
Development of a Semi-autonomous Holonomic Load
Carrier with Multi-camera Perception

Sondre Johnsen
Didrik Efjestad Fjereide

Mikal Sørensen

Supervisor
Morten H. Rudolfsen, UiA

This Master’s Thesis is carried out as a part of the education at the University of Agder
and is therefore approved as a part of this education. However, this does not imply that the

University answers for the methods that are used or the conclusions that are drawn.

University of Agder, 2020
Faculty of Engineering and Science
Department of Engineering Sciences

Abstract

This thesis documents the development
of a load carrier capable of carrying ten
advanced personal robots. The robots
of concern are Segway Robotics’ Loomo,
which are used for education purposes at
the University of Agder. They are used
at multiple locations on campus, and it is
desired to develop a system that can effec-
tively transport them around. The report
covers the concept generation, mechanical
design, electrical design and development
of a navigation system. Figure 1: Loomo rig

A simple and compact design was developed and built. To achieve holonomic drive, the rig
was equipped with four mecanum wheels. A mechanical design process was performed to
come up with a solution for mounting the wheels to the rig. This included design of an axle
and bearing calculations. Additionally, the stability of the rig had to be verified. Further on,
to drive the mecanum wheels, four brushless dc motors were utilized. The system consist of
multiple hardware components, which needed to communicate with each other. The solution
for this is documented in this report.

The rig features three different operating modes: manual control, assistive actuation and
autonomous navigation. Manual control is based on controlling the rig using a hand held
controller. Assistive actuation utilized a motion tracking camera to interpret hand gestures.
These hand gestures can be used to control the rig, without physical contact. The au-
tonomous mode lets the operator set a goal position in a provided map, and the robot will
plan and execute a path accordingly.

Utilization of the Robot Operating System (ROS) frame work in conjunction with the sim-
ulation program GAZEBO and visualization tool RVIZ is elaborated. Semi-autonomous
navigation was achieved in simulation, by utilizing the navigation stack available in ROS.
The robot is considered as semi-autonomous because it relays on instructions from the op-
erator, such as an initial position at start-up and the desired goal position in the map.

A video of the robot is available at: https://www.youtube.com/watch?v=LGs4QlntGkw

The source code is available at: https://github.com/didrif/megatronds

https://www.youtube.com/watch?v=LGs4QlntGkw
https://github.com/didrif/megatrond

Acknowledgements

We appreciate the support and guidance provided by our supervisor Morten Hallquist Rudolf-
sen at the University of Agder, who has given us valuable input and providing resources
throughout the thesis.

We also want to thank the engineers at the mechatronics lab at University of Agder; Carl
Thomas Duus, Roy Werner Folgerø, Jan Christian Strandene and Harald Sauvik, for the
assistance with machining of essential mechanical parts, in addition to their assistance with
training to use necessary equipment, as well as answers to design questions.

Table of Contents

1 Introduction 2
1.1 Background . 2
1.2 Objective . 2
1.3 Report Structure . 3
1.4 System Overview . 4

2 Product Development 6
2.1 Project Management . 6
2.2 Current Rack . 7
2.3 Concepts . 8
2.4 Concept Evaluation . 13
2.5 Concept Details . 14

3 Mechanical Design 15
3.1 Material Selection . 15
3.2 Mecanum Wheels . 17

3.2.1 Force Analysis . 18
3.3 Shaft . 28
3.4 Bearings . 38
3.5 Set Screws . 41
3.6 Weld . 43
3.7 Stability of Loomo Rig . 45

4 Electrical Design 48
4.1 Motor and Gear Sizing . 48

4.1.1 Torque Requirement From Tests . 48
4.1.2 Motor Torque . 50
4.1.3 Drivetrain . 51

4.2 Electronic Speed controller . 56
4.3 Hardware . 57
4.4 System Overall Power Consumption . 59
4.5 Power Supply . 60
4.6 Wiring . 60

5 Modeling 63
5.1 Mecanum Wheel Kinematics . 63

5.1.1 Inverse kinematics . 63
5.1.2 Forward Kinematics . 67

5.2 Robot Operating Systems . 71
5.3 Simulation Model . 72

5.3.1 Robot Model . 72

I

5.3.2 World Model . 75

6 System Architecture 76
6.1 Hardware Communication . 76

6.1.1 CAN BUS Communication . 76
6.1.2 Writing and Reading CAN Messages 78
6.1.3 UART Communication . 80
6.1.4 Publishing and Subscribing over Teensy 83

6.2 Manual Control . 84
6.3 Visual Perception . 85

6.3.1 Camera Placements . 86
6.3.2 Azure Kinect Depth Camera . 87
6.3.3 Depth Image to Laser Scan . 88
6.3.4 Merging Laser Scans . 90

6.4 Transform Configuration . 91

7 Localization and Navigation 92
7.1 Probabilistic Localization . 92

7.1.1 Occupancy Grid . 92
7.1.2 Adaptive Monte Carlo localization 93
7.1.3 Motion Model . 96
7.1.4 Observation Model . 96

7.2 Path Planning . 100
7.2.1 Costmap . 100
7.2.2 Gloabl Planner - navfn . 102
7.2.3 Local Planner - DWA . 104
7.2.4 Recover Behaviors . 106

7.3 ArUco Tracking . 106
7.4 Assistive Actuation . 111

8 Results 114

9 Discussion 120
9.1 Improvements . 121

9.1.1 Safety . 121
9.1.2 Traction . 122

9.2 Further Work . 122
9.2.1 Physical Odomoetry Model . 122
9.2.2 Conversion from Virtual to Physical Model 123
9.2.3 Initial Position . 124
9.2.4 Mode Settings . 124
9.2.5 Battery Pack . 124
9.2.6 Mounting of Cameras . 125

10 Conclusion 126

Appendices 134

A Teensy 3.6 Scripts 135
A.1 Loomo Parking Rig Teensy Program . 135
A.2 Teensy and Xavier two way communication 139
A.3 Publish data from CAN to ROS . 142

A.4 Subscribe data from ROS to CAN . 145
A.5 Publish multi array from Teensy to Xavier (ROS) 146
A.6 Subsrcibe multi array from Xavier (ROS) to Teensy 147
A.7 Hand-Controller only Program . 148
A.8 Write CAN message . 150
A.9 Reading CAN messages . 151

B Inverse kinematic simplifications 153

C Data Sheets 155
C.1 Jetson Xavier Development kit GPIO pinout 156
C.2 S355 material properties - EN 10025 . 159

D Technical drawings 163
D.1 Mecanum Wheels . 164
D.2 Loomo Parking Rig . 165
D.3 Axle . 168
D.4 Outer Wheel Hub . 169
D.5 Inner Wheel Hub . 170
D.6 Support Bracket . 171
D.7 Motor Mount . 172
D.8 Motor Bracket . 175
D.9 Battery Mount . 176
D.10 VESC Mount . 177
D.11 Distributor Mount . 179
D.12 Wireconnection Cover . 182

E Project Management - Gantt chart 185
E.1 Gantt chart - Main . 186
E.2 Gantt chart - Mechanical . 187
E.3 Gantt chart - Electrical . 188
E.4 Gantt chart - Programming . 189

F ROS files 190
F.1 Leap Motion assistive actuation node . 190
F.2 Leap motion launch file . 191
F.3 ArUco Tracking and Navigation goals . 192
F.4 Aruco launch file . 196
F.5 Transform Configuration Tree . 197
F.6 tf-tree . 198
F.7 ROS graph - node structure . 199

G Matlab Calculations 200
G.1 Shaft Analysis (Force diagrams) . 200
G.2 Deflection . 202
G.3 Fatigue - Smith Diagram . 203
G.4 Center of Mass Calculations . 205
G.5 Kinematics verification . 207

H Megatrond workspace setup 209

I Installing Arduino and Teensyduino on ARM architecture 210

List of Figures

1 Loomo rig .

1.1 System architecture . 4

2.1 Draft of first Gantt chart . 6
2.2 Illustration of current rig design . 7
2.3 Illustration of concept 1 . 8
2.4 Traveling configuration . 8
2.5 Loading configuration . 8
2.6 Illustration of concept 2 . 9
2.7 Travel configuration . 9
2.8 Loading configuration . 9
2.9 Illustration of concept 3 . 10
2.10 Stacking configuration . 10
2.11 Stacking configuration . 10
2.12 Illustration of concept 4 . 11
2.13 Concept 4 in the stacking configuration . 11
2.14 Concept 4 in the stacking configuration . 11
2.15 Illustration of Concept 5 . 12
2.16 Concept 5 in a stacking configuration . 12
2.17 Concept 5 in the loading/unloading configuration 12
2.18 Mounting block . 14
2.19 Mounting bracket . 14
2.20 Locking mechanism . 14

3.1 Fully loaded Rig, Deformation scale factor: 200 15
3.2 Partially loaded rig, Deformation scale factor: 200 16
3.3 Mecanum wheel . 17
3.4 Andymark 8" Mecanum wheel exploded view 18
3.5 Shaft torque to resulting force . 18
3.6 Square and cross configuration (Bottom view) 20
3.7 Square and cross configuration forces while rotating in place (Bottom view) . 20
3.8 Mecanum wheel configuration (Top view) . 22
3.9 Forces on a mecanum wheel . 23
3.10 Forces acting on roller from contact surface - Forward (Top view) 24
3.11 Forces acting on roller from contact surface - Sideways (Top view) 25
3.12 Forces acting on roller from contact surface - Rotational (Top view) 26
3.13 Forces acting on roller from contact surface - Diagonally (Top view) 27
3.14 Shaft design . 28
3.15 Wheel suspension . 28
3.16 Forces acting on the shaft in XY-plane . 29
3.17 Bending, shear and normal diagrams . 29

V

3.18 Forces acting on the shaft in ZY-plane . 29
3.19 Bending, shear and normal diagrams . 30
3.20 Deflection figures . 31
3.21 Deflection of shaft . 32
3.22 Amplitude of stress . 34
3.23 Equivalent bending moment . 34
3.24 K factor [1] . 35
3.25 Dimension factor table - b1 [1] . 36
3.26 Surface factor table - b2 [1] . 36
3.27 Smith Diagram example . 37
3.28 Grease refilling interval [2] . 40
3.29 Axial Holding Power Hub . 42
3.30 Torsional Holding Power Hub . 42
3.31 THP Bearing . 42
3.32 THP Gear . 42
3.33 Illustration of weld placement . 43
3.34 CSA of beam with weld . 43
3.35 Illustration of weld position . 45
3.36 Calculation of Center of Mass . 46

4.1 Motor inertia illustration . 52
4.2 Simplified model of Loomo rig . 53
4.3 Wheels with motor and belt-drive . 54
4.4 Timing belt drive . 55
4.5 Teensy 3.6 pinouts [3] . 57
4.6 Dual Can-bus adapter [4] . 57
4.7 SuperFOC6.8 - VESC6 [5] . 58
4.8 MTO 5065 HA 70 Kv [6] . 58
4.9 Jetson AGX Xavier [7] . 58
4.10 Exsys Interface Card [8] . 58
4.11 Battery Vision CP12200 [9] . 59
4.12 Dual Axis Joystick [10] . 59
4.13 Power distribution . 61

5.1 Single mecanum wheel . 63
5.2 Angles with used wheel configuration (Bottom view) 64
5.3 Roller angles (Bottom view) . 65
5.4 Robot inside global reference frame . 69
5.5 A simple ROS network . 71
5.6 Visual property of the URDF . 73
5.7 Collision property of the URDF . 73
5.8 Floor plan . 75
5.9 World model . 75

6.1 CAN Bus network . 76
6.2 PCAN-View . 77
6.3 CAN components connection . 79
6.4 UART devices connection . 80
6.5 Teensy to Xavier UART wiring . 81
6.6 Bus name assignment [11] . 82
6.7 Use of CHMOD . 83
6.8 Two way data transfer . 84

VI

6.9 Hand controller guide . 84
6.10 Realsense Parallel to Ground . 86
6.11 Kinect Parallel to Ground . 86
6.12 Realsense Tilted Downwards . 86
6.13 Kinect Tilted Downwards . 86
6.14 Realsense Titled Upwards . 86
6.15 Kinect Titled Upwards . 86
6.16 Azure Kinect [12] . 87
6.17 Pinhole model [13] . 88
6.18 Ground removal [13] . 89
6.19 Depth image . 89
6.20 Environment in GAZEBO . 89
6.21 Laser scan visualized in RVIZ . 90
6.22 Test environment in GAZEBO . 90
6.23 Merged laser scan visualized in RVIZ . 90
6.24 Transformation between links . 91

7.1 Map of UiA section . 92
7.2 AMCL algorithm example [14] . 95
7.3 AMCL likelihood iteration . 96
7.4 Max range error [14] . 97
7.5 Likelihood example [14] . 98
7.6 move_base overview [15] . 100
7.7 Global costmap . 101
7.8 Local costmap 6x6m . 101
7.9 Example of Dijkstra . 103
7.10 Global plan visualized in RVIZ . 103
7.11 DWA trajectory example . 104
7.12 Local plan visualized in RVIZ . 105
7.13 Recovery behavior flow . 106
7.14 Example of standard ArUco markers [16] . 107
7.15 fiducial_transforms message . 109
7.16 Leap Motion Hand Tracking [17] . 111
7.17 Leap Motion active components placement 111

8.1 Final design - side view . 114
8.2 Top view of configuration . 115
8.3 Localization visualized in RVIZ . 116
8.4 Global plan versus actual position . 117
8.5 DWA local planner . 117
8.6 Reroute due to obstacle . 118
8.7 ArUco marker detection result . 118
8.8 ArUco marker detected in Gazebo . 118

9.1 Bird view of FOV . 121
9.2 Suspension detail . 122
9.3 Suspension proposal . 122
9.4 Azure mounting proposal . 125

VII

List of Tables

2.1 Concept scoring . 13

3.1 The axial forces and bending moments . 38
3.2 Stresses at maximum load location . 38
3.3 Factor to determine force in bearings [18] . 39
3.4 Load capacity set screws . 43
3.5 Results of stability evaluation . 47

4.1 Loomo rig tests . 49
4.2 MTO5065-70-HA specifications . 51
4.3 Power Consumption Components . 59

5.1 Kinematic sign table . 66

6.1 CAN Status Message mode . 77
6.2 ERPM, current and duty cycle message structure 78
6.3 Sensor comparison . 85

1

1. Introduction
In the early stages of automation, mobile robots could not perceive their surroundings due
to the lack of sensors. They had no information about where humans were at any given
time, and because of this, they were typically enclosed inside an area where humans did not
stray. Humans crossed the path of a robot at their own risk. Due to the huge advancement
in sensor technology, robots can now be taken out of their fences and integrated on the
production floor. As a result, human-robot-interaction becomes more critical. Today, the
tables have turned, and it has now become the responsibility of the robot not to collide with
a human. For cooperative work between robots and humans, interaction systems through
the use of advanced sensors and data processing have become vital.

1.1 Background
The University of Agder possesses ten units of Segway Robotics’ Loomo that are used for
educational purposes. A Loomo is an advanced personal robot that is programmable by its
user. Users can create a range of features and practical solutions through access to advanced
sensors and features such as robust motion control, intelligent planning, and obstacle avoid-
ance as well as visual perception [19]. At the university, it is used to spark interest and
emphasize the power of programming in the introductory course for engineers. The devices
are used at several different locations on campus, which requires them to be transported
effectively. A simple transportation rig for the Loomos is available and in frequent use at
the university today. However, the construction is subjected to heavy loads, which makes it
hard to maneuver manually and generally requires two people to operate. Because of this,
the university wishes to develop a new rig with assistive actuation and steering. State of the
art embedded system-on-module and different modern camera sensors are readily available
at the university, and there is a desire to look at the possibility of using these to automate
the rig further.

1.2 Objective
The main objective is to develop a load carrying vehicle, which can efficiently transport the
ten Loomos used for educational purposes. The vehicle must be equipped with assistive
actuation and should have a low level steering mechanism, such as a hand-held controller,
in order to provide easy manual control. In addition, the rig should be able to follow a
designated person, object or Loomo. An evaluation of a solution for autonomous guidance
should be performed. For instance a feature which lets the user order, or request the rig to
a specific location at the university.

The rig must be able to enter a designated storage room. The room is located in a quite
narrow hallway, which set the following size requirements for the design:

• Width: 850mm

• Length: 1750mm

• Heigth: 2000mm

2

An additional feature is desired for the rig. It should be possible to lock the Loomos to the
rig. Preferably the locking system should be universal, so that all Loomos are locked by one
lock.

1.3 Report Structure
The complete system documented in this report includes a wide range of subjects and to
give a complete overview of the thesis, the report structure and a short summary of each
chapter is presented in this section.

Chapter 2: Product Development

The product development chapter covers the technique used to generate a feasible idea for
the design of the rig. This includes detailed descriptions of the evaluated concepts and the
additional extension features included in the final design. Additionally, a brief overview of
the project planning and execution is presented.

Chapter 3: Mechanical Design

The third chapter focus on the design of necessary mechanical components to realise the
chosen concept. Evaluation of material selection, shaft design, bearing lifetime calculations,
and weld durability are covered. Additionally, an introduction to mecanum wheels as well
as a detailed force analysis for the wheels is documented in this chapter.

Chapter 4: Electrical Design

The electrical design chapter concentrate on the required components to motorize the rig.
The selection and functionality of speed controllers and brushless DC motors are covered
together with the drive train sizing. Verification of the power source and overall power
consumption of the electronic hardware component is performed.

Chapter 5: Modeling

In the modeling chapter, the kinematic constraints of a mecanum wheel is derived. Further
on, the process of creating a simulation model of the plant is documented. Also, the software
used to develop the simulation model and the framework for the overall robot system is
introduced in this chapter.

Chapter 6: System Architecture

The communication interface created between the hardware components are covered. This
involves communication between the processing unit and the base controller, as well as
the communication from the base controller to the motors. The techniques used are UART
communication and CAN-bus communication, and both are described. Further, the methods
concerning the perception of the environment are presented. This deals with the selection
and placement of the perception sensors, as well as the processing of the perceived data and
the space transforms in order to relate it correctly.

Chapter 7: Localization and Navigation

The localization and navigation chapter aims to cover the features used to achieve the over-
all functionality of the navigation system. Two navigation modes are presented. ArUco

3

tracking and following, as well as a semi-autonomous navigation. For the latter mode, map
generation, solving the localization problem and path planning is documented. Lastly, a
method of assistive actuation by the use of hand gestures is presented.

Chapter 8: Results

The results chapter present the results obtained throughout the project.

Chapter 9: Discussion

The discussion chapter contemplate the achieved results. It also elaborates factors which
could have been done better and recommendations for future work.

Chapter 10: Conclusion

This chapter draws a conclusion from the achieved results and discussion.

1.4 System Overview
This section aim to give a brief overview of the system as a whole. The system consist of
multiple advanced sensors and software modules. To get an understanding of their purpose
in this project, a block diagram is presented in Figure (1.1).

Computer

Motor

Motor

Motor

Motor

ESC

ESC

ESC

ESC

Micro-

controller

Depth

camera

Depth

camera

Depth

camera

Depth

camera

PCIe card

Assis�ve mode

Naviga�on

Autonomous mode

Odometry informa�on

Map

Hardware architecture

Depth camera

informa�on

So�ware architecture

Hand controller
Tracking

camera

Localiza�on

Tracking camera

informa�on

Base controller

Depth camera

informa�on

Aruco trackingGesture tracking

Manual mode

Mecanum

wheel

Mecanum

wheel

Mecanum

wheel

Mecanum

wheel

Human following Goal

Figure 1.1: System architecture

4

The body of the robot consist of a steel frame, which is equipped with four mecanum wheels.
Due to the geometry of mecanum wheels, the locomotion mechanism enables the vehicle to
achieve omni-directional movement. A processing unit serves as the brain of the system and
will process, send, and receive information from sensors and to actuators. Connected to the
computer is a microcontroller, which serves as the control unit. The control unit is connected
to four electronic speed controllers, which control the four brushless dc motors that provide
motion for the rig.

The robot consist of three modes: manual, assistive and autonomous mode. The manual
mode is a low level controller which bypass the navigation system to provide simple control
of the robot. The assistive actuation rely on a tracking camera to interpret gestures based
on hand pose, which are further processed and forwarded to the base controller. The base
controller handles the kinematics of the robot and converts linear velocity commands into
rotational velocity for the wheels. The base controller is implemented on the micro-controller.
The autonomous mode lets the operator set a goal position in a map, and the robot will
attempt to reach it. The mode has an additional feature, which is to follow an aruco marker.
Four depth cameras are used to perceive the surroundings to avoid collision. The perception
data is also used to localize the robot in the known map.

5

2. Product Development
The parking rig should be able to enter an allocated storage room which requires the frame
to be small. For that reason, some requirements regarding size had to be defined when
developing concepts for the framework. This section will present five different design concepts
for a parking rig module. These concepts will further be evaluated, and result in a concept
for development.

2.1 Project Management
At the start of the project, the overall task was defined and delineated. It was then decided
that the project should be divided into three phases. The first phase covers the mechanical
design and development of the Loomo rig. This includes mechanical calculations to verify the
feasibility of the chosen design, but also the process of building the physical rig. In the second
phase, the electrical design, selection and installing of electrical components, programming
and rig control is going to be added to the mechanical construction. The third, and last
phase, multi-camera perception, localization and navigation for the physical model is going
to be realised.

In the initial stage of the thesis, a Gantt chart to distribute the resources was created. Figure
(2.1) shows the draft of the first Gantt chart of phase one. The main chart highlights the
entire project period with the main tasks. At the start of each of the three phases a sub
chart was created to highlight the main focus for resources and tasks at hand. By using the
three sub charts, key tasks were broken down to ensure each part was consider. By utilizing
sub charts internal deadlines are made to keep progress. A finalized Gantt chart of each
individual phase are found in their respective section in Appendix (E). In addition, a Gantt
chart giving an overview of the whole project plan is also present.

Figure 2.1: Draft of first Gantt chart

6

2.2 Current Rack
A simple storage unit for the Loomos already exists; however, there are some disadvantages
to the current design. The size of the rig is almost at it’s most permissible, and this makes
it hard to maneuver the vehicle into the designated product development room. When
developing the new design, the size should be optimized with respect to length and width.
Due to the narrowness of the hallway, the length of the storage unit is the most crucial
factor. With that said, a reduction in width would make it easier to steer the vehicle into
it’s allocated space. Further on, the Looms are currently suspended from a hook and have
no additional support, which causes the devices to wobble during transportation. For this
reason, a suitable support mechanism should be developed for the improved rig. Due to
the significant weight of the construction, the current rig is hard to maneuver and requires
two persons to operate. To facilitate the operator of the rig, there is a desire to replace the
current wheels with a motorized drive system to lay the groundwork for assisted handling
and autonomous operations. The current rig design can be viewed in Figure (2.2).

Figure 2.2: Illustration of current rig design

The current dimensions of the rig are: 2000× 850× 1350mm. The new design should take
into account that the rig will be modified at a later stage with the addition of a charging
system for the Loomos. It should also be arranged for a battery system.

7

2.3 Concepts
This section will present the concepts individually, exploiting their features and how they
solve the issues regrading the current rack.
Concept 1

This concept focuses on minimizing the
width of the frame by stacking the Loomo
devices in a row configuration. The width
of this design is 650mm while the rig’s
length is reduced to 1800mm. Config-
uring the devices in this manner ensures
that the mass is centered on the con-
struction, which means there is a low risk
of sideways toppling if the rig is loaded
unevenly. To get an impression of how
much material is used, and thereof also
the price, the weight of the construction
is evaluated. The weight of this design is
approximately 90 kg. Concept 1 is illus-
trated in Figure (2.3). Figure 2.3: Illustration of concept 1

The concept features a mechanism that lets the user slide the lower section to the right
and the upper section to the left. This facilitates easy loading/unloading of the devices and
does not restrain the mounting sequence. With this design, the devices are easy to mount
regardless of which section is loaded first/last. The sliding feature allows for a low height of
the frame because the vertical direction can be quite compact when traveling and slides to
the side when mounting. A mechanical lock serves to immobilize the sliding during traveling.
The sliding mechanism is illustrated in Figure (2.4) and Figure (2.5). To secure the devices
to the vehicle, customized stands are used, which are made such that the Loomos can be
placed on top of them. In addition, the lifting handle of the Loomo is attached to a bracket
to keep it in place. The design in this concept has medium complexity because of the sliding
ability and introduce some challenges with regards to electrical wiring and central locking
of the Loomos. When locking the devices, it is favorable to use as few locks as possible.
Because the Loomos are aligned, a central locking system would be simple to implement,
however, the sideways freedom would require at least two locks, one for each section.

Figure 2.4: Traveling configuration Figure 2.5: Loading configuration

8

Concept 2

This concept also minimizes the width
of the frame by stacking the devices in
a row configuration. The width of the
frame is 650 mm whereas the length is
1900mm. The weight of the construction
itself is approximately 132 kg. Configur-
ing the devices in this manner ensures
that the mass is centered on the construc-
tion, which means there is a low risk of
toppling sideways during traveling. The
concept described in this section can be
seen in Figure (2.6). Figure 2.6: Illustration of concept 2

This design features two configurations, a loading/unloading configuration and a traveling
mode. The two modes can be seen in Figure (2.7) and Figure (2.8) respectively. To change
between the modes, a mechanism for simultaneous lowering and rotation is proposed. A screw
jack provides vertical movement, whereas a rack and pinion system produces a rotational
motion. When the rotational arm is rotating, gravity keeps each row of Looms parallel to
ground at all times. The purpose of the design is to grant easy access when loading/unloading
the Loomos from the storage unit. In the lowered position, the lifting height required for
placing a Loomo onto the storage unit is minimized. This provides an ergonomic position
for the operator while loading and unloading the storage unit. Loomos are stabilized on a
mount together with a bracket holding the lifting handle in place to secure the Loomos in a
vertical position. This design is classified as a high complexity concept. Due to the vertical
and rotational movement, electrical wiring and central locking may introduce challenges.
Moving between the two modes will also require an additional motor, which further increases
the complexity.

Figure 2.7: Travel configuration Figure 2.8: Loading configuration

9

Concept 3

To minimize length and width of the stor-
age unit, the Loomos are placed in a con-
figuration that combines longitudinal and
traverses mounting, as shown in Figure
(2.9). The length of the frame is 1550mm,
and the width is 750mm, which makes
this the smallest concept. The weight of
the construction is approximately 75 kg. Figure 2.9: Illustration of concept 3

The concept utilizes the lifting handle attached to each Loomo to keep them in place on the
storage unit. With the storage unit simplicity, it is manually loaded/unload by lifting each
Loomo carefully onto the holding bracket. By their self-weight, the Looms stay attached to
the rig. With the handle being curved, the loomo may move sideways during any transporta-
tion because of their placement on the vertical beams. In order to keep the Loomos in a
stationary position during traveling, a supporting beam which is in contact with the wheels
is added. The design has a low complexity, which is favorable considering the manufactur-
ing process. Because the Loomos are stacked quite compact, a specific loading sequence
may be required when loading the rig. Considering that the Loomos are mounted statically
to the frame, electrical wiring is easy to establish. Contrarily, due to the combination of
longitudinal and transverse mounting, central locking may become challenging.

Figure 2.10: Stacking configuration Figure 2.11: Stacking configuration

10

Concept 4

This concept minimizes the length and
width of the storage unit and features
a simple mounting mechanism. The
Loomos are stored in two heights where
each row consists of five looms stacked in
a row arrangement. A length of 1750mm
and a width of 750mm is achieved by
stacking the devices in this manner.
Lastly, the construction for this concept
weight roughly 70 kg. The design can be
viewed in Figure (2.12). Figure 2.12: Illustration of concept 4

The frame is equipped with a vertical frame containing three load-carrying beams. Each
vertical beam is equipped with four holding brackets apart from one, where only two Loomos
are attached. To increase the Looms stability during moving, a support beam for each device
is mounted strategically to the vertical beams. The support is in contact with the wheels
and prevents the unit from wobbling. The design has low complexity and provides the
desired improvements concerning size and mounting stability. Traverse mounting of the
devices requires some arm extension to attach the Loomos on the storage unit and may
result in unfavorable lifting positions for the operator. Further on, the electric wiring is
easily achieved because the concept features static mounting of the Loomos. Additionally,
the devices are aligned in a row, which provides for easy implementation of a locking system.

Figure 2.13: Concept 4 in the stacking
configuration

Figure 2.14: Concept 4 in the stacking
configuration

11

Concept 5

This concept is designed to reduce the
length as well as the width of the parking
rig. The volume is effectively utilized by
stacking five Loomos on each side, where
four are placed in a square configuration,
and the fifth centralized between them.
The result of this configuration is a length
of 1615mm and a width of 750mm. The
construction weighs approximately 80 kg. Figure 2.15: Illustration of Concept 5

To ensure that the Loomos are stationary during transportation, each Loomo has a docking
block to rest upon. In addition, a bracket is mounted to secure the Loomo on the rig by
its lifting handle. The Loomos are stacked relatively compact, which means that some slots
may be hard to access if the surrounding slots are occupied. However, the compact and
symmetrical configuration facilitates easy electrical wiring and central locking.

Figure 2.16: Concept 5 in a stacking con-
figuration

Figure 2.17: Concept 5 in the loading/un-
loading configuration

12

2.4 Concept Evaluation
A scoring technique was used to choose between the five generated designs. Concept scoring
is an excellent method for choosing between multiple concepts and bases the result on an
analysis in which the factors are weighted and given ranks. The concepts are judged based on
eight evaluation criteria. The most weighted criterion is the size, which considers the length
and width of the frame. The next criterion is complexity and concerns how challenging the
rig is to construct, for instance, how many movable parts and the geometry of the parts.
Another essential factor is to consider how stable the units are mounted to the rig, and this
is evaluated with the unit support criterion. How much the rig weights is also important
because this has a direct link to the power required to run the platform. To facilitate easy
mounting of the Loomos, the concepts are also rated based on how easy the Loomos are to
attach/detach and how compact the devices are stacked. If the Loomos are stacked very
compact, this may require a specific loading/unloading sequence, and this is evaluated with
the stacking sequence criterion. Next, the concepts are evaluated based on how well they
relief the operator from unfavorable lifting positions, which is taken into account with the
ergonomic criterion. Lastly, the concepts are ranked based on how easy it is to achieve a
locking system and electrical wiring. When performing the scoring process, all the evaluation
criteria were worked across, i.e all the concepts were ranked by size, then complexity and so
on. The scoring results can be seen in Table (2.1).

Concept 1 Concept 2 Concept 3 Concept 4 Concept 5

Evalua�oncriteria Weight Rank
Weighted

score
Rank

Weighted

score
Rank

Weighted

Score
Rank

Weighted

score
Rank

Weighted

score

Size 30 2 60 1 30 5 150 3 90 4 120

Complexity 20 2 40 1 20 4 80 5 100 3 60

Unit support 15 4 60 3 45 2 30 1 15 5 75

Weight 10 2 20 1 10 5 50 4 40 3 30

Weight distribu�on 10 4 40 5 50 1 10 3 30 2 20

Stacking sequence 5 4 20 5 25 2 10 1 5 3 15

Ergonomity 5 4 20 5 25 2 10 1 5 3 15

Wiring & locking 5 2 10 1 5 3 15 4 20 5 25

Total score 270 210 355 305 360

Proceed? No No No No Yes

Table 2.1: Concept scoring

The most suitable concept came to be concept 5 because it was concluded to be short in
length, simple and symmetrical.

13

2.5 Concept Details
Once a concept was chosen, the details concerning mounting and locking were further devel-
oped.

Loomo stand

The Loomos are designed with the ability
to be stored vertically. A support block is
designed for the Loomo unit to stand on.
The design utilizes the Loomos flatspots
on the underside, which provide good sta-
bility. Two support blocks is mounted
one each side of a metal transverse bar,
as shown in Figure (2.18). Figure 2.18: Mounting block

Mounting bracket

In addition to the support blocks which
the Loomo stands on, an attaching device
was mounted, as seen in Figure 2.19. The
mechanism consists of the main bracket
(purple), a guide block (green), which
guides the lock ring (red) around the lift-
ing handle of the Loomo.

Figure 2.19: Mounting bracket

Locking mechanism

To prevent unauthorized personnel from
accessing the devices, a locking system
was designed. Preferably, the mechanism
should be able to lock all devices simulta-
neously and require as few locks as pos-
sible. The developed mechanism con-
sist of six rotatable shafts, two for each
row and connecting links between them.
When the upper shaft is rotated, the links
will apply the same rotation to the other
rows and enables synchronous rotation. A
hook is mounted to the rotating shafts,
and will connect to a knob on the lock
ring, which will prevent the ring from
opening.

Figure 2.20: Locking mechanism

14

3. Mechanical Design
The mechanical design chapter focuses on the design of necessary mechanical components to
realize the selected concept. Evaluation of material selection, shaft design, bearing lifetime
calculations,and weld durability are covered. Additionally, an introduction to mecanum
wheels as well as a detailed force analysis for the wheels is documented in this chapter.

3.1 Material Selection
The material for the frame was selected based on the available material at the university. The
material is of type structural steel with a square hollow section of 40×40mm and a thickness
of 3mm. The minimum yield strength of the material is 355MPa. To verify that the chosen
material was suitable for the application, a finite element method analysis was performed
using ABAQUS. The final concept was created as a shell structure in SOLIDWORKS and
imported to ABAQUS as a single part.

Two load cases were analysed, one scenario when the rig is fully loaded and one scenario
where the rig is only loaded with Loomos on a single side. The load from each Loomo was
applied to a multi-point constraint (MPC) with beam type. The MPC constrains the slave
nodes of a region to a single point. Further on, the load was applied to this point. When
loading the rig fully, the maximum stresses in the construction are located at the contacting
corner of the supporting bracket. The value of the stress is approximately 37MPa, which is
far from the minimum yield strength. The results can be seen in Figure (3.1).

(Avg: 75%)

SNEG, (fraction = −1.0)

S, Mises

+1.50e−10
+3.04e+00
+6.07e+00
+9.11e+00
+1.21e+01
+1.52e+01
+1.82e+01
+2.13e+01
+2.43e+01
+2.73e+01
+3.04e+01
+3.34e+01
+3.64e+01

X

Y

Z

Figure 3.1: Fully loaded Rig, Deformation scale factor: 200

15

When partially loading the rig, the maximum stresses in the construction are also located in
the support bracket. However, the stress is slightly higher and has a value of approximately
63MPa. Still, the results are far below the maximum limit. The results can be seen in
Figure (3.2).

(Avg: 75%)

SNEG, (fraction = −1.0)

S, Mises

+3.55e−11
+5.23e+00
+1.05e+01
+1.57e+01
+2.09e+01
+2.62e+01
+3.14e+01
+3.66e+01
+4.19e+01
+4.71e+01
+5.23e+01
+5.76e+01
+6.28e+01

X

Y

Z

Figure 3.2: Partially loaded rig, Deformation scale factor: 200

16

3.2 Mecanum Wheels

The vehicle in this project is equipped with four mecanum wheels to maximize the rig’s
mobility. A mecanum wheel is a locomotion mechanism with three degrees of freedom (DOF);
rotation around the wheel axle, around the rollers, and the contact point. The mechanism
functions as a conventional wheel, but it also has low resistance in the lateral direction. The
effect of utilizing mecanum wheels is that the vehicle can move in all directions and rotate
independently, also referred to as omnidirectional movement. An image of a mecanum wheel
can be seen in Figure (3.3).

Figure 3.3: Mecanum wheel

The omnidirectional behavior is possible because the wheel’s external circumference is equipped
with multiple rollers that are inclined relative to the axis of rotation. Each roller can rotate
freely, and depending on the rotational direction of the wheel, the rollers will apply an axial
force to the contact surface and push the wheel to either side. By mounting the four wheels
in a specific configuration, holonomic drive can be achieved. To utilize the holonomic ability
of mecanum wheels, the system requires one motor for each wheel. All wheels are driven
individually, and by controlling the rotating direction in a specific manner, omnidirectional
movement is obtained. The main disadvantages of adding the extra degrees of freedom are;
an accumulation of slippage, tendencies for reduced dead-reckoning accuracy, and increased
design complexity. [20]

The mecanum wheel selected for this project is an 8" wheel from AndyMark. This wheel
has a maximum load capacity of approximately 225 kg, per wheel. On the circumference of
the wheel, 12 rollers are mounted at an 45◦ angle. The rollers are molded with a nylon core
surrounded by polyurethane which ensures high durability and traction. Further on, the
roller rotates on a brass axle tube contained by a screw passing through it. The core of the
wheel consist of poly-carbonate and features steel plates riveted on the side. An exploded
view of the mecanum wheel assembly is shown in Figure (3.4). [21]

17

Figure 3.4: Andymark 8" Mecanum wheel exploded view

3.2.1 Force Analysis
The dynamics of a mecanum wheel allows it to create a driving force in both the x- and
y-direction when torque is applied to the axle. It is due to the orientation of the rollers that
the resulting force on the wheel’s shaft is acting at an angle [22]. This force is shown in
Figure (3.5) as F2, where F1 and F3 are the decomposed force components. By having an
angle of α = 45◦ the force components will always be an equal pair. However, their directions
may vary. Hence, |F1| = |F3| becomes true for this instance.

Ta

F1

F3

F2

�

�

Y

X

X

Z

F1

Ta

r

Figure 3.5: Shaft torque to resulting force

18

The relation between F1 and F2 is used in conjunction with Figure (3.5) in order to derive
the relation between the applied wheel shaft torque and the resulting roller forces. The
relations are shown in Equation (3.1) - (3.3).

F1 = Ta
r

(3.1)

F3 = F1 = Ta
r

(3.2)

F2 =
√

2Ta
r

= F1

cos(α) = F3

cos(α) (3.3)

where:

Symbol: Description: Value: Unit:
F1 - Tangential force component ∼ N
F2 - Total force from applied torque ∼ N
F3 - Axial force component ∼ N
Ta - Torque applied to wheel shaft ∼ Nm
r - Wheel radius with roller ∼ m

Before evaluating the forces acting on each wheel, the mounting configuration has to be
determined. There are multiple possible configurations which yields a omnidirectional drive.
However, their omnidirectional motion capacity differs. There are two configurations which
are the most common for use in scientific research and industrial applications [23]. These
are going to be evaluated, and are going to be denoted as the square and cross config-
uration. When discussing the different wheel configurations, they are described from a
worm-perspective. More specifically, from the ground up. This view is selected since their
differences are better emphasised from this perspective, as these configurations flip when
viewed from the top down. It should be noted that this is the only time that the worm-
perspective is going to be applied in this chapter. In Figure (3.6) the two configurations
are shown. The square configuration creates a square with the lines created by following
the roller’s angle to where they intersect. Whilst the cross configuration creates a cross by
following where the adjacent wheel pair intersect. Hence, the reason for their names. Both
configurations achieve omnidirectional ability. However, the square configuration can cause
loss of omnidirectional ability. This occurs if the rollers intersects into a single common
center. I.e, when the wheels are mounted into a square with equal width and height. This
occurs due to the kinematic system matrix transforming into a matrix of not full column
rank [23]. Thus, all terms in the column affecting the change in angle becomes zero.

19

Square Cross

Figure 3.6: Square and cross configuration (Bottom view)

��

��

��

��

����

����

��

��

��

��

��

��

��

��

��

��

��

��

��

��
��

��

left right

Figure 3.7: Square and cross configuration forces while rotating in place (Bottom view)

The dynamic principles of the two wheel configurations presented are almost identical. They
only differ when it comes to rotation around its own axis. In order to evaluate the difference
between them, the forces required to rotate in counter clockwise are added as shown in
Figure (3.7). Then the differences are evaluated by applying the figure and calculating the
sum of moments about the center of rotation. The square and cross configuration moments
are calculated in Equation (3.4) and Equation (3.5) respectively, where h > w.

∑ +
x
T left = wFt + wFt + wFt + wFt + hFa + hFa + hFa + hFa (3.4)

⇓

∑ +
x
T left = 4wFt + 4hFa

20

∑ +
x
T right = −wFt − wFt − wFt − wFt + hFa + hFa + hFa + hFa (3.5)

⇓

∑ +
x
T right = −4wFt + 4hFa

where:

Symbol: Description: Value: Unit:
∑ +

x
T left - Sum of moments about center (square) ∼ Nm

∑ +
x
T right - Sum of moments about center (cross) ∼ Nm

Ft - Tangential force ∼ N
Fa - Axial force ∼ N
w - Width moment arm from center ∼ m
h - Height moment arm from center ∼ m

As emphasized in Equation (3.4), the cross configuration produces moments working against
the wanted rotation, while from Equation (3.5) the square configuration does not. Thus, the
latter configuration is selected, since it is more effective. In addition, as previously discussed,
the loss of omnidirectional ability can occur for the cross configuration. It can be seen that
if; w = h, the sum of moments will always become zero. Hence, eliminating the possibility
of rotation about center, since α = 45◦, Ft = Fa.

Lastly, the measured length of the Loomo rig is used in order to check the torque difference
between the two configurations and how the selection affects the Loomo rig. This is going to
be done by calculating the ratio applying the measured width and height values in Equation
(3.6). The calculation shows that by selecting the square configuration, the Loomo rig will
rotate with a torque sum which is about 2.6 times stronger.

k =
∑ +

x
T left

∑ +
x
T right

= h+ w

h− w
(3.6)

where:

Symbol: Description: Value: Unit:
k - Moment strength difference 2.63 −
w - Width moment arm from center 0.285 m
h - Height moment arm from center 0.635 m

Figure (3.8) illustrates how each individual wheel has to be controlled according to the
chosen configuration, in order to obtain specific motion. These are shown in bird-perspective.
Specifically, from the top, viewing down towards the ground.

