, using the spline-approach.
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3.7. RESPONSE SURFACE METHODS

(a) Linear interpolation. (b) Nonlinear interpolation.

Figure 3.15: Linear and nonlinear interpolations illustrated [10][11].

3.7.2 Gaussian Process Regression

Machine learning teaches computers to learn from experience, like humans . Machine learning
algorithms use computational methods to “learn” information directly from data without relying
on a predetermined equation as a model. The algorithms adaptively improve their performance
as the number of samples available for learning increases [15]. Supervised learning can be divided
into regression and classification problems. Whereas the outputs for classification are discrete
class labels, regression is concerned with the prediction of continuous quantities [42]. Gaussian
process regression, GPR, are nonparametric kernel-based probabilistic models [12]. GPR has several
benefits, working well on small datasets and having the ability to provide uncertainty measurements
on the predictions.

Background

Unlike many popular supervised machine learning algorithms that learn exact values for every
parameter in a function, the Bayesian approach infers a probability distribution over all possible
values.

Consider the training set

[(xi, yi); i = 1, 2, ..., n], where xi ∈ Rd and yi ∈ R [12] (3.28)

is drawn from an unknown distribution. A GPR model addresses the question of predicting the
value of a response variable ynew, given the new input vector xnew, and the training data. Rather
than calculating the probability distribution of parameters of a specific function,GPR calculates
the probability distribution over all admissible functions that fit the data [42]. A linear regression
model is of the form:

y = xTβ + ε, where ε ∼ N(0, σ2) [12] (3.29)

The error variance σ2 and the coefficients β are estimated from the data. A GPR model explains the
response by introducing latent variables, f(xi), i = 1, 2, ..., n, from a Gaussian process (GP), and
explicit basis functions, h. The covariance function of the latent variables captures the smoothness
of the response and basis functions project the inputs x into a p-dimensional feature space [42].
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3.7. RESPONSE SURFACE METHODS

Covariance Functions

In supervised learning, it is expected that the points with similar predictor values have close re-
sponse -or target values. In Gaussian processes, the covariance function expresses this similarity. It
specifies the covariance between the two latent variables, where both values are d-by-1 vectors. In
other words, it determines how the response at one point is affected by responses at other points.
The covariance function k can be defined by various kernel functions. It can be parameterized
in terms of the kernel parameters in vector v. For many standard kernel functions, the kernel
parameters are based on the signal standard deviation and the characteristic length scale. The
characteristic length scales briefly define how far apart the input values can be for the response
values to become uncorrelated. Both the characteristic length value and the signal standard de-
viation need to be greater than 0, and this can be enforced by the unconstrained parametrization
vector v. The covariance -or kernel funtions used in this study are the following:

Exponential Kernel

The exponential kernel function can be specified using the "KernelFunction","exponential" name-
value pair argument. This covariance function is defined by:

k (xi, xj |θ) = σ2
fexp

(
− r

σl

)
, (3.30)

where σl is the characteristic length scale and r =
√

(xi− xj)T (xi− xj) [12]

Matern 5/2

Matern 5/2 kernel function can be specified using the ’KernelFunction’,’matern52’ name-value pair
argument. The Matern 5/2 covariance function is defined as

k(xi, xj) = σ2
f

(
1 +
√

5r
σl

+ 5r2

σ2
l

)
exp

(
−
√

5r
σl

)
(3.31)

where r =
√

(xi− xj)T (xi− xj) is the Euclidean distance between xi and xj [12]

Rational Quadratic Kernel

The rational quadratic kernel function is specified using the ’KernelFunction’,’rationalquadratic’
name-value pair argument. This covariance function is defined by

k (xi, xj|θ) = σ2
fexp

(
1 + r2

2ασ2
l

)−a
(3.32)

where σl is the characteristic length scale, α is a positive-valued scale-mixture parameter, and
r =

√
(xi− xj)T (xi− xj) is the Euclidean distance between xi and xj [12].

When providing the initial kernel parameter values for a built-in kernel function, input the initial
values for signal standard deviation and the characteristic length scale(s) as a numeric vector.
When providing the initial kernel parameter values for a custom kernel function, input the initial
values the unconstrained parametrization vectorv. "fitrgp" uses analytical derivatives to estimate
parameters when using a built-in kernel function, whereas when using a custom kernel function it
uses numerical derivatives [12].
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3.7. RESPONSE SURFACE METHODS

The covariance function k(x, x′) is usually parameterized by a set of kernel parameters or hy-
perparameters, θ. Often k(x, x′) is written as k(x, x′|θ) to explicitly indicate the dependence on
θ.

The GPR model is probabilistic, which makes it possible to compute the prediction intervals using
the trained model. The figure below is considering some data observed from the function g(x) =
x ∗ sin(x), and assuming that they are noise free. The subplot on the left in the following figure
illustrates the observations, the GPR fit, and the actual function. It is more realistic that the
observed values are not the exact function values, but a noisy realization of them. The subplot on
the right illustrates this case. When observations are noise free (as shown on the left), the GPR fit
crosses the observations, and the standard deviation of the predicted response is zero. Hence, you
do not see prediction intervals around these values [12].

Figure 3.16: Visual representation fitting of data using GPR [12]
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3.7.3 Artificial Neural Networks

Artificial neural networks, ANN, are a great tool for recognizing patterns. ANN are computing
systems inspired by the biological neural networks such as the brain of a human or animal. Sys-
tems like ANN "learn" to perform task from given examples by recognizing patterns by identifying
characteristics from the examples given, often referred to as "training data". Although every neural
network are unique, the typical process of developing a network tend to follow and evaluate these
steps:

1. Access and prepare your data

2. Create the neural network

3. Configure the network’s inputs and outputs

4. Tune the network parameters (the weights and biases) to optimize performance

5. Train the network

6. Validate the network’s results

7. Integrate the network into a production system

This study used shallow neural networks as a tool to identify patterns from the pre-tests done.

Shallow Neural Networks

Neural networks that operate on two or three layers of connected neuron layers are known as shallow
neural networks. Deep learning networks can have many layers, even hundreds. Both are machine
learning techniques that learn directly from input data. As shown in the figure below, the neural
network consists of an input layer, one or more hidden layers, two in this case, and an output
layer. The layers are interconnected with nodes that are called "neurons", with each layer using
the output of the previous

Figure 3.17: Visual representation of an Artificial Neural Network [13]
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3.7. RESPONSE SURFACE METHODS

Neurons

ANNs are composed of artificial neurons inspired by the biological concept of neurons which receive
input, combine the input with their internal state and an optional threshold using an activation
function, and produce output using an output function. The initial inputs are external data, such
as documents or images/figures. The ultimate outputs accomplish the task, such as recognizing
an object in an image. The important characteristic of the activation function is that it provides
a smooth, differentiable transition as input values change, i.e. a small change in input produces a
small change in output.

Activation function

The Activation function is important for an ANN to learn and also make sense of a system that
is usually really complicated. The main purpose of the activation function is to convert an input
signal of a node in an ANN to an output signal. This output signal is used as input to the next
layer in the stack.

Learning

Learning involves adjusting the weights of the network to improve the accuracy of the result.
This is done by minimizing the observed errors. Learning is complete when examining additional
observations does not usefully reduce the error rate. Even after learning, the error rate typically
does not reach 0. If after learning, the error rate is too high, the network typically must be
redesigned. Practically this is done by defining a cost function that is evaluated periodically during
learning. As long as its output continues to decline, learning continues. The cost is frequently
defined as a statistic whose value can only be approximated. The outputs are actually numbers, so
when the error is low, the difference between the output and the correct answer is small. Learning
attempts to reduce the total of the differences across the observations. The tool used to define a
neural network often has the option to choose a training algorithm. This study compared three
different algorithms of backpropagation : Levenberg-Marquardt, Bayesian regularization and Scaled
conjugate gradient.

Levenberg Marquardt

Levenberg-Marquardt in ANN supports training with validation and test vectors if the network’s
property is set to a data division function. Validation vectors are used to stop training early if the
network performance on the validation vectors fails to improve or remains the same for max_fail
epochs in a row. Test vectors are used as a further check that the network is generalizing well, but
do not have any effect on training. This method is often the fastest backpropagation algorithm
when using matlab as a tool for ANN, and is highly recommended as a first-choice supervised
algorithm, although it does require more memory than other algorithms[43].

Bayesian Regularization

Bayesian regularization algorithm is a network training function that updates the weight and bias
values according to Levenberg-Marquardt optimisation. It minimizes a combination of squared
errors and weights, and then determines the correct combination so as to produce a network that
generalizes well. Validation stops are disabled by default (max_fail = inf) so that training can
continue until an optimal combination of errors and weights is found. However, some weight/bias
minimization can still be achieved with shorter training times if validation is enabled by setting
max_fail to 6 or some other strictly positive value[44].
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Scaled Conjugate Gradient

Scaled conjugate gradient is a network training function that updates weight and bias values ac-
cording to the scaled conjugate gradient method. Any network can be trained by this algorithm as
long as its weight, net input, and transfer functions have derivative functions. Backpropagation is
used to calculate derivatives of performance with respect to the weight and bias variables X. The
algorithm is based on conjugate directions, but does not perform a line search at each iteration[45].

