
c© 2020 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Semantic Web (OJSW)
Volume 7, Issue 1, 2020

http://www.ronpub.com/ojsw
ISSN 2199-336X

On Distributed SPARQL Query Processing
Using Triangles of RDF Triples

Hubert NaackeA, Olivier CuréB

A Sorbonne Universités, LIP6, CNRS, Paris, France, hubert.naacke@lip6.fr
B Université Paris Est, LIGM, Marne la Vallée, France, olivier.cure@u-pem.fr

ABSTRACT

Knowledge Graphs are providing valuable functionalities, such as data integration and reasoning, to an increasing
number of applications in all kinds of companies. These applications partly depend on the efficiency of a Knowledge
Graph management system which is often based on the RDF data model and queried with SPARQL. In this context,
query performance is preponderant and relies on an optimizer that usually makes an intensive usage of a large set of
indexes. Generally, these indexes correspond to different re-orderings of the subject, predicate and object of a triple
pattern. In this work, we present a novel approach that considers indexes formed by a frequently encountered basic
graph pattern: triangle of triples. We propose dedicated data structures to store these triangles, provide distributed
algorithms to discover and materialize them, including inferred triangles, and detail query optimization techniques,
including a data partitioning approach for bias data. We provide an implementation that runs on top of Apache
Spark and experiment on two real-world RDF data sets. This evaluation emphasizes the performance boost (up to
40x on query processing) that one can obtain by using our approach when facing triangles of triples.

TYPE OF PAPER AND KEYWORDS

Regular research paper: indexing, RDF triangles, SPARQL, optimization, inference

1 INTRODUCTION

Knowledge Graphs (KGs) are emerging as a new
software tool that facilitates the development of
innovative functionalities and services, e.g., breaking
data silos by supporting data integration and inferring
implicit consequences from explicit knowledge. They
have been adopted by many companies tackling a
large set of domains, e.g., Web search, retailing,
product management, energy, healthcare. Applications
served by these KGs require an efficient semantic data
management approach. This is particularly evident when
considering the size of the real world KGs, i.e., in the
range of millions to billions of graph nodes and edges.
At such as scale, it is obvious that features such as
horizontal scaling, data parallelism, fault-tolerance and

efficient query processing must be present in the KG
management system.

Considering the point of view of the end-user, an
important performance metric associated to a database
management system (DBMS) and query execution in
particular is latency, i.e., the time required to complete
the execution of a given query. An adapted data indexing
approach generally enables to reduce the latency to
obtain a query answer set. Resource Description
Framework (RDF) stores, i.e., DBMSs that are using
the RDF data model, are the most widely used KG
management systems. Much work has been done to
design and implement efficient indexing solutions [6],
[15] and [19] for RDF stores. In fact, although most of
the previously mentioned systems have been conceived
at a time when data distribution was not needed (due

17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RonPub -- Research Online Publishing

https://core.ac.uk/display/351635627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojsw

Open Journal of Semantic Web (OJSW), Volume 7, Issue 1, 2020

to rather small datasets), their indexing approaches
have inspired distributed commercial, e.g., Stardog1,
Amazon Neptune2, GraphDB3, and open source, e.g.,
[20], systems. Most of these approaches concentrate
on indexing a single triple at a time. For instance
by indexing the subject (S), property (P), object (O),
of a single triple in different orders, e.g., SPO, SOP,
PSO. Nevertheless, more complex triple structures are
frequently occurring in RDF data sets and the Basic
Graph Patterns (BGP) of SPARQL queries.

In this paper, we consider the indexing of triangles of
triples, i.e., a set of three triples such that each triple
is connected with the two other triples. An analysis
of the Yago2 [7] and Yago3 [11] real-world data sets
highlights that approximately 16% of their triples are
forming such a triangle structure. More precisely, in
Yago2, 546 triangle types, i.e., an ordered signature
corresponding to the three properties of a triangle, cover
over 1.2 million triangles. The cardinality of all these
triangles are represented in Figure 1 for the 18 triangles
containing two rdf:type properties (left side) and for
the remaining 528 triangles containing no rdf:type
property (right side). More generally, the Stanford
Network Analysis Project (SNAP)[10] emphasizes that
triangle structures are frequent in various types of
graphs.

Our claim is that retrieving the variable bindings for a
triple pattern representing a triangle should be performed
more efficiently by using a single lookup over a triangle
index structure than accessing each triple individually
and performing join operations.

In order to address fault-tolerance and horizontal
scalability issues, we present distributed algorithms
based on the cluster-computing Apache Spark
framework. We tackle reasoning aspects of triangles
discovery and query processing by using the LiteMat
encoding approach [3].

This paper is an extension of [14]. Its content has been
enriched in order to be more self-contained (e.g., more
in-depth explanations on LiteMat’s encoding scheme).
Moreover, it provides results of new research conducted
on strategies to efficiently discover triangles and process
queries in a Spark distributed context and presents
additional evaluations that demonstrate the adequacy of
these new strategies. Intuitively, the strategies consider
whether a parallel hash join is more efficient than a
broadcast join; it devises a solution to combine these
two join methods while taking into account data skew.
This drastically impacts the performance of both the
discovery and query processing in our system.

1 https://www.stardog.com/
2 https://aws.amazon.com/fr/neptune/
3 https://www.ontotext.com/products/graphdb/

The paper is organized as follows. In Section 2, we
provide some background knowledge on LiteMat and
Apache Spark. Section 3 introduces the data structures
used to cache triangles of RDF triples and details our
discovery strategies for both cyclic and acyclic triangles.
In Section 4, algorithms to optimize query processing
are presented. This includes queries requiring some
reasoning services to ensure exhaustive query answer
sets. Some related work is highlighted in Section 5. An
evaluation is proposed in Section 6. And finally, Section
7 concludes the paper and emphasizes on future work.

2 BACKGROUND KNOWLEDGE

We cover two background knowledge in this section:
LiteMat an encoding scheme for RDFS ontologies and
Apache Spark on which our implementation is based on.

2.1 LiteMat

LiteMat is a semantic-aware encoding scheme that
compresses RDF data sets and supports reasoning
services associated to the RDF ontology language. In
this work, we are focusing on the ρdf[12] subset
of RDFS which considers inferences associated to
the rdfs:subClassOf, rdfs:subPropertyOf,
rdfs:domain, rdfs:range constructors. To
address inferences drawn from these first two RDFS
predicates, we attribute semantic-aware numerical
identifiers to ontology terms, i.e., concepts and
predicates. More precisely, in LiteMat, concept
encoding is based on an inferred graph, i.e., the graph
resulting from applying a concept classification over a
concept hierarchy. Such an inference can be performed
with an external reasoner such as HermiT [17]. This
means that LiteMat is capturing the complete set of
concept subsumptions, i.e., up to the OWL DL ontology
language, and not just the ones expressed by explicit
rdfs:subClassOf triples.

Note that this paper also benefits from recent
LiteMat extensions which are presented in [3].
These extensions consider OWL constructs
such as owl:sameAs, owl:inverseOf and
owl:transitiveProperty. In a nutshell,
additional data structures and dedicated encoding
approaches are supporting these new features. Up to
this extension, LiteMat can be considered to tackle
the RDFS++, i.e., RDFS plus some OWL (popular)
constructs, ontology language expressiveness. We are
aiming to consider other extensions for LiteMat, e.g.,
toward OWLRL or OWLQL.

