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ALMOST SURE INVARIANCE PRINCIPLES 
FOR LOGARITHMIC AVERAGES

I. BERKES and L. HORVÁTH

Dedicated to Endre Csáki on his sixtieth birthday

1. Introduction

Let X\,  X 2 , . . .  be independent, identically distributed random variables 
with EX\  =  0, EXf  = 1 and let Sn = X\  + • • • +  X n. By the a.s. central limit 
theorem (Brosamler [4], Schatte [15], Lacey and Philipp [11], Fisher [9])

(1.1) lim -— i  < x l  = ^»(x) a.s. for all x,
yv^oo log N  1 y/k J

where /  denotes indicator function and 4> stands for the standard normal dis­
tribution function. Several papers dealt with ‘logarithmic’ limit theorems of 
the type (1.1) and many generalizations of (1.1) have been obtained. In par­
ticular, the following theorem extends (1.1) for a large class of independent 
sequences:

T h e o r e m  A (Berkes and Dehling [2]). Let X i , X 2 , . . -  be independent 
random variables and (an) a positive numerical sequence such that setting 
Sn = X  1 H—  ■ +  X n we have

( 1. 2) E ^log log Sn 1 + Í

(n =  1,2, . . . )

(1.3) at/a k Z C ( l / k y  ( l Z k g l )
for some positive constants C, K , 6 and 7. Then for any bounded Lipschitz 1 
function f  on R we have

(1.4) um r A v E r  ( f ( - ) - El ( - ) ) = °yv-ioo logN \ \akJ \ak J )
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2 I. BERKES and L. HORVÁTH

Theorem A and standard properties of weak convergence (see e.g. Dudley
[7], Theorem 8.3) imply that under (1.2), (1.3) the relations

(1.5) lim -----— — l \  —  < x 1 =  <&(x) a.s. for all x
iV->oo log N  k ( a fc J

and
lim  ---- — — P<[ — < x  1 =  $(3:) for all x

N-* 00 log N  k \  ak J

are equivalent. In particular, a sufficient condition for the a.s. central limit 
theorem (1.5) is

Sn/an ^ N (  0,1).
Condition (1.3) is satisfied, e.g., if n~7an is nondecreasing or if an = n pL(n) 
where p > 7 and L is a slowly varying function.

The purpose of the present paper is to prove a.s. invariance principles 
corresponding to relation (1.4). Our first result is the following

T h e o r e m  1. Let X \ ,X ^ ,  • • • be independent random variables, f : R-rR  
a bounded measurable function and (an) a positive numerical sequence such 
that

( 1.6 ) E Sn a
< K (n =  1,2, . . . )

(1.7) E sup
m h

- f for C a - l' 2 ^ h < \

(1.8) ai/ a k ^ C ( l / k y  (1 gfcgJ)

(1.9) Xn  ■— Var £  \  f  (  C7(log N )6
kZN

for some positive constants K , C , a, ß, 7, Á satisfying

(1.10) a > 8, ß > 8 ,  A >5/6.

Then there exists a Wiener process W  such that

(L11) E j ( / ( S ) - ^ ( t ) ) = ^ ) + o ( 4 D  -

for some positive constant 77.
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COROLLARY 1. Under the conditions of Theorem 1 we have

<U 2 > V / 2 E i ( / ( | ) - ^ / ( g ) ) ^  " ( » • ')

(1.13) limsup (2AjvloglogA/v) 1/2 Y ] = 1 a-s--
N—yoo k<N™'' z ' '

The surprising feature of Theorem 1 is that the Wiener approximation
(1.11) (and thus the CLT (1.12) and LIL (1.13)) hold regardless the limiting 
behavior of S k / a For example, the conditions of the theorem are satis­
fied if X n are i.i.d. r.v.’s with symmetric stable distribution with parameter 
0 < p  < 2 and an = n 1/,p. (This special case is treated in Corollary 4 and 
in [3].)

Conditions (1.6) and (1.7) are very mild and are satisfied in most sit­
uations of interest. The bounds (1.10) for a,ß ,5  can be weakened but 
we made no effort to find the minimal values. (Actually, the proof of the 
theorem will show that the result is valid for any triple (a,ß,6)  such that 
min(a, /3) > 4/(35 — 2) and thus choosing 6 closer to 1 leads to weaker bounds 
for a, ß.) Condition (1.6) is trivially satisfied if Sn/an has bounded p-th mo­
ments for some p > 0 and (1.7) is valid if /  is a Lipschitz function or even if 
it is logarithmic Lipschitz, i.e.,

\ f(x + h) -  f ( x )  I ^  const • ^log ^  ( 0 < h < l )

with some ß>0.  Moreover, (1.7) is satisfied if /  is the indicator function of 
an interval and (X n) obeys

(1.14) supP < —  <  a + h ĵ ^  K  ^log ^  for Ca~1̂ 2 ^  h < 1.

In applications (1.14) can be verified by using standard concentration func­
tion inequalities (see the proof of Corollaries 2, 4). For example, (1.14) holds 
(even with KhP on the right-hand side) if X n are i.i.d. r.v.’s with EAd =0, 
E X 2 =  1 and an = y/n or if X n are i.i.d. r.v.’s in the domain of normal at­
traction of a symmetric stable law with parameter 0 < p < 2 and an =  n l 'p. 
Finally, (1.9) can also be shown to hold in a number of standard situations. 
For example, in Section 2 we shall see that (1.9) holds with ak — V k  if 
EXn =  0, E X 2 = 1 (n =  1, 2 , . . . )  and X 2 is uniformly integrable, i.e.,

sup E X 2I{\Xn\ ^ t ) - ^ 0  as t - too .
n

(1.15)
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This covers the i.i.d. case and leads to Corollaries 2, 3 improving and ex­
tending several earlier results in the field, in particular the CLT’s and a.s. 
invariance principles in [5], [10], [18]. It is also worth noting that if we 
strengthen (1.6) and (1.7) then the rate (log N ) 0 in (1.9) can be substantial­
ly weakened. In fact, we have the following

THEOREM 2. Let X \ , X 2 ,... be independent random variables, f - .R - ^ R  
a bounded measurable function and (an) a positive numerical sequence such 
that setting Sn =  X\  +  • • • +  X n we have

(1.16) E < K (n = 1,2,.. .),

(1.17) E sup / <,Kh? for h ^ C a n 1/2,

(1.18) at/a k ^ C ( l / k y  (1 EfcEZ),

:i,19)
2m + n  - , Q

Var E r /( - Zu(N)  for all

where K ,C ,p ,ß ,7  are positive constants and u  is a positive function with 
uj(N) —» +00. Let

( 1. 20 )

k<N y K

Then there exists a Wiener process W and a positive constant r) such that 
(1.11) holds.

We mention now a few consequences of our theorems. To simplify the 
formulas, let C denote the class of nonconstant Lipschitz functions, i.e., the 
set of nonconstant, bounded functions f  : R - > R  satisfying

\ f(x + h ) ~  f { x ) \ ^ K h ß (x ER,  h>  0)

for some ß > 0; let further T  denote the set of indicator functions of intervals 
(finite or infinite, but ^  R ).

C orollary 2. Let X i ,  X 2 , . . .  be i.i.d. random variables with EXi =  0, 
EX^ =  1 and let f  E CUT.  Then there exists a constant aj  > 0, a sequence
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Ajv ~  0 / k>g TV and a Wiener process W  such that (1.11) holds with ak = \/k. 
In particular, we have

(L21)

and

lim supß log N  log log log N ) - ' 12 E  \( f  ( ^ )  “ E/  ( ( | ) )

This extends earlier results of Csörgő and Horváth [5] and Horváth 
and Khoshnevisan [10] who proved (1.11) under the additional assump­
tion EX^(log(|AfiI +  l ) ) 1+<5 < +00 for some 6 > 0. We note also that in 
the case when X \ , X 2 , . . .  are independent random variables with P (X n = 1) 
=  P(X„ =  — 1) =  1/2 (n =  1 ,2 ,...)  and /  is an indicator function of an inter­
val, (1.21) was proved by Weigl [18].

The following result relaxes the assumptions of Corollary 2.

COROLLARY 3. Let X \ , X 2 , . . .  be independent random variables with
mean zero and variance 1 and set Sn = X\-\------ \-Xn. Let f  G C and assume
that (Xn) satisfies one of the following conditions:

(a) sup EX?J{\Xn\ ^ t ) ^ 0  as t —¥ oo,
n

(b) (Si -  Sk)/\A~—k N (0 ,1) as l - k - >  oo,

(c) (Sn — W (n ) ) /y/n 0 for some Wiener process W.

Then the conclusion of Corollary 2 holds.
As a comparison, note that the proofs of the a.s. approximation theorems 

in [5], [10] use invariance techniques and require the existence of a Wiener 
process W  such that

(1.22) Sn — W(n) — (^(Vriilogn)-1 - )̂ a.s.

for some g > 0. Condition (c) of Corollary 3 is similar to (1.22) but it is much 
weaker and, unlike (1.22), does not require the existence of any moments of 
X n beyond the second.

We note that condition (a) implies condition (b) by an extension of the 
Berry Esseen theorem (see [13], formula (5.26)).
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C orollary 4. Let X\ ,  X 2, . . .  be i.i.d. random variables with distribu­
tion function F satisfying

(1.23) 1 — F(x) ~  cx~a and F (—x ) ~ c x ~ a as x -^o c

where c > 0, 0 < a  < 2. Let f  £ £ U I  and let Xn  be defined by (1.20) with 
Ofc =  ^ 1//a- Then aj = \im (log N ) ^ 1 A/v exists and ifoffi^O then there exists
a Wiener process W and a positive constant 7 such that (1.11) holds with 
ak =  k l /a .

For additional information on aj  (including criteria for 07 7̂  0) we refer 
to [3].

2. Proofs

We begin with the proof of Theorem 1. Let (X n), (an), /  satisfy the 
assumptions of the theorem; without loss of generality we can assume that
l/l d i ­

lem m a  1. Let r <p <q be positive integers and

2 '<

x =  y , - f ( -' 1 V a,i=2P + 1 v

Then for any d^. 1 we have

2«
* '=  V  - f ( s ' - s *-

Z ---J n
= 2P + 1 CLn

E|X — X ' \d 5Í A\
1

{p — r)^1

where A\ is a positive constant* and 71 = m in (a ,ß). 

P r o o f . Set

' S l - S 2
Q(0 ' i f i - f

for 2p + l < i < 2 q.

Relation (1.8) implies that for any 2P ^ i ^  2q we have ai/a2r ^ C21 p̂ r) and 
thus by (1.6) we obtain

p (
S2r PhVI

T11csjAI S2r
V Q>i a2r > 2 2 (p r) 1 < const (p — r)c

* H ere, and  in the sequel, constants may depend on /  and the distribution of the  se­
quence (X n).
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Hence by (1.7) and |/ |  ^  1 we get,, setting h — const -2 r) and observing 
that h ^  const /y/äf by the estimates above,

E |Q (i)|^ E sup
m h

f + const •
1

(p — r)a
< const •

1

(P ~ r)71'

Thus observing that by | / |  ^  1 we have
2q

\X  — X'\  ^  2 £  - ^ 2  (q - p )  
i =2p +1 1

we obtain

E|X -  X'\d % const • (q -  p)d~' E\X - X ' \ £

1 V '  1 /  1 „
E  7 Sccmst' ( ^ T y : ( « - P >^ const • {q —p) d-i

(P I 7 l
i = 2 P + l

Lemma 2. Let

h  =

Then for any M  ^ 1, N  ^  1 we have

( 2 . 1)

( 2 .2)

/  M+N  \  2

E E =ClN*
V f c = M + l  /

M+N

E E ^C'n3
\k = M + 1 /

for some positive constant C\.
P roof. We prove (2.2); the proof of (2.1) is similar (in fact simpler). 

Clearly

( M + N  \ 4 M + N

E ** = E Ê  + 6 £  EJ?5j
fc=M +  l /  /a=AÍ +  l M + 1 ^ i < j ú M + N

+ 4 ^ 2  ESfőj +  12 E^Jjáfc
M + \ ^ i , j ^ M + N  M + 1 ^ i ^ í j ^ k i M + N

i f í j

+ 24 2  EM , <M ,=:S(1) + --- + S{5).
M + l ^ i < j < k < l ^ M + N
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By l/l ^ 1  we have |i„| ^  2 and thus

S (1) +  S {2) +  S(3) ^  A N 2, 

where A is a positive constant. Next we show 

(2.3) 5 (5) ^ A i7V3

where A\  is a positive constant. To this end we first prove that ií M  + 1£  
i < j  < k <1 + N  and at least one of j  — i and l — k is ^  V~N, then

(2.4) |E(5j<5j5fc<$i)| ^  const • TV-2 .

Assume, e.g., that j  — i^. y /N  and set

2J +  1

sh = E \{i
u=2J+l x

Using Lemma 1 we get

Si/ iŜ i+i
- E  /

Sy S21+1

E|(5j — <5* J ^ const ■
1

U - i -  l)71
< const -AT 71 < const • N  2

since 71 > 4 by (1.10). Similar estimates hold for E|A* — 5%, J , E|<5; — and 
thus

(2.5) lE f t i jM ,)  -  E ( < 5 t^ ^ / iL)| ^  const • N ~ 2

for all M  + l S i < j < k < l ^ . M  + N  such that j  — i ^  \ /N .  Observing 
that Si and are independent and Eő; =  0, we see that the second
expectation in (2.5) equals 0 and thus (2.4) is valid in the case j  — \ /N.
The case l — k^. V N  can be treated similarly.

Relation (2.4) implies th a t the contribution of those terms in S ^  where 
at least one of j  — i and l — k is greater than \ fN  is at most const • N 2. On the 
other hand, the contribution of the remaining terms is less than const • IV3 
since the number of 4-tuples (i , j ,k , l )  satisfying M  + l ^ i < j < k < l ^ 
M  + N,  j  — i S \ÍN, I — k ^  V N  is clearly at most N 3. Hence we proved
(2.3); a similar argument applies for and thus Lemma 2 is proved.

Let us divide [1, 00) into consecutive intervals Ai =  [pi, Qi], A x =  [p'x, q[], 
A 2t=[P2,92], A'2 =  [p ^ ,^ ],... where pi = l,p'k = qk and pk = q'k_v  We choose 
these intervals so that

|A*| =  [V/2], |AÍ| = [V]
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hold, where |A| denotes the length of the interval A and 1/4 fí r  < 1/2 
satisfies

(2.6) min(a,/3) > 2 /r , <5>2(r +  l)/3.

In view of (1.10), r  =  1/4 will do, but other values of r  are also of interest: 
for example, choosing r  close to 1/2 shows that for 6 close enough to 1, the 
value 8 in (1.10) can be replaced by 4. Set

By Lemma 1 we have for any integer d ^ 1

E l£fc — £l\d = const • --------1 : - {Qk-Pk)d
') ( P k - Q k - 1)71

^  const • A;2_7lT £  const • k *~2~e

and similarly

(2.8) E|% — Vk\d = const • kdT~'!* ^ const • k i~lxT ^ const • k*~2~e

for some e > 0 since 71 r > 2 by (2.6).

Lemma 3. We have
k

(2.9) -Era)  = 0 ( k (-T+l^2 logk) a.s..
2=1

PROOF. Applying (2.8) with d=  1 and using the monotone convergence 
theorem we get

OO

(2.10) ^ |(7? i-E 7? i)-(77 t- - E t/* ) |< + oo a.s..
i— I

Also, (2.8) with d = 2 and Lemma 2 give

h í  ~ E%ll ^ 11% -  E%ll +  0 (1) ^ const • h'k-Pk)^2 Ú const • kT/2
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where || • || denotes the L 2 norm. Thus

( 2 . 11)

Since the r.v.’s r/£ are independent with zero means, (2.11) implies that the 
series

is a.s. convergent and thus by the Kronecker lemma 

k

Together with (2.10), the last relation implies (2.9).
k

Lemma 4. Let =  )T) ([il//2] + [iT])- Then we have

for some g>  0.
P roof. Lemma 2 implies that

Var rji 5Í const ■ iT

and thus using (2.8) with d = 2 we get

Var rj* ^  const • iT.

Hence by the independence of the 77* it follows that

-  Er/*) = 0 ( k ^ 2 log k) a.s..

k
(2.12)

(2.13) Var

Using (2.13), the Minkowski inequality and (2.7), (2.8) with d =  2 we see 
that the first two of the quantities
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differ at most by 0{k^T+x^ 2) while the second and third differ at most by 
0 ( k ^ ~ e^ 2). Since the third expression in (2.14) equals Al/N2 , we proved that2 K

(2.15) V ar1/2 = A $  +  0(fc^+1)/2) =  A $ (1 + 0(AT*))

for some q > 0, where the second equality follows by observing that by (1.9),
(2.6) and Nk ~  const ■ A:3/2 we have

(2.16) A‘2  ^  const • (log2iVfc)Ä/2 i> const • k3S/4 i> const • (!+«')

for some e' >0. Since ££ are independent, (2.15) implies (2.12).
Lemma 5. There exists a Wiener process W such that

k i_
(2.17) ]T (&  -  E&) =  W ( \ 2Nk ) +  0 ( A2V )  o .5.

2 —  1

for some 77 > 0 . 

P roof. Let

Zi = $ -  E£ s i ^ m ;  - m 2)-
2=1

By Lemma 2 we have

(2.18) E(£fc -  E ^ )4 ^ const • (qk -  pk)3 Ű const • A;3/2
and thus applying (2.7) with d = A it follows that (2.18) remains valid if we 
replace f k -  Efk by f*k -  Ef*k. Thus

EZk 5Í const • A:3/2.

Also, by Lemma 4,

(2.19) sk = X2nk (1 +  0 (k ~ e)).
Thus using (1.9) we get for any 0 < i9 < 1, sufficiently close to 1,

___ +00
00 1 /■ 00 I r

E ^ 7  /  x2dP(Zk < x ) ^ Y 2 ~ M  /  ^dP(Zk <x)
k = 1 s * * := ibkX2> i f

1 00 a-3/2=E z w =const • E 3̂ -
fc= i -s* ■ ■k=  1 2"*

^  A:3/2 ^ ^  A;3/2 ̂const • E TPm = const ‘ E Tääi < +0°
*=i fc=i
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since the second relation of (2.6) and r  ^  1/4 imply <5 > 5/6 and thus we 
have 3i90 > 5/2 if ß is sufficiently close to 1. Thus using an a.s. invariance 
principle of Strassen ([17], Theorem 4.4) we get

k
(2.20) ]T (£* -  E £ ) =  W(sl) +  0 ( 4 1+tf)/2 log sk) a.s.

Z— 1

with some Wiener process W.  Now by (2.19), the relation const • (logiV)’5 ^  
An ^  const • (logiV) (cf. (1.9) and Lemma 2) and well-known properties of 
Wiener fluctuations (see, e.g., Csörgő and Révész [6], Theorem 1.2.1) we 
have

(2.21) IW (s2k) -  W ( \ 2Nk)\ = 0(A24 7 )  a.s.

for some constant rj > 0. Also, (2.7) with d = 1 and the monotone convergence 
theorem imply

(2.22) £ | ( & - E 6 ) - ( £ - E £ ) | < + oo a.s..
i=  1

Now (2.17) follows from (2.20), (2.21), (2.22), (2.19) and 0< 1 .
We can now easily complete the proof of Theorem 1. By Lemma 3 and 

Lemma 5 we get

=  W ( \ 2„k) +  0(A ^2-") +  0 { k ^ / 2 log k) 

= W ( \ 2Nk) + 0 ( \ 12/N2- r1') a.s.

for some rj > 0 by using (2.16). Now if 2Nk ^  N  < 2Nk+1, then the expression

differs from its value at N  = 2Nk by at most

/2"*+i , \
0  E  -  \ = 0 { N k+l- N k )  = 0 { k ll2) = 0 {N l , i )

\ i = 2 " k 1 J

= 0 ( ( lo g N )1' 3) = 0 ( \ t f - T1")
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for some r/" > 0 , where in the last step we used (1.9) and (1.10). Also, 
Minkowski’s inequality and (2.24) imply for 2Nk ^ N ^ 2 Nk+l

/2**+i , \
(2.25) |Ajv/2 - A ^ 2J  = 0  ( 7 =0(A^/ W ')

\ i = 2 " k  J
and thus we have 1/2 ^  X^/X2Nk ^  2 for k ^  ho■ Hence (2.25) yields

|Aat — A2Afj. I =  0(A ^ 1 )

and thus using again Csörgő and Révész [6], Theorem 1.2.1 we get 

|IV(AW) -  W (A2Nfc)| =  0 ( a.s.

for some 77"' > 0. Thus (2.23) implies (1.11), completing the proof of Theo­
rem 1.

P roof OF T heorem 2. Since conditions (1.16) and (1.17) of Theorem 2 
imply, respectively, conditions (1.6) and (1.7) of Theorem 1, in order to prove 
Theorem 2 it suffices to prove that the conditions of Theorem 2 imply (1.9). 
This statement is contained in Lemma 8 below; for the proof we need two 
auxiliary lemmas.

Lemma 6. Assume the conditions of Theorem 2 and let r < p < q be 
positive integers. Put

Then

(2.26)

' E H ' ' *
i=2P +  l v 

2«

E / ( -<2,;

*'= Ei=2P + l \  V 1 /  \  *

E |X -  A '|2 ^ c 12~C2(p- r)

where c\ and c<i are positive constants.
PROOF. Our argument is similar to that used in the proof of Lemma 1.

Put

- E  ) / ( § ) .  ^ E ) / ( ^ ) -
i= 2P + 1 * ,= 2-+ ! * V /

Since X  — X '  = (Y — Y')  -  E(T -  Y'),  it suffices to show that

(2.27) E | T - y , |2 ^ c i - 2 “ C2(p_r).
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By (1.16) we have

E S2r P
< const Ü2r

and thus by the Markov inequality

Ő2 > , / —  ) < const •
di

a 2r
di

p/2

Hence letting

Q(i) = f d{ f
St -  S2r h = (a2r /di)1/2

we get, using | / |  5Í 1 , (1.17) and the fact that h ^  con st/y ^ , 

E|Q(*)|2 = 2E|Q(i)|

(2.28) ^ 2E sup
1*1 SA

< const •

a;
d2r+  const • I —
di

p/2

d 2r
d i

for some constant 0>O. Now by (2.28)

2« 2q

U

2« 2« 1

E | y - y '|2 ^  E  E  ttE |Q (0Q 0‘)|

2q 2«
i=2v + l  j =2p + 1 

1
(2.29) ^  E  E  - (E Q ( t)2)1/2(EQ(j)2)1/2

i= 2 P + l j= 2P  +  l
2“ 2« ^

^ const-a^r E  E  .. g/2 g/2
i = 2 P + l j = 2 P + l l J a i a j

=  const•ae
2q

E
i= 2P + l

Relation (1.18) implies that for any 1

min di ii Ca2«
2n < i < 2 n+ 1

and thus on+1 on+1
V—v 1 1 1 1E 7^Econst--^ E 7^const--̂ -

i= 2 n +  l l a i a 2n i= 2 n +  l  1 a 2n
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Hence using (1.18) once more we get

1 ^  1

i=2P + l la i
e/2

n~p U2n

1 1 1< const, ■ — j- >  ------ -----7- < const ■ —j-.p/2 (2n-p)7-e/2 -  .e/2
u 2 P n=p v ' l 2 p

Substituting this into (2.29) and using (1.18) we get

E \ Y - Y ' \ 2 ^ const • ( — V  < Cl2 -C2(p~r)
\CL2P J

proving (2.27).

Lemma 7. Assume the conditions of Theorem 2 and let m < n < p < q 
be positive integers. Set

Then

2 1 /  
<- E  /

Si -  S2" \  [S i  -  S2n

|E ( ^ ) |^ c 3 | | í | | 2 - c^ p-" )

where c3,C4 are positive constants.
PROOF. This follows immediately from the previous lemma. Put

2"

V
i=2P+l

Clearly £ and r/ are independent and E£ =  E?/' =  0. Thus by Lemma 6

|E(£t7)I =  |E(£(i/ -  v'))\ Í  llfll h  -  rf II ^  c3||£|| • 2 ^ ^ ) .

Lemma 8. Assume the conditions of Theorem 2. Then for any 0 < e < 1 
there exists a constant c > 0 such that

2m +n

(2.30)
1

i=2M + l
Var - f  ( — ) ~tcNl £ for any M ^O , N^.1.
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PROOF. Clearly if (1.19) holds then it remains valid if we replace uj( N )  
by any 0 < ui\(N) ^  ui(N). Thus without loss of generality we may assume 
that to is nondecreasing and slowly varying. Hence given 0 < e < 1 we can 
choose No = N q(e) so large that

(2.31) 2uj{N)1/4/ uj([N/3])1/2 ^ e 2, u { N )1/4 ^  e2N/% ( N ^ N 0)

and

(2.32) w([JV/3])^l, C3.2 - C4̂ iV)1/4 l ^ e 2 (JV^JV0),

where C3 and C4 are the constants in Lemma 7. With No chosen, choose c > 0 
so small that

(2.33) u(k) ^  ck l—£ for l ^ k ^ N 0.

We shall prove by induction on N  that (2.30) holds for all M  ^ 0, N  ^  1.
By (2.33) and (1.19), relation (2.30) is valid for all M  ^  0 and 1 ^ 

^  N  Ú No- Let now N  > N q and assume that (2.30) is valid if N  is re­
placed by any 1 ^  N 1 < N  and M  ^ 1 is arbitrary. Assume, e.g., that N  is 
even; the argument is similar if N  is odd. Put

CLi

then

where

2M+N

S:= Y , Zi = Si+S2 + S3,
i=2m  +  1

2M+N/2-r(N)
S i =  E

i=2M + l

with

(2.34)

2M+N/2+r(N)

52= E &>
j=2M+N/2-r(N)+1

~(N) = [u(N)1' 4].

S3 =
2M + N

Ej_2M+AT/2+r(JV) + 1

By the induction hypothesis, (2.34) and the second relation of (2.31) we have

E S t ^ c
N

r(N)
1—e 1  — £

N 1 — £

and similarly

E5f
1 - e 4 1 —  £

N 1_e.
2
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On the other hand, using |/ |  5Í 1, the Minkowski inequality, (2.31), (2.34)
2n+l

and the fact that Y1 1/i ^ 1 for all n ^ 1, we get
i - 2" +  l

2M+N/2+r(N)

II ̂ 21| = E  j^ 2 r (7 V )S 2 W(7V)1/4
i_2M+N/2-r(W) + 1

^ £ 2u,([AT/3])1/2^ £ 2||S1||,

where the last inequality follows from (1.19) and N / 2 -  r(N)  ^  N/3  (which 
is valid by (2.34) and the second relation of (2.31)). Thus

|E5152|SI|S'1|| ||S2| |^ £ 2ES?

and similarly
|ES3S2| ^  £2ES?.

Finally Lemma 7, (2.32) and (2.34) imply

\ESxS3\ g e 2||Si|| ^ £ 2||Si ||2

since ||5i|| ^  1 by the last inequality of (2.35) and (2.32). Collecting now all 
our estimates, we get

ES2 ^  ES? +  ES? -  |2ESi S2| -  |2ES2S3| -  |2ESXS3|
^  ES? +  ES? -  2e2ES? -  2e2ES? -  2e2ES?

(2.36) / i _ c - 2\ i - e
^  (1 -  4c2) (ES? + ES?) ^  2c Í ——  j ( l-4 c 2)iV1- e

^  c7V1_£

provided

’ ( t T « * - * ’ » *

which is true for 0 <  £ ^  Eq since the derivative of the left-hand side at e =  0 is 
In 2 > 0. (2.36) completes the induction step and thus we proved the lemma 
for 0 < £ Si £o; clearly this implies the lemma for all 0 < e < 1.

P r o o f  o f  C o r o l l a r y  1. The approximation (1.11) trivially implies
(1.12) and by the LIL for W  it also implies the inequality ^  1 in (1.13). To 
prove the inequality ^  1 in (1.13) note that by the Minkowski inequality and
l/l ^  1 we have |A^2 j — Â ?2| ^ 2 which, together with (1.9), implies that 
A/v+ i /A/v —> 1. Thus for any a > 1 there exists a sequence of integers
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such that A/Vj. ~ a /c. By the standard proof of the LIL for Wiener process we 
have

lim sup {2\ivk log log Ajv*.) 1/2W  {XNk) -  e(a) a.s.,
N—> oo

where e{a) —> 0 if a —> oo. This implies the inequality ^  1 in (1.13).

P r o o f  o f  C o r o l l a r y  2. We will verify the conditions of Theorem 1 
with an — yjn. Since (1.16) and (1.17) imply (1.6) and (1.7), respectively, 
it suffices to check (1.16), (1.17) and (1.9). Clearly (1.16) holds with p = 2 
and (1.17) is also obvious if f  E L. To verify (1.17) for f  E X  we apply a 
concentration function inequality of Esseen (see, e.g., [13], Theorem 2.14) to 
get

(2.37) sup P
a

a < —7= < a 
y/n

Ah
7  ’  \  1/ 2  ’ 

( J x2dFs(x)J
|x|áhv/n

where A  is an absolute constant and F s is the distribution function ob­
tained from the distribution function F  of Ai by symmetrization. Since
+oo
J x2dFs(x) = 2, there exists a constant c > 0 such that the integral in

—oo
(2.37) is at least 1 for hilc /y /n ,  but then (2.37) implies (1.17) for /  EX  with 
ß  — 1. To complete the proof of Corollary 2 it remains now to prove the 
following

L e m m a  9. Let X i , X 2 , . . .  be i.i.d. random variables with EWi =  0, 
EX'f = 1 and let f  E CUX.  Then

AAr =  Var ^
k< N

~ O f  log N as N —> oo,

where cry is a positive constant depending on f .

PROOF. From an a.s. invariance principle of Major (see [12]) it follows 
that there exists a Wiener process W  such that

(2.38) (Sn — W ( n ) ) / \ / n —>0 in probability.

Also, the results of [10] imply that for any f  E L A X  (and in fact for a larger 
class of functions /  defined by conditions C1-C4 there)

(2.39) Ajv := Var £  L f
k < N

1

k'
~  af  log N as N  —> oo
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for some constant aj > 0 depending on / .  (Note that X*N = 0 if /  is constant, 
but this case is excluded in both L and I .)  Thus it suffices to prove that

(2.40) lim \*N/ \ u  = l.
N —y oo

To prove (2.40) we first note that above we verified (1.17) for any /  6 C U l  
and an = \fn\ observe also that

P{\Sk/ V i \ ^ h ) i h  for k <1, h = (k/l) 1/4

by the Chebyshev inequality. Thus using (1.17) and |/ |  ^  1 we get for any 
k < l

E
(2.41)

f ( *
J W i

f
Si -  s k

S i
ú E sup

m h " 7 , ) - ( $ , -
+ 2 h

^ const • (hß +  h) ^  const'

for some constants a  > 0, ß  > 0. Since for k < l the random variables Sk and 
Si — Sk are independent, using (2.41) and | / |  £  1 we get

( A
W i

(2.42) =  Cov ( /

g2E  /

Fix e > 0 and set

( i i )  j  ( -  r (
W H

Si
Vi

Vi 
s t - s k 

Vi

f Vi
< const •

(2.43)

Relation (2.38) implies that ckj — c*k ; —> 0 if min(fc, Z) —t oo and thus there 
exists an integer A=7A(e) such that

(2.44) \ckti-c*kß ^ e 2 for A ^ k < l .

Set also B  =  [1 /e], then for IV ^ A we get

N



20 I. BERKES and L. HORVATH

l/k^B

+2J L , « Cot(/ 0 I ) ’/ ( ; IA%k<l%N
l/k>B

V(J) j . \ ( 2) j .  \(3)_\u; I I \w—. a n  +  Ajy -T a n  .

Clearly X(N’ = 0(1) and by (2.42) 

A ^ ^ const ■
A^k<l^N

l/k > B
N

1
£.1-0/1 + 01

AT j  oo  ^  ^ 1

< const • —:—  > < const • > ——— /  ^  Z--1 — Q /  j  J  1+Q — Z_V d q£ . 1 —a  /  v / 1 + c  
fc=A l=Bk+l k=A B ak

^ const ■ i? Q log TV. 

Thus we get for TV TVq

(2.45) Av ,a -  2 J ]  ^ c fci<
A^k<l%N

1/k-gB

5i const • i? Q log TV.

In a similar fashion we get for TV ^ TV0

(2.46) AAU -  2 yy £ /4 , l
A gk< l^N

1/kfiB

^ const ■ 7? 0 log TV,

where X*N A is defined similarly as \ n ,a , just with replaced by W ( k ) .  Now 
by (2.44) ’

E
A^k<l^N

1/k-gB

kl \ck , l - c k,i\ <̂ £ 2 E
A<:k<l^N

l/k^B

1 ^ i 1
1  < e2 V ' i  V  - < £ 
w = 2— k * s  l ~

k=A k<l<Bkkl
2 ^ 1  B k

2 s  k ~ k  
k=A

^  const • Be2 log TV

which, together with (2.45) and (2.46), gives

(2.47) IAjv.a - A ^ I  ^  const-(e + e“) log TV for TV^TVo(e).
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By Minkowski’s inequality

(2.48) |A^2 -  Xlf y  =  0(1), l(A^)1/2 -  ( A ^ ) 1/2! =  0(1).

Now (2.40) follows from (2.39), (2.47) and (2.48).
P r o o f  o f  C o r o l l a r y  3. In the proof of Corollary 2 above the identical 

distribution of the X n was used only at two places: to verify (1.17) and to 
guarantee (2.38) which was needed, in turn, to show that

(2.49) Cfc,/ — c*k l —> 0 as min(fc, l) —> oo.

Since in Corollary 3 we assume /  G C under which (1.17) is trivially valid, 
it suffices to prove that under the conditions of Corollary 3 we have (2.49), 
where ckti and c*k t are defined in (2.43) and W  is an arbitrary Wiener process.

Clearly, (2.49) is valid under condition (c) of Corollary 3 and we also note 
that condition (a) of Corollary 3 implies condition (b) by a generalization 
of the Berry-Esseen inequality (see [13], relation (5.26)). Thus it remains 
to verify (2.49) under condition (b). To see this let us observe that the 
characteristic function of the vector (Sk/Vk, S[/\fl) (k < l) can be
written as

<Pk,l(t ’u) = E exp nEexp y,u l -  k Sj - S k 
I

and a similar formula holds for the characteristic function (p*k l of the vector 
(W(k)/y/k, W{l)/ \f l).  Using this observation, condition (b) and the fact 
that the variance of the r.v. (Si — Sk)/y/l — k is 1, we get easily that

(2.50) sup \ipk i(t,u) — (p*k [(t ,u)\— >0 as k < l , k —> oo

for any C > 0. Using a two-dimensional version of Esseen’s inequality (see 
[14]), (2.50) implies that

(2.51) s\ip\Fkti ( x , y ) - F k i (x ,y ) \ -^0  as k<l ,  k-+oo,
x,y

where Fkj and Fkl are the distribution functions corresponding to ipkti and 
ip*k l . Also, by Chebyshev’s inequality

(2.52) IJ dFkil( x , y ) í 2 T - 2, j j  d F^(x ,  y) Z 2T~2
(x,y)$A(T) (x,y)£A(T)

for any T > 0 , where A ( T ) is the square {|a:| ^T , |y| ^T }. Now (2.49) follows 
from (2.51), (2.52) and integration by parts.
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P roof of Corollary 4. We first show that (X n) satisfies (1.16) and
(1.17) with an = n }/a. Let Ya,c be a symmetric stable random variable with

OO

characteristic function exp( — p |i|a ), g = 2c f  y~a siny  dy. Relation (1.23)
o

implies (see, e.g., [8], p. 544) th a t X n are in the domain of normal attraction 
of Ya,c, he., Sn/ n l/a Ya ĉ. Hence [1], Theorem 6.1 implies

(2.53) supE
n \/oc < Too for any p < a,

i.e., (1.16) is valid. For /  G C relation (1.17) is obvious; to verify (1.17) for 
/  G l  we use the concentration function inequality in [13], Theorem 2.14 to 
get

(2.54) sup P [a <
n l/a < f l  +  /i ^

Ahv}l°

n f  x 2dFs
 ̂ \x\^hnl /a

(®))
1/2  ’

where A  is an absolute constant and Fs is the distribution function obtained 
from F  by symmetrization. Relation (1.23) implies (see [8], p. 271)

1 — F s (x) ~  2cx~a as x  —y oo

whence we get by integration by parts

I  x 2d F s{x) ~  const ■ t2~a as t —> oo
|i|St

and thus for = n ~ 1/2a the right-hand side of (2.54) is ^ const • ha/2.
Since for f  £ l  the left-hand side of (1.17) is bounded by the left-hand side 
of (2.54), relation (1.17) is valid for f  €l.

By Theorem 3 of Simons and Stout [16] there exists a symmetric stable 
process Va ĉ (i.e., a process w ith independent increments satisfying VrQ,c(0)=:0
and VatC(t) — PQ,c(s) =  (t — s ) l^aYa>c for all 0 ^  s < t < Too) such that 

(2.55) [Sn — V a ^ n ) ) / n l!a -TO in probability.

Let

A at := Var 1 /
IC<:N

In [3] it is proved that the limit

(2.56) a t — lim (\ogN)~l X*N
N - hx
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exists. Using (2.55) instead of (2.38), the proof of Lemma 9 can be repeated 
to give

~ = o(logJV) as /V—too,
and thus if aj  0 then (1.9) holds. Hence Corollary 4 follows from Theo­
rem 1.
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THE FIRST PASSAGE DENSITY OF THE BROWNIAN MOTION 
TO A LIPSCHITZ-CONTINUOUS BOUNDARY

Zs. BIRÓ and Gy. MICHALETZKY

Dedicated to Endre Csáki for his sixtieth birthday

A bstract

In this paper we are going to investigate the crossing probabilities of the Wiener 
process to a Lipschitz continuous boundary. Our method is similar to that one applied in 
Durbin [2] to differentiable boundaries. Also we are going to derive a differential equation 
for the crossing probabilities.

1. Introduction

Let W (u ) be the standard Wiener process on [0, +oo) and let a be a 
continuous function on [0,+oo). We are interested in the distribution and 
density of the first hitting time

ra =  inf{t I W(t) = a{t)}.

There are many papers dealing with this topic. V. Strassen [11] has shown 
that, if a is a continuously differentiable function, then ra has a continuous 
density. His proof is based on the following lemma: If a and b are piecewise 
continuous functions on [0, +oo) and t>  0 such that a ^  b in (0, t] and a ^  b 
in (i, t + 6) where <5 > 0, a and b are differentiable at t, then

lim sup
/i,/c—̂0-f-

' Fa(t + k ) - F a( t - h )  
h + k

Fb(t +  k) — Fb(t — h) 
h + k

where
F^(t) =  P[W (u) ^  ip(u) for some u € (0, t]].

A. A. Novikov [7] has given an estimation for the tail distribution of the 
first hitting time applying the Girsanov theorem. If the function a satisfies
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some smoothness conditions, and also conditions describing its increasing 
rate then

T

In P (ra > T ) =  —̂  J {a W d t ( l  + o(l)) T -> + oo.
S

P. Salminen [10] with similar methods has derived expressions for the first 
passage distribution and density. In J. Durbin [3], B. Ferebee [6], C. Park 
and S. R. Paranjape [8] one can find integral equations used to compute this 
density numerically.

We shall use the following notations:
I(W,a,  v ) =  /{sup [W(u) — a(u)] ^0};

[M
I C{W, a, v ) = I{W(u)  < a(u) \ u £ [0, u]};

I(W,  a, v, t) — /{sup [W(u) — a(u)] ^  0},
M

I C(W, a, v , t ) = I{W(u) < a(u) \ u G [v, t]},
where I{  } denotes the indicator function and I c =  1 — I. Denote p(t) the 
first passage density of W  (u) for boundary a at point t, then

(1) p ( t ) = l im - ^ —[P{t) -P(v)] ,
«tt t — v

if the limit exists, where P(z) = E[I(W,a,z)\. Thus p(t) = P[{t), where P[ 
denotes the left derivative of the function P . Obviously

P(t) -  P(v) = E[I(W , a, t) -  I(W, a, u)] =  E[IC{W, a, v)I{W, a, t)],
thus

p(t) — lim ----- E[IC(W, a, v ) I (W, a, f)],
utt t — v

if the limit exists.
R emark 1. If P  is an absolutely continuous function, then p exists a.e. 

(with respect to the Lebesgue-measure) and
t

P(t) = J  p(u)du, 
o

so p can be considered as a “density” function, although in general an un-
+ 00

normalized density, because, f  p(u)du is not necessarily 1. Kolmogorov-
o

Petrovsky-Erdös (cf. [5]) give a condition for the function a assuring that
+oo
f  p(u)du — 1.
0
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An explicit formula for this density was given by J. Durbin [3], namely

(2) p(t) = b{t)ft [a(t)},
where

b{t) = lim ~^— E[Ic(W, a, s) (a(s) -  W(s)) | W(t.) = a(t)]
stt t  — S

and

ft{x)
x 2 
21

is the density function of the distribution N(0,t).
This is a generalization of the Bachelier-Levy formula

(3 )  p L ( t ) = 1-m f t [L ( t )},

where L(t) t 6 [0, +oo) is a line, with L(0) > 0.
Durbin uses a very elegant but heuristic argument working with sets of 

zero probability, and in this way eliminating all the problems concerning 
differentiability and changing the orders of different operators such as limit 
and integration. In this paper we are going to prove (2) for a larger class of 
function.

In the first passage problems the boundary a is usually continuously 
differentiable, but we shall study a more general class of function.

D efinition 1. A function /  defined on [0,+oo) is called Lipschitz- 
continuous on finite intervals if for all 0 < m  < +oo the restriction of the 
function /  to the interval [0, m] is Lipschitz-continuous.

We shall use some further notations. Let Y, Z  be real random variables 
and denote f y ,  f y , z , fy \z  their probability density, joint density and con­
ditional density. For the sake of simplicity instead of fw(t) we are g°ing to 
use the notation ft- The notations f t tz , ft.\z have similar meanings. The 
function $  denotes the normal distribution function.

2. The first passage density

Lemma 1. If a is a Lipschitz-continuous function on finite intervals then 
the function P  — defined in (1) — is also Lipschitz-continuous function on 
finite intervals.

P roof. As P  is an increasing function, it is enough to show that for all 
m  there exists a constant Krn such that

P(t) — P ( v ) ^ K m(t — v) when O ^ v ^ t ^ m .
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Using the Lipschitz continuity of a there exists a constant Cm such that 
\a(x) — a(y) \^  Cm\x — y\ when 0 ^ x , y ^ m .

Let 0 | u < i ^ m b e  fixed points and
Lv(x) = a(v) -  Cm{x — v) a: 6 [0, t\.

Obviously,
a ( x ) ^ L v(x) if x G [0, v];
a { x ) ' tL v{x) if xE[v,t}.

Consequently,
I c( W , a , v ) i I c(W ,Lv,v);

I(W, a, v, t) Ű I (W ,Lv,v, t ) .
Thus

0 ^ P(t) -  P(v) = E[IC{W, a, v)I(W, a, i)] =  E[IC(W, a, v)I{W, a, v, t)} ^
t

ú E[Ic(W,Lv,v)I (W,Lv,v,t)\ =  I  pv{u)du,
V

where pv(u) is the first passage density of W  for the boundary Lv.
Thus

t

P ( t ) - P ( v ) Z  [  - L v(0)fu[Lv(u)]du.
J u
v

The function in the argument of this integral is continuous, therefore 

limsup —— [P{t) -  P(v)] ^ j L t(0)/t [Z-t (i)] =  y[a(f) + Cmt]ft[a(t)].
v / * t  t v  t  t

But if 0 < t Si m  then

j[a(t) +  Cmt]ft[a(t)] ^  2Cmf t[a(t)\,

and as a(0) > 0
lim i/,[a(()] =  0.

The function ft[a(t)] is continuous so taking

K m = 2Cm  sup f t[a(t)]
0 <t<m

we get that
P ( t ) - P { v ) Z K m( t - v ) .  □

Since Lipschitz continuity implies absolute continuity we get the following
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Corollary 1. If  the function a is Lipschitz-continuous on finite inter­
vals then P  is an absolutely continuous function.

Corollary 2. If  the derivative of the function P exists at t, then p(t) =  
P'(t) and

Pit) + Ctt}ft[a{t)}.

Corollary 3. Let 0 < e 5Í m  be fixed positive numbers. I f  0 <  e ^ x < 
y ^  m, then there exists a constant K  that

- ± - [ P [ y ) - P ( X) ] i K .
y - x

Let 0 <s f L v ú t  and consider the functions

Ps{t, v \ x)  = E[IC(W, a, v)I{W, a, t) | I C{W, a, s) = 1 ,X S = x] 
gs(x) = E[Ic(W,a,S) \ X s = x ] fx 3(x),

where X s = a(s) — VF(s) and f x s(x ) is the probability density of X s at x. 
(These functions are defined for almost all x values.)

P roposition 1. Let a be an arbitrary continuous function on [0,+oo), 
then

+oo

P { t ) - P ( v ) =  j  Ps(t ,v \x)gs(x)dx.
0

P roof.

P{t) -  P(v) = E [I C(W, a, s)I(W, a, i)] =

=  j  E [ I c(W ,a ,s ) I {W ,a , t ) \ r (W ,a ,s )  = l , X s = x \ x  
R

x E  [IC{W, a, s) I X s =  x] f x .  (x)dx+

+ j  E [ Ic(W ,a ,s ) I (W ,a , t ) \ I c{W,a,s) = 0 ,X s = x \ x  
n

x P [ I c(W,a,s) =  0 I X s =x] f x ,(x)dx.

Observe that

E[IC(W, a, s)I(W, a, t) \ I C{W, a, s) =  0, X s — x] = 0 for a.e. x, and 
E[IC(W, a, s) I X s =  x\ = 0 for a.e. x in the interval (—oo, 0).

So
+oo

P ( t ) - P ( v ) =  J Ps(t, v I x)gs(x)dx 
0
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which is the assertion of Proposition 1. □
D efinition 2. Let

ps(t I x ) =  lim sup----- Ps(i, v I x).
v f t  t ~ v

Using this definition we prove
P roposition 2. If  a is Lipschitz-continuous on finite intervals and the 

derivative of the function P  exists at t, then there
+oo

p(t )= J  Ps(t I x)gs(x)dx.
0

P roof. If P'{t) exists at t, then at this point obviously 

P'(t) = lim —— [P{t + (t -  v)) -  P{t)] =
v t t  t  — V

+oo

= lim inf / ----- Ps [t + (t — v), t \  x] gs(x)dx.
v f t  J  t  — V 

0
Thus applying the Fatou lemma we obtain that

+oo
(4) P ' ( t /  lim in f------Ps[t + (t — v), t \ x\gs(x)dx ^ 0.

J v f t  t — v 
o

Let
Ps{t\x) = E[I(W,a,t)  \ I c(W,a,s) = l , X s =x\  (s < t ).

This function Ps{t \ x) is increasing in t for every x, thus its generalized 
derivatives satisfy the following inequality:

limsup — [Ps(t I x) -  Ps(v I x)] ^  lim inf  ̂ --[Ps(v' \ x) -  Ps(t \ x)].
V/At t — v v ' \ t  v ' —t

Therefore (we remark that Ps{t, v \ x) = Ps(t \ x) — Ps(v | x), v < t)

(5)

+oo

/ lim sup----- Ps(t,v \x)gs(x)dx ^
J v f t  t - v  
0

+oo

< lim in f-----
v f t  t — v

Ps[t + (t — v), 11 x]gs(x)dx.
0
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From the Fatou lemma it would follow that
+00

( 6 )

Obviously,

limsup /  —- —P,(i, v I x)gs(x)dx ^
v / t  J t - v

o
+oo

Sí / lim sup----- Ps(i, v I x)gs(x)dx.
./ v / t  t - v

+oo

(7) limsup [  ——  Ps( t ,v \x )gs(x)dx = \ im—̂— [P (t) -  P  (v)] = P 1
V/'t J t - V  vjt t - V (t).

According to the inequalities (4), (5), (6) and the equality (7) we obtain that

+oo
P'(t)< I lim sup ------------Ps{t, v I x)gs(x)dx Ú

J v/'t t ~ v  0
+oo

Si /  lim in f— —  Ps[t + (t — v), 1 1 x\gs(x)dx Sí P '(i) ,
J v / t  t — v

so

+oo

p(t) =  P' { t )=  J  ps(t\x)gs(x)dx,

hence

pJ t  I x) =  lim sup------Ps.(í,u I x).
v / t  t - v

We have to show that the conditions of the Fatou lemma in the inequality (6) 
are fulfilled. We are going to prove that there exists a constant M  depending 
on s such that

- }— Ps{ t , v\x)gs{ x ) f i Mf xAx)i if -TT~< v < t .t — v 2

Ps( t ,v \x)ga(x) =
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= E[IC{W, a, v ) I ( W , a, i) | I C(W, a, s ), =  a] x
x £ [ T (W, a, s ) |X s =  * ] /* > )  =

£ [ /c(W, a, s ) / c(jy, a, u)/(W, a, t) \ X s =  x]
E[Ic(W ,a , s ) \X s = x] X

x £ [ f ( ^ a , s ) | J s ^ x ] /XsW  =
= E [/c(H ^,a,s)/c(VF, a, s,v)I{W,a,v,t) \ X s =x] fXs(x).

(If x > 0 then E[IC(W, a, s) \ X s = x] > 0 for a.e. x.)
Thus

Ps(t, v I x)gs (s) ^  E [IC(W, a, a, v)I(W, a, v, t) \ X S = x \fXs (x).

Since the Wiener process is a homogeneous Markov process, after a simple 
computation we obtain tha t considering the point (a, a(s) — x) as the new 
origin the conditional expectation can be expressed as follows:

E[IC(W, a, s, v)I(W, a, v, t ) \ X s =x] = E[IC{W, a * , v -  s)I{W, a*,t -  a)], 

where

a*(u) = a(s + u) — (a(s) — x ) , u£[0, +oo], (a: fixed).

E[IC{W, a * , v -  s)I(W, a*,t -s )]  = P*(t - s ) - P * ( v -  s),
and

P*(u)=E[I{W,a*,u)}
the crossing probability defined for the function a*.

If x  > 0, then the function a* satisfies the conditions of Corollary 3. It 
follows that — if v is sufficiently near to t, for example p p  ú v 5Í t —, then 
there exists a constant K , which is independent of x such that

E[IC(W , a, s, v)I{W, a, v, t ) \ X , = x ]  = P*{t - s ) - P * { v - s ) i  K(t  -  v),

But then there obviously exists a constant M,  such that

E[IC(W, a, s, v ) I (W , a, v , t) \ X s = x] Ú M ( t  — v) s ^ v ^ t .

Thus

——  Ps(t, V I x)gs(x) £ M f Xs (x).t — V

The inequality
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+ o o

/ M  f x s (x)dx f i  M  <  + o o

gives that the Fatou lemma could be applied in (6). □
Now we would like to approximate the function a by a suitable chord 

and show that the first passage probability density of this new function 
approximates p{t). So let us define a function ä:

a(u) =
a(u), if u G [0, s] 

if u G (s, t).a{s) + j — [a{t) -  a(s)]{u -  s ),

We shall show that
lim ps(t)=p{t),
s j t

if P'(t) exists at t , where ps denotes the first passage probability density of 
W  for boundary ä.

Let

Ps(t, v \x )  = E[IC(W, a, v)I(W,  ä, t) I I C(W, ö, s) = 1, X s = x).

Obviously, ä(s) =  a(s), a(t) = a(i), and I C(W , ä, s) = I C(W, a, s), respectively. 
Let us denote the chord by L:

L(u) =  a(s)-|------- [a(t) — a(s)](u — s), and let
t — s

P s { t \ x ) =  <

lim su p —-—Ps(t ,v \x ),  if x > 0
v / ' ' t  t  ^

0, if x = 0.

P roposition 3. Let a be a Lipschitz-continuous function on finite in­
tervals, with a(0) >0, then

ps{t I x) = lim —Í—ps{t, v \ x )  = ----- x f s(t I x),
v \ t  t — v t — s

where

fs( t \x)  = f t\x3[a(t)\x].
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PROOF. Let s < v  < t  and x > 0, then

E[Ic{W ,ä ,v ) I (W ,ä , t ) \ I c(W,a,s) = l , X s =x] =
E[IC(W, a, s ) I c{W, ä, s, v)I(W, ä, v, t ) \ X s = x] 

E [ E ( W ,a , s ) \X s = x\
E[IC(W, a, s, v)I(W,  Ö, v, t ) \ X s = x]

= E [ n W , a , s ) \ X s = x 1 E[Ic{w^ s ) lX s = x ]

= E[IC(W, L, s, v ) I (W ; L, V, t) \ X , =  x],

where we have used that W  is a Markov process and a(u) = L(u) if s ^ u ^ t. 
As earlier

E[IC{W, L, s, v)I(W, L, v , t ) \ X s =x] = E[IC(W , L* ,v — s)I{W, L * , t - s )], 

where

Thus

L*(u) = L(s + u) — [a(s) — x\ 0 ^ u ^ t  — s.

ps(t I x) =  lim sup —— £ [ /c(IT, L*,v — s)I(W, L*,t -  s)] = 
n/V * -  V

= lim - i - M / W ,  L * , v -  s)I(W, L*,t — s)\ =
u t t t  — V

t — S 
1

t — s

L*(0)ft-s[L*(t — s)] =  

x / i_ s[a(i) -  (a(s) — a:)].

But
ft-s[a(t) -  (a(s) -  s)] =  ft\s[a{t) \ a{s) - x ]  = f t\Xs [a{t) | s],

therefore
ps { t \x )  = — - x f t\xs [<*(*) I • □

Corollary 4. ps( t ) , s  < t ,  always exists and

+ o o

P s ( t ) =  j  Y ^ x f s ( t \ x ) g s ( x ) d x .

R emark 2. It can be easily proved that

f s ( t  I x )  — f w ( t ) \ I c(W,a,s),Xa ( a ( t ) 11)®)»
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where

f w ( t ) \ I c(W,a,s),X,(a (í) |l,z )  =  —  P[W(t) < y\Ic(W,a , s) =  1, X s =x\
y=a(t)

Remark 3. We would like to emphasize — as we have seen in the proof 
of Proposition 3 — that

ps(t I x) =  j^—̂ xft-s[a(t) -  (a(s) -  a;)].

Lemma 2. Let a be a Lipschitz-continuous function on finite intervals, 
with a(0) > 0 and t  G [0, -f oo) such a point, where P'(t) =p{t) exists, then

\imps{t)=p(t) .s'yt

P roof. Suppose that P'(t) =p( t )  exists at t £ [0, +oo). In this case
+oo

P s { t ) =  J  ps(t I x)gs{x)dx, 
o
-1-00

P(t) = I  p(t \x)gs(x)dx,  respectively ( 0 < s < i) .  
o

We show that there exists a constant K  < +oo (K  = K(t) < +oo depending 
on t) such that

I P s ( t )  - p ( t ) \ ^ K V t - s .
Since gs (x) > 0 a.e., if x > 0, the following inequality is obvious:

( 8)

- f  OO

|ps( i ) -p ( t ) | ^ J  \ps{t \x)  -p{ t \ x ) \gs{x)dx.

Now we would like to estimate the difference

|ps(i |x) - p ( t |x ) | .

Let s ^ v ^ t  and consider the constant C = Ct  for which 

\ a { x ) - a { y ) \ ^ C \ x - y , \  x,ye[0, t}.

Let

L l(u,v) =a(v) -hC(v  — u),  ue[s,t]; 
L2(u, v) =a(v) + C(u  —  v),  u€[s,f];

Ls(u)— a(s) +  C(s — u), uG[0, s].



36 ZS. BIRÓ and GY. MICHALETZKY

Let

P] (t, v \ x )  = E[IC(W, L 1, a, v)I(W, L l ,v , t)  \ X S= x]; 
P 2 {t, v \ x )  = E[IC(W, L2, s, v)I{W, L 2 ,v, t) I X s = 4

Obviously,

P 2 (t, v \ x ) ^ P s( t , v \ x ) ^  P} {t, v I x) for a.e. x. 

Thus we obtain that
I Ps{t,v I x) -  Ps(t ,v \x )

( 9 )

Let

^ max[Ps(f, v I x) — P 2 (t, v \x) ,  P} (t , v \x) — Ps(t,v\ x)\.

Pl (t I = I™ — Ps (L v I x),
v f t  t  — V

p2s{ t \ x ) = \ im - ^ — P 2 {t ,v\x).  
u t t t  — V

After simple computation from the inequality (9) we obtain that 

(10) \ps{ t \ x ) - p s(t \x)  max[|ps(t \ x ) - p 2 {t\x)  | , \p]{t | x ) - p s(t \x)  |], 

Remark 3 implies that

p]{t I x) = jZTgHt) + C(t -  s) -  (a(s) -  x)] ft -s[a{t) -  (a(s) -  x)];

1 [a(t) -  C{t - s ) -  (a(s) -  x )] f t-s[a(t) -  (a(s) -  x)]
P s ( t \ x ) = if x ^  a(s) — [a(<) — C(i — s)]

As ps{t I x) =  — - x / t_s[a(i) -  (a(s) -  x)], so 

\ p l { t \ x ) - p s(t \x)  |g
1

a(t) -  a(s) + C(t -  s) I -ft-s[a{t) -  (a(s) -  x)] g<
— t — s
^ 2 C f t- S[a[t) -  (a(.s) -x )] , 

since |a(i) — a(s)| %C(t — s); and 

\ps{ t \ x ) - p 2{t I x) |g
2C /i_s[a(i) -  (a(s) -  x)], if x ^  a(s) -  [a(i) -  C{t -  s)],

<
t — s

x f t - s[a(t) — (a(s) — x)], otherwise.
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But, if 0 ^ x < a(s) — [a{t) — C(t — s)], then x  ^  2C(t — s ) so

(11) I ps{t I x) -  p3{t I x) |g  2C/i_s[a(t) -  (a(s) -  a;)].

Prom the inequalities (9), (10) and (11) it follows:

Ips(t I x) -  ps{t I x) 2 C f t - s[a(t) -  (a(s) -  x)] =
[a(t) -  (a(s) — x )]2

= 2 C

So we obtain that

1
s / 2 i r ( t - s )

exp
2 ( t - s )

( 12)

\ps(t \x)  -  ps{ t \ x )

where D = 2 C

1
t — s 
1

y/2V

exp [a(t) -  ( q (.s ) - z )]'“ 

2 ( t - s )

From the inequalities (9) and (12) we obtain that

|P*(t) ~ P s { t )  |g

(13)
+oo

^ D \/t — s j  ----- - exp
[g (t)-(g (s)-3 :)]; 

2 ( t - s )
gs(x)dx.

We are going to show that the integral in (13) is bounded in a small left 
neighbourhood of t. Consider an e > 0 such that e < §■ We prove that

+oo

(14) sup
t—e<s<t

1 (  [a(t) -  (a(s) -  x )]2 ,
exp -  n, ■ '----—  gs(x)dx < +oo.t — s 2 { t - s )

As
gs(x) = E[IC(W, a, s) \ X s = x \ fXs (x)

and
a ( u ) ^ L s(u), u6[0 , s],

we obtain that

gs(x) Í  E[IC(W, Ls, s ) \ X s -  x}fx3 (x).

Since the line Ls can be transformed into a horizontal line using a linear 
transformation, an easy application of the reflection principle gives that (cf. 
Durbin [2])

E[IC{W, Ls, s) I X s =  x] = 1 -  exp
(a(s) + Cs)x 

2s
, if x > 0.
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Since 0 ^  f x s(x) = we obtain that

9s(x)  ^
V2tts

1 — exp (q(s) +  Cs)x  
2s

If I  ^  i — e <t, then

a(s) + Cs ^  a(0) +  a(s) — a(0) +  Cs ^  a(0) ^
~ 2 s = 2s = T “ + C’

so using that 1 — exp(—x) ^  x  we obtain that

i
\/7ri \  t

Thus

where

gs(x) 5Í —L= ( (~  + 2 C  ) x.

+oo

t — S
0
+ 0O

S M j
X

t — s

exp

exp -

[q(t)-(q(s)-x)]; 
2 ( t - s )

,[a(t) — a(s) + x]2 
2(f — s)

gs(x)dx ^

c?x,

M  = 1 (a{ 0)
+ 2C

y/nt V ^
Applying the identity

x = [a(t) — a(s) + x] — [a(i) — q(s)]
the integral above can be written as a sum of two integrals. The first one 
can be integrated giving that it is bounded by one, the second one can be 
transformed into the integral of a normal density function. Finally, using 
the inequality

t — s =
we obtain that

+ 00

0

( HQ -a(s) + x]2\
V 2 (t-s) ) gs(x)dx ^

^ M( 1 + ^2 T z { t - s )C )  ^  M{ 1 + CVirt) — N <  Too.
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So we have shown that the integral (14) is finite. From this and (13) it 
follows that

IP s ( t ) ~ P s ( t )  \ ^ D N y / t - s ,  
if t — e ^  s < t, i.e. we have also proved that

lim ps(t)=p(t).  □

Corollary 5. If a is a Lips chitz- continuous function on finite intervals, 
with ci(0) > 0 and p(t) =  P'(t) exists at point t, then

p {t ) = lim -----
s-ft t  — S

+oo

j" x fs{ t \x )gs{x)dx 
0

(see Durbin [3]).

P roposition 4. Let

gs(x It) = 4 -E[I (X ,  < x ) Ic(W, a, s) \ W(t) = a(t)}.

Then
f s ( t  I x)gs(x) = ft[a(t)]gs(x \ t) a.e. x > 0

(cf. Durbin [3]).

THEOREM 1 . Let a be a Lips chitz-continuous function on finite intervals, 
tuith a(0) > 0. Then the first passage density of the Wiener process for the 
boundary a exists and

p(t) = lim —— E[IC(W, a, s)(a(s) -  W(s))  \W{t) = a(t)]ft[a(t)] 
sft t — s

a.e. f€[0 , +oo), where

/ , |“( t ) l= ^ ? exp

PROOF. From Lemma 1 it follows that the function p{t),t 6 [0,+oo), 
exists, and p(t) =P'(t )  a.e. f G [0,+oo). Lemma 2 and Corollary 5 imply 
that

+oo

p(t) =  lim -----  /  x f s(t \x)gs(x)dx
sft t — s J 

o

o(0 
21

a.e. t G [0, +oo).
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Using Proposition 4,

p{t) =  lini 
sft

+oo
!  xgs(x I t)dx. 
o

As

gs(x 11) =  — E[I(XS < x ) I c{W., a, s) | W(t) = a(t)]

and

X s = a(s) — W  (s),

it is obvious that

+oo
I  xgs(x I t)dx = E[IC(W, a , s)(a(s) -  W(s)) \ W{t) =  a{t)}. 
o

Thus

Pit) = lim J - E [ I C(W, a, s)(a(s) -  W(s))  | W(t) = a(t)]ft [a(t)]. □
s f i  t  — S
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ALMOST SURE SUMMABILITY OF PARTIAL SUMS
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Dedicated to Endre Csáki on the occasion of his sixtieth birthday

Abstract

Let { X n,n ^  1} be a sequence of independent r.v.’s and let { Sn,n  ^  1} be their 
partial sums. We study the problem of having ^  |Sn|p/g(n)<oo a.s. for 0 < p <  oo and

1 isn<oo
functions q(n) > 0 under tight q-weighted summability conditions of moments of X n and of 
quantiles of the distribution function of Sn■ We show that, in the i.i.d. case, our conditions 
are optimal for the indicated summability problem of partial sums, and discuss also some 
applications of our results.

1. Introduction and results

Studying the asymptotics of Lp-functionals of the uniform empirical pro­
cess, Csörgő, Horváth and Shao [5] reproved the following dichotomy result.

T h e o r e m  A. Let { W ( t ) , 0 ^ t  < oo} be a Wiener process, 0 <p  <oo and 
q be a positive function on [l,oo). Then

OO

(1.1) J \ W  (t)\p /  q(t)dt < oo a.s.
l

holds if and only if we have

( 1. 2)

oo

1
<  OO.

Shepp [10] obtained Theorem A when p — 2. His proof is based on Radon- 
Nikodym derivatives of Gaussian measures. Rajput [9] proved Theorem A for 
1 ú p  < oo. The proof of Csörgő et al. [5] for the general case of 0 <p < oo, 
as stated in Theorem A, is direct and elementary. The main aim of this 
paper is to get necessary and sufficient conditions for (1.1), when W{t) in it 
is replaced by partial sums of independent r.v.’s.
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Key words and phrases. Partial sums, summability, inequalities, Lp-norms, applications.
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Throughout this paper we assume that

(1.3) {Xn, n t  1} is a sequence of i.i.d.r.v.’s.

To make the presentation and the proofs simpler, we impose some regu­
larity conditions on q as follows:

(1.4) q{n)>  0 for all n ^ l ,

(1.5) there is a constant C\ such that max q(i) Ú C\q(n)
1 <i<n

for all n t  1,
(1.6) there is a constant C2 such that q(2n) 5Í C2q(n) 

for all n't. 1.

We note that if q(n) is a positive regularly varying sequence with positive 
exponent, then (1.4)—(1.6) hold true.

We wish to prove our theorems under weak moment conditions via using 
quantiles of the distribution function of Sn = ^  ^-i- Let

(1.7) ßn{a) = inf{.-r: P{|Sn| lire} ^o} , 0 < a < l ,

and

(1.8) m n(a) = max fii(a), 0 < a < l .
\< i< n

Our main result is summarized in the following theorem.
T heorem  1.1. Let 0 < p < o o .  We assume that (1.3)—(1.6) hold true. If

(1.9)

E m pn{a)/q(n)< 00,
l á n < o o

E
l ^ n < o o

max IXAP
1 <i<n

q(n) + n max \Xi\p
1 <i<n

<  OO

for some 0 < a < 1/(2(1 +  3P)), then we have

(1.10) " ^ 2  \Sn\p/Q{n) < 0 0  a.s.
1 ^  72 <  OO

and

(1.11) y  max \Si\p/q(n) < 00 a.s..
l<n<oo
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In general, (1.11) or (1.10) do not imply (1.9). 
simple example. Let 0 < p  < oo and define

P{ X i = k 1/p} =
Cl

Ä:(log(2/c))i k =

This is illustrated by a

1 , 2 , . . . ,

where C3 =  1 /  Yf, (̂log^Tjj7- E e t  X j  =  0 for j  ^  2. It is clear that
' láfc<oo

{X n,n~t 1} are independent r.v.’s, satisfying

Y  —  m a x  |5 i |p =  ^ 2  X ± /n 2<oo a .s ..

1^7i<oo l^n<oo

Thus we have (1.11) and, therefore, (1.10) as well. However, it is easily seen 
that

Y  E-' n 2l<n<oo

max IXAP
1̂ 1̂ 71

+  n max IXA? £  E
l< 7 l< 0 O

|* i |p
+  n \ X \  |p

^ Y  ~ P { |X 1|p >n} =  oo. 
Z—' n

1 5; 71 <  OO

Consequently, (1.9) fails to be true. Hence it is interesting and somewhat 
unexpected that (1.11) and (1.9) turn out to be equivalent if {X n , n ^ 1} are 
independent, identically distributed random variables (i.i.d.r.v.’s).

T h e o r e m  1.2. Let 0 < p < o o .  We assume that (1.3)—(1.6 )  hold true 
and that {X n, n ^ 1} are i.i.d.r.v.’s. Then (1.11) holds if and only if (1.9) is 
satisfied for all 0 < a  < 1.

If we assume more regularity conditions on the distribution of X{, then 
we can get the equivalence of (1.10) and (1.11) as well.

T H E O R E M  1.3. Let 0 < p < o o .  We assume that (1.3)—(1.6) hold true, 
{ X n, n ' i  1} are i.i.d.r.v.’s and that there are constants C4 and ao € (0, 
such that

(1.12) max |med(5j)| ^  C/ipn(ato) for all ro ^ l.
l<i<n

Then the following statements are equivalent:

(1.13) Y  1̂ »i \p / (l { n ) < o o  a . s .
1 ^ 7 l < 0 0

(1.14) max \S i \p / q ( n )  <  00 a . s .
J l<i<n

1 <  77 < 0 0
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(1.15)

( 1- 16)

|Sn|P
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£  E
l<n<oo q(n) + n\Sn\P

£  E ;

max |Sí |p
ISiSn

q(n) + n  max |5J p 
l^n< oo ' i <í< „ ' 11

< oo,

< oo,

(1.17) £  E :

max \Xi\p
1 <i<n  1

q(n) + n  max IX,IP
l^nCoo ’ l<i<n '

< oo and y .  —7—r~ < oo
l^n<oo 

for all 0 < a  < 1,

q(n)

(1.18) £  E ;q(n) +  n max |X;
l^nCoo ’ l< t<n

max |X,|P
1 v - ' m<n{a)— < oo and ——— < oo

1 ^ 7 2 < 0 0

for all 0 < a  < 1.

q(n)

We note that (1.12) holds true in case of symmetric random variables. If
(1.12) does not hold, then (1.13) still implies (1.17) with a = 1/2 as follows.

T heorem 1.4. Let 0 < p < o o .  We assume that (1.3)—(1.6) hold true 
and that {Xn,^ l }  are i.i.d.r.v.’s. Then (1.13) implies

r f ( l /2 )£
l < 7 i < 0 0

q{n) < oo and

(1.19) max \Xi\P 
1 SiSn

E E-
q(n) + n  max |XAp

lgn«x>  ’ l< i< n ' 11
< oo.

Section 2 contains the proofs of Theorems 1.1-1.4. We give some applica­
tions of the results of this section and discuss the optimality of our conditions 
in Section 3.

2. Proofs

We start with some preliminary lemmas.
Lemma 2.1. Let { fn, n ^ l }  be a sequence of r .v.’s. If

16,1
£  Ey

1 < 7 1 < 0 0
+ |fn|

( 2 . 1) < oo



then we have 
( 2 .2)
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Y  l in |<oo a.s.. 
l^n<oo

I f  {£n,n ^ l }  are independent r.v.’s, then (2.2) implies (2.1).
P r o o f . Let £'n =  £nL{|£n| ^  1}- On observing

and í {IÍ"I > 1 ) S 2 T T ^ ’
we get

(2-3) Y ,  E l ^ l < ~
lán<oo

and

(2.4) Y  P{ l ^n | > l }=  Y  p { l £ n l ^ n l } < ° 0.
l^n<oo lgn<oo

Now (2.3) implies

(2.5) Y  l£nl<°° a-s->
líínCoo

and applying (2.4) together with the Borel-Cantelli lemma, we get (2.2).
Conversely, we assume that (2.2) holds and that {£n,n ^  1} are indepen­

dent r.v.’s. Using the Kolmogorov three series theorem (cf., e.g., Chow and 
Teicher [3], p. 114), we get (2.3) and (2.4). It is easy to see

/{ & !> !> .

and hence we have (2.1).
L em m a  2.2. Let £ be an arbitrary r.v. and a,p be positive constants. 

Then we have
OO

| i | p  r  t p - i
E l> . i--=op /  7------ ^ P { |X |  >x}dx.a +  |£|p ./ (a + x 2)2 11 J

o
x2

P r o o f . Setting f (x )  =   ---- —, we obtain immediately
a +  xP

OO

E/(|£ |) =  /(0) +  j  f ' ( x ) P { \ X \ l x } d x  
0

00 -1

=a p  j  ( ^ r F { m i x ) d z -
o
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Lemma 2.3. We assume that (1.3) holds true. Then for each 0 < a  < 1 / 2  
and x  íí 6m n(a) we have

( 2 .6 )

p { max \SA > x l  < -------- p {  max 15)1 > — 1
l i /  — 1 — 2a l ig ig n 1 1 — 3 /

H------— p (  max |Xf| >
1—2a  liáign “  3 /

PROOF. It is well-known (cf., e.g., Breiman [2] and Peligrad [8]) that

(2.7)

and

p (  max |5i| > x l  < -  11 ̂  z ̂  n J ^
p{ \Sn1 >

1 — max p {|Sn -S i
1 < 2< 72 l 1 1 -  3 J

( 2.8)

> * )- 3 /
'„I > - x l  < max P

3 J _

+  P ( max IXjl > — X 
llg ign1 ' — 3 /

for all x > 0 .  Putting together (2.7) and (2.8), we obtain

P<! max |5,| ^
1 <i<n 3 J

' < max I Si I- > x >
L l<i<n ~ J

(2.9) <
max P-j 151

1 — max P
1 < 2 < 7 1

{ | S „ - S . l ä | } '
•( max |5j| > - 1  
\ l < i <n‘ 1 -  3 l

p { max IXd > — 1 
ll<i<n 1 — 3 J

1 — max P1 ̂  2 ̂  72

Using the definition of m n(a), we get for all x

max P < I Sn —5,1
láign V 1

> ^ < 2 max ] 
3 J 1<2̂ 71

(2.10) < 2 max ]
l'íi'fín

< 2 max 1

< 2a.

Now (2.9) and (2.10) yield Lemma 2.3.
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Lemma 2.4. Let 0 < p < o o  and {a(n),n  ^  1} be a sequence of positive 
numbers. We assume that (1.3) holds true. Then, for all 0 < a <

we have
2(1 +  3P)’

a m vn{a)
+ E-

max \Xi\p
l<i<n

2P+1 I a(n) + mn(a) a(n) + max \Xi\p

<E

<

max |5'i|p l<2<n
a(n) +  max \SAp 

1 <i<n

QP mpn(a)
+ E-

max |Xt |p 
l<2<n

1 — 2a(l + 3p) [ a(n) +  m?(a) a(n) + max |X;|p [

P R O O F .  It follows from the definition of m n(a) that

P< max I Sí I ^  x  > ^ a  for all 0<a ;<m„(a) .  

Hence, by Lemma 2.2, we have

E
max \Sl\p
ISiSn

a(n) + max |5j|p
].=̂  = n
77ln (Q )

(2.11) ^ pa{n) J  — v-1

o
mn(a)

(n) + Xp)‘

L apa(n) /
X‘p-1

; P (  max I Si I > x \  

mpn{a)

dx

-d.x =  a
a(n) + mJi(a)'( a(n)  +  xp)2 

o

An elementary argument gives

p { max ISjl > x )  > p{ max I Xd > 2 x \
l l g i g n  _  l l g i g n  “  I

for all x > 0. Hence, using again Lemma 2.2, we obtain

r P “ 1
E

max |5dp 
l<i<n

a(n) + max |5i
l<i<n

— =pa(n) / s-------tttP s max \S i \>x\dx
Ip J  (a{n) + xp)2 l i n i n '  J
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= pa(n) j  =
dx

( 2 . 12)

CXJ

^  2 ~ppa,(n) J rP- 1
(a(n) +  xp ) 2

= 2 - pE
max \Xi\p
lgign

a(n) +  max |_Xi|p
l<i<n

< max |Xj| ^  x \dx

Observing that ^ 1 J  +  2P^, (2.11) and (2.12) imply the left-hand
side inequality of Lemma 2.4.

Lemmas 2.2 and 2.3 yield

max \Sl \p
1 <i<n____— —_________

a(n) + max |SJP
lgign

(2.13)
6 m n (at) ^

=  i , “ ( n )  . /  ( a ( n T + t f ) 2 P { S | S i l  =  I } ‘< I  
0

°° ,

+ M n )  j  (a ( n ) + ^ P { , W J Sil -  *}**  = A';) + A« >'
6 m n(a)

6 m n (oi)

(2.14) A ^ ] <,pa{n) J
o

and

xp 1 , 6 pm,n(a)
-Ax =

(a(n) + xp ) 2 a,(n)+mn{ot)

4 2)<
2 apa(n)
1 - 2  a

OO

/
rP~1

(2.15) 6m„(a)
(a(n) + xp ) 2

+
pa{n) 
1 - 2 a I

rP~ 1

6 m„(a)
(a(n) +  Xp)

p (  max I Si I ^ ^ } dx

(  max \X,\ i> ^ )  
ll<i<n 3 J

dx

= 4 3) + 4 4)
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Using again Lemma 2.2, we get

(2.16)

,3) 2 ^ ) £  j  *?-• p f , n M | s | > I W
n ~ 1 — 2a ./ (a(n) +  xP)2 lig iS n1 1 /

6m„(a)

r P ~  1
< 2apa.{n)3p 

1 — 2a ./ (a(n)+a:P)2 l i? i^

2a3p

P < max I Si I > x \
U <i<n J

dx

max IS'ip
E

1
1 — 2a a(n) + max ISUp ’ 

l<j<n
and a similar argument gives 

(2.17) 4 4>£
max \XAP 

3P _ l<i<n '■E
1 — 2a a(n) +  max \Xi\p1 <i<n

Putting together (2.13)—(2.17), we obtain immediately

/ ,  2 ^ v  s  errníla)
V 1—2 a / a(n) + max lá'ilP — a(n) +  mfi(a)Iliién

max \XAP 
3p „  1 <i<n' 'j ______

1—2a a(n) + max IXAp '
1 <i<n

and this completes also the proof of Lemma 2.4.
Lemma 2.5. Let 0 < p < o o  and {q(n),n^.  1} be a sequence of positive 

numbers. If

(2.18) E  \Sn\p/q{n) < oo a.s.,
1 ̂ n< oo

then we have 

(2.19) E
lára<oo

Pn{a)
q{n) < oo for all 0 < a  < 1.

P R O O F .  It follows from Lemma 2.1 in Csörgő et al. [5]. 
P r o o f  o f  T h e o r e m  1.1. By (1.5) and (1.6) we have

E  max |5i|7g(n) g E  í E
láraCoo 0^k<oo x fcán < 2 fc+1

max
1<»<2*+1l$ |p
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2k
5Í C\ Y  max \SAP

^  q(2k) ig*<2*+10<fc<oo

<C \C l  y  ^ r r öT max |S;|P.~ ^  q(2 k+2) i<i<2k+10^/c<oo

Thus, by Lemma 2.1, it is enough to prove

( 2 . 20) X E o-fc,

max 1 | p
l< i< 2 i:+ 1

2_fco(2fc+2) + max |5dp0 ̂  /c < OO 1<2<2*+!
< 00.

Applying Lemma 2.4 and the conditions (1.5) and (1.6), we get

1
max |Sj|p

l<i<2k+1
E

max |5',|p 
l<i<2k+1

2 ~kq(2 k+2) + max 1SAP 2 q(2 k+2) + 2 k max |5dp
l<i<2k+i 2*+!gn<2*+2 '  l<i<2*+l 1

<
max |Sj|p 

l<i<2k+l
1  w

2  i * « k < » « q(n)ICl + 2‘ . |Si|p
max |5'dp 
l< i< n  1< 2  > --------- — ---------------

q ( n ) / C \  + n  m a x  |5 j |p2fc+1̂ n<2*+2 "  l ^ n  1
max |S JP

E l = ̂ = n
g(n) +  n  max |5dp 2fc+1<n<2*+2 ' l<i<n '

This yields

E  E;
max \SAP 

l<i<2k+l
2 ~kq(2 k+2)+  max |5dp 

0^k<oo l<i<2k+l
max \Si\p

^  l<i<n '
< 2 Ci y  E , . --------—-^  q (n )+ n  max 5dp 

lgn<oo l<z<n

< 2 C i6 p
E

mpn(a)
+ E e ;

max |2Q|P
1 <z<n

— 2a(lfc + 3pj |  ^  q(n)+nmn(a) q(n)+n max |ATp
v U<n<oo 7 '  7 lgn<oo v l< j<n

Thus we have (2.20), which completes also the proof of Theorem 1.1.
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P r o o f  o f  T h e o r e m  1.2. By Theorem 1.1 it is enough to prove that
(1.11) implies (1.9) for all 0 < a <  1. If (1.11) holds, then by (1.6) we have

E 2
. . . .  max |5Jp <oo a.s., q(2 k) ' '0<k<oo

which implies

( 2.21) E
0<k<oo

max \Si — S2k |p < oo a.s..
q{2k) 2 k<i^2k+

Observing that \ max IS* — 52fc|p, k ^  1 > are independent r.v.’s, Lem- 

ma 2.1 and (2.21) yield

( 2 . 22)

max \Si -  S2k\p 
Y '  E  2k<i%2k+1

n<“ ' 2 ~kq(2 k) + max |S 'i -S 2*lp
0^k<oo 2k<i<2k+ l

<  OO.

We assumed that {X n,n^ .  1} are i.i.d.r.v.’s. Consequently, (2.22) holds if 
and only if

(2.23) E
max |5dp

l<i<2*

2 kq(2 k) + max \SAp 
O^fcCoo ' l<i<2k

< oo.

By Lemma 2.4 we have (2.23) if and only if

(2.24) 

and

(2.25)

E
0<k<oo

m v2k ( a )

2 kq(2 k) + m p2k (a) < oo for all 0 < a <
2(1 +  3?)

max \Xi\p

E l<i<2kP _______— —_____________

2 ~kq(2 k)+  max IXA?
0^k<oo ’ i<i<2k

< oo.

Using (2.24), we get

m v2k (a) = o(2 ~kq(2 k)) as k-> oo,

and, therefore, we have

(2.26) E  2'
0<fc<oo

fcm2*(Q)
q(2 k)

< oo.
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By definition, rrik{ot) úmk+iioi)  for all a , so applying (1.5) and (1.6) we 
obtain from (2.26) that

(2.27) E
l<n<oo

rag (a) 
q(n)

<  oo for all 0 < a  <
1

2(1 +  3?)'

Also, m n(a') ^ mn(a) if a' ^  a , so by (2.27) we have for all 0 < a < 1 that

E
l<n<oo

mpn(a)
q{n)

< oo.

Using (2.25), similar arguments give

max \XAP
E l<i<n '

E ^ —-----—------- , „  I < oo,
q(n) + N  max LXU?

l^n<oo

which also completes the proof of Theorem 1.2.
P r o o f  o f  T h e o r e m  1.3. Let {Yn,n  ^  1} be i.i.d.r.v.’s satisfying

•£)
Yn — X \ .  We assume also th a t {X n,n ^ 1} and {Yn,n  ^  1} are independent 
sequences. We define

X ji — X n Yn and Sji — ^   ̂ X {.
l^iún

Then { X n,n ^ 1} are i.i.d. symmetric r.v.’s. Using the Levy inequalities (cf., 
e.g., Chow and Teicher [3], pp. 71 and 325), we get for all 1 ^  i ^ n

P{|5i| i  2Mn(a/8) +  |med(5i)|} ^ P { |$  -  med(5l)| ^ 2/in(a/8)}
Ú 2 P { |5 i |  ^ 2Mn(a/8)} ^  4 P { |5 „ |  ^ 2/i„(a/8)}
^ 8 P { |S „ |^ Mn (a /8 ) } g a .

Thus we have

(2.28) mn(a) ^  2/rn(a/8) + max |med(£j)|.

Now (1.12) and the monotonicity of /i„(a:) in a  give

(2.29) max |med(5i)| ^  (74/in(a) for all 0 < a ^ a o -
isiién

Combining (2.28) and (2.29), we get

(2.30) H n{a)^m n(a) ^ ( C i  + 2)fin(a/8) for all 0 < a ^ a o -



ALMOST SURE SUMMABILITY OF PARTIAL SUMS 55

Thus the equivalence of (1.17) and (1.18) is now proven. 
If 0 < a  < min (ao, 5), then by Lemma 2.2 we have

E

(2.31)

max \Si\p 1 <i<n
q(n) + n max 15, |p

l<i<n

< pq{n)
6 m „ ( a )

pq(n)

6 m , , (a)

It is easy to see that we have

f  —r r ---------p (  max I S'* I > x lJ  ( 2 M +XP)2 l l  gign' 1 ~ J

OO

/ ( £ f c l + a ; P )2
p |  mapc \Si\~ .̂x^dx = + A[^.

±1 (6mn(a))p < 6p (2 +  C4)Vn(«/8)

(2.32)

Using (2.7), we get

Ai6)<
pq(n)

n — „  0n *

- n & l + m P(a ) -  n sM  +  mp(a )

^  6P(2 +  C4)p
g(n)+ n/i£(a/8)

xP-1 P { |^ |^ |x }
(2^1 + xp)2 1 -  max P { IS«- 5 * 1  ^ f}

OO

/ dx

pq{n)

6 m„(a) 
00

<
“ n 2 /

6 m n ( a )

XP-1 P { |5 n |^ H  
(9fcl+ xP)2 1 - 2  max P { |5 * |^ |}

dx

(2.33) < pq(n)
n2( 1 — 2a)

6 m „ ( a )

(2/3Y  pq{n) 
~ 1 — 2 a  n 2
<

uu

[ - 1
J

.p - l
rP{|5„| ^x}dx

(2/3)p E |5n|P
1 —2a qr(n )+ n |5 „ |p 

Applying again Lemma 2.2, we obtain

E |5'n|p pq(n)
n

UU
r xp- 1

J  ( ? + ^ p ) 2
P{ |5„ |^x}dx
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(2.34) > p q [ n )
Uniót/8)

n /
r P ~  1

(2 M + a .p):■P{|«5n| = x}dx

> a /i£(a/8)

- 8 a f c l + ^ ( a / 8) ‘

Thus, by (2.31)—(2.34), we can find C5 = Cs(p) such that

E
max \SAP
1 <i<n ^ c 5e - \Sn

q ( n ) + n  max \S i \p q ( n )  +  n \ S „ \ p '
\<i<n

and, therefore, (1.15) implies (1.16). It is trivial that (1.16) implies (1.15).
According to Lemma 2.4, the statements in (1.16) and (1.18) are equiva­

lent. By Theorem 1.2 we have (1.14) if and only if (1.18) holds true. Thus, it 
suffices to show that (1.13) implies (1.17). According to Lemma 2.5, (1.13) 
yields

(2.35) E
1 < 7 1 < 0 0

Pn(a)
q(nb)

<  00 for all 0 < a < 1.

Recalling the definition of Sn, we have

(2.36) ^  \ S n \p / q ( n )  < 00 a.s..
l^nCoo

Hence Lemma 2.5 gives 

(2.37) E
l<n<oo

l A ( a )
q(n)

<  00 ,

where _
/i„(a) =  inf{x: P{|S„| ^  x} S  a}.

By (2.36) we obtain

( 2 . 3 8 )  ^2 Y2  l ‘S ' n + 2 fc+ 1 lP / Q , ( n  +  2 f c + 1 )  C ° o  a -s ->

l̂ k<cx> +

and hence, by (1.5) and (1.6), we have

(2.39) E  E  \ S n+2k + i \p / q ( n ) < o o  a.s..
lgfc<oo 2fc + lgng2*+ 1
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Putting together (2.36) and (2.39), we get

(2.40) X  X  l^n+2*+i - S n \p / q { n ) < o o  a.s.,
1 ̂ /c<oo 2̂ ' +

which implies

(2.41) X !  X \S n + 2^ - S n \ p / q ( 22k) « x >  a.s..
l^/c<oo 22fc + 1^7i^22*:+1

Observing that < |5„+22/c+i - S 7l|p, k ^  1 > are independent r.v.’s,
^22fc + lgn<22*+> J

it follows from Lemma 2.1 that

(2.42)
X E{ X \Sn+2^ - S n \ P/ ( q ( 2 2k) +  X \Sn+2^ ~ S n \ P) } < 0 0 .

l$fc<oo 22fc + lgni?22<:+1 22fc + lg n ^2 2fc+1

We have for all x  > 0

p {  X \Sn+2 ^ - S n \ P ^ x }
22k + l^n^22k+1

=  p {  X \Sn+22k+' - S n \ P Z x }
\%n^22k

^ p |  X ( 2 ~ p \ S 2 2k+ i —S 22k |p —2p |5 7l+22*;+ i —5 22k+i \p —2 p \ S 22ic —S n \p ) ^ . x

n g n ^ 2 2*
~  x 2 p n ~  ~

|522*+i -  522, |p ^ w  + 22p max |Sb+22*+i -  522fc+i |p
£ l^n^22k

+ 22p max \So2k — 5'n|p
l^n%22k

^P {  max \Sn+22k+i — S2-2k+i\^jl22k(a )}
l^n^22k

x P {  max \So2k — Sn \ ^Jl22k(a)}
l^n<22k

x P j | 5 22*+1 - S22k |p ^  22p+1g 2. ( a ) }.

Using again the Levy inequalities (cf., e.g., Chow and Teicher [3], p. 71), for 
0 < a  ^ 1/4 we get

P {  m a x  |5 'n _(_22*; + l — S 22k + l | ^  ß 22k ( a ) }  
l<n<22fc
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= P { max | S22k — Sn | ^  /x22k (a )}
\^n%22k

^  2P{(Sb« | ^  M2« («)} ^  2« ^  1/2,

and by Chow and Teicher ([3], p. 73) we have

p|is2»*+, - s2„ rg +22r+ir2,t M }
= p | | 5 21t|” g | i  +  22>'+1̂ „ ( « ) }

i 5p{i“i y l5il' Ä P +22"+1̂ *<°)}

^ p{,s“S . * !"a?P í+22'+2íÍ2“(“)}'
Thus, for each ao € (0,1/4), there is a positive constant Cq = C ^ao) such 
that

(2.43)

P E  \Sn+22k+i- S n \ ^ x \
 ̂22k+ \%n%22k+l '

i  « i P j , ™ * ,  \x>r î  +  2

for all x  > 0 and 0 < a  ^  ao .
It follows from Lemma 2.2, (2.42) and (2.43) that

T e{ E  is„+2>*«-s»r/(9(22‘)+ E  i$
6 -  ^ 22fc+ l< n< 22fe+1

n+22k+1 ~ Sn\p
22k+l^n^22k+1 

oo

)}

- g ( 2 M ) / h (  P  +  x P F { 1 l ° l
0

(2.44)
oo

 ̂2“(p+1)«?(2fc)22fc J

_  op+ i t
max I ^ T  > -7̂ 57— '< 2 «  2 2k

+ 2 2p+2^ 2k{a) \dx

(g(22fc) -f 2 2kx ) 2 l igtg22*
P{ max |Xj|p ^a;}da;

22P+2/ip (a)

=  2~(p+1)q{2 k)2 2k JooP{ max |X Jp >:r} 
" T<i<22* 1 -  J

(q(2 2k) + 2 2kx )2 .
dx
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_ 2~(p+1\(2k)22k J

> 2- î>+1̂ 2-2/cE

2 p+V 22* (Q )p {  m a x  \ X i \ p >  x \  
r S<i<22fc - dx

max \ X A P 
l<i<22k

( q ( 2 2k ) +  2 2kx ) 2

2 p 2  2kJlp22k(a)
2 ~2kq(2 2k) + max \Xí \p 

\<i<22k
q ( 2 2k )

Using (2.37) we get

P-45) E  E
lSfc<oo 22fc + l^n $ 2 2*+

Consequently, (2.42) and (2.44) yield

^ 2 2 k  ( a )  

k+I <?(22fe)
< oo.

(2.46) E  E E
max \ X A P 

l<i<22k

2 ~ 2kq ( 2 2k ) + max \ X í \p
< oo.

l^k«x> 22k+l^n^22k+2 ' l<i<2ik

We apply (1.5) and (1.6) to deduce from (2.46) that

(2.47) E  ■;
max IXAP
l<t<n ——  < oo.

q(n) + n max \XAplgn<oo ^  1

We note that Lemma 1 in Chow and Teicher ([3], p. 325) gives

p{  max |Xj| ^  x l  ^  ^ p { max \Xi — med(Xi)| ^ x j  
Iliién  J 2 J

^ - p j  ma ĉ |Xj| ^ x  + |m ed(X i)||. 

Hence, by Lemma 2.2, we have

=  f
\XAp n 2  J

E
max IXAP
1 <i<n

oo P (  max \ X A P > x} 
U<i<n "  J

q ( n )  + n max \ X i \ p 
1 <i<n

( 1̂ + x f
dx

, . ~ p ( m a x  |Wl |P ^ (x 1/P +  |med(X1)|)p} 
q\n) f  tlgign >

J (^ + xl2>
2 n 2

dx
-t- xl2
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> ,(„) J p{%
2 n 2

(2.48)

dx

> 2 - p - i e

max IXAP
i < i < 7 i '  1 |2med(Xi)|P

q ( n ) + n  max \Xi \p g(n)
1 <i<n

According to Lemma 2.5, (1.13) implies (2.35). Using now (2.30), we get 

(2.49) E
m^(a)
q(n)l^n<oo

By definition, m n(a) %mn+i(a) for all a, and, therefore, (2.59) implies

(2.50) E -rr<°°-
,<«oo «(">

Putting together (2.47), (2.49) and (2.50), we obtain

max \Xi \p

E „  l<i<n
E ——------------ ■■ I < O O ,

q(n)  +  n max \ Xi \ plánCoo ' Idlin' '
which completes proof of the equivalence of (1.13) and (1.17).

P r o o f  o f  T h e o r e m  1.4. It follows immediately from the proof of The­
orem 1.3.

3. Applications and discussion

We show first that Theorem A remains true if the Wiener process is 
replaced by partial sums of i.i.d.r.v.’s with finite variance.

T h e o r e m  3.1. Let 0 < p < o o .  We assume that (1.4)—(1.6) hold true 
and that { X n,n^.  1} are i.i.d.r.v. ’s with EXi =  0 and 0 < var X\ < oo. Then
(1.13), (1.14) and

(3.1) E
1 < 7 1 < 0 0

U‘Vt 2
q{n)

< oo

are equivalent.
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PROOF. The central limit theorem implies 

(3.2) lira n ~ l^2fin(a) = /y(a) > 0 for all 0 < a < l .
71—»OO

Thus, (3.1) holds if and only if

(3.3) E
l^n<oo

/in(«)
q{n)

< oo.

