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1. Introduction

Let Mn be the algebra of all n-by-n matrices over the complex field C and let I ∈ Mn

be its identity. One of the relations which is often used on Mn, both in pure and applied 
problems, is commutativity [13–16]. In the study of commutativity the notion of central-
izer (also called commutant) has an important role. For A ∈ Mn its centralizer, denoted 
by C(A), is the set of all matrices commuting with A, that is

C(A) = {X ∈ Mn : AX = XA},

and for a set S ⊆ Mn its centralizer, denoted by C(S), is the intersection of centralizers 
of all its elements, that is

C(S) = {X ∈ Mn : AX = XA, for every A ∈ S}.

The Centralizer Theorem (see [6], p. 113, Corollary 1, or [16], p. 106, Theorem 2) states 
that C(C(A)) = C[A] where C[X] ⊆ Mn denotes the unital algebra spanned by X ∈ Mn. 
It is well known that the central elements of Mn are the scalar matrices, C(Mn) = {αI :
α ∈ C}.

The centralizer induces an equivalence relation, ∼, and a preorder relation, �, on 
Mn:

• A and B are C-equivalent, A ∼ B, if C(A) = C(B),
• A � B if C(A) ⊆ C(B).

For a preorder � on Mn we say that:

• a non-scalar matrix A is minimal if for every matrix X with C(X) ⊆ C(A) it follows 
C(A) = C(X),

• a non-scalar matrix A is maximal if for every non-scalar matrix X with C(X) ⊇ C(A)
it follows C(A) = C(X).

The characterization of minimal and maximal matrices in Mn is known. For minimal 
matrices the classification consists of several equivalent conditions, we list only a few of 
them.

Proposition 1.1 (see [4]). For A ∈ Mn the following statements are equivalent.

(1) A is minimal.
(2) A is nonderogatory, i.e., the minimal polynomial of A equals its characteristic poly-

nomial.
(3) C(A) = C[A].
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For maximal matrices, the characterization is as follows:

Proposition 1.2 (see Lemma 3.1 in [9]). A matrix A ∈ Mn is maximal if and only if it 
is C-equivalent to a non-scalar idempotent or C-equivalent to a non-scalar square-zero 
matrix.

It is our aim to classify doubly stochastic matrices, denoted henceforth by Ωn ⊆ Mn, 
with extremal centralizers. Recall that a doubly stochastic matrix is a square matrix of 
nonnegative real numbers with each row and column summing to 1. It is well-known (see, 
e.g. [8, Theorem A.2]) that Ωn is a convex closure of the set of permutational matrices. 
Doubly stochastic matrices are important in the study of Markov chains, combinatorics, 
statistics and probability [1,7,10,11]. Matrices that commute with doubly stochastic ma-
trices are the subject of several papers, see for example [2] and [12]. In particular, in 
graph theory a graph G with adjacency matrix A is called compact if A commutes with 
every doubly stochastic matrix.

The main results of our paper is a complete classification of maximal doubly stochastic 
matrices and matrices which are maximal when their centralizers are restricted to doubly 
stochastic matrices. Unlike for maximal matrices, the set of minimal doubly stochastic 
matrices is open (see Remark 3.8) and consists of nonderogatory doubly stochastic ma-
trices. Therefore no further classification of minimal doubly stochastic matrices is given.

2. Matrices with maximal centralizers

We begin this section with a characterization of the maximal doubly stochastic matri-
ces. Recall that in a doubly stochastic matrix P every entry lies in the interval [0, 1] ⊆ R. 
Also, it is a trivial observation that an entry-wise nonnegative matrix M is doubly-
stochastic if and only if M1 = 1 and 1TM = 1T , where 1 = [1 . . . 1]T is a column vector 
of ones and XT denotes a transposition of (possibly non-square) matrix X.

Theorem 2.1. A non-scalar matrix M is maximal doubly stochastic if and only if

M = I − α(I − P ),

where P = [pij ] �= I is a doubly stochastic idempotent and α ∈ R satisfies 0 < α ≤
min

{
1

1−pii
: pii �= 1

}
.