This encoding scheme is performed by prefixing the
identifier of a term with the identifier of its direct parent.
This approach uses a binary representation of its entity

18

H. Naacke, O. Curé: On Distributed SPARQL Query Processing Using Triangles of RDF Triples

Figure 1: Cardinality of all BGP triangles in Yago2 (log scale)

Figure 2: LiteMat encoding example

identifiers. In [3], a dedicated data structure is presented
to address multiple inheritance cases. In such a situation,
each concept can have several identifiers which are all
stored in a hash table. A method then efficiently probes
this structure to obtain all possible identifiers for a given
concept.

The encoding is performed using a top-down
approach, e.g., starting from the most specific concept
of the hierarchy (typically owl:Thing for the
concept hierarchy and TopObjectProperty and
TopDataProperty for property hierarchies), until all
leaves are processed. A normalization is performed to
guarantee that all encoding entries have the same length
on a given hierarchy, i.e., concept and property. This
operation is performed by setting a set of right-most bits
to 0.

In Figure 2, we consider a small ontology extract
containing the following axioms: A v owl : Thing,
B v owl : Thing, C v B and D v B. Figure
2a highlight the top-down encoding approach with (1)
setting the local identifier of owl : Thing, (2) its direct
subconcepts (A andB) andB’s subconcepts in (3). Then
in (4) the normalization step is performed, i.e., added
right-most bits are written in red. Column (5) provides
the integer value attributed to each concept.

The mapping between URIs and their identifiers are
stored in dictionaries, two for the concepts and two for

the properties to support a bidirectional retrieval, i.e.,
from a URI to its identifier and from an identifier to
its URI. Moreover, in the former dictionaries, additional
identifier metadata are stored. For instance, the local
length (binary length before the normalization phase) of
each dictionary entry is stored along the final identifier
entry. Figure 2b emphasizes the different metadata of
the LiteMat encoding for the B concept: super concept
identifier part, start of local encoding and start of the
normalization part.

The semantic encoding of concepts and predicates
supports reasoning services usually required at query
processing time. For instance, consider a query asking
for the pressure value of sensors of type S1. This
would be expressed as the following two triple patterns:
?x pressureValue ?v. ?x type S1. In the
case sensor concept S1 has n sub-concepts, then a
naive query reformulation requires to run the union
of n+1 queries. With LiteMat’s semantic-aware
encoding, we are able, using two bit-shift operations
and an addition, to compute the identifier interval, i.e.,
[lowerBound, upperBound), of all direct and indirect
sub-concepts of S1. We can thus compute the query
with a simple reformulation: replacing the concept
S1 with a new variable : ?x type ?newVar and
introducing a filter clause constraining values of this new
variable: FILTER (?newVar>=lowerBound &&
?newVar<upperBound).

2.2 Apache Spark

Apache Spark [22] is a cluster computing engine which
can be considered as a main-memory extension of
the MapReduce model enabling parallel computations
on unreliable machines and automatic locality-aware
scheduling, fault-tolerance and load balancing. While

19

Open Journal of Semantic Web (OJSW), Volume 7, Issue 1, 2020

Figure 3: Cyclic and acyclic triple triangles

both, Spark and Hadoop4, are based on a data flow
computation model, Spark is more efficient than Hadoop
for applications requiring frequent reuse of working data
sets across multiple parallel operations.

This efficiency is mainly due to two complementary
distributed main-memory data abstractions: (i) Resilient
Distributed data sets (RDD) [21], a distributed, lineage
supported fault tolerant data abstraction for in-memory
computations and (ii) DataFrames (DF), a compressed
and schema-enabled data abstraction. Both data
abstractions ease the programming task by natively
supporting a subset of relational operators like project
and join. DF is even more user-friendly by proposing
both a Domain Specific Language (DSL) and a SQL
interface. These operators enable the translation
and processing of high-level query expressions (e.g.,
SPARQL).

3 DISCOVERING AND INDEXING TRIANGLES
OF TRIPLES

In this section, we present the two forms of triangles that
can be observed in RDF graphs. Then, we propose a
compact representation for these triangles. Finally, we
introduce methods to discover both explicit and implicit
triangles.

3.1 Cyclic and Acyclic Triangles

Triangles are composed of a set of three connected
triples. Two forms are distinguished: cyclic (Figure 3a)
and acyclic (Figure 3b). In a cyclic triangle, the out-
going and in-going degrees of each node has a value of 1.
In an acyclic triangle, one node has an out-going degree
of 2 hence one of the two remaining nodes has an in-
going degree of 2 and out-going degree of 0. The last
node has out-going and in-going degrees of 1.

3.2 Triangle Representation

The objective of our indexing structure is to retrieve
all the URIs and blank nodes identifying nodes of a

4 https://hadoop.apache.org/

given triangle in a deterministic manner as efficiently as
possible and to store them using a compact approach. To
satisfy these prerequisites, we consider that properties
of a triangle are first class citizens. A direct impact is
that BGPs forming a triangle with at least one property
variable will not be handled efficiently with the triangle
index. For instance, the following BGP: (?x ?p y . ?x
rdf:type c . y rdf:type c) is not considered in our
triangle caching approach since our caching approach
can not handle its processing efficiently. Thus, the
variable bindings of this BGP, i.e., for variables ?x and
?p, will be retrieved using a one triple pattern at a time
execution model. Due to the low frequency of variables
at the property position in real-world SPARQL queries,
we do not consider that this is an important limitation of
our approach.

Our selected triangle caching structure takes the form
of a distributed hash table (DHT) where the key is the
set of the three properties involved in a triangle and the
value corresponds to the set of node labels instantiating
this triangle. We consider two triangle indexes, one for
each triangle form, i.e., cyclic and acyclic.

To address the deterministic aspect of our indexing
structure, i.e., every triangle instance is indexed exactly
once, we apply a certain order on the set of properties
forming our DHT key. Respecting this order is
preponderant in the context of directed graphs. This
order satisfies the following rules: (i) for an acyclic
triangle, the first property of the DHT key relates to
the node with two out-going edges and its object node
has one out-going edge. The second property is the
other property of the node with two out-going edges and
the third property is the remaining one (i.e., its subject
node has one out-going edge and its object node has one
in-going edge). (ii) for a cyclic triangle, the order of
the properties is based on the integer-based identifiers
provided by the LiteMat encoding. The first property
of the key corresponds to the property with the minimal
identifier among the properties of the triangle. Given this
property, the order of the next two properties follow the
direction imposed by the triangle.

The value component of our DHT structure contains a
non-empty set of three node labels (URIs or blank nodes)
that are instantiating the associated triangle key. Let us
consider the cyclic triangle of Figure 3a and assume that
the key is (pa, pb, pc) then the first (respectively second
and third) node label of a value instance is the subject
of the triple with property pa (respectively pb and pc). It
hence yields the structure (pa, pb, pc)→ {(1, 2, 3)}.