Using Lemma 2.2, we obtain

E
max IX i \ p
1 <i<n________________ = <l(n )

q(n) + n max \XAp n2 
\<i<n

OO

/ (Sfcl+ I )2
(ÍX

n.P/'2
q(n) f f(q{n)<

_ n 2

np/ 2

+n
x'j dx + p j m a x  |X2|P ^ np/2 j  j  ^——-+ :r^  dx

lP/2

Z —  + P(\Xl \ Z n y! \  q{n)

and it is well known that E X 2 < oc if and only if

J 2  P ( |* i |^ n 1/2)<oo.
l<n<oo

Theorem 3.1 remains true for not necessarily identically distributed r.v.’s.
T heorem 3.2. Let Q<p<oo .  We assume that (1.3)—(1.6) hold true 

and that EXn — 0, E X 2 < 00. Setcr2 = EX2. Then

(Jn /(l(n )< °°
\<n<oo

and
-  V  P{|Xi | ^ a n}<oo z—' n z—'

l^n<oo 1=i=n

imply (1.14).
PROOF. It goes along the lines of the proof of Theorem 3.1 and hence 

omitted.
If EXj2 = 00, then, in general, condition (3.1) is not enough to have (1.13).
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P roposition 3.1. Let g(x) be a non-decreasing continuous function sat­
isfying lim g(x) = oo. For any 0 <p < oo we can find a sequence {X n, n > 1}

x—>oo
of i.i.d.r.v.’s with EXi =  0, EX 2 /g{\X\ |) < oo and a sequence {g(n),níí  1} 
satisfying (1.4)—(1.6) such that (3.1) holds true but (1.13) does not.

P roof. We can find a sequence {nk, k ^  1} such that 

(3.4) nk+l/ n k i>2k and g(nk) ^ e k, k = 1,2, . . . .

The distribution of X \  is given by

P {X1 =  ±n*} = - ^ ,  k = 1 ,2 , . . . ,

and {X n,n  ^ 1} are independent copies of X\.  Let

h(i) = kp/4, if n \ ^ i < n 2k+x.

There is a sequence {q(n),n  ^  1} such that (1.4)—(1.6) hold, and

(3.5)

(3.6)

E
15=i<oo 9(0

< oo,

E
l^i<oo

lP/2h{l)
— TX~ = °°-9(0

One can easily verify that EXi =  0, EX 2 = oo and E X 2 / g{\X\\) < oo.
Let L{x) = E X 2I{\X\\  E x}. Since EX? =  oo, we have lim L(x) =  oo.X-FOO

By (3.4) we have also

\L(ax)-L(x)\  = J 2 f^ / l  = ^ Y ^ m{{ k : n k ^ x } ) - l ' 2 - + 0

for all a > 0, where U = {k: n k is between x and ax}. Thus, we conclude 
that L  is a slowly varying function at zero. Using Theorem 8.3.1 in Bingham 
et al. [1], we get

lim p i^ n l^ n 1?2))-1/2 X; < x l  =  <h(x)
n—»oo l  -1 )

for all x 1 where 4> is the standard normal distribution function. Thus we get

lim
n —» oo

med \Sn\ 
(n l^ n 1/2))1/2

(3.7) >0.
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Next we show that

(3.8) E
1 < 7 1 < 0 0

(med \Sn\Y 
q{n)

= oo.

Using (3.4) and (3.6) we get

(t1/2L(i1/2))PE
 ̂1 = * < °o

«(») E E
l<fc<oo n?<i<n? , , -1  k — — k + 1

(z1/2 L(ill2))v
~ W )

> E  E
l^A:<oo 7ij*áiánj* + 1 — 1

(ill2L(nk) y
9Í0

* E  E  ^ ( E ^ r
l^fc<oo n£giSn£+1- l

*P/2
9(0ao E  E

lgfc<oon ;^ignj*+1- l

^ r ' V '  *p/2/l(0= c 8 2 ^  tttn = °°)

p / 2

l<fc<oo 9(0

and hence (3.7) implies (3.8). The distribution of Xi is symmetric, therefore
(1.12) holds true. Applying Theorem 1.3, (3.8) yields

(3.9) ’{ £l<n<oo
q{n) >0.

Proposition 3.1 now follows from (3.5) and (3.9).
It is interesting to note that the condition (3.1) is not sufficient for

(1.13). We saw in the proof of Theorem 3.1 that ]T) < oo implies
ISInCoo ^

max |Xi|p
J2 E g(n)+n=max |A',|» < °°’ if < °°> in case of i-i.d.r.v.’s. However, if

l^n<oo IStgn
m a x  l ^ i l P

EX2 =  oo, then ^ (l(n)+n max |A' |p < 00 is the necessary and sufficient
IgnCoo

condition.
T heorem 3.3. Let 0 < p < o o . We assume that (1.4)—(1.6) hold true 

and that {X n,n~^. 1} are i.i.d.r.v.’s. We assume that there is a sequence
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{ a (n ) ,n ^  1} such that
S(n) V. y  
a(n) ’

where Y  is a non-deqenerate stable r.v. with exponent 0 < v < 2. Then (1.13),
(1.14) and

(3.11) E
lá rK o o

max IXAP
1

q(n)+n  max |X j|p 
l=*=n

<  OO

are equivalent.
P r o o f . Let G(t) =  P{ |X i| ^  t}. According to Theorem 8.3.1 in Bing­

ham et al. [1], (3.10) implies that G(t) is a regularly varying function with 
index —v with some 0 < v < 2. Also, if G~l denotes the inverse of G, then 
we have as well

(3.12) 0 < lim
n —>oo

G ~ \ l /n )
a(n)

<  o o .

Using (3.10), we get that (1.12) holds true, and

h n { a )(3.13)

Thus we have

(3.14)

if and only if

(3.15)

lim
n -yoo a ( n )

=  7 ( a ) .

E
1 <  72 <  OC

Pn{a)
q{n)

<  o o

E  ( G - ( l / - ) ) - <oo

1 ^ 7 1 < 0 0

Using Lemma 2.2 we obtain

q(n)

E
max IXt|p
1 <i<n ' q{n)

OO P

/ -

{ max |X2|p >x]> 
ll<i<n _ i

q(n) + n max |X^|p n2 J  ( g(n ) i x y
1̂ 2̂ 71 0 '71 '

-dx

> g(n )
= n2 '(  max |Xi|p > 2 : ) f ^  +  x) 

l l < i < n  J i n  /

g(n) \~ 2 ' + x ) dx
o
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^ P { m a x  |Xt | ^ ( G - 1(l/n))P} 

Since G has a regularly varying tail, we get

(G-1 (l/n ))p
q(n) +  n(G~1(l/n))P

lim P Í  max IXA? > (G“ 1( l/n ) )pl  =  1 -  e-1 . i->oo ll<i<n 1 -  ' J

Thus, (3.11) yields

y ' '  ( G " ' ( l / n ) ) p

i<7^oo ?(n ) + n(G~1(l/n))f>

which immediately implies (3.15) and (3.14).
So, if {Xn,n  ^  1} are i.i.d.r.v.’s in the domain of attraction of a stable 

law, then the necessary and sufficient condition for having (1.13) and (1.14) 
is given in terms of max |X,|. This observation rhymes very well with the

main results in Csörgő, Csörgő, Horváth and Mason [4], and Csörgő, Horváth 
and Mason [6]. They showed that S(n)/G ~x( \ /n )  is asymptotically stable
on account of max \Xi\ being very large. Namely, S(n) and max |X,| are of

l^i^n l^ign
the same order asymptotically. However, it is still of interest to see whether 
(3.11) can be replaced by a straightforward moment condition.

THEOREM3.4. L e t2 ^ p < o o .  We assume that {Xn,n ^ l}  are i.i.d.r.v.’s 
and 6 > l+ p /2 ,  6 ^ 1 + p .  Then the following statements are equivalent:

(3.16) E \Sn\p/n e <oo a.s.,
l<n<oo

(3.17)

and

E
l<n<oo

max |S'j|p/n 0 <oo a.s. 
1 <i<n

(3.18)

P roof.
have

E|X1|p/(0-1) < oo and E X ,= 0  i f d < \ + p .

First we show that (3.16) implies (3.18). By Theorem 1.4 we

E *
15=n<oo

max \ X i \ p
i=*=n

ne + n max IXA? 
l ^ n

< oo.

It is easy to see

l \  max 
1

\Xi\p Z n e- 1}
n , max \ X i \ p

n°~l lgign' 1 2
2 n° = n e +  n m a x |X JP  

l<i<n
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and, therefore, we get

lánCoo

Elementary calculations show

— p (  max \Xi\p > n e 1}<oo. 
^  n  l i á iá n  1 -  1

V  - P (  max^  n l  listán 1 -  /
l^n<oo

= E E MmjgWin1’-1}
Oáfc<oo 2k <n<2k+1

ä E  2~‘ E  p{s?Jx-i’’í""_1}
Oáfc<oo 2feán<2fc+2

s E  p{,ŝ , W í 2(‘+I,c’- 1)}'
0 ̂  /c < oo

Therefore, we have

(3.19) ■£  P {, m  |Xí |p ^ 2 fc(0- 1)|  < oo.
láfcáoo = =

Hence, lim p (  max |X*|P ^ 2 2(0 ^ 0, and thus we get
k—>oo fl<t<2*: J

lim P (  max |X i|p ^  2fc(0- 1)) / ( 2 /£P{|X i|p ^ 2/c(0“ 1)}) =  1.
k—too flátá2fe '

Using (3.19), we obtain

(3.20) 2fcP{|X i|p ^ 2 fc(0- 1)}<oo.
láfc<oo

From (3.20) we can easily derive

y ;  P { | X i | > n  p } < oo,
lán<oo

which is equivalent to E ^ i l ^ 1 < oo. If 9 < 1 +p, then E |X i| < oo and, 
therefore, the strong law of large numbers and 3.16 imply that EX\  = 0 . 

Now we show that (3.18) implies (3.17). By Lemma 2.2 we have

max IXAP
lá t án

n6 + n max I XAp
lá tán
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(3.21) = n° 2 [  (n° x+ x ) 2p (  max \Xi\p ^  x\dx  
0

oo

+ n0~2 [  ( n ° ~ 1 + x ) ~ 2p { max \ X i \ p ^ x \ d x  
J  ̂l=*=n J

nd~l
= c ^  + c ^ .

It is elementary to check

(3.22) C$2)g n _1p{miuc \Xi\p ^  n0-1} ^ p { |* i | ^ n ^  }.

Next we note
n«-1

C ^ ^ n 9- 2 I  {nex- ly 2v {  max \Xi\p ^ n 0~l \dx  
0

ne_1
(3.23) + n ° ~ 2 [  (n0_1 +  x)-2p ja: ^  max \Xi\p ^ n0_1}cta:

y t iá*=n J
o

n«“ 1

^ P d ^ l ^ n 0- 1} * « 1- 0 I  P ix g lX i lP ^ n 0-1} ^

n1-0E(|X1|1+5I?- TI/{|A[’1|P^n0-1})
(3.24)

^ —  r  1 - T n~(fl~1)(p + ̂ ) E ( | X i | 1+^ ) / { |X i |P ^ n 0- 1}),
1_ (p + 2(0-1) )

on account of d + 2̂ g1f ^ < 1. The assumptions of Theorem 3.4 give that 
+  2(<f-i) ) > 11 and hence we arrive at

J 2  n “ (0_1)(p + ̂ T T )E (|X i|1+^ / { | X i | P ^ n 0- 1}
l$n<oo

= Y  n~{e~l)(p+w ^>) Y ,  E ( l^ i |1+^ / { ( 7 —I)0_1< k i |p g7°})
l^n<oo 1
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(3.25) £  Y, E n _(0_1)(p+Ä ) E(|X i |1+^ 7 { ( j - 1)ö-1<|Xi |P ^ /} )
IájCoo ján<oo

= 0^1 E r^ i+"E(|x1|1+̂ u{ü-i)0-i<|x1|^ /-1})
V 2 1< j < oo

Z9(0% -  E E(|X1|̂ r/{(i-l)0-1<|X1|^ /-1})
2 ( e - i ) - p

2  p

lá j< oo

-E|A'1|^ T .
2(ö — 1) —p 

Combining (3.21)-(3.25), we obtain

(3.26)

Next we show

(3.27)

First we note

(3.28)

£
max \ X i \ p

q ( n )  + n max \ X ; \ p
lánCoo ' Iáián

E mvn(a)
----—  <00.

< oo.

lánC oo
n"

lira nP{|Xi|p ^ n e' 1} =  0,

and, by the Markov inequality, we have

P{|5n| ^  x} p { max \Xi \  ^ n~p~ j
1Iá ián  J

(3.29) +P{| E XjmSnW}^*}
Iáián

g nP{|X i Ip ^  n 0-1} + x~2 {n E (X iI{ \X i  \p g n0-1})
+  r i E ( X 1/ ( | X 1 |p ^ n 0- 1) ) } .

It follows from (3.28) and (3.29) that

lim supm „(a){nE(X 12/{ |X 1 |p g n0" 1}) +  nE(Xi 7 { |* i |p g n0- 1})}“ 1/2 < oo.
n—>oc

Thus, it is enough to verify

(3.30) ^  n - 0(nE(2f12/{ |X 1| ^ n (0- 1)/p}))p/2<oo
lán<oo
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and

(3 .3 1 )  Y  n - 0 | n E ( X 1 / { | X i | ^ n (0 - 1 )/ p } ) | p < o o .
l á n < o o

Using the Hölder inequality, we obtain

E (X ? /{ |X i|g n (0-1)/p})

^ (E |X i |^ T )EFi (E(|X i|(2" ^ )2 /{ |X i |^ n (0- 1)/p}))r
p P - 2  g - 1  2 ( p - 2 ) ( g - U  ( n  P A

^ (E |X !|« - i ) p (E d X ip /d X il^ n “ }))?« p7 1 

and therefore, we get

Y  n - 0(riE{Xfl{Xi | ^ n (0-!)/p}))p/ 2
lán<oo

^ (E lX i l^ T ) 2̂ E
P a , í n  P  ̂(9-1 )(p-2) „ 1

n f 0+(2 5ÍT) 2p E (X ? /{ |X i |g n '
9—1
“ })

lán<oo

^ ( E lX d 5̂ 1) ^ E n ~ l {0- l) Y  V ( X f l { ( j - 1 ) V < | X !

1̂VII

l$n<oo l<j'Sn

g ( E l X d ^ ) 2̂ E Y  n~pl9~l)E ( X ^ I { j -

VII
°k*VT—H

J})
l<?<oo j^n<oo

^ p (E l* il» -Q 2 
-  2(0 — 1) —p Y jl-l[e-l)U(XV{j -K\Xx\^ ij})

l á j < o o

^ p(E|A'1l«-i.),T
= 2(0 — 1) —p Y  EdXd̂ T/ij- 1 < \Xx\&ij})

lájCoo

s P( E |X i|^T )§
= 2(0 — 1) —p •

The proof of (3.31) is similar to that of (3.30) and hence omitted.
It may seem to be curious that the case of 0 =  1 +p is excluded in Theo­

rem 3.4. However, this is not due to the lack of power of our method. Indeed, 
Theorem 3.4 may fail if 0 =  1 -l-p.

E x a m p l e  3.1. Let {X „,n^  1} be i.i.d.r.v.’s with distribution 

P{Xi =  - l }  =  c0,
OO

PiX' = x)=c° l 7 (Hv)k\^y?iy'ifl = e‘'
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where

co — 1 +

OO

/
1

jdy
-1

y2 (log y) (log logy)2
ee

We show that this sequence of r.v.’s has the following properties:

(3.32) EXi =  0,

(3.33) n (1+p)(med|5'ri|)p =  oo for all p > 0 ,
l^n<oo

and

(3.34) V  max |SJp =  oo a.s..
l^n<oo

The definition of X \  implies (3.32) without any calculations. By Theo­
rem 1.2, (3.34) follows from (3.33). Hence, it suffices to verify only (3.33). 
Let F (x)  =  P{Xi and L(x) =  c0/((logx)(loglog:r)2). Clearly,

x ( l - F ( x )  + F ( - x ) )  i 
hm ----------——------------=  1,

®-»oo T(a;)

and

lim
x—>oo

F ( -x )
1 — F(x ) + F (—x)

= 0.

Therefore, F  belongs to the domain of attraction of a stable law with expo­
nent one (cf. Theorem 8.3.1 in Bingham et al. [1]). This means that

(3.35)
E  X i-b { n )

a(n) 3 y ,

where Y  is a random variable with characteristic function

f{t)  = e x p ( - |i |  - i ^ t  log |iQ ,

o(n)
7T n

2co(log logn)2 lo g n ’

and
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(cf. Theorem 8.3.2 in Bingham et al. [1] or Mijnheer [7], p. 16). We note 
that

oo
b{n) — na{n) [  (sin f  --------y-r\dF(x)

J \ a(n) a(n) /
— OO

, j  ■ /  1 \ , 1 sinA ~ i f e
y2(loglog?/)2 logy dy I,

and, therefore, we have

a ( n )

b(n) ^  Cona(n)if \{ y /a {n ) f

+
OO

/ :a(n)

y2(loglogy)2 logy 

- 2  y
W y 2(log logy)2 logy

dy

dy} = D £ \

b{n)
OO

Sco™(n){^w+ J - y

2 a(n)
2a(n)y2(loglogy)2 logy

Elementary properties of slowly varying functions give

lim j  — ‘2c°n , )  =  1,
n->oo /  \  log log a(n) /

- c 0n
lim

n—>oo
(2) / /  -cpn \ 
n /  V2 log loga(n) / ’

and thus we conclude

(3.36) ~2co < lim inf ^ ‘°e ’°^  < lim sup i>(’,) ‘°g ‘°S "  < -
n->oo n n—>oo 71 2

Using (3.35) and (3.36), we obtain

lim inf P
71—>00 { |£ Xi > c0n

3 log log n  .

^  lim inf P
n—>oo

E  X i-b { n )
l<i<n

a ( n )
< -b(n) — con/(3 log log n) 

a(n)
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(3.37)

^ lim infPn—>oo

= lim inf P
71—> 0 0

c0n
£  X i - b ( n ) 

i=*=n
a(n) ~ 7a(n)log logn 

£  -  b(n)
1 < 2 < 7

a(n)
< 2co (log log n) log n 

7n

= 1.

Now (3.37) yields

lim inf med|Sn| c0
n->oo (n/ log log n) 3

which implies (3.33) immediately.
Only Theorem 3.4 has a restriction on the value of p. The following 

example shows that Theorem 3.4 may not be true if 0 <p  < 2.

E x a m p l e  3 .2 . Let 0 < p < 2 and 1 + p /2 < 9 < 2. Let {Xn,n  ^ 1} be
i.i.d.r.v.’s with density function

9 { x )  =
ao|a:|1+ff- r (log |m|)(log log |m|)2, if |a ;|^ ee 
0, if |x| < ee.

We establish the following properties of {Xn, n íí 1}:

(3 .38)

(3 .39)

(3 .40)

X\  is symmetric, 

E |X i|^ T < oo  and EA4=0

£
l<n<oo

E-
max \XAP 
lgign 1

n 0 + n  max \XAp
1 <i<n

= oo,

if 9 ú  1 +p,

and

(3.41) n _0|S'n |p =  oo a.s..
l^n<oo

Elementary calculations give (3.38) and (3.39). Applying Theorem 1.3, we 
can see that (3.40) implies (3.44). So we need to verify (3.40) only. Let

a(n)
/ 6a0(fl — l)n  \  V 1 
\p(loglogn)2 lognJ
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It is easy to see

lim P{|X i| ^x}  /  (
x—>oo / \

2a0(fl — 1)
pXp/{0-\) ((0g logs)2 log x ) -

and hence we have
lim nP{|Ai | ^  a(n)} = - .n—> oo 3

If 0 < x Ú a(n), then we obtain

P {max \XA ^  x > ^ P
J

max \XA > a
i=*=n

assuming that n is large enough. Using Lemma 2.2, we get

max \Xi\p
1 <i<n g_n

E—̂------------ v^rr= P nU 1ne -f n max IXA?
1 <i<n

a(n)xP ]p / max
j  ll<i<n' J

pn“- z f  x]
= 6 J (n0~l

o
^ 1 / 6fl0( e - l ) \g - i
~ 12 \ v )

7 dx —

(nö 1 + xp)2

ap(n)

dx

+ xP)2 6 n (n0_1 +  aP(n))

1
n((log n) (log log n)2)2 \0- \  ’

if n is large. Since 6  < 2, the proof of (3.40) is complete.
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ON THE HAUSDORFF DIMENSION OF THE SET GENERATED 
BY EXCEPTIONAL OSCILLATIONS OF A WIENER PROCESS

P. DEHEUVELS and M. A. LIFSHITS

Dedicated to Endre Csáki on his sixtieth birthday

A b s tra c t

The rescaled A-increments Yt ^(u) = (2h \og(l/h ))~1 2̂{W(t + hu) — W(t ) } ,  for u €  
[0,1], of a Wiener process { W ( t ) : t ^ 0}, are considered as elements of the space Co[0,1] 
of all continuous functions g on [0,1] with g(0) =  0. We endow Co[0,1] with the topol­
ogy defined by a norm || ■ ||„ chosen within a general class C for which the limit law 
lim/lj.o{sup0<t<1 < oo holds with probability 1. We show that, for each /  €

I
Co[0,1] with f { £ f ( u ) } 2d u ^  1, the set £„( / )  =  {t  G [0,1] : liminf/40 \\Ylyh -  f \ \u =  0} 

o
contains, with probability 1 for each v £ C, a subset £ ( / ) ,  independent of || • 11 ̂  EC and

l
with Hausdorff dimension equal to dim (£(/)) =  1 — f  { ^ f ( u ) } 2du.

0

1. Introduction and statement of main results

Let {Wi ( t ) : i ^  0} denote a standard Wiener process. For each h > 0 and 
t g 0, set X tth(u) = h - 1/2 {W{t + h u ) - W ( t ) ) ,  Lh = L{h) = (21og(l/ h ) ) 1' 2 and 
Ytih(u) = L ^ 1 X t'h(u) for u ^ 0 . Fix any to G [0,1]. Lévy [14] established that 
with probability 1,

( 1 . 1)

(i) I™ { SUP ||*t,ft||w} =  l,
h ±° 1 t€[0 ,l] J

(ii) limsup<h in I»

log(l//l) l 1/2
A 4.0 Uoglog(l//i) } \\YtoA\\u = h

where ||/||w  =  supuG[01] |/(u )| stands for the sup-norm of / .  Orey and Tay­
lor [17] precised (1.1) (i) by proving the existence with probability 1 of a

1991 Mathematics Subject Classification. Primary 60F17, 60F15, 60F10, 60G15.
Key words and phrases. Wiener process, law of the iterated logarithm, modulus of 

continuity, strong laws, Hausdorff dimension, fractals.
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Research.
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(random) subset C Q [0,1] such that, for each t 6 £,

(1.2) lim sup||yrt)/,||w =  1.
/ 4 0

The following notation is needed for the exposition of refinements of 
(1.1)—(1.2) obtained in the recent literature. Denote by C[0,1] the set of all 
continuous functions defined on [0,1], and set Co[0,1]={^€C'[0,l]:g(0) =  0}. 
Aside of the uniform topology U generated by ||/||w , there is a large choice of 
normed topologies on Co[0,1] (or C[0,1]) which are appropriate with respect 
to the derivation of limit laws for the Wiener process. To characterize a 
general class including most of the possible norms of interest, we follow the 
notation and vocabulary of Deheuvels and Lifshits [5], [6]. By a norm on 
a vector space X  (with emphasis on the cases where X  = Co[0,1] or X  =  
C [0,1]), is meant a mapping v : /  —> v( f )  — | | / | |„  of X  onto [0, oo] fulfilling
(A) below, with the conventions 0 x oo =  0 and 0 +  oo =  oo. When it is defined 
on either X  =  Co[0,1] or X  =  C[0,1], v is said to be a consistent norm if it 
satisfies (A), (B) and (C) below. By a consistent semi-norm on X  =  Co[0, 1] 
(resp. X  =  C[0,1]) is meant a mapping v : /  —> n( f )  = \\f\\u of X  onto [0, oo] 
satisfying (A)(i,ii)-(B)-(C) but not necessarily (A)(iii)-

(A) For all f ,g  6 X  and c £ R

(i) H f  + g)%v{f )  + v{g),
(Ü) v(cf )  = \c\v{f),

(iii) v{f )  = 0=>/ =  0.

(B) v  is lower semicontinuous with respect to the uniform topology IA.
(C) There exists an e > 0 such that with probability one

(1.3) sup n ( w { d l +  { l - 0 2) - ) - W { 6 l )) <oo.

The space X  endowed with the topology defined by v = 11 ■ 11„ is denoted by 
(X , u). We note that, with the above definitions a norm (resp. a semi-norm) 
is possibly infinite. Moreover, any norm (resp. semi-norm) u on Co[0,1] may 
be extended to a norm (resp. semi-norm) on C[0,1] by setting u( f )  =  oo 
for all /  G C[0,1] — Co[0,1]. Therefore, in the sequel we will not distinguish 
the case where u is defined, on C[0,1] from that where v is initially defined 
on Co[0,1] only. Throughout, we will denote by C the set of all consistent 
norms on Co[0,1]. We will repeatedly make use of the observation that (A)- 
(C), when combined with the scaling property of the Wiener process, jointly 
imply that

(1.4) P(n(W) < oo) =  1.

We refer to Deheuvels and Lifshits [5], [6] for further discussions and 
examples of norms which satisfy (A)-(B)-(C). In particular, the weighted
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sup-norm, the Holder norm and the Lp-norm defined, respectively, for /  £ 
Co[0,1], a  < 1/2, ß < l / 2  and p ^  1, by

sup t~a( l - t ) ~ ß\f{ t) l  sup { t - s ) ~ a\f(t) - f { s ) \ ,
0<t<l Ogs^igl

( j \f(u)\pd u ) l/P,
0

are consistent norms in the above sense. Following the discussion in [5], [6], 
we mention that the technical assumption (B) may be relaxed in part in 
the statement of our forthcoming results at the expense of huge technical 
difficulties. Since, to our best knowledge, there is no interesting norm with 
respect to the Wiener process which does not satisfy the latter condition, we 
will limit ourselves to the present framework.

The following notation and facts, taken from probability theory in Ba­
nach spaces will be useful. Let X  =  (X , r)  denote a vector space X , endowed 
with a Hausdorff locally convex topology r , and algebra of Borel sets Bx- 
We denote by X* the space of all r-continuous linear forms on X . An de­
valued random variable Z  whose distribution P z(B)  = P (Z £ B)  for B  £ Bx  
is a Radon measure on X  is said to be centered Gaussian whenever the 
distribution of n(Z)  is centered Gaussian for all 7r £ X*. The Gaussian 
measure P z  allows to imbed X* into L2 =  L2 (X, Bx,  Pz) via the mapping 
l z  '■ Tr £ X* —> 7t(Z) £ L2. The closure of X* = Iz(X*)  into L2 is called the 
space of measurable linear forms (with respect to P%) on X  and denoted by 
X%. For each centered Gaussian distribution P z  on A, there exists a kernel 
Hz  which is a linear subspace of X, endowed with a Hilbert norm | • | h z )  

such that the following property holds (see e.g. Section 9 in Lifshits [15]). 
For each h £ Hz, there exists an hE Xtf satisfying the equalities

P z{B  + h) = J  (h(z) -  ^ |/i |h z) P z(dz) for each B e B z , and

(L5) B
j  h{z)2Vz {dz) = \h\2n z .
x

The space Hz is called the reproducing kernel Hilbert space [RKHS] of P z- 
The unit ball of Hz will be denoted by K z = {h e  Hz : H h z = !}•

We will specialize in the case where X  =  Co[0,1] (or C [0,1]), t = U, 
Z  =  W  is (the restriction on [0,1] of) a Wiener process, and P w is the Wiener 
measure. In this case, (1.5) is the Cameron-Martin formula (Cameron and 
Martin [4]) and | • | h w  =  | • | h  is the Wiener process Hilbert norm | • | h ,
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conveniently defined by setting, for each /  £ C [0.1]

l

I / I h  = /(s)2ds) 7 ,

when /  £ Co[0,1] is absolutely continuous on [0,1] with Lebesgue derivative 
f (u)  =  ^ -/(u ), and | / | h  =  oo else. The RKHS of P w  is then Hw = H =  { / £ 
Co[0,1]: | / | h  < oo}, with unit ball Kw =  K =  { / £ H : | / | h  ^ 1} equal to the 
Strassen set ([21]).

For each consistent semi-norm v on Co[0,1], introduce the limit sets

( 1. 6 )

Ct{v) = { / G Co[0,1]: lim inf v(Yt>h -  f )  = 0},
h \\)

C{u) =  { / £ Co[0,1]: lim inf ( inf u{Yth  -  /))/40 te[o,i] 0 } ■

For each consistent semi-norm i/, /  £ C7o [0,1] and a  ^  0 introduce the sets of 
exceptional points (in [0,1], and with respect to v, / ,  a  and W), defined by

T( v , f )  = { t e [ 0 , l ] : f  € C t{v)},
(1 7 ) T(is, a) = {tE  [0,1]: lim sup ( inf v(Ytyh- f ) )  > 0}.

hi o /e»K

Here, and elsewhere, we set AK  = { \ z  : z € K }  for A £ R and K  Q X . 
By extending the functional law of the iterated logarithm of Strassen [21] 
to increments, Révész [18] and Mueller [16] improved (1.1) by showing that, 
with probability 1,

C(U) =  K.
Deheuvels and Lifshits [5] obtained a general version of this statement by 
showing that, for any consistent norm v £ C, we have, with probability 1,

( 1.8 ) C ( v ) =  U  C t (u)  =  K. 
te[o,i]

It follows from the versions of (1.1) (ii) which hold with U replaced by 
v £ C that, with probability 1 for each specified to £ [0,1], the set C t 0 ( v )  
contains only of the null function (see [5], [6]). This is not in contradiction 
with (1.8) because of the continuum cardinality of [0,1]. In addition, (1.8) 
implies that, with probability 1, T(i^,/)=0 for each /£C o[0,1] with |/ |/ /> 1 , 
and T(v, a) = 0 for each a  ^  1.

On the other hand, it follows from (1.8) that, with probability 1, the sets 
T( u , f )  and T(v,a)  are not empty for | / |#  ^  1 and a 6  [0,1). We will now 
show that each of these sets, being of Lebesgue measure zero and dense in 
[0,1], constitutes a random fractal, whose Hausdorff dimension is independent 
of v £ C with probability 1.
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We refer to Falconer [9], [10] and Stoyan and Stoyan [20], for expositions 
of the theory of fractals. Below, we limit ourselves to simple definitions. 
By a fractal subset of [0,1], is meant here a set A Í  [0,1] with an arbitrary 
Hausdorff dimension dim(yl) 6 [0,1]. The latter is defined by

(1.9) dim(i4) =  inf jp  > 0: lim  ̂inf |6j — = 0 j,
<5J'° i d

where the infimum is taken among all { ( ß j ,  bi) : i E 1 }  E R2 such that A  Q 
Uiex[ßi,bi] and 0 < fej — ß* ^ á for each i E l .  The first steps in the evalu­
ation of Hausdorff dimension for sets generated by exceptional oscillations 
of Wiener processes were made by Orey and Taylor [17]. They established 
that, for each <*€ [0,1], with probability 1,

(1.10) d im í t E [0,1]: limsup ||Vt,/i||w «} = 1 - a 2.
L / 4 0  J

Deheuvels and Mason [7], [8] obtained the functional version of (1.10) stated 
in Theorem 1.1 below.

THEOREM 1.1. (a) For any a E  [0,1], with probability 1,

(1.11) dim(T(77, a ) )  =  1 — a 2.

(b) For any f  E K, with probability 1,

(1.12) dim(T(ZY,/)) =  l —1/&.

The aim of this paper is three-fold. First, we will extend the validity of 
Theorem 1.1 to the case where the uniform norm U is replaced by any norm 
v within the class C of consistent norms. The corresponding result is stated 
in Theorem 1.2 below in the somewhat more general setting of a countable 
family J\f — {un :n M } C C  of consistent norms.

Theorem 1.2. Let M  =  {vn :n M } Q C  be a countable family of consis­
tent norms. Then, with probability 1,

(1.13) dim^ T(y, a)^ =  1 — a 2, V a€[0,l],
i/CA/"

and
(1.14) dim ( P | 7 > , / ) )  = l —| / | 2h , V /€  K.

i/eAf

Second, we will make use of Theorem 1.2 to establish in Theorem 1.3 the 
existence with probability 1 of norm-independent sets of exceptional points 
(in the sense of (1.6)—(1.7)) with the same fractal dimension than that which 
is obtained for a single norm u E C.
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THEOREM 1.3. There exist families of random subsets {T'a : a  G [0,1)}, 
{T" : a  G [0,1)} and { T j , f  G K} of [0,1], indexed by a £ [0,1) and f  E K, 
respectively, such that, with probability l,
(1.15) dim(T^) =  dim(T") = l - a 2, VaG[0,l),
(1.16) dim(Ty) =  1 — | / |h , V/G K,
and, for each consistent norm vEC,  with probability 1
(1.17) T'a Q T(u, a) Q T", VaG [0,1),
(1.18) Tf QT( n , f ) ,  V/G K.

R e m a r k  1.1. The meaning of the second half of Theorem 1.3 is that, for 
each specified consistent norm u G C, there exists an event O„ of probability 1 
on which (1.17)—(1.18) hold. In particular, on the event £2U, for each /  G K 
and t ETf ,  the function /  belongs to the limit set Ct(n) of the increment 
functions {Y//,: h > 0} as /i/0 . In other words,

(1.19) P ( Ihn inf n(Yuh -  / )  =  0 Vi G T/\ V / G k ) = 1 Vn G C.

The arguments given in the sequel show that, even though T'a, T" and Tj 
may be defined independently of v G C, the event of probability 1 on 
which (1.17)—(1.18) hold depends upon uEC.  The existence of an event of 
probability 1 implying (1.17)—(1.18) independently of uEC is unlikely even 
though we have not been able to disprove its existence.

The proofs of Theorems 1.2 and 1.3 are given in Sections 2 and 4.
To motivate the remaining third part of our paper, it is useful to outline 

some of the ideas which will be uíed to prove Theorem 1.3. We will make 
an instrumental use of the observation that the set C of consistent norms 
may be equipped with a separable metric topology. This will allow us to 
infer Theorem 1.3 from an application of Theorem 1.2 to a properly chosen 
countable dense subset J\f of C. The large deviation bounds for distances of 
norms within C which are needed to complete this part of our proof have 
interest in and of themselves and will be established in the forthcoming 
Section 3.

2. Proof of Theorem 1.2

2.1. Introduction. To prove Theorem 1.2, it is enough to check the 
validity of the upper bound in (1.11), and the lower bound in (1.12). In 
other words, we need only show that, under the assumptions of the theorem, 
with probability 1,

(2.1) dim ( I J  T(i/,a)) ^ 1 — a 2 V ae[0 ,l],
vert



EXCEPTIONAL OSCILLATIONS OF WIENER PROCESSES 81

and

(2.2) dim ( D  7 W ) ) ^ 1  —I/Ih V /g K.

By combining (2.1)-(2.2) with the implications, holding for /  G H and a  Si 0,

(2.3) | / | h > a=> T(i/, f )  C T(i/, a),

it is readily seen that (2.1)~(2.2) hold as equalities, which establishes (1.11)—
(1.12).

We postpone the verification of (2.1) and (2.2) when Af =  {V} consists 
of a single norm v G C to Sections 2.2 and 2.3. Below, we limit ourselves to 
show how the result for Af = {i'} can be extended to the case where Af QC 
is an arbitrary countable set of consistent norms.

Assume therefore from now on that, for each specified i/GC, (2.1)—(2.2) 
hold with probability 1 for Af =  {i'}. Consider any countable set Af = 
= {vi : i ^  1} C C of consistent norms. It follows from (A) in combination 
with the scaling property of Wiener processes that a norm u satisfying (1.3) 
for some e > 0, also satisfies (1.3) for all e € (0,1). In addition, the integra- 
bility properties of Gaussian seminorms (see (2.24) and Remark 2.1 in the 
sequel) imply that for each e € (0,1) and each consistent norm u G C

(2.4)

By (2.4),

0 < e ( sup v{W{0x + ( l - 0 2)- )-W (0 i)) )  <oo. 
V 01,02 e[o,e] '

we may let, for * =  1,2,...,

bt = 2! e ( sup vi (W{el + { l - 6 2) - ) - W ( 9 1)))
V 01,026(0,1/2] '

and define properly a new norm vq on Co[0,1] by setting

*4) =  v' l hi-
vZ\

In view of the easily verified fact that uq is a consistent norm on Co[0,1], we 
conclude the proof of Theorem 1.2 by an application of (2.1)-(2.2)-(2.3) to 
Af = {Vo} QC, in combination with the straightforward inclusions of sets, for 
all /  G H and a  ^ 0,

U T K a ) i T ( p 0,a )  and f| T(vi t f ) 2 T(vo, f ) .
i> 1 i> 1
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2.2. Upper bounds. In this subsection, we prove (2.1) when AT = {n} C C 
reduces to a single element. We first observe that (2.1) is trivial for a = 0 
since the Hausdorff dimension of a subset of [0,1] is always bounded above by 
1. We may therefore limit ourselves to the case where a E (0,1], and assume 
from now on that this condition holds. Select an arbitrary e > 0 together 
with a p E (1 — a 2, 1). Below, we will show that the Hausdorff dimension of 
the set

(2.5) T [ u , a , e ) f t E  [0,1] :lim sup ( inf v(Yt,h ~  / ) )  > e},L /40 v f£<*K ' )
is bounded above by p. This will be achieved by the construction of an 
“economic” covering of T(v,  cc, e), as follows. Throughout the sequel, we will 
set 7n =  and tj,n = j n ~ l7„, for j  E N = {0,1,...} and n ^  1. Moreover 
we set, for n ^  1,

Jn = { j£  N : 0 ^  ^  1, inf v{Ytj n,7n -  / )  ^  e/2}.

We will show that, with probability 1 for all large no, the inclusion

(2.6) T(v,a.,e)Q  ( J  j  [ J  [tj,n>tj+l,n]^
n'tno j&Jn

holds. In addition, setting |A| for the Lebesgue measure of A Q R and #  J  
for the cardinality of J , we will show that, with probability 1,

(2.7) El U =E (#J«)(n J7n)P < °°-
n=1 jeJn n= 1

Let us first assume that the claims (2.6)-(2.7) hold with probability 1 
for each choice of e > 0 and p E (1 — a 2, 1). The definition (1.9) of Hausdorff 
dimension, implies in this case that, with probability 1, for each choice of 
E > 0 and p E (1 — a2, 1),

(2.8) dim(T(n, a, e)) ^ p.

We note from the definitions (1.7) and (2.5) that

T(is, “ ) — [ J  T(u, a, 1/n). 
n^l

By applying (2.8) to e =  1/n  for n = 1,2,..., we obtain readily that 
dim(T(z7 a, 1/n)) ^ p with probability 1, for each p E (1 — a 2, 1) and all n ^  1. 
The cr-stability of Hausdorff dimension (see e.g. (2.20), p. 17 in [20]) implies 
in tu rn  that, with probability 1, for each pE  (1 —  a 2, 1),

dim(T(n, a)) =  sup jdim(T(n, a, 1/n)) |  ^  p.
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By choosing in this last inequality p = pm, where pm G (1 — a 2 , 1), m  = 1,2,... 
is any sequence such that pm 1 — a 2 as m -> oo, we obtain readily that, with 
probability 1, for each a G [0,1]

(2.9) dim(T(i^, a)) ^ 1 — a 2.
This in turn implies that (2.9) holds with probability 1 for all a  G A, where 
A is a countable dense subset of [0,1]. Since the function a G [0,1] —> 
dim(T(i/,a)) is obviously nonincreasing, an easy argument shows that (2.9) 
holds with probability 1 for all a G [0,1].

By all this, the assertion (2.1) when AÍ = {v} consists of a single element 
is a consequence of (2.6)-(2.7). The following arguments are oriented towards 
proving the latter two assertions.

We will make use of the isoperimetric inequality of Borell, Sudakov and 
Tsyrelson, which we cite for convenience below in the general framework of 
Section 1 (see e.g. Section 11 in [15]). We will apply this inequality in the 
special case of Z = W, X  — (Cb[0,1],W), Hz =  H and Kz  =  K. Denote by

x 2
$(x) =  (27t)-1/2 J e~f /2dt the standard normal distribution function, and

—oo
define <f>_1(s) for sG (0,1) by the equality í>(í>-1 (s)) = s for all s G (0,1).

F a c t  1. Let X  be a Hausdorff locally convex space with Borel a-algebra 
Bx- Let Z denote an X-valued random vector with distribution given by a 
centered Gaussian Radon measure P% on X . Denote by Hz the RKHS of 
Z  and by Kz its unit ball. Then for any r ^  0, A G Bx and B  G Bx with 
B n (A  + r K z ) =  0, we have

(2.10) P(Z e B ) ^ l - $  ^ “ 1(P(Z G A)) + r ) .

PROOF. See Borell [1], Sudakov and Tsyrelson [22], and e.g. Section 11 
in [15]. □

Since E(|X |) < oo => P (|AC| < oo) =  1, to establish (2.7), we need only 
show that

OO

(2.11) ^ E ( # J n) (n -17nr < o o .
71=1

Recall the definitions of X t^ , Yt,h and L(h) = (21og(l//i))1/2. By the scaling 
property of the Wiener process in combination with (A), we obtain readily 
that, for all large n,

E (# J n ) Í  [ n i ~ l + 1J P ( M k  ^(To,7„ -  / )  i  e/2)

= 2n^n 1 P ( , inf , ( * 0)7„ - h ) Z  eL(7„)/2)

=  2n7 - 1 p (  inf v ( W- h ) Z e L ( ' y n)/2) ,
\/iGaL(7n)K /

( 2 . 12)



84 P. DEHEUVELS and M. A. LIFSHITS

where, here and elsewhere, [uj ^  u < [tij +  1 denotes integer part of u. We 
apply Fact 1 with Z  =  W,  X  = (C o [0 ,1 ] , U ) ,  Hz = H, Kz  = K. Letting Dm = 
=  { /  €  C*o[0,1] : v{h) < M}, we observe that (1.4) implies the existence of a 
large M  > 0 such that

(2.13) V{W GD m ) = P{v{W)  < M)  > <f»(l).

We apply (2.10) with A = Dm , B — Co[0,1] — {Dm +  aL{7n)K} and r = 
a L ( jn). Since L(7n) =  (logn)1/2 —» oo, there exists an no < oo such that 
eL(7n)/2 > M  for all n ^ no- We obtain therefore that, for all n 'A no,

P ( inf u(W  - h ) 2  eL{in)l2) = P ( w  0 Ds L h n ) / 2  + aL{l n )k )
\/i€aL(7n)K / \ /

^ P ( V  £Z?M + aL (7„)K) = p ( l L e ß )

(2.14) ^ l - $ ( r ‘ ( P ( i f 6 4 ) ) + r )

=  1 -  $ ( V X(P(W G D m )) + aL(7n))

<il-<f>(l + aL(7n)).

Since 1 — 4>(i) r)-1/2e-x2/2 ^  e~x2/2 for x  ^  1, it follows readily from
(2.14) that for all large n,

(2.15) p ( inf u(W  — h)> EL(')n)/2 \ ^  exp ( — a 2 L{-yn)2 /2)  =  7“2.

We infer from (2.12) and (2.15) that, for all n sufficiently large,

E (# Jn )(n _17n)P ^ (2H7“ 1) x 7 " ' x (n_17„)'’

=  2 n 1~p exp f — (a 2 +  p — 1) j  ,

which in turn, given that a 2 4- p — 1 > 0, readily implies (2.11), and hence
(2.7).

The following Lemmas 2.1-2.2 are oriented towards proving (2.6).
Lemma 2.1. For each consistent norm uEC and each z > 0 we have

(2.16)
ooE{ E PL, sup sup u(YtA -  Ytj ni7n) ;> e/2) I  < 00.

n=l j;0<£jn<l ^[L-n >L + l,n] ^£[7n+lj7n]

Before giving the details of the proof of Lemma 2.1, we will show that 
its conclusion (2.16) implies (2.6). Assume therefore that (2.16) holds. By
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combining this claim with the Borel-Cantelli lemma, we obtain readily that 
the property (V) below is satisfied with probability 1 for all large n. Recall 
that tjtTl = jn ~ lyn for j  ^  0.

(V) For any t £ [0,1], the choice of j  =  j(t) = \tnr)~x\ ensures that 
H Yt,h ~ Ytj,,,,7J  ^ e/2  for all h e  [7n+i,7n], so that

t e  T(i/, a, e ) j  inf̂ . v(Ytyh -  f )  ^ e  for some h e [7n+ i, 7 n ]}

=* { "(Ytj.n,7n -  / )  ^ e/2} =► j  e  Jn

U  {  U  ^ L n ' ^' + l,n ] |-
n'tno jeJn

Since (V) holds with probability 1 uniformly over t e  [0,1], we obtain 
(2.6) as sought.

The following Lemma 2.2 gives a version of the isoperimetric inequality 
which will be instrumental in the forthcoming proof of Lemma 2.1.

Lemma 2.2. Let Z  denote a random vector with distribution given by 
a centered Gaussian Radon measure on a Hausdorff locally convex space X . 
Let || ■ || be a seminorm on X, measurable with respect to P% and such that 
P(||Z || < oo) =  1. Let m be a median of the distribution of \\Z\\. For any 
c>  m set ß  =  /3( || ■ ||, c, Z) =  c /$ _1 (P(||Z|| <  c)). Then for any R ,^ .m  the 
following inequality holds

(2.17) P ( \ \ Z \ \ l R ) Z l - * ( ( R - m ) / ß ) .

PROOF. See e.g. Lemma 3.2 in [6], or Lemma 2.1 in [5]. □

REMARK 2.1. It is easy to check from (2.17) that, for any measurable 
norm || ■ || on X , the condition P(||Z|| < oo) =  1 is equivalent to E(||Z ||m) < oo 
for an arbitrary m > 0.

Proof of Lemma 2.1. Recall that t ^n = j n ~l and =  e-v/” for 
j  ^  0 and n ^  1. The scaling property of the Wiener process in combination 
with (A) show that, for all n sufficiently large, the left-hand-side of (2.13) is 
bounded above by

Ln7n 1 +  1J p (

^ 2 n 7 ~1P (

sup
te[0 ,n-17„]

sup
t€[0 ,n->7 „]

sup I/(Ytth ~ Fo,7n) ^  e /2) 
5e[7n+l,7n]

sup v(Yt,h -  y0,7„) ^  £/2) •
5e[7n + l,7n] 7

(2.18)
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Set X  = X 0fg, g = 'Yn and T =  7n+i/7n- Recalling that {.X’(u) = g~l!2W (gu): 
u ^  0} is a Wiener process, we have the following key identity for h E [Tg, g], 
t E [0, bg] and u ^ 0

(2.19)
X tih{u) = h~ 1/2 (W(t  + hu) -  W(t)) = (,g / h ) ^ 2g - ^ 2 (W(t  + hu) -  W(t ))

={g/ h) ^ 2g - 1/2 W{gu ) +  (g/h)1''2̂ 1/2{W(i + hu) + W(t) -  W{gu) )  
=( g / h ) ^ 2X(u)  + (g/h)1/2 {X(01 +  (1 -  02 )u) -  X(0i) -  * (« )} , 

where 6 \ :=t./g ^ b and 02 := 1 — h/g E [0,1 — T]. Therefore, by (2.19),

(2 20) Y,-h ~  Y° ■’ =L* 'X t ’k -  L? X °* =  f -
+  ( g / h ) ' , 2L-k‘ { * ( 0! +  (1 -  f c »  -  X (0 i) -  * ( • ) } •

Next, uniformly over F ^ / i / g ^ l ,  we have ultimately in F |  1 and g 4-0,

0 g ( ;g /h )1/2L/̂ 1- L ; 1^ 3 ( l - r ) L - 1 and 

(g/h)1' 2^ 1^  r - 1/ % - 1^ 2 L - 1.

The combination of these estimates with (2.20) yields

( 2 . 21 )

P( sup sup v(Ytih- Y 0ig)
'te[o,bg] /ie[rs,9 ]

^P i(0 ,F ) + P2( M ,r )

sup sup
ö i g [o,6] 02e [ o , i - r ]

:= P (v{X)  ^  Lge / {12(1 — T)})

u(X(9l + ( l - e 2 ) - ) - X( e l ) - X( - ) ) ^Lge/8) .

Since for the choices of g = yn and T =  7n+i/7n we consider, we have T 1 1 
and g 4-0, we note that (2.21) holds uniformly over T ^ h/g ú 1 for large n. 
Below, we derive upper bounds for Pi((?,r) and P2(f>, g ,r) , making use of 
Lemma 2.2.

Recalling that X  and W  are identically distributed, we first apply Lemma 
2.2 to Z  =  W,  || • || =  ö(-), R  = Lge/{  12(1 — T)} and c =  ci, chosen, via (2.13), 
in such a way that P (v(W)  < ci) > $(1). Since then, ß — ß(u, c\ , W )  = 
c i / $ _1(P(^(W ) < Ci)) ^  ci, the observation that, for all large n, (R  — m ) / ß >  
1 |R / ß ^  y|R / ci allows us to write, via (2.17), the following inequalities. For 
all large n, with g = 7„ and F =  7n+i/7n>

P i(9 , r ) = p ( i , ( W ) ^ L ge /{ 1 2 ( l - r
( 2 . 22)

_  ( L¥  \ 
=  e X P C - 2 { 1 3 c i ( l - F ) } 0

) } ) g i - $ ( v / { i 3 c i ( i - r ) } )

<  _ ,(9 /8 )2 
In — in 5
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where qn := e2/{13ci(l — T)}2. Here, the fact that oo (whence qn ^ 
(9/8)2 ultimately), follows from the observation that Y =  jn+ i/jn  = 
_  eVn-Vn+ i_^i ^  n —»oo.

Second, we apply Lemma 2.2 to Z =  W  and || • || =  || • ||0 given for 
/ e C 0[0,1] by
(2.23) | | / | |0 =  sup u ( m  + ( l - e 2) - )~ / ( 0 i ) -/(•))■

ői,ö2e[o,ö]
Our assumption that v satisfies (A) and (B) readily implies that || ■ ||0 defines 
on Co[0,1] a lower semi-continuous norm with respect to U. The fact that 
P(l|W|lfl < o°) =  1 (which is needed in Lemma 2.2) follows from the last 
consistency condition (C) via (1.3). This, together with an application of 
the zero-one law (see Cameron and Graves [3], Kallianpur [12], Jain [11]) 
following the lines of proof of Lemma 2.4 in [6], implies the existence of a 
constant C2 < oo such that, with probability 1,
(2.24) hm||H"||0 =  c2.

Since (2.24) implies that P(||W ||0^C2 + 1)—>1 as 0 |0  and 4>(10e~1(c2 +  l)) —> 1 
as e 0, there exists an £o > 0 such that, for each 0 < e ^  £o, a choice of 
90 =  #o(e) > 0 sufficiently small guarantees that, for all 0 < 6  % 9q = 9o{e),

(2.25) p ( ||W ||0 g c 2 + l)  ^ $ (1 0 £ -1(c2 +  1))>1/2 .

By (2.25), any median m(0) of the distribution of || W ||0 is such that c2 +1 > 
m(0). Moreover, with the notation of Lemma 2.2, uniformly over 0 < 6  ^  0o,

(2.26) ß{\\ • ||0, c2 +  1, W) = {c2 + l J / i - ^ P d l ^ l l ,  < c2 + 1) ^  e/10.
By combining (2.24)-(2.25) with (2.17), taken with ß  =  ß{\\ ■ ||0O, c2 + 1, W),  
|| • || =  || • II0O and to =  m(ßo)i we see that there exists an i?o ^  c2 + 1 such that, 
for all R Z R q,

(2 p (\\W\\0o g r ) Z 1 -  m R  -  C2 -  l ) /ß)  ^  1 -  4>(10(J? -  C2 -  l)/e)

S 1 -  4>(9R/e)  ^  exp ( -  92i?2/2e2).
We now choose R  =  Lge/ 8  in (2.27) with g =  j n, and assume n to be so large 
that R  ^  Rq, n _1 6q and 1 — T =  1 — 7n+i/7n ^ $o- By combining (2.21) 
with the definition (2.23) of || • ||0, we infer from (2.27) that, for all large n, 
with b = n _1, g = 7„ and Y = 7„+i/7n,

p 2(6,ff, r )  = p sup sup u (x (e 1 + ( i - e 2 ) ) - x ( e l ) - x ( - ) ) ^ L g £  
vőie[o,6] 02e[o,i-r]

(2.28) g p ( | |* | |0o^ ) = p ( | | W | | 0o^ i? )

g e x p ( - 9 2L2/{ 2 x 8 2} ) - 7^ /8)2-
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By combining (2.21) with (2.22) and (2.28) we see that the left-hand side 
of (2.18) is ultimately bounded above by

(2n7~1) x (27 9̂/8)2) = 4n  x exp ( -  ^ \ / n ) ,

which is summable in n. The convergence of the series (2.16) is therefore 
established. □

2.3. Lower bounds. In this section, we establish the validity of (2.2) 
when J\f = M  Q C consists of a single element. We start by proving that a 
version of (2.2) holds for a fixed /  E K. Namely, we claim that, for each v £ C 
and /  E K, we have with probability 1

(2.29) dim(T(n, /) )  ^  1 — | / | h -

We postpone until the end of the section the proof that (2.29) holds with 
probability 1 uniformly over /  G K.

Since (2.29) is trivial when | / | h  =  1, we may limit ourselves without loss 
of generality to prove this claim in the case where | / | h  < 1. We will give 
below the arguments needed when 0 < | / | h  < 1 and assume from now on 
that this assumption holds. The case where /  =  0 is obtained by routine 
modifications which we omit for the sake of conciseness. We will obtain a 
lower bound for the Hausdorff dimension of T{v, f )  by following the ideas of 
Orey and Taylor [17] (see also [8]). The next two facts will be instrumental 
for our needs.

Fa c t  2. Let T  Q [0,1] be such that T  = fl^Lno ^n> where Tno 2  ... 2 T n 2
... for n  ^  no, and Tn =  Uib=\ In,k with {In,k '■ 1 ^ k ^ M„} being for each 
n ^  no a collection of disjoint closed intervals. Let p > 0 be a constant, and 
assume that there exist two constants c > 0 and 6 > 0 such that the following 
property holds. For each interval J  Q [0,1] with there exists a finite
integer n{J) such that for all n  ^  n(J)

(2.30) Mn(J) := #{7n,fc C J : 1 ^  k Í  Mn} g c\J\pMn .

Then dim(T) ^ p.
P r o o f . See e.g. Lemma 2.2 in [17] and Lemma 3.5 in [8]. □

Fa c t  3. Let A be a symmetric Borel subset of (Co[0,1],W). Then

(2.31) P(W - h e A ) Z  P (W G A) exp ( -  ^\h\2Ĥj.

PROOF. See e.g. Lemma 2.2 in [5]. □
The following arguments aim to construct appropriate Cantor-type sets 

T  = T { f )  QT{v , f )  as in Fact 2, satisfying (2.30) for suitable choices of p.
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We start by choosing an R  > 0 so large that P(u(W) ^ R ) >  1/2. This is 
rendered possible by (1.4) and the assumption that f GC is consistent. For 
each b > 0 and q > 0 with q~x G N and b~l € N, we define, for g € K, the 
families of intervals

In (2.32), we will set b = bn = l / n  and q = qn for n ' t  1, where {qn : n t  1} is a 
rapidly decreasing sequence of positive constants which will be precised later 
on. We assume that this sequence is such that, for each n ' t  1, q~l G N and 
bnQn/Qn+i = Qn/ {nqn+i} G N. We construct T( f )  by induction as follows.

First, we introduce a sequence {fn : n t l }  QK such that

The following parameters are needed for the statement of the assump­
tions (F:2)-(F.4) and (C.2) (C.5) below. We select a sequence {en : n t  1} 
of constants such that 0 < en ^  1 for n t  1 and Yl™=i£n < log 2. Let­
ting £ — exp ( £n)i we observe that 1 < £ < 2. Moreover, we select 
a A G (0, |  m in{|/|jj, 1 — | / | f j }), and set p = 1 — | / | jj — 2A. We note for 
further use that

Second, we consider a sequence {J-n : n 1 1} Q K of finite subsets of K fulfilling 
with {/n : n ^  1} the following properties.

(F.2) For each n ' t  1, ©„ :=
(F.3) For each n 1 1, and each g G T n, 2A < |(?|h < 1 — 2A.
(F.4) For each n ^  1, /„  G T n and |/„ |H ^ | / | h -
We will give later on some additional conditions which will be imposed 

upon {/„ : n t  1} and {Tn : n t  1}. Third, we select a large no G N and set

(2.32)

(F.l) limn^oo v{fn -  f )  = 0.

0 < 6 A < p <  1 — |/Ih — A < 1 — |/ l i i<  1 — 8 A.

(2.33) Tno(f)  = []{!'■ I  eT„0(/)}, Tno(f) = jS:o°Un0)-

Fourth, for each n t  no we define Tn+\ (/)  and Tn+i(f) out of Tn(f )  by setting

(2.34)
T n + 1 ( / )  =  | J { / : / G T n + i ( / ) } ,  

T „ + 1 ( / )  =  { / G j J nn++11 ( / n + l ) ,

Finally, we put
oo

T ( f ) =  f |
71=710

(2.35)
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The induction (2.33)-(2.35) may end if, for some n ^  no, we have Tn{ f ) =  0. 
If such is the case, we will set Tm{f) = 0 for m ^ n  and T( f )  = 0. Below, we 
will list a series of conditions which will exclude such a degenerate situation. 
In particular, we will need the following minimal assumption (C.l) which 
implies that the first step (2.33) of the induction may be achieved for all 
sufficiently large no.

(C .l) There exists an n\  < oo such that

#»7g”(s) = 1 for all g&Fn with n^ .n \.
We assume from now on, unless otherwise specified, that (C.l) holds, and 

investigate in more detail the conditions we need impose upon {qn : n ^  no} 
and { f n : n ^ 1} to ensure th a t T( f )  is properly defined by (2.35) and fulfills
(2.30) for suitable p , c and ö.

We note for further use that the definitions (2.33)-(2.35) imply that, 
for each n ^ n o , Tn( f ) is the union of a finite (eventually void) collection 
of closed intervals of length bnqn. If Tn{f) 7̂  0 for all n ^ n o , then T( f )  is 
the intersection of an imbedded sequence of non-void closed subsets of [0,1], 
which entails that T( f )  7̂  0 . In order to check that Tn(f) fulfills a version of
(2.30) , we need evaluate, for an arbitrary interval J  C [0,1], the number of 
component intervals I  Tn ( f ) included in J , of lengths equal to bnqn. The 
following notation will be needed. Recalling (2.32), we set, for each g G K, 
each interval J  Q [0,1], each q > 0 with l /q  G N and each n ^  no,

= '■1  =  N , (* + !)<?] € J q(g) for soméi G N j ,

(2-36) Mn(J, f )  = # { /  Q J : I  =  [iqn, (i +  bn)qn] G Tn{f)  for soméi G N j ,

Nq{f) = Nq([0, 1], / ) ,  Mn(f) = Mn([0,1], /)•
By combining (2.34) with (2.36), we get the following recurrent formula. For 
each interval J* Q [0,1] of the form J* = [rqn, sqn] with r  G N, s G N and
n ^  n 0,

(2.37) M n + i ( J * , f )  = Y ,  Nqn+1( I J n+1).
IeTn(f)
IQJ*

Recalling that R > 0 is chosen in such a way that P(u(W) ^ R) ^ 1/2, an 
application of (2.31) to A  =  {ip G (To[0,1] : v{ip) ^  R} and h = Lqng shows 
that, uniformly over g G K,

Pn{g) : =  p ([0 ,9 „ ]e  Jqn{g)) = v[y{Y qnfi- g ) ^ R / L q̂ j  

= P (n(W9n,o -  Lqng) Z r ) = P (y{W  -  Lqng) ^ r )

Z P (u(W)  g R) exp { -  i  \g\2HL2qn } ^ ± q f « .

(2.38)
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Wc infer from (2.32), (2.36) and (2.38) that, for each n'^.riQ and each 
interval I Q [0,1] of the form I  = [rqn+\ , with r, s 6 N and r < s, we
have, uniformly over g G K,

(2.39) En+1(\I\,g) ~ E N qn+l(I ,g )=  —-L x pn+i{g) = (s -  r)pn+x{g).
Qn+l

We note for further use that (2.39) holds when / ETn{f) with \I\ = bnqn.
It is convenient to add the following claims (C.2)-(C.5) to (C .l). In a first 

step, we will assume their validity to complete the proof of the lower bounds 
we seek. In a second step, we will show that they hold with probability 1. 
In a last step, we will give the proof that (2.29) holds with probability 1 
uniformly over /  G K.

(C.2) Let || • ||o and C2 be as in (2.23) and (2.24). For n ^  1, let

( 2 .4 0 )  u „  =  m a x { 6 n , /? ( | |  ■ ||f,n , c 2 +  1, W ) } 1/2 ,

with /3(|| • ||,c, W)  =  c /$ -1 (P(||VF|| ^ c )) as in Lemma 2.2. There exists an 
n 2 < oo, such that, uniformly over all { fn : n ^ 1} Q K, for each n ^  n2, 
I  = [iqn,{i + ]-)(ln}€ Jqn(fn),  and te [ iq n, {i + bn)qn],

(2-41) — fn) IkR/Lqn -\-U n .

(C.3) There exists an «3 < oo such that, for each n 'tn ^  and each interval 
I  ^  [0,1] of the form I  =  [rqn, sgn], with r, s £ N and |/| = (s — r)qn ^  gA+1, 
we have, uniformly over gG!Fn+1,

(2.42) eXp { -£„ ( S ^ ± l F ^ y S e x p { £„}.

(C.4) There exists an «4 < 00, together with a constant C3 such that, for 
each n ' tn ^  and each interval I  Q [0,1] of the form I  = [rqn+1, sffo+i], with 
r, s 6 N and |/ | =  (s — r)qn+\ ^  qn+1, we have, uniformly over g E T n+i,

(2.43) N Qn+1 (I, g) ± c3| J | ^ - ^ h- A> E7V,„+1 (g).

(C.5) Let un be as in (2.40). There exists an ns < 00 such that, for all 
n ^  ns, we have

(i)

( Ü )

(2.44)
(iii)

(iv)

0 < qn + 1 < bnqnsn ;
n+1 n 1 n

Q n + i={n n  (i”»/2)=tn+n (9™/2);
' m= Im= 1 m=l

.4Qn+i = exp ( l / u n+ 1) ;

Qn+l 
Qn+l
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Recalling the relations 1 — p — | / | jj =  2A <  |  and | / | jj < 1, we observe 
that, whenever 1 and Ií Ih ^ I /Ih ,

q1~ p - \ f \h  — g  q&2 a n d  q q\f\U  qJ s Ih .

In particular, (2.44)(ii) entails that, for all m  ^  no +  1 > ns,

, m m — 1

Qm n—no n=no

Step 1. We start by proving a version of (2.29) under (F.1)-(F.4) and 
(C.1)-(C.5). We set no =  max{nj : 1 ^ j  ^ 5}. Making use of (C.2) and (C.5), 
we infer from (2.32)-(2.35) that, for each t £ T ( f )  and n^n o , we have

f  €  T ( f )  í  T n ( f )  =r- 3 i n t  £  [inQni (h i  "F bn )qn ] ^  [inQm {}n 4" l ) f? n ]  G 3 qn ( I n )•

Since e > 0 in (2.26) may be chosen arbitrarily small, we infer readily from 
this inequality and our choice of bn = 1/n —> 0 that, as n->oo,

(2-45) ß(\\ ■!!(,„,cj + W H O .

By (2.45) and the definition (2.40) of un, we see that un—>0. By (F.l), it 
follows that

li“ 10Ilf l/(Yt * - f ) = £ % 0 " (Yt,(in + 1 )qn- t - f )

=  n^+oo U(Xt^  )»--* “  fn )  +  nlToc ~  f )

= rS O  ^(yh(in+l)9n-t -  fn) ^  W K  + U n ) = 0.

This shows that t £ T(v,  / ) .  Since the just proven implication t £ T( f )  =>t£ 
T (n ,/ )  holds uniformly over t £ T ( f ), we obtain therefore that

(2.46) t ( f ) QT ( u , f ) .

The following arguments are oriented to prove that (2.30) holds with T  = 
T( f )  and Tn =Tn(f).  By Fact 2 and in view of the notation (2.36), we need 
only prove the existence of a <5 > 0 and a c > 0 such that, for all intervals 
J  Q [0,1] with |J|^<5,

M n( J J ) ^ c \ J \ pM n{f).
Consider an arbitrary interval J  with 0 < | J\ ^  qn0+i- By the assumption, 
implied by (C.5), that {q& : k ^  no} is decreasing, there exists a unique k ^ n o 
such that I J\ £ [qh+h qk)- Obviously, we have

M m ( J , f )  = 0 for n o ^ m ^ k ,(2.47)
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so that we need only evaluate an upper bound for Mm(J, / )  when m ^ .k  + 1. 
We start with a simple observation. Let J  — [a, 6]. Recalling that qk+\ ^ 
g |J | <qk, weset J* = [rk+iqk+hsk+1qk+1], whererk+i=ma,x{i G N:iqk+i^a}  
and sk+1 = min{i G N : iqk+\ ^  b}. It is straightforward that J  Q J*, and 
I J*\/\J\ ^  1 + 2qk+i/\ J\ ^  3. Moreover, our assumptions on {qn : n ^  1} entail 
that J* Q [0,1] is of the form [rqn, sgrn] for all n  ^  k + 1. By (2.44) (i) in (C.5),
for any n ^ k + 1 and /  G Tn(f),  we have |/ | =  bnqn > <7̂ , j > q^+i- This, when 
combined with (F.4), (2.37), (2.39) and (2.42), shows that, for all n ^ k  + l,

Mn+l{ J , f ) Z M n+1( r j ) =  Y ,  Nqn+1 (I, fn+l)

(2.48)
ieTn(f)

IQJ*

i  #{f i  J* ■ I G Tn{f)} exp{e„} En+i{bnqn, f n+l) 

= Mn(J*, f )  exp{en} ^ ^ p n+i( /n+i).
Qn+ 1

Likewise, we obtain that

Hi+lf/) -  Nqn+i {It fn+l)

(2.49)
/er„(/)

^  # { /  G Tn{f)} exp{—en} En+i{bnqn, /„+ i)

=  Mn( / ) e x p { - e „ } ^ !ipn+i(/„ +i).
<7n+l

Below, we use the notation £]0(-) = 0 and n « (') =  1- The following inequality 
is straightforward when m  = k + l, and readily implied by (2.48) taken with 
n G { H l , ..., m — 1} when m  ^ k + 2. For each m  ^  k + 1, we have

m— 1 m—1 ,
Mm( J , f ) i M k+1(J*,f)exp { £  £„} [ ]  ( nQn-

(2.50)
9fc+i

n=/c-}-l n=/c-f 1 <7n+l"Pn+1 (fn+l))

^ M fc+1(J * ,/)5  6n_ lPn(/n)}.
qm n=k+2

Likewise, making use of (2.49), we obtain that, for m ^n o  + 1
771—1 771—1

Mm( /) ^ M no(/)ex p  {-  e  n /  bnqn

n=n o n=n o 9n+l Pn+1 (fn+l))

J] 5„_lPn(/„)}
n=no+l

m—1
^ M no iN{ n <̂ >}-

m qm n=n o n=n0

(2.51)
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Our assumptions imply that for m  ^ no +  1 ^  2, ^  2£~1 ^  1. More­
over, we have p/( 1 — | / | h ) > p>  A > A 2. It follows therefore from (2.44)(i) 
that

1 If lü  -P
w o  'dm 4 -p /4 - \f \2H) 

<lno Qno+1
\ 1 >  r - a 2 \ 1
} ^{Qn0 qno+1\

-l/li, > 1.

This, when combined with (2.49) and (2.44) (ii) entails that, for each m  ^  no,

(2.52) M m(f) 4 Mno(f).

We note for further use that (2.52) holds under (C.3) and (C.5) only. A 
consequence of this fact is tha t (C.1)-(C.3)-(C.5) jointly imply that T{ f )  ^  0 .

From now on, we assume that all five assumptions (C.1)-(C.5) hold. 
Here, (C .l) is used to ensure, via (2.52), that M m(f)  ^ 0  for m't. k + 1. By 
combining (F.4) with (2.38), (2.50) and (2.51), we obtain that, for all m  íí no,

(2.53)

m m t l <
Mm(f)\J\P =

£ 2qk+lM k+4 J \ f ) f f r
M no{f)qno\J\P \ J L +1

- l

< £ V +1Mfc+1(J * ,/)
Quo I J \ P Pk+1 ( / f c + 1 )

{n *»r{ n rf6/2)}'1.
n=no n—no-\-l

We complete (2.53) by an evaluation of M k+i{ J*, /)• Towards this aim, we 
consider the following two cases.

Case 1. Assume that |J | S [q£+i,qk)- By (2.33)-(2.34), (2.36), (2.39) and
(2.42),

Mk+l( J 4 f ) i N qk+4 r k+lJ k+4 i e x p { e k} l- ^ p k+l(fk+1)
Qk+ 1

^ 3 exp {ek} W - p k+1( f k+1) z  3g lJ |R -- l(Ai -1-),
Qk+\ Qk+ 1

By combining this bound with (2.44)(ii) in (C.5), (2.53) and |J | ^  qk, we 
obtain that, for all m ^ k +  1

< 3£3 \J\1~p

(2.54)
Qn0

< 6£3 1-P-I/&

{ n *.}"{ ri (rf6/*)}
n=n o n=no + l

k , fc-1 . ... _ x

- 1

<7n04* {n"»}"{ n (9»'"/2)}_1s
n=riQ n=no+l 9n0

It follows in this case that (2.30) holds with c — 6£3/qno-
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Case 2. Assume that |J | 6 [</£+!,%+i)- In this case, we will need the 
assumption (C.4). By combining (F.4) with (2.33)—(2.34), (2.36), (2.39) and
(2.42) in (C.4), we obtain that, for all m  ^  k + 1,

M k+l( r , f ) i N qk+l(j*k+1, f k+l)

á c 3k*+il1" l/l" " A EJV,4+1(/*+1)

g  3 c 3 l J | 1~ l / | H - A ( P fc + 1 ^ fc+1H .
*■ Qk+i J

Recall that p =  1 — | / | jj — 2A. The inequality above, when combined with
(2.53) and (2.44)(ii), which entails that | J |A %qk, implies that, for all
m  ^  k +  1,

(2.55)

n  i & m y
' n—no n = n o + l

« {  f l  f [  f a A /2 ) } " 1

Qn0

^ 3c3£2

<

Qno
•2 „P 

Qno 

6  C3 S 2

n = n o  n = n o + l

k , k—1
II * .} - {  n

-1

TL — llQ n = n o + l

Qn0

By combining (2.47), (2.54) and (2.55), we see that (2.30) holds with c = 
6 ( c3 + £)£2 /qno and ő =  qno+i- If follows from (2.46) and Fact 2 that 
dim(T(p, / ) )  ^  dim (T(/)) ^  p. We note that this conclusion does not al­
low us yet to conclude (2.29) since the statements of (C.3), (C.4) and (C.5) 
depend not only upon the choice of p < 1 — | / | jj , but also upon the construc­
tion of {/„ : n ^  1} and {J-n : n ^ 1}. The next step will be needed to get rid 
of these restrictions.

Step 2. We recall that, for our choice of /  6 K, 0 < | / |h < 1- In this case 
it is always possible to define {/„ : n ^  1} and {Fn : n ^ 1} fulfilling (F.l) - 
(F.4) by setting f n = f  and T n =  {/} for each n ^  1. Likewise, we may set 
A =  ^{1 — \ f \ h - p }  for each specified choice of p G (1 — | / | jj — |  m in { |/||j, 1 — 
I / & U - I / &  ). This allows us to make use of Step 1 to establish that, under 
(C.l) (C.5), dim (T(p,/) )  ^p . We now turn to prove that, for each possible 
choice of pG (1 — | / | jj — |  m in{|/|jj, 1 — |/ I h ), 1 — |/Ih ), there exists an event 
of probability 1 on which (C.1)-(C.5) hold. To infer from this fact that (2.29) 
holds with probability 1, we select a sequence 0 < p  = p(n) f  1 — |/ |f j .  Since 
then dim(T(p, / ) )  ^  p(n) with probability 1 for each n, the conclusion is 
straightforward.
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(i) The Assumption (C.5) Since (C.5) is a collection of recurrent inequal­
ities, the construction of a sequence {qn : n ^  n\}  fulfilling (2.43) may be 
achieved by induction, given any choice of n\ and of qni ^ 1.

(ii) The Assumption (C.2) By combining the Borel-Cantelli lemma with 
the triangle inequality and the definition (2.32) of Jqn{fn)i we obtain readily 
that, independently of /  6 K and { f n : n íí 1}, (2.41) holds with probability 1 
for all large n whenever

(2.56)
E P( SUP {V0^igl/9n 1n — 1

sup v(Yti(i+l)gn_t
te[iqn Al+bn)qn]

Yiiqn,qn )} ^ « n )

* E  29n 1 ( sup v{Yt,qn-t  ~ Y 0tqn) ^ u n)  = :  V  < o ° .

Vt€[0,6„g„] ' n=1

Set, for convenience g =  qn, b = bn, T =  1 — bn and e = 2un. Keeping in 
mind that our assumptions imply that </4-0 and r f l ,  we write

Vn = p (  sup v(Yt^n- t - Y 0tqn) ^ i  
V te[0,bnqn]

^ p (  sup sup u{Yt>h -  Y0}g) ^ e /2 ) ,
V te[0,bg] / i6[rg,g] 2

which allows us to use the estimates (2.21), (2.22) and (2.28) with 9o = 
max{6,1 — r}  = 6„, 1 — T = bn and e = 2un. We so obtain that

(2.57)
Vn ± P { ? m  Z Lge/{  12(1 -  F)}) +  P (\\W\\bn ^  Lge / 8 ) 

= P (v(W) Z Lgun/ { 6 bn}) +  P( \ \w \ \bn g Lgun/ 4) .

By (2.44)(iii), we have Lgun =  (21og(llqn))ll2un > l / u n—>oo as n —>0 0 . 
Let ci be chosen, via (2.13), in such a way that Y(v{W) < c i) > 4>(1). This 
implies that ß — ß(v, c\, W)  =  ci/4>_1 (P(W) < ci) ^  ci- We apply (2.17) with 
R  — Lgun/ { 6 bn} in combination with the fact that, ultimately, (R  — m ) / ß >  
(2/3)1/,2f í—>00. This shows that, for all large n,

P (v(W) ^  Lgun/ { 66n}) g 1 -  $ ( (2 /3 )1/2Lsu„/{6ci6il})

= exp( - i » { s 3 ^ } ) '

Since the definition (2.40) of un implies that u2/62 ^ l/6n—>0 0 , for all large n, 

(2.58) p ( v ( W ) Z L gun/ { 6 bn}) ^ e x p ( - L 2g) = q2n.
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Next, if C2 is as in (2.24), and ßn = /3(|| • ||(,n, C2 + 1, W),  we infer from (2.17) 
and (2.27) that, whenever R  ^C2 + 1, we have

P(\\W\\bnZ R ) i l - $ ( ( R - c 2 - l ) / ß n).

By applying this inequality with R = Rn :=Lgun/ 4, in combination with the 
fact that, ultimately, R n — ci — 1 ^ (2/3)1/2i?n—̂oo, we obtain that

p(\\W\\bnZLgUn/4) i e x p ( -

1/2By combining the definition (2.40) of un, which implies that un ^  ßß  , with 
(2.45) we obtain that u2//32 ^  l / ß n->oc. We have therefore, for all large n,

(2.59) p[\\W\\bn^ L gun/4)  gexp ( - L 2g) = q l

By combining (2.57) with (2.58) and (2.59), we see that, for all large n, 
Vn ^  2g2. Since (2.43)(ii) entails that qn =  0 (l/n !) as n —> oo, we have 
(2.56).

(iii) The Assumption (C.l) We need show that, with probability 1 for all 
large n,

min Z 1.
9C-/" n

Let IV = l/g„. By (2.32), for each n ^ 1 and g € T n, S N := # J ĝ {g) = 
ifcjqnig) follows a binomial distribution with parameters N  and p = pn(g) = 
P(z/(Y9ni0 — g) ^  R/Lgn). Therefore, by (2.38) and the inequality (1 — u)T ^  
exp(— ru) for r ^  0 and u G [0,1),

P { S N = 0 ) = ( l - p n ( g ) S)  ^ ( l  -  /? = exp {  — ^ Q n  I+IsIh}

- CXp{ ~ -  fß exp{ - ^ A} = :^ " -

By (2.44)(iv), we obtain readily that @n lZn , which establishes our claim 
by combining the Bonferroni inequalities with the Borel-Cantelli lemma.

(iv) The Assumption (C.3) We start with the following fact concerning 
large deviation probabilities for binomial random variables. Let

(2.60)
A log A — A T 1 
1

for A > 0, 
for A =  0.

Fact 4. Let Spf follow a binomial distribution with parameters N  ^  1 
and p G [0,1]. Then, for all Ag [1,1/p],

(2 .61) P{SN ^NXp)^exp{-Nph(X)) ,
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and for all A 6 [0, 1],

(2.62) P{SN ^ N X p ) íe x p ( -N p h (X ) ) .

P r o o f . See Lemma 3.8 in [8]. □

Since (C.5)(i) requires th a t q^+l ^ q^+l Si bnqn qn, we need check (2.42) 
for all intervals I  of the form I  = [rqn, sqn] with r, s G N and 0 ^  r < s ^  l/g n. 
Moreover, by (2.36) we see that any two intervals / '  and I" within this 
class are such that N Qn+1 ( / ' U I", g) =  N9ji+1 (/', 5) +  7V9n+1 (/", 3) whenever 
| / ' n / " |  = 0 . In view of (2.39) our proof boils down to establish (2.42) for all 
intervals /  of the form I  —I r \— [(r — 1 )qn, rqn] with r G N and 1 5Í r ^  1 /qn. 
Now, for each 1 ^ 1 /qn, N qn+1(lr,g) follows a binomial distribution with
parameters N  = qn/qn+\ and p = pn+i(g), as in (2.38). We note for further 
use th a t our assumptions entail that e n -*0 as n —>0 0 , whence, by (2.60), for 
all large n,

(2-63) \ z l  á  h(exp{±e»}) = 1 1 + }e^.

Set, for convenience =  exp{±en}. By (2.38), (2.44)(ii) and (2.61)—(2.63), 
we obtain readily that, for all large n and all g G T n,

l/<7n

U
r = l

± Nqn +1 (Au d)
PNqn+i (h i 9 )

> ±  exp { d b e „ } } ) ^ i - p ( ± 5 w ^±iVA±p)

^  — exp { -  A T p h ^ )}  g  — exp { -  Jgjf{»h(exp{±£ri})} 
Qn  ̂ J 9n  ̂ 9n+ 1 ^ '

-  q ^  GXP { ~ \ qn£^ q^  } = exp { } =  n n+ i-

Since (2.44) (iv) implies that 0 n7?,„ < 00, the proof that (2.42) holds with 
probability 1 for all no sufficiently large is completed by the Borel-Cantelli 
lemma.

(v) The Assumption (C.4) First, recall from (2.39) taken with I  = [—1,1] 
that

P'Nqn+1 (g) — Pn+l (g)/qn+l •

Next, observe that, for each I  = [rqn+i, sqn+\] with 0 ^  r < s l/g n+i, 
Nqn+l (I, g) follows a binomial distribution with parameters N  = s — r and 
p = pn+i(g). It follows from (2.62) that
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P (X „ +i (/, g) Z c| / | 1-I*Ih- *  EAT9u+1 (g))

(2.64) =  P ( \ n+1 (/, g) Z c{Nqn+iy - ^ H ^ { p n+l(g)/qn+l})

= p ( s n  £ Af{c(7V97l+1) - |5|H -A}p)

^ exp I  -  A^7jh^c(yV9n+i)“ lö|H -A^ | .

Observe that c(./V<7ri+1)_ lölH_A ^ c. Since h(A) =  (1 + o(l))A log A > A for all 
large A, there exists a C3 ^ 1 such that

h(c3(7V9;i+i ) - l fflH-A) ^ c3(7V<7n+i)~ls|H~A £ (Nqn+l) - M » -* .

This, when combined with (2.38), (2.64) and N  — s — r ^ 1, implies that for 
all large n

P( N qn+1(I,g)Zc\I\1- M « - A ENqn+1) i e x p { -
(2.65) V '  2 J

á e x p { - - q - ^ } .

Denote for convenience by An the event that (2.43) does not hold. Since 
the total number of intervals /  =  [r^n+i, s<7n+i] with 0 ^ r  < s ^  l/<7n+l is 
bounded above by l/qfl+l, it follows from (2.65) in combination with the 
Bonferroni inequalities that

p(̂ n)  ̂^^exp { -  ^,7 +1 } =0n+l^n+L
9n+1 L 8 J

Since (2.44) (iv) implies that J2n 9 n ^ n  < 00, the proof that (2.43) holds with 
probability 1 for all no sufficiently large is achieved via the Borel-Cantelli 
lemma.

Step 3. We conclude by showing how to modify our just-given proof of 
(2.29) for a specified /  G K in order to assess its validity uniformly over all 
f e  k . A crucial step in this argument is the fact, following from Theorem 
2.1 in [6], that K is a compact subset of (Co[0, l],p) for each is£C.  This 
implies in particular that, for each g G H

(2.66) v{g) <j |í/|h sup v{h) |£/|h ^ ,
AeK

where K u < 00 is a finite constant.
For any A G (0, ^ ) ,  set

KA = { / G K : 8A ^ \f\li <: 1 -  8A} g K.
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Since H is separable, there exists a sequence Q =  {gn : n ^  1} C K fulfilling (i)- 
(ii)-(iii) below. Set M ( A ,  f )  = {n ^ 1 : |^n |H ^ | / | h , 2A ^ |^„|H ^  1 -  2A} 
for / g Ka . Then,

( i )  Q i s  d e n s e  i n  (K, | • |h );

(2.67) (ii) For each /  G KA, M (A , / )  ^  0;
(iii) For e a c h / g Ka , lim (  min 1 /— ,9m|H} = 0.

n—>oo l l^ r a ^ n  J
m£A4(A,f)

It, follows from (2.66) and (2.67) that Q is dense in (K.i/). Moreover, the 
compactness of K in (Co[0,1], u) entails that, for each sequence {9n : n ^  1} 
with 6 n | 0 ,  there exist integers 1 is 0 i  51 02 51 ..., such that the following 
property holds. For each n íí 1 and /  G K^,

(2.68) A d (A ,/)D { l,. . . ,0 „ } ^ 0  and min v ( f - g i ) < 0 n .
1

i e M ( A j )

We now set T n =  {gt : 1 ^  i ^  0„}. For any /  G KA, we define a sequence 
{ fn -.n't  1} by setting, via (2.68), for each n ^  1, f n —gi for some g, G T n 
fulfilling u{f  — gi) < 9n and i G , / )  D { l , . . . ,0 n}. It is obvious that 
{Tn : n  ^  1} and {/„ : n ^  1} fulfill (F.1)-(F.4). Moreover, it follows from 
Step 2 that we may construct with probability 1 a sequence {qn : n ^  no} 
fulfilling (C.l) -(C.5), independently of /  G KA and {/„ : ji ^ 1} as defined 
above. Therefore, the inequality dim(T(iz,/)) ^  1 — | / | jj holds with proba­
bility 1 for all /  G KA. By applying this result to a sequence A =  A„ 4 0, we 
obtain readily that the same statement holds with KA replaced by (Jn KAn =  
=  K — {0}. By treating separately the case of /  =  0, we conclude that (2.29) 
holds with probability 1 uniformly over all /  G K. In view of the arguments 
of Sections 2.1 and 2.2, this last step completes the proof of Theorem 1.2.

3. Large deviation theorems for differences of norms

In the following Theorem 3.1, we evaluate upper tail probabilities for 
differences of lower semi-continuous norms on a Gaussian space. In spite of 
the fact that this result is very similar to analogue upper tail bounds which 
have been described in the literature for distributions of Lipshitz functionals, 
to our best knowledge it does not seem to be an immediate consequence of 
any classical estimate of this type. Therefore, it has interest in and of itself. 
We inherit the notation of the previous sections. The following facts will be 
useful.

F a c t  5. The space Xf, of measurable linear forms is separable in 
Ll {X,B,  P Z).

P r o o f . See Theorem 2, p. 86 in [15]. □

MAGYAR
UfUOMÁNYOS AKADÉMIA 

KÖNYVTÁRA
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F a c t  6 .  A mapping u : X  —> [0, oo] is a lower semi-continuous semi-norm 
on a Hausdorff locally convex space X  if and only if there exists a convex 
and symmetric subset n  Q X* such that v(x)  =  sup„.en |7r(:r)| for all x  E X .

P r o o f . See e.g. Chapter II in  Bourbaki [2], □

F a c t  7. Let Z denote a centered Gaussian random variable with distri­
bution given by a Radon measure P z on a Hausdorff locally convex space X . 
Then, for any convex subset C E Bx such that C = —C, and each x E X , we 
have

(3.1) Pz ( C ) ^ P z (C + x).

P R O O F . This is Anderson’s inequality, see Theorem 9, p. 135 in [15]). □
We denote, as usual, by $  the distribution function of a standard normal 

random variable.
T h e o r e m  3 .1 .  Let || ■ | |i  = s u p 7reni |7r(-)| and || • ||2 = s u p 7ren.2 |7r(-)| de­

note two lower semi-continuous seminorms on a Hausdorff locally convex 
space X, generated by the families of continuous linear form,s 111 C X* and 
II2 Q X*. Let Z denote a centered X-valued Gaussian vector with Radon 
distribution P z, and denote by Kz the unit ball of the RKHS ofV%.

Let M e R be any constant so large that

(3.2) P ( | | Z | | i  =  M)  =  1 / 2 and e : = E \\Z\V. Ú M / 12.

Letoo = 3M/<& l ( l —2e/M). Then, for each r^ O  and R'Z.'&M +  (Jqv, 

(3.3) P (  sup { \\Z +  /|12 -  \\Z + f \ \ i }  ^  Li) g l - $ (  R- 5A/- r-V ) .
V/erKz *• J / \ (T0 /

Moreover, if P (||Z ||i is M) ^ 3/4, then for each r^ O  and R, ^ 4M +  |<7oC

(3.4) P (  sup \\Z + f \\2- \ \Z  + f h  Z r ) z 2 { i - $ ( ^
X f e r K z  J V

: - 5  M
0  0 ^ ) } -

P r o o f . We proceed in  three steps.
S t e p  1. Estimate of the size of the set ITi.
Denote by \ri\2 =  {E|7r(2’)|2}1/2 the L2-norm induced by P % on X* Q 

L2 (X, B, P z)  via the mapping 1% : 7r E X* —> w(Z) E L2. And observe that, 
with this notation, n(Z)  follows a normal N(0, l^l2) distribution for each 
7r E X*. The definition of || • ||i implies that |7r(Z)| ^ ||^ ||i for each 7r E IIx. 
Thus, by (3.2), we have for each 7r 6 If]

P (tr(Z) g M )  = $ (M /M 2) = 1 ~ \  P(|tr(Z)| ^  M) Z 1 -  i  P (||^ ||, £ M) ^  ± .

O n >,í.r-V(a/r,;> .
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Since <í> 1 (3/4) =  0.67449... 0.66666... =  1/(1.5), we infer from this inequal­
ity that

(3.5) sup |tt|2 g M /{ $ -1 (3/4)} g 1.5M.
7relli

Step  2. Estimate of the closeness of the sets IIi and II2- 
In view of Fact 6, without loss of generality, we may and do assume that 

the sets II1 and II2 are convex and symmetric in X*. We will prove in this 
case that

(3.6) SUp inf I"7T1 7T212 f =
7r2en2 '•’neni >

Fix an arbitrary 772 E IT2 and assume that

a := aiirf) := inf |7T2 — tti I2 > 0.Tren,

Choose any á E (0, cr/2). Then, there always exists a if E lli such that

3
(3.7) cr ^  |7T2 — ^ cr +  Í  < -  er.

Define a continuous linear form g E X* on X  by setting

g =  (tt2  - 7 t)/|7T2 -  7t\2.

It is noteworthy that g(Z) follows a standard normal N (0,1) law. More­
over, since, for each 7r E III, the joint distribution of n(Z) and g(Z) is centered 
normal in R2, if we set c(ir,g) = E(n(Z)g(Z)) and define ng via

n = TTa + c{n,g)g,

then 7Tg(Z) := n(Z)  — E(n(Z)g(Z))Z is independent of g{Z). Since III is 
symmetric, it follows that

\\Z\\2 -  \\Z\\i = sup \ir{Z) \ -  sup |tt(Z)| ^  n2 (Z) -  sup 7r(Z)
7ren2 7r£lli ttCIIi

= 7r(Z) + \n2 - 7r\2g ( Z ) -  sup \ n g{Z) + c(n, g)g(Z)\

(3.8) ^ \c{n,g) +  |tt2 -  n \2 -  sup c(tt, g)\g(Z)  -  2 sup \ng(Z)\
 ̂ ttGÜi ' 7rGlIi

= {|7r2 -7 r |2 -  sup [c(7r,g) -  c{n, g)\ \  g{Z) - 2  sup |7rff(Z)|.
1 7relll 7 íren,Treni
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By geometric arguments based upon the convexity of TTi we obtain that, 
for each n E II j ,

c(n,g) - c { n ,g )  ^  |7T — 7t|2 { |7r2 -  7r|| - a 1} 1 /|7r2 -7 r |2
I 12

(3.9) ^ { k |2 + |7t|2||2(7(5 + 52|  la

,  r . . i r2<5 <52 i i/2
g 2 |  sup k |2 !><!-----h — !•sup TT 2 , ,  , 2 I

Treib > 1 <T cr^J

By (3.5), (3.7), (3.9), 0 < S < a / 2  and 5/2 =  2.5 < (1.6)2 = 2.5G, we obtain 
that

(3.10) c{n,g)-c{ir,g)  g 2{ 1.5m } { ~ } 1/2 g 3M1.6(á/<r)1/2 ^  5 ( i /a )1/2.

By combining (3.7), (3.8) and (3.10), we see that the condition g(Z) ^  0 
implies that

||Z ||2 -  \\Z\U ^ { a -  5(5la)ll2\g{Z)  -  2 sup \tt9{Z)\.
J ttG I T i

In particular, with the notation of the Theorem,

eM~l =  E ( || |Z ||1 -  ||Z ||2| ) m -1 £ p ( ||Z ||2 -  ||Z||i ^ m )
(3.11)

—5(<V<t)1/2}<7(Z)^3m ) p ( sup \irg{Z)\ ^  .

It follows from Anderson’s inequality (3.1) that 

(3.12) p (  sup \tt;)( Z ) \ ^ m ) ^ p ( sup \tt(Z)\ Ú m \  ^ 1/2.

Thus, by letting áj,0  in (3.11) we obtain that

p ( ct(/(Z )^ 3 m ) = l-< I> (3M /a)^2eM “ 1,

and hence,
c r^ 3 M /{$ _1( l-2 e /M )}  = a 0 .

S t e p  3. Reduction to a convex functional.
Let ő > 0, /  € rK. For each 7r2 E II2 we can find a 7r2 € ITi such that 

j7t2 — 7T2 12 ^  ao  +  6 , the application 7r2 —> tt\  being measurable. Set f  =
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sup7r.2en.2 {7T2 — 7T2}(Z).  We start with the inequalities 

\\Z + f h - \ \ Z  + f \ \ l=  sup 7T2{Z + f ) ~  sup TTl{Z + f)
7T2GI12 TTlGlIl

^  sup {7T2 -7 r2}(Z +  / )
7r2en2

(3.13) + sup |{7r2 -7 r2} ( / ) |^ ^ +  sup {|7r2-7r2|2} r^ ^  +  (cr0 +  (5)r
7r2en2 7r2en2

g | | Z | | 2 +  | | Z | | 1 +  ( a 0 +  í ) r ^ 2 | | Z | | 1 +  HZIU -  | | Z | | 2 +  ( a 0 +  <5) r .

Note that our assumptions imply that 2M  + 4e ^  (2 +  1/3 ) M  =  
=  (2.333...) x M  ^ 2.34M . By applying (3.13) with /  =  0 and r  =  0 we see 
that the distribution of £ obeys the bounds

P ^  g 2.34Aí) ^  P £ 2M + 4c)

^ p (2 ||Z ||i ^ 2 m ! - P ll^lli — ll^l|2| = 4e)
^ 1/2 — 1/4 = 1/4.

Keeping in mind that <f> 1 (1 /4) = —0.6744... ^  —0.68, we use the isoperi- 
metric inequality (2.10), to obtain that, for each i?^2.34M

P ^ 1 — ( I /?. — 2.34m | / |  sup I7t2 — 7t212
v L J 17r2en2

S 1 _  . Ü -2 .3 4 M
V (To +  Í

Since e^M /1 2 , we have f c - ^ l  - 2 e / M )  ^  $ -1 (l -  1/6) ^  ^  0.96.
The definition of cto =  3M/<h_1 (1 — 2e/M) yields 0.68 cto ^ {30.68/0.96}M 5Í 
2.13M  and

(3.14) p ( C ^ - R ) ^ 1 - $ (
R  — 2.34M — 0.68 <r0 -  <? 

cr0 + (5 ) S ‘ "*(
R - 5 M - S

ao + 6

In view of (3.13) we obtain (3.2) by letting i | 0  in (3.14).
To obtain (3.4), we note that, whenever P(||Z ||i 3/4, the Cheby-

shev inequality yields

P ( ||Z ||2 ^ 4 M /3 )^ P ( ||Z ||1^ M ) - P ( | |Z | |2 - | |Z | |1^M /3)
£ PdlZHx ^  M)  -  P( ||Z ||2 -  ||Z ||i ^ 4e) £ 3/4 -  1/4 =  1/2.

