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Abstract. The stochastic nature of wind poses challenges in the large scale integration of wind 

energy with the grid. Wind characteristics at a site may significantly vary with time, which will 

be reflected on the wind power production. Understanding and managing such variations could 

be challenging for wind farm owners, energy traders and grid operators. In this work, we propose 

models based on support vector regression (SVR) to downscale the speed and direction of wind 

at a specific site using both historical observed measurements and numerical weather predictions 

(NWP). Several meteorological variables, considered to have potential influence on the wind, 

were used in the feature selection for the models. The models are then optimally developed and 

used to predict the wind speed and direction at the site considered. In view of the two of Nord 
pool`s energy markets namely the intraday and day ahead markets, approaches for short-term 

forecasts (t + 1 hours) and medium-term recursive forecasts (t + 36 hours) were developed. The 

proposed SVR models are found to be accurate and efficient in correcting the NWP information 

and predicting the wind speed and direction for the short-term forecasts. For medium-term 

forecasts, the developed models could outperform the NWP, especially for the wind speed 

predictions. 

1.  Introduction 

Wind is considered as one of the important renewable energy resources, which is inexhaustible, clean 

and economically competitive. As a result, wind energy has gained significant focus around the world 
today. For example, with the addition of 51.3 GW in 2018, the total installed wind capacity has reached 

591 GW. Global Wind Energy Council’s (GWEC) forecasts there would be new installations around 55 

GW, each year until 2023. Therefore, wind is one of the fastest growing energy sources for electricity 

generation, which will play a significant role in the future of clean energy [1]. This development 
introduces a major challenge in large scale integration of wind generated electricity into the grids due 

to the stochastic nature of wind. Speed and direction of wind at a given site may significantly vary even 

within short intervals of time, these fluctuations in the velocity will be reflected in the wind power 
production in a magnified scale. Understanding and managing such a fluctuating resource is a real 

challenge for wind farm owners, energy traders and grid operators. 

In many countries, wind power producers are required by law to participate in electricity markets in 
the same way as conventional power generators. A good example is the Nordic power market (Nord 

Pool), which includes the day-ahead market ‘Elspot’ and the continuous intraday market ’Elbas’. In 

‘Elspot’, the producers and consumers submit bids and offers covering every hour of the following day, 

which is cleared before 12 noon. Whereas in ’Elbas’, the trade is settled individually between two parties 
which closes one hour prior to the delivery hour. The balancing market regulates production or 
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consumption up or down depending to keep the instantaneous balance of the grid [2]. In these markets, 

the power producers are accountable for the cost of real-time balancing of their deviations from their 

forward-contracted volumes [3]. Hence, to avoid the financial losses, it is essential to estimate the day 
ahead and hour ahead productions from the wind farms with an acceptable level of accuracy. Hour ahead 

power predictions are also important for formulating the dispatch schedules for the grid operation. 

Hence, reliable short to medium term wind power forecasting has become increasingly important in the 
efficient management of wind energy farms. 

Wind forecasting approaches can be broadly based on physical, statistical and/or artificial 

intelligence (AI) approaches. Physical methods such as NWP and mesoscale models use physical 

considerations like the terrain obstacles, air pressure, humidity and temperature to forecast the weather. 
For instance, NWP models solve numerically the Navier–Stokes equations and mass continuity 

equation, coupled with the first law of thermodynamics and the ideal gas law, representing the full set 

of prognostic equations upon which the change in space and time of wind velocity, pressure, density 
and temperature are described in the atmosphere [4]. Statistical methods, such as autoregressive 

integrated moving average models (ARIMA), make forecasts by establishing the relationship of the 

observed wind speed time series, in other words forecasting the wind speed based on historical observed 
data [5]. Methods based on AI, like artificial neural network (ANN) and support vector regression 

(SVR), have recently attracted wider attention among the forecasting community [6-8]. Hybrid methods 

implementing two or more from the previous methods together are also getting popular due to lower 

errors expected [9]. 
Physical methods usually provide the satisfactory forecast precision by combining multiple physical 

considerations and have advantages in long-term predictions. While the statistical methods perform well 

in short-term prediction, even though this classification is not absolute. Both physical and statistical 
models are mostly used together, where NWP results are usually regarded as input variables, together 

with historical data, to train the system on the local conditions according to statistical theories. Thus, the 

physical method serves as an initial analysis, and its results make the statistical method more efficient 

[10]. In addition, NWP models have a fundamental advantage over many other scientific methods in 
which its performance is objectively evaluated daily and globally, so that success and failure of forecasts 

is accurately known and pathways to improve predictive skill can be effectively tested.  