In cases where the three properties are equal, i.e., pa =
pb = pc, then the node labels (1, 2, 3) are ordered by
increasing value. For Figure 3b’s acyclic triangle and a
(pa, pb, pc) key, the first, second and third node labels are
respectively the subject of the triple with property pa, the

20

H. Naacke, O. Curé: On Distributed SPARQL Query Processing Using Triangles of RDF Triples

Algorithm 1: Compute/Index acyclic and cyclic
triangles

Input: a set of RDF triples D[s, p, o]
Output: triangle index TA and TC

1 for i ∈ [1, 3] do
2 Di ← D.rename(s as si, p as pi, o as oi)

3 J1Acyclic ← D1.join(D2, s1 = s2)
4 Acyclic← J1Acyclic.join(D3, o1 =

s3 and o2 = o3)
5 J1Cyclic ← D1.join(D2, o1 = s2)
6 Cyclic← J1Cyclic.join(D3, o2 = s3 and o3 =

s1).map(x => order(x)).distinct
7 for (pa, pb, pc) ∈

Acyclic.select(p1, p2, p3).distinct do
8 TA[p]← Acyclic.where(p1 = pa and p2 =

pb and p3 = pc).select(s1, o2, s3)

9 for (pa, pb, pc) ∈
Cyclic.select(p1, p2, p3).distinct do

10 TC [p]← Cyclic.where(p1 = pa and p2 =
pb and p3 = pc).select(s1, s2, s3)

11 return TA, TC

object of the triple with property pb and the remaining
node label.

Given this deterministic index creation, the system can
easily re-build triples involved in the triangle indexing
structure. However, we will show in Section 4 that this
reconstruction is never necessary.

3.3 Discovery of Explicit Triangles

The discovery of triangles explicitly stored in the KG are
performed using Spark DF’s DSL. Algorithm1 provides
the pseudo code for the discovery and indexing of cyclic
and acyclic triangles.

In lines 3-6, Acyclic and Cyclic triangles are
discovered. Each triangle instance in a query result
conforms to the canonical representation defined in
Section 3.2. More precisely, the order method
(line 6) implements the above-defined reordering rules.
The distinct method removes the duplicates among
resulting triangle instances that eventually have the same
canonical representation. In lines 7-10, the indexes are
built. Let TA (respectively TC) denote the index for
acyclic (respectively cyclic) triangles. An index entry
associates a pattern p = (pa, pb, pc) with a DF TA[p]
that contains a set of triangle instances. Every TA[p]
is distributed across the Spark cluster and cached in
main memory to enable efficient index access: TA[p]
is an in-memory distributed data structure which can
be efficiently read and filtered in parallel during query

Figure 4: Physical join operation selection

processing.
In a distributed environment, efficiently processing

multi-join queries such as Acyclic and Cyclic requires
two optimization steps as illustrated on Figure 4 :
(i) to decide, for each join operation, which physical
join operator to use as suggested in [13]; and (ii) to
handle highly biased data that may degrade parallel join
computation.

3.3.1 Distributed Join in Presence of Biased
Data

The query processing engine provides two join
algorithms: either a parallel hash-join or a broadcast
nested loop join. We compare the two algorithms
performance applied to the case of triangle computation,
i.e., when joining the entire knowledge graph with itself.

Parallel hash-join runs faster than broadcast nested
loop join for joining two large data sets since its
communication cost is lower [13]. Parallel hash-join
consists in distributing the data sets according to the join
attribute values, then performing a local join for each
value in parallel. However, in the presence of highly
biased data, when few values are far more frequent, e.g.,
the United_States URI in the Yago data sets, than the
others, such join method will fail to fully execute in
parallel as one can expect. Indeed, it starts by quickly
computing in parallel the join for almost all the values,
then it ends up spending most of its time in joining the
few biased values. The fewer biased values exist in the
data sets and the higher frequency they have, the longer

21

Open Journal of Semantic Web (OJSW), Volume 7, Issue 1, 2020

is the execution of the join. This is because the degree
of parallelism is decreasing during the join computation
so that only one processor, i.e., a straggler, remains busy
computing the highest frequent value.

To avoid this drawback, one has to use the broadcast
nested loop join which is not sensitive to biased
data. Indeed, triples with the same frequent value are
distributed across the machines, which allows processing
them in parallel. However, broadcast nested loop join
has a high communication cost because it requires to
transmit the data to be joined to every machine.

In summary, we face the problem where none of the
two join algorithms brings satisfactory performance on
its own to process the discovery of triangle queries. As
far as we know, current query optimizers do not handle
such a case of highly biased data, which gives us the
opportunity to propose the following method.

Let D be a collection of (S, P,O) triples. The domain
of the object o is composed of a list of values Dom0 =
(o1, ..., on) ordered by decreasing frequency, with the
frequency fo defined as fo(oi) = |σo=oi(D)|, where σ
is the standard selection operation of the relation algebra.
We have:

∀i < j, fo(oi) ≥ fo(oj)
Similarly, the domain of the subject s is composed
of a list of values Doms = (s1, ..., sn) ordered by
decreasing frequency fs(si) = |σs=si(D)|. With these
two functions, we can determine the biased values that
cause the highest overhead on the join computation,
i.e., values with the highest frequency in the join result.
In the general case of a subject-object join, we have
Domso = Doms ∩ Domo with associated frequency
fso(b) = fs(b)× fo(b). Let B = (b1, ..., bk) contain the
K most frequent values of Domso which are considered
as biased. Relying on these definitions, we propose to
join the knowledge graph D with itself as follows:

• Split the data set D in two parts: Dbias which
contains the triples with biased values for the
join attributes and Dnobias which contains the
remaining triples. Thus

Dbias = D nB

and
Dnobias = D \Dbias

• Process Dnobias using parallel hash join which
ensures that the entire computation is performed
with the expected degree of parallelism.

• Process Dbias using broadcast nested loop join: the
communication cost remains low since the size of
Dbias is relatively small.

• the final result is the union of the results on Dbias

and Dnobias.

3.3.2 Optimizing Acyclic and Cyclic Queries

We apply the above method to process Acyclic and
Cyclic queries. We assume a main memory query
processing environment, the data set D is persisted in
distributed main memory after being hash-partitioned on
its triples’ subject.

Acyclic query. It is composed of two joins as detailed
on Algorithm 1. On line 3 the first join J1Acyclic is a
subject-subject join. The data bias is low on the subject
attribute, therefore we choose to compute it using a
parallel hash-join on all the D triples. On line 4, the
second join is on a compound key defined by (o1, o2)
for J1Acyclic and respectively by (s3, o3) for D3. We
observe a low bias for such compound key. This is due
to the correlation between two object values is generally
low.

Thus the second join is also computed using a parallel
hash-join that implies to distribute J1Acyclic as well
as D3 on the compound keys (o1, o2) and (s3, o3)
respectively. Although the size of J1Acyclic is L times
the size of J3, this join method outperforms the broadcast
nested loops join method in our experiments. This is
due to a small L value (e.g., L = 11 for the Yago3
data set). Indeed, the later join algorithm needs to index
the broadcasted data set on the fly which time may
become predominant in comparison with the former join
algorithm.