Testing

To ensure the network has learned the system well enough before actually using it, it can be tested.
When testing the network the size of the training data needs to be split in two. The first one is used
to train the network, and the second one is served to assess the performance of the network after the
training is complete. In the testing phase, the input patterns are fed to the network and the desired
output patterns are compared with those given by the ANN. The agreement or the disagreement
of these two sets gives an indication of the performance of the neural network model. The trained
network should be validated with the third independent data matrix completely independently. If
enough examples are available, the data may be divided randomly in two parts into the training
and test sets. However, the training set still has to be large enough to be representative of the
problem and the test set has to be large enough to allow correct validation of the network. This
procedure of partitioning the data is called "k-fold crossvalidation", sometimes named the holdout
procedure.

24



3.8. OPTIMISATION

3.8 Optimisation
From a mathematical point of view, an optimisation process is minimising or maximising a function,
f , relying on variables x0, x1...xn [46]. There are several ways of minimising the cost-function of
this floating dock. In addition to the gradient descent-method of optimisation, which is the chosen
method for this thesis, this chapter elaborates on some different available families of optimisation.

3.8.1 Summary of Optimisation Methods

Evolutionary algorithms (EA) are a set of algorithms based on the theory of evolution by Charles
Darwin. One good example is the genetic algorithm, which is an EA presented in the 1960’s by
John Henry Holland. The algorithm creates a population of n samples of randomized parameter-
combinations. The samples are then evaluated against the optimisation benchmark. Each sample
is then given a score based on how it’s function value compares to the other samples [47]. Each
variable is defined as a ’gene’. The algorithm then uses the ’best’ samples as ’parents’ for a new
generation. The new generation then replaces the previously lowest ranked samples. This continues
until there is a solution, or a pre-defined number of generations are completed [48].

Figure 3.18: Visualized simplification of a genetic algorithm.

Imagine having a simple optimisation problem. As illustrated in figure 3.18 every sample contains
four colors (genes), where blue is optimum. All individuals are evaluated, and combined with a
matching mate to create a new generation. In this simple example optimum (all genes are blue) is
reached within the third generation. Usually the program has a lot of variables, and evaluating a
large number of individuals with many variables will take a lot of computing power. This means
that the evolutionary algorithms are not suitable for optimisation problems where the number of
variables is large, if their boundaries are not strict. For binary optimisation problems (such as the
problem illustrated in figure 3.18 where ’optimum’ is either blue or not blue) the algorithm is very
efficient [47].

Combinatorial optimisation algorithms are a set of algorithms which good at finding optima given
a finite number of combinations. Meaning that they are good at choosing the optima from a set of
available variable-combinations.

One type of combinatorial optimisation algorithm is the Greedy randomized adaptive search pro-
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cedure, also known as GRASP. In this type of optimisation the algorithm adds more and more
information as it iterates along the function. Meaning it would at first optimize for instance height,
then diameters, before attempting to optimize thicknesses [49]. These types of algorithms would
not be suitable to the non-linear constraints of this thesis.

3.8.2 Gradient-Based Optimisation

Gradient-based optimisation is a common denominator for optimisation algorithms which depend
on differentiation of variables. Gradient descent is such an optimisation algorithm, commonly
used to minimize a multivariable function. Gradient descent is used for the optimisation in this
thesis. The minimization is done by iterating gradients of the function. The gradients are found
by differentiating with respect to every variable. Imagine optimizing a function f(x1, x2, x3). This
function gives a multi-dimensional surface, and the gradients of this function will be:

f ′(x1, x2, x3) =


∂f
∂x1
∂f
∂x2
∂f
∂x3

 (3.33)

with each gradient representing how steeply the function will change given a change within every
variable [50]. The algorithm evaluates the gradients of the point in which it stands at all times.
Given a learning rate, practically a step size, the algorithm may move in the direction of the
steepest descent. A large step size may move the algorithm in the direction of a local minimum
quicker, but the risk of overstepping the global minimum is present [51]. Smaller steps may lead
to large computing times. Given this info, a different starting point, and a different step size may
lead to different optimisation-results. This creates a need of large amounts of randomized starting
points for this type of optimisation. Some results may be local saddle points, while others may be
global minimums. The user needs to be able to separate the two [52]. The gradient descent method
also has a weakness in that it will create a zig-zaging path, which will use a lot of processing power
to find a minimum. Especially of the step sizes are small.

(a) 3D-plot.
(b) 2D-plot.

Figure 3.19: The zig-zaging nature of the gradinent descent method illustrated in 3D and 2D [14]. It
is also imaginable how different starting points may lead to different paths and different minimums
in this figure.
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3.9 Key Statistics
This chapter describes the key statistical values which are used as guidelines in the process of
choosing the best model for creating response surface models.

3.9.1 Residual Sum of Squares

The Residual sum of squares (RSS) is the sum of the squares of residuals. Residuals are the
deviations of predicted values from a fit, compared to the actual value of empirical data. Hence
RSS is a measure of the discrepancy between estimated and actual values from a model. A small
RSS indicates a model fitting closely to the measured values. RSS is often used as a criterion for
choosing an optimum fitting model for data sets. This value may be referred to as SSres [50].

RSS =
n∑
i=1

(yi − f(xi))2 (3.34)

3.9.2 Sum of Squares and Coefficient of Determination

Given a mean of all data points, ȳ = 1/n
∑n
i=1(yi), the total sum of squares (variance) is equal to:

SStot =
∑
i=1

(yi − ȳ)2 (3.35)

Given RSS and SStot, R2 may be calculated using the following relation below. This shows that
a better regression model yields an R2 closer to 1.

R2 = 1− SSres
SStot

(3.36)
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4 | Scope

With sustainable power in exponential demand, the potential for growth and profit of offshore
wind power is ever increasing. One of the largest issues with offshore wind power development is
installation times and weather limitations. To reach the full energy potential of offshore wind power
there is a need of installation in areas with harsh weather. One of the limitations of installations
is spar movement due to waves during lifting of tower, nacelle, and rotor. Being able to reduce the
movements of, and loads on, the spar during installation may increase efficiency and reduce cost of
offshore installation. Henceforth, the research question of this thesis is:

How can a parametric design optimisation be carried out for a funnel-shaped dock
intended for installation of floating wind turbines?

This thesis builds on the previous work of Jiang et. al Design, modelling, and analysis of a large
floating dock for spar floating wind turbine installation [23]. The possibility of a floating dock is
investigated in this work. The work of Gran et. al, Hydrodynamic Analysis of Floating Docks With
Alternative Geometries for Floating Wind Turbine Installation [53], which further investigates what
dock geometries may increase piston-mode periods is built on - which is where the funnel-shape
was first investigated. With this previous work in mind the following sub-questions have emerged:

• What are the most important design parameters?

• How can a response surface be created for certain operational constraints?

• Which constraints will have the greatest impact on the optimum design?

• How will the design objective vary along design iterations?

As the idea of a floating dock and its shape was already laid out, this thesis looks at how to
minimise the cost of such a structure. The cost is defined as steel weight, where the cost of steel
is $1 per tonne. There is no welding, customization or other forms of labour included in this cost
estimate. There are certain simplifications and assumptions made, which are further elaborated on
in chapters Case and Materials and Methods.
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5 | Case and Materials

This chapter introduces the floating dock concept, panel model and test parameters for the pre-
liminary study, the design variables, sequential and randomized analyses and the gradient based
optimisation.

5.1 The Floating Dock Concept
The floating dock concept has recently been proposed to expand the weather window for installing
spar floating wind turbines. This is because it is not always possible to find deep-water areas that
are sheltered for harsh sea conditions close to the wind farms [23]. The concept uses a floating
dock to shield the spar platform from motions caused by waves under the installation process of
the floating wind turbine. The installation process for the concept consists of six main steps shown
on Figure 5.2. Even though the floating dock shields the spar platform from motions caused by
waves, piston-mode still occurs inside the dock in a given period based on the dock geometry, as
seen in Figure 3.7 and 3.10. The effect of different geometries has been studied in a pre-project for
this master thesis. This master thesis focuses on finding optimum funnel-shaped dock where the
objective is to minimize the weight given different constraints. Constraints are explained in section
5.5. The dock is analysed both in operational and transit conditions, and uses ballast inside the
bilgebox and the side walls in form of scrap steel and water to adjust the draft, as transit needs a
lower draft to increase towing efficiency. The ballast can be used to adjust the center of gravity to
secure stability, and the bilgebox can contribute to dampen motions on the dock.

Figure 5.1: Schematic of the floating dock concept and a spar platform inside the dock concept.
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Figure 5.2: Main installation steps for a spar floating wind turbine.

• First, the spar platform is towed horizontally to the site and is upended.

• Second, the gate at the dock is opened and the spar foundation is moved to the middle of the
floating dock with help of tugboats.

• Third, tugger lines are connected between the platform and the dock to avoid drift-off of the
spar.

• Fourth, the mating process which is the most important step where relative motions between
the parts can cause structural failure if impacts to the guide pins occur. This is done by a
heavy-lift vessel with cranes.

• Fifth, the spar foundation will be disconnected from the dock.

• Sixth, the floating wind turbine is towed to a designated location and will be installed with
mooring lines.
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5.2 Preliminary Study
Figure 5.3 shows a panel model of a funnel shaped dock used for the preliminary study as a
reference case. The figure also includes a table containing the test points of the preliminary study.
The preliminary study investigates how changes in T1, T2, T3, Di1, Di2 and Dt individually
affect piston mode for a dock with a homogeneous density panel model. Explanation of the design
variables is found in Section 5.3. A total of 13 hydrodynamic analysis was performed, where one
was for the base case for comparison and one for each individual change on the geometry.