21

(a) Forward (b) Reverse (c) Left (d) Right

(e) Clockwise (f) Counter-clockwise (g) Diagonal left (h) Diagonal right

Figure 3.8: Mecanum wheel configuration (Top view)

When designing a drive train for a mobile system, it is important to evaluate the torque
required to move the platform. If the motor is not able to provide enough torque to the
system, the motor may stall or stop. The total weight of the construction is 320 kg, however,
the weight is assumed to be 400 kg to ensure that the calculations are conservative. The
assumption made implies a safety factor of 1.2. It is also necessary to specify the operating
environment of which the product is designed for. More specifically, it is crucial to consider
whether the platform is to be used on flat ground or in slopes, as the latter requires more
torque. For this project, the vehicle is limited to planar movement and is not designed to
operate in slopes.

Assuming that the total weight of the vehicle is equally distributed between the four mecanum
wheels, the torque acting on each wheel can be examined separately. Generally, static friction
has to be overcome when an object is transitioning between the state of rest to motion. As
soon as the object is in motion, the kinetic friction comes into play. For a wheel, the static
friction prevents the wheel from sliding along the surface, resulting in the wheel rolling. When
examining rolling elements, traction is also introduced. This is described as the amount of
force a wheel can apply to a given surface before it slips. The following analysis does not
take into account slippage between the rollers and the contact surface, which means that
all applied toque is converted into traction force for the wheel. Further on, the kinematic
friction for a wheel is known as rolling friction. This type of friction is defined as the restive
force that slows down the motion of a rolling ball or wheel. [24]

Although mecanum wheels provide impressive maneuverability and mobility of a vehicle,
the locomotion mechanism is prone to shifting of the mass center. If the mass center is
substantially shifted, it will influence the force distribution on the wheels and may lead to
inadequate control of the motion.

22

A set of equations are derived to evaluate the force requirements for allowing omnidirectional
movement. These were evaluated as the sum of forces in their respective plane of action. In
Figure (3.9), the forces acting on a mecanum wheel moving diagonally is shown. Further on,
it has been given a load vertically on the driving axle, and the axle itself is able to produce
a driving torque. In the calculation of the rolling resistance, denoted Frr in Figure (3.9),
the coefficient of polyurethane in contact with steel flooring was found in a table to be 0.03
[25]. However, this value is the greater than the applied coefficient for a car tire in contact
with gravel [26]. This lead to the decision of selecting the rolling coefficient of car tire in
contact with concrete in the calculations. This coefficient is 0.01. The friction force from
the mecanum wheels roller’s rolling is displayed. As there is no information given about the
rolling friction from the producer, in addition to being typically ignored in dynamic analysis,
the friction force from the rollers is going to be neglected [27][28]. It should also be noted
that Ft and Fa are the force components of Fc in X- and Y-direction

��

��

��

���

Z

X

�

Y

��

�	

�
�

X

�r�

Ft

Ft

Figure 3.9: Forces on a mecanum wheel

Ft = Ta
r

(3.7)

|Fa| = |Ft| (3.8)

Fc =
√

2Ft (3.9)

m = mtot

4 (3.10)

Frr = µrFn (3.11)

Fw = Fn = mg (3.12)

Ffr = 0 Since it is neglected (3.13)

23

In order to move the vehicle as a whole in a
straight motion, all wheels have to be driven
at the same velocity. The forces acting on
the rollers during this scenario is illustrated
in Figure (3.10). The figure is shown in
bird-perspective and explains how the ax-
ial forces on the left and right wheels are
opposing each other. This results in the ax-
ial forces being canceled and the remaining
tangential forces produce a forward motion
of the vehicle.

The minimum force required in order to ini-
tialize movement of the rig is then calculated
with Equation (3.14). In the equation it is
assumed that each wheel contributes with
equal force. As can be seen from the Figure
(3.10), the forces in Y-direction cancel each
other out.

X

Y

��

����

��

��

�� ��

��

�� ��

����

��� ���

��� ���

Figure 3.10: Forces acting on roller from
contact surface - Forward (Top view)

∑
Fx = 0 = 4Ft − 4Frr ⇒ Ft = µrmg (3.14)

∑
Fy = 0 = 2Fa − 2Fa (3.15)

∑ +
x
TO = 0 = 2hFa − 2hFa + 2wFt − 2wFt + 2wFrr − 2wFrr (3.16)

The calculations indicates that the total output force produced from all wheels has to be
39.2N. Then, the sum of the torque each drive shaft has to produce is calculated to be
4.0Nm with Equation (3.17).

Ta = 4Ftr (3.17)

where:

Symbol: Description: Value: Unit:
Ft - Tangential force 9.8 N
Fn - Normal force 3924 N
Ta - Torque acting on axle 1.0 Nm
mtot - Loomo rig total mass 400 kg
r - Radius of the wheel 0.1015 m
g - Gravity 9.81 m/s2

µr - Rolling friction coefficient 0.01 −

24

In Figure (3.11), the forces which has to be
produced from the drive shaft in order to
move laterally is shown. When moving lat-
erally, the mecanum wheels act as a wheel
rolling along the lateral axis, thus rolling re-
sistance is thus added to work against the
rolling direction. The minimum force re-
quired in order to initialize movement of
the Loomo rig in lateral direction in calcu-
lated with Equation (3.19). As can be seen
from Figure (3.11), the forces acting in X-
direction cancel each other out.∑

Fx = 0 = 2Ft − 2Ft (3.18)

∑
Fy = 0 = 4Fa − 4Frr
⇒ Fa = µrmg (3.19)

∑ +
x
TO =0 = 2hFa − 2hFa + 2wFt

− 2wFt + 2wFrr − 2wFrr (3.20)

The calculations indicates that the total
output torque produced from all wheels has
to be 39.2N. Then, the sum of the torque
each drive shaft has to produce is calculated
to be 4.0Nm with Equation (3.21). Exactly
the same as for moving forwards.

��

��

��

��

��

��

X

Y

��

��

��

��

��

��

���

���

���

���

Figure 3.11: Forces acting on roller from
contact surface - Sideways (Top view)

Ta = µrmgr (3.21)

where:

Symbol: Description: Value: Unit:
Fa - Axial force 9.81 N
Fn - Normal force 3924 N
Ta - Torque acting on axle 1.0 Nm
mtot - Loomo rig total mass 400 kg
r - Radius of the wheel 0.1015 m
g - Gravity 9.81 m/s2

µr - Rolling friction coefficient 0.01 −

25

In order to rotate counter clockwise, the
forces produced from the driving shafts have
to be in accordance with Figure (3.12). The
minimum moment required to initialize ro-
tation is calculated with Equation (3.24).
The point of rotation in the equation is de-
fined as the center of the Loomo rig. As can
be seen from Figure (3.12), all of the forces
cancel each other out from moving in the X-
and Y-direction.

∑
Fx = 0 = 2Ft−2Ft+2Frr−2Frr (3.22)

∑
Fy = 0 = 2Fa − 2Fa (3.23)

∑ +
x
TO = 0 = 4wFt + 4hFa − 4wFrr (3.24)

Since the magnitude of Ft and Fa are equal,
the latter is substituted into the equation
for the minimum force each wheel has to
produce in order to initialize rotation. It
is calculated with in Equation (3.25) to be
about 3.0N .

Ft = wFrr
(w + h) (3.25)

��

��

��

��

�� ��

��

��

��

��

���

���

���

���

��

X

Y

Figure 3.12: Forces acting on roller from
contact surface - Rotational (Top view)

Then, the individual torque the drive shafts has to produce is calculated with Equation
(3.26) to be 0.3Nm.

Ta = wFrr
(w + h)r (3.26)

where:

Symbol: Description: Value: Unit:
Ft - Tangential force 6.1 N
Fn - Normal force 3924 N
Ta - Torque acting on axle 0.3 Nm
mtot - Loomo rig total mass 400 kg
r - Radius of the wheel 0.1015 m
g - Gravity 9.81 m/s2

µr - Rolling friction coefficient 0.01 −

26

It is also of interest to evaluate the sce-
nario which requires the most torque to ac-
celerate. Looking at Figure (3.8), scenario
(3.8(g)) and (3.8(h)) are driven by only two
motors and will require them to provide a
larger amount of torque to accelerate. The
wheels which are not controlled will only be
rolling due to the transverse motion. The
force distribution for scenario (3.8(g)) is il-
lustrated in Figure (3.13). Equation (3.27)-
(3.29) evaluates the required torque to ini-
tialize movment of the vehicle in the diago-
nal direction.

��

�� ��

��

��

��

X

Y

���

���

Figure 3.13: Forces acting on roller from
contact surface - Diagonally (Top view)

∑
Fx = 0 = 2Ft − 2Frr (3.27)

∑
Fy = 0 = 2Fa (3.28)

∑ +
x
TO = 0 = hFa − hFa + wFt − wFt + wFrr − wFrr (3.29)

where:

Symbol: Description: Value: Unit:
Ft - Tangential force 9.8 N
Fn - Normal force 3924 N
Ta - Torque acting on axle 1.0 Nm
mtot - Loomo rig total mass 400 kg
r - Radius of the wheel 0.1015 m
g - Gravity 9.81 m/s2

µr - Rolling friction coefficient 0.01 −

The analysis show that the axle has to be subjected to a torque of 1.0Nm as minimum
torque to initialize movement. However, only two wheels are used to accelerate the vehicle
in diagonal direction only.

27

3.3 Shaft
To convert the rotational energy from the mecanum wheel into linear motion for the base
frame, a shaft that can tolerate the loads acting on the rig was designed with S355 steel. An
illustration of a shaft design is presented in Figure (3.14). By analysing the support of the
axle and the applied load, diagrams which represent the bending moment, shear force and
axial force were derived.

Figure 3.14: Shaft design

An illustration of a wheel suspension design is shown in Figure (3.15). The shaft will be
mounted to the frame by two pillow block bearing units, represent in purple. To fix the
mecanum wheel to the drive shaft, a set of hubs were designed. These are illustrated in
silver at both sides of the mecanum wheel. A flat surface has been machined onto the shaft
surface in order to give set screws better contact surface, as shown in Figure (3.14).

Figure 3.15: Wheel suspension

Force Analysis

An evaluation of the force and moments produced due to applied load in motion is performed.
The evaluation is made for both XY and ZY plane, presented with Figure (3.17) and Figure
(3.19) respectively. The drive shaft is supported at both ends and the forces is represent at
both sides of a the centered wheel. The results of the analysis in XY are presented with
Figure (3.17) and results for ZY in Figure (3.19).

28

RAY
RAX RBX

L

a a

r
X

Y

Ft

2

Ft

2

Fa

2

Fa

2

Figure 3.16: Forces acting on the shaft in XY-plane

0 20 40 60 80 100 120 140 160
0

5

M
o
m

e
n
t

[N
m

] Bending Moment

0 20 40 60 80 100 120 140 160

-100

0

100

F
o
rc

e
 [

N
]

Shear Force

0 20 40 60 80 100 120 140 160

Shaft Length [mm]

0

100

200

F
o
rc

e
 [

N
]

Normal Force

Figure 3.17: Bending, shear and normal diagrams

RAX
RAY RBY

FW1 FW2

L

a a

r

Z

Y

Fa

2

Fa

2

Figure 3.18: Forces acting on the shaft in ZY-plane

29

0 20 40 60 80 100 120 140 160
0

10

20

M
o
m

e
n
t

[N
m

] Bending Moment

0 20 40 60 80 100 120 140 160
-600
-400
-200

0
200

F
o
rc

e
 [

N
]

Shear Force

0 20 40 60 80 100 120 140 160

Shaft Length [mm]

0

100

200

F
o
rc

e
 [

N
]

Normal Force

Figure 3.19: Bending, shear and normal diagrams

The resulting maximum bending moment for the shaft is calculated by Equation (3.30).

Mbres =
√
Mbxy

2 +Mbzy
2 (3.30)

(3.31)
Mbres = 25.6 Nm

Diameter

A calculation of the minimum shaft diameter can be determined from previous calculations
of maximum bending moment and maximum torsion. The calculations also depend on the
torque acting on the axle. The value used for the torque requirement is gathered from a
detailed evaluation in Section (4.1). Equation (3.32) serves to find the minimum shaft di-
ameter to ensure unlimited lifetime [29]. In the equation, dynamic load, alternating bending
and torsion is assumed.

d =
3

√√√√32 ·

√
M2

b + 0.75 · (α0 · T)2

π · σlim
(3.32)

where:

Symbol: Description: Value: Unit:
d - Shaft diameter 17.76 mm
Mb - Maximum bending moment 25618 Nmm
α0 - Fatigue factor related to shaft load 1.0 −

- Alternating bending and static torsion 0.6 −
- Alternating bending and pulsating torsion 0.75 −
- Alternating bending and torsion 1.0 −

T - Maximum torque on shaft 34000 Nmm
σy - Yield strength material 355 N/mm2

σlim - Allowable stresses in shaft 71 N/mm2

- σy/4 for static load 88.75 N/mm2

- σy/5 for dynamic load 71 N/mm2

30

The results imply that a minimum diameter of 17.76mm is required to withstand the bending
and torsion. The closest available shaft diameter was 20mm, which was chosen.

Deflection

The principle of super-positioning was used to calculate the deflection of the shaft. The
principle is valid for materials where Hooke’s law applies and when the deflections and
rotations are small. Curves which describes the deflection for any point on the shafts were
created in Matlab with respect to Figure (3.20) and Equation (3.33) - (3.37). The script is
available in Appendix (G.2). [30]

a

F

a

F

(a) Force

M

a b

(b) Moment

Figure 3.20: Deflection figures

v(x) = − F · x
6 · E · I (3 · a · L− 3 · a2 − x2) 0 ≤ x ≤ a (3.33)

v(x) = − F · a
6 · E · I (3 · L · x− 3 · x2 − a2) a ≤ x ≤ L− a (3.34)

v(x) = M · x
6 · L · E · I (3 · L · a− 3 · a2 − 2 · L2 − x2) 0 ≤ x ≤ a (3.35)

v(x) = − M · (L− x)
6 · L · E · I (3 · L · b− 3 · b2 − 2 · L2 − (L− x)2) a ≤ x ≤ L (3.36)

I = π

64 d4 (3.37)

where:

31

Symbol: Description: Value: Unit:
v - Deflection curve ∼ mm
x - Any point along the length ∼ mm
F - Force ∼ N
L - Length of the shaft 173.5 mm
a - Distance from the left to the force 35.5 mm
b - Distance from the right to the force 35.5 mm
E - Modulus of elasticity 210000 N/mm2

I Inertia of the shaft ∼ mm3

d - Diameter of the shaft 20 mm

0 20 40 60 80 100 120 140 160

Shaft Length [mm]

-0.04

-0.02

0

D
e
fl
e
c
ti
o
n
 [

m
m

] Deflection

Figure 3.21: Deflection of shaft

The deflection curve is presented in Figure (3.21). The numerical value for maximum de-
flection is:

δmax = 0.0419mm

Critical Speed

The rig is actuated by four motors controlling the angular velocity of each wheel. Critical
speed is the velocity which matches the resonant frequency of the shaft. It is important to
verify that the operating velocities are outside of the critical speed range. By applying the
previously calculated deflection, the critical speed is calculated by evaluating the point on
the axle where the maximum deflection occurs, with Equation (3.38). Then, the range the
shaft velocity has to avoid is defined as; 0.8 < ncr < 1.3. The results are a critical speed of
4620 rpm for the shaft.

ncr =
30√g
π
√
δ

(3.38)

where:

Symbol: Description: Value: Unit:
g - Gravity 9.81 m/s2

δ - Deflection of shaft 0.0419 mm
ncr - Critical speed for shaft 4620 rpm

32

Fatigue

Approximately 80% - 95% of all fractures in machine components are due to fatigue [1]. The
fractures typically appear in areas with high stress concentrations. The geometry of the
designed shaft does not have notches for alignment and fitting of components. Thus, there
are no points where stress concentrations commonly occur. However, the areas where the
bending moments from the weight of the parking rig and Loomos is distributed is of concern,
due to the high load. In this section the safety against shaft fatigue is analyzed. Smith
diagram were used in order to calculate the safety factor. The majority of the equations and
all tables used in this section are from the literature compendium [1]. The safety against
yield is calculated with Equation (3.39), which is the factor of which the equivalent stress
deviates from the allowed stress.

SFfatigue = σAN(red)

σea
(3.39)

To calculate the amplitude equivalent stress, Von Mises equation for equivalent stress is used.
With alternating bending, in two planes, and a resting torsion, τa = 0, the equivalent stress
is calculated with Equation (3.40). The torsion is considered to be resting, since it is not
going to be a continuous cyclic load like the bending moment. Even though the Loomo rig
is going to accelerate and decelerate. This assumption was verified with Prof. Kjell Gunnar
Robersmyr.

σea =
√

(Kfb · σa)2 (3.40)

By using Figure (3.22), Equation (3.41) can be derived, which shows that the amplitude
stress is equal to the maximum bending stress from the two planes. The maximum bending
at the concerned locations are calculated with Equation (3.42)

σa = σmax − σmin
2 = (σN + σb)− (σN − σb)

2 = σb (3.41)

σb = Mb · y
I

where: y = d

2 , I = πd4

64 (3.42)

33

Figure 3.22: Amplitude of stress

Due to the geometry and holonomic properties of the wheels, forces are acting in multiple
planes, which has been covered in section (3.3). Taking this into account the equivalent
bending moment is going to be calculated with Equation (3.43), which is illustrated in
Figure (3.23):

Mb =
√
M2

bxy
+M2

bzy
(3.43)

Mbzy

Mbxy

Mb

a

a

b

b

Figure 3.23: Equivalent bending moment

For shafts without change in cross section at the hub location, the notch factor due to
bending is; Kfb = 2.0 − 2.6. Further on, since the hubs and inner ring of the bearings
has a notch, specifically fillets or chamfers, the notch factor has to be reduced as shown in
Equation (3.44). K can be determined from the table shown in Figure (3.24).

Kfbred = KKfb (3.44)

34

Figure 3.24: K factor [1]

where:

Symbol: Description: Value: Unit:
SFfatigue - Fatigue safety factor ∼ −
σAN(red) - Adjusted stress amplitude ∼ N/mm2

σea - The equivalent stress ∼ N/mm2

σa - The amplitude stress ∼ N/mm2

σb - The maximum bending stress ∼ N/mm2

Mb - The maximum bending moment at each notch location ∼ Nm
I - Moment of inertia 7854 mm4

y - Distance from center of circle to most outer fibre 10 mm
d - Diameter to shaft 20 mm
Kfb - Notch factor due to bending 2.6 −
Kfv - Notch factor due to torsion 1.7 −
K - Relief factor 0.88 −
η - Notch sensitivity ∼ −

The shaft material is S355 steel, as stated in Section (3.3). Since the main concern of fatigue
is from bending, the appropriate fatigue data is used, which is obtained from table 3.1 in
the fatigue compendium and is listed in Equation (3.45) [1].

σDb =

0± 280 (σm = 0, σAb0 = ±280)
225± 225 (σm = 225, σAb = ±225)

(3.45)

where:

Symbol: Description: Value: Unit:
σDb - The bending fatigue ∼ N/mm2

σm - The mean stress ∼ N/mm2

σAb0 - The fatigue amplitude when σm = 0 ∼ N/mm2

σAb - The fatigue amplitude when σm = 240 ∼ N/mm2

35

The fatigue data is used to draw a Smith-diagram. However, the values given in Equation
(3.45) only applies for specimen rods with a diameter of 10mm which have a polished surface.
The fatigue amplitudes have to be adjusted in order to apply for the designed shaft. This is
done by taking the dimension-factor and surface-factor into account, as shown in Equation
(3.46) and Equation (3.47).

σAb0(red) = σAb0 · b1 · b2 (3.46)

σAb(red) = σAb · b1 · b2 (3.47)

where:

Symbol: Description: Value: Unit:
b1 - The dimension-factor 0.95 −
b2 - The surface-factor 0.92 −

The factors are found from Figure (3.25) and Figure (3.26). All shafts are considered to be
fine lathed (corresponding to "Findreid" in the latter table). The ultimate tensile strength
for S355 is set to 470MPa, which is the lower value that fits the designed shafts. The lower
limit is selected in order to calculate conservatively. The mechanical properties to S355 can
be found in Appendix (C.2).

Figure 3.25: Dimension factor table - b1 [1]

Figure 3.26: Surface factor table - b2 [1]

36

The Smith-diagram is made with the adjusted values. σAN(red) is obtained at σem, as shown
in the Smith diagram in Figure (3.27), where the red line represents the adjusted fatigue
data.

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

�AN(red)

�em

Figure 3.27: Smith Diagram example

σem is calculated using Equation (3.48).

σem = σm (3.48)

The value used for σm is derived in Equation (3.49), by applying Figure (3.22). Further, the
axial stress is calculated with Equation (3.50).

σm = σmax + σmin
2 = (σN + σb) + (σN − σb)

2 = σN (3.49)

σN = N

A
(3.50)

where:
Symbol: Description: Value: Unit:
σem - The equivalent mean stress ∼ N/mm2

σN - The axial stress ∼ N/mm2

N - The axial force ∼ N
A - The Cross-sectional area ∼ mm2

Typical critical fatigue locations are; on the outer surface where the bending moment is at its
maximum, where the torque is present, and where stress concentrations exist [31]. However,
because the shaft does not have variations in diameter where the load is supported, the
location of which the maximum combination of axial and two plane bending moments is

37

used. If the equivalent stress level is within the limits at this location, then the same must
be valid for all locations. The axial force and bending moments are gathered from Section
(3.3) to calculate σem and σea, which uses the case of forward movement of the rig.

Axial force [N] Mbyz [Nm] Mbxy [Nm]
Maximum location 250 25.23 4.44

Table 3.1: The axial forces and bending moments

Table (3.2) shows the stresses and safety against fatigue for the maximum load location. As
can be seen, the axles are suitable, since the safety against fatigue is larger than one at the
maximum load location.

σem [N/mm2] σea [N/mm2] σAN(red)[N/mm2] SF Fatigue

0.8 74.6 232.2 3.1

Table 3.2: Stresses at maximum load location

3.4 Bearings
In order to use the mecanum wheels with the developed Loomo parking rig, the shaft is
supported by a bearing on each side to reduce friction and enable motion. The ball bearings
are part of a housing which is mainly designed to support radial load, but can also handle
some axial load. From the previously discussed shaft analysis, the radial and axial forces
can be utilized to calculate the expected lifetime of the bearings. The bearings installed are
equivalent to SKF UCP204, which are designed for a 20 mm shaft diameter.

Verification

To ensure that each set of bearings can hold the weight of the parking rig when fully loaded
with Loomos, the potential force acting on each bearing is extracted from the shaft analysis
in Section (3.3). As previously stated in the mechanical calculation, the force distribution in
mecanum wheels is equal for axial and radial direction. Since the wheels are placed equally
distanced from each bearing, the force is distribute thereafter. In Equation (3.52) the ex-
pected numbers of million revolutions for the given bearing can be calculated with a 90%
reliability [32].

The dynamic load rating, C, is provided by the manufacturer [33]. Further on, the equivalent
load P can be calculated with Equation (3.51). The equation uses the relationship between
the axial force and the manufacturer’s static load component C0, to determine the coefficients
presented in Table (3.3) for the Equation (3.51). [18]

P = X · Fr + Y · Fa (3.51)
where:

Symbol: Description: Value: Unit:
Fa/C0 - Relation between bearing limit and axial force 0.0746 −
Fr - Radial load on bearing 500 N
Fa - Axial load on bearing 500 N
C0 - Static component from manufacturer 6700 N
X - Radial load factor from table (3.3) 0.56 −
Y - Axial load factor from table (3.3) 1.6 −

38

Fa/C0 e X Y
0.025 0.22 0.56 2.0
0.04 0.24 0.56 1.8
0.07 0.27 0.56 1.6
0.13 0.31 0.56 1.4
0.25 0.37 0.56 1.2
0.50 0.44 0.56 1.0

Table 3.3: Factor to determine force in bearings [18]

L10 =
(
C

P

)p
(3.52)

From the calculations in Equation (3.52), each bearing can be expected to last 3697mill.revs
with 90% reliability, before being replace.
where:

Symbol: Description: Value: Unit:
L10 - Lifetime bearing 3697 mill. rev
C - Dynamic number which gives bearing lifetime of 12700 N

1 mill revs with 90% reliability [33]
P - Equivalent load each Bearing 1080 N
p - Exponent: 10/3 −

- Ball bearings 10/3 −
- Roller bearings 3 −

Lifespan

From the result obtained with Equation (3.52), the expected number of revolutions can
be converted to operational hours with Equation (3.53). When the number of hours the
bearings are likely to last is known, the estimated time of operation for the rig can be cal-
culated when assuming operating conditions and environment. The results are a minimum
of 13693H operating time, given the motor conditions.

L10h = L10106

n60 (3.53)

where:

Symbol: Description: Value: Unit:
L10h - Lifetime of bearing in hours 13693 H
L10 - Lifetime of bearing in mill revs 3697 mill. rev
nmax - Maximum motor RPM during operation 4500 RPM

39

Lubrication

In order to reduce wear on the bearings, lubrication is added to the housing. The housing
features a grease fitting which serves to feed lubrication to the bearing. It is difficult to
maintain an oil lubricant for self-sealed bearings, therefore it is preferable to use grease. The
interval for refilling grease is based on the diameter of shaft inmm and operational rotational
speed inRPM. As presented in Figure (3.28), the sealed ball bearing requires a refill of grease
every 6500 operational hours to keep bearings at maximum performance. [2]

Figure 3.28: Grease refilling interval [2]

When knowing how often the grease requires refill, the expected lifetime of the grease can be
calculated. The lifetime depends on the operational conditions and dimension of the shaft.
The results can be obtained from Equation (3.54). [2]

logL = 6.10−4.40 ·10−6 ·dm ·n−3.125 ·
(
Pr
Cr
− 0.04

)
− (0.021−1.80 ·10−8 ·dm ·n) ·T (3.54)

40

where:
Symbol: Description: Value: Unit:
L - Grease life 31496 H
dm - (D+d)/2 37.5 mm
D - Outside diameter 55 mm
d - Bore diameter 20 mm
n - Rotational speed 4500 min−1

Pr - Dynamic equivalent load 1080 N
Cr - Dynamic load rating manufacturer 12700 N
T - Operating temperature of bearing 40 °C

From Equation (3.54) the expected lifetime of grease is about 31500 hours. This is larger
than the expected refilling interval of the sealed bearing and for that reason, refilling of
grease should be performed according to the refilling intervals previously calculated. Addi-
tionally, the system may have possible leakage during operations, which will influence the
lifetime and it is therefore reasonable to use the lubrication interval. A type of grease that
is suitable for the Loomo parking rig operation is SR Grease, based on rotational speed,
operating temperature and type of operation.[34]

3.5 Set Screws
Using set screws as a substitute for key connections is a common approach because it is more
straightforward with respect to manufacturing and machining. It will however, give a larger
possibility for slip and a lower torque resistance. A set screw can work with three different
conditions, torsional resistance, axial resistance, and vibrations. For mecanum wheels, each
of the conditions previously mentions occurs. The hub connection from each mecanum wheel
to the motorized shaft is fastened by the use of a set screw. The shaft is manufactured with
a flattened surface for the set screw to get a greater rigid connection with the shaft. The set
screws used are plain cups with a hexagonal socket [35]. This section evaluates the axial force
and torque the set screw requires to generate a proper bond to the axle by using Equation
(3.55) [36].

THP = k · r · AHP (3.55)
where:

Symbol: Description: Value: Unit:
r - Radius of shaft ∼ mm
AHP - Axial Holding Power [37] ∼ N
k - Factor for number of set screws: ∼ −

- For one set screw: 1 −
- For two set screws: 1.3 - 2.0 −

THP - Torsional Holding Power ∼ Nm

Hub

Both hubs on the wheel configuration has a set screw installed. A M6 plain cup with an
internal hexagonal socket was used. Recommended tightening torques to achieve proper
connection can be found in the designated tables [36]. For a M6 set screw, 7.8Nm of
tightening torque is recommended. With the recommended tightening torque, an estimated

41

axial holding force of the connection is provided [37]. Presented in Figure (3.29) are the
axial holding power and Figure (3.30) displays how the torsional holding power between hub
and shaft is generated.

Figure 3.29: Axial Holding Power Hub Figure 3.30: Torsional Holding Power Hub

Bearings

Similar to the hubs, the bearings are delivered
with M6 knurled cup set screws, as shown
in Figure (3.31). Knurled cup setscrews are
manufactured with excessive counterclock-
wise knurls to prevent loosening, and they are
designed to withstand larger vibrations. The
bearing connection consists of two screws,
with an 120 degree angle gap, γb. When using
two screws, the holding power is not neces-
sarily double. With the use of two set screws
the nominal axial holding power can be mul-
tiplied with a factor, k, between 1.3 and 2.0
deepening on angle between the installed set
screw [36]. From tables, a 120 degree angle
has k = 1.5 [37].

Figure 3.31: THP Bearing

Gear

Similar to the hub, the gear is fastened to
the axle by use of a set screws, as shown
i Figure (3.32). In order to transfer torque
with a belt connection, two M5 knurled cup
set screw is used to keep the gear in posi-
tion on the axle, with a thightning torque of
4.6Nm. Because the gear is mounted on the
axle where the radius is reduced from 10mm
to 8mm, the maximum torque transfer limit
less compred to hub and bearings. With two
set screw placed 180 degrees apart, k factor
is 1.3.

Figure 3.32: THP Gear

42

Table 3.4 present the resulting holding power for each component locked by the use of set
screws.

k AHP [N] THP [Nm]
Hub 1 4200 42

Bearings 1.5 6300 63
Gear 1.3 2500 26

Table 3.4: Load capacity set screws

3.6 Weld
After finalizing the concept design, it is important to verify that the stress levels in the
welds do not exceed the yield strength. If the stresses exceed yield, it would be necessary to
modify the design with a supporting bracket to relieve stress. A crucial area to consider is
the bracket which the Loomos are stored upon. These welds are only supported on one side
and the load is applied at the end, creating a significant bending moment.

Strength Verification

Figure (3.33) presents a design with a weld positioned at the upper and lower side of the
beam which hold the Loomo. The weld is a fillet weld with a single seam around the entire
square profile with an effective weld length, Leff , as shown in Figure (3.34). From the weld,
the normal and shear stress as a result of bending is calculated, and stress due to torsion is
neglected since the force is centered on the beam.

Figure 3.33: Illustration of weld placement Figure 3.34: CSA of beam with weld

F = (mloomo +mbracket)g (3.56)

M = F · L (3.57)

Zw = 3(H · (W + 2a) + H2

3) (3.58)

43

σ = 6M
Zw

(3.59)

CSA = 2 · a · lleff (3.60)

τ = F

CSA
(3.61)

σeq =
√
σ2 + 3 · τ 2 (3.62)

Criterion to be met:

σeq ≤
σyield
γm

(3.63)

The resulting stresses obtained from Equation (3.56) - (3.63) are presented in the table
below, denoted σ and τ . The stresses that may occur in the welds are far lower than the
allowable stresses, σallowable. This indicates that it is safe to store the Loomos on the bracket.
where:

Symbol: Description: Value: Unit:
L - Distance to load, from weld 190 mm
W - Width of beam 40 mm
H - Height of beam 40 mm
mLoomo - Weight of Loomo 19.5 kg
mBracket - Weight of Loomo bracket 2.5 kg
F - Load magnitude 216 N
M - Bending moment 41040 Nmm
CSA - Cross sectional area weld 204 mm2

Zw - Modulus of weld section [38] 7120 mm3

leff - Effective weld length 34 mm
σ - Normal stress due to bending 34.58 N/mm2

τ - Shear stress due to bending 1.05 N/mm2

σeq - Bending stress 34.63 N/mm2

σallowable - Allowable bending stress 284 N/mm2

a - Throat length weld 3 mm
σyield - Yield strength S355J2 355 N/mm2

γm - Material factor S355J2 steel 1.25 −

44

Further on, a scenario where only one side is loaded with Loomos was examined. The evalu-
ation concerned the welds that connect the three vertical beams to the wheel suspension as
shown in Figure (3.35). The load is assumed to be equally distributed between the welds.
The stresses are calculated with Equation (3.64)-(3.68).

FN = F · 5
3 (3.64)

M = FN · L (3.65)

σ = M · L
Iwx

(3.66)

I = a ·H3

6 + W · ((H + 2a)3 −H3

12 (3.67)

τ = FN
CSA

(3.68)

Figure 3.35: Illustration of weld position

With the same criterion as the bracket weld analysis, the yielded results are more extensive
than the individual bracket, but still within the limits of allowable stress in the fillet welds
when only one side is loaded. Once verified, the design could be weld in compliance with
technical drawings presented in Appendix (D). Additionally, supports bracket were introduce
at the bottom of the vertical beams in order to relief the load stresses and to handle additional
unforeseen loads.
where:

Symbol: Description: Value: Unit:
L - Distance to load from weld 210 mm
FN - Load magnitude 360 N
M - Bending moment 75600 Nmm
I - Moment of Inertia about tipping angle [38] 143120 mm4

σ - Normal stress due to bending 110.93 N/mm2

τ - Shear stress due to bending 1.76 N/mm2

σeq - Equivalent bending stress form applied load 110.97 N/mm2

σallowable - Allowable stresses 284 N/mm2

3.7 Stability of Loomo Rig
The parking rig is designed to store up to ten Loomos, with five units placed one each side.
The stability of the rig is dependant on its baseline and the center of mass. The baseline
is the distance between the wheels in lateral direction. The distance is measured from one
contact point to another, where the contact point is defined as the point where the wheel and
the ground intersect. The center of mass is varying dependant on the storing configuration.
To ensure that the rig is stable for all possible load configurations, evenly and unevenly,
different scenarios were evaluated in this section.

45

The center of mass is calculated with Equations (3.69), for both horizontal and vertical
position, as shown in Figure (3.36). Loomos, the rig, and other components are included
when calculating the center of mass. If the center of mass is shifted from the rigs center,
Equation (3.70) is used to determine the distance from the center of mass to the closest
wheel. When this distance is known, and the distance from ground to the total center of
mass is known, the critical angle where the rig will fall over can be calculated with Equation
(3.71). The critical scenarios which are evaluated are; fully stored, single side fully stored,
single side with only two at top, two on each side at top, fully stored with person stepping
on rig and single side fully stored with person stepping onto rig. When a person is assumed
to stand on the rig, the center of mass to the person is assumed to be vertically over the
edge of the rig.

xj =
N∑
i=1

xi ·mi

M
, yj =

N∑
i=1

yi ·mi

M
, zj =

N∑
i=1

zi ·mi

M
(3.69)

Figure 3.36: Calculation of Center of Mass

t = ttot − 2 ·XCoM (3.70)

θc = tan−1
(
t

2h

)
(3.71)

where:

Symbol: Description: Value: Unit:
xj - Distance to CoM in horizontal direction to i object ∼ mm
yj - Distance to CoM in inwards direction to i object ∼ mm
zj - Distance to CoM in vertical direction to i object ∼ mm
mi - Mass of i object ∼ kg
M - Total weight of all objects in evaluation ∼ kg
h - Height to CoM from ground equal to ZCoM ∼ mm
ttot - Baseline of rig between wheels 560 mm
t - Reduced wheel distance ∼ mm
θc - Critical angle which initiate tipping ∼ °

46

In Table (3.5) the results of the stability evaluations is presented. As the Loomo parking rig
is not intended to be used at inclined environments it can be exposed to about 10 degrees
before toppling, independent of storing configuration.

Storing configuration: ZCoM [mm] t [mm] θc [°]
Two upper on one side 554 463 22,7
Full on one side 583 380 18,1
Full on one side and person 701 234 9,5
Four upper 652 560 23,2
Full rig 657 560 23,1
Full rig with person 732 414 15,8

Table 3.5: Results of stability evaluation

47

4. Electrical Design

The electrical design chapter concentrate on the required components to motorize the rig.
The additional electrical components used are also presented. The selection and functionality
of the speed controller and the selection of a brushless DC motor are covered together with
the drive train sizing. Verification of the power source and overall power consumption of the
electronic hardware component is performed.

4.1 Motor and Gear Sizing

Because the intended speed of the rig is equivalent to the speed of a person walking, the
mecanum wheels do not need to rotate fast. What is more important is that the motor can
produce the required shaft torques to accelerate up to the velocity demands. The university
has two available of the shelf motor options. A high speed - low torque option and a low
speed - high torque option, both brushless dc motors. The purpose of the Loomo parking rig
is to safely and efficiently transport ten Loomo units with various maneuverability modes.
Whether the Loomo rig is manually controlled, following a person or autonomously driven,
the vehicle will move with a low velocity demand to ensure safety with respect to the rigs
surroundings. Considering these factors, the available low speed - high torque option was
chosen. Additionally, the selection will need a smaller gearing ratio to achieve the torque
requirements. This also present the possibility of utilizing belt drive in oppose to a gearbox.
By exploiting the advantages and accessibility of belt drive, the Loomo parking rigs actuation
system will be compact, simple and easy to install.

4.1.1 Torque Requirement From Tests

From previous calculations, the torque demand in order to initialize forward motion yielded a
result of 4.0Nm. However, there are a lot of uncertainties in the calculations as the mecanum
frame is assumed to be ideal. In addition, theses calculations do not account for the roller
friction, bearing friction, and other internal resistances. Moreover, the rolling resistance used
for the calculations most likely differs from the contact surface at the university.

To eliminate the uncertainties in the calculation, physical tests were performed with the
Loomo rig. This was done by loading it with a load of 200 kg, equivalent to ten Loomos,
then measuring the force required to initialize movement. The measurements were obtained
by using a handheld scale. Multiple test-sets were created. The sets can be seen in Table
(4.1). The table contains the measured data for overcoming the static friction in forward
and sideways direction. In addition, the force required to yield a satisfactory acceleration in
forward direction is listed.

48

Forward [kg] Sideways [kg] Accelerating Forward [kg]
3.6 32 26
3.1 29 27
3.5 31 22
4.4 33 24
3.7 36 28
4.1 31 20
4.8 37 27
4.8 34 27
3.4 40 29
3.7 39 18
3.6 38 25

Average [N]
38 339 243

Table 4.1: Loomo rig tests

As can be seen from Table (4.1) the forces vary from the theoretical calculations, which is
to be expected. Most likely, the theoretically variation, at least in forward movement, is due
to the fact that the rolling coefficient for the Loomo rig is different. However, based on the
calculations, the force in order to move sideways should not deviate this much compared to
moving forward. A reason could be that the tests were made with rubber plates added in
between the bearings and the bottom frame in an attempt to increase the traction of the
rig. These also allow for rotation about the axis perpendicular to the shaft, and there is the
possibility that this creates a downward force, thus increasing the rolling resistance of the
mecanum wheel.

It is also important that the Loomo rig is able to accelerate close to that of a person to
achieve a smooth pursuit. The average expected walking speed of community walker, is
about 1.1m/s [39]. Then, by setting the time that the Loomo rig has to achieve this velocity
to 0.75 s, specifically an acceleration of 1.5m/s2, the torque demand for this case is calculated.
The torque is calculated with Equation (4.1), where the average total resistive forward forces
from the tests are applied.

∑
Fx = mtota = Ft − Fr,tot (4.1)

⇓

Ft,tot = mtota+ Fr,tot

The calculations indicates that the total output force to accelerate forward is about 507N. As
this is the largest of the calculated forces, it is used as the force demand in the calculation of
the required gear ratio. Then, the torque demand each drive shaft has to deliver is calculated
to be about 12.9Nm with Equation (4.2).

Tdemand = Fdemand
4 r (4.2)

where:
Symbol: Description: Value: Unit:
Fdemand - Demanded force from all four wheels 507 N
Tdemand - Demanded torque from one drive shaft 12.9 Nm
r - Mecanum wheel radius 0.1015 m
mtot - Loom rig mass 400 kg

49

4.1.2 Motor Torque
Similar to all other electrical motors, a brushless dc motors convert electrical power to
mechanical power. Unlike brushed motors, brushless motors does not rely on a mechanical
connection between the rotating parts, which means they of do not wear out over time as
easily. This type of motor is therefore suitable for this application, which preferres low noise,
reliability and long life-time.

Relation between kV and kT

For brushless motors, kV is a parameter that is commonly stated in the product specifications,
and is the case for the selected motor. kV is known as the motor velocity constant, and is
the velocity the motor has to rotate, in rpm, to yield a 1V back electromotive force (back
EMF). This value can be related to the motor torque constant, kT , which can be used in
order to calculate the theoretical motor torque.

Electrical effect can be described with Equation (4.3), and electromechanical effect with
Equation (4.4).

Pe = UI (4.3)

Pm = Tmωm (4.4)

Taking the overall efficiency into account, from the electrical input to the mechanical output
of the brushless dc motor, Equation (4.5) applies.

UI = 1
ηtot

Temωm (4.5)

Since kV is the velocity the motor has to rotate, in rpm, to yield a 1V back EMF, Equation
(4.6) can be derived to described the motor velocity.

ωm = kVU (4.6)

Substituting Equation (4.6) into Equation (4.5) yields Equation (4.7). Further, the efficiency
is set to one.

UI = TemkVU (4.7)

Then, solving for Tem, Equation (4.8) describes the relation between the speed constant and
the produced motor torque.

Tem = I

kV
(4.8)

In addition, the electromagnetic torque can also be described with Equation (4.9).

Tem = kT I (4.9)

Finally, by substituting Equation (4.8) into Equation (4.9), the relation between kV and
kt is shown. It should be noted in theses calculations it is assumed that the motor is not
within field weakening. Also the unit of the constants are not equal, however this relation is
commonly accepted.

kT = 1
kV

(4.10)

50

where:
Symbol: Description: Value: Unit:
U - Voltage ∼ V
I - Current ∼ I
T - Torque ∼ Nm
Pem - Mechanical effect ∼ W
Pe - Electrical effect ∼ W
ωm - motor velocity ∼ rad/s
kV - Motor velocity constant ∼ rad/(sV)

kT - Motor torque constant ∼ Nm/A

Motor specifications

The selected motor is a MTO5065-70-HA from MayTech. Its specification are listed in Table
(4.2)[6].