Cyclic query. The data set is highly biased on the
object values. Therefore, we apply the proposed bias-
aware join method. We split D into Dbias that contains
the triples which object values is among the k most
frequent ones, and Dnobias that contains the remaining
triples. The optimal number K of biased values that
yield the best performance is determined through an
empirical exploration of a series of K values, as shown
in our experiments (Section 6). On line 5, J1cyclic is
computed as:
D1bias.join(broadcast(D2bias), o1 = s2)

.union(D1nobias.join(D2nobias, o1 = s2))
Finally, on line 6, Jcyclic is computed via a broadcast

nested loops join to prevent from an overhead of re-
partitioning the result of J1cyclic which size is L′ times
larger than D3 (e.g., L′ = 155 for the Yago3 data
set). Thus, the communication cost only depends on
D3 which is temporary broadcasted to every cluster
machine.

3.4 Discovery of Implicit Triangles

The full benefit of triangle-aware query processing of
KGs is reached when both explicit and implicit triangles

22

H. Naacke, O. Curé: On Distributed SPARQL Query Processing Using Triangles of RDF Triples

are cached. In this section, we present a strategy that
tackles inferences using the RDFS ontology language.
The triangles considered here are necessarily acyclic and
have the following signature (p, rdf : type, rdf : type).

We aim to improve the processing of triangles
contained in the BGP of a query by analyzing the
underlying TBox, in particular the concept hierarchy as
well as properties’ domain and range.

We first generalize axioms of the TBox into triangles.
Given a property p and the following Description Logic
axioms: > v ∀pCr, > v ∀p−Cd, we can infer
additional triangles when (i) Cr ≡ Cd, (ii) Cr v Cd or
Cd v Cr. Considering case (i), such a triangle may not
have been discovered by our acyclic method if the ABox
is incomplete, i.e., some rdf:type triples are missing.
Case (ii) is more interesting and considers the situation
where the domain of p is a sub-concept of p’s range or
vice-versa.

These new triangles can be discovered using the
following RTBox

1 SPARQL query:
select ?p1, ?c2 where {
{?p1 rdfs:domain ?c1.
?p1 rdfs:range ?c2.
?c1 rdfs:subClassOf ?c2 }
union {
?p1 rdfs:domain ?c2.
?p1 rdfs:range ?c1.
?c1 rdfs:subClassOf ?c2}
union {
?p1 rdfs:domain ?c2.
?p1 rdfs:range ?c2}}

Hence, for each result (p1, c2) of RTBox
1 , we know

that for each triple (x p1 y) in the ABox and each c equals
to either c2 or a super-concept of c2, there must exist a
triangle (x p1 y . x rdf:type c . y rdf:type c). We
store the (p1, c2) tuple in an additional property/concept
hashMap, denoted pcCatalog, where the key is a tuple
(p,1), the value 1 denotes the computation with RTBox

1 ,
and the value of the hashMap is the concept identifier,
i.e., c2. This hashMap supports some query processing
optimization (see Section 4.4).

Example 1: Let us consider the LUBM
ontology[5] and its advisor property whose
domain and range are respectively Person and
Professor. The LUBM ontology states that
Professor v Faculty v Employee v Person,
hence the entry (advisor, Person) has been added
to pcCatalog after the execution of RTBox

1 . Note that
whenever the domain or range of a property p is not
specified in the ontology, we attribute owl:Thing to
them. In that case, we consider that the generalization
is not specific enough and we do not add entries to the
pcCatalog for these properties.

The entries of pcCatalog computed with RTBox
1 can

be used to infer novel triangle instances from the KG’s
ABox. These triangles are specialization of the triangles
discovered usingRTBox

1 and will be stored in the triangle
index structure. Let minClass(c, c′) be a function
that takes two ontology concepts belonging to the same
hierarchy branch as parameters, i.e., either c is a super-
concept of c′ or the other way around, and that returns
the most specific super concept of c and c′. Let also
assume that (ρ, 1) → {C} is an entry in pcCatalog
tuple and that for each triple of the form (s,ρ,o) in the
ABox where s (respectively o) is asserted the type c
(respectively c′), minClass(c, c′) v C, then a new
value (s,minClass(c, c′), o) entry can be added to the
triangle index for key (ρ, type, type).

The following RABox
1 SPARQL query retrieves value

entries for our triangle structure:
select ?x, ?y, minClass(?t1, ?t2) where {
?x p1 ?y.
?x rdf:type ?t1.
?y rdf:type ?t2.
minClass(?t1, ?t2) rdfs:subClassOf C.
filter(minClass(?t1, ?t2) != C)}

Example 2: We consider the context of Example
1 and an ABox containing the following triples: i1
advisor i2. i2 rdf:type FullProfessor. i1
rdf:type Faculty with i1 and i2 two individuals
and FullProfessor v Professor. Then RABox

1

would retrieve a new value (i1, Faculty, i2) entry for
the (advidor, rdf : type, rdf : type) triangle key
since the most specific super concept of Faculty and
FullProfessor is Faculty. Together with the LiteMat
encoding query processing approach, this will improve
the retrieval of variable bindings for queries containing
this triangle pattern.

4 QUERY PROCESSING WITH A TRIANGLES
INDEX

We present several optimization strategies for SPARQL
query processing which are based on our triangle
abstraction. These strategies either depend on our
triangle caching approach or on inferences conducted
over the SPARQL query’s BGP. In the former, the
system first parses the BGP of a SPARQL query to
detect triangles. Intuitively, the approach is similar to
the explicit method previously described (see Section
3.3) for RDF graphs and generates triangle signatures
following the method described in Section 3.2. Given
such a signature, a standard lookup is performed to
retrieve all variable bindings of a triangle.

23

Open Journal of Semantic Web (OJSW), Volume 7, Issue 1, 2020

4.1 Inference-Free Triangle Query Processing

This method applies to arbitrary triangles found in
SPARQL query’s BGP that (i) do not contain any
rdf:type properties and (ii) where all properties
correspond to URIs, i.e., are not variables. Triangles
not satisfying (i) are handled by our inference-based
approach which is described in Section 4.2. Triangles
not satisfying (ii) would yield a partial 3-tuple property
signature, i.e., containing at least one variable. It would
be inefficient, due to its non determinism, to search for
such a signature in the set of keys of our triangle DHT.

For all triangles that follow constraints (i) and (ii),
a simple lookup in the index retrieves all instances of
variables bindings.

Example 3: Let us consider the following
SPARQL query BGP: ?x isLocatedIn ?y. ?y
isLocatedIn ?z. ?x isLocatedIn ?z. The
triangle key is (isLocatedIn, isLocatedIn,
isLocatedIn)which retrieves over 574 800 variables
binding for ?x, ?y and ?z for the Yago2 data set.

If a triangle contains some URIs at the subject or
object positions, a literal at the object position, e.g.,
?x=<Berkeley_Marina> in the previous query, then
a simple filter over the proper variable binding, e.g., the
first one in this running example, would yield the correct
bindings for the other query variables.

4.2 Inference-Based Triangle Query
Processing

We now propose another triangle generalization
approach, as RTBox

1 , but when the concepts of the
domain and range of a property are not in the same
hierarchy branch, i.e., not related by a subsumption
relationship. Like RTBox

1 , this reasoning case solely
depends on the TBox and will generate new entries in
the pcCatalog hashMap.