Symbols Test points (m)
Di1 35, 40, 45
Di2 30, 35, 40
T1 20, 30, 40
T2 20, 30, 40
T3 20, 30, 40
Hsk 5
Dt 5, 10, 15

Figure 5.3: Panel model of reference dock and the test points (T1 = 30, T2 = 30, T3 = 30, Hsk =
5, Di1 = 40, Di2 = 35, Dt = 10).
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5.3 Design Variables
The variables used to define the geometry of the dock in operation and transit are illustrated in
Figure 5.4a and 5.4b. An explanation of the design variables and their lower and upper bounds is
shown in Table 5.1. These lower and upper bounds were chosen based on the earlier work regarding
the floating dock concept and after discussion with our supervisor.

Design variables Symbols Lower and upper bounds (m)
Dock upper inner radius Di1 35 to 75
Dock lower inner radius Di2 30 to 69
Dock thickness Dt 5 to 15
Dock height upper T1 1 to 80
Dock height middle T2 20 to 50
Dock height lower T3 1 to 80
Bilge tank height Hsk 4 to 20
Bilge tank outward extension Hskout 6 to 15
Bilge tank inward extension Hskin 0 to 10
Height of water ballast in operation Hbwo Dependent
Height of water ballast in transit Hbwt Dependent
Dock freeboard in operation Fo 20
Dock draft in operation To 60 to 100
Dock freeboard in transit Ft Dependent
Dock draft in transit Tt 20 to 60

Table 5.1: Lower and upper bounds of the design variables.

(a) Operation. (b) Transit.

Figure 5.4: Design variables illustrated on a funnel shaped dock.
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5.4 Sequential and Randomized Analyses
A test matrix was generated for thorough testing of the design variables between the determined
lower and upper bounds to establish a way to predict piston mode resonance for a funnel shaped
dock. The test matrix was generated in MATLAB by using initial upper and lower bounds to
produce vectors consisting of 9 points between the lower and upper bounds for Di1, Di2, T1,
T2, and T3. These vectors were used to make a matrix with each possible combination (59049
combinations). Combinations where Di1 ≤ Di2, and where the the total height was outside the
interval [80, 125] were removed. The remaining 10296 combinations were each given an unique ID.
A hydrodynamic analysis was run for each of these combinations. The results were used to generate
different models for predicting of piston-mode resonance. 1000 tests with randomly generated points
within these boundaries were run for verification of the models generated. Constant values, because
these do not affect the piston-mode period, for DT, Hskin, Hskout and Hsk were also included in
the test matrix. The initial lower and upper bounds are shown in Table 5.2, and the test points
for the sequential analyses used as training data are shown in Table 5.3.

Table 5.2: Initial lower and upper bounds.

Symbols Initial lower and upper bounds (m)
Di1 30 to 75
Di2 30 to 75
T1 1 to 80
T2 20 to 50
T3 1 to 80

Table 5.3: Test points used in the sequential analyses after unwanted combinations is removed

Symbols Test points (m)
Di1 35.625, 41.250, 46.875, 52,500, 58,125, 63,750, 69,375, 75,000
Di2 30.000, 35.625, 41.250, 46.875, 52,500, 58,125, 63,750, 69,375
T1 01.000, 10.875, 20.750, 36.625, 40.500, 50.375, 60.250, 70.125, 80.000
T2 20.000, 23.750, 27.500, 31.250, 35.000, 38.750, 42.500, 46.250, 50.000
T3 01.000, 10.875, 20.750, 36.625, 40.500, 50.375, 60.250, 70.125, 80.000
Dt 10
Hsk 5
Hskin 0
Hskout 6
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5.5 Gradient-Based Optimisation
The optimisation focused on getting the cost, in this case defined as steel weight, as low as possible
given a set of pre-defined constraints and lower and upper bounds for the design variables. During
the search for optimum docks the dock draft in transit is set to a maximum of 20m, 25m, 30m and
one without a boundary for draft in transit while the piston-mode period in operation is set to a
minimum of 17,19, 21 and 23 seconds and is calculated by the generated gaussian process regression
based model.

5.5.1 Objective Function

In mathematical terms, this may be represented in a way where the goal is to minimize Fx, where
Fx is the objective function that is subjected to a constraint function ~Cix < 0 where each i is a
constraint i = 1, ...n; and the design variables is set between xL the lower and xU the upper bound.
xL < x < xU . The lower and upper bounds for the variables used in the optimisation is shown in
Table 5.1.

The objective function would ideally cover the dock lifetime costs, but is simplified to only include
the cost (weight) of structural steel in this study. This means that the simplified objective function
can be expressed as:

F =
N∑
i=1

f(Di1, Di2, T1, T2, T3. . . , Hsk, ti, ai) (5.1)

where F is the cost, N is the number of components, ti is the thickness of the component and ai is
a factor for the steel price. Thus, the function calculates the volume of steel and multiplies it by a
price factor.
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5.5.2 Assumptions

Some mass assumptions are used in the optimisation after discussion with our supervisor and is
based on earlier work floating dock concept in addition to the steel from the geometry:

• The price of steel is set to 1 [USD/ton]

• The steel used as fixed ballast is scrap steel and is set to 0 [USD/ton]

• The mass of the living quarter is set to 1000 tons.

• The mass of the wind turbine tower is set to 1200 tons which corresponds to a 10MW wind
turbine.

• The number of nacelles in storage is 5 during operation and 0 during transit and has the
weight of 700 tons each.

• The mass of the cranes is set to 5000 tons.

Some assumptions used for the sequential and randomized analyses that the piston-mode period
calculation model used as a constraint in the gradient based optimisation:

• The total mass of the dock is calculated to be equal to the buoyancy caused by the volume
under water.

• For the center of gravity calculation the density of the bilgebox is assumed to be 3600 kg/m3,
while the rest of the mass is even divided over the volume of the steel.

• Approximate formulas for calculating the radius of gyration given the upper and lower dia-
meter of the funnel shaped dock has been made based on early hydrodynamic analyses.

RX = (Di1 +Di2) · ((0.00002345 · ((Di1 +Di2)2))− (0.00792295 · (Di1 +Di2)) + 1.11629446)
RY = (Di1 +Di2) · ((0.00002345 · ((Di1 +Di2)2))− (0.00792295 · (Di1 +Di2)) + 1.11629446)
RZ = (Di1 +Di2) · ((0.00000514 · ((Di1 +Di2)2))− (0.00177414 · (Di1 +Di2)) + 0.69104909)

• The specific product of inertia uses the approximated radius of gyration and the mass calcu-
lated. For example Ix = MASS · (RX)2

The assumptions was used to write the JS files that HydroD reads to start a hydrodynamic analysis.
It used the the parameters that explained the geometry from the test matrix in the sequential and
randomized analyses to calculated the values needed in the JS file. All the cases was in statically
equilibrium since the hydrodynamic analysis automatically stops if it is unbalanced.
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5.5.3 Constraints

Linear and nonlinear constraints are required for the results to be accepted, these constraints
demand:

• That the metacentric height is equal to or larger than minimum required value in operation.

(GMo ≥ 1m)

• That the metacentric height is equal to or larger than minimum required value in transit.

(GMt ≥ 1m)

• That height of side ballast is not larger than what there is room for in operation.

(0 ≤ Hbwo+Hbfo ≤ To+ Fo)

• That height of side ballast is not larger than what there is room for in transit.

(0 ≤ Hbwt+Hbft ≤ Tt+ Ft)

• That the piston-mode period is equal to or greater than minimum required value in operation.

(Tpiston ≥ Tminpiston)

• That the maximum heeling angle less than limits in operation.

η5o ≤ 2deg

• That the maximum heeling angle less than limits in survival.

η5s ≤ 7deg

• That the maximum heeling angle less than limits in transit.

η5t ≤ 2deg

• That it is equilibrium between weight and buoyancy in operation and transit.

(Wo = Bo) and (Wt = Bt)

Figure 5.5: Illustration of metacentric height, center of gravity, center of buoyancy and heeling
angle on a funnel shaped dock.
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5.5. GRADIENT-BASED OPTIMISATION

Figure 5.5 illustrates the metacentric height, center of gravity, center of buoyancy and heeling
angle on a funnel shaped dock which is used in contraint 1, 2, 6, 7, 8 and 9. Refer to chapter
3.2.1 for theory on the hydrostatics of marine structures. The first two constraints (GMo ≥ 1m)
and (GMt ≥ 1m) is required for initial stability for offshore units. Constraint 3 and 4 (0 ≤
Hbwo + Hbfo ≤ To + Fo) and (0 ≤ Hbwt + Hbft ≤ Tt + Ft) are physical limitations so the
dock doesnt calculate more water than what it is room for. Constraint 5 sets a minimum required
piston-mode period which is calculated by the gaussian process regression based predictor model.
Constraint 6,7 and 8 is required to achive stringent stability requirement where the wind speed for
operation and transit condition is set to 36 m/s and 52 m/s for survival condition which is based
on offshore standards [54]. The last constraints (Wo = Bo) and (Wt = Bt) is required for the dock
to float in a given position.
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6 | Method

This chapter describes the fundamental methods of data gathering, software training, the building
of models, analyses and processing of the simulation results. As this thesis is research-based, the
methodology is qualitative, gaining test results through computer programs and their calculations
and simulations.