Idle Current: 1.2A kV : 70 rpm
Max Current: 50A Max Output Watt: 1815W

Rated Current: 42.5A Input volt: 7.4-37V
Max Pull: 6700 g Motor Weight: 435 g

Shaft: 8mm Output Shaft Length: 26mm
Internal Resistance: 0.0361Ω Motor diameter: 49.5mm

Table 4.2: MTO5065-70-HA specifications

The motor rated and maximum torque is calculated with Equation (4.11) to be 5.8Nm and
6.8Nm respectively. Since the value of kV is presented in the unit rpm in Table (4.2), it
was converted to rad/s with Equation (4.12), in order to it match the the units in Equation
(4.11).

Trated = 1
kV
Irated (4.11)

kV [rad/s] = kV
2 · pi
60 [rpm] (4.12)

where:
Symbol: Description: Value: Unit:
Trated - Rated motor torque 5.8 Nm
Tmax - Maximum motor torque 6.8 Nm
Irated - Rated current 42.5 A
Imax - Maximum current 50 A
kV - Motor velocity constant 7.3 rad/(V s)

4.1.3 Drivetrain
With knowing both the torque demand for each wheel and the rated torque the selected
motor, the required gearing ratio of the drivetrain can be calculated with Equation (4.13).

i = Tdemand
Trated

(4.13)

51

where:

Symbol: Description: Value: Unit:
TDemand - Torque demand 12.9 Nm
TRated - Rated torque from motor 5.8 Nm
i - Minimum gear ratio 2.2 -

Before a gear ratio is actually set, the gear ratio which causes the motor inertia to match
the load inertia is considered. In theory, the ratio between the load and the motor inertia
are ideal if they are equal. The ratio determines how well the motor is going to be able to
control the load during acceleration and deceleration.

The selected motor does not have the motor inertia listed in the supplier’s datasheet. Thus,
the motor inertia was calculated. The selected motor is an out runner motor. For such
motors, it is the outer shell which contains the magnets and acts as the rotor. Further, the
assumption that the rotor and shaft account for the majority of the motors mass is made.
The ratio between the area of the rotor and area of the shaft is calculated with Equation
(4.14), which is used in order to appropriately divided the mass relation in Equation (4.15).
In addition, an estimate of the rotor ring width is made. Then, by applying the assumption
in conjunction with the motor specifications, the motor inertia is calculated with Equation
(4.16). Figure (4.1) shows how the motor moment of inertia is evaluated.

ki = As
Ar

=

(
d
2

)2
π

[r2 − (r − w)2]π (4.14)

mr = 0.85mm(1− ki) and (4.15)
ms = 0.85mm(ki)

Jm = Jr + Js (4.16)

= 1
2mr[r2 + (r − w)2] + 1

2msr
2
s

r

w

d

Figure 4.1: Motor inertia illustration

where:

Symbol: Description: Value: Unit:
r - Rotor radius 24.9 mm
w - Rotor width 5 mm
d - Shaft diameter 8 mm
Ar - Rotor area 0.0012 m2

As - Shaft area 5.0 · 10−5 m2

ki - Ratio between shaft and rotor 0.0405 −
mm - Motor mass 435 g
mr - Rotor mass 343 g
ms - Shaft mass 27 g
Jm - Motor inertia 1.72 · 10−4 kgm2

Jr - Rotor inertia 1.72 · 10−4 kgm2

Js - Shaft inertia 2.13 · 10−7 kgm2

52

In order to calculate the equivalent load inertia acting on the drive shaft, the conversion of
energy approach is applied in Equation (4.17). The equation uses Figure (4.2) as reference,
where the Loomo rig has been simplified to consider only one wheel with one fourth of the
load.

m,x

vs
Jw,ω

Figure 4.2: Simplified model of Loomo rig

1
2JLω

2 = 1
2Jwω

2 + 1
2mẋ

2 (4.17)

For a wheel subjected to both rotation and translation, assuming no slip, it can be proven
that the center velocity of the wheel is equal to the tangential velocity from the rotational
part. Hence, Equation (4.18) applies.

vs = ωr (4.18)
Equation (4.18) is used to substitute the transnational velocity into Equation (4.17), which
yields Equation (4.19).

JL = Jw +mr2 (4.19)

The moment of inertia for the mecanum wheel was gathered from the step file provided by
the supplier. The data was gathered by importing the file into SOLIDWORKS, then the
wheel was given the appropriate material properties. A conservative assumption is made by
applying steel to all of the wheel parts except for the rollers, which is given rubber skin,
nylon core and brass axle, as can be seen in Figure (3.4).

With both of the required load inertias known, the optimum gear ratio is calculated with
Equation (4.20).

iopt =
√
JL
Jm

(4.20)

where:
Symbol: Description: Value: Unit:
JL - Load mass moment of inertia 1.0436 kgm2

Jw - Mecanum wheel mass moment of inertia 0.0134 kgm2

m - Mass acting on one mecanum wheel 100 kg
vs - Velocity of wheel center of rolling wheel ∼ m/s
r - Wheel radius 0.0405 m
iopt - Optimum gear ratio 78 m

53

The calculations indicate that the optimum, theoretical, gearing ratio is about 78. It is
however not always the best ratio in reality. Due to the space limitations, the motor is going
to be connected to the shaft with the use of a belt drive. Specifically, by a timing belt. When
using a timing belt, only 6 teeth is required to be in contact to develop full-rated capacity
[40]. From accessibility and cost, a gear ratio of five is thus selected. It is achieved with a
12-60 pulley combination. This combination was evaluated in SOLIDWORKS to be a close
maximum which still yielded a sufficient amount of teeth in contact. The belt drive setup is
shown in Figure (4.3).

Figure 4.3: Wheels with motor and belt-drive

With the selected gear ratio, the shaft will never reach velocities of the critical speed range
from Section (3.3). The reduction allows the motor to use its full range without the risk of
the shaft entering critical speed.

54

Timing belt

The peak torque the belt drive needs to transmit is defined as the brushless DC motor’s
maximum torque, and is the effective tension. Figure (4.4) illustrates the slack and tight
side which occurs in belt transmissions. The required slack and tight side tension can be
calculated with Equation (4.21), where counter clockwise is defined as positive direction of
rotation.

Te

P1

P2

P2

P1

R
r

�

c

R-r

Pi

x

y

H

Figure 4.4: Timing belt drive

∑ +
x
T = 0 = Te + (−P1 + P2)r (4.21)

A timing belt performs at its best when the magnitude of the slack side tension is between
10-30% of the effective tension [41]. Here the middle value is going to be used, P2 = 0.20Te,
and is substitute into Equation (4.21), yielding Equation (4.22) which is used to calculate
the required tight side tension.

P1 = Te
r
− P2 = Te

(1
r
− 0.2

)
(4.22)

In order to find the force components of P1 and P2 along the same axis as Pi, the angle
that occurs due to the size difference of the gear has to be calculated. This angle can be
calculated with Equation (4.23).

α = tan−1
(
R− r
C

)
(4.23)

The center distance between the pulley and the gear is calculated with Equation (4.24). Here
it is assumed that the belt is long enough to cover half of the pulley.

C =
√
H2 − (R− r)2 (4.24)

H = S − π(R + r)
2

55

The required initial belt tension is dependant of the elastic characteristics of the belt, however
it is usually sufficient to assume that Equation (4.25) is applicable to calculate it [42]. The
required pretension in order to achieve prime performance is then calculated to be about
31.5N

Pi = P1 cos(α) + P2 cos(α)
2 (4.25)

where:

Symbol: Description: Value: Unit:
Te - Effective tension 6.8 Nm
P1 - Tight side tension 65.8 N
P2 - Slack side tension 1.4 N
Pi - Pre-tension 31.5 N
r - Pulley radius 0.009 m
R - Gear radius 0.047 m
S - Belt length 0.395 m
C - Center distance 0.103 m

4.2 Electronic Speed controller
Electronic speed controller (ESC) is a power regulation device which control the motor throt-
tle. Additionally, it may support reversing and dynamic breaking. Brushed and brushless
are two types of controllers and can only be used with their respective motors. Since a
brushless DC motor was selected, a compatible brushless ESC has to be selected.

The ESC utilized is a Vedder developed ESC for brushless motors. The three phase current
signals are manipulated with metal oxide semiconductor field effect transistors (MOSFET),
and the back EMF can be used to determined rotation, as an alternative to the use of hall
sensors [43].

To control the torque of the motors, the field oriented control (FOC) option is used on the
VESC. The option is seleced, since for any brushless dc motor, FOC will be the most efficient
way of motor control. For FOC, the current representation will be sinusoidal, which will
give more space vectors compared to six static space vectors from traditional three phase
commutation. The increase of space vectors results in significantly more magnetic field
orientations that the rotor can follow. The number of possible field orientations eliminates
the pulsating torque problem from six vector commutation. Further, by utilizing pulse with
modulation, it is possible to control the strength of magnetic field when the rotor is turning.

56

4.3 Hardware
In this section, all the of the hardware components used are listed. Among them are the
components in order to establish communication between the motor controller units and the
processing unit. As well as the other hardware components, such as the battery and the
ESC used.

Teensy 3.6

Teensy 3.6 is a microcontroller development system that is programmable with the C lan-
guages. It is compatible with Arduino functions, libraries, and IDE through an additional
package. Due to a broad platform of open-source material, the Teensy is well suited for
communication with the ESCs. By using UART communication between the Teensy and
the processor, and CAN-Bus communication through an adapter from the Teensy to the
motors, the rig can be controlled in manual and autonomous mode. For manual mode, the
analog in(AI) pins are used for reading joystick values. Additionally, the Teensy is equipped
with an SD-card reader which can be used to log data for post-processing. Figure (4.5)
shows the pinouts of the Teensy 3.6, in addition to the pin assignments.

Figure 4.5: Teensy 3.6 pinouts [3]

CAN-Bus adapter

In order to send and receive messages from
a CAN-network onto the Teensy, a CAN-
Bus adapter is required. The selected CAN-
bus adapter is specialized for fitting onto a
Teensy 3.5 or 3.6, and its shape will still keep
the other pins available if soldered directly
onto the Teensy. The adapter has an inter-
nal 120W termination resistor for connection
between high and low on the CAN-Bus line. Figure 4.6: Dual Can-bus adapter [4]

57

VESC

The MayTech Vedder developed electronic
speed controller (VESC) is used to control
each of the brushless motors via programmed
CAN-Bus signals. The open-source con-
troller, together with the ROS developed
packages, is it suitable for robotic applica-
tions such as the Loomo parking rig. Figure 4.7: SuperFOC6.8 - VESC6 [5]

MTO 5065 BLDC Motor

The developed Loomo parking rig is equipped
with four MayTech brushless motors for ac-
tuation. This motor is suited for robot ap-
plications due to its compact design and high
torque characteristics. The motor is of type
open cover outrunner and is compatible with
the selected VESCs. Figure (4.8) shows the
discussed motor and in Section (4.1.2) the
motor specifications are presented. Figure 4.8: MTO 5065 HA 70 Kv [6]

NVIDIA Jetson AGX Xavier Devel-
oper Kit

A Jetson AGX Xavier Developer Kit is
installed to processes raw data from the
equipped cameras. The Xavier is tailor made
for robots, drones and other autonomous ma-
chines. It is an embedded module with very
high processing power, which makes it ideal
for this application. [7]. Figure 4.9: Jetson AGX Xavier [7]

PCI-E Interface card 7x-USB

A Interface card for USB extension is add to
the Jetson AGX Xaviers PCI slot. The card
has seven USB 3.0 ports that will allow the
camera data from four Azure Kinects to be
processed by the Jetson module.

Figure 4.10: Exsys Interface Card [8]

58

https://maytech.cn/collections/all-speed-controllers/products/maytech-superfoc6-8-with-dissipation-case-50a-speed-controller-based-on-vesc6
https://maytech.cn/products/brushless-hall-sensor-motor-mto5065-220-ha
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://www.elfadistrelec.no/no/interface-card-7x-usb-pci-x1-exsys-ex-11087/p/11033532?q=pci+usb&pos=26&origPos=22&origPageSize=100&track=true

Battery Vision CP12200

The developed Loomo parking rig is equipped
with two, six celled 12V lead acid batter-
ies. Each battery has a capacity of 20Ah and
equivalent to the battery presented in Figure
(4.11). It is desired to wire them in series to
increase the voltage.

Figure 4.11: Battery Vision CP12200 [9]

Joystick

In order to implement manual control for the
Loomo parking rig, two joysticks with dual
axis are attached to a hand controller. The
joystick consists of two potentiometers and a
switch. The potentiometers sends analog val-
ues based on their orientation. The switch is
closed by pressing down on the stick. The val-
ues can be read by the microcontroller, which
then can be appropriately convert in to veloc-
ity references.

Figure 4.12: Dual Axis Joystick [10]

4.4 System Overall Power Consumption
To verify that the batteries used are able to power the rig during operation, the power con-
sumption of each component is evaluated. In Table (4.3) each components power require-
ment is presented. With Equation (4.26) power consumption is converter to watt, with the
Teensy 3.6 and Azure Kinects running on 5V converters, while the batteries delivery of 24V.

Device: Power consumption: Unit:
Teensy 3.6 80 mA
Nvidia Xavier 50 W
Azure Kinect 6 W
Kinect external power 2.5 A
MTO5065 70 HA 42.5 A
PCI-e Card 10 W

Table 4.3: Power Consumption Components

∆W =
n∑
i=1

Wn , Where: W = V I (4.26)

59

https://www.amazon.co.uk/Vision-CP12200-20Ah-AGM-Battery/dp/B007GY6AK2
https://www.aliexpress.com/item/1954188480.html

where:

Symbol: Description: Value: Unit:
W - Watt ∼ W
I - Current ∼ A
V - Voltage ∼ V
∆W - Sum watt 4214.4 W

The maximum power consumption if all the motors are run at full speed and all the sensors
are operative is calculated to be 4214.4W.

4.5 Power Supply
In order to keep the the functions on the rig working in manual and autonomous modes, the
rig must be equipped with a battery pack. The battery pack should be able to deliver the
current requirements calculated in the previous section. As of now, the battery pack consist
of two 12V lead acid batteries wired in series providing the system with with a 24V and
20Ah. The batteries have a capacity of 480Wh which is too small for this application, but
may be used for testing purposes. At absolute maximum, the system requires 4214.4W for
optimum functionality and the batteries can supply this for 7 minutes. Although, due to
losses when discharging by Peukert’s Law, the system the will have a reduced operational
time compared to theoretical operational time[44]. The lead acid battery pack is used as a
temporary solution.

4.6 Wiring
The system is temporally supplied by two 12v 20Ah batteries connected in series centred on
the parking rig to achieve uniform weight distribution. A 200 ampere fuse is added close to
the battery which will melt and break the circuit in the event of excessive current demands
from the motors, e.g steep inclination. The use of a 200 ampere fuse is chosen because each
motors can draw a maximum of 50 ampere. A power switch is placed between the fuse and
a power distributor to allow powering on and off the system. The distributor disperse the
power to the front and back of the rig. At each end of the rig, another power distributor is
placed to divide the power between two speed controllers. An overview of the wiring can be
seen in Figure (4.13).

60

Front

35
2

35
2

VESC

VESCVESC

VESC

Rear

35
2

8 2 8 2

Figure 4.13: Power distribution

The current drawn from the batteries can become large, and to reduce the losses and exces-
sive heating, the sizing of the wires is considered. A cable of 35mm2, equivalent to American
Wiring Gauge (AWG) 2.0 [45], is chosen from the batteries to the second distributor. From
the second distributor to each VESC, the current will be considerably less with a maximum
of 50 ampere. Because of this, wire size 8mm2 or AWG 8.0 are utilized [45]. The losses is
then calculated with Equation (4.27) [46]. Any length of wire powering the system does not
exceed 0.50m, which will be used in calculations from here on.

∆U = RWireIL (4.27)

where:

Symbol: Description: Value: Unit:
RWire - Wire Resistance ∼ mW/m

- Wire Resistance AWG 2.0 [47] 0.5127 mW/m
- Wire Resistance AWG 8.0 [47] 2.061 mW/m

I - Current ∼ A
L - Wire length 0.50 m
∆U - Voltage loss wiring ∼ V

- Max Voltage loss AWG 2.0 0.0512 V
- Max Voltage loss AWG 8.0 0.0515 V

∆UTotal = 2UAWG2 + UAWG8 (4.28)

From Equation (4.28) the total voltage loss from the batteries to each motor controller is
calculated. The loss are 0.64% of the nominal 24V provide by the batteries and are consider
acceptable for the system performance.

61

Further the change in heat in the wiring when driving the parking rig is evaluated. The
wiring previously mention is used when calculating the temperature change with Equation
(4.29) with a 40A over 30 seconds [48].

∆t = Q

cm
= V C

cm
= I2RWireLs

cm
(4.29)

where:

Symbol: Description: Value: Unit:
Q - Heat added from battery ∼ Joule
c - Heat capacity copper [49] 390 J/kgK
m - Mass of copper in wire [50] ∼ kg
V - Voltage ∼ V
C - Charge ∼ C
s - Time 30 s
∆t - Change in temperature ∼ K

- Change in temperature AWG 2.0 0.42 K
- Change in temperature AWG 8.0 7.04 K

The results from Equation (4.29) present a small increase in temperature for the wiring.
There is however no danger of melting the PVC insulation which can withstand 140°C, or
the 3D printed plastic covers wich has a 65°C structure changing point [51] [52].

62

5. Modeling
In the modeling chapter, the kinematic constraints of a mecanum wheeled robot is derived.
Further on, the process of creating a simulation model of the plant is documented. Also,
the software used to develop the simulation model and the framework for the overall robot
system is introduced in this chapter.

5.1 Mecanum Wheel Kinematics
In order to send the appropriate velocity reference to the respective mecanum wheel, in
addition to calculates estimates of the robot’s pose, kinematic models are required. In this
section the inverse and forward kinematic models to a mecanum wheeled robot are derived.

5.1.1 Inverse kinematics
In the deriving of the inverse kinematic model, a bottom view of the mecanum robot is used.
First the constraints to one single mecanum wheel is considered, which is assumed to be
subjected to pure rolling. This means that the contact velocity is assumed to be zero and
the wheel does not slip. Thus, Equation (5.1) applies.

vr = rω (5.1)
where:

Symbol: Description: Value: Unit:
vr - Wheel velocity along rolling direction ∼ m/s
r - Wheel radius 0.1015 m
ω - Wheel angular velocity ∼ rad/s

x cos(�+�)

y
si

n
(

+
)

(�+�
)

(�+�)

x sin(
+

)

y cos(
+

)

y

x

xi

yi

�

�

�

	vs

l

l

X

Y

vr

Figure 5.1: Single mecanum wheel

63

In Figure (5.1), the movement vectors of a single mecanum wheel, with its local coordinate
system, i, and the local coordinate system to an example robot frame is shown. When de-
riving the kinematic constraints for a single kinematic wheel, the robot coordinate system is
considered to be the global frame. The rolling and sliding constraints are derived by sum-
marizing the appropriate vectors associated to each of the coordinate systems. Specifically,
the vectors attached to the robot frame, and the wheel frame are collected on each side of
the respective equation. The rolling Equation (5.2) consists of all vectors parallel to the
rolling direction, vr, and the sliding Equation (5.3) consists of all vectors perpendicular to
the rolling direction.

−vr + vs cos(γ) = −ẋ sin(α + β) + ẏ cos(α + β) + lθ̇ cos(β) (5.2)

−vs sin(γ) = ẋ cos(α + β) + ẏ sin(α + β) + lθ̇ sin(β) (5.3)

Since vs is not controllable, the kinematic constraint Equation (5.2) and Equation (5.3) are
solved for this variable in order to eliminate it, which yields Equation (5.4).

−ẋ sin(α + β) + ẏ cos(α + β) + lθ̇ cos(β) + vr
cos(γ) = −ẋ cos(α + β)− ẏ sin(α + β)− lθ̇ sin(β)

sin(γ)
(5.4)

Then, by applying the trigonometric relations presented in Equations (5.5) and Equation
(5.6), Equation (5.4) is simplified. The simplification calculations can be found in Appendix
(B).

sin (α± β) = sin(α) cos(β)± cos(α) sin(β) (5.5)

cos (α± β) = cos(α) cos(β)∓ sin(α) sin(β) (5.6)
Equation (5.7) describes the simplified kinematic constraint of a single mecanum wheel,
arbitrarily placed in reference to a robot frame.

ẋ cos(α + β + γ) + ẏ sin(α + β + γ) + lθ̇ sin(β + γ) = −vr sin(γ) (5.7)

21

34

α2

α1

α3

α4

β1 β2

β4 β3

x1

x4 x3

x2

x

y

y1 y2

y3y4

Figure 5.2: Angles with used wheel configuration (Bottom view)

64

In Figure (5.2), the wheel configuration of the parking rig, viewed from the bottom, is shown.
With this specific configuration and due to the behaviour of the trigonometric expression, it
can be seen that Equation (5.8) is fulfilled.

α + β = 0 (5.8)

This relation is substituted into Equation (5.7), which yields the reduced kinematic Equation
(5.9).

ẋ cos(γ) + ẏ sin(γ) + lθ̇ sin(−α + γ) = −vr sin(γ) (5.9)
Equation (5.9) is then rearranged and the trigonometric relation in Equation (5.10) and
Equation (5.11) are applied, which yields Equation (5.12).

sin(−a) = − sin(a) (5.10)

cos(−a) = cos(a) (5.11)

ẋ

tan(γ) + ẏ + lθ̇

(
cos(α)− sin(α)

tan(γ)

)
= −vd (5.12)

21

34

x1

x4 x3

x2

x

y

y1 y2

y3y4

�4

�3

�1
�2

w2

h2
α2

l2

Figure 5.3: Roller angles (Bottom view)

Figure (5.3) shows the length from the center of the robot frame to the center of an arbitrarily
selected mecanum wheel. It should be noted that for this configuration, the following relation
in Equation (5.13) - (5.15) are true, where the lengths are the measured values of the rig
prototype.

l = l1 = l2 = l3 = l4 (5.13)

h = h1 = h2 = h3 = h4 (5.14)

65

w = w1 = w2 = w3 = w4 (5.15)

where:

Symbol: Description: Value: Unit:
l - Length from center of robot to center of wheel 700 mm
h - Height from center of robot to center of wheel 635 mm
w - Width from center of robot to center of wheel 285 mm

In addition, Figure (5.3) can be used in order to derive Equation (5.16) and Equation (5.17),
which are substituted into Equation (5.12). The latter, in conjunction with Equation (5.1),
yields the final Equation (5.18). The final equation is applicable for all four wheels connected
to the robot frame.

w = l cos(α) (5.16)

h = l sin(α) (5.17)

[
1

tan(γ) 1 w − h
tan(γ)

] ẋẏ
θ̇

 = −rω (5.18)

Lastly, Figure (5.3) shows how the angle γ is defined on the frame configuration. Essentially,
it is the angle between the x-axis and the closest roller line, and since the roller angle to a
mecanum wheel is 45◦, Equation (5.19) and Equation (5.20) applies.

γ1 = γ3 = 45◦ (5.19)

γ2 = γ4 = 360◦ − 45◦ = 315◦ (5.20)

In conjunction with Equation (5.16) - (5.18), Table (5.1) was made to substituted with the
appropriate angles for each wheel on the construction. The lengths and the appropriate signs
yields the final inverse kinematic model of the mecanum wheeled robot shown in Equation
(5.21).

Wheel no. α γ Sign cos(α) Sign sin(α) Sign sin(γ)
1 114.2◦ 45◦ - + +
2 65.8◦ 315◦ + + -
3 294.2◦ 45◦ + - +
4 245.8◦ 315◦ - - -

Table 5.1: Kinematic sign table


ω1
ω2
ω3
ω4

 = −1
r


1 1 −w − h
−1 1 w + h
1 1 w + h
−1 1 −w − h


ẋẏ
θ̇

 (5.21)

66

Equation (5.21) is derived based on a bottom view perspective of the mecanum wheel con-
figuration. Because the operator will perceive the Loomo rig from the top, it is beneficial to
change the inverse kinematic model to correspond with this view. When changing the view
from bottom to top, the x- and y-directions behave the same. This change will only affect
the angle in the sense that an object that rotates counter clockwise viewed from the bottom,
rotates clockwise when viewed from the top. This is easily changed in the inverse kinematic
model by changing the direction of θ̇. This yields the inverse kinematic model viewed from
the top in Equation (5.22), with counter clockwise as the positive direction of rotation.

ω1
ω2
ω3
ω4

 = −1
r


1 1 w + h
−1 1 −w − h
1 1 −w − h
−1 1 w + h


ẋẏ
θ̇

 (5.22)

5.1.2 Forward Kinematics
In navigation applications it is common to have what is called an odometry model. Odometry
is the use of motion sensors, such as encoders, hall sensors or IMU, in order to estimates
a moving robot’s change in position over time. For indoors environments, localization with
odometry boils down to estimating and tracking its pose, meaning the robot’s position and
orientation. Odometry is widely used because it can be implemented independently without
external information outward, which makes it simple, inexpensive and easy to accomplish in
real time.[53] However, as an example, the wheels used to move the robot’s base have the
possibility to slip or skid. This makes the estimated change in position prone to errors. In
addition, errors will continuously accumulate during operation. Due to this, it is common
to use odometry to quickly estimate the robot’s change in position, then correct deviations
with external sensors, such as cameras or laser scanners.

In order to convert the data from the hall sensors into useful information, a forwards kine-
matics model of the rig can be used. This model was derived by using the already derived
inverse kinematics model. The inverse kinematic model shown in Equation (5.21) is a system
of equations that can also be described by Equation (5.23).

Ax = b (5.23)
where:

A = −1
r


1 1 w + h
−1 1 −w − h
1 1 −w − h
−1 1 w + h

 x =

ẋẏ
θ̇

 b =


ω1
ω2
ω3
ω4


In order to yield the forward kinematic model, Equation (5.23) has to be solved with respect
to x. This is done by eliminating the matrix A by multiplying with its inverse. However,
as can be seen, the A matrix is not square. This means that inverse can not be directly
calculated, but its pseudo inverse might be possible to obtain.

First, the rank of A is calculated. This is done by reducing the matrix into Echelon Form,
which is shown in Equation (5.24). As can be seen, the pivot diagonal contains three ones.
The matrix is of full column rank, since the rank = n = 3.

1 0 0
0 1 0
0 0 1
0 0 0

 (5.24)

67

The validation is performed to check the dependency of the matrix. If the rank of a matrix
with m rows and n columns is not of full column rank, where full rank being; rank = n, the
matrix columns are linearly dependent. If this is true, the matrix will become singular in
the upcoming operations and will not be possible to invert.

Since the matrix A has been verified to be column linearly independent, the transpose of A
is multiplied by Equation (5.23), which yields Equation (5.25).

AT Ax = AT b (5.25)

AT is a m × n matrix and A is a n × m matrix, thus their matrix product will yield a
n× n matrix. In addition, it is non-singular and possible to invert, proven by the previous
validation.
Now Equation (5.23) can be solved for x by multiplying by (AT A)−1 on both sides. This
yields Equation (5.26)

x = (AT A)−1AT b (5.26)

In Equation (5.26), the terms containing the variants of the A matrix is what is referred to
as the pseudo inverse. Typically this has the superscript of a cross or a dagger. The pseudo
inverse is highlighted in Equation (5.27)

A† = (AT A)−1AT (5.27)

By performing the steps to calculate the pseudo inverse, the forward kinematic model is
derived, which is shown in Equation (5.28) and Equation (5.29).

x = A†b (5.28)

ẋẏ
θ̇

 = −r4

 1 −1 1 −1
1 1 1 1
1

w+h −
1

w+h −
1

w+h
1

w+h



ω1
ω2
ω3
ω4

 (5.29)

68

In order to reference the forward kinematics model from the robot frame to a global world
frame, the velocities ẋ, ẏ and θ̇ has to be appropriately transformed. The transformation
matrix is going to be derived by using Figure (5.4).

yg

xg

y
x

θ

xyθ

xx

yy

yx

Figure 5.4: Robot inside global reference frame

When the robot rotates, it is about the z-axis. This means that the angle is only affected by
itself, and is the same when viewed from the robot frame and global frame. This is expressed
with Equation (5.30). As for the sum of change in the x- and y-direction viewed from the
global frame, it can be expressed with Equation (5.31) and Equation (5.32), respectively.

∆θ = ∆θ (5.30)

∆xg = ∆x cos(θ)−∆y sin(θ) (5.31)

∆yg = ∆x sin(θ) + ∆y cos(θ) (5.32)
The transformation matrix, R, is then derived by merging Equation (5.30)-(5.32) into a
system of Equations (5.33). xgyg

θ

 =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


R

xy
θ

 (5.33)

To calculate an estimate of the robot’s pose in the global reference frame, the robot frame
velocities are first transformed to global reference with Equation (5.34).ẋgẏg

θ̇

 =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


ẋẏ
θ̇

 (5.34)

69

Then the velocities are integrated. Since the velocity data is obtained from the sampled
data, the integration is done numerically with Equation (5.35).xg[k + 1]

yg[k + 1]
θ[k + 1]

 =

x0 + xg[k]
y0 + yg[k]
θ0 + θg[k]

+

ẋg[k + 1]
ẏg[k + 1]
θ̇g[k + 1]

 dt (5.35)

where:

Symbol: Description: Value: Unit:
xg, yg, θ[k + 1] - Updated position ∼ m
xg, yg, θ[k] - Previous position ∼ m
x0, y0, θ0 - Initial position ∼ m

ẋg, ẏg, θ̇[k + 1] - Sampled velocity ∼ m/s
dt - Sampling time ∼ s

70

5.2 Robot Operating Systems
Many of the advanced techniques used in this project are implemented through Robot Op-
erating System, more commonly referred to as ROS. In order to understand the flow of the
system, an introduction to ROS is presented. ROS is an open-source framework that pro-
vides libraries and tools for creating robot applications. It provides support for hardware,
drivers, simulation, visualization, and more. The founders of ROS had the impression that
the field of robotics evolved slowly because developers were focusing their efforts on com-
pletely different fields. Therefore, they aimed to combine people’s work and made it their
primary goal to develop more advanced robots based on code reuse. ROS is designed to be
modular, which enables the user to utilize as much or as little of ROS as desired. The frame-
work has gained massive support in the robotics community and proven to be an effective
tool for creating advanced robotic applications.[54]

ROS is constructed as a coupled system consisting of multiple nodes connected together.
A node is a computational process and each node should be responsible for one task. A
ROS master enables individual nodes to locate one another, and a system can only have one
master node. Once these nodes have located each other they can communicate peer-to-peer.
Organizing the system in this way provides the modular design and reduces the complexity
of each script. Additionally, it makes the debugging process more systematic because it is
simple to isolate the problem to a single node.

The couplings between the nodes are called topics and is a communication bus for exchanging
messages between the nodes. A topic has a unique name and correlates with a specific data
type. The data types in ROS are called messages and follow the SI unit standard. When a
node wants to make information available to other nodes, it publishes the information to a
topic. When a publisher is registered with the master, other nodes can access the data from
the topic by subscribing to it. Whether a subscriber is in the same node, in a different node
on the same machine, or a different node on a different machine, the message will be put
in a subscriber node’s callback queue for processing. Message reception is independent of
the message’s source and location. The ROS framework is very flexible because it supports
multiple programming languages, and the messaging technique makes it possible for nodes
that are written in different languages to communicate with each other. As long as the
node maintain the standardized message types, nodes written in different languages will
understand each other. A simple ROS network is shown in Figure (5.5), where a node is
publishing to a topic with a specific message type and two other nodes are subscribing to it.

Figure 5.5: A simple ROS network

71

Nodes can be initialized through .launch files. A launch file is written in the XML format
and is used to start one or multiple nodes together with their respective configuration files.
Inside the file, the location of the package directory, configuration files, as well as the type
of node can be specified.

In ROS, nodes and all their corresponding configuration files required to fulfill a feature or
application are referred to as packages. Further on, a stack is a collection of packages which
are created to accomplish a common goal. For instance, this thesis is based on a navigation
stack, which serves to localize and navigate a robot in a 2D environment.

5.3 Simulation Model
Simulation is a widely used approach when developing and testing complex systems. When
working with a mobile robot, it can be very time consuming if the system has to be tested on
the physical model every time a change is made. A common way to make the process more
efficient is to describe the physical system as a model on a computer. This is convenient
when the real plant is inaccessible or when the system is to be tested in an environment
which is not possible to manipulate. Simulation grants the contingency to design a control
system in parallel with the development of the physical plant, resulting in increased efficiency
and reduced costs. Simulating the process can also increase the safety during development
and help avoid accidents due to unexpected errors in the system. If the simulation model
is adequate, the fine-tuned system can be directly attached to the real plant as soon as the
plant is accessible [55].

The simulation software used in this project was GAZEBO, which is an open source physics
engine that is designed to accurately and efficiently simulate robots in an environment that
resembles the real world. GAZEBO is a standalone software that supports ROS integration
through a dedicated package, the gazebo_ros_pkg package [56]. This package provide the
necessary interfaces to simulate a robot using ROS messages. GAZEBO plugins are used to
simulate sensors and integrate actuators [57]. To display physical and virtual sensor data,
RVIZ was used. RVIZ is an open source 3D visualization tool that is dedicated to the ROS
framework. This software is extensively used to see what the robot sees, which is a great
tool for debugging processes. It provides a great way to identify problems such as sensor
misalignments or robot model inaccuracies [58].

5.3.1 Robot Model
A robot model is a collection of links, joints, and plugins. Links are the rigid bodies of the
robot, whereas joints are the movable components of the robot that cause relative motion
between adjacent links. GAZEBO requires that the robot model is described as Simulation
Description Format (SDF), while RVIZ utilizes Unified Robot Description Format (URDF).
The robot in this project was described as a URDF file because it is the standardized
format in ROS and because the gazebo_ros_pkg includes a URDF to SDF converter. This
conversion is necessary because URDF can only specify kinematics and dynamic properties
of a robot in isolation, but can not specify the pose of the robot within a world. To define
a robot model, the location and orientation of all the links and joints has to be specified.
The pose of all the frames were found from the Loomos rigs SOLIDWORKS assembly. The
robot consist of a base link, four wheel links and four camera links. Revlolute joints were

72

assigned between the base link and the wheels, whereas the joint between the base link and
the cameras was set to fixed. Each link is divided into multiple properties. [59]

Visual Property

The visual property of a link describes the
shape of the object for visualization pur-
poses only. The shape can be a simple
geometrical element or a complex geome-
try described by a mesh file. The visual
property can also define the material color
of the object. The visual property of the
robot is shown in Figure (5.6). [59]

Figure 5.6: Visual property of the URDF

Collision Property

All links are also described with a collision
element. In oppose to the visual element,
a collision property contains physical at-
tributes and is required to detect phys-
ical collision of the model. The collision
element should be a simplified representa-
tion of the visual geometry. If the collision
model is very complicated, the collision
calculations are going to be very heavy.
The base link was therefor assigned as
a simple cuboid, whereas all the wheels
were specified as cylinders. The red vol-
ume in Figure (5.7) represent the collision
geometry. [59]

Figure 5.7: Collision property of the
URDF

Inertia Property

The inertia property depends on both the mass and the distribution of mass of the object.
It is important that the inertia origin is located at the center of gravity. The inertia data
extracted from SOLIDWORKS resulted in the model collapsing in GAZEBO. For that rea-
son, the inertia for each link was calculated based on simplified shapes. The base link was
assigned an inertia of a box, while the wheels were replaced by inertia from cylinders. [59]

73

Transmission

For each joint that will be controlled by an actuator, a transmission property must be defined.
The transmission property contains information about what joint to manipulate, the type of
actuator and mechanical reduction. In this project, the wheels will be controlled individually
by four motors which requires a transmission property each. [59]

Plugins

Plugins are used to give the URDF models greater functionality by interpreting ROS mes-
sages from sensor outputs and motor inputs. Plugins are specified in the URDF file and
wrapped with the < gazebo > tag to indicate that the information should be passed to
GAZEBO.

To move the model around in the simulation environment, a planar move plugin was used.
This plugin can move arbitrary objects along a horizontal plane and accepts linear velocities
(ẋ, ẏ) and angular velocities (θ̇). This means that this plugin is not intended for use in
slopes, as it can only move the object in a 2D plane. For this simulation, the planar mover is
linked to the base link, which moves the robot as a whole. In a realistic scenario, the wheels
would be driving the motion of the base, however this requires an accurate description of the
mecanum wheels, which is not available. For this reason, the readily available planar move
plugin was used to allow the development of a navigation system to continue.

To make the simulation visually correct, four effort controllers are used to actuate the wheels.
The controllers accept velocity as input and outputs effort. Because the wheels only serve as
visualization, the friction between the wheels and the contact surface is set to zero to avoid
interference with the planar mover. Although this not an accurate representation of the real
plant, the model provides a sufficient simulation model and enables further development of
the robot.[60]

Plugins were also used to simulate the sensor data from a depth camera. The parameters
were set according to the available data for the physical camera sensor. Parameters include
operating range, resolution and refresh rate. [61]

Gazebo Control Node

To make the simulation visually correct, a node was created to convert the linear and angular
velocities of the base into wheel velocities. The node subscribes to the same velocity com-
mands as the planar mover. The information from the velocity commands is used together
with the kinematics deduced in Section (5.1) to calculate the velocity of each wheel. Every
time a message is publishes to the topic, a callback function is called. Inside the callback
function the inverse kinematics are handled and the wheel velocities are published to the
respective topic. Each motor has its own topic. This means that the velocity calculations are
only processes every time a change in motion is made, which will reduce the computational
power. Each controller listens to their own topics and the node publishes each velocity to
the appropriate controller. By doing this, the wheels are able to turn freely based on the
same velocity commands that are sent to the planar mover.

74

5.3.2 World Model
A section of the university was created according to the available maze map, displayed
in Figure (5.8). The maze map does not contain dimensions of the floor plan, however,
because some lengths were known, the rest could be scaled proportionately and a sufficient
representation could be obtained. The world model was created in the Gazebo model creator
and used to simulate the robot model in a representative environment. The developed model
is shown in Figure (5.9).

Figure 5.8: Floor plan

Figure 5.9: World model

75

6. System Architecture

In the system architecture chapter, the communication interface created between the hard-
ware components are covered. This involves communication between the processing unit
and the base controller, as well as the communication from the base controller to the mo-
tors. The techniques used are UART communication and CAN-bus communication, and
both are described. Further, the methods concerning the perception of the environment are
presented. This deals with the selection and placement of the perception sensors, as well as
the processing of the perceived data and the space transforms in order to relate it correctly.

6.1 Hardware Communication

In this section the software used and programs created in order to establish the appropriate
communication between the selected hardware components are presented. The developed
programs are going to be referenced to individually in order to better isolate what is necessary
to achieve specific tasks.

6.1.1 CAN BUS Communication
Controller Area Network (CAN) is a serial communication protocol. It was originally in-
vented for the automotive industry by the company Bosch, and has later become quite
popular in the automation industry. The main strength of the communication protocol is
that it allows communication between multiple electronic control units, ECUs, independently
on a single common network, which eliminate the need of complex point to point wiring be-
tween all the control units[62]. This makes CAN-bus suitable for the application. Figure
(6.1) shows a typical CAN-bus line and how the ECUs, referred to as nodes in the network,
are connected. A resistor value of 120Ω is commonly used, since it is then in accordance
with ISO 11898, Road vehicles — Controller area network [63].

CAN Node 1 CAN Node 2 CAN Node n

...Controller

Transceiver

Controller

Transceiver

Controller

Transceiver

R=120� R=120�

CAN-L

CAN-H

CAN-L CAN-H CAN-L CAN-H CAN-L CAN-H

Figure 6.1: CAN Bus network

76

CAN messages IDs

The VESC has defined all the addresses containing the data it collect. The only change
required to enable CAN-bus, is to activate the communication and give the VESC an ID. This
was achieved in the VESC-tool software. In addition, the CAN-bus frequency, baud rate,
and status message mode was set. The message mode defines the extent of the information
in the sent message, with a number from one to five. The numbering follows Table (6.1).
The table was derived from the VESC CAN communication source code [64], which shows
the different message objects specified in the statuses.

In order to write and request the cor-
rect information, it has to be determined
which CAN ID corresponds to which mes-
sage. In order to determine theses mes-
sages, the VESCs were connected to the
CAN-network and examined. This was
done by utilizing a PCAN-USB adapter
connected to a PC through USB [65].
The device listens to all the messages sent
over the bus network, and gives informa-
tion about the message’s IDs, the data
it contains, and the data length. Fig-
ure (6.2) shows the information gathered
from PCAN-View with the four VESCs
connected to the network. PCAN-View
is the additional software used to visu-
ally display the information passing in the
CAN-bus network. As can be seen from
Figure (6.2), each data length contains
two hex characters which equals one byte,
8 bits, since one hexadecimal character
represents 0-15, 4 bits.

Status message mode no. 1 2 3 4 5
ERPM X X X X X

Current draw X X X X X
Duty cycle X X X X X

Amp hours consumed X X X X
Amp hours charged X X X X

Watt hours consumed X X X
Watt hours charged X X X
Mosfet temperature X X
Motor temperature X X
Total current in X X
Total current in X X
PID position X X

Tachometer value X
Input voltage X

Table 6.1: CAN Status Message mode

Figure 6.2: PCAN-View

77

In the VESC datatypes head source code, the CAN commands are defined in an enumerator,
where the first command, is set to zero [66]. This means that the consecutive command IDs
are one value greater. Then, by utilizing the PCAN-USB the network messages are cross-
referenced with the VESC datatypes header source code, the data associated with its ID is
deciphered. Here "TA" is the node ID represented by one byte. To specify, this means that
if the ID is 1, TA=01. Only the messages considered of importance have their full message
structure deciphered. These are the commands that affects the control of the motors and
the status packets.

0x000000TA is the CAN-ID used in order to set the duty cycle of which the motor runs at,
and is sent as a message of 4 bytes. The message is scaled in such a way that the requested
duty cycle, in percent, has to be multiplied with 100 000.

0x000001TA is the CAN-ID used in order to set the wanted current draw from the VESC
to the brushless dc motor. The value the VESC interprets is in mA and is 4 bytes in length.