NWP models are operational at many national meteorological agencies such as in Europe (ECMWF), 
America, and Japan (JMA). These models have been often upgraded due to increasing computer power, 

as a result, most Global NWP models nowadays have spatial resolution in the range of 10-30 km, while 

regional NWP models are ranging from 1-5 km. The models might be different in terms of physical 
parameterization, forecast range, forecast issue routine, and spatiotemporal resolution, as detailed in 

[11]. In best scenarios, the spatial resolution of NWP models is between 1 and 5 km, which is not 

accurate enough in case of wind power forecasting considering the complex terrains and challenging 

site environments. Therefore, an efficient approach to downscale the NWP’s parameters to a specific 
location is highly required. 

The use of AI and machine learning (ML) techniques on wind energy, in particular on wind 

forecasting, are becoming more popular due to its effectiveness, high performance and computational 
speed. Shirkhani et al. [12] developed one simple linear regression and two non-linear regression 

models (polynomial regression) to link low resolution NWP mean hourly wind velocity to station level 

wind velocity. The authors stated that linear model outperformed the non-linear ones for that specific 
station. Similarly, Watters and Leahy [13] compared three different statistical downscaling methods 

particularly, linear, Kalman filter and neural network methods to downscale mean hourly wind speeds 

and wind directions obtained from Global Environmental Multiscale model. The results, in general, 

showed that the three methods showed similar performance. Nevertheless, Kalman filter performed 
better on average and required less amount of data. In the same perspective, Dupre et al. [14] developed 

two linear regression models to forecast the wind speed and wind energy at a sub-hourly time scale, 

where one model uses only variables from the NWP model and the other uses both local wind speed 
measurements and variables from NWP. The authors compared the results of the two models with the 



 
 

 

 

 
 

 

persistence method and two benchmarks methods namely, ANN and ARMA. The results from all 

methods were then applied to a wind farm to predict the power output, showing that the linear regression 

models outperformed the persistence method and the two benchmark methods. Similarly, Sfetsos [15] 
compared the performance of traditional statistical models, autoregressive moving average (ARMA) 

and neural networks models using mean hourly wind speed data and found that the later outperformed 

the other linear and nonlinear statistical models.  
Okumus and Dinler [16] extensively reviewed the recent advances in statistical wind forecasting, 

highlighting that one of the present-day challenges is the drop in the accuracy in wind prediction for 

forecast horizons above 6 hours. They concluded that this challenge can be overcome by using a 

combination of several prediction methods. Pre and post processing of data for the specific target site 
is also important in improving the prediction accuracy. 

In this paper, we propose models based on Support Vector Regression (SVR) to downscale and 

improve the site-specific wind forecasts (both wind speed and direction) from a regional NWP model.  
By downscaling, the general systematic errors in the NWP forecasts for the site are reduced and the 

accuracy of the wind forecasts are further enhanced by using previous observations. The goal is set to 

tackle the day ahead market (t + 36 hours) and intraday market (t + 1 hours). 
 

2.  Study case 

To demonstrate the proposed SVR based downscaling method, the geospatial location of a fully 

instrumented 5 kW experimental wind turbine is considered in this study. The wind turbine is located at 
Smøla island, on the west coast of Norway (see figure 1), within a wind farm composed of 67 turbines 

with installed capacity of 148.4 MW. The uniqueness of its location introduces an interesting challenge 

for the proposed method. 
 

 

Figure 1. Wind turbine location and the four nearest NWP grid points source Google earth. 

 
One-year of data ‘2019’, from two sources, were retrieved for this study. The first set of data were 

from a met mast installed next the experimental wind turbine at 20 m above ground level (AGL). These 

observed data were recorded at an interval of 5 min and consist of the wind speed and direction.  
The second data set were extracted from the archived historical hourly raw weather forecast at a 

height of 10 m AGL from the regional NWP model METCoOp Ensemble Prediction System (MEPS). 