Proof. If

M = I − α(I − P ),

with P an idempotent doubly stochastic matrix and α as in the statement of the theorem, 
then M is C-equivalent to a non-scalar idempotent and so by Proposition 1.2, M is 
maximal. Also, pij ≥ 0 implies that the off-diagonal entries of M are nonnegative. 
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Moreover, P is doubly stochastic so pii ≤ 1 and then the assumption on α gives that 
diagonal entries of M are also nonnegative. Since clearly M1 = 1 and 1TM = 1T we 
see that M is doubly stochastic.

Conversely, suppose that M is a maximal doubly stochastic matrix. Then by Propo-
sition 1.2, M is C-equivalent to either a square-zero matrix or an idempotent matrix.

In the first case M = λI + N , where N is a square-zero matrix. Since M is doubly 
stochastic,

1 = M1 = (λI + N)1 = λ1 + N1.

Then

N1 = (1 − λ)1

and as N is square-zero we conclude that λ = 1 and M = I + N . Also, Tr(N) = 0 and 
each diagonal entry of N = M−I is non-positive since M is doubly stochastic. Therefore 
each diagonal entry of N equals zero and each diagonal entry of M = N + I equals one. 
Since M is doubly stochastic this gives M = I, a contradiction.

In the second case M = λI + μQ with μ �= 0 and Q a non-scalar idempotent matrix. 
Clearly, the spectrum of M equals {λ, λ + μ}. Since M is doubly stochastic, 1 is also its 
eigenvalue. Hence

λ = 1 or λ + μ = 1. (1)

In addition, since M ≥ 0 entry-wise,

0 ≤ Tr(M) = λTr(I) + μTr(Q) = λn + μ rank(Q). (2)

Then, (1)–(2) imply λ, μ ∈ R. By the Perron–Frobenius theorem for nonnegative matri-
ces, the spectral radius ρ(M) is an eigenvalue and the corresponding eigenvector x can 
be taken entrywise nonnegative. Multiplying Mx = ρ(M)x by 1T on the left, we get

1Tx = 1TMx = ρ(M)1Tx

and hence ρ(M) = 1. Therefore, as the spectrum of M equals {λ, λ +μ} ⊆ R, we obtain 
the following: if λ = 1 then μ < 0 and if λ + μ = 1 then μ > 0. So,

M = I − α(I − P ),

where P = Q and α = μ > 0 if λ + μ = 1, and where P = I − Q and α = −μ > 0 if 
λ = 1. In both cases P is an idempotent matrix. We are going to prove that P is in both 
cases a doubly stochastic matrix.

Since M = I − α(I − P ) is doubly stochastic and α > 0, the off-diagonals entries of 
P = [pij ] are non-negative. Let i ∈ {1, . . . , n}. Then
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pii = p2
ii + ε, where ε =

∑
1≤k≤n

k �=i

pikpki ≥ 0

and we conclude that p2
ii ≤ pii. Consequently, 0 ≤ pii ≤ 1. Moreover,

1 = M1 = (I − α(I − P ))1

easily implies P1 = 1 and likewise 1TM = 1T implies 1TP = 1T so P is doubly stochas-
tic. The condition that 0 < α ≤ min

{
1

1−pii
: pii �= 1

}
follows easily by comparing the 

diagonal entries in equation M = I−α(I−P ) and using that M is doubly stochastic. �
We let 1 = 11T be the matrix full of ones. When its size is important, we shall write 

1k to denote the k-by-k matrix full of ones.

Remark 2.2. The characterization of the idempotent doubly stochastic matrices is known 
(see [3,5] or [8, Theorem I.2.]): If Q is a doubly stochastic idempotent, then Q is permu-
tationally similar to a block-diagonal matrix

( 1
k1

1k1)
⊕

( 1
k2

1k2)
⊕

. . .
⊕

( 1
kp

1kp
)

for some positive integer p and some positive integers ki.

Now it is easy to characterize which permutation matrices are maximal. We denote 
by Sn the symmetric group of degree n. If σ ∈ Sn we let P (σ) be the corresponding 
permutation matrix.

Theorem 2.3. Let σ ∈ Sn. Then P (σ) is maximal in Mn if and only if σ is a product of 
disjoint transpositions.

Proof. Assume that σ ∈ Sn is the product of disjoint transpositions. Then P (σ)2 = I

and so P (σ) = I − 2P where P = 1
2 (I − P (σ)) is an idempotent. By Proposition 1.2, 

P (σ) is maximal.
Conversely, assume that P (σ) is a maximal matrix. Then by Theorem 2.1 there is an 

idempotent doubly stochastic matrix P such that

P (σ) = I − α(I − P ), α > 0.