0x000002TA is the CAN-ID used in order to set the wanted breaking current draw from
the VESC to the brushless dc motor. The value the VESC interprets is in mA and is 4 bytes
in length.

0x000003TA is the CAN-ID used in order to set the wanted ERPM, electrical RPM, and
is 4 bytes in length. In order to transform RPM into ERPM Equation (6.1) is applied.

ERPM = pRPM (6.1)

Symbol: Description: Value: Unit:
ERPM - Electrical revolution per minute ∼ rev/min
RPM - Mechanical revolution per minute ∼ rev/min
p - BLDC number of pole pairs 7 −

0x000004TA is the CAN-ID used in order to set a shaft position and is 4 bytes in length.
The sent request value has to be multiplied with 1 000 000 in order to yield radians.

0x000009TA is the CAN-ID which contains the data concerning ERPM, total current con-
sumed and duty cycle, and is the essential odometry information which the VESC measures
or estimates. The message is 8 bytes in length, where the different elements of the message
are distributed as shown in Table (6.2). In order to reference according to how the data
message is handled, the first byte is denoted byte 0.

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
ERPM Current Duty cycle

Table 6.2: ERPM, current and duty cycle message structure

6.1.2 Writing and Reading CAN Messages
The selected microcontroller, Teensy 3.6, supports dual CAN-controllers. In order to handle
the CAN-bus protocol on the Teensy, the FLEXCAN library was used [67]. It is a serial
communication drive for the CAN peripheral built into the Teensy CPUs. Most importantly,
it is a library that is compatible with the used dual CAN-adapter.

78

Figure (6.3) shows how the CAN-network is wired. The second CAN-line, CAN1 was used.
The CAN1 Rs pin is connected to the Teensy ground (LOW) in order to select high speed
mode. To select the low power mode, the Rs pin has to be set high.

Figure 6.3: CAN components connection

Writing Messages

The FLEXCAN library was included in order to handle the CAN-bus protocol. The micro-
controller has two CAN-controllers and in order to select which to initialize, it has to be
defined in the begin-function included in the FLEXCAN library. Further, the pins which
receive and transmit data from the CAN-adapter has to be specified. The pins are set to 34
and 33 respectively. Additionally, the function takes two more arguments. The first concern
the baud rate, which is set to 250 000bps. This has to correspond with the value set in the
VESC-tool. The last argument is the filter mask, which is set to allow through all traffic.

Appendix (A.8) shows how the FLEXCAN library is utilized in order to write messages to
the CAN-network. Additional functions that the library provides are also used, such as the
write message function. The write function is displayed in Listing (6.1). To select which
CAN-controller the message is sent through, the i in Cani is set to either 0 or 1. The function
only requires one argument, which is the message to be sent.

Cani.write(message)

Listing 6.1: CAN begin function

In order to effectively add new messages, the function shown in Listing (6.2) was created.
The function requires three arguments. The first argument is the desired name of the CAN-
message, where the name of the message is arbitrary. The second argument is the ID of
the message to be written. Here both the message command ID, and the ID of the unit

79

is specified. Lastly, the value to be sent is specified. The function allows to give the third
argument, value, in decimals. This is made possible by the use of pointers, which is a variable
that holds the memory address. Essentially, this brings the value to a level where its number
type does not matter [68].
write_can_message(CAN_message_t msg, uint32_t can_id, int32_t value)

Listing 6.2: New message function

Reading Messages

In order to read messages from the CAN-network the read-function shown in Listing (6.3)
is called. To select which of the controllers that reads, i is either set to 0 or 1.

Cani.read(inMessage)

Listing 6.3: Read network messages

The read function will read all of the message traffic on the network. Thus, in order to be
able to get the information from a specific message ID, such as the wheel velocity, multiple
functions were created. How these are used can be found in Appendix (A.9). All of the
functions used to read are created identically with the exception of the function used to
read the ERPM. The difference is that this message consist of 4 bytes instead of 2. A
representation of the read functions is displayed in Listing (6.4). The functions has two
arguments. The first is the ID of only the targeted unit, and does not contain the command
ID in addition. This is done since the command ID is left shifted in order to merge it into
a completed CAN-ID. This allows re-use of a function created for a specific messages for
multiple units. The second argument requires a variable which is used to store the read
value in order to avoid clearing data if the message are read at an unfavorable frequency.

read_specific_message(uint16_t can_node_id, int stored_read_value)

Listing 6.4: Read speciffic network message

6.1.3 UART Communication
UART stands for Universal Asynchronous Receiver/Transmitter and is commonly referred
to as serial communication. The UART is a physical circuit in a microctonroller, or a stand-
alone Integrated Circuit (IC). This means that the UART itself is not a communication
protocol [69]. The Jetson Xavier needs to communicates with the Teensy, and because
UART is simple to implement, it was chosen as the communication method.

Rx

Tx

GND

Rx

Tx

GND

Figure 6.4: UART devices connection

80

A UART mainly consists of three parts; the controller unit, transmitter and receiver. In
order to transmit data between two UART devices, two wires are required. Each device has a
transmitting port known as Tx and a receiving port known as Rx, where the appropriate ports
are cross-connected as shown in Figure (6.4). In addition, the figure shows the connection
of a common ground. Since the Tx and Rx pins measure the voltage difference between the
respective pin and ground, it is crucial to have a common zero volt reference in order to
avoid loss of data or receiving corrupt data.

UART Between Jetson Xavier and Teensy

Robot Operating System is going to be used for the navigation and localization of the robot.
Thus, it is decided to use the ROS-package rosserial. It is a protocol for wrapping standard
ROS serialized messages, and allows for multiplexing of multiple topics and services over a
character device such as a serial port or network socket [70]. This allows to use the Teensy as
a node in a ROS-network, which gives the microcontroller the possibility to publish data to
topics and subscribing to other topics. If multiple microcontrollers are to be used as nodes,
they all have to be able to communicate directly with the device running the master node.

The Teensy can achieve the serial communication by connecting via USB. However, the
hardware serial (UART) was used to enable the possibility of compiling new code through
the USB connection. By using the hardware serial, the main USB host stays available whilst
communicating with the Jetson Xavier, allowing external sources to update the code on
the Teensy during operation. By enabling the hardware serial on the Teensy the GPIO
expansion header pins on the Jetson Xavier development kit carrier board has to be used.
The appropriate UART pins to use are found from the pinout schematic in Appendix (C.1)
[71]. Then, by applying the Teensy pin assignments from Figure (4.5), the correct wiring is
deduced. The connection between the Xavier and Teensy is shown in Figure (6.5).

Jetson Xavier GPIO header

13579111315...

246810121416...

Tx

Tx

Rx

Rx GND

Figure 6.5: Teensy to Xavier UART wiring

81

In the rosserial node, which is establishing the communication, the two most essential
parameters that can be specified are the baud rate and the bus name. The baud rate must
be specified at the rate that the devices operates at. If they are not synchronized, the
communication will brake. Figure (6.6) shows the bus names assigned to all of the UARTs
on the Jetson Xavier. Since it is the UART_1{TX,RX,RTS,CTS}, or UARTA, which the
Teensy is connected to, the bus name which has to be specified is; /dev/ttyTHS0

Figure 6.6: Bus name assignment [11]

Typically the permission for accessing the exposed serial ports is denied, resulting in no
way of establishing the connection or transferring data between the units. This can however
be changed by utilizing the CHMOD command from the terminal on the Xavier. Figure
(6.7) shows how the specific changes are made [72][73]. The command can be used with
alphabetical or numerical arguments. The difference between them is that the numerical
changes persists through a reboot of the system whilst alphabetical does not. To use the
alphabetical arguments, the desired target is specified. Then, with any combination of the
permissions letters wanted. In order to use the numerical argument, the sum of the wanted
permissions are added into the correct target. Since it is enough to allow read and write
permission to the group members, in this case the Teensy, the permission is set as in Listing
(6.5).

sudo chmod g+rw /dev/ttyTHS0 // Alphabetical
sudo chmod 060 /dev/ttyTHS0 // Numerical

Listing 6.5: Permission for communication

82

sudo chmod [][][]

user

group

members
others

sudo chmod target+permission

u = user
g = group members
o = others
a = all

4 = r = read
2 = w = write
1 = x = execute

Target: Permission:

Alphabetical:

Numerical:

Figure 6.7: Use of CHMOD

6.1.4 Publishing and Subscribing over Teensy
In order to enable the hardware serial on the Teensy, it has to specified. This is done by
adding the line in Listing (6.6). The line has to to be added before the ROS header is
included in the Teensy program.

#define USE_TEENSY_HW_SERIAL

Listing 6.6: Enabling Hardware Serial

Then, as Figure (4.5) shows, the Teensy has six hardware serials [74]. In order to specify
the one that has been wired to the Xavier, a class defining it was created. This was done as
shown in Listing (6.7). Serial1 is used because it is linked to the hardware serial in use.

class NewHardware : public ArduinoHardware{
public:

// Specifying the hardware serial port and baudrate
NewHardware():ArduinoHardware(&Serial1, 57600){};

}

Listing 6.7: Serial class

With the necessary perquisite, the subscribing and publishing nodes were created separately.
Theses nodes only handle the information about the wheel velocities in ROS messages, and
can be respectively found in Appendix (A.4) and Appendix (A.3). The message handling
is done similar to any other node created with C++. The publishing node publishes the
measured wheel velocities in the topic named wheel_omega_all. Since the appended buffer
is of the type 32 bit integer, and it is beneficial to send all the wheel velocities in a single
message, the standard ROS message Int32MultiArray was selected. The Int32MultiArray
message allows to publish an array of data [75]. The same message structure is selected for
the subscribing node, which subscribes to the omega_ref topic.

After the subscribing and publishing nodes were tested individually, they were merged to-
gether into a single node which both subscribes and publishes. The combination node can
be found in Appendix (A.2). Figure (6.8) shows the data being transferred from Xavier to
the CAN-network through the Teensy, and back.

83

Figure 6.8: Two way data transfer

6.2 Manual Control
Before developing the automation application of the Loomo rig, a low level method of con-
trolling the vehicle was created. It enables easy control of the rig, but the controller also
served as a tool for verify the inverse kinematic equations from Section (5.1).
In order to control the Loomo rig manually, a
hand controller is created. It consists of two
joysticks.

The manual program uses the analog sig-
nal from the potentiometers that the Teensy
reads. The analog value span is [0−1023], and
this is mapped from [(−4)−4]m/s. This value
was found to be satisfactory from initial tests.
Next, the reference velocity is applied to cal-
culate the individual wheel velocities required
by applying the inverse kinematic model de-
rived in Section (5.1). As a last step, be-
fore the reference value is sent over the CAN-
network, the value is converted from raidans
per seconds into ERPM by Equation (6.2),
since this is unit the VESC interprets it as.
The hand controller program can be found in
Appendix (A.7).

Figure (6.9) shows how the joysticks are used
in order to change the velocity reference, re-
sulting in the change in pose of the Loomo
rig. The Loomo rig is viewed from top down
in Figure (6.9).

x

y θ

θ y

x

Figure 6.9: Hand controller guide

ERPM = 60pω
2π (6.2)

84

where:

Symbol: Description: Value: Unit:
ERPM - Electrical revolutions per minute ∼ rev/min
p - Number of BLDC poles 7 −
ω - Wheel velocity ∼ rad/s

6.3 Visual Perception
Computer vision is a rapidly growing technology that is being increasingly implemented in
many modern applications, such as process control and robotics. Perception is the process
by which the robot uses its sensors to obtain information about the state of its environment,
also referred to as a measurement or observation. This project looks at the possibility of
using multiple cameras for obtaining a 360 degree visual perception of the environment. An
alternative would be to use a rotational LiDAR to scan the surroundings. Opposed to a
depth camera, the range scanner can only scan a single 2D plane. This prevents the sensor
from detecting obstacles located below or above the scanning plane. As a result, a robot
based solely on a 2D laser scanner can not ensure a collision-free navigation. Additionally,
due to the size and geometry of the robot, it would be hard to place a single rotating
LiDAR at a location which allow 360 degree perception. A depth camera on the other hand,
can create a 3D representation of the environment and will be able to detect obstacles in
all heights, if positioned correctly. A depth sensor also provides more information, thus it
demands more post processing, which again means it is more computational expensive. Due
to its versatility, the information from a camera can replace one or more sensor units and
can be used for various purposes, for instance, localization, mapping, obstacle-avoidance, and
object recognition. Depth camera scores high, compared to LiDAR, due to 3D reconstruction.
However, the depth camera also has drawbacks, such as typically having a significantly lower
range and the field of view is generally narrow.

Two different depth sensors were available at the university, Microsoft’s Azure Kinect and
Intel’s Realsense D435i. Table (6.3) shows a comparison between the two hardware specifi-
cations.

Azure Kinect Realsense D435i
Depth camera

Resolution 512× 512 1280× 720
Field of view 120◦ × 120◦ 87◦ × 58◦
Max frame rate 30 Hz 90 Hz
Operating range 0.25− 2.21 m 0.1− 10 m

Color camera
Resolution 1280× 720 1920× 1080
Field of view 90◦ × 59◦ 69.4◦ × 42.5◦
Max frame rate 30 Hz 30 Hz

Additional Information
Physical size 125× 103× 39 mm 90× 25× 25 mm
Embedded IMU Yes Yes

Table 6.3: Sensor comparison

85

6.3.1 Camera Placements
In order to obtain a 360◦ perception with the least amount of depth cameras, they must be
placed in a specific manner. Due to the length of the robot, the most crucial factor for this
project is the field of view. To evaluate the field of view at different positions on the robot,
the projection pyramids for each camera were visualized and compared in SOLIDWORKS.
All images illustrate the field of view at a range of 1m from the cameras.

Figure 6.10: Realsense Parallel to Ground Figure 6.11: Kinect Parallel to Ground

Figure 6.12: Realsense Tilted Downwards Figure 6.13: Kinect Tilted Downwards

Figure 6.14: Realsense Titled Upwards Figure 6.15: Kinect Titled Upwards

86

For the first position, the cameras are placed approximately 350mm above the floor and the
orientation is parallel with the ground. The result can be seen in Figure (6.10) and Figure
(6.11). The next position is on top of the robot, with the camera tilted downwards, as can
be seen in Figure (6.12) and Figure (6.13). For the last position, the camera is attached
to the underside of the frame, and the camera is tilted upwards. Figure (6.14) and Figure
(6.15) illustrate this configuration.

From the images above, it is clear to see that the field of view from the Realsense is not
sufficient and that the Kinect is superior. Contrarily, the Kinect does not match the range
properties of the Realsense, but the field of view is considered as the most important factor.
For this reason the Azure Kinect depth camera is chosen. The position in (6.11) was selected
because it enables the camera to be parallel to the ground, which means that the tilt angle
will not cause distortions and does not have to be compensated for.

6.3.2 Azure Kinect Depth Camera

For this project, four Azure Kinects were chosen as the perception sensors. The Azure Kinect
is a multisensor where the two main components are a depth camera and a RGB camera.
An overview of the sensor is illustrated in Figure (6.16).

Figure 6.16: Azure Kinect [12]

The depth feature of the sensor consist of a IR pattern projector and a Time-of-Flight image
sensor. The depth is determined by measuring the time emitted light takes from the camera
to the object and back. This is done by calculating the phase shift between the modulated
wave of the emitted infrared light and the returning light. Further on, this is used to calculate
the depth at each pixel of the RGB camera. These sensors combined make the Kinect a well-
suited component for localization and object detection. The Kinect is also equipped with an
6DOF Inertial Measurement Unit (IMU), which features an accelerometer and a gyroscope.
The Azure Kinect is calibrated at the factory and the calibration parameters for visual and
inertial sensors may be accessed through the Sensor SDK. [12]

87

6.3.3 Depth Image to Laser Scan

A Kinect may produce more than 9 millions points a second, which makes it very compu-
tational heavy with regard to processing and memory [12]. Fortunately, a full image is not
necessary for representing the surrounding environment. A 2D image is sufficient and can be
created from only the important parts of a 3D image. laserscan_kinect is a package available
in ROS which is used to transform spatial data from a Kinect to a 2D plane. The input to
the package is a depth image with n rows and m columns where the image center is located
in (cx, cy). The output is a scan array containing the distances for consecutive scanning
angles. A prerequisite for using this package is that a transform configuration is publishing
the correct transformation between the base frame and the sensor frame. A sensor unit must
also make a depth image available by publishing it to a topic. [13]

The conversion algorithm utilized in laserscan_kinect assumes that the important informa-
tion for collision avoidance belong to the location of the closest obstacle. For this reason,
the lowest distance values are extracted from each column of the depth image. Equation
(6.3) describes this where zj,i denotes a distance, i argue the column and j denotes the row
in the image. [13]

zi = min(z0,i, z1,i, ..., zj,i) (6.3)

Once the closest point in each column is
detected, the distance relative to the opti-
cal center can be determined by simple ge-
ometry. The package is based on the pin-
hole model as described in Figure (6.17),
and Equation (6.4)-(6.6). [13]

δ = θ
jmin − cy − 1

2
n− 1 (6.4)

d = l · sin
(
π

2 − α− δ
)

(6.5)

= z ·
sin(π2 − α− δ)

sin(π2 − δ)
(6.6) Figure 6.17: Pinhole model [13]

where:

Symbol: Description: Value: Unit:
δ - Angle to the obstacle in vertical plane ∼ rad
θ - Field of view ∼ rad
jmin - The row location of the depth image ∼ pixels
cy - Camera offset in vertical direction ∼ pixels
n - Number of pixels in vertical direction ∼ pixels
d - Rectified normal distance to closest object ∼ m
l - Distance from camera to closest object ∼ m
z - Normal distance from camera to object ∼ m
α - Camera tilt angle ∼ rad

88

Considering that the algorithm is based
on finding the nearest obstacle in the im-
age, it is necessary to remove the floor
to prevent the ground from appearing as
the closest obstacle. To do this, the pack-
age uses a ground removal algorithm. If
the tilt angle and the height of the sen-
sor relative to ground is known, it is pos-
sible to determining which pixel is occu-
pied by the ground. In this algorithm,
the ground is determined based on a toler-
ance εg. The ground is removed based on
Equation (6.7) and Figure (6.18). If the
value is categorized as ground, the range
value of that pixel is set to infinite, and
will not be included in the converted scan.
[13]

Figure 6.18: Ground removal [13]

Pg =
{
z = h · sin(π2−δ)

cos(π2−δ−α) − εg
0

if 0 ≤ zkt < zmax
else

(6.7)

Figure (6.19) shows the depth image gen-
erated by the Kinect from the environ-
ment depicted in Figure (6.20). The
resulting laser scan converted from the
depth image is shown in Figure (6.21).
This was done for all four Kinects which
creates four individual laser scans.

Figure 6.19: Depth image

Figure (6.20) displays the Loomo rig in the GAZEBO environment. The spheres and wall
in front of it represents the same field of view as the front camera perceiving the wall.

Figure 6.20: Environment in GAZEBO

89

Figure (6.21) visualizes the resulting laser scan from the depth camera in RVIZ as the red
line. The particles is the point cloud perceived by the depth camera located at the front.

Figure 6.21: Laser scan visualized in RVIZ

6.3.4 Merging Laser Scans

To generate a single scan message from the four separate Kinects, the ira_laser_merger
package was utilized. The package takes multiple laser scans as input and transforms them
all to a common frame. The output of the package is a merged scan which will appear as it
was generated from a single scanner. Figure (6.22) shows the test environment in GAZEBO
and Figure (6.23) shows the resulting merged scan visualized in RVIZ. As can be seen, the
closest points of the spheres are detected by the depth cameras as a merged laserscan.

Figure 6.22: Test environment in GAZEBO

Figure 6.23: Merged laser scan visualized in RVIZ

90

6.4 Transform Configuration
The robot consist of several bodies with different location and orientations of their coordinate
frames. The tf package is responsible for calculating the frames location relative to each other
and the changes between them over time. tf is designed in a tree structure with parents and
children, the tf tree for this robot is available in Appendix (F.6). The transformation between
map and odom is dynamic. It constantly computes the robot’s pose based on information
from the localization component and is used as a long-term global reference. In this project,
the localisation source is the combined data from the four depth cameras. Further on, the
transformation between odom and the base link is also dynamic. It computes the robot’s
pose based on information collected from an odometry source. Due to cumulative errors of
the internal sensor, the true position will drift over time. Because of this, the odometry
source is used as an accurate short-term reference, and occasionally updated by information
from the localization source. The odometry model for this project is based on fusion between
an IMU and wheel encoders. Lastly, the transformation from the base link to the wheels,
as well as the transformation between base link and the four cameras are static because the
distance between them is constant. All the static transformations are gathered from the
URDF file. Figure (6.24) shows the static frames and how they are linked to the base frame.
[76]

Figure 6.24: Transformation between links

91

7. Localization and Navigation
The localization and navigation chapter aims to cover the features used to achieve the over-
all functionality of the navigation system. Two navigation modes are presented. ArUco
tracking and following, as well as a semi-autonomous navigation. For the latter mode, map
generation, solving the localization problem and path planning is documented. Lastly, a
method of assistive actuation by the use of hand gestures is presented.

7.1 Probabilistic Localization
Localization is known as the problem of determining the pose of a robot in an environment.
Autonomous roaming of a robot is possible if the location of the robot and surrounding
obstacles are known. However, these variations are not directly measurable, and the robot
relies on sensor data as well as advanced data processing to estimate its position. When
considering the global localization for this project, the robot does not know its initial pose
and needs to be given one by the operator. Once the robot knows its starting position, the
position tracking problem is initiated. This is the robot’s ability to track its motion and
maintain an estimate of its pose.

7.1.1 Occupancy Grid
The rig is intended to be used in a known environment, the University of Agder campus
Grimstad, hence it was possible to generate a premade map of the static objects in the
operating area. For this project, the actual operating area was not available, therefore the
concept was developed and verified in a simulation model. The map will be used for the
localization problem to complete the autonomous application. Figure (7.1) shows the map
used in this project.

Figure 7.1: Map of UiA section

92

The map in Figure (7.1) is characterized as an occupancy grid. An occupancy grid represents
the environment as an equally spaced grid where the color of the cell determines the state
of the pixel. If the cell is white, it is perceived as free. If the cell is black, it is interpreted
as occupied, whereas other colors represent the unknown territory. [77]

A dedicated node is used to provide map data as a ROS service. The package that contains
the node is called map_server and is a part of the navigation stack. map_server stores the
generated map and makes it available for other nodes. This node accepts an image as an input
and converts it into an occupancy grid which is published as a nav_msgs/OccupancyGrid
message [78].

7.1.2 Adaptive Monte Carlo localization
Adaptive Monte Carlo localization (AMCL) is a probabilistic localization system for mobile
robots moving in a 2D environment. The algorithm uses a particle filter to track a robot’s
pose in a known map. A particle filter is a probabilistic filter that is used to estimate internal
states in a dynamic system where the observations are influenced by random perturbations.
Particle filters are non-parametric, and can represent a broad selection of distributions. The
filter is a form of bayes filter, which means it is recursive and uses the belief at the previous
time step xt−1 to calculate the current belief xt. A control ut is necessary to induce a
transition from xt−1 to xt. The filter is based on representing the belief as a set of particles
(samples) to determine the posterior distribution. The number of particles is often large (e.g
1000) and each particle is a hypothesis as to what the true state may be. When using a
particle filter for solving the localization problem, each particle is a pose hypothesis of the
robot state represented by x, y, and theta. Dynamic robot environments are stochastic and
can not be described using a deterministic function, but rather a probability distribution.
[14]

The AMCL algorithm requires two models; a motion model that computes the robot’s motion
and a sensor model which calculates the probability of the sensor readings. The motion model
rely on control data which carry information about the change of state in the environment,
while the sensor model depend on measurement data that present information about a
momentary state of the environment. For this application the motion model correspond to
a odometry model and its data is denoted u, while the sensor model correspond to a model
of a laser scanner and its measurement is denoted z. [14]

The location of a robot is determined by sampling from the posterior belief of xt represented
by a finite set of particles St. First, the algorithm draws samples from the posterior distri-
bution, which in the AMCL case is the motion model. The motion model is also referred to
as the state transition probability. The distribution is shown in Equation (7.1). [14]

xt = p(xt | xt−1, ut) (7.1)

The equation indicate that the new state is dependent on the previously estimated state
and the motion of the robot. Further on, a correction step is performed. The algorithm
determines the importance weight of each particles by applying the sensor model, as shown
in Equation (7.2). [14]

ωt = p(zt | xt,m) (7.2)

93

After the correction step, the particles are resampled and the particles with a high importance
weight are more likely to be resampled. The AMCL algorithm adaptively calculate the
number of particles required to minimize the error between the real and sampled posterior. At
start-up the algorithm needs many particles to determine the position of the robot. However,
after the global localization is completed, the problem becomes a trajectory tracking problem,
which require fewer particles.

By combining the state transition probability and the measurement probability as shown in
Equation (7.3), the dynamical stochastic system of the robot and its environment can be
determined. The state at time t is dependent on the state at time t− 1 and the motion ut.
The observation model uses the map together with the old pose to try to align the new and
old observation to determine the updated pose of the robot. The motion model grants a
rough region where to search, but ultimately it is the observation model that is dominant.
[14]

xt = p(zt | xt,mt−1)p(xt | ut−1, xt−1) (7.3)

where:

Symbol: Description: Value: Unit:
xt - Robot pose ∼ −
mt−1 - The map previously estimated map state ∼ −
zt - Current measurement ∼ −

An example of AMCL applied to a 1D localization problem is presented in Figure (7.2). At
first, the particles are initialized randomly and uniformly distributed in the environment, as
illustrated in a). The black lines at the bottom of the picture represent the particles, and
the fact that they are equally tall means they are uniformly weighted. The next step is to
apply the observation model which calculates the importance weights. As can be seen in
section b), the particles are the same set as a), however, the weight of them is non-uniform
anymore. Based on the observation model, the robot knows it is close to a door, and for
that reason, the particles near the doors have a higher importance weight. Next, section
c) shows the particles after resampling and after applying the motion model. A new set of
particles with uniform distribution is obtained, however, this time the particles are denser
at the more likely places. The reason for this is that the particles with higher importance
weight are more likely to be resampled. In section d), new importance weight are computed
based on the new observations. Lastly, e) illustrates a new set of particles and the process
continues in this cycle.[14]

94

Figure 7.2: AMCL algorithm example [14]

An AMCL package is available in ROS and was implemented in this project. Prerequisites
for the amcl_node is an occupancy map and transform configurations. The package also
require an odometry models as well as a sensor model. The odometry and observation
models are covered later in Section (7.1.3) and Section (7.1.4) respectively. To configure the
algorithm for the Loomo rig, a configuration file was created. This file specifies important
factors which needs to be tuned to comply with the specific system. Because this project
rely on a simulation model, where everything is ideal, the configuration was straight forward.
If this was to be implemented on the physical model, the algorithm will require additional
tuning.

Figure (7.3) illustrates how the particles converge to a dense region after several iterations.
When starting up the system, the robot must be given an approximate initial position which
will be used as the posterior distribution. Figure (7.3(a)) is captured at start-up when the
robot is given an approximate initial position, whereas Figure (7.3(b)) is captured several
iterations later and shows how the robot is more certain of its position after moving. The
certainty difference is emphasized by the density of the particle cloud.

95

(a) Likelihood field (b) Probability distribution

Figure 7.3: AMCL likelihood iteration

7.1.3 Motion Model
Because the algorithm is implemented into a simulation model where everything is ideal, the
odometry is taken directly from the simulation software. In reality, the odometry should
be based on filtered sensor readings. Because the physical model was unavailable, this was
not developed in this project. A proposed solution for fusing information from an IMU and
wheel encoders is however presented later in Section (9.2.1).

xt = p(xt | xt−1, ut) (7.4)

where:

Symbol: Description: Value: Unit:
xt - New state ∼ −
xt−1 - Previous state ∼ −
ut - Motion data ∼ −

7.1.4 Observation Model
As mentioned above, the algorithm requires a sensor model, which is an approximate model
of a physical range finder. Range sensors are among the most used sensors within the field
of robotics. The most basic model is called the beam-based sensor model. Although this
model is accurate to the physics of an actual range finder, it suffers drawbacks in regards to
computational complexity and lack of smoothness. Lack of smoothness presents problems
in cluttered environments with many small obstacles such as chair- and table legs. Further
on, evaluating each single sensor measurement, as done in the beam-based model, is very
computationally expensive and requires substantial memory. The AMCL package provided
in ROS uses an alternative sensor model called the likelihood field model, which overcomes
these limitations. [14]

96

The likelihood field model, also known as the end point model, measures the correlation
between the measurement and a map. The likelihood of a range measurement is a function
of the distance of the beams end point to the closest obstacle in the environment. The model
lacks a physical explanation and does not compute a probability in regards to the physics of
a sensor. The model does however work well in practice and the posteriors are smoother in
cluttered environments, and the computation is less expensive. A prerequisite for using this
model is to know the transformation between the robots base and where the sensor beam
zk originates. This is available from the transform configuration discussed in Section (6.4).
The basic principle of likelihood fields is that the algorithm skips observations where the
endpoints do not match the map for a considerable number of particles. The beams that
are skipped are not used in computing the probability of the observations p(z|m), which is
used as the weight of each particle. Therefore particles that are correct do not get penalized
because of unexpected obstacles in the environment, which is proven to help in dynamic
environments. [14]

The likelihood field model assumes three types of noise and uncertainties. One of them is
measurement noise. In an ideal sensor, the range finder would always return the correct range
to the objects. However, in reality, noise is influencing the measurements. The measurement
noise is often modeled as a Gaussian distribution with a mean equal to the "true" range of
the measurement and a standard deviation. In this case, the Gaussian is denoted by phit
and is implemented by the distribution presented in Equation (7.5). [14]

phit(zkt | xt,m) = εσ2
hit

(dist2) (7.5)

where:

Symbol: Description: Value: Unit:
zkt - A single measurement at time t ∼ −
xt - Robot state at time t ∼ −
m - Map ∼ −
εσ2

hit
- Zero-mean error with variance ∼ −

dist - Distance to the closest obstacle in the map ∼ −

The next uncertainty account for perturbations due to scan failures. Sometimes laser scan-
ners fail to detect objects which are black, light-absorbing or when the environment includes
bright light. In such instances, the range sensor tend to return the value of it’s maximum
range zmax. It is necessary to account for max-range errors in the measurement model and
this is done through a point-mass distribution centered at zmax as shown in Figure (7.4).
[14]

pmax(zkt | xt,m) =
{

1
0

if z = zmax
else

(7.6)

Figure 7.4: Max range error [14]

97

The last deviation is due to random noise in the measurements. As the term indicates, range
finders sometimes return strange measurements which lacks a logical explanation. For this
algorithm, these errors are modeled by a uniform distribution which is spread across the
entire sensor observation range. [14]

prand(zkt | xt,m) =
{

1/zmax
0

if 0 ≤ zkt < zmax
else

(7.7)

By combining the individual uncertainty models, a complete probability distribution can be
obtained. This is shown in Equation (7.8). [14]

p(zkt | xt,m) = zhit · phit + zrand · prand + zmax · pmax (7.8)

zhit + zrand + zmax = 1

where:
Symbol: Description: Value: Unit:
zhit - Hit weighted average ∼ −
phit - Hit distribution ∼ −
zrand - Random weighted average ∼ −
prand - Random distribution ∼ −
zmax - Max weighted average ∼ −
pmax - Max distribution ∼ −

The mixing parameters can be adjusted by hand to tune the systems accuracy. Figure
(7.5(a)) shows a likelihood field for an environment with three obstacles, where the dashed
line indicate a single measurement zkt . The brighter the region, the more likely the mea-
surement is to hit an obstacle. Figure (7.5(b)) shows the resulting probability distribution.
[14]

(a) Likelihood field (b) Probability distribution

Figure 7.5: Likelihood example [14]

98

The endpoint of the measurement is projected into the global coordinate system of the map
by Equation (7.9).(

xzkt
yzkt

)
=
(
x
y

)
+
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)(
xk,sens
yk,sens

)
+ zkt

(
cos(θ + θk,sens)
sin(θ + θk,sens)

)
(7.9)

where:

Symbol: Description: Value: Unit:
xzkt - x coordinate of sensor beam endpoint ∼ m

yzkt - y coordinate of sensor beam endpoint ∼ m

x - Robot x coordinate ∼ m
y - Robot y coordinate ∼ m
θ - Robot orientation ∼ rad
xk,sens - x coordinate of sensor relative to robot frame ∼ m
yk,sens - x coordinate of sensor relative to robot frame ∼ m
θk,sens - rotation of sensor relative to robot frame ∼ rad
zkt - A single distance measurement ∼ rad

In order to project the endpoint, it is necessary to know where the robot is in global coordi-
nates and a map must be provided. The essence of this model is to compare the laser scan
to the given map based on likelihood fields and the probability of the measurements.

99

7.2 Path Planning
Once the robot knows where it is in the environment, path planning can be implemented.
The move_base package is a part of the navigation stack and was used for this purpose.
This package is a collection of nodes which serves to navigate a mobile robot in a 2D
environment. The package includes map interpretations, path planning, obstacle avoidance
and recovery behaviours. The square in Figure (7.6) depicts an overview of how the package
communicates.

Figure 7.6: move_base overview [15]

As the figure indicates, the move_base node utilize information from localization and odom-
etry source, in combination with a map to plan a route in the environment. This section
aims to give an overview of the packages used and how they were configured to work together
with the Loomo rig.

7.2.1 Costmap
To store information about the obstacles in the environment, a global and a local costmap
is used. A costmap is a occupancy grid based map, which represents the environment and
applies cost to all cells to specify how difficult it is to navigate in different areas. The global
costmap is a static costmap attached to the map frame and is used for long term planning of
trajectory across the entire map. The local costmap is a dynamic map updated in real time
and attached to the odom frame, hence it follows the robot around. This costmap is mainly
used for short term obstacle avoidance. In order for the robot to understand how big it is in
relation to the obstacles, and concurrent how close it’s center can reside from the obstacles,
a footprint of the robot has to be declared. The footprint is the 2d representation of the
mobile platform. Since the parking rig has a rectangular design, the footprint was created
with the polygon configuration.[77]

A package which generates costmaps is available in ROS. The package is called costmap_2d
and is a part of the navigation stack. A prerequisite for using costmap_2d is that the tf
package is publishing transforms between the coordinate frames at the expected rate. In the
costmap package, the functionalities are separated into layers. For this project the costmap
is separated in three layers, the static map layer, obstacles layer and inflation layer. The
global costmap contains all three layers, whereas the local costmap only uses obstacle layer

100

and inflation layer. The static map layer collects the premade map from the map_server and
interpret it to create an appropriate global costmap, thus only the global costmap uses this
layer. Next, the obstacle layer includes obstacles which are not observed in the static map,
this can be dynamic obstacles such as humans roaming the environment. This layer tracks
obstacles in 2D, for instance from a planar laser scanner. Based on the localization data
and sensor readings, obstacles are added or removed from the map. This is required in both
costmaps, because if an unexpected obstacle occurs, both the global and local plan has to
be recomputed. The inflation layer inflates the obstacles to calculate cost for each costmap
cell around the obstacles. The inflation radius tells the robot how close it can approach
an obstacle without colliding. For the static layer, the obstacles are inflated based on the
provided map, whereas in the obstacle layer, the obstacles are inflated based on the sensor
readings in real time. Figure (7.7) shows a global costmap of a section of UiA, whereas
Figure (7.8) depicts a local costmap. [77] [79]

Figure 7.7: Global costmap

To use the costmap_2d package, some
parameters had to be specified. Three
configuration files were developed for this
purpose. One of the files contain infor-
mation which is common for both the
costmaps, whereas the other two are
specific configurations for each of the
costmaps. The configurations are loaded
together with the move_base node. A
parameter which heavily influenced the
quality of the path planning was the
costmap resolutions. For large maps,
a high resolution will be very computa-
tional heavy. For instance when set to
10Hz, the map would typically be up-
dated at 2Hz. Further on, the inflation
radius was set to 0.5m, which indicate
that its center should never come closer
to an obstacle than this.

Figure 7.8: Local costmap 6x6m

101

7.2.2 Gloabl Planner - navfn
In order to set a goal position in the environment, the robot needs a global planner. The
global planer operates on the global costmap and is responsible for generating a long-term
plan from current position to the goal. One of the three available global planners with ROS
is the navfn planner which was implemented to the Loomo parking rig. The objective of a
global planner is to find the path with the lowest cost from start to end. Dijkstra’s algorithm
calculates the shortest distance between starting node end ending node in a weighted envi-
ronment. By using Dijkstra’s algorithm and the global costmap, the shortest feasible path
with the lowest cost is obtained. The cost applied in the costmap is used as weights when
applying Dijkstra’s short path planning method [77]. The algorithm creates a tree between
the nodes to find the shortest path among all other vertices within the map. The algorithm
uses the following steps to calculate the path. [80] [81]

• Step 1: First every node is assigned a distance value. Initially the start node is set to
zero and the rest to infinity to ensure the algorithm starts at the desired location.

• Step 2: Then the start node is set to the current node, and the rest of the nodes to
unvisited.

• Step 3: From the current node, all unvisited neighbors are visited and their distance
to the start node is calculate.

• Step 4: After all neighbors are accounted for, they are marked as visited. Then the
path is continued from the node with the lowest tentative distance value. Visited nodes
can never be visited again.

• Step 5: If the destination node gets marked as visited, or the node with the lowest
tentative distance is infinity, the algorithm is finished.

• Step 6: Otherwise select an unvisited node and repeat from step 3.

In Figure (7.9) a system where Dijkstra’s algorithm is applied in a small scale is presented.
Green represents the current node and red represents the unvisited neighbours. As the
algorithm proceeds yellow represents visited node. In the priority queue table, the tentative
lowest distance is presented first. Finally the end node is reached represented in blue, and
the shortest path is found. As shown in the figure, node F is not visited because the end
node is reached with the same distance value, thus the algorithm would be unable to produce
a short path.

102

Figure 7.9: Example of Dijkstra

The cost calculation performed by navfn is in accordance with Equation (7.10):

cost = cost_neutral + cost_factor · costmap_cost_value (7.10)

Commonly used is a cost_factor = 0.8, cost_neutral = 50 and lethal_cost = 253. From
the costmap used in the move_base package, the values are in the range of 0 – 252. A cost
factor of 0.8 will allow the input value to be evenly distributed between neutral cost 50 and
lethal cost 253, where obstacles occur. A larger cost factor may treat narrow area such as
hallways or doors as undesired for path planning due to a high cost value. By tuning these
parameters: neutral_cost and cost_factor, a suitable path planner can be achieved for the
given purpose and accuracy demands due to map configurations. [82]

The global planner was visualized in RVIZ
to verify that the node was working prop-
erly. When given a goal in the map, the
global planner calculates a plan based on
the global costmap. The inflation radius
of the global costmap determines how
close the path will be planned relative
to obstacles. Figure (7.10) depicts the
global path generated by the robot. If
unexpected obstacles occur somewhere in
the planned path, the global planner will
evaluate a new path based on the global
costmaps obstacle layer.

Figure 7.10: Global plan visualized in
RVIZ

103

7.2.3 Local Planner - DWA
A local planner must also be specified in the move_base package. There are several differ-
ent methods for local planning available in ROS. The local planner serves as a short-term
planner, in oppose to the global planner. It will utilize the information from the odometry
source, global planner and local costmap to output velocity commands to the cmd_vel topic.
The base controller is subscribing to the cmd_vel topic and uses the received information
to calculate the necessary wheel velocities that are required to obtain the desired motion
stated by the local planner.[83]

Dynamic Window Approch (DWA) was chosen for this project, which is a method for obstacle
avoidance which includes a controller that connects the path planner to the robot. The map
is used to create circular trajectories from the robot to a local goal. Locally the planner
creates a cost function that determine the velocities for x, y and theta. The DWA approach
is performed in five steps [83]:

• Step 1: Discretely sample in the robot’s control space (dx,dy,dtheta).

• Step 2: For each sampled velocity, perform forward simulation from the robot’s current
state to predict what would happen if the sampled velocity were applied for some
(short) period of time [84].

• Step 3: Evaluate (score) each trajectory resulting from the forward simulation, using a
metric that incorporates characteristics such as: proximity to obstacles, proximity to
the goal, proximity to the global path, and speed. Discard illegal trajectories (those
that collide with obstacles) [84].

• Step 4: Pick the highest-scoring trajectory and send the associated velocity to the
mobile base.

• Step 5: Reset scoring and repeat.

Figure 7.11: DWA trajectory example

104

DWA depends on the local costmap which presented obstacles in the local map to calculate
the velocity pairs. By tuning the parameters of the local costmap the optimal results from
the DWA planner will be achieved. [85] [84]

Forward simulation is the second step of the DWA planner. The planner uses velocity sam-
ples from the robot’s control space and eliminated bad choices of circular trajectory samples
(i.e. those intersecting with obstacles or edges). Then each sample is simulated forward for
a duration depending on the sim_time(s) parameter. By tuning the sim_time(s) param-
eter the results may be improved. Additionally, the number of samples for x, y and theta
may be tuned to improve the path and available computational power. Lastly, the sam-
pling rate between points on the trajectory, sim_granularity, will influence the performance.
The parameter may increase the accuracy of obstacle avoidance at a computational cost. [77]

Third step of the DWA planner in ROS, are trajectory scoring for optimizing the local path
by velocity pairs which is dependent on three parameters: progress to goal, clearance from
obstacles and forward velocity. The objective function, creating an overall cost value will be
calculated with the following Equation (7.11). [77]

cost_dwa = path_distance_ bias·(distance(m) to path from the endpoint of the trajectory)
(7.11)

+ goal_distance_bias · (distance(m) to local goal from the endpoint of the trajectory)

+ occdist_scale · (maximum obstacle cost along the trajectory in obstacle cost (0-254))

The goal is to keep the cost as low as possible. path_distance_bias is referred to as how
strictly the local planner should follow the global planner path. The higher the value, the
more of the global trajectory will be preferred. goal_distance_bias is a weight increasing
the attempt of the robot to reach local goals, independent of path choices. occdist_scale is
the weight for object avoidance. A high value can result in an indecisive robot getting stuck.
[77]

The local plan was verified by visualizing
it in RVIZ. Figure (7.12) illustrates the
local plan in red and the global plan in
purple.