In order to perform this inference, we need to define
a function denoted lca(c, c′) (lowest common ancestor -
LCA) which takes as parameters two ontology concepts
and returns the most specific super concept common to c
and c’.

The reasoning service is performed by the following
SPARQL query, denoted RTBox

2 :
select ?p1, lca(?c1,?c2) as lca where {
?p1 rdfs:domain ?c1.
?p1 rdfs:range ?c2
filter (lca(?c1,?c2)<>?c1 and
lca(?c1,?c2)<>?c2)}

Thus, for each RTBox
2 answer result (p1, lca), the

system infers that each triple (x p1 y) in the ABox and
for all c equals to either lca or a super-concept of lca then
there exists a triangle (x p1 y . x rdf:type c . y rdf:type

c). Note that the methods proposed in [3] can be easily
applied to support multiple inheritance of concepts. The
result of this query is persisted in pcCatalog but with
a key made of a tuple (p,2), the value 2 denoting this
entry has been computed from RTBox

2 . In Section 4.4,
we present how this data structure is used to optimize
some SPARQL queries.

4.3 Efficient Computation of R1 and R2 Using
LiteMat Encoding

Using LiteMat’s encoding approach provides two main
advantages: (i) a compact representation of the
(RDFS) ontology semantics and RDF data sets, (ii) an
efficient query rewriting service that supports RDFS
inferences. These benefits come at low storage and
computational costs since they only require a set of
dictionaries for the concept and property hierarchies, the
domain and range of ontology properties; two bit shift
operations and the addition of an integer to obtain sub-
concepts (respectively sub-property) of a given concept
(respectively property). These two advantages guarantee
that we can perform RDFS inferences without accessing
any Semantic Web compliant API, e.g., Apache Jena5.
Hence, it provides an important performance gain for the
execution of queries containing triangles.

All queries, i.e., RTBox
1 , RTBox

2 and RABox
1 ,

presented up to now heavily benefit from LiteMat’s
encoding facility. The TBox queries use the LiteMat
dictionaries providing to lookup for the concept
identifiers of the domain (respectively range) of a
property p and are denoted dom(p) (respectively
ran(p)). RTBox

1 uses the upper(c) function which
provides the upper limit of the interval surrounding
all the sub-concepts of a given concept c (performed
with two bit shifts and an addition). The following
Algorithm2 computes RTBox

1 efficiently.
Considering the RABox

1 query, since it is performed
over the ABox, it can be processed directly over the
encoding ABox via a translation to Spark’s DF. It only
remains to compute the minClass function. Again,
LiteMat TBox’s encoding makes it quite easy and
efficient, i.e., without accessing the original TBox, an
expensive API and any external reasoner. In fact, due
to LiteMat’s encoding properties, minclass(C,D) =
C ∧D where C and D are two LiteMat identifiers and ∧
corresponds to the logical conjunction operation.

Finally, theRTBox
2 query is computed with Algorithm

3 which uses the dictionaries of LiteMat. This
algorithm integrates the computation of the lca function
(from line 3 to 7) over two concepts present in two
different branches of the concept hierarchy. Recall that

5 https://jena.apache.org/

24

H. Naacke, O. Curé: On Distributed SPARQL Query Processing Using Triangles of RDF Triples

Algorithm 2: Compute query RTBox
1 with

LiteMat
Input: a property p, LiteMat’s range and domain

dictionaries
Output: a LiteMat concept identifier or null

1 r ← range(p);
2 d← domain(p)
3 if r==d then return d;
4 else if r>=d and d<upper(r) then return r;
5

6 else if d>=r and r<upper(d) then return d;
7

8 return null

Algorithm 3: Compute query RTBox
2 with

LiteMat
Input: a property p, LiteMat’s dictionaries
Output: a LiteMat concept identifier or null

1 r ← range(p);
2 d← domain(p)
3 led← locaEncoding(d);
4 ler ← locaEncoding(r)
5 shift←

encodingLength− minimum(led, ler)
6 lca = ((r � shift)and(d� shift))� shift
7 if lca!=d and lca !=r then return lca;
8

9 return null

some metadata are stored in the concept and property
dictionaries. Here, we are using the index of the start
of the local encoding of a concept. Intuitively, line 3
retrieves the start of the local encoding of the domain
and range of the property. The minimum of these two
values represents the encoding level at which these two
concepts have a common ancestor. Line 7 is responsible
for computing the LCA of these two concepts. In fact, it
performs a binary AND operation over the results of the
right bit shift over the two concepts and finally performs
a left bit shift over the result value.

4.4 Property/Concept Pair Catalog
Optimization

In this section, we consider that the following
BGP of a SPARQL Q has been submitted to
our system: ?x ρ ?y. ?x rdf:type D. ?y
rdf:type D. We will also consider that we may have
a pcCatalog entry containing with key ρ and a triangle
index entry key (ρ, rdf:type,rdf:type).

Lines 1 to 7 of the procedure described in Algorithm

Algorithm 4: Processing a BGP with a triangle
Input: pcCatolog pc

1 if lookup (p,1)==ρ then
2 if C ≡ D or C v D then
3 // triangle index-free execution of query

?x ρ ?y

4

5 else if D v C then
6 // use triangle index and LiteMat rewrite

the query
7 else
8 //answer set is empty

9 else
10 if lookup (p,2)==ρ then
11 if C ≡ D or C v D then
12 // triangle index-free execution query

?x ρ ?y

13

14 else
15 // answer set is empty

16 else
17 // use the triangle index

4 handle the optimization provided by the RTBox
1 query.

They enable to remove the two rdf:type triples of the
BGP in Lines 2 and 3, and permit a LiteMat rewriting
in Line 5. Otherwise, it is not possible to retrieve any
variable bindings for ?x and ?y and the result is thus
empty (Line 7). Lines 8 to 13 manage pcCatalog entries
computed from RTBox

2 . In that case, the optimization
also permits to remove the rdf:type triples and even
to directly return an empty answer set for that BGP part.
Line 15 considers the standard triangle index lookup (for
acyclic triangles containing two rdf:type properties)
when no entries are present for p in pcCatalog.

5 RELATED WORK

A large body of research has been conducted toward
improving the query evaluation of SPARQL queries. A
common aspect lies in the multiple indexing approach.
For instance, YARS2[6] is a distributed system that
supports six indexes over quads where the fourth element
is denoted as the triple context (i.e., C). The six indexes
thus correspond to SPOC, POC, OCS, CSP, CP and OS.
Hexastore[19] has six indexes over RDF triples, namely
SPO, SOP, PSO, POS, OSP and OPS. RDF-3X[15] adds
six indexes for pairs of elements (i.e., SP, PS, SO, OS,
OP, PO) and three indexes for single elements (i.e., S,

25

Open Journal of Semantic Web (OJSW), Volume 7, Issue 1, 2020

P and O). Nevertheless, these influential systems do
not consider complex triple pattern forms as indexing
entries, e.g., triangles of RDF triples.