Clearly, P (σ) is not an idempotent, so α �= 1. Note that each row and column of P (σ) has 
only one entry different from zero. Hence, each row and column of P = 1

αP (σ) − (1−α)
α I

has at most two nonzero entries and one of them is in the main diagonal. Let i ∈
{1, . . . , n}. Now, if P has just one nonzero entry in the i-th row, then it is in the main 
diagonal. Since P is a doubly stochastic matrix this entry is 1. If P has two nonzero 
entries in the row i, then according to a classification of doubly stochastic idempotents 
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given in Remark 2.2, these two entries are equal to 1
2 . At least one row of P does contain 

1
2 for otherwise, P = P (σ) = I, a contradiction. This implies that α = 2, and hence σ is 
a product of disjoint transpositions. �

Recall that every doubly stochastic matrix is a convex combination of permutation 
matrices. However, not every maximal doubly stochastic matrix can be obtained as a 
convex combination of maximal permutation matrices.

Example 2.4. There exists a maximal doubly stochastic matrix which is not a convex 
combination of maximal permutation matrices. To see this, consider the doubly stochastic 
idempotent P = 1

313. By Theorem 2.1 the matrix

M = I − 4
3 (I − P ) = 1

9

[1 4 4
4 1 4
4 4 1

]

is maximal doubly stochastic. By Theorem 2.3 the only maximal permutation matrices 
are P (12), P (13), and P (23). So, if

M = α1P (12) + α2P (13) + α3P (23), αi ∈ [0, 1],
∑

αi = 1,

then it easily follows that α1 = 1/9 and α1 = 4/9, a contradiction.

With the next example we show that the polytope of the doubly stochastic matrices 
has two adjacent vertices that are maximal matrices. However, the edge between them 
only has minimal matrices.

Example 2.5. There exist two maximal doubly stochastic matrices such that the entire 
line between them consists of minimal matrices. Namely, as noted in Theorem 2.3, the 
matrices P (12) and P (13) are maximal. But the doubly stochastic matrices

Bt = tP (12) + (1 − t)P (13)) =
[ 0 t (1−t)

t (1−t) 0
(1−t) 0 t

]
, t ∈ (0, 1),

are minimal. Namely, the characteristic polynomial of Bt equals p(λ) = (λ − 1)(1 − 3t +
3t2 − λ2). The zeros of the second factor equal

λ2,3 = ±

√
3
(
t− 1

2

)2

+ 1
4

and are clearly distinct for each real t, and also distinct from 1 if t ∈ (0, 1). Hence, for 
t ∈ (0, 1) the matrices Bt have three distinct real eigenvalues (one of them is 1), so they 
are nonderogatory and hence minimal.
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3. Maximal centralizers within doubly stochastic matrices

Within this section we will investigate the following more restricted problem: What 
are the doubly stochastic matrices with maximal centralizer within the set of doubly 
stochastic matrices? We will require the following well-known fact (recall that 1 denotes 
the column vector full of ones). We give a hint of the proof for the sake of convenience. We 
acknowledge that the main idea came from http :/ /math .stackexchange .com /questions /
70569 /span-of-permutation-matrices.

Lemma 3.1. The algebra generated by doubly stochastic matrices is the same as their 
linear span and equals the space of all matrices with 1 as a right and 1T as a left eigen-
vector.

Proof. The first part follows since doubly-stochastic matrices are a convex hull of per-
mutation matrices (see [1]), which are closed under multiplication. For the last part, 
a doubly stochastic matrix has 1 as a right and 1T as a left eigenvector. Same then holds 
for each matrix from LinR(Ωn) (here and throughout, given a set Ξ ⊆ Mn, we denote 
by LinR(Ξ) the smallest real vector subspace of Mn which contains Ξ) which bounds 
above its dimension to dim LinR(Ωn) ≤ 1 + (n − 1)2. Conversely, one can check that the 
1 + (n − 1)2 permutation matrices coming from the permutations id, (1, r), (1, r, s) for 
1 �= r �= s �= 1, are linearly independent. �

With the help of the previous result we can prove the following lemma, which will be 
used several times in the sequel.

Lemma 3.2. There exists orthogonal matrix U ∈ Mn(R) such that

UTΩnU ⊆ 1 ⊕Mn−1(R).