Figure 7.12: Local plan visualized in
RVIZ

105

7.2.4 Recover Behaviors

If the robot finds itself in a situation where it is stuck, it will perform recover behaviors. For
instance if the robot is surrounded with obstacles and can not find a way to its goal. This can
typically happen in dynamic environments where humans are surrounding the robot. There
are two types of recovery behavior that are default for the move_base node, clear costmap
recovery and rotate recovery. If the robot perceives itself as stuck, it will start by performing
a conservative reset where it refreshes the costmap within a specified range around itself.
Next, if possible, the robot will rotate around itself. If this operation succeed, the robot will
continue to the navigation goal. However, if this does not work, the robot will perform a
aggressive reset which clears a bigger area of the costmap and then rotate. If this fails, the
navigation goal will be aborted. Figure (7.13) shows the flow of the recovery behavior.

Figure 7.13: Recovery behavior flow

7.3 ArUco Tracking

One of the objectives were to let the Loomo parking rig track and follow and person or a
Loomo. It was opted to explore the abilities of tracking with Augmented reality markers.
Augmented reality markers are commonly used in robot localization and navigation, because
they are easy to recognise and can be used as landmarks to estimate the pose of a robot. The
marker detection use a process based on corresponding the points between a 2D projection
and real environment projection. Augmented reality markers can be designed with multiple
libraries and in this project the ArUco library is utilized. [16]

The ArUco marker library is designed as a binary square fiducial marker. The benefit
is that each of these markers will provide enough correspondence points for camera pose
estimation. In addition, the inner binary codifications are designed in a robust manner.
A marker is composed with an outer black border around the binary matrix. The binary
matrix determines the identity of a marker. The ArUco library contains various marker sizes
as displayed in Figure (7.14). Commonly used are the 4 × 4 and 6 × 6 markers. A 4 × 4
marker was utilized for tracking with the designed Loomo parking rig.[16]

106

Figure 7.14: Example of standard ArUco markers [16]

ArUco Detection

An image sensor may capture multiple ArUco markers at a time. It is then important that
the detection algorithms are able to identify each marker, in order to differentiate between
them. The data returned from the algorithm should list each of the detected markers with
the related four corners and an id. The detection of markers is performed in two stages. The
first stage consists of an analysis to detect black squares that might be markers. The second
stage analyze the detected squares in order to determine possible marker identity. [16]

• Stage 1: Image processing; looking for square shaped objects that could possibly be a
marker. The process starts with the use of an adaptive threshold, in order to segment
markers. Then contours are extracted from the thresholded image and shapes that can
not represent squares are discard. Final part of the stage is filtering away contours
that are too small or big and too close to each other [16].

• Stage 2: After all marker candidates are found, an analysis of their inner codification is
performed. To achieve this, a perspective transformation is applied to get the marker
in canonical form. Further, Otsu is used on the canonical image to separate black
and white bits. This will divide the image into cells according to specified marker and
border size. Then the black and white bits are counted to determine the cells value.
Finally, the bits are analyzed to determine if the marker is represented in the specified
ArUco directory. [16].

In order to increase the autonomy of the Loomo parking rig, it is developed an algorithm
that makes the rig track and follow a an ArUco marker. Further on, the algorithm used to
detect ArUco markers and send velocity commands, as navigation goals, will be elaborated.
Prerequisites for using the algorithm is to have calibrated all cameras used for tracking.

First a subscription to the image stream is initiated providing raw RGB images from the
camera topic in ROS. The RGB image is grayscaled and the algorithm start searching for
markers. The marker detection is performed with the openCV ArUco module detectmarker().
The detectmarker() function depends on five arguments and returns three values: corners,
ids and rejected points.[16]

107

• First argument is the input image which is the gray scaled RGB image

• Second argument is the ArUco dictionary used to find markers is specified.

• Third argument is twofold, markerCornes and markerIds

– markerCorners list each of the corner of each of the detected markers, clockwise
from top left.

– markerIds list the ID of each marker detected from markerCorners

• Fourth argument is DetectionParameters. These parameters are often customized prior
to the detection

• Fifth argument is arbitrary, and is used to store, in a list, the rejected candidates that
did not contain a valid codification.

ArUco Pose Estimation

After detecting ArUco markers it is possible to obtain a marker pose by using the detected
corners together with the intrinsic camera matrix, distortion coefficient vector and marker
size. By utilizing these parameters in the ArUco function estimatePoseSingleMarkers() a
rotational and translation vector is achieved relative to the camera. The function esti-
matePoseSingleMarkers() is dependent on four arguments. [16]

• First argument is the four corners of the detected ArUco marker.

• Second argument is the size of the ArUco marker given in meters

• Third argument is the 3x3 intrinsic camera matrix.

• Fourth argument is the distortion vector.

ArUco Tracking

In order to perform the detection of ArUco markers, the fiducial ROS package was used [86].
Specifically, the aruco_detect node, within the package. The node is specifically developed to
determine the pose of detected fiducial markers [87]. The node will identify observed ArUco
markers by the specified camera stream and determine the pose of the marker relative to the
camera.
In Figure (7.15) the information about an observer ArUco marker, detected by the aruco_detect
node, is shown. A launch file to use the node must include the camera stream and the camera
information to locate markers. Additionally, the dictionary to look for the marker and marker
size in meters to more accurately determine the pose is specified within this file. Dictionary
value 3, which is used in the launch file which represents dictionary DICT_4X4_1000. The
launch file is presented in Appendix (F.4). [88]

108

Figure 7.15: fiducial_transforms message

In order to follow an ArUco marker within the map, an algorithm is developed to send
navigation goals. Navigation goals in ROS will initiate velocity commands that moves the
rig towards the location where an ArUco marker has been observed. The algorithm subscribes
to ROS topics which provides the necessary information to execute the velocity commands.
The algorithm will be elaborated in more detail.

Initializing the algorithm as a ROS node was done prior to subscribing to several topics.
The algorithm subscribes to three topics; odom, fiducial_transforms and fiducial_vertices.
The subscription is received in a standard format with ROS library for python, rospy. By
using rospy, the subscription is made with three arguments: name of ROS topic as a string,
format of message and an information callback.

From each callback, the required information is retrieved. From fiducial_callback; frame_id,
the translation and rotation of a detected marker by the aruco_detect node is received.
Further, the received pose is set as global variable within the algorithm. Parameters are
gathered by using a for loop in order to iterate through the nested transform information.
In order to process the vertices data of the detected ArUco, the nested vertices message
is retrieved inside vertices_callback, and also iterated through. From the odom topic, the
odom_callback function retrieves the pose of the rig in x and y position and rotation in the
map, where the initial pose has to be considered.

When all the information from each topic is received, processing can begin if an ArUco is
detected. The process is executed if the ArUco translation in z and vertex x0 is not zero.
If there are no detected ArUcos there are no valid information received and the rig will not
move. From a created translation vector, the distance from the rig to the ArUco marker
is calculated with Equation (7.12). Then, by using the ArUco’s corner pixel positions, the
horizontal center of the marker is calculated and used to determine the marker placement
within the camera frame. The deviation from image center, in meters, is used to estimate
orientation. The conversion is performed by calculating a pixel ratio based on the size of the
marker. From the rotation around z-axis, the goal pose can be transformed from Euler angles
to Quaternions, since the orientation message format uses this representation. Quaternions
is a way of representing orientation in four dimensional space. ROS uses it in order to avoid
Gimbal lock. Specifically, the loss of one degree of freedom, i.e. two axis are equal, which
the use of Euler angles can yield.

109

l =
√
t2x + t2y + t2z (7.12)

where:

Symbol: Description: Value: Unit:
l - Length to ArUco from camera ∼ m
tx - Translation ArUco X-direction ∼ m
ty - Translation ArUco Y-direction ∼ m
tz - Translation ArUco Z-direction ∼ m

From the calculated angle of the ArUco and retrieved orientation from odom_callback, the
quadrant the ArUco is located in, relative to the rig, is determined. From the pose received
from the odom_callback combined with the location of the ArUco marker, the relation
between the Loomo rig and the marker in the global map is determined. By knowing the
position the rig has to travel to reach the marker, a navigation goal can be set.

Previous calculations is used with a function movebase_client to send a navigation goal with
four arguments: x, y and quaternion z and w. Within the movebase_client function, there
is a client server move_base based on MoveBaseAction. In order for the function to listen
for navigation goals, a start server criterion must be meet. Further on, the goal message can
be design with an id, a time stamp, and the navigation goal, in the MoveBaseGoal design
format. A goal with x = 1 and y = 1 tells the robot to move to (1,1) in the map, then in order
to set an new goal, (1,1) must be used as a starting point to allow continuous movement and
not let origin be used as a center for each goal. This node will run continuously as the rig is
in follow mode, action will only be sent if a marker is observed. The code can be found in
Appendix(F.3).

110

7.4 Assistive Actuation
A request was to look into the possibility of utilizing the leap motion controller, from Ultra-
leap, in order to control the Loomo rig with hand gestures. The sensor, combined with the
appropriate software, tracks the position, orientation and velocity of the palm and fingers
of multiple hands. Thus, it can be used in order to send reference signals by the use of the
position and orientation hand data. Figure (7.16) displays the leap motion sensor in addition
to a visualisation of the processed tracking data.

Figure 7.16: Leap Motion Hand Tracking [17]

The Motion Leap consists of three infrared LEDs and two cameras with a wide field of view.
The Cameras track the infrared light from the LEDs with a wavelength of 850 nanometers.
The wide view angle to the cameras results in a field of view of 150◦ × 120◦. Figure (7.17)
displays the layout of its components. The sensor data is read into the device’s local memory
through its USB controller. Here any necessary resolution adjustments are performed. Then,
the data is streamed through USB to the unit with the Leap Motion tracking software. The
data takes the form of a grayscale stereo image of the near infrared light spectrum. As an
alternative, the raw data can be gathered directly with the use of the image API. The raw
data sent over the USB is separated into the gathered data from the left and right camera.
[89]

IR LED IR LEDIR LED

IR Camera IR Camera

Figure 7.17: Leap Motion active components placement

Once the image data is received from the Leap Motion sensor, the images are processed.
Though stereo imaging is used, the image processing does not generate a depth map. Instead
advanced algorithms developed by Ultraleap are applied to the raw sensor data. [89]

111

After the images are processed, any unwanted background objects, such as heads, and am-
bient environmental lighting are compensated for. Then, the images are analyzed in order
to reconstruct a 3D representation of what the device sees. A tracking layer is then used for
matching of the data in order to extract the tracking information. The Leap Motion tracking
algorithms interprets the 3D data and deduces the positions of the unwanted objects which
are to be obstructed. [89]

Lastly, before the results are expressed, filtering techniques are applied. The applied tech-
niques smooth temporal coherence of the data. The results are represented as a series of
frames or snapshots which are containing all of the tracking data. [89]

Utilizing the Source Development Kit and ROS leap_motion

In order to utilized the developed techniques, the Source Development Kit (SDK) was used.
With the Leap Motion SDK installed on Linux, the sensor is initialized by running the lines
in Listing (7.1) in a teminal. The first line in the listing is only required if the sensor does
not start by starting the control panel, which was a problem that occurred in the setup
used. Further, an official ROS package exists. The package is a wrapper for interfacing the
Leap Motion 3D sensor. The packages was used since ROS is utilized in order to branch the
communication between the Xavier and the electrical speed controllers. [90]

leapd
LeapControlPanel

Listing 7.1: Leap Motion start commands

The perquisites of using the Leap Motion ROS package is that the SDK provided by Ultra-
leap is installed and that, by default, the leapSDK folder is present inside the ROS workspace
source folder. With the Leap Motion package installed, the demo launch was started. This
starts a visual display of the processed sensor data in RVIZ. The topics that are used in
the demo was then further examined, and it was discovered that the topic with the name
/leap_motion/leap_filtered publishes the hand tracking data. A launch file was then cre-
ated by editing the demo launch file, where any unnecessary nodes were removed, such as
the visualisation in RVIZ and the creation of a depth image purely used for visualization
purposes. The launch file can be found in Appendix (F.2).

By running the edited launch file, the /leap_motion/leap_filtered topic was further exam-
ined. The messages is of the type leap_motion/Human. This is a custom message, which
contains multiple nested messages. The Loomo rig was decided be controlled in Gazebo by
the orientation of a hand tracked by the Leap Motion sensor. This information is found in
the nested /leap_motion/Hand message. It was discovered that if no hands are detected in
the frame, the previous sampled data is looped. It is beneficial to order the rig to stop if
it ever loses track of the controlling hand. The nested message /leap_motion/nr_of_hands
handles the data concerning the number of hands in the frame. The information from its
related topic, nr_of_hands, was used to check if the rig should stop.

The move_base package is used in order to handle the control of the rig. The package uses
velocity references which has to be published to a topic named cmd_vel, since this is the
topic the move_base subscribes to. With the required data available, a node to control
the Loomo rig was created. The created node is made to check if there is a hand in the
frame. Then send a converted interpreted of the hand orientation in order to send rotation

112

references. To move the rig forwards or backwards, the palm position in relation to the Leap
Motion sensor was used. This information is handled by the /leap_motion/Hand message.
The sensor measures, while running the launch file, the distance span 0.05-0.55m. This span
was locked to 0.1-0.3m in the node, which further on is mapped to -0.1 - 0.1m by applying
Equation (7.13).

Xout = (Xin − inmin)(outmax − outmin)
(inmax − inmin) + outmin (7.13)

where:

Symbol: Description: Value: Unit:
Xout - Mapped value of input ∼ m
Xin - Input value ∼ m
inmin - Minimum in value 0.1 m
inmax - Maximum in value 0.3 m
outmin - Minimum out value −0.1 m
outmax - Maximum out value 0.1 m

Lastly, in order to get a controlled way of stopping the Loomo rig, a check of the grip
strength of the hand is introduced to the node. This information is also handled by the
/leap_motion/Hand message. The grip strength was used in such a way that an open hand
sets the rig into drive state, and a closed hand sets the state to stop. The node created to
achieve this can be found in Appendix (F.1).

113

8. Results
This chapter present the results of the mechanical and electrical design, the derived kinematic
for the robot, and the results concerning the three operating modes. The majority of the
results presented in this chapter are obtained from the robot simulation and do not directly
comply with the physical model.

Design

Concept 5 was chosen as the final design. The mechanical construction was built by the
group members and the final result can be seen in Figure (8.1). The rig is designed to carry
ten units of Segway Robotics Loomo, which is equivalent to 200 kg. The frame itself weighs
85 kg and additional components are assumed to add an extra 35 kg. For this reason, the
rig is designed with a capacity of 400 kg, this ensure a safety factor of 1.25. It has also
been designed to be stable for all load cases. The current system includes the power system
as well as the electronic speed controllers, motors and CAN-bus communication line. The
Xavier and Kinect cameras are not yet implemented onto the physical model.

Figure 8.1: Final design - side view

114

Kinematics

The inverse and forward kinematic models
that were derived for the Loomo rig are shown
in Equation (8.1) and Equation (8.2) respec-
tively. Theses equations are applicable to any
width and height as long as the correspond-
ing distances in the models are equal. In ad-
dition, the wheel configuration has to be the
same as shown in Figure (8.2) with the same
reference to each individual mecanum wheel.

1

4

2

3

w

h

Figure 8.2: Top view of configuration


ω1
ω2
ω3
ω4

 = −1
r


1 1 w + h
−1 1 −w − h
1 1 −w − h
−1 1 w + h


ẋẏ
θ̇

 (8.1)

ẋẏ
θ̇

 = −r4

 1 −1 1 −1
1 1 1 1
1

w+h −
1

w+h −
1

w+h
1

w+h



ω1
ω2
ω3
ω4

 (8.2)

Robot model

The robot model created for this project is not an hyper realistic representation of the real
plant, however it is sufficient model which was suitable to develop a navigation system for
the virtual Loomo rig. It contains the same holonomic ability as the actual plant, and was
used to verify the kinematics of the robot. The model also includes equivalent localization
sources, only they are virtual. The system has been designed in such a way that the virtual
sensors used in the simulation model, should be easy to replace with a physical sensor. The
resulting navigation system will however require further tuning when implemented on the
physical system.

Visual perception

Multi-camera perception served as a good technique in this project. The Azure Kinect has a
large field of view and provided information about obstacles in all heights of the environment.
The robot selects only the important information from the 3D image and converts it into
2D to ease the processing demand. Further on, merging of four 2D images were obtained
and the result was used for localization. The computational demand for processing the 2D
representation was manageable.

115

Localization

Adaptive monte carlo localization (AMCL) proved to be a robust localisation technique.
The algorithm was verified in the simulation model, but not on the physical model. Figure
(7.2) shows the particle cloud from the AMCL at initial position, and after moving. The
green arrow represent the true pose of the robot, whereas the red arrows are pose hypothesis
calculated by the AMCL. After iterating, the robot is very certain of its pose.

Figure 8.3: Localization visualized in RVIZ

116

Path planning

The path planning performed by the robot is robust, also in dynamic environments. Dijk-
stra’s algorithm was chosen as the global planner. The global path produced is efficient in
the sense that the route is planned close to the inflation limit. Figure (8.4) compares the
global plan versus the chosen path. The green line represent the global plan and the red line
show the route which the robot actually executed.

Figure 8.4: Global plan versus actual position

The Dynamic Window Approch(DWA) was chosen as the local planner. The local plan
tracks the global plan well and avoids colliding with obstacles. Figure (8.5) illustrates the
DWA local planner iterated over a course of 2 seconds. The green path represent the global
plan, whereas each color of the local planner represent forward simulations by the DWA
planner. The figure prove that the local planner is able to track the global plan very well.

Figure 8.5: DWA local planner

117

Additionally, if unexpected obstacles occur, the algorithm is quick to reroute around it and
reach the goal. Figure (8.6) shows the original planned path compared to the path created
once an obstacle was detected.

Figure 8.6: Reroute due to obstacle

The node graph which explain the communication between individual nodes during localiza-
tion and navigation can be found in Appendix (F.7). The transform configuration tree which
describes the transformation between all the coordinate frames can be found in Appendix
(F.6).

ArUco

By using the aruco_detect node from ROS, the robot was able to find the virtual 20×20 cm
ArUco marker at short to medium ranges. An ArUco marker object was design in the ROS
environment for testing purposes. Both the position in the 2D plane and pose relative to the
robot was calculated correctly. The marker was moved around to in GAZEBO and intended
to represent the motion of a person, which the rig should follow. However, the algorithm
developed to follow an ArUco marker was not successful. From Figure (8.7) it can be seen
which camera that detected the marker with information related to the marker orientation.
Whereas, Figure (8.8) presents a ArUco detected by the camera.

Figure 8.7: ArUco marker detection result Figure 8.8: ArUco marker detected in
Gazebo

118

Assistive actuation

By utilizing the Leap motion SDK with the respective ROS package, assistive actuation was
successfully achieved in the GAZEBO environment. The filtered data is stable, which makes
the sensor suitable for controlling the rig by interpreting the pose of a hand.

119

9. Discussion
Mechanical

When the Loomo rig was developed, the design was a result of an evaluation of several
mechanical components. Each evaluation was based on conservative design equations that
ensured unlimited lifetime considering the working conditions and environment.

Even though the rig is never going to accumulate a high travel distance and the rotating parts
become oversized, the conservative calculations yielded a drive shaft close to standardized
material dimensions. By choosing to slightly increase the diameter from the conservative
calculations to 20mm, material cost increase. However, compared to the reduction in labor
cost for machining, the increase in material cost is negligible. Especially for manual labor
of few components. In addition to machining difficulty being reduced, due to the increased
stiffens considering the size.

It was experienced that the first instinct to people when interacted with the Loomo rig, was
to stand on the rig. Further, emphasising the selection of conservative calculations and the
additional increase in drive shaft diameter.

The rig is prone to slip. The design was welded together which can cause tension between
frame parts. Additionally, the wheels have a very low tolerance to irregularities in the frame
structure causing slip. To reduce the chance of slip during operation it was tested with rubber
plates between the frame and the bearings to form a suspension on an uneven surface. It
had the most effect on a fully load rig, which resulted in the purposed suspension in Section
(9.1.2).

Hardware Setup

By the use of a hand controller, the programs to send and receive CAN-messages was verified.
Further, by using the the hand controller, the inverse kinematic model was also verified. The
communication involving the Xavier has only been tested separately detached from the rig.
Even though the information is being sent from the Xavier to the VESCs and back, if changes
to the message frequencies has to be made still remains.

ArUco

When testing there were some difficulties around sharp turns entering narrow hallways where
the change of rotation by the simulated person were large. The algorithm had difficulties
setting new navigation goals following the person due to not detecting the marker. All
tests were performed by simulation in ROS, where the rig had difficulties navigating due to
continuously overwriting the navigation goal. This resulted in difficulties finding the ArUco
maker, because this resulted in the Loomo rig rotating about it own axis. Additionally, the
robot would occasionally perceive the ArUco marker as an obstacle. As a consequence, the
robot was not able to generate a navigation goal to the marker. The script which converts
the ArUco pose to navigation goals contains flaws and requires further investigation and
improvements.

120

Assistive actuation

In the GAZEBO environment, the Leap Motion sensor was used to move rig forwards or
backwards depending on the hand distance from the sensor. In order to rotate the rig, the
hand has to be rotated appropriately. These control features requires that the leap motion
sensor is oriented horizontal, on a table, with the cameras pointing upwards. If the sensors
is to be attached to the physical rig, it might be more beneficial to attach it in a different
orientation, and the program has to be changed accordingly. Further, additional safety
features might have to be added, that the GAZEBO environment did not introduce.

9.1 Improvements

The section presents two improvements for the Loomo parking rig as a result of experimental
testing, and safety features that are not yet implemented. The improvements are considered
to be crucial additions prior to utilizing the rig in the University setting.

9.1.1 Safety
The university of Agder, campus Grimstad, is the intended environment for the Loomo rig.
At the university there will likely be humans present during the operation of the rig. It is
important to ensure safe operation of the rig and to avoid potentially dangerous situations.
Due to the large mass of the construction, the rig may cause severe injures in cause of an
accident. The only safety for the current system is the obstacle avoidance feature for the
autonomous mode, however this is software based and it would be beneficial to implement
a mechanical safety as well. Figure (9.1) emphasize the need for additional safety. As the
figure illustrates, the cameras field of view do not intersect exactly at the periphery of the
robot frame. If someone was to enter the blind zone, the robot would not see them and
could potentially cause a collision.

Figure 9.1: Bird view of FOV

121

A proposal is to mount bumper plates around the construction, which can be used to detect
collision. In the event of a collision, the bumpers could signalize to a relay that the power for
the motors should be cut. This would incorporate additional safety with respect to humans
roaming in the same environment as the Loomo rig. Another approach could be to maximize
the breaking current when a bumper register a collision, in order to minimize the impact
force.

Additionally, the rig is not yet equipped with an emergency button and the only way to power
off the rig is to cut the supply via the power switch. An emergency button is a necessary
addition to the vehicle. It is recommended to include one attached to the rig itself, and one
on the remote hand controller. The button should be placed on a location which is easy to
see and access in case of emergency.

9.1.2 Traction
During testing of the physical rig, it was observed that the traction was poor due to irregu-
larities in the floor. This is mostly because the rig is very stiff and a small distortion in the
floor can lead to one or two wheels losing contact with the floor and cause slippage of the
wheels. When this happens, it strongly influences the control of the rig. To improve this,
a suspension system is proposed. The proposal consist of a spring-damper which ensures
flexibility so that all wheels are in contact with the floor at all times. Figure (9.2) and Figure
(9.3) illustrates the proposed suspension system for the Loomo rig.

Figure 9.2: Suspension detail Figure 9.3: Suspension proposal

9.2 Further Work
The system documented in this report is not complete, and further work is necessary before
the localization and navigation features presented can be implemented in reality. Several
additions has to be further developed, and these are considered in this section. This includes
a proposal of required models for measured data, and some physical adjustments for the
Loomo rig.

9.2.1 Physical Odomoetry Model
Because the physical model was unavailable, a complete odometry model was not devel-
oped. The hardware selected for the rig does however have the prerequisites for creating an
odometry model.

122

The motor is equipped with hall sensors which allows it to send feedback concerning the
rotors position. This can be used together with the derived forward kinematics to estimate
how far the robot has traveled. However, basing the motion of the robot solely on encoders
is not sufficient because they are subject to cumulative errors. Additionally, errors can occur
due to slippage or uneven terrain. The method can be quite accurate for a short distances,
however over time the results will crucially deviate from the actual motion.

Additionally, the rig is equipped with four Kinects, which includes an embedded inertial
measurement unit (IMU). The embedded 6DOF IMU consist of and accelerometer and a
gyroscope. An accelerometer measures the forces it is subjected to and uses the gravitational
force vector to determine the relative tilt angle. The value is directly measurable and is
therefore characterized as long term-stable. The drawback of accelerometers is that they are
very sensitive and therefore prone to external disturbances such as vibrations. Because of
this, they are often referred to as short-term unstable. The gyroscope on the other hand
is not prone to disturbances. It measures the rate of rotation, which means it has to be
integrated over time to determine the tilt angle. When the integration is performed over a
longer duration, the deviation from the actual angle becomes large. This means a gyroscope
tends to drift over time and is characterized as short-term stable.

A common approach to obtain reliable measurements is to combine the best features of
various sensors by fusing the information. A package which enables fusion of an arbitrary
number of sensors is available in ROS. By incorporating multiple sensors, the estimate of
where the robot is will be more certain compared to a single information source. The package
is called robot_localization and features a node consisting of an extended kalman filter to
combine information from different sensors. This package would be suitable for creating an
odometry model for the physical Loomo rig by fusing the information from the hall sensors
and the information from the IMU.

9.2.2 Conversion from Virtual to Physical Model
If the virtual navigation setup was to be implemented on the physical model, some important
factors have to be considered. Because the ROS framework is based on sending and receiving
standardized message types, the nodes does not care where the information is coming from.
It only cares that the message type is correct and in theory, the model can not know if the
information is coming from a physical or virtual sensor. Hence, it should be relatively easy
to replace virtual sensors with physical sensors, as long as they are sending the same message
type.

To setup the Azure Kinect together with ROS, a dedicated wrapper must be used. Fortu-
nately, Microsoft has developed a ROS package for the sensor which enables it to publish
information to the respective topics. This means that this package will transmit the same
information as the virtual sensor used in the simulation model.[91]

The simulation model sends velocity commands to the gazebo planar move plugin. On the
physical model, the Teensy would serve as the base controller. The program created for the
Teensy does however subscribe to the same topic as the gazebo planar plugin, and for that
reason it should be straight forward to swap the current base controller with the Teensy
controller.

123

9.2.3 Initial Position
As previously stated, the AMCL node requires an initial position. When the node is started,
the particles are spread uniformly around the environment, where all the particles have the
same likelihood. By setting an approximate initial pose, the particles will converge to a
smaller area and determine an accurate position faster. As for now, the initial position is
set manually in RVIZ. A possible solution for automatically setting the initial position could
be to save the latest position when the system is shut down, and load this the next time the
system is powered on. There is however a flaw related to this approach. If the rig is manually
moved while powered off, the robot will not be able to register the change in position and
the last position will be invalid.

9.2.4 Mode Settings
A solution which lets the operator chose between the different modes have not been developed
yet. However, the functionalities of the modes have been verified separately. A suitable
approach could be to implement a switch on the hand controller, where the position of the
switch determine the mode.

In manual mode, the low-level controller will bypass the navigation system, which means
that it will not include any sort of obstacle avoidance. This lets the operator manually
navigation into areas that is considered unavailable by the navigation system. The assisted
actuation mode also does not implement obstacle avoidance, because the operator manually
manipulate the velocity of the vehicle and act as the feedback for the system. For both the
autonomous and ArUco tracking mode, obstacle avoidance is implemented. The robot is
considered as semi-autonomous because it relays on instructions from the operator, such as
an initial position at start-up and the desired goal position in the map.

9.2.5 Battery Pack
The rig is equipped with four brushless motors that have a maximum current draw of 50
ampere each. It is beneficial to develop a battery pack that can supply the full current
demand instead of the utilized lead acid batteries. An improved lead acid battery would
significantly increase the weight on the rig in order to meet current requirements, which
can compromise rig controllability. The use of a lithium battery pack will reduce the extra
weight to effect ratio, compared to lead acid batteries. However, this will introduce a greater
cost. Another option, is to develop a custom battery pack with i.e Li-ion cells to meet large
current demands, which will improve the rig performance. In addition, the power storage
can be specialized to operating time demand.

124

9.2.6 Mounting of Cameras
The cameras are not yet mounted on the rig, however, the simulations have proven that the
chosen mounting location is satisfactory. A way to mount the cameras is presented in Figure
(9.4). If doing it this way, it is important to properly fix the beam to the vertical frame to
minimize the osculations and vibration, which could potentially produce noise in the images.

Figure 9.4: Azure mounting proposal

Robot Operating Systems

All of the ROS files associated with the project is available in the GitHub repository:

https://github.com/didrif/megatronds

In Appendix (H), the perquisite required after downloading the project is described in order
to set up the workspace.

125

https://github.com/didrif/megatrond

10. Conclusion
This thesis covers the development of a holonomic load-carrying rig with a rated capacity
of 400 kg. The rig is intended to simplify the process of transporting ten units of Segway
Robotics Loomo. To accomplish the goal, a mechanical and electrical design had to be
established, in addition to a navigation system.

The mechanical part of the report documents the design of a load bearing axle, bearing
calculations and weld verification. Further on, the rig was equipped with a holonomic lo-
comotion technique. The omnidirectional motion of the rig is produced by four mecanum
wheels, driven by four brushless DC motors. In order to gain adequate control over the rig,
the kinematics for mecanum wheels had to be derived. The kinematics were verified both
on the physical and simulated model. The physical rig was concluded to be stable and able
to hold the designed weight.

The developed system rely on communication between the components. The main processing
unit communicates with a microcontroller unit via UART communication. Further on, the
messages between the microcontroller and the electronic motor controllers were establishment
using CAN-bus communication. The communication method was verified and was able to
run the motors with a low level steering mechanism.

The perception source for this project was multiple depth cameras. Four Azure Kinects,
with 120◦ each, provide 360◦ perception around the robot. A 3D image contains an excessive
amount of data and requires a lot of computational power to process. To ease the processing
demand, only the important information from the 3D image was extracted and transformed
into a 2D representation. This was done for all four cameras, and ultimately, the four 2D
reconstructed images were merged into a single 2D representation. This showed to be a good
approach in simulation, because all obstacles were registered and the processing demand was
manageable. It was however not possible to verify the concept on the physical model.

Three modes for controlling the motion of the rig are evaluated in this report; manual mode,
assistive actuation mode and autonomous mode. The simplest of them is manual control
which is based on controlling the rig by a joystick based hand controller. This was imple-
mented and verified on the physical model. The remaining two modes were developed and
tested in a simulation model, but not the physical model. The next mode considers assistive
actuation. The idea was to use a tracking camera to interpret the pose of a hand. This en-
ables the rig to be pushed around in the environment without actually touching the object.
This proved to be a feasible and efficient method for controlling the robot. The autonomous
mode is based on the ROS navigation stack. Because the intended operation area of the robot
was known, a map based localization was chosen. The Adaptive Monte Carlo Localization
algorithm was utilized to localize the rig in a pre-made map of the environment. This proved
to be a robust localization method, also in a dynamic environment. The Dijkstra’s shortest
path algorithm was chosen as the global planner, whereas the dynamic window approach
was chosen as the local planner. Together, they proved to create and execute efficient and
feasible paths based on the provided map and the obstacle in the environment. An addi-
tional feature in the autonomous mode was a human following concept. Unfortunately, this
mode was not successfully implemented, but it was determined to be achievable nonetheless.
The overall results of the simulation model verify that most of the modes are feasible, and
if tuned properly the robot can navigate in an accurate and rational manner.

126

The methods used are not specific for this product, and are applicable for other industrial
mobile robots which rely on human interactions. The concepts discussed in this paper has
been deemed feasible by the simulation model. However, in order to obtain good results on
the physical model, some improvements must be made. The locomotion technique related
to mecanum wheels is prone to slippage, and this was observed on the physical model. To
reduce the slippage, a proposal is made to add a suspension system which ensures that all
wheels are in contact with the ground at all times. Additionally, the odometry used in the
simulation model is ideal, however in a realistic scenario, the odometry is affected by noise
and uncertainty. The robot is equipped with motors that have built in hall sensors, and
cameras with embedded IMUs. This facilitates the development of a odometry model by
fusing the information together. A robot intended to share an environment together with
humans must ensure a high level of safety, something which the current rig lacks. Some
further work regarding safety was discussed and should be accounted for if the prototype is
to be developed further. To conclude, the product developed in this thesis is not complete,
but it serves as a good foundation for further development of a load carrying platform.

127

Bibliography

[1] K. G. Robbersmyr, MAS-102 3. Utmatting. Fronter, 2016.

[2] KOYO. Purpose and method of lubrication. [Online]. Available: https://koyo.jtekt.co.
jp/en/support/bearing-knowledge/12-1000.html

[3] M. Teensy 3.6 development board. [Online]. Available: https://microcontrollerslab.
com/teensy-3-6-development-board-pinout/

[4] F. Tech. Dual can-bus adapter for teensy 3.5, 3.6. [Online]. Available: https://www.
tindie.com/products/Fusion/dual-can-bus-adapter-for-teensy-35-36/?utm_source=
twitter&utm_medium=twitter&utm_campaign=product_back_in_stock_tweets

[5] Maytech. Maytech superfoc6.8 50a vesc6-based speed con-
troller compatible to vesctool programmable for esk8/ebike. [On-
line]. Available: https://maytech.cn/collections/all-speed-controllers/products/
maytech-superfoc6-8-with-dissipation-case-50a-speed-controller-based-on-vesc6

[6] MayTech. Maytech brushless 5065 70/220kv open cover outrunner sensored
motor for esk8/e-bike/robotics. [Online]. Available: https://maytech.cn/products/
brushless-hall-sensor-motor-mto5065-220-ha

[7] Nvidia. Jetson agx xavier developer kit. [Online]. Available: https://developer.nvidia.
com/embedded/jetson-agx-xavier-developer-kit

[8] Exsys. Ex-11087 - interface card 7x usb 3.0 pci-e x1, exsys. [Online]. Avail-
able: https://www.elfadistrelec.no/no/interface-card-7x-usb-pci-x1-exsys-ex-11087/p/
11033532?q=pci+usb&pos=26&origPos=22&origPageSize=100&track=true

[9] Amazon. Vision cp12200/12 v 20ah agm lead battery. [Online]. Available:
https://www.amazon.co.uk/Vision-CP12200-20Ah-AGM-Battery/dp/B007GY6AK2

[10] AliExpress. High quality dual-axis xy joystick module ps2 joystick control lever sensor
ky-023 for arduino diy kit. [Online]. Available: https://www.aliexpress.com/item/
1954188480.html

[11] elinux.org. Jetson/agx xavier misc interfaces. [Online]. Available: https://elinux.org/
Jetson/AGX_Xavier_Misc_Interfaces

[12] Microsoft. Azure kinect hardware specifications. [Online]. Available: https:
//docs.microsoft.com/nb-no/azure/Kinect-dk/hardware-specification

[13] M. Drwięga and J. Jakubiak, “A set of depth sensor processing ros tools for wheeled mo-
bile robot navigation,” Journal of Automation Mobile Robotics and Intelligent Systems,
vol. 11, 2017.

128

https://koyo.jtekt.co.jp/en/support/bearing-knowledge/12-1000.html
https://koyo.jtekt.co.jp/en/support/bearing-knowledge/12-1000.html
https://microcontrollerslab.com/teensy-3-6-development-board-pinout/
https://microcontrollerslab.com/teensy-3-6-development-board-pinout/
https://www.tindie.com/products/Fusion/dual-can-bus-adapter-for-teensy-35-36/?utm_source=twitter&utm_medium=twitter&utm_campaign=product_back_in_stock_tweets
https://www.tindie.com/products/Fusion/dual-can-bus-adapter-for-teensy-35-36/?utm_source=twitter&utm_medium=twitter&utm_campaign=product_back_in_stock_tweets
https://www.tindie.com/products/Fusion/dual-can-bus-adapter-for-teensy-35-36/?utm_source=twitter&utm_medium=twitter&utm_campaign=product_back_in_stock_tweets
https://maytech.cn/collections/all-speed-controllers/products/maytech-superfoc6-8-with-dissipation-case-50a-speed-controller-based-on-vesc6
https://maytech.cn/collections/all-speed-controllers/products/maytech-superfoc6-8-with-dissipation-case-50a-speed-controller-based-on-vesc6
https://maytech.cn/products/brushless-hall-sensor-motor-mto5065-220-ha
https://maytech.cn/products/brushless-hall-sensor-motor-mto5065-220-ha
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://www.elfadistrelec.no/no/interface-card-7x-usb-pci-x1-exsys-ex-11087/p/11033532?q=pci+usb&pos=26&origPos=22&origPageSize=100&track=true
https://www.elfadistrelec.no/no/interface-card-7x-usb-pci-x1-exsys-ex-11087/p/11033532?q=pci+usb&pos=26&origPos=22&origPageSize=100&track=true
https://www.amazon.co.uk/Vision-CP12200-20Ah-AGM-Battery/dp/B007GY6AK2
https://www.aliexpress.com/item/1954188480.html
https://www.aliexpress.com/item/1954188480.html
https://elinux.org/Jetson/AGX_Xavier_Misc_Interfaces
https://elinux.org/Jetson/AGX_Xavier_Misc_Interfaces
https://docs.microsoft.com/nb-no/azure/Kinect-dk/hardware-specification
https://docs.microsoft.com/nb-no/azure/Kinect-dk/hardware-specification

[14] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press Cambridge, 2000,
vol. 1.

[15] E. Marder-Eppstein. move_base. [Online]. Available: http://wiki.ros.org/move_base

[16] OpenCV. Detection of aruco markers. [Online]. Available: https://docs.opencv.org/
trunk/d5/dae/tutorial_aruco_detection.html

[17] N. Level. Leap motion controller. [Online]. Available: https://www.nlevel.ru/katalog/
umnye-gadzhety/datchik-dvizheniia-leap-motion-controller/

[18] K. G. Robbersmyr, MAS-102 Lager. Fronter, 2016.

[19] Segway. Loomo. [Online]. Available: https://store.segway.com/
segway-loomo-mini-transporter-robot-sidekick

[20] M. Abdelrahman, I. Zeidis, O. Bondarev, B. Adamov, F. Becker, and K. Zimmermann,
“A description of the dynamics of a four wheel mecanum mobile system as a basis for
a platform concept for special purpose vehicles for disabled persons,” in 58-th Ilmenau
Scientific Colloquium, 2014.

[21] AndyMark. 8 in. mk mecanum wheels. [Online]. Available:
https://www.andymark.com/products/8-in-mk-mecanum-wheel-set-options?via=
Z2lkOi8vYW5keW1hcmsvV29ya2FyZWE6OkNhdGFsb2c6OkNhdGVnb3J5LzVhZjhlMjIyYmM2ZjZkNWUzNmYyMzkwYg

[22] J. Sali, A. Adom, and S. Yaacob. A design of omni-directional for mobile
robot. [Online]. Available: https://www.researchgate.net/publication/268326364_A_
Design_Of_Omni-Directional_For_Mobile_Robot

[23] L. Yunwang, S. Dai, L. Zhao, and Et-al, “Topological design methods for mecanum
wheel configurations of an omnidirectional mobile robot,” https://www.mdpi.com/2073-
8994/11/10/1268/htm, vol. 3, 2019.

[24] N. Sonawane, “An experimental method to calculate coefficient of friction in mecanum
wheel rollers and cost analysis using dfma techniques,” 2015.

[25] Hamilton. Rolling resistance and industrial wheels. [Online]. Available: https:
//www.mhi.org/media/members/14220/130101690137732025.pdf

[26] E. ToolBox. Rolling resistance. [Online]. Available: https://www.engineeringtoolbox.
com/rolling-friction-resistance-d_1303.html

[27] S.-L. Wang. Motion control and the skidding of mecanum-wheel vehicles. [Online].
Available: http://ijiset.com/vol5/v5s5/IJISET_V5_I05_10.pdf

[28] Z. HENDZEL and L. RYKALA. Modelling of dynamics of a wheeled mobile robot
with mecanum wheels with the use of lagrange equations of the second kind. [Online].
Available: https://www.researchgate.net/publication/315058609_Modelling_of_
Dynamics_of_a_Wheeled_Mobile_Robot_with_Mecanum_Wheels_with_the_
use_of_Lagrange_Equations_of_the_Second_Kind

[29] K. G. Robbersmyr, MAS-102 Aksler. Fronter, 2016.

[30] J. M. Gere and B. J. Goodno, “Mechanics of materials eight edition,” 2009.