6.1 Research

As an introductory phase to this project, quite a large amount of time was spent acquiring basic
knowledge of floating offshore wind turbines and hydrodynamic wave theory. One of the authors
wrote a pre-project on this subject, which greatly steepened the learning curves of the remaining
authors. As the authors are all completing their masters within the discipline of civil engineering,
the knowledge of hydrodynamics and marine structures were, as expected, quite limited.

6.2 Software

This chapter describes the different software used to complete this thesis.

6.2.1 HydroD

The DNV-GL-developed HydroD-package is used as a cornerstone of this project. The WADAM-
analyses run by HydroD are used for every single test case. As this software package uses JavaScript
(JS) as its application programming interface (API), the authors benefited greatly from the pre-
project which created JS-models in HydroD. These JS-scripts were further developed to create
model templates used to run the necessary WADAM-analyses.

HydroD was used in the introductory phase of the work, testing all the geometries listed in the test
matrix for a piston mode resonance frequency (PMR). These results were listed and further used
by MATLAB to create a function estimating PMR given any geometries within the constraints.
As the numerous sets of WADAM-analyses were run, the different cases were saved in numbered
case-folders made by CMD [55].

6.2.2 MATLAB

As MATLAB is a ’multi-paradigm numerical computing environment and proprietary programming
language developed by Mathworks’ [56], this programming language is something which needed to be
studied separately. Internet tutorials, trial-and-error through logical assumptions, and previously
coded similar problems by the project supervisor dr. Jiang were the main sources of learning.
MATLAB is a very high functioning application, with a lot of different toolboxes available for
simplification of the coding [57].
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6.2. SOFTWARE

MATLAB was used throughout the work. In the beginning it was used to create JS-files and
batch-files for HydroD to run all test-matrix combinations of the geometries. Later it was used
to read the wave particle transfer function (WPTF) to automatically read the PMR-results for all
geometries. MATLAB was later used to generate a function estimating PMR-values for all possible
geometries, before it was used for the optimisation process.

6.2.3 Windows Command Promt

One of the earliest barriers to be overcome during the data-collection for this project was MATLAB
failing to automatically run the HydroD-package with its WADAM- and analyses. To outmaneuver
this issue, the automated running of HydroD was elected to be done through CMD. Learning CMD
was done in a similar way to MATLAB, with the supervisor being dr. Pan. A batch-file containing
a kill-command for both the WADAM-applications soon appeared to be a necessity throughout the
trial-and-error-phase of CMD-coding.

The windows command prompt was used to overrun HydroD, so that one batch-file, created by
Matlab, would start and run a series of HydroD-simulations automatically. As the computation
times were massive, HydroD-simulations were run simultaneously on multiple computers in the
computer laboratory on the UiA Campus. CMD was used to keep these simulations running and
organizing the files in correct and traceable folders.

6.2.4 Microsoft Excel

Microsoft Office Excel (MOE) is a computer program developed by Microsoft and is a part of
the Microsoft Office-package. The program is based on spreadsheets, where one may conduct
calculations and list data. The program also has a large amount of inbuilt formulae [58]. MOE
may also be used to visualize numbers and statistics through diagrams.

MOE was used for caching data in this project. MATLAB was used to read WADAM-results and
write the results to MOE. The results were then read back into MATLAB for further evaluation
with NNF, GPR and RS.
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6.3. SCRIPT ARCHITECTURE AND PROCEDURE

6.3 Script Architecture and Procedure

The chapter aims to illustrate the script architecture built in JavaScript, Matlab and CMD. Includ-
ing the build-up and sequence of the program-codes and points of manual input and procedures.

6.3.1 Preliminary Analyses

The preliminary analyses consisted of thirteen singular tests in HydroD. One reference and twelve
indicator tests. These tests were run to investigate coherence between design parameters and piston
mode resonance frequency. The JavaScrip-files which input info to HydroD were manually changed
for each test case. This practice was used for a limited number of tests to get a certain familiarity
with the scripting which runs HydroD. Parallel to getting to know HydroD,

Figure 6.1: Early visualization of the planned work flow (January 2020).

6.3.2 Sequential and Randomized Analyses

Having found the set of design parameters which impacted piston mode resonance frequency, a plan
for investigating a function piston mode resonance frequency, given the design parameters, was laid
out. Creating a valid test matrix is the first step to creating a set of multi-variable tests. To ensure
there is a combination of all values for all variables available for simulation, this test matrix was
generated within MATLAB. The test-matrix-code needs inputs of maximum and minimum values
of the tested variables, with a step between the test values. The code will then create an array
for each variable, with its stepped values. The code will then proceed to generate a full factorial
design matrix, where the level of each variable is represented by the number of steps. Further, the
code will continue by analyzing the full factorial matrix and change the values to the represented
values in the variable-arrays.

As it soon became obvious that HydroD kept crashing when called from Matlab, CMD was chosen
for running an automated loop with several HydroD-analyses. This meant dividing the automated
process into segments. Creating the test-matrix and and a set of *.bat-files in Matlab. The *.bat-
files creating test directories, sorting the tests and running HydroD.
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6.3. SCRIPT ARCHITECTURE AND PROCEDURE

Figure 6.2: Visualization of the randomized and sequential analyses.

The *.bat-files were run on several computers, over several days, in room A0314 on UiA campus.
The number of simulations run on each computer were adjusted according to the processing power
of each computer. i9-processors were used for a larger number of tests than i7-processors.

What computers were used for which simulations was at all time logged on a purpose-made piece
of paper to keep control of every simulation. The properties of each computers hardware was also
tracked in the same document. There were two types of computer; one with i7 processor and 16
GB ram, marked with (i7) and the other with i9 processor and 32 GB ram, marked with (i9) in
the document. The document worked as a map over the computer lab, with each row and column
representing one computer with a total of 29 computers. One computer in the room did not work
and therefor got "blacked out" on the map. The document was used to keep track of what tests was
done at which computer, at what time. The figure below shows a part of the full document used
in the analysis process. the full version is to be seen in the Appendix 1. One document was used
for each test-series, and collected to keep track of the progress. The document was filled in with
what number of tests that were run (BAT-file), if it was done and checked. When all simulations
were run, the directories were saved on an external hard drive as a backup for the original file at
the computer. This was also logged in the document consecutively over the test process. The total
data volume reaching an excess of 800 gigabytes. An independent MATLAB-script was used to
automatically read the piston-mode resonance frequencies of each simulation, before writing the
PMR into a new column of the test matrix and caching all data to Microsoft Excel for quicker and
easier access.
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Figure 6.3: Section of the map over the computers used to log the progress of the analyses.

6.3.3 Polynomial Response Surfaces

With the sequential and randomized testing complete, a coherence between design variables leading
to a PMR was explored. This was done through MATLAB, in Curve Fitting Toolbox. This toolbox
allows the user to choose what form of interpolation, extrapolation or regression the user wants to
utilize, and then returns a 3D-plot with statistical figures and deviations. Polynomial regressions of
orders between second and fifth were used, with the polynomial order dependent on the data set size.
A coherence between design variables was then read from the 3D-plots. The response surface scripts
start off by reading the test matrix, with corresponding PMR-values, from an Excel-spreadsheet.
Given this data, the code using regression theory for visualizing the comparison of different design
variables separates the matrix columns into named variable-strings. Using polynomial regression
of the 3rd order, the code combines all design variables in x and y directions, while reading the
corresponding PMR-value and fitting it into the z-direction. This outputs a 3D-plane, visualizing
the impact of changing design variables and their correlation to PMR. All design variables are
plotted against each other, like a round of ‘round robin‘.
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6.3.4 Artificial Neural Network

Deep Learning Toolbox in matlab provides a framework for designing and implementing deep neural
networks with algorithms, pretrained models, and apps. The toolbox nntool has been used in this
study to create an artificial neural network model. Input data from the tests done earlier was
imported and then used for training, testing and validation of the neural network before using it
to simulate new results. Three different algorithms was applied, and then compared to check the
accuracy to the original test results.

The network that was used in the MATLAB nntool consisted of a two-layer feedforward network,
with a sigmoid transfer function working as an activation function in the hidden layer and a linear
transfer function in the output layer. The default number of hidden neurons is set to 10.

Figure 6.4: Artificial Neural network

The tool provides three different training algorithms; Levenberg-Marquardt (trainlm), Bayesian
Regularization (trainbr), Scaled Conjugate Gradient (trainscg). Levenberg-Marquardt (trainlm) is
recommended for most problems, but for some noisy and small problems Bayesian Regularization
(trainbr) can take longer but obtain a better solution. For large problems, however, Scaled Con-
jugate Gradient (trainscg) is recommended as it uses gradient calculations which are more memory
efficient than the Jacobian calculations the other two algorithms use. All of the algorith was testet
and is compared in the result section to evaluate the accuracy of the results.

6.3.5 Gaussian Process Regression

Machine learning uses supervised and unsupervised learning. In this case supervised learning has
been implemented in the form of guassian process regression, GPR. Supervised learning trains a
model on known input and output data so that it can predict future outputs [15].

Similar to ANN, Matlab was used as a tool to create Gaussian Process Regression model aiming
to learn and predict the future data which was suppose to be used in the optimisation-process.

Machine learning algorithms use computational methods to “learn” information directly from data
without relying on a predetermined equation as a model. The algorithms adaptively improve
their performance as the number of samples available for learning increases. A supervised learning
algorithm takes a known set of input data and known responses to the data (output) and trains
a model to generate reasonable predictions for the response to new data. Regression techniques
predict continuous responses [15].