By applying (3.3) with the formal change of || • ||i and || • H2 into || • ||2 and 
II • ||i, and with the formal replacements of M  and oo by M' = 4M /3  and 
a '0 =  3M'/<1?-1 (1 — 2e/M ') ^  4ctq/ 3, respectively, we obtain readily (3.4). □
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4. Norm-independent exceptional sets

In this section, we inherit the notations of Sections 1-3. In particular, 
W  denotes a Wiener process, K stands for the Strassen set, and a) and 
T ( v , f )  are the exceptional sets defined in (1.5). We aim to prove Theorem 
1.3 by showing that these exceptional sets are essentially independent on the 
consistent norm u £ C. Our proof will be decomposed into the following two 
steps.

S t e p  1. Consider any countable family A f of consistent norms dense in 
C with respect to the L1 -norm of the Wiener measure, and let K' denote any 
countable subset of K dense in (K, | ■ |h ). We will show that (1.12)- (1.13) 
and (1.14)—(1.15) hold with

(4.1) T Z = \ j T { v , a ) ,  T/ =  D  ? > , / ) ,  K =  [ J  Tf .
v e M  u e M  / G K ' , | / | H > a

Since AT is countable, it follows readily from Theorem 1.2, in combination 
with the CT-stability of Hausdorff dimension, that, with probability 1 for each 
a  €[0,1],

(4.2) dim(T") =  l - a 2.

Moreover, Theorem 1.2 also implies that, with probability 1 for each /  € K,

(4.3) dim (7» =  1 - | / I h •

It follows readily from (4.2)-(4.3) that, with probability l for every a £ [0,1), 

dim(Tá)^ sup dim(Ty) = sup ( l  -  |/ Ih ) =  1 “  « 2-

We note that this inequality also holds trivially when a =  1. On the other 
hand, the obvious inclusion T"a CT", when combined with (4.2), yields

dim(T^) ^ dim(T") =  1 -  a 2.

Thus, with probability 1, uniformly over all a £  [0,1]

dim(T^) = dim(T") =  1 — a 2.

The proof of the “dimensional” part (1.15)—(1.16) of Theorem 1.3 is there­
fore completed. The following arguments are aimed towards proving the 
remaining inclusions (1.17)—(1.18).

We make use again of the sequences 7n = e_v/” and tjtll =  j n ~ x̂ n for 
j  6 N and n ^ 1. For each £ £ [0,1) and h £ (0, e_1) there exist unique integers
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n =  n(t) íi 1 and i = i(t) ^  0 such that h G [7n+i> 7n) and í G [i^„, íi+i,„). For 
such choices of n and i, set

y- _y
Li,n iln

The random field Ytj t is easier to handle than Yj/j, being defined on a dis­
crete set of indices. By applying the Borel Cantelli lemma in combination 
with Lemma 2.2, we obtain readily that for each consistent norm u with 
probability 1

(4-4) lim { sup v(Yuh- Y t>h) } = 0 .

We omit the details of this argument. In the sequel we will assume, without 
loss of generality that our random variables are defined on the event of 
probability 1 on which (4.4) holds for all v£j \ f .

Lemma 4.1. Let 77 G C and v(zC be any two consistent norms, and set 
e =  £(77, u) — E177(VL") — u{W )|. Assume that M  = M(r7) > 0 is so large that 
P(í7(lV) ^  M ) 3/4 and e ^  M / 12. Then, with probability l,

(4.5) I1™ ( SUP { SUP W(Yt,h -  / )  -  v(Yt,h -  / ) l | )  ^ A,
hi-° v te [o , i]  l / e K  J 7

where A := A(77, v) =  9M/4>_1 (1 — 2e /M ) .

P R O O F .  By definition of Y t,h  and making use of the distributional in­
variance by translation of the Wiener process increments, we obtain that, 
for any n ^  1

p (  sup sup { sup\v{Yt}h- f )  ~  v(Yt,h ~ f ) \ \ t  a ) 
v ^e[7n+ i,7n )  te [o , i]  l / e K  7 7

g ]T  P (  sup|t/(ytj,„,7n -  / )  -  v(Ythn,7n - f )I ^ a )
0^jn_17ngl

=  Ln7n1 +  1J p ( sup|i/(Yb,7n - / )  -7(4o ,7n - / ) | ^  a )
v / e  k  7

= ^nTn1 P ( -sup K f F - / ) - T 7 ( W - / ) |^ A L ( 7n)).
V /G A (7 n )K 7

We now apply Theorem 3.1 to || - || 1 = 77, || • H2 =  v, r — L(7n), R  =  AL(7„) 
and 00 =  A/3. Since we have 5M  + rao < 3AL(7n)/8 =  3Ä/8 for all large n, 
by (3.4), we get

P Í  sup \u(W — f )  — T}(W — / ) | ^  AL(7n)'j ^  2[1 — 4>(3i?./80O)]
v / e 6 ( 7„ )K  7

=  2[1 -  $(9L(7n)/8)] g  2 exp{-92L(7„)2/(2 x 82)} ^
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_  ̂ J /g
The convergence of the series Y^n n7n implies therefore that

oo
^ p (  sup ( sup { sup|i/(yt)/l- / ) - v ( Y t , h - f ) \ \ )  ^ a )  < oo.
n \̂ v / i e [ 7 n + i , 7 n )  v t e [ 0 , i ]  L / e K  >> 1

The Borel-Cantelli lemma completes the proof of (4.5). □
Step 2. For each t G [0,1], a  G [0,1], and any two norms r) G C and v  G C, 

we have

limsup inf i/(yti/i- / ) - l i m s u p  inf r)(Ylth- f ) 
A 4-0 /CaK / 4 0  /ea K

^ lim sup sup v{Yt,h -  f )  -  7]{Ytih -  / )  
/i4,0 /Gck K

g lim sup sup v{Ytth -  f )  -  v(Yt h -  /)  
Ho / göK

+ lim sup sup 
HO /G aK

+ limsup sup
H 0 /GcvK

r? (V  -  / )  -  viYt'h -  / )

v ( Y t , k - f ) ~ v ( Y t,h - f )

g lim sup -  yt>/l) + lim s u p ^ y ^  -  YtJl) 
hi o A4.O

HYt,h - f ) ~ v ( Y t,h - f )+ lim sup sup 
HO / goK

: T>i (a, i) + D'2 (a, t) + D3 (a, t ) .

Assume now that vEJ\f. It follows from (4.4) that, with probability 1, 
D\(a,  t) = T>2(a, t) — 0 for all t G [0,1]. Moreover, by Lemma 4.1, for each 
fixed pair of norms r/,v G C with e(r/, v) ^  M(r])/12, we have with probabil­
ity 1, Dz(a,t)  ^  A(r],u). Thus, for each r?GC, we have with probability 1, 
for all t G [0,1], a  G [0,1) and v GJV such that e(r/, t/) ^ M(ry)/12,

(4.6) I lim sup inf i/(YiiÄ -  /)  -  limsup inf ??(ya  -  / ) | ^ A (77, ^).
/4 0  / e ° K  h o  / e « K

The same arguments show that, on an event of probability 1, for all t G [0,1], 
/  G K and u G A7 with e{r), v) Ú M(i))/12,

(4.7) liiminf v(YtJl-  f ) -  lim inf rj(Ytfh -  f ) \ ^  A{t], v)./4O /14.O'

Fix an arbitrary consistent norm 7/ G C, and choose any a G [0,1) and t G 
T(rj:a). By the definition (1.7) of the set T(r/, a), we have

lim sup inf ri(Ytih -  / )  > 0.
/ 4 0  / 6 qK
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Our assumption that ÁÍ is dense in C with respect to the ü 1-norm of the 
Wiener measure implies that there exists a norm v £ A i  such that e(rj,u) 
M(rf)/\2,  and

A (77, v) < limsup inf r)(Ytyfl -  /) .
/4 0  / £ « K

Moreover, (4.6) yields that, with probability 1,

lim sup inf v{YUh -  / )  > 0, 
h-y 0 / e « K

i.e. t £ T ( v , a )  C T ”. Thus, by (4.1), the first inclusion in (1.17) is satisfied.
Let now aG  [0,1) and t£T 'a. By the definition (4.1) of the set T* there 

exists an / '  G K7 such that | / ' | h > o and t £ T f .  In view of (1.7) and (4.1), 
this means that, for all u G AT,

(4.8) liminf v{Yt<h ~ / ')  =  0,

whence, by (4.7),

lim inf rj(Yt , h - f ' ) úhiO
inf

í/€ Aí:e(ri, u) ̂  AL (77)/12
A(f/,i/) = 0.

By (4.8) and the triangle inequality, this entails that, with probability 1,

lim sup inf n{Ytth -  / )  £ lim sup inf' { v ( f  -  f )  ~ VÍ.Ytji -  / ')}  
/i->o / £ q K  /4 0  / e o K

^ inf {»?(/' — /)}  -  lim jnf r}{Yt,h -  / ')

= inf {77(/'-/)}>0 . fea K

Recalling (1.7), we see that this implies that t ET(r),a). Since this holds 
with probability 1 uniformly over t £ T 'a , we see that the second inclusion in
(1.17) is satisfied.

Let now /  G K and í G Ty. By the definition (4.1) of Ty, for all v G Af,

lim inf u(Yt h - f ) =  0.h\. 0

Hence, by (4.14)

lim inf ri{Ytth h,—>0 inf A(t7, v) = 0.
(77) /1 2

It means that tET(rj,  / ) .  We have therefore completed the proof of (1.18). 
The proof of Theorem 1.3 is now complete.
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ON THE BEST APPROXIMATING ELLIPSE 
CONTAINING A PLANE CONVEX BODY

P. ERDŐS E. MAKAI, Jr.* and I. VINCZE**

Dedicated to Endre Csáki on his sixtieth birthday

In the paper [EV] by P. Erdős and I. Vincze, § 6, the following statement 
is proved:

T h e o r e m  1. Let K  be a convex body in the plane and let us consider 
the set £ of ellipses containing K  along with the Blaschke distances of the 
elements of £ from K . Then there exists a unique element of £ having a 
minimal Blaschke distance from K .

This theorem with its proof was published in Hungarian in [EV]. The 
authors give below the proof in English, applying a slight modification of 
the original version.

In our paper we turn also to a geometric characterization of this unique 
ellipse closest in Blaschke’s sense to K.  This question was raised as a problem 
in [EV],

T h e o r e m  2 . Under the hypotheses of Theorem 1, the boundary of the 
unique closest ellipse E  £ £ has at least three points in common with K , say, 
A\, Ai,  A3, and also has at least three points having maximal distance from 
K, say, B\, B 2 , B 3 , in such a way that they lie alternately on the boundary 
of E: A\, B\,  A 2, B 2 , A 3 , B3 . Conversely, an ellipse E  £ £ having this 
property is identical with the unique ellipse in £ having minimal distance 
from K .

For basic facts on convex bodies we refer to [BF].
In the following we turn to the proofs of our statements. At the end of 

the paper we will point out how Theorem 1 follows also from Theorem 2.
P r o o f  o f  T h e o r e m  1. An easy compactness argument shows the exis­

tence of an ellipse E  6 £ closest to K , which, of course, cannot be degenerate.
Suppose there exist more than one element of £ having the same minimal 

(Blaschke) distance from K,  which distance will be denoted by d. Consid-
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ering two such ellipses, both of them are contained by the parallel body K,j 
and their convex hull is also contained by K This convex hull also has the 
distance d from K .

Let C be a common interior point of the two ellipses, and let the radial 
functions of the two ellipses with respect to C be rq, r<i- Then for the numbers 
i , j  of the simple zeros and multiple zeros of r\ — rq we have i + 2j Si 4. We 
will make our discussion according to the number of zeros and sign changes 
of r\ — r2- We speak of an intersection of the ellipses if rq — has a zero 
and there is a sign change there, a simple intersection if r\ — r% has a single 
zero there, and a non-intersectional common point if rq — r2 has a zero and 
there is no sign change there.

a) Let us consider the case when the two ellipses have four different 
points of simple intersection. In this case the body K  is contained in their 
intersection. Each of the two ellipses has two parts outside their intersection. 
Let us draw a line through one of the four points, which lies outside the 
intersection and does not touch any of the two ellipses. We shall now consider 
that further ellipse whose boundary passes through the four common points 
and touches the mentioned line. This ellipse is determined uniquely, lies 
in the interior of the union of the two ellipses, except the four common 
points of the boundaries of the two ellipses. (Analytically, if the ellipses 
are given by the quadratic inequalities f \ 0, /2 L 0, then we consider an 
ellipse given by A/i + (1 — A)/2 ^  0, for some 0 < A < 1.) In this way we have 
obtained an ellipse which contains K,  but does not have a common point 
with the boundary of Kd- This ellipse has a smaller distance to K,  which is 
a contradiction.

b) Let us consider that case when the two ellipses touch each other and 
have two other points of simple intersection. If the touching point A  has a 
smaller distance from K  than d, then our above procedure leads to the stated 
result: That ellipse E , which has a tangent at A, coinciding with the tangent 
l of the two ellipses at A , and whose boundary passes through the two other 
points and at one of the two points has as tangent a line as described in case 
a), contains K  and has from it a distance smaller than d. (We can give this 
ellipse also analytically, like above.)

Now suppose A has a distance d from K . Then E  lies in the interior 
of Kd , except for A, and l is tangent to E  at A. Let l1 be a translate of l , 
close to l, intersecting £  in a small chord BC.  Then for a small £ > 0 there 
is a homothetic copy E e of E , close to E , with ratio of homothety 1 +  e, 
also having BC  as a chord, such that the open large (small) arc B C  of the 
boundary of E  lies in the interior (exterior) of Ee. (By affine invariance it 
suffices to show this for E  a circle, where this is immediate.) In particular, 
Atfz E s and, for l1 sufficiently close to l, and e sufficiently small, Ee contains 
K  and lies in the interior of Kd- Thus the distance of Ee from K  is smaller 
than d, a contradiction.

c) If the two ellipses have two points of intersection, B, C, say, then 
consider the analytically given ellipse E , like in a). If both at B  and C  the
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tangents of the two ellipses are different, then E  lies in the interior of FQ, 
a contradiction. If at one of B  and C the tangents are different, then we 
proceed with E  as in the second case considered in b). If both at B  and C the 
tangents of the two ellipses coincide, then a short calculation shows that the 
ellipses have non-intersectional common points, a contradiction. (By affine 
invariance, it suffices to perform this calculation for the cases B  =  ( — 1,1), 
C  =  (1,1), the tangents being y =  —x, y = x, and B = (—1,0), C =  (1, 0), the 
tangents being x = — 1, x = 1, and in both cases considering the boundary 
points on the y-axis.)

d) If the two ellipses E\, E2 satisfy that say E\ lies in the interior of E2 , 
then Ei  has a smaller distance from K  than tZ, a contradiction.

e) If the two ellipses E\, E2 have one non-intersectional common point 
A, and, say, E\ C E2 , then E\ lies in the interior of , except for A. Then 
we proceed like in the second case considered in b).

f) If the two ellipses E\,  E 2 have two non-intersectional common points 
Ai, A 2, and, say, E\ C E 2, then E\ lies in the interior of K<*, except for A\, 
A 2 . If one of A\, A2 lies in the interior of K </, we have the cases considered in 
d), e). If both Ai, A2 have a distance d to K , then consider the tangents Z1, 
Z'2 of Ei  at Ai, A2 . Let l[,l '2 beTranslates of Zi,Z2, close to l \ , l2, intersecting 
Ei  in small chords B\Ci,  B 2C2, such that B 1C1/B[C[ = B 2C2I B 2 C2, where 
B\C[, B2C2 are the (affine) diameters of Ei, parallel to BiC\, B 2C2- Now let 
e > 0 be small, and A*, A 2 the points on the segments OA\, OA2 satisfying 
O A \ / OAi — OA2/O A 2 =  1 — £, where O is the centre of E i . Then there is an 
ellipse E* whose boundary passes through A\, B 1, C1, B2, C2. Moreover, it 
passes through A2, too. (By affine invariance, it suffices to show this for Ei 
a circle, where it follows from a symmetry consideration, for a conic passing 
through B\, Ci, B2, C2 and a point of the symmetry axis.) Then O lies in 
the interior of E *, A\, A2 lie in the exterior of E*, and for /(, l2 sufficiently 
close to Zi, Z2, and £ sufficiently small, E* contains K  and is contained in the 
interior of K^, a contradiction.

Having checked all possible relative positions of our two ellipses (that 
have common interior points), the theorem is proved. □

In this way we have proved the uniqueness of the ellipse which contains 
a planar convex body and has minimal Blaschke distance from it. Now 
we turn to the geometric characterization of this ellipse, that is analogous to 
the Bonnesen characterization of the minimal circular ring of a closed convex 
plane curve, cf. [B], p. 487, [BF], pp. 54-55.

The Bonnesen characterization is the following. The boundary of a plane 
convex body K  can be covered by a circular ring bounded by two concentric 
circles, of radii i?. ^ r, such that R — r is minimal under the above conditions. 
This minimal circular ring is unique. If the common centre of the circles is 
O, there are four directed segments OAi , OB\, OA2, OB2, their directions 
following each other in the above order, such that

A \ , B \ , A2, B 2 € bd K , OAi = OA2 =r, OB i = O B 2 = R.
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Conversely, this alternation property characterizes the minimal circular ring. 
Still we note that the outer circle, inner circle and mid-circle (of centre 
O, and radius (r + R ) / 2) of the minimal circular ring are the best outer, 
inner approximating circles of K , and the best approximating circle of K , 
respectively, in the sense of Blaschke distance.

P R O O F  O F  T h e o r e m  2. The question will be handled by an analogue 
of the Chebyshev approximation method ([N], Ch. II, § 2, Ch. Ill, § 4).

(1) Let E  be the ellipse containing K  with the distance d(K, E) minimal. 
We will show the alternation property of Theorem 2.

Let the support functions of E  and K  be hß ^.hx-  If for some a  £ S 1 
(the unit circle in K2) we have hE(a) — hx(a),  then the boundary point A 
of E,  having {A, (cos a, sin a)) maximal, is a common boundary point of K  
and E.  Recall that the Blaschke distance d ( K [. K'i) of two plane convex
bodies K\, K%, with support functions h\, h2 equals m ax \h\((p) — h,2 (<p)\.

v
Thus for the above ellipse E  we also have hE h x  +  d(K,E).  If for some 
ß  £ S 1 we have hß(ß) = h x (ß )  +d(K,E),  then the boundary point B  of E, 
having (B, (cos ß, sin ß)) maximal, satisfies that B  — (cos/3, sin/3)d(LÍ, E)  € 
bd K ,  and B  lies at a distance d(K,E)  to K.  Therefore, in order to show 
the alternation property in the theorem, it suffices to prove that there are 
aq, /?i, e>!2, /?2i «3) ßz £ «S'1, following each other in this cyclic order, such that 
Oii is a minimum point of hß  — hx,  and ßi is a maximum point of hß — h x  
(* =  1,2,3).

To prove our statement it suffices to investigate the case E  ^  K.  Then 
we have

max (hE(<p) -  hK(ip)) > 0.
Now we consider the set of minimum and maximum points of the function 
hE —hx-  If a G S 1 is a minimum point, then consider a maximal arc [a', a"} C 
S 1 such that a€E [a ',a"], a 7, a" are minimum points and [a', a”] does not 
contain any maximum points. We admit the case that [a', a"} reduces to 
the singleton {a}. Dually, for ß  a maximum point we consider maximal arcs 
[ß', ß"] C 5 1, with the dual properties. These arcs are disjoint. If [a1, a ”] is 
such a maximal arc of the first type, then the extremum of hE — hx,  greater 
than a"  (in the cyclic sense) and nearest to it, is a maximum. The dual 
statement is valid for the maximal arcs [/?', ß"] of the second type. Hence the 
arcs of type [a',a"} and those of type [ß',ß"} follow each other alternately. If 
there follow three intervals of type [a7, a"] and three intervals of type [ß1, ß"} 
each other, we are done.

Now let us suppose tha t there are at most two intervals of type [a7, a"], 
and at most two intervals of type [ß',ß"]. In this case there are values 
tpi, ip2 , <P3 , VA £ S 1, following each other in this cyclic order, such that the 
intervals of type [a',a"} lie in the open arcs (ipi,(p2 ) and (<^3,^4), and those 
of type [ß',ß"] lie in the open arcs (̂ >2 , ^ 3 ) and (</?4,</?i). (Not each of these 
arcs 1) needs to contain an interval of type [a',a"} or [ß',ß"].)
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Let us consider the polar E° of E  with respect to an interior point O of E. 
Then E° is an ellipse, and the polars of the support lines of E  with outer 
normals (cos pi, sin</?j) are points Pi of bdP °. Let us consider an ellipse Fq 
whose boundary passes through P\ , . . . ,  P4 and through a point P  close to a 
fixed point Q on the open arc -P1-P2 of E ° , P  being either inside, or outside 
E°. Then bdP ° and bd.E° have only these points Pi in common, since five 
points uniquely determine an ellipse. Moreover, the arcs (Pi,Pi+1) of bd£q 
pass alternately inside or outside the arcs (Pi, P2+i) of bdE°  (i.e., of E°). In 
fact, else, at some P,, E° and E° would have a common tangent, implying 
E° = E°. Moreover, one can prescribe that the arc (P\,P2) of bdFq should 
pass inside or outside of the arc (Pi, P2) of bdP°.

Letting E[ be the polar of E\  with respect to O, E\ is also an ellipse 
(for P  sufficiently close to Q). For the support functions hx  and hxx of E  
and E\  we have hßßpi) = hx(pi), and hxx (p) — hx{p) is alternately positive 
and negative in the open intervals (pi ,pi+i), and we can prescribe its sign 
in So we may suppose hx l {p) — hsip)  positive in ( p i ,P 2 ) and
(<P3, <P>4), and negative in (<£>2,̂ 3) and (p4 ,pi) .

Hence, recalling the choice of pi, we have, for some £0 > 0, h x l {p) = 
d x { p ) + £  0 in [<Pi, CP2] and [p$,p4], and hEl{p) ^  hx{p)  + d(K, E)  -  e0 in 
[p2 , 'Fs] and [</?4, p{\. For P  sufficiently close to Q we have also that h x x (p) ^ 
hx(p)  +  d(K, E) £0 in [p\,P2] and [^3,^4], and hEl{p) ^  hK {p) +  e0 in 
[p2 , ps] and [y?4, p\\. In conclusion, h x  ^  h x  + £o ^ ^Ei ^ hx  +  d(K, E) — £0, 
implying K  C E\ and d(K, E\) — max (hxx {p) — hx{p)) ^  d(K , E)  — £0, con-
tradicting the choice of E. Hence the best approximating ellipse E  satisfies 
the alternation property.

(2) Now we show that the alternation property implies the best approx­
imation property. So let the ellipse E  D K  satisfy the alternation property, 
where again we may suppose E  ^  K.  We have to prove that there does not 
exist an ellipse E' D K , such that d{K, E') < d(K, E).

Let c*i and ßi denote the angle of the outer normal of E  at Ai and Bt. 
These angles have the cyclic order aq, ß\, a 2, /%, «3, ß$. We have hx{oti) = 
hx{&i)- Let Ci be the point of K  closest to Bi. Then K  has a supporting line 
at Cz that is perpendicular to Cj-Bj. Moreover we have d(Ci,Bi) =d(K,E) ,  
and E  is contained in the d(K, .^-neighbourhood of K , so the tangent of E 
at Bi is also perpendicular to BiCi. These imply hx{ßi) =  hx(ßi)  +  d(K, E).

Now suppose that there exists an ellipse E' D K  such that d(K,E')  <  
d(K,E).  Let the support function of E'  be He1- Then h x  ^  hx'  ^  h x  + 
d(K,E')  < h x  + d(K, E). By inflating E'  a bit about its centre, we may 
even suppose that hx  < hx1 < h x  + d(K, E). Also we have h x  ^  hx  ^  h x  + 
d(K, E).

Consider the arc [oq,/?i]. We have

hE'(ct\) -  Ii e {oí\) > 0, hx'ißi) -  hE{ß\) < 0.

Hence hx> — hx  has a zero in (aq, ß\). Similarly we proceed for the other arcs



(ßi, »2)1 • • •, (/?3, a i) . So hß' — h,E has six zeros. Choosing a suitable centre 
of polarity, the polars of E'  and E  will be ellipses having six common points, 
therefore they must coincide. Hence E 1 =  E, d (K , E') =  d(K, E), contrary to 
the choice of E ' . This proves that the alternation property implies the best 
approximation property, and thus finishes the proof of the theorem. □

R e m a r k s . 1. In fact the characterization of the best approximating 
ellipse E  D K  in Theorem 2 implies its unicity, i.e., Theorem 1, analo­
gously to [N], Ch. II, § 2, Theorems 3, 4, Ch. Ill, § 4, Theorems 3, 4. 
Namely, if E \ ,E 2 D K  are both best approximating ellipses, and are given 
by quadratic inequalities f \  ^ 0 , ^ 0, then for 0 < A < 1 we can define
an ellipse E  by A/i +  (1 — A)/2 ^ 0. We have K  C E  C E\ U E2 C Kd for 
d = d(K ,E\) = d ( K ,E 2 ), so E  is also a best approximating ellipse contain­
ing K.  So there exist A\,  B \ , A2, B2, A 3 , B 3 satisfying the alternation 
property in Theorem 2. Moreover, E  lies in int K </, except for the common 
points of bd E\ and bd ü?2- By d(K, Bß — d each point Bi is a common point 
of bdüd and bd E2. Then E \ , E2 C Ky implies that at fí, both E\ and E 2 
have the same tangent, for * =  1,2, 3. Hence E\ = E 2 .

2. An analogous property by three alternating minimum and maximum 
points o i , . . . ,  /?3 could be proved for the best inner Hausdorff approximation 
by ellipses, and for the best Hausdorff approximation by ellipses, provided we 
knew that these are not degenerating to segments. Conversely, the respective 
alternation property implies the best inner, or best approximation property.
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ON THE RADIUS OF THE LARGEST BALL LEFT EMPTY 
BY A WIENER PROCESS

P. ERDOS and P. REVESZ

Dedicated to E. Csáki for his sixtieth birthday

1. Introduction

Let {W(t) =  (Wi (i), W2 (t) , . . . ,  Wd(t)) e l d, t ^ 0} be a Wiener process 
in the d-dimensional Euclidean space where d ^  3 and let

C{x,r) = {y: y E  Rd, | |y - i | |^ r } .

Consider a path W (t , cj ) of W(t). We say that C(x, r) is left empty by W (i, w) 
if

V(x,  r) = V(x,  r, uj) =  C(x, r) fl {W(t, w), t ^ 0} =  0.
Let

p{R) = p(R,iv) =
= max{r : 3x E such that C(x, r) cC(0, R) and V(x,  r) =  0}

be the radius of the largest empty ball in C(0,R). We are interested in 
studying the properties of the stochastic process {p(R), R > 0 \ .

Since W (0)=0, clearly

(1) p(R)á f -
First we give a sharper upper bound than the trivial one of (1). In fact 

we prove
T h e o r e m  1. For any e>0,

(2) a.s.. 

if R  is big enough.
Our next Theorem tells us that the upper bound of (2) is not very far 

from the best possible result.
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T heorem 2.

( 3 )
R

41og.fi!
i.o. a.s..

Here and similarly in the sequel i.o. a.s. (infinitely often almost surely) 
means that for almost all to E there exists a sequence 0 < R\ =  R\ (u>) < 
f?2 =  R i iv )  < • • • such that

lim Rn{uj) — oo
71—>00

and
/ J-) \ \  Rn Rn 

P{ n) = 2 4 log R r,
Theorem 2 tells us that for some R  the p{R) will be very big. The next 

Theorem tells that for some R  the p(R) will be much smaller.

( 4 )

T heorem 3. For any e > 0 we have

R
p ( R ) í (log log R)l/d

i.o. a.s..

Now we show that the upper bound of (4) is close to the best posssible 
result.

T heorem 4. For any e > 0

R
(5) P(R) = (logfl)n+V)/ii=5) “ •*'

if  R  is big enough and d^. 4. Further

p{R)^R ( logR )~{1+e) a.s.

if R  is big enough and d = 3.
The proof of Theorem 1 is based on a theorem that seems to be interesting 

in itself. In order to formulate it we introduce a few notations.
For any x 6 with ||x|| =  1 and 0 < d < 1 define the cone /C(x,i?) as 

follows:

IC{x,d) = S^y: y e R d, ( ' X)  = 1 -  ‘

Clearly for any 0 < d < 1 there exists a positive integer K  — K{d) and a 
sequence x \ , x v , . . . , x r  such that

jjztll = 1, (t =  l ,2,
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U  £ {Xi,0) = Rd, K ^ L {  1 -  (1 — i9)2)-(d-i)/2
i=l

where L is an absolute positive constant.
Let

Ci = Ci(R) =  £ i (R,e,0) =  { y:yelC(xi ,4),  R£ £ ( y , Xi ) ZRl- e}

where
i = l , 2 , . . . , K ,  0 < £ < 1/2, f? > 0.

Now we have

T h e o r e m s . For any 0 <  e <  1/2, 1 /2 < i?< 1 ,

P Ilim sup U {Ci n  {W(t,u>), t ^  0} =  0}1 = 0.
I fi->00 2=1 J

Note that Theorem 5 tells us that for any R  big enough W(t) meets all 
frustum of cones Ci{R) {i = 1 ,2 ,. . . ,  K).

Remember that
limsup Aß =  P| (J A„.

2. Proofs of Theorems 1 and 5

L e m m a  1. Let {W{t)  e  ^ 0 }  be a Wiener process. Then 

P{ sup ^ (2J log log T )1/2 * *} ^exp(—(logT)1-2“5)

for any 0 < e < 1/2, 0 < 6 < 1/2, if T  is big enough.
P r o o f . Let

Then

tk =  exp(A; log k), (A: =  1 ,2 ,. . .)
ki =  ki(e,T) =  mm{k: t k ^ T e}, 
k2 =  k2{e,T) =  m a x { k :

k2 — k\ ~ (1 — 2s) log T  
log logT

tk 1
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P{t~l{2 (W(tk+1) -  W ( tk)) ^  (25 log lo g T )1/ 2} ^ (log T ^ l o g  logT)“ 1 
and

P{ max t ; l [ 2 (W (tk+1) -  W (tk)) < (25 log log T )1/2} ^
k\ SkSk-2

g (1 -  (log T)_Ä(log logT)-1)*2“*1 ~  exp 

Note that if

(  (l-2 e )(lo g  T ) l~*\
V (log log T)2 )  '

t~l[2 (W(tk+1) -  W (tk)) > (25 log logT)1/2
and

ífe+/1V ( í fc+i)<(<51oglogT)1/2
then

(25 log log T )1/2 < t^.]J2W  (tk+i) — i^ 1/2 7 W (ifc)<

< (6  log log T ) ^ 2 - t ~ 1/2 '  W( tk)

and

^ 1/2^ ( * * ) < - ( 2 1/2- l )  '  (5 log log T )1/2 -

~  - ( 2 1/2 -  l)fc1/2(log logT)1/2.
Consequently

{V/c: k ^ k i k 2, t~l[2 (W(tk+1) - W ( tk)) g (25 log logT)1/2}U 

U {3fc : k i ^ k ^  k2, t ^ 1/ 2 W(tk) ^  - ( 2 1/2 -  l)fc1/2(5 log log T )1/2} D 

D {V/c: k \ ^ k ^  k2 ,t^.]J2W  (tk+\) Ű (5 log log T )1/2}.
Since

P { £ 1/2W(tfc) < - ( 2 1/2 -  l)fc1/2(5 log logT)1/2} g

/  (21/2 — \
^ exp I -------- -— —A;5 log log T j ,

we have
P{ inf ^ 1/2f^ ( tfc) < - ( 2 1/2-l)A :1/2(51oglogT)1/2} ^

ki^k^k-2

^ (k2 — Aq)exp

(1 — 2g) log T
log logT

(21/2 — l)2
k \ 6  log logT

exp
(21/2 — 1)'

eS logT I ^ T -Q,
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where
a = £4 ( 2  ̂ 2 - 1 ) 2

and

P{ sup t l /2 W{t) ^{SloglogT)1/2} ^

^P { sup t^l_[2 W{tk+i) ^  {Ö log log T )1/2} ^
ki<,k^k2

^P { sup t - l { 2(W(tk+l) - W ( t k) ) i (26 \og logT)1'2} + 
k^k^k 2

+ P{ inf t~ l/2 W{tk) < - { 2 1/2 - l ) k ' /2 {6 log\ogT)i/2}
ki<k<k2

= exp
(1 — 2e)(log T) l - i

+ T~a ^  exp(—(logT)1_2<5).
(log log T)2 

Hence we have Lemma 1.
Lemma 2. Let

{W(t)  =  (VPi(f),iy2(f),. . . , w ^ ( i) ) e Rd, t z 0}

be a Wiener process. Then for any

0 <  e <  ^ , 1/2 <  i? <  1,

and R big enough we have

P{3t: V L (f)€ £ (f? )} ^ l-C (lo gjR r 3/2

where

C(R) = {y = (yi ,y2 ,...,yd)-- yeIC(ei,ű),  R E ^  (y,ei) ^ R 1̂ }  
= {y: R £ ^ y i ^ R l~E, yi  ̂©IK2/2 , • • •, 2/d)||}, 

ei = (1) 0 ,0 , . . . ,  0) 6 Kd,

0 =  . . J - J . _________

(1 — (1 — 7?)2)1/2

and C is a positive constant.
P roof. Let

T  = R 2,
t0 = t0 {T,£,ő) = mí{t: t ^ T e, Wx(t) ^  (26t log logt)1/2 =r},  
r = (26t0 log log t0)1/2-
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By Lemma 1
P{*o £ T l~e} ^  1 - e x p H lo g T ) 1- 2*) 

if 0 < 6 < 1/2. Hence

P {R£/2 g r  g B 1- ^ 2} ^  1 -  exp(—(2 log i?)1“2'5)

Observe that
/  o \ 1/2

P{||(^2(ío), ■ ■ ■, Wd(t0))\\ Z (3í0 loglogt0)1/2 -  ( ^ J  r} í  

- 6XP ( _ ^ loglogí° )  = exp ( ~ ^ loglogT£)  =  (2elog7?)_3/2, 

P{3í : í^O , W {t )e£ (R )}  =

=  P {3t: t£ 0 , R ^ W ^ Í R 1- ' ,  Q\\(W2 ( t ) , . . . ,W d( t ) ) \ \ ÍW y( t ) }^  

^ (1 — (2e log -R)_3/2)(l — exp(—2 log R ) l~20))

if
0 2< 26

T ’
i.e. if fl >  1/2 and 6 < 1/2 is close enough to 1/2.

Hence we have Lemma 2.
L e m m a  3. By the conditions of Theorem 3 we have

p | j J { A n {W(i,w), t^O} =  0}|> < C (logR)

where C  is a positive constant depending only on d.
P r o o f . Lemma 3 is a trivial consequence of Lemma 2.

- 3 /2

P r o o f  o f  T h e o r e m  5. Let Rk = ek (k = 1 ,2 ,...) . By Lemma 3 we
have

P I limsup |J{jCj(.Rfc) 0 {W(t,Lo), f ^  0} = 0} j> = 0.
I k->°° i= l J

Let Rk ^ R <  Rk+i- Then

R£,2^ R £k and Ä1"®/2 ^ / ? ^

which, in turn, implies Theorem 5.
P r o o f  o f  T h e o r e m  1. It is a trivial consequence of Theorem 5.
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3. Proof of Theorem 2

First we recall two known Theorems. 
T heorem  o f  H irsch  ([1], p. 39).

inf fF i ( i ) ^ —T ^ l o g T ) - 1 i.o. a.s.

, d- 2
T heorem  A ([1], p. 242).

P { 3 t ^ 0 : W ( t ) e C ( u , r ) } =

where ||u|| =  R > r .
P roof  of  T heor em  2. By Theorem A we have

P { { W { t ) , t ^ R 2 }nC{0,R) = Q,\\W{R2 ) \ \ ^ 2 R } ^ p ,  

where p > 0 is an absolute constant. Even

P I  {W(t), t ^  R 2} flC(0, R) = 0, ||VK(i?2)|| ^  2Ü inf W\(t) > ^
t^R? 2 log R

^ P ■
Consequently,

{W{t),  i ^ 0} n  la: =  (ari,x2, •■■,*«<): ^
—R  

2 log R , \\x\\ZR

= 0 a.s. i.o..

Hence we have Theorem 2.

4. Proof of Theorem 3

Let K  = K(R)  be the smallest positive integer for which

/lo g lo g fix l~£d
K >  2 (ed < 1).

V log 3

Then there exists a sequence ®i,®2; ■ • • , x k  such that

K
|J  Cj =  C(0, R),
i=i
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where
C = C ( X- _____ * ______

V ’ (log log R )1/d~E
Observe that if for some i (i =  1 ,2 ,. . . ,  i f )

{ w ( t ,w ) , t 2 0 } n C i ? Q ,

then the probability, that a neighbouring ball of Ci will be visited by IT(-), 
is larger than or equal to 32-rf. Hence

P r|{ { W (í,w ),í£ O } n C i?É0} ^ 3 -K(d-2)

^exp — (log 3)2(d — 2) f  log log R

and

if

Observe also that

V l°g 3

OO

t :  a R{k) = °°

1 — ed'
= CVR

k=1

R(k  +  1)
(log log R(k + l) )1/^- 

Hence we have Theorem 3 by Borel Cantelli lemma.

5. Proof of Theorem 4

Recall the following two Theorems.
T h e o r e m  o f  D v o r e t z k y - E r d ő s  ([1], p. 195). For any e>0  and d>  3 

we have

\\(W2 (t),W3 ( t ) , . . . , W d(t ) ) \ \ ^ t l' 2 ( l o g t ) ^ 1+Ê d̂  a.s. 

if t is big enough.
T h e o r e m  B ([1], p. 253). Let d = 3 and

t(R) = \{t:t>0,\mt)\\£Rh
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where A is the Lebesgue measure. Then
f ( R ) ^ R 2 (\ogR)1+e a.s.

if R. is big enough.
Lemma 4. Consider the cone /C(x, $) with x  =  (1,0, . . . ,  0) and d =  du  = 

(log R') . Then
/C(a;,i?)n(Mrf-C (0,ií))n{V L(í,w ), i^O} = 0 a.s. 

if R. is big enough.
PROOF. Clearly if W\ (t) ^  r then

*> —L—.
2 log log r

Hence by the Theorem of Dvoretzky-Erdős

II(W2 ( t ) , W d(t))\\ ^  - - - g |(/)gr)-l/2(2 logr)_(1+£)/{d_3) ^

^ r(log r)- 1̂+2e^^d_3 .̂
Hence (W\ (t), W2 {t) , . . . ,  Wd(t)) ^ K(x, f l )  if t is big enough and we have 
Lemma 4. Theorem 4 in case d ^  4 is a simple consequence of Lemma 4.

Theorem B implies Theorem 4 in case d — 3.
In order to prove Theorem 4 in case d = 3 observe that in C(0,R)  one 

can find (logi?.)3+3£ disjoint balls of radius

R* = — ——----- .
(log/?.)1+e

The visit of (logi?)3+3e disjoint balls of radius R* requires at least

^ T f L _ ( l 0 g  fl)3+3* J  Ä2(log R f+ ’l*

time. Hence Theorem B implies Theorem 4 in case d = 3.
R E F E R E N C E
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ERDÖS-RÉNYI-SHEPP TYPE LAWS IN THE 
NON-I.I.D. CASE

A. FROLOV, A. MARTIKAINEN and .1. STEINEBACH

Dedicated to Professor E. Csáki fo r  his sixtieth birthday

1. Introduction

Consider a sequence X\,  X 2 , . . .  of independent, but not necessarily iden­
tically distributed random variables (non-i.i.d. r.v.’s) with moment-generat­
ing functions =  E expjiAj} (i =  1 ,2 ,. . .) .  The following conditions will 
be assumed:

(Al) EXi =  0 (i =  1 ,2 ,...) ;
(A2) There exist positive constants H  and ci,C2,... such that \Li(z)\ = 

I log <pi(z)I ^  Cj in the complex circle \z\ < H . Here log £ denotes the principal 
value of the natural logarithm of 2;

 ̂ n+j
(A3) limsupsup ——  ^  (c2 -I- Cj) < 00,

„_>oo j B n>J i= n + i

where
n+j

Bn,j=  E  a3 = ®x 3 0  =  1 ,2 ,...);
Í—TL-\-1

(A4) There exist <5 > 0, jo such that B nj  > jS  Vn Vy ^ jo ­
lt is well known that, under (A2), L i { z )  can be expanded into a conver­

gent power series

OO

(1.1) L^ )  =  E T r * * ’ \*\<H,
k = 1

where 7^, is the /c-th cumulant of X } . We have 71 = 0 and 721(; — erf by (Al) 
and (A3). From Cauchy’s inequality on the derivatives of analytic functions, 
it is obvious that (A2) is equivalent to the following condition:

1991 M athematics Subject Classification. Primary 60F15; Secondary 60F10.
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(A2') There exist positive constants H  and ci, C2,... such that Lj(z) can 
be expanded into a power series (1.1) with

I I <r klci17*:,i| = Vk, i.

For integer n ^  0 and j  ^  1, put So = 0, <E>n)o =  1,

n+j

( 1. 2 )

Sn = ^ W ,  =  Eexp{i(5n+j — S n ) }  = </>i{t),
z= l  2 = n + l

<£' .(t) n+j
Mn,j{t) = "*»(*)’ mi{t) — (log 'MOV (* =  1 , 2 , . . . ) ,

2=71+1
P n j { a )  = ^ in f^ { $ nj( i )e x p ( - ia ß „ j)} , a > 0 .

For c>  0, let anj  = anj(c)  denote the positive solution of the equation

Pn,j(oi) = exp(—j/c),

provided this solution exists. In fact, since Sn+j — Sn is nondegenerate, it 
follows from Lemma 2.1 in Deheuvels [9] that the function

= -  log/  inf { $ n j(< )ex p (-ia )} |,
U:<í>n,j(í)< oo J

satisfies

lim d,n i( a ) / ó l  =  Hnj  =  sup{f: $ n j (t)< oo} 
a —>oo

=  min {sup{f: < oo}} = tnj .n<i n̂+j
The solution of the equation

^ n,j (tt-Bn j  ) =  j / c

has been discussed in detail by Deheuvels, Devroye and Lynch [11] and De­
heuvels [9]. In particular, it has been shown there that this equation has a 
solution for c E (cnj ,  oo), where

tn ,j
C n j = j /  j  tM'n j (t)dt.

0
So, if c is sufficiently large, a solution exists. We assume that
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and if the function exp(—taBnj )  attains its minimum in (0,H),  let
t*nj = t*i y(c) denote the corresponding argument. Note that, by definition,

(1.3) Pn,j(an,j) = exp{-t*n j anj B nJ) = ex p (-j/c ),
(1.4) Mnj ( t nj )  = a n>j B nj .

For integer sequences K  = K  (N ) consider the following Erdős-Rényi- 
Shepp type statistics:

(1.5) Ul\/— max tn i((Sn-\-K Sn 0^n,K^n,K)iO^nSN-K
(1.6) WN = max max t*n k {Sn+k- S n - a n^ K B n^/k ) ,

O^n^N-K l^k^K

(1.7) Tff ^Iliaj)ítn fí^n){Sn-\-K(n)~Sn~Oln>K(n)KBn'K(n)/K{'rl))-

In the case of independent, identically distributed random variables (i.i.d. 
r.v.’s) with EX] — 0, E =  1, Erdős and Rényi [13] studied the critical 
choice of K  = K(N) = [clog A''], where [a;] denotes (here and in the sequel) 
the integer part of x  and 0 ^ cq < c = c(a) < oo, 0 < a < A,

H

A = \\m.mi(t), Co =  1 /  /  tm[(t)dt , H = sup{i > 0: 4>i(i) < oo}.t-[H / J
o

They proved that

(1.8) lira (Un /K )  = 0 a.s.,
N —>oo

i.e.,

(1.9) lim max [Sn+K — Sn)/ K  = a  a.s..
N—yoo 0<n<N—K

The definition of A and co as given above has been introduced by De- 
heuvels, Devroye and Lynch [11], p. 211. It implies a necessary restriction on 
c which was not mentioned in explicit form in the original papers of Shepp 
[21], and Erdős and Rényi [13]. Moreover, several authors following these 
first papers made the oversight of stating their theorems as valid for all c > 0 
(see Remark 3, p. 212 in [11]). For a full form of the Erdős-Rényi law of 
large numbers covering also the case 0 < c ^  co, and for a further discussion 
of co, confer [10].

Under the same assumptions, Shepp [21] earlier proved that

(1.10) lim {Tn /K )  = 0 a.s.,
N-yoo
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i.e.

( 1. 11) J im „ m a x  (Sn+K{n) -  Sn)/K{n) = a  a.s..
N-^>ooO<n<N—I<

Csörgő and Steinebach [7] obtained a first convergence rate statement 
for (1.8)—(1.9) by showing that

( 1. 12) lim (Un /K]!,2) = 0 a.s.,
N—>oo

i.e.,

(1.13) max {Sn+K- S n) /K  = a + o(K~1/2) a.s..
0 < n < N - K

An analogous assertion was also given for W,\. The exact convergence rates 
have been derived by Deheuvels, Devroye, Lynch [11] (for Un , Tn ) and 
Deheuvels and Devroye [10] (for Wn ). They are summarized in the following 
theorem:

T h e o r e m  A. For cq <  c<  o o ,  choose K  — K (N )  =  [clogN], Then

( i )

( Ü )

(hi)

lim {UN/\ogK)  = - -  in probability; 
N —too  2

limsup (C/yv/logK)  = ^ a.s.;

lim inf (Un /log K)  =  — -  a.s..
N —> oo 2

In statements (i)-(iii), Un  can be replaced by Wn  and T^ ,  respectively.
While the Erdős-Rényi-Shepp laws of (1.8)—(1.11) retain if K  — [clogN] 

is replaced by any integer sequence K (N)  ~  c log N  as N  —> oo, their con­
vergence rate counterparts of Theorem A critically depend on the specific 
choice of K(N).  This is obvious from an extension of Theorem A due to 
Bacro [1] who proved:

T h e o r e m  B .  For Co <  c <  o o  and A G R, choose K  =  K(N)  =  [clog N  +  
A log log At]. Then

(i)

( Ü )

(iii)

lim (Un /  log K) — —  ---- in probability;
N - ^ o o  2 C

limsup (Un / logK)  =  ------ a.s.;
N —>oo ^ C

lim inf (Un /  log K)  = —  ---- a.s..
N -> oo  2 C
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In statements (i)-(iii), Ujv can be replaced by T/v.

Some analogues of the above partial sum results have also been obtained 
for renewal processes (cf. e.g. Bacro, Deheuvels, Steinebach [2], Deheuvels, 
Steinebach [12] and Steinebach [22]). For a rather general methodology con­
cerning the increments of stochastic processes, we also refer to the work 
of Csörgő [8], Steinebach [23], Csáki, Földes, Komlós [6], Csáki [4], De­
heuvels [9], and Csáki, Csörgő [5].

Main aim of our present work is to extend the results of Theorems A 
and B to the non-i.i.d. case as follows:

T h e o r e m  1. Let Xi,  X 2 , . . .  be a non-i.i.d. sequence of r.v. ’s satisfying 
(A1)-(A4). Choose K  — K{N) = [c log Af + A log log N], andletUN, WN, T N 
be as defined in (1.5)—(1.7). Then, there exists Co ^  0 such that for any c> cq 
and A G R, we have

(i) lim (UN/ \ogK )  = -
N—¥00

(ii) lim sup ([7/v/log K) = i
N—yoo z

(iii) lim inf {UN/ log K) = — 
N—yoo

1 A
in probability;

----  a.s.;c
1 A
—---- a.s.
2 c

In statements (i)-(iii), [7/v can be replaced by Wn  or Tfi, respectively, if 
additionally a \ ^ . a 2 > 0.

For an earlier extension of the Erdős-Rényi law of large numbers to the 
non-i.i.d. case see also Lin [17]. His results correspond to the convergence 
rate statements of Csörgő and Steinebach [7] in the i.i.d. case which preceded 
Theorems A and B. Under stronger conditions, Frolov [14], [15], [16] obtained 
a first version of Theorem 1 in the case K  — [clogN], i.e. A =  0.

The proof of Theorem 1 is essentially based on the following extension of 
Petrov’s [18] large deviation result for sums of (non-i.i.d.) random variables 
which is of independent interest. To formulate this result, we consider an 
array {Xnj , n  ^  1, j  =  1 , . . . ,  kn} of row-wise independent random variables. 
Assume that

(A5) EXnj  = 0 Vn,j;
(A6) There exist positive constants H, Cn,i, Cn.,2 , ••• such that \Lnj(z)\fó 

cnj  in the complex circle \z\<H, where Lnj ( z ) —\og(f)nj(z )=\ogEexp(zXnj);
 ̂ kn

(A7) W  =  limsup —  + cnj )  < 0 0 ,
7i—>00 ,

J = l

kn'
w h ere  Bn =  V  EX„ .• -*  oo  as n —> oo.
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Similarly to (1.1), Lnj ( z ) can be expanded into a convergent power series

(1.14) Lnj{z) = J 2 ^ Zk, \z\<H.
k=1

7fc,n,j the A:-tli cumulant of X nj ,  and an equivalent condition to (A6) is given 
by

(A6') There exist positive constants H, and cnt\ ,cn^, ■ ■ ■ such that 
\ Ln, j ( z ) \  ^ c nj  can be expanded into a power series (1.14) with

(1.15) l7fc,nj| =
k\c,n,j
H k Vk,n,j.

We have 7i,nj  = =  0 by (A5), and J2,n,j = EX][ •. Set

n-n 1 /*
Fn(x) = p ( ^ 2 x nj < x \ / B n j ,  §{x) = - j =  j

— oo

-t '■!2dt.

T h e o r e m  2. Assume (A5)-(A7). Then 

1 - F n(x) t ~3
(i)

(Ü

1 -4>(x)
Fn{~x) _  J
* (-* )  XPl

e x p {  v b ; ) }  [ ‘  +  0 (  v k )
X3 x f X ^

7 s r n v i +

/o r a// .t ^  0 such that x / \JBn remains sufficiently small. Here
oo

(1.16) A n(t) = J 2 ak’ntk
k=0

denotes the generalized Cramer series (cf. Petrov [18], Ch. VIII. 2) which, 
for n sufficiently large, is majorized by a power series with coefficients not 
depending on n, and convergent in some circle |f| < to, so that the series 
An(t) converges uniformly in n for |t| <fo-

For later use, put
kri

bfc.ii =  ^ 7  Tk,n,j-On j=l
It. will be proved below that
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where z — z{t) is defined by (2.18) and (2.20), and that that An(t) ~  —T3>n/3 
as t —̂ 0.

Hence the coefficients afc>n can be expressed in terms of the cumulants of 
Xn^i, . . . ,  X n^ n up to the order k + 3. In particular,

ao,n = 3̂,„ /6 ,  ß i ,n =  (T 4 ,n —3 r 3  „ ) / 2 4 ,  Ö2,n =  (Ts,« — l O I ^ n l ^  +  1 5 r 3  n ) /1 2 0 .

2. Large deviation results

In the sequel, all limits are supposed to be taken as n —l oo if not men­
tioned otherwise, and C\, C2, • • • denote some positive constants.

P roof  of T h e o r em  2. Via the Esschcr transform, we first introduce 
an auxiliary array { X nj ,  n ^  1, j  = 1 , . . . ,  kn} of row-wise independent r.v.’s 
with distribution functions

V nj(x)  =  exp( L
X

n jW ) f exp {zy)dVnj(y), —H  < z  < H,

where Vnj(x) =  P(Xnj  < x).  We write

kn kn
TTlnj =  EXnj ,  <Jnj =  E(Xnj  Tnn,j) j X[ n =  ^   ̂TflnJ > =  ^  j

3 =1 3 =1

kn
Gnj(x) — \rn j (xTTln j ) , S j j =  X n j , Fn(x) = P

3 = 1

Note that V nj , f n n>j  etc. critically depend on the choice of 2. This will be 
important in the proof below. Direct calculation shows that the cumulant- 
generating function

S ji n -f- x

Ln,j{h) = log E exp {hXnj )  =  - L nj(z)  + Lnj (h  + z) 

exists for h such that \h + z\< H . Clearly

7fc,n,j
\dkLUJ(h)] r ^ ü n j í í ) ]

dhk

1
OII-CÍ dtk t —Z

For the first two cumulants, it follows now that
OO —
s p  7fc,n,j

(* -D !

^  — uu

(2.17) mnj- =  7i,n j  E  .n,i =  E
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Both series converge in the circle \z\ < H . 
We write

(2.18)
M n 

t =  — —
B n k=3

__£m _  fc-1
( k - i y .

This series converges for \z\ < H , too. By (A6) and (A7), its coefficients can 
be estimated by

(2.19) | P / c , n |  ^  k  
(k — 1)! = B nH k

Kn
°n,j = Cl

J=1

so th a t the series in (2.18) is majorized by a power series with coefficients not 
depending on n and convergent for \z\ < H. In any smaller circle \z\ < H i, 
0 < H i < H,  this series converges uniformly in n and z.

For all sufficiently small |f|, (2.18) has the unique real root

( 2 .20 ) z = t - ^3,n .2 
2

r4,n ;--- ^ t 3 +  .

This root tends to zero as t —> 0. If t remains small as n —> oo (which is 
assumed further) z also remains small.

By (A6) and the theorem on the inversion of analytic functions (cf. Pri- 
valov [19], p. 258), there exists a circle, the same for all sufficiently large n, 
with center at t = 0, within which the series on the right-hand side of (2.20) 
converges, and the absolute value of its sum does not exceed H\. Applying 
the Cauchy inequality to the coefficients of this series, we find that for all 
sufficiently large n the series itself is majorized by a series with coefficients 
independent of n and a positive radius of convergence.

X
The definition of V nj  implies that Vnj(x) — eLn’̂ z  ̂ J e~zydVnj(y).

—  OO

Hence
kn °°

P(5n ^ x ) =  e x p |y ^ L nj ( ^ ) |  J  e~zudV{Sn < u).
X

Writing yi =z\[~B~n and substituting u = M n + y \ / B n we get

OO
r

(2.21) 1 -  Fn (x) =  exp 1 - z M n +  ^  Lnj  (z) j
j = i

J  e~yy'dFn(y)

(xv^-M „)/v/ßT
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Put rn = F n(x) — <&(x). We will use the following estimate due to Ro- 
zovsky [20]:

kn
sup |rn(x)| ^  Ci B ; * 12 (\Dn\ + £  En j) ,

x j = i

where

Dn — I dGn ĵ (x), En ĵ — SUp Z I X dG-n̂ j (x).
j=í J _  **° .

M^v Bn \x\>z

The well-known relationship between the cumulants and central moments 
yield the equalities

— mn,j) = Ü3,n,j ’ — mn,j) = 74 ,n,j +  3&nj ■

It is clear that

kji kn p
\ D n \ ^ ^ \ E ( X n j - r ü n j f l  +  ^ T  /  | x | 3 d G n j ( x )

J — ̂  J = 1 /=-
|x|>V Bn

k k
 ̂E  173,n jI  + K l/2 E  E ( X n J  — m n J )4
j=i j=i

s £  Ira,„ái+5;1/2 £  i74,„ji+3
j'=i i=i j=i

Note that E„j can be estimated from above by Enj  ^  j if the supremum is 
achieved at z = z(n ,j)  ^  1, and by Enj  ^  z~2 E(Xnj - m nj ) 4 ^  |74 n j | +  3ö^J , 
otherwise. Hence

E l  ®nj = Bn +  174,n j I +  3 E l  ^nj»
j= l  j= i j= i

and we arrive at the estimate

sup |rn(x)|
X

k k k
g C2B ; 3/2 ( ß n +  £  173, n JI + (1 +  B~X/2) E  174,n j  + 6 £  < ,• )  .

j = l  J=1 j =  1

( 2 .22)
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It follows from (2.17) that

knB r
B n  B ,

1 IVJl

r S ^ " J  = 1 +  E
fc," fc- 2

i = l k=3 (fc-2 )

and, like in (2.19), this series is again majorized by one with coefficients 
independent of n and a positive radius of convergence. Hence

(2.23) C3Bn ŰBn ^ B nC4.

We find from (1.15) and (2.17) that

£ & i ‘ - 2 s § f £ ^ - i ) ( ^ r w 5(2.24) ö l  , <
n j = e o ( f c - 2)!

in the circle \z\ ^ H\ for every positive H\ < H.  As in (2.17) we write for
m  =  3, 4,

'Yk,n,j k —m  Z 1
E lk,(k — m)\
k=m

and, as in (2.24), we find that

(2-25) l 7 3 , n , j l  =  cn,jCf,, l 7 4 , n , j l  ú cn,jCj.

Substituting (2.23), (2.24) and (2.25) in (2.22), we get

kn
(2.26) sup\rn{x)\ ^  C8 B n 3/2 ( ^2 (cn,j + ci d ) + B nJ f iC9B n■d -1/2

3=1

Here, we have also used (A7). 
Now take

(2.27) t =
' / B n

Then t remains small, and by (2.18) we integrate in (2.21) from 0 to oo. 
By (2.26) we have

CXJ

j  exp{-yy i)dFn(y)

oo 2 0 0^ j ^ { - y y , k - \ } d y - r n^) + yi J  rn(yy ,-yy i dy

(2.28)
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where

(2.29)

1
n/ 2tt

+ Oifli

Qn

In the sequel, we confine ourselves to the case x  > 1, because, for 0 ^  x  is 1, 
an application of Rozovsky’s above estimate to ßn =  sup |F „ (a i)  — $ ( a ; ) |  gives,

X

similarly to (2.26), ßn = 0 ( B n ^ 2), implying (i) and (ii) for O ^x ^ 1.
By (2.17) to (2.19), we conclude that

OO p
M„ = B nz + B„ V  - ■■ '•-"--J1' - 1 = B „ z ( \+ 0 ( z ) )

and similarly

UU p

(2.30) B n = Bn + Bn Y ,  7 J 7 r k zk~2 = Bn( l +  0(z)).
k=3 ' '

Note that the constants in O(-) depend only on H  and W  so that O(-) does 
not exceed 1/2 for all large n and small 2. It follows from (2.20), (2.27) and
(2.30) that

(2.31) yi = x(l + O(z)).

Hence, y i > 1/2 for large n and small z. Set

Substituting u = yyi we find that

1 > ?yi/i
OO

Sjdu> j  exp(—u — 2v?)du > 0.

By (2.30) we get

(2.32) C\o < z\[WnI\ < C\\.
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Recalling (2.28), (2.29), we find that for small z
OO

(2.33) J  exp{-yy i)dFn(y) = - ^ = I 1 + an = - ^ = I 1{l + 0 (z)). 
o

In the further arguments, we make use of Mill’s ratio
OO

y

and write I\ I2 — ^(x)-  We have ip(x) —ip{yi) = (x — yi)ip'(u), where
u is between y\ and x. Furthermore \ijj'[u)\ =  \uip{u) — 1| < u~2 for u > 0. 
By (2.31), x — y\ =  O(zyi), and consequently ip(x) — ip(y 1) =  0{z /y \) .  So, in
view of (2.23) we conclude that I2 —1\ = 0 ( B n 1̂ 2). It follows from (2.32) 
that I\  =72(1 + 0(2:)). Hence from (2.33) we find that

OOJ  exp(—yyi)dFn(y) = -^=ip(x){  1 + O(z)).
0

This reduces (2.21) to the relation

2 fcn

(2.34) 1 -  Fn(.x) = ex p | y  -  z M n + Lnj ( z ) j [  1 -  $(x)](l +  O(z)).
l=i

By (1.14) and (2.17),

00 k -  1
z m n,j 7jnj(z)  =  — *yk,n,jZ (li =  lj 2 , . . . ;  j  = 1, 2 , . . . ,  kn).

k=2

This and (2.20) imply that

or

I ,   kn
—— ( z M n — L nj (  

n l=i
v ^ ( ^  —i ) r k,n k t 2 r 3,n 3 r 4,n —3F |
E ----- in------2 =  T  " I T * --------- --------! +■k=2

2 B î Z^ n ^  y Ln ,j{z )] ^n{t)•
kn
E
l=i
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Hence
2 ^n

Y  -  z M n  +  ^ 2  L n , j ( z )  =  B n t ' X n i t ) .  

j - 1

Note that by (2.18), (2.20) and (2.27), z  — 0{xl\[Bff). Then, by (2.34), 
we obtain (i).

Assertion (ii) can be proved in the same way.
R e m a r k  1. It follows from the conditions (A6) and (A7) that

Bnsup -— < oo.
n rv-n

PROOF. Put. A n — {j : cnj  ^ A, 1 = j  ^  An — { 1 ,..., fcn} \  An. By 
Cauchy’s inequality and (A7), for large «,

V  E Y2 < —  V  c < 2 V  c2 < 2^  + 1  ̂Bt j X n , j =  tj2 2 _ y  Cn’J =  A H  2 ° n ’j  = A H i  ± *n ’
jeAr,

or

H 2 ^  “"J = A H 2
j£An j£An

E EXh  s
j €  An

if A = A(W + l ) H - 2. Hence

Bn = 2 X E^ J  = 1X2 X  Cnd=  rr2 '̂n'
j e A n j e  An

L e m m a  1. L e i  i/ie assumptions of Theorem 2 hold, and

(2.35)

Consider the function

Bnlim inf > 0.
km

(2.36) Un(i) =  T- sup {z tBn -  y t Lnj ( z )}, i > 0,
"-n 0<z <H   ̂ '

and its inverse vn — u~l . There exists c' >  0 suc/i that if 0 < c ^  c' then 
the sequences tn = vn{c) and zn = zn{t.n) are bounded and separated from 0:
0 < t' ^ tn ^  t" and 0 < z' ^  zn Ű z" for all large enough n.

PROOF. For any fixed n, the derivative
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equals 0 at z = zn(t), which is a solution of equation (2.18). Moreover, it is 
positive as z £ (0, zn(t)) and negative as z > zn(t).

The function zn(t) satisfies (2.20) for all sufficiently small t > 0. The 
inverse function t = tn(z) satisfies (2.18) as 0 ^ z < H .  It follows from (2.19) 
that

(2.37) t ^ z n( t ) ^ 2 t  as O g t^ i

for large enough n and some i  > 0, which does not depend on n. Hence 
zn(t) < H  for some t £ (0, f], and for all t £ (0, f],

kn
'y  ̂Lnj ( z n 
3=1

By (2.18) we have 

(2.39) knv!n(t) = z'n(t) tBn + zn(t)Bn -  M n(zn{t))z'n{t) = zn{t)Bn 

and therefore

Un(t) = ~JT j  zn(s)ds. 
o

By (2.37), (2.35) and Remark 1, we have for some positive C13 > C12 > 0 and 
all sufficiently large n

t2
C12— ^  un{t) ^  C u t 2,

The functions un(t) are continuous, increasing and un(0) =0. The inverse 
functions Vn — u f 1 have the same properties. Moreover,

V o l s ’-’” (c) = \ / c E  “  ° S c = i p '

In view of (2.37), the assertion of Lemma 1 follows.
Lemma 2. Let the assumptions of Lemma 1 hold. Then for any cE (0,c'] 

and any e,

P (Sn > sn ^B~n) = e"**"-  ^ 2+£,
tri^n

with sn — tn +  e logBn/ (B nzn) , tn, zn as in Lemma 1. Here C14 C15
for some positive constants C14, C15 and all sufficiently large n.

PROOF. Put x = an \JBn. Let x  —> 00, an f^t, an > 0. By (2.34) and
(2.38) ,

(<)))>(2.38) un(t) = —  (
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(2.40)

2 , kn V
P(>Sn > (ln \ / Bn) =  /yj— 6Np f —Zn(an)anBn -I- ^  '] Lnj  (^n ((ln)) J Rn

a n V %  ' ■ i '

-----:---1
a„ \  B n

j A‘nUn (ön ) /3>

where |f?„ — 1/\/27t| íí 1/10 for large enough n if remains small.
The functions u„(f) and z„(f) are analytic in a small circle |f| f. It is not 

difficult to check that the sequence { sup |u"(f)|} is bounded for sufficiently
|t|Sto

small to > 0. Actually, by (2.18) we have

t'n(z) = l + Y ^
k=l

B/c-t-2,n fc
~ J T Z ’

where \Tk+2tn\/k\ űC{k  + l){k + 2)H~ k - 2 in view of (2.19). Hence t'n(z) ^  1/2 
for all small enough z, and z'n(t) 2 for all small enough t , |t| ^  to- By (2-39), 
(2.35) and Remark 1, we obtain sup |u"(í)| 5Í C\§.

|t| ̂ t0
Let an = tn + en, |a„| ^ f0, tn ^ t0. We have

^ n ( u n )  = ^ n { i n )  T  T W n  =  C +  Z n £ n  +  W n ,

where \Wn\ ^ C \ 7. Put en = e log Bn/ ( B nzn). Then

un(sn) = c + zne 3 * * * * * * i0̂  Bn + Wn.
13 n Zn

The assertion of Lemma 2 follows from (2.40) and Remark 1.

3. Proof of Theorem 1

Once a suitable large deviation estimate like that of Lemma 2 has been
established, the proof of Theorem 1 can be given adapting the methodol­
ogy of the i.i.d. case (cf. Deheuvels, Devroye, Lynch [11], Deheuvels, De-
vroye [10], Bacro [1]). However, due to the fact of having independent, but
not necessarily identically distributed suipmands, a number of modifications
are necessary. For sake of readability of the paper, we outline the main steps 
of the proof.

Put Un =  Un / log K.  Applying Lemmas 1 and 2 to the sums Sn+j  —  Sn 
we get the following results.
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Lemma 3. T h ere  e x is ts  Co ^ 0 h a vin g  th e  fo llo w in g  p ro p e r ty . F or a n y  
c >  Co th e re  e x is t se q u e n c e s  {an,j} a n d  s a tis fy in g  (1.3) a n d  (1.4).
F u r th e rm o re , th ere  e x is t  p o s it iv e  c o n s ta n ts  o t\, 012, t \ ,  t \  su ch  th a t a \  ^ 
anj  Ú a.2 , t \  ^ t*n ,j ^ ^2 f o r  n  a n d  j  s u ff ic ie n tly  large.

Lemma 4. F or a n y  e , th ere  ex is t p o s i t iv e  c o n s ta n ts  C\%, C \g  su ch  th a t

g 18e~fc/c
ynl/24<±l/2+£) = P y S n + k ~ S n  = B n^ a n^  +  ^±-+e^ J

1 , log k \  K Ci9e k/c
fcl/2+<±l/2+e)

/or a ll n  a n d  k  ^ Ä i.
The next result is well known (cf. Chung and Erdos [3]).
LEMMA 5. F or a n y  e v e n ts  A \ ,  A2 , ■. ■, A n th e  fo llo w in g  in e q u a lity  h o lds:

2

' ( l » s
/  n

E p (Avi=l

i=i E P( î) + E P(^Aj)
2 = 1 ijtj

Lemma 6 . F or a n y  e > 0,

’( tf jv á
1  A

2 c
P roof. By Lemma 4 we have

+ e ) —> 1 as N  —> 00 .

P ( UN Z - \ - - + e
A  c )

N - K

71—0
^ ^ 2  p f  S n+ K  — S n <:otn ,K B n,K  +  -  -  -  + e)

log K

hn,K

„  C\gNe~K/c ^  C20 n
=  ....K l X/c = W ^ °  “

Lemma 7. F or a n y  a , b, q, an d  p o s i t iv e  in te g e r s  v  <  k , a n d  f o r  a n y  
p o s i t iv e  t ,  t \ ,  th e  fo llo w in g  in e q u a lity  holds:

P{^i+k ~  ^  O ,  Si+v+k S ' j + n  ^  b)
S $ 2+n,fc-n(0e~‘9 + P(Si+fc -  ^  a )$ i+fc,„(ii)e-il(,>-^ .

PROOF. Confer Deheuvels, Devroye, Lynch [11], Lemma 4, in the i.i.d. 
case.

Now choose

f — /*1 — ('2+n,fc> o:i+v,kddi+v,k T  ̂ u  £̂
log k
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q = a i+VikB i+v<k -  j  log $i+k,v(t) +  j ' ( s  log v -  ^  log fc).

Note that, by Lemma 3, i > £2 > 0 for all i , v and large enough k. If <1 
is such that t j  <£2, then the inequality t \ < t  holds for large k.

L e m m a  8. If e > 0, 0 >  0, s >  0, u + s +  e ^  0, then 

P (Si+k- S i  I  a, Sl+v+k- S l+v Z b) í  e ^ cv~skx/c + P(Si+k- S l Za)ku+s+£v~e

for any real a and k ^  v ^  v\ =  v \ (6 ).
P r o o f . P u t  Q hk =  P {Si+k — S i^ . a). By Lemma 7,

— Sj ^ Q, •S’i-t-1>-pfc ‘S'i-f-v = b) ^ {t) oxp{—toii+v,kBi+V'k}t> fc // +

+ Qi,kktl{u+£)/tvstl/t expí^-ti(^log<!>l+k'V(t) -  log ( íi)) I

^ e ~ k/cv~skx/c+ Qukku+s+£ e x p l - t i  ^  ( -  log«/>r (i) -  — log</»r ( i i ) H .
V. „ — » I L% _L 1 1 J

Here we have used (1.3) and the inequalities t\ <t ,  v ^ k .  Furthermore

(3.41)

i+k+v  - ^

( ^ 1° g </ ' r ( í ) - - l o g ^ r ( í l ) )
r= z+ /c+ l  ^

 ̂ t+fc+t;
= ö(^2 t\)Bi+k v̂ +  ^(^2 — 4 )  TV +  *

By (A2') and (A3), for / =  3 , 4 , ,

i+k+v
E  f | s c 23B.+t,„(i)‘

r=i+fc+l

Moreover, for 0 < t\ < Í2 < £2 ,

4“1 -íi_1̂ (Í2-íl)(/-l)4"2-
Hence, if 0 < £2 < H, the series in (3.41) can be bounded from below by 
rBi+k}V for some r  > 0, which in view of (A4) can again be underestimated 
by (0 / t \)  logu for any 0 , provided v ^ v \  =vi  (6 ).

Lemma 9. For any £ > 0 ,

P(f/yvii —2 — 7 — e) -> 1 as N —>oo.
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P r o o f . Writing

A n — Sn ^  Ön,A'̂ n,K "h
1 A \ log K

we get by Lemma 5,

(3.42) P 1= p ( i / „ ä - i - ^ - £) = p (  U  4 , ) ä S
N —K

n—0 1 + Pa

N - K
with P 2 =  Y1 P (-4n) and P 3 =  P {AtAj)

71=0 i -̂j
By Lemma 4,

(3.43) Z -  K - e - \ / c  -

and

(3.44) P2 ^ {N -  K  +  l )C lse - K/cK £+x/c ;> C22K £

for large enough N.
Via independence of the events A* and Aj  for \i — j\ > K,  we have

N - K N - K

(3.45)
P3= E  P (^n )J  +  E  (P (^ n )- (P (^ n ))2) +

? i = 0 n = 0

where

+  Y  ( P ( ^ A i ) - P ( 2 4 i ) P ( A j ) ) g p 2  +  P 2  +  P 5 ,

\ ú \ i - j \ ^ K

N - K  K

p 5 =  Y  E p ( A ^ ) -

«=0 j = l

Applying Lemma 8 with k = K, v = j .  u =  1/2, s = 2, we get for 
sufficiently large,

P(A iAi+ j) ^ e ~ K / c j ~ 2K x / c  +  P (A i) A 5/ 2+£j _ö.

P u t / =  [A£/2]. Recalling (3.43), we get

N - K K —l

p5̂  y  (2/p(̂ )+ E p(̂ Mi+i))
i=0 j=/+l
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N —K  oo

^ ^2  (2lP(Al) +  e r K/cK x/c J 2 j - 2 + P(A1) K 7/2+£r ° )
*=0 j=l

Ú C2aK 3e/2 +  C25 +  C26K 7/ 2+2£K - ° e' 2 = 0 { K 3e/2),

provided 9 is chosen such that (9 + l)e/2  > 7/2 + 2e.
By (3.42) and (3.45), P i  ^  P 22/ { P 22 +  P 2 +  P 5), where P 2 =  o (P ^ ) ,  and 

P5 =  o(P.;;) as N  -+CO by (3.44). This proves Lemma 9.
The assertion (i) of Theorem 1 follows from Lemmas 6 and 9.
Lemma 10.

lim sup[/yv^-------a.s..
N —>00 2  C

P r o o f . Choose e  >  0. Taking Lemma 4 into account, we get

\ V n> \ N -K
+ £) Ü ^ 2  P ( ^n+K ~ Sri i; Oln^ B n>K + ( -  

n = 0 '

A \ log K  A
+ e

Ln,K

< Ci9Ne~K/c
J ^ l + e - X / c

Í  c 27k -(1+0

For any natural j  put Nj  =  max{N  : [c log N  + A log log N] — j} .  We have

p ( ü N]> \ - ^ + e ) ú c 21r ^

00 / _  1 A \
and the series P ( C/jy,- > r -------he) converges for any e > 0. By thej —1 V Z c /
Borel-Cantelli lemma and the inequalities Un ^ U for N j - 1 < N  ^  Nj, we 
complete the proof of Lemma 10.

Lemma 11.
liminf Ujy ^  — —---- a.s..N—>00 2 c

P r o o f . It follows from Lemma 6.
Lemma 12.

l im s u p [ / ;v ^ - ---- a.s..
iv—> 00 2 c

P r o o f . Choose e> 0 . For j  = 1 ,2 ,... we define Nj = min{A^: [clog N  + 
A log log N] =  j  } and put

Rj = max
Nj-i<n^Nj-j

^ n , j ( S n + j  S n a nj B n j ) 

l°g j
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Evidently,

1  A  M
{ R j ^  -  e }  =  ( J  A i ,  w h ere  A { =  { 5 m + i+ j  -  S m +i  ^  x m + i } ,

i — 1

m  = Nj- 1 xn = a nj B nj  + -  eY - ^ - ,  M  = Nj - N j - i  -  j.
Z C ln,j

W ithout loss of generality we can take m  =  0. Note that

c 28ej /cr x/c í m í  W cr x' c

for all large j.
An application of Lemma 5 yields 

1 A

1 A \ lo g j

i \ M
p ( ä , S - - - - e) = p ( U a ) s

i=l

p2
r 6

P fi  +  P ?

M
where P6 = Y, p (^ í), P 7 =  J2 p ( A A r).

i— 1 i^r
By Lemma 4,

(3.46) P 6 g Cl9 Me~j ' cj - l+x' c+e ^  C30r 1+E 

and

(3.47) P G £  M C i Se - j/cr 1+x/c+£ ^  C3i j ~ 1+£. 

As in (3.45) we have

(3.48)
M j

P 7 ^ P Í  +  P 6 + ^ É P (AiAi+r )-
t = l  r = l

An application of Lemma 8 with k = j , v  = r , u  = —1/2, s = 1 + 2/e, gives 

P (AtAi+r) <? e- j /cr - {1+2/e)j x/c + P {At) j 1/2+2/£+£r~e,

for large enough r, where 9 is an arbitrary positive constant.
Put l — [je/2]. We have

M j M  1 -1

Y Y P (A 'A ' + ^  =  Y { H  P  (AjAj_(_r ) +

i=  1 r = l  i = l  r =  1 r=l
M j

<; Y  (lP(Ai) +  e- j/cj x/c Y  r _(1+2/£) + p (Ai)j3/2+2/e+£r ö)
2—1 r = l
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(3.49)

 ̂C30r l+3e/2 + M e - j /cr 2/ej x/c 1 + C32j'1+£j3/2+2/£+ej_0£/2
r— 1

s c3„rl+3,/2 + c2, r ‘log;+c32;>/2+2/*+2er" /2 s c33r  1+3'/2.
since 0 can be chosen arbitrarily large. Here we used the definition of l, 
(3.46), (3.47) and the definition of M.

By (3.46)-(3.49)

(3.50) p7 ^ c 320r 2+2£+ c 30r l+e+ c 33r We'2 ^ c 34r 1+3£/2

if e < 2 (without loss of generality).
From (3.46), (3.47) and (3.50), we obtain

for large enough j.
°° f  1 A \

Hence the series ^  P(f?j - --------e ) diverges for any e >  0. Sincej — j * Z C '
the random variables Rj (j — 1 ,2 ,. . .)  are independent, an application of 
the Borel-Cantelli lemma combined with R j  n , for N j  ^  N  <  N j + i  and 
j  — K,  completes the proof of Lemma 12.

L e m m a  13.
liminf U n > ——---- a.s..N—> o o  2 C

P r o o f . Take e >  0. For any natural j ,  we put

N j  — min{77: [clog N  +  A log logn] =  j}.

Define J j  =  {m : m  =  r [ j £/ 2], r =  1 , 2 , . . .  } ,  L  =  max{l : (21 +  1 )j — 1 ^  

N j - j } .
For any j ,  the random variables

Qi =  max
ti,j(Si+j Si otijBij)

log j I — 0 , 1 ,  • • • ,  L ,

are independent and U  v > max O i .  Hence
3 “ 0< 1< L

; = P (U N
1 A 1 A

)s II* (® < -j-" ‘
1=0

)■
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Putting

we get

where

- S i *  a t jB i j  +  ^  .e)

p ( Q / ^ - ^ - ^ - í ) = p ( U ^ ) = S i _ E 2 ’

E i ^ P Í A i ) ,
ieii

S 2 =  J ]  P(AtAp), Ii =  { i : 2 l j ^ i < ( 2 l  +  l ) j , i eJ j } .

We denote the cardinality of /; by M/. Then M/ ~  j 1 £/2 as j  —> oo for 
all l.

By Lemma 4,

S i  ^  Z  C 36e - j / c j A/cj 1+£/2

for large enough j.
We have

M , - l

S i S E E  P(^iA+rlj./>|)-
ig / |  r = l

Applying Lemma 8 with k — j , v = m , n =  1/2, s =  2, and Lemma 4, we 
conclude

P(A,.4,+,„) S e->lcm-'1j xlc + PiA ,)j5/!+‘m
S C „ e- ^ r ~ Y /cr '  + C M e-V =jV c//2+2«r-»r »e/2

for large enough j,  where 0 is an arbitrary positive constant. Hence

M/ —1
P(A2Ai+rL?t/2]) ^ C39e - ^ cj - £ +  C38M;e—j/c -X /c -5 /2 + 2 e -—0e/2J 1 J

r — 1

= o(jx' ce - i ' c) = o(jxlcf e - i ' c)

as j  -4 oo, since 0 can be chosen arbitrarily large. 
Thus

S 2 =  o(jx^cj 1+e^2e~^c) = o(Er) as j  -> oo,
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and for large enough j ,

P ( Q i^  “  -  \  ~ e) Z Ci0j l+e/2j X/ce~j/c.

We have

P8 £ ( 1 - C 40j i + ' f t j V ' e - * / 0) 1 * 1

^ e x p { -C 4o(^ + l ) j 1+e/2j X/ce~j/c} ^ e x p { - C 4i j e/2} 

for large enough j ,  where we used the inequality 1 — x^ex p {—x} and

L ^ ^ - 2 ^ C 42r lr xlce>lc,
^J

for large enough j.
oo ,  1 A \

Hence the series Y1 P I ^ al < — ------ — e) converges. By the Borel-
i= l '  2 c J

Cantelli lemma and the inequalities U n  ^  U N j  for N j  ^  N  <  N j + i ,  we get 
the conclusion of Lemma 13.

Assertions (ii) and (iii) of Theorem 1 follow from Lemmas 10, 11, 12, 13. 
The last statement of Theorem 1 concerning W n and 71y can be proved 

in a similar way.
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EXTENSIONS OF BONFERRONI TYPE INEQUALITIES

B. R. HANDA and S. G. MOHANTY 

Dedicated to Professor E. Csáki for his sixtieth birthday

Abstract

The classical Bonferroni type inequalities are given in a probabilistic framework in 
terms of joint occurrence of events. We provide two extensions of such type of inequalities, 
one being a multivariate case and the other being a general case, which go beyond the 
usual probabilistic interpretation.

1. Introduction

Consider n  arbitrary events A \ , A 2 , . . . , A n in the probability space 
(S, 5, P ) .  Let Bng, 0 5Í t ^  n denote the event that exactly t among these

n
occur. Let P (Bng) = P[t] and P ( tj =  ^  P[r]. A well-known generalization of

r = t
inclusion-exclusion principle leads to the following expressions:

( ! )  =
j = t  v

( 2 )  p m = í > i r ‘ ( * : i

j = t  v

where

s i,n= J 2  p (̂ M nAi2n . - - n ^ . ) ,  50,„ =  i.
l ^ i i < Í 2 < - < i j  á n

In view of the relations

Sj,n — and Sj  — («)>
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Key words and phrases. Inclusion-exclusion principle, Bonferroni inequalities, Pólya 

frequency sequence, inverse relation.
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(1) and (2) follow from the inversion relation given below. 
For sequences {y/Jogfcgn and {wk}0^ n of numbers,

(3) Ws,

if and only if

(4) » * = B - i r ‘ ( ? y
s=k V '

A number of statistical applications require upper and lower bounds for 
P[q and P(t) in term of linear combinations of SjtTl. These bounds are called 
Bonferroni type inequalities. It is well known that if partial sums are taken 
in (1) and (2) the following inequalities will result:

(5)

and

(6)

t~\-2u-\- 1

E )^.»sp[<]SE<-T-‘())«,>,
j= t

t+2u

j= t

t-\-2u-\-\ / . -j \ t-\-2u / . w \

e  ( ] :  j  si.» s p«) s e  ( - i )j_£( i :  J  s * -

These inequalities are extensions of classical Bonferroni inequalities (Gum- 
bel [11], Takács [17]). The proofs of these inequalities as well as some of the 
bounds that improve upon these, depend on the relation of the type

t-f-a /
(7) Pw =  ( j J  ").

i-ta / . \

(8) P(1) = E(-1)J_‘((-1 ■S"‘ + (“1)‘‘+‘i”(i'“'n)'
j= t  v J

for a ^ n  — t where S and <5* (^0 ) are the remainder terms (see (1) and (2)). 
If a lower bound for remainder S(t,a,n), say á i(f,a ,n ), where 6 i(t ,a,n)  
depends on Sj>n, j  = t, t + 1, . . . ,  t + a + 1, can be obtained, then (7) provides 
inequalities

t+2u-\ -1 /

E  ( \  ) Sj,n + <*1 (Í, 2u +  1, Í) g P[t]
j= t  '  '
t-\~2lL /

[ ) s j,n + 6 i ( t ,2 u,n)
j=t V '

(9)
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which are sharper inequalities than (5). Similarly, improved bounds over (6) 
can be written for Pp) by starting with (8).

Two different forms of remainder terms 6 and 5* are available in litera­
ture. The first one we shall refer to as Galambos’ form of remainders (see 
Galambos [4]), which as observed in Recsei and Seneta [6] is applicable to 
general sequences {y^} and {w^} related through (3) and (4) and has the 
following form

Both (7) and (8) follow from (10) by choosing {wt} and {yt} appropriately. 
In fact, for (7) we set wt =  P[t\ and yj =  S j <n, while for (8) we set wt =  P(t)/t 
and y j = S j tn/j .

Following Galambos [4] we conclude that

( 11)

s — t - 
a

W o5 { t , a , n ) =  ^ 2
s= t+ a-\

a  +  l f a  +  t  +  l \
— ^ ---------------) y a + t+ i  ( = 4 i ( f , a , n ) ) .>

n
Thus (9) is true with the value of 6 i(t, a, n) given by (11) where yj = S j >n. 
By similar arguments one can get improved inequality for Pry using (10) 
and (11).

The second form of remainder terms is due to Hoppe [12] which arises out 
of a method of iteration proposed in Hoppe and Seneta [13]. Hoppe’s form of 
remainders is in terms of multiple summation of probabilities of unions and 
intersections of events A\,  A2 , ■ ■ ■ , An. The derivation being solely in prob­
abilistic framework, does not lead to any apparent analogue for sequences 
{wt} and {yt) similar to (10).

In this article we shall concentrate on Galambos’ form of remainder terms 
and his technique outlined above for constructing Bonferroni type inequali­
ties. This essentially consists of first writing the numbers in the remainder 
form (10) and then looking for a suitable lower bound for the remainder 
term which when used in (10) gives improved bounds for the required num­
bers. This technique will be extended to multivariable case in Section 2 to 
obtain Bonferroni type bounds for probability of at least some given num­
ber of events from each of several classes of events in the probability space. 
As is apparent from our earlier description the probabilistic setting is of no 
significance after the numbers involved have been shown to follow the re­
lation of the type (3). In Section 3, we show that the Galambos form of 
remainders can be extended to write Bonferroni type bounds for wt when bi­
nomial coefficients in (3) are replaced by numbers forming a Pólya frequency 
sequence.
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2. Multivariate extensions of Bonferroni type inequalities

Let {A i ,A %,. . . ,  A m } and {f?i, B2, . . . ,  B at} be two arbitrary classes of 
events in the probability space («S',5 ,P). Let BM,N-m,m 0 ^ m  = M, O ^ n ^ N  
be the event that exactly m  among M  A ŝ and n among N  BiS occur. Let

M
P[m,n] P {BM,N;rn,n) and X) Ss=n P[r,s]-

r=m
Let

Sm,n\M,N =  P ^ f l  + t  > H  B jpJ-

1 <7i <j2< "<jniN
Starting with relation of Fréchet [3] given by

( 12)

M + N

E<
and the inverse relation

(13) 5,m,n;M,N

M + N

E  E
t = m + n  i+ j= t

P [mb

Meyer [15] obtained the bivariate form of Bonferroni inequalities generalizing 
(5) as below.

(14)
c

3
m l  \ n

m+n+2k+l

E E
t=m+n i+ j—t

Tfl+Tl+2k  /  ' \  /  * \

s  e  ;  0 s « *i=m-f n

SiJ-M,N = -̂ [771,71]

TV

where A: ^  (M' + AT' — l)/2  is a non-negative integer and M' = M  — m, N '  — 
N  — n. Analogous results for P(m „) are

M + N  /  . 1 \  /  • 1 \

v „ =  e  e (-i)'-1”-"1 +_J(’:  1)(15)

(16)

t= m + n  i + j —t 

M + N

S i , j ; M , N =  . , , , ,' V r n - l / \ n  — 1t—TTl+TL l+ £  = t

* -  1 \  /  J -  1
(m ,n )  j
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and

) (n - l) = P(m.n)

It is now possible to improve upon these bounds by deriving the Galambos 
form of remainders for bivariate case analogous to (7) and (8) or more specifi­
cally (9) of one variate case. First, note that the following inversion relations 
hold: For any double sequences {ym,n}, 0 ^ m  51 M, 0 ^  n ^  TV,

M  N  /  ■ \  /  \

(18) ym,n =  £ X ) ( m ) ( ^ ) u > i j
i=m j=n

m+n+2k+l / . ^

(17)
t=m-\-n i-\-j=t
m-\-n-\-2k

\ m  — 1

ra+n+2/c ✓ . 1

s e  E  ,
t=m+n  1+ 7 = 1

if and only if

M N
(19) id, ■ • » = E E ( - »

i—m j —n
—ii*+j-(m+n) Í 1 I f

m \n V ij-

Next for any 0 a ^  M'  +  IV', we can write
( 20)

m+n+a
t-(m+n) Í 1 1 (J  

\ m ) \ nWj v= E  E
t=m+n i+ j= t  

műi^M 
n^j^N

Vi,j + ( - l ) a+1á(m, n; a; M, TV)

where
M+N

(21) S(m, n; a; M, TV) = £  £  ( -1 ) ‘— (ra+n)—a—1
i=m+n+a4-l

m^i^M
n^j^N

m  \ n Vi,j-

Substituting for y^ from (18) into (21) we have

6 (m, n; a; M, TV)
M'  -\-N' /  \  /  \  A/7 /  \  /  I \

= e  e <-ir°-' r X T  e e c : i\ / \ / p—j, Q—y N 7 N 7u=a+l x+y=u 
O^x^M1 
O^y^N'
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( 22)
M' N'

= £ £
p= 0  q= 0

p + m \  (q + n
rn n w p+m,q+n{ 1 )

a+ 1
£ £  < - 1 ) ‘ + " 0

a+l^x+y^p+q 
O^xáp 
o=y=9

Now for any positive integer u = x  + y we have the relations (see Galam­
bos [4])

£ m ) ' Ö = - £ ( - ' > ' ©
x—0 x—W"j“ 1

Using these, it follows that
Q

£ £  (- ')■
x+y

OSix̂ p
Q=y=q

P\  Q
x j  \ y

= ( - i )a+1 E
q\ i p - 1

= ( - l )

y = a + l-p

a + l ( p  +  q - l

y j  \ a - y

Substituting the last expression into (22) we finally get the remainder term 
as

(23)

ő(m,n ; a; M, N )

= £  £
a + l^ p + q f íM '+ N '  

Ô p-^M1 
Ofiq^N’

p + m \  fq  + n \  íp  + q — 1 
m ) V n ) \ a 'Wp-\-m,q+n

which is clearly non-negative if utij's are assumed to be non-negative.
Thus we have the Galambos form of remainder representation as given 

by (20) and (23). It gives rise to a bivariate extension of Bonferroni type of 
inequalities.

T h e o r e m  1.

m+n+2 fc+l

(24)
£ £ (

t=m+n i+ j—t
m+n+2k

IIA M £  <- l ) t_(
i-m +n i+ j= t

\ m j  \ n

m  \ n

V ij

Vi,j

for l ^ n ^ N  and k ^ - { M 1 + N ’ -  1 ).
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We obtain (12), (13) and (14) by setting Wij = P[tj] and yi,j = Sí j -m ,n 
in (18), (19) and (24), whereas (15), (16) and (17) follow by setting Wij = 
P ( i j ) / i j  and y i j  = S i j - M , N / i j ,  i , j ^  1 in (18), (19) and (24).

These inequalities can be further improved by following Galambos’ ap­
proach. For this, let

(25) ó*(m, n; a; M, N) = E
x+y=a+l  
0 gxgM' 
O^y^N'

x  + m \ f  y + n
m n yx+m,y+n

where a + 1 ^ M ' +  N ' . We show that

(26) 8 {m, n; a; M, N) ^  n; a; M, N).

For proving (26) we note that carrying out manipulations on (25) similar 
to that which was done on (21) to bring it to the form (23), we will get

S*(m, n; a; M, N)

-E  E
a+l^p+q^M' + N' 

O^p^M1 
Ô q-^N'

p + m 
m n

q + n \ p + q  (p  + q 
aCL -(“ 1

Wp-\-m,q+n

M' + N 1which is ^ ------ -—6 (m , n; a; M, N). Hence (26) is true.
a T 1

Finally, using lower bound for J given by (26) in relation (20) yields the 
improved Bonferroni type inequalities given below.

T h e o r e m  2 .

m+n+2k+l

t=m+n

(27)
m+n+2/c

E  E ( - 1 ) M m + n )
i=m +n i-\-j=t

2 k + 2 
M' + N' 6 *(m, n;k  +  1; M, N)

2 k + 2 

M '+ N ' 0
(m , n; 2k; M , N)

for 1 ^  m ^ M , 1 ^ n ^ TV, k Ű — (M 1 + N 1 — 1) and 6* given by (25).

The improved Bonferroni bounds on P[m,n] and P(min) follows from (27) 
by particular choices of wm>n and ylJ as discussed before.

Another type of extension of Bonferroni type inequalities is possible in 
the bivariate situation, by considering an alternative of type (20) with a
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different remainder term. The derivations follow argument similar to those 
used for obtaining (20) with remainder in the form (23) and therefore we 
state the result below without derivation:

(28)

where

Vx+m^y+n^ = £ E < - i r t r ) c r :i=0y=0 v '  v
+ (—l)a+t+1(5i (m, n; a, b\ M, N) + ( —l)a+1Í2(m, n; o; M, N) 
+ ( - l ) ft+1J3(m, n; 6; M, N)

Si(m, n; a, b\ M, N )
M' iV'

= E E
p=a+l <7=6+1

p +  m \  (q + n \  ( p — 1 \ f  q — 1
m n J \ a w p+m,q+ni

<$2(rn,n;a; 'Mp+rn,N j

i 3(m,n; 'WM,q+n-

Now starting with equation (28) and choosing a, 6 suitably as odd or even, 
it is possible to construct new Bonferroni inequalities by using the following 
bounds for <$i, <52 and <$3:

a +  1 {a+ m + \ \ b + l  fb  + n + 1 
"M 7 m N 1 n

< +  m + 1\ /& + m +  1 \
m n

ya+m+i,6+n+i ^ (rn, n; a, 6; M, N) 

1 ya+m+l,6+n+l)

and

r , 0 + 1 /̂ a + m + ^  82{ m ,n - ,a ;M ,N )g - j^ r  I ^  Jya+m+i,7V,

r /  7 , ,  Ar, ^ ö + 1 /ö +  n +  l
83{m,n;b;M, AT) ^  - ^ 7 - I ^ |!/M,t+n+r

As an illustration, we will arrive at the following inequality by choosing both 
a and b as even.
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T h e o r e m  3 .

m+2t n+2u
Wr

n-rtu / ■ \  /  *\

-S E  : )( i)^
i —m  n —n  '  /  \  /

(29)

i—m j= n

2 t+ l  f  777. -f- 2t ~h 1
M' \  m

2u -j-1 f  it -f- 2u -f-1 
N' V n

21 -f-1 / ui 2t 1 \  2?x -f-1 / ti -j- 2ia -f-1
M ' V m J N ' [ n

ym-\-2t+1, 

2/M,n+2w+l

2 / 7 7 2 1 ,  tx —2ix—f-1

/o r 1 < m ^ M, 1 ^  n ^  TV, t < — 1), u ^ 2 ^ ^  ~

All the derivations in this section have been carried out for bivariate 
situation for simplicity of presentation. The extension to more than two 
classes of events is now obvious and hence is not discussed here.