129

http://wiki.ros.org/move_base
https://docs.opencv.org/trunk/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/trunk/d5/dae/tutorial_aruco_detection.html
https://www.nlevel.ru/katalog/umnye-gadzhety/datchik-dvizheniia-leap-motion-controller/
https://www.nlevel.ru/katalog/umnye-gadzhety/datchik-dvizheniia-leap-motion-controller/
https://store.segway.com/segway-loomo-mini-transporter-robot-sidekick
https://store.segway.com/segway-loomo-mini-transporter-robot-sidekick
https://www.andymark.com/products/8-in-mk-mecanum-wheel-set-options?via=Z2lkOi8vYW5keW1hcmsvV29ya2FyZWE6OkNhdGFsb2c6OkNhdGVnb3J5LzVhZjhlMjIyYmM2ZjZkNWUzNmYyMzkwYg
https://www.andymark.com/products/8-in-mk-mecanum-wheel-set-options?via=Z2lkOi8vYW5keW1hcmsvV29ya2FyZWE6OkNhdGFsb2c6OkNhdGVnb3J5LzVhZjhlMjIyYmM2ZjZkNWUzNmYyMzkwYg
https://www.researchgate.net/publication/268326364_A_Design_Of_Omni-Directional_For_Mobile_Robot
https://www.researchgate.net/publication/268326364_A_Design_Of_Omni-Directional_For_Mobile_Robot
https://www.mhi.org/media/members/14220/130101690137732025.pdf
https://www.mhi.org/media/members/14220/130101690137732025.pdf
https://www.engineeringtoolbox.com/rolling-friction-resistance-d_1303.html
https://www.engineeringtoolbox.com/rolling-friction-resistance-d_1303.html
http://ijiset.com/vol5/v5s5/IJISET_V5_I05_10.pdf
https://www.researchgate.net/publication/315058609_Modelling_of_Dynamics_of_a_Wheeled_Mobile_Robot_with_Mecanum_Wheels_with_the_use_of_Lagrange_Equations_of_the_Second_Kind
https://www.researchgate.net/publication/315058609_Modelling_of_Dynamics_of_a_Wheeled_Mobile_Robot_with_Mecanum_Wheels_with_the_use_of_Lagrange_Equations_of_the_Second_Kind
https://www.researchgate.net/publication/315058609_Modelling_of_Dynamics_of_a_Wheeled_Mobile_Robot_with_Mecanum_Wheels_with_the_use_of_Lagrange_Equations_of_the_Second_Kind

[31] S. K. Armah. Preliminary design of a power transmission shaft under fatigue loading
using asme code. [Online]. Available: https://thescipub.com/pdf/10.3844/ajeassp.2018.
227.244

[32] R. C. Juvinall and K. M. Marshek, The Fundamentals of Machine Component Design.
pages 600-615: John Wiley & Sons, INC., 2012.

[33] SKF. Pillow block ball bearing units, ucp204. [Online]. Avail-
able: https://www.skf.com/group/products/mounted-bearings/ball-bearing-units/
pillow-block-ball-bearing-units/productid-Y%2FUCP%20204%2FH?system=metric

[34] KOYO. Lubricant. [Online]. Available: https://koyo.jtekt.co.jp/en/support/
bearing-knowledge/12-2000.html

[35] UNBRAKO. Unbrako enginnering guide. [Online]. Available: http://www.unbrako.
com/images/downloads/engguide.pdf

[36] S. socket. Set screw tightening torque. [Online]. Available: http://www.safetysocket.
com/sites/www.safetysocket.com/files/parts/bd/Products/setscrewtorque.htm

[37] UNILOK. Socket set screw. [Online]. Available: http://www.harjivandashathibhai.
com/Unilok/PDF/SSS.pdf

[38] MITcalc. Weld connections. [Online]. Available: http://www.mitcalc.com/doc/welding/
help/en/welding.htm

[39] A. Middleton, S. Fritz, and M. Lusardi. Walking speed: The functional vital sign.
[Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254896/

[40] R. C. Juvinall and K. M. Marshek, The Fundamentals of Machine Component Design.
page 789: John Wiley & Sons, INC., 2012.

[41] S. Mraz. Tension in timing-belt drives. [Online]. Available: https://www.machinedesign.
com/archive/article/21812296/tension-in-timingbelt-drives

[42] R. C. Juvinall and K. M. Marshek, The Fundamentals of Machine Component Design.
pages 782-789: John Wiley & Sons, INC., 2012.

[43] Modelflight. What is an electronic speed controller and how does it differ from
brushed to brushless motors? [Online]. Available: https://www.modelflight.com.au/
blog/electronic-speed-controllers

[44] Wikipedia. Peukert’s law. [Online]. Available: https://en.wikipedia.org/wiki/Peukert%
27s_law

[45] MultiCable. Cross reference awg to mm2. [Online]. Available: https://www.multicable.
com/resources/reference-data/cross-reference-awg-to-mm2/

[46] Metroid. How to calculate voltage drop. [Online]. Available: https://www.metroid.net.
au/engineering/calculate-voltage-drop/

[47] Wikipedia. American wire gauge. [Online]. Available: https://en.wikipedia.org/wiki/
American_wire_gauge

[48] C. Gillespie. How to calculate coulombs. [Online]. Available: https://sciencing.com/
calculate-coulombs-2645.html

130

https://thescipub.com/pdf/10.3844/ajeassp.2018.227.244
https://thescipub.com/pdf/10.3844/ajeassp.2018.227.244
https://www.skf.com/group/products/mounted-bearings/ball-bearing-units/pillow-block-ball-bearing-units/productid-Y%2FUCP%20204%2FH?system=metric
https://www.skf.com/group/products/mounted-bearings/ball-bearing-units/pillow-block-ball-bearing-units/productid-Y%2FUCP%20204%2FH?system=metric
https://koyo.jtekt.co.jp/en/support/bearing-knowledge/12-2000.html
https://koyo.jtekt.co.jp/en/support/bearing-knowledge/12-2000.html
http://www.unbrako.com/images/downloads/engguide.pdf
http://www.unbrako.com/images/downloads/engguide.pdf
http://www.safetysocket.com/sites/www.safetysocket.com/files/parts/bd/Products/setscrewtorque.htm
http://www.safetysocket.com/sites/www.safetysocket.com/files/parts/bd/Products/setscrewtorque.htm
http://www.harjivandashathibhai.com/Unilok/PDF/SSS.pdf
http://www.harjivandashathibhai.com/Unilok/PDF/SSS.pdf
http://www.mitcalc.com/doc/welding/help/en/welding.htm
http://www.mitcalc.com/doc/welding/help/en/welding.htm
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254896/
https://www.machinedesign.com/archive/article/21812296/tension-in-timingbelt-drives
https://www.machinedesign.com/archive/article/21812296/tension-in-timingbelt-drives
https://www.modelflight.com.au/blog/electronic-speed-controllers
https://www.modelflight.com.au/blog/electronic-speed-controllers
https://en.wikipedia.org/wiki/Peukert%27s_law
https://en.wikipedia.org/wiki/Peukert%27s_law
https://www.multicable.com/resources/reference-data/cross-reference-awg-to-mm2/
https://www.multicable.com/resources/reference-data/cross-reference-awg-to-mm2/
https://www.metroid.net.au/engineering/calculate-voltage-drop/
https://www.metroid.net.au/engineering/calculate-voltage-drop/
https://en.wikipedia.org/wiki/American_wire_gauge
https://en.wikipedia.org/wiki/American_wire_gauge
https://sciencing.com/calculate-coulombs-2645.html
https://sciencing.com/calculate-coulombs-2645.html

[49] E. toolbox. Specific heat of some metals. [Online]. Available: https://www.
engineeringtoolbox.com/specific-heat-metals-d_152.html

[50] E. Edge. Awg copper wire table size and data. [Online]. Available: https:
//www.engineersedge.com/copper_wire.htm

[51] myElctrical Engineering. Cable insulation properties. [Online]. Available: https:
//myelectrical.com/notes/entryid/178/cable-insulation-properties

[52] Wikipedia. Polylactic acid. [Online]. Available: https://en.wikipedia.org/wiki/
Polylactic_acid

[53] T. Zhang and W. Chen. An indoor mobile robot navigation technique using odometry
and electronic compass. [Online]. Available: https://journals.sagepub.com/doi/full/10.
1177/1729881417711643

[54] O. Robotics. Is ros for me? [Online]. Available: https://www.ros.org/is-ros-for-me/

[55] ——. Ros: Core components. [Online]. Available: https://www.ros.org/
core-components/

[56] J. Hsu, N. Koenig, and D. Coleman. gazebo_ros_pkgs. [Online]. Available:
http://wiki.ros.org/gazebo_ros_pkgs

[57] O. S. R. Foundation. Ros integration overview. [Online]. Available: http:
//gazebosim.org/tutorials?tut=ros_overview

[58] D. Hershberger, D. Gossow, and J. Faust. rviz. [Online]. Available: http:
//wiki.ros.org/rviz

[59] I. Sucan and J. Kay. urdf. [Online]. Available: http://wiki.ros.org/urdf

[60] W. Meeussen. ros_controllers. [Online]. Available: http://wiki.ros.org/ros_controllers

[61] O. S. R. Foundation. Using gazebo plugins with ros: Depth camera. [Online]. Available:
http://gazebosim.org/tutorials?tut=ros_gzplugins#DepthCamera

[62] E. CSS. Can bus explained - a simple intro (2020). [Online]. Available:
https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en

[63] N. Instruments. Can physical layer and termination guide.
[Online]. Available: https://www.ni.com/en-no/innovations/white-papers/09/
can-physical-layer-and-termination-guide.html

[64] B. Vedder. comm_can.c. [Online]. Available: https://github.com/vedderb/bldc/blob/
master/comm_can.c#L1159

[65] P.-s. . Pcan-usb fd. [Online]. Available: https://www.peak-system.com/
PCAN-USB-FD.365.0.html?&L=1

[66] B. Vedder. datatypes.h. [Online]. Available: https://github.com/vedderb/bldc/blob/
master/datatypes.h#L766

[67] C. Kidder. Flexcan_library. [Online]. Available: https://github.com/collin80/
FlexCAN_Library

[68] c. . Pointers. [Online]. Available: http://www.cplusplus.com/doc/tutorial/pointers/

131

https://www.engineeringtoolbox.com/specific-heat-metals-d_152.html
https://www.engineeringtoolbox.com/specific-heat-metals-d_152.html
https://www.engineersedge.com/copper_wire.htm
https://www.engineersedge.com/copper_wire.htm
https://myelectrical.com/notes/entryid/178/cable-insulation-properties
https://myelectrical.com/notes/entryid/178/cable-insulation-properties
https://en.wikipedia.org/wiki/Polylactic_acid
https://en.wikipedia.org/wiki/Polylactic_acid
https://journals.sagepub.com/doi/full/10.1177/1729881417711643
https://journals.sagepub.com/doi/full/10.1177/1729881417711643
https://www.ros.org/is-ros-for-me/
https://www.ros.org/core-components/
https://www.ros.org/core-components/
http://wiki.ros.org/gazebo_ros_pkgs
http://gazebosim.org/tutorials?tut=ros_overview
http://gazebosim.org/tutorials?tut=ros_overview
http://wiki.ros.org/rviz
http://wiki.ros.org/rviz
http://wiki.ros.org/urdf
http://wiki.ros.org/ros_controllers
http://gazebosim.org/tutorials?tut=ros_gzplugins#DepthCamera
https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en
https://www.ni.com/en-no/innovations/white-papers/09/can-physical-layer-and-termination-guide.html
https://www.ni.com/en-no/innovations/white-papers/09/can-physical-layer-and-termination-guide.html
https://github.com/vedderb/bldc/blob/master/comm_can.c#L1159
https://github.com/vedderb/bldc/blob/master/comm_can.c#L1159
https://www.peak-system.com/PCAN-USB-FD.365.0.html?&L=1
https://www.peak-system.com/PCAN-USB-FD.365.0.html?&L=1
https://github.com/vedderb/bldc/blob/master/datatypes.h#L766
https://github.com/vedderb/bldc/blob/master/datatypes.h#L766
https://github.com/collin80/FlexCAN_Library
https://github.com/collin80/FlexCAN_Library
http://www.cplusplus.com/doc/tutorial/pointers/

[69] C. Basics. Basics of uart communication. [Online]. Available: https://www.
circuitbasics.com/basics-uart-communication/

[70] S. Adam. rosserial. [Online]. Available: http://wiki.ros.org/rosserial_arduino

[71] J. Hacks. Nvidia jetson agx xavier gpio header pinout. [Online]. Available:
https://www.jetsonhacks.com/nvidia-jetson-agx-xavier-gpio-header-pinout/

[72] J. Swaby. Changing file permissions with chmod. [Online]. Available: http:
//mindhive.mit.edu/node/1315

[73] V. Gite. Chmod numeric permissions notation unix /
linux command. [Online]. Available: https://www.cyberciti.biz/faq/
unix-linux-bsd-chmod-numeric-permissions-notation-command/

[74] PJRC. Using the hardware serial ports. [Online]. Available: https://www.pjrc.com/
teensy/td_uart.html

[75] ROS. std_msgs/int32multiarray message. [Online]. Available: http://docs.ros.org/
melodic/api/std_msgs/html/msg/Int32MultiArray.html

[76] T. Foote, E. Marder-Eppstein, and W. Meeussen. tf2. [Online]. Available:
http://wiki.ros.org/tf2

[77] K. Zheng. Ros navigation tuning guide. [Online]. Available: http://kaiyuzheng.me/
documents/navguide.pdf

[78] B. Gerkey and T. Pratkanis. Map server. [Online]. Available: http://wiki.ros.org/
map_server

[79] E. Marder-Eppstein and D. V. Lu. costmap_2d. [Online]. Available: https:
//github.com/ros-planning/navigation/tree/melodic-devel/costmap_2d

[80] Computerphile. Dijkstra’s algorithm. [Online]. Available: https://www.youtube.com/
watch?v=GazC3A4OQTE

[81] M. Ottestad, “Path planning,” 2019.

[82] E. Marder-Eppstein and K. Konolige. Navigation navfn. [Online]. Available: https://
github.com/ros-planning/navigation/blob/indigo-devel/navfn/include/navfn/navfn.h

[83] E. Marder-Eppstein. dwa_local_planner. [Online]. Available: http://wiki.ros.org/
dwa_local_planner

[84] D. Fox, W. Burgard, and S. Thrun, “Dynamic window approach to collision avoidance,”
IEEE Robotics & Automation Magazine 4(1):23 - 33, vol. 4, 1997.

[85] O. Brock and O. Khatib, “High-speed navigation using the global dynamic window ap-
proach,” Proceedings 1999 IEEE International Conference on Robotics and Automation
(Cat. No. 99CH36288C), pages 341-346, vol. 1, 1999.

[86] J. Vaughan. fiducials. [Online]. Available: http://wiki.ros.org/fiducials?distro=melodic

[87] R. M. Salinas and B. Magyar. aruco. [Online]. Available: http://wiki.ros.org/aruco

[88] J. Vaughan. aruco_detect. [Online]. Available: http://wiki.ros.org/aruco_detect?
distro=melodic

132

https://www.circuitbasics.com/basics-uart-communication/
https://www.circuitbasics.com/basics-uart-communication/
http://wiki.ros.org/rosserial_arduino
https://www.jetsonhacks.com/nvidia-jetson-agx-xavier-gpio-header-pinout/
http://mindhive.mit.edu/node/1315
http://mindhive.mit.edu/node/1315
https://www.cyberciti.biz/faq/unix-linux-bsd-chmod-numeric-permissions-notation-command/
https://www.cyberciti.biz/faq/unix-linux-bsd-chmod-numeric-permissions-notation-command/
https://www.pjrc.com/teensy/td_uart.html
https://www.pjrc.com/teensy/td_uart.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Int32MultiArray.html
http://docs.ros.org/melodic/api/std_msgs/html/msg/Int32MultiArray.html
http://wiki.ros.org/tf2
http://kaiyuzheng.me/documents/navguide.pdf
http://kaiyuzheng.me/documents/navguide.pdf
http://wiki.ros.org/map_server
http://wiki.ros.org/map_server
https://github.com/ros-planning/navigation/tree/melodic-devel/costmap_2d
https://github.com/ros-planning/navigation/tree/melodic-devel/costmap_2d
https://www.youtube.com/watch?v=GazC3A4OQTE
https://www.youtube.com/watch?v=GazC3A4OQTE
https://github.com/ros-planning/navigation/blob/indigo-devel/navfn/include/navfn/navfn.h
https://github.com/ros-planning/navigation/blob/indigo-devel/navfn/include/navfn/navfn.h
http://wiki.ros.org/dwa_local_planner
http://wiki.ros.org/dwa_local_planner
http://wiki.ros.org/fiducials?distro=melodic
http://wiki.ros.org/aruco
http://wiki.ros.org/aruco_detect?distro=melodic
http://wiki.ros.org/aruco_detect?distro=melodic

[89] A. Colgan. How does the leap motion controller work? [Online]. Available: http://blog.
leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/

[90] F. Lier, M. Shah, and I. Saito. leap_motion. [Online]. Available: http:
//wiki.ros.org/leap_motion

[91] Microsoft. Azure_kinect_ros_driver. [Online]. Available: https://github.com/
microsoft/Azure_Kinect_ROS_Driver

[92] P. . Udev rules for teensy boards, http://www.pjrc.com/teensy/. [Online]. Available:
https://www.pjrc.com/teensy/49-teensy.rules

133

http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/
http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/
http://wiki.ros.org/leap_motion
http://wiki.ros.org/leap_motion
https://github.com/microsoft/Azure_Kinect_ROS_Driver
https://github.com/microsoft/Azure_Kinect_ROS_Driver
https://www.pjrc.com/teensy/49-teensy.rules

Appendices

134

A. Teensy 3.6 Scripts

A.1 Loomo Parking Rig Teensy Program

// Defining the Teensy 3.6 UART hardware serials
#define USE_TEENSY_HW_SERIAL
#include <ros.h>
#include <std_msgs/Float32MultiArray.h>
#include <std_msgs/Int32MultiArray.h>
#include <FlexCAN.h>
#ifndef __MK66FX1M0__
#error "Teensy 3.6 with CAN bus is required"

#endif
// Initilaziing Kinematics variables
#define r 0.1015
#define w 0.2850
#define h 0.6350
#define joystick_x 14
#define joystick_y 15
#define joystick_theta 16
#define manual_mode_pin 10
#define emergency_stop_pin 11
bool manual_mode = false;
bool emergency_stop = false;
//--
float ReadJoystick(int joystick, int joystick_val) {
joystick_val = map(analogRead(joystick), 0, 1023, -7, 7);
return joystick_val;

}
//------------------------------//
float x_dot = 0;
float y_dot = 0;
float theta_dot = 0;
//---
float pi = 3.14159;
int32_t no_poles = 7;
float state_ref[3] = {-3.5,0,0}; // Used for subscribing refrence velocities

sent from Xavier
//float omega[4] = {0,0,0,0}; //Initializing the "vector" with x_dot,y_dot and

theta_d
int32_t omega[4] = {0,0,0,0};
int32_t omega_ref[4] = {0,0,0,0};
//float e_rpm_float[4] = {0,0,0,0};
//---

// Creating the calss to define the serial port to use
class NewHardware : public ArduinoHardware
{
public:
NewHardware():ArduinoHardware(&Serial1){}; // Specify port
// NewHardware():ArduinoHardware(&Serial1, 57600){}; // Specify port

};

// Creating Nodehandle
ros::NodeHandle nh;

135

//--------- PUBLISHING -----------------------------------//
//Instantiating the message
std_msgs::Int32MultiArray msg_wheel_omega;
//Defining Publisher
ros::Publisher pub_omega("wheel_omega_all", &msg_wheel_omega);
//--------- PUBLISHING END -----------------------------------//

//--------- SUBSCRIBABLE -----------------------------------//
//Defining publishing topic function
void state_ref_array(const std_msgs::Float32MultiArray& state_ref_msg){

state_ref[0] = state_ref_msg.data[0];
state_ref[1] = state_ref_msg.data[1];
state_ref[2] = state_ref_msg.data[2];

}

//Defining subscribing topic
ros::Subscriber<std_msgs::Float32MultiArray> sub_state("state_ref",

state_ref_array);
//--------- SUBSCRIBABLE END -----------------------------------//

static struct CAN_filter_t defaultMask;
static CAN_message_t msg_can_vesc_1;
static CAN_message_t msg_can_vesc_2;
static CAN_message_t msg_can_vesc_3;
static CAN_message_t msg_can_vesc_4;
static CAN_message_t inMsg;

int32_t e_rpm_1, e_rpm_2, e_rpm_3, e_rpm_4;
int32_t duty_cycle_1, duty_cycle_2, duty_cycle_3, duty_cycle_4;
int32_t current_1, current_2, current_3, current_4;
uint16_t Node_ID_1 = 0x01;
uint16_t Node_ID_2 = 0x02;
uint16_t Node_ID_3 = 0x03;
uint16_t Node_ID_4 = 0x04;

// ---
void buffer_append_int32(uint8_t *buffer, int32_t number, int32_t *index) {
// Function to append the value used in write_can_message function
buffer[(*index)++] = number >> 24;
buffer[(*index)++] = number >> 16;
buffer[(*index)++] = number >> 8;
buffer[(*index)++] = number;

}
//--
void write_can_message(CAN_message_t msg, uint32_t can_id, int32_t value){
// Function to fill in necessary information to write a CAN message
msg.ext = 1; // If the id is extended or not (0=11bit ID, 1=29bit ID)
msg.id = can_id; //Message id. This contains the command and which unit it

is ment for
msg.len = 4; // Message length (2= 0x0000, 4 = 0x00000000, 8 = 0

x0000000000000000, etc...)
uint8_t buffer [sizeof(msg.len)]; //Create an empty buffer to write message

in
int32_t send_index = 0; // Selecting which index to start the appending
buffer_append_int32(buffer , value, &send_index); // Appends "value" to the

buffer
memcpy(msg.buf, buffer, msg.len*sizeof(uint32_t)); // Copies the buffer

information into the message (msg.buf)
Can1.write(msg); // Write CANBus command

}
// ---

136

int16_t read_buffer_int16(const uint8_t *buffer, int32_t *index){
int16_t get_buffer_value = ((uint16_t) buffer[*index]) << 8 |

((uint16_t)buffer[*index+1]);
return get_buffer_value;

}
// ---
int16_t get_dec_value (uint8_t *bytePtr, int index){
int32_t send_index = index;
int16_t value_decimal = read_buffer_int16(bytePtr, &send_index);
return value_decimal;

}
// --
int32_t read_erpm(uint16_t can_node_id, int stored_e_rpm){
// Function to read the ERPM sent from the VESC
int32_t e_rpm_read;
if(inMsg.id == (0x01 << 8 | can_node_id)){
//if(inMsg.id == (0x901)){
// In order to merge the 4 bytes, the data length 0 and 1 are left shifted

16 bits
// 0x0000ABCD << 16 -> 0xABCD0000, 0xABCD0000 | 0x0000abcd -> 0xABCDabcd
e_rpm_read = get_dec_value(inMsg.buf,0) << 16 | get_dec_value(inMsg.buf,2);

}
else {
/*
If "dead-time" happens with signal conflict, resulting in no new data,
the previous value is used instead of using a zero value. This is done
to avoid jittering

*/
e_rpm_read = stored_e_rpm;

}
return e_rpm_read;

}
// ---
int16_t read_current(uint16_t can_node_id, int stored_current){
// Function to read the ERPM sent from the VESC
int16_t current_read;
if(inMsg.id == (0x02 << 8 | can_node_id)){
// Current is stored in byte 4 and 5
current_read = get_dec_value(inMsg.buf,4);

}
else {
current_read = stored_current;

}
return current_read;

}
// --
int16_t read_duty_cycle(uint16_t can_node_id, int stored_duty_cycle){
// Function to read the ERPM sent from the VESC
int16_t duty_cycle_read;
if(inMsg.id == (0x03 << 8 | can_node_id)){
// Duty cycle is stored in byte 6 and 7
duty_cycle_read = get_dec_value(inMsg.buf,6);

}
else {
duty_cycle_read = stored_duty_cycle;

}
return duty_cycle_read;

}
//--
void setup(void){

//Setting baudrate

137

nh.getHardware()->setBaud(57600);
//Initializing node
nh.initNode();
//Start subscribing topic
nh.subscribe(sub_state);
//Start advertising topic (publishing)
nh.advertise(pub_omega);
delay(1000);
Serial.println(F("Teensy 3.6 dual connected to second CAN is initialized."))

;
Can1.begin(500000,defaultMask,0,0);
pinMode(35, OUTPUT);
pinMode(manual_mode_pin, INPUT);
pinMode(emergency_stop_pin, INPUT);
digitalWrite(35, LOW);

}
// ---
void loop(void){
/*manual_mode = digitalRead(manual_mode_pin);
emergency_stop = digitalRead(emergency_stop);
if (manual_mode == true && emergency_stop == false){
x_dot = ReadJoystick(joystick_x,0);
y_dot = ReadJoystick(joystick_y,0);
theta_dot = ReadJoystick(joystick_theta,0);

}
else if (manual_mode == false && emergency_stop == false){
x_dot = state_ref[0];
y_dot = state_ref[1];
theta_dot = state_ref[2];

}
else{
x_dot = 0;
y_dot = 0;
theta_dot = 0;

}*/
x_dot = state_ref[0];

y_dot = state_ref[1];
theta_dot = state_ref[2];

// CHECK IF WHEEL NO 3 and 4 has to change sign. ie -1/r --> 1/r
omega_ref[0] = -1/r*(x_dot+y_dot+(-w-h)*theta_dot);
omega_ref[1] = -1/r*(-x_dot+y_dot+(w+h)*theta_dot);
omega_ref[2] = -1/r*(x_dot+y_dot+(w+h)*theta_dot);
omega_ref[3] = -1/r*(-x_dot+y_dot+(-w-h)*theta_dot);
write_can_message(msg_can_vesc_1, 0x301, omega_ref[0]*no_poles*60/2/pi); //

0x03(set RPM) | 0xID
write_can_message(msg_can_vesc_2, 0x302, omega_ref[1]*no_poles*60/2/pi);
write_can_message(msg_can_vesc_3, 0x303, omega_ref[2]*no_poles*60/2/pi);
write_can_message(msg_can_vesc_4, 0x304, omega_ref[3]*no_poles*60/2/pi);
while (Can1.available())
{
Can1.read(inMsg);
e_rpm_1 = read_erpm(Node_ID_1, e_rpm_1);
e_rpm_2 = read_erpm(Node_ID_2, e_rpm_2);
e_rpm_3 = read_erpm(Node_ID_3, e_rpm_3);
e_rpm_4 = read_erpm(Node_ID_4, e_rpm_4);
current_1 = read_current(Node_ID_1,current_1);
current_2 = read_current(Node_ID_2,current_2);
duty_cycle_1 = read_duty_cycle(Node_ID_1,duty_cycle_1);
duty_cycle_2 = read_duty_cycle(Node_ID_2,duty_cycle_2);

}
/* e_rpm_float[0] = (float)e_rpm_1;

138

e_rpm_float[1] = (float)e_rpm_2;
e_rpm_float[2] = (float)e_rpm_3;
e_rpm_float[3] = (float)e_rpm_4;
omega[0] = e_rpm_float[0]///no_poles*2*pi/60;
omega[1] = e_rpm_float[1]///no_poles*2*pi/60;
omega[2] = e_rpm_float[2]///no_poles*2*pi/60;
omega[3] = e_rpm_float[3]///no_poles*2*pi/60; */
omega[0] = e_rpm_1/no_poles*2*pi/60;
omega[1] = e_rpm_2/no_poles*2*pi/60;
omega[2] = e_rpm_3/no_poles*2*pi/60;
omega[3] = e_rpm_4/no_poles*2*pi/60;
msg_wheel_omega.data = omega;
msg_wheel_omega.data_length =4;
pub_omega.publish(&msg_wheel_omega);
delay(250);
nh.spinOnce();

}

A.2 Teensy and Xavier two way communication

// Defining the Teensy 3.6 UART hardware serials
#define USE_TEENSY_HW_SERIAL
#include <ros.h>
#include <std_msgs/Int32MultiArray.h>
#include <FlexCAN.h>
#ifndef __MK66FX1M0__
#error "Teensy 3.6 with CAN bus is required"

#endif

//---
int32_t no_poles = 7;
int32_t value_ref[4] = {0,0,0,0}; // Used for subscribing refrence velocities

sent from Xavier
//[wheel1; wheel2; wheel3; wheel4]

int32_t value[4] = {0,0,0,0}; //Initializing the "vector" with the measured
wheel velocities

//---

// Creating the calss to define the serial port to use
class NewHardware : public ArduinoHardware
{
public:
NewHardware():ArduinoHardware(&Serial1){}; // Specify port
// NewHardware():ArduinoHardware(&Serial1, 57600){}; // Specify port

};

// Creating Nodehandle
ros::NodeHandle nh;

//Instantiating the message
std_msgs::Int32MultiArray msg_wheel_omega;
//Defining Publisher
ros::Publisher pub_omega("wheel_omega_all", &msg_wheel_omega);

//Defining topic function
void omega_ref_array(const std_msgs::Int32MultiArray& omega_ref_msg){

139

value_ref[0] = omega_ref_msg.data[0];
value_ref[1] = omega_ref_msg.data[1];
value_ref[2] = omega_ref_msg.data[2];
value_ref[3] = omega_ref_msg.data[3];

}

//Defining subscribing topic
ros::Subscriber<std_msgs::Int32MultiArray> sub_omega("omega_ref",

omega_ref_array);

static struct CAN_filter_t defaultMask;
static CAN_message_t msg_can_vesc_1;
static CAN_message_t msg_can_vesc_2;
static CAN_message_t msg_can_vesc_3;
static CAN_message_t msg_can_vesc_4;
static CAN_message_t inMsg;

int32_t e_rpm_1, e_rpm_2, e_rpm_3, e_rpm_4;
int32_t duty_cycle_1, duty_cycle_2, duty_cycle_3, duty_cycle_4;
int32_t current_1, current_2, current_3, current_4;
uint16_t Node_ID_1 = 0x01;
uint16_t Node_ID_2 = 0x02;
uint16_t Node_ID_3 = 0x03;
uint16_t Node_ID_4 = 0x04;

// ---
void buffer_append_int32(uint8_t *buffer, int32_t number, int32_t *index) {
// Function to append the value used in write_can_message function
buffer[(*index)++] = number >> 24;
buffer[(*index)++] = number >> 16;
buffer[(*index)++] = number >> 8;
buffer[(*index)++] = number;

}
//--
void write_can_message(CAN_message_t msg, uint32_t can_id, int32_t value){
// Function to fill in necessary information to write a CAN message
msg.ext = 1; // If the id is extended or not (0=11bit ID, 1=29bit ID)
msg.id = can_id; //Message id. This contains the command and which unit it

is ment for
msg.len = 4; // Message length (2= 0x0000, 4 = 0x00000000, 8 = 0

x0000000000000000, etc...)
uint8_t buffer [sizeof(msg.len)]; //Create an empty buffer to write message

in
int32_t send_index = 0; // Selecting which index to start the appending
buffer_append_int32(buffer , value, &send_index); // Appends "value" to the

buffer
memcpy(msg.buf, buffer, msg.len*sizeof(uint32_t)); // Copies the buffer

information into the message (msg.buf)
Can1.write(msg); // Write CANBus command

}
// ---
int16_t read_buffer_int16(const uint8_t *buffer, int32_t *index){
int16_t get_buffer_value = ((uint16_t) buffer[*index]) << 8 |

((uint16_t)buffer[*index+1]);
return get_buffer_value;

}
// ---
int16_t get_dec_value (uint8_t *bytePtr, int index){
int32_t send_index = index;
int16_t value_decimal = read_buffer_int16(bytePtr, &send_index);

140

return value_decimal;
}
// --
int32_t read_erpm(uint16_t can_node_id, int stored_e_rpm){
// Function to read the ERPM sent from the VESC
int32_t e_rpm_read;
if(inMsg.id == (0x01 << 8 | can_node_id)){
//if(inMsg.id == (0x901)){
// In order to merge the 4 bytes, the data length 0 and 1 are left shifted

16 bits
// 0x0000ABCD << 16 -> 0xABCD0000, 0xABCD0000 | 0x0000abcd -> 0xABCDabcd
e_rpm_read = get_dec_value(inMsg.buf,0) << 16 | get_dec_value(inMsg.buf,2);

}
else {
/*
If "dead-time" happens with signal conflict, resulting in no new data,
the previous value is used instead of using a zero value. This is done
to avoid jittering

*/
e_rpm_read = stored_e_rpm;

}
return e_rpm_read;

}
// ---
int16_t read_current(uint16_t can_node_id, int stored_current){
// Function to read the ERPM sent from the VESC
int16_t current_read;
if(inMsg.id == (0x02 << 8 | can_node_id)){
// Current is stored in byte 4 and 5
current_read = get_dec_value(inMsg.buf,4);

}
else {
current_read = stored_current;

}
return current_read;

}
// --
int16_t read_duty_cycle(uint16_t can_node_id, int stored_duty_cycle){
// Function to read the ERPM sent from the VESC
int16_t duty_cycle_read;
if(inMsg.id == (0x03 << 8 | can_node_id)){
// Duty cycle is stored in byte 6 and 7
duty_cycle_read = get_dec_value(inMsg.buf,6);

}
else {
duty_cycle_read = stored_duty_cycle;

}
return duty_cycle_read;

}
//--
void setup(void){

//Setting baudrate
nh.getHardware()->setBaud(57600);
//Initializing node
nh.initNode();
//Start subscribing topic
nh.subscribe(sub_omega);
//Start advertising topic (publishing)
nh.advertise(pub_omega);
delay(1000);

141

Serial.println(F("Teensy 3.6 dual connected to second CAN is initialized."))
;

Can1.begin(500000,defaultMask,0,0);
pinMode(35, OUTPUT);
digitalWrite(35, LOW);

}
// ---
void loop(void){
write_can_message(msg_can_vesc_1, 0x301 , value_ref[0]); // 0x03(set RPM) |

0xID
write_can_message(msg_can_vesc_2, 0x302 , value_ref[1]);
write_can_message(msg_can_vesc_3, 0x303 , value_ref[2]);
write_can_message(msg_can_vesc_4, 0x304 , value_ref[3]);
while (Can1.available())
{
Can1.read(inMsg);
e_rpm_1 = read_erpm(Node_ID_1, e_rpm_1);
e_rpm_2 = read_erpm(Node_ID_2, e_rpm_2);
e_rpm_3 = read_erpm(Node_ID_3, e_rpm_3);
e_rpm_4 = read_erpm(Node_ID_4, e_rpm_4);
current_1 = read_current(Node_ID_1,current_1);
current_2 = read_current(Node_ID_2,current_2);
duty_cycle_1 = read_duty_cycle(Node_ID_1,duty_cycle_1);
duty_cycle_2 = read_duty_cycle(Node_ID_2,duty_cycle_2);

}
value[0] = e_rpm_1/7;
value[1] = e_rpm_2/7;
value[2] = e_rpm_3/7;
value[3] = e_rpm_4/7;
msg_wheel_omega.data = value;
msg_wheel_omega.data_length =4;
pub_omega.publish(&msg_wheel_omega);
delay(250);
nh.spinOnce();

}

A.3 Publish data from CAN to ROS

// Defining the Teensy 3.6 UART hardware serials
#define USE_TEENSY_HW_SERIAL
#include <ros.h>
#include <std_msgs/Int32MultiArray.h>
#include <FlexCAN.h>
#ifndef __MK66FX1M0__
#error "Teensy 3.6 with dual CAN bus is required"

#endif

// Creating the calss to define the serial port to use
class NewHardware : public ArduinoHardware
{
public:
NewHardware():ArduinoHardware(&Serial1){}; // Specify port
// NewHardware():ArduinoHardware(&Serial1, 57600){}; // Specify port

};

// Creating Nodehandle

142

ros::NodeHandle nh;

//Instantiating the message
std_msgs::Int32MultiArray msg_wheel_omega;

//Defining Publisher
ros::Publisher wheel_omega("wheel_omega_all", &msg_wheel_omega);

static struct CAN_filter_t defaultMask;
static CAN_message_t inMsg;

int32_t e_rpm_1, e_rpm_2;
int32_t duty_cycle_1, duty_cycle_2;
int32_t current_1, current_2;
uint16_t Node_ID_1 = 0x01;
uint16_t Node_ID_2 = 0x02;

// ---
int16_t read_buffer_int16(const uint8_t *buffer, int32_t *index){
int16_t get_buffer_value = ((uint16_t) buffer[*index]) << 8 | ((uint16_t)

buffer[*index+1]);
return get_buffer_value;

}
// ---
int16_t get_dec_value (uint8_t *bytePtr, int index){
int32_t send_index = index;
int16_t value_decimal = read_buffer_int16(bytePtr, &send_index);
return value_decimal;

}
// ---
int32_t read_erpm(uint16_t can_node_id, int stored_e_rpm){
// Function to read the ERPM sent from the VESC
int32_t e_rpm_read;
if(inMsg.id == (0x01 << 8 | can_node_id)){
//if(inMsg.id == (0x901)){
// In order to merge the 4 bytes, the data length 0 and 1 are left shifted

16 bits
// 0x0000ABCD << 16 -> 0xABCD0000, 0xABCD0000 | 0x0000abcd -> 0xABCDabcd
e_rpm_read = get_dec_value(inMsg.buf,0) << 16 | get_dec_value(inMsg.buf,2);

}
else {
/*
If "dead-time" happens with signal conflict, resulting in no new data,
the previous value is used instead of using a zero value. This is done
to avoid jittering

*/
e_rpm_read = stored_e_rpm;

}
return e_rpm_read;

}
// ---
int16_t read_current(uint16_t can_node_id, int stored_current){
// Function to read the ERPM sent from the VESC
int16_t current_read;
if(inMsg.id == (0x02 << 8 | can_node_id)){
// Current is stored in byte 4 and 5
current_read = get_dec_value(inMsg.buf,4);

}
else {

143

current_read = stored_current;
}
return current_read;

}
// ---
int16_t read_duty_cycle(uint16_t can_node_id, int stored_duty_cycle){
// Function to read the ERPM sent from the VESC
int16_t duty_cycle_read;
if(inMsg.id == (0x03 << 8 | can_node_id)){
// Duty cycle is stored in byte 6 and 7
duty_cycle_read = get_dec_value(inMsg.buf,6);

}
else {
duty_cycle_read = stored_duty_cycle;

}
return duty_cycle_read;

}

int32_t omega_all[4] = {0,0,0,0};
//[wheel1; wheel2; wheel3; wheel4]

int32_t value[4] = {omega_all[0],omega_all[1],omega_all[2],omega_all[3]};

void setup(){
//Setting baudrate
nh.getHardware()->setBaud(57600);
//Initializing node
nh.initNode();
//Start advertising
nh.advertise(wheel_omega);

delay(1000);
Serial.println(F("Hello Teensy 3.6 dual CAN Test."));
Can1.begin(500000,defaultMask,0,0);
pinMode(35, OUTPUT);
digitalWrite(35, LOW);

}
void loop(){
while (Can1.available())
{
//CAN_message_t inMsg;
Can1.read(inMsg);
e_rpm_1 = read_erpm(Node_ID_1, e_rpm_1);
e_rpm_2 = read_erpm(Node_ID_2, e_rpm_2);
current_1 = read_current(Node_ID_1,current_1);
current_2 = read_current(Node_ID_2,current_2);
duty_cycle_1 = read_duty_cycle(Node_ID_1,duty_cycle_1);
duty_cycle_2 = read_duty_cycle(Node_ID_2,duty_cycle_2);

}
value[1] = e_rpm_1/7;
value[2] = e_rpm_2/7;
msg_wheel_omega.data = value;
msg_wheel_omega.data_length =4;
wheel_omega.publish(&msg_wheel_omega);

nh.spinOnce();
delay(250);

}

144

A.4 Subscribe data from ROS to CAN

// Defining the Teensy 3.6 UART hardware serials
#define USE_TEENSY_HW_SERIAL
#include <ros.h>
#include <std_msgs/Int32MultiArray.h>
#include <FlexCAN.h>
#ifndef __MK66FX1M0__
#error "Teensy 3.6 with CAN bus is required"

#endif

// Creating the calss to define the serial port to use
class NewHardware : public ArduinoHardware
{
public:
NewHardware():ArduinoHardware(&Serial1){}; // Specify port
// NewHardware():ArduinoHardware(&Serial1, 57600){}; // Specify port

};

// Creating Nodehandle
ros::NodeHandle nh;

int32_t value_ref[4] = {0,0,0,0}; // Used for subscribing refrence value sent
from Xavier

//Defining topic function
void omega_ref_array(const std_msgs::Int32MultiArray& omega_ref_msg){

value_ref[0] = omega_ref_msg.data[1];
value_ref[1] = omega_ref_msg.data[2];
value_ref[2] = omega_ref_msg.data[3];
value_ref[3] = omega_ref_msg.data[4];

}

//Defining subscribing topic
ros::Subscriber<std_msgs::Int32MultiArray> sub_omega("omega_ref",

omega_ref_array);

static struct CAN_filter_t defaultMask;
static CAN_message_t msg_can_vesc;

// ---
void buffer_append_int32(uint8_t *buffer, int32_t number, int32_t *index) {
// Function to append the value used in write_can_message function
buffer[(*index)++] = number >> 24;
buffer[(*index)++] = number >> 16;
buffer[(*index)++] = number >> 8;
buffer[(*index)++] = number;

}
//--
void write_can_message(CAN_message_t msg, uint32_t can_id, int32_t value){
// Function to fill in necessary information to write a CAN message
msg.ext = 1; // If the id is extended or not (0=11bit ID, 1=29bit ID)
msg.id = can_id; //Message id. This contains the command and which unit it

is ment for
msg.len = 4; // Message length (2= 0x0000, 4 = 0x00000000, 8 = 0

x0000000000000000, etc...)
uint8_t buffer [sizeof(msg.len)]; //Create an empty buffer to write message

in
int32_t send_index = 0; // Selecting which index to start the appending

145

buffer_append_int32(buffer , value, &send_index); // Appends "value" to the
buffer

memcpy(msg.buf, buffer, msg.len*sizeof(uint32_t)); // Copies the buffer
information into the message (msg.buf)

Can1.write(msg); // Write CANBus command
}
//--
void setup(void){

//Setting baudrate
nh.getHardware()->setBaud(57600);
//Initializing node
nh.initNode();
nh.subscribe(sub_omega);
delay(1000);
Serial.println(F("Hello Teensy 3.6 dual CAN Test."));
Can1.begin(500000,defaultMask,0,0);
pinMode(35, OUTPUT);
digitalWrite(35, LOW);

}
// ---
void loop(void){

write_can_message(msg_can_vesc, 0x301 , value_ref[1]);
delay(1000);
nh.spinOnce();

}

A.5 Publish multi array from Teensy to Xavier (ROS)