CliqueSquare [4] aims at maximizing local joins,
but replicates the whole data set 3 times which is not
applicable to a main-memory approach. The S2RDF[16]
SPARQL processor is the system that certainly shares the
most features with our framework. In fact, both systems
are based on the Spark cluster computing framework
and they propose a data layout that mimics indexing.
Its modeling approach extends the vertical partitioning
approach proposed in [1]. In fact, the pre-processing
of S2RDF’s extended Vertical Partitioning (ExtVP) is
much more involved, in terms of required memory
footprint and computational cost, than our triangle
indexing. Moreover, S2RDF does not consider reasoning
during pre-processing and query evaluation. Hence,
we consider that our triangle structure approach is
orthogonal to S2RDF’s ExtVP, i.e., it could be integrated
into its indexing panoply of solutions.

The AdPart system [2] implements a main memory
SPARQL engine using MPI (Message Passing Interface)
data transfer and lacks fault tolerance (contrary to
Spark). AdPart uses a distributed semi-join operator
to limit data transfer for selective joins over large sub-
queries by combining adapted partitioned and broadcast
join variants. It could be interesting to study this new
operator within our framework.

Many papers consider efficient data placement to
speed up the query processing. [8] proposes a
survey of such partitioning approaches for the RDF
data model and SPARQL querying. Recently, the
Molecule Hash Cover method [9] has been proposed and
presents an interesting trade-off between scalability and
query execution performance. Our triangle partitioning
approach in the presence of bias can be considered as
a special case of data placement strategy where the
molecule represents a triangle and where the partitioning
is performed up a to certain threshold.

A recent work on indexing DFs [18] did not fit our
needs when we were designing our triangle index. The
main reason is that in [18] the set of rows associated with
a given key is not distributed across several partitions.
While this is an efficient design for highly selective
index entries, this is not appropriate in our case where
some entries are not selective enough, i.e., a triangle
pattern that can match millions of triangle instances.
Using [18], the instances associated with a given index
entry are grouped together in one partition, whereas it is
more efficient to distribute them across several partitions:
allowing to access them in parallel, as our triangle index
enables.

6 EVALUATION

We now detail the triangle index implementation on
top of the Apache Spark parallel computing platform,
evaluate the overhead of building such index, and the
benefit of using it for SPARQL query processing. Note
that building the pcCatalog has no overhead since the
TBox size is generally relatively small compared to the
ABox size.

6.1 Experiment Setup and Index
Implementation

We conducted an evaluation on two real data sets
Yago2 [7] and Yago3 [11] that respectively contain
4.5M and 12.4M fact triples, and 5.4 (respectively 24M)
rdf:type triples. We only consider fact triples having
object properties. The other triples having datatype
properties can not be involved in triangles since they can
not have out-going edges.

We implemented the triangle index such that it allows
for parallel query processing conforming to the Apache
Spark execution model. Index creation first consists of
processing the Acyclic and Cyclic triangle queries, cf.
Algorithm 1 which depends on the data bias. We report
with Figure 5 (respectively Figure 6) on the distribution
of the join keys in the result of the first join J1Acyclic

(respectively J1Cyclic).
We can see that for J1Acyclic the most frequent URI

is <United_States>. That URI is the subject of 6.3M
bindings out of 137M bindings in the query result i.e.,
it represents 4.5% of the entire result set. The bias is
even stronger for J1Cyclic where the most frequent key
is associated with 1.4B bindings which represents 37%
of the entire result set.

Such bias will slow down the parallel join evaluation
because the processor in charge of the most frequent
keys has to produce a large part of the whole result,
considering that each join key is handled by one
processor. In other words, the workload of computing
the join result is not balanced if the result size per
processor is lower than the result size associated with
of the most frequent key. For example, suppose we want
to process J1Cyclic using 50 processors; one processor
would produce 37% of the result instead of 2% in a
balanced situation free of bias. We say that the bias ratio
is 37/2 = 18.5 in this case.

In summary, to quantify the impact of the bias on
J1 queries we define the bias ratio as follows. Let C
be the number of cores allocated to process a join (i.e.,
the degree of parallelism is C). In a perfectly balanced
case, all the cores would produce the same amount of
result bindings. Thus the number of bindings per core
is |J1|/C. In case of bias, the core dedicated to the

26

H. Naacke, O. Curé: On Distributed SPARQL Query Processing Using Triangles of RDF Triples

Figure 5: Data bias in J1Acyclic

most frequent key is producing f bindings (as defined
in Section 3.3.1). So, the bias ratio is

biasRatio =
max(f, |J1|

C)
|J1|
C

We report the bias ratio on Figure 7 for several subsets
DK

bias of the Yago3 data set. DK
bias is the original Yago3

data set except the triples which join key is in the k most
frequent values of J1Cyclic (in red, dotted) and J1Acyclic

(in blue, crossed). The number of cores is set to C = 96
as in further experiments.

Figure 7 clearly shows that for J1Cyclic the most
frequent value may cause significant performance
degradation because a straggling task has to process 35
times more results than what is expected in a balanced
case. Not only the top-1 value has a great impact.
Also the other successive top-K most frequent values are
concerned: removing the top-12 most frequent values
still causes a straggling task with 5 times more results
than in a balanced case. The blue plot shows that
for J1Acyclic which is less biased, only the top-1 most
frequent value may slow the join processing down.
Finally, Figure 7 highlights a performance trade-off:
choosing a high K value allows for removing stragglers,
but on the other hand, it leaves aside a larger set of triples
having their join key among the top-K values and thus it
requires a longer additional time to process them. We
investigate this trade-off in the next Section.

Figure 6: Data bias in J1Cyclic

6.2 Impact of Bias on TA and TC Performance

The goal of this section is to empirically tune the optimal
k parameter for TA and TC queries over the large Yago3
dataset. We conducted this experimentation from 1 to 8
machines, each node having 12 cores and 20GB memory.

For TA, we vary k from 0 to 4. For each k, we process
the query either in a centralized setting i.e., 12 cores on
a single node, or on distributed settings, i.e., 48 and 96
cores on 4 and 8 nodes respectively. We report the TA
performance on Figure 8. For k = 0 the bias is not
taken into account whereas for k > 0 the k most frequent
values are processed separately.

The performance benefit from k = 0 to k = 1 is
25% for 8 nodes, 16% for 4 nodes, and 8% for a single
node. The performance results are consistent with the
preliminary analysis of subject frequencies shown on
Figure 7: for k > 0 the bias ratio is almost constant
and so are the query response times.

On Figure 9, we detail response times of the TA query
processed on both the biased (blue) and the unbiased
(red) parts. We can see that the predominant cost is
due to the large unbiased part of the dataset. Indeed,
processing the small biased part (i.e., 6.3M triples for
k = 0 to 13M for k = 4) out of 143M triples is less than
10% of the complete J1Acyclic result set.

The impact of bias is even higher for TC as shown
on Figure 10. For k = 0 which means ignoring bias,
the response times were 52 minutes with 8 nodes (96
cores) and above 1 hour with less nodes. Therefore they
have not been reported because they were considered
as intractable. Indeed, referring to Figure 6, the most
frequent value, i.e., <United_States>, generates 1.4B
bindings which is about one third of the entire J1Cyclic

result set being processed by only one core. This clearly

27

Open Journal of Semantic Web (OJSW), Volume 7, Issue 1, 2020

Figure 7: Bias ratio in J1Cyclic for increasing number
of most frequent keys removed

Figure 8: TA response time when splitting the dataset
at k

illustrates an unbalanced computation problem.
From k = 1 to k = 50, the response time

is decreasing rather fast and yields a convincing
performance improvement of 10x for 8 nodes and 8x
for 4 nodes. For higher k values, the response time
is decreasing more smoothly and tends to stabilize for
k > 200. Figure 10 also shows the benefit of using a
cluster engine to compute triangles in comparison with
a centralized setting: for k = 100 the performance gain
is 28% and 35% when using 4 and 8 nodes respectively.
Still, this benefit is far from a linear speed-up, one reason
is that the network communication dominates the join
computation, with little demand for CPU resources.