At the end of this section we remark that it may be of interest to examine 
which form of the remainders (20) or (28) can yield sharper bounds. How­
ever, from a practical point of view upper bound in (27) may be more useful 
than the bound given by (29). In (29) terms y m+2t+i,N  and yM ,n+ 2u+\ are 
present which involve anc  ̂ Sm ,ti+2u+1;M,n when bounds for
P[m,n] or P(m,n) are required. In this case, the difficulty arises if probabilities 

M N
of events p) A{ or P| Bi are not available.

i=l i=l
For further references on bivariate and multivariate Bonferroni inequali­

ties one may see Chen and Seneta [2], Galambos and Lee [5], [6], Galambos 
and Simonelli [7], Galambos and Xu [8] [10], and Lee [14].

3. Bonferroni type bounds for a class of sequences

In this section we provide an extension of Galambos’ technique from 
completely non-probabilistic point of view. As remarked earlier the crux of 
the technique lies in the relations (3) and (4) between non-negative sequences 
of numbers {m*,} and {yk}- In this section, we deal with the extension of 
Bonferroni type bounds for any sequence {wk} related to a sequence {y 
through the relation (3) in which binomial coefficients have been replaced 
by a general set of numbers. We shall obtain a set of sufficient conditions 
on the numbers to provide Bonferroni type of bounds for any w^- First, a 
lemma on a generalized inverse relation is given.
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Lem m a . Let ai, i =  0 ,1 ,. .. , n, üq ^  0 be a given set of numbers. The fol­
lowing inversion relation hold for any two sequences {u>k}o<k<n aní1 {Uk}o<k<n

n
(30) yk — ^  ' bs-kws,

s=k
if and only if

n
(31) wt =  ^ ( - l  )s~(as-iys,

S =  t

where bo =  1/ao, and for r ^  1
CLi a2 ■ . CLy— ^ CLy

6  -  1
a o Ü !  . . CLy—2 d y — 1

(32) 0 a o  . • d y — 3 d y — 2
r  ~  ar+1 ao

0 0 . a o  a i

PROOF. Substitute for ys from (30) in (31) and rearrange. Then we have
n n

a't =  ^   ̂wu ^  ^( 1) as-tb u-s-
u = t s=t

It can be checked that the second summation is 1 if it =  i and is zero if u > 
since it is equal to

a0 a i a2 ■ Qju—t —l d>zL—t
ao ai a2 • • • d u —i — i a u - t
0 ao ai . O'U—t —2 d 'u—t —l

0 0 0 ao ai
when expanded by its first row. Similarly,

n u

Uk — ^  '  Du /  ' ( 1) Q-u—sbs—k
u=k s=k 

n u

=  ^   ̂Vu ^  ' ( 1) Q-v—kbu—v
u=k v=k

by substituting v = u — s +  k. The r.h.s. is of the same form as the r h - of 
the previous expression. This proves the lemma. □

A sequence of numbers {an }n>o is called a Pólya frequency sequence if 
all minors of infinite matrix (cij-i)i:j >q have non-negative determinants (see 
Brenti [1], p. 9). Next we give a sufficient set of conditions for Bonferroni 
type bounds to hold for wt■
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THEOREM 4. Let n ^O  be a fixed integer. Let {u>fc}o<jfc<n be a sequence 
of non-negative numbers. Let another sequence {yk}o<k<n, be defined by 
relation (30). If {a*:}fc>o is a Pólya frequency sequence with ao > 0, for 
t =  0 ,1 , . . . ,  n and u ^  0, then the following inequalities hold:

(33) E
j=t j - t

P r o o f . We rewrite (31) as

i + p - 1  n

wt= y  ( - irv ^  + (-i)p E (-1
j=t j=t+p

Denote by (—1 )pS(t,,p— l ,n )  the second term on the r.h.s. of the last expres­
sion. Then by substituting for yj from (30), we have

(34)

where

(35)

n n
6 { t , p - l , n ) =  Y  (- l ) j ~t~Paj - t Y bl- j Wl 

j=t+b l=j
n-t y

= Y  wy+i Y ^ r - Paxby-x
y=p x=p

Mrs —

n —t

E wy+l
y=p

M y  — 6-|-1 ,p— 1
y - p + 1

a  o

a s + l a-s+ 2  ■• • ^ s + r — 1 CLs+r
ao a i •• ®r—2 C^r— 1
0 ao . . CLr —3 CLr — 2

0 0 ao a\

Since {o.A:}fc>o is a Pólya frequency and My^p+ i>p_i are minors of the matrix 
(a,j-i)ij>o, we have My_p+i,p- i  ^  0 and consequently 6 ( t ,p— 1, n) ^  0. Hence 
the inequalities follow. □

Interestingly, the inequalities can be sharpened by finding a lower bound 
for remainder 6(t ,p— l,n ). For this purpose we require a preliminary result, 
which is as follows:
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If {a/c}/c>o is a Pólya frequency sequence, then 

decreasing sequence. To prove this, we observe that

Tip, 1 1 is a non-

(36)

hdpßMp+\,t Mp+ißMpj
at-t-i a t - 2  ■ ® t+P —l a t~\~p

O l a 2 ap— i cip ß p + i

p
a 0

a o a i a p _ 2 dp—i dp

0 0 a 0 a i a 2

which can be established by comparing the coefficient of at+i (i =  1,2, ...,p + 1) 
on both sides, by actual expansion of determinants involved. Now since 
( ai}j>o is a Pólya frequency sequence, it implies that the determinant on 
r.h.s. of (36) is ^ 0. Hence Mp+lit/Mp+lj0 ^  MPit/M P)0 for p ^  1, implying

thereby that I , rp,t > is non-decreasing.
i Mpfi 1 p2ri

Next we give the improved form of Bonferroni bounds.
T H EO R EM  5. If the non-negative sequences of numbers {w t}^ o and {vt}t^o 

satisfy (3 0 ) ,  where {afc}fc>0) a 0 > 0 is a Pólya frequency sequence, then the 
following inequalities hold:

t+2u-\-1

(37)

{ - l ) j  ' a j - t V j  +  ( o 2 « + 2  -  «0  

j=t
t+2u

ú w tf f  j ^ ( - l y ^ a j - t V j -  (R2m+1 — a0 -

M n- t -2 u -2 ,2 u + 2 \
- T 7 ------------------  Vt+2u+2

tVln- t - 2 u - 2 f i  '

M n —t—2u
M,n—t—2u

1,2«+1 \
— 1,0 '

yt+2 u+i
where t — 0,1,..., n, u ^  0.

P R O O F .  Expanding the determinant M p _ p + i iP_ i  b y  its first column we 
get M y-p- i tp-\ — OpAIy—pß a^My—p̂ p. Thus

M y —p+l,p—l

M y —p,0
-- Őri My-p,p ^) --------  —

My-p, 0
Q,p Uq

-hln—t—p,p
Mn—t—p, 0

as hip, / 1 
Mpfi J p^o

(34) we get

is nondecreasing. Using this bound in ő(t,p— l,n ) given by

6 (t,p -  l ,n )  ^  (ap -
M, n—t

ao n—t—p,p E My-p,p
y-p+i wy+t 

n - t -P ,u '  y —p a o

=  (ap -  aof ;  t-~---)yP+t (from (30)).
\  M n - t - p ,  0 '
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Using this lower bound for remainder term, we get the desired inequali­
ties (37). □

In conclusion, it is remarked that the Bonferroni type inequalities can be 
extended beyond its original probabilistic framework.
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ALMOST SURE LIMIT THEOREMS 
FOR DEPENDENT RANDOM VARIABLES

G. HURELBAATAR

Dedicated to Endre Csáki on the occasion of his sixtieth birthday

A b s tra c t

For partial sums Sp of strongly mixing and associated random variables we prove that 

(1 /logn) £ ( l / * ) I { S fc/a*€-}-+ G (-)
k^n

with probability 1 if and only if

(1 /logn) £ ( l / f c )P (S * /a * S  ) - +G( )
k^n

under the same moment condition as assumed for independent random variables.

1. Introduction

One of the extensions of classical probability limit theorems is the so- 
called almost sure limit theorem. The basic result and starting point of 
these investigations is the almost sure central limit theorem, discovered by 
Brosamler [2] and Schatte [8] for i.i.d. random variables having finite (2 +  <5)th 
moment and later proved by Fisher [3] and Lacey and Philipp [4] to hold 
under assuming only finite variance:

T h e o r e m . Let X i , X 2, 
E X 2 = 1 and set Sn = X\  + •

lim ------
n —>oo logn

k< n

.. he i.i.d. random variables with EATi =  0, 
■ • + X n. Then

= (2 n ) ~ 1/ 2 I  e~t2/2dt a.s.
A

for any Borel-set A C E with A(cL4) =  0; moreover, the exceptional set of 
probability zero can be chosen to be independent of A. Here I denotes indi­
cator function and A denotes the Lebesgue measure.

Later Berkes and Dehling [1] proved a more general version of the almost 
sure central limit theorem and its functional version for independent, not 
necessarily identically distributed random variables.

1991 Mathematics Subject Classification. Primary 60F15, 60F05.
Key words and phrases. Strongly mixing, associated random variables, almost sure 

central limit theorem.
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T h e o r e m  A (Theorem 1 of Berkes and Dehling [1]). Let X i , X 2 , . . .  be 
independent random variables and let an > 0, bn be numerical sequences such

( 1. 1) E  / g(log logn )-1- e/ ( e (logB)1' ' ) (n ^  no)

for some e > 0, where f (x )  ^  0 is a real function such that f(x) and x / f ( x )  
are nondecreasing and the right-hand side of {1.1) is nondecreasing for 
n^rro- Assume that

<12» ~ ^ c i í y  v = k = n o)

for some constants C > 0 and 7 > 0. Then for any distribution function G 
the following statements are equivalent:

(a) For any Borel set with G(dA) =  0 we have

(1.3) lim — f "  \ l {  Sk - k g a } = G(A) a.s.7i->oo log n '  k 1 üfc J

where the exceptional set of probability zero is independent of A.
(b) For any Borel set Í G 1  with G(dA) = 0 we have

(1.4) lim - i -  Y r P ( ^ — - G A )  =G{A).
n 0̂0 log n k V a/j /

In this paper we prove Theorem A for some dependent random variables 
under the assumptions (1.1) and (1.2). An interesting result of Berkes and 
Dehling [1] is that weak and strong laws of large numbers are equivalent 
on a set of log-density 1. We also prove this fact for strongly mixing and 
associated random variables.

2. Almost sure limit theorems

D e f i n i t i o n  2 .1 .  Let X i , X 2 , . . .  be a sequence of random variables on 
some probability space (Ll,F,P) and let aba be the er-algebra generated by 
the random variables X a, X a+i.... .A;,. For any two o -algebras A, B C T  
define

a(A, B) =  sup {|P(AB) — P(A)P(f?)| ; A e A, B E B}

a{n) = sup a{a^, o^+n). 
kZ 1

and put
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The sequence X \, X 2 , . . .  is called strongly mixing if a(n) —> 0 0  as n —> 0 0 .
D e fi n i t i o n  2 .2 .  The sequence of random variables X \, X 2 , ■.., X n is 

called associated if
C ox(f(X u X 2 , . . . , X n),g (X 1 ,X 2 , . . . , X n) ) ^ 0

for every n ' t  2, whenever / ,  g: Kn -> K1 are coordinatewise increasing. The 
following results w ill be used in our proofs.

THEOREM 2.1 (Theorem 1.1 in Rio, E. [7]). Let X  and Y  be two in­
tegrate real-valued random variables. Let a = a(a (X ),o (Y ))  ^  1 /4 . Let 
Qx(u) = in f { t : P (|X | > t ) ^ u }  denote the quantile function of \X\. Assume 
that Qx Qy  Is integrate on [0,1]. Then

2 a

|C ov(W ,y)|^2  j  Qx (u)QY {u)du.
0

This theorem implies im m ediately that if |X | ^ K  and | V| ^  K  then  

(2.1) \C o v (X ,Y ) \ i4 K 2a(o(X),a(Y)).
H o f f d in g ’s e q u a l it y . If the covariance of X  a n d Y  exists, then

Co v (X ,Y ) {P(X > x ,Y  >y) — P(X > x )P (T  > y))dxdy.

T h e o r e m  2 .2 .  Let X \ ,  X 2 , . . .  be strongly mixing random variables and 
let an > 0 ,  bn be numerical sequences satisfying (1.1) and (1.2).  Assume that

(2.2) a(k) — 0((log log k)~1~s)
for some ő > 0 .  Then the statements (a) and (b) are equivalent.

PROOF. Without loss of generality we can assume bn =  0. Let g(x) be a 
bounded Lipschitz function, e.g. |^(x)| ^  K  and |g(x) — g(y) \ ^  K \x  — y\ for 
some K  > 0 and for all x,y.  It suffices to show that

(2.3) lim - — t& = 0 a.s.,
n —»00 lOQ' 71 z '  l  0 i— 1

where = ff(f^) — ®3(ff) (c -̂ [!])• Assume that l > 2k. Then we have

|E(&6)| =

(2.4) <

- ak

Co. ( , ( * ) „ ( *  \  \ a k J \a i
Si
al

<

Cov I g I —  I, g
ak ~ 9

Si -  s 2k
ai

+

+ Cov (*(
Sk \  ( S i -  S2k

.9ak ai
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By (2.1) it follows that 

(2.5) C° v | f, ( ^ | . 9
Si -  S2k g 4  K 2a(k),

since g is bounded.
Setting X = ai/a2k and using x / y Űf( x ) / f ( y )  for x ^ y we get

c 4 ( * ) . , ( *\  \ a k J \ a i
Si -  S2k

ai.
< C  E ( ! M a i , =

V  ai
( 2 . 6 )

Now

= E
C ( \ S 2k\

a-2k

(2.7)

A V

e( E ^ ) 2s

i ± ' m ? + 2  y . |E(&&)1
fc=i l /̂c<(£n 

2 k>l
hi * E

1 ̂ k<l^r
2 k<l

1E(^)1
kl

“ E i +  5 I 2 +  S 3 -

By trivial estimation |E(£fc£/)| E4K 2 we get that
OO

(2.8) E , S ^ 2E ) ( ! < 0°
/c=l

n 2k -

E ^ ^ E  £  TT =  0(log(2.9)

By (2.4)-(2.6) we have

( 2 . 10)

(2.2) implies that

( 2 . 11)

k —\ l—k-\-l
n)

E ,s«2 E 1r+c y . AtAt»/
1

2k<l.
1̂ k<l^n

2k<l

k i f ( \ y
( \ S 2 k \ \  

V a 2fc /

V  +  V  ■^ —'3 1  —'3 2

E - s ^ E r  E ^ sl ^  k
1=2 k=1

< logl
“  /(loglog!)1+5

^C (loglogn) 1 Älog2n.
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If l/2k  Si exp(logL £/2n) then by (1.1) we have

/ ( e logl~£")
X ^ ,2 = C'1(logloSn) 1_ /(Ce'i'og1 £/2") kl

v  1^  hi
<

l<k<l<n( 2 . 12) ^ 32

^ C(log logn)_1_£ log2 n.

If l/2k  ^  exp(log1_£/2 n) then using |E(£fc£/)| ^ 4 K 2 we get that

1 ,

(2.13)

E 32sc3 E  « -
fcá/áfcexpPog1 e/ 2 n)

n i
^ C4 ^  — log1 - 2 n <; C lo g 2_2 n.

fc=i

Setting Tn =  log 1 n ^  we have
k^n

ET2 ^ Ci(log lo g n )-1" min(£’<5). 

Choosing nfc =  exp(exp(/c1-£/2)) we have
OO

E ETl  <
i=i

Thus Tn/fc —»0 a.s.. Now for nk fL nú  nk+1 we have

log nfc|T „ - T „ J g  1 - logn

Since logrifc/logn—11, it follows Tn —>• 0 a.s.. This completes the proof of 
Theorem 2.2.

T h e o r e m  2.3. Let X \ ,X - i , . . .  be associated randorn variables and let 
an > 0, bn be numerical sequences satisfying (1.1) and (1.2) with 7 Si 1/2. 
Assume that

(2.14) u(n) = sup 5Z Cov(vYfc, Xj) < C
&>1 • ,,-  ]'\k-]\a.n

for all n^. 1. Then the statements (a) and (b) are equivalent.
PROOF. The proof is similar to that of Theorem 2.2. The difference is 

only the estimation of Cov (g{Sk/ak), g{{Si — *S2fc)/a/)) and consequently to 
show that

^ 31 =  0 (l°g n ).
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From the definition it follows that Sk and Si — S2k are also associated. There­
fore

H(x, y) = P(Sk > xak, Si -  S2k > yai) -  P (Sk > xak)P(Si -  S2k > V<H) 

is nonnegative for every x ,y  € R.
Using Höffding’s equality and the absolute continuity of g  we have

Cov g
(S k
\ Uk

< K 2 Cov

>9
Si -  S2k

ai
(  Sk Si -  S2k
\ ai

= 0

g'(x)g'{y)H{x,y)dxdy ^ 

k
CLka l

since Cov(Sk, Si — S2k) S C\ku(k).
Now we put 0(k/a,kai) in (2.11) instead of a(k) and we get that

E 31 s  c * É  jn  £  u t j =
1=2 k =  1

as desired.

3. Laws of Large Numbers

D e f in it io n  3 .1 . For a set A  C N of p ositive integers, the log density  
1) o f A  is defined by

y L { A ) =  lim — Y ( ,  \n->oologn J kb k^n,keA

provided that the lim it exists.

D efin it io n  3 .2 . Let , ^2, • - • and £ be r.v .’s. We say that

£ (log)
p

if there exists a set iL C  N of log density 1 such that £n — l (a s n ->  00, n £  H . 
We say that

ín  -> £ a.s. (log)
if for a.e. u> there exists a set H f  C N of log density 1 such that £n(cu) -A £ (tn) 
as n  —> 00, n  G

T h eo r em  B (Theorem 3 of [1]). Let X i, X 2 , . . .  6e i n d e p e n d e n t  r a n d o m  

v a r i a b l e s  a n d  l e t  a n >  0 b e  a  n u m e r i c a l  s e q u e n c e  s a t i s f y i n g  (1.1) a n d  (1.2) 
w i t h  b n  =  0. T h e n  t h e  f o l l o w i n g  s t a t e m e n t s  a r e  e q u i v a l e n t :
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and

(3-2) Sn/Cin--->0 (log).

Moreover, if X n/a n —~>0 also holds then a third equivalent condition is (3.3)- 
(3.4) as follows:

(3.3) E r{G*;(afc)Al}— >0 as n->ooIc

and

(3.4)

where

log n ' k 
6  k<n

; 4 — Y  A 1} — > 0
lo s "  t r j

as n —» oo,

Gk(\) = Y l
j=1 |x|2:A |x |<A  |x|<A

^ ( A) = X |É  /  X(iFÁ X)
í= l \x\<\

and Fj is the distribution function of X j .

Theorem B was first proved by Berkes and Dehling [1] under the assump­
tions of Theorem A. Now we show the equivalence of (3.1) and (3.2) under 
the assumptions of Theorems 2.2 and 2.3.

THEOREM 3.1. Let X \, X 2 , . . .  be strongly mixing random variables with 
EXt = 0 and let an > 0 be a numerical sequence satisfying (1.1) and (1.2) with 
bn — 0. Assume that

a(k) =  0((log log A;)_1_i).
Then the statements (3.1) and (3.2) are equivalent.

THEOREM 3.2. Let X \ ,X 2 , ... be associated random variables with EX,=0 
and let an > 0 be a numerical sequence such that (1.1) and (1.2) hold with 
bn = 0. Assume that

u(n) = sup ^  Co y (X k,X j)< C .

Then the statements (3.1) and (3.2) are equivalent.
In the proofs of Theorem 3.1 and 3.2 we use the following lemma.
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L e m m a  3.1 (Lemma 2 of [1]). Let x \ ,X 2 ,- .-  be a numerical sequence. 
Then the following statements are equivalent:

(i) There exists a subset H  C  N of log density 0 such that xn —> 0 as 
n  —> oo, n ^ H .

(ii) For all e > 0, the set A(e) — {n; \xn \ > e} has log density 0, that is,

Um r ^ — 5 ^ r i ( l a:fcl > £} =  0-n—>oo iogn ' k
6 Ifcgn

Moreover, if xn is bounded then (i) and (ii) are equivalent to

(iii) lim V  y\xk\ =  0.n—yoo log n k kf n̂
P r o o f  o f  T h e o r e m  3.1. Clearly, in the case when bn = 0 and G is the 

distribution concentrated at the origin, statements (a) and (b) in Theorem A 
reduce to

(3.5) lim ------Y  —IflSW aJ > e} =  0 a.s. for any e> 0
«-> oo lo g n  ' k& k^n

and

(3.6) lim '—: y  ip { |5 /t/a fc| >e} =  0 for any e>0,
n-KX> log IV ^ '  k 6 k^N

respectively. By Lemma 3.1, (3.5) is equivalent to (3.1) while (3.6) can be 
written equivalently as

(3.7) /^{n: P ( |5 „ /an | > e) > <5} = 0 for any e> 0 , £ > 0.

Setting
xn = inf{p > 0: P(|5„/a„| >  q) ^  g}

(3.7) implies

^L {n :xn > e} ^  fiL{n:P(\Sn/an\> e) > e} = 0 for all £>0,

whence we get, using Lemma 3.1, that xn -> 0 along a sequence H  C N of log 
density 1. We can easily see that the following two statements are equivalent:

(i) P (|5n/a n| > e) ^  e for any e > 0.
(ii) P(|5n/a ra| > e) —» 0 as n-> oo.

p
Thus we get Sn/a n — >■ 0 as n -»oo ,nG fL  that is, (3.2) holds. Conversely, 
(3.2) trivially implies (3.7) and thus (3.6).

P r o o f  o f  T h e o r e m  3.3. Our proof immediately follows from Theorem 
2.3 applying the same procedure as in the proof of Theorem 3.1.
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ESCAPE RATES FOR LEVY PROCESSES*

D. KHOSHNEVISAN

Dedicated to Professor E. Csáki on the occasion of his sixtieth birthday

A b s tra c t

We prove a space-time estimate for a Lévy process to hit a small set. As an application, 
we present escape rates for Lévy processes with strictly stable components.

§ 1. Introduction

Let X denote a d-dimensional Levy process. It is a classical fact that a 
Borel set A C is polar for X  if and only if A has positive X-capacity; cf. 
Blumenthal and Getoor [BG]. A sharper variant of the aforementioned fact 
is the consequence of more recent investigations such as those of Benjamini 
et al. [BPP], Fitzsimmons and Salisbury [FS], Peres [Pe] and Salisbury [Sa]. 
Roughly speaking, these results provide in a variety of different contexts, 
quantitative estimates of the type: P°(Xi € A , for some t > 0) x  e-1 (A), 
where /  x  g implies the existence of some universal C > 1, such that C ~ xg ^ 
f  ^ C f  pointwise, and e(A) is the X-energy integral associated with A. One 
of the many uses of such an estimate is that one can often approximate the 
chance that X ever hits a small set. Wishing to study escape rates, we 
present a different sort of a quantitative estimate below. Our notation is 
more or less that of Markov process theory.

THEOREM 1.1. Suppose X  is a d-dimensional Lévy process. For any 
b > a > 0 and e > 0 ,

, ./ P°(|Xr | ^  e)dr
2 ~̂b----------------- = P°(|Xr | ^ £, for some a ^ t ^ b ) ^

/P ° ( |X r |g e )
o
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2b—a
f  P°(|Vr |^ 2 e)dr 

< —-----------------------
j “p°{\Xr\^£ )d r
o

whenever the integrals exist and are nonzero.
The above extends the estimates of Perkins and Taylor [PT], Takeuchi 

[TI, T2] and Takeuchi and Watanabe [TW], to cite a few examples. To 
illustrate the use of such a general inequality, let us restrict our attention 
to the class of processes described in Hendricks [HI, H2, H3]. Namely, we 
consider the case where X  is a d-dimensional Lévy process with strictly stable 
components. In other words, there exists w ,x£  K+ and a € (0,2]d, such that 
for all t > 0 and all f  € Rd,

( d d

-t Y  ioxji1/aj' -* Y  ̂ sgn (0)
3=1 3=1

Throughout, we shall assume that the coordinate processes are not com­
pletely asymmetric, i.e.,

(1.3) < tan(7raj/2), IXjl > 0, for all j  = 1 ,..., d.

Viewed coordinate by coordinate, such processes scale, albeit differently in 
each. Define,

(1.4) ß-
d

E i-
j = i  3

Our intended application of Theorem 1.1 is the following:
T h e o r e m  1.5. Suppose X  is a Lévy process with stable components with 

parameters given by (1.2)—(1.4). When ß  < 1, X  hits points. When ß  = l, 
singletons are polar, but X  is neighbourhood recurrent. When ß  > 1, X  is 
transient. For ß ^ f l ,  let ip: be a decreasing function and define

3(<p) =  <

00
f  t~l(pß~l (t)dt,
1
00
1 t~j I ln</j(t)|_1di,
l

if ß>  I 

if ß = l-

When ^  1, P°-almost surely,

lim inf
t —> OO

(t->o+)

max |Xj |QJ
. i <j':£d

tp{t)
oo, if  3(<p) < oo
0, if  3(<p) =  oo.
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When a  is a constant vector, the above appears to various degrees of 
generality in Dvoretzky and Erdős [DE], Spitzer [Sp], Takeuchi [T1,T2] and 
Takeuchi and Watanabe [TW]. When a  is not a constant vector, a different 
but equivalent formulation can be found in Hendricks [HI] with a longer 
proof. Our formulation has two distinct advantages over the latter: (1) the 
large-time results and the small-time results are the same; (2) ours incorpo­
rates all the known results as one. Note that the critical case (i.e., ß =  1) 
only applies to two cases: d = 1 and a  = 1 (Cauchy process on R1) or d = 2 
and a t =«2 =  2 (planar Brownian motion).

Above and throughout, we have used the notation: lnx  =  loge(a: V 1), 
x  ^  0.

§ 2. Proof of Theorem 1.1

Fix 0 < a < b and define T =  inf(s > 0 : |Jfs| Ű e). Apply the strong 
Markov property at time T to see that

2b—a

P° j  l(|ATr | ^  2e)dr ^ P° ^ j  l( |X r | g 2e)dr \ T  Ú b j  P°(T  ^ b)
a a

b—a

^ inf P1 /  l{\Xr \^ 2 e )d rP ° (T ^ b )

b—a

^ P °  I  l{\Xr \ g e)d rP °(T g 6 ). 
o

Divide to obtain the upper bound. The lower bound follows along similar 
lines. Consider,

b 2 b r

l( \X r \£ e )d r j  = 2 P 0 j  j  l( \Xr\^ £ , \X s\^e )d sd r
a a 

b r

( 2 . 1) < i2 P 0 J j  1 ( IACÄ.I ^ e ) l ( |A r r — X s\ ^ 2e)dsdr
a a 

b b

= 2 j  j  P0(\Xs\^e)P0{\Xr^s\^2e)drds
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o o
5Í 2P° j  l ( |X r | ge)dr |  P °(|X r |^2e)dr.

By the Cauchy-Schwartz inequality, 

6 b
P ° /  l ( |X r |^ e ) í ír  =  P 0 ^ |  l ( |X r | ^ e ) d r ;  T

“  v ( a  I d ^ l  - £)d r)  ' V^ ^ '

Use (2.1) and solve to obtain the desired lower bound.

R e m a r k  2.2. An insp ection  o f the proof shows th at for any a; G Kd,

2b—a
f  P x (|ATr | ^ 2e)d r

PRIAM < e, for som e a < t < b ) <  --------------------------- .
Vl  _  _  /  _  {) _ a

f  P°(\Xr \^£ )dr  
o

□

§ 3. Proof of Theorem 1.5

Throughout this section, X  denotes a Lévy process with strictly stable 
components given by (1.2)-(1.4). Let us start with a technical lemma.

L e m m a  3 .1 . The random variable |Afi| has a bounded Pa-density, uni­
formly over all a & Rd. When a =  0, this density g is positive on some neigh­
bourhood of 0. Moreover, s\vp g(x) /  g(0) < oo.

X

P r o o f . By properties of convolutions, it suffices to show that each com­
ponent of X  has the given properties. The lemma follows from the inversion 
theorem for Fourier transforms. □

For the rest of this section, define

S(x) = max I re 7- 1 , a;GRd. 
i<jgd

L e m m a  3.2. For all r, a > 0,

P°(5(A:r) ^ a ) x ( r " 1a A l ) /3.
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P r o o f . Since the components X 1 are independent ay-stable processes, 
by Lemma 3.1,

d
P°(5(Xr ) g e) =  J ]  P(|X f I ^  e1/ « ^ - 1/^ )

3 =1

This proves the lemma. □

Since otj ^  2 for all j ,  it is not hard to show that for all x ,y  € Rd, 
S(x + y) ^  4(S(x) + S(y)). As such, S(x) behaves much like |rc|. Going 
through the proof of Theorem 1.1 and using Lemma 3.2, the following esti­
mate emerges:

C orollary  3.3. For all 0 <  a <  b and all e >  0 small,

P°(S(Xt) ^e , for some a ^ t ^ b ) ^ h ( e ) ,

where
( 1  if ß<  1,

h{e) = l (ln(l/e))-1 if ß = l ,
[ e0 - 1 if ß > \ .

We are now ready to prove Theorem 1.5. We shall do so for t —> oo.
The case t —»0+ is done similarly. The case ß  < 1 follows immediately from 
Corollary 3.3. Let us restrict our attention to the case ß  ^ 1. We shall assume 
without loss of generality that <p(x) J,0 as x  oo. (When infx f>(x) > 0, the 
result is simpler and also follows from the proof given below.)

Define tn = 2n, <pn = <p(tn) and

(3.4) En = { inf S ( X t) £  2 ncpn\.

Note that from Corollary 3.3,

(3.5) P °(En)~h(<pn).

From the definition of 2(f)  given in (1.5), it follows that £ ]P 0(.En) < oo if
n

and only if 2(ip) < oo, when ip(x) = Aip(Bx), for any A, B  > 0.
Suppose 2(f)  < oo. The previous paragraph shows that for any c > 0,

V  P °( inf |ATt |< c 2 7V (2?l_1)) <oo.
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Since c is arbitrary and tp is decreasing, by the Borel-Cantelli lemma,

r  • ,  \Xt \Inn ini —— = oo, i-> OO tip(t)

P°-a.s.. Now suppose 3(tp) =  oo. Note that Remark 2.2 holds with |X.| 
replaced by S(X.) everywhere. Using the Markov property and Lemma 3.1, 
for all n  large enough,

P°{EnnEn+k)^ P 0(En)supPx(En+k) ^ P l\E n)P°{En+k).
X

Theorem 1.5 follows from (3.4),(3.5), Kolmogorov’s 0-1 law and the Kochen- 
Stone lemma ([KS]). □
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ON THE NUMBER OF COMPARISONS 
IN HOARE’S ALGORITHM “FIND”

B. KODAJ and T. F. MÓRI

Dedicated to Professor E. Csáki on the occasion of his sixtieth birthday

Abstract

In 1961 Hoare gave an extremely simple algorithm for finding the median from a list 
of size n. That algorithm was later investigated by Knuth, who derived a closed form 
expression for the expected number of comparisons. In the present paper we show that 
the (random) number of comparisons, divided by n, has a limit distribution as n —> oo, 
and the rate of convergence measured in Wasserstein metric is 0 (logn /n ), while using 
other probabilistic distances, such as ^-average compound distances with convex Young 
functions $ , the rate of convergence is 0(1 /n).

1. Introduction

One basic problem in numerical data processing is to find, as quickly 
as possible, the fc-th smallest element, say the median, out of n different 
numbers. This can be done without sorting the whole set of numbers by 
the help of a large variety of algorithms. If speed of algorithms is measured 
by the number of comparisons, the quickest algorithms only require O(n) 
comparisons even in the worst case. But if we are also satisfied with an 
algorithm of O(n) comparisons on the average, the most simple one, no 
doubt, is Hoare’s algorithm FIND [7]: In order to select the k-th. smallest of 
n numbers a\, 02, . . . ,  an , let us take the first one and compare it with all the 
other numbers. In that way the remaining numbers 0 2 , 0,3 , . . .  ,an are divided 
into two groups according as they are less or greater than a\. Then we can 
decide which group contains the element we are looking for, and what is its 
rank in that group, or — if we are lucky — it may turn out that a\ is just 
the number we need. In the latter case we can stop immediately, but if not, 
we are given a new, smaller list to select from. Repeating subsequently the 
step above the process finally terminates with the desired element.

Knuth in [8] examined the average performance of Hoare’s algorithm. 
Average is meant over all the n! possible orderings, or, if one prefers proba­
bilistic terms, it is the expected number of comparisons when the underlying 
distribution is uniform on the set of n-permutations. He was able to compute 
explicitly the expectation for every k,n  ( l ^ k ^ n ) .  From his result it follows
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that the expected number of comparisons, divided by n, converges to a finite 
limit as n  —> oo and k /n  -» c, 0 ^  c 5! 1. In 1969 Singleton described a mod­
ification of the original algorithm, known as median-of-three selection [14]. 
Recently, Anderson and Brown have studied Hoare’s and (Singleton’s) algo­
rithm  from the combinatorist’s point of view [1],

The first algorithm of linear cost even in the worst case was invented by 
Blum, P ratt, Tarjan, Floyd and Rivest [3]. Since then several papers have 
been devoted to pushing farther and farther down the upper bound for the 
worst case performance, see [11], [12], [13] or [15]. Bounds for the average 
case selections are derived in [3]. Generalizations of other types are also 
known, e.g., much effort was made to construct so-called parallel algorithms 
in various sorting and searching problems ([5] is only one example of those 
works).

The aim of the present note is to answer the following questions. Consid­
ering th a t the expected number of comparisons in Hoare’s algorithm, divided 
by n, converges to a certain limit as n —> oo and k /n  —> c, is it true that a 
limit distribution also exists? If yes, how can it be described? And what is 
the true rate of convergence?

For the thorough analysis let us repeat Hoare’s algorithm in a more 
mathematical form leading to another interpretation which will then show 
what kind of limit distribution can be expected here.

The problem of finding the &-th smallest item from a list of n items 
{ai, 0 2 , ,  an} will be addressed here as the (n, k) selection problem. Take 
the first item of the list and compare it with the remaining items. This makes 
n —l comparisons and it turns out that a\ is the j-th  number in increasing 
order. Let b i, . . . ,  6j_i denote the items less than ai and c \ , . . . ,  cn- j  those 
greater than aj. Now there are three possibilities.

If j  = k, then ai is the number sought for.

If j  > k , then we are reduced to the (j  — 1, k ) selection problem with the
list {&i,. . .  ,6j_l}.

If j  < k , then we are reduced to the (n — j, k — j)  selection problem with
the list {ci,. . . ,  cn-j} .

If each permutation of ai,a,2 , ■ ■ • ,an is equally likely, then the events 
{j  =  1 } , . . . ,  {j = n} are also equiprobable. Let X (n ,k )  denote the (random) 
number of comparisons needed to solve the (n, k) selection problem. Then 
one can easily check the following equations. The first one mirrors the sym­
metry between increasing and decreasing ordering. The rest of the lemma is 
a stochastic recursion for X (rt, i), 1 ^ i 5Í n.
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Lemma 1.1.
d

X(n, i) = X(n , n + 1 — i),
X (1,1) = 0 and

d *-i
X (n, i) =  n -  1 +  ^ 2  XÜ ~  1 < w  < j ) x (n - j , i - j )  

j= 1
'll — 1

+ Y . x i j < w < j + í r n i , * )
j=l

where x(') denotes the indicator of the event in brackets, W is uniformly 
distributed on (0,n) and independent of the X  ’s on the right-hand side. □

Making use of Lemma 1.1 one can write down a recursion for the expecta­
tions EA(n, i). Analysing the recurrence relation Knuth found the following 
interesting result. Let Hn ==l + 5 +  ̂+ -- - +  ^, then

(1.1) E I (n , k) =  2 ((n + 1 )Hn -  (n +  3 -  k)Hn+1_k -  (k + 2)Hk + {n + 3)) .

For x £ [0,1] let H(x, 1 — x) =  x log k +  (1 — x) log the entropy function 
(except that here log is meant to the base e). Then (1.1) easily implies that

lira -E X (n ,k )  = 2 + 2 H ( c , l - c ) .n—>oo Tl k/n- ĉ

In the second interpretation of X(n, i) below we always choose at random 
from increasingly ordered lists instead of taking the first item of a randomly 
ordered list.

Let Ux, Í/21 • ■ • be independent random variables distributed uniformly 
on (0,1), and let 1 SL/’ 5= n. Let us start with the initial interval Jo =  (0, n) 
which we imagine sectioned into n pairwise disjoint unit intervals. These 
subintervals represent the items on the list in increasing order. We aim at 
selecting the item represented by the subinterval (* — l,i) . Let us choose a 
subinterval randomly: that can be done by observing the value \nU{\ = j ,  
then subinterval (j — 1 , j )  represents the first item in the original list. Stop 
if j  =  i; and in the opposite case cut the interval (j  — 1 ,j)  out from Iq, thus 
obtaining two smaller intervals (0,j — 1) and (j , n ) (one possibly empty). 
Let I\ be the one containing the target unit interval. Then I\ represents the 
remaining list after the first round of comparisons. In the second step we 
choose one from the unit intervals contained in I\ at random, by taking the 
one with number f|Ti | C/2I ■ Then I\ is bisected by cutting the chosen interval 
out from it, and 1  ̂ is defined as that one of the two remaining subintervals 
which contains (i — l ,i) , etc. In the fc-th step Ik- \  is bisected, and in doing
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that |/fc-i| — 1 comparisons are made. Let r  be the number of steps needed 
till hitting the target interval, then

T

X(n, i )  =  ^  ( l - f f e - n l  —  l ) -

k=l

This model can be modified in a suitable way for obtaining a continuous 
analogue. That continuous model will be given in Section 2 together with 
its most important properties.

2. The continuous model

The second interpretation of Hoare’s algorithm naturally leads to the 
following continuous analogue which can be considered as the limit of the 
discrete model as n —» oo.

Let Ui,U2,..-  be independent random variables distributed uniformly 
on (0,1), and let 0 ^  c ^  a. Let us start with the initial interval Jo with 
endpoints So =  0 and To =  a. Let us divide Iq into two subintervals by the 
random point Pi = So + Pi (To — So). Let I\ be the subinterval containing c. 
Thus the endpoints of I\ are Si =  Pi, Ti =  To if Pi < c and Si =  So, Ti =  Pi 
if Pi Si c. Similarly, for j  =  2, 3 , . . .  let the interval Ij~\ be sectioned by 
the random point Pj — S j-1 + Uj(Tj-\ — S j - 1), and / 7 be the subinterval 
containing c, with endpoints Sj = Pj, Tj =  Tj- i  if Pj < c and Sj =  S j - 1, 
Tj — Pj if Pj ^  c. Finally, let Y(a, c) denote the sum of lengths of the random 
intervals Ij\

OO OO

(2.1) y (a ,c ) =  ^ | 7 i | =  ^ ( T , - S i ).
j =o j =o

These quantities are meant to approximate the X ’s of the discrete model. 
The construction just described will be referred to as the continuous model.

It is easy to see that the infinite sum in (2.1) converges a.s. and in mean, 
too. Indeed, introducing the notations

%j—i — (c S j—\) / \I j—\\, Tjj — max(Pj, 1 Uj)

we have

(2.2) \Ij \ =  ( x ( U j i x j - l ) ( l - U j ) +  x ( U j > x j - l )Uj )\Ij - l \^ \Ij-i\rjj

hence

(2.3) Y (a, c) g a(l +  771 +  + 771772773 d---- ) =: a£



where rjj, j  = 1 ,2 ,... are i.i.d. random variables, uniformly distributed on 
(^, 1). Now it follows that

E l d  S  | e IG -.I  S • • ■ S  ( | ) JE|/oi = a ( | ) J,

and so
E Y (a ,c )^4a .

From (2.3) it is also clear that all moments of EY(a, c) are finite, because 
the same is true for £. More precisely, taking Lp-norm we obtain
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II£IIp ^ 1 + II m lip + llm^llp + • • • =  i

Since

p  + 11*71 lip H-------=
1 “  11*71 Up ’

for p > 1 we have

(2.4) K < ' ) S !E± i ( ( 4 ± ) * - l ) " ' s

Sometimes we shall need a refinement of the continuous model. One strik­
ing difference between the constructions of X  and Y  is that the contribution 
of every single interval in Y  is greater by 1 than that in the correspond­
ing X .  Therefore the distribution of X (n ,k )  would be better approximated 
if we summed (|//t| — 1)+ instead of \I^\ in the continuous model. Thus, let 
io, I i , . . .  be defined as above and

M  =  inf{n: |/n | < 1},
X

fc=l

For a < 1 we have Af =  0, hence Z(a, c) =  0.
Some simple facts about the continuous model are collected in the fol­

lowing lemmas.

L e m m a  2 . 1 .

Y (a ,c )— Y(a,c —a), Z(a,c) = Z(a,c — a)

Y(o.,c)

(2.5)

( 2.6 )
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and

(2.7) Y(a, c ) í a + X(W  < c)Y{a -  W, c -  W)  +  X(W ^  c)Y{W, c),

(2.8) Z(a, c) = (a — 1)+ +  x(W  < c)Z(a — W, c — W)  + x{W  = c)Z(W, c)

where W  is uniformly distributed on (0, a) and independent of the Y  ’s and 
Z  ’s on the right-hand side. □

Therefore the expectation /(c) = ET(1, c), 1, satisfies the follow­
ing equation

c  1

(2.9) /(c) = 1 +  / (1 ~ x)f{]~rf)dx+ I  xf{ ~ )dx-
o  c

It is not a great surprise th a t the solution of (2.9) is the limit of Knuth’s 
formula

/(c) =  2 +  2H{c, 1 — c) = lim —E X (n ,k) ,n-Yoo 71 
k/n—Yc

thus we obtain the following result.

L e m m a  2.2. F o r O ^ c ^ a .

EY(a, c) = 2a(l +  logo,) -  2clog c — 2(a — c) log(a — c),

where 0 log 0 = 0. □
The assertion of our next lemma may be intuitively clear, but it needs a 

rigorous proof.
L e m m a  2.3. Suppose c ' ú c  and a'— c 'ú a  —c. Then Y(a\c') ^ p Y(a, c), 

Z(a ' ,c ') Z(a,c), where denotes stochastic ordering.

P r o o f . The lemma can be proved via coupling technique. Let us de­
fine Y(a ',d )  and Y(a,c) by the help of the same sequence of i.i.d. random 
variables Ui, U2 , ■ ■ ■ ■ To this end let us shift I '0 by c — d  so that the target 
point, originally d , coincide with c. Thus let 5o =  0, To = o, and Sq — c— d , 
Tq — o' + c  — d . Then still I '0 C Io- Firstly, construct Pv Ij, j  = 1,2, . . .  as 
described in the beginning of this section. Then let the stopping times tj 
and intervals /j be defined successively as follows: to =  0 and for j  d l

Tj =  inf{n > Tj_i: P n E l ' j ^ } ,
S'j -  PTj if PTJ<C, and S5 =  5'-_1 if PTj d c,
T j= T j - 1 if PTj < c, and T- =  PTj if PTj L c.
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In this way we clearly have /■ C ITj ■ Since PTj is uniformly distributed in 
I'j-i, one can see that the joint distribution of the intervals / ' ,  j  ^  0, is 
identical with that described in the definition of Y(a',c'). Thus we obtain

OO OO OO

Y (a ' ,  c ' )  =  22 1̂1 =  E  I ^  E  I =  y( “ . c )>

j =o j=0 j =0

and similarly
OO OO OO

Z(a',c') á  -  1) + ^ £ ( |  h  l “ 1)+ ^ E d 7il -  X)+ = Z (a’°y  D
j=0 j =o j =o

The next lemma shows how the continuous model relates in distribution 
to the discrete one.

Lem m a  2 .4 . For every n — 1 , 2 , . . . ,  i  = 1 ,2 ,. . . ,  n  and i — l ^  c ^ i  we 
have

(2.10) X ( n , i ) ^ p Z ( n , c ) .

PROOF. This can be proved by induction in n. We have -X”(1,1) =  
Z (l,c) = 0 , and using the second interpretation of Hoare’s algorithm we 
can write

(Jj v x
X  (n, i) = n  -  1 +  2 2  XÜ -  1 < W  < j ) X ( n - j , i - j )

3=1
n—1

+ 2 2 x u < w < j + i ) x ( j , i ) ,
3= 1

where the random variable W  is uniformly distributed on (0,n) and indepen­
dent of all X ’s appearing on the right-hand side. By the induction hypothesis

i— 1

X (n ,i)  g p n -  1 + 2 2  XÜ — 1 < W  < j ) Z { n - j , c - j )
3=1

71— 1

+  2 2 x ( j < W < ]  +  l ) Z ( j , c ) .

3 = 1

From Lemma 2.3 and (2.8) it follows that
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i- 1
X(n, i) <,p n -  1 +  J 2  xU -  1 < w  < j)Z {n  - W , c - W )

n — 1
+ J 2 x U < W < j  + l)Z(W,c)

From (2.10) it is clear that Z(n,c) approximates X (n , i ) better than 
Y (n ,c )  does, but the analogue of (2.6) does not remain true: Z(-,-) is no 
more homogeneous.

Since all random variables mentioned so far are integrable, we can mea­
sure the rate of weak convergence in Wasserstein metric (also known as Gini’s 
index of dissimilarity): for integrable random variables X  and Y  let

where X 1 and Y' are defined on the same (suitably enlargened) probability 
space. This defines a metric on the space of (one dimensional) probability 
distributions with finite expectation. In terms of distribution functions one 
can write

In case where one of the random variables stochastically majorizes the oth­
er one, simply k(X, Y) = |EW — Ey|. Convergence in Wasserstein metric is 
equivalent to weak convergence plus convergence of expectations [10, Theo­
rem 14.2.1],

At this point the first question of Section 1 can easily be answered.
T h e o r e m  3.1. Let 0<c5ll be fixed. Then the distribution of ~X(n,[cn]) 

converges weakly to that o f Y ( l , c ) as n —»oo.
P R O O F .  From Lemma 2.4

3. The exact rate of convergence

k(X, Y) = inf{E|X ' -  Y'\ : X '  = X , Y '  = Y}

— oo

hence



ON THE NUMBER OF COMPARISONS IN HOARE’S ALGORITHM “ FIND 193

by Knuth’s result. □
In this theorem [cn] can be replaced by any sequence (kn , n  ^  1) such 

that 1 ^  kn ^ n and lim k n/?i  — c, see the end of the section.
n —> oo

The main result of this section says that the rate of convergence in The­
orem 3.1, measured by Wasserstein metric, is 0 ( ^ p ) .

T h e o r e m  3 .2 . Let A (n ,i) =  k(X (n , i ) ,Y (n , i  — 4)).

A (n,i) log
i5(n — i + 1)J

n i

Then

holds uniformly in 1 ^  i ^  n, as n -» oo.

P roof. Since Hn = logn + 'y + 0 ( ^ )  = log(n — |)  + 7 +  O(^), where 7 is 
the Euler Mascheroni constant, we obtain from (1.1) that

EX(n,i)  -  2^(n +  1 )Hn — (n +  3 — i)Hn+\-i -  (i + 2)Hi + (n +  3)j

_ ( ,  r r / * - 0 . 5  1 i - 0 . 5 \ \- 2 n ( l  +  Jf ( — —  , l  —  JJ

— 5(log* + log(n — i + l)) +  2 log n + 0(1),

thus
A(n, i) =  5(log i -)- log(n — i +  1)) — 2 logn + 0(1) 

uniformly in i. □
R e m a r k  3.1. Comparing X (n ,i)  with Y(n  + \,i)  instead, one obtains 

n(X(n, i ) ,Y (n  + l,i)) =4(logi +  log(n + 1 -  i)) + 0 (1 ).

The following lemma estimates the modulus of continuity of the process 
T (l,c ), O ^ c ^ l ,  in Wasserstein metric.

L e m m a  3 .2 .  Let 0 ^  c <  c1 ^ 1 /2 , <5 =  c' —  c. Then

k{Y (1, c), Y (1, c')) < 4 á (l +  2 log .

P R O O F .  Similarly to the proofs of Lemmas 2.3 and 2.4 coupling will be 
used again. We define Y(a',c')  and Y(a,c)  with one and the same sequence 
U\, U2 , __ Consider the stopping time

r  =  inf{n 't 1: Pn G (c, c')} -  inf{n: 7n l'n}.

Then
OO OO OO

| y ( l , c ) - r ( l , c ,)| =  | ^ ( | / „ | - | / ; i ) | g 5 ] x ( T  =  n )5 ] ( |7 J | +  |^ |) .
n—T n = l j=n
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Using (2.2) we obtain

00

| y ( i , c ) - r ( i , c , ) | ^ ^ x ( r = n ) ( | / n | +  | / ; i )e n
7 1 = 1

oo

=  ^   ̂ X ( 7’ =  n ) l ^ n - l | l̂ n =  \ It—1 l£n>
n= 1

where the random variables £n =  1 +r]n+1 + Vn+iVn+2 • • • are identically dis­
tributed. Since £„ and |/n _ i |x ( r  =  n) are independent for every n, so are £T 
and | / T_i|. Let us determine the distribution of |/T_i|.

Let us define t\ =  \ {n ^  r  : P n > c}|, that is, if one only considers the 
(decreasing) subsequence of those P j  that are greater than c, t\ is the relative 
index of the first to fall in (c,c!). Similarly, we introduce T2 =  \{n ^  r  : 
P n < c'}\. Then r  = r\ +  t2 — 1. Furthermore,

T\ =  i n f | n  ^  1: V{V2 • • • <  ^ } ,  T t _ x -  c =  (1 -  cJVÍVfe . . .  Un _ i ,

and
c

r 2 =  infjn  ^  1: VXV2 . . .  V„ < - } ,  c' -  ST_i =  c 'V ^  .. .  UT2_i,

where V\, V2 , ... are i.i.d. random variables, uniformly distributed in (0,1). 
Since — log(U) is of unit exponential distribution, we can take negative log­
arithm  to bring our random variables into connection with a homogeneous 
Poisson process with unit intensity. For any A > 0 define

n
v  =  max{n ^ 0: V1V2 • ■ • Vn > e_A} = max j n  ^  0 : ^T^(— log Vi) Ú a| ,

i=l

then the distribution of A — ^  (— log Vj) is exponential truncated at A. With
i=\

A =  log we have

(3.1)

d
Tt-  1 - c =  (1 - c )  exp ( - ^ ( - l o g

7 — 1
d S

=  (1 — c) exp(£ AA- A)  =  —A ( l - c )

where £  is a mean 1 exponential random variable, U =  exp(—£) is uniformly 
distributed on (0,1) and A stands for minimum. Similarly,

d  ~ ST- 1 = ^ A c '.(3.2)
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Thus

« ( y ( i , c ) l y ( i , i ' ) ) g E | y ( i 1 c ) - y ( i > ß ' ) | g E | / T _ 1 | E C

i
=  4 E ^  A ( 1  -  c )  +  Ac' -  ó'j <  4 ^  I  ^jdu + Ŝ j =  4á^l +  2 log ^ . □

REMARK 3.2. Using (2.6) we immediately obtain for 0 ^  c < c' ^  |  that

(3.3) k{Y(cl, c ) ,  Y (a, c')) < 4Í ( l  + 2 log

On the other hand,

k{Y (a, c),Y{a, c')) ^  \E Y (a, c) -  EY{a, c')|

=  2a ( i f  ( —, 1 — —) — — - ) ) .\ \ a  as  \a  ass

H(x, 1 —x) is convex, therefore the right-hand side attains its maximum 
for fixed a and 6 when c =  0 and c' =  6 . Then

c c
*{Y{a, 0), Y (a, Í)) ^  2a f í ( - ,  1 -  > 26 log j .\a  as o

Thus, the estimate of (3.3) for the modulus of continuity is sharp up to 
the order of magnitude.

COROLLARY 3 .1 .  Let the sequence of integers (/c„,n^l) satisfy l ^ k n^ n  
and lim %- =  c. Define 6n = %■ — c -1- t h e n

n -> o o  "  n I n

/i(^X (n ,fcn) ,y ( l ,c ) )  =  O^Sn log

PROOF. This immediately follows from Theorem 3.2 and Lemma 3.2. □

4. Convergence of higher moments

The surprising shortness of the proof of Theorem 3.2 was due to the fact 
that Knuth had been able to express E X (n ,i)  in a closed form. However, 
there exists another way of estimating the rate of convergence based on (2.7) 
and Lemma 1.1, which can be applied for other probability metrics as well. 
This method will require the following lemma.
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Lemma 4.1. Let A (n ,i), I f i j é n ,  n =  l , 2 , . . .  be arbitrary nonnegative 
numbers satisfying

^ i —1 n  — 1

(4.1) A (n,i) ^  -  V  A ( n -  j , i -  j) + -  E  A(j, i) + npe{n)
j - 1  j = *

where {e(n),n ^  1} is a nondecreasing sequence of positive numbers and p ^ . 0 . 
Then, for p = 0

(4.2) A(n, i) ^  e(n) ^1 + logi +  log(n — i +  1)J, 

and for p>  0

(4.3) A (n ,i) < — P -  --— npe{n).k J ) -  p _  i + 2-p

On the other hand, if
1 i — 1 1 n —1

(4.4) A (n, i ) ^ - E  A (n "  •?>* ~ ^  +  ~  E  A ^ ’ *) + e(n)n •=—' n *■—'
1 = 1  J = l

with a nonincreasing nonnegative sequence { e (n ) ,n ^ l} , i/ien

(4.5) A(n, i) ^  ^ £(n ) ( l  + logi + log(n — i +  l ) j .

R emark 4.1. If p > 0 and
. i — I 1 n — 1

A(n,i) ^  -  E  A ( n - j , z - j )  + -  E  A 0 ,i)  + n pe(n)n z—' n 'i= i j= i
with an arbitrary nonnegative sequence { e (n ),n ^  1}, then even the trivial 
lower estimation A [n ,i)>  npe{n) attains the order of magnitude of the upper 
estimate (4.3).

P r o o f . The proof will be performed by induction in n.
Let us first deal with the upper estimate. For n = i = 1 (4.2) and (4.3) 

clearly hold. For n ^  2 let us apply the induction hypothesis and the mono­
tonicity property of e(n) in (4.1). For p =  0 we obtain

1A (n,i) ^  e(n) H—  E  e(n — j)( 1 + log(i — j )  +  log(n — i + 1))+ 
n z—'

3=1
j  71— 1

+ -  e  £0 ) (1 + log i + log o' -  %+ 1))n *—'j=»
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^ e(n) ( 1 +  -  5^(1  + log(i -  j)  + log(n - 1 +  1))
V n j=l

1 tt-—{ \+ - E^1 + loSi + los0’ ~ * + !)) J
j=i /

(  i _  i n — i 1
^ e(n) 1 H-----— log(n -  i + 1) H------- logz +  -  ^ ( 1  + log j)

\  j=i
i "z* \

+ - E ( 1+1°g-?')
j=i /

i
( 1 — 1 77» — Z 1 /*

1 H------log(n — z +  1) 4-------- log i 4—  / (1 +  log
n n n J

l
71 — l+l

+ — y  (l + logí)cíí^
1

=  e(n) ^1 4- logz 4- log(n — i + 1)V 

For p > 0  let C denote then we similarly have

1 7—1 77—1
A(n, i) ^  npe(n) + C -  ( -  j ) pe(n -  j)  + E  A O ') )

j=1 j=i

SE(„ ) („ P + C i (  g  j ' + g i ' ) )
j= n —i+1 j= i

n n

= eW("p + c^TT)( /  «  + / Wi))
77 — 7+1

= e(n) (np + g n(p1+ 1 ) (2np+1 -  (n -  i +  l)p+1 -  zp+1)) . 

Let us make use of the convexity of the power function tp+l.

A(n,.) S £(n)(n- + C — ^  (n"+1 -  ( Ü Í 4 )  1'+l) )  

g npe(n) ( l  +  C ^ y ( l  -  2-P -1)) =  C n pe{ n ) .
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The lower estimate is deduced in a similar way. A (l,l)  > e(l)/2 , and 
from (4.4) and the induction hypothesis we get

i-12 1_* \
A (n ,i)  ^ e (n ) +  -  ^  -e{n -  j ) ( l  +  log(i - j )  +  log(n -  * +  1 ))+  

U j =i
1 ^ 1

+ 2 e ^ ) ( 1 + l o g i  + log^ ~ i  + 1))
j = i

1 /  1
^ -e(n) 2 +  -  V ( 1  + log(t -  j )  +  log(n - »+ 1))

V j = 1

1 n_1 \
+  - £ ( l  +  l o g t  + log(j -»  + l))

3=1
i - 2

=  -e(n) 2 + ----- log(n — i +  1) +
n — i + 1

n n
1io g i+ -  V d + i o g j )  n z—'j =2

n—i+1

1=2

. 1 . . /  i — 2 . .. n — * +  1
> -e(n) 2 H------- log(n -  i +  1) H--------------
~ 2 V n n

n —z+l

i
logi H /  (l +  logf)df

n J

+  — /  (l +  log f)d t
l

=  ^e(n)(2 +  (logi +  l o g ( n - i  +  l))).

Since
— (logi +  lo g (n - i + 1)) < 1, 
n

we have
A(n, i) ^  -e (n ) ( l  + log i + log(n -  i + 1)),

as asserted in (4.5). □

For the generalization of Theorem 3.2 and Corollary 3.1 let us replace the 
Wasserstein metric with the broader family of so called $ -average compound 
distances, see [10, Example 3.3.1].
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Let (p: [0, oo) -> [0, oo) be a nondecreasing, left continuous function, 
9?(0)=0, and let tp denote its generalized inverse: i/>(s)=sup{t^0: </?(f)<s}. 
Define

x y

<f>(:r) =  J  <p(t)dt, V{y)= I  ip(s)ds. 
o o

<f> and T are called a pair of conjugate convex Young functions. Several 
properties of convex Young functions and the corresponding Orlicz spaces 
are contained in [9]. Some important facts we state below.

A convex Young function $  is said to satisfy Orlicz’s condition if

x g > ( x )
P = P<f> = su p — —-  <oo.

x

This p is called the characteristic exponent of 4>. In that case the function is 
$(x)x~p nonincreasing, hence 4>(a’) ^  4>(l)ap, x  ^ 1, and

K$ =: sup
X

4>(2z)
4>(a;)

< ;  2P .

If the conjugate function ^  also satisfies Orlicz’s condition with characteristic 
exponent q, then p~l + q~l ^  1, and

. x<p(x) q
“  <F(x) q - 1'

Furthermore, ^>(x)/xi-' is nondecreasing, hence 4>(:r) ^  $ (l)a;<>-1, x  ^  1, and

• f $(2s) 
“  <F(x)

For a convex Young function $  satisfying Orlicz’s condition let us define

fi<b(X, Y) = inf {E<D> (I AST' — Y ' \ ) : X  = X ', Y  = Y'}

where X '  and Y '  are defined on the same probability space. This is a distance 
on the space of probability distributions with finite ^»-moments (the only 
difference from being a metric is the presence of a constant factor in the 
triangle inequality which now looks as /Í4>(X, Y)  ^  K$(ß$(X,  Z) + fi&(Z, Y)). 
By the Cambanis-Simons-Stout formula [4]

l
M X , Y )  = J  * ( |F x ' W - F y ' m d t ,

o
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which shows that in the definition the minimum is attained when X '  and Y '  
are related through the quantile transform. In the particular case $(f) = tp

l
(p> 1), (fi<p) p is a metric, which induces weak convergence plus convergence 
of moments of order not greater than p. Formally, the definition of ji<p has 
sense for <f>(i) = t, and it gives back the Wasserstein metric k. In general, 
Jensen’s inequality gives p<p(X: Y)  ^  Y)).

Since d> is superadditive, X  Z ^ p Y  implies p<p(X,Z) + p$ (Z ,Y )  ^  
f i$ (X ,Y ) .

In the sequel we are going to estimate both distances p$(X (n ,i) ,  
Y (n , i  — ^)) and p ,^ (^ X (n , i ) ,Y (1 , They are no longer equivalent, 
for is not homogeneous unless $(x) =  Cxp. That will be done in two 
steps: we first estimate the distance between X (n ,i)  and Z(n,i — ^), then 
between Z (n ,i  — 5) and Y (n , i  — 5). One part of the proof deserves to be 
separated as a lemma.

L e m m a  4 .2 . Let J\f be the stopping time in the definition of Z(a,c), 
a > 1. Then

E$(A0 ^ E4>(1 + 7ta ),

where is a Poisson random variable with expectation A =  (log a)/
(1 — log 2).

PROOF. From (2.2) it follows that \ I k \  |  a p \ p 2 ■ ■ ■ where 77*’s are in­
dependent random variables, each distributed uniformly on (^, 1). Hence

ar<mm
n

[ n - ^ ( - Iog % )> lo ga}.
k=1

The distribution of the random variables — log r/* is equal to the conditional 
distribution of a standard exponential random variable given that it is less 
than log 2. This distribution possesses the aging property NBUE (in fact, 
it even belongs to the smaller subclass IFR). Consider the renewal process 
defined by these variables, and let N (f) denote the number of renewals before 
time t. According to Theorem 3.17 on p. 173 of [2], for arbitrary convex 
increasing function /

Ef(N( t ) )^Ef ( nt/li)
where p — E(— log^i) =  1 — log 2. Clearly, Af  =  AT (log a) + 1, so let f (x )  = 
$(a: +  l). □

T heorem  4.1. Suppose both 4> and its conjugate T satisfy Orlicz’s con­
dition. Then

(4.6) max/i <i,(x(n,i),Y (n ,i  -  =

max p<p ( —X (n, i), Y  ( 1, --------) ) =  ©("—').i \n  V n / /  \ n /(4.7)
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P R O O F .  The proof is based on the representation of X (n ,i)  given by 
Lemma 1.1 and formulas (2.7)-(2.8) obtained for the continuous model. 
Then different ways of coupling will yield lower and upper estimations, re­
spectively.

Let us start with the upper estimation in (4.6).

/b i> (Y (n ,i-
(4.8) ^ \  \  2 /  i i

g i^ ( A < F ( z ( n ,* - - ) ,X ( n , i ) )  + f i ^ ( Y ( n , i -  - ) ,  z ( n ,  i -  J .

The first, term on the right-hand side is the first to be treated. On the one 
hand,

cL I*
X(n, i) = n -  1 + XÜ -  1 < W  < j ) X in ~ 3 , i ~  j)  

j = 1
71— 1

+  Y l x U < w  < i  +  l)AT(j,i)
j=i

and on the other hand,

+x { > - \ < w ) z ( w , i - \ )
i —  1 H

= n — 1 + ^  x(j  — 1 < W  < j)Z  (ji — W', i — -  — +
3= 1

71— 1 j

+ J 2 xU  <w> < j  + l ) z ( w ' 2)
j=i

+x (i ~ 1 < W  < i -  i )  Z (n -  w \  i -  i  -  W") 

+ x ( i - \ < W ' < i ) z ( w ' , i - ± )

with W  and W' uniformly distributed over (0,n).
By Lemma 2.3 we have

1  i —  1 j

Z (n , i ~ 2 ) =pn '~l + Y l x ^  ~ l <  w ' < 3 ) z [ n - j  +  l , i - j  +  - )

3 =1
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n—1 -
+ Y 1 x ü  < w  < j + i ) z ( j + i , i -

3 = i

+ x ( i  -  1 < W  <  i  -  i ) Z ( n  -  i  +  1, i )  +  x { i  ~  ^  <  w  <  i ) Z ( i ,  i -  i ) .

(Here W  is independent of all the other random variables appearing on the 
same side.)

Consider the following one-to-one correspondence between W  and W '. 
Let

3
W '= W  + 1 on the event {0 < W  < i  — -} ,

3 3 1W  — i  + — on the event { i  — - < W  < i  — -} ,

W + n  — i — ^  on the event { i— ^ < W  < i +

W - l  on the event [ i  + -  < W  < n ) .

Then

z (n, i -  \ )  n -  1 +  x(* -  \  < W < * + \ ) z (n i * -  \ )
i - 2 J

+  ^ 2 x U  -  1 < W  < j ) Z ( n  — j , i  — j  -  - )

3=1

+X(* — 2 < W  < i  — 7 ) ) Z ( n  - i  +  1, i )

n_1 1 1 1 
+  X ( i < ^ < i  +  1 ) ^ 0 ' ,* -  2) + X(*+ 2 < W < i  +  l ) Z { i , i -  -) .

j=*+i

Hence

(4.9)

Z ( n , i -  ^ ) - X { n , i )  

i - 2 1

3 = 1

+ X ( * - 2 < 1 T  < i -  | ) ^ ( n - i  +  l , ^ ) - X ( n - z - | - l , l ) j
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+*(* + ^< W <i + l)(z{i,i1) + X(i,i))
+x( . - | < H '< i  + i ) z ( n, i—I).

Let each X  in the right-hand side be the quantile transform of the corre­
sponding Z. Then putting (4.9) into 4> and taking expectation we obtain

A(n, i) =: /i* [ z  (n, i -  ^ , X (n, i))

Then, using Orlicz’s condition on 4>, we have

E $ ( z ( n , i - ^ E 4 > « )^ E (^ p)4>(n).

Orlicz’s condition on 4/ implies that

- E $ ( z ( n , i - i ) ) < 2 E ( £ P ) ^ = n ^ T e ( n )
n \ V 2 / /  n

where e{n) = 2E(£p)4>(n)/n«-T is nondecreasing. Thus, (4.1) is satisfied. 
Hence (4.3) gives

(4.10) M Z ( n ,  i - 1-) ,  X (n ,  *)) =  o ( ^ ) .

Let us continue with the second term on the right-hand side of (4.8). By 
definition

Y (a, c) =  Z(a, c) + M  +  Y (TV -  SV, c -  5^),
hpnrp

Y (a, c) — Z(a, c) <,A/* +  £,

where £ is independent of AÍ. Prom this it follows that

M Y ( n , i  -  i ) ,  Z ( n , i -  \ ) )  < E$(AT +  0  < K*(E$(Af)  + E$(£)).

The latter does not change with n. As to E4>(A )̂, it can be estimated by 
Lemma 4.2:

E$(A0 ^  E $(l + tta) g $(1)E((1 + tta)p),
where 7rA is a Poisson random variable with expectation A =  (logn)/ 
(1 — log2). It is easy to see that E((l +  7rA)p) ~  Ap for fixed p > 0 and in­
creasing A. Hence E4>(A/) =  0((logn)p) as n —> oo. This is asymptotically
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negligible compared to $ (n ) /n  ^ í>(l)n<' - 1. Combining this with (4.10) we 
obtain

A<i> ( y  ( n ,  i  — =C)( ~ ~ ) -

The lower estimation in (4.6) is quite obvious. Since P (X(n,i) = n — 1) ^ 
^ and Y (n, i — ^) ^  n + min(z — n — i + ^), clearly

Í-i<t>(Y(n,i -  i> -$ (m in(i, n -  i)).

Thus, with 0 < e < for every i between ne and n (l — e) we have

(4.11) (n, i — h ,X { n , i ) )  ^ -$ (n e )
2 n n

The proof of (4.6) is completed.
Estimation (4.7) can be proved either in a similar way, or by applying

(4.6) with the Young function 4>(a;) = Its conjugate is T(y) = T(ny)
and p — p, q = q- Since all estimations in the proof of (4.6) depended on 
only through p and q, (4.7) immediately follows.

R emark 4.2. Now we outline how to estimate A (n,i) =  K(X(n,i), 
Y ( n , i  — ^)) without Knuth’s explicite formula, only by using Lemma 4.1. 
Namely, we shall prove that

(4.12) 1 +  logi +  log(n — i +  1) ^  A (n,i) ^ C ^ l + logi + log(n — i +  l) j

holds for every 1 ^  i ^  n, n =  1 ,2 ,. . . ,  with C = 4(1 + log 2).
On the one hand, in a similar way that led to (4.9) we obtain

i-i
=p < 3 )(Y ( n - 3 , i - 3  ~ g) ~ x (n -3>i - j j )

j= 1
n — 1 j

+  ^ x U < W < j  +  l ) ( Y ( j , i - - ) - X ( j , i ) ) + l

j=i
+X{i ~ - < W  <i + i)Y  (n, i -  ^)

- x ( * - ^ < W  < i - l ) Y { n - i  + l , ^ ) - x { i < W  <i + ^ ) Y ( i , i -  i ) .

Hence

□ 
e
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i-1 n— 1
A ( n ,  z) ^

2 f  1 \H
1-

n ,  í  -  -
n < 2 /

1 i _ 1

j = i

n
3 = 1

n
3=1

1 i — 1 . n —1

= ~ Y 1  + C 'n  t—* n  z—'j=*

that is, (4.1) holds with e(n) =  C.
For getting a lower estimation we can proceed analogously. Let us build 

Y ( n , i — 4) with the same uniformly distributed random variable W  that we 
used for constructing X(n,i).

1 d 1 1y(n , i - - )= n  + Y'XU-KW <j)Y (n-w,i- - -w)
j =1

71— 1 *

+  Y , x ( j < W < j .  +  l ) Y ( w , i - - )

3=1

+ x [ i - K W  ( n - W , i - ~ w ' j  + x ( i ~ ^ < W

^ p n + Y J X ( j~ ^ < w  < j ) Y ( n - j , i - j - - )
3=1
n— 1 1

+ '52x(j<w <i +
3=1

+x(*-l < w + i  o) +x(i-\<W
Comparing this with the representation of X(n, i) we can see that

Y ( n , i - - X ( n , i )
i- l  j

á p ^ 2 x Ü - K W  < j ) ( Y { n - j , i - j - - ) - X { n - j , i - j ) j

3=1
n—1 ..

+ Y 1 x o - < w  < j + ( Y  0 ‘> (•?> *))
3=1

+x(i-l<VF < i - 5)y("-i + ̂ o)+x(<-j<w<i)y(t-i,o)+i.
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This, after integration, leads us to

1 i— 1 1 n— 1
A(n, *) ^  -  T 2  A(n - j , i - j )  + ~ y 2  A (j, i) + 2,

j = i  j = i

that is, (4.3) is satisfied with e(n) =  2.
Now Lemma 4.1 completes the proof of (4.12). □
Finally, we prove the analogue of Corollary 3.1. First, let us extend 

Lemma 3.2 to fi^(Y(a,c),Y(a,c ')).
L e m m a  4 .3 . Suppose both 4? and 4/ comply with Orlicz’s condition. Let 

0 ^  c < c! ^  a j2, 8 — c' — c. Then

ß<i>(Y(a, c), Y(a, c')) =  >

where the constant involved in the Ö notation only depends on 4>.
P r o o f . From (3.1) and (3.2) it follows that

A =: ß*(Y(a, c), y  (a, c')) g E $ ( |y  (a, c) -  Y (a, c')|)
=  E4>(a|y(1, c) -  y  (1, c')|) g E $(a | J ^ l k )

^  E ( e ( a | / r - ! I ) )  ^  K i E ( e p ) E ( $  ( A  A (a -  c ) )  +  $ A c ' )  +  $ ( * ) )

by the triangle inequality for <1?. Here U is uniformly distributed on (0,1). 
Thus, using the convexity of and the growth condition on 4' we can write

I
Â Lí|E(eP)(2E4>(̂ Aa)-f4>((i))-A:|E(H(2 J  $(̂ )du + $(J))

S / a

1
gfL |E (^p)(2 /  $ ( a ) ( í H ^ ( í «  +  í$ (a )/a )

S / a

^AT|E(eP)$ ( a ) - ( 2 g - l ) .  □
a

COROLLARY 4 .2 . Let the sequence of integers (kn,n ^ l )  satisfy l ^ k n^ n
and lim —*- =  c. Define again 6n ■ 2-, then

A * ( Í A ’(n,fcB) y ( l ,c ) )  = 0 ( ó n ). □
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THE CENTRAL LIMIT THEOREM FOR L-STATISTICS

R. NOR.VAISA

Dedicated to E. Csáki for his sixtieth birthday

Sum m ary

We consider a linear combination Ln =  n-1 c n i h ( X n . i ) of a function of order
ISiin

statistics X n:i ^  ^  X n:n corresponding to a sample of independent random variables
with a common distribution function. Two improved variants of known sufficient conditions 
for the central limit theorem for Ln to hold are given. The first one concerns the case when

i / n

the weight constants cni , . . . ,  cnn are given by cnj =  n j J d\, where J  is a Lebesgue
( i - l ) / n

integrable function. The second one allows the weight constants to be arbitrary. To obtain 
these results, we invoke differentiability of superposition (or Nemytskii) operators induced 
by an integral representation of Ln and a central limit theorem for the empirical process 
with sample paths in a Banach function space.

1. Introduction and results

Let X \, X n be independent random variables with a common dis­
tribution function (df) F, and let X n:i Í  ••• ^ X n:n be their corresponding 
order statistics. Consider a linear combination of a function of these order 
statistics, or an L-statistic, of the following form:

Ln ■ —
1.
n

n
^  ' cnj/i(Ara:j),
Z— 1

where the function h is assumed to be an indefinite integral with the corre­
sponding Lebesgue-Stieltjes signed measure dh and the total variation mea­
sure nh.

The first main result is an asymptotic normality of the L-statistic Ln 
when the weight constants cni, . . . ,  cnn are given by a function J , i.e. when

i/n

(1.1) cni =  n J  J d.\, i = l , . . .  , n .

(»-!)/«
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The function J  defined on [0,1] is assumed to be integrable with respect to 
Lebesgue measure A and is often called a score function. Recall that a point 
s is called a Lebesgue point of J  if

s+x

lim —
x —>0 X

T H E O R E M  1 .1 .  Let 0 < p,q < oo. Consider a df F  and an indefinite 
integral h such that

( L 2 )  /  Fp/2{ l - F ) q/2dph < oo.

Let a score function J  be such that

j  \ J(t)  -  J ( s ) |  dt =  0 .

(1.3) : F{t) is not a Lebesgue point of J}) = 0 

and assume that there exists a finite constant C such that

(1.4) I J(u)\ ^ Chip/2~ 1//2(1 — u)9/2-1/2, for X-a.a. u G [0,1].

Then the L-statistic Ln given by the weight constants (1.1) satisfies the cen­
tral limit theorem, i.e.,

y/n(Ln - L { J , F )) - A  N(0, cr2 (J, F)), as n -» oo,

where

(1.5) L (J ,F ) = j  Jho F ~ ld \  

and

(1.6) cr2( J, F) — JJ[F (tA s)-F {t)F (s)]J(F {t))J{F (s))h{d t)h{ds) .

Example 3 in Shorack [28] and example 5.6 in Stigler [33] show that 
the central limit theorem ceases to hold if a score function J  and a ’’prob­
abilistic” inverse function F ~ l have common discontinuities. To prevent 
such pathologies it is customary to require for J  to be continuous at F(t) 
for yu/j-a.a. t, even when the less stringent condition (1.3) is sufficient (see 
e.g. the proof of Theorem 1 in Boos [2]). Also, the discontinuity points of 
J  in the above mentioned examples are not Lebesgue points. Using more 
general integrals in (1.1) than that of Lebesgue, one may hope to weaken 
condition (1.3) (see Remark 3.3 below). Mason and Shorack [18] proved 
that the sufficient condition (1.2) can be replaced by the necessary condition 
ct2 (F ,J)  <  o o , whenever the L-statistic Ln is slightly trimmed and a score



THE CLT FOR L-STATISTICS 211

function J  behaves regularly. We do not know whether (1.2) may also be 
weakened in the present context.

The second main result extends the first one to arbitrary weight constants 
and incorporates a more general integral condition on a score function than 
that of (1.4). It costs us the restriction of the parameter p (and q) to the 
range [l,oo) and an additional assumption on the image measure F(ph) 
when p > 1. To be more precise we need some more notation. As usual, for 
a given measure space (T , p ) denote by Lr (T, p) — Lr(p) a Lebesgue space 
of /^-measurable functions f  on T  for which the norm

Lr(fi)
f ( /  l /N /r ) 1/r, if 1 ^ r  < oo,
1 ess sup |/|, i f r  =  oo,

is finite. Let J  be a Lebesgue integrable function on an interval /  C l .  The 
Hardy-Littlewood maximal function M J  of J  is defined by

X2

(1.7) (MJ)(x) sup --------- / |J |d A , x £ I.
X \ < X < X 2  X 2  ~  X 1  J

X l

The operator M  \ J  M J  is called the Hardy-Littlewood maximal operator. 
Let 1 < r < oo. The condition on the measure F(ph) we are going to assume 
is that there exist another measure v  on [0,1] and a finite constant Cr such 
that

(1.8) j  \M J\rdF(ph) i C r J  \J\rdv.

If F(pij) is a Lebesgue measure on [0,1], then one may take for v the same 
Lebesgue measure and (1.8) becomes a classical Hardy-Littlewood maximal 
theorem (see e.g. Stein [30]). A more general result is used in Example 3.9 
below. If r  =  oo, then a sup variant of (1.8) always holds for v =  F(ph). For­
given arbitrary weight constants cni, . . . ,  cnn, define a sequence of functions 
{Jn; 1} on [0,1] by
(1.9) Jn{u) = cni, if it 6 ((* — l)/n , i/n] and i = l , . . . , n ,  
and J n(0) =  c„i.

Now we can state our second main result:
T heorem  1 .2. Let. 1 5Í p <  oo. Consider a df F  and an indefinite integral 

h such that

(1.10) j [ F { l - F ) } p/2dph < oo.

Assume that there exists a measure v on [0,1] such that (1.8) holds for r — 
P1 :—p / (p — I)- Suppose also that {Jn; n ^ l } c L p/(r/) and that there exists a 
Lebesgue integrable function J  £L p'(r/) such that (1.3) holds and

l i m  | | J n -  J | | r  , ( „ )  =  0 .
n—>oo p v '
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Then the L-statistic Ln satisfies the central limit theorem, i.e.,

\/n(Ln — L (Jn, F)) — N(0, a2( J, F)), as n —>oo,

where L (J ,F ) and a 2 (J ,F) are given by (1.5) and (1.6), respectively.
The proofs of both theorems are carried out through sections 3, 4 and 

5 where we deal with differentiability of superposition operators, the central 
limit theorem for empirical processes and L-statistics, respectively. Section 
2 contains some notations and results related to a theory of function spaces 
equipped with a structure of Banach lattice (or Riesz space).

Now we briefly comment on known results and relations of our paper with 
some of them. One can find a more complete survey and historical comments 
in Stigler [31], [32], Shorack [27] and Serfling [25]. Most general results on the 
asymptotic normality of L-statistics have been given by Shorack [28], Stigler 
[33], Boos [2], Serfling [25] and Mason [17]. The conditions of Theorem 1 in 
Shorack [28] as it applies to Ln requires the existence of a finite constant C 
such that

|/i(x)| g C x -p!2+t{ l - x ) - q' 2+t,
for some e>0, in addition to assumptions of Theorem 1.1 above. The main 
ingredient in his proofs was a ” special construction” of an empirical process 
and a Brownian bridge (see for example Shorack and Wellner [29] page 93). 
The method of projection was used in Stigler [33] for L-statistics Ln with 
the weight constants given by

Cni =  J(i/{n + 1)), i = l , . . . , n .

His results have been extended by Mason [17]. Theorem 1 in Mason [17] 
asserts the asymptotic normality of slightly trimmed L-statistics Ln centered 
by E L n in fact under the same conditions as in Theorem 1.1 above. Centering 
by L{ J, F) then requires Hölder type smoothness of a score function J  (see 
Theorem 2 in Mason [17] and Theorem 4 in Stigler [33]). The differentiable 
statistical function approach has been used to L-statistics by Reeds [22], 
Boos [2], Serfling [25]. For example, if a score function J  is continuous then 
our Theorem 1.1 in the case oip  — q = 1 coincides with Theorem C on p. 284 
in Serfling [25]. Later on a theory of differentiable statistical functionals 
received considerable attention (see e.g. Fernholz [10], Esty et al. [8], Shao 
[26]). Unfortunately, these results as applied to L-statistics require trimming 
and/or appropriate smoothness of a score function.

In this paper we follow an approach proposed by Shorack [28] for the 
first step. Namely, by performing integration by parts one may represent 
the L-statistic Ln as (or approximately in probability by) a composition of a 
nonlinear superposition operator (induced by a df F  and a score function J) 
acting from some Banach function space into Li (/i/j) and a linear functional 
/  —> f  f  dh acting from into E and use a general idea of the above
mentioned theory of differentiable statistical functionals. New ingredients
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we invoke in this way are a technique developed in the theory of integral 
equations for handling superposition operators and a central limit theorem 
in an arbitrary Banach space. In particular, for a class of weakly compact 
sets C, we prove C-differentiability of a composition operator (a special case of 
a superposition operator) previously known to be Hadamard differentiable, 
i.e. C-differentiable with C being a class of norm compact sets. This and other 
statements from Section 3 are closely related to corresponding results due to 
Reeds [22], Fernholz [10] and Dudley [5]. It is worthwhile to mention also 
that continuity results of superposition operators and laws of large numbers 
in Banach function spaces for the empirical df have been used in an above 
mentiond way in Norvaisa [21] to obtain laws of large numbers for L-statistics.

2. Banach function spaces

In this section we consider Banach spaces of measurable functions com­
patible with an order structure. This class of spaces includes classical Le- 
besgue spaces Lp, 1 5] p 5] oo, Orlicz spaces and their generalizations (such as 
Musielak Orlicz spaces), Lorentz, Marcinkiewicz and symmetric spaces.

Let (T, ß) — (T, T, ß) be a complete cr-finite measure space with a a- 
algebra T  of subsets of T . Denote by M =  M(T, ß) the linear space of all 
equivalence classes of p-measurable real-valued functions defined and finite 
p-a.e. on T. A map || • | | : M—> [0, oo] is called a function norm if

(1) || • || is a norm;
(2) l/l = löl (M-a.e.) implies ||/ || <] ||g||;
(3) if E  C T  is of finite p-measure and x e  is its indicator function 

then Ux e II < oo.
Given a function norm on M, define the set

H T,ß) := { f  E M(T, ß) : | |/ | | < oo }.

Then E = (B(T, ß ), || • ||) is a normed linear space. If 1 is complete, it is called 
a Banach function space (B.f.s.). We will also assume further that B.f.s.’s are 
order complete (or Dedekind complete). We refer to Zaanen [34] for notation 
not explained here.

Let { fn- n = 1} be a sequence in M =  M(T, ß ) .  As usual, f n converges 
in M, if it converges in p-measure on every finite measure subset of T. The 
convergence to zero p-a.e. of a sequence {/n: n ^  1}, say / n —► 0 /i-a.e., means 
its convergence in order in M. Let 1 = (B(T, ß ) ,  || • ||) be a Banach function 
space. A sequence {/„: n ^  1} converges in order in 1 to zero if /„  —> 0 /x-a.e. 
and there exists /  € 1 such that |/„ | is |/ |  for all n ^ 1. A subset A C ® of a 
B.f.s. 1 is said to be of uniformly absolutely continuous norm (u.a.c. norm) 
whenever, given e > 0 and a sequence {En\ n  ^  1} of p-measurable sets with 
En I  0, there exists an index N  such that | | / xe„I| < e holds for all n  ^  N  
and all /  G A simultaneously. An element /  € B is said to have an absolutely
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continuous norm if the set {/} is of u.a.c. norm. A B.f.s. I  is said to be 
order continuous, (or to have an absolutely continuous norm) whenever every 
element of B has an absolutely continuous norm. It is worthwile to recall that, 
by Theorem 1.3.7 in Luxemburg [15], a B.f.s. B =  (B(T, p), || ■ ||) is separable 
if and only if B is order continuous, and the measure p is separable. Note 
tha t Lp, 1 p < oo, are order continuous B.f.s.’s and that an Orlicz space 
is order continuous if and only if 4> satisfies A2-condition at infinity.

The following lemma is essentially due to Luxemburg [15].
L e m m a  2.1. Let { /n: n  ^  1} be a sequence of dements of a B.f.s. 1 =  

(B(T, p), || ■ II). / / / „ —> 0 in p-measure and the set {/„: n ^  1} is of u.a.c. 
norm, then ||/n | |—>0. The converse implication holds true if, in addition, B 
is order continuous.

R e m a r k . For the B.f.s. Lp, l ^ p < o o  this statement is known also as 
V itali’s theorem (see Theorem III.3.6 in Dunford and Schwartz [6]). One 
can find in van Eldik and Grobler [7] (see Theorem 2.5) even a more general 
theorem than stated here.

P R O O F .  Due to Lemma 1.2.2 in Luxemburg [15], one only needs to notice 
that if d e l  has u.a.c. norm and if E  is a set of finite /r-measure, then 
|| f x E n || —> 0 uniformly over A  for every sequence of subsets {En: n ^  1} of E  
such that p{En) —>0.

A subset A C 1 of a B.f.s. 1 is said to be L-weakly compact if it is 
norm bounded and if | |/n || —> 0 for every disjoint sequence { fn: n  ^  1} in 
the positive part of the solid hull of A. By Satz II.2. in Meyer-Nieberg [19], 
a norm bounded subset A  is L-weakly compact if and only if given e > 0 
there exists a positive element g E B with order continuous norm such that 
A  C [~g,g\ +  F(e), with V(e) = { / G I : ||/ | | < e}. The following statement 
has been proved in van Eldik and Grobler [7] (see Proposition 2.8).

L e m m a  2.2. Let B be an order complete B.f.s. A norm bounded subset 
A c  B is L-weakly compact iff A is of u.a.c. norm.

One can find in Dodds and Fremlin [4] additional characterization re­
sults of L-weakly compact sets. For example, by their Theorem 4.2, relative 
(norm) compactness implies L-weak compactnes whenever B is order contin­
uous.

3. Superposition operators

Let (T, p) be a complete cr-finite measure space, and let 4> — (j){t,x) be a 
real-valued function defined on T  x M. Given a function /  = f( t )  on T, one 
can associate another function

(3 .1) $ / ( * )  :=
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that is also defined on T. In this way the function (j) induces a map $  
called superposition operator (or Nemytskii operator). A function (ft is said 
to be sup-measurable if the operator $  maps every measurable function into 
measurable function, i.e., the superposition f( t))  is measurable for every 
measurable function / .  This property allows to consider $  as a nonlin­
ear operator acting between B.f.s.’s induced by function norms on M(T,p,). 
We refer to Appell and Zabrejko [1] for more information on the subject. 
Here we are interested in differentiability properties of superposition opera­
tors defined by (3.1).

Let ( l j ,  || ■ ||j), i =  1,2, be two normed spaces, and let C =  C(Bi) be a 
collection of bounded subsets of Bi, containing all singletons {/}, / € B i .  
An operator <1> between Bi and I2 is said to be C-differentiable at fo € Bj if 
there is a bounded linear operator $'(/o) from Bi into B2 such that

* ( /o +  /)-* (/< > ) =  $ '( /o ) /  +  A (/)

and for every C £ C

l im - ||A (x/ ) | |2 =  0
x->0 X

uniformly for /  £ C. The linear operator <f>'(/o) is called the derivative of 4> 
at /o. C-differentiability was defined by Sebastiäo e Silva [24], In statistics 
usually there are three particular types of differentiation that are of interest:

(1) C(Bi) =  {bounded subsets of Bi}; this corresponds to Fréchet differ­
entiation.

(2) C(Bi) ={(norm) compact subsets of ®i}; this corresponds to Hada- 
mard (or compact) differentiation.

(3) C (li) =  {single point subsets of Bi}; this corresponds to Gateaux 
differentiation.

Other collections C of subsets of Bi have been considered recently by Dudley 
[5]. It is shown below that Hadamard differentiability of a superposition 
operator 4> may be extended in some cases to CL(Bi)-differentiability, where

(3.2) Cl (Bi ) =  {L-weakly compact subsets of Bi}.

Now we pass to differentiability conditions for the superposition operator 
$  induced by a sup-measurable function cj) and acting between two B.f.s.’s. 
The arguments from the paragraphs just before equation (2.55) in Appell and 
Zabrejko [1] assures that the Gateaux derivative <h'(/o) of <f> has necessarily 
the form

f  — o /o/ i

i.e., $ '(/„ ) is always a multiplication operator by some measurable function. 
Moreover, Gateaux differentiability yields that

afo{t) = /i-lim -[<f>{t,fo(t) + x)-<f>{t,f0 (t))], t e T ,  x—>0 x(3.3)
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where g- lim denotes the convergence in g-measure on each set of finite mea­
sure.

For a given B.f.s. B =  (B(T, g), || ■ ||) and for a non-negative function w G 
M (T,//), define a weighted B.f.s. =  (MW{T, g), || • H )̂ by

Bw{T,v) ■= { /£ M (T ,/i) : \\fw\\ < +00, V/GB},

with the norm || ■ ||w := || ■ tu||. Now our first statement reads as follows:

P r o po sitio n  3 .1 . Let B =  (B(T,/i), || ■ ||) be an order continuous B.f.s., 
and let f  be a sup-measurable function. For a given function /o G M(T, g) 
such that d>(/o) G B, assume that there exists a function af° G M(T, g) such 
that (3.3) holds. Suppose also that there exist a non-negative function w G 
M(T, g) and finite constants C\, C2 such that

(3.4) \afo\ ^  Ciw,

(3.5) |$ ( /0 + a :) -$ ( /o ) | g C2 \x\w, Vz GR,

and fow  G B. Then the superposition operator $  maps the weighted B.f.s. Mw 
into B and <f> is Cl [B>w)-differentiable at /o with the derivative

<E>'(/o)/ =  a/0/ ,

where the class Cf,(B) is defined by (3.2).

P r o o f . By (3.5) it follows that

m m  ^ c2\\(f -  f0)w\\+\Mf0)\\ < 00,
for all f  EEW. Hence the superposition operator 4> acts between Mw and 1. 
By (3.4), the derivative 4>'(/o) is a linear bounded operator from Mw into B. 
The remainder in the claimed differentiation is

A (/)  =  $ (/„  +  / ) - * ( / o )  ~ a fof .

All single point subsets of B„, belong to Cg(Ew) since B, and hence BJt, too, 
are order continuous B.f.s.’s. Let C be an L-weakly compact subset of Bw. 
It is enough to show that

(3.6) hm — ||A(x„/„)|| = 0
x n—>0 Xpi

for an arbitrary sequence {/„: n ^ l } c C .  By (3.4) and (3.5), it follows that

|A(s„/n)|/a:n Si {Ci  +  C 2) \ f n \w
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for all n't. 1. This in conjunction with Lemma 2.2, yields that the sequence 
{A (xnf n) /xn: n t 1} in 1 has u.a.c. norm. Since every ball in a B.f.s. is a 
bounded subset in M, it can be shown that (3.3) yields

/i- lim — |A (zn/ n)| =  0.
x n —>0 X n

Now, the desired relation (3.6) follows from Lemma 2.1 and the proof is 
complete.

Now consider a special case of a superposition operator corresponding to 
a composition of two functions, i.e., the case when the function <f(t, •) =  </>(•) 
for all t E T, and

(3.7) = Vier.
A function f> from R into R is called Lipschitz if for some K  < oo, \4>{x) — <f>{y) \ 
5Í K \x  — y I for all x, y. Then for Lebesgue almost all x, the derivative <j>'{x) 
exists, with |<̂,(a;)| ^  K. The following statement improves and extends 
Proposition 6.1.2. in Fernholz [10], where cf> was assumed to be continuous 
and piecewise differentiable with bounded derivative, and C was taken to be 
a class of (norm) compact sets in the B.f.s. B = Lp[0,1], 1 ^ p<  oo.

C o r o lla r y  3.2. Let B = (B(T, p), || • ||) be an order continuous B.f.s., 
and let f  be a Borel measurable Lipschitz function from R into R. For a 
given function /o € B such that <f> o / q € B assume that

(3.8) p ( { t £ T :  (f> is not differentiable at /o(i)}) =  0.

Then the superposition (composition) operator $  given by (3.7) maps B into 
B and $  is C/,(B)-differentiable at /o with the derivative

W o ) /  =  (<f>'ofo)f-

P r o o f . Take the function w  in Proposition 3.1 to be equal to the Lip­
schitz constant K .

Remark 3.3. Lipschitz condition and (3.8) imply that (3.3) holds /i-a.e. 
Thus one may hope to weaken condition (3.8) if (j) would not be require to 
be a Lipschitz function. For this one may invoke a variant of a generalized 
derivative considered among others by Khintchine [13]. Namely, la dérivée 
generate of 0 is a function defined a.e., such that for any e > 0

w r  . (f>(x + h) — 4>(x) . .
l u n A ( { r r : | —-------------------------4>g( x ) | > e } )  = 0 .

The existence of an approximate derivative (f>'ap a.e. on an interval implies 
the existence of 4>'(J on the interval, and f'ap =  <f>g a.e., while Khintchine
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constructed a function 0 such that <f>'g exists on [0,1], and p'ap only on a null 
set. In connection with L-statistics one may consider a Denjoy-Khintchine 
integrable score function J . Recall that a function 0 on [a, 6] is the Denjoy- 
Khintchine integral of a function J  provided 0 is ACG on [a, 6], and (f>'ap = 
J  a.e. (see Saks [23] for details).

Let 0  be a normed space of parameters 0. We wish to consider a linear 
family of sup-measurable functions 0 = </>(#; t, x) = x) on 0  x T  x R such 
that

(1) 0#(-, •) is a sup-measurable function o n l x l  for all 9 G 0;
(2) 0(-; t, x) is a linear function on 0  for all (i, i ) £ l x R ,

Then one can define an operator $ from 0  x M(T, ß) into M(T, p) by

(3.9) # (0 ,/) ( i)  := 0(0; *,/(*)), Ví g T.