In Matlab, the regression learner toolbox was used to train regression models to predict data
(output) using supervised machine learning. The data set containing input, such as variables,
and output in the form of from the tests done in HydroD was used as input, learning data. The
learning data is used to recognize patterns, so that the tool can generate predictions by its own.
Three different type of algorithms was used for the machine learning; Exponential Kernel (3.7.2),
Matern 5/2 (3.31), Rational Quadratic Kernel (3.32). Therefore, choosing the right algorithm
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requires trading off one benefit against another, including model speed, accuracy, and complexity.
Trial and error is at the core of machine learning—if one approach or algorithm does not work, you
try another[15].Presented below is a flowchart of a typical machine learning procedure:

Figure 6.5: Flowchart, Machine learning procedure [15]

The exact procedure is described below with the following steps[15]:

1. On the Apps tab, in the Machine Learning group, click Regression Learner

2. Click New Session and select data from the workspace or from file. Specify a response variable
and variables to use as predictors. See Select Data and Validation for Regression Problem.

3. On the Regression Learner tab, in the Model Type section, click the arrow to expand the list
of regression models. Here the suited algortihm for the machine learning is choosed.

4. Click train

5. Click models in the History list to explore results in the plots.

The trained machine learning matlab code gets exported and used as a tool to predict future
results based on the training performed in each algorithm for GPR. The result will be evalu-
ated and compared with other types of machine learning methods to see which has the most
accurate future prediction.
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6.3.6 Optimisation

The optimisation-script is based on the function fmincon, built into Matlab. fmincon is a gradient
descent-based optimisation program where there are manual inputs defining the constraints of the
optimisation. Both in regards to geometry of the dock and in number of iterations and function
evaluations. fmincon finds the minimum value for f(x), given a set of constraints defined as:

fmin (x)



A x ≤ b
Aeq x = beq
c (x) ≤ 0
ceq (x) = 0
lb ≤ x ≤ ub

(6.1)

where b and beq are problem boundaries defined as vectors, A and Aeq are problem boundaries
defined as matrices. f(x) is a function which returns a scalar. In this case a steel weight. c and
ceq are nonlinear constraints defined in the function nlcon.m in this work. x, lb and ub are either
matrices or vectors, depending on the case. In this thesis they are used as vectors. fmincon utilizes
the gradient descent algorithm to minimize the function value within the constraints defined. When
fmincon finishes running, it leaves an exitflag as a sort of trace to indicate it’s performance:

• −2 - No feasible point found

• 0 - Number of iterations exceeded options

• 1 - First-order optimum

• 2 - Function change smaller than options

Figure 6.6: Flowchart, visualizing the process of optimisation and plotting of results.

In the script SetGlobalParams.m the user defines global parameters such as upper and lower
bounds for all geometric variables, material densities, global loading to the dock, etc. In the
script runfmincon.m the user defines step-lengths, maximum number of function evaluations and
maximum number of iterations for the optimisation function. In addition, the linear constraints,
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A, Aeq, b and beq are defined within runfmincon.m. Constraints set as linear in this case are for
instance Di1 > Di2, Di1 < 120 or TPiston > 19. The lower and upper bounds of all optimisation
parameters are also defined in this script, although read from SetGlobalParams.m. Within the
script nlcon15.m, c and ceq are defined as nonlinear constraints for the optimisation. Nonlinear
constraints in this case refers to stability in both operational and transit states. Stability refers
to parameters such as center of gravity, center of buoyancy, metacentres and displacements,
to name a few. All of these parameters are calculated using the function values for each iteration
of differentiation, called from different Matlab-codes. For every iteration the program loads an
external code checking the piston-mode period of the geometry. This code takes about two seconds
to load, and significantly reduces processing speeds.

Figure 6.7: Flowchart, visualizing one function evaluation.

When the number of samples as defined inMain_Dock_Opti.m is run, the program looks through
its flag-matrix searching for the number 1, minimum found. As it searches, the code also creates a
parallel string, where the runs which found an optimum are collected. When the string is complete,
the code creates history-matrices for all optimised variables and continues to plot these, with each
iteration from fmincon saved as one step.
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7 | Results

In this chapter the results from the four main steps from the test procedure are presented. This
includes:

• Hydrodynamic analysis from the preliminary study.

• Polynomial response surfaces of the variables, comparison between models using Gaussian
process regression and artificial neural network for the calculation of piston period.

• Gradient based optimisation looking at different optimums found.

• Verfication of the optimums from gradient based optimisation.

Figure 7.1: Illustration of the procedure including the 4 main steps.
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7.1 Preliminary Study
In this section the results from the hydrodynamic analysis from the preliminary study is presented.
Table 7.1 shows a overview over all the results. Hydrodynamic analysis showing the effect on piston
mode by increasing or decreasing one variable individually and comparing it to a reference case is
shown on Figure 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7.

Table 7.1: Variables and results of the Preliminary tests.

Case Di1 Di2 T1 T2 T3 DT Piston Mode

0 (Reference) 40 35 30 30 30 10 22

1 40 35 20 30 30 10 21,5
2 40 35 40 30 30 10 23

3 40 35 30 20 30 10 21
4 40 35 30 40 30 10 23,5

5 40 35 30 30 20 10 21
6 40 35 30 30 40 10 23,5

7 40 30 30 30 30 10 20,5
8 40 40 30 30 30 10 25

9 35 35 30 30 30 10 20
10 45 35 30 30 30 10 24,5

11 40 35 30 30 30 5 22
12 40 35 30 30 30 15 22
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Figure 7.2: Preliminary test showing the effect on piston mode by change in T1.

Figure 7.3: Preliminary test showing the effect on piston mode by change in T2.
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Figure 7.4: Preliminary test showing the effect on piston mode by change in T3

Figure 7.5: Preliminary test showing the effect on piston mode by change in Di2
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Figure 7.6: Preliminary test showing the effect on piston mode by change in Di1

Figure 7.7: Preliminary test showing the effect on piston mode by change in DT
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7.2 Response Surface
This chapter includes polynomial response surfaces, gaussian process regression based models and
artificial neural network based models.

7.2.1 Polynomial Response Surface

This section presents different polynomial response surfaces which show how the different design
variables affect the piston mode resonance period and which design variables has the biggest impact.

Figure 7.8: Polynomial response surface showing how the upper radius Di1 compared to the lower
radius Di2 affects the piston-mode period.

Figure 7.9: Polynomial response surface showing how the upper radius Di1 compared to the upper
height T1 affects the piston-mode period.
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Figure 7.10: Polynomial response surface showing how the upper radius Di1 compared to the middle
height T2 affects the piston-mode period.

Figure 7.11: Polynomial response surface showing how the upper radius Di1 compared to the lower
height T3 affects the piston-mode period.
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Figure 7.12: Polynomial response surface showing how the lower radius Di2 compared to the upper
height T1 affects the piston-mode period.

Figure 7.13: Polynomial response surface showing how the lower radius Di2 compared to the middle
height T2 affects the piston-mode period.

54



7.2. RESPONSE SURFACE

Figure 7.14: Polynomial response surface showing how the lower radius Di2 compared to the lower
height T3 affects the piston-mode period.

Figure 7.15: Polynomial response surface showing how the upper height T1 compared to the middle
height T2 affects the piston-mode period.
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Figure 7.16: Polynomial response surface showing how the upper height T1 compared to the lower
height T3 affects the piston-mode period.

Figure 7.17: Polynomial response surface showing how the middle height T2 compared to the lower
height T3 affects the piston-mode period.
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7.2.2 Gaussian Process Regression

This sections presents comparisons between the results from the hydrodynamic analysis and pre-
dictions from gaussian process regression based models with three different covariance functions.
It also includes a graph of probability density function for the relative error between the models
and the results from the hydrodynamic analysis.

Figure 7.18: HydroD results compared to predictions by the trained model based on Gaussian
process regression with exponential covariance function and a probability density functionr.
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Figure 7.19: HydroD results compared to predictions by the trained model based on Gaussian
process regression with matern 5/2 covariance function and a probability density function.

Figure 7.20: HydroD results compared to predictions by the trained model based on Gaussian
process regression with rational quadratic covariance function and a probability density function.
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7.2.3 Artificial Neural Network

This sections presents comparisons between the results from the hydrodynamic analysis and pre-
dictions from Artificial Neural Netwerk based models. Three different types of models is included.
It also includes a graph of probability density function for the relative error between the models
and the results from the hydrodynamic analysis.

Figure 7.21: HydroD results compared to predictions by the trained model based on artificial neural
network Levenberg Marquardt and a probability density function.
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Figure 7.22: HydroD results compared to predictions by the trained model based on artificial neural
network bayesian regulerisation and a probability density function.

Figure 7.23: HydroD results compared to predictions by the trained model based on artificial neural
network scaled conjugate gradient and a probability density function.
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7.2.4 Comparison of the Trained Models

The figure shows a comparison of all the tested models. The maximum negative value is shown as
"Min" on the figures. The average is calculated with absolute values.

Figure 7.24: Comparison of statistics on the trained models based on gaussian process regression
and artificial neural network.
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7.3 Gradient-Based Optimisation
This section presents three optimum docks found. Figures showing optimum shape, iterations of
variables, iterations of boundaries and the change in shape during early iterations is included.

Table 7.2: Overview of the sensitivity study

Tt=20 Tt=25 Tt=30 Without boundary
Tn=17 Found Skipped Skipped Found
Tn=19 Found Found Skipped Found
Tn=21 Found Found Found Found
Tn=23 Failed Failed Failed Found

Figure 7.25: Illustration of the three optimum docks presented in this section in operational state.