We bring more details about response times on
Figures 11 and 12 for the two distributed settings with
4 nodes (48 cores) and 8 nodes (96 cores) respectively.

On each figure, we report the times to process
the bias and unbiased parts of the dataset separately.
This highlights the bias/nobias trade-off: on one hand
processing a truncated and more uniform dataset, and

Figure 9: Detailed TA response times for the
biased/unbiased parts wrt. k

Figure 10: TC response time (log scale) when spliting
the dataset at k

on the other hand facing the overhead of completing the
computation with a larger biased part. Searching for
an optimal k value, one can conclude that a range of k
values in [150 − 250] yields near optimal performance.
Note that larger k values may cause a failure to
process the biased part because this corresponds to larger
broadcasted parts of the dataset that may exceed the
available memory at each node.

Finally, these figures demonstrate that biased data
occurring in knowledge graphs need careful attention.
These experiments also motivate the need for more
transparent query processing methods to handle biased
data in SPARQL query engines. Based on these
extensive empirical experiments, we set k = 1 for TA
and k = 100 for TC in Section 6.3.

6.3 Index Creation Time and Size

The experimentation goal is to assess the index creation
overhead in terms of time and size, and the scalability of

28

H. Naacke, O. Curé: On Distributed SPARQL Query Processing Using Triangles of RDF Triples

Figure 11: Detailed TC response time for 4 nodes

the approach when using the same cluster engine from 1
to 8 nodes as in the previous section.
TA and TC are hashMaps in the application driver,

with values TA[p] and TC [p] pointing to DFs persisted
in the cluster memory.

In the left part of Figure 13, we report on the index
creation time including the computation of Cyclic and
Acyclic results mentioned in Algorithm 1 for Yago2 and
Yago3.

Using a single node, the overall index creation time is
79 seconds for Yago2 and 130 seconds for Yago3.

The detailed processing times for TA, TC and inferred
TA resulting fromRABox

1 (Section 3.3) are also reported.
In the distributed case, the creation time drops down to
50 seconds for 8 nodes (96 cores). From 4 to 8 nodes, the
speedup is 1.6x for TA and 1.9x for inferred TA. The TC
speedup is only 1.2x because for the distributed cases
(4 and 8 nodes) most of the time is spent in shuffling
the result of the first join to the nodes, which implies a
predominant network cost.

The size of indexes created for Yago2 and Yago3
are presented in right part of Figure 13. The index
TA and TC contain 1.2M triangle instances and the
total number of different patterns, i.e., index entries, is
546. Their overall memory footprint is 47MB . This
represents only 16% of the KG restricted to triples with
object properties whose size is 296MB, and an even
smaller ratio compared to the entire KG including triples
with datatype property. Similar proportions have been
observed for Yago3.

6.4 Query Processing Performance

This evaluation also assesses the relative performance
benefit of accessing the index compared to accessing the
KG for triangle queries. We ran all the possible triangle
BGP queries where every node is a variable and with
non empty result sets, e.g., the two following BGP were

Figure 12: Detailed TC response time for 8 nodes

executed:
Q1: {?x isLocatedIn ?y. ?y
isLocatedIn ?z. ?x isLocatedIn ?z}
Q2: {?x created ?y. ?y
isLocatedIn ?z. ?x isLocatedIn ?z}

Using our approach, each query Qi is transformed
into an index probe Ii = TA[pi] with pi being bound
with the three properties mentioned in Qi. For instance,
p2 = (created, isLocatedIn, isLocatedIn) for Q2.
Then all the partitions of the DF Ii are scanned in parallel
to get the result of Qi. In comparison, we also run
the same queries without the index but still using an
optimized query plan that performs the joins efficiently.
Experiments are run on 1 machine with 16 cores and
20GB memory allocated to Spark engine.

Figure 14 reports the query response times of triangle
queries for 546 distinct acyclic patterns on Yago2. The
query response time includes the time to access every
binding of a result set. In the context of the Spark
lazy execution model, we use a Spark action that not
only counts the number of bindings but really reads the
content of every binding. The index performance gain is
ranging from 3x to 40x.

We now emphasize the relative benefit of the index
for selective queries that may already perform efficiently
without an index. To this end, we experiment selective
triangle BGP such that one variable out of three is bound
to a value. More precisely, we consider the worst case for
our index and target on a query Q′ that must benefit the
less from an index. Q′ is defined as the most selective
query issued from the less selective triangle BGP. We
analyzed the BGP cardinalities and choose the one that
matches the highest number of instances: it is the BGP
with p1 = p2 = p3 = locatedIn. Then, we bind the
subject of p1 and p2 with a value such that it maximizes
the query selectivity: among the instances, we choose a
node such that only one triangle contains this node value.
That condition holds for the node 2015_NBA. We get the

29

Open Journal of Semantic Web (OJSW), Volume 7, Issue 1, 2020

Figure 13: Creation time (left) and size (right) of TA and TC indexes

Figure 14: Query response time for Yago2 triangle
patterns

following Q′ BGP:
<2015_NBA> isLocatedIn ?y.
?y isLocatedIn ?z.
<2015_NBA> isLocatedIn ?z.

The response time of Q′ is 351ms using the TA index
and 1853ms when accessing the KG directly without any
index. We conclude that our index brings a speedup of at
least 5x making it useful in practice.

7 CONCLUSION

We introduced a set of solutions for the efficient
management of RDF data sets where triangle patterns
are frequently occurring. Our data structures and
algorithms tackle important management issues such
as indexing, query processing and reasoning. This
approach is orthogonal to existing solutions which solely
consider indexing single triples instead of groups of
them. Our evaluation was conducted in a scalable,
parallel computing setting over two large real-world data
sets and emphasized improvement of query processing
of up to two orders of magnitude with a limited memory

footprint overhead and relatively fast index creation. As
future work, we are considering other data management
issues where triangles of RDF triples can provide
some benefits, e.g., data cleansing and curation, KG
enrichment and recommendation services.

REFERENCES

[1] D. J. Abadi, A. Marcus, S. Madden, and
K. J. Hollenbach, “Scalable semantic web data
management using vertical partitioning,” in VLDB,
2007, pp. 411–422.

[2] R. Al-Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis,
Y. Ebrahim, and M. Sahli, “Accelerating SPARQL
queries by exploiting hash-based locality and
adaptive partitioning,” VLDB J., vol. 25, no. 3, pp.
355–380, 2016.

[3] O. Curé, W. Xu, H. Naacke, and P. Calvez,
“Litemat, an encoding scheme with RDFS++ and
multiple inheritance support,” in The Semantic
Web: ESWC 2019 Satellite Events - ESWC 2019
Satellite Events, Portorož, Slovenia, June 2-6,
2019, Revised Selected Papers, 2019, pp. 269–284.