Note that <!>(•, / )  is a linear operator on 0  whenever a function /  is fixed. A 
simple example of a linear family of sup-measurable functions may be given 
by any normed space © of sup-measurable functions 0  = xf>(t,x) on I  x 1  or 
Borel measurable functions 0  =  i/j(x) on K; in these cases 0(0; t, a;) := 0 (t, x ) 
or p(ip;x) := ip(x), respectively. The last example induces the composition 
operator <í>: (V1, / )  —x ip ° /-  Still another example will be considered below 
(see (3.19)). Define also the maximal operator Md> on 0  x M by

M $ (0 ,/)( i)  := sup 
x  7̂ 0

+ -< M í, f^))]

where sup means a lattice supremum in M .  Let B j  =  ( B j ( T ,  ß);  || ■ | | j ) ,  % =  1 , 2 ,  

be a pair of B.f.s.’s. The generalized dual space (or multiplicator space) ®2/®i 
is defined to be the set

( l 2/li)(T ,p ,) := { / G M(T, ß) : /gG  B2 for each g G ®i}.

Equipped with the natural norm

II/II2/1 := sup{ H/5II2 : Nligl iSBi},
the set ffi2/ l i  becomes a B.f.s. ((B2/B i)[T,ß), || • ||2/i) (see Maligranda and 
Person [16], or p. 62 in Appell and Zabrejko [1]).

Now we are ready to state and prove the following differentiability result 
for the operator $  given by (3.9).

P r o p o s i t i o n  3 . 4 .  Let Bj =  (Bj(T, / / ) , || • | | j ) ,  i =  1, 2 ,  be a pair of B.f.s.’s 
with a generalized dual B2/Bi ^  {0}, and let (0, || • ||) be a normed space. Sup­
pose a linear family of sup-measurable functions p = 0(0; t , on 
0 x T x l  and elements /o £ ®i, $o £ © ore such that for some finite constant 
C the following hold:

(3. 10) \ \ M m f o ) h / i ^ c \ \ e \ \ ,
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( 3 . 1 1 )  ^ , / o ) 6 B 2 ,

for all 9 € 0 . Assume also that there exists a p-measurable function a — 
a(0o, /<>)(■) on T  such that

(3.12) a(t) = Yim -[fgfit, f 0 (t) + x) -  (pg0 {t,fo{t))]
x->0 X

in p-measure. Then the operator $  defined by (3.9) maps a product space 
(0  x Bi, || • || +  || ■ ||i) into ®2 and $  is C-differentiable at (0o,/o) with the 
derivative

(3.13) $ '(0o,/o)(0,/) =  $ (0 ,/o ) +  a(0o, / o)/,
where C is a collection of all sets B  x K  such that B is a ball in 0  and K  is 
an L-weakly compact set in l j .

P r o o f . For any real-valued function /  on T, and for any element 9 , just 
by the definition of the maximal operator M $  we have

|$(0,/)(<)I g | / ( t ) - / O( i) |M $ (0 ,/o)(t) + |$ (0 ,/o)(i)|,
for all t £ T. Due to the definition of the generalized dual space ffi2/®i and 
by the assumptions (3.10), (3.11), it follows that

ll$ (0 ,/)l|2 Ú c | | / - / „ | | i | |0 | |  +  l|$(0,/o)l|2 < oo,
for all (9, / )  € 0  x E i. Therefore the operator $  maps 0 x l i  into B2. More­
over, the linear operator $'(0o, /o) is bounded. Let K  be an L-weakly com­
pact set in ®i, and let B  be a ball in 0 . It is sufficient to show for arbitrary 
sequences {/„: n ^  1} C K  and {9n: n  ^  1} C B  that

(3.14) lim — ||A(®n0n,® „/n)||2 =  0,
x n -*0 X n

where the remainder in the claimed differentiation is

A(0, / )  =  $(00 + e,fo + f ) ~  $(00, /o) -  $(0, /o) -  a f

= [$(0o, fo + f )  -  $(0O, /o) -  af] +  [$(0, /o + / )  -  $(0, /o)]

(3.15) =: A! (0o,/) +  A2(0 ,/).

To estimate the first term Ai(0o, / ) ,  we will use Lemma 2.1 for the sequence

(3.16) {Ai(xnf n,90 ) / x n-, nl> 1} C l 2.

Let E  be a /^-measurable set. By the definition of the generalized dual space 
®2/B i we have

— ||X£A1(0o,®n/ n)||2 ^ ||M $(0O, / O) + a||2/l||XE/n||l,
Xn
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for all n ^  1. Then, for any sequence of /i-measurable sets E/: with j, 0, by 
Lemma 2.2 it follows that

lira sup \\xEk Ai(0o, xnf n) / x n \\2K—̂OO fl

^ ||M $(0o,/o )+ a ||2/i lim sup \\xEkf\\i = 0.fc->oo f eK

Therefore, the sequence (3.16) is of u.a.c. norm. Since the sequence {/„; n ^ l}  
is norm bounded in B i, it is bounded in M, too. This fact, in conjunction 
with the assumption (3.12), yields that the sequence (3.16) tends to zero in 
/i-measure. Thus, by Lemma 2.1, it follows that

(3.17) lim — ||Ai(0o,a:ri / n)||2 = 0.
x n ->0 X n

As to the second term in (3.15), due to the definition of the generalized dual 
space B2/B i and by the assumption (3.10) we have

— ||A2(a:n0n,xn/ n)||2 ^ C xn\\en\\ ||/„ ||i,
X n

for all n  ^  1. This inequality combined with (3.17) yields (3.14) and the 
proof of Proposition 3.4 is now complete.

In general, C-differentiability of the operator $  cannot be extended to 
Fréchet differentiability, even for a fixed parameter 6  € 0 , without additional 
assumptions. By Theorem 2.15 in Appell and Zabrejko [1], there is a class 
of pairs of B.f.s.’s Iq and B2 such that the generalized dual are not order 
continuous and Fréchet differentiability of a superposition operator (I> given 
by (3.1) yields that the function (p is equivalent to an affine function in x. 
This class includes a pair Bi =  B2 =  LP(T,/r), for any 1 ^p< oo  and for the 
atomic free measure /i on T.

A stronger assumption than sup-measurability, often made on the super­
position operator given by (3.1), is that ^ is a Carathéodory function, that 
is to say 4>{-,x) is /z-measurable for each and •) is continuous for
/iz-a.a. t e  T. The following lemma is a crucial ingredient in the proof of 
Fréchet differentiability of the operator 4».

Lemma 3.5. Let Bj, i =  1,2, be a pair of B.f.s. ’s, and let ip be a Cara­
théodory function on T  x K such that the induced superposition operator T 
maps Bi into 12. Then the operator T is continuous whenever the B.f.s. B2 
is order continuous.

P r o o f . It is a part of Theorem 2.6 proved in Appell and Zabrejko [1],

We are now ready to formulate conditions for the Fréchet differentiability 
of the operator $  given by (3.9). '
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PROPOSITION 3.6. Under the hypothesis of Proposition 3.f, assume in 
addition that the generalized dual space B2/® i is order continuous, and (p is 
a linear family of Carathéodory functions, i.e., </>(#;•,•) is a Carathéodory 
function for every 0 E 0  and (/)(■', t,x) is a linear function on © for every 
(t,x) £ T x R .  Moreover, assume that (3.12) holds p-a.e. Then the operator 
$  defined by (3.9) maps a product space (© x Bi, || • || +  || • ||i) into ®2 and 4> 
is Fréchet differentiable at (0,/o) with the derivative (3.13).

PROOF. The proof goes along the same lines as that of Proposition 3.4. 
Here, in addition, we have to establish (3.17) for an arbitrary bounded se­
quence { /n: n ^  1} C Bi. To this end, we use Lemma 3.5 for the function if 
defined by

^  T) ,=  Í  fo{t) + x) -  (pe0 {t, fo{t))], ifz ^ O ,
a(t), if x =  0.

Since (3.12) holds /r-a.e., ip is a Carathéodory function, and the induced su­
perposition operator T acts between B.f.s.’s Bi and B2/B1. Now, by Lemma
3.4, it follows that

limsup — ||Ai(0o, a7n/ n)||2
Xn -©0 %Tl

i  sup II/n111 limsup IIy ( x nf n) -  ^(0)||2/1 =0,
n x n —>0

since ||xn/ n ||i —> 0, as n —> 00. This, we noted earlier, is what had to be 
proved and the proof of Proposition 3.6 is now complete.

Reeds [22], in the proof of Theorem 6.4.3, and Fernholz [10], by Propo­
sition 6.1.6, show that the composition operator

(3.18) *(</>,/) =  (pof

is Hadamard differentiable from D[0,1] x Lp([0,1], A) into Lp([0,1],A) at 
(0o, /o) where <po is the identity, /o is a diffeomorphism and D [0,1] is the 
space of right-continuous functions with left limits in the supremum norm. 
Dudley [5] extended this result with respect to the directions of differentiabil­
ity (p from sup (norm) compact sets to much larger sets. Namely, his Theo­
rem 5.1 says in particular that (3.18) is jointly differentiable at (<po, /o) from 
Rp/q x Lp([0,1], A) into L9([0,1], A) whenever 1 ^  q < p < +00, for Fréchet 
differentiability in /  and C-differentiability in </>, where cpo is Lipschitz func­
tion, /o is increasing with /Ó ^  ß  > 0 a.e. and C is the class of uniformly 
(p/0-Riemann sets C , i.e., the restrictions of functions in C to any bounded 
interval are uniformly Riemann and

sup{ I<p(x) — 0(0) 1/(1 + \x\v q̂) : x  € M, 0 €  C} < +00.
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To conclude this section, we give an example illustrating the above state­
ments. Let p be a <j-finite Lebesgue-Stieltjes measure on T  = R. Consider 
a pair of B.f.s.’s B2 =  L9(R, p ), 1 5Í q < +00, and Bi = Lp(M, p), q ú p  < +00. 
Then B2 /B 1 =  Lr(R,/i) with r=pq/(p  — q) is a generalized dual space. Let J  
be a Lebesgue integrable function on R from a parameter set 0  to be spec­
ified below, and let /o 6 Lp(R, p). Define a linear family of Carathéodory 
functions 4> by

X

(3.19) (p(J;t,x) := J dX, t £ T, x £ R.
Mt)

Consider the operator <f> defined by (3.9). Note that <f>(J, /o) = 0 (cf. (3.11)) 
and

M $ ( J , /0)(f) g (M J)(/0(f)), VfGT, 
where M J  is the Hardy-Littlewood maximal function of J  defined by (1.7). 
Let /o(/i) denote the image measure on R given by fo(p)(A) = Ai(/J^1(A )) 
for all measurable sets A. Thus, it follows by the image measure theorem 
that

/  \M<HJJ0)\rd p i  I  \M J\rdf0 (p).
R R

To estimate the right side one may use the Hardy-Littlewood maximal the­
orem whenever fo(p) is a Lebesgue measure. This classical result has been 
extended to inequality of the type

(3.20) J  \M J\rv d X ű C r J  \J\rv dX,
/ /

where 1 < r < 00, I  is a fixed interval, Cr is a finite constant independent of 
J  and M J, and v is a non-negative function. Stein [30] showed that (3.20) 
is true for I  = R and v(x) — \x\a for — l / r  < a < 1 — 1/r. Fefferman and Stein 
[9] showed that (3.20) is true for I  = R if M u  ^  Cu  a.e.. It was Muckenhoupt 
[20] who gave a characterization of a weight function v for (3.20) to hold. 
Namely, he proved that (3.20) is true if and only if there is a finite constant 
K  such that

1/(r" 1)rfA ^  KXr(E),
E  E

where E  is any subinterval of I. Moreover, it is said that v satisfies condition 
A r on I  whenever the later property holds true. The 70’s and 80’s witnessed 
a real flood of papers on weighted inequalities triggered by this result and 
extensions were obtained to many different directions (see e.g. Garcia-Cuerva 
and Rubio de Francia [11] for a survey). Due to obvious reasons we do not 
attem pt here to use the most general results.
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CONDITION 3.7. Assume that the measure fo{p) on K is absolutely con­
tinuous with respect to the non-negative density function d.fo{p)/d\ satisfy­
ing condition A r on K.

Then, by (3.20), it follows that

I  \M$(JJo)\rd v L Z C r J  \J\rdfo{ß),
R R

for some finite constant Cr depending on r only. This gives us condition 
(3.8) if one takes a parameter set 0  to be Lr (K,/oQu)).

C o n d it io n  3.8. Assume /o € Lp(/lí) and let Jo € Lr (fo{p)) to be such 
that

/i({ x E R : fo(x) is not a Lebesgue point of Jo }) =  0.

Then, by Lebesgue’s theorem on derivation of the indefinite integral,
(3.12) holds /i-a.e. for do = Jo and for a = Jq° fo• Thus , by Propositions 3.4 
and 3.6 we have:

Example 3.9. Under the previous notation, assume that conditions 3.7 
and 3.8 hold. Then the operator $  defined by (3.9) with given by (3.19) 
maps the product space hr{fo{p)) x h p(p) into hq{p), where r = pq/{p — q) and 
p' tq .  Moreover, $  is Fréchet (C-)differentiable at {Jo, fo) with the derivative

* ’ ( J o , f o ) ( J , f )  =  J o o f o - S ,

whenever p>  q (p = q, respectively).

4. Empirical processes

To use C-differentiability of a superposition operator defined on a B.f.s. B 
for L-statistics we will need paths of the empirical process to be concentrated 
in probability on sets from the class C. Here we show for a large class 
of B.f.s.’s 1 that this property (say C-tightness) of the empirical process 
is equivalent to the central limit theorem whenever C contains all (norm) 
compact sets of 1. A more precise statement follows in Corollary 4.5 below 
which may be considered as a main result of this section whose proof will be 
shown to be a consequence of some results from the theory of Probability in 
Banach spaces.

DEFINITION F. Let F  be a non-degenerate df, i.e., assume that F  is not 
a df of a constant rv, and put

a := inf{J € K: F(t.) >0}, b := sup{f € M: F{t) < 1}.

Then we can and will consider F  to be defined on a non-empty set T  which 
is assumed to be equal to the interval (a, b) with endpoints {a} and/or {6}
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included or not included depending on F(a) > 0 and/or F(b—) < 1, respec­
tively.

Let Fn be the empirical df based on a sample of independent identically 
distributed real rv’s X\,  . . . ,  X n with non-degenerate df F, and let a n = 
{an (i); t e T }  be the corresponding empirical process given by

(4.1) a n(t) := y/n(Fn(t) -F( t ) ) ,  t e T .

We give another representation of a n (see (4.4) below) which is better suited 
to characterize the central limit theorem and to handle L-statistics in the 
next section. First define a symmetrized empirical df Sn by

(4.2) ( ~Fn(t), if t< c ,  
I 1 - F n(t), if t ^  c,

for some point c G T  to be specified by Condition H in the next section and 
put

(4.3) rn(t) := E S n (t) =
—F(t), if t < c, 
1 — F(t), if t ^  c.

Then

Sn{t) =  - Y lip{Xi,t),
i=i

where the function on T  x T  is given by

t € T ,

for all x £ T, and

ip(x,-) = X[x,c) 1 
X[c,x)l

if X  <  C,

if x't.c,

(4.4) OLn (^) y/n ' E n * , * ) , t e r ,

where the function Y  on T  x T  is given by

Y(x, t)  =  ip(x,t) — m(f), x , tG T .

Note also that Fn(t) — F(t) = m  — Sn(t).
Let B =  (1(T, ß ), || • II) be a B.f.s., where p is a cr-finite Lebesgue-Stieltjes 

measure on T  such that ß([c, dj) < oo for all compact subsets [c, d] C T. We 
will assume throughout this section that B is separable. Since /i is a separable 
measure, the B.f.s. B is separable if and only if it is order continuous. Let £ 
=  {£(£); t& T }  be a Pr x//-measurable stochastic process with a.a. sample 
paths in B. Then, in a standard way (see e.g. Cremers and Kadelka [3]),



THE CLT FOR L-STATISTICS 225

£ induces a Borel measurable map from ÍÍ into B, say £ again, called a 1-rv, 
and a probability distribution £(£) on 1. Concerning the empirical process 
an, it follows from the representation (4.4) that a n induces a B-rv if and 
only if m  G B.

Let 1 be a separable Banach space. A B-rv g is Gaussian if g(g) is a real­
valued Gaussian rv for any continuous linear functional g on B. Recall that 
one may describe any Gaussian B-rv g by an operator R from the Banach 
space of continuous linear functionals 1* into B, called Gaussian covariance, 
which appears in the expression of the characteristic function of g. The 
description of Gaussian covariances on B.f.s.’s is given by Gorgadze et al.
[12]. In particular, they proved:

PROPOSITION 4 .1 . Let B be an order continuous B.f.s.. Then the fol­
lowing is true:

(1) If a symmetric positive operator R:W>* —>■ B is a Gaussian covariance, 
then there exists a measurable function r : T  x T  —> M such that

(4.5) (Rg)(t) = j  g(s)r{s,t)p(ds), teT,g<E B*,
T

and the function t —> \/r(t, t) G B.
(2) The operator R  given by (4.5) with the symmetric positive definite 

function r such that t —► \/r(t,  t) G B, is Gaussian covariance if and 
only if B does not contain l^  uniformly.

According to this statement, a measurable version of a Brownian bridge 
g = {g (t): t G T} with the covariance structure F(t  As) — F(t)F(s) has a.a. 
sample paths in B, and hence induces a B-rv, if and only if

(4.6) y/F{l - F )  GB.

Let {£n: n ^ 1} be a sequence of measurable stochastic processes with a.a. 
sample paths in a B.f.s. B. We say that f n satisfies the central limit theorem 
(CLT) in B if there exists a Gaussian B-rv g such that C(fn) converges weakly 
to C{g). Note that if £i, . . . ,  £„,•. . .  are iid B-rv’s and if

(4.7) Z ö ­

then we say also that satisfies the CLT in B. A B-rv f  is said to be pregaus- 
sian if there exists a Gaussian B-rv G(£) such that Eg2(£) = Eg2 (G(£)) for 
all g G B*. Note that Cl, as well as f n itself, are pregaussian B-rv’s whenever 
the sequence f n given by (4.7) satisfies the CLT in B. We say that a Banach 
space B satisfies the inequality Ros(p), 1 < -foo, if there is a constant C
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such that for any finite sequence of independent pregaussian B-rv’s (i, . . . ,  
( n with associated Gaussian B-rv’s G(Ci), • ■ •, G((n) (which may be assumed 
to be independent) we have

5 > ||G H p +  e  £ g (C0

In particular, Lp-spaces with 1 "Lp ^  2, satisfy inequalities Ros(g) for every q, 
1 Si q < oo, and Lp-spaces with 2 <p < oo, satisfy the inequality Ros(p) for 
the corresponding p. For the proof of the following statement we refer to 
Theorem 10.10 in Ledoux and Talagrand [14].

PROPOSITION 4 .2 . Let B be a separable Banach space satisfying the in­
equality Ros(p) for some p >  2, and let {£n: n ^ 1} be a sequence of B-rVs 
given by (4.7), where ( i , . . . ,  (n, . . .  are iid B-rv’s. Then f n satisfies the 
CLT in B if and only if Ci is pregaussian and

(4.8) lim x2Pr({||C i||>a;})=0.

According to this statement, the empirical process an given by (4.4) 
satisfies the CLT in a B.f.s. B if and only if (4.6) holds and

(4.9) lim x 2 PrdUV'iA',-)|| > x}) = 0 .£—»00

Next we show that the last condition is superfluous for the empirical pro­
cesses.

L e m m a  4 .3 . Let F be a df defined on T, and let B = (B(T,p ) ,  || • ||) be 
an order continuous B.f.s. Then (4.6) implies (4.9).

P r o o f . Suppose first that

(4.10) F{a)=  0 and F(b— ) =  1.

Define a family G = {gs: s G T j  of functions on T  by

9s(t) ■=
V F (s)X[s,c){t),
\ / l  — F(s—)x[c,s)(t)i 

for all t G T. It is easy to check that

if s < c, 

if s ^  c,

gs g 2\JF(1 — F), VsGT.

Thus, by (4.6), the family G has u.a.c. norms. Moreover, by the assumption
(4.10), it follows that

lim gs(t) = 0 , Ví g T.
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Hence, by Lemma 2.1, one may conclude that

lim
s|a,sti> Il0.ll =  0.

Choose an arbitrary number e > 0, and take si, G T  such that

Il0.ll ^  ^ 7 2 ,  Vs G T \( s1,52).

Then for all x  > ||X(si,s2) II2 V e/2, we have

*Pr({IM*, Oil >>/*}) =
=  * [Pr({ IIgx  || > y /x F ( X ) t X ^ Sl })+

+ Pr({ ||9X II > > / * ( ! - m - ) ) ,  X  ^  s2 })] ^ 

i  x[Pr({ F(X) Í  e/(2x) }) + 1 -  Pr({ F ( X - )  ^  1 -  e/(2x) })] ^  e, 

where in the last step we have used the inequalities

Pr{{ F ( X ) ^ u } )  ^  u

and
P r ({ F (X -)^ u } )  ^  u,

for all u G [0,1]. See, e.g., p. 5 in Shorack and Wellner [29] for the proof of 
the first inequality. The second one follows from

u ^ F { F - \ u ) ) ,  VuG [0,1],

and from the fact that x  F -1 (u) if and only if F ( x - )  ^  u, where F -1 (u) 
=  inf{ x : F(x) ^  u } (see also p. 5 in Shorack and Wellner [29]). Since e is 
an arbitrary positive number, Lemma 4.3 is proved under the assumption
(4.10). Suppose now that F(a) > 0 and F(b—) < 1. Then (4.6) implies 
Hx t II < °°i and hence (4.9) is true in this case as well. If F(a) > 0 and 
F(6—) =  1 or, conversely, F(a) =  0 and F(b—) < 1, then one may reduce the 
task to 1-rv’s ip{X, -)X[c,6) and ip(X, -)X(a,c)) respectively. Now (4.9) follows 
from (4.6) making use of analogous arguments to those in the case of (4.10). 
This completes the proof of Lemma 4.3.

COROLLARY 4.4. Let a n be the empirical process based on a df F, and 
let E =  (B(T,/lí), || • II) be an order continuous B.f.s. satisfying the inequality 
Ros(p) for some p>  2. Then otn satisfies the CLT in E if and only if (4.6) 
holds true.

Assume for a moment that the empirical process an is bounded in prob­
ability in 1, i.e., for each e > 0 one can find a finite number M  such that

supPr({ ||a„|| > M }) <[ e.
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Due to the representation (4.4), one may invoke a terminology from Ledoux 
and Talagrand [14] and say that a n satisfies the bounded CLT in B. Then, by 
Theorem 10.3 in Ledoux and Talagrand [14], the B-rv Y ( X i, •) is pregaussian 
whenever 1 does not contain an isomorphic copy of cq. Thus, for the class 
of B.f.s.’s which satisfies the conditions of Corollary 4.4, the bounded CLT 
for the empirical process is equivalent to the (usual) CLT.

5. L-statistics

This section contains the proofs of main results.
Let F  be a non-degenerate df defined on the interval T  (see Definition 

F in the previous section), and let X n-\ ^  . . .  ^  X n:n be the order statistics 
corresponding to a sample from the df F. We consider a linear combination 
of a function of these order statistics, an L-statistic, given by

L n
l
n

n
'y ] Cnih{Xn-.i),
i=l

for some weights constant cni, . . . ,  cnn and for a function h described by 
C o n d it io n  H . Assume a function h to be left-continuous and of bound­

ed variation on every compact subset of T. Suppose also that there is a point 
c €E T  such that h{c) — 0.

For any function h satisfying Condition H, there exists a signed Lebesgue- 
Stieltjes measure dh on T  such that

' f  dh, if x  > c,
[c,x)

< 0, if x = c,
— f  dh, if x < c.

, [i,c)

Associated with any such h, denote the induced total variation measure 
by //,/;. We note in passing that by the definition of the interval T  and 
due to Condition H, is a finite measure on [a, b] whenever F(a) > 0 and 
F ( —b) <  1 .

The L-statistic Ln may be expressed in the form

(5.1)
lj  H F ~ l )Jnd\  

o

Fn

T 1/2

where Fn, Fn 1 are the empirical df, the empirical quantile function, respec­
tively, corresponding to a sample from the df F  and Jn is defined by (1.9).
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The integral representation (5.1) may be considered as a functional on a class 
of step functions. To extend it to larger classes of functions, the following 
formalities seem to be useful. Define a finite measure v on [0,1] by

d
v((c,d\) := J  JdX,  V 0 g c < d £ l ,

C

and for any measurable map H : [0,1] —> T  define H(v) to be the image 
measure on T. Note that for any df F

F( xg)

(5.2) F ~ 1(i/)((x i , x2]) = J  JdX, (x i , x2]c T,
F ( x i )

where F ~ l (x) = inf{f € T  : F(x) ^  t}. Thus, by the image measure theo­
rem and due to (5.2), for any function h € L i(T ,F _1(^)) we have h o F ~ l 6  
Li ([0,1], v) and

(5.3)

I 1J h o F ~ 1J d \ =  j  h o F ~ ldv — j  hdF~l {v)
0 0 T

F

= J  hd(^J Jdx'j =: Lh(J,F) = L{J,F).
T  1/2

Note that, by (5.1), Ln = L(Jn,Fn).
The following representation of an L-statistic goes back to Shorack [28] 

and its various forms have been used later on in many papers.

Lemma 5.1. Consider a df F, a function h satisfying Condition H, and 
a Lebesgue integrable function J  over [0,1]. Assume that

(5.4)
r  i

/ /  J  dX d/j.11 + I f  JdX
(a,c) 0 [c ,6) F

dg,h < oo.

Then the functional Lh(J,F) given by (5.3) exists and

(5.5) L{J,Fn) -  L(J,F) = - dh a.s..
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P r o o f . F i r s t  a s s u m e  t h a t

(5.6) F(a) =  0 and F (b -)  =  1.

One may rewrite (5.3) into the following form

(5.7)

Take any point d £ (a, c). Integration by parts for Lebesgue Stieltjes inte­
grals yields

. F

j  JdX
o

dh.

By the assumption (5.7), it follows that

F(d)

Ijm X[d,c) (t) J  \J\dX = 0 V t E T. 
o

Hence, due to (5.4), by the dominated convergence theorem we get

F(d)

lim \h(d)\ f  \J\ dX — 0, dia J
o

since |/i(d)| 5Í ßh{[d, c)). Thus, letting d go to a, one may conclude the 
existence of the first integral in the right side of (5.7). The existence of the 
second one follows in the same way. Now, if the assumption (5.6) does not 
hold, i.e., if the df F  has a jum p at one or both endpoints, then one may use 
integration by parts for the corresponding integrals over the intervals [a, c], 
(c, 5], or [a, 6], respectively. The representation (5.5) follows by performing 
integration by parts in the same way for all samples such that a < X n.\ Ú 
Xn:n < b whenever F(a) =  0 and/or F(b—) = 1. Now the proof of Lemma 5.1 
is complete.

For the following statement, recall the definition of the symmetrized 
empirical df Sn and its expectation m , respectively given by (4.2) and (4.3) 
above.
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P r o p o s i t i o n  5 .2.  Consider the L-statistic Ln corresponding to a sam­
ple from a df F  and with a function h satisfying condition H.

I. Assume the weights constant to be given by a score function J  (see 
(1.1)) such that the representation (5.5) holds. Suppose also that there exists 
a B.f.s. B and a family of operators {4>e: e >  0}  such that:

(i) the empirical process an given by (4.1) has a. a. sample paths in B 
and the sequence {an: n ^  1} is uniformly C(W)-tight for some class of 
bounded subsets C(B) of B, i.e., for every e > 0  there exists K  GC(B) 
such that

(5.8) sup Pr({an € K c}) g e;
n

(ii) for every e > 0 and for all sufficiently large n ^ 1 there exists a subset 
Ant of LI having Pr(^4„e) > 1 — e on which

Fn

A>c(Sn) -  $ £(m) =  /  JdX-
F

(iii) for every e > 0, maps B into Li (T, p/fi and 4>f is C(B)-differentiable 
at m with the derivative

&e(™)(f) = a(F)(-) f  = a f ,
for all f  £ B.

Then the L-statistic Ln satisfies the central limit theorem, i.e., 

(5.9) M L n - L ( J , F ) ) - ± > N ( 0 , a 2 (a,F)),

where

a 2 (a,F) = / / [F(iAs) — F(t)F(s)]a(t)a(s) h(dt) h(ds).
T  T

II. Assume the weights constant to be arbitrary and let the representation
(5.5) hold for all J  — Jn, n ^ l  given by (1.9). Suppose also that there exists 
a B.f.s. B; a normed space of functions (0 , || • ||) and an operator $  such 
that (i) of I holds;

(ii) { Jn: n ^  1 }  C 0  and there exists J E ©  such that \\Jn — J | |  — > 0;
(iii)

F n

<HJn,S n) -  $ ( J , m )  =  J  Jnd\,  V n ^ l ;

F

(iv) <J> maps 0  x B into Li (T, ph) and is C-differentiable at (J , m ) with 
the derivative

<!>'(./, m )(0,/ )  =  a(J,F)(-)f  = a f ,
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for all f  6 1 and 6 £ 0 ,  where C =  {B  x K  : B is a ball in ©, 
K e C { B )  } .

Then the L-statistic Ln satisfies the central limit theorem, i.e., (5.9) holds 
with L ( J n,F) instead of L(J, F).

PROOF. We prove the first part only because the second one is analogous. 
Due to the representation (5.5), we have

Vn{Ln — L(J, F)) = y/n
FnJ  J  dX + a a n

F

=: rn +  (an,a ) .

ana dh

Note tha t

< a n, a > =  —= 
yjn

where Yf, . . . ,  Yn, ... are independent identically distributed zero mean rv’s 
with E =  o2(a,F). Due to the classical central limit theorem our task is 
to prove that

(5.10) lim rn =  0 in probability .
n—► oo

The remainder in the differentiation of the operator is 

A6(/)  =  ®e(m + f ) - $ t { m )  - a f ,

for all / 6 l .  Then, by the assumption (ii) and since a„ — -y /n (Sn — m),  
we have on the set Ant

rn <he(m) +  a a n/\/n}dh

- f  y /n{Ac(~an/^/n)}dh.
T

Choose an arbitrary number e > 0. In virtue of the assumption (i), there 
exists a set K  eC(B) such th a t (5.8) holds. By C(B)-differentiability of $ e, 
there exists a number N  > 1 such that

V n||A £(//v /n ) ||Ll(Ti/Jii) < e,

uniformly for /  € K  and all n } l N .  Therefore, we have the inequality

Pr({ |rn |^ e } )  ^  P r ( ^ £) +  Pr({ a„  G K c })
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+  P r  ( {  /  s/n\kt ( - a n/\/n)\diih 'Zt^j  ^  2 e

T

for all n ^ N .  Since e is an arbitrary number, the desired relation (5.10) 
holds true and the proof of Proposition 5.2 is now complete.

Now, we are ready to give the proof of the first main result.
P r o o f  o f  T h e o r e m  1.1. It is based on the part I of Proposition 5.2. 

First note that the representation (5.5) holds by Lemma 5.1, since (5.4) 
follows from (1.2) and (1.4). To verify assumptions (i)-(iii), we are going to 
use Corollary 4.4 and Proposition 3.1. For the B.f.s. 1 take a weighted B.f.s. 
(Li(T,ßh))wp,q = Li{T,wPtqnh), where

(5.11) wp,q = F p/2- 1/2X(a,c) +  (1 -  ^ ) 9/2“ 1/2X[c,6)-

Then, by Corollary 4.4 and (1.2), the assumption (i) holds with the class 
C(B) being all norm compact sets of Li (T, wPtqfj.h). To define the family of 
operators {4>£: e > 0}, recall the linear bounds in probability for the empirical 
df Fn (see van Zuijlen [35] for the case when F  is an arbitrary df); namely, 
for given an e > 0 there exist Me £ (0,1) and a subset A nt of Í2 such that 
Pr(>l„f) > 1 — e and on A n(:

\Sn( t ) \ i \ m( t ) \ / M e ,  V i e r .

Moreover, by the Glivenko-Cantelli theorem, for any 7 6 (l/2V supt |m(t)|, 1) 
there exists a finite number N  such that a.s.

|S„(i)| ^  |F „ ( i) -F ( f ) | +  |m(i)| g 7 , Vf € T,

and all n ^ N .  Define a family of functions {(j)e: e > 0} on T  x E by

|x |A |m (i) |/M eA7

(5.12) (pe(t,x) := J c(s,t)ds, t £ T ,  x £ R,

M<)l

where

(5.13) J c{s,t) =  J(s)x(a,c)(t) ~ J (! ~s)X[c,b)(t), s e [o ,i] ,  t e T .

Define a family of superposition operators {$e: e > 0} by (3.1) and note that 
the assumption (ii) holds. We will show that the assumption (iii) holds, too, 
using Proposition 3.1 for the B.f.s. 1 =  Li(T, fih), for the weight function 
w = Wptq given by (5.11), for the sup-measurable function (/> =  </>f given by
(5.12), for /o =  m  and a^° = JoF .  Note that 4>e(m) =  0 and (3.3) is true due 
to Lebesgue’s theorem on derivation of the indefinite integral and by (1.3).
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It is easy to see that (3.4) is nothing else than (1.4) and rriwPtq € In (T, p/J 
because

Imwp,q\ í  Fp/2(l — F)q/2 G Li(T,Hh).
All what is left is the verification of the most tedious condition (3.5). Using 
the properties of the number 7, by (1.4) it follows that we have

I <h£(m + x) — 4>e(m)|

|m+x|A|m|/M£ |m+x| A|m|/M£

= ClX(a,c) I  SP/2~1/2ds + C2X[c,b) I  S o l e i s
\m\ \m\

(5.13) =: C]IpX(a,c) + C2 lqX[c,b)-

We estimate the integral Ip only, since the estimation of Iq is identical. 
Invoking the inequality (p > 0)

| | a |p+1 — |6 |p + 1 1 ^  (p + l)2p[ \a-b\p+l+\b\p\a-b\],

we arrive at
|m+x|

I '  s ^ - ^ d s
\ m \

2 |m + :r|p+1 — |m|p+1 
p +  1 |m + x\p/2+1/2 _j_ |m |p/2+l/2

^ 2p+1\x\[\x\p\rn\ - p ' 2~ 1/ 2 + \m\pl2~112].
For all x  such that \m + x\ ^  |m |/M e, we have \x\ ^  (1 +  1/Me)\m\ and

I p S  2 P + 1 [1 +  (1  +  l / M £) ] | m | p/ 2 - 1 / 2 |:r|.

Otherwise, \x\ ^  (1/Me — l)|m | and

\m\/Mt

Ip = j  s ^ - ^ d s  Í  -  l)(M e- p/2“ 1/2 -  l)\m\pl2- xl2\x
\ m \

From these we get the bound

IP g CPie\x\\m\pl2~1/2,

for some finite constant CP)£. Returning to (5.13), one may conclude that the 
desired condition (3.5) holds true. Thus, by Proposition 3.1, the superposi­
tion operator maps Li (T, tOp^p/j) into Li (T, p/J and is C^-differentiable 
with the derivative

(K ( rn) f  = J o F - f
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for every e > 0. Since h\(T,Wp^(lph) is order continuous B.f.s., by Theorem 
4.2 in Dodds and Fremlin [4] every norm compact set is L-weakly compact set 
too, i.e., C(B) C Cl . Thus, the assumption (iii) of Proposition 5.2 is satisfied. 
Now, the statement of Theorem 1.1 is a consequence of Proposition 5.2 and 
this also completes the proof.

We conclude with the proof of the second main result.
P r o o f  o f  T h e o r e m  1.2. We will deduce it from part II of Proposition 

5.2. Assume first that p>  1. To check the representation (5.5) for J  — Jn, 
one can verify the condition (5.4) of Lemma 5.1. Using Holder’s inequality, 
the image measure theorem and Muckenhoupt’s weighted version of Hardy- 
Littlewood maximal theorem (see (3.20) for the case r =  p' , J  — Jn and 
v = dF(ph)/d\),  we have for the first integral in (5.4)

F

/
(a,c) 0

Jnd \ dph =  \ \ F X ( a , c ) \ \ L p ( n h ) W J n \ \ L , ( F ( ß h ))

=  Lp(ßh)\\Jn\\Lp,(F(vh)) <  + ° ° -

Since the estimation of the second integral in (5.4) is analogous, by Lemma 
5.1 we conclude that the representation (5.5) holds for J  = Jn. To verify the 
other conditions of Proposition 5.2, take a B.f.s. B = Lp(T, ph), a normed 
space 0  =  Lp'([0 ,1], F(ph)) and a superposition operator 4> defined by (3.9) 
and by a linear family of Carathéodory functions <fi on 0  x K x T  defined by

1*1
<p(J;t,x) = J  J c(s,t)ds,

where J c is given by (5.13). The assumption (i) follows from Corollary 4.4 
and (1.10) with the class C(B) of all norm compact sets in 1. Since the 
assumption (ii) is obviously satisfied and it is easy to see that

|Sn(t)l F„( t)

$(Jn ,Sn)(t) -  ^ (J ,m )(i) =  j  J cn{ s , t )d s=  I  Jnd\ , V ie T ,
|m(t) |  F(t)

we have to check only the assumption (iv). For this purpose we use Propo­
sition 3.6 where the pair of B.f.s.’s is taken to be ®i =  LP(T, p.^) and I2 =  
Li (T, ph), 0  as above, fo = m, 9q = J  and a =  J o F. Then the generalized 
dual space B2/B1 =  L?/(T , p^) is order continuous because we have assumed 
p>  1. It is plain that

|m ( t ) + x |

\  [  J c{s,t)ds
\m(t)\

M $(J, m)(t) = sup
x̂ O
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where M J  is a Hardy-Littlewood maximal function (1.7). Thus, (3.10) is 
a consequence of Muckenhoupt’s weighted version of the Hardy-Littlewood 
maximal theorem (see (3.20) for r—p' and v=dF(ph) / d\). Since <f>(J,m)=0 
and (3.12) holds by Lebesgue’s theorem on derivation of the indefinite inte­
gral, by Proposition 3.6 one may conclude that <f> maps bp’ ([0,1], F (p h ))  x 
Lp(T, ph) into Li (T, ///,) and $  is Fréchet differentiable at (J ,m ) with the 
derivative

& ( J , m ) ( e , f )  =  J o F - f .

This yields the assumption (iv) with a — J o F ,  and by Proposition 5.2 we 
may infer that the statement of Theorem 1.2 holds in the case p >  1. For 
the case p =  1 one may follow the pattern of the previous case only using 
Proposition 3.4 instead of Proposition 3.6. We omit obvious details and 
Theorem 1.2 is thus established.
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1. Introduction

Consider the following model:
(i) a particle starts from the position 0 6 and executes a Wiener 

process W (t) €
(ii) arriving at time t — 1 to the new location W(  1) it dies,

(iii) at death it is replaced by Y  offspring where

P {Y = l}=pi (1 = 0 ,1 ,2 ,...)

and
OO

p i ^ o,
1=0

(iv) each offspring, starting from where its ancestor dies, executes a Wie­
ner process (from its starting point) and repeats the above given steps 
and so on. All Wiener processes and offspring-numbers are assumed 
independent of one another.

A more formal definition is given in Chapter 6 of [3].
Let A C Rd be a Borel set and let A(A, t) (t — 0 ,1 ,2 ,...)  be the number 

of particles located in A  at time t. Then

B(t) = X(Rd,t)

is the number of particles living at t and {B(t),  i — 0 ,1 ,2 ,... } is a branching 
process. From now on we assume that

OO

1 < m  — kpk < oo 
k=o
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and

0 < a 2 =  ^P(/c — m )2pk <  oo.
k=o

It is well known (cf. [2]) that the limit

t—>oo m
exists a.s. and 

(1.1) E B{t) - B
m L

= 0 (m -‘/2) (i =  1 ,2 ,...)

where B  is a non-negative r.v. with
(1.2) Efl = l,

(1.3) P{B = 0} = q 
and q < 1 depends on the distribution {pk}-

It is easy to see that

(1.4)

where

E(X(A ,T)\B(T)) = B(T) J <p(x,T)dx

<P(x , T) = <pd(x, T) = (27TT ) - d' 2 exp ( -  ̂ ) .

(1.4) suggests that X(A,T)  as T  —too should behave like the right-hand side 
of (1.4). A result, saying that it is indeed so, is the following

T h e o r e m  A ([3]). Let
C(x)=C(x i , x 2, . . . , x d) =

= {y =  ( y u  V2 , ■ ■ • , yd)  ■ \xi  -  Vi\ i  -  (* =  1, 2, . . . , d )},

\ ( x ,T )  = \(C(x),T)
and x  =  x(T)  £ Zd be a sequence with ||z|| ^  T 7 (0 ^ 7 ^  1). Then for any
£ > 0

p  ̂  rp(d+2—27—2e)/2

where C  > 0,

A (x,T)
m *

■H(C(x),0,T)B £1  U e x p ( -C T Ä)

H(A,y, t)  =

<p(x — y,t)dx if t > 0,
A
1 if t = 0 and y £ A,

, 0  if t = 0 and y £ A
and 5 is a small enough positive number.

In case x — 0 we get the following consequence
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T heorem B. For any e > 0 there exist a C = C(e) > 0 and a 5 =  0(e) > 0 
such that

P T l A(ü;,7 ) (2ttT )d/2 -  B  ^ l l  ^ e x p ( - C T s
m 1 J

for any T  = 1,2, . . .  .

It is worthwhile to mention that this theorem is the best possible in the 
following sense:

THEOREM C ([3]). For any C>  0 there exists a S — 6 (C) > 0 such that

Note that in case ||x|| =  T7 ( j >  1/2) Theorem A does not say too much 
on the limit behaviour of m~7 \(x,  T). The case ||x|| T 1/2 is studied by
Biggins [1]. In fact it is proved that the limit behaviour of A(x, T)  is similar to 
that of the right-hand side of (1.4) even if x  is large but no rate of convergence 
is given. In the present paper we intend to study the rate of convergence 
when ||x ||^> T '/2 but || rr || <^T. The expression “moderate deviation” refers 
to this fact.

Our main result is the following:

T heorem. Let h — h(T) (T = 1 , 2 , . . . )  be a function with 

(logT)1+£ ^ /i ^ T(logT)_£_1 (e > 0).

Then

h(T)(\ogT) l+ £/ 2
sup
i€Zd
11*11 Zh

^ l ( v ( x , T ) ) - l - B  ^  (logT)_£/41 m 1
< T - 2

Consequently,

t 1̂  h(T) (log r y + £/ 2
sup
xezd

IWIgft

A (x,T) (v (x ,T))~l — B
m 1

= 0 a.s..

In order to enlighten the meaning of the above Theorem we give two 
examples.

E x a m p l e  1. Let

l+£h =  T 7(logT) ( 0 ^ 7 < 1 , £>0).
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Then
j ’1-7

■
(log T )2+2e

sup
xezd

A (x,T)
m 1

M s .T ) ) - 1 * -  B  ^  (logT )-£/4 U r 2

and

||x||gT'i'(logT)1+£

y l-7
T^400 (logT)2+2£

sup
x e z d

A (x,T)
m T = 0 a.s.

llx-HgT-TogT)l+e

Note that this result is clearly stronger than Theorem A and slightly 
stronger than Theorem B.

E x a m p l e  2. Let

h = T(logT)_Q (a > 1).

Then for any e > 0

p jO o g T )“- 1- sup
x ezd 

||x||^T(logT)-Q

-  B  ^ (\ogT)~eA  £ T ~ 2 
rn1

and

lim (logT)
T  —>oo

a— 1— £ sup
xezd 

llx ll=T(log T)~a

A (x,T) -L---- — (<p{x,T)) - B
m ±

= 0 a.s..

The proof of the Theorem in case d > 1 is the same as in case d — 1. 
Hence the proof will be presented only in case d =  1.

2. Two lemmas

Introduce the following notations:
X

$ ( . x )  =  ( 2 7 r ) ~ 1 / / 2  I  e~u t2du,
— OO

£ + 1/2

J i  = J i { x , T ) =  I  (p(u,T)du,
x—1/2

J2 =  J 2 (x ,T , t )  =
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-t-OU / ‘ \ i

= J  ( J  <p(Z-y,T - t)d A  <p{y,t)dy =
-oo \r - l /2  '
+oo

= J  ( J i ( x - y , T - t ) ) 2(p(y,t)dy.

Lem m a  1. Assume that |x |^ 2 T . Then

(2-1) exp( - ^ ) ^ ’T ) = l71 = exp( 4 r ) ^ ^ ’T )-

P r o o f . Clearly

1/2

Jl =

1/2 1/2

I  y>(a; + u,T)dt; = ¥)(x1T) |  e x p ( - y )  exp ( - ^ ) d u ,
- 1/2 - 1/2

and

/ 1
)s

/ P2 \ / I  1\
GXP \ 8T “ p ( - f f )  = ‘ ( - 2 ^ 2 )

1/2

|  e x p (-
an/ /  ^ N ( x \ \

OT'\d v -  \ eXP\2 T J1 - eXp( " 2 ^ ) )
T y X

- 1/2

Since

. ^ M g W - á O )  ( N )
x \  4 T z

we have (2 . 1 ).

Lem m a  2. Assume that

, , T T
l < |x |< ; — — and 0 < i <

Then

l°g T

'2|x| ix2

logT

^2 = e x p ( - ^ - f ^ - ) ( l  +  — )(^(a ;,T ))2-|- 

/ 2 í \ i / 2 1 / I re 12 \
+  y  H exp( - 2 r ) -

( 2 . 2 )
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P ro o f . By (2.1)

1*1j  ( J i { x - y , T - t ) ) 2(p{y,t)dy <;

-1*1
1*1

-  /  exp ( 2 (T ~—t) )(lp(x - y i T ~  0 ) W y  ^
-i*i

+ooJ  (<p(x — y ,T  — t)2ip(y, t)dy

where

+oof  (‘p ( x - y , T - t ) ) 2<p(y,t)dy =

(27r)-3/2r 1/2
T - t e x p | 4 f ^ f  +  f ' ) ) ^  =

(27r)“3/2r 1/2 /  x
exp

T - t

/ expH (
-oo

(
4-oo

T  + t
exp -

T  + t

— OO 

n2

2 t { T - t )

=  (27r ) - 1(T2 - i 2) - 1/2e x p ( - ^ )  =

=  (<p(x, T))2T(T2 -  Í2) - 1/2 e x p ( ^  -  ^

^  (<p(x, T))2 ( l  +  ]—  )  exP ( f ^ )  ■

Now we have

(y - 2 x T + i

J2 = J  ( J i ( x - y , T  - t ) ) 2<p{y,t)dy+

-1*1

+ J  ( J i { x - y , T  - t ) ) 2 ip(y,t)dy.
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We also get

I  ( J i ( x ~ y , T - t ) ) 2i p ( y , t ) d y ^

Ivl^M

=  /  (P ( y , t ) d y  =  2 ( l - $ ( ^ L ) ) ^

ll/|=lxl

< ( 2 t y /2  i
V 7T / \x

xf_\ 
21 / '

Hence we have (2.2).

3. The moments of A(x,T)

Let Pi =  Pi(T), P2 =  P2(T ),. . . ,  Pß(T) = Pb (T)(T) be the locations of 
the B(T)  particles living at time T  in an arbitrary but fixed order. Con­
sider the paths (Wiener processes) {Wi( t) ,W 2 {t),... O ^ t ^ T }
of these particles, i.e. WZ(T) = P;(T) (* =  1 ,2 ,. . . ,  B(T). Define a partition 
C i,C a ,. . . ,  Ct  of the set {Pi, P2,.. .  , Pß(T)  } as follows: Pj  E C, if

Wj(i) =  Wi(i) for i n l ­

and for any e > 0 there exists a 0 < £1 =  £i(e) < e such that

W i ( t  +  £ l ) # W i ( t  +  £ i ) .

Finally let

and

if Pi&C(x),
if P2£C(x)

I Ci I — Cj.
Note that

Ec,-=  (m — l)m T_* (* =  1 ,2 ,. . . ,  T — 1).

Since
B( T)

A(®,T)= £  /i,
i=i

by Lemma 1 we have
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LEMMA 3. Assume that \x \^2T .  Then

exp( “ 8 ^ (:r’T)jB(T)-  J lB (T )  =

= E(A(x, T) I B(T)) Í  exp ( ^ ) R x , T)B(T).

Consequently,

exp( - ^ ) < ^ ( a : , r ) m r  g EA(x,T) ^  exp(jj|()v?(x,T)m '7.

Lemma 4. Assume that

l < | x | <
log T

Then

(3.1) EA2(x,T ) ^ (2  +  e ) ( m - l ) m 27V ( x , T )

for any £ > 0 if T  is big enough. 

P ro o f . By Lemma 2

V hI j  = J 2 ( x ,T , k ) Z

n.X01VII ' 2 \x\ 
. T

Ax2
-+  T2 .)('+ £)<«*x‘,T ))2 +

( 2 k \ 1/2 1 ( x2 \
+

( v ) R
exp^-

~ 2 k )

ck, A: <
T

and 1 < |x|
log A ’ -  logT

Hence

/ T/ logT .

R  E  E  '*) =
v fc=i Pjeck '

T / log T
= (m — l ) m 7 m ~ kJ 2 {x,T,k)  ^

Jk=l
T /logT  .

^ ( m - l ) m T(^(x ,T ))2 exp A: (log m - ^ 2 ) ) ( l  +
Z 1 \ '
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(m
x T 1 / 2 \ i / 2  

1 )mT — ( - )\x\ \ 7r/

T/logT

E *,/2
fc=i

<

^  (1 +  e)(m — l)m 7 (</?(£, T))2

for any e > 0 if T is big enough. 
Since

E(f' É  E  7j) s
X k=T/ log TPjECk 7

/  T \  I I  T
= E ( Jl 51 cfc) ^  (m ~ 1)m7’exp ( g ;)¥j(S|T) ^

'  Ic=T/IogT 7 k=T/ log T

E (1 + e)(m -  l)m r (</3(x,T))2,

we have (3.1).

4. Proof of the Theorem

Let y i, y2 , ■ ■., yB(t) be the locations of the B(t) particles living at time t. 
Let Aj(a;, T, t) be the number of those offsprings of the i-th particle which 

are located in x  at time T. Clearly

B( t )

a(z ,t ) =
i=l

Lemma 5. Let K >  2(logm +  2) and

Qi =  i2 i(i,if) =  {|j/i| ^ K s ,  i = l , 2 , . . . ,B ( s ) ,  s ^ t } .

Then

(4.1) P ^ J ^ l - e “ *

for any t = 1,2, . . .  .
P r o o f .

P { í l - í í i}  ^ E Í ^ S ( s ) e x p ( - ^ ) ' j  ú e ~ l.
' s = t  7

Hence we have (4.1).



248 P. RÉVÉSZ

Let
J7(t) = J7 {X(x, s) , r e e l 1, s =  0,1, 2, . . .  ,í} 

be the smallest er-algebra with respect to which the array

{A(x,s), xGK1, s =  0 ,1,2, . . .  ,£}

is measurable.
L e m m a  6 .  Let

I T
1X1 = (log T)'+°'

t ^ A  log T  (A>0) ,
K  > 2(logm 4- 2).

Then on the set Q\(t ,K) we have

(4.2) (1 -  A)m T~t(p(x, T) ú E ( X i ( x ,  T , t) \ T(t))  g (1 +  A)mr -V (^ , T),

where
A = A ( A ,K ,x ,T )  =

2KA\x\ log T +  2 K 2A 2 (log T f

P r o o f . Observe that o n  the set Q.\(t,K)
T

\ x - y i \  i + K t  < 2(T — t).
(log T)l+*

Hence by Lemma 3

E(A i i x . T ^ m t ) ) ^

-  exp( 4(T — t ) ) v (x - y u T ~ t)mT~t Ú
|rc| + K A  log T

^ exp^-
\

- )(p(x,T)m
T_t <p(x-yj ,T - t ) 

<p(x ,T)
Since

V>(x-yi ,T - t ) i  T  ^ 1/2 ( i ( i x - y i r  x ^ \ \ s
=  \T~—t )  e x p  "  2 \ - Y ^ T  ~ t ) =

i f ( x ~ y i ) 2 z2

<

(p(x,T)
( T  ^i/2 ( x\yj\ , x 2t. | y- ^
\ T - t ) eXP\ T - t  + 2 T ( T - t )  + 2 ( T - t ) )  =

T  a 1/2 / \x\KA  logT x2A logT K 2A 2 (\ogT)2

T - t  + 2 T ( T - t )  + 2(T — t)

s(>

exp <

A log T
)  e x P  ^

2\x\KA  log T  +  K 2A 2 (log T f
g l  + A,

we have the upper part of (4.2). The lower part can be seen in the same way.
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and

Lemma 7. Under the conditions of Lemma 6  on the set Oi(í, K) we have

E(A?0r, T, t) I F(t)) ^  (2 + e){m -  1)(1 +  2A)m2(T" V ( z ,  T) ^
^  3 ( m  — 1 ) m 2 ^  ~ l\ i p ( x , T ) ) 2 .

P roof is the same as that of Lemma 6.

Lemma 8 . Under the conditions of Lemma 6  on the set fii(í, K) we have

(1 -  A W ^ B Í t M x ,  T) Í  E(X(x, T) I F(t)) Ű
g ( l  + A  )mT- tB(t)(p(x,T)

Var(A(x,T) | F(t)) ^ 3(m — 1 )m 2(T~^B(t)<p2 (x,T).
P roof of the T heorem. Let

IC = {|A(s,T) -  E(A(x, T) I T(t))\ ^  m É/4(Var(A(x,T) | ^ ( i ) ) )1/2}.

By Lemma 8

where

C = 11A(x, T) -  E(A(x, T) I F( t ) ) \^  m Típ(x, T) (3(m -  1) ^  },

M  =  A )—^  — Í3(m -  1 ) ^ )  ' l 2 m - ^ 4 <{ m L \ m 1 /

}

and M  is the complement of M .  By Chebyshev inequality on the set íí] (t, K)  
we have

P [ M  I T(t)} g  P{/C I T ( t ) }  ^ m-i//2.
Hence

P

and

P

{

A (x,T) B(t) B(t)
m Tip(x,T) m l ^ +  (s (m  — l ) ^ j - Y ^ 2m~t/4\  < m ~ ^ 2

V m£ / J

{ h(T) (log T ) 1+e/ 2
sup
xezd

1*1 á*(r)

A(x,T)
m Tip(x, T)

- B ^ (lo g T )-£/4} ^ m ~t/2h(T)

if T is big enough. Choosing A of Lemma 6 big enough we have the Theorem.
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ON LAST EXIT DECOMPOSITIONS OF LINEAR DIFFUSIONS
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Dedicated to Professor E. Csáki for his sixtieth birthday

A b s tra c t

Let A  be a regular one-dimensional diffusion living on an interval I Q 5R. In this note 
we study the last exit decompositions of X  at a fixed time t and at the life time. It is seen 
that these decompositions can be simply proved by using symmetry properties of X. Some 
further implications are also presented.

1. Introduction and notation

Let X  = {X t ; t ^  0} be a one-dimensional diffusion (in the sense of Ito 
and McKean [9]) living on an interval /  Q JR. We assume that X  is regular, i.e., 
Px (Hy < oo) > 0 for every x, y G I  where H y := inf {t : Xt = y}  and Px is the 
probability measure associated to X  when started from x. It is proved in Itő 
and McKean [9] p. 149 ff. (see also McKean [11]) using the theory of eigen- 
differential expansions that X  has a transition density, denoted p(t-,x,y), 
t > 0, x,y  G I ,  with respect to its speed measure m, i.e., for every t > 0, 
x G I  and /  G B b ( I )  (:= the set of all bounded real-valued Borel-measurable 
functions on I )

E x{f{Xt) )= j  p(t; x, y ) f  (y)m(dy).
I

The function p is jointly continuous in all variables, non-negative, and, which 
is important here, symmetric in x and y, that is

p( t -x,y)=p{ t ;y ,x)  for all x, y GI.

The Green function is given by

oo

9a(x,y)  : =  J  e~atp(t; x, y) dt. 
o
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Key words and phrases. Last exit time, bridges, excessive transforms, scale function, 

speed measure, Green function.
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252 P. SALMINEN

Using the fundamental increasing and decreasing solutions ip and ip, respec­
tively, the Green function can be expressed for x y as

9a(x,y) =  w~1ipa{x)<pa(y)

where

■Wa ■= (x) i pa ( x ) -  Ipa (x ) f t  (x ) =  V’a  (®) (x ) ~  Ipa (x ) <pa (x)

is a constant, so called Wronskian. Here, letting s denote the scale function, 
e.g.,

ipa (x) = lira
yjx

Va jx) ~  <Pa (V) 
s { x ) - s { y ) Va (*) =  limyix

Va (V) ~ Va (g) 
s ( y ) - s ( x )

Recall also the usual normalization u>o = 1. Further, p satisfies the Chapman- 
Kolmogorov equation for all s < t

p{t\x, y) = I  p{u- ,x ,z )p(t -u;z,y)m(dz).
/

Existence and some regularity properties of p have been proved also by 
Rogers [14] for diffusions which can be obtained as solutions of stochastic 
differential equations with smooth coefficients.

Recall further (Itő and McKean [9] p. 154) that the redistribution of Hx 
has a density ny(t,x), t >  0. From the eigen-differential expansion it is seen 
that n y(t,x)  is continuous (at least) in t and y, non-negative, and satisfies 
for all s < t

( 1 ) ny(t,x) = j  p(u-,y,z)nz (t — u,x)m(dz) ,

where p is the transition density of the diffusion obtained from X  by killing 
it at the time Hx.

For given x and t > 0 introduce

Gy = sup{u < t : X u = x} and Dp = inf{u > t : X u = x}.

Then the celebrated last exit decomposition says that for u < t < v

P  x( G p e d u , x t e d y , D ? e d v )  =
= p(u; x , x)ny(t — u, x)ny(v — t, x)du dv m(dy).

This is usually stated without Dp which enters into the formula by a standard 
application of the Markov property. Last exit decompositions are valid, of 
course, for very general Markov processes. In Getoor and Sharpe [5], [6] 
the result is proved for Hunt and standard processes. For continuous time
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Markov chains, see Chung [3], and Williams [18]. In Maisonneuve [10] last 
exit decompositions are put into a general framework, called exit system, 
which shows connections to excursion theory. This is further developed in 
Getoor [4] and Getoor and Sharpe [8]. For Brownian motion see Chung [2].

In this note we prove (2) using time reversal. Although the approach is 
natural and intuitive we are not aware of any work where this is exploited. 
The idea is not, of course, new. In fact, in Williams [18] p. 222 this point 
of view is taken up for continuous time Markov chains. In spite of this we 
believe that it is worthwhile to present the following study mainly due to its 
simplicity.

Our approach leads also to complete characterizations of the laws of the 
processes {Xu : 0 u ^  Gf},  {X„ : Gf ^  u ^  <}, and {Xu : t ^  Df}.  
Moreover, we prove, in the transient case, last exit decompositions at the 
life time. These provide a new derivation for the distribution of the last exit 
time; a result originally due to Pitman and Yor [12] in a special case, see 
also Getoor and Sharpe [7]. For other proofs see Salminen [15, 16].

2. Time reversal of diffusion bridges

We consider X  in space-time, that is, we study the process X  = {(Xj, t ) : 
t ^  0}. Assume that Xq =  a  and let ß  € / .  Introduce

h{x, u) := h(x, u; ß, t) := j  ^ u\x,ß),  0 ^ u < t , x € l ,
otherwise.

Using the Chapman-Kolmogorov equation it is seen that h is excessive for X:

0 ^ u < v < t, 
otherwise.

EXtU( h ( X v , v , ß , t ) )  =  {

For /  G Bb{I) and u < v A t let P{fu be the semigroup defined by

C / W = = E , ( / M  . - ) ) ! ^ ) .

Here and in many cases below we consider X  in its canonical framework 
and let u>: [0, oo) —> I  denote a generic element in the space of continuous 
functions. Let (X1*’1’13, be the strong non-time-homogeneous Markov
process induced by P„ u. We refer to Sharpe [17] p. 298 and (62.19) Theorem 
p. 296 where existence is proved in the general framework using multiplica­
tive functionals. Because 0 < h < oo on /  x [0, t) and equals zero elsewhere 
X a,t’P lives on /  x [0, t). Due to the symmetry of the transition density p 
the process X a'1̂  has a very clean time reversal property stated in the next 
proposition. The sign means that the processes on the left- and the 
right-hand side are identical in law.
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P roposition 1 .

{ X ^ f  : 0 < u < t }  ~  { X ^ ’a : 0 < u < t}.

P r o o f . For 0 < u\ < ■ ■ ■ < un < t we have

P " ’1’13(u(t -  ui) e d y i , . . .  , uj(t — un) £ dyn)
= Ea(h(yu t - u i - , ß , t ) ] u j ( t - u n) e d yn, . .. ,u(t  -  ui) E dyi)
= p{t -  un-, a, yn)m{dyn)p(un -  un-p,yn, yn-i)m(dyn- i )

,p{uv,yi,ß)■... -p(u2 - u 1;y2 ,yi)m(dyi)  

= p(ui;ß, yi)m{dyi)p(u2 -  up, yu y2)m(dy2)

■... ■ p(un -  un-i-yn,yn-i)m(dyn- 0 

=  P ,:M’öM u i) G d y i , .. .,uj(un) e dyn).

p(t \a,ß)

p ( t - u n-,yn,a)
p{t-a,ß)

□

Notice from the definition of P^v that the finite dimensional distributions 
of X a,t'ß are obtained from the distributions of X  by conditioning on Xt  =  ß. 
Due to this and the next result the process is called an X-bridge from
a to ß  having the length t.

P roposition 2. lim X u ’t,ß = ß a.s..u—>t
P R O O F .  Clearly, by continuity of paths, lim X u = a  a.s.. The measuresu—> o

P Q and P“’*’/3 are equivalent when restricted to T u := ct{ui(u) : 0 ^  v ^  u}, 
u < t , and, hence, a.s.

lim X f ’t,ß = a.u-+ o “
The claim follows now from Proposition 1. □

R emarks, (a) It is assumed above that ß  € I. However, it is also possible 
to take ß  = r, say, where r, the right-hand end point of I, is supposed not 
to be in I. Assume, furthermore, that Hr < oo with positive probability 
(strictly speaking, here H r := inf{u: XM_ = r } )  and let

( nx ( t - u ; r ) ,  0 ^ u < t , x e l  
h (x ,u ) := < , .\  0, otherwise.

From (1) it follows that h is space-time excessive for X,  and we can construct 
X a’t,r. Intuitively, X a,t,r is obtained from X  by conditioning X  to hit r  at 
tim e t. Proposition 1 is true also in this case. The process X r’t’Q is governed 
by the measure obtained as a weak limit

■pr,t,a iimP^,i,Q.
ß\-T
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Existence of the limit follows from the fact (ltd and McKean [9] p. 154)

n x(t;r) = lim p{t;x ,y )
vtr s(r) — s(y) ’

where s is the scale function of X. Notice that s(r) < oo because H r < oo 
with positive probability.

(b) We give here a more informative construction of the process X r,t,a 
introduced above. Let Z  be the process obtained from X  by conditioning X  
not to hit r. Then Z  can be realized as an h-transform by taking

f s (r)-s( .x ), if Hr < oo a.s.
\  Px[Hr = oo), otherwise.

Hence, Z  is a diffusion. It can be proved that r  is an entrance-not-exit 
boundary point for Z. In particular, this means that Z  can be started from 
r and it never returns there. The diffusion bridge Z a,i,/3 can be constructed 
in the usual way, and straightforward computations show that

(3) X a’tlß ~  Z a’t'ß.

Moreover, Z r , t is well defined and (3) is valid also for a = r.

(c) The absolute continuity property of the measures PQ and point­
ed out in the proof of Proposition 2 extends by standard arguments to be 
valid at stopping times. To formulate this let T  be a stopping time and Ft  
an Fr-measurable bounded random variable then

Eq-^(Ft ; T < í ) =  Eq(p(t — T ; X T, a) 
p{t;a,ß) Ft ; T  < t).

3. Last exit decompositions and distributions

Let X  be a regular diffusion and Gf  the last exit time at x before a fixed 
time t. We start with by proving the last exit decomposition at a fixed time.

P roposition 3. For t>  0

Px(G'i 6 du, Xt  e  dy) =p(u; x, x)ny(t — u , x ) dum(dy).

P roof. Prom Proposition 1 we obtain u < t 

P x ( G t  > u, X t € dy) = P x { G xt > u \ X t = y)p{t; x, y)m(dy)
= P X) y)m (dy)

=  Py,t,x(Hx < t -  u)p(t; x,ij)m(dy)
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= Ey(P^  Hx < t  — u)p(t] x, y)m(dy)
Pv"> V-) •Ej 

t —u

= m(dy ) j  p(t — v; x, x )ny(v, x) dv. 
o

Differentiating with respect to u gives the claim. □

Let X  be the diffusion obtained from X  by killing at Hx and X x'u,y 
the X-bridge from x  to y having the lenght t — u (see Remarks (a) and (b) 
above). For Brownian motion the second statement in the next proposition 
can be found in Revuz and Yor [13] p. 454.

P r o p o s i t i o n  4. (a) Conditionally on Gx = u
{Xs : 0 ^ v < G f }  ~  { X x'u'x : 0 ^ u < u } .

(b) Conditionally on Gf  = u and Xt = y

{Xv : Gxt ^ v < t )  ~  {X x’l- U’y : 0 ^ v < t - u } .

PROOF, (a) Consider for 0 <  t \  <  ■ ■ ■ <  t n  

P x { X t i  E  d x  i , . . . ,  X t n  E  d x n , t n ^ G x , X t E  I )

=  I  Px,t,y( u > ( t i )  E  d x \ , . . .  , u j ( t n ) E  d x n , t n  <  G x ) p ( t \  x ,  y ) m ( d y )

/

=  j  V y ' t 'x { u ( t - t n ) e d x n , . . . , u ) { t - t i ) e d x i ,  H x < t - t n ) p ( t - , x , y ) m ( d y )

t - t n

=  !  m{dy)p(t-,x,y) j  Py,t,x(Hx E du) 
i o

• P x jT M *  ~ ln) S dxn, . . . ,  uj(t — t\)E dx\)
t  t n

= !  m(dy)p(t\x, y) j  P y't'x {Hx Edu)

• Px,i U , x ( u i ( t  —  u  —  t n ) E  d x n , . . .  , u > ( t  —  u  —  t i) €  d x i)
t - t n

=  j " m ( d y ) p ( t ]  x ,  y )  j  P y ’t 'x ( H x E d u ) P x ’t ~"u 'x { u > ( t i )  E d x x , . . .  , u j { t n )  E d x n ) 

/ o
t

=  j  m ( d y ) p ( t ; x , y ) J P x M y ( G x  E  d u ) P x 'u 'x { u ( t i )  E  d x x , . . .  , u j ( t n )  E  d x n )
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'f G du, X t € I)Px'u’x(u(t!) e  d x x, . . . ,  w(tn) G dxn).

The second equality is based on Proposition 1, the third one on the strong 
Markov property, and the sixth again on Proposition 1. The claim (b) can 
be proved very much in the similar way, and we leave it to the reader. □

Assume now that X  is transient and let (  denote its life time. Define the 
last exit time at x:

Let k denote the killing measure of X , and recall the formula (see Ito and 
McKean [9] p. 184 or Borodin and Salminen [1])

Below we give last exit decompositions at £. In the first one X  dies inside the 
state space I, in the second one X  dies at a killing boundary point or drifts 
toward a boundary point, and finally these results are combined to give the 
distribution of Gx.

P roposition 5. For y e l

Px(Gjf G du, G dy) = p(w, x, x )Py(Hx < oo) du k(dy).

P roof. From (4) it is seen that X  conditioned to have £ =  u and X^_ = 
y e l  can be realized as X x,u,y. To prove the claim, we compute for t > 0 and 
y e I  as follows

Gx := sup{u <  £ : X u =x}.

(4)
A

oo oo

V — t u= v  
oo oo

V—t U=V
oo u

oo
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o o

= / E„(p ( u -  Hx;x,x) 
p{u; y, x)

oo u—t

; H x < u - t ) P x ( ( e d u ,  X ^ G d y )

= k(dy) i  du J dvp(u — v; x, x) ny(v, x) 
t o

oo
= P y ( H x < oo)k(dy) j  p(u;x,x)du. □

Before proceeding recall that for y ^ x

(5) Py{Hx < oo) =  lim Ey(e
q|0

-qHt ) =  lim ga {x,y)
0:4-̂  9ct(.X̂  *̂ )

9 o ( x , y )
g0 (x,x)'

P r o p o s i t i o n  6 . (a)  Assume that the right-hand end point r is not in
I, and that Hr < oo with positive probability or H r =  oo a.s. and lim X u =  r

u->c
with positive probability. Then

PX{G? Eds,  lim X u = r) —s u-K
p(s-,x,x)

ipo(r)To(x)

(b) For the left-hand end point l we have similarly

Px(G?eds,  lim X u = l) = 
 ̂ u-»C

P(s-,x,x)
ipo{lHo(x)

ds.

P r o o f . We  prove (a); the proof of (b) is similar. Consider first the 
case H r < oo with probability 1. Let P be the measure associated with 
the diffusion Z  introduced in Remark (b) above. The speed and the scale 
measure of Z  (see Borodin and Salminen [1]) are

(6) m(dx) = h2 (x)rfi(dx) and s(dx) = h~2 (x)m(dx),

respectively, where h(x) := po{x) =  s(r) — s(x). Notice also that in this case 
^o =  l- The transition density p with respect to m h is given by

(7) p(u-x,y)
p{u;x ,y ) 
h{x)h{y) ’

p( u ;  r,  y)
p(u; x, y) 

itr  h(x)h(y)
n y(u;r)

M y)

and
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Then, because £ =  Hr,
oo oo

PT{Gf > v , lim X u = r )=  I I Px (Gf  G ds, £ 6 du, lim X t =  r) 
s u-+c J J  C

S = V  i i = 5  

OO oo

= J [  Px'u'r (GZeds)Px( ( e d u , l i m X t = r)
S=V U—S

00  u

= f  j  p *’u’r(Gxu e d s ) n x(u,r)du
u=vs=v 

oo

_  J  pr’u'x(Hx < u  — v) nx(u,r) du
V

OO

/ '^  rp ( u - H x;x,x) TT \ j= / Er (----—------- r----; Hx <u — v) nx(u, r) du
J P W  r, x)

7—S,X\X^Pr{Hx e ds) nx (u, r) du 
P\U\ r, x )

OO u —

- I I
U = V 5=0 

00  u — v
_  Í  J  p (u - s - , x , x )

u = vs=0
p ( u ;  r, x )  j / f r

limPy(Hx 6 ds) n x (u, r) du.

Using the formulae for the transition density p given above, absolute conti­
nuity, and changing the order of integration give

P x(Gy > v, lim X u — r) — limU—*£
P y ( H x  <  OO)

y t r  s ( r ) - s ( y )

<po{y)

ooJ p(u; x, x) du

- lim
j / t r  ( s ( r ) - s ( y ) ) i p 0 (x)

OOJ p{u\x,x) du.

The second equality follows from (5). The proof of the first special case is 
now complete. Next assume that 0 < P x(Hr < oo) < 1 for every x  6 I, and 
introduce

h*(x) := Px(Hr <  oo) =
Vo(»")

Then X  conditioned by {Hr < oo} is a diffusion and can be realized as an 
h*-transform of X.  The speed and scale measure, m* and ,s*, respectively,
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are as in (6) and the transition density, p*, as in (7) with h* instead of h. 
Furthermore, for x ^ y

OO

f  *tJ.  ̂ V»o(*) vo{y)  x */ \J p [ f , x , y ) d t =  h{x) h(y) = M x ) n (y)
0

giving

Vo (*) =  s* (r ) -  s* (*) =  V’o (r ) •

Applying now the result in the special case above to the conditioned process 
we obtain

P X(G5 G dt, lim =  r) =  Px(lim =  r) Px(Gy G di| lim X„ =  r)
'  U — u— S u—

= h*(x)p*(t, x, x) 1 dt = j i ß ^ L
Vo(x ) ^o{r)(pQ{x)

as claimed. Next assume that X  drifts to r  with probability one, that is, a.s. 
Hr =  oo and lim X u =  r. Then, of course, also a.s. £ =  oo. Moreover, i/>o =  1,

U—>£
and </?o =  s(r) — s(-). Let {r(n)} be a sequence increasing to r  as n —> oo. For 
7 >  0 we have

Ex(e_7G<) = Ex(e~7GC; limX, = r) =  lim Ex(e~7G*<">; Xc(n) = r(n)),

where £ (n) = £ A i/r(n) =  i i r(„) • Let and be the fundamental decreas­
ing and increasing, respectively, solutions associated to X  when stopped at
C ( n )  :

V ^ H x )=V-y(x )-

ipi!l)(x)=ip1 (x),

Vi  (r (n )) 
i/>7(r(n))

and especially for 7 =  0

<p{0n)(x) =  <p0 (x) -  Vo(r(n)) =  s(r(n)) -  s(i),

^o")(a;)='0o(3:) =  l-

Hence, using the first special case above and the fact that lim ipa(r(n)) = 00
n—►oo

when a  > 0 (see Itö and McKean [9] or Borodin and Salminen [1]) we obtain

Ex(e‘- 7  G? .<: l im X j= r ) =  lim G ^ \ x , x )  
i-»C n-»oo ' ( n )  /  \

<Po (x )

=  G 7 ( x , x )
<Po(z)
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proving the claim. When 0 < Px(lim X t = r) < 1 we can proceed similarly as 

in the second special case above, and we leave the details to the reader. □ 
P roposition 7.

P x(Gx<€dt)
p{t',x,x) _  p{t;x,x)
go{x,x) (po(x)ipo(x) ('

P roof. Because P.r(G  ̂< oo) =  1 and

OO

/
p{t; x, x) dt = g0 (x, x) = ip0 {x)ip0 {x)

the claim follows from Propositions 5 and 6. □
Remark. From Propositions 5, 6, and 7 we obtain under the made 

assumptions on the boundary behaviour the following identity for the Green 
function:

1
go{x,x)

1
ipo{r)ip0 (x)

9 o ( x , y )

9o(x,x)
k{dy) +

1
<Po(l)ipo(x)'

To explain this analytically notice that

/  9- ^ i k { i y ) = S '  M y )  +  w p j / M y )  k ( d y )
I  l X

_ iI)q {x ) V > o ( f + )  y > 0 ( r ~ )  V?o ( x ) 

ipo{x) V’oi®) <Po(x) <Po(x)
1 , y ö (r ~) i>ö(l+)

go{x,x) <p0 (x) 1p0 {x)

We have used here the fact that ipo and ipo satisfy a generalized differen­
tial equation (see Itő and McKean [9]); it is also assumed that k does not 
charge x. Consequently, we must have

w0 = l = ip0 (l)ip0 {l+) = ij>o(r)(pQ ( r - )

or, equivalently,
<A)(r)i/>o ,(r-) =  ipo(l)<PÖ(*+) =  0

which is not, perhaps, obvious when r, say, is exit-not-entrance or natural.
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DISTRIBUTIONS BASED ON SMIRNOV ONE-SIDED AND 
RELATED RANK ORDER STATISTICS

JAGDISH SARAN and M. K. SUKLA

Dedicated to Professor E. Csáki for his sixtieth birthday

Abstract

This paper deals with the two-sample problem and investigates the joint and marginal 
distributions of the Smirnov one-sided statistic, RmniÁ), the index where D ^n is
achieved for the i1'1 time, j) ,  the length of the interval between the i th and the j th
maxima (1 ^  i ^  j)  and Qmn, the number of times D)nn is achieved.

1. Introduction

Let < X(2) < • ■ • < A(m) and Y^) < Y(2) < ■ • • < Y(n) be the order 
statistics from two independent samples of i.i.d. random variables having 
continuous distribution functions F  and G, respectively, and let Fm(x) and 
Gn(x) be the corresponding empirical distribution functions. Let Z\ < Z2 < 
• • • < Zm+n denote the ordered combined sample and let Ri denote the rank 
of in the ordered combined sample. The statistical problem in question 
is to ascertain whether or not two samples are from the same population 
(i.e., F = G ), and thus it is important to derive probability distributions of 
various statistics when Hq : F  = G is true. The Smirnov one-sided statistic 
is given by

Dmn =  sup{Fm(f) — Gn(t)} =  f ——) max (k(m + n) -  m R k). t \rnn7 litSm

This follows from Maag and Stephens [3] and also from Steck [7]. If 
mnD+ n =  d, let R+m(i) denote the index of the point where fc (m -fn )-  
mRk =  d for the ith time (* =  1 ,2 ,. . .) ,  i.e., denotes the index where
D*m is attained for the zth time. Let denote the length of the
interval between the *th and the j th maximum (1 ^  i 5=i), i.e.,

Mmn (ÍJ )  = Kan Ü ) ~ C  (*)
and let Q^n  denote the number of times „ is attained.

1990 Mathematics Subject Classifications. Primary 62G30.
Key words and phrases. Two-sample problem, lattice path, Smirnov one-sided statis­

tic, index of the ith maxima, length of the interval between the ith and the j th maxima, 
number of times the maxima is achieved, Steck determinants.

0081-6906/97/$ 5.00 ©1997 Akadémiai Kiadó, Budapest
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The distributions of Rf^n (i), D and have been discussed by sev­
eral authors viz., Vincze [9], Sarkadi [6], Steck [7], Geller [2], Steck and 
Simmons [8], Saran and Sen [4] and Saran and Rani [5] in certain special 
cases. In this paper it is proposed to investigate, for finite m  and n, the 
joint and marginal distributions of D+n, R+n(i), M+n{i,j) and Q+n, for 
1 = * = ji  under the hypothesis F  = G.

2 . Path representation

The (m + n) observations in the ordered combined sample Z\ < Z-i < 
• • ■ <  Z m+n are represented by a minimal lattice path from (0,0) to (n, m ) 
with the kth step being one unit up or one unit to the right according as Z^ 
is an X  or a Y  observation, respectively. It can be observed that after the 
kth step up, the path is at the point (Rf. — k, k ) and that k(m + n) — m R * is 
m  times the horizontal distance from (R^ — k,k)  to the diagonal y = mx/n .  
Thus is m  times the maximum horizontal distance from the path
to the diagonal y = m x/n .  In the sequel we shall use the word ‘distance’ to 
denote ‘horizontal distance’. Distances to the diagonal will be taken positive 
if the point is to the left of the diagonal and negative otherwise.

The results obtained in Sections 4 and 5 also have an interpretation in 
terms of the ballot problem. In that context A  scores m  votes, B  scores 
n  votes, all possible vote sequences are (m?| n) in number, and a path is 
interpreted as a vote sequence.

3 . Some auxiliary results

The following two results, needed in the sequel, are quoted from Bizley [1] 
and Steck [7], respectively.

L e m m a  3.1. Letp be the greatest common divisor (g.c.d.) of sample sizes 
m  and n, i.e., m = ap and n  = bp where a and b are coprime positive integers. 
Then the number of minimal lattice paths from (0,0) to (kb, ka) having just 
t contacts with the line y = m x / n  (not counting (0,0),) and having no points 
above this line (where k is a positive integer) is given by (pk,t where

(3.1) =  coeff. of yk in the expansion of {1 — exp(—A\y  — A2J/2 — . . . )}(

and

j(a  + b ) \  ja  )(3.2)
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L e m m a  3 .2 . Let bi 62 ^  ^  bm and c\ ^  C2 ^  ^  cm be sequences of
integers such that i ^ b i ^ C i ^ n  +  i,  i = 1 , 2 , . . . ,  m. T/ien

( 3 .3 )

where

m  + n
n

P[bi ^  ^  Q, all z] =  det Ci — bj +  j  — i + 1

j -  * +  1 /+.

max(x, 0) 
r

and j  = 1, 2 , . . . ,  m.

4. The joint distribution of D ^ n, R ^ n(i), M + J i, j )  and Q+n

LEMMA 4 . 1 . The number of paths from  (0 , 0 ) to (n ,m ) through the points 
( x \ ,y i ) ,  (£2 ,2 /2), (23 ,2 /3) and (£4 ,2 /4 ), X i^ n y i /m ,  i = 1 , 2 , 3 , 4 ; £1 ^  £ 2 ^  
£3  ^  £ 4 , 2/1 ^  2/2 ^  2/3 ^  2/4, that attain their maximum distance from the diag­
onal y = m x /n  for the first, zth , j th and Ith (i.e., the last) time (1  ú i  Ú j  ^  
/)  at (x\, 2/1), (£2 ,2 /2), (£3,2/3) and (x4,yi), respectively, is the same as the 
number of paths from  (0 , 0 ) to (n ,  m ) through the points (£2 — £1,2/2 — 2/1), 
(£3  — £1,2/3 — 2/1), (£4 — £ j ,  2/4 — 2/1) and (n —x i ,m  — yi) that are never above 
the diagonal and, moreover, never touch the diagonal after (£4 — £1,2/4 — 2/1) 
except at (n ,  m ) a n d  having exactly (l — 1 ) contacts with the diagonal up to 
the point (£4 — £1,2/4 — 2/1) ° /  which the first (i — 1 ) contacts occur up to the 
point (x2 — £1 , j/2 — 2/1) and the next (j — i) contacts occur up to the point 
( £ 3  - £ 1 ,2/3 - yi)-

P r o o f . Let OP1P2 . . .  Pi ■ ■. Pj . . .  P{T (Fig. 1 ) be a lattice path from 
(0,0) to (n, m) which attains its maximum distance from the diagonal y — 
m x / n  for the first, z , yth and the Ith (i.e., the last) time at P\{x\ ,y\),  
Pi(x2, y2), Pj(x3, y3) and Pfix^, yfi), respectively. Now we apply the following
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transformation to this path. The path segment OP\ is shifted up (m — y i) 
units and shifted right (n — x 4) units. Then OP\ is transformed to a path 
from (n — x \ ,m  — yi) to (n , m ) remaining entirely below the line y = m x /n  
never touching it in-between (as shown by TP\  in Fig. 2). Similarly, let 
the path  segment P1P2 . . .  P i . . .  Pj .. .  P{T of Fig. 1 be shifted down y\ units 
and shifted left x\ units. Then it is transformed to a path from (0, 0) to 
(n — x \ ,  m  — y\) not rising above the line y =  m x / n  and passing through the 
points (x2 - x i , y 2 - y i ) ,  {x3 -  x\,  y3 -  yi) and {x4 - x i , y 4 - y i ) ,  each point 
lying on the diagonal y =  m x /n ,  and having in all (Z — 1) contacts with the 
diagonal y = m x / n ; the (Z — l ) st contact occurring at the point (x4 — x 4 ,y4 — 
yi), the (j  — l)st contact at the point (x3 — x \ , y 3 — y\) and the (i — l)st 
contact at the point (x2 — x \ , y 2 — y\) (as shown by OP2 ■. ■ Pi ■ ■ ■ Pj ■ ■ ■ PiT 
in Fig. 2). Thus the complete transformed path OP2 ■ ■ ■ Pi ■ ■ ■ Pj ■ ■ ■ P{TP\ 
(Fig. 2) is in one-to-one correspondence with the original path in Fig. 1. This 
proves Lemma 4.1.

To derive the joint distribution of D/nn,R+in(i),M+in(i,j) and we 
first obtain an expression for the probability

p [mn£>+n=d, R ^ n{l)=r, R ^ n{i)=s, R ^ n(l)=u, Qtnn=l]
P [iTlTlD mn G?, i?mn(l) r, R mn(i) 5, R jjiji (j ) *5 “h Rmn^S) Qmn

for O ^ t ^ u  — s, 1 and d > 0. For this we consider a path
from (0, 0) to (n, m) through the points (a:i,yi), (x2 ,y2), {x3 ,y3) and (x4,y4), 
Xi ^  n y i /m , * =  1,2,3,4; x\  T x 2 ^  £3 ^ x4, y\ ^  y2 ^  y3 ^  y4 that attains its 
maximum distance from the diagonal y = m x / n  for the first, *th, j th and 
Zth (i.e., the last) time at (x4, yi), (x2, y2), (x3, y3) and (x4,y4), respectively 
(as in Fig. 1). This corresponds to a path for which =ny\  — mx\  =
ny2 -  rnx2 =  ny3 -  m x 3 =  ny4 -  m x4, ií+ n( 1) = x 4 + y4, i?+„(i) =  x 2 + y2, 
R/nnU) = x 3 + V3 and # + n (Z) = x 4 + y 4. By Lemma 4.1 and Fig. 2, the
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number of such paths is equal to the product of the following five factors, 
viz.

jF\ =  the number of paths from (0 , 0 ) to (x? — x \ ,  1/2 — V\) that are never 
above the diagonal y  =  m x / n  and having exactly ( i  — 1) contacts with 
the diagonal, the ( i  — l)st contact occurring at (x? — aq, 2/2 — y i), 

i<2 =  the number of paths from (22 — x \ ,  2/2 — 2/1) to (m3 — £1,2/3 — 2/1) that are 
never above the diagonal y = m x / n  and having exactly ( j  — i )  contacts 
with the diagonal, the (j  — i)th contact occurring at (23 — 21,2/3 — 2/1), 

F3 =  the number of paths from (23 — x i ,  2/3 — y\) to (24 — 21, 2/4 — y\) that are 
never above the diagonal y =  m x / n  and having exactly (l — j ) contacts 
with the diagonal, the (l — j ) th contact occurring at (24 — 21, y\ — y 1), 

^4(24,2/4) = the number of paths from (24 — 21,2/4 — yi) to (n  — 24, m  — y\) 
that remain entirely below the diagonal y  =  m x / n  and never 
touch it in-between except at the initial point (24 — 21,2/4 — 2/1),

and
.£5(21,2/1) =  the number of paths from (n — x \ , m  — y\) to (n, m) that remain 

entirely below the line y = m x / n  and never touch it in-between 
except at the end point (n,m ).

As each one of the points (22 — 21,2/2 — 2/1), (23 — 21,2/3 — 2/1) and 
(24 — 21,1/4 — 2/1) lies on the diagonal y  =  m x / n , we suppose that (22 — 21, 
V2 ~y\) =  (A6, Aa), (23-21,2/3-2/1) =  ( y b , y a )  and (24-21,2/4-2/1) =  ( 6 b , 6 a ) ,  
where A = [(22 +  2/2) — (®i +  J/l)]/(o +  6), M =  [( 3̂ + 2/3) -  (aq +2/1)]/(« +  6) and 
6 =  [(24 +  1/4) — (mi +2/i)]/(a + f>) are all integers such that A ú y ú ó ,  A ^ i — 1 , 
/i ^ j  — 1 and <5 Sí Z — 1 . Then on using Lemma 3 .1 , we have

(4 .1) F \  =

and on taking (22 — 21,2/2 — 2/1) and (23 —21,2/3 — 2/1) as new origins, we have

(4 .2 ) F2 =  ( p n - x j - i  

and

(4 .3 ) 3̂ =

where is given by (3 .1). In what follows we shall use the symbols {2} 
and (2) to denote, respectively, the smallest integer greater than 2 and the 
smallest, integer greater than or equal to 2.
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Taking (0:4 — x \ , y \  — y \ ) as a new origin, F4 (x 4, y 4) equals the number of 
paths from (0,0) to (n — £4, m  — 2/4) for which R k ~ k  >  n k / m ,  k = 1, 2, m  — 
y±. Thus F i (2:4,2/4) is given by Lemma 3 .2  with sample sizes m '  =  m  — y 4, 
n' =  n  — 2:4, Ci — i — n  — x 4 and bi — i = {m /m }, *=1 , 2 , m — 2/4. Hence, for 
d >  0,

(4.4) ^4(2:4,2/4) =

/n —X4 —{n/m}+l
V 1 

1

^ n —x  4 

^n—X4

0 0

f n —X4  — { (m—y 4 )11/ m  
\ m-y4
(n—X4 — {(m—y4)n/Tn
V m —y4  — 1

f n —X4  — { (m—y 4 ) n /m
V 1

} + 1) 

} + 1)

}+1)
{ m - y 4) x ( m - y 4 ) .

To determine -£5(211,2/1), we observe that the point (n — x \ ,m  — 2/1) is 
yi units below and xi units to the left of (n, m ). Considering the reversed 
path (i.e., rotating the path from (n — X i,m  — y\)  to (n,m) in Fig. 2 about 
its left end through 1 8 0 ° in the clockwise direction so that its starting point 
becomes the end point and vice-versa) and then taking (n, m) as a new origin, 
F5(x i ,2/i ) equals the number of paths from (0,0) to {x\,y \)  that remain 
entirely above the line y  =  m x/n .  Thus F ^ {x \,y \)  is given by Lemma 3 .2
with sample sizes m!  = 2/1, ri' — *1; bt i =  0, i  — 1,2, ••■,2/i; ci = 1 and
Cj - j  +  1 = Wj =  min f x \  +  1 , 1 n{j-1)\\

\  m / ) '
j  =  2 , 3 , . . . 12/1- Hence, for a. V 0

((n / m ) ( {n /m) \
l 1 V 2 / V 3 ) 12/1-1 1

1 (̂2 n/m)̂ (̂2 n/m ) j (̂2n/m)j

(4 .5 ) F s ( x i , y i )  = 0 1 ^(3 n/mj ' j (̂3 n / m ) j
5

0 0 0 C r )
(l/l-1)X (j/l-l)

since the first row of the determinant in Lemma 3 .2  becomes (1 , 0 , 0 , . . . ,  0 ). 
The foregoing leads to the following theorem.

T heorem 4.1. Let p=g.c.d.(m,n), i.e., m=ap, n —bp with g.c.d. (a, b)=\. 
Let X = (s — r)/(a + b), p = (s + t — r)/(a + b), 6 =  (u — r)/(a + b), 9 — r/(a + b), 
e =  s/{a + b) and ( =  (s + t)/(a + b) be all integers such that X ^ i  — l, p.^.j — 1 , 
6 ^  l — 1, 0 ^ 1 , £^.i and £ ^  j  where 1 = i = j  = 1- Then

(a) for d >  0, r ^ s ^ u ^ m  +  n, 0 ^ t ^ u  — s,
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(4.6)

m  +  n

n
firiTiD m n d , R m n (1) t , R m n  ( i )  s ,  M m n  ( i ,  j )  — t ,

m̂n( 0 ^iQmn ^

j  [ x 4 i  2/4) -̂ 5 1 j V\ )>
l  0,

a c c o r d i n g  t o  w h e t h e r  o r  n o t  t h e r e  e x i s t s  a n  i n t e g e r  s o l u t i o n  t o  t h e  e q u a t i o n s  

n y i  -  m x \  =  n y 2 -  m x 2 - ny3 -  m i3 =  ny4 -  m i 4 =  d ,  x \  +  yi =  r ,  x 2 +  y 2 =  s ,  

+  y z  =  s  +  t ,  X 4 +  y 4 =  u  s u c h  t h a t  0  ^  X \  ^  x 2 ^ x ^  ^ X 4 ^ n ,  0 ^  y \  ^  y 2 ^ 
2/3 = 2/4 ^ m ,  a n d

(b) f o r  d  =  0, r ^ s ^ m  +  n, 0 ^ t ^ m  +  n —  s ,

(4.7)
m  +  n  

n
D mn  =  °> C ( ! )  =  M m n ( h j )  =  *.

12̂ ( 1) = m  +  n ,Q + n = /  

m  +  n

n
=  0 , ß + „ ( l )  =  r, Ä + n (i) =  s, M +n ( i , i )  =  i, g + „  -  /

V
0,

a c c o r d i n g  t o  w h e t h e r  o r  n o t  0  i s  a n  i n t e g e r  ^  1, e i s  a n  i n t e g e r  ^  i  a n d  C, i s  

a n  i n t e g e r  ^ j .

R e m a r k . It may be pointed out that the joint distribution of D ^ nr 
^mn(^)i 7̂ rr;7;(0* ^mni^) aad Qrnn when 1) ln7l 0, as given in
(4.7), could be obtained directly without applying any transformation.

Theorem 4.1 gives immediately the joint distribution of D ^ n, Ä+n(i), 
M+„(t, j)  and Qmn 30 follows:

C orollary  4 .1 . L e t  p —  g.c.d.(m , n ), i .e ., m  =  ap, n =  bp w i t h  

g.c.d .(a, b) =  1. Then

(a) f o r  d >  0 ,

(
Til “f" T l \

n J p [m n D mn =d,R]nn{i) =  s ,  M+n (i, j) = t, Q+n = /] 

f X/ S  S  2/4)^5(^15 2/1)j
=  <  y i  X \  2/4

0,

(4.8)



270 J. SARAN and M. K. SUKLA

a c c o r d i n g  t o  w h e t h e r  o r  n o t  t h e r e  e x i s t s  a n  i n t e g e r  s o l u t i o n  t o  t h e  e q u a t i o n s  

n y 2 — m x 2 =  nj/3 — m x 3 =  d ,  X 2 +  1/2 — s ,  £3 +  1/3 =  s  +  t  s u c h  t h a t  0 ^  £2 

^ £3 ^  n , 0 ^ y 2 ^ 2/3 5i m . T h e  s u m m a t i o n  e x t e n d s  o v e r  a l l  p o s s i b l e  p o i n t s  

(£ 1, 1/1) a n d  (£4, 1/4) s a t i s f y i n g  t h e  f o l l o w i n g  c o n d i t i o n s :

(i) íc 1,2/1, £4 a n d  1/4 are aZZ i n t e g e r s  w i t h  0 £1 ^ £2 ^ £3 ^  £4 ^  n ,

0 ^ y i ^ y 2 ^ y 3 ^ y i ^ r n ,

(ii) n y \  —  m x i = n y < i  —  m x < i  =  d ,

(iii) A =  (s — (£1 +  y i ) ) / ( a  +  b )  i s  a n  i n t e g e r  ^ i — 1,
(iv) p, =  (5  +  i  — (£1 +  y \ ) ) / { a  +  6) i s  a n  i n t e g e r  j  —  l ,

(v) 5  —  y  =  ((£4 +  2/4) — -s — t ) / ( a  +  b )  i s  a n  i n t e g e r  ~ t l  —  j ,  a n d

(b) f o r  d  =  0 ,

( m  + n)  P [DU  = 0 , F + n(i) = s ,  M U ( i J )  = t, Q U  = l} =
(4-9) '  \  é

10,

a c c o r d i n g  t o  w h e t h e r  o r  n o t  e = s / ( a + b )  i s  a n  i n t e g e r  ^ i a n d  t ^ = ( s + t ) /  ( a + b )  

i s  a n  i n t e g e r  > 7.