Design variables Symbols A B C
Dock upper inner radius Di1 35 35 35
Dock lower inner radius Di2 35 33.5089 30
Dock thickness Dt 22.4351 12.9717 5
Dock height upper T1 25 25 18.8666
Dock height middle T2 50 50 50
Dock height lower T3 1 1 6.9524
Bilge tank height Hsk 4 4 4.1810
Bilge tank outward extension Hskout 17.1988 12.2525 6
Bilge tank inward extension Hskin 5 0 0
Height of water ballast in operation Hbwo 42.6559 32.6087 0
Height of water ballast in transit Hbwt 0 0 7.7277
Dock freeboard in operation Fo 20 20 20
Dock draft in operation To 60 60 60
Dock freeboard in transit Ft 59 50 16.7850
Dock draft in transit Tt 21 30 63.2150

Table 7.3: Parameters of the three optimum docks presentated (m).
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7.3.1 Main Study

(a) Operation. (b) Transit.

Figure 7.26: Optimum shape of the floating dock in operation and in transit.

(a) Steel weight. (b) Piston period.

Figure 7.27: Iterations of optimisation objective steel weight and constrain piston-mode period.
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(a) T1, T2 and T3. (b) Di1, Di2 and Dt.

(c) Hsk, Hskout and Hskin. (d) Tt, Ft, To and Tt.

Figure 7.28: Iterations of design variables during the optimisation.
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(a) Metacentric height in operation. (b) Metacentric height in Transit.

(c) Remaining space for ballast in operation. (d) Remaining space for ballast in Transit.

Figure 7.29: Iterations of boundaries during the optimisation.
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 4.

(e) Iteration 5. (f) Iteration 6.

Figure 7.30: The first iterations showing how the shape of the floating dock in operation changes.
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7.3.2 Sensitivity Study

(a) Operation. (b) Transit.

Figure 7.31: Optimum shape of the floating dock in operation and in transit.

(a) Steel weight. (b) Piston period.

Figure 7.32: Iterations of optimisation objective steel weight and constrain piston-mode period.
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(a) T1, T2 and T3. (b) Di1, Di2 and Dt.

(c) Hsk, Hskout and Hskin. (d) Tt, Ft, To and Tt.

Figure 7.33: Iterations of design variables during the optimisation.
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(a) Metacentric height in operation. (b) Metacentric height in Transit.

(c) Remaining space for ballast in operation. (d) Remaining space for ballast in Transit.

Figure 7.34: Iterations of boundaries during the optimisation.
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 4.

(e) Iteration 5. (f) Iteration 6.

Figure 7.35: The first iterations showing how the shape of the floating dock in operation changes.
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(a) Operation. (b) Transit.

Figure 7.36: Optimum shape of the floating dock in operation and in transit.

(a) Steel weight. (b) Piston period.

Figure 7.37: Iterations of optimisation objective steel weight and constrain piston-mode period.
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(a) T1, T2 and T3. (b) Di1, Di2 and Dt.

(c) Hsk, Hskout and Hskin. (d) Tt, Ft, To and Tt.

Figure 7.38: Iterations of design variables during the optimisation.
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(a) Metacentric height in operation. (b) Metacentric height in Transit.

(c) Remaining space for ballast in operation. (d) Remaining space for ballast in Transit.

Figure 7.39: Iterations of boundaries during the optimisation.
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3. (d) Iteration 4.

(e) Iteration 5. (f) Iteration 6.

Figure 7.40: The first iterations showing how the shape of the floating dock in operation changes.
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7.4 Verification of the Optimisation Results
This section presents results of hydrodynamic analysis and from wave particle transfer function on
the three optimum dock shapes found with gradient based optimisation. Piston-mode period is
predicted from added mass in heave and from wave particle transfer function. Response amplitude
operator of internal wave elevation is graphed for three points on the internal surface. Wave
particle transfer function is used to make simulations where a grid for the entire internal surface
is investigated. How piston-mode period is predicted from added mass in heave and from wave
particle transfer function is explained in 3.5.5 and 3.5.7.

Figure 7.41: Added Mass in Heave from HydroD when Tt is without boundary. The peak is the
piston-mode period which is 20s.

Figure 7.42: Response amplitude operator magnitude of internal surface points without damping
where the first peak is the natural heave period and the second peak is the piston-mode period and
a illustration of the placement of the offbody points seen from above.
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Figure 7.43: Visualisation of piston-mode period at 21.5s from simulations using wave particle
transer funtion when Tt is without boundary

Figure 7.44: Visualisation of natural heave period at 17s from simulations using wave particle
transer funtion when Tt is without boundary
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Figure 7.45: Added mass in Heave from HydroD when Tt is 20m. The peak is the piston-mode
period which is 18.5s.

Figure 7.46: Response amplitude operator magnitude of internal surface points without damping
where the first peak is the piston-mode period and the second peak is the natural heave period and
a illustration of the placement of the offbody points seen from above.
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Figure 7.47: Visualisation of the piston-mode period at 18s from simulations using wave particle
transer funtion when Tt is 20m

Figure 7.48: Visualisation of natural heave period at 23.5s from simulations using wave particle
transer funtion when Tt is 20m
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Figure 7.49: Added mass in Heave from HydroD when Tt is 30m. The peak is the piston-mode
period which is 18.5s.

Figure 7.50: Response amplitude operator magnitude of internal surface points without damping
where the first peak is the piston-mode period and the second peak is the natural heave period and
a illustration of the placement of the offbody points seen from above.
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7.4. VERIFICATION OF THE OPTIMISATION RESULTS

Figure 7.51: Visualisation of piston-mode period at 18s from simulations using wave particle transer
funtion when Tt is 30m

Figure 7.52: Visualisation of natural heave period at 21s from simulations using wave particle
transer funtion when Tt is 30m
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8 | Discussion

This chapter discuss the four main steps completed to investigate how a parametric design op-
timisation could be carried out for a funnel shaped dock intended for installation of floating wind
turbine. This includes the preliminary study, response surfaces, gradient based optimisation and
verification of the optima found.

8.1 Preliminary Study
The goal of the preliminary study was to investigate coherence between design parameters and the
piston-mode period. A total of 13 tests was carried out; one reference and twelve indicator tests.
The goal of the preliminary tests was to get an insight of how much influence the variables Di1,
Di2, T1, T2, T3 and DT had on the result of piston-mode period. The table 7.1 shows that a
change in Di1 and Di2 has the most significant influence on the piston-mode period, compared
to the other variables. A change in DT don’t influence the piston-mode period at all. This was
expected as the thickness do not influence the inner geometric parameters in a direct manner.
Change of the different heights T1, T2 and T3 did independently influenced the result similarly for
each of the values. The results between the result that are listed in the table of the values below
and above the reference values can be seen in the figures 7.2, 7.3, 7.4, 7.5, 7.6, and 7.7.

8.2 Response Surface
The response surface study investigates how the operational constraint of piston-mode period is af-
fected by changes in design parameters. To visualize the individual impact of the design parameters
on piston-mode periods, the parameters are separated and plotted in pairs as a 3D-surface repres-
enting piston-mode period in the polynomial response surface study. The artificial neural network
and Gaussian process regression studies investigates the possibility of predicting a piston-mode
period based on changes made in the design parameters. All data used for training and testing
of the models should be considered noisy, as the frequency sets consist of data points every 0.5s.
The choice of 0.5s frequency intervals is made due to large amounts of computing time required
for every frequency.
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8.2. RESPONSE SURFACE

8.2.1 Polynomial Response Surface

To visualize the individual impact of the design parameters on piston-mode periods, the parameters
are separated and plotted in pairs as a 3D-surface representing piston-mode period in the polynomial
response surface study. As seen in figure 7.8, the design variables Di1 and Di2 are important for
piston-mode period calculations. The surface looks exponential both along the x- and the y-axes.
With lower Di1 and Di2 clearly leading to a low piston-mode period. When comparing Di1 to
T1 in figure 7.9, it becomes clear that Di1 is still very important with respect to piston-mode
periods of the structure, with the axis representing Di1 having a steeper curve compared to the
axis representing T1. As both Di1 and T1 increase, piston-mode period increases. As seen in figure
7.10 and 7.11 T1, T2 and T3 are of very similar impact to piston-mode periods. This relation is
reasonable as T1, T2 and T3 are all heights, and comparing them to a diameter without inputting
data about the other heights gives a height-diameter chart for all three data sets. In total, a larger
diameter and larger heights give higher piston-mode periods. This is explicable by looking at the
volume of water which needs to move to create a resonating state. Larger upper diameters, with
larger heights (in practice a larger dock) will give a heightened piston-mode period. The exception
is Di1 compared to T3, figure 7.11, where it becomes obvious that the two variables essentially
have nothing to do with each other. T3 is the height where Di2 is applicable and as such it changes
the piston-mode period minimally in relation to Di1.

Comparing Di2 to T1, T2 and T3, as seen in figures 7.12, 7.13 and 7.14, the correlation between
inner diameters and heights is comparable to the ones where Di1 is compared to T1, T2 and T3.
Although it looks similar, one notable difference is how Di2 is closer to an exponential curve. With
lower values leading to a larger piston-mode period. This is the opposite of Di1 and indicates
that a smaller radius in the lower part of the dock will increase the piston-mode period. This
phenomenon may be explained by looking at the principle behind piston-mode, where the wave
energy outside of the dock needs to pass through the bottom of the dock as movement of volume
to induce a resonating state. As the lower diameter is reduced, the cross-sectional area for water
to pass through to get into the dock is reduced. This leads to a need of a larger amount of energy
to create a resonating state.