This model is a convection-permitting atmosphere ensemble model covering Scandinavia and the 
Nordic sea with a horizontal resolution of 2.5 km, 65 vertical levels and 10 members [17]. Several 

weather parameters like wind speed, wind direction, air temperature, relative humidity and air pressure 

were extracted from that model and considered in this work. For better understanding of the weather 



 
 

 

 

 
 

 

conditions at the point of interest, weather forecast data were extracted from the four grid cells nearest 

to the wind mast location as shown in figure 1. The green icons show the locations of the centers of the 

four NWP grid cells and the red icon shows the location of the target wind turbine at Smøla island. 
 

3.  Methodology 

 
3.1.  Downscaling models  

The development of a robust and efficient machine learning model must go through several steps. A 

general overview of model development process used in this study is shown in figure 2. The process has 

mainly three phases: pre-processing, model building and post-processing (see dashed boxes in figure 2). 
 

 
Figure 2. Model development processes flowchart (adapted from Meier et al. [18]). 

 

The pre-processing phase involves utilizing several approaches to identify and prepare the essential 

data for building the model based on the formulated objectives. In addition to data cleaning techniques, 

it consists of the following steps: i) input selection and raw data pre-processing, and ii) data division 
and processing. As input selection is a key step in developing a reliable model, several techniques were 

used to identify the most relevant model inputs. Starting from the Ad-Hoc (Available data) approach, 

potential variables for raw data pre-processing procedures (data cleaning) are initially summarized. 
Then, the dependency between the variables were systematically quantified using Pearson correlation, 

Kendall and Spearman correlation and Mutual Information Regression (MI) [19, 20, 21]. Afterwards, 

the selected datasets were divided into predefined percentages of calibration (training) and evaluation 
(testing) subsets. The data division was obtained by random resampling using supervised trial and error 

method with manual adjustments to get a satisfactory level of agreement between the statistical 



 
 

 

 

 
 

 

properties of the subsets. Later, feature scaling method is used to avoid the domination of features in 

magnitude. 

The model building phase involves model selection, development of its architecture and optimization 
of the hyper parameters to achieve high accuracy and generalization ability. In this study, SVR is 

selected as the supervised learning algorithm to build up the predictive model [22]. SVR has been proven 

to be an effective tool in real value function estimation. SVR models are trained using a symmetrical 
loss function, which equally penalizes high and low misestimates. Using Vapnik`s ε-insensitive 

approach, a flexible tube of minimal radius is formed symmetrically around the estimated function, such 

that the absolute values of errors less than a certain threshold ε are ignored both above and below the 

estimate. In this manner, points outside the tube are penalized, but those within the tube, either above or 
below the function, receive no penalty. One of the main advantages of SVR is that its computational 

complexity does not depend on the dimensionality of the input space. Additionally, it has excellent 

generalization capability, with high prediction accuracy [23]. A stepwise constructive approach, using 
the Grid Search algorithm, combined with the cross-validation method are used to optimize (tune) 

different hyperparameters of the SVR architecture. 

The post-processing phase involves mainly the evaluation of the model`s performance and prediction 
accuracy. In addition to that, this phase also concerns about utilization ability based on different 

proposed forecasting schemes. In this study, the evaluation of the models is carried out by using several 

error metrics and statistical methods such as Root Mean Squared Error (RMSE), Normalized Root Mean 

Squared Error (NRMSE), Mean Absolute Relative Error (MARE), Pearson correlation (r) and Overfitting 
indicator. 

 

3.2.  Forecasting strategies 
Two forecasting schemes using the downscaling models are proposed for the intraday (t + 1) and the 

day ahead (t + 36) energy markets. 

The intraday (t + 1) forecast is obtained by using directly the downscaling models developed before 

setting the time at (t +1), since at the beginning of each forecast we have available all the observed 
values at time (t) and the latest update NWP forecasts at time (t +1). 

For the day ahead (t + 36) forecast, to be performed before noon (12:00) each day, it is proposed to 

use a multi-step recursive forecasting strategy. The strategy consists in running consecutively the 
downscaling models, starting by forecasting (t + 1) exactly as the intraday and then progressing to higher 

times. Note that for higher times the observed values in the previous hour are not known and therefore 

are replaced by forecasted ones. It also be noted that for each forecast the NWP values are maintain 
equal to the ones available at the beginning of the forecast period.  

The coefficient of determination (R2) is used to evaluate the performance of forecasts and compare 

them with NWP forecasts. 