[4] F. Goasdoué, Z. Kaoudi, I. Manolescu, J. Quiané-
Ruiz, and S. Zampetakis, “Cliquesquare: Flat
plans for massively parallel RDF queries,” in IEEE
ICDE, 2015, pp. 771–782.

[5] Y. Guo, Z. Pan, and J. Heflin, “Lubm: A benchmark
for owl knowledge base systems,” J. Web Sem.,
vol. 3, no. 2-3, pp. 158–182, 2005.

[6] A. Harth, J. Umbrich, A. Hogan, and S. Decker,
“YARS2: A federated repository for querying
graph structured data from the web,” in The
Semantic Web, 6th International Semantic Web
Conference ISWC 2007, 2007, pp. 211–224.
[Online]. Available: http://iswc2007.semanticweb.
org/papers/211.pdf

30

http://iswc2007.semanticweb.org/papers/211.pdf
http://iswc2007.semanticweb.org/papers/211.pdf

H. Naacke, O. Curé: On Distributed SPARQL Query Processing Using Triangles of RDF Triples

[7] J. Hoffart, F. Suchanek, and G. Weikum, “Yago2: A
spatially and temporally enhanced knowledge base
from wikipedia,” Artif. Intell., vol. 194, pp. 28–61,
2013.

[8] D. Janke and S. Staab, Storing and Querying
Semantic Data in the Cloud. Cham: Springer
International Publishing, 2018, pp. 173–222.

[9] D. Janke, S. Staab, and M. Leinberger, “Data
placement strategies that speed-up distributed
graph query processing,” in Proceedings of The
International Workshop on Semantic Big Data, ser.
SBD ’20. New York, NY, USA: Association for
Computing Machinery, 2020.

[10] J. Leskovec and R. Sosič, “Snap: A general-
purpose network analysis and graph-mining
library,” ACM Transactions on Intelligent Systems
and Technology (TIST), vol. 8, no. 1, p. 1, 2016.

[11] F. Mahdisoltani, J. Biega, and F. M.
Suchanek, “YAGO3: A knowledge base
from multilingual wikipedias,” in CIDR, 2015.
[Online]. Available: http://cidrdb.org/cidr2015/
Papers/CIDR15_Paper1.pdf

[12] S. Muñoz, J. Pérez, and C. Gutierrez, “Simple and
efficient minimal rdfs,” Web Semant., vol. 7, no. 3,
pp. 220–234, Sep. 2009.

[13] H. Naacke, B. Amann, and O. Curé,
“SPARQL graph pattern processing with
apache spark,” in Proceedings of Graph
Data-management Experiences & Systems,
GRADES@SIGMOD/PODS 2017, 2017, pp.
1:1–1:7.

[14] H. Naacke and O. Curé, “Triag, a framework based
on triangles of RDF triples,” in Proceedings of
The International Workshop on Semantic Big Data,
SBD@SIGMOD 2020, Portland, Oregon, USA,
June 19, 2020, 2020, pp. 3:1–3:6.

[15] T. Neumann and G. Weikum, “The rdf-3x engine
for scalable management of rdf data,” VLDB J.,
vol. 19, no. 1, pp. 91–113, 2010.

[16] A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic,
and G. Lausen, “S2RDF: RDF querying with

SPARQL on spark,” PVLDB, vol. 9, no. 10,
pp. 804–815, 2016. [Online]. Available: http:
//www.vldb.org/pvldb/vol9/p804-schaetzle.pdf

[17] R. Shearer, B. Motik, and I. Horrocks, “HermiT:
A Highly-Efficient OWL Reasoner,” in Proc. of
the 5th Int. Workshop on OWL: Experiences and
Directions (OWLED 2008 EU), A. Ruttenberg,
U. Sattler, and C. Dolbear, Eds., Karlsruhe,
Germany, October 26–27 2008.

[18] A. Uta, B. Ghit, A. Dave, and P. A. Boncz, “[demo]
low-latency spark queries on updatable data,” in
Proceedings of the 2019 International Conference
on Management of Data, SIGMOD Conference
2019, Amsterdam, The Netherlands, June 30 - July
5, 2019, P. A. Boncz, S. Manegold, A. Ailamaki,
A. Deshpande, and T. Kraska, Eds. ACM, 2019,
pp. 2009–2012.

[19] C. Weiss, P. Karras, and A. Bernstein, “Hexastore:
sextuple indexing for semantic web data
management,” PVLDB, vol. 1, no. 1, pp. 1008–
1019, 2008.

[20] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang,
and L. Liu, “TripleBit: a fast and compact
system for large scale RDF data,” PVLDB, vol. 6,
no. 7, pp. 517–528, 2013. [Online]. Available:
http://www.vldb.org/pvldb/vol6/p517-yuan.pdf

[21] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauly, M. J. Franklin,
S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-
memory cluster computing,” in 9th USENIX
Symposium on Networked Systems Design and
Implementation, NSDI, 2012, pp. 15–28. [Online].
Available: https://www.usenix.org/conference/
nsdi12/technical-sessions/presentation/zaharia

[22] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica, “Spark: Cluster
computing with working sets,” in 2nd USENIX
Workshop on Hot Topics in Cloud Computing,
HotCloud’10, 2010. [Online]. Available:
https://www.usenix.org/conference/hotcloud-10/
spark-cluster-computing-working-sets

31

http://cidrdb.org/cidr2015/Papers/CIDR15_Paper1.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper1.pdf
http://www.vldb.org/pvldb/vol9/p804-schaetzle.pdf
http://www.vldb.org/pvldb/vol9/p804-schaetzle.pdf
http://www.vldb.org/pvldb/vol6/p517-yuan.pdf
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets

Open Journal of Semantic Web (OJSW), Volume 7, Issue 1, 2020

AUTHOR BIOGRAPHIES

Hubert Naacke is an assistant
professor at Sorbonne
Université, Paris 6, France.
He is a member of the LIP6
CNRS research Lab. He has
published 4 journal papers,
over 40 papers in international,
peer-reviewed conferences on

databases, big data and the semantic web.

Olivier Curé is an assistant
professor at the Université Paris-
Est, France. He is a member of
the LIGM CNRS research Lab.
He has published 1 book, 5 book
chapters, 9 journal papers and
over 70 papers in international,
peer-reviewed conferences on
databases, big data and the
semantic web.

32

	Introduction
	Background Knowledge
	LiteMat
	Apache Spark

	Discovering and Indexing Triangles of Triples
	Cyclic and Acyclic Triangles
	Triangle Representation
	Discovery of Explicit Triangles
	Distributed Join in Presence of Biased Data
	Optimizing Acyclic and Cyclic Queries

	Discovery of Implicit Triangles

	Query Processing with a Triangles Index
	Inference-Free Triangle Query Processing
	Inference-Based Triangle Query Processing
	Efficient Computation of R1 and R2 Using LiteMat Encoding
	Property/Concept Pair Catalog Optimization

	Related Work
	Evaluation
	Experiment Setup and Index Implementation
	Impact of Bias on TA and TC Performance
	Index Creation Time and Size
	Query Processing Performance

	Conclusion