As one starts to compare T1, T2 and T3 as in figures 7.15, 7.16 and 7.17, it becomes evident that
T1 and T3, seem without correlation. As the heights are essentially dependent on T2 and the
diameters in the top and bottom of this height, the diameters appear to have the largest impact
on piston-mode periods.
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8.2. RESPONSE SURFACE

Gaussian Process Regression

For the Gaussian process regression method of predicting data, three different covariance functions
were tested for predicting piston-mode periods. All three are trained using the sequential HydroD
results and tested using the randomized results. In the left graph of figures 7.18, 7.19 and 7.20 the
blue line illustrates the cases from HydroD, where the calculated piston-mode period is set as the
base for error-calculations from the prediction-model. Red circles illustrate the predicted values
from the gaussian process regression models. The red circles close to the blue line show a small
deviation from the prediction model to the HydroD simulation.

In the right graph of figures 7.18, 7.19 and 7.20 the probability density function as a relative error
is shown. This figure illustrates what percentages of the cases deviate with what magnitude from
the HydroD simulations.

Exponential Kernel

The model based on the exponential covariance function (figure 7.18) shows a smooth curve, without
a large number of points far off the blue line. There are two predictions made in the region of 24s
which are a bit high. In addition there are two predictions which seem a bit low int the areas of
34s and 37s. The precision of the model is reduced as it passes approximately 35s, and especially
after 42 − 43s, where the population density is very low. This does not necessarily have a large
impact on the sensitivity study, as the piston-mode periods discussed fairly far below these values.
As one looks to the probability density function, the largest number of predictions have an absolute
relative error of less than 0.5%. Approximately 58% of the cases are in this part of the probability
distribution. As one widens the absolute relative error to 1.5%, approximately 97% of all predictions
land within this density function. A larger amount of the errors are with positive, meaning the
predicted value is more often higher than the calculated value from HydroD. Overall this is a good
approximation with the best predictions in the areas where the case-density is high.

Matern 5/2

Looking at the model based on the covariance function Matern 5/2 (figure 7.19) the first impression
is a smooth curve. Although there are a few individual predictions which do not fit very well. The
conspicuous cases are about 10 cases which are predicted a bit high in the area between 20s and
25s. For this thesis this is the most important area to predict good values. Compared to the
exponential kernel, the Matern-function predicts the piston-mode periods better in the areas above
35s. This area of piston-mode periods is, however, not the most important in this case. Looking
at the probability density model, it becomes evident that approximately 53% of the cases have an
absolute relative error smaller than 0.5%. Widening absolute relative error to 1.5%, about 97%
of the predictions are within this error margin. The errors are split evenly between negative and
positive values, meaning the model does not always predic too low or too high values. Overall
this is a good approximation, with better predictions in the higher piston-mode periods, where the
case-density is lower.
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8.2. RESPONSE SURFACE

Rational Quadratic

Looking at the statistics for the prediction model based on the rational quadratic kernel (figure
7.20) it looks like a nice and even fit at first glance. However there are a few conspicuous cases
in the regions of 20s to 25s. The errors seem to be divided between positive and negative values,
meaning the model does not consistently predict high or low values. Even though there are both
high and low predictions, these do not come at the same time. For instance, some values are
predicted high at about 20s and 21.5s, before they are predicted low at 23.9s, high at 24s and low
at 24.1s. The model keeps predicting most values within a low relative error, but keeps predicting
some values with errors in this ’s-shape’. The probability density function is very similar to the
one in 7.19, except it shows that the larger absolute relative errors build up in a low prediction,
with the block between negative 1.5 and 2.5 about 50% larger than its positive counterpart. In
total this is a good model, but the relative errors are larger than the two other gaussian process
regression predictor models.
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8.2. RESPONSE SURFACE

8.2.2 Artificial Neural Network

For the artificial neural network result, three different learning algorithms were considered and
compared to the predicted piston-mode periods from HydroD. In the left graph of figures 7.21,
7.22 and 7.23 the blue line drawn from bottom left corner to top right, illustrates the cases from
HydroD, where the calculated piston-mode period is set as the base for error-calculations from the
prediction-model. Red circles illustrate the predicted values from the artificial neural network. In
the right graph of figures 7.21, 7.22 and 7.23, the probability density function as a relative error
is shown. This figure illustrates what percentages of the cases deviate with what magnitude from
the HydroD simulations. The three different figures using the different types of algorithms are
presented and discussed below:

Levenberg Marquardt

The predicted results using Levenberg Marquardt show a relatively smooth and uniform curve,
without too much deviation from the blue line in the left part of figure 7.21. Compared to the
results in GPR, the spread of the prediction made by the network appear to be a bit larger, thus
the more thick spread in the left part of the figure. There are some cases in the area between 21 -
24 seconds and above 35 seconds that are a bit low and do not follow the "curve". But the relative
error confirms that the majority, close to 50 % of the results are close to the blue line. On the other
hand the right figure shows that there is a slight increase of cases with a relative error beyond ±
2,5%, compared to the cases in the area ± 1,5% - 2,5%

Bayesian Regularisation

The model based on the Bayesian regularisation algorithm is presented in figure 7.22. The visual
first impression of this figure is that the predicted values using the algorithm is a bit fuzzy and not
as smooth as i.e. the results in GPR. There is no particular area where the values are more smooth
than not. Although the result did not turn out ideal, the relative error shows that the majority of
the values, just above 50 %, still are within the blue line with a relative error of ±0, 5%.

Scaled Conjugate Gradient

Figure 7.23 shows HydroD results compared to predictions by the trained model based on the
artificial neural network algorithm, scaled conjugate gradient. The predicted result in the left of the
figure are relatively smooth similar to the distribution of the result in figure 7.21, using Levenberg
Marquardt algorithm for the prediction. The relaitve error shows that the deviation between the
result and the blue line are pretty evenly distributed between zero and±2, 5%. This error is not
share any similarity to the previous results using artificial neural networks as a prediction tool.

Using ANN as a prediction tool gives results with decent accuracy. The first two algorithms
presented in this section gave around 50% of its relative error within the interval of zero to ±0, 5%.
The last presented algorithm was not very accurate, but had more of an even spread of the deviation
between the prediction and the result in terms of relative error.
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8.2. RESPONSE SURFACE

8.2.3 Comparison of the Trained Models

While investigating how to best predict piston-mode periods, statistical values for the numerous
approaches have been compared. The data used to train and verify all models, both artificial neural
networks and Gaussian process regressions, are based on data which is not completely smooth. All
simulations run in HydroD which constellate both the training data and the verification data are
run with a resolution of 0.5s. This gives data sets which are to a certain extent pixelated.

From theory it is known that the Gaussian process regression method uses a probability distribution
function to predict outcomes. This approach is known to be good for noisy data. With this
information it is reasonable to expect the Gaussian process regression to produce good results with
small errors (figure 3.16).

Investigating the statistical values of RMSE and R2 for all trained models, the Gaussian process
regression, based on the exponential kernel, stands out. The model boasts both the lowest root
mean square error and a R2 closer to 1. In addition, the lowest relative and absolute errors are
acquired by the use of this model.

This evaluation laid the grounds for using the Gaussian process regression model based on the
exponential kernel for predicting piston-mode periods during the optimisation process.
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8.3. GRADIENT-BASED OPTIMISATION

8.3 Gradient-Based Optimisation
The gradient based optimisation presents the optimum docks found given individually specified
constraints, and makes it possible to investigate how the design variables, the design objective and
the boundaries vary along iterations, and also which constraint that has the greatest impact on a
given optimum found.

8.3.1 Main Study

The optimum from the main study is a dock without boundary for draft in transit, and a minimum
piston-mode period constraint of 21 s. Figure 7.26a and 7.26b shows the optimum shape of the
floating dock in operation and in transit given the constraints. The result shows a funnel-shaped
dock which is really close to the edge out the range of the gaussian process regression based model
for piston-mode period calculations. Therefore the result is close to valid. It is the lightest and
thus cheapest dock found so far, which can be seen by comparing Figure 7.32a, 7.37a and 7.27a,
with the estimated weight of about 0.8x104 tonnes.

8.3.2 Sensitivity Study

The first optimum presented is a dock which has a maximum of 20m draft in transit, and a
minimum piston-mode period of 21 s. Figure 7.31a and 7.31b shows the optimum shape of the
floating dock in operation and in transit given these constraints. The result shows a cylindrical
dock and not a funnel-shaped dock. An explanation for this can be understood by looking at the
first iterations showing how the shape of the floating dock in operation changes in Figure 7.35a to
7.35f and comparing it to the iteration of the design objective in Figure 7.32a and the iterations of
the metacentric height in Figure 7.34a and 7.34b. The figures shows that the optimisation process
first tries to find a funnel shaped optimum since it can give higher piston-mode resonance with
lower weight, but due to the constraints for metacentric height it is forced into a cylindrical dock.
This makes the piston-mode resonance calculated by the gaussian process regression based model
for this dock invalid as the model is only tested for funnel shaped docks and it is therefore outside
the accepted range.