 
4.  Results and discussion 

 

4.1.  SVR downscaling models 
After pre-processing phase (see subsection 3.1), periods with three or more hours with consecutive 

missing values due to system failures and maintenance were eliminated and the data set ended up with 

8700 points. Consecutive missing values in shorter periods were replaced by averaging the data over the 
previous instances. As for weather forecast data, there are several archives based on several NWP 

members (ensemble techniques) and therefore the missing values were replaced with the data from 

another member. It should be noted that average hourly was used for both weather forecast and observed 

data as those datasets have different time resolutions. 
For input selection, the results using linear and nonlinear methods mentioned in the methodology are 

presented in figures 3 and 4 for wind speed and direction, respectively. In those figures, WS, WD and 

WG, stand for wind speed, direction and gust, respectively, obs represents observed values, P_i (with 



 
 

 

 

 
 

 

i = 0, 1, 2 and 3) represents NWP values at the four nearest grid points, and (t – 1) stands for values at 

the previous hour. 

 
Figure 3. Correlation coefficients and mutual information score between observed wind speed and 

other variables. 

 
Figure 4. Correlation coefficients and mutual information score between observed wind direction and 

other variables. 

 

Wind gusts (WG_P0 to WG_P3) and wind speeds (WS_P0 to WS_P3) from the NWP model are 

highly correlated with observed wind speed at the met mast (see figure 3). Similarly, the wind directions 
(WD_P0 to WD_P3) from NWP model are highly correlated with observed wind direction (see figure 

4). In addition, wind speed and wind direction at a given instant t are highly correlated with the 

respective values corresponding to the previous hour (WS_obs (t – 1) and WD_obs (t – 1) in figures 3 
and 4, respectively). Results for temperature, relative humidity and air pressure are not presented as they 

showed very low correlation with the output (WS_obs and WD_obs). Based on these results, the inputs 

for the models were selected as in table 1. Note that avg represents the average value of the four nearest 
grid points. This was used instead of the information on each point to reduce the redundancy in the 

model, leading to better generalization. 

The data were further divided into two main subsets for training (80%) and testing (20%). These 

subsets were resampled randomly, keeping average, standard deviation and coefficient of variation 
similar between subsets (maximum 1% difference).  This ensures that similar trends, like seasonal and 



 
 

 

 

 
 

 

diurnal variations, are present in all subsets. The subsets were further scaled to be used for the SVR 

algorithm using standard scaler, which transforms the date sets to a zero mean and unitary standard 

deviation.  
 

Table 1. Models inputs and outputs. 

Model Inputs output 

Wind Speed WS_obs(t –1), avg_WS_Pi(t), 
avg_WG_Pi(t) 

WS(t) downscaled 

 

Wind Direction WD_obs(t–1), avg_WD_Pi(t) WD(t) downscaled 

 
The optimal SVR configurations, for both wind speed and wind direction models, have the nonlinear 

kernel RBF (radial basis function) and a penalty parameter of 10. The gamma parameter is 0.06 and 

0.01, respectively. The epsilon parameter is 0.3 and 0.2 respectively. 

The SVR models, as discussed above, were developed and tested. The results of the performance 
evaluation are presented in table 2. All performance statistics show that both models improve the NWP 

forecasts for time (t) at the proposed site. The models have an RMSE of around 1 ms-1 and 33° for wind 

speed and direction, respectively. Corresponding NRMSE, normalized over the range, were around 4% 
and 10 %. Similarly, MARE, which reflects the effect of the magnitude of the error relatively to the 

individual observation, and other error indicators, follow the same pattern as shown in table 2. These, 

together with the high values of the overfitting indicator, demonstrate the robustness of the developed 

SVR models. 
 

Table 2. Performance statistics of both wind speed and wind direction models. 

Performance metrics 
 

Wind Speed Wind Direction 

SVR 
Train-set 

SVR 
Test-set 

NWPa SVR 
Train-set 

SVR 
Test-set 

NWPa 

RMSE 1.019 1.023 3.065 30.594 32.982 51.421 

NRMSE 0.037 0.039 0.117 0,090 0.103 0.160 
MAE 0.745 0.747 2.740 17.031 17.805 26.640 

MARE 0.128 0.123 0.410 0.154 0.164 0.232 

r 0.963 0.963 0.930 0.938 0.930 0.848 

R2 0.930 0.928 0.356 0.880 0.864 0.669 
Overfitting Indicator . 0.996 - . 0.927  

a  Full record of NWP based on the most recent forecast, i.e. considering the 4 updates per day. 