Moreover,

UT (LinR Ωn)U = R⊕Mn−1(R).

Proof. There exists a real orthogonal matrix U whose first column equals 1√
n
1. Hence, if 

e1, . . . , en is a standard basis of column vectors in Rn then Ue1 = 1√
n
1. Since UT = U−1

we see that if A is doubly stochastic, then UTAUe1 = e1 and eT1 U
TAU = eT1 , wherefrom 

UTAU ∈ 1 ⊕Mn−1(R).
To prove the last equality of the Lemma, note that every matrix A ∈ R ⊕Mn−1(R)

has (eT1 , e1) as a left/right eigenvector, hence UAUT has ( 1√
n
1T , 1√

n
1) as a left/right 

eigenvector. The equality then follows from Lemma 3.1. �

http://math.stackexchange.com/questions/70569/span-of-permutation-matrices
http://math.stackexchange.com/questions/70569/span-of-permutation-matrices
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Corollary 3.3. A doubly stochastic matrix A ∈ Mn, n ≥ 2, commutes with every doubly 
stochastic matrix if and only if

A = d1n + (1 − nd)I, d ∈
[
0, 1

(n−1)
]
. (3)

Proof. Let U be a unitary such that UTΩnU ⊆ 1 ⊕Mn−1(R). If A ∈ Ωn commutes with 
Ωn then clearly UTAU commutes with every matrix from UT (LinR Ωn)U = R ⊕Mn−1(R), 
wherefrom UTAU = 1 ⊕ (λIn−1) = λIn +(1 −λ)E11 for some scalar λ (here, Eij denotes 
the standard matrix unit). Thus, A = U(λI + (1 − λ)E11)UT = λI + (1−λ)

n 1n. This is 
entrywise nonnegative if and only if d := 1−λ

n ∈ [0, 1
n−1 ]. �

Here is a restatement of the previous Corollary.

Corollary 3.4. For a doubly stochastic matrix A one has C(A) ∩ Ωn = Ωn if and only if 
A = d1 + (1 − nd)I for some d ∈

[
0, 1

(n−1)
]
.

As another immediate corollary, obtained after choosing d = 1
n in Corollary 3.3:

Corollary 3.5. If a doubly stochastic matrix A ∈ Ωn commutes with B ∈ LinR Ωn, then 
A also commutes with 1

n1 − βB for every real β.

The lemma below is crucial to classify which doubly stochastic matrices have maximal 
doubly stochastic centralizer.

Lemma 3.6. Let A, B be doubly stochastic. Then C(A) ∩ Ωn ⊆ C(B) ∩ Ωn if and only if 
C(A) ∩ LinR(Ωn) ⊆ C(B) ∩ LinR(Ωn).

Proof. Assume C(A) ∩ Ωn ⊆ C(B) ∩ Ωn. Take any X ∈ C(A) ∩ LinR Ωn. Then, X is 
a real matrix so X̂ = 1

n1 − λX has all entries positive if λ ∈ R is sufficiently small, 
nonzero. As such, X̂ is doubly-stochastic, and hence, by Corollary 3.5, X̂ ∈ C(A) ∩ Ωn. 
By the assumptions then also X̂ ∈ C(B) wherefrom, again by Corollary 3.5, X ∈ C(B) ∩
LinR(Ωn). The converse implication is trivial. �

We say that a doubly stochastic matrix B has maximal centralizer within Ωn if

CΩn
(B) := C(B) ∩ Ωn = Ωn.

Such matrices were classified in Corollary 3.5.
We say that B has strictly maximal centralizer within Ωn if CΩn

(B) � Ωn and for 
every doubly stochastic X we have that CΩn

(B) � CΩn
(X) implies CΩn

(X) = Ωn. Below 
we classify those matrices.



H.F. da Cruz et al. / Linear Algebra and its Applications 532 (2017) 387–396 395
Theorem 3.7. A doubly stochastic matrix A has strictly maximal centralizer within Ωn if 
and only if A = d1 + (1 − nd)I + μQ where Q ∈ Mn(R) is a nontrivial idempotent with 
vanishing row and column sums and d, μ ∈ R are chosen so that A ≥ 0, entrywise.