// Defining the Teensy 3.6 UART hardware serials
#define USE_TEENSY_HW_SERIAL
#include <ros.h>
//#include <std_msgs/Int32.h>
#include <std_msgs/Int32MultiArray.h>

//Creating test values
int32_t omega_all[4] = {-1000, 2000, -1000, 1000};

// Creating the calss to define the serial port to use
class NewHardware : public ArduinoHardware
{
public:
NewHardware():ArduinoHardware(&Serial1){}; // Specify port

};

// Creating Nodehandle
ros::NodeHandle nh;

//Instantiating the message
std_msgs::Int32MultiArray msg_wheel_omega;

//[wheel1; wheel2; wheel3; wheel4]
int32_t value[4] = {omega_all[0],omega_all[1],omega_all[2],omega_all[3]};

//Defining Publisher
ros::Publisher wheel_omega("wheel_omega_all", &msg_wheel_omega);

void setup(){
//Setting baudrate

146

nh.getHardware()->setBaud(57600);
//Initializing node
nh.initNode();
//Start advertising
nh.advertise(wheel_omega);

}

void loop(){

msg_wheel_omega.data = value;
msg_wheel_omega.data_length =4;
wheel_omega.publish(&msg_wheel_omega);

nh.spinOnce();
delay(1000);

}

A.6 Subsrcibe multi array from Xavier (ROS) to Teensy

// Defining the Teensy 3.6 UART hardware serials
#define USE_TEENSY_HW_SERIAL
#include <ros.h>
#include <std_msgs/Int32MultiArray.h>

// Creating the calss to define the serial port to use
class NewHardware : public ArduinoHardware
{
public:
NewHardware():ArduinoHardware(&Serial1){}; // Specify port
// NewHardware():ArduinoHardware(&Serial1, 57600){};

};

// Creating Nodehandle
ros::NodeHandle nh;

int32_t value_ref[4] = {0,0,0,0}; // Used for subscribing refrence value sent
from Xavier

//Defining topic function
void omega_ref_array(const std_msgs::Int32MultiArray& omega_ref_msg){

value_ref[0] = omega_ref_msg.data[0];
value_ref[1] = omega_ref_msg.data[1];
value_ref[2] = omega_ref_msg.data[2];
value_ref[3] = omega_ref_msg.data[3];

}

//Defining subscribing topic
ros::Subscriber<std_msgs::Int32MultiArray> sub_omega("omega_ref",

omega_ref_array);

//--
void setup(void){
//Setting baudrate
nh.getHardware()->setBaud(57600);
//Initializing node
nh.initNode();

147

nh.subscribe(sub_omega);
}
// ---
void loop(void){

Serial.print("omega_ref_1= ");
Serial.print(value_ref[0]);
Serial.print(" | omega_ref_2= ");
Serial.print(value_ref[1]);
Serial.print(" | omega_ref_3= ");
Serial.print(value_ref[2]);
Serial.print(" | omega_ref_4= ");
Serial.print(value_ref[3]);
Serial.println(" | Boi");
delay(1000);
nh.spinOnce();

}

A.7 Hand-Controller only Program

/*
This program contains which is necessary to control the rig, with the use
kinematic equations, a hand-controller and sending of the appriopriate CAN

messages

*/
#include <FlexCAN.h>

//--
#ifndef __MK66FX1M0__
#error "Teensy 3.6 with dual CAN bus is required to run"

#endif
static struct CAN_filter_t defaultMask;
static CAN_message_t msg_can_vesc_01;
static CAN_message_t msg_can_vesc_02;
static CAN_message_t msg_can_vesc_03;
static CAN_message_t msg_can_vesc_04;

int led = 13;
int no_poles = 7; //The number of poles to the BLDC
#define PI_val 3.14159

// Initilaziing Kinematics variables
#define r 0.1015
#define w 0.2850
#define h 0.6350
#define joystick_x 14
#define joystick_y 15
#define joystick_theta 16
//------------------------------//
float omega_1 = 0;
float omega_2 = 0;
float omega_3 = 0;
float omega_4 = 0;
float x_dot = 0;
float y_dot = 0;
float theta_dot = 0;
float x_test = 0;
float y_test = 0;

148

float z_test = 0;
//--
float ReadJoystick(int joystick, int joystick_val) {
joystick_val = map(analogRead(joystick), 0, 1023, -4, 4);
return joystick_val;

}
//--
void buffer_append_int32(uint8_t* buffer, int32_t number, int32_t *index) {
// Function to append the value
buffer[(*index)++] = number >> 24;
buffer[(*index)++] = number >> 16;
buffer[(*index)++] = number >> 8;
buffer[(*index)++] = number;

}
//--
void write_can_message(CAN_message_t msg, uint32_t can_id, int32_t value){
// Function to fill in necessary infromation to write a CAN message
msg.ext = 1;
msg.id = can_id;
msg.len = 4;
uint8_t buffer [sizeof(msg.len)];
int32_t send_index = 0;
buffer_append_int32(buffer , value, &send_index);
memcpy(msg.buf, buffer, msg.len*sizeof(uint32_t));
Can1.write(msg); // Write CANBus command

}
//--
void setup(void){
delay(1000);
Serial.println(F("Hello Teensy 3.6 dual CAN Test."));
Can1.begin(500000,defaultMask,0,0);
//if using enable pins on a transceiver they need to be set on
pinMode(35, OUTPUT);
digitalWrite(35, LOW);
Serial.begin(9600);
pinMode(led, OUTPUT);
digitalWrite(led,HIGH);

}
// ---
void loop(void){
x_dot = ReadJoystick(joystick_x,0);
y_dot = ReadJoystick(joystick_y,0);
theta_dot = ReadJoystick(joystick_theta,0);
//x_dot = 0;
//y_dot = 0;
//theta_dot = 0;
x_test = analogRead(14);
y_test = analogRead(15);
z_test = analogRead(16);
omega_1 = -1/r*(x_dot+y_dot+(-w-h)*theta_dot)*no_poles*30/PI_val;
omega_2 = -1/r*(-x_dot+y_dot+(w+h)*theta_dot)*no_poles*30/PI_val;
omega_3 = -1/r*(x_dot+y_dot+(w+h)*theta_dot)*no_poles*30/PI_val;
omega_4 = -1/r*(-x_dot+y_dot+(-w-h)*theta_dot)*7*7;
write_can_message(msg_can_vesc_01, 0x301, omega_1);
write_can_message(msg_can_vesc_02, 0x302, omega_2);
write_can_message(msg_can_vesc_03, 0x303, omega_3);
write_can_message(msg_can_vesc_04, 0x304, omega_4);

// Serial prints for debugging
/*
Serial.print(x_test);

149

Serial.print(" | ");
Serial.print(y_test);
Serial.print(" | ");
Serial.print(z_test);
Serial.println("");

*/
/*
Serial.print("|x_dot= ");
Serial.print(x_dot);
Serial.print("|y_dot= ");
Serial.print(y_dot);
Serial.print("|theta_dot");
Serial.print(theta_dot);
Serial.print("|omega_1= ");
Serial.print(omega_1);
Serial.print(" |omega_2= ");
Serial.print(omega_2);
Serial.print(" |omega_3= ");
Serial.print(omega_3);
Serial.print(" |omega_4= ");
Serial.print(omega_4);
Serial.println(" | ");*/
delay(20);

}

A.8 Write CAN message

#include <FlexCAN.h>
//--
#ifndef __MK66FX1M0__
#error "Teensy 3.6 with dual CAN bus is required to run"

#endif
static struct CAN_filter_t defaultMask;
static CAN_message_t msg_can_vesc;
// ---
void buffer_append_int32(uint8_t *buffer, int32_t number, int32_t *index) {
// Function to append the value used in write_can_message function
buffer[(*index)++] = number >> 24;
buffer[(*index)++] = number >> 16;
buffer[(*index)++] = number >> 8;
buffer[(*index)++] = number;

}
//--
void write_can_message(CAN_message_t msg, uint32_t can_id, int32_t value){
// Function to fill in necessary information to write a CAN message
msg.ext = 1; // If the id is extended or not (0=11bit ID, 1=29bit ID)
msg.id = can_id; //Message id. This contains the command and which unit it

is ment for
msg.len = 4; // Message length (2= 0x0000, 4 = 0x00000000, 8 = 0

x0000000000000000, etc...)
uint8_t buffer [sizeof(msg.len)]; //Create an empty buffer to write message

in
int32_t send_index = 0; // Selecting which index to start the appending
buffer_append_int32(buffer , value, &send_index); // Appends "value" to the

buffer
memcpy(msg.buf, buffer, msg.len*sizeof(uint32_t)); // Copies the buffer

information into the message (msg.buf)

150

Can1.write(msg); // Write CANBus command
}
//--
void setup(void){
delay(1000);
Serial.println(F("Hello Teensy 3.6 dual CAN Test."));
Can1.begin(500000,defaultMask,0,0);
pinMode(35, OUTPUT);
digitalWrite(35, LOW);

}
// ---
void loop(void){

write_can_message(msg_can_vesc, 0x301 , 1200);
delay(1000);

}

A.9 Reading CAN messages

#include <FlexCAN.h>
//#include <string.h>
#ifndef __MK66FX1M0__
#error "Teensy 3.6 with dual CAN bus is required"

#endif
static struct CAN_filter_t defaultMask;
static CAN_message_t inMsg;

int32_t e_rpm_1, e_rpm_2;
int32_t duty_cycle_1, duty_cycle_2;
int32_t current_1, current_2;
uint16_t Node_ID_1 = 0x01;
uint16_t Node_ID_2 = 0x02;

// ---
int16_t read_buffer_int16(const uint8_t *buffer, int32_t *index){
int16_t get_buffer_value = ((uint16_t) buffer[*index]) << 8 | ((uint16_t)

buffer[*index+1]);
//*index += 2;
return get_buffer_value;

}
// ---
int16_t get_dec_value (uint8_t *bytePtr, int index){
int32_t send_index = index;
int16_t value_decimal = read_buffer_int16(bytePtr, &send_index);
return value_decimal;

}
// ---
int32_t read_erpm(uint16_t can_node_id, int stored_e_rpm){
// Function to read the ERPM sent from the VESC
int32_t e_rpm_read;
if(inMsg.id == (0x01 << 8 | can_node_id)){
//if(inMsg.id == (0x901)){
// In order to merge the 4 bytes, the data length 0 and 1 are left shifted

16 bits
// 0x0000ABCD << 16 -> 0xABCD0000, 0xABCD0000 | 0x0000abcd -> 0xABCDabcd
e_rpm_read = get_dec_value(inMsg.buf,0) << 16 | get_dec_value(inMsg.buf,2);

}

151

else {
/*
If "dead-time" happens with signal conflict, resulting in no new data,
the previous value is used instead of using a zero value. This is done
to avoid jittering

*/
e_rpm_read = stored_e_rpm;

}
return e_rpm_read;

}
// ---
int16_t read_current(uint16_t can_node_id, int stored_current){
// Function to read the CURRENT sent from the VESC
int16_t current_read;
if(inMsg.id == (0x02 << 8 | can_node_id)){
// Current is stored in byte 4 and 5
current_read = get_dec_value(inMsg.buf,4);

}
else {
/*
If "dead-time" happens with signal conflict, resulting in no new data,
the previous value is used instead of using a zero value. This is done
to avoid jittering

*/
current_read = stored_current;

}
return current_read;

}
// ---
int16_t read_duty_cycle(uint16_t can_node_id, int stored_duty_cycle){
// Function to read the DUTY CYCLE sent from the VESC
int16_t duty_cycle_read;
if(inMsg.id == (0x03 << 8 | can_node_id)){
// Duty cycle is stored in byte 6 and 7
duty_cycle_read = get_dec_value(inMsg.buf,6);

}
else {
/*
If "dead-time" happens with signal conflict, resulting in no new data,
the previous value is used instead of using a zero value. This is done
to avoid jittering

*/
duty_cycle_read = stored_duty_cycle;

}
return duty_cycle_read;

}
void setup(void)
{
delay(1000);
Serial.println(F("Hello Teensy 3.6 dual CAN Test."));
Can1.begin(500000,defaultMask,0,0);
pinMode(35, OUTPUT);
digitalWrite(35, LOW);

}
// ---
void loop(void)
{

while (Can1.available())
{
//CAN_message_t inMsg;

152

Can1.read(inMsg);
e_rpm_1 = read_erpm(Node_ID_1, e_rpm_1);
e_rpm_2 = read_erpm(Node_ID_2, e_rpm_2);
current_1 = read_current(Node_ID_1,current_1);
current_2 = read_current(Node_ID_2,current_2);
duty_cycle_1 = read_duty_cycle(Node_ID_1,duty_cycle_1);
duty_cycle_2 = read_duty_cycle(Node_ID_2,duty_cycle_2);
}
Serial.print("Data ID:");
Serial.print(Node_ID_1,HEX);
Serial.print(" | e_rpm = ");
Serial.print(e_rpm_1,HEX);
Serial.print(" | current = ");
Serial.print(current_1,HEX);
Serial.print(" | duty cycle = ");
Serial.println(duty_cycle_1,HEX);

Serial.print("Data ID:");
Serial.print(Node_ID_2,HEX);
Serial.print(" | e_rpm = ");
Serial.print(e_rpm_2,HEX);
Serial.print(" | current = ");
Serial.print(current_2,HEX);
Serial.print(" | duty cycle = ");
Serial.println(duty_cycle_2,HEX);
delay(1000);

}

B. Inverse kinematic simplifications

−vd + vs cos(γ) = −ẋ sin(α + β) + ẏ cos(α + β) + lθ̇ cos(β) (B.1)

−vs sin(γ) = ẋ cos(α + β) + ẏ sin(α + β) + lθ̇ sin(β) (B.2)

vs = −ẋ sin(α + β) + ẏ cos(α + β) + lθ̇ cos(β) + vd
cos(γ) (B.3)

vs = −ẋ cos(α + β)− ẏ sin(α + β)− lθ̇ sin(β)
sin(γ) (B.4)

−ẋ sin(α + β) + ẏ cos(α + β) + lθ̇ cos(β) + vd
cos(γ) = −ẋ cos(α + β)− ẏ sin(α + β)− lθ̇ sin(β)

sin(γ)
(B.5)

vs = −ẋ sin(α + β) + ẏ cos(α + β) + lθ̇ cos(β) + vd
cos(γ) (B.6)

vs = −ẋ cos(α + β)− ẏ sin(α + β)− lθ̇ sin(β)
sin(γ) (B.7)

sin (α± β) = sin(α) cos(β)± cos(α) sin(β) (B.8)

153

cos (α± β) = cos(α) cos(β)∓ sin(α) sin(β) (B.9)

−ẋ sin(α + β) + ẏ cos(α + β) + lθ̇ cos(β) + vd
cos(γ) = −ẋ cos(α + β)− ẏ sin(α + β)− lθ̇ sin(β)

sin(γ)
(B.10)

−ẋ sin(α + β) sin(γ) + ẏ cos(α + β) sin(γ) + lθ̇ cos(β) sin(γ) + vd sin(γ) = ... (B.11)
−ẋ cos(α + β) cos(γ)− ẏ sin(α + β) cos(γ)− lθ̇ sin(β) cos(γ)

ẋ[cos(α + β) sin(γ)− sin(α + β) sin(γ)] (B.12)
+ẏ[cos(α + β) sin(γ) + sin(α + β) cos(γ)]

+lθ̇[cos(β) sin(γ) + sin(β) cos(γ)]
=− vd sin(γ)

ẋ cos(α + β + γ) + ẏ sin(α + β + γ) + lθ̇ sin(β + γ) = −vd sin(γ) (B.13)

α + β = 0

ẋ cos(γ) + ẏ sin(γ) + lθ̇ sin(β + γ) = −vd sin(γ) (B.14)

ẋ
cos(γ)
sin(γ) + ẏ

sin(γ)
sin(γ) + lθ̇

sin(β + γ)
sin(γ) = −vd (B.15)

ẋ
1

tan(γ) + ẏ + lθ̇
sin(β + γ)

sin(γ) = −vd (B.16)

ẋ
cos(γ)
sin(γ) + ẏ

sin(γ)
sin(γ) + lθ̇

sin(β) cos(γ) + cos(β) sin(γ)
sin(γ) = −vd (B.17)

ẋ

tan(γ) + ẏ + lθ̇

(
sin(β)
tan(γ) + cos(β)

)
= −vd (B.18)

ẋ

tan(γ) + ẏ + lθ̇

(
sin(−α)
tan(γ) + cos(−α)

)
= −vd (B.19)

ẋ

tan(γ) + ẏ + lθ̇

(
cos(α)− sin(α)

tan(γ)

)
= −vd (B.20)

[
1

tan(γ) 1 w − h
tan(γ)

] ẋẏ
θ̇

 = −rω (B.21)

154

C. Data Sheets

155

C.1 Jetson Xavier Development kit GPIO pinout

156

Corus Strip Products UK

European structural steel standard EN 10025-2 : 2004

Grade designations, properties and nearest equivalents

C.2 S355 material properties - EN 10025

159

General
EN 10025 : 2004 is the new six-part European standard
for hot-rolled structural steel.

The information here covers the steels in part 2 of that
standard, which are grades manufactured by Corus Strip
Products UK.

The new standard designates grades differently from the
previous standards for these steels.

This leaflet shows the grades and their mechanical properties
from the new standard together with the nearest equivalent
grades from former standards. It also contains advice about
specifying these steels when ordering.

Details of the dimensional range are available from Corus.

The parts of the new standard
The standard is published in the six parts shown below. It
combines what were formerly separate standards into one new
standard for the majority of hot-rolled structural steel products.

Part 1 – General technical delivery conditions

Part 2 – Technical delivery conditions for non-alloy
structural steels
Supersedes EN 10025 : 1993

Part 3 – Technical delivery conditions for normalised/
normalised rolled weldable fine grain structural steels
Supersedes EN 10113 : parts 1 & 2 : 1993

Part 4 – Technical delivery conditions for thermomechanical
rolled weldable fine grain structural steels
Supersedes EN 10113 : parts 1 & 3 : 1993

Part 5 – Technical delivery conditions for structural steels
with improved atmospheric corrosion resistance (also known
as weathering steels)
Supersedes EN 10155 : 1993

Part 6 – Technical delivery conditions for flat products of high
yield strength structural steels in the quenched and tempered
condition
Supersedes EN 10137 : parts 1 & 2 : 1996

Grade designation systems
The designation systems used in the new standard are similar
but not identical to those used in EN 10025 : 1993. The
symbols and the properties they designate are shown in table
1 below. The table includes examples that demonstrate the
use of the symbols within the new designations.

Mechanical properties and equivalent grades
Table 2 opposite shows the grades and their mechanical
properties for part 2 of the new standard, together with the
nearest equivalent grades from the superseded standards.

Table 1: Symbols used in EN 10025-2 : 2004 : Non-alloy structural steels

Symbol Example Property designated

S S185 Structural steel

E E295 Engineering steel

360 E360 Minimum yield strength (ReH) in MPa at 16mm

JR S235JR Longitudinal Charpy V-notch impacts 27J at +20°C

J0 S275J0 Longitudinal Charpy V-notch impacts 27J at 0°C

J2 S355J2 Longitudinal Charpy V-notch impacts 27J at -20°C

K2 S355K2 Longitudinal Charpy V-notch impacts 40J at -20°C

+AR S235JR+AR Supply condition as rolled

+N S275J0+N Supply condition normalised or normalised rolled

Customer options

C S235C Grade suitable for cold forming

Note: Text highlighted in red shows the symbols as they are used in examples of grades from
the new standard.

Ordering with the new standard
When ordering, please include the following information.

The standard
Include the part number, e.g. EN 10025-2 : 2004.

Steel grade
Use the new designations.

Nominal dimensions
Include any agreed special tolerances.

Options
Consult EN 10025-1 (section 13) and EN 10025-2 (section 13)
for details of options.

If options are not specified when ordering, Corus will supply
the basic specification.

Advice
Advice about the new standard is available from Customer
Technical Services, whose details appear on the back cover
of this leaflet.

Copies of this leaflet are available from our web site at:
www.corusgroup.com/stripproductsuk

Table 2: EN 10025-2 : 2004 : Non-alloy structural steels : Grades, mechanical properties and nearest equivalent grades

EN 10025-2 : 2004 EN 10025 : 1993 BS 4360 : 1990

Grade Strength at Longitudinal Nearest equivalent Nearest equivalent

 t=16mm (MPa) Charpy V-notch grade grade

 Min yield Tensile Temp Energy (J)

 (ReH) (Rm) (°C) t=16mm

S185 185 290/510 – – S185 –

– 1 – – – – S235 40A

S235JR 2 235 360/510 20 27 S235JRG1/G2 40B

S235J0 235 360/510 0 27 S235J0 40C

S235J2 235 360/510 -20 27 S235J2G3/G4 40D

– 1 – – – – S275 43A

S275JR 2 275 410/560 20 27 S275JR 43B

S275J0 275 410/560 0 27 S275J0 43C

S275J2 275 410/560 -20 27 S275J2G3/G4 43D

– 1 – – – – S355 50A

S355JR 2 355 470/630 20 27 S355JR 50B

S355J0 355 470/630 0 27 S355J0 50C

S355J2 355 470/630 -20 27 S355J2G3/G4 50D

S355K2 355 470/630 -20 40 S355K2G3/G4 50DD

E295 295 470/610 – – E295 –

E335 335 570/710 – – E335 –

E360 360 670/830 – – E360 –

Notes:

1. This grade has been removed from the standard because it does not offer a guaranteed minimum impact performance, which is required
by the EU Construction Products Directive (CPD 89/106/EC). The lowest grade offered is the JR version for each yield strength variation.

2. Corus will only verify the specified impact value for this grade if asked to do so at the time of the enquiry and the order.

3. 1 MPa=1 N/mm2.

www.corusgroup.com

Care has been taken to ensure that this
information is accurate, but Corus Group
plc, including its subsidiaries, does not
accept responsibility or liability for errors or
information which is found to be misleading.

Corus has a policy of continuous
improvement, and as such the information
in this document may be subject to change.
The latest information is available from the
addresses below.

Copyright 2006 Corus UK Limited

Design: ELEVATOR www.elevatordesign.co.uk

Commercial enquiries
Corus Strip Products UK
PO Box 10
Newport
South Wales
NP19 4XN
T: +44 (0)1633 290022
F: +44 (0)1633 755104
cspuk.marketing@corusgroup.com
www.corusgroup.com/stripproductsuk

English language version

Technical enquiries
Customer Technical Services
Corus Strip Products UK
PO Box 10
Newport
South Wales
NP19 4XN
T: +44 (0)1633 755171
F: +44 (0)1633 755177
strip.enquiries@corusgroup.com

 CSPUK25:2000:UK:09/2006

D. Technical drawings

163

(6X)
.157 THRU

8.000

1.875
BO

LT C
IRC

LE

AA

 3.500

 .220

 3.059

LEFT W
HEEL

(am
-3340L)

.962

1.125

 .258

SEC
TIO

N
 A

-A
SC

A
LE 1 : 2

RIG
HT W

HEEL
(am

-3340R)

8" M
K M

ecanum
Roller Replacem

ent
am

-3567

REV
ISIO

N
 HISTO

RY
REV

.
D

ESC
RIPTIO

N
D

A
TE

D
RA

W
N

 BY
1

O
RIG

IN
A

L PRIN
T

11/9/2017
K. N

EPO
M

UC
EN

O

C
O

M
M

EN
TS:

1/16
1

50.1
0.01
0.005
0.0005

DIM
EN

SIO
N

S A
RE IN

 IN
C

HES

*** SEE C
A

D
 FO

R A
D

D
ITIO

N
A

L TO
O

LPA
TH IN

FO

TO
LERA

N
C

ES:
FRA

C
TIO

N
A

L
A

N
G

ULA
R: M

A
C

H
A

N
G

ULA
R: BEN

D

O
N

E PLA
C

E D
EC

IM
A

L
TW

O
 PLA

C
E D

EC
IM

A
L

THREE PLA
C

E D
EC

IM
A

L
FO

UR PLA
C

E D
EC

IM
A

L
M

A
TERIA

L

FIN
ISH

C
HEC

KED
EN

G
 A

PPR.

M
FG

 A
PPR.

Q
.A

.

D
UA

L D
IM

EN
SIO

N
S A

RE IN
 M

ILLIM
ETERS.

BREA
K A

LL SHA
RP ED

G
ES.

D
A

TE
N

A
M

E

TITLE:

SIZE

B
D

W
G

. N
O

.
REV

SC
A

LE: 1:2

UN
LESS O

THERW
ISE SPEC

IFIED
:

SHEET 1 O
F 1

am
-3340

D
O

 N
O

T SC
A

LE D
RA

W
IN

G

1

8" M
K M

ecanum
 W

heels

A
A

B
B

4 4

3 3

2 2

1 1
D.1 Mecanum Wheels

164

6

5

4

2

31

7

8

9

ITEM NO. PART NUMBER DESCRIPTION QTY.

1 1600 mm H40 2

2 660 mm H40 4

3 870 mm H40 1

4 285 mm H40 4

5 1330 mm H40 3

6 950 mm H40 1

7 170 mm H40 10

8 400 mm H40 10

9 320 mm H40 2

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:50 SHEET 1 OF 3

A4

WEIGHT:

Loomo Rig Mastergruppe 6
SOLIDWORKS Educational Product. For Instructional Use Only.

D.2 Loomo Parking Rig

165

 1
20

 4
70

 8
60

 950

 415

 400

 325 180

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:50 SHEET 2 OF 3

A4

WEIGHT:

Loomo Rig Mastergruppe 6
SOLIDWORKS Educational Product. For Instructional Use Only.

 660

 1
60

0

 170

 2
85

 2

85

 170 170

 130

 1
85

 1
20

 9

5

 10

 1
20

 9

5

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:50 SHEET 3 OF 3

A4

WEIGHT:

Loomo Rig Mastergruppe 6
SOLIDWORKS Educational Product. For Instructional Use Only.

 20,00

1,00 X 45° 1,00 X 45°

 204,5

 234,5

 16,0
 2

0,
0

 0
,5

0

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:2 SHEET 1 OF 1

S355J2
WEIGHT:

Axle Mastergruppe 6
SOLIDWORKS Educational Product. For Instructional Use Only.

D.3 Axle

168

 57,00
 20,00

BOLT CIRCLE 47,63
6X 5,00 THRU ALL

 30,00

 24,40

 5,50

0,50 X 45°

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 1

S355J2
WEIGHT:

Hub 1 Mastergruppe 6
A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

SOLIDWORKS Educational Product. For Instructional Use Only.

D.4 Outer Wheel Hub

169

 62,0

 20,0

 6,0

 6,0

28

,5
0

 24,40

34

,0
0

 5,00

 10,00

0,50 X 45°

M6 Machine Threads

58

,5
0

 20,00

 BOLT CIRCLE 47,63
 6 X 5,00 THRU ALL

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:2 SHEET 1 OF 1

S355J2

WEIGHT:

Hub 2 Mastergruppe 6
SOLIDWORKS Educational Product. For Instructional Use Only.

D.5 Inner Wheel Hub

170

 15

 9
0

 1
5

 75

 135°

 10

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 1

A4S355J2
WEIGHT:

Support Bracket
SOLIDWORKS Educational Product. For Instructional Use Only.

D.6 Support Bracket

171

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:2 SHEET 1 OF 3

A4
S355J2

WEIGHT:

Motor Mount
SOLIDWORKS Educational Product. For Instructional Use Only.

D.7 Motor Mount

172

 45,00

 5
0,

00

 20,00

 5,00

 R22,50

 30,00

 5,00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:2 SHEET 2 OF 3

A4
S355J2

WEIGHT:

Motor Mount
SOLIDWORKS Educational Product. For Instructional Use Only.

 90,00

 5
0,

00

 8,00

 1
5,

00

 20,00

 2
0,

00

 20,00

 5
,0

0

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:2 SHEET 3 OF 3

A4
S355J2

WEIGHT:

Motor Mount
SOLIDWORKS Educational Product. For Instructional Use Only.

 R4,00

 60,00

 1
00

,0
0

 20,00 20,00

 5
0,

00

 R4,10

 2
5,

00

 5,00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 1

A4S355J2
WEIGHT:

Motor Bracket
SOLIDWORKS Educational Product. For Instructional Use Only.

D.8 Motor Bracket

175

 200,00
 180,00

 40,00

 4
0,

00

 10,00

 1
0,

00

R 2,50

 8
0,

00

 1
5,

00

 40,00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:5 SHEET 1 OF 1

A4

WEIGHT:

Battery Mount
SOLIDWORKS Educational Product. For Instructional Use Only.

D.9 Battery Mount

176

 100,00

 46,00

 61,00

 5
5,

00

 5
5,

00

 5
5,

00

 9,50

 1
0,

00

 24,00

 4
9,

00

 8
7,

00
 4,20 46,00

 10,00

 1
85

,0
0

 5,00

6,

00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:2 SHEET 1 OF 2

A4PLA
WEIGHT:

Vesc Mount
SOLIDWORKS Educational Product. For Instructional Use Only.

D.10 VESC Mount

177

 40,00 40,00

 6
,0

0

 41,00

 4
6,

00

 6,00

 4
0,

00

 17,00

 8
,0

0
 2

4,
00

 17,00

 6,00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE 1:1 SHEET 2 OF 2

A4PLA
WEIGHT:

Vesc Mount
SOLIDWORKS Educational Product. For Instructional Use Only.

 121,00

 8,00

 6
,0

0
 5

5,
00

 2
4,

00

 2
3,

00

 17,00 87,00

 6,00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE: 1:1 SHEET 1 OF 3

A4PLA
WEIGHT:

Distributor Mount
SOLIDWORKS Educational Product. For Instructional Use Only.

D.11 Distributor Mount

179

 38,00

 5
0,

00

 1
0,

00

 8,50

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE: 1:1 SHEET 2 OF 3

A4PLA
WEIGHT:

Distributor Mount
SOLIDWORKS Educational Product. For Instructional Use Only.

 121,00
 40,00 40,00

 6
,0

0
 4

6,
00

 6
,0

0

 6,00

 4
0,

00

 17,00 87,00

 2
4,

00

 8
,0

0

 6,00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE: 1:1 SHEET 3 OF 3

A4PLA
WEIGHT:

Distributor Mount
SOLIDWORKS Educational Product. For Instructional Use Only.

ITEM NO. PART NUMBER DESCRIPTION QTY.

1 WireBox_bot 1
2 WireBox_top 1

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 1 OF 3

A4PLA
WEIGHT:

Wireconnection Cover
SOLIDWORKS Educational Product. For Instructional Use Only.

D.12 Wireconnection Cover

182

 70,00

 7
0,

00

 4
0,

00

 40,00

 15,00

 7
,5

0
 5

5,
00

 R5,00

 R3,00

 7,50

 7,50 40,00

 3
0,

00

 5,00

 5
,0

0
 5

,0
0

 35,00

 5,00 30,00 5,00

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 2 OF 3

A4PLA
WEIGHT:

Wireconnection Cover
SOLIDWORKS Educational Product. For Instructional Use Only.

 7
0,

00

 70,00

5,

00

 7
,5

0

 R3,00

 55,00 7,50

 5
5,

00

 3
,0

0

A A

B B

C C

D D

E E

F F

4

4

3

3

2

2

1

1

DRAWN

CHK'D

APPV'D

MFG

Q.A

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

FINISH: DEBURR AND
BREAK SHARP
EDGES

NAME SIGNATURE DATE

MATERIAL:

DO NOT SCALE DRAWING REVISION

TITLE:

DWG NO.

SCALE:1:1 SHEET 3 OF 3

A4PLA
WEIGHT:

Wireconnection Cover
SOLIDWORKS Educational Product. For Instructional Use Only.

E. Project Management - Gantt chart

185

Thesis P
roject Plan

 Period H
ighlight:

1
Actual (beyond plan)

 %
 Com

plete (beyond plan)

W
eek2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25

Loom
o CAD

2
1

2
1

100 %

Concept D
esign &

 Selection
2

2
2

2
100 %

Com
ponent &

 M
aterial Selection

2
3

2
4

100 %

D
evelop &

 Build Conccept
4

4
4

5
100 %

FEM
 - Analysis

6
2

6
2

100 %

M
ecanum

 W
heel Kinem

atics
2

2
2

4
100 %

M
otor Control

7
2

7
4

100 %

RO
S

13
9

13
9

100 %

Pow
er U

nit
11

2
11

2
100 %

Com
m

unication
10

3
10

4
100 %

Electrical D
esign

8
2

8
3

100 %

Low
 level rig control

10
4

10
4

100 %

AruCo m
arker vest follow

ing
16

6
16

6
100 %

Autonom
ity

18
4

18
4

100 %

Sim
ulation

14
8

14
8

100 %

W
riting

4
20

4
20

90 %

Video
21

3
21

3
90 %

D
eadline 15.05.2020: Thesis N

am
e

20
1

20
1

100 %

D
eadline 08.06.2020: H

and - in
24

1
24

1
0 %

PERCEN
T

CO
M

PLETE

Plan D
uration

Actual Start
%

 Com
plete

Select a period to highlight at right. A legend describing the charting follow
s.

ACTIVITY
PLAN

 START
PLAN

D

U
RATIO

N
ACTU

AL
START

ACTU
AL

D
U

RATIO
N

E.1 Gantt chart - Main

186

Thesis Project Plan - Phase 1 (M
echanical)

 Period H
ighlight:

1
Actual (beyond plan)

 %
 Com

plete (beyond plan)

W
eek2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17

Loom
o CA

D
2

1
2

1
100 %

Concept D
esign &

 Selection
2

2
2

3
100 %

M
echanical: Com

ponent &
 M

aterial
Selection

2
3

2
4

100 %

D
evelop &

 Build Concept
(M

echanical)
4

4
4

4
100 %

M
ecanum

 W
heel Kinem

atics
2

2
4

4
100 %

Locking M
echanism

6
2

6
3

100 %

M
echanical Calculations

3
3

3
5

100 %

Suspension
5

2
3

3
100 %

FEM
 - Rig analysis

6
2

6
2

100 %

Report chapter 2 - Concept deisgn
2

6
2

7
100 %

Report chapter 3 - M
echanical

deisgn
2

6
2

7
100 %

Internal D
eadline 16.02.2020

8
1

8
1

100 %

%
 Com

plete
Actual Start

Plan D
uration

PERCEN
T

CO
M

PLETE
ACTIVITY

PLAN
 START

PLAN

D
U

RATIO
N

A
CTU

AL
START

ACTU
AL

D
U

RA
TIO

N

E.2 Gantt chart - Mechanical

187

Thesis Project Plan - Phase 2 (Electrical)
Actual (beyond plan)

 %
 Com

plete (beyond plan)

W
eek2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17

D
esgin

8
1

9
1

100 %

W
iring

9
1

10
1

100 %

Com
ponent Selection

9
1

10
1

100 %

Pow
er consum

ption
9

1
10

1
100 %

M
otor &

 G
earing

9
2

10
2

100 %

Pow
er Supply

9
1

10
2

100 %

Torque Calculations
9

2
10

2
100 %

Electrical schem
atics

9
2

10
2

100 %

Report chapter 4 - Electrical design
8

4
9

6
100 %

Electrical Assem
bly

11
1

12
2

90 %

Cable M
angem

ent
11

1
12

2
90 %

Finalize Rig
8

4
8

6
90 %

Internal D
eadline 15.03.2020

11
1

12
1

100 %

 Period H
ighlight:

Plan D
uration

Actual Start
%

 Com
plete

PERCEN
T

CO
M

PLETE
ACTIVITY

PLAN
 START

PLAN

D
U

RATIO
N

A
CTU

AL
START

ACTU
AL

D
U

RA
TIO

N

E.3 Gantt chart - Electrical

188

Thesis Project P
lan - Phase 3 (Program

m
ing and rig control)

 Period H
ighlight:

1
Actual (beyond plan)

 %
 Com

plete (beyond plan)

W
eek2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

RO
S:

12
9

12
9

100 %

 Cam
era V

ision
16

4
16

4
100 %

 Basic setup
13

3
13

4
100 %

 Sim
ulation M

odel
14

5
14

6
100 %

 A
rU

co - Follow
 person

17
2

17
3

100 %

 O
bstacle A

viodance
17

3
17

3
100 %

Com
m

unication:
12

5
12

5
100 %

 U
A

RT
14

3
14

3
100 %

 CAN
-BU

S
12

3
12

3
100 %

Low
 level - control

12
4

12
4

100 %

Report chapter 5 - M
odelling

12
11

12
12

90 %

Report chapter 6 - Program
m

ing
12

11
12

12
90 %

Report chapter 7 - Results
18

6
18

5
90 %

Rapport M
isc

18
6

18
5

90 %

Internal D
eadline 18.05.2020

21
1

21
1

100 %

PERCEN
T

CO
M

PLETE

Plan D
uration

Actual Start
%

 Com
plete

Select a period to highlight at right. A legend describing the charting follow
s.