4.2.  Forecasting strategies 
The utilization ability of the models for wind forecasting were tested with an independent dataset 

from January 2020. Results for forecasted wind speed and direction are shown in figures 5 and 6, 

respectively. In those figures, the pink line refers to a new cycle of day-ahead (t + 36) predictions starting 

at noon (12:00) each day, where the last hour observed value is assumed to be known and the NWP 
forecast values are updated. The dashed pink lines define the day ahead region of interest (ROI). Table 

3 summarizes the performance of the models following the two forecasting strategies. 

The intraday (t + 1) forecasts show high performance (R2 = 0.936 and 0.943for the wind speed and 
direction, respectively). It is clear from both figures 5 and 6, that the hour ahead forecast is the one that 

follows best the actual measured values. 

 As expected, the multi-step recursive forecast for 36 hours ahead is relatively less accurate 
(R2 = 0.823and 0.803 for the wind speed and direction, respectively). From figure 5, both 

underestimation and overestimation periods can be seen within the ROI. It should be highlighted that, 

except for the initial step (t + 1), the recursive forecasting strategy progressively uses the previous hour’s 

predictions as an input. Hence, the relatively higher error for this forecasting strategy is due to the 



 
 

 

 

 
 

 

accumulation of errors from the successive hour ahead predictions, which were used as additional inputs. 

Additionally, those consecutive hour-ahead predictions (multi-steps) use NWP values that are not 

updated throughout the forecast horizon. Therefore, they are, in principle, worse than the intraday (t + 
1) forecast, where NWP values are updated each six hours. Nevertheless, it should be noted that the 

recursive forecasting strategy gives much better results compared to the NWP (R2 = 0.578 for wind 

speed while NWP outperformed the recursive forecasting having R2 =0.88.for direction). This is 
confirmed by looking at the wind speed results within the ROI (figure 5), where the recursive forecast 

shows to be effective in avoiding the general underestimation of the NWP. For the wind direction (figure 

6), that effectiveness is not so evident, which indicates that for medium time horizons the wind direction 

has a lower degree of temporal dependence than the wind speed.  
 

Table 3. Evaluation of the forecasting strategies using independent datasets. 

Propertie
s 

Wind Speed Wind Direction 

Intraday 
(t + 1) 

Day aheadb 

(t + 36) 
NWPb Intraday 

(t + 1) 
Day aheadb 

(t + 36) 
NWPb 

Inputs WS_obs(t), 

avg_WS_Pi(t+1)

, 
avg_WG_Pi(t+1

) 

WS_obs(t)
a, 

avg_WS_Pi(t+1)

, 
avg_WG_Pi(t+1

) 

 WD_obs(t), 

avg_WD_Pi(t+1

) 

WD_obs(t)
a, 

avg_WD_Pi(t+1

) 

 

RMSE 1.332 2.220 3.424 13.124 24.862 19.160 

R2 0.936 0.823 0.578 0.943 0.80 0.88 
a
 Only using observed recent value at the first step i.e. (t + 1), for next steps using predicted downscaled ones. 

b
 The day ahead and the NWP R2 values were calculated based on the region of interest (ROI). 

 

  



 
 

 

 

 
 

 

  
Figure 5. Wind speed forecasts for four days (8th to 12th September 2019). 

 

 

  

  
Figure 6. Wind direction forecasts for four days (8th to 12th September 2019). 

 

5.  Conclusion  

In this paper, we demonstrate that machine learning models based on SVR can be efficiently used for 

downscaling NWP results to a specific site. The inclusion of observed values in the previous hour allows 



 
 

 

 

 
 

 

accurate correction of wind speeds and wind directions. The downscaling models can be used for short-

term (intraday) forecasting of wind available at a specific location of interest, rendering accurate 

predictions. The downscaling models can be further used for medium-term forecasting (day ahead). 
Although the prediction accuracy decreases, the recursive forecasting strategy still clearly overperforms 

the NWP forecasts. The proposed wind forecasting startegies can be effectively used for applications 

like short- and medium-term wind power forecasting. 
 

Acknowledgements 

The Authors would like to thank the National Wind Energy Center in Norway (NVES) for their 

cooperation in providing the observed data needed for this study. This work was partly funded by the 
Research Council of Norway (RFF Midt-Norge) through the project number 299452. The first author 

also acknowledges the Ministry of Education in Norway for the PhD fellowship at the University of 

Agder. 
 