Proof. Again choose a real orthogonal matrix U such that UTΩnU ⊆ 1 ⊕ Mn−1(R). 
Assume first A ∈ Ωn has strictly maximal centralizer within Ωn. Choose any matrix 
UTXU ∈ R ⊕Mn−1(R) such that

C(UTAU) ∩ (R⊕Mn−1(R)) � C(UTXU) ∩ (R⊕Mn−1(R)). (4)

By subtracting a suitable scalar matrix we can achieve that UTXU ∈ 0 ⊕Mn−1(R) while 
not affecting the property (4). Since U ∈ Mn(R) we have that X ∈ Mn(R). Hence, there 
exists a small enough positive number λ such that X1 = 1

n1n − λX has nonnegative 
entries. Recall that UT11TU = UT1nU = nE11 so UTX1U ∈ 1 ⊕Mn−1(R). Therefore, 
X11 = 1 and 1TX1 = 1T and hence X1 is doubly stochastic. Clearly, (4) holds for X1
as well (because UTX1U = E11 − λUTXU) and is equivalent to

C(A) ∩ LinR(Ωn) � C(X1) ∩ LinR(Ωn).

Lemma 3.6 then implies CΩn
(A) � CΩn

(X1) which due to strict maximality of A and 
Corollary 3.4 implies that X1 = d1n + (1 − nd)I for suitable d ≥ 0. We deduce that 
UTAU has maximal centralizer within R ⊕Mn−1(R).

Conversely, if UTAU ∈ R ⊕ Mn−1(R) has maximal centralizer within R ⊕Mn−1(R)
then, after subtracting form A a suitable scalar, multiplying the resulting matrix with 
small enough λ > 0 and adding 1

n1n we obtain a doubly stochastic matrix A1 with the 
same relative centralizer as A and by Lemma 3.6 A1 has strictly maximal centralizer 
within Ωn.

Therefore, it suffices to classify A ∈ Ωn such that C(UTAU) ∩ (R ⊕ Mn−1(R)) is 
maximal within 

(
R ⊕ Mn−1(R)

)
but not equal to 

(
R ⊕ Mn−1(R)

)
. With the help of 

Proposition 1.2 it is then easy to see that the solution is UTAU = 1 ⊕ (μP1 + νIn−1) =
νI + (1 − ν)E11 + μP for some nontrivial idempotent P = 0 ⊕ P1 ∈ 0 ⊕ Mn−1(R)
and suitably chosen real scalars μ, ν. Since Pe1 = 0 and eT1 P = 0 we get that A =
d1 + (1 − nd)I + μQ where d = 1−ν

n and where Q = UPUT ∈ Mn(R) is a nontrivial 
idempotent with Q1 = 0 and 1TQ = 0 (i.e., with vanishing row and column sums). �
Remark 3.8. The characterization of minimal doubly stochastic matrices is more in-
volved, since the set of minimal doubly stochastic matrices is open within Ωn.

To see this it suffices to show that the set of all nonderogatory matrices of Mn is 
open in Mn, or equivalently that the set of derogatory matrices is closed in Mn. Assume 
otherwise. Then, there would exist a nonderogatory matrix A which would be a limit of a 
sequence of derogatory matrices Am. Passing to a subsequence we could achieve that all 
their minimal polynomials would have a fixed degree k < n. Hence, minimal polynomials 
of a Am equal
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fm(x) = (x− λ1m)i1m . . . (x− λtm)it,m

for some index t = t(m) ∈ {1, . . . , k} and exponents i1,m, . . . , itm with sum equal to k. 
Since |λim| ≤ ‖Am‖ m→∞−−−−→ ‖A‖ we see that the coefficients of minimal polynomials are 
bounded. Passing again to a subsequence we can achieve that all coefficients of monic 
polynomials fm(x) converge so that minimal polynomials of Am also converge to some 
polynomial f(x) of degree k. By continuity, f(A) = lim fm(Am) = 0, hence A is not 
nonderogatory, a contradiction.

So, characterization of minimal doubly stochastic matrices would have to include, 

for example the matrices of the form given in (5) below. Let n = 3 and P :=
[

0 0 1
1 0 0
0 1 0

]
. 

Observe that P is cyclic, hence nonderogatory and so minimal. Since the set of minimal 
matrices within Ω3 is open, we see that

[
a b 1−a−b

1−c−d c d
d−a+c 1−b−c a+b−d

]
(5)

is a minimal doubly stochastic matrix provided that a, b, c, d are sufficiently close to 0
and each entry is nonnegative.
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