P a r t ic u l a r  C a s e s . (A) Setting i — 1 in Theorem 4.1 implies s =  r, 
£2 =  £1, 2/2 — 2/1, A =  0, n t / (a + b) = /3, say (where ß  is an integer ^  j  — 1), 
Ó = (u — r)/(a + b), e = 9 = r/{a + b), (  =  (r +  i)/(a  + 6) =  ß  + 0, F i =  1, 
F2 =  <f>ß,j-1, P3 = 4>ö-ß,l-j and <p£_o,i~i =  1. Hence Theorem 4.1 reduces to

C orollary 4.2. (a) For d >0 ,
(4.10)

(777. -4- 77 \
J P [ m n F + „  =  d , i ? + J l )  =  r , M + J l , / )  =  i ,  # + „ ( / )  =  u , Q m n  =  Z]

_ Í  f > ß , j - i 4 > ö - ß , i - j F A { x 4 , y 4 ) F 5 ( x i , y i ) ,

“ l  0,

a c c o r d i n g  t o  w h e t h e r  o r  n o t  t h e r e  e x i s t s  a n  i n t e g e r  s o l u t i o n  t o  t h e  e q u a t i o n s  

n y i — m x i  = n y 3 ~ m x 3 =  n y 4 —  m x 4 =  d ,  x \ + y \  = r ,  £ 3+ 1/3 —  r + t ,  £4 +  1/4 =  u  

s u c h  t h a t  0 ^ £1 ^ £3 ^  £4 5Í n , 0 ^ 2/1 = 2/3 = 2/4 =  and

(b) /or d =  0,

( m *  P [£>mn =  0, C (1) =  r, M+n (1, j)  =  t, F+ n(l) =  m  +  n, Q+„ =  Z] =
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(4.11)

=  ( m r| n)  P [D+mn = 0, R +mn{ 1) =  r, M+n(l, j)  = t, Q+mn = l] =

l  0,

according to whether or not 6  — r/(a + b) is an integer ^  1 and ß  = t/(a + b) 
is an integer ^  j  — 1.

(B) Setting j  = l in Theorem 4.1 implies u = s + t, x% = £4, =  y4,
\  = (s — r)/(a + b), S = (i = (s+ t — r) / (a+  b), 9 — r/(a + b), e = s/(a + b), 
C = p, F$ =  1 and 4>p- £ j - j  =  1. Hence Theorem 4.1 reduces to

C o r o l l a r y  4.3. (a) For d> 0 ,
(4.12)

( m  P  [m n D mn =  R mn (!)=»•>  R mn (*) =  s > M mn (*. 0  =  t . Q L  =  *] =

_ f <Aa,í—l$(i—A,I—i-̂ 4 (̂ -4) yi)F§(x i, 2/1),
10 ,

according to whether or not there exists an integer solution to the equations 
nyi — m x i = ny2 — mx2 = n y^—m xi = d, x \ + y\ =  r ,  £2+ 2 /2  =  s > ^ 4 + 2/4 =  s + i  
such that 0 5= £1 ^ 2C2 ^  £4 = n > 0 = 2/1 = 2/2 2/4 = and

(b) /or d = 0 ,

(4.13)

( m " ) P [£+„ =  0, Ä+B(l) =  r, (<) =  a, M+n(t,Z) = í , Q+B =  /] =

_ f fißßße—0,i— 10p—£,i—ii
10 ,

according to whether or not 9 = r/(a + b) is an integer ^1  and £ — s/(a + b) 
is an integer ^  i.

(C) Setting j  = 1 in (4.10) and (4.11) implies i =  0, 2:3 =  x\,  2/3 =  2/i > 
ß  =  0, S — (u — r)/(a + b), 9 = r/(a + b) and 4>p,j-i =  1. Hence Corollary 4.2 
reduces to

C o r o l l a r y  4 .4 . (& )F ord> 0,

( m  n n )  P  =  d’ jR”ln ( 1) =  r ’ Ä mn (0  =  « . Qmn =  Z] =

= f </>5,/-l/74(a74,2/4)^5(371,2/l),
10,

(4.14)
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a c c o r d in g  to w h e th e r  o r  n o t  there exis ts  an  in t e g e r  so lu t ion  to the eq u a t io ns  
n y \ —m x \ = n y \ —m x \ = d ,  x \ + y \ = r ,  X 4 + y ^ = u  su ch  tha t  O ^ x i ^ x ^ n ,  0 ^ 2/1 ^ 
i/4 ^ m ,  a n d

(b) f o r  d  =  0,

(777- “I-  77. \
n J P \Dmn =  0, Kin  (!) =  r, K n (l) =  "* + «> Q+ „ =  Z]

(4.15)

=  ( ” ' 7|  " ) P I K n  =  0, iC n (l) = r, Q+mn =  *]

_  (  00,1 < P p - 0 , l - l ,

" 1 0 ,
a c c o r d in g  to  w h e th e r  or  n o t  9 =  r / ( a  +  b) i s  a n  in te g e r  1.

T h e sam e results (4.14) and (4.15) could also be deduced from Corol­
lary 4.3 by setting therein i  =  l, in which case t  =  0, =  x 4, 1/2 =  2/4,
Ai =  A =  ( s - r ) / ( a  +  6), 9  =  r / { a  +  b), e =  p ,  <f>ß - \ <l- i =  l  and 0 p_ei/_i =  l .

R e m a r k . Corollary 4.4 is in agreement w ith  "Corollary 2 of Saran and 
Rani [5].

(D ) Setting j  =  i in Theorem  4.1 implies t  =  0, X 3 —  , 2/3 =  2/2, y  =  X  =

( s  — r ) / ( a  +  6), J = (n — r ) / ( a  + 5), 9  =  r / ( a  +  b), (̂  — e =  s / ( a  +  b), F2 =  1 , 
F3 =  < f> s- \ti - i  and =  1. Hence Theorem 4.1 reduces to

C o r o lla r y  4 .5 . (a) For d > 0 ,
(4.16)

( m n ” )  P {mnD™n =  d’ (1) = r’ (*)=*. Ämn (0 =  «> <2mn =

_ f 0A ,i-i0tf-A ,{-iF4(a:4,y4)F5(a:i,2/i),

“ I  o,
a c c o r d in g  to  w h e th e r  o r  n o t  there ex is ts  an  i n t e g e r  so lut ion  to the eq u a t io ns  
n y i  — m x \  =  n y i  — m x ^  =  n y 4 — mx4 = d ,  x \ - \ - y \  =  r ,  £2 + 2/2 =  s ,  x^ +  y^ =  u  
su c h  t h a t  0 ^ x \ ^ X 2 ^ X 4  ^ n , 0 ^ r/i is 2/2 ^ 2/4 =  m ,  a n d

(b) /o r  d =  0,

(4.17)

( 77? n  " )  P ^D ™ n  = ° > i 1) =  r> C  (0  =  *1 C  (l) =  m  +  n , Q+ „ =  Z]

=  ( m 7| n)  P [ K n  =  0, R+n(l) = r, R +mn(i) =  s, Q+mn =  I} =

_ /  00,10£ — 9 , i — 10p — E,l — i l

” 10 ,
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according to whether or not 9 = r/(a + b) is an integer ^  1 and e — s/{a-\-b) 
is an integer ^  i.

R e m a r k . Corollary 4.5 is in agreement with Theorem 1 of Saran and 
Rani [5].

It may be noted that Corollary 4.4 could also be deduced from Corol­
lary 4.5 by setting either i =  1 (in which case s =  r, x i  — x \ , 7/2 =  y \ , A =  0,

1 =  1, e = 9 = r / (a  +  b), \ =  1) or i — l (in which case s = u,
X2 = £4, 2/2 = 2/4, A =  S = (u -  r)/{a + b),^S-\ , l- i  = 1 ,0  =  r /(a + b), e = p,
4*p—e,l—i =  !)•

5. The joint distribution of R+n(i), M+„(i, j) and Q+n

L em m a  5 .1. T h e  n u m b e r  o f  p a t h s  f r o m  (0 ,0) t o  (n , m ) w h i c h  a t t a i n  

t h e i r  m a x i m u m  d i s t a n c e  f r o m  t h e  d i a g o n a l  y  =  m x / n  f o r  t h e  f i r s t ,  i t h , j th  

a n d  Zth ( i . e . ,  t h e  l a s t )  t i m e  (1 ^ i ^ j ^ l )  o n  t h e  rth, sth, (s +  f)th a n d  uth 
s t e p s  ( r ^ s ^ u , O ^ i^ u  — s), r e s p e c t i v e l y ,  i s  t h e  s a m e  a s  t h e  n u m b e r  o f  

p a t h s  f r o m  (0 , 0 ) t o  (n, m )  t h a t  a r e  n e v e r  a b o v e  t h e  d i a g o n a l  a n d ,  m o r e o v e r ,  

n e v e r  t o u c h  t h e  d i a g o n a l  a f t e r  t h e  ( u  —  r )th s t e p  e x c e p t  a t  (n, m )  a n d  h a v i n g  

e x a c t l y  ( l  —  1) c o n t a c t s  w i t h  t h e  d i a g o n a l ;  t h e  (/ —l ) st c o n t a c t  o c c u r r i n g  o n  

t h e  ( u  —  r ) t h  s t e p ,  t h e  ( j  —  l ) st c o n t a c t  o c c u r r i n g  o n  t h e  ( s  +  t  —  r ) th s t e p  a n d  

t h e  ( i  — l)st c o n t a c t  o c c u r r i n g  o n  t h e  ( s  —  r )th s t e p .

PROOF. Consider all points ( x \ ,  2/1), (£2,2/2)1 (£3,2/3) and (£4,2/4) such 
that x \  +  y \  =  r, £2 +  2/2 =  s ,  £3 + 2/3 = s  + L £4 + 2/4 =  x i =  n y i / rn i * —
1,2,3 , 4 , 1 ^ x \  ^ X2 ^ £3 ^ £4 ^ n, 1 ^ 2/1 = 2/2 ^ 2/3 = 2/4 = m - The set of 
required paths is the union of the disjoint subsets of paths through each of the 
possible quadruple of points {(£1,2/1), (£2,2/2), (£3,2/3), (£4,2/4)}- By Lémma 
4 .1 , the paths in each of these subsets are in one-to-one correspondence 
with those in the disjoint sets of paths from (0 , 0 ) to (n, m )  through the 
points (x2 — aq,2/2 — 2/l)) (2 :3 -£1 ,2 /3 -2/1) and (£4 -  £ i ,2/4 ~  2/i) that are 
never above the diagonal y  =  m x / n  and, moreover, never touch the diagonal 
after [ x 4 — £1,7/4 — y \ )  except at (n,m) and having exactly (Z — 1) contacts 
with the diagonal up to the point (£4 — £1,2/4 “  2/1) °f which the first {i — 1) 
contacts occur up to the point (£2 — £1,2/2 — 2/1) an(l the next ( j  — i )  contacts 
occur up to the point (£3 — £1,2/3 —2/i)- Hence the elements in the set of paths 
in question are in one-to-one correspondence with the elements in the set of 
paths from (0 , 0 ) to (n,m) that are never above the diagonal and, moreover, 
never touch the diagonal after the (u  — r)th step except at (n, m) and having 
exactly (Z — 1) contacts with the diagonal; the (Z — l)st contact occurring on 
the (u  — r)th step, the (j  — l)st contact occurring on the (s + Z —r)th step and 
the (* — l)st contact occurring on the (s — r)th step.
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THEOREM 5.1. Let p = g.c.d.{m,n),i.e. ,m =  ap and n = bp with 
g.c.d.(a, b) =  1. Then for l ^ i ú j  ú l , r  ú s ú u  and 0 ^ t ^ u  — s 
(5.1)

( ,U  n  n )  P  =  r ’ R ™n  (*’)  =  S ’ M m n { h j )  =  *> ß m n ( 0  =  Qmn = l] =

_ ( 4>\,i—\(t)ß—\,i—i4>5—ß,l—jL'^(^8b,8a-\-\),
" 1 0 ,

according to whether or not X = (s — r)/(a + b) is an integer 't.i — \ , p  = 
(s + t  — r ) / (a+ b) is an integer ^  j  — 1 and 8 = (u — r)/(a + b) is an integer
Z l -  1.

PROOF. The number of paths envisaged in the left-hand side of (5.1) is 
given by Lemma 5.1. According to Lemma 5.1, the (i — l)st, the (j — l)st and 
the (l — l ) st contacts with the diagonal y — m x /n  occur on the (s —r)th, the 
(s +  t — r ) th and the (u — r ) th steps, respectively. Hence each one of (s — r), 
(s + t — r ) and (u — r) should be integer multiple of (a + b). Let us assume, as 
in Theorem 4.1, that s — r = A (a +  5), s + 1 — r  =  p(a + b) and u — r = 6 (a + b) 
where A, p, and 6 are all integers such that p ^ S ,  X^.i  — 1 ,/x ^ j — 1 and 
8 i l l  — 1. Then the number of transformed paths in Lemma 5.1 is the same as 
the number of paths from (0, 0) to (A6, Aa) that are never above the diagonal 
y =  m x / n  and having exactly (i — 1) contacts with y = m x / n , times the 
number of paths from (0, 0) to ((p — A)6, (p — A)a) that are never above the 
diagonal y =  mx/n  and having exactly (j — i) contacts with y =  mx/n ,  times 
the number of paths from (0, 0) to ((á — p)b, (8  — p)a) that are never above 
the diagonal y = m x /n  and having exactly (/ — j)  contacts with y = mx/n ,  
times the number of paths from (0,0) to (n — 8 b,m — 8a) =  {{p — 8 )b, (p — 8 )a) 
that remain entirely below the line y = m x /n  and never touch it in-between. 
Call these numbers T\, T2, T3 and T4, respectively. By Lemma 3.1, the 
numbers T \ , T2 and T3 are given by

(5.2) T\ 1,

(5.3) rR‘2 — (fiii—XJ—i

and

(5.4) T3 - ,

respectively. The number T4 corresponds to those paths for which — k>  
n k / m , l ^ f c ^ m  — 8a — 1; R rn-őa — {m — 8a) = n — 8b. Thus T4 is given 
by Lemma 3.2 with sample sizes m' = m — 8a, n! =  n — <56; C{ — i — n — 8b, 
i = 1,2,...,771 8a~, bj -  j  = {n j / m }, j  = 1, 2 , . . . ,  m -  8a -  1 and bm^ 5a -
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(m — 5a) = n — 5b, i.e., 
(5.5)

1

T4 = 0

} + 1 )
n̂—jft—|2a}+lj

1

0 0 
0 0

= F±(5b, 5a +  1),

^ n —(5 6 - 

^n—66— 

^ n —(56—

^7 i—(56—

r (m  — S a — l)n 
*■ m
m —őa—l 
r (m  — S a — l)n. 
 ̂ m
m - S a —2
r (m  — S a — l)n 

m
m —(5(i—3

f (rn — Sa— 1) n 
L m1 

1

}+1) 0 

}+1) 0 

}+1) 0

}+1) 0
1

( m —Sa) x (m —Sa)

which is given in (4.4). This proves Theorem 5.1 which in turn gives the 
joint distribution of R ^ i f ) ,  M.^n(i, j)  and Q^n given below:

C o r o l l a r y  5.1.

(5.6)
( 7U n  " )  P  W  =  S ’ M m n ( b  j )  =  t ,  Q m n  = l] =

= ^   ̂^   ̂ l^V—x,j—ifis—p,i—jF^ (^6,5a + 1),
r u

where the summations extend over all possible positive integer values of r and 
u such that r ^  s ^  (m + n), 0 ^ t ^ u  — s and for which X =  (s — r ) /  (a +  6) 
is an integer ^.i — l , n  — (s + t — r)/(a + b) is an integer ^  j  — 1 and 5 — p = 
(u — s — t)/(a +  b) is an integer ^.l — j .

P a r t ic u l a r  C a s e s . (A) Setting i =  1 in Theorem 5.1 implies s = r, 
A = 0, p = t/(a + b) = ß , say, 5 = (it — r)/(a  +  b). Thus Theorem 5.1 reduces 
to

C o r o l l a r y  5.2.

"I” n )  P  U C n U )  =  F  M m n { ^ j )  =  <, K i A 1) =  Q tnn  =  l } =
(5.7) V /

_  Í (fß , j - i (l>S-0,l-jFi{5b,5a+ l),
" t o ,

according to whether or not ß  =  t /(a  +  b) is an integer ^  j  — 1 and 6 — 
=  (u — r) /(a  +  6) is an integer ^  l — 1.

(B) Setting j  = 1 in Theorem 5.1 implies u = s + t, X = (s — r)/(a  +b) and 
<5 =  p = (s + 1 — r) /(a  + b). Thus Theorem 5.1 reduces to
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C o r o l l a r y  5 . 3 .

( m * P K n(l) =  r, R ^ n(i) = s, M+n (i , l ) = t , Q+nn = l] =

= ( 4>xti-i^ß-\,l-iF4(Sb,öa + i),
l  o,

according to whether or not X = (s — r)/(a + b) is an integer ^ i — 1 and 
fi = (s + t  — r)/(a +b) is an integer ^  l — 1.

(C) Setting j  — 1 in (5.7) implies t = 0, ß = 0 and S = (u — r)/(a +  b). 
Thus Corollary 5.2 reduces to

C o r o l l a r y  5 . 4 .

(5.9) ( m n+ ’l) p K „ ( l ) = r , « i „ ( i ) = U.e Í „ = í ] = {  +

according to whether or not S — (u — r)/{a +  b) is an integer ^  l — 1.
The same result (5.9) could also be deduced from Corollary 5.3 by setting 

i = Z, in which case t =  0 and /j, = X — (s — r)/(a + b).
R e m a r k . Corollary 5 . 4  is in agreement with Corollary 4  of Saran and 

Rani [5 ] .

(D) Setting j  = i in Theorem 5.1 implies t =  0, g, = A = (s — r)/(a + b) and 
6 = (u — r) /(a  +b). Thus Theorem 5.1 reduces to

C o r o l l a r y  5 . 5 .

( m n )  P I K n n ( l ) = r , K n( i ) = s , R ^ n(l) = u,Q]nn = l} =

= ( 4> \ , i - i ( l> ö - \ , l - iF 4 ( ö b , őa  +  l ) ,

t o ,

according to whether or not A =  (s — r) /(a  4- b) is an integer ^ i — 1 and 
ő = (u — r)/(a + b) is an integer ^  l — 1.

R e m a r k . Corollary 5.5 is in agreement with Theorem 2 of Saran and 
Rani [5].

It may be noted that Corollary 5.4 could also be deduced from Corol­
lary 5.5 by setting either i = 1 (in which case s =  r and A =  0) or i = l (in 
which case s = w and X = 6 = (u — r)/ (a + b)).
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INTEGRABILITY AND LOWER LIMITS OF THE LOCAL TIME 
OF ITERATED BROWNIAN MOTION

ZH. SHI and M. YOR

Dedicated to Endre Csáki on his sixtieth birthday

Summary

We study the extraordinarily large and small values of the local time of iterated Brow­
nian motion. It is known that the local time has exponential moments for deterministic 
times. We prove that, taken at appropriate random times, the local time has finite a-th 
moment if and only if a  < 2/3. We also investigate the almost sure lower asymptotics of 
both the local time at a fixed level and the maximum local time. The critical rate func­
tions for these two processes are obtained, which improves previous results of Csáki et al. 
[15]. Our approach essentially relies on Ray-Knight theorems and the general theory of 
stochastic calculus, notably some refined martingale inequalities.

1 . Introduction

Let {Wi(t); t ^  0} and { ^ ( t ) ;  t ^ 0} be independent one-dimensional 
Brownian motions, starting from 0, and let

(1.1) Z(t)^Wi(\W2(t)\)> t ^ o .
The process {Z(t); t^O } , which is often referred to as “iterated Brownian 
motion”, a terminology coined by Burdzy [9]—[10], has received much re­
search interest from many mathematicians. See for example Hu [23, Chap. 
Ill] for a detailed account of history, motivations, as well as many refer­
ences prior to December 1995. We only mention some more recent publi­
cations and preprints by Arcones [1], Csáki et al. [15]-[16] and [19], Csáki 
and Földes [18] (extensions to more general iterated processes), Benachour 
et al. [4], Hochberg and Orsingher [22] (connections with partial differential 
equations), Bertoin and Shi [6] (one-sided small values), Khoshnevisan and 
Lewis [25] (stochastic calculus with respect to iterated Brownian motion), 
and Xiao [28] (local times).

The starting point of the present paper is the following theorem due 
to Csáki et al. [15] (see also Burdzy and Khoshnevisan [11] for a slight­
ly different model): there exists a jointly continuous version of {Lz{t\x)\

1991 Mathematics Subject Classification. Primary 60J55; Secondary 60J65. 
Key words and phrases. Local time, iterated Brownian motion.

0081-6906/97/$ 5.00 ©1997 Akadémiai Kiadó, Budapest
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t ^  0, —oo < x < oo}, the local time process of Z. Moreover, it can be repre­
sented as

OO

Lz {t-,x) = j  L 2 (t-,u) duLi(u;x)

( 1.2 )

L 2 (t;u) + L2 (t; -u ) J  a;),

where L\,  L2 and L2 denote, respectively, the local times of W\, W 2 and 
\W2\. For notational convenience, we write

OO

(1.3) Lz (t) = L z (t-,0) = j L 2 {t-u)duL x{u- 0).
o

We aim at studying extraordinarily large and small values of Lz{t).  We 
first consider the large values of Lz{t). The following law of the iterated 
logarithm (LIL) is due to Csáki et al. [15] and Xiao [28]: there exist (finite) 
universal constants c\ > 0 and c2 > 0 such that

(1.4) ci Ű lim supÍ—> oo
Lz(t)  s  

i3/4(log log t)3/4 ~ 2
a.s..

(To be precise, the upper bound in (1.4) is proved in [28], and the lower 
bound in [15].) The LIL (1.4) tells that, as t tends to infinity, L z ( t ) can 
infinitely often reach the level of (a constant times) i3/4(loglogt)3/4. To get 
additional information about the large values of L z  , we can for example 
investigate the integrability of Lz- It is not hard to see that for any fixed 
t > 0, Lz{t)  admits finite moments of all orders (and indeed, it even has 
exponential moments, a property largely exploited by Xiao [28].) However, 
the situation becomes considerably different, if t is replaced by some carefully 
chosen random times, say T. Our choice for T  is

(1.5) r2(r) =f in f jf  > 0 : L2( i ; 0 ) > r | ,  r > 0,

the inverse local time at 0 of W 2 . The reason for which we have chosen t 2 
is very simple: intuitively, in order to keep LZ{T) at a high level, Z  has to 
cross 0 very frequently over [0,T], which at least intuitively will be satisfied 
if T  is a non-left isolated zero of Z. Since this is the case for T  =  r2 (r), with 
respect to W2 (thus to Z  as well), and moreover since r2 (r) is closely related 
to both L z  and L2, it has become our immediate candidate.

Here is our main result for the integrability of Lz(r2 (r)).
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T h eo r em  1.1. For any r > 0  and a ^ O ,

( 1. 6 ) E [(L z (r2(r )))a < oo,

if and only if 0 ^  a  < 2/3 .
R em a r k  1.2. Theorem 1.1 tells that L z f a i r ) )  has polynomial (rather 

than exponential) upper tails. From (1.6) and using standard arguments, 
we can easily deduce the almost sure upper asymptotics of L z (r2 {r)), 
which are rather different from those of L z  taken at a deterministic time.

Concerning the lower asymptotics of Lz{t),  Csáki et al. [15] establish the 
following interesting bounds: with probability one,

(1 ' 7 ) h ™ £ f  i 3/ 4 (lo g  log  i ) i / 2 L z (< )  =

(1.8) lim inf  ̂ Lz{t)  =  oo, for all ß > \ .
V ' t—►oo <3 /4  '  2

There is an obvious gap between these two estimates. Our aim here is to 
close the gap, namely, to show that i3' 4/log< is, in some sense, the “critical 
level” for the lower asymptotic behaviour of Lz(t).

T h eo r em  1.3. With probability one,

lim inf
t—► oo

0
oo

if ß i  1,
otherwise.

Theorem 1.3 provides a clear image of the liminf asymptotics of the local 
time of Z  at a fixed level. Not surprisingly, the situation is considerably 
different for the maximum local time. Indeed, it is proved by Csáki et al. 
[15] that for some universal constants C3 > 0 and C4 > 0,

( 1 .9 )

( 1. 10)

lim inf
Í -K X )

(log log t)1/4 
<3/4 sup L z {t-,x)^c3

lim inft—►oo

(loglogi)3/4
<374 sup Lz{t',x) ^C4

x€R

a.s.

a.s..

It turns out that the lower bound (1.10) is optimal (up to multipli­
cation by a constant). Our next result is Chung’s form of the LIL for 
suPxeR L z{t\x).

TH EO R EM  1 .4 . There exist absolute constants C5 > 0  and cq > 0  such
that

C5 ^ lim inft—> 00
(log log <)3/4

sup L z (t]x) g c 6
xGR

a.s..
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We say a few words about the proofs of the theorems. Those of Theorem 
1.1 and the second part of Theorem 1.3 heavily rely on Ray-Knight theorems 
for Brownian local times and the general theory of stochastic calculus. More 
precisely, we apply some powerful martingale inequalities (Facts 2.10 and 
2.11 below) to iterated Brownian motion. In the proofs of Theorem 1.4 and 
the first part of Theorem 1.3, we use an idea we have learnt from Csáki et 
al. [15], with some refinement. The first-order stochastic calculus plays an 
important role in our approach, though we certainly have not exhausted all 
its advantages. We feel that, to get a better understanding of the local time 
of iterated Brownian motion, it would be worth studying the two-parameter 
process L2 {t]G\(y)) Wi(v)  (for the definition of G i, cf. (3.4) below), whose

V  __

local time at 0 is f  L 2 (t;u) duLi(u;0). 
o

Section 2 is devoted to some preliminaries on Bessel processes and the 
general theory of martingales, especially the first-order stochastic calculus 
and martingale inequalities. Theorems 1.1, 1.3 and 1.4 are proved, respec­
tively, in Sections 3-5.

2. Notation and preliminaries

The key ingredients in the proofs of Theorems 1.1 and 1.3 are: (a) Ray- 
Knight theorems for Brownian local times; (b) special properties of Bessel 
processes; (c) first-order stochastic calculus and martingale inequalities. We 
briefly recall some known results relative to (a)-(b) in the first half of the 
section, and to (c) in the second half.

2.1. Rmy-Knight theorems and Bessel processes

A d-dimensional Bessel process (d ^ 0) is a linear diffusion on M+ with 
generator Qf[x) =  +  4 ^ / '(x )  (at least, if /  has compact support in
(0,oo)), and in the particular case d ^  1 is an integer, it can be realized as 
the Euclidean modulus (in Rd) of d-dimensional Brownian motion. We refer 
to Revuz and Yor [27, Chap. XI] for a detailed account of general properties 
of Bessel processes.

We keep the notation introduced in Section 1, and add the following:

(2.1) (f7(t); t ^  0} is a Bessel process of dimension 0, with U(0) =  1,

(2.2) C=f in f{ i> 0 : U(t)=0},
(2.3) {i?(t); t ^0} is a Bessel process of dimension 4, with 7?(0) =  0,
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In words, (  denotes the life-time of U, and £  the Last exit time of R  from 1. 
We also define the first hitting times associated to W2 and |LV21: for r £ l ,

defH 2 (x ) =  inf{f > 0 : W2 {t)=x},  
def

( in f  0 c=  00)

(2.5)

(2.6) R-2 {x ) =‘ inf{i > 0 : \W2 (t) \=x},
with R  for Hitting time. Throughout the paper, unless stated otherwise, the 
processes W\, W2 , R. and U are assumed to be mutually independent.

The next item is a collection of known results concerning Brownian and 
Bessel processes, which we shall need later on.

F a c t  2.1 (First Ray-Knight theorem). For a > 0, { - ^ ( ^ ( gO;a — x); 
x  ^  0} is a continuous inhomogeneous Markov process. When 0 Ú x  ^  a, it 
is a squared Bessel process of dimension 2 starting from 0, and becomes a 
squared Bessel process of dimension 0 for x^.a .

F a c t  2.2 (Second Ray-Knight theorem). Fix r > 0  and let T2 (r) be as 
in (1.5). Then {£2(72(0; x ) ;  x  ^ 0} and (L2(r2(r); —x); x ^  0} are two in­
dependent squared Bessel processes of dimension 0, starting from r.

F a c t  2.3 (Normalized Bessel process). Let {f?(t); t ^0} and £  be as in
(2.3) and (2.4), respectively. Define the normalized Bessel process

(2.7) , . def R{s £ )
p M  = - 7 r , 0 < s < 1.

For any bounded functional F, we have

(2.8) E [f ( p (s); 0 ^  a ^ l) ]  = E [ - ~ y  f ( r (s ); 0 g a g l )

E x p l a n a t i o n . The relation (2.8) may be deduced from the fact that, 
given C — a, {f?(i); 0 t £} is a 4-dimensional Bessel bridge, on the time 
interval [0, a], starting from 0 at time 0, and ending at 1 at time a.

F a c t  2.4 (Bessel time-reversal). Recalling (2.1)-(2.4), we have

{ u ( ( - t f i  0 ^ c } ‘=  {fl(i); 0 ^ £ } ,

where “ = ” denotes identity in distribution. In words, a Bessel process of 
dimension 0, starting from 1, is the time reversal of a Bessel process of 
dimension 4, starting from 0, killed when exiting from 1 for the last time.

Fact 2.5 (Integration by parts). Let {3?(i); i^ 0 }  be a Bessel process of 
positive dimension, starting from 0. Let 0 ^  a ^  b < 0 0  and f , g: [a, 6] K+ 
two continuous functions, with f  nonincreasing, and g nondecreasing,

b b
1 5R2Gg(x)) d ( - f ( x ) )  + f m 2 (9(b)) '=  ö(a)5R2(/(a)) +  J  M2 (f(x) )  dg(x).
a a
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A m p l if ic a t io n . The integration by parts formula remains true when /  
and g are two continuous, -valued stochastic processes, independent of 5R, 
with /  nonincreasing, and g nondecreasing.

R em a rk  2.6. The classical Ray-Knight theorems can be found in Revuz 
and Yor [27, Chap. XI]. See also Yor [31, Chap. Ill] for many extensions. 
The absolute continuity relation (2.8) is due to Yor [32, p. 52] who actually 
provides a proof for all transient Bessel processes. The time reversal theorem 
for Bessel processes, stated in Fact 2.4, can for example be found in Revuz 
and Yor [27, Exercise XI. 1.23]. It actually holds for each couple of Bessel 
processes of dimensions d and 4 — d, respectively. The integration by parts 
formula in Fact 2.5 is found in Yor [31, Exercise 2.5].

2.2. Martingale theory

Let {X(£); t ^  0} be a continuous local martingale, {Lx{t)', t ^  0} its 
local time process at 0, and {(X)(f); t ^  0} its increasing process. Write
X* (t) *=! sup0<s<( |X(s)|. For each t^. 0, define

Gxit)  d=  s u p |s 5 if :  X(s)=oj, (su p 0 c=O) 

the last zero of X  before t.
FACT 2 .7 . If K  is a locally bounded predictable process,

t

K(Gx (t))X(t) = K(0)X(0)+ I  K(Gx (s))dX(s).
o

In particular, {K(Gx(t))X(t) ;  f ^  0} is a continuous local martingale, with 
local time at 0 equal to

t

f  \K(Gx (s))\dsLx (s). 
o

F a c t  2 .8 . For any locally bounded function E+ i—M_|_7
t

<j>(Lx (t))X(t) = (p(0)X(0) + f  <t>(Lx (s)) dX(s).
o

Consequently, {(f{Lx{t))X{tI)\ t ^ 0} is a continuous local martingale, whose 
increasing process is given by

t

{4>(Lx )X)( t)  = Jcf>2(Lx(s))ds(X)(s),  
o
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dcf ^while its local time at 0 equals $(Lx{t)),  where <F(a) = f  <j)(x)dx.
o

R e m a r k  2.9. Facts 2.7 and 2.8 are special examples of first-order stochas­
tic calculus. For a full story, cf. Azéma and Yor [2], and also Revuz and Yor 
[27, Chap. VI].

FACT 2.10. Assume X ( 0 ) — 0 and let O ^ p  <1. There exist finite positive 
constants Ct(p ) and cs(p), depending only on p, such that

c7 (P ) e [ ( X * ( o o ) ) p ] £ e [ ( L * ( o o ) ) p ] ^ C8(p)E[(X*(oo))"].

F a c t  2 . 1 1 . If  X(0) = 0, T  is a positive random time, a > 0  and p > 1 , 
there exists a finite positive constant cg(a,p), depending only on a  and p, 
such that

(2.9) E
( ( a:)(t ) )  ] - C9(a,p) [E ( ( x * m ) P)

n  i / p

'X * (T ) ‘

R e m a r k  2.12. Although (2.9) is reminiscent of the Burkholder-Davis- 
Gundy inequalities, one cannot take p — 1 on the right-hand side, even for T  
varying among stopping times (cf. Barlow et al. [3]).

R e m a r k  2.13. Fact 2.10 (and much more) can be found in Lenglart [26] 
and Yor [29], and Fact 2.11 due to Barlow et al. [3] (cf. also Yor [33, Chap. 
13]). Some weaker versions of (2.9) may also be obtained using the ratio 
inequalities in Yor [30], Gundy [21] or Dellacherie et al. [20, Chap. XXIII], 
followed by an application of Holder’s inequality. However, (2.9) is more 
powerful, and more “user friendly” in practical examples.

3. Proof of Theorem 1.1

For brevity, we shall write L\(t) = L\(t;0).
P r o o f  o f  t h e  “i f ” pa r t  in T h e o r e m  1.1. By (1.3),

o o  o o

Lz{T2(r)) = J L 2 {T2 {r);u)duL l (u) + J L 2 (T2 (r)-, - u )  duLy(u).
o o

Since the two terms on the right-hand side have the same distribution, we 
only have to verify

E L 2 {T2 (r)]u)duLi(u) < oo,(3.1)
o
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for 0 ^  a  < 2/3. According to the second Ray - Knight theorem (Fact 2.2) 
and the scaling property, (3.1) is equivalent to:

(3.2) E I U \ u ) d M u ) ^ j  
o

< oo.

To prove (3.2), let us recall (2.2) and observe that

sup R 2(t)Li(C),
o <;tg£

the last identity in distribution following from Bessel time-reversal (cf. Fact 
2.4). By scaling, the last expression is distributed as a/ T supq^ ^  R 2 {t)
Hence, in the notation of (2.7),

E C72(u)duLi(«) < E \fC sup R 2 {t)Li
o <t<c

=  E (p( 1)) 3“ ( sup p{s)f°  {Li{l)Y
0< s < l

:c10(a)E  (p(l)) "( sup p(s))
0<s<l

2a

where c io (a)d= E ((L i(l))a ) G (0,oo). Applying the absolute continuity rela­
tion (2.8) yields

(3.3) E
OO

/
U2 {u) duL\(u)

o

Q
^ 2cio(a) E

[■ 1 
.(i?(l))2+3“

( sup R(s))2a .

Since E(/2I?(1)) < oo for all q > —4, and E(sup0<s<j R q{s)) < oo for all q > 0, 
it follows from the Hölder inequality that the expectation term on the right- 
hand side of (3.3) is finite once 2 + 3a < 4, which means a < 2/3. This yields 
(3.2), hence the “if” part in Theorem 1.1. □

To prove the “only if” part in Theorem 1.1, we need the so-called “Brow­
nian meander” process, which is introduced by Chung [13], and which turns 
out to be an important process in the study of many “usual” Brownian 
functionals, cf. Bertoin and Pitman [5], Biane and Yor [7]—[8], and Yor [32].

Fa c t  3.1 (Brownian meander). Fort>  0, define 

Gi(t) =f sup j s  Sit: VF1(s) =  o|,(3.4)
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the last zero of W\ before t. Let T  > 0 a.s. be a random time independent of 
W \. The process
(3.5)
I  m i(s) =  m[  (s )d=

1
\ /T  -  Gi(T)

Wl (<Gl ( T ) + s ( T - G 1(T))') ; 0 g Sg l } ,

which is independent o fT  and {fF^u); is called a Brownian
meander.

P r o o f  o f  t h e  “o n l y  i f ” p a r t  in  T h e o r e m  1.1. It suffices to show 
that

(3.6) = oo.

Recall Gi(t) from (3.4). Consider the continuous local martingale
t

N ( t )d= U2 {Gx(t) )W l (t,) = J  U2 (Gl (s))dWl (s), t Z  0,
o

the second equality following from Fact 2.7, which moreover confirms that 
the local time at 0 of N ,  denoted by L/y(-), is

t.
L n {í ) — J U2 (u) duL\(u), tZO. 

o

Applying Fact 2.10 to X  c= N  and p =f 2/3 yields (with cn d=f 07(2/3))

E
OOJ  U2{u) duLx (u)

2/3 -j
^ CllE[(supC/2(G i ( t ) ) | IF i ( i ) | ) 2/'!l

^ c11e [ ( [ / 2(g 1( 0 ) |vf,(C) |) 2/31

Writing 0 d=f [/2(G i(()) |IF i(()| for brevity, the proof of (3.6) is reduced to 
showing the following estimate:

(3.7) E(©2/3) = oo.
, defApplying (3.5) to T  = £, we obtain, from the independence properties stated 

in Fact 3.1,

E (02/3) = e [ ( c/ 2(G i (0 )  x /C - É M C M i ) ) 27'5'

=  Cl2 E ^4/3(Gi(C))(C-Gi(C))1/3
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with cj2 =* E ((m i(l))2//3) € (0, oo). According to Lévy’s arc sine law, for 
any fixed t > 0, the density function of t — G\(t) is: P(f — G\{t) € ds)/ds = 
{ l /T T y /s ( t - s ) ) l  {o<s<t}• By means of Bessel time-reversal (cf. Fact 2.4),

E (02/3) =  ci2 E
. /

ds
7Ta/ s( C - s)

U4/ 3 { ( - s ) s 1/3

—  E
7T

ds
3! / 6 ( C - S ) l / 2 c/4/3( C - s)

=  ^ E
7T I ds

1/6( £ _ s)1/2 f í 4 / 3 ( s )

de fRecalling (2.7)-(2.8), this leads to (writing C13 =  c^ / tt):

l
P 4 / 3 ( S )E(02/3) = c13E C j

ds
< 0 / 6 ( 1 - S ) l / 2  

1
= 2ci3 E

^ 2ci3 E

m l ds
R 4{ 1) J S1/6 ( l_  5)l/2 R 4/ 3 ( s )

i

/

dsLw  1)^1}
fi4(l) ./ S1/6 (l_ s ) l/2 R 4 / 3 ( s )

Consider the function 

h{r) = E j
ds

S 1 / 6 ( l  — s ) 1/ 2
i?4/3(s) f i ( l ) = r 0 < r < 1.

o

Via the Bessel bridge, it is easily checked that h is continuous and strictly 
positive over [0,1]. Hence, inf0<r<i h(r) > 0. Accordingly,

E(©2/ 3) ^ c14E ' 1{n(i)=i} ~
l i?4(l) J

=  oo,

proving (3.7). □
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4 . Proof of Theorem 1.3

We first study the integrability of a negative power of a two-dimensional 
iterated Brownian motion under the L2-norm.

P ropositio n  4 .1 . Let {B (t); < ^ 0 }  be standard Brownian motion with 
local time L at 0, and (SR(i); t ^  0} a two-dimensional Bessel process starting 
from 0, independent of B . Then

(4.1) 

while

(4.2)

E
if  K2(L(S)) ds

-a  i
< oo, for all p < 1,

E
1

J  U2 (L(is)) ds
-1 1

: OO.

P r o o f . We begin with the proof of (4.1). Only the case of positive p 
needs to be treated. By enlarging the filtration of B  with <t{5R(ií); u  ^  0}, 
it is seen, with the aid of Fact 2.8, that SR(L(i)) B(t) is a continuous lo-

t
cal martingale, with increasing process f  $t2 (L(s)) ds. Applying (2.9) to

o
X ( t )  d=  ! R (L(t)) B(t), a  =  2p and T  — 1, we have, for all p >  1,

l
E SR2(L(s))ds

—ß 2up  1 i / p
^ c 9 {a,p) {E [( s u P  |JR (L (s ) ) B ( s ) | )  W ] }

It remains to show that for all u < 2,

(4.3) A d= E [ (  sup \R{L{s))B{s)\X
L' 0<s<l '

<  OO.

Let s* G [1/2,1] satisfy |-B(s*)| =  sup1/2<s<1 |i?(s)|. Note that s* is indepen­
dent of the Bessel process SR. Hence

sup |SR(L(s))H(s)| ^  sup |SR(L(s))H(s)|
Ogsgl l/2gsgl

£ » ( L ( 0 ) |B ( 0 |

by scaling. The last term being greater than (or equal to) 
SR(1) y ß f X ß )  suPl/2gigl \B(s)\, we obtain:

A < E Í —í— ) e Í ____________ I ___________________________^
-  V(L(1/2))‘'/2(supi/2^ i |5 (s ) |)W-
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Since
e (3?ű(1)) < oo, 

e ( l “( 1 / 2 ) ) < oo,

E ( sup \B(s)\)
Vl/2gs^I '

< oo,

for all a > —2, 

for all a > —1, 

for all a E IR,

it follows from Holder’s inequality that A < oo. This proves (4.3).
The proof of (4.2) follows from the subsequent inequality and identity in

law: l

/
la w3?2(L(s)) ds íí sup 5Pqu) =  L(l) sup 9fr(u), 

05?u$L(l) O gitá l

and the fact that E (l/L (l)) =  oo. 
C orollary  4.2. For all n <  1,

l
(4.4) E

□

!  3?2(1 — s) dL(s)
-p

< oo.

P roof of Corollary 4.2. Taking f(x )  =  1 - x ,  g(x) — L(x), a =  0and 
b = 1 in the integration by parts formula in the amplified form of Fact 2.5, 
we have l lJ M2 {L(s))dsl= j  5R2(1 - s ) d L ( s ) ,

0 0
which implies that (4.4) is equivalent to (4.1). □

R emark 4.3. It would also be possible to show directly the integrability 
property (4.4) from the following argument:

t
The process { /  5R2(1 — s) dL{s)\ 0 ^ t ^  1} is the local time at 0 of the mar­

ii
tingale {5?2(1 — G(s)) B(s)\ 0 ^  s ^  1} with respect to the enlarged filtration
already considered in the proof of Proposition 4.1, where G(s) =  sup{u s : 
B(u) — 0}. Moreover, if u* E [0,1/2] satisfies |-B(u*)| =  supog^j \B(u)\, we 
find:

sup ( k2(1 -  G{v.)) \B(u)\) ^  K2(l -  G{u*)) \B(u*)\
0<«<1 ' '

‘= 5R2( l ) ( l - G ( u * ) ) |JB(u*)| 
SR2(1)> sup |B(it)|.

O g u g l /22
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This implies that

E ( sup
v Ogugl

5R2(1 - G ( u) ) |5 ( u) |)  " < oo, for v < 1.

To obtain (4.4), it then remains to use either the random time inequalities 
in Barlow et al. [3], which in this case yield:

i/p

for 0 < p < 1, p > 1/(1 — p) and positive random time T  (cis(p,p) being a 
constant depending only on p and p), or the ratio inequalities as in Yor [30], 
Gundy [21] or Dellacherie et al. [20, Chap. XXIII],

The main ingredient in the proof of Theorem 1.3 is the following estimate 
of the lower tail of Lz{  1), which is obtained by means of Corollary 4.2.

P roposition 4.4. Let Lz{t) be the local time at 0 of the iterated Brow­
nian motion process Z defined in (1.1). For each p <  1, there exists ci$(p,) € 
(0, oo), depending only on p, such that

(4.5) p ( L z ( l) < e )  ^ c 16(p)e", for all e>  0.

PROOF. Note that Lz{t) inherits a scaling property from that of Brow­
nian motion; precisely, for any given c > 0,

(4.6) {L z (ct); t ^  0} {c3' 4L z (t); t ^  o}.

Let r > 0, whose value will be chosen ultimately. Recall the definition of
V.2 (r) from (2.6). It is easily seen that L z(H 2 {r))]= r3/2L z (H 2(1))- Ac­
cordingly,

P ( l z { 1) < e) ^  P  (Lz (H2(r)) < e) +  p (?í 2(r) >  l )

(4-7) ^ p ( L z (7Z2( l ) ) < - ^ ) + p ( oSupJIY2(S) |< r )

g P (Lz(H2( l ) ) < ^ ) + 2 e x p ( - £ ) .

In the last inequality, we have used Chung’s exact distribution function of 
Brownian motion under the sup-norm (cf. [12, p. 221]).

Let us treat the first term on the right-hand side of (4.7). Write 6 ^  e / r3/2. 
Starting from 0, when W2 exits from [—1,1] for the first time (at time %2(1),
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by definition), there are two possibilities: W2 {T-L2{\)) equals either 1, or — 1. 
In other words, 'H2{\) = %2(1) A By symmetry,

(4.8)

'{ l z {H2 {1))< ő) ú 2v ( l z {'H2 {1))< ő-, n 2 ( l ) = 7*2(1)) 

^ 2 p ( l z (W2(1 ))< 5 )

^ 2 P (  J  L2{'H2(iy ,u)duL1(n )<s) ,  
o

using (1.2). According to the first Ray-Knight theorem (cf. Fact 2.1),
l lJ  L ^ n ^ iy ^ d M u )  '= j  SR2(1 -u )d L (u ),

0 0 
in the notation of Proposition 4.1. By (4.4),

l\ j  L 2 (H2(1 );u)duL1(n))E < oo.

Using (4.8) and Chebyshev’s inequality,

' ( L z y u 2{ i ) ) < í )  ^ c 17(/i) ő r

Recall that á =  e /r3/2. Going back to (4.7), and taking r =f 1 /\/log(l/£:), we 
get the desired estimate (4.5). □

P roof of the “otherwise” part in T heorem 1.3. Pick ß  > 1. 
There exists small 6  > 0 such that ß > 1 +  6 . Let tk '=f ek for k ^  1. By

Hpf(4.6) and (4.5) (with p = 1 — 0/2),
t 3/4 ,

P ( Lz(ífc) <  ( log  **)!+«)  = P ( L z (1 )  <  ( l o g i fc) 1+fl)

^ c u ( 0 / 2 )
= ( lo g i* ) (1+»)(1- fl/ 2) ’

which is summable for k. Applying the Borel-Cantelli lemma yields: almost 
surely for sufficiently large k, Lz (tk) ^ 4/(l°g tk)1+6■ Let t G [i*, ifc+i].
Then for large t,

L z { t ) Z L z {tk)Z
3/4  ,3/4

l k _  p—3/4 r* + l  >  p—3/4
(logÍA;)1+0 (logtfc)1+e -

<3/4

(lo g f)^0’
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which implies

a.s..
t —> OO t 4 / 4

Since ß  > 1 +  0, we obtain

lim
I—>oo

(logt)^
£3/4 Lz (t) = oo a.s..

This yields the desired lower bound in Theorem 1.3. □
Now let us recall Kesten’s LIL for the maximum local time. For an 

extension in the form of an integral test, cf. Csáki [14].
FACT 4.5 (Kesten [24]). With probability one,

lim sup
t —¥ OO

1
(21 log log i)1/2

supLi(i; x) =  1
x£R

a.s..

P roof of the “if ” part in T heorem 1.3. Only the case ß  = l needs 
to be treated. The proof, as well as that of Theorem 1.4 in Section 5, is 
based on an idea we have learnt from Csáki et al. [15], with some refinement.
Fix e > 0, and let tk d= kk for k ^ ko, where ko '=f ko{e) is a sufficiently large 
initial value. Define the events:

, 1/4

Dk = { sup (V Fi(s)-lT i(24/_21) ) ^ p r },
l 2 l0S ífcJ

E k '= { sup(L2 (tfc; x)  - L 2 ( t k- i; ^ t 1/ 2;

sup \W2 { s ) - W 2 (tk- i ) \ ^ t l /2\ ,
tk_l^s^tk J

Fk = Dk n E k.

Observe that

P(^fc) = p ( sup W ß t ) i — —£ T->Vo^tgi 2 log t.k ) 3 log tk

V(Ek) = P  Í  sup L2( \ \x) ^  1 ;  sup | i r 2 ( f ) | ^ l ) d=  c18>0, 
v xeR o<;í<;i '

which yields
piiU-puwpuMajgif.

Since the events {Fk)k>ko are mutually independent, by the Borel-Cantelli 
lemma, almost surely there exist infinitely many k's such that Fk is realized.
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On the other hand, by the usual and Kesten’s LILs (for the latter, cf. Fact 
4.5), for all k ^ k\ =f k\ (e, o>),

,1/4

Ai g 3 log log t] ! \ ) 1/2 ^

A2 ^ 2(^_1 log log i)1/2 ^  4 /2,
where

Ai =  either PFi (2£̂ .(21), or sup VFi(s),
0< s < 2 í í /2.— — k — 1

A2 =  either supL 2 {tk- i \ x ) ,  or \W2 {tk^.i)\, or sup \W2 {s)\.
x€R

Consequently, for those infinitely many k 's for which Fk holds and such that
k ^ .k  i, we have

(4.9)
2 e t 1/A

sup W ^ s ) ^ — k—  
0Ssg2i[/2 'k

(4.10) sup L2 (tk;x) ^  2tlJ 2 ,
xGR

(4.11) sup |W2(s)| ^ 2 t lJ 2.
0 i s i i t

According to Lévy’s identity, the supremum process {supg^^ VFi(s); t ^0} 
is distributed as the local time {L\(t)\ £^0}. Hence, there exist infinitely 
many k's such that (4.10), (4.11) and

(4.12) £ i (24/2)S
2 ^
logifc '

hold simultaneously. Now, assuming (4.10)-(4.12),

Az(ifc) =  j  L 2 {tk]u)duL x(u) 
o
211 / 2

=  / L 2 {tk-u)duLi{u)

^  2 sup L 2 (tk] x) L\ (2tlJ 2)
x£R

< 8 ^
logtfc 1
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which implies
lim inf ^ ^ - L z { t )  < 8e a.s..1-400 £3/4 w  -

Sending e to 0 gives the “if” part in Theorem 1.3. □

5. Proof of Theorem 1.4

In view of (1.10), only the upper bound needs to be proved. We first 
recall the following estimate due to Csáki and Földes [17]: for 0 < a ^  1,

(5.1) P ( supLj(l; x) ^ a \  ^  exp( ——y ),
'  x€R 7 GT

for some absolute constant cjg > 0.
Define C20 l=f \/8 cig and tk d= kk (for large k). Consider

def,

.1/4 
C20 V

Sk =  2 { t k loglog£fc)1/2,

Dk =  {  ™ p ( i ,  <«; x) -  x))  S (lQg ]Qg (t)1/)

, 1/2*  = { S n J L lw J -

}■

x€R

Fk d= Dk r E k.

We have, by means of (5.1),

P(Ot) g p (  sup L, (1; x) S 2(log , ^ (t)1/2 ) a  e x p ( - i  log log i*).

P (S * )&p ( bupZ,2(1;^ ) S ( j - ^ - j l / ä )  a e x p f- ilo g lo g iU .

Hence
P(Fk) = P{Dk)P{Ek) ^

1
(k log A;)5/8 ’

which implies Y lk P(-P&) =  oo. Thanks to the independence of the Fk s, we 
can apply the Borel-Cantelli lemma to conclude that, almost surely there 
exist infinitely many k 's for which Fk is realized. On the other hand, by 
Kesten’s LIL (cf. Fact 4.5), for all large k,

I i / “
supLi(s/-_i; i )  is 2(s/c_ 1 log l o g s ^ ) 1/2 ^ C20 k
xeR (log log t*,)1/4

, 1/2

supL2(tk- i ; x ) ^ 2 { t k- i  log log tk_ i ) 1 / 2  < i - - - C2°  ±  .
xeR (log log £fc)1/2
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Therefore there exist infinitely many k's such that

(5.2)

(5.3)

sup L \(sk; x) ^
xGR

sup l 2 (tk; ®) ^
xGR

2c20 t lJ A
(loglogtk) 1/ 4 ’ 

2c20 t]j2 
(loglog ifc)1/2'

For those A: satisfying (5.2)-(5.3), we have, by the usual LIL,

supLz (ifc;x) — sup /
x£R xGR J

L2 (tk] u)duLi(u-,x)
o

— sup /  L2 (tk-,u)duLi(u-,x)
x£ R  ./

0
g 2 su p L 2(ifc;y) supL i(sfc;a;)

j/GR x£R

< 8r2 t3/4° c 20

(log log ífc)3/4 ’ 

proving the upper bound in Theorem 1.4. □
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A DIRECT DECOMPOSITION OF THE CONVOLUTION SEMIGROUP 
OF PROBABILITY DISTRIBUTIONS

G. J. SZÉKELY and A. ZEMPLÉNI

Dedicated to Endre Csáki on his sixtieth birthday

A bstract

We show that the convolution semigroup of probability measures over the real line is 
the direct sum of the subsemigroup of normal distributions and the set (not subsemigroup!) 
of probability measures without nondegenerate normal convolution factor. For higher than 
one dimensional probability measures this kind of direct decomposition does not hold.

1 . Introduction

Infinitely divisible probability distributions play a very important role 
in probability theory. In the language of algebra, infinitely divisible distri­
butions are the divisible elements of the (commutative) convolution semi­
group of probability distributions. For commutative (Abelian) divisible 
groups (where all elements are divisible) there are three basic results (see 
e.g. Fuchs [3]):

(i) One can embed every Abelian group into a divisible Abelian group.
(ii) If a divisible group D is a subgroup of an Abelian group G , then D 

is a direct summand, i.e. G — D + H  is a direct decomposition where 
H  is a subgroup of G.

(iii) (structure theorem) Every divisible Abelian group is the direct sum 
of quasicyclic and full rational groups.

One can prove that (i) remains valid for semigroups, i.e. every commu­
tative semigroup is embeddable into a divisible one. We plan to return to 
this result and its applications in probability theory. The extension of the 
structure theorem (iii) does not seem to be easy and we cannot state any 
structure theorem for semigroups. In this paper we plan to study property 
(ii), i.e. the direct decomposability of commutative semigroups and especial­
ly an interesting direct decomposition of the convolution semigroup of one 
dimensional probability measures.
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2. Direct decompositions of semigroups

D e f in it io n  1. A semigroup S  is a direct sum of its subsets Si and S 2 if 
for all s € S  we have s =  S1S2 where si £ Si, S2 € S2 and this decomposition 
is unique. In this case S 1 and S2 are called direct summands. If S  has only 
trivial direct decompositions (one of the summands consists of the single unit 
element) then S  is called direct indecomposable.

Sometimes it is possible to choose the summands so that they be sub­
semigroups. In this case we emphasize this extra property. E.g. in the 
above mentioned direct decomposition for Abelian groups (property (ii)) if 
D  is not divisible then we cannot guarantee that in the direct decomposition 
G — D + H  the subset H  is a subgroup but we can guarantee the existence 
of such a direct decomposition.

The difference between divisible groups and semigroups is not only the 
possible abundance of idempotents in the semigroup case. For the additive 
group M of real numbers there exists a direct decomposition into the direct 
sum of rationals while for the additive semigroup of nonnegative integers we 
have the following result:

PROPOSITION 1. The additive semigroup of nonnegative real numbers is 
direct indecomposable if the direct summands are supposed to be subsemi­
groups.

PROOF. Suppose indirectly that there were a direct decomposition with 
nontrivial direct summands A  and B  and select an arbitrary a > 0 from A 
and a b > a from B. Then by the supposed direct decomposition there exists 
a' £ A, b' £ B  such that b — a = a' + b' and thus b = 0 + b = (a + a') + b'. Since 
a +  a' £ A  (semigroup property) and a -f a' ^  0, the decomposition of b is not 
unique.

If in S  there is a unique prime factorization then 5  is clearly the direct 
sum of the subsemigroups {Sp =  {p"}^L0 :p is a prime element in S'}. The 
proof of Proposition 1 shows that these subsemigroups are direct indecom­
posable if the direct summands are supposed to be subsemigroups since a 
direct decomposition of the semigroup of nonnegative integers (in the ex­
ponent of p) into the direct sum of two subsemigroups is impossible. (If 
we drop the subsemigroups restriction then we may split further the cyclic 
semigroups that were indecomposable in the strict sense.)

It was proved by Rúzsa and Székely [7] (see also Rúzsa and Székely [8]) 
that in case of the convolution semigroup of probability measures there is 
no unique prime factorization, moreover, there are no prime elements at all 
in this semigroup (although there are many irreducibles, and there exists a 
decomposition into the product of irreducibles — with a possible remainder 
term, called antiirreducible — see e.g. Khinchin [5], Kendall [4], Rúzsa and 
Székely [8]) therefore it is an interesting problem to find direct decomposi­
tions in this convolution semigroup.
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3. A direct decomposition of the convolution semigroup 
of probability measures

One of the most important subsemigroups of the convolution semigroup 
of probability measures is the semigroup of normal distributions. It was 
proved by R.A. Fisher and D. Dugué [2] that the set of distributions without 
normal convolution component — let us call them antinormal distributions 
■— is not a semigroup (in other words, the convolution of two antinormal 
distributions is not necessarily antinormal). We still have the hope to get a 
direct decomposition into the subsemigroup of normal distributions and the 
set of antinormal ones.

Denote by D (IR") the convolution semigroup of probability measures over 
the n-dimensional Euclidean space Rn.

T h e o r e m  1. D (R) is the direct sum of the subsemigroup of normal dis­
tributions and the set of antinormal distributions (the unit dement, i.e. the 
degenerate at 0 distribution, is considered both normal and antinormal). This 
kind of direct decomposition, however, does not exist for D(Rn) i fn ^ .2 .

PROOF. The first part of Theorem 1 follows from a general observation. 
Let us first recall the following definition (see Rúzsa and Székely [8]):

D e f in it io n  2. A commutative topological semigroup S  with a unity e 
and a Hausdorff topology is called Hungarian if

(i) the associate graph {(x, y) E S  x S  : x  ~  y} is closed (x ~  y if x \ y and
y  |z);

(ii) in S* = S /  ~  the set of divisors is compact for each element s*;
(iii) x ~  y implies the existence of a unit (associate of the unity) such that 

x — uy.
The family of Hungarian semigroups is quite wide, for example the convolu­
tion semigroup D(G) of probability measures for a locally compact Abelian 
group G is always Hungarian.

PROPOSITION 2. If S  is a closed subsemigroup of a Hungarian semigroup 
T  then S  is a direct summand in T  if

(i) for every pair of elements s ,t  in S  either s \ t or t \s ;
(ii) we can always cancel in T  by elements from S  (i.e. if sv = sz for an 

sE S  and v ,z  E T  then v — z);
(iii) i f s E S  a n d s ~ s \  th en s iE S .

PROOF. The set V  =  {v E T : v = st with s G S  and t E T  can hold only 
for s = ej (e is the unity in S) is the direct complement of S  in T, i.e. T  is 
the direct sum of S  and V .

To see this first we recall that S  fulfills the definition of the set of “atoms” 
in Rúzsa and Székely [8], thus any element t E T  can be decomposed as t = s-v 
where s E S  and v E V. (The original decomposition theorem claims only that
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s =  Si with Sj £ S  but for a closed subsemigroup the product belongs to 
S  as well.)

Now let us observe that property (i) sitq =  S2F2 implies ss2^i =  S2V2 (or 
=  ss 1V2) and thus by (ii) siq =  V2 (or v\ =  Then by the definition 

of V  s — e, v\ =  V2 and hence si =  02- □
One dimensional normal distributions can clearly play the role of S  in 

the convolution semigroup T  of all probability distributions.
For simplicity we prove the second part of the theorem for the bivariate 

case only; it is straightforward to generalize the proof for higher dimensions. 
For the proof of this part of the theorem we need the following lemma (we 
omit the simple proof).

L e m m a  1. A bivariate, absolutely continuous distribution with density 
function f , for which 3(x,y) £ ! 2 : f{x ,y)  =  0, cannot have a nondegenerate 
normal component.

Now let y  be the following signed measure: /i(0,0) =  — 5,

p ( l , l )  =  / i ( l ,  - 1 )  = / i ( - l ,  1)  =  At(— 1,  - 1 )  =  ^ ( 1  +  5)

where 6  is a small positive number such that 5 <
LEMMA 2. Let (X ,Y )  be a bivariate nondegenerate normal random vari­

able with zero expectation. Denote its distribution and density functions by 
&x,Y and <f>x,Y, respectively. Then 3c> 0 for which y*  <&cx,cY G D(R2) (i.e. 
the convolution is a bivariate probability distribution).

P r o o f  of Lemma  2. The density function h of the convolution of y  
and <I> is the following:

(1) h(x,y) = -ö-<fi{x,y) + {l/4 + ő) ^  <f>(x + e, y + y).
e= ± l,r;= ± l

We have to show that h(x,y)  ^  0 for all (x ,y ) £ R2. Let us distinguish two 
cases:

a) 0 £ N  =  [x — 1, x +  1] x [y — 1, y +  1], In this case we have

(2) h ( x , y ) Z - 6 - 0(0 ,0 ) + 4(1/4 +  6)1

where / =  inf 4>{x,y) by (1). Inequality (2) implies h{x,y)'Z. 0 for c^co-
(x,y)£N

b) 0 £  N. As the same values of <p form a nondegenerate ellipsoid cen­
tered at the point (0,0), the value 4>{x,y) lies between 4>(x — l ,y  — 1) and 
<p(x +  1 ,y  + 1), h(x,y) > 0 is a consequence of 6 < 1/3 for any positive c.

The suitable c’s form a nonempty closed set, so there is a minimal Co- 
The functional 7(c) =  min h(x, y ) is continuous, and we see from the proof

(x,y)£N
above th a t y(co) = 0 by the minimality of cq.
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Now let us consider two different bivariate normal distributions. By 
Lemma 2 we have that the corresponding convolutions are probability dis­
tributions, and both p. * <]>! and p * $2 fulfill the condition of Lemma 1. 
By this statement we have that u has two different direct-decompositions: 
v =  (p * <E> 1) * $2 = (p * $2) * $i- □

4. Further problems

In Rúzsa and Székely [6] (see also Rúzsa and Székely [8]) it is proved 
that there exists a homomorphism tp: D (  R) —> R which is an extension of 
the expectation. Hence D ( R) =  D o  + R is a direct decomposition where 
D 0 =  { F : F  £  D ( R ) , i p ( F )  =  0}.

CONJECTURE 1. If D{R) is the direct sum of two subsemigroups then 
one of them consists of degenerate distributions only.

PROBLEM 1. Is it possible to decompose D(M) into the direct sum of 
(direct) indecomposable subsets? (Not even every Abelian group is a direct 
decomposition of direct indecomposable subgroups.)

R e m a r k . If the word direct is replaced by subdirect then such a decom­
position always exists for all semigroups, and also for more general algebraic 
structures, as it was proved by G. Birkhoff [1], In fact, every commuta­
tive semigroup is the subdirect sum of a family of subdirect indecomposable 
subsemigroups.

PROBLEM 2. Characterize all commutative semigroups S  that are direct 
summands in every commutative semigroup that contains S.

C o n j e c t u r e  2. If in S there exist two elements si and S2 such that 
si {S2 and S2fsi, then one can always find a semigroup T  D S  such that S is 
not a direct summand in T .
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WEIGHTED APPROXIMATIONS OF 
PARTIAL SUM PROCESSES IN D{0,oo). II

B. SZYSZKOWICZ

Dedicated to Endre Csáki on the occasion of his 60th birthday

A bstract

Let X \ , X%, ■ ■ ■ be independent, identically distributed random variables with EX i =  0 
and E X 2 =  1. In Szyszkowicz [11] we obtained the weighted version of Donsker’s theorem 
in ű [0 .1] for the optimal class of weight functions, which is the same as the class of func­
tions q for which lim( ô |W(£)|/q(t)  = 0  a.s.. In this paper we show that there is no need 
for a similar assumption for the weak convergence of weighted partial sum processes in 
Z?[l, 0 0 ). Namely, we prove weighted approximations of n-1 / 2S(nt), 1 ^  t < 0 0 , by a stan­
dard Wiener process {W (t),  0 ^  t < 0 0 } in probability, and hence also weak convergence 
of the n-1 / 2S(nt)/h(t)  processes in £>[l,oo) for the largest possible class of weight func­
tions which is the same as the class of functions h for which lim su p ^ ^  \ W (t)\/h(t)  <  0 0  

a.s.. This paper is a continuation of Szyszkowicz [11] in that we improve on those re­
sults, for which additional conditions on weight functions were used in there. These two 
papers, together with Szyszkowicz [10], establish in probability approximations and weak 
convergence of partial sum processes in D[0,0 0 ) in weighted supremum and Lv , 0 < p  <  0 0 , 
metrics under the assumption of two moments only for X\ and for the optimal classes of 
weight functions.

1. Introduction

Let X\, X 2 , . . .  be independent, identically distributed random variables
(i.i.d.r.v.’s) with EXi =  0, EX]2 = 1, partial sums S(n) = X i -\------ 1- X n and
let {W(t), <00} denote standard Wiener process starting at zero.

Let Q be the class of positive functions q on (0,1] which are nondecreasing 
near zero, and let

1
I(q ,c)= f  t~ l exp(—ct~lq2 (t))dt, 0 < c< o o .

0
It is well known (cf. discussion in Section 2) that for q £ Q
(1.1) lim IW(t)\/q(t) — 0 a.s.
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i f  a n d  o n l y  i f

a n d

( 1. 2 )

i f  a n d  o n l y  i f

I ( q , c )  <  o o  f o r  a l l  c  >  0 ,

l i m  s u p  \W(t)\/q(t)  <  o o  a . s .  

«40

I ( q , c )  <  o o  f o r  s o m e  c  >  0 .

I n  S z y s z k o w i c z  [ 1 1 ]  w e  p r o v e d  t h e  f o l l o w i n g  r e s u l t  w h i c h  w e  s t a t e  h e r e  

f o r  t h e  c o m p l e t e n e s s  o f  o u r  p r e s e n t a t i o n .

T h e o r e m  l .A .  Let X \ ,  X ^ , . . .  be independent, identically distributed 
random variables such that

E A d = 0 ,  EX2 =  1 ,

[nt]
and for each n ^  1  let S(nt) = Xt . Then a standard Wiener process

i=l
{W(t) ,  0  t < 00 }  can be constructed in such a way that the following state­
ments hold true.

( a )  Let q£Q. Then, a s n — f o e

s u p  In~l 2̂(S(nt)  —  W ( nt))\/q(t )  =  o p ( l )

0<« l̂

if and only if I(q, c) < 0 0  for all c >  0 .

( b )  Letq&Q. Then, a s n —>00,

s u p  In-1/2(S(nt) — W ( nt))\/q{t )  =  O p ( l )

0< t g l

if and only if I(q, c) <  00  for some c>  0 .

A s  a  c o r o l l a r y  w e  o b t a i n  “ w e i g h t e d ”  D o n s k e r ’ s  t h e o r e m  f o r  t h e  o p t i m a l  

c l a s s  o f  w e i g h t  f u n c t i o n s  w h i c h  i s  t h e  s a m e  a s  t h e  c l a s s  o f  f u n c t i o n s  q £ Q 
f o r  w h i c h  ( 1 . 1 )  h o l d s .  N a m e l y ,  w e  h a v e  t h e  f o l l o w i n g  r e s u l t  ( c f .  S z y s z k o w i c z

[HD-
C o r o l l a r y  l . A .  Let X \ , X 2 , ■ ■ ■ be i.i.d.r.v.’s such that

E A i = 0 ,  EXf =  l .

Let q £  Q and {W(t) , t  ^ 0 }  be a standard Wiener process. We have, as 
n  —> 00,

n - x'2S{nt)/q{t)  A W(t)/q(t )  in D[0 , 1 ]
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if and only if I(q , c )  <  o o  for all c >  0 .

T h r o u g h o u t ,  t h i s  p a p e r  w e a k  c o n v e r g e n c e  s t a t e m e n t s  o n  S k o r o h o d  s p a c e s  

a r e  s t a t e d  a s  c o r o l l a r i e s  t o  a p p r o x i m a t i o n s  i n  p r o b a b i l i t y .  N a t u r a l l y ,  w h e n  

t a l k i n g  a b o u t  w e i g h t e d  w e a k  c o n v e r g e n c e  o n  s u c h  s p a c e s  w e  w i l l  a l w a y s  a s ­

s u m e  t h a t  t h e  w e i g h t s  a r e  c . d . l . g .  f u n c t i o n s .

F o r  m o t i v a t i o n  a n d  e l a b o r a t i o n  o n  t h e  h i s t o r y  o f  t h e s e  r e s u l t s  w e  r e f e r  

t o  [ 1 1 ] .

I n  t h e  f i r s t  p a r t  o f  t h i s  p a p e r  w e  p r o v e  t h e  f o l l o w i n g  t h e o r e m ,  w h i c h  

i m p r o v e s  T h e o r e m  2 . 2  o f  [ 1 1 ]  b y  d r o p p i n g  t h e  c o n d i t i o n  o f  r e g u l a r  v a r i a t i o n  

o f  w e i g h t  f u n c t i o n s .

T heorem  1 . 1 .  Let X \ , X 2 , • • • be i.i.d.r.v.’s such that

EXx =  0 ,  EX2 =  1

and let {W(t) , t  ^  0 }  be a standard Wiener process. Let q E Q be such that 
I(q, c) <  00  for some c >  0 .  Then, as n  — > 0 0 ,  we have

s u p

l/ngtgl
n 1/2(S(nt) — W(nt)) jq { t )  =  op{  1 ) .

A s  a  c o r o l l a r y  w e  o b t a i n  t h e  f o l l o w i n g  c o n v e r g e n c e  i n  d i s t r i b u t i o n  r e s u l t  

f o r  t h e  s u p - f u n c t i o n a l  o f  w e i g h t e d  p a r t i a l  s u m s  f o r  t h e  o p t i m a l  c l a s s  o f  w e i g h t  

f u n c t i o n s  w h i c h  i s  t h e  s a m e  a s  t h e  c l a s s  o f  f u n c t i o n s  q E Q f o r  w h i c h  ( 1 . 2 )  

h o l d s .

C orollary  1.1. Let Xi,  X 2, ■ ■ ■ be i.i.d.r.v.’s such that

EX\  =  0 ,  EX? =  1 .

Let qEQ and { I T ( t ) ,  f  ^  0 }  be a standard Wiener process.
( a )  We have, as n  — > 00 ,

s u p  In l/2S { n t ) \ / q ( t s u p  \W{t)\/q(t) 
0<t̂ l 0<tgl

if and only if I(q, c) < 0 0  for some c >  0 .

( b )  We have, as n  — > 0 0 ,

s u p  n~1̂ 2S(nt)/q(t)  A  s u p  W{t)/q{t) 
0<î l 0<igl

if and only if I(q,c) < oo  for some c>  0 .

P r o o f s  o f  T h e o r e m  1 . 1  a n d  C o r o l l a r y  1 . 1  w i l l  b e  g i v e n  i n  S e c t i o n  2 .  

O b v i o u s l y ,  C o r o l l a r y  l . A  i m p l i e s  c o n v e r g e n c e  i n  d i s t r i b u t i o n  o f  a n y  c o n ­

t i n u o u s  i n  s u p - n o r m  f u n c t i o n a l  o f  n~l'2S(nt)/q(t)  t o  t h e  c o r r e s p o n d i n g  f u n c ­

t i o n a l  o f  W(t)/q(t)  w i t h  qE Q  a n d  s u c h  t h a t  ( 1 . 1 )  h o l d s .  H o w e v e r ,  f o r  t h e
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sup-functionals Corollary 1.1 yields convergence in distribution for the op­
timal class of weight functions which is the same as the class of functions 
of q G Q for which (1.2) holds. Consequently, for the convergence of the 
sup-functional of weighted partial sum processes we do not have to assume 
the restriction that lim \W(t)\/q(t) = 0  a.s., which is the optimal condition

for having Corollary l.A. Such a phenomenon was first noticed and proved 
for weighted empirical and quantile processes by Csörgő, Csörgő, Horváth 
and Mason [2], and then by Csörgő and Horváth [3] for partial sums as well 
when assuming the existence of more than two moments for X\.  In [11] we 
proved Theorem 1.1 and Corollary 1.1 under the additional condition that 
q(t) / t1! 2 is slowly varying at zero (cf. Theorems 2.2 and 2.3 there). We note 
that the assumption of qE Q, i.e., that q is nondecreasing near zero, is not 
really restrictive since if q decreases near zero then lim |W(t)\/q(t) =  0 a.s..

For weighted Lp-approximations of partial sum processes in Z)[0,1] in 
terms of the optimal class of weight functions when only two moments are 
assumed to be finite for X i, we refer to Szyszkowicz [10]. It is of interest to 
note th a t the latter class of functions is yet bigger than the one obtained in 
Corollary 1.1.

Obviously, all our results for t £  [0,1] can be restated on [0, T] for any 
0 < T  < oo. On the other hand, since W(t) -> oo a.s. as t —>• oo, there is 
no weak convergence of n -1/2S(nt) on [l,oo). In [11] we introduced weight 
functions h(t), where h(t) —» oo as t —► oo, in order to study such phenom­
ena near infinity. In the case of assuming the existence of more than two 
moments, in the mentioned paper we obtained a complete solution of the 
problem in D[l,oo) (cf. Theorem 3.1 and Corollary 3.1 there). Namely, we 
obtained approximation in probability, and hence also weak convergence, of 
our weighted partial sum processes in D[l,oo), whenever

lim sup \W(t)\/h(t) < oo a.s..
t—yoo

We note that a similar result on D[0,1] does not hold. Namely, we do 
not have the weak convergence of weighted partial sum processes in D[0,1] 
for all weight functions such that (1.2) holds. Indeed, we have to assume
(1.1) even if we assumed the existence of more than two moments.

In this paper we obtain a complete solution of this problem in D[ 1, oo), 
assuming the existence of two moments only.

Let H  be the class of those positive functions h on [1, oo) for which h(t)/t 
is nonincreasing in the neighbourhood of infinity, and let

OO

7 o o ( h , c) = I  t~ l e x p ( — ct~lh2(t))dt,  0 < c < o o .

l
It is known (cf. Section 3) that for h 6 %
(1.3) lim \W(t)\/h(t) = 0 a.s.
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if and only if

I00(h,c)<oo  fo ra llc > 0 ,
and

(1.4) limsup|W (<)|/h(i) < oo a.s.
t —> oo

if and only if
Ioo{h, c) < oo for some c > 0.

The main result in the second part of this paper is the following theorem. 
T heorem  1.2 . L e t X \ ,X 2 , . . .  be i.i.d.r.v.’s such that

E X i = 0 ,  E X ?  =  1 .

Let h E H  and Ioo(h, c) < oo for some c > 0. Then a standard Wiener process 
{W(t), 0 ^  < oo} can be constructed in such a way that, as n —> oo, we have

sup |n -1/2(S(ni) -  W(nt))\/h{t) = oP(l).
1$«00

The above theorem implies weak convergence of weighted partial sum 
processes in Z)[l,oo). Namely we obtain the following result.

C orollary  1.2. Let X i, X 2 , ■. ■ be i.i.d.r.v.’s such that

E X i= 0 , E X f = 1.

Let h£'H. Then the following three statements are equivalent:
(a) There exists a standard Wiener process {W(t), 0 ^ t< o o }  such that

sup In l/2 (S(nt) — W (nt))\/h(t) = op(l)
l$t<oo

as n —» 00, and
sup \W(t)\/h(t) < 00 a.s.;

l̂ t<oo
(b) For all measurable, bounded, continuous functions g : Z)[l,oo) —> K, 

we have
g { n - ^ 2 S(n-)/h(-)) A  g(W(-)/h(-)), 

a s n —> 00, where {W(t), O ^iC oo} is a standard Wiener process.
(c)

I00(h,c)<oo for some c> 0.
We note that the class of weight functions in Corollary 1.2 is the largest 

possible, since in order to have weak convergence at all, the limiting process
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has to be finite, i.e., we have to assume (1.4) to begin with, in any case. We 
emphasise again the lack of analogy with results on -D[0,1]. Namely, in order 
to have weak convergence of n -1/2S(nt)/ q(t) in -D[0,1] with q(zQ , we have 
to assume (1.1). There is no need for the similar assumption of (1.3) for the 
weak convergence of weighted partial sum process in .D[l,oo).

In [11] we proved Theorem 1.2 under the additional condition that h(t)ft1/2 
is slowly varying at infinity (cf. Theorem 3.2 and Corollary 3.2 there). We 
note that the assumption tha t h eT í,  i.e., that h(t) /t  is nonincreasing near 
infinity, is not really restrictive, since if h{t)/t is increasing there, then it 
follows from the strong law of large numbers for W (t ) that lim \W(t)\/h(t) =

t—>oo
0 a.s..

For optimal weighted Lp-approximations of partial sum processes on 
[1, oo), which are complete analogs of those on [0,1], we refer to [11].

Theorem 1.2 will be proven in Section 3.
We wish to note that, even though some parts of the proofs of Theo­

rems 1.1 and 1.2 are similar to parts of the proofs of Theorems 2.2 and 3.2 
of [11], we decided to give the complete proofs of our results here for the 
convenience of the reader, as well as for the sake of clarity of presentation.

2. Proof of results on [0,1]

As in the Introduction, let Q be the class of functions q defined on (0,1] 
which are positive, i.e.,

(2.1) inf q(t)>  0 for all 0 < <5 < 1,

and nondecreasing in a neighbourhood of zero. Using terminology introduced 
in [6], such a function q will be called a local function of a standard Wiener 
process {W(f), 0 ^ i< o o }  if (1.2) holds.

A local function q of a standard Wiener process W  will be called a 
Chibisov-O’Reilly local function of W  if (1.1) holds.

Introduce the following integrals:

l
E (q, c) = I  t~3/2q(t) exp(—ct~1q2 (t)) dt, 

o

and l
I(q,c) — j  f_1 exp(—ct~lq2 (t)) dt, 

o
for some constant 0 < c < oo.
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The integral E(q, c) appeared in the works of Kolmogorov, Petrovski, 
Erdős and Feller. For details we refer to Itö and McKean ([7], Section 1.8).

The integral I(q, c) appeared in the works of Chibisov [1] and O ’Reilly [9].
For further comments on these two integrals, as well as for the proof of the 

next three theorems, we refer to [2], (cf. also [6]). We have (cf. Proposition 
3.1, and Theorems 3.3 and 3.4, respectively, of [2]):

T h e o r em  2.A. (i) Whenever the integral I{q,c) < oo for q & Q, then 
E(g, c + e) < oo for every e > 0 and q(t) f t 1/ 2 —> oo as t f. 0.

(ii) Whenever E(q,c) <  oo and q(t) /t1/ 2 —> oo as t j, 0 for q ^ Q ,  then 
I(q,c)<  oo. □

T h e o r em  2.B. A function q ^ Q  is a local function of a standard Wiener 
process starting at zero if and only if the integral I  (q, c) < oo for some c > 0 
or, equivalently, if and only if the integral E (q, c) < oo for some c > 0 and
Y u n q l D / t 1/ 2 = oo. □
t+o

THEOREM 2.C. A function q&Q is a Chibisov~0’Reilly local function 
of a standard Wiener process if and only if  the integral I(q, c) < oo for all 
c > 0 or, equivalently, if and only if the integral E{q, c) < oo for all c>  0 and
\ i m q ( t ) / t 1/ 2 =  oo. □
«40

REMARK 2.1. Due to Theorem 2.A, the results in Theorem l .A  and 
Corollary l .A , as well as those in Theorem 1.1 and Corollary 1.1, stated 
in terms of the integral I(q, c) can be restated equivalently in terms of the 
integral E(«7, c).

By Lemma 4.4.4 of Csörgő and Révész [5] (cf. also Section A.2 in Csörgő 
and Horváth [4]), we can assume without loss of generality that our prob­
ability space (Q,M, P )  accommodates all random variables and stochastic 
processes introduced so far and later on.

In the proof of Theorem 1.1 we will use the following result of Major [8].
T h e o r em  2.D. Let a distribution F(x) be given with f  xdF(x) = 0, 

J x 2dF(x) — 1. Define

%/2"/* / \
/  x 2dF(x) — 

J / xdF(x)
v/2" \ - v /2 ” /

if 2 n ú k  < 2n+1, n =  1, 2 ,. . .  .

A sequence of i.i.d.r.v.’s X \ ,  X 2 , ■ ■ ■ with distribution function F{x) and a 
sequence of independent normal random variables Y\,Y2 ,... with EYj; — 0, 

=  <4 can be constructed in such a way that the partial sums 
S(n) — X  1 H— • +  X n, T(n) = Y\A------ (-Yn, n = 1 ,2 ,... satisfy the relation

|5 (n ) -T (n ) | = ' o(n1/2).
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P r o o f  of  T heor em  1.1. L e tX i,X 2, . . .  and Yi,>2;• • • be as in The­
orem 2.D and {W (t), 0 ^ t < oo} be a Wiener process such that

n

(2.2) W{n) = Y J Yi/°u  n =  1, 2, . . . .
1— 1

[nt\
Let T(nt) = Y), 0 ^  t  ^  1, and qEQ. We have

2=1

sup In l!2 (S{nt) — W(nt))\/q(t)
l/n<t̂ l

(2.3)
^ sup |n“ 1/2(5 '(n t)-T (ni))|/q ,(i)+ sup |n 1^2 (T(nt)-W (nt))\/q(t)  

l/ngt<l l/ngt<l
= / i ( n ) +  / 2(n).

By Theorem 2.D we have

^ (n i)  — T(nt)| “= ’ o((nt)1/2), as n t-too ,  

and, consequently,

sup \S (n t)— T(n t)\/(n t ) 1̂ 2 a= 0(1), as n-> oo.
l á n í < o o

Let 5 G (0,1) be fixed and n be such that 1/n < 8 . Then, a.s., as n ->  oo,

(2.4) sup |n_1/2(S(ni) -  T(nt))\/q(t) ^  0(1) sup t l 2̂/q(t).
i/n -g t< 6 o<t<6

Using Theorem 2.D once again, we get

(2.5) sup |n -1/2(5(ni) — T(nt))\/q(t) “= ' o(l)
s^t<i

for any 8 G (0,1). Taking <5 > 0 arbitrarily small, by (2.4) and (2.5) we 
conclude

(2.6) / i ( n )=  sup |n -1/2(5(nf) — T(nt))\/q(t) a= o(l)
l/ragtgl

l im i1/2/ 9(<) =  0. 40

for any q G Q such that

(2.7)
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Let ő > 0 be small enough, so that q is already nondecreasing on (0, 6) and 
let n be such that l / n  < 6 . By (2.2) we have

[nt]
/ 2(n) ^  sup 

1 /n^t<6
n - 1/2 (r{nt) -  ^ 2  Yi/a^j jq ( t )

i=  1

( 2. 8) <

+ sup
6<t< 1

sup

n - 1/2
[ n i ]

( t  ( n t ) - £ Yi/* i)
i= 1

q(t)

[nt]

1 /n.^tűq(l/n)/n1/2

+ sup
q(l /  n) /  n1!2 <t<6

n - 1/2

■ ^ ( O A wi=  1 1

"■'/2E(1- ”)r-|A<()
2=1

£ ( i - é W ,(t)
it]

+ sup
« « 1  i=l

= 4 1}h + 4 2)(n ) + 4 3) (n )-
n

Since Gi —> 1 as i —> oo, we have ^ A i - l ) 2 ->0 as n ->  oo, and by Kol-
i=i

mogorov’s inequality we obtain
[nt]

sup
0 < t < l

n
-, / 2 e K )i=l 1

Yi =  o p {  1),

which implies 

(2.9) 4 3)(n )=  sup
5<t<\

[nt]
n 1/25 ^ ( ! - — /q{t)  = oP( 1)

i=  1 Gl

for any 6  E  (0,1).
In order to show that / ^ ( n )  = op(l), we note that due to q{t)/t1^2 -> oo 

as f | 0  (cf. Theorem 2.A) and <7* -> 1 as i —» oo, for any e > 0 there is n large 
enough such that

1
(°*— i)2 = e2-nl/2q(l/n) ,=1

Consequently, using again Kolmogorov’s inequality, we have
[nt]

sup
1 / wit^q{\/n) / nl / ̂  j—jE (i“ )*/" ,/’'W>*
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<P< sup
[ n i ]

S Hl /n^t^q(l/n)/n1/'2 ^=1

n 1/ 2 ^ ( l / n )

E  { ° i - 1 ) 2

- 1  Yi a.
^nll2q(l/n) > e

< 2— 1

<

nq2 {l/n)e2 

e2

n 1/2g (l/n )e2 
1

n 1/2g (l/n )

Since q ( t ) / t1! 2 —> oo as íj,0 , we obtain 

(2.10) 4 1)(n )= o p (l)

as n —> oo.
Next we show that I ^ \ n )  = op( 1). Since <7j —» 1 as i —» oo, for any

[nt]
e > 0 there is a large enough n  such that E  (&i — l)2 = £2 whenever [nt]^.

2=1
/ M] \

^  n 1//2g (l/n ) , which gives E i 0! - !)2 ) ^ q(t). Next we note that for
2=1 2

each n  > 1

{"-1/2E ( i E ) r‘’ °=<=1} ~ {^ (iE (-.-»2). os*si}
as well as for each e > 0

[nt]

{^ (^ E (" «-»2).»S‘S '}2 { ^ i > - i > 2).°s*si}.
Hence, we have

4 2>(n)2

V

sup
q ( l /n ) / n 1/ 2<t<(5

sup
q{l I n) /  n1 / 2 <t<&

nez

[nt]

2=1
[n t]

( ^ E ( - - ‘ ):
2—1

?(*)
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e sup
<7(1/ n) /  n 112 <t<6

Q

for any e > 0.
Consequently, by letting S —> 0 and hence also n —» 00, and combining

(1.2) with Theorem 2.B, we arrive at

sup
<7(l/n)/n1/ 2 <t<6

j  q{i)=eOP{ 1).

Since e > 0 can be taken arbitrarily small, we have 

(2.11) 4 2)(n) =  oP( 1).

Combining now (2.3) with (2.6) and also with (2.8)—(2.11), we get the result.
R e m a r k  2.2. Given now the embedding theorem, i.e. Theorem 1.1, as 

far as the intervals (0 ,1/n) are being concerned, there remains only the 
Wiener process to be dealt with. But this is exactly what Theorems 2.B 
and 2.C can be used for. Hence Theorem 2.1 of [11] (cf. Theorem l.A here) 
follows from Theorem 1.1 here.

Proof of Corollary 1.1 is similar to that of Theorem 2.3 in [11].

3. Proof of results on [1, 00)

[ni]
Let X \ , X 2 ,--- be i.i.d.r.v.’s and for each n't. 1 let S(nt) — ^2 X{,

i=1
0 ^  t < 00. Let {W(t), 0 5? t < 00} be a standard Wiener process.

A function h : [1, 00) —> (0, 00) will be called positive if inf hit) > 0 for
l ^ K

all 1 < K  < 00.
As in the Introduction, let H be the class of those positive functions h 

on [1,00) for which h(t)/t  is non-increasing in a neighbourhood of infinity. A 
function h G % will be called a global function of a standard Wiener process 
{W(t), 0 ^ t <  00} if

lim sup \W(t)\/h(t) < 00 a.s..
t—»00
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Introduce the following integrals:
00

Eoo(h, c) =  J t~3/2h(t) exp(—ct~lh2 {t))dt
1

and
OO

loo(h,c) = J t~ l exp(—ct~1h2 (t))dt,
l

where 0 < c < oo.
For a global description of the behaviour of a Wiener process near infinity, 

as well as for the following two results which are analogs of Theorem 2.B and
2.C for the case of t —> oo, we refer to [6].

T h e o r e m  3.B*. A function h £ 7 i  is a global function of a standard 
Wiener process if and only if  the integral Ioo{h,c) < oo for some c>  0 or, 
equivalently, if and only if  the integral E ^ / i ,  c) < oo for some c>  0 and 
lim /i( i) / i1/2 =  oo.

t — y o o

T h e o r e m  3.C*. Let h ^ 'H  and W be a standard Wiener process. Then 

lim IW(t)\/h(t) =  0 a.s.
t —»O O

if and only if the integral Ioo(h, c) < oo for all c > 0 or, equivalently, if and 
only if  the integral (h,c) < oo for all c> 0 and lim h(t) /t1/ 2 = oo.

£ —* o o

R e m a r k  3.1. If q£ Q then q(l/t) is well defined for t G [l.oo), positive 
and non-increasing in t as t —» oo. Hence tq(l/t)  G TL, and our results on [0,1] 
and on [l,oo) can be stated in terms of the integral I{q,c) (or E(g, c)) for 
both cases (cf. also [6]).

P r o o f  o f  T h e o r e m  1.2. Let X i , X 2, . .. and Yi, Y2, ...  be as in The­
orem 2.D and {W(t), 0 ^  t < oo} be a Wiener process such that

n

W (n) = Y Y i/o l, n = 1,2, . . .  .
2—1

M
By Theorem 2.D, with T{nt) =  Yh 0 ^  t < oo, we have

2=1

^ (n i)  — T(ni)| = o((ni)’/2) a.s.

as nt —>oo. Hence

sup \n~1/2 (S(nt)  — T (n t))|/i1̂ 2 =  0(1) a.s.
l $ t < o o
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as n —> oo, and for any 1 < K  < oo, we have as n - lo o

sup \n~l/2 (S(nt) — T(nt))\/h(t)  = o(l) a.s.,

as well as

sup \n~l/ 2 (S(nt) -  T(nt))\/h(t) ^  0(1) sup t l^2/h(t.) a.s..
K<t<  oo K<t<  oo

Consequently, taking K  arbitrarily large, we obtain, as n —»oo 

(3.1) sup \n~1/2 (S (n t)— T(nt))\/h(t) = o(l) a.s.
l^Koo

for any h : [1, oo) —> (0, oo) which is positive and such that lim t 1/2/h(t) = 0.
Í—> oo

In particular for h 6 7i and such that /^ ( / i ,  c) < oo for some c > 0, the latter 
is true.

Next we have, for any 1 ^ K  < oo

(3.2)

sup In l/2 (T(nt) — W(nt))\/h(t)
l< t<  oo

= sup \n - l' 2 (T (n t) -W (n t) ) \ /h ( t)  
lgtg/C

+ sup \n - l/2 (T(nt)-W ([nt]))\/h(t)
K  <t<  oo

+ sup \n~ll2(W(nt) — W([nt]))\/h(t)
K  <t<oo

- l i ( n ) +  l 2 ( n ) + l 3 (n).

[nt]

T ( n t ) - W ( n t )  =  Yl
i= l  ° l

and Oi -> 1 a.s i —> oo, by Kolmogorov’s inequality, we have for any positive 
function h (t) : [1, oo) —> (0, oo), as n —> oo

Since

(3.3) 

Let

(3.4)

l \{n ) = op{\).

ß  a= lim sup
t|oo

1^(01
h(t)

lim sup
T~+ ooT^t<00

\ v m \

h(t) ’

due to
Ioo(h, c) < oo for some c>0.
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We note that for each n  ^  1

it]

£{^Q E (-.-»2).°S ‘<“ }
Given e > 0, however small, then on account of Oi —> 1 as i —> oo, we can

[nt1
take K  large enough so that — -  l)2 ^  £2 whenever [nt\ ^ K n . Taking

l— 1
1 M

K  even bigger if necessary, so that h(t) is increasing for — (u, — l ) 2 <
nez z—■'l— 1

, x M  .
t < oo, and hence, in particular, \y—^ / X ai ~  l )2) = h{t), we arrive at

j=i

sup
K <t< oo

V— sup
K<t<  oo

V= sup
K<t< oo h(t)

^ e sup
K <t<  oo

Consequently, using (3.4), we have for any e > 0

sup
K <t<  oo

/ h ( i )  = ' /feO(l)



WEIGHTED APPROXIMATIONS. II 319

as K  —> oc.
Since e > 0 can be taken arbitrarily small, we obtain 

(3-5) I 2(n) =  oP(l).

On account of having, as nt -4 oo,

\W(nt) — kl/([n£])| =  0 (( lo g n i) '/2) a.s.

we have also

sup \n~l/2 {W(nt) -  W{[nt]))\/tl /2  = o (l) a.s.
ISKoo

as n —> oo. Consequently, for any 1 < K  < oo, we get as n —> oo 

sup \n - l' 2 (W (nt)-W ([nt}))\/h(t)
K <t<  oo

g o (l)  sup t l/2 /h{t) a.s.,
K<t< oo

which gives

(3.6) lj,(n) = o(l) a.s.

for any h positive and such that lim supt1/2/ / ^ )  < oo.
t—y oo

Combining now (3.3), (3.5) and (3.6), we obtain the result.
A c k n o w l e d g e m e n t s . The author gratefully expresses her gratitude to 

Professor Miklós Csörgő for his valuable comments and suggestions.
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LIMIT THEOREMS FOR WEAKLY REINFORCED 
RANDOM WALKS ON Z

B. TÓTH

Dedicated to Endre Csáki on his 60-th birthday

A bstract

The weakly reinforced random walk (WRRW) on the one-dimensional integer lattice 
Z starts from the origin of the lattice and at each step it jumps to a neighbouring site, the 
probability of jumping along a bond being proportional to w (number of previous jumps 
along that lattice bond), where w :N-»R+ , with w(n) ~  na for large n, and a  G (0,1) is a 
fixed parameter. We prove that the properly scaled local time process of WRRW converges 
in probability to a deterministic function. Using this result we also prove a limit theorem 
for the position of the random walker at late times.