The second optimum presented is a dock which has a maximum of 30m draft in transit, and a
minimum piston-mode period of 21 s. Figure 7.36a and 7.36b shows the optimum shape of the
floating dock in operation and in transit given these constraints. The result shows a vaguely
funnel-shaped dock which is also outside the range of the Gaussian process regression based model
for piston-mode period calculations. The reason is the same as for the optimum found when the
transit is maximum 20m. The constraint for the metacentric height in transit is hard to accomplish
with the funnel shape. By looking at the constraint for piston-mode period in Figure 7.37b and
comparing it to the first iterations showing how the shape of the floating dock in operation changes
in Figure 7.40a to 7.40f it is clear that the funnel shape can give higher piston-mode period in
operation if the draft in transit of the dock is not an issue.
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8.4. VERIFICATION OF THE OPTIMISATION RESULTS

8.4 Verification of the Optimisation Results
The optimisation results are evaluated to verify if the optima found are valid, and which potential
errors exist within the models. The optimisation results show that the piston-mode period found
with wave particle transfer function and from added mass in heave for the three cases presented do
not fit the predictions from the Gaussian process regression based model. The geometry provided
by the optimisation process is outside of the range where the Gaussian process regression model is
trained to predict. The geometry is closer to a cylindrical dock and hence, the piston-mode period
constraint is inaccurate for these optima. The last case where the draft in transit had no boundary
was close to the valid prediction area, and therefore the piston-mode period from the trained model
was closer to the results from wave particle transfer function and from added mass in heave. The
expected optimum shape was a funnel shape, and the trained models were therefore trained with
only funnel shaped docks. This means that the piston-mode period predicted for any other shape
will include an error with unknown magnitude . It is still expected that the funnel shaped docks
will give higher piston-mode periods with lower weight. To further investigate optima for funnel
shaped docks, additional constraints can be added so the optimisation only consider funnel shaped
docks in the range of the trained model. However this would not give say anything about docks
outside the range of the trained model, and is therefore not the best solution. A new model that in
addition to funnel shaped docks also includes bottle shaped and cylindrical docks can be trained
so the piston-mode period for all shapes can be considered. This demands a lot of computing time
but could potentially have the ability to expand the range of the model so that the true optimum
could be found.

8.5 Limitations
There are some weaknesses in this work, som of which are already discussed. An overview over
some of the most important limitations are listed here:

• The simplifications made for the simulations used in the sequential and randomised tests may
cause an unknown amount of errors.

• The Gaussian process regression model is trained to predict piston-mode periods for funnel-
shaped docks where Di1 > Di2 + 5.625 m. The optimisation-constraints of Di1 > Di2
creates an issue, where the predictor-model might be predicting values for geometries it has
not been trained for.

• The operational constraint of piston-mode period is predicted based on test-results from
added mass heave, although the wave particle transfer function regarded as the most direct
representation of the piston-mode period (ref sub-chapter 3.5.7).

• The optimised objective function only takes into account the physical mass of steel. Con-
struction, maintenance or other costs are not included.
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9 | Conclusion

This study investigated how a parametric design optimisation could be carried out for a funnel-
shaped dock intended for installation of floating wind turbines. This was done in four main steps.

• The preliminary study investigated coherence between different geometrical design parameters
and the piston-mode period of the funnel-shaped floating dock. The study revealed the
heights, T1, T2 and T3, in addition to the diameters, Di1 and Di2, to be design parameters
which significantly affect the piston-mode period.

• With this foundation, response surfaces investigating which design parameters are most im-
portant were created, and how the operational constraint of piston-mode period most ac-
curately can be predicted for funnel-shaped docks by comparing different algorithms was
explored. The response surfaces show that a reduction in the lower diameter Di2 and an
increase in the upper diameter, Di1, will increase the piston-mode period. Di1 and Di2 are
the most important design parameters considering the piston-mode period. At the same time,
increasing the height of the dock will slightly increase the piston-mode period. A Gaussian
process regression based model with a exponential covariance function gave the most accurate
predictions compared to results from hydrodynamic analyses. This model shows an average
relative error < 0.75%, a maximum absolute error of 1.3s, a R2-value over 0.9985 and an
RMSE smaller than 0.2.

• The gradient based optimisation presents the optimum docks found given individually spe-
cified constraints, and makes it possible to investigate how the design variables, the design
objective and the boundaries vary along iterations, and also which constraint that has the
greatest impact on a given optimum found. During the iterations the design objective is min-
imized while the function is kept within the constraints. The lightest and, in terms of material
cost, cheapest optimum was found in the main study. This was a funnel-shaped dock with an
approximate mass of 0.8x104 tonnes. For funnel-shaped docks with low draft in transit the
metacentric height appears to be the governing constraint. While the shallow draft in transit
is not a requirement the piston-mode period appear to be the governing constraint. These
constraints have the greatest impact on the optimum design.

• The gradient based optimisation results were evaluated to verify whether the optima found
are valid, and what potential errors exist within the models. The optimisation results show
that the piston-mode period found with wave particle transfer function and from added
mass in heave for the three cases presented do not fit the predictions from the Gaussian
process regression based model. This is because this optimisation is run with the piston-mode
period constraint being predicted for a geometry outside of the trained area and therefore
the optima found are invalid. To solve this problem, a parametric design optimisation for
funnel-shaped, cylindrical and bottle-shaped docks may be carried out by training a Gaussian
process regression model which predicts valid piston-mode periods for these shapes.
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10 | Suggestions for Further Work

This work has investigated the optimum geometry for a floating dock, given a set of operational
and geometrical constraints. The work has found different optima, depending on the constraints.
Although the work has found possibilities for a floating dock, there are limitations in the predictor
models created for piston-mode periods which cause some of the parameters for the optima to be
inaccurate. To further build on this work, the authors present the following possibilities:

• A new predictor model for piston-mode periods could be created, where the constraints of
Di1 > Di2 are not included. This would open the the optimization process for accurately
predicting dock geometries which are not exclusively funnel-shaped. This process would
demand a massive computing time but would potentially have the ability to expand the
range of the model so that true optima with given constraints can be found.

• A life cycle assessment could be conducted to compare the effect of the increase in wind
turbines installed versus the environmental footprint for the life cycle of the floating dock.

• An analysis that investigates the possible increased rate of installations of wind turbines due
to this concept and a cost analysis could be conducted.
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Figure 1: Document used to log the progress of the analyses.
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This m

aster thesis investigated how
 a param

etric 
design optim

isation could be carried out for a 
funnel-shaped dock intended for installation of 
offshore floating w

ind turbines.The study revealed 
that the variables for different height and diam

eter 
affect 

the 
piston-m

ode 
period. 
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G

aussian 
process regression (G

PR
) based m

odel w
ith an 

exponential covariance function gave the m
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accurate 
predictions. The 

optim
isation 

results 
show

ed that the piston-m
ode period constraint 
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as invalid due to the range of the G

PR
 based 

predictor m
odel.
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ow

 can a param
etric design optim

isation be 
carried out for a funnel-shaped dockintended for 
installation of floating w

ind turbines?
-  W
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-  H

ow
 can a response surface be created for       

   certain operational constraints?
-  W

hich constraints w
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   on the optim

um
 design?

-  H
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ill the design objective vary along design   
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Installation of offshore w
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ing task. This technology is sensitive to w
ave exci-

tation during the installation process. The floating 
dock concept has been proposed expand the 
w

eather w
indow

 and avoid delays. The idea is to 
use a dock to shield the a spar platform

 from
 

m
otions caused by w

aves. 

A previous study indicate that a funnel shaped 
dock has the potential to have im

proved perfor-
m

ance in operating sea state.The variables used 
to define the geom

etry of the dock in this study are 
illustrated in the figure below. 

Piston m
ode causes resonance oscillations w
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oves as a rigid body in heave 

direction. 
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esponse surface m
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an interesting output. 

G
radient-based optim
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nator for optim
isation algorithm

s w
hich depend on 

differentiation of variables. G
radient descent is used 

for the optim
isation in this thesis. The m

inim
ization 

is done by iterating gradients of the function. The 
gradients are foundby differentiating w

ith respect to 
every variable.

The study revealed that the heights; T1, T2 and 
T3, in addition to the diam

eters, D
i1 and D

i2, are 
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hich significantly effect the 

piston-m
ode period. A gaussian process regres-

sion based m
odel w

ith an exponential covariance 
function gave the m

ost accurate predictions com
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pared to results from
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ic analyses. The 
optim

um
 found in the m

ain study w
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tion results show

 that the piston-m
ode from
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from
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P based m
odel.
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-  A gaussian process regression m
odel w

ith an 
   exponential covariance gave the m

ost accurate 
   predictions for the operational constraint 
   piston-m

ode period. 
-  For funnel-shaped docks w
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 draft in transit 

   the m
etacentric height appear to bethe govering 

   constraint. W
hile the shallow

 draft in transit is not 
   a requirem

ent the piston-m
odeperiod appear to 

   be the governing constraint. 
-  For a gradient-based optim

isation, the design 
   objective function w

ill be reduced to a m
inim

um
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ithin the defined boundaries and constraints. 

The optim
a found in this study deviate from

 the 
predictions from

 the G
PR

 based m
odel as the 

geom
etry is outside the trained m

odel-area. This 
can be solved w

ith a new
 m

odel w
hich also 

includes bottle-shaped and cylindrical docks

Figure 1  Schem
atic of floating dock consept

Figure 2  Funnel shaped dock

Figure 3  Piston-m
ode oscillation inside a floating dock.
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