ACTIVITY
PLAN

 START
PLA

N

D
U

RATIO
N

ACTU
AL

START
ACTU

AL
D

U
RATIO

N

E.4 Gantt chart - Programming

189

F. ROS files

F.1 Leap Motion assistive actuation node

#include "ros/ros.h"
#include <geometry_msgs/Twist.h>
#include <tf/transform_datatypes.h>

#include "leap_motion/Human.h"
#include "leap_motion/Hand.h"
#include "leap_motion/Finger.h"
#include "leap_motion/Bone.h"
#include "leap_motion/Gesture.h"
#include "leap_motion/leapros.h"

#include <iostream>

#include "../inc/lmc_listener.h"
#include "Leap.h"

// INIt Variables
float speed = 0;
float rot = 0;
float in_min = 0.1;
float out_min = -0.1;
float in_max = 0.3;
float out_max = 0.1;

//This tutorial demonstrates simple receipt of messages over the ROS system.
void LeapPoseCallback(const leap_motion::Human::ConstPtr& LeapPosemsg)
{

//speed = LeapPosemsg->direction.y;
//rot = LeapPosemsg->direction.x;
//ROS_INFO("Number of hands [%i], Grab Strength [%f]", LeapPosemsg->
nr_of_hands, LeapPosemsg->right_hand.grab_strength);

//ROS_INFO("X: [%f], Y: [%f], Z: [%f],", LeapPosemsg->right_hand.direction.x
, LeapPosemsg->right_hand.direction.y, LeapPosemsg->right_hand.direction.
z);

//ROS_INFO("X: [%f], Y: [%f], Z: [%f]", LeapPosemsg->right_hand.palm_center.
x,LeapPosemsg->right_hand.palm_center.y,LeapPosemsg->right_hand.
palm_center.z);

speed = LeapPosemsg->right_hand.palm_center.y;
rot = -(LeapPosemsg->right_hand.direction.x);

// mapping speed from 0.1-0.3 to -0.1-0.1
speed = (speed-in_min)*(out_max-out_min)/(in_max-in_min) + out_min;
if (speed < -0.1){

speed = -0.1;
}

190

else if (speed > 0.1) {
speed = 0.1;

}
else {

speed = speed;
}

// Check if hand is interpreted in stop or drive state

if(LeapPosemsg->nr_of_hands >=1 && LeapPosemsg->right_hand.grab_strength
<=0.15){

speed = speed;
rot = rot;
}
else{

speed = 0;
rot = 0;

}

//ROS_INFO("speed: [%f]", speed);

}

int main(int argc, char **argv){
// Name of node
ros::init(argc, argv, "leap_controller");

ros::NodeHandle n;
//subscriber
ros::Subscriber sub = n.subscribe("/leap_motion/leap_filtered", 1000,
LeapPoseCallback);

//publisher
ros::Publisher pub = n.advertise<geometry_msgs::Twist>("cmd_vel", 1);
while(ros::ok()){
// Create Twist message

geometry_msgs::Twist twist;

twist.linear.x = (speed)*15/2;
twist.linear.y =0;
twist.linear.z = 0;

twist.angular.x = 0;
twist.angular.y = 0;
twist.angular.z = rot;
//ros::spin();
pub.publish(twist);
ros::spinOnce();

}

return 0;
}

F.2 Leap motion launch file

191

<launch>

<!-- Load the listener parameters and start the driver node -->
<rosparam file="$(find leap_motion)/config/listener_params.yaml" command="

load" />
<node pkg="leap_motion" type="leap_motion_driver_node" name="leap_driver"

output="screen" />

<!-- Load the filter parameters and start the filter node -->
<rosparam file="$(find leap_motion)/config/filter_params.yaml" command="

load" />
<node pkg="leap_motion" type="leap_motion_filter_node" name="leap_filter"

output="screen" />

<group ns="leap_motion">
<!-- Start the node that gets raw images from the Leap Motion controller

-->
<node pkg="leap_motion" type="leap_motion_camera_node" name="leap_camera

" output="screen"/>
</group>

</launch>

Listing F.1: Leap Motion Launch file

F.3 ArUco Tracking and Navigation goals

#! /usr/bin/python

import numpy as np
import rospy
import roslib
from std_msgs.msg import String, Int32, Float32, Float64
from fiducial_msgs.msg import FiducialTransform, FiducialTransformArray,

FiducialArray
from geometry_msgs.msg import Transform, Quaternion, Vector3
from nav_msgs.msg import Odometry
import math as m
import actionlib
from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal

transform = FiducialTransform()
name = String()

tx = 0, ty = 0, tz = 0, rz = 0

x0 = 0, y0 = 0, x1 = 0, y1 = 0, x2 = 0, y2 = 0, x3 = 0, y3 = 0

pose_x = 0, pose_y = 0

goal_x = 0, goal_y = 0, yaw = 0

markerLength = 0.2

def fiducial_callback(msg):

global img_seq, transform, tx, ty, tz, rz, name
transform = msg.transforms
name = msg.header.frame_id

192

for f in transform:
tx = f.transform.translation.x
ty = f.transform.translation.y
tz = f.transform.translation.z
rz = f.transform.rotation.z

def vertecies_callback(msg):

global x0, y0, x1, y1, x2, y2, x3, y3

fiducials = msg.fiducials
for n in fiducials:

x0 = n.x0
y0 = n.y0
x1 = n.x1
y1 = n.y1
x2 = n.x2
y2 = n.y2
x3 = n.x3
y3 = n.y3

def odom_callback(msg):
global pose_x, pose_y, yaw

pose_x = msg.pose.pose.position.x
pose_y = msg.pose.pose.position.y

yaw = msg.pose.pose.orientation.z

def movebase_client(target_x, target_y, target_r_z, target_r_w):

client = actionlib.SimpleActionClient(’move_base’,MoveBaseAction)

client.wait_for_server()

goal = MoveBaseGoal()
goal.target_pose.header.frame_id = "map"
goal.target_pose.header.stamp = rospy.Time.now()

goal.target_pose.pose.position.x = target_x
goal.target_pose.pose.position.y = target_y

goal.target_pose.pose.orientation.z = target_r_z
goal.target_pose.pose.orientation.w = target_r_w

client.send_goal(goal)
wait = client.wait_for_result()
if not wait:

rospy.logerr("Action server not available!")
rospy.signal_shutdown("Action server not available!")

else:
rospy.loginfo("Goal finished, send new one")
return

rospy.loginfo("Goal Sent with (1,0)")

def main():
rospy.sleep(.25)

Initialize node

193

rospy.init_node("aruco_2_navgoal", anonymous=True)
rospy.loginfo("node Initialize")
Subsribers
aruco_t_sub = rospy.Subscriber("fiducial_transforms",
FiducialTransformArray, fiducial_callback)
aruco_vetecies_sub = rospy.Subscriber("fiducial_vertices", FiducialArray,
vertecies_callback)
odom_pose_sub = rospy.Subscriber("odom", Odometry, odom_callback)

rate = rospy.Rate(10)

rospy.loginfo(">> calculating navigation goal")

if x0 != 0.0 and tx != 0.0:
#print(tx, ty, tz)
t = np.array([tx, ty, tz])
aruco_x = np.linalg.norm(t)
a_cx = ((x0 + x1 + x2 + x3)/4)

goal_r_z = m.sin(yaw/2)
goal_r_w = m.cos(yaw/2)
ratio = markerLength/(((x1 - x0)+(x2 - x3))/2)

aruco_y = (256 - a_cx) * ratio

angle = m.atan(aruco_y/aruco_x)

alpha = yaw + angle
if name == "frnt_cam_opt" and transform != []:

if alpha >= 0 and alpha < m.pi/2:
goal_x = pose_x - aruco_x*m.cos((alpha))
goal_y = pose_y - aruco_y*m.sin((alpha))

elif alpha > m.pi/2:
goal_x = pose_x + aruco_y*m.sin((alpha))
goal_y = pose_y - aruco_x*m.cos((alpha))

elif alpha < 0 and alpha > -m.pi/2:
goal_x = pose_x - aruco_x*m.cos((alpha))
goal_y = pose_y + aruco_y*m.sin((alpha))

elif alpha < -m.pi/2 :
goal_x = pose_x + aruco_x*m.cos((alpha))
goal_y = pose_y + aruco_y*m.sin((alpha))

else:
goal_x = 0
goal_y = 0

elif name == "rear_cam_opt" and transform != []:
if alpha >= 0 and alpha < m.pi/2:

goal_x = pose_x + aruco_x*m.cos((alpha))
goal_y = pose_y + aruco_y*m.sin((alpha))

elif alpha > m.pi/2:
goal_x = pose_x - aruco_y*m.sin((alpha))
goal_y = pose_y + aruco_x*m.cos((alpha))

elif alpha < 0 and alpha > -m.pi/2:
goal_x = pose_x + aruco_x*m.cos((alpha))
goal_y = pose_y - aruco_y*m.sin((alpha))

elif alpha < -m.pi/2 :
goal_x = pose_x - aruco_x*m.cos((alpha))
goal_y = pose_y - aruco_y*m.sin((alpha))

else:
goal_x = 0
goal_y = 0

elif name == "left_cam_opt" and transform != []:

194

if alpha >= 0 and alpha < m.pi/2:
goal_y = pose_y - aruco_x*m.cos((alpha))
goal_x = pose_x + aruco_y*m.sin((alpha))

elif alpha > m.pi/2:
goal_y = pose_y + aruco_y*m.sin((alpha))
goal_x = pose_x + aruco_x*m.cos((alpha))

elif alpha < 0 and alpha > -m.pi/2:
goal_y = pose_y - aruco_x*m.cos((alpha))
goal_x = pose_x - aruco_y*m.sin((alpha))

elif alpha < -m.pi/2 :
goal_y = pose_y + aruco_x*m.cos((alpha))
goal_x = pose_x - aruco_y*m.sin((alpha))

else:
goal_x = 0
goal_y = 0

elif name == "right_cam_opt" and transform != []:
if alpha >= 0 and alpha < m.pi/2:

goal_y = pose_y - aruco_x*m.cos((alpha))
goal_x = pose_x - aruco_y*m.sin((alpha))

elif alpha > m.pi/2:
goal_y = pose_y - aruco_y*m.sin((alpha))
goal_x = pose_x + aruco_x*m.cos((alpha))

elif alpha < 0 and alpha > -m.pi/2:
goal_y = pose_y + aruco_x*m.cos((alpha))
goal_x = pose_x - aruco_y*m.sin((alpha))

elif alpha < -m.pi/2 :
goal_y = pose_y + aruco_x*m.cos((alpha))
goal_x = pose_x + aruco_y*m.sin((alpha))

else:
goal_x = 0
goal_y = 0

else:
goal_x = 0
goal_y = 0

rospy.loginfo(">> Sending Navigation goal")
movebase_client(goal_x, goal_y, goal_r_z, goal_r_w)

else:

movebase_client(pose_x, pose_y, 0, 1)
print("No aruco detected")

if __name__ == "__main__":

while True:
main()

195

F.4 Aruco launch file

1 <!-- Run the aruco_detect node -->
2 <launch>
3 <!-- namespace for camera input -->
4 <arg name="camera" default="/frnt_cam_lnk/color"/>
5 <arg name="image" default="image_raw"/>
6 <arg name="transport" default="compressed"/>
7 <arg name="fiducial_len" default="0.20"/>
8 <arg name="dictionary" default="3"/>
9 <arg name="do_pose_estimation" default="true"/>

10 <arg name="ignore_fiducials" default="" />
11 <arg name="fiducial_len_override" default="" />
12

13 <node pkg="aruco_detect" name="aruco_detect_front"
14 type="aruco_detect" output="screen" respawn="false">
15 <param name="image_transport" value="$(arg transport)"/>
16 <param name="publish_images" value="true" />
17 <param name="fiducial_len" value="$(arg fiducial_len)"/>
18 <param name="dictionary" value="$(arg dictionary)"/>
19 <param name="do_pose_estimation" value="$(arg do_pose_estimation)"/>
20 <param name="ignore_fiducials" value="$(arg ignore_fiducials)"/>
21 <param name="fiducial_len_override" value="$(arg fiducial_len_override)"/>
22 <remap from="/camera/compressed"
23 to="$(arg camera)/$(arg image)/$(arg transport)"/>
24 <remap from="/camera_info" to="$(arg camera)/camera_info"/>
25 </node>
26 </launch>

196

F.5 Transform Configuration Tree

197

vi
ew

_f
ra

m
es

 R
es

ul
t

ba
se

_l
nk

ch
as

si
s_

ln
k

B
ro

ad
ca

st
er

: /
ro

bo
t_

st
at

e_
pu

bl
is

he
r

A
ve

ra
ge

 ra
te

: 1
00

00
.0

00
 H

z
M

os
t r

ec
en

t t
ra

ns
fo

rm
: 0

.0
00

 (
12

2.
92

7
se

c
ol

d)
B

uf
fe

r l
en

gt
h:

 0
.0

00
 s

ec

fr
nt

_c
am

_l
nk

B
ro

ad
ca

st
er

: /
ro

bo
t_

st
at

e_
pu

bl
is

he
r

A
ve

ra
ge

 ra
te

: 1
00

00
.0

00
 H

z
M

os
t r

ec
en

t t
ra

ns
fo

rm
: 0

.0
00

 (
12

2.
92

7
se

c
ol

d)
B

uf
fe

r l
en

gt
h:

 0
.0

00
 s

ec

la
se

r_
ln

k

B
ro

ad
ca

st
er

: /
ro

bo
t_

st
at

e_
pu

bl
is

he
r

A
ve

ra
ge

 ra
te

: 1
00

00
.0

00
 H

z
M

os
t r

ec
en

t t
ra

ns
fo

rm
: 0

.0
00

 (
12

2.
92

7
se

c
ol

d)
B

uf
fe

r l
en

gt
h:

 0
.0

00
 s

ec

le
ft_

ca
m

_l
nk

B
ro

ad
ca

st
er

: /
ro

bo
t_

st
at

e_
pu

bl
is

he
r

A
ve

ra
ge

 ra
te

: 1
00

00
.0

00
 H

z
M

os
t r

ec
en

t t
ra

ns
fo

rm
: 0

.0
00

 (
12

2.
92

7
se

c
ol

d)
B

uf
fe

r l
en

gt
h:

 0
.0

00
 s

ec

re
ar

_c
am

_l
nk

B
ro

ad
ca

st
er

: /
ro

bo
t_

st
at

e_
pu

bl
is

he
r

A
ve

ra
ge

 ra
te

: 1
00

00
.0

00
 H

z
M

os
t r

ec
en

t t
ra

ns
fo

rm
: 0

.0
00

 (
12

2.
92

7
se

c
ol

d)
B

uf
fe

r l
en

gt
h:

 0
.0

00
 s

ec

rig
ht

_c
am

_l
nk

B
ro

ad
ca

st
er

: /
ro

bo
t_

st
at

e_
pu

bl
is

he
r

A
ve

ra
ge

 ra
te

: 1
00

00
.0

00
 H

z
M

os
t r

ec
en

t t
ra

ns
fo

rm
: 0

.0
00

 (
12

2.
92

7
se

c
ol

d)
B

uf
fe

r l
en

gt
h:

 0
.0

00
 s

ec

flw
_l

nk

B
ro

ad
ca

st
er

: /
st

at
e_

pu
bl

is
he

r
A

ve
ra

ge
 ra

te
: 1

00
.4

07
 H

z
M

os
t r

ec
en

t t
ra

ns
fo

rm
: 1

22
.9

07
 (

0.
02

0
se

c
ol

d)
B

uf
fe

r l
en

gt
h:

 4
.9

20
 s

ec

fr
w

_l
nk

B
ro

ad
ca

st
er

: /
st

at
e_

pu
bl

is
he

r
A

ve
ra

ge
 ra

te
: 1

00
.4

07
 H

z
M

os
t r

ec
en

t t
ra

ns
fo

rm
: 1

22
.9

07
 (

0.
02

0
se

c
ol

d)
B

uf
fe

r l
en

gt
h:

 4
.9

20
 s

ec

rlw
_l

nk

B
ro

ad
ca

st
er

: /
st

at
e_

pu
bl

is
he

r
A

ve
ra

ge
 ra

te
: 1

00
.4

07
 H

z
M

os
t r

ec
en

t t
ra

ns
fo

rm
: 1

22
.9

07
 (

0.
02

0
se

c
ol

d)
B

uf
fe

r l
en

gt
h:

 4
.9

20
 s

ec

rr
w

_l
nk

B
ro

ad
ca

st
er

: /
st

at
e_

pu
bl

is
he

r
A

ve
ra

ge
 ra

te
: 1

00
.4

07
 H

z
M

os
t r

ec
en

t t
ra

ns
fo

rm
: 1

22
.9

07
 (

0.
02

0
se

c
ol

d)
B

uf
fe

r l
en

gt
h:

 4
.9

20
 s

ec

od
om

B
ro

ad
ca

st
er

: /
ga

ze
bo

A
ve

ra
ge

 ra
te

: 9
1.

11
2

H
z

M
os

t r
ec

en
t t

ra
ns

fo
rm

: 1
22

.9
16

 (
0.

01
1

se
c

ol
d)

B
uf

fe
r l

en
gt

h:
 4

.9
39

 s
ec

fr
nt

_c
am

_o
pt

B
ro

ad
ca

st
er

: /
ro

bo
t_

st
at

e_
pu

bl
is

he
r

A
ve

ra
ge

 ra
te

: 1
00

00
.0

00
 H

z
M

os
t r

ec
en

t t
ra

ns
fo

rm
: 0

.0
00

 (
12

2.
92

7
se

c
ol

d)
B

uf
fe

r l
en

gt
h:

 0
.0

00
 s

ec

fr
nt

_c
am

_p
2l

B
ro

ad
ca

st
er

: /
ro

bo
t_

st
at

e_
pu

bl
is

he
r

A
ve

ra
ge

 ra
te

: 1
00

00
.0

00
 H

z
M

os
t r

ec
en

t t
ra

ns
fo

rm
: 0

.0
00

 (
12

2.
92

7
se

c
ol

d)
B

uf
fe

r l
en

gt
h:

 0
.0

00
 s

ec

le
ft_

ca
m

_o
pt

B
ro

ad
ca

st
er

: /
ro

bo
t_

st
at

e_
pu

bl
is

he
r

A
ve

ra
ge

 ra
te

: 1
00

00
.0

00
 H

z
M

os
t r

ec
en

t t
ra

ns
fo

rm
: 0

.0
00

 (
12

2.
92

7
se

c
ol

d)
B

uf
fe

r l
en

gt
h:

 0
.0

00
 s

ec

le
ft_

ca
m

_p
2l

B
ro

ad
ca

st
er

: /
ro

bo
t_

st
at

e_
pu

bl
is

he
r

A
ve

ra
ge

 ra
te

: 1
00

00
.0

00
 H

z
M

os
t r

ec
en

t t
ra

ns
fo

rm
: 0

.0
00

 (
12

2.
92

7
se

c
ol

d)
B

uf
fe

r l
en

gt
h:

 0
.0

00
 s

ec

re
ar

_c
am

_o
pt

B
ro

ad
ca

st
er

: /
ro

bo
t_

st
at

e_
pu

bl
is

he
r

A
ve

ra
ge

 ra
te

: 1
00

00
.0

00
 H

z
M

os
t r

ec
en

t t
ra

ns
fo

rm
: 0

.0
00

 (
12

2.
92

7
se

c
ol

d)
B

uf
fe

r l
en

gt
h:

 0
.0

00
 s

ec

re
ar

_c
am

_p
2l

B
ro

ad
ca

st
er

: /
ro

bo
t_

st
at

e_
pu

bl
is

he
r

A
ve

ra
ge

 ra
te

: 1
00

00
.0

00
 H

z
M

os
t r

ec
en

t t
ra

ns
fo

rm
: 0

.0
00

 (
12

2.
92

7
se

c
ol

d)
B

uf
fe

r l
en

gt
h:

 0
.0

00
 s

ec

rig
ht

_c
am

_o
ptB

ro
ad

ca
st

er
: /

ro
bo

t_
st

at
e_

pu
bl

is
he

r
A

ve
ra

ge
 ra

te
: 1

00
00

.0
00

 H
z

M
os

t r
ec

en
t t

ra
ns

fo
rm

: 0
.0

00
 (

12
2.

92
7

se
c

ol
d)

B
uf

fe
r l

en
gt

h:
 0

.0
00

 s
ec

rig
ht

_c
am

_p
2lB

ro
ad

ca
st

er
: /

ro
bo

t_
st

at
e_

pu
bl

is
he

r
A

ve
ra

ge
 ra

te
: 1

00
00

.0
00

 H
z

M
os

t r
ec

en
t t

ra
ns

fo
rm

: 0
.0

00
 (

12
2.

92
7

se
c

ol
d)

B
uf

fe
r l

en
gt

h:
 0

.0
00

 s
ec

m
ap

B
ro

ad
ca

st
er

: /
am

cl
A

ve
ra

ge
 ra

te
: 1

0.
82

7
H

z
M

os
t r

ec
en

t t
ra

ns
fo

rm
: 1

23
.8

39
 (

-0
.9

12
 s

ec
 o

ld
)

B
uf

fe
r l

en
gt

h:
 4

.8
03

 s
ec

R
ec

or
de

d
at

 ti
m

e:
 1

22
.9

27

F.6 tf-tree

198

F.7 ROS graph - node structure

199

G. Matlab Calculations

G.1 Shaft Analysis (Force diagrams)

1 clear all;
2 close all;
3 %Lengths:
4 L = (204.5-31)*10^(-3); %m
5 a = (31/2+15+5)*10^(-3); %m
6 r = (203/2)*10^(-3); %m
7 %Loads:
8 F_w = 1000; %N
9 F_t = 250; %N

10 F_a = 250;
11 g = 9.81; %m/s^2
12 %Reaction Forces:
13 R_bx = F_t/2;
14 R_ax = F_t-R_bx;
15 R_ay = F_a;
16 R_bz = (a*F_w/2+(L-a)*F_w/2+r*F_a)/L;
17 R_az = F_w/2+F_w/2-R_bz;
18 R_ay = F_a;
19 %Counters:
20 counter = 1;
21 x = 0;
22 dx = 1e-4;
23 x_max = 116.76e-3;
24 while x<=L
25 if x==0
26 M_xy = 0;
27 V_xy = R_ax;
28 N_xy = R_ay;
29 M_zy = 0;
30 V_zy = R_az;
31 N_zy = R_ay;
32 elseif x>0 && x<a
33 M_xy = x*R_ax;
34 V_xy = -R_ax;
35 N_xy = R_ay;
36 M_zy = x*R_az;
37 V_zy = -R_az;
38 N_zy = R_ay;
39 elseif x>=a && x<(L-a)
40 M_xy = x*R_ax-(x-a)*F_t/2;
41 V_xy = -R_ax+F_t/2;
42 N_xy = R_ay-F_a/2;
43 M_zy = x*R_az-(x-a)*F_w/2+r*F_a/2;
44 V_zy = -R_az+F_w/2;
45 N_zy = R_ay-F_a/2;
46 elseif x>=(L-a) && x<L
47 M_xy = x*R_ax-(x-a)*F_t/2-(x-a-(L-2*a))*F_t/2;
48 V_xy = -R_ax+F_t/2+F_t/2;
49 N_xy = R_ay-F_a/2-F_a/2;
50 M_zy = x*R_az - (x-a)*F_w/2 - (x-a-(L-2*a))*F_w/2 + r*F_a;
51 V_zy = -R_az+F_w/2+F_w/2;
52 N_zy = -F_a+R_ay;

200

53 end
54

55 M_xy_plot(counter)= M_xy;
56 V_xy_plot(counter)= V_xy;
57 N_xy_plot(counter)= N_xy;
58

59 M_zy_plot(counter)= M_zy;
60 V_zy_plot(counter)= V_zy;
61 N_zy_plot(counter)= N_zy;
62

63 x_plot(counter) = x;
64 counter = counter + 1;
65 x = x+dx;
66 end
67

68 figure(’Renderer’, ’painters’, ’Position’, [500 200 623.62204724 400])
69 subplot(3,1,1)
70 plot(x_plot*1000,M_xy_plot,’linewidth’,1.5)
71 xlim([0 L*1000])
72 title(’Bending Moment’)
73 xlabel(’Shaft Length [mm]’)
74 ylabel(’Moment [Nm]’)
75 subplot(3,1,2)
76 plot(x_plot*1000,V_xy_plot,’linewidth’,1.5)
77 xlim([0 L*1000])
78 title(’Shear Force’)
79 xlabel(’Shaft Length [mm]’)
80 ylabel(’Force [N]’)
81 subplot(3,1,3)
82 plot(x_plot*1000,N_xy_plot,’linewidth’,1.5)
83 xlim([0 L*1000])
84 title(’Normal Force’)
85 xlabel(’Shaft Length [mm]’)
86 ylabel(’Force [N]’)
87

88 figure(’Renderer’, ’painters’, ’Position’, [500 200 623.62204724 400])
89 subplot(3,1,1)
90 plot(x_plot*1000,M_zy_plot,’linewidth’,1.5)
91 xlim([0 L*1000])
92 title(’Bending Moment’)
93 xlabel(’Shaft Length [mm]’)
94 ylabel(’Moment [Nm]’)
95 subplot(3,1,2)
96 plot(x_plot*1000,-V_zy_plot,’linewidth’,1.5)
97 xlim([0 L*1000])
98 title(’Shear Force’)
99 xlabel(’Shaft Length [mm]’)

100 ylabel(’Force [N]’)
101 subplot(3,1,3)
102 plot(x_plot*1000,N_zy_plot,’linewidth’,1.5)
103 xlim([0 L*1000])
104 title(’Normal Force’)
105 xlabel(’Shaft Length [mm]’)
106 ylabel(’Force [N]’)

201

G.2 Deflection

1 clear all;
2 close all;
3

4 %Forces:
5 F_w = 1000; %N
6 F_t = 250; %N
7 F_a = 250; %N
8 M = 25.3750; %Nm
9 g = 9.81; %m/s^2

10 %Lengths:
11 L = (204.5-31)*10^(-3); %m
12 a = (31/2+15+5)*10^(-3); %m
13 r = (203/2)*10^(-3); %m
14 d = 20e-3; %m
15 %Properties:
16 E = 200*10^9; %Pa
17 I = (pi/64)*(d^4);
18 %Counters:
19 counter = 1;
20 x = 0;
21 dx = 1e-3;
22 x_max = 116.76e-3;
23

24 while x<=L
25 a1 = a;
26 b1 = L-a;
27 a2 = b1;
28 b2 = a;
29 if x>=0 && x<a1
30 v_load_xy = -(F_t/2*x)/(6*E*I)*(3*a*L-3*a^2-x^2);
31 v_load_zy = -(F_w/2*x)/(6*E*I)*(3*a*L-3*a^2-x^2);
32 v_M_a1 = (M*x)/(6*L*E*I)*(6*a1*L-3*a1^2-2*L^2-x^2);
33 else
34 v_load_xy = -(F_t/2*a)/(6*E*I)*(3*L*x-3*x^2-a^2);
35 v_load_zy = -(F_w/2*a)/(6*E*I)*(3*L*x-3*x^2-a^2);
36 v_M_a1 = -(M*(L-x))/(6*L*E*I)*(6*b1*L-3*b1^2-2*L^2-(L-x)^2);
37 end
38 if x>=0 && x<a2
39 v_M_a2 = (M*x)/(6*L*E*I)*(6*a2*L-3*a2^2-2*L^2-x^2);
40 else
41 v_M_a2 = -(M*(L-x))/(6*L*E*I)*(6*b2*L-3*b2^2-2*L^2-(L-x)^2);
42 end
43 v_xy = v_load_xy;
44 v_zy = v_load_zy + v_M_a1 + v_M_a2;
45 v = sqrt(v_xy^2+v_zy^2);
46 v_plot(counter)= v;
47 x_plot(counter) = x;
48 counter = counter + 1;
49 x = x+dx;
50 end
51

52 figure(’Renderer’, ’painters’, ’Position’, [500 300 623.62204724 150])
53 plot(x_plot*1000,-v_plot*1000,’linewidth’,1.5)
54 title(’Deflection’)
55 xlabel(’Shaft Length [mm]’)
56 ylabel(’Deflection [mm]’)
57 xlim([0 L*1000])

202

G.3 Fatigue - Smith Diagram

1 close all; clear; clc;
2

3 d = 20; % mm
4 N = 250; % N
5 M_xy = 4.44*1000; % Nmm
6 M_zy = 25.23*1000; % Nmm
7 Mb = sqrt(M_xy^2+M_zy^2); % Nmm
8

9 y = d/2; % mm
10 I = pi*d^4/64; % mm^4
11 A = pi*(d/2)^2;
12 K_fb = 2.6; % -
13 K = 0.88; % -
14 K_red = K*K_fb; % -
15

16 sigma_b = Mb*y/I; % N/mm^2
17 sigma_a = sigma_b;% N/mm^2
18 sigma_ea = K_red*sigma_a; % N/mm^2
19 sigma_N = N/A;
20 sigma_m = sigma_N;
21 sigma_em = sigma_m;
22

23 sigma_f = 470; %N/mm^2
24 sigma_Ab0 = 280;
25 sigma_Ab = 225;
26 b1 = 0.9;
27 b2 = 0.92;
28 sigma_Ab0_red = sigma_Ab0*b1*b2;
29 sigma_Ab_red = sigma_Ab*b1*b2;
30

31 %Creating reduced valus corresponding to shaft
32 % slope_1 = (2*sigma_Ab_red - sigma_Ab0_red)/(sigma_Ab-0);
33 % slope_2 = (sigma_f-2*sigma_Ab_red)/(sigma_f-sigma_Ab);
34

35 slope_1 = (2*sigma_Ab_red - sigma_Ab0_red)/(sigma_Ab_red-0);
36 slope_2 = (sigma_f-2*sigma_Ab_red)/(sigma_f-sigma_Ab);
37

38 x = linspace(0,sigma_f,1000)’;
39 sigma_shaft = zeros(length(x),1);
40

41 for i = 1:length(x)
42 if x(i) < sigma_Ab
43 sigma_shaft(i) = slope_1*x(i)+sigma_Ab0_red;
44 else
45 % sigma_shaft(i) = slope_2*(x(i)-sigma_Ab0_red)+2*sigma_Ab_red;
46 sigma_shaft(i) = slope_2*x(i)+2*sigma_Ab0_red - (462.2 - 401.8);
47 end
48 end
49 %Creating Smith-diagram for data of 10mm specimen
50 plot([0,sigma_f],[0,sigma_f],"k")
51 hold on
52 grid on
53 plot([0,sigma_Ab,sigma_f],[sigma_Ab0,2*sigma_Ab,sigma_f],"k")
54 %ploting reduced diagram ontop
55 % plot(x,sigma_shaft);
56 %plot([sigma_em,sigma_em],[0,sigma_f])
57 plot([0,sigma_Ab,sigma_f],[sigma_Ab0_red,401.8,sigma_f],"r")
58

203

59 sigma_AN_red = sigma_shaft(find(x<sigma_em, 1, ’last’));
60 SF = sigma_AN_red/sigma_ea;

204

G.4 Center of Mass Calculations

1 close all;
2 clear;
3 clc;
4

5 %% Center of Mass calculation
6

7 M_loomo = 19.5; %kg
8 M_Rig = 80; % kg
9 M_Components = 50; % kg - Wheels, battery, bearings, motors, gearboxes, etc

10 M_Person = 80; % Weight of average person
11

12 X_1 = 120 + 40 + 40 + 125; % mm - distance to COM of lowest row stored wtih
loomo

13 X_2 = 470 + 40 + 40 + 125; % mm - distance to COM of middel row with loomo
14 X_3 = 870 + 40 + 40 + 125; % mm - distance to COM of heigest store row with

loomo;
15

16 W_loomo = 170+20+20; % mm - distance from COM loomo to center of rig
horizontally

17 W_loomo_full = 0;
18 W_Rig = 0;
19 W_Comp = 0;
20 W_Person = 740/2;
21 d_Wheel = 203;
22 x_bearing = 33.3;
23 X_G = d_Wheel/2 + x_bearing;
24 X_rig = 365 + X_G;
25 X_Comp = X_G + 100;
26 X_Person = 1800/2 + X_G; % Person average height 180 cm
27

28 % Distance to COM of oneside with looms above ground
29 X_loomo_COM = (2*M_loomo*(X_1 + X_G) + M_loomo*(X_2+ X_G) + 2*M_loomo*(X_3+

X_G))/(M_loomo*5);
30

31 % Distance to COM of full rig with looms above ground
32 X_loomo_COM_full = (4*M_loomo*(X_1 + X_G) + 2*M_loomo*(X_2+ X_G) + 4*M_loomo*(

X_3+ X_G))/(M_loomo*10);
33

34

35 %% Only Two on top at one side
36

37 X_COM_twotop_H = (X_3*2*M_loomo + X_rig*M_Rig + X_Comp*M_Components)/(M_loomo

*2 + M_Rig + M_Components);
38

39 X_COM_twotop_W = (W_loomo*2*M_loomo + W_Rig*M_Rig + W_Comp*M_Components)/(
M_loomo*2 + M_Rig + M_Components);

40

41 B_twotop = 560 - 2 * X_COM_twotop_W;
42

43 theta_twotop = atan(B_twotop/(2*X_COM_twotop_H))*(180/pi);
44

45 %% One side
46 X_COM_oneside_H = (X_loomo_COM*5*M_loomo + X_rig*M_Rig + X_Comp*M_Components)

/(M_loomo*5 + M_Rig + M_Components);
47

48 X_COM_oneside_W = (W_loomo*5*M_loomo + W_Rig*M_Rig + W_Comp*M_Components)/(
M_loomo*5 + M_Rig + M_Components);

49

205

50 B_oneside = 560 - 2 * X_COM_oneside_W;
51

52 theta_oneside = atan(B_oneside/(2*X_COM_oneside_H))*(180/pi);
53

54

55 %% Full top 4
56 X_COM_full4_H = (X_3*4*M_loomo + X_rig*M_Rig + X_Comp*M_Components)/(M_loomo*4

+ M_Rig + M_Components);
57

58 X_COM_full4_W = (W_loomo_full*4*M_loomo + W_Rig*M_Rig + W_Comp*M_Components)/(
M_loomo*4 + M_Rig + M_Components);

59

60 B_full4 = 560 - 2 * X_COM_full4_W;
61

62 theta_full4 = atan(B_full4/(2*X_COM_full4_H))*(180/pi);
63

64

65 %% Full
66 X_COM_full_H = (X_loomo_COM*10*M_loomo + X_rig*M_Rig + X_Comp*M_Components)/(

M_loomo*10 + M_Rig + M_Components);
67

68 X_COM_full_W = (W_loomo_full*10*M_loomo + W_Rig*M_Rig + W_Comp*M_Components)/(
M_loomo*10 + M_Rig + M_Components);

69

70 B_full = 560 - 2 * X_COM_full_W;
71

72 theta_full = atan(B_full/(2*X_COM_full_H))*(180/pi);
73

74 %% One side with person
75 X_COM_oneside_H_wp = (X_loomo_COM*5*M_loomo + X_rig*M_Rig + X_Comp*

M_Components + X_Person*M_Person)/(M_loomo*5 + M_Rig + M_Components +
M_Person);

76

77 X_COM_oneside_W_wp = (W_loomo*5*M_loomo + W_Rig*M_Rig + W_Comp*M_Components +
W_Person*M_Person)/(M_loomo*5 + M_Rig + M_Components + M_Person);

78

79 B_oneside_wp = 560 - 2 * X_C;
80 OM_oneside_W_wp;
81

82 theta_oneside_wp = atan(B_oneside_wp/(2*X_COM_oneside_H_wp))*(180/pi);
83

84 %% Full with person stepping on one side
85 X_COM_full_H_wp = (X_loomo_COM*10*M_loomo + X_rig*M_Rig + X_Comp*M_Components

+ X_Person*M_Person)/(M_loomo*10 + M_Rig + M_Components + M_Person);
86

87 X_COM_full_W_wp = (W_loomo_full*10*M_loomo + W_Rig*M_Rig + W_Comp*M_Components
+ W_Person*M_Person)/(M_loomo*10 + M_Rig + M_Components + M_Person);

88

89 B_full_wp = 560 - 2 * X_COM_full_W_wp;
90

91 theta_full_wp = atan(B_full_wp/(2*X_COM_full_H_wp))*(180/pi);

206

G.5 Kinematics verification

1 close all; clear; clc;
2

3 l = 0.7;
4 h = 0.635;
5 w = 0.285;
6 r = 0.203/2;
7

8 A = [1, 1, w+h;
9 -1, 1, -w-h;

10 1, 1, -w-h;
11 -1, 1, w+h];
12

13 A_inv = 1/4*[1, -1, 1, -1;
14 1, 1, 1, 1;
15 1/(w+h),-1/(w+h),-1/(w+h),1/(w+h)];
16

17

18 dt = 0.01;
19 t = 0;
20 t_end = 10;
21 x0 = 0;
22 y0 = 0;
23 theta0 = 0;
24 x=x0; x_f =x0;
25 y=y0; y_f= y0;
26 theta=theta0;
27 theta_f=theta0;
28

29 % Initializing arrays ----------------------------------- %
30 B = zeros(length(t:dt:t_end),3);
31 C = B;
32 x_dot = zeros(1,length(t:dt:t_end)); t = x_dot;
33 y_dot = x_dot; theta_dot = x_dot; states=x_dot;
34 x_dot_f = x_dot; y_dot_f = x_dot; theta_dot_f = x_dot;
35 x_f = x_dot; y_f = x_dot; theta_f = x_dot;
36 % --- %
37

38

39 for i = 1:t_end/dt+1
40 if i <=25
41 x_dot(i) = 1;
42 y_dot(i) = 0;
43 theta_dot(i) = 0;
44 elseif(i<= 50)
45 x_dot(i) = 0;
46 y_dot(i) = 0.5;
47 theta_dot(i) = 0.5;
48 else
49 x_dot(i) = 0;
50 y_dot(i) = 1;
51 theta_dot(i) = 0;
52 end
53 t(i+1) = t(i)+dt;
54 B(i,1) = x_dot(i);
55 B(i,2) = y_dot(i);
56 B(i,3) = theta_dot(i);
57

58 C(i,1) = (-1/r*(A(1,1:3)*[x_dot(i); y_dot(i); theta_dot(i)]))’;

207

59 C(i,2) = (-1/r*(A(2,1:3)*[x_dot(i); y_dot(i); theta_dot(i)]))’;
60 C(i,3) = (-1/r*(A(3,1:3)*[x_dot(i); y_dot(i); theta_dot(i)]))’;
61 C(i,4) = (-1/r*(A(4,1:3)*[x_dot(i); y_dot(i); theta_dot(i)]))’;
62

63 x_dot_f(i) = -r*A_inv(1,1:4)*C(i,1:4)’;
64 y_dot_f(i) = -r*A_inv(2,1:4)*C(i,1:4)’;
65 theta_dot_f(i) = -r*A_inv(3,1:4)*C(i,1:4)’;
66 states(i,1) =x_dot_f(i);
67 states(i,2) =y_dot_f(i);
68 states(i,3) =theta_dot_f(i);
69

70 x(i+1) = x(i) + x_dot(i)*dt;
71 y(i+1) = y(i) + y_dot(i)*dt;
72 theta(i+1) = theta(i) + theta_dot(i)*dt;
73

74 x_f(i+1) = x_f(i) + x_dot_f(i)*dt;
75 y_f(i+1) = y_f(i) + y_dot_f(i)*dt;
76 theta_f(i+1) = theta_f(i) + theta_dot_f(i)*dt;
77

78 end
79 % Deleting last array number to make all dimensions correspond. 1x1002 -> 1

x1001
80 t(end)= [];
81 x(end) = []; x_f(end) = [];
82 y(end) = []; y_f(end) = [];
83 theta(end)=[]; theta_f(end)=[];
84

85 error_x = round(mean(x-x_f),5);
86 error_y = round(mean(y-y_f),5);
87 error_theta = round(mean(theta-theta_f),5);
88

89

90 figure(1)
91 plot(t,C)
92

93 figure(2)
94 plot(t,states)

208

H. Megatrond workspace setup
When the repository has been downloaded, it has to be builded as a katkin_workspace with
the catkin_make command.

Then, two files has to be given executable properties:
Make executable: chmod +x

• /home/usr/megatrond_ws/src/megatrond_control/gazebo_control/gazebo_control.py

• /home/usr/megatrond_ws/src/ros_control/controller_manager/scripts/spawner

Changing the file directory:

• replace usr with your username

• replace megatrond_ws

Most likely the map file path has to be changed.

Go to:

• /home/usr/megatrond_ws/src/megatrond_navigation

Change image path to:

• /home/usr/megatrond_ws/src/megatrond_description/world/uia_section_v2

A list of the main launch files are listed:

Start Gazebo model

• roslaunch megatrond_description main.launch

Start Rviz (requires that main.launch is started to get information)

• roslaunch megatrond_navigation rviz_amcl.launch

Starging Leap motion assistive acuation

• roslaunch megatrond_description main.launch

• roslaunch leap_motion command_leap.launch

• rosrun leap_motion leap_read

209

I. Installing Arduino and Teensyduino on
ARM architecture
To enable the UART communication between the Teensy 3.6 and Jetson Xavier, multiple
software are required. These are teensydunio,the Arduino IDE for Linux with ARM archi-
tecture and the rosserial package.

First, the Arduino IDE is installed onto the Jetson Xavier. It is going to be installed using
a tarball. This is done by downloading the Arduino IDE version of choice, here version
1.8.12 of the 64bit ARM is used. Then change to the directory where the tarball has been
downloaded and run the following line in listing (I.1) when in the directory. Where, for this
case, FILENAME is arduino-1.8.12-linuxaarch64.tar.xz
tar xvf FILENAME

Listing I.1: Tarball execution

This will begin to extract the compressed folder. When it is done extracting, change directory
to the created Arduino version folder. Whilst inside the folder run the following line and the
application will install.
sudo ./install.sh

Next, teensyduino for linux has to be installed in order to compile the teensy 3.6 with
the Arduino IDE. Download the Linux ARM64 file from: (Here, and select Linux Installer
(AARCH64/Jetson TX2)). If the installer does not work, try the one from the following
link: (installer). Then, run the following lines to execute the exetutable-file. The first line
is to set the executable bit if the installer cannot be launched with the second line (Source
on changing to executable files)

sudo chmod +x ./TeensyduinoInstall.linuxaarch64
sudo ./TeensyduinoInstall.linuxaarch64

Then, an installer wizard should pop up. Simply follow its instructions. As the final step
the teensy 3.6 has to be allowed to use the usb serial. To achieve this create the file with
.rule-extension containing the following [92].

UDEV Rules for Teensy boards, http://www.pjrc.com/teensy/
ATTRS{idVendor}=="16c0", ATTRS{idProduct}=="04[789B]?", ENV{

ID_MM_DEVICE_IGNORE}="1", ENV{ID_MM_PORT_IGNORE}="1"
ATTRS{idVendor}=="16c0", ATTRS{idProduct}=="04[789A]?", ENV{MTP_NO_PROBE}="1"
SUBSYSTEMS=="usb", ATTRS{idVendor}=="16c0", ATTRS{idProduct}=="04[789ABCD]?",

MODE:="0666"
KERNEL=="ttyACM*", ATTRS{idVendor}=="16c0", ATTRS{idProduct}=="04[789B]?",

MODE:="0666"

210

https://www.pjrc.com/teensy/td_download.html
https://www.pjrc.com/teensy/td_download.html
https://forum.pjrc.com/threads/59996-Teensyduino-1-52-Beta-1?highlight=arm64
https://askubuntu.com/questions/250426/how-do-i-run-a-executable-application-x-executable-file
https://askubuntu.com/questions/250426/how-do-i-run-a-executable-application-x-executable-file

Change the terminal directory to where the .rule-file was created and execute the following
line in order to install the rules into the apprioprirate folder. Finally, as the .rule-file men-
tions, physically disconnect and reconnect the teensy, which now should be fully funcational
with the Arduino IDE on the Jetson Xavier.

sudo cp 49-teensy.rules /etc/udev/rules.d/49-teensy.rules

211

	Introduction
	Background
	Objective
	Report Structure
	System Overview

	Product Development
	Project Management
	Current Rack
	Concepts
	Concept Evaluation
	Concept Details

	Mechanical Design
	Material Selection
	Mecanum Wheels
	Force Analysis

	Shaft
	Bearings
	Set Screws
	Weld
	Stability of Loomo Rig

	Electrical Design
	Motor and Gear Sizing
	Torque Requirement From Tests
	Motor Torque
	Drivetrain

	Electronic Speed controller
	Hardware
	System Overall Power Consumption
	Power Supply
	Wiring

	Modeling
	Mecanum Wheel Kinematics
	Inverse kinematics
	Forward Kinematics

	Robot Operating Systems
	Simulation Model
	Robot Model
	World Model

	System Architecture
	Hardware Communication
	CAN BUS Communication
	Writing and Reading CAN Messages
	UART Communication
	Publishing and Subscribing over Teensy

	Manual Control
	Visual Perception
	Camera Placements
	Azure Kinect Depth Camera
	Depth Image to Laser Scan
	Merging Laser Scans

	Transform Configuration

	Localization and Navigation
	Probabilistic Localization
	Occupancy Grid
	Adaptive Monte Carlo localization
	Motion Model
	Observation Model

	Path Planning
	Costmap
	Gloabl Planner - navfn
	Local Planner - DWA
	Recover Behaviors

	ArUco Tracking
	Assistive Actuation

	Results
	Discussion
	Improvements
	Safety
	Traction

	Further Work
	Physical Odomoetry Model
	Conversion from Virtual to Physical Model
	Initial Position
	Mode Settings
	Battery Pack
	Mounting of Cameras

	Conclusion
	Appendices
	Teensy 3.6 Scripts
	Loomo Parking Rig Teensy Program
	Teensy and Xavier two way communication
	Publish data from CAN to ROS
	Subscribe data from ROS to CAN
	Publish multi array from Teensy to Xavier (ROS)
	Subsrcibe multi array from Xavier (ROS) to Teensy
	Hand-Controller only Program
	Write CAN message
	Reading CAN messages

	Inverse kinematic simplifications
	Data Sheets
	Jetson Xavier Development kit GPIO pinout
	S355 material properties - EN 10025

	Technical drawings
	Mecanum Wheels
	Loomo Parking Rig
	Axle
	Outer Wheel Hub
	Inner Wheel Hub
	Support Bracket
	Motor Mount
	Motor Bracket
	Battery Mount
	VESC Mount
	Distributor Mount
	Wireconnection Cover

	Project Management - Gantt chart
	Gantt chart - Main
	Gantt chart - Mechanical
	Gantt chart - Electrical
	Gantt chart - Programming

	ROS files
	Leap Motion assistive actuation node
	Leap motion launch file
	ArUco Tracking and Navigation goals
	Aruco launch file
	Transform Configuration Tree
	tf-tree
	ROS graph - node structure

	Matlab Calculations
	Shaft Analysis (Force diagrams)
	Deflection
	Fatigue - Smith Diagram
	Center of Mass Calculations
	Kinematics verification

	Megatrond workspace setup
	Installing Arduino and Teensyduino on ARM architecture