1 . Introduction

We continue to investigate the long time asymptotic behaviour of self­
interacting random walks on the one-dimensional integer lattice Z. The walk 
Xi, i = 0 ,1 ,2 ,... starts from the origin of the lattice and at time i + 1 it 
jumps to one of the two neighbouring sites of Xi, so that the probability of 
jumping along a bond of the lattice is proportional to

w (number of previous jumps along that bond)

where
w : N -> K+

is a weight function to be specified later. Formally, for a nearest neighbour 
walk Xq = (xq, x \ , . . .  ,Xi) we define

(1 .1) r {xo)  =  # { 0 ^ j  < i :  { x j , x j + x) =  { x i , x i  +  l )  o r (x j +  l,® *)}

(1.2) /(xj,) =  # { 0 ^ i < f :  {x j ,x j+i) = ( x i , x i -  1) or (xj -  l,a;f)} .
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That is: the number t (xq) (respectively, l(x 'q)) shows how many times has 
the walk x z0 visited the edge adjacent from the right (respectively, from the 
left) to the terminal site x , . The random walk X L is governed by the law:

(1.3)
P [X i+1 = X i + l X) i = £o) =

u>(r(iő))

=  1 - P ( * i + l  = X i -  1 x \ =  ^o)-

The long time asymptotic behaviour of the random walk X t depends strong­
ly on the choice of the weight function w(-). In three previous papers we 
analyzed the following cases:

(1) The so-called ‘true’ self-avoiding walk, with w(n) — exp(-g-n), g>  0,
was studied in [6]. There we showed that for long times X n scales as n2/3 
and we proved a limit theorem for Xgs/A, as A —> oo, where 9S/A is a
geometrically distributed random variable with distribution V(0 S/A = n) = 
(1 — exp{ — s/A}) exp{— ns/A},  independent of the random walk X n.

(2) The generalized ‘true’ self-avoiding walk, a generalization of the pre­
vious model, with subexponential self-repulsion w(n) = exp(—g ■ n K), g>  0, 
k E (0,1) was investigated in [5]. In this case we found that X n scales 
as and we proved a limit theorem for A~^K+1^^K+2^Xg3/A, as
A  —>■ oo.

(3) Finally, in [7] weight functions with power-law asymptotics were con­
sidered: the so-called polynomially self-repelling walks, with w(n) ~  n~a, 
a > 0, respectively, the asymptotically free walks, with w{n) = 1 +  0 (n -1) 
asymptotically, for n > l .  In these cases the correct scaling of X n was n -1/2 
(as for ordinary random walks) but the scaling limit was not gaussian. A 
particular case of asymptotically free walks, the once reinforced random walk 
or random walk partially reflected/attracted at its extrema has also been con­
sidered in [2].

In the present paper we consider self-interacting random walks with 
polynomial self-attraction. That is: we assume that the weight function 
w : N —̂ (0, oo) is monotone increasing and for large values of n E N it obeys 
the asymptotics

(1.4) u;(n) =  ( l - a ) _1 Q )  - 5 ( l - a ) “2 Q )  + O (na~2) ,

or, equivalently

(1.5) « ( „ ) - > . ( l - « ) ( = ) -  +  S ( i ) - , -  +  0 ( » — ) .

where a  E (0,1) and B e K are fixed constant parameters. Since in the 
definition (1.3) of jump probabilities only ratios of w-s play any role, the
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constant factor in front of the leading term is chosen for convenience only. 
Note that the next-to-leading term is assumed asymptotically ‘smooth’.

We call these walks weakly reinforced random walks (WRRW) since the 
self-attraction of trajectories is slightly weaker than in the linearly reinforced 
case (with w(ri) =  1 + Bn, B  > 0). According to Davis [1] self-attracting ran­
dom walks on Z are recurrent if and only if w(n)~l =  oo, otherwise the 
random walker eventually sticks to one (randomly selected) edge of the lat­
tice, jumping back and forth on it indefinitely. Pemantle [4] proved that the 
linearly reinforced random walk has an asymptotic distribution on Z without 
any scaling. These two remarks explain why we confine our investigations 
to a G (0,1) in (1.4), (1.5).

The paper is organized as follows: In Section 2 we formulate our main 
results: Theorem 1 describes the asymptotics of the local time process of 
WRRW, Theorem 2 is a limit theorem for the position of the WRRW at 
late times. In Section 3 we give a representation of the local time process of 
our random walks in terms of generalized Pólya Urn Schemes. Section 4 is 
devoted to the proof of Theorem 1. As the proof of Theorem 2 is identical 
to a similar proof in [7], we do not repeat those details here.

In order to keep the paper self-contained we had to include parts of our 
previous paper [7]. These overlapping parts are typed with petite and thus, 
they are clearly distinguishable from the genuinely new parts.

2. Results

The present section is divided in two subsections: in subsection 2.1 we 
formulate the limit theorems referring to the local time processes and hitting 
times of the WRRW. In subsection 2.2 we formulate the limit theorems for 
the position of the SIRW at late times.

2.1. The local time process and hitting times 

We define the following (bond) local time process:

(2.1.1) L(l, i) = # { 0 ^ j < i : X j = l ,  Xj+x= l -  1}, le Z, i€N

and stopping times
(2.1.2) T>_1 = 0, T>m = inf{*' > : X4_i = k -  1, A, = k] k > 0, m ^  0.
(2.1.3) T<o = 0, T<m = M { i > T < m_ l : X i. 1 = k  + l , X i = k ) k Z 0 ,  1.
In plain words: L(l, i) is the number of leftwards jumps on the bond l l — 1 
performed by the random walk up to time i. Tjf is the time of the m + 1-th 
arrival to the lattice site k coming from left, T f m is the time of the m-th arrival 
to the lattice site k coming from right.
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In formula (2.1.4) below and thereafter the superscript * stands for either < 
or >. We consider the following shifted (bond) local time processes of the walk 
stopped at m :

(2.1.4) S l m(l) = L( k- l ,T lm).
Sk ro(0 's roughly half of the total number of jumps across the bond {k — l — 1, 
k- l ) :
(2.1.5) #{0 ^  j  < T**m : {Xj , Xj+1 } = { k - l - l , k - l } }  = 2 S l m(l) + 1M ) (/). 
Denote
(2.1.6) =  hlf{/ ^  0 : >  0},

(2.1.7) u,*+m = (Sjim) = sup{Z ^  fc : Sj£,m(Z) > 0}.

In plain words: k — ut*.+ , respectively k — ui*t~ — 1, is the leftmost, respectivelyAC ■ 777- n-, 777

rightmost, site visited by the stopped walk Xq .
Prom (2.1.5) it clearly follows that

u>* +
k  , m  OO

(2.1.8) T*, rn = 2 J ]  SÍ,m(J) + fc = 2  ^  S l m(l) + k.

Looking at the formal definitions only, in principle, these local times or hitting 
times might be infinite, i.e. it could happen that the site k e Z is never hit. From 
the results of Davis [1] it follows that in case of WRRW-s considered in the present 
paper, with probability one, this does not happen: all the random variables defined 
above are finite almost surely.

The following theorem and its corollary describes the precise asymptotics 
of the local time processes S ^ m(-) and hitting times T£m of WRRW:

T h e o r e m  1. The sum

(2.1.9)
1

w(2 j  +  1)

exists and D € (0, oo).
Let x  6 [0, oo), h it  0 and * =< or > be fixed.

A  — D ~l h 1~aA ^[AzTpP/O-«)/*] 

[Ax\\AlIL-°‘)h] 2 x + D ~ Lh- U  l-o

(2 . 1.10)

( 2 . 1. 11)

(2 . 1. 12)

A - m i - a)S*[AxUAlni-°)hjíHv]) —{A1" 0 +  D(x  -  Iy -  *1)}^ 

as A  —> oo.

sup
y

l/(l-a)



WEAKLY REINFORCED RANDOM WALKS ON Z 325

R e m a r k s . Note that the non-trivial scaling of the local time process 
provides convergence in probability to a deterministic function rather than 
convergence in distribution to a genuinely stochastic process.

Prom the previous theorem and (2.1.8) it follows immediately:

COROLLARY 1. Let x , h and * and D be as in Theorem 1. 
(2.1.13)

1  / l - ( 2 - a 0 / ( l - a ) ' p *  p . ^
2 I [Ax],[AW-<»h] 2 - a D (x + (D~lh)l- a ), a - a V 2“ “)/!1-0)

as A -» oo.

2.2. Limit theorem for the position at late times

The second result concerns the limiting distribution of the WRRW X n 
for late times. We denote by P(n, k), n £ N, k £ 7L the distribution of our 
WRRW at time n:

(2.2.1) P(n,k) = ? ( x n = k')

and by R(s,k), s £ R+, k £ Z the distribution of the walk observed at an 
independent random time 6S, of geometric distribution

(2 .2 .2 ) P ( o s =  =  (l -  e ~ s ) e ~ s n ,

OO

(2.2.3) R(s, k) = P (X0s = k j  = (1 -  e~s) ^  e~snP{n, k).
n=0

We define the following rescaled ‘densities’ of the above distributions

(2.2.4) nA{t, x) = A(l- aW - Q'>P([At], [^ t1-«)/!2" “)®])
(2.2.5) 7rA(s,^) = ^ (1_a)/(2“ Q)̂ ( ^ _1s,[>l(1_o)/(2_a)a;])

t, s £ IR-f, x  £ R-

THEOREM 2. For any s £ R+ and x £ R

nA(s,x) - ^ p ^ \ s , x )( 2 .2 .6 )

as A —> oo, where
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and
( 2 .2 .8 )

P o \ t , x )
1 / 2—2« jD \ 1/(2-Q) jV2 — «  í \  (»-“W M  | “/(1 q)

2-2 «  \  2 - a l )  | \ 2 —2« 15)

This is of course a local limit theorem for the WRRW, observed at an 
independent random time Qs/a of geometric distribution with mean e_S//,4x
x ( l — e~s!A) 1 A/s. In particular the (integral) limit law follows:

X

(2.2.9) v [a ~ ^ / ^ X ös/a < x ) ^  J  p ^ (s ,y )d y .
—  CO

This is a little bit short of stating the limit theorem for deterministic time:
X

(2.2.10) p ( A- ( 1-«)/(2-«)x[i4t]< x ) - >  J  P ^ \t ,y )d y .
— OO

But, of course, we can conclude that if the sequence with
t G R-i- fixed and A —> oo, converges in distribution then (2.2.10) also holds.

R e m a r k . O n  t h e  o t h e r  h a n d  w e  h a v e  g o o d  r e a s o n  t o  e x p e c t  t h a t  t h e  

s e q u e n c e  o f  random processes t^ r  X^A\ t )  =  i s  n o t  t i g h t

i n  t h e  f u n c t i o n  s p a c e  Z ) [ 0 , 1] a n d  t h e r e  is  n o  c o n t i n u o u s  l i m i t  process.
Given Corollary 1, the proof of Theorem 2 is formally identical to the 

proof of Theorem 3 in [7]. We omit the repetition of those details here.

3 . Representation of the local time process in terms of Pólya urns

3.1. Generalized Pólya urn schemes 

Given two weight functions

(3.1.1)
(3.1.2)

r : N —> M+ 
6:N->-K+ ,

a generalized Pólya Urn Scheme is a Markov chain (pi,ßi) on N x N with transition 
probabilities

(3.1.3) '(P (Pi+1, ß i+1) =  (k +  l , l ) (p u ß i ) =  ( M ) )  =  

’( (P i+ i ,A + i)  =  (M  + i) (pi,ßi) = (k, l ) j  -

r(k)
r{k) +  b(l) ’

6(0
r(k) +  6(0 ’

(3.1.4)
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and no other transitions allowed. Usually the initial values (po,ßo) — (0,0) are 
assumed and ßi and pi are interpreted as the number of blue, respectively red 
marbles drawn from the urn up to time i. Denote by rm the time when the m-th 
red marble is drawn and by p{m)  the number of blue marbles drawn before the 
m-th red one:

(3.1.5) rm = m in { i \ pi =  m  } ,
(3.1.6) p(m) =  ßTm.

The functions defined below are essential in the study of the Pólya Urn Scheme 
defined above:

n-1
(3.1.7) Rp(n) =  '^ 2( r ( j ) ) ~p, p € N

1 = 0  

n—1
(3.1.8) Bp(n) =  ' y '  (b(j))~p, p £  N.

i=o
We shall be particularly interested in p =  1, 2.

Lemma 1. For any m £ N and X < min{r(7') 1sVI■«*■>
VIo

identity holds:

ß(m)-l m —1 , . . i
(3.1.9) ■( n  >+&);) -n i ' - m )

i =0 j =0
In particular,

(3.1.10) E ( B 1 (p(m))j  =  Ri (m)

(3.1.11) Bi(p(m)) -  Ei?i(p(m)) 2) = ß 2(m )+E^B2(/i(

P r o o f . The proof of (3.1.9) follows from standard martingale considerations, 
using the representation of the generalized Pólya Urn Scheme in terms of two 
independent renewal processes with exponentially distributed waiting times (see 
e.g. the Appendix of [1]). Expanding (3.1.9) to second order in X yields (3.1.10) 
and (3.1.11). We leave the standard details of this proof as an exercise for the 
reader. □

3.2. The local time process

For sake of definiteness we consider the case of superscript >, i.e. we stop 
the WRRW at the hitting time . The case of superscript < is done in a very 
similar way, with straightforward slight changes.

Let {p [ l \ ß l ^ ) ,  / £ Z be i n d e p e n d e n t  Pólya Urn Schemes with weight func
tions

(3.2.1) r(,) (j ) = w ( 2 j  +  1) ( j )  =  w ( 2 j ) for l £ (—oo, 0] U [A: + 1, oo)

(3.2.2) r(i) ( j )  =  w ( 2 j )  6(Z) (j ) = w ( 2 j  +  1) for l £ [1, k  — 1]

(3.2.3) r(i) ( j )  =  w { 2 j )  b ( l \ j )  =  w { 2 j ) for l =  k.
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Denote by (jS^(m ) the random variables defined in (3.1.6), the superscript l show­
ing to which of the Urn Schemes it belongs.

The extension to self-interacting walks of F. Knight’s description [3] of the 
local time process Sj! (i), l G Z as a Markov chain is formally exhaustively 
explained in [6]. According to these arguments S? (1), l € Z is obtained by 
patching together three homogeneous Markov chains in the following way:

(I) In the interval l G (0, k — 2), that is steps 0 —> 1,1 —12 , . . . ,  (k — 2) —¥ (k — 1):

(3.2.4) S>ra(0)= m , S l m ( l + l ) = ß {l+1)(S>m(l) +  l ) ,  1 =  0,1, 2.

(II) The single step (k — 1) —> k is exceptional

(3.2.5) S^m(k — 1) =  given by (3.2.4), S £ ro(fc) =  p (k) (S^ m( k -  1) +  l )  .

(III) In the intervals l G (—oo,0), respectively l G (A: +  l,oo), that is steps
0 —¥ —1, —1 —> —2, —2 —> —3 , . . . ,  respectively k (k +  1), (fc+ 1) —> (fc + 2), (fc +  2)
—>(/c4-3),(fc +  3 )—t(/c-f-4 ),...:

(3.2.6) 5>m(0) =  rn, 5 > m(/ -  1) = /r(l) (S>tn(I)) , 1 =  0 , - 1 , - 2 , . . .

respectively

(3.2.7) ^ven by (3.2.5), 5> m(Z +  1) = /r(i+1) (S> m(i)) ,
l =  k, k +  1, A: +  2, . . . .

Due to (3.2.1) these last two Markov chains have the same transition laws.

4. Proof of Theorem 1

4-1. Preparations

As suggested by the representation of the local times given in the previous 
section, we consider two homogeneous Markov chains Z{1) and Z(l), 1 =  0,1, 2 , . . .  
on the state space N, defined as follows:

(4.1.1) Z(l +  l ) = p (l+1](Z(l) +  l), Z{l +  l ) = ß (l+1)(Z(l))

where the processes ( ' ) are those defined in (3.1.5)-(3.1.6), belonging to 

i.i.d. Pólya Urn Schemes < f , with weight functions
I  J leN

(4.1.2) r( j)  =  w(2j),  b(j) =  w{2j +  1)

and similarly, the processes { / / ” (•)} N belong to i.i.d. Pólya Urn Schemes

< \  with weight functions
l 1 ' JleN

(4.1.3) r(j)  =  w{2 j  +  1), b(j) =  w{2 j).
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We shall also need the hitting time

(4.1.4) ?0 =?o (Z ())  =  inf{J: Z(l) =  0}.

From (4.1.1) and (3.1.5)- (3.1.6) we see that ao is actually the extinction time of
f ( ) :

(4.1.5) 2 (0  =  0 for / ^  <70.

Lemma 1 suggests the introduction of the following functions:
n —1

(4.1.6) Up(n) =  2 2 ( w ( 2 j ) ) - p , p =  1,2,
j = 0
n—1

(4.1.7) W ^ W 2 J +  1 ) ) - ,  P =  1>2.
j '= o

Using formulas (3.1.10) and (3.1.11) of Lemma 1 and the functions introduced 
above we get the following identities:

(4.1.8) E (V i(Z(l  + 1)) \Z(l) =  n) =  U\(n +  1)

(4.1.9) D 2(Vl (Z(l +  l ) )\Z( l )  =  n) =  U2( n + l )  +  E(V2( Z ( l + l ) ) \ Z ( l )  =  n)

(4.1.10) E (í/j (2 ( /+ l) )  \Z(l)=n) =  V! (n)

(4.1.11) V 2(Ul (Z ( l+ \ ) ) \Z ( l )=n)  =  V2(n)+E(U2(Z( l+ \ ) ) \Z( l )  =  n).

As both functions n Ui (n) and n i-> Vj (n) are bijections between N and their
ranges it is more convenient to consider the Markov chains

(4.1.12) y( l)  =  V1(Z(l)), y (l )  =  Ui(Z(l)),  1 =  0 ,1 ,2 ...

instead of Z(l), respectively Z(l). With this change of variable formulas (4.1.8)-
(4.1.11) transform as follows:

(4.1.13)
e (y(i + i ) | y ( 0 = x) = i/j (v-^x)  + 1)

(4.1.14)
d 2(W  + i)f ly (i)=x) = u2 ( u f ' (x )  + 1 ) +  E(v2 o v ~ 1(y(i  +  i ) ) iy ( i )  = x)

(4.1.15)
E ( y ( i + i ) m ) = x ) = v l 0 u r l (x)

(4.1.16)
D 2(y( i  +  i ) |y ( 0  -  *) =  V2 o t / f 1 (x) + E (U-2 o i / f 1 (y( i  + m m = * ).

We introduce the functions F, G : Ran(V\ ) —> 1R and F, G : Ran([/i) —> K defined 
below

f (x) = e ( w + i ) y (0= *)

=ui (u1- 1(x)+i) -x ,

x
(4.1.17)
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(4.1.18)

(4.1.19)

G ( x )  =  E  ( [ ;y(i  +1) -  E(y( i  + i ) |y ( 0  = *)] 

=  U2 ( V f ^ i J  + l J + E ^ V a o V f^ y í l ) )

T(0=*) 

T(o) = A

f ( x ) =  e  í y ( i + 1) y (0  =  * )

=  V\  o [71~1(a;) — x,

(4.1.20)
G ( x )  =  e (  [j>(t + 1) -  E (y(l  +  l)flT(Z) =  x) 

= v2 o u~x {x)+e ( u2° c/r1 (y(i))
Since y(-)  and y(-) are Markov chains, from (4.1.13)—(4.1.20) it follows that the 
processes

(4.1.21)

l-i
M(i) = y ( i ) - y ( o ) - J 2 F(y(j)),

j=o
/-I

3= 0

are martingales with quadratic variation processes

/-l i-l
(4.1.22) (M , M ) ( l )  =  J 2 G( y U )), ( M , M ) ( l )  =  ^ G ( y ( j ) ) .

3 = 0  3= 0

4-2. Asymptotics of the relevant functions

In the present subsection we give the asymptotics of the relevant func­
tions, F, G , F, G to be used in the proof of Theorem 1. All formulas are 
valid for large values of the variable and are obtained from (1.4) and (1.5) 
in a straightforward way.

From (1.5) we get

(4.2.1) Ui(n) =  n 1 a +  u  +  0 ( n

(4.2.2) Vi (n) =  n 1~ a  + v + 0 ( n

( 0  (n1- 20) if 0 < a  <
(4.2.3) V2 (n),U2 (n) = < O (log n) if a = b

l  0 (1 ) if 5 < a < 1,
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u and v in (4.2.1) and (4.2.2) are two real constants. We define

(4.2.4) D =  lirn ( i7 i (n ) -V i(n ) )= u -w .

Clearly,

00 / i 2 \

D ^  W 2?) w(2 j  + l ) J

1 °°' /  1 2 \
4̂'2'5  ̂ u>(0) " W 2 j - i )  ^ ( 2i ) /

and hence, due to (1.4),

(4.2.6) 0 < D < ie(0)-1 < oo.

The asymptotics of the functions F, F, G, and G is given in the next Lemma: 
L e m m a  2. The following asymptotics hold for x 3> 1:

(4.2.7) F(x) =  D + 0{x~a^ 1-° V i ' 1)
(4.2.8) F(x) =  - D  + 0 { x - a^ v-“I V T 1)

( o  ( x ^ - ^ / d - ■Q ) )  if 0 <  a < \
(4.2.9) G(x ),G(x ) =  { O (log x) if a  =  h

l  0 (1 ) if 5  <  a <  1 .

PROOF. Note first that (4.2.1) and (4.2.2) imply

(4.2.10) U 7 \ x )  =  rrQ/(1“ a) +  0 (1 )
1 — a

and

(4.2.11) v r \ x )  = x 1̂ 1- ^  -  ——  xa/il- a) + 0(1),1 — a

respectively. Inserting (4.2.1) and (4.2.11) into (4.1.17) [respectively, (4.2.2) 
and (4.2.10) into (4.1.19)] we readily get (4.2.7) [respectively, (4.2.8)].

In order to prove (4.2.9) we note first that, due to (4.2.10), (4.2.11) and
(4.2.3) we have:

U2(Vl~l (x) +  1 ) ,  V2oV{f \x) ,  V2 o l U 2oU^{ x )  =
O (x(l-2o)/(l-a)^ if 0 < a  < tj
O (log x) if a = \
0(1) if 5 < a  < 1.

(4.2.12)
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Inserting these into (4.1.18) and (4.1.20), and applying Jensen’s inequality 
(note th a t the functions x  t-> and x  logx are concave), we get
eventually (4.2.9). □

Note also that the functions x h-» F(x) and x F(x ) are monotone de­
creasing, with

(4.2.13)
D =  lim F ( x ) ^ F { x ) ^ F { 0) =

x—>oo
1

w(0 ) ’
- D =  lim F (z )£ F (x )g F (0 )  =  0.

x—>oo

4-3. Scaling

The proper scaling of the processes y(-) and y (  ) is determined by the dom­
inant terms in the asymptotics of the functions F, G, respectively F, G. The 
scaling of the processes Z(-) and Z(-) is determined by the functional relations
(4.1.12).

(4.2.9)-(4.2.11) suggest the following scaling:

(4.3.1) YÄ(t) =  A ~ l y([At}), YA(t) =  A ~ 1y(lAt}).

The rescaled martingales M A{-), MA()  and their quadratic variation processes 
will be

(4.3.2)

(4.3.3)

(4.3.4)

(4.3.5)

A ~ l [ A t ]

MA(t) =  A ~ l M{[At]) =  YA( t ) - Y A{ 0 ) -  j  F(AYA(s))ds,

0
A ~ 1\ A t ]

MA(t) =  A ~ l M([At]) =  YA( t ) - Y A( 0 ) -  j  F (A Y A(s) )ds

0
>4 “ 1 [At\

(.MA, M Am  =  A~2(M ,M )( [A t ] )=  J  A~XG (AYa (s)) ds,

(•MA, M Á)(t) =  A-'2(M,M)([At ])1= j  A -1G(AYA{s))ds.

The functional relations (4.1.12), the asymptotics (4.2.1), respectively (4.2.2), and 
the scaling (4.3.1) determine the proper scaling of the processes £(■) and Z(-):

(4.3.6) ZA(t) =  A ~ 1/(1- a)Z([At]), ZA(t) =  A ~ 1/{1- a)Z([At}).
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4-4- Convergence of the processes

We assume that the initial conditions converge in probability to the de­
terministic constants yo, respectively yo: denoting the events

(4.4.1) A s,a =  { |^a(0) — 2/oI <  á}, A m  = { |^ ( 0 )  — 

we have for any fixed 5 > 0

Vo <S

(4.4.2) p (̂ 4<s,a) ~̂*• 1, P (As,a) —:> 1-

First we show that the martingales M A (■) and M,\ (■) converge to zero in 
probability, uniformly on compact intervals sE  [0, t]. Indeed:

A- ' [At ]

E^(MA,M A)( t ) )=  j  A ~ 1e ( g  {AYA(s)))ds  
o

A ~ l [At\

g J  A-1E(c1(AYA(s))1-a + C2y s
o

A - 1 [At]

^ A~aC\ J  ( e Y A ( s ) y ~ nd s  + A - lC2t

(4.4.3)

A ~ l [At]

^ A~°Ci j  (y^(0) + C3s)1_öds +  y l-1C2Í->0.

In the first inequality the asymptotics (4.2.9) of the function G is used, the 
second one follows from Jensen’s inequality, finally in the last inequality we 
have used (4.3.2) and the fact that the function F  is bounded. Define the 
events

(4.4.4) BtiStA = { sup |Ma(s)| <<5), Bs,a = { sup M/i ( s ) < j | .
l 0 ^ t  } S g s g D - i y  0 J

From (4.4.3) and a similar argument applied to the martingale M A{-) we 
conclude that for any t E [0, 00) and any J > 0 fixed

(4.4.5) p ( X m ) - + i > p  ( B s,a ) ->1



334 B. TOTH

as A —>• oo. Due to (4.3.2) (respectively, (4.3.3)) and (4.2.13), on the sets 
As,a  H Bt,s,A (respectively, on the sets As,a O Bs,a ) we have for s G [0, t\ (re­
spectively, for s E [0, D ~ l yo])

(4.4.6) YA( s ) ^ { y 0 + D s - 2 6 } +, 

respectively,

(4.4.7) YA( s ) ^ { y 0 - D s - 2 6 } +.

Consequently, given any t G [0, oo) fixed, on the set As,a  0  Bt,s,A

(4.4.8) y ^ (s )^ 0
5

for
for

O ^ s ^ D  1 {3<5 — 2/o}-f- A i 
D ~ l {36 -  yo}+ A t <s5i t.

On the other hand, on the set A s ,a O Bs,a

(4.4.9) Ya (s) ^ &
0

for
for

0 ^ s < D - 1 { y 0 - 3 6 } +

D -'iyo  -  3<5}+ D ~ly0.

Now, choose A big enough to have

(4.4.10) F{AS) -  D  < 6 , F{AS) + D < 6 .

Prom (4.3.2) and (4.4.8) it follows that for any tE  [0, oo), on As,a n Bt,s,A

sup |Y',1(s)-(yo + £ ,s)|

A- 1 [At]
^|y+(0) - 2/o |+  [  {F{AYa (s )) -  D )ds+  sup \Ma (s )\

J 0<s<t0
(4.4.11) <.ő + 3{w(0) ~ 1 -  D)D^Ó + (t + A ~ l )ő + ó

i ( t  + 3{w(0)D)~l )6,

and hence for any t E [0, oo)
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On the other hand, from (4.3.3) and (4.4.9) it follows that, on the set
•As,a  0  B s,a

(4.4.13)

and hence: 

(4.4.14)

sup ^ |Y )i(s)-(yo-£> s)|
0^s^D~lyo

A-'lAD-'yo]
< Ta(0) — yo| + j  (.F(AYA(s)) + D^jds

+ sup ^ M ^is)
0£s£D~lyo

g J + 3á + (í +  i4_ l) í  +  J g  (D~lyo + 6 )S

sup
0^s^D~1yo

Y a ( s ) -  (y o - D s )

4-5. Convergence of the extinction time

The forthcoming argument is a repeat of the proof presented in subsec­
tion 5.7/A1 of [7].

For x 6 K+ we denote

(4.5.1) a x = inf{Z ^ 0: y { l )  g x }

(4.5.2) S’*,a =  inf{t ^  0: Y^(t) ^  x}.

We prove now that for any r) >  0:

(4.5.3) lim lim P ( op A~>g 

which is equivalent to

(4.5.4) lim lim P ( ctq >  Ag
y—rO A—Too \

From (4.2.13) it follows that there exists an xo < 0 0  such that for x ^ x g

(4.5.5) F(x ) ^ ~ y <  0 

and thus

m = m + j i(4.5.6)
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is supermart ingale  as long as y(l) ^  xq . Applying the optional sampling theorem 
to the supermartingale Af(l) we get for y > xo

(4.5.7) e ( ? , 0 H 0) =  y ) g - § y .

Now, we prove (4.5.4):

lim lim P ( (To > Ar) F(0) =  Ay  ) ^
y —>0 A —»-oo \  /

^  lim lim P (<Tx0 > Ar\f2 (y(0) =  Aj/] +
y —tO A —aoo \  /

(4.5.8)

lim sup p ( a o > A i ) / 2  (V(0) =  a:).

Applying Markov’s inequality and (4.5.7) we get

(4.5.9) lim lim p ( a Xo>Aii /2
y —>0 A — t o o  \

y(0) =  A y )  <  lim -pp = 0 . ) ~ y->0 Dp

On the other hand, since x q  is constant independent of A, the second limit on the 
right-hand side of (4.5.8) clearly vanishes. Hence (4.5.4), or equivalently (4.5.3), 
follows.

From (4.5.3) and (4.4.14) it follows that

(4.5.10) aA,o A  D - % .

4-6. End of the proof

Collecting the results of subsections 4.1-4.5 we conclude that, provided
that Z A(0) — > zq, for any fixed t € [0, oo):

(4.6.1) sup
0<s<i

ZA( s ) - { 4 ~ a + Ds},i/(i-«)

and, provided that Za {0) — > zq,

(4.6.2) 

and

(4.6.3)

&0,A -1~1-Q

sup Z A(s) — {zQ~a -  Ds}Li/(i-«) 0.
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Given the representation of the local time process described in subsection
3.2, Theorem 1 follows directly from (4.6.1)-(4.6.3), after noting that due to
(3.1.11) it is easily seen that the single exceptional step (3.2.5) does not spoil 
the continuity of the limit process at y — x. □

Corollary 1 follows directly from Theorem 1. Note that the joint con­
vergence of the processes S*u j ^ ini_a)h]{[A-])/ and extinction times

u)[Ax\\A^/^)h\lA is needed in this proof. □
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GENERALIZED MEANDERS AS LIMITS OF WEIGHTED BESSEL 
PROCESSES, AND AN ELEMENTARY PROOF OF SPITZER’S 

ASYMPTOTIC RESULT ON BROWNIAN WINDINGS

M. YOR

Dedicated to Professor E. Csáki on his sixtieth birthday

Let (Bt, t ^  0) be a 1-dimensional Brownian motion starting from 0, and 
gi = sup{i < 1, Bt = 0}. Recall the definition of the Brownian meander (due 
to Chung; see e.g. [2]):

m u =  ^  l -^9i+tt( l-gi)l  u = l >

and, more generally, of the Brownian meander of length t:

m ^  = Vimu/ t , i f£ t .

It is well known (Imhof [3], Biane-Yor [1], [2]) that Mt, the law of as 
defined on C'([0,<j;R+) satisfies:

(1) Mt t *  * Ft

where Pq denotes the law of a 3-dimensional Bessel process starting from 0. 
More generally, we may define a two-parameter family M?’d of distributions 
on C([0, <]; M+) by

(!)d,d1
Td,d!M r  = cd>d.

t d / p

X?
pd+d1 
•* 0 Ft

where Pq denotes the law of a d-dimensional Bessel process starting from 0; 
and cdydi is a normalizing constant.

For some important properties of these distributions, see Yor [4], and 
Pitman-Yor [6].

Amongst these laws, the laws of the meanders associated to Bessel pro­
cesses with dimension ő < 2 are found: precisely, if 6 =  2(1 +  r ), with
— 1 < /z < 0, and ( R ^ \ t  ^ 0) denotes a Bessel process starting from 0, with 
dimension <5, then the law of

m (/i)('u) = —7f====-^9i.+u(i-9)J)> U=1
V 1 ~ 9 p

1991 Mathematics Subject Classification. Primary 60J65.
Key words and phrases. Meanders, Brownian windings.
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or rather M[ß\  the law of \ / im ^ \(u / t) ,  u ^ t ,  satisfies

M (tß) =
t~v
(-2/x) Tt

d d'In this note, we show that some of those generalized meander laws M t ’ 
may be obtained as weak limits as r -* 0 of

where

and we found it more convenient to refer to the law P/ as P r‘\  where // is 
the index associated with 6 by: <5 = 2(1 + p).

We shall use in an essential way the following absolute continuity rela­
tionship:

P r o p o s it io n  1. Let p >  —1, and let ^ 0 be T t measurable. Then, for 
r > 0, and X^O, one has

( 2)

where v  =  ( p 2 +  A 2 ) 1/ 2 .

Remark that, if /i < 0, then: (t < To) < 1, where To = inf{f : Xt  =  0},
and we obtain from (2), by letting A—>0,

(2)o ^ [ ^ 1 ( ^ 0 ) ]  = ^ -P) d>

These different results are found, e.g., in [5], where they play an important 
role in the computation of the laws of exponential functionals of Brownian 
motion.
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1. Weak limits for fixed A ^  0, as r —> 0

We have the following
T h eo r em  1. Fix A ^  0. Then, if <&t is a hounded, (Ft) measurable, 

continuous functional, one has

(3) ~  r ^ E ^
( r —>0)

$
1 I

x r

Consequently, ^  > M f ’5 , where S — v — fj, and S' =  2 + v +  //,.
Tt

The proof of (3) follows easily from (2); note that in particular

and we have

r ( i  + ^ )  
r ( i  + ") ’

where, to obtain the last formula, we have used the fact that X 2 is distribut­
ed, under as: 2Zi+l/, with Za denoting a gamma (a) variable.

2. Weak limits for A =  Ar — > 0
r —>0

In this situation, we need to discuss separately the cases when ^ 0, or
M<0.

T h eo r em  2. Let Then, if Ar —> 0, and if <&t is a bounded, (Ft)-
measurable, continuous functional, one has

(5)

where

E M r !  K f  ds V
* , e x p ( - T j

X 2) .
~  ( r ^ - ^ E ^ i ^ t ) ,

r—yO

Vr = (H2 + Xl)l/2.

T, r-v0
p(u)
M)

Consequently,
p(fi)Ar
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T h e o r em  3. Let ft < 0. Then, if Ar — ^0, and if <&t is a bounded con-
r-»0

tinuous functional, one has

( 6 ) Ep* $ t exp A?
I

/
ds 
X 2s

~  r
r —yO

Vr-H.E \f p)
X f 2ß-

Consequently,
p(ß),M

Ft r-+0

Again, the proofs of Theorem 2 and 3 follow easily from (2). Moreover, 
it is interesting to look at the equivalences in (5) and (6) when =  1.

For instance, if we take in (5) /i =  0, we obtain:

E (°) eXP(‘ ^ /^ f)]~ eXP(“ir(l0Br))'
so that, if Ar =  with A ^ 0, one obtains

El0) exp -
A2

2 (log 1 /r)2
} ds_J r —>0

exp(—A).
o

Using the scaling property of Brownian motion, it is easily seen that this 
result is equivalent to Spitzer’s result about the asymptotics of the winding 
number 6 t of planar Brownian motion, as t oo, precisely:

(7)
20 t (law) 

log t t-yoo 1 ’

where C\ denotes a standard Cauchy variable.
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PERIODIC SOLUTIONS OF CERTAIN THIRD ORDER 
NONLINEAR DIFFERENTIAL EQUATIONS

B. MEHRI and D. SHADMAN

Studia Scientiarum Mathematicarum Hungarica 33 (1997), 345-350

Abstract

Periodic solutions of second order nonlinear ordinary differential equations have been 
considered by many authors (see for example [1], [2], [3] and [4]). Third order equations 
have also been the subject of many investigations. The differential equation x'" +  ip(x')x" +  
(p(x)x' +  f (x)  — p(t). p(t) =  p(t +  uj) has been treated by Reissig [5] and several other 
authors. In [5] the author treats the cases <p(x) =  k2 and ip(x') =  c, respectively. In this 
paper we make use of the method used in [5] to obtain sufficient conditions for the existence 
of an ^-periodic solution for the general case of the differential equation cited above.

We consider the third order differential equation

(1) x " '+ %j>(x')x" + 4>(x)x' + f( t ,x )  =p(t), p(t + ui)=p(t)

where the functions i/>(y), (f{x), f ( t , x )  andp(t) are assumed to be continuous 
and in addition /  is assumed to be w-periodic in t.

THEOREM 1. The differential equation (1) admits at least one ui-periodic 
solution if

0)

( Ü )

(iii)

(iv)

(v)

U> tI  p(t)dt = 0 ^i.e., P(t) = /  p(t)dt is uj-periodic'j,
o o

y\®(y)\^G, [V{y) = I  rp{v)dr]j,
X

* (* )= I
F I

I f { t , x
X

—10, x —> oo

—»0, x —> oo (uniformly in t),

f{ t ,x )  sgnx^O, \x \fip .

1991 Mathematics Subject Classification. Primary 34C25.
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346 B. MEHRI and D. SHADMAN

For the proof we make use of the Leray-Schauder principle. First we look 
at the following differential equation containing a parameter y, 0 ^  y  1,

(2) x"'  + ax' + bx = y\p(t) — / ( f ,  x) — <f>{x)x — %p(x')x" +  ax' +  bx\,

where a and b are positive but otherwise arbitrary constants.
We notice that for y  = 1, (2) is identical with (1) and for /x =  0 we obtain 

a linear homogeneous equation

(3) x "  +  ax' + bx = 0.

It is well known ([6], [7], [8]) that (2) admits at least one periodic solution for 
each y  G [0,1], if for y  6 (0,1) all periodic solutions as well as their derivatives 
of first and second order are bounded, provided that (3) has no w-periodic 
solution except for the trivial solution. This is indeed the case under the 
condition of positiveness of a and b.

Let x(t) = x(t + u) be a solution of (2), then the derivative y = x' satisfies 
the following equation:

(4) q{t) = y

y" + ay = q{t), q(t + u)=q(t)  

p ( t )~  f( t ,x ( t ) ) ($(a;(i)) +  'k(a;,(i)) +  ax(t))
dt

-(1 — y)bx(t).

Now let G(t,s) be the Green’s function of the boundary value problem

y" + ay = q(t), O ^ t^ u ;  
y (0 )= J/M , y'(0 )=y'{uj),

where

0 ^ t ^  s ^  u j  

0 s 5Í t Si u j .

, u j

(5) G(t,s) =
1 cos \/a( -  + t- s ) ,

- U J UJ
2v/asin (y /a —) I cos \/a{— — t + s)
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We obtain the following representation for y(t) and for its derivatives
UJ

y{t)= I  G{t,s){y\p{s) -  f{s,x{s))] -  (1 -y)bx{s)}ds  
o

+ jd G ( t , s )

U)

/ « ) = /

ds

dG(t, s) 
ds

[$(x(s)) +  'I'(y(s)) + ax(s)]ds,

{p\p{s) ~ f{s,x{s))] -  (1 -  y)bx{s)}ds

+ $(x(t)) + 'P(y(t)) + a x(t)

+
LŰ ^

[  ^ ^ [ $ (a:(s )) +  í , (y(s ) ) +a:E(s)]dá

For 0 < w < rr/v /a  we obtain the following bounds for Green’s functions and 
its derivatives

d2G
2iva ’

d G . .
Si"(<’s)

< 7T

2 Uí-y/ü’ dtds 2u>

Denote
R — max | x ( t ) |  

te[ o,w]
$(/?) =  max |<f>(x)|

|x|gÄ

F ( R ) =  . m a x _!/(*>*)lte[o,u)],|x|gß

and let 0 < y, < 1, then we derive the following estimates for y(t) and y'{t):

(6) hK.)is= { i w + -a m )  + ^  + ( Í  + v s )  « } ,

( 7)

+  ( -------h i )  $ ( i ? )  “h  ( ------ h i  ) G  ~h ( 6  4 ------------ h  d ) - R ^ •
7T 7T 7T

Now term by term integration of (2) yields
a;

I  [6(1 -  fi)x(t) 4- / ( i ,  x(i))]dt = 0.
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However, for /i £ (0,1), 1 — A* > 0, and we get

6(1 — p)x{t) sgnrr +  f ( t , x) sgn x > 0, \x\'tp .

Therefore |a;(í)| ^  p for all t E [0, uj] does not hold and we have |x(r)| < p for 
some r  E (0, a;).

Applying the mean value theorem to an arbitrary interval [r, t\ C [t , t + to). 
we find

\x(t) — x (t )| = (t — t ) | ic, ( s ) | ;  r < s < t

- \p \ + - F( R)  + - ^ $ ( R )  + ^ G + ( -  + V ^ ) r  ■a a yja i / a  \ a  J

The above estimates are valid for all t, hence

\ ° )  . . . .  I T U )
l * ( * ) l  <P + ~2

max \x(t) I =  R < p +
7TUJ 

~2
± \p \+ 1-F (R ) + ^ m )  + ^= G  +
a a \/a  \/a

R

t E [0, uj\.

Choosing

(9) uj < mm
n \ -  +  Va 

a

7T

we obtain
( 10)

1 < --------
1 7TW. .

p + T a \v\ +
1 7TUJ F(R) 7m; <i>(i?) ^

R +  2 ^  1?. +  Ä j

From Assumptions (iii) and (iv)

F ( R )
R —t 0,

H R )
f?. - o, as R —too,

therefore we conclude from the inequality (10)

R  — max \x(t) \ < Rn, 
te [o , i j ]1 W l  -

F (R )=  max \ f ( t ,x ) \^ F 0 =
íé[0,o;],|x|^íí

max
t€ [0 ,w ],|* |^ iio

\f{t,x)\,

<f>(i?) =  max |$(a:)| ^  <f>o =  max | <&(m) |. 
|x|^fí x^Ro
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Using the above results and the estimates (6) and (7) we obtain the a priori 
bounds

| ® ( i ) |  g . R o ,

| i ' ( í ) l  S  \{  \ M  +  +  U b  +  ^ 5 * 0  +  ( ^  +  \ ^ ) s o }  ,

| l " (i)l = I  { 7 5 1' ’1 + ( !  +  0  {G + ^  + T o-F° +  ( 6 + 1  + '° )  M  ’

which ensure the existence of an cu-periodic solution of the equation (2). 
R e m a r k . In the case

(v’) / (t, x) sgn(x) ^  0, \x \tip

we introduce the new independent variable x  =  — z and we obtain a differen­
tial equation of type (1). Thus Theorem 1 remains valid if the assumption 
(v) is replaced by (v’).

E x a m p l e . We consider the differential equation

(11) x "  + ci (cos x')x" + C2 (sinx)x' +  C3(sin2 f)x1//3 = C4 cos t

where ci, C2 and C3 are given constants. Here we denote

ip{y) = c\ cosy, 0(x) =  C2sinx, f ( t ,  x) = C3(sin2 f)^1' 3.

Hence the conditions (i)-(v) are satisfied Theorem 1 ensures the existence of 
at least one 27r-periodic solution of (11).
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a 4-PROPERTY VERSUS ^-PROPERTY 
IN TOPOLOGICAL SPACES AND GROUPS

T. NOGURA, D. SHAKHMATOV and Y. TANAKA

Abstract

We give a series of examples demonstrating that A-property (due to E. Michael) and 
«4 -property (due to A. Arhangel’skii) behave independently from each other in general 
spaces and groups. They are known to coincide for Fréchet spaces, but are different for 
sequential spaces (T. Nogura). We show that these properties coincide for: (i) sequential 
spaces each point of which is a G^-set, and (ii) hereditarily normal, sequential topological 
groups.

1. Introduction

All topological spaces and groups considered in this paper are assumed 
to be Tychonoff.

In what follows A always denotes the closure of a set A in a space X . A 
space X  is called:

sequential if for every non-closed set A Q X ,  there is a sequence of points 
in A converging to some point outside of A,

Fréchet (=Fréchet-Urysohn) if whenever A Q X  and x £ A, there exists 
a sequence in A  converging to x ,

strongly Fréchet [26] (=countably bi-sequential in the sense of [13]) if, 
whenever {A n : n  £ w} is a decreasing sequence of subsets of X  and x  G 
n{A„ : n G uj} ,  then there exists a sequence { x n : n G w} converging to x  with 
x n 6  A n for all n E u i .

Clearly
first countable => strongly Fréchet Fréchet => sequential.

In this note we provide a comparison of two convergence properties of 
topological spaces.

The first one, the oq-property, was introduced by Arhangel’skii [2,3] in 
1972 as an important tool for studying the behaviour of the Fréchet Urysohn 
property under the product operation and classification of Fréchet Urysohn 
spaces. A countable collection S  = {Sn :n  G ai} of convergent sequences in 
a space X  is called a sheaf (with a vertex x) if each sequence Sn converges

1991 M a th e m a tic s  S u b jec t C la ss if ic a tio n . Primary 54A20; Secondary 22A05, 54H11.
K e y  w o rd s  a n d  p h ra se s . A-space, Q4 -space, convergence, convergent sequence, Fréchet- 

Urysohn space, sequential space, topological group

0081-6906/97/$ 5.00 ©1997 Akadémiai Kiadó, Budapest



352 T. NOGURA, D. SHAKHMATOV and Y. TANAKA

to the same point x  G X . A space X  is an aq-space (equivalently, X  G (4) 
in the sense of [2,3], or X  is an (a4)-space in the sense of [16]), if for every 
point x  G X  and each sheaf S  =  {51« :nGoi} with the vertex x , there exists a 
sequence converging to x  which meets infinitely many sequences Sn.

The second property, the A-property, was invented by Michael [14] in 
1973. He calls a space X  an A-space if, whenever {An :n £ u ]  is a decreasing 
sequence of subsets of X , and x  G X  is a point with x  G n{An\{a:} : n  G w}, 
then for every nEco one can find a (possibly empty) set Bn Q A n such that 
U{B n :nEu>} is not closed in X .

Arhangel’skii [3, Theorem 5.23] showed that strongly Fréchet spaces are 
precisely Fréchet aq-spaces. Both countably compact and countably bi-k- 
spaces (in the sense of [13]) are A-spaces. We refer the interested reader 
to [2,3,6,16,22,25] for properties of aq-spaces, and to [15] for properties of 
A-spaces.

Our starting point is the following fact (in which (i) follows from [15, 
Proposition 8.1] and [3, Theorem 5.23], and (ii) was established in [27, The­
orem 1.1]):

F a c t  1 . 1 . (i) A Fréchet space is an a q - space if and only if it is an 
A-space.

(ii) A sequential a^-space is an A-space.
Nogura showed that the implication in (ii) is not reversible:

THEOREM 1.2 [16, Corollary 3.11]. There exists a sequential compact 
space (hence an A-space) which is not an aq-space.

In this note we study an interrelationship between a4-spac.es and A- 
spaces in the absence of sequentiality, and also in topological groups. We 
show that in general aq-property and A-property are independent from each 
other even for topological groups (Sections 3-5), but in some special cases 
the implication in 1.1 (ii) is reversible (Section 6). We also formulate some 
open questions.

2. S u  versus S 2 for topological groups

In this section we establish a specific, albeit somewhat technical, property 
of convergence in topological groups which will be used only in the proof 
of Theorem 6.2. It is therefore possible for the reader to pass directly to 
Section 3 without losing a continuity of exposition.

The sequential fan S'w is the quotient space obtained from a topological 
sum of a countable family of convergent sequences by identifying all their 
limit points to a single point [4],

The Arens space S2 is defined as follows [1]. Let 52 =  ( w x w ) U w U {00}, 
where each point of u  x u> is isolated, a kth  basic open neighbourhood of
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n 6 cu consists of all sets in the form {n} U {(m, n) : m ^ k}, and U is a 
neighbourhood of oo if and only if oo £ U and U is a neighbourhood of all 
but finitely many n £ tu.

We refer the interested reader to [20] for background results on spaces 
containing copies of 5^ and 62, and to [19] for applications of these spaces 
to metrizability of topological groups.

L e m m a  2.1. A topological group contains a (closed) homeomorphic copy 
of Scj if and only i f i t  contains a (closed) homeomorphic copy 0/S2.

P R O O F .  Let, G be a topological group with the identity element e.
First we establish the “if’ part. Let F  =  {e} U {xm : m £ tu} U {ymn : m, n £ 

tu} be a (closed) subset of G naturally homeomorphic to S2, with xrn -> e 
and ymn xm for all m  £ tu.

Using continuity of algebraic operations in G , one can easily check the 
following property:

(*) For every function /  £ tu“', a point p £ G is a cluster point of the 
set { x ^ y mk : m £ tu, k < /(m )} if and only if p is a cluster point of the set 
{Vmk :m £tu ,fc< /(m )} .

By continuity of group operations, each Lrn = {e} U { x ^ y mn : n £ tu} 
is a sequence converging to e. According to (*), every set {n £ tu : Lm D 
Ln is infinite} is finite, so we can find some injection g £ tuw and a pairwise 
disjoint family [Aĝ m) :m £tu}  with each Ag(m) an infinite subset of Lg(my 
Define A =  U{Ag(mj : m £ tu}.

Let F  be the set of all functions $  from tu into the set G<u> of all finite 
subsets of G such that <f>(m) Q Ag(mj for all m. For $  £ F  define Eq = 
U{$(m) :m £tu}. We claim that

(1) e g U { I^ n  A\E,j>: <f> £ T ).

Indeed, from (*) and the choice of T  it immediately follows that

(2) e ^ Eq> for all $  £ T .

Thus, if (1) fails, then one can find A; £ tu and two sequences {<Fn : n £ tu} Q 
F, {zn : n £ tu} Q A g^  such that zn £ E ^n\E ^ n for all n, and zn ^  zn<, for 
n ^ n '.  Define'k £ ÍF by í'(m ) = U íí'/ím ): Z ^ m}. Now it can be easily seen 
that e£  1 in contradiction with (2). Thus (1) holds, which allows us to
conclude that ____________

T  = {e} U A \  U {E^: $  £ F)
is a (closed) copy of Su .

For the “only if’ part, let H =  {e} U {ymn '■ m,n  £ tu} Q G be a (closed) 
copy of Su, where ymn -> e for m £ tu. Every Rrn =  {yomUmh ■ n € u;} is a 
sequence converging to e. Arguing in a way similar to the “if’ part we may 
choose fi£tu“’, a pairwise disjoint family {B /j(m) :m£tu} with every B^m)



354 T. NOGURA, D. SHAKHMATOV and Y. TANAKA

an infinite subset of Rm , and an appropriate open neighbourhood V  of e 
such that

S = { U { B h (m )  :m £w }U {y0J(m) : ra <E cn} U {e}) fl F 

would be a (closed) homeomorphic copy of 1S2. □
R e m a r k  2.2. Clearly Lemma 2.1 is specific for topological groups. In­

deed, Su does not contain a homeomorphic copy of S2 , and vice versa, S2 
does not contain a homeomorphic copy of Su .

3. A compact group which is not an oq-space

We use c to denote the cardinality of the continuum.
EXAMPLE 3.1. D c is a compact topological group which is not an aq- 

space. (Observe that D c is an A-space, being compact.)
CONSTRUCTION. Let T  — u F ,  the set of all maps from u> to u>, and D =  

{0,1}.  Since \T\ = c, D c and D T are isomorphic, so we will work in D 1 . For 
/  E  D 1 we let S(f)  =  {t E T  : f( t )  =  1}, and we use 0 to denote the point 
of D t  which has all its coordinates equal to 0. One can easily verify the 
following

FACT. A sequence { fn : n  E u} Q DJ converges to 0 if and onlij if {S( fn) : 
n E cn} is a point-finite family in T; that is, {n E lo : t E S ( f n)} is finite for 
each t  E T .

For m ,n  E u>, let Fmn =  {t E T  : t{m) = n}, and define f mn E DT by 
R(fmu') ~  F'mn- Since Fmi O F^ j  — 0 if 'i -f- J , each sequence Lrn {fmn • 
n E u)} Q D t  converges to 0 by the above fact. Thus {Lm :mE 00} is a sheaf 
with the vertex 0. We claim that this sheaf violates the aq-property in Dr . 
Indeed, let ip, 'fiEw^ be arbitrary maps such that ip is an injection, and de­
fine gi = / v?(i) (̂i) E L^j) for each i E uj. Choose any point t* E T  such that 
t*((p(i)) = ip(i) for í E lo (which is possible by injectivity of ip), and observe 
tha t t* E D{S{gi) :i Eu>}. Therefore the family {S(gi ) : i Eu)} is not point- 
finite, and so the sequence {gl \ iEw]  does not converge to 0 (Fact). This 
implies that Dr is not an o;4-space. □

REMARK 3.2. Nyikos [22, Theorem 1.8] constructed a countable space X  
of weight b which is not an a4-space. (Here b denotes the smallest cardinality 
of a <*-unbounded subset of , where for f ,gEcou we write /  <* g iff there 
exists n  such that f (k)  < g(k) for all k~tn.) Being a zero-dimensional space 
of weight b, X  can be embedded as a subspace into D b. A subspace of an 
CLj-space must be an a4-space, so we conlude that D b is not an a^-space. 1

1 Combining this with the first part of [22, Theorem 1.8] one obtains that D T is an 
« 4 -space iff t is b. See also [19] for other relevant convergence properties of D T.
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Since b ^ c, this improves Example 3 .1 . We decided to give an elementary 
proof of 3 .1  only for the reader’s convenience.

4 . A countable A-space need not be an oq-space

E x a m p l e  4.1. A countable A-space (with a single non-isolated point) 
which is not an ctq -space.

To construct such an example we need some preliminaries. Let ßuj be the 
Stone-Cech compactification of tv. For AQu>, we set A* =  Clga,A\A, where 
Cl/3UA denotes the closure of A in /3cv; in particular, tv* = /3cv\cv. Symbols 
Clw* Z  and I n t denote the closure and the interior of a set Z Qu>* in w*. 
For a family S  of infinite subsets of tv we define S* = {S*: S ES}.

Let V be a maximal almost disjoint family of infinite subsets of tv; that 
is:

(i) P n P 1 is finite for different P, P' E P , and
(ii) if S  Q u  is infinite, then S  D P  is infinite for some P E V.
Choose arbitrarily an infinite, countable Qf=.V, and let 1Z = V \Q . Since 

each A* is a clopen subset of tv*,P = cv*\U7?.* is a closed subset of tv* . Let 
X  =tvU {*} be the quotient space obtained from the subspace tv U P  of ßui 
by identifying the set F  to a single point * E X . Then every point of tv is 
isolated in X , and {AU{P} : F  Q A*} is a neighbourhood base of * in X . We 
claim that X  is the required space. But before we proceed with verification 
of that, we need two facts. The first fact, taken from [10] (see also [17]), 
holds for every closed subset P  of tv*:

F a c t  1. LetEQu).  Then:
(i) * E E  if and only if E* fl P  0, and

(ii) E  is a sequence converging to * if and only if E* Q P.
Our second fact uses the specific choice of P  and does not hold for an 

arbitrary closed subset of tv*.
F a c t  2. Let U be a clopen (= simultaneously closed and open) subset 

of tv*. If the set V  =  {P 6 ? : f / n P * ^ 0 }  is infinite, then:
(i) |P '| ^  tvi, and

(ii) C /n P ^ 0 .
P r o o f , (i) Suppose that V  is infinite and countable. Then Z  =  

U \ U (V)* is a non-empty zero-set in tv*, and so I n t [24, Theo­
rem 3.3]. By the maximality of the family V,  there exists P E V  such that 
0 ^  P* n Int^. Z g P *  n u ,  which implies that P EV' ,  and so P* fi Int^* Z  C 
P * C Z  =  0 by the definition of Z , a contradiction.

(ii) Use Fact 2(i) to choose pairwise distinct sets Pn €77 .^P , and note 
that

0 ±  CL- (U{Pn* n U : n e  w})\ U { P *  : n G tv} Q U  D P,
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because C1ÜJ»(U{P* HU :nEuj})  is a compact set not covered by any finite 
union U{Pf : k%m} .  □

Claim 1. X  is not oq.
P R O O F . Indeed, let Q — {Qn : n E u j }  be any enumeration of Q. Since P  

is an almost disjoint family of infinite subsets of w,P* = Q* UP* consists of 
pairwise disjoint subsets of u j * [7, p. 98], and so U < 2 *  QF = lo*\UTZ*. Then 
Fact 1 (ii) implies that Q is a sheaf in X  with the vertex *. Suppose now that 
E  C uj is a sequence converging to * which meets infinitely many elements 
of Q. Since Q is almost disjoint, taking a subsequence of E  if necessary, we 
may assume that each intersection E  fl Qn is finite. Now one can easily see 
tha t E  does not converge to * by Fact 1 (ii). □

Claim 2. X  is an A-space.
P r o o f . Let { An : n E uj} be a decreasing sequence in X  with * E 

n { A n \ { * }  :nEuj}.  We may assume that * 0 U { A n : nEco}.  Then, for each 
nEuj ,  we have A *  f l  F  =£ 0  by Fact 1  (i), and so one can choose Qn E Q with
A*n FQ*n ^  0.

f
Case 1. Some A* is covered by finitely many elements of V*, say A* Q 

U<S* for some finite S  Q V. Since the family V* is disjoint, and A*m Cj A* 
for m  ^  n, it follows that {Qm : m ^ n} Q S. Since S  is finite, there exist 
Q g 5 D Q  and k ^ tm  such that A* fl Q* 7̂  0  for l ^  k. Now choose E AiC\Q 
for each l ^  k. Then {xi : l ^ .k}  converges to * by Fact 1 (ii).

Case 2. No A* is covered by finitely many elements of V*. Since each A* 
is a clopen subset of w*, in this case we have |{P G P  : A* n P* 7̂  0}| ^  cui for 
every n E lo (Fact 2(i)). Therefore one can choose pairwise distinct P * e TZ 
with P* fl A* 7̂  0 .  Now observe that each set En = Pn H An is non-empty, 
and E * i l F  = 0 .  Thus every En is closed in X  by Fact 1 (i). To show 
that the set U{P„ : n E u j }  = U{En : n E uj} is not closed in X , it suffices 
to check that * E U{En :nEuj}.  In its turn, to get this we only need to 
prove, by Fact 1 (i), that (U{P„ : n E w})* fl F  7̂  0 .  Since {E* : n E lo} is a 
disjoint collection of nonempty, clopen subsets of Clw* U {P* : n E w}, we have 
Cl^,. U {P* : n E uj}\U  {P* : n E uj} 7̂  0  by compactness of Cl^* U {E* : n E uj}. 
Pick arbitrarily p E CP* U {P* : n E w}\ U {P* : n E uj}. Since P* consists of 
pairwise disjoint clopen subsets of uj* and {En : n E uj} C p , it follows that 
p 0 UP*, and so p E uj*\ U P* Q F. Therefore p E F  fl Cl^* U {P* : n E uj} Q 
(U{P* : n E w})* n  P  7^ 0 .  □

Let CP(I) denote the space of all real-valued continuous functions defined 
on the unit interval I  =  [ 0 , 1 ]  with the topology of pointwise convergence, i.e. 
the topology inherited by CV{X ) from RA . Note that CP(I) is a topological 
group (even a topological ring).

E x a m p l e  4.2. The function space CP(I) is an A-space (with a countable 
network) which is not an a^-space.
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The fact that CP(I) is an A-space was apparently noticed first by Roman 
Pol (see [15, Remark added in proof]). Since the argument is very short (and 
not included in [15]), we present it here for the sake of completeness. Suppose 
that An C C p ( /) \{ 0 }  for every n 6 w, where 0  is the function identically equal 
to zero on 7. Assume also that 0 E D{An : n € cv}. For n € u  and /  € CP(I) 
define UJ = {x E I  : f (x)  < 1/n}. Observe that each {UJ : f  € A n} is an 
open cover of 7. By compactness of 7, there exists a finite set B n ^  An with 
7 =  U{E7” : /  E Bn}. Now it can be easily checked that 0 E U{7?n : n E w } ,  

which means that U{7?n : n E w }  = U{7?„ : n £ u>} is not closed in CP(I).
Gerlits and Nagy [6, Corollary to Theorem 8] showed that CP(I) is not 

an aq-space. Finally, it is well-known that CP(I) has a countable network. 
To get such a network, fix countable bases U and V for 7 and E, respectively, 
and note that AT = {F(U, V ) : U EU, V  E V} is as required, where F(U, V) = 
{f E C p( I ) : f ( U ) Q V }.2 □

5. A countable a \ -group which is not an A-space

LEMMA 5.1. There exists a countable space X  with the following prop­
erties:

(i) X  has only one non-isolated point,
(ii) X  has no non-trivial convergent sequences (and therefore, X  is obvi­

ously an a 4 -space), and
(ifi) X  is not an A-space.

P r o o f . Fix an arbitrary point p E ßuj\u,  and define Y  = u> U {p} and 
Z = Y  x N , where Y  is equipped with the subspace topology inherited from 
ßu), and N  is the set of natural numbers with the discrete topology. Define 
F  =  {(p, n ) : n E w}, and let /  : Z  —> X  =  Z /F  be the quotient map collapsing 
F  to a point q E X .  We claim that X  is as required. Only the verification of 
the fact that X  is not an A-space is necessary, because other properties are 
immediate. So let A„ =  / ( U { y  x {i} : i ^  n}) for n Ew.  Then {A n : n E w} is 
a decreasing sequence in X  with q E fl{A„\{p} : n  E w}, but for any choice of 
Bn Q An,n  E u>, the set U{Bn :nEu)}  is closed in X . □

E x a m p l e  5.2. A countable Abelian group G without non-trivial con­
vergent sequences which is not an A-space. (Therefore, G is an 04-space, 
but not an A-space.)

We shall give two examples below. The first example uses a result from 
the theory of free topological groups, while the second one does not require 
any knowledge of such a theory.

E x a m p l e  1. Let X  be the countable space constructed in Lemma 5.1, 
and let G = F(X)  be the (Graev) free topological group over X.  (For the

2 The construction of Af is essentially due to Michael [12].
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theory of free topological groups see [8] or [11].) Since A is a paracompact 
space in which every compact subset is finite, it follows from [5, Theorem 
1.5] th a t the (countable) topological group F( X)  contains no non-trivial 
convergent sequences. Since F( X)  contains a closed copy of X , which is not 
an .A-space, F(X)  is not an A-space either.3 □

To construct the second example we need to remind ourselves some gen­
eral construction. Let F  be a free filter on u> with the finite intersection 
property, i.e.

(a) DF = 0, and
(b) if F e F  and H  € F,  then F DH EF.
Let Ay = u U  {p} be a space such that all points of oj are isolated and 

{{p} U F  : F  £ F}  is a neighbourhood base of the point p. Then X y is 
completely regular. Let Q be the family of all finite subsets of u  with the 
group operation (A, B) A  + B  =  (A \B) U (B \A ) which makes Q an Abelian 
group. The zero element of F  is the empty set and A +  A  =  0 for every A e Q . 
For F e F  the set F* = {A E Q : AQ F} is a subgroup of Q. We can take 
the family ßy = [F* : F E F }  of subgroups of Q as neighbourhoods of zero 
of some group topology on Q\ see [9]. We use the symbol Q? for denoting 
the group Q with this group topology. From (a) it follows that flß y  = {0}, 
so Qjr is Hausdorff [9].

Observe that the map i : A y —» (yy defined by i(n)  = {n} and i{p) — 0 is 
a homeomorphic embedding.

Lemma 5.3. <yy contains a non-trivial convergent sequence if  and only 
i f  Ay does.

PROOF. Since i : X ?  —> G ?  is a homeomorphic embedding, the “if’ part 
holds. To check the “only if ’ part, suppose that S  =  {An : n E w} is a non­
trivial convergent sequence in Q?. Without loss of generality one may assume 
that S  converges to 0, and that A n /  0 for all nEoJ.

Claim. There is a sequence {n^ : k E u>} such that the family {Ank : k E oj} 
is pairwise disjoint.

Indeed, arguing by induction, suppose that we have already chosen a 
sequence no,. . . ,  n*, such that Ano, . . . ,  A„fc are pairwise disjoint. Since Bk =  
U{A.ní : i k} is finite, and F  is a free filter with the finite intersection 
property, F  fl = 0 for some F  E F.  Since F* E ßy  and S  is a sequence 
converging to 0, there exists l E u  such that Aj E F* (equivalently, Aj  L F) 
for all j  ^  l. In particular, A i Q F C  uj\Bk, and so we can set nk+\ =  l . □

Now if one picks m, E A ni for each i E u, then S  = {{mi} : i E to} Q A y 
would be a non-trivial sequence converging to the point p. □

3 The use of the free topological group F(X)  in our construction gives us the resulting 
(algebraically) free group G. To get an Abelian group as promised in Example 5.2, we 
should replace the free topological group F(X)  by the free Abelian topological group A{X)  
of X  in our construction. The same argument works in this case.



«4-PHOPERTY v er su s  a- p r o p e r t y 359

E x a m p l e  2. Now let X  be the countable space with a single non-isolated 
point, say p , which was constructed in Lemma 5.1, and let.JF be the family 
of all open neighbourhood of p with the point p deleted. Then T  satisfies 
(a) and (b), so we can consider X ?  and Qyr. Since i(Xgr) is a closed subset 
of Qj: homeomorphic to X  =  Xjr, and Xjr is not an A-space, Qjr is not an 
A-space either. Since Xjr contains no non-trivial convergent sequences, the 
same is true for Qjr (Lemma 5.3). □

R e m a r k  5.4. It should be noted that Lemma 5.3 does not have an 
analogue for X  and the free topological group F( X)  of X  instead of X ?  and 
Gjr. Indeed, Tkachuk [28] established that the free topological group F(Y)  
of the Alexandroff double Y  of ßto does contain a non-trivial convergent 
sequence, while Y  obviously does not have such a sequence.

R e m a r k  5.5. The reader definitely noticed that, in Lemma 5.1 and 
Example 5.2, we constructed aq-spaces which are not A-spaces in a somewhat 
brutal (and to a certain extent trivial) way, by simply killing all non-trivial 
convergent sequences. Fact l.l(ii) shows, however, that this might be a 
necessary approach, since such examples cannot be sequential.

R e m a r k  5.6. Obviously both X  from Lemma 5.1 and G from Example 
5.2 are even aq-spaces.

6. Special cases when sequential A-spaces are aq

T h e o r e m  6.1. Let X  be a regular sequential space such that each point 
of X  is a Gg-set. Then X  is an ot4 -space if and only if X  is an A-space.

PROOF. In view of Fact l.l(ii) we need only to check the “if’ part of our 
theorem. So let X  be an A-space with all points Gg. We are going to derive 
a contradiction by assuming that X  is not an «4-space. This assumption 
allows us to fix a point x € X  and a countable sheaf {An : n£ c j }  with the 
vertex x such that any sequence converging to x meets only finitely many 
An. We will also assume, without loss of generality, that {An : n G w} is 
pairwise disjoint. Pick a collection [Un : n G w }  of open subsets of X  such 
that {x} =  C\{Un : n E uj} and Un+\ Q Un for n £ u . Now if B n = An CI Un 
for n € u>, then S  =  U { ü „  : n £ w } U  {x} is closed in X , and no sequence of 
{xn :n£w } with xn G B n converges to any point of S. Since X  is sequential, 
we conclude that S  is homeomorphic to S,'u (see Section 2 for the definition 
of Su). Thus X  contains a closed copy of S^. Since the last space is not an 
A-space, this gives us a contradiction. □

For topological groups we can get especially strong result:
THEOREM 6.2. Suppose that G is a sequential topological group such that 

either
(a) eE G  is a Gg-set, or
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(b) G is hereditarily normal.
Then the following conditions are equivalent:
(i) G is an aq-space,

(ii) G is an A-space, and
(iii) G is strongly Fréchet.

PROOF. The implication (iii) —> (ii) was proved in [3, Theorem 5.23], 
and the implication (i) —> (ii) can be found in Fact 1.1 (ii). So it remains 
only to check the implication (ii) —> (iii). Assume that G is an A-space. 
Then from [27, Theorem 1.1] it follows that G contains no closed copy of Sw. 
Applying Lemma 2.1 one concludes that G does not contain a closed copy 
of 52- Finally, G is strongly Fréchet by [27, Theorem 3.1]. □

REMARK 6.3. Example 4.1 and Lemma 5.1 show that sequentiality of 
X  is essential in Theorem 6.1 (note that points of a countable space are Gg), 
while Theorem 1.2 demonstrates that at least some additional condition like 
“points are Ggv is also necessary in Theorem 6.1. Furthermore, Example 4.2 
shows tha t the sequentiality of G cannot be omitted in Theorem 6.2 (observe 
that every space with a countable network is hereditarily normal and has all 
points Gg).

In conclusion we will formulate some open questions.
Q u e s t io n  6.4. Is a sequential A-group an aq-space?

Q u e s t io n  6.5. Is every sequential A-group Fréchet?

Nyikos [21] showed that (i) sequential ag-groups are Fréchet, and (ii) 
Fréchet groups are ag-spaces, so Questions 6.4 and 6.5 are in fact equiva­
lent.4 In view of Fact l.l(ii), a positive answer to Question 6.5 would be a 
strengthening of Nyikos’ theorem (i). Nogura’s example from Theorem 1.2 
shows tha t Questions 6.4 and 6.5 are specific for topological groups, and their 
analogue for general (even compact) spaces has a negative answer. Theo­
rem 6.2 provides a partial positive answer to both of the above questions in 
case when G is hereditarily normal, and when e €E G is a Gq-set.

Since countably compact spaces are A-spaces, the following particular 
version of Question 6.5, due to Shakhmatov [23, Problem LI 1], could be 
especially interesting:

QUESTION 6.6. Are countably compact, sequential groups Fréchet?

Q uite surprisingly, a counterexample to Question 6.6 (if any) seems to 
be unknown. Finally, Examples 4.1 and 5.2 justify the following

Q u e s t io n  6.7. Is there a countable A-group which is not aq?

4 Nyikos’ property (**) from [21] is equivalent to aq-property, so (ii) follows from [21, 
Theorem 4]. To get (i), one needs to combine [21, Theorem 1] with the remark in the last 
paragraph on p. 797 of [21] saying that (*) can be replaced by (**) in [21, Theorem 1].
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ON LASKERIAN LATTICES AND Q-LATTICES

H. M. NAKKAR and E. A. AL-KHOUJA

Let R  be a commutative ring with identity. Recall [2] that a ring R  is 
called a Q-ring if every ideal of R  is a product of primary ideals. Also recall 
that R  is called a Laskerian ring if every ideal of R  is a finite intersection of 
primary ideals.

We define a multiplicative lattice L to be a Q-lattice (Laskerian lattice) if 
every element x ^  I  of L is a finite product (intersection) of primary elements 
(see [8]).

The purpose of this paper is to characterize the relation between Q- 
lattices and Laskerian lattices. We show that if the multiplicative lattice L 
is a Q-lattice, then it is Laskerian (Theorem 1). But the converse of this 
theorem need not be true. Our main result is that the multiplicative lattice 
L is a Q-lattice if and only if L is Laskerian and every nonmaximal prime 
element of L is multiplication (Theorem 2). This theorem generalizes the 
result of ([2], Theorem 10) in commutative rings to the multiplicative lattice 
and improve the result of [7] that every element in a Noetherian lattice is a 
product of primary elements if and only if every nonmaximal prime element 
is multiplication.

Let L be a multiplicative lattice. Recall that L is called a AT-lattice if it 
is a CG-lattice (every element of L is a join of compact elements) and if x 
and y are compact elements of L, then x - y is a compact element of L. Also 
recall that L is called an i?-lattice if it is a PG-lattice (every element of L is 
a join of principal elements) and every principal element of L is compact.

Let L be a AMattice in which the greatest element I  is compact. An 
element p £ L is said to be prime if I  and if ab ^  p implies o i p  or 
for all a, 6 £ L. An element q £ L is said to be primary if q ± I  and if for all 
compact elements a,b £ L, a ■ b ^  q implies a ^  q or bk ^  q for some positive 
integer k. By the radical of an element q, we shall mean the join of all 
elements x  having a power contained in q. We shall use the notation ^q  
to denote the radical of q. If q is primary, then sjq is the minimal prime 
containing q, and then we shall say that q is p-primary.

An element b is said to have a primary decomposition if there exist 
primary elements q\, . . . ,  qm such that b — q\ / \ - - - / \qm.
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For any element b of a multiplicative lattice A, V  (b) will denote the set 
of all prime elements of L containing b.

Let L  be a CG-lattice and let b be an element of L, then the prime 
element p E L belongs to Ass(fe) (Ass(6)) if and only if there is a compact

element h E L such that p =  (b:h) (p is minimal in V(b : h)).
A non-empty subset S  of L  is called multiplicatively closed if it is closed 

under multiplication and every element of S  is compact in L. Let L be a 
AT-lattice. For every element x  of L, we define S(x) =  \f  (x : s). Clearly

seS
b ~  d S(b) = S(d) (b,d E L ) is an equivalence relation. Let [b] be the 
equivalence class of b and let S ~ lL = {[6]: bE L}. The quotient lattice S ~ lL 
is a multiplicative lattice. It is again AT-lattice. If p is a prime element of 
L  and Sp = {s : s E L, s ^ p  and s is compact }, then we write Lp instead of 
Sp l L.

Recall that the multiplicative lattice L has Noetherian spectrum if L 
satisfies the ascending chain condition for radical elements.

Let p be a prime element of L. The least upper bound of the length of 
chains p > p\ > p2 • • • > Pk where the pi (i = 1 , . . . ,  k) are prime elements of 
L  is called the rank of p or the height of p (htp).

The dimension of L is the supremum of the length of all chains of distinct 
prime elements of L and it is denoted by dimL.

Multiplication elements will be used in several places in this paper. An 
element b is called a multiplication element if for every element d ^  b, there 
exists an element c with d =  cb. In general, we adopt the lattice terminology 
of [3], [4], [5] and [6].

Lemma 1. Let L be a K-lattice in which the greatest element I  is com­
pact. Suppose that p is a prime element that is multiplication element. If pn 
is p-primary for some positive integer n and if (pn+1: pn) =p, then pn+l is 
p-prim,ary.

P ro o f . Let x,y  be two compact elements of L such that x-y"Spn+l 
and x ^p .  It follows that x ■ y ^ pn. Since pn is p-primary, then y 5T pn. 
By assumption p is a multiplication element, so is pn. Hence, there is an 
element c of L such that y =  cpn and then x-y =  xcpn 5Tpn+1. It implies that 
x c S  (pn+l :pn)=p  and hence cS p . Thus ?/5Tpn+1.

Lemma 2. Let L be an R-lattice. Suppose that p is a minimal prime 
element that is a multiplication element. If {pi}^;1 is the set of distinct p- 
primary elements of L, then there exists a principal element a of L such that 
a ^ p  with af ■prn ^ p m+t for each positive integer t.

P ro o f . Nowp< (pm+1 :pm), because if we assumep = (pm+1 :pm), then 
Lemma 1 shows that pm+l is p-primary. Hence pm = p m+1. It means that 
p — fpm+l ;pm) = / ,  a contradiction.
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Let a be a principal element such that a ^ p  and a Si (pm+1 :pm). It 
implies that aprn ú p m+l and hence atpm Si pm+< for each positive integer t.

PROPOSITION 1. Let L be an R-lattice and let d be an element of L. 
Suppose that p is a multiplication prime element minimal over d. I f d = 
qi . . .  qt where qi is pi-primary (i =  1 ,. . .  ,t), then there exists a principal 
element a ^ p  such that (d:a ) is p-primary.

PROOF. Since p is prime and dSip, we may assume that qj Sip for some 
j  (1 ^  j  Sí t), where qj is py-primary, so pj =  p. Since every p-primary element 
of L is a power of its radical p (Lemma 4 in [7]). Then in the decomposition 
for d we replace every p-primary element by a power of p. Therefore by 
rearranging, we can obtain the following decomposition for d, d =  pnq\ ■ ■ ■ qi 
where qi is pj-primary (i =  1 ,. . . ,  l) and p i , . . .  ,p; are primes of L , each of 
them different from p. Now, we show that there is a principal element b ^  p 
and a positive integer k such that (d : b) ^  pkq\ .. .qi with pk is p-primary 
and pi , . . . , p i  are primes of L with Pi ^  p for each i (1 -Si •SI). For, if 
rank p = 0 and m  < n  where m is the least positive integer such that p ,p 2,
. . . ,  pm are the distinct p-primary elements of L (Theorem 1 in [7]), then 
Lemma 2 shows that there is a principal element b ^ p  such that b-pm 5ípn. 
Hence, (d : b) ^  pm ■ q\ .. .qp But if rank p =  0 and m ^ n, we may take 
b = I. Finally, if rank p > 0, then pn is p-primary for each positive integer n 
(Theorem 1 in [7]). So we may take b = I.

Since A P i^ P , then there exists a principal element x"S f\  pl with x ^ p .  
i=i i=i

Thus, there exists a positive integer s such that xs Ú q\ ... qi. This implies
that xs pk ^  q\ . . .  qipk Si (d : b). Therefore pk ^  (d : bxs) Sip. We consider two 
cases. Assume first that (d : bxs) Sipk, then pk = (d: bxs). If we denote a by 
bxs, then a is principal with a%p and (d : a) is p-primary. Now assume that 
(d : bxs) ^ p fc, then there exists a positive integer j , j  Si k such that (d : bxs) Si 
p7-1 and (d : bxs) ^ p J . Since p7-1 is multiplication, there is an element c of 
L  such that (d : bxs) =cpi~l and c ^ p . So, there exists a principal element 
y ^ c  with y ^ p . Hence ypl^ 1 ^ ( d :b xs). Thus p7-1 ^ (d : bxsy) Si p. On the 
other hand (d : bxsy)y Si (d : bxs) ^ p 7_1 with y ^p . Since p7'-1 is p-primary, 
then (d: bxsy) ^ p 7-1. Therefore (d : bxsy ) =  p7_1. We denote a by bxsy , then 
a is also principal with a%.p. Thus (d : a) is p-primary.

C o r o l l a r y  1. Let L be an R-lattice and let d be an element of L. 
Suppose that p is a multiplication prime element minimal over d. I f L is 
a Q-lattice, then there exists a principal element a%p such that (d : a) is 
p-primary.

PROOF. Let d ^ p be an element of L. Then d = q \ .. ,qn where q\ , . . . ,  qn 
are primary. Proposition 1 shows that there exists a principal element a%p  
such that (d : a) is p-primary.



366 H. M. NAKKAR and E. A. AL-KHOUJA

P r o p o s it io n  2. Let L be an R-lattice and let d be an element of L which 
is contained in a finite number of minimal primes. Then, for every prime 
element p minimal over d and maximal, there exists a principal element a of 
L such that a ^ p  and (d : a ) is p-primary.

P r o o f . Let pi,P2 , ■ ■ ■ ,Pn,P be the only primes minimal over d. Since
n n
A P i^P ,  then there exists a principal element r of L ,r  ^ A Pi with r %p.

i=l i=l
Since p is maximal, it follows that pV r =  I. By assumption, L is PG-lattice, 
so there exist principal elements x i , . . . ,  x& with Xi ^ p  (i =  1, . . . ,  k), such 
tha t Xi V • • • V Xk V r ~  I. But r(xi V • • • V x*,) Vd  (Theorem (2-4) in [1]). 
Then, there is a positive integer i such that r l {x\ V • • • V x*,)1 ^  d. We say 
a — r l , then a is principal with a ^ p ,  and we have (xi V • • ■ V Xk)* ^  (d : a) ^  p. 
Now, each p i£  (d: a) (i = 1, . . .  ,n), because in the converse case, we obtain 
I  =  x \  V ■ • • V Xk V r  ^Pi- Thus I  = pi, a contradiction.

Since (d : a) ^  I  and p is minimal prime over (d : a), then there is a 
compact element t of L such that t p and (d : a) ^  ((d : a) : t) 5Í p. Thus 
p £ Ass(d : a). On the other hand, let q £ Ass(d : a). So there exists a

compact element h £ L such that q is minimal in V((d:a) :h) (Remark (2-3) 
in [6]).

Since d ^  (d: a) ^  {d : ah) =  ((d : a) : h) ^  q, then q contains one of the 
elements p \ , ...  ,pn,p. But q ^ P i  for each i (i =  l , . . . , n )  because in the 
converse case, it follows tha t q = I. Then q ^  p and hence p — q, since p is 
maximal. Thus Ass((d: a)) =  {p}. Proposition (4-2) in [6] shows that (d : a)
is p-primary.

THEOREM 1. Let L be a modular R-lattice. I f  L is a Q-lattice then L is 
Laskerian.

PROOF. Since L is Q-lattice, then by Theorem 4 in [6 ], L has Noetherian 
spectrum. On the other hand, let d ^  I  be an element of L and let p be a 
prime element minimal over d. We consider two cases. Assume first that p is 
a maximal element of L , then by Proposition 2, there is a principal element 
a of L  with a ^ p  and for which the element (d : a) is p-primary. Now assume 
th a t p is not maximal, then p is multiplication (Theorem 4 in [8]). Hence, 
by Proposition 1, there is a principal element a of L with a%p and for which 
the element (d : a) is p-primary. Thus L is a Laskerian lattice (Theorem 2 in 
[8])-

R e m a r k . Let L be a multiplicative lattice. If L is Laskerian, then L 
need not to be a Q-lattice. For example, the polynomial ring R= K [X \ , ..., X n\ 
in a finite number n(n ^  3) of indeterminates over a field K  is a Noetherian 
ring. If we take L{R) the lattice of ideals of R,  then L{R) is a Noetherian 
lattice in which every element has a primary decomposition. Therefore L{R)  
is a Laskerian lattice and dimL(R) ^  3. But this lattice is not a Q-lattice, 
because the Q-lattices have dimension at most two.
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THEOREM 2. Let L be a modular R-lattice. Then L is a Q-lattice if 
and only if L is Laskerian and every nonmaximal prime element of L is a 
multiplication element.

P roof. (=>) Suppose that L is a Q-lattice. By Theorem 1, L is a Laske­
rian lattice. By Theorem 4 in [8], it follows that every nonmaximal prime 
element of L is a multiplication element. (<=) Suppose that L is a Laskerian 
lattice in which every nonmaximal prime element is a multiplication ele­
ment. Then by Theorem 2 in [7], every element of L is a product of primary 
elements, so L is a Q-lattice.

P roposition 3. Let L be a K-lattice in which the greatest element I  is 
compact and a an element of L having a primary decomposition. Let b be 
any element of L and let S  be a multiplicatively closed subset of L. Then 
[(a : b)]s = [a]s : [b]s in S~ l L.

PROOF. Let a =  q\ A • • • A qn be a primary decomposition of a. Since

[(91 A • ■ ■ A qn):b]s = [(gx : b) A • • • A (qn : 6)]s =  

=  [(<7i : b)]s A • • • A [(qn : 6)]s .

So, we can assume that a is p-primary. Of course, we always have that 
[(a:6)]s ^  [a]s : [b]s. If s £ a  for some s G S, then s ^  (a : b) and so, [(a : 6)]s =
[I]s. It follows that [g]s : [6]s = [I]s. Hence [(a : b)]s = [a]s : [6]s. So we can 
assume that s % a for every s G S. Let h be a compact element of L with 
[h] ^  [o]a : [b]s. Then [/i]s[6]s ^  [a]Ä. Therefore, h ■ b ^  S(a) = a, and hence 
h^ (a:b) .  It implies that [h]s ^ [(a : b)]s. Thus [a]s : [6]s ^ [(a : 6)]s.

T heorem 3. Let L be a K-lattice in which the greatest element I  is 
compact and every principal element not equal to I  has a primary decom­
position. For an element a of L which is a join of principal elements the 
following statements are equivalent:

(1) a is a multiplication element.
(2) a is locally principal.
(3) a is finitely generated and locally principal.
(4) a is principal element.

PROOF. (1)=»(2). Let a =  V xa where xa is principal of L, and let p be
Q

a prime element of L. By passing to Lp, it follows that [o]P =  V[xo]p- Since
Q

a is a multiplication element, so is [a]p in Lp. This implies that [a]p =  [aiojp 
for some index i, by Proposition (1-1) and Theorem (1-2) in [1].

(2)=»(3). Let a = \JaQ where aa is principal, then for any maximal
a

element p of L we have: [a]p = [\/ aQ]p — V[aa]P- By Theorem (2-3) in [4]
a  a

there exists an index ß  such that [a]p =  [ap]P- On the other hand, let 0 (a) =
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V(oq : a) and let m  be a maximal element of L. Then by Proposition 3,
a
we get that [0(a)]m =  V[(aa : a)]m = V([°a]m : [a]m) since each principal

a a
element of L has primary decomposition. But [a\m =  [ap]m for some ap 
since a is locally principal. Thus [0(a)]m = [I}m for every maximal element 
m  of L , so ©(a) — I  (Proposition (5-3) in [5]). Since I  is compact we get 
that I  =  (aai : a) V ■ ■ ■ V (aQn : a) ^  (aai V ■ • • V aQn : a), where aai is principal 
with aQi ^  a. This implies that a — aai V • • • V oQ„ .

(3)=S>(4) and (4)=4>(1) are always true.
THEOREM 4. Let L be a modular R-lattice. L is a Q-lattice if and only if 

L is Laskerian and every nonmaximal prime element of L is locally principal.
PROOF. It follows immediately from Theorem 2 and Theorem 3.
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ON THE POINTWISE APPROXIMATION 
BY BOREL AND EULER MEANS

B. ROSZAK

Abstract

The rates of approximation of Lebesgue-integrable functions by the Borel and Euler 
means of its Fourier series are estimated by the characteristics created by the relation 
defining the Lebesgue-type points. Some corollaries for Lipschitz functions are also derived.

Introduction

Let L2w, with 1 ^ p <  oo, be the class of all 27r-periodic complex-valued 
functions that are Lebesgue-integrable withp-th power in the interval [—tt, 7r],

7r
i.e. /  £ L2n if /  \ f(x)\pdx < oo. Given any function /  £ L2n, let Sn[f] be the

—7r
n-th partial sum of its Fourier series. Introduce the Borel and Euler means 
of this series:

00 k
(!) Br{f](x) = e~r ^ 2 r— Sk[f]{x), for every r  > 0,

k=0 K'

(2) En[f](x) = ^ J 2 ^ S k[f]{x), for n =  0 , l ,2 , . . .

(see e.g. [1], p. 79 and p. 70, respectively).
As a measure of deviation of those means from f (x)  in a fixed point x £ R 

we will use the quantities: s
Wz[/](<5) = ̂  J  \4>x(t)\dt,

o
s

Wx,a[/](<5) =   ̂J  \(t>x[t + a) — (f)x(t)\dt,
0

1991 M a th e m a tic s  S u b je c t  C la ss if ic a tio n . Primary 42A10; Secondary 42A24, 40G05, 
40G10.

K e y  w o rd s a n d  p h r a se s . Borel means, Euler means.

0081-6906/97/$  5.00 © 1997 Akadém iai Kiadó, Budapest
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where (f>x (t) = ^{f{x + t) +  / ( x — t) — 2f{x))  and <5 > 0, a > 0.
The function /  G L\v is said to satisfy a Lipschitz condition of order a, 

with 0 <  a  ^  1 (notation /  G Lip (a,p)), if
ao[f](6)p ^MSa

for some constant M  > 0 and all 6 > 0, where
7Tu[f](s)P = sup ||</>.(i)||p =  su p (  f  \(j)x{t)\pdx)

is the modulus of continuity of / .
In the case when p =  oo, we write /  G ^ oo =  ess sup|/(a;)| < oo

—TV<X<TT

and the above definitions remain unchanged. Of course, if Cm denotes the 
class of all 27r-periodic continuous complex-valued functions, then Ĉ m C /§£ 
and

= max I/  (m) | =  ess sup|/ (m) | = for /  G C27r.

Simple calculations show that the Borel and Euler means defined by (1) 
and (2) can be represented in the forms

B ,
7T■[f](x) = ̂  J  f(x ~ t )Kr(t)dt,

where

and

where

r s  t ± \  „ - 2 r s i n 2 i t S Í n ( r S Í n í + ^ )K r{t)=e  2 ------- ;-- j —------
sin ( r >  0 ) ,

tfn(i) =  cosn ( - i )

£n[/](z) = -̂ ; J  f { x  — t )Kn(t)dt,
—7r

1 sin ^(n + l)i
sin i t

(n =  0 ,1 ,2 ,. . .)

respectively, (see e.g. [1], p. 364 and [2]). 
Hence

1
B r[f](x) ~ f { x )  =  —  / ( f ( x  + t) + f ( x - t ) - 2 f ( x ) ) K T(t)dt

—7r 
7T= ^  J  <l>x(t)Kr{t)dt=^ J  <f>x(t)K r(t)dt,
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and in the same way
7T

En[f]{x) - f i x )  = i  I  (f>x{t)Kn{t)dt.

Statement of results

We present here four approximation theorems. 
T heorem 1. L e t ß e { \ , \ )  and put

ar = -----r  and br =  ----- for r ^ —.*V — 1
r + 2 (r + W

Then there exists a constant M  > 0 such that

M  w

\Br[ f ]{x) -  f (x) \  ^  
br27T br br

ux(2aT) + br j  — +  wXtar (br) + J  —  ̂' dt + — J  \4>x{t)\T
br Ar Or

dt

for any f  € L \n, r ^ and x  6 R.

T heorem 2. Let ß € ( | ,  and put 

2n 2n
d j )  — ~ (17% CL O n  —

n  +1  n ( n + \ ) P

Then there exists a constant M  > 0 such that

\E n [ f ] { x )  -  f  ( x ) \ g

/o r n =  0 ,1 ,2 ,... .

2 r̂ 6n
[  ^ d t  + w„„(<>„) +

bn Qn
dt

for any f  G n =  0,1, 2 ,. . .  and i £ R .
T heorem V . There exists a constant M >  0 such that

M M /]-/lip  g
2tt

M  ( uj(2aT [ w{tf d t + f  1 <f>.(t)-(f)Xt +  ar)\
1 Í2 .1 t

+
Ur

f  I  u . m /
(Lr  J

dt
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for any f  £ L \n, with 1 5i p ^  oo, r ^   ̂ and i ER,  where ar and br are the 
same as in Theorem 1.

THEOREM 2'. There exists a constant M >  0 such that

2ir bn
E n[f] — f \ \ p ^ M

/

\(f).(t) -  f f t  +  an)\ ^  
t

for any f  £ L w i t h  1 ^  p ^  oo, n = 0 ,1 ,2 ,... and x  £ R, where an and bn 
are the same as in Theorem 2.

Applying Theorem 1' we can readily derive the following

COROLLARY 1. Let 0 <  a  < 1 and 1 ^ p ^  oo. Put ar = —fy for r ^ .h . If
r +  2

/  G Lip (a,p) is such that

f(Xi'
\4>.(t)-<p,{t + ar)\dt

t
^ N r ~ a

for some N  > 0 and all r ^  then there exists M  > 0 that

\\Br[ f ] - f \ \ p ^ M r - a

for all r ^ .^ .

Analogously, from Theorem 2' we can obtain

C orollary 2. Let 0 < a  < 1 and 1 p ^  oo. Put an = ^  for n — 
1 , 2 , . . . .  If f  £ Lip (a,p) is such that

/
!</>.(£) -</>,(t + a„)| 

t
dt < N n~ a

for some N  > 0 and n = 1 , 2 , ,  then there exists M  > 0 that

\\En[ f ] - f \ \ p i M n - a

for n =  1 ,2 ,----

R emark 1. The similar result as in the above corollary was obtained 
by Chui and Holland in [2] for /  £ Lip a, with 0 < a  < 1, i.e. for /  £ C2n and 
satisfying a Lipschitz condition of order a.
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Remark 2. We mention here the following simple consequence of our 
theorems that was also obtained in [3]: If u)(t) is the modulus of continuity 
of /  E C27T, then there is a constant M  > 0 such that

2(r+I) t

\\Br[ f ] - f \ \ i M  j  f o r r a l ,  and
l

71+1 Qjfil
\\En[f] — f\\ = M  ^  for n =  1,2, . . . .

Lemmas
We will need further a few auxiliary results.
LEMMA 1. The following relations hold for the quantities wx[f] and

™*,ar [/]■•
(3) wx{ő) ^2wx{2ö), f o r ó >  0,
(4) wx,a{ó) ^4wx(2ó), forö^a^Z  0.

P roof of Lemma 1. Indeed, for (3) we have
s 25

wx{8) =   ̂J  \<f>x(t)\dt = 2 • ^  J  \(f>x{t)\dt =  2wx(26),
o o

and (4) follows from
<5

RL:,q(£) =   ̂J  \4>x(t +  a) -  4>x(t)\dt <:
o

5 5 i + a  5

= )■ f  + a)\dt+   ̂J\M t)\d t= ] j  I <px(t)\dt, + ^ J  \4>x{t)\dt^
0 0 a  0

25 25

S 2 . 1 / \<t>x{t)\dt +  2- ^  y  \4>x{t)\dt, =  Awx(28). D
o o

Lemma 2. If ar =  and br =  , with j  < ß < then, for r ^ 12,
the following relations hold:

wx{2br) L 5br
2tt

br

(5)
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Or

(6)
| tyxiff &X {t "L Or ) | ^ ___

~~t

br
_ í  :

— Rh,ar (^r) ^x,ar (®r)"l" /
Wx,ar (t) dt.

Lemma 3. If an = and bn = with |  < ß <  then, for n ^ 12,
the following relations hold:

(7) wx{2bn)^20bn I  ^ j ^ d t ,
2tr

fen

On

( 8 ) /
l^xW &x(f +  ®n)| ^ ___

fen

/ <
■wx,an (I) dt.