References 

[1] Global Wind Energy Council 2019, Global Wind Report 2018, ed K Ohlenforst et.al, chapter 
 Market Status 2018 pp 22–30 

[2]  Mazzi N and Pinson P 2017 Renewable Energy Forecasting from Models to Applications, ed 

 Kariniotakis G, chapter 10 pp 259–78 

[3]  Skajaa A, Edlund K and Morales J 2015 Intraday trading of wind energy IEEE Transactions 
 on power systems, 30 pp 3181–89 

[4] Bauer P, Thorpe A and Brunet G 2015 The quiet revolution of numerical weather prediction

 Nature 525 pp 47–55 
[5] Torres J, Garcia A De Blas M and De Francisco A 2005 Forecast of hourly average wind  speed 

 with ARMA models in Navarre (Spain) Solar Energy 79 pp 65–77 

[6] Marguan A, Marquez F, Perez J and Ruiz H 2018 A survey of artificial neural network in  wind 

 energy systems J. Applied Energy 228 pp 1822–36 
[7] Li G and Shi J 2010 On comparing three artificial neural networks for wind speed 

 forecasting J. Applied Energy 87 pp 2313–20 

[8] Salcedo-Sanz S, Ortíz-García E, Pérez-Bellido A, Portilla-Figueras J and Prieto L 2011 Short 
 term wind speed prediction based on evolutionary support vector regression algorithms 

 Expert Syst. Appl.38 pp 4052–57 

[9] Mana M, Burlando M and Meissner C 2017 Evaluation of two ANN approaches for the wind 
 power forecast in mountainous site International Journal of Renewable Energy Research 7 

 pp 1629–38 

[10] Lei M, Shi-yan L, Chuan-wen J, Hong-ling L and Zhang Y 2009 A review on the forecasting of 

 wind speed and generated power. Conf. Proc. Renewable and Sustainable Energy Reviews, 
 13 pp 915–20 

[11] Collins S, James R, Ray P, Chen K, Lassman A and Brownlee J 2013 Grids in numerical 

 weather and climate models, ed Zhang Y and Ray P, chapter 4 pp 111–28 
[12] Shirkhani H, Seidow O and Mohammadian A 2013 Downscaling method for wind data: case 

 study of Agadez in Niger 3rd Int. Conf. on Disaster Prevention and Mitigation Canadian 

 Society for Civil Engineering (Montreal Quebec) pp 1–10 
[13] Watters C and Leahy P 2011 Comparison of linear, Kalman filter and neural network 

 downscaling of wind speeds from numerical weather prediction 10th Int. Conf. on 

 Environment and Electrical Engineering (IEEE) (Rome) pp 1–4 

[14] Dupre A, Drobinski P, Alonzo B, Badosa J, Briard C and Plougonven R 2020 Sub-hourly 
 forecasting of wind speed and wind energy Conf. Proc. Renewable Energy 145 pp 2373–79 

[15] Sfetsos A 2000 A comparison of various forecasting techniques applied to mean hourly wind 

 speed time series. Conf. Proc. Renewable Energy 21 pp 23–35 



 
 

 

 

 
 

 

[16] Okumus I and Dinler A 2016 Current status of wind energy forecasting and a hybrid method for 

 hourly prediction. Conf. Proc. Energy Conversion and Management 123 pp 362–71. 

[17] The MetCoOp Team 2017 The MetCoOp ensemble MEPS HIRLAM Newsletter no 8 pp 98–
 103 

[18] Maier H, Jain A, Dandy G and Sudheer K 2010 Methods used for the development of neural  

networks for the prediction of water resource variables in river systems: current status and 
future directions. Environmental Modelling & Software 25 pp 891–909 

[19] Guyon I and Elisseeff A 2003 An Introduction to variable and feature selection J. Mach. 

 Learn. Res. 3 pp 1157–82 

[20] Ross B 2014 Mutual Information between Discrete and Continuous Data Sets J. Plos One 9 pp 
 1–5 

[21] Kraskov A, Stogbauer H and Grassberger P 2004 Estimating mutual information. Phys. Rev. 

 E, Statistical, nonlinear, and soft matter physics 69 pp 1–16 
[22] Drucker H, Burges C, Kaufman L, Smola A, and Vapnik V 1996 Support vector regression

 machines. NIPS 9 pp 155–61 

[23] Awad M and Khanna R 2015 Efficient Learning Machines Theories, Concepts and Applications 
 for Engineers and System Designers chapter 4 pp 67–74 