Q-n

P r o o f  o f  L e m m a  2. Initially it is
2tr
f  dt - h 2( 1 A

2ir 1

J t3
br ^~2t2J 2 br ~ 8  _

2br
1 1 \ 1 1

>  8 00 w|t
o

8 " 8^5

fln

1 1
> -  -  -t-wö >br 8 8 (r +  ± p  8 8r2̂

since ra  ^  5 when r  ^  12. Next,

'*(26r ) =  10•— wx{2 br) < l 0 bl / wx{2br)-^ =
2br

2ir 2br 2

= 106̂  J  J  \cpx{u)\duSJ <̂  = 5br J  [ j  J  l<Mu)lrf
26r 0 26r 0
27T t 2n 271

j  J  \4>x{u)\duSj ~  = 5br !  —jp-dt<:bbr J

2ir 2br
dt ^

“ ' ? s

< 5  br
wx(t)

t2
dt,

2 br 0

thus the inequality (5) holds.
Further, integration by parts yields

br br
| </ )X ' ( 0  —  ( f r x i f  ~l~ Q r  )  1

J t
I  t (j)x{u ^  o>r)\duJ dt
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t L br t
I  \(j)x(u) -  <f)x {'U + aT)\du 
0 ar 0

br

Oî

That ends the proof of the lemma. □
P roof of Lemma 3 is very similar to the preceding one. Initially we 

make the following estimate valid for n 't  12:

/  I \ ^ ( u) ~ M u + ar)\du dt =

2n 0
2 f  dt _  h2 ( 1 \  1 4 tr2  ̂ 1 1

/  i3 n l  2f2) 2b 8 87r2(n +  l p > 8 2 n ^
2bn

1 1 1 1 _  1
> 8 “  > 8 ~ T 5  ~~ 40-

Taking bn instead of br and ^  instead of and proceeding similarly 
as in the proof of the inequality (5) we can obtain the (7) one. Further, 
similarly as in (6), integration by parts yields (8).

That completes the proof of Lemma 3. □
To estimate the order of magnitude of wx(n) we use the next lemma: 
Lemma 4. The following inequalities hold for the function wx[f]:

2tt

wx(n) In \Í2 ^  f  Wx̂

P roof of Lemma 4. If 7r < t < 2n then

(9) wx(n)^2wx(t) and wx(t) g 2wx(n).

Indeed,
7T t Tt

wx{t) = j  I \<px(u)\du+^ j  \<t>x( u ) \ d u t j  I \(f)x(u)\du t  
0 n 0

7T

0
and, since (fx is even and 27r-periodic function for every x 6 R, we can write
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Wx(t) = ^ J  \(f)x(u)\du^j J  \(/>x(u)\du= j(J |̂ x(«)|áu + J  \(f)x{u)\du j =
0 0 ' 0  71T '

Í 7T 0 \ 7T 7TJ  \4>x{u)\du +  j  \4>x{u)\du I =  j  J  \(f>x (u)\du^ ~  j  \<j>x(u)\du =  2 w x ( tt).

Now using the inequalities (9) we find that

27T 2tt 27r
^ w x (n) ln 2 = j \ Wx{, ) \d t^  J  Wj^ dt ^  2 wx(n) j  jdt  = 2wx{tc) In 2,

th a t completes the proof of lemma. □

Proofs of main results

For convenience, throughout the proofs, M  and N  stand for positive 
constants not necessarily the same at each occurrence.

P r o o f  o f  T h e o r e m  1. First assume that r  ^ 12. In this case let us 
write

I B r [ f ] ( x ) - f ( x )
CLp bp 7T ̂

i  / +/ +/  “ (t)dt.
K 0 dp bp

I  Ißl I + |02| +  |P3|,

say, where as previously ar = ~ j  and br =  . , with ß € (j ,  ^).
r ' 2 v ' 2 '

Now

ei
l
7T

J  M t) e - 2rs in2^ 1

o

sin(r sin t + bt)
sin ^t

dt <

I T

dp

I r sin t + bt 1
--------,----- —dt < —

i t  ~ nr
7r (r+g)<

t
dt

1
=  7r ■ —

df I  \<l>x(t)\dt
o

7rwx(a.r).
In this way, by inequality (3),

|g>i I Ű irwx (ar) ^ 2nwx(2ar ) = M w x(2ar).
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Let us pass now to the integral £3. Then,

sin i t
br

<

7T 7T

 ̂J  \4>x{t)\e~2r si"2 %t-^-dt = TT J
br * br

\(ßx{t)\ —2 r  s i n 2 i f2 ldt.

It is clear that, for r  ^  4 and br < t < 7r, we have

- 2  r -
g —2 r s i n 2 i t  <  g —2 r s i n 2 i f c r  <  g - 2 r ( i h r ) 2 _  g  ( r + ^ i i  <

= exP ( ! \  1 Í / I n 1-2/31
K r+2)(r + jH = exp [ - H 2)

It could be shown that for every ß  € (0, i)  there exists a constant M  > 0
(that depends on ß) such that exp —(r +  5)1 2/3 
fact and partial integration we find that

I í?31 = exp
br br

< M , V , - Using this

t d t  =

Whence, by Lemma 1.4 we may write
2tt

(
2-rr it \  27t

dt <

< 2ttM  2 
= ln v /2 r

2tt

/
Uti(t)
T2 -

dt = Mbl
2tr

/ t2
dt.

br
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The study of Q2 is more complicated and requires some calculations. The 
main idea of the proof is to manage the task in the following way:

2 nQ2 =  2
Ur

j  <M<)' ,-2r8inai t Bin(r s i n t + 5i)

dr
sin tT

d t  =

bT

= 2 / i ‘SÍn(r —  +  ^ 8ln(rt +  * +sin | f

+2
brJ  fixit)' 2r sin2 rt sin(r  d~ ^)t

dr
Sin rjf

d t  =

= /o +

Or

j - 2 r s i n  2 i t S Í n ( r  +  i ) í

sin i f
d t —

V , 2, , \ 2rsin2 i f i + a T  sin(r +  i ) i  ^  _
-  /  <px ( t  +  ar )e ^  . -------- r « t -

J sinl(< +  ar )

= /o +

Ur

/
^ x ( í )  +  a r )  - 2 r s i n 2 i i  „■ / „  , ^

dr
sin

2* sin(r + - ) t d t +Zi

+
br

f  ^ ( ^  +  a r) (e -2 r  sin'2 §t _  e -2rsin2 |( i+ a ,) )  s in ( r +  I V  rf£+
./ s in  i f  '  2 /
dr

+
OrJ  4 >x ( t  + ar)e-2sin2 f (i+a’')

sin if  s ini ( f  +  ar )
sin

(f>x{t  +  a r )  —2 r s i n 2 | ( t + a r ) ,

(f +  ar ) ‘K )sin(r  +  -  If d£+

+

_  Í  4>x{

J sin i

/  ^ ^  +  Q ’- ) , _ e - 2 r  s i n 2 1  ( t + a r ) s i n ( r  +  I )  t  d t  =J  s in  i ( £  + a r ) V 2 /
fej’ dr

=  do +  dl +  2̂ + -̂ 3 +  /4 +  -főj saY-

Now, for Jq we obtain
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\Io \ =

Or' j  <t>x{t)e
- 2 r  s i n 2 l t sin(rsinf +  ^ )  -  sin(rí + \ t )

sin b t
d t

(Lr
br

' J  ( p x { t )

CLr

2 r  s i n “*

br

tn2 i,2cos r ?int+(r+1)t sin lígllLÉzíl
sin b t

- d t

= 2
'! 'TT tar

= 2tr J  \(t)x{t)\T-
CLr
br

= 27t j  \4>x{t)\ri
CLr

br br

7f( r  + ^ )  I  \(ßx{t)\t2dt = M ^ -  j  \<j)x(t)\t2dt.

br

J l  í ! _
3! + 5! 7! + 9!

3! + 5! _ 7! + 9!

d t  =

d t <

< 2 n e

CLr CLr

Next, we will estimate the integral Ii as follows

br

\ h \  = J < p x ( t )  0 i ( i  +  d r )  _ - 2 r s i n 2 i f  •

sin }̂ t
a 'sin^r + ^ J t d t <

br

s ' /
14>x(d‘) id 3" ®r) I

d t .

CLr

Equality (6) implies that

(
br

WX,aT(br) - W X,ar(ar) + J ™X,ar (*)
d t  <

a r

^ KWx
Or

,ar(br)+K j Wx’ar{t)dt ,

since wXiar(ar) ^0.
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Now, let us consider the integral

br

\ h \

(f)x(t + ar) f  2rsin2 U „ -2 r s in 2 tÍ  &X {t "I" Or ) /J s i n 4 f  V
2 — e r(i+ar)) s in ( r  +  i ) t dt

ar

By the mean-value theorem there exists a € (f, i +  ar ) such that

g—2r sin2 i t _  g —2r sin2 ± (t+ar ) =  r a r g - 2 r  sin2 f a  g i n ^

Here it is ar < t < < t + ar < 21, so we get

Or

n s /
ar

br br
\(f>x{t + Or) \ _ _  O J - ^-i tdr 2iT> dt _

\ t7r dr

Or
<Í7r J  \cf)x(t +  ar)\(r  +  ^ j - ~ d t  =

br ~\~dr 2br
j  \4>x{t)\dtún2 j  \4>x{t)\dt =

2ar 0
2vr

= 2 n2brwx(2 br) ű I0 n2b2 J  Wx̂  dt,
by inequality (5).

Let us pass to the 73-integral. We have as follows:

l*3| =

Ur
J' 4*x "t” ör)

3—2r sin2 | ( i + a r ) f
Vsin i t  sin4(t +  ar )

sin
K )

t dt

Op

/
—2r sin2 ^ ( t+ a r ) slil 2sin bit + ar) — sin bt / 1\

----^ -------f--------— sin r + -
sin bt sin k(t + ar) V 2/;{ t  +  Or)

t dt

Or

/
(f>x(t + ar)e—2rsin2 i ( i + a r ) 2 cos j ( t  + ar + t) sin | (t + ar — t ) 

sin bt sin \  {t + ar)
d r

x  Sill, ( r + i ) t <

^  [  \ j . u ,  M  ^  '  4 ű r  _  7 f 2  /  ( í  +  ° r ) |  _

= J lfc< r ) l i ( i ( t  +  ar) 2 J t(t + aT) d t ~
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7T

T
\<t>x(t + ar)\ \<t>x ( t  + aT)\

t  “f" (lr
dt =

/  f  + ar)\dt ■ í  \ 4 > x ( t  +  f l r ) | _J t + ar )
ar

br
V f  \4>x{t +  a r ) |

br -\-CLr

t d t í
2a r

\4>x{t)\
d t  =

\^x{t “I" Or) I

+

t
7T2
y

br

/
2a r

d t  -t-

2ar

' \ 6r+ar \
|<M* +  Or)l _  |<MQ1 j dt- J  J -

2a,-
|<̂>x(í +  ar)| l^xMI

2a r
\ M t ) \

\(f)x{t + ar)\-  \(f>x{t)\t dt
I  m

r

J  \4>x{t)\

dt-\-
Ürbr +Ör

dt, <

■ 2ar
|<^x(< +  ö r ) |  -  |0x(<) |  ,,  , 1

2ardt -\-- í  \<px(t)\dt+
CLr J

or

- /
2ar

| 0 x ( í +  a r ) |  -  |<£x ( t ) |

/  br
, y  / [  l<M  ̂+  ar)l ~  1<M*)I 
- 2

dt <
2ar

t dt + 2- 2~ /  l̂ xWÎ  j =
b r

- T Í

n f  \<f>x{t + ar)\- |(/>x(<)l
6,

< 7T2 f  \cf)x(t + ar) -<t>x{t)\I
ar

t

dt + n2wx(2ar) ̂
dí + Tr2wx(2ar).
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Now, taking into account the relation (6) we arrive at

/ t)v
\I3 \ ^ m ( wx (2 ar) +wXtar(br) + I w x , a r j t )

t
dt

df

Consequently, to estimate the next term, we note that

\ h \  =
(frxjt + a r )  - 2 r s i n 2 i ( i + a r ) •Í  4*X (j' ""I- ,

J s in ^ (i +  ar )
sin

K )
t dt

0>r (Lr
, 2flj’ 2 dr 4

!  \(f)x { t ) \ d t ^ 2 n2^ -  j  \4>x{t)\dt = 2-K2wx(2 ar).2 r + 2

For 1$ we have

\ h \  =

br
Í  dr

J s i n |( i  +  ar)
(fix (t + ar) ^ _ 2 r s i n 2 | ( t + a r )

br dr
sin tdt

b r  ~ \~ d r

-  f  - ^ ^ - e - 2rs in2^ s i n f  r + l )
./ sin ht V 2 /

t dt

br-\-dr

£ j  \ h ^ i e~2rSin2 ^dt^TT j \4>x{ t ) \ 2' dt.
br br

Now, following the same procedure as for g3 we achieve the estimate

2tt

\h \Ú M b 2 j
wx(t)

t2
dt.

br

Collecting the estimations for /,; we may write
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+
Ur

/
&r

In this way we arrive at the conclusion that for r  ^  12 our theorem holds.
It remains now to consider the case when  ̂^  r < 12. In this case we can 

estimate the kernel. Namely,

\Kr(t)\ = —2r sin2 it sin(T sin í +
sin j  t

|r sin t + ^t
~Tt

IT rt + t; IT t
------ 2—  ^ 1 3 tt,

for 0 < 1 < i t  and  ̂^  r < 12.

I Br

Since we have |  < br ^  7r, hence, by Lemma 1.4, we find that

ir 7r

\(/>x(t)\\Kr{t)\dt^l3TT^ j  \<f)x(t)\dt :

0 0 
27T 27T

= 13™ , M  < [  ^ d t  < [  ' Z M d t  =
V Iny/2J t2 ~ ln  y/2j  t2

2ir 2tt
26tt2 1 k2 [  wx(t) ̂  ^  26 ■ 52 u2 [  w x{t)

I n  V2b2
■b: I

br
„ dt< . 

t2 ~ In y/ 2

2tr

■ Í  wx(i 
.1 t2

-dt =

— Mb2
/

wx(t) 
Í2

dt.

In this way the proof of Theorem 1 is complete. □

P r o o f  o f  T h e o r e m  2. This proof is similar to that of Theorem 1. It 
also splits into two main parts. First we assume that n't. 12. Let us write

\En[f]{x) -  f{x)\ =
dn bn 7T \~ { J  + J  + J  I <l>x(t)Kn{t)dt <

K 0 dn bn
\̂(/>i\ + \fa\ + \ fal  say,

where, in this case we have, an — and bn =  , with ß  G ( | , ^).
For pi we obtain
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i /*,(*) ooe”(it)» / 1 \  s in ± (n + l)í
sin t̂

dt
&n

= ~ n f i(n  + l)í
dt =

Q-n

= — /  |^>a;(í)|^ =  ^wx(an) ^ 27ru;x(2an) =  Mwx(2an),
an J

by inequality (3).
Let us pass now to the integral q$ and write

7r|03| =
7TJ  fix {t)

bn

cos —t
1 sin 5(71+ 1)£
2 sin

d t

7T

s < 7
bn

J^ ^ C O S  " - fd t. 
t 2

For n  > 7 and bn <t<  7r we have

“ s” M 1 “  ^ í2)" ä (* -  Ö * ) “ -  “  T  ■ ( Í T í f )
1 \(" + l)-l <

< 8  
= 3

n 2 l x ^(n+1)^-, Vin+1)1“ 
1 -  — •

4 (n + 1)^

2/3
. 8
S 3 exp ( - T < "  + I )" W) ’

since the expression between square brackets increases and tends to e-1 as 
n —> + 00. Hence, recalling the similar fact as in the proof of the preceding 
theorem, we conclude that there exists a constant M  > 0 such that for n  ^  12 
and bn ^t^TT

1 A tt2
cos" - t  <M------ —533-.2 ~ [n +  l )2d

We can now proceed analogously as before and conclude that

7T /  7T \
wx(t)

d t  <

b
2n

^ M b i
( &n n

1 f  Wxjt) ^  , 1 /'

lnv/27 < ln V2.I
* bn

W x ( t ) dt < Mbl
2tt

/
^ ( í )

t2
dt.

The term Q2 can be handled in the same way as in the proof of Theorem 1. 
Similarly, let us write
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bn 1 / \ bn~dn .
f i  ÍJ.\ n 1 sin k(n+\)t  f  1 s inU n+ l) t

= (frx(ty cos - í ---- 2 1 d t -  /  (fix{t+an) cosn - {t+an) ^ j ~ . ------ d t  =
J 2 sin fit J 2 sin fiit+an)
CLn

bn

- I
dn

(f ixity <fixit +  a n )  ,1 Í j  . , , u  JX|------------ ;--------- cos - i s i n - ( n  + l)tdt+
sin fit 2 2

+
bn
í  ( f iz i t  +  a , ty / cogn K _ c o s n I ( £  +  0 n ) ^  sin^ (n  +  l ) i d t +

j  sin ni ' ■u z / z
0>n

+
bn

/  (fixit + an) cosn - i t  + an)[ — T-
J 2

dn

+

2u s in^(i +  a „ ) / 2

_  í  <fixit +  a n ) c o g n  1 ( f  +  Q>t)  s ^  l ( n  +  l ) i  d t +
./ sin fi(t + an) 2 2

í  j t x i
J sin i

sin - (n  +  l) í  d í—

dn

( f i x i ' +  n )  cogn _|_ ű n J gin  i ( n +  l ) í d í  =

bn dn
i i t  + an) 2

= I \ - \ -1 2  + 1% + ty + Ibi say. 

To estimate the integral 7i, we note that

bn

IA| = '
/dn

(f ixi ty (fixit  +  O n )  ix 1 1 • 1/ , 1 v ,— cos - i  sin -(n  + 1)7 d t
sin if

<

(f ixi t  Q>n) I
bn

dn
b n _

<r —  I k  \  I f  W X , a n i t y  1k ™ x>an(ftn) + 7r / ---- -

dt<

d t ,

dn

by relation (8).
Now, let us consider the integral

|/al =

bn

Í  (fixit +  ° n )  ( COsn i f  -  c o s "  ^ ( t  + an) ]  s i n  ^ ( n  +  l ) t dt 
J s i n  fit \ 2 2 / 2

tin
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Here again, we apply the mean-value theorem which assures that there exists 
a E (i, t +  ar) such that

cos" ^ t -  cos" t + an) = ~nan cos"-1 ^ t s i n ^ t.

Here ar < t < & < t +  ar < 2t, so we get, by (8),

bn bn
\ h \ ^  j  ^ ( n + l ) a ry 2 t d t ^ n 2 j  \</>x{t + an)\dt =

0-n 0,n

J  \(px{t)\d t^n 2 j  \4>x{t)\dt =
2  C L n

27r

= nz2 bnwx(2 bn) ^ 2 ■ 207rm:
! /
bn

' 7Ux(í) 
t2

dt.

Let us pass to the integral 73. Similarly, as earlier, we conclude that

bn 1 \  1
1-̂ 31 =  /  4>x{t + an) cos" -(< +  an) ( -  j— — . , ---- r ) s in - ( n  +  l) id i7 2 \sin  i t  s in h i  +  On)/ 2

<

2 br

h \ M t  + an)\dt ( _
i(i +  o„) 2

On

x,an ( b n )  +  J w x,an W dt, + n2wx(2 an).

For the integral 74 we can get

\ h \  =
_  í  M

J sin i
(f>x{t +  a n ) c o g n s i n  i ( n  +  l ) í  d í = 2 ^x(^^n) ■

2 ( í +  Ön)

As in the preceding proof, can be estimated similarly as it was done for ps

bn

I-Í5I =  [ ^  +  Q") cos" l ( t  +  a n)s in l (w  +  l)<dt =
7 s in 5 i  +  an 2 l

In ön
bn+ö„

f  ^ x cos" - f  sin - ( n  +  l)t dt J sin iff) 2 2 V
bn

<
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7T 2 7T

^7T p M ^ COSnl- t d t ú M b l  j ' -
bn bn

wx(t) 
t2

dt.

Collecting the above estimations we obtain, for n — 12,13,...

\En[f]{x)~ f { x ) \ ^
2ir bn

< M \ w / r i  \  , ? 2 f  Wx {t)  f  Wx>an ( t )
;(2an) + bn I 2̂ d t -\-Wx^anV^n) ~1“ / £

bn tin
dt

In the case when 0 n < 12, we can also estimate the kernel:

l*n(í)l = cosn / l , \  sin ^(n+ l)t
'(*) sin

< i ( n  +  l)t
^  77t, for 0 <  t ^  7T.

Using the relations < bn < 237r, for 1  ̂n < 12, and mx(7r)  ̂2wx{t), for 
n ^ t ^ 2 n  (inequality (9)) we obtain

7T 7T

\En[f]{x) -  /(x ) | = ^  J  \(j>x{t)\\Kn(t)\dt <[ 77r^ J  \<f>x{t)\dt = 7nwx (n) g
o o

2tt 2tt

< 7t j _  r Wx{ir)di < ^ L  f id (<
"  In 2 5  J K , t - h l2L3 J t -

2
2 3 7T

2tt

< 147T  • 2tc f  wx(t)
~ p ~In 2

2-14tt2 1

■2n r
25 J

2
2 9  7T

dt =
bn

2tt
™x(*) 

In23 bl f2i /
bn

dt <

2n 2ir
3 • 287T2 2 2 f  W x  (i)j* *^2 f  wx(t) ^

= “ta2“ ' i 6" ./ — d i = Mí>” J — dL
bn bn

For n = 0, an = bn = 2n, and so

|£ n [ / ] ( s )  -  / ( z ) |  ^  7 n w x ( n )  ^  287rm a;(47r) =  M w x ( 2 a n ).

In this way the proof is complete. □
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P R O O F o f  t h e o r e m  1 ' .  W e  h a v e  ß  G  ( | ,  5 )  t h e r e f o r e  b y  T h e o r e m  1  

t h e r e  i s  a n  M  >  0  s u c h  t h a t

\ B r [ f ] - f \ \ P Z

< M
2tt br br

wx(2ar) + bj j  ~ ~ - d t  +  wXtar(br) +  j  Wx’a* ^ dt + J \(j)x(t)\t2dt

A p p l y i n g  t h e  g e n e r a l i z e d  M i n k o w s k i  i n e q u a l i t y ,  w h e n  1  ^  p < 00 , w e  c a n  

e s t i m a t e  t h e  q u a n t i t y

( 7r \  i / p  /  n  /  á \  p \  1  / pf  (wx(S))pdxJ ^ ( /  ^x̂ dt) dxj
- 7r ' 0

6 /  7T \  1 / p/  7T /  0 \  p \  l / p  /  /  \  \= l \ j [ l  lMt)l dt)  dX) = 'S [ I  ( /  ^  J =
“  ^  ( /  it|S  ( /  df̂ j=

= ^ W p d t j  =u}[f]{ö)p f o r  a n y  5 > 0 .

W h e n  p  =  00  w e  h a v e

lk(í)lloo =
0 0

i  J  \4>x ( t ) \ d t  ^ - 5 j  H M l o c d t i

00 0

=  ̂ j  bj(6)00dt = u)(S)00, a g a i n  <5 > 0 . 

0
U s i n g  ( 6 )  a n d  ( 4 )  w e  h a v e

W . , a T ( b r ) +  I ’ d t =
— /  ^ 1 f + a r )  1 
W . , a r ( a r )  + / f  d t ,

dr V d r

<

= lk-,ar (ar) ||p +
Dr

J \<frXt)-(f>.{t +  ar)\ 
t

d t <
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^4||u;.(2ar )||p +
br

í \(t>{t)-(j).{t + ar)\
dt

This completes the proof. □
In the same way, applying in turn Theorem 2 we can prove Theorem 2'. 
P r o o f  o f  C o r o l l a r y  1. Put ß =  ^±5 .  We have then ß  e  ( 5 ,  5 )  for 

a  6 (0,1). By the assumption /  € Lip(a,p), so u*[f](6 )p 5í NSa for some 
N  > 0 and any <5 > 0. Hence

<42ar)p g N(2ar)a = N -  1 ^  g N r~a,
(r + 2 >

2tr27T 2tt 27r
I  i b 2r  J  ^ d t  =  Nb2 j  t a - ldt<

br

g Nbl

= N

br br

1-feQ- 1 = Nba+1 =L» J * l/ ,.
1 — a

1
(r + 1)^(Q+1)

< N — ,-  r a>

(a + l )2since a < -------— lor ( ) < a < l .
o; -f- 3

Further we obtain for r  ^  ^

Or

J -<P.(t + ar)\
t

d t <
7T

/
l<£.(0 -  0.(i + Or )| dt < N r~ a.

For the last component we have

br br
— f  U ( t ) \L t2d t ^ — I co{t)pt2d t ^ — [  N ta+2dt ^ 
dr J O-r J &r J

é tL b^  = N (r + L Y - ^ Í N r
OLr ' 2/

1 \  1 —(q+3)/3

since 1 -  (a + 3)ß~ — a  (recall that ß = ^ 5). Thus the proof is complete. □ 

P r o o f  o f  R e m a r k  2. Initially, for 1,
2tt

2 [  dt _  2 ( 1 ar J t3 2t
2 dr

2f2 )

2tt

2(1 r

1 1 1 1
> -  -

1
8 8(r +  i)  8 8 • § 24'
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Further, using the previously stated lemmas we can obtain, successively,

— f  \4>x{t)\t2d t ^ — f  \(f>x(t)\dt ^  — wx(bT) = 
Ür J CLr J

= n2(r + ^ j  wx(br) ^ n2wx(br) ^  2 -ir2wx(2 br)
2tt

< 2 ■ 57r2br
/

m x ( i )

t2
dt < 1Ü7T2

2tt

/
U > x ( t) dt < 20tt2

27T

/
fer
2tt

wx(2 t)

2w 2 7T 271

wx(2ar) ^ 12ar J  ^ ^ - d t ^  12 J  ^ j ^ - d t ^  24 J wx{2 t)

dt,

dt,

Thus

and

27T 27T 27Tf ' £ M i t i b r j  'O M t t i i v f wx(2 t) dt ,
br

2tt

re. :,ar (&r) = 4u;x(2&t) is 4 ■ 5 • 2 I
wx{2 t) dt ,

j  Wx,ar (t) df < 4 j  Wx(2 t ) dt.
CLr

2?r 2(r+2) ^

|Br [ / ] ( , ) - / ( , ) | ^ M / ^ M d t  =  M  j  ^ ^ d f ,
dr

2 ( r + i )  2 ( r+ i )
" I M ¥ ) I L , _  f  ^(4 TT-i)

l
2 ( r+ i)

J  c n ( 4 7 r -
di <

^  M(4n  + 1) J wx( Í )dt,

by the relation cn(A<5) (A +  l)cn((5), valid for any A ^  0 and <5 ^  0.
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Similarly we can obtain that

for n =  1 ,2 ,... ,
l

and since u ) { t )  is non-decreasing function we conclude that

A c k n o w l e d g e m e n t . The author wishes to express his thanks to Pro­
fessor Wlodzimierz Lenski for suggesting the problem and for many stimu­
lating conversations.
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DEVIATION PRINCIPLE FOR SET INDEXED 
PROCESSES WITH INDEPENDENT INCREMENTS

P. BARBE and M. BRONIATOWSKI

A b stra c t

Let {Xx(A): A  e  -4},\>o be a family of processes indexed by a collection of sets A .  As­
suming that these processes have independent increments, and that for any fixed 
A  € A ,  {X\(A)}a>o obey a large deviation principle (LDP) as A —> oo, we prove that 
the processes { A  € A  —> .X\(A)}a>o obey a functional LDP. As an application, we obtain a 
LDP for partial extreme processes based on i.i.d. r.v.’s and the sequential empirical mea­
sure. Then, we show how to apply this result to obtain a LDP for weighted V-statistics.

1. Introduction

Consider a family of stochastic processes A(e A-+ X\(A)  G V, A G (0, oo) 
indexed by some sets A  G A. Suppose that there exist two functions

(A, A) G (0, oo) h( A, A) G [0, oo]

and
( t t c X , A e A )  >-> J(fi, A) G [0, oo] 

such that for any fixed A e A ,

(1.1) P{X\(A) G ÍI} = exp(—h(\, A)I(t t,  A)) as A —> oo

(see Section 2 for a more precise statement). If (1.1) holds, we say that the 
family of set indexed random processes { X a ( .) } a> o obeys a marginal large 
deviation principle. Of course, (1.1) concerns only the marginal behaviour of 
the processes X a(.), i.e. for any fixed A G A.  Now, a natural question arises: 
if (1.1) holds, what can we say about the processes X\(.) as A—» oo?

These processes may be viewed as random functions in some space T  of 
functions from A  into X . Hence, one can ask whether there exist functions

A i-> h(A) G [0, oo]

and
G (F e-> J (fl) G [0, oo]

1991 M a t h e m a t i c s  S u b je c t  C la ss i f ica t io n . Primary 60F10.
K e y  w o rd s  a n d  p h r a s e s .  Moderate, large, super-large deviation principle, processes 

with independent increments, sequential empirical process and measure, partial extreme 
process, weighted V-statistics.

0081-6906/97/$ 5.00 ©1997 Akadémiai Kiadó, Budapest
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such that

(1.2) P{XA( . ) e í í } “ exp(-/i(A)J(íí)) as A-too.

A special case of this problem was solved by Varadban [27], McBride [23], 
Lynch and Sethuraman [22] and Broniatowski and Mason [12] when 
A £ N, A  = {(0, t] : t > 0} and X\(A) = is a sum of independent
and identically distributed (i.i.d.) random variables (r.v.’s). It turns out 
th a t the approach of McBride [23] or Lynch and Sethuraman [22] may be 
substantially extended to obtain (1.2), assuming that (1.1) holds and that 
for every A the process X \  has independent increments (see Section 2 for the 
precise assumptions).

The main result is given in Section 2. In Section 3 we deduce from our 
main theorem a functional large deviation result for partial extreme process­
es. In Section 4 we give a large deviation principle for a sequential empirical 
probability measure which extends previous results by Groeneboom, Ooster- 
hoff and Ruymgaart [19] and Bahadur and Zabell [2] among others. This 
result is of very broad applicability and some applications will be presented 
in a series of forthcoming papers. All the proofs of our results are postponed 
to the last section.

2. The main result

Before stating our main theorem, we first need to precise the meaning of
(1.1) and to make some assumptions.

Consider a class of sets A , and a Hausdorff topological space X . We 
denote by T  the set of all A-valued functions defined on A. We shall consider 
a fam ily X\(.)  of random elements in T  with independent increments in the 
sense that

(2.1) If A, B £ A  and A  D B  =  0, then X\{A)  and X\(B)  are independent.

One can easily exhibit such a process as follows: first define an associative 
operation T  on X. Consider an ordered discrete set V  and let A  be the set 
of all subsets of V. Then let : d £ V}  be a set of i.i.d. r.v.’s and define 
for any A e A ,

X(A):= T X d.d£A
To make (1.1) and (1.2) more precise, we introduce the following defini­

tion.
D e fin it io n  2 .1. A function  /(.) from a topological space 0  in [0, oo] is 

a g o o d  rate function if

( 2 .2 ) 0 g /( .) ^ o o
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(2.3) / ( . )  is lower sem icontinuous (lsc).

A consequence of (2.3) is that the level sets r c := {x E © : I(x) ^  c}, c E 
[0, oo], are closed in ©. But we do not assume that they are compact which 
is of importance for the applications (see Remark 2.4).

D e f in it io n  2.2. The processes Aa(.) E T  satisfy a marginal deviation 
principle (MDP) if for any A E A, there exists a good rate function I(x, A) 
from X  into [0, oo] and a real valued function h{A, A) such that for any closed 
set F  C. X,

(2.4) lim suph(A,A)-1logP{AA(A )G F } ^ - /(F ,A )
A->oo

while for any open set G C X,

(2.5) lim inf h(A, A)-1 log P{Xa(A) e G } ^  - I (G ,  A),
A->oo

where for any tt C X,

(2.6) I(fl, A) := inf I(x, A).xen

R e m a r k  2.1. In (2.4) and (2.5), the functions h(\, A) and 7 ( .,A )  are 
not uniquely defined. For example, it is obvious that we can divide h(A, A) 
by some constant p(A ) and multiply 7 ( .,A ) by p(A) without changing the 
meaning of (2.4) or (2.5); similarly, we can replace h(X, A)“ 1 by A-1 .

R e m a r k  2 .2 . Definition 2.2 is nothing else than what is often called  
a large deviations principle ([27], [17], [16]). However, the term inology is 
not well established, since if A a (.) is a partial sum process, our definition  
includes small or moderate, large or super-large deviations (see e.g. [4]).

Following Lynch and Sethuraman [22], we introduce the definition: 
D e f in it io n  2.3. The processes A a(.) are marginally deviation tight 

(MDT) if for any A e A  and any M  > 0 there exists a compact set K a ,m  C X  
such that

(2.7) limsup/i(A, A)-1 logP{X\(A) ^ K a ,m ] ^  —M.
A—>-00

An important consequence of (2.7) is that provided we deal with a fixed 
marginal Aa(A) of our processes, we can reduce X  to its compact subsets 
when we evaluate a probability of deviation.

Definitions 2.2 and 2.3 are concerned with the marginal behaviour of 
the process in the sense that A E A  is fixed. Now, to consider the function 
A —> ATa(A) we assume that

T  is equipped with the topology of pointwise convergence 
or any coarser topology.
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Consequently, if a sequence {gn)n> l in X  converges to g£F, then lim gn(A) =
n—>oo

g(A) for any A 6 A.
We can make (1.2) more precise:
D e f in it io n  2.4. The process X\(.)  satisfies a functional deviation prin­

ciple (FDP) if there exists a function h(A) and a good rate function /(.) : T  
[0, oo] such that for any closed set F C X ,

(2.9) lim sup h{A)-1 log P{XA £ F } ^  - I { F )
A—>oo

while for any open set G c f ,

(2.10) lim inf /i(A)-1 logP{XA G G} ^  - /(G ) ,
A—s-oo

where for any Q c F ,  we denote

(2.11) I(Q) := inf I(x).xen

R e m a r k  2.3. As in Definition 2.2, the functions h(.) and / ( . )  are not 
uniquely defined. It is also clear that if h(.) is monotone, then one can always 
take h(X) =  A by changing the way X \  is indexed (i.e. replace A by h~1(A)).

Now, the question we asked in Section 1 becomes: if the processes X\(.)  
satisfy a MDP, do they obey a FDP?

The answer is yes if we assume (with notation of Definition 2.2) that 
there exist functions f i : A  [0, oo] and h : [0, oo] t-> [0, oo] such that

(2.12) lim h(A, A)/h(X) =  /j,(A)
A—MX)

and
for any the function

A e A —t fi(A)I(g(A),A) G [0, oo] is subadditive.

By (2.13) we mean that if A, B, C £ A  with A = B U C and ß n C  =  0 
then

fi(A)I(g(A), A) g fi(B)I(g(B), B) + ii(C)I(g(C), C ).
Next, we have to relate the rate function /(.) in (2.9)—(2.10) to the rate 
function I[ . ,A ) in (2.4)-(2.5). For this, we say that A = {A\, . . . ,  Ak) £ A k 
is a partition if all the sets A \ , . . . ,  Ak are disjoint (but we do not suppose 
that their union covers A).  We denote by V  the set of all partitions. For 
any /  G Z7, we denote

J f  := sup
Aev

£  li{Ai)I{f(Ai),
Aj6A

Ai).(2.14)
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A consequence of (2.13) is that the sum in the r.li.s. of (2.14) as a function of 
A g V  increases when we refine the partition A. We shall assume that there 
is a sequence of partitions (A*)n>j such that

th e  (7-fields a  ( A * ) in c re a se  w i th  n ,  a n d  fo r a n y  /  e  T ,

<*•»> J(f)= 5 »  E  c (a ; , „ ) / ( / ( a ' „ ) , a ;,j .
a* g ar,i ,n  n

For the upper bounds on closed sets we also need to assume that

(2.16) lim h(A) = oo.
A-»oo

THEOREM  2.1. Assume that the processes X \  obey a MDP given by
(2.4)-(2.6), and that (2.12)—(2.14) hold. Then

(i) X \  obey a FDP on open sets given by (2.10) and (2.11) with the 
function h(.) given in (2.12) and rate function J(.) given in (2.14).

(ii) Moreover, if (2.15), (2.16) hold and X \(.) is MDT, then (2.9) also 
holds.

REMARK 2.4. It must be noticed that the pointwise topology on T  is 
not crucial in our upper bound result. It is only used to show that J(.) is 
lsc (see our Proposition 5.1.1). Therefore, any topology under which J(.) is 
lsc is suitable to get Theorem 2.1. In particular, if X\(.)  is a partial sum 
process in the space V[0,1], we can use Skorokhod topology and strength 
Lynch and Sethuraman’s result [22] (see their comments p. 621). Also, we 
do not need 7(.,A) to be continuous (compare to the proof of Theorem 4.1 
in [22]), which is crucial for some applications, as well as not supposing that 
X  is a metric space (see Remark 5.3.1).

3. Large deviations for partial extreme process

Let (-Aj)j>i be a sequence of i.i.d. real valued r.v.’s with common distri­
bution function F  which is assumed to be continuous. Then, let

Mn(t) := max At, 0 < i g l ,  n 't  1 
1

be the associated partial extreme process. In this section we present a FDP 
for Mn{.) which is a direct consequence of results of Theorem 2.1.

We view Mn(.) as a random element in the space V  |  (0,1] of all non­
decreasing and cädläg functions from (0,1] to F*~(R), the compactified of 
supp F  equipped with its usual topology. The space V  t  (0,1] is equipped 
with the topology of pointwise convergence.
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THEOREM 3.2. The family of processes {Mn}n>i obeys a FDP. If  Í2 is 
closed in X>f(0,1], then

lim supn-1 logP{M„(.) G D} — J(H),
n —>oo

and if Q is open in V f  (0,1], then

lim inf n ~ 1 log P(M„(.) G D} ^  —J(fi),

where
J(il) :=  inf J(g), 

sen
and

l

J(9) := -  f  log F(g(t))dt.  
o

4. Empirical process based on i.i.d. random field

Let Z  := {Zi : i G Z+d} be a random field of i.i.d. r.v.’s with common 
probability measure (p.m.) P ,  each Zi  taking its values in some Hausdorff 
space S  equipped with its Borel cr-field B(S). Define the sequential empirical 
measure

Fn ;= n  'y ] &(i/n,Zi)-
i€n( 0,1]“*

The term sequential is introduced to point out that the knowledge of Pn 
enables us to reconstruct the whole field while the usual empirical
measure only gives the sequence up to a permutation. The result of Section 2 
leads to some LDP for P n .

LDP for the usual empirical p.m. have been obtained among others by 
Borovkov [9], Donsker and Varadhan [18], Bahadur and Zabell [2], Groene- 
boom, Oosterhoff and Ruymgaart [19] (GOR in the sequel), Csiszár [13], 
Deuschel and Stroock [17], de Acosta [1].

To state our theorem, we need some topology on the space Sd-=(0, l]dxS 
which will be equipped with its corresponding Borel a-field B(Sd)-

It is well known (see e.g. Billingsley [8]) that a measure on Sd is complete­
ly determined by its values on the rectangles A  x B, A G B{0, l]d, B  G B(S). 
Let A be the set of all p .m .’s on Sd and let A  be the class of all Borel subsets 
A  C (0, l]d such that

lim #{nA) /nd — \A\:
71—> OO
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where |A| denotes the d-dimensional Lebesgue measure of A. In particular, 
A  contains all the open and closed subsets of (0, \}d. If (Qn)n> 1 is a sequence 
in A, we say that Qn converges to Q if for any A E A  and any B  E B(S),

lim Qn(A x B) =  Q{A x B).
71—> OO

Hence, we consider on A the product topology of convergence on all elements 
of A  with the r-topology (see e.g. [19]) on S. This topology is of course much 
thinner than the weak topology.

If Q, R  E A, we define the Kullback-Leibler information number between 
Q and R  by

( f  log(dQ/dR)dQ if Q <  R  and Q(A x S )  = R(A  x S ) 
K(Q, R) := < for any A E R(0, l]d,

l  oo otherwise.

T h eo r em  4 .3 . 7 /P  is tight, the sequential empirical p.m. Pn obeys the 
following LDP. If LI is closed in A, then

lim supn-d logP{Pn G 0} ^  —K(Ll, P),
71—> 00

while if it is open in A,

lim inf n~d log P{P„ E A} ^  —K (0, P),
71—>00

where P := Â  x P, and is the Lebesgue measure over the unit cube (0, l]d, 
and

K(Ü,f ):=

REMARK 4.5. The assumption that P is tight has to be taken in the sense 
that for any e > 0, there exists a compact set C( C S  such that P(C'e) > 1 — e 
(see [6]). The only use of this assumption is to prove that the usual empirical 
measure is deviation tight.

After the writing of the technical report of Barbe and Broniatowski [3], 
we have been aware of the paper of Dembo and Zajic [15], where a large 
deviation principle is given for the process t>-+n~l Sxr  The reader

may notice that the mapping Q E Si (t i-> f  E[0 t](u)őxdQ(u, x) is contin­
uous (equip the space of measured-valued functions defined on [0,1] with 
the pointwise convergence and use the r-topology on the set of nonnegative 
measures). The result of Dembo and Zajic [15] may be viewed as a conse­
quence of Theorem 4.3 (see also Remark 5.1.1). Our result also shows that 
it is possible to build up a LDP for a p.m. (the sequential empirical p.m.)
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which encompass both the LDP for partial sum process and the LDP for the 
empirical p.m.

One can easily get a moderate deviation result, using the same techniques. 
More precisely, if {an)n>i denotes a sequence of positive real numbers such 
tha t lim a \ / n  = 0, one can introduce the signed measure IIn := a n(Pn — P).

n — > o o

Next, if p is a signed measure, we define its chi-square norm by

f  (d[i/dF)dfj, 
oc

if / i « P ,  
otherwise.

We can extend the topology on A to the set of all signed measures A4 
on ((0, \]d x S,B(0, l]d <g>B(S)), and, using our result and extending [19], one 
can show that P „  obeys a moderate DP  given by

(4.1) lim supa 2nn~d log P{a„P„ G D} ^ - ( 1 /2 )xp(fi)
n—>oo

if Í7 is closed, while

(4.2) lim inf log P{a„Pn G 0} ^  -( l/2 )x p (f l)
n—>oo

if 0  is open, and with
x 2p ( f i ) :=  w n x l ( 0 ) .

However, if (4.1)-(4.2) are very useful to generate conjectures, the topology 
on A4 is too coarse to give interesting applications.

To illustrate shortly the use of Theorem 4.3, let us consider the case 
where d — 1, and introduce the weighted H-statistic

vn:=n~k y  • ■ • y  w ( i i /n , . . . , i k /n ) h { X il , . . . , X ik)
láilán

where m(.) is a weight function and h(.) a kernel which are both symmetric 
in their arguments. The limiting distribution of Vn or of the corresponding 
[/-statistics has recently been obtained by O’Neil and Redner [25] in the case 
k =  2 and Major [24] in the general case. Clearly, we have

vn = v(rn),
with

V (Q) =  J  w{ui , . . .  , u k)h(xi , .. .  , x k)dQ (u i ,x i ) .. .dQ{uk, x k).
(0,1 ]kxSk

If w(.) and h(.) are bounded and continuous, V  is a continuous mapping 
from A into K. We readily infer a large deviation principle on Vn from

MAGYAR
T U D O M Á N Y O S  AKADÉMIA

K Ö N Y V T A R A
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Theorem 4.3, using a contraction principle. The rate functional cannot be 
given explicitely. However, if we assume that the X ,’s are real valued and 
admit a density p(x) with respect to the Lebesgue measure, one can evaluate 
the rate functional in minimizing K  (Q, P) under the constraint V  (Q) ^  x. We 
obtain

Iv(x):= J  (\ogc(u) + X9(u,x))c(u)f(x) exp(X9(u,x))dudx,
(0,1] XR

where the functions c ( . )  and $(.,.) are defined by the system of integral 
equations:

q(u, x) =  c(u)f(x) exp(A9(u, x)),

c(u) = ( /  f(x)exp(X0 (u ,x))dxSj  ,
ÍR

9(u,x) = j  w(ui , ..., Uk~i,u)h(xi , ..., Xk-i,x)  x
(0,1]* —1 X R * - 1

x q(ui,xi).. .q(uk-i,Xk-\)dui.. .duk-idxi.. .dxk- i ,

and

uk)h{xi, Xk)q(ui,xi)...q(uk,xk)dui...dukdxi...dxk = x .
(0,1]* XR*

If h(.) is unbounded, we can use a truncature argument similar to that of 
Donsker and Varadhan [18] to get a LDP for Vn.

5. Proofs

5.1. Proof of Theorem 2.1

The proof follows the general scheme of Lynch and Sethuraman [22] 
but some difficulties happen due to the weakness of our assumptions and 
the lack of compactness of the level sets and the lack of continuity of the 
rate functionals. The proof will be captured by a series of lemmas and 
propositions. Prom now on, we assume that the assumptions of Theorem 
2.1.i hold. It is convenient to introduce the notation

AieA
for any /  € T  and A e V .
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P r o p o s it io n  5.1.1. The function / e J F —>• J ( f )  is lse.
P r o o f . Using (2.13), we have for any c > 0 ,

(5.1-1) { / : J ( f )  g c } c n , { / :  V>(A f )  Ú c}.
Then (2.8) and the lower semi-continuity of ip ensures that the r.h.s. of (5.1.1) 
is an intersection of closed sets. So the l.h.s. of (5.1.1) is a closed set. □

A consequence of Proposition 5.1.1 is that the level sets { / : J ( f )  ^  c} 
are closed.

P r o p o s it io n  5.1.2. For any open set G d F ,

(5.1.2) liminf logP{XA g G } ^  -  J(G).
A—>oo

P R O O F .  Let e > 0 and let /  g G such that J(G) ^ J ( /)  + e/2. There 
exists a partition A = (A i,. . . ,  A k) € V  such that

(5.1.3) J ( G ) ^ ( A , f )  + e.

For 1 =  1 ,2 ,. . . , / ;  let Vi be an open neighbourhood of f ( A {), and let

NA(Vl , . . . , V k) = { h e F : V l £ i g k , h ( A i ) e V i}.
Under (2.8) the set N a { V \ ,  . . .  , V j t )  i s  open in T.  The open sets V i,. . . ,  Vk 
may be chosen such that

N A(Vu . . . ,V k) c G .
Then the following inequalities hold:

lim inf h(A)-1 log P{Aa € G} ^ lim inf h(A)-1 log P { X A € N a ( V i , . . . ,  V*)}
A—>oo A—>oo

^  lim inf log P{V 1 ^  * g  fc, X x { A i )  €  Vt }
A—>oo

=  lim inf h ( A ) _ 1  V  log P{Xa(A,-) G Vi}
X~*°° i f e

E » ( A í ) I ( V í , A í )

E  p{Ai) I (nA i) ,A i )
1=*=̂

Finally use (5.1.3) and let e tend to 0 to get (5.1.2). □
Now, we deal with the upper bound on closed sets and we assume that 

the assumptions of Theorem 2.1.Ü hold.
The next lemma asserts a minimax property and is the analogue of The­

orem 3.5 in [22], but we do not assume the compactness of level sets of 
J ( . ) .
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LEMMA 5 . 1 . 1 .  For any closed set tLKzT,

j n f  J {f) =  S U P  i n f  ip(A, / ) ./en  /ig-p/en

PROOF. L e t  771 : =  sup inf t/j(A, / )  and 772 : =  inf J ( / ) .
AeF /en /en

T h e  i n e q u a l i t y  771 ^  772 f o l l o w s  t r i v i a l l y  f r o m  t h e  f a c t  t h a t  ' 0 ( A ,  / )  ^  J ( / )  

f o r  a n y  A e V ,  f  &T.
W e  p r o v e  772 ^  771. C o n s i d e r  t h e  s e q u e n c e  ( A * ) n > !  i n  V d e f i n e d  i n  ( 2 . 1 5 ) .  

T h e n

j n f  t/ > ( A * , / )  g r ? 1 -

T h u s ,  f o r  a n y  e  >  0 ,  t h e  s e t

Gn(e):={fen:iP(A*n, f ) i Vl+e}

i s  n o n e m p t y .  S i n c e  e r ( A *  )  i s  i n c r e a s i n g ,  {Gn(e))n> 1 i s  a  s e q u e n c e  o f  n o n e m p ­

t y  n e s t e d  c l o s e d  s e t s  ( t h e  c l o s e n e s s  c o m e s  f r o m  ( 2 . 8 )  a n d  t h e  l o w e r  s e m i ­

c o n t i n u i t y  o f  I(-,A) f o r  a n y  A). T h e r e f o r e ,

G(e ) : =  D  Gn(e) 7^ 0 .

71̂ 1

L e t / € G ( e ) .  T h e n ,  J( f )  771 - t - e  d u e  t o  ( 2 . 1 4 )  a n d  ( 2 . 1 5 ) .  S i n c e  fl i s  c l o s e d ,  

/  6  Q  a n d  7/2 ^  771 +  e .  □

P r o p o s i t i o n  5 . 1 . 3 .  Let F be a closed set of T . Then 

l i m s u p h ( A ) - 1 l o g P { X A 6 f }  ^  -J(F) .
A—>00

P r o o f . L e t  A =  ( A i , . . . ,  A )̂ e  V  a n d  d e f i n e  t h e  c l o s e d  s u b s e t  o f  X k

^ : = ( ( M ) ) l S i L / 6 f ’}-

A l s o  d e f i n e

Ve := | a :  6  X k : p{Ai)I(xi, A{) >  i n f  i / > ( A , / )  -  e j .

S i n c e  X \  i s  M D T ,  t h e r e  e x i s t s  a  c o m p a c t  s u b s e t  K  o f  X k s u c h  t h a t  

( 5 . 1 . 4 )  l i m s u p h ( A ) - 1  l o g T?{{X\{Ai) )i^k £ K )  <; - M < J { F )  -  1 .

A—>00

S i n c e  / ( . , A j )  i s  l s c ,  s o  i s  ip(A,.), a n d  Ve i s  o p e n  i n  X k. T h u s ,  Vt C\K i s  

o p e n  i n  K  e q u i p p e d  w i t h  t h e  r e l a t i v e  t o p o l o g y .  S i n c e  K  i s  n o r m a l  ( s e e  e . g .
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Bourbaki [11] (1.9, no. 3) and [10] (IX.4, no. 1), we can find an open set 
Ue C. K  such that

FA n K c U eCclK(Ue) c V e.

For x  =  (xx,...  ,Xk) € X k, let

IA(x) :=  ^ 2  li(Ai)I{x,Ai).
1 gigk

Define further
I a (F):= inf IA(x).xEF

Using the fact that cli({Ue) is closed in X k,

lim sup h ( \ ) ~ l logP{XA G F } ^  limsuph(A)“ 1 log P{(Xa(Aí))1̂ ^ a. e FA n  K )  
A—»00 A—>oo

(5.1.5) 5Í limsup/i(A)_1 log P ^ A ^ A ;) ) ^ * .  6 clK {Ue)}
A—yco

á - I a (c\ k ( U £))

(the second inequality uses (5.1.4) and the last one comes from Exercise 4.2.7 
of Dembo and Zeitouni [16]. Next, observe that

(5.1.6) inf ip(A, f )  -  e g IA(Ve) Í  I A(clK(Ue))f£F

so th a t making e tend to 0, (5.1.4), (5.1.5) and (5.1.6) give for any A g V,

(5.1.7) limsup/i(A)_1 logP{XA G f } i  —iß(A,F).
A—>oo

Of course, we can choose A  such that

^(A,F)>J(F)~  1

so th a t (5.1.4) and (5.1.7) yield

(5.1.8) lim suph(A )-1 log P{XA € F}  g  -ip(A, F).
A—»-00

Then, take the infimum over A £ V  in the rhs of (5.1.8) and apply Lemma 
5.1.1 to get the result. □

R emark 5.1.1. A careful look at our proof shows that the independence 
of the increments of the processes X \  is used only when we need to apply 
Exercise 4.2.7 of [16]. Thus, our result still holds under the much weaker 
assumption (A-l) of [15].
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5.2. Proof of Theorem 3.1

Let > l:= { (a ,6 ] ,0 ^ a < 6 ^ 1 } . Observe that if A E A,  then

lim j f{nA)/n = |T|.n—Kx>

We define the partial extreme process indexed by A

ßn(A) := max X{.
i&nA

One easily shows that /■/.„(.) obey a MDP as in Definition 2.2 with h(n, A) = n 
and I{x, A) = — \A\ log F(x). Obviously (2.7), (2.12) and (2.16) hold.

Now, we view g.n as a random element in the set T> of all functions g from 
A  into E such that for any disjoint subsets A, B E  A, g(AUB) = g(A) Vg(B) 
and g(0,1] < oo. The set V  is equipped with the topology of pointwise 
convergence and we are going to apply Theorem 2.1.

Clearly, condition (2.12) holds with p{A) =  1. To check (2.13) take g  E V ,  

B , C  E  A  disjoint and let further A = B l )C .  Then

I(g(A),A) = -\A\\ogF(g(A))
= -\A\logF(g(B)Vg(C))
= -\A\(logF(g(B))VlogF(g(C)))  
i - \B \ \o g F (g (B ) ) - \C \ lo g F (g (C ) ) ,

so that (2.13) holds. The rate functional will be given for g  E  V  by 

(5.2.1) J(g) = sup -  ^ 2  \A i\ l°gF (9 {Ai))-

To check (2.15), let

Liim: = ( ( i - l ) / 2 m,i /2m], l g * g 2 m,

and define
A*m := {Li,m : 1 = * = 2m}.

Since L i <m E A  we just need to prove that

(5.2.2) lim in f -  V  \Lhm\log F(g(Lhm)) Z J(g).

For this, let e > 0 and let A e V  such that

ip{A,g) = -  |A i|logF(^(>lj))^ J (fl) -« .
AíEA
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Next, write
=  01 ,m + 02,m + 03,m

with, for m large enough

01 ,m■■=-E E 1-̂ 7,771 ^ -Ail log F(g{Lj<mn ^ ,) ) ,

'02, m ==E E \L j ,m  n Ai| log F(g{Lj r̂n nA j)),

l  Lj,mnA?#0

03, m= = - 0 /2 )  E E \h ,m\\ogF(g{L j,m C Ai
f L, ,mnAi^0
l  Lj,mnA9#0

(the factor 1/2 in 03 jm comes from the fact that if intersects At but is 
not included in Ai then it intersects exactly one other Aj  if m  is such that
2-m <  min |Aj|). Due to the subadditivity of /(#(.), .), we have

A , e A

(5.2.3) 0 i iTn^i/>(A,g).

Let e >  0. Since an Lj>m intersects at most two A x € A and \LjtTn\ =  2-m , we 
have

0 ^ 0 2,m ^  2 ( # A ) 2 ~m log F(g(0,1]) ^  - e
if m  is large enough, and clearly ^ 0. Therefore with (5.2.3) we deduce 
that

0(A™,ff) ^ 0 (A ,s ) ~ 2e
for any m  large enough. Thus, (5.2.2) holds and so (2.15).

We can apply Theorem 2.1 to get that gn{.) obeys a FDP with rate J(.) 
defined in (5.2.1).

Now, we map the partial extreme process gn(.) indexed by A  into partial 
extreme process Mn(.). For this, let 9 be the function from V  into T>\ (0,1] 
defined for any g € V  by

ö ( 5 ) ( ® )  =  ö ( 0 , a r ] ,  0 < s g l .

Clearly, 9 is continuous from T> into V'l  (0,1] both equipped with the topolo­
gy of pointwise convergence, and moreover 9(gn) =  Mn. Hence, we can apply 
the contraction principle, and M n(.) obeys a FDP with rate J(9~1(.)). It 
remains to prove that for any g G X>t (0,1],

= -  I  \ogF{g{x))dx.
( 0 , 1]

(5.2.4)



DEVIATION PRINCIPLE 407

Define the mapping 0  from D |  (0,1] into V  by

@{g){A):=s\ipg(x).
x£A

Then, for any g £ V  |  (0,1], the function 0(g) belongs to 9 1(g) so that

(5.2.5) J(@ (g) )^J (9 - l (g)).

But using Riemann’s integral,

J(®(9)) =  sup 1^1 inf ~ los  F (g(*))
a «— r C  A  ■

xeA'

= f  - l o g F(g(x))dx. 
( 0 , 1]

Next, let h € 9 !(g), so that h(0,a:] = g{x) for any x G (0,1]. If A E V, we 
can write A = {(cq, 6;]: 1 ^  i ^  i f  A} and get

1>(A,h) = -  J 2  1^1 log F(h(Ai))
AiEA

(5.2.6) g -  J 2  |Ai|logF(/i(0,6i])
AiCA

= ~ ^ 2 ( bi ~ ai ) log F (9(bi)),
Ai&A

where the first inequality comes from the fact that h £ V .  Then, since g(.) 
is monotone, the sum (5.2.6) tends to f  log F(g(x))dx when max 6, — a;

(0,1] 1^ n
tends to 0. Thus,

(5.2.7) limsupi/>(;4m> h) ^  — /  log F(g(x))dx.
m —>oo J

( 0 , 1]

Then, (5.2.5), (5.2.7) and definition and property (2.15) of A*n show that
(5.2.4) holds, and so Theorem 3.2 is proved. □

5.3. Proof of Theorem f . l

To use Theorem 2.1, we first define the measured-valued measure on the 
Borel CT-field of (0, l]d,

f n(A ):=n~d £  SXi, A e B ( 0 ,l]d.
i£ n A



408 P. BARBE and M. BRONIATOWSKI

Clearly, {A -> Pn(.A)}n>i is a sequence of processes with independent incre­
ments as defined in Section 1. The weak convergence and strong approxi­
mation of these processes when the Xi  s are real valued and A runs over all 
the intervals (0,t], 0 <  t g  1, have been studied by Bickel and Wichura [5], 
Kiefer [20], Komlós, Major and Tusnády [21], M. Csörgő and Révész [14].

We shall use a slightly different construction than in the proof of Theo­
rem 3.2 since we shall use a bigger set A  to index P(-). We shall first prove 
a MDP, then apply Theorem 2.1 to get the functional version, and finally, 
we shall identify the process Pn(-) to Pn as defined in Section 4.

Our proof is captured by a series of lemmas and propositions. But let 
us first introduce some notation. Let M," be the space of all nonnegative 
measures on S with total mass less or equal 1 equipped with the r-topology 
(see [19]). Clearly, for any A E £?(0, l]d, Pn(A) E M * . For ^ , v E M ^ ,  we 
define the Kullback-Leibler information number between /j, and u by

f  log(dfi/du)dQ 
oo

if Q R  and /j.(S) = v(S), 
otherwise.

If 11 is a subset of and u E M+, we define

K ( ll,i/):=  inf /xen

R e m a r k  5.3.1. The space M *  equipped with the r-topology is not 
metrizable and the function K(.,v)  is lsc but not continuous. So the full 
form of assumptions of Theorem 2.1 is required here.

For any e, A > 0 and 12 C M+, we introduce

12a  := { t / i : n E 12, (1 -  e)/A g 2 g (1 + e/A}.

Next, if B  =  ( B i , . . . ,  B k )  is a partition on S ,  with B i  E B ( S )  we define a 
pseudo-metric on by

dß(/i,i/):=  max \ ^i {Bl ) - u { B i ) \

for any fi, v  E Mx+. Then we set

12f,A : =  {/i/A : n E 12, 3B E V(S), { v  : d#(/i, v) <  e }  C  1 1 } .  

Clearly, for any 12 C M,+ , we have 

(5.3.1) AOe’A C 12 C Ai2e,A

and 12i,A is r-open if 12 is open, while i \ , \  is r-closed if 12 is closed.
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LEMMA 5.3.1. If U i s  T - c l o s e d  in My , t h e n

(5.3.2) l im £ (n £,A,P )= tf(fJ /A ,P )

and if Í2 is T-open in My , then

(5.3.3) lim K (ííe,A, P) =  Üf(f2/A, P).

P roof, (i) We consider the case where is r-closed. The inclusion 
(5.3.1) implies

(5.3.4) lim supK (il£iA. P) g K { n / A, P).

To prove (5.3.2) assume first that

lira inf K(Qttx,P) =  c < oo. 
t4o

Since iltiA is r-closed, Lemma 3.2 of [18] shows that there exists gc G i l£jA 
such that ___

K{ge,P) = K(QftX,-p).
There exists a sequence, say gn, such that

lim K(gn,P) = c.
n—>oo

Thus, for n large enough, we can assume that gn belongs to the compact set 
{/i : K(p,  P) c +  1} (see Lemma 2.3 in [19] for the compactness), so that 
there exists a subsequence gnk converging to some g. Since fit)A is closed,
fl/A =  p| il£)A and g € Í1/A. Using the lsc of K(..  P) (see Lemma 2.2 of [19]), 

£>0
we have

(5.3.5) c =  lim inf K(gnk, P) ^ K(g, P) ^ K{Sl/A, P).
k—>oo

Clearly, (5.3.4) and (5.3.5) yield (5.3.2).
(ii) Now, consider a r-open U in My . Then (5.3.1) gives

(5.3.6) liminf tf ( i i£- \  P) ^ K ( í 2/A, P).
o

Next, let /in G Sl/A such that

lim k ( p . n , P) =  Íf(íl/A , P).
n —> oo
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Since Í2 is r-open, there exist Bn G V(S) and 6n > 0 such that

{v : dBn(pn, v) < 6n} C Ü/X.

Thus, fin € t t Sn'X and üT(Q<5n,A, P) ^ K(yin, P) and

(5.3.7) Ihn sup K ( ß 5n'X, P) ^  K ( ü / A, P).
n—> oo

Since JT(fi£’A,P) decreases when e decreases to 0, (5.3.7) yields to

limsup^(Q£'A,P)^X(i2/A ,P),
£->0

which with (5.3.6) is (5.3.3). □
We shall consider Pn(-) as a set indexed process, and with the notation 

of Section 2, we consider A  the set of all Borel sets A C (0, l]d such that

(5.3.8) lim n~d#(nA)  = Xd(A) = \A\.n—>oo

For example, any open or closed subset of (0 ,1](/ belongs to A.
We can now prove a MDP for Pn(-).
P r o p o s it io n  5.3.1. The processes {Pn(-)}n>i °bey a MDP given by

(5.3.9) lim supn-d logP{P„(T) G Í2} ^  — \A\K(D./\A\, P)
n—>oo

if fi is t -closed in , while

(5.3.10) lim inf n~d log P{Pn(T) G Í2} ^ — |j4 |Íf(0 /|T |, P)n—>oo

if  Q is r-open.
P r o o f . It is convenient to introduce an i.i.d. sequence of S-

valued r.v.’s, with common p.m. P. Then let

Pn := n _1

be their empirical p.m. Clearly, for any A  C (0,1] ,

Vn( A ) ± n - d#{nA)  P #(ny4).

Then, since (5.3.8) holds, for any A e A ,  any e > 0 and any n large enough,

( l - e ) / | A | g n d / # M ) = g ( l  +  e ) / | A | .
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Consequently, for any e > 0 and A e A,

Ihn sup n~d logP{Pn(yl) lim supn_dlogP{P#{n4) € ÍIe Mi}
n—>oo n-> oo

z - \ A \ K ( n e<lAl,p),

where the last inequality comes from Lemma 3.1 of [19]. Then use Lemma 
5.3.1 and let e —> 0 to obtain (5.3.9).

Now, we prove the lower bound (5.3.10). If K{Q,/\A\, P) = oo, the result 
is trivial, so we can assume that the rhs of (5.3.10) is finite.

Observe that for any e > 0 and provided n is large enough, then

(5.3.11) ÍÍ£'W C (nd/#(nA ))fb

Indeed, for /iGfi, let pn := p#(nA ) / (nd\A\). Since A G A, we have

lim sup sup /j,n) = 0,
n_>ocVe n Bev(s)

which gives (5.3.11).
Then Lemma 3.1 in [18] and (5.3.11) and (5.3.1) imply for any e> 0 , 

lim inf n~d log P{P„(j4) G fi} ^ — \A\K(Df'\A\  P).
n—>oo

Let e tend to 0 and use Lemma 5.3.1 to get (5.3.10). □
The next step is to use Theorem 2.1 to get the functional version of 

Proposition 5.3.1. For this, let T  be the set of all a-additive functions from 
A  to Mj+ equipped with the topology of pointwise convergence.

P r o p o s it io n  5.3.2. The family of processes {Pn(.)}n>i obeys a FDP. 
If  Í2 is closed in T , then

lim supn-£Í log P{Pn(.) G 12} ^ — J(fl, P)
71—> OO

and if is open in T ,

lim inf n~d logP{Pn(.) G 0} ^  — J(f2, P),

where
J ( i i ,P ) := in f  J (s ,P ),sen

J(g, P )  = sup
Aev

E  IMkigiA^lAilV)
Ai£A

(5.3.12)
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and V  denotes the set of all partitions of (0, l]d in sets belonging to A-
P R O O F .  We check that the conditions of Theorem 2.1 hold.
Check of condition (2.7): We first prove that Pn is large deviation tight 

in modifying the arguments of Lynch and Sethuraman ([22], Lemma 2.6) 
in our case where the underlying space is not metrizable. Let (fi*,)*.^ be a 
sequence in (0,1/2) converging to 0 as k —» oo, and let r)k such that

(5.3.13) {ők/2)log{ők/2rjk) > k + e~l .

Since P is tight, there exists a compact set Ck C S  such that

P(Cfc) > 1 — f/fc-
Define the partitions A k := {AkA := S  — Ck, A k^  := Ck} and let for any c>  0

r c := {Q G A (S):iL (Q ,P)gc} ,

where A(S') denotes the space of all probability measures on S  endowed with 
the r-topology, and K ( . , .) the usual Kullback-Leibler number of informa­
tion. For any R e A(S), and A e A ( S )  let

B ( R ,A ,ő ) : = { Q e A ( S ) : d A(Q,R):=  ] T  \R(At) -  Q ( A ) \ < Ó}.
AieA

For any R, A and 6 ,B (R ,A ,S )  is T-open in A (.S'), and

{B ( R , Ak, Sk) : R  € r 2 f c M }

is an open covering of r 2kM which is r-compact (see Lemma 2.3 of [19]). 
Thus, we can extract a finite covering

{B(Ri,  A k, Sk) : i e  7^1}} ( # 4 1}<oo)

and if we define
Wfc:= U B(Ri,Ak,Sk),

ie^1’

we get, using that T2kM C Wk,

lim supn-1 log P{Pn £ Wk} í  - K ( W £ ,  P) ^ - K ( T c2kM, P)
71—KX>

<: - 2 kM.

Consequently, we can extend I\(i) into a finite set Ik such that

P{P„ Vk} ^ exp{ -kn M )
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for any n ^  1, with

Next, let

Vk -= U B (R u A k, 6k).
i e h

Gk := U clTB (R i ,A k, 6k). 
ieh

Then, Wk CVk C G k, and let further

C:= fl Gk.
k't 1

We now prove that

lim supn-1 log P{P„ ^ C} ^  —M,
n—> oo

and that C is compact. Clearly,

P{Pri£C } = p |p „ G  U U £  exp(-fcnM)
k ^ l i e l k  J k ^ l  

=  exp(— n M )/(l — exp(-nM)) .
Thus, Pn is LDT if we prove that C is r-compact. Following the arguments 
of Lemma 2.3 of [19], we just need to prove that C is r-closed in the space S 
of all functions from B(S) into [0,1] equipped with the r-topology. In fact, 
all we need to prove is that if (Qn)n>i is a sequence in C which converges 
to some Q in S, then Q is also cr-additive.

If Qn € C , for any k, Qn G Gk which implies that there exists R  G T2kM 
suchthat Qn G c\TB(R, A k,6k). Since R  G T2kM and P{Ak \̂) <r)k, the proof 
of Lemma 2.3 of [19] shows that R(S  — Ck) < ök since (5.3.13) holds. There­
fore,

Qn(2lfc,i) =  Qn{S -  Ck)
ú\Qn(Aktl) - R ( A ktl)\ + R(AkA)
^ 3  Sk

and (Qn) is a tight sequence. Since {Qn)n>l converges to Q in S, Q is also 
a probability measure, and this proves that P„ is LDT.

Since Pn(A) =  P # fn/p # (n A )/n d and lim # (n A ) /n d = |v4|, P„(.) is MDT,trv ’ ra—>oo
and assumption (2.7) holds.

Check of conditions (2.12), (2.13), (2.15) and (2.16): condition (2.12) is 
obvious. To check (2.13), take g  G T  and d  =  ß L ) C  with B  n  C = 0 and 
A , B , C  G A. Then

\A\K(g(A)/\A\,Y>)
=  (\B\ + \C\)K((\B\/(\B\ +  \C\))g(B)/\B\ +J\C\/(\B\ + \C\))g(C)/\C\,P) 

^  \B\K(g(B)/\B\,  P) +  \C\K(g(C)/\C\, P)
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the last inequality coming from the fact that the function x log x  is concave 
and Jensen’s inequality.

Assumption (2.15) is checked hereafter, along the proof of Lemma 5.3.2, 
and (2.16) obviously holds.

Theorem 2.1 gives Proposition 5.3.2. □
To end the proof of Theorem 4.3, we now proceed to the identification 

of P„(.) and Pn.
Notice first that A  is a field, and g(A), A  G A  is a measure on A.  It can 

be extended on the c-field a (A). Since A  contains all the open and closed 
sets of (0, l]d, a (A) =  0(0, l]d.

Next, we define a mapping ip from A t.o T  by, for any Q G A,

for any A  6 A, B g B(S), ip(Q)(A)(B) =  Q(A x B).

Since the set of all rectangles {A x B : A £ A, B  € B(S)} is a 7r-system (see 
Billingsley [7]) which generates the cr-field B(0A]d <8>B(S), ip defines a one- 
to-one mapping from A into ip (A). Clearly P„(.) =ip(Fn)(.). Consequently,
i f  í í  c  A ,

P{Pn Gfl} = P{^(P„)GV’(«)}-
The mapping ip is continuous for the topologies we defined on A and F, 
and using the contraction principle, we infer from Proposition 5.3.2 that the 
sequence (Pn)n>i obeys a LDP with rate function J(ip(Q), P) where J(.,P ) 
is defined in (5.3.12). Therefore, Theorem 3.2 holds if the following lemma 
holds.

L e m m a  5.3.2. For any Q g A, we have

J{xP(Q),V) = K(Q,P)

where «/(.,.) is defined in (5.3.12) and K(., .) in Section 2.
P r o o f , (i) We first show that J ^ K :  if A G A,  and Q is a measure on 

(0, l]d x 5, we denote Q(A  x .) the measure on S  defined by Q(A x .){B) := 
Q(A  x B)  for any B  & B(S).  Then,

J(iP(Q)} P) =  sup V  \Ai\K{Q{Ai x .)/|A j|,P).
Ai&A

Using the definition of K  and relation (2.2) in [18],

J(rp(Q), P)
- s u p  V  ( sup V  log(Q(Aj x Bj)/\Ai\P(Bj))Q(Ai  x Bj) 

f ^ A ^ n s )  B . e B

+ ool{Q{Ai x S ) ^ \ A l\}̂ j
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^ sup V  ]og(Q{Ci)/(X X P )(Ci))Q(Ci)
C€Vl  Ci e c

+ oo sup I{Q(T x S) ^  |j4|} 
Ae.4

=  K(Q, X x P) + oo sup 1{Q(A x 5 ) /  | j4|}
A£A

where V\ denotes the set of all finite partitions of (0, \]d x 5 into measurable 
subsets.

(ii) We prove now that K(., .)  ^ J(ip(.),.) and that (2.15) holds: We 
first assume that Q < A  x P and define q(x,y) = (dQ/d(\  x P ))(x,y).  Let 
T(x)  =  x  log x.

For any A e V, let

S ( A )  := \A i\K{Q(Ai x ,)/|yli |,P).
AteA

One can easily check that

S ( A ) =  5 2  1^1 /  T ( l^ l  /  q ( x , y ) d \ d ( x ) y v ( y ) .

A ' e A  S A,

For any r  ^  1, let
qT =  ql{q ^  t } +  t I { q >  r}

be the density g(.,.) truncated at the level r. Since T(.) is increasing on 
(1, oo), we have

(5.3.14) S(A) Z 5 2  \Ai\ Í  T(\Ar\ I  qT(x,y)d\d(x))dP(y).
A^ A s I

Now, we define the sequence of partitions

An := {An,i: i G 2n(0, l]d 0 Nd} and
An<i := f i ((** -  l) /2 7l, i fc/2"] for i = (Ú, ...  , i k). 

l ik^d.

For any x G (0, l]d, let in(x) be the index such that x  G An i rx\. Then let

9n,T{x i y )
T{\AnM x) \ 1 f  qT(u,y)d\d(v))dP(y) if x(£Qd

One easily checks that the rhs of (5.3.14) is

/
(0,l]dxS

gn,r{x,y)d\d{x)dP{y).

if x  G Qd ■
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We prove that, as n —> oo and along A*n the family of step functions gn;T 
converges pointwise to some function gT which in turn converges to q as r  
tends to infinity.

Since for any x G (0, l]d the sets (An,in(2:))n>i shrink nicely to x  in the 
sense of Rudin ([26], Ch. 8), we have

lim gntT{x,y) = gT(x,y)
n —>oo

where

9 r{x,y) T{qr (x,y)) if x £ Q d
0 otherwise.

Since qT is upper bounded by r , we also have

9n,r{x,y) e[0,T(r)] for any x,y.  

Thus, Lebesgue’s dominated convergence theorem yields

(5.3.15) lim f  gnTd{Xd xP)  = [  gTd( Xd xP).
n-»oo J  J

(0,l]d xS  (0,l]d x5

Clearly, the measure defined on (0, l]d x 5 by

f  qTd{\d x P)
AxB

converges (when r  —> oo) to Q on any Borel set of (0, l]d x S. Then, the lower 
semi-continuity of the Kullback Leibler information number ensures that

(5.3.16) lim inf /  gTd{\d x P) ^  K(Q,  P).
T - > 0 0  J

(0,1 ]d x5

Combine (5.3.14)-(5.3.16) to show that

(5.3.17) ]iminfS(A*n)'ZK{Q,P).n—too

W ith part (i) of the proof of Lemma 5.3.2, (5.3.17) shows that the sequence 
{An)n>\ verifies condition (2.15) as soon as Q <£. Xd x P.

Finally, if Q is not absolutely continuous w.r.t. Xd x P, we can take 
Q + (^d x P) as a dominating measure and use the same technique to show 
that

lim 5(T*) =  oon—Hx>
in this case. □
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POLYNOMIAL WAVELETS AND WAVELET PACKET BASES

T. KILGORE, J. PRESTIN and K. SELIG

A bstract

We discuss wavelet-oriented ideas to construct bases of algebraic polynomials. In 
particular, the splitting in the frequency domain is extended in order to define wavelet 
packets.

1. Introduction

We show here how algebraic polynomials on the interval [—1,1] can be 
treated as wavelets and can be handled by wavelet techniques. Benefits in­
clude the potential for computational efficiency and accuracy in applications, 
for example to approximation problems. Theoretical developments also fol­
low from systematic development and exploitation of orthogonality and from 
a generalization of the concept of shift invariance, which allow the applica­
tion of the wavelet techniques on the interval. We will give here some of 
the basic ideas and techniques used in the wavelet approach to polynomials, 
which is also related to an important application, the construction of a series 
of mutually orthogonal polynomials of “optimal degree.”

As the idea of wavelets originated in connection with signal analysis, let 
us look first at the original setting. Signal analysis naturally involves a “time 
domain” and a “frequency domain”. One splits the frequency domain dyad- 
ically into wavelet spaces, with dilations and translations of a single function 
(mother wavelet) employed systematically to construct bases for these spaces. 
Wavelet packet spaces are subspaces which in turn further split the wavelet 
spaces, using smaller frequency ranges. In signal analysis, a function (signal) 
is “time-localized” if it is relatively large in magnitude at a certain “time” 
and relatively small otherwise. A “frequency-localized” function on the other 
hand is more or less of a single frequency. In a manifestation of Heisenberg’s 
uncertainty principle, perfect time localization and perfect frequency local­
ization are mutually incompatible. Thus, one goal in signal analysis is the 
construction of “time-frequency-localized” bases, involving a balanced con­
sideration of both domains. In a wavelet treatment of polynomials on [—1,1],

1991 Mathematics Subject Classification. Primary 41A10; Secondary 33C25, 42C15.
Key words and phrases. Wavelet packets, Chebyshev polynomials, orthogonal bases, 

generalized Chebyshev shift.
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the time domain clearly should correspond to the underlying interval [—1,1], 
while the frequency domain should correspond more or less to the degree of 
involved monomials. More precise statements and adaptations of this and of 
other concepts require more systematic treatment.

Wavelet techniques for polynomials on the interval [—1,1] with respect 
to the Chebyshev weight have been developed in Kilgore and Prestin [4], 
in Tasche [12] and in Plonka, Selig, and Tasche [7], where the generalized 
Chebyshev shift was discussed and applied to the development of wavelets 
on the interval. An adaptation of the uncertainty principle can be found in 
Rosier and Voit [10], which in turn could be applied to wavelets on [—1,1] 
analogous to Narcowich and Ward [6] and to Selig [11].

More recently, in Kilgore, Prestin, and Selig [5], wavelet techniques have 
been used to show the existence of and to perform the construction of an 
orthogonal Schauder basis of polynomials of optimal degree for the space 
C[— 1,1], where optimal degree signifies that the n th  polynomial in the basis 
is always of degree less than  n (l + e), for previously given e > 0. Here, the 
use of wavelet packets is precisely what is needed to construct a polynomial 
basis in which the degree of the polynomials grows within the prescribed 
limitations; as e decreases, the dimension of the packet spaces decreases, and 
the number of packet spaces into which a given wavelet space must be split 
increases. This basis problem has a long history which is discussed in further 
detail in the paper [5].

Here, we will construct different wavelet bases and wavelet packet bases 
on the interval. At first, we will define polynomial subspaces by means of 
bases with the most frequency localization. Then, the idea of time-frequency- 
localized bases will be realized by building finite linear combinations in order 
to obtain wavelets and wavelet packets as generalized translates within each 
subspace.

The wavelet spaces as well as the wavelet packet spaces will be orthogonal; 
their orthogonality is given with respect to the weighted inner product

Hence, we use the orthogonal Chebyshev polynomials Tn(x) = cos n arccos x  
(n 6 .ÍVo) for which

We will directly and explicitly describe the algebraic polynomials used in 
our wavelet and wavelet packet bases by giving their Chebyshev expansions. 
Our examples are related to the trigonometric Dirichlet kernel and the de 
la Vallée Poussin kernels and corresponding shift-invariant spaces (see e.g. 
Privalov [9], and Prestin and Selig [8]).

( 1 )
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Note that in our construction the Chebyshev polynomials can be replaced 
by other polynomial systems orthonormal with respect to an arbitrary weight 
function w which yield corresponding bases for L2 . Having similar frequency 
localization in terms of the involved orthonormal polynomials, the resulting 
polynomials will differ in their properties of localization on [—1,1] according 
to the weight w which will be related to different approximation properties 
of the bases. For the construction of the wavelets orthogonal with respect to 
an arbitrary weighted inner product we refer to Depczynski and Jetter [1, 2] 
and Fischer and Prestin [3]. However, results for the wavelet packets and the 
uncertainty principles are still in progress. Therefore, we restrict ourselves 
here to the Chebyshev weight and Chebyshev polynomials.

2. Wavelets and wavelet packets on [-1,1]

Let N , M  G IN be fixed, with N  =  27?+1 M  for some r] £ IN , 77 ^  2 . Fur­
thermore, let us introduce, for any l =  0 , . . . ,  2V — 2, real coefficients

a'M(k), (k = —M , . . . , M )  and a\M(k), (fc =  -2 M ,. . . ,2 M ) .

With any fixed set of such coefficients, we define the following spaces of 
polynomials

V j f  := span ({Tk :k = 0 , . . . , N  — M }
U {a,°M(k — M )T n —M+k +  a°M ( M  — k)Tp/+M-k '• k = 1, ■.., M } ) ,

W t f  := span ({a°M{-k )T N+k -  a°M(k)TN_k : k =  1 ,.. . ,  M  -  1}
U {Tk : k = N  +  M ,. . . ,  2N -  2M}
U {a2M(k~2M)T2Ar_2Ai+Jfc+a2Ai(2-kf — k ) T 2N + 2 M -k  '■ k  =  1, ..., 2M}),

■= sp a n iia ^ ^ — k ) T N + 2 M { l - i ) + k ~ aM1(^)T/v+2M(l-i)-ifc: k = l , ..., M —1} 
U {alM(k — M)Tn +M{2i-\)+k+alM{M — k)TN+M(2i+i)-k -k  = 0 , ..., M } ) ,

for l = 1, . . .  , 2  ̂— 2, and 

^ 2 , - 1  = =

span({a^- 2(-fc)T2jv_4M+fc -  a2M~2 {k)T2N-iM-k  : k = 1 , . . . ,  M  — 1}
U {Tk : k = 2N — 3M ,. . . ,  2N — 2M}
u  i a2M -  2M ) T 2 A r _ 2M + f c  +  a 2 A i  ( 2 M  -  k)T2N+2M-k -k — 1 , . . . ,  2 M } ) .

Given a general scheme for constructing the coefficients alM, it is then 
possible to double repeatedly the values of M  and N  together. This suc­
cessive doubling gives a nested sequence of spaces , a corresponding
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sequence of spaces W ^ f , and inside of each space Wjtf a set of subspaces
W M W M W N,l > ' • ' > '

Three relevant examples for the choice of the coefficients are the follow­
ing, where for all / =  1 ,. . .  , 2 V — 2

< m _ J  1, - M i k i O ,
{  0, 0 < k ^ M ,

M ~ k

( a )

(b)

( c )

®m (^) —

aA/(^) —

2 M ’ 
M - k

s/ 2 M 2 + 2 k 2 ’
- M ^ k ^ M ,

and a,2M(k) = a°M(k/2) for all —2M  ^ k ^  2 M . Arisen from their trigono­
metric analogs, example (a) yields functions related to the Dirichlet kernel 
whereas examples (b) and (c) come from de la Vallée Poussin means and from 
an orthogonalization procedure applied to translates thereof, respectively.

For the sake of good time localization for the wavelet and wavelet packet 
bases to be constructed we generally suggest that the coefficients alM(k) 
should decrease monotonically with increasing k and should be normalized 
such that alM(—M) = 1.

Based on the examples (b) and (c), the following graphs represent the 
size of the coefficients alM with respect to their distribution in the frequency 
domain (see also the definition of the wavelet packet functions on p. 425) 
and thus illustrate some of the many possibilities for constructing the spaces 
W f f f , for l =  1 ,. . . ,  211 — 1 and rj = 2 (left) and tj =  3 (right). The graphs for 
rj = 2 also depict one doubling of N  and M.

N  =  8M N  =  16M

N 2 N 4 N N

Example (b)

N 2 N  4 N N  2 N

Example (c)

Now we study the spaces defined above and show that under certain 
conditions on the coefficients they span

V ^  := span({Tfc : k = 0 , . . .  , 2N -  2M}
u {a2M(k-2M)T2N-2M+k +a°2M(2M -k )T 2N+2M_k ■ k =  l , ..., 2M}) .
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T h e o r e m  2 . 1 .  For any real coefficients alM(k) and a2M(k), it holds that

vjf* u w ^ f  C V2i f  , V t f l W t f ,

and
w(f j  c  w i f , for l = 1,..., 2 V -  1.

If

(2)

0II5e for l =  1,..., 2  ̂— 2,

then
vy N,h vv N,h > for l £ h  < l2 í  2*1 — 1,

and if moreover the coefficients satisfy for all l — 0 , . . . ,  2 V — 2

,3j (alM{k))2 + {alM{ - k ) ) 2 > 0 , for all k = 0 , . .. , M ,
(a°2M(k) ) 2 + (a°2M( - k ) ) 2 >0,  for all k = 0 , . . . ,  2M -  1,

then we have

(4) v t f - v ?  e w j f

and
2r) —l

(5) W j f = ® W “ .
i=i

PRO OF. The inclusions V^f  U W ff  C  V ™  and W ^ \  C  Wj!f follow direct­
ly from the definition of the spaces.

Using (1) and (2) the orthogonality Vjf1 _L and Wjtf^ T W^f l2 can 
be easily checked. In particular, for l = l\ =  I2 — 1 we obtain for any k = 
0 , . . .  ,M  — 1

(aíM(-fc)TiV+2An-4fc + aM(^)T’N+2MÍ-Mfc ) alM(k)TN+2Ml-k-alM(-k)TN+2Mi-Uc)
= alM( — k) alM{k) ((TN+2Ml-k ffiN+2Ml-k) — (Tn +ZMI+Ic ,Tn +2MI+Ic))
=  0 .

For |/i —/2I > 1 the orthogonality Wjtf^ T Wj^ l2 is evident.

Let us now prove (4) and (5). From (3) it follows that both of alM(—k) 
and alM(k) cannot vanish. Hence,

dim span {alM(-k)TN+2Mi+k ~ o.lM{k)TN+2Ml-k ■ 
k =  l , . . . , M - l }  =  M - l ,

dim span {alM(k -  M)TAc+M(2i-i)+fc +  o}m (M -  fc)7V+M(2H-i)-fc :
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k = 0, . . . , M}  =  M  +  1 ,
dim span {a 2M (k -  2 M )T 2N -2M +k +  a2M{2M ~  k )T2N +2M -k ■ 

k = l , , 2M} =  2M .

Then, for the dimensions of the spaces we obtain

dim V j f  = N  + 1, d im lT ^ =  N  , d im W ^ =  2M ,

for l =  1 , 2n — 2, and

dim =  4M  .

Hence
dim H22/  = dim +  dim

and
2,' - l

dim W ^ = d im W ff j .
l=i

Together with the imbedding and orthogonality relations this proves the 
assertion. □

Following [7] one can define scaling functions and wavelets in terms of 
Chebyshev polynomials as generalized Chebyshev shifts of one function.

We define scaling functions for s =  0 , . . . ,  N,  by

1 N —M  , N + M —l

-T o +  ^ 2  cos_^ _ ifc+ ^ 2  a°M(k — Ar) cos 
k=1 k=N-M+l

ksn
~N~ Tk ,

and wavelets, for s =  1 , . . . ,  N,  by 

N + M - l

tf,=- T ‘ + Y Tk
k = N - M + 1 

2N+2M-1
k=N+M

+ E  « § « ( * - 2JV) cos M a i z d h
k=2N -2M+l

2 N

In this paper we introduce corresponding wavelet packet functions, for p =
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1 , 2V 1 — 1 and s = 1 , . . . ,  2M, by

iM _
VN,2p,s ■—

N+(4p-3)M-l
k(2s — 1)7Tsin —----------—

4ME 2 p-
a M ~2(N +  (4 p — 4)M - k ) Tk

k=N+(4p—5)M+\
N + (4 p -l)M -l

. k(2 s — 1)7T sm ■ -> T 
4M+ E 2 p-

a M - \ k - - N - (4p-2)M ) Tk,
k=N+(4p-3)M

N+{4p—l)M—l

E 2 p-
a M - \ n +  (4p — 2)M ~ k )

k(2 s — 1)77 
C°S -------T~Z-----4M 7*

k=N+(4p-3)M+l
N+(4p+l)M-l

+ E  a2̂{ k  — N  — 4pM) o
k=N+(4p—l)M

k(2 s — 1)7r
“ S“ l M — T k '

and for 5 =  1 , . . . ,  4M, by

2N—3M—X

^ N ,2 n - I , s  ■■= E  ^ { k  - 2 N -  4M) cos fc(2,E lH
Jfc=2N-5M+l 

2N-2M

8 M Tfc

^ —> / l ( 2 5  — 1)7T

+ E  COS---- ÖT7----
k=2N—3M

2N+2M—1

8 M

+ E  a 2Af(^ ~ 2-/V) c o s  ̂ T2N - k -
k=2N-2M+l

In order to illustrate their time localization, we have drawn corresponding 
functions for the coefficients from the examples (a) and (b) for N  =  128 and 
M  =  16. The corresponding functions for the example (c) are not shown; 
they would be quite similar to those for (b).

Example (a) Example (b)

Scaling functions <t>\\g 32
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Example (a) Example (b)

Wavelet packet functions  t/'ifs i 8

We can show that the functions defined above build bases of the previ­
ously defined spaces.

T h e o r e m  2.2. For N , M  G JN, with N  =  27)+1M , we have 

Vpf =  span : s  =  0 , . . . ,  N j  ,

W™ =  span {-07V.5: s =  1 , . . . ,  N }  ,
Wfa  = span {tpN,l,s: a =  1, ■ ■ ■ , 2Af} ,

for 1 = 1 , . . . , 2*1 - 2 , and

W x t2 v - 1  =  s p a n  { iPn ,2i - i ,s - s  =  1 , . . . ,  4 M }  .

P R O O F .  L e t  u s  w r i t e  t h e  b a s i s  u s e d  in  t h e  d e f i n i t i o n  o f  i n  t h e  o r d e r  

g i v e n  t h e r e  a s  a  c o l u m n  v e c t o r  v j y , t h a t  is ,

y_N — (To, —,Tn - m , _  m )Tn - m +i +  a°M{M -  l)TN+M-i ,

■ + a°M(l)TN+i, 2 a°M(Q)Ti\T̂ j .

Let us similarly represent the given basis of Wj!f as a column vector w^f 
and the given basis of W ^ t as a column vector w ^ ;.

Now we can write

( t ó  =  A ^ ,  ( C ) f =1 =  B ,wM
s= Ü./V
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where

.  - 2  —  ők,o  -  f>k,N ksnA „ = ( -------- - --------cos —

B % = 2 -  ök,2N k(2s -  1)7Tcos
2N

N
j

s,k= 0 

N,2N

s=l ,k=N+l

Also, for l =  1 , . . . ,  2V — 2, we have

,2M( . I ,M \ l M  _ C M  M  I ' M  _ r M  M
VPn ,1,s) s = i — ^ N,l ¥-N,l » VPN,2V-l,s)a=i — ^N,2» - l  WjV,2i - l  » 

where, for p =  1 , . . . ,  277-1 — 1,

r<M _
'~‘N,2p —

iAi
JN , 2 p - \

2 ^k,N+4pM k{2 s 1)7rcos
4M

2 M , N + 4 p M

s=l,k=N+(4p— 2)M+1

2 ~  &k,N+(4p—2)M . k (2 s  — 1)7T------------ 1---- !— sin --------------
2 4M

2 M , N + ( 4 p —2 ) M

s=l,k=N+(4p—4)M+l

and

-.M _'N, 21-1 —
2 - < 5 fe)2Ar A:(2s - 1 ) 7 tcos

8M

4M,2N

s=\ ,k=2N-4M+\

The proof of the theorem is now completed by noting that the regularity 
of these matrices is well-known and follows directly from (see Tasche [12])

1 NA/vAtf = ( Y^s,k
N

s,k= 0

B^Byv =  ( y £ S,A:(2 -  Sk,N)
N

s,k=1
and

(cjv,2p)r cjvj2p — (C ^ 2 p -1)1 Cjvi2p_x — (M is,*(2 -  <5a:,2m ) ) ^ =1 • □iM \Tr>M 2 M

Note that in the above proof the transformation matrices between cor­
responding bases of the scaling function spaces, wavelet spaces, and wavelet 
packet spaces are given. The transformation from one basis to another can 
also be carried out by use of fast algorithms (cf. [12, 7]).
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3. Orthogonal bases

Here we further impose orthogonality of the bases given in Theorem 2.2. 
It turns out to be guaranteed by a certain condition on the coefficients alM.

T heorem 3.1. If

( 6 ) alM( M ) = 0 ,  for l = 1,..., 2  ̂— 2,

and

(alM{k))2 + (alM(—k))2 — 1 
( a 2 m ( ^ ) ) 2 +  ( a 2 =  1

for k = 0 , . . . ,  M , / = 0 , . . . ,2 7?- 2 ,

for k = 0 , . . .  , 2M  — 1,

then we have the orthogonality properties

(8) (</>jv,r , <t>N,s) = NSr,s 1 + + ^ -A , f or r, s =  0 , . . . ,  N  ,

(9) (^N,r ^ N , s) = NSr>s, for r , 5 =  1 , . . . ,N ,

( 10)

(V’ai,i,r ) V$,,s> =  M Jr)S for all l =  1 , . . . ,  2*7 — 1 and r,s = 1 , . . . ,  2M ,

(11) ( V $ 2 » - I , r  ) ^ N ^ - h s )  =  2 M á r>s for r ,s = l , . . .  , 4 M .

Notice the connection between the conditions (3) giving linear indepen­
dence and (7) giving orthogonality.

P r o o f . For the proof, we will use the orthogonality properties (1) of 
the Chebyshev polynomials T^. In order to show (8), we note that

<0]£r , <t>N,s

N - M

+ E k m  ksn 
„ , ,  cos —— cos ——
2 ^  JV ATfc=i

M —1

+ E
fc= -A r+ i

i + ( - i r

(2 M  — k ) 2 (N  — k )m  ( N - k ) s n
cos----- —-----cos

2M 2 + 2(M -  k)‘ N N
N - l
E krn ksn  

cos —— cos
k = l

N N

2 + (—l) r-s  +  (—l)r+s 1 N - l

+  E  “
jt=i

k(r — s)n k(r + s)n
N

+ cos
N
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= Nfi 1 +  fis. 0 + fi.s,0 - r  0 Sjn
r,s

where we used that

1 ( - l ) r v-'J k m
5 + “IT" + E  cos W  =Jv .̂o

fc = l
mod 2 AT

The proof of (9)—(11) follows the same ideas. □
The conditions (6)-(7) hold for our example (c). For this special case, 

the functions are
N - M 2M —1

^N,s -  ~ To +  E  cos- J ^ Tk+  E 2 M - k

k= 1
W ^  x/2M2 + 2(M -  A:)2

x Tiv-M+k,

cos
(N — M  +  k)sn

~ J r

2AÍ-1
E

A;
fc=í X/2 M 2 +  2(M-A-)

2N—2M

+ E
k=N+M  
4M—1

(N — M  + k)(2s — l)7r 
cos------------ ----------------Tjv-M+fc2iV

A:(2s — l)7r 
cos---- — ----

E

2N

4 M - k
^  x/ 8 M 2 + 2 ( k - 2 M y

( 2 N - 2 M  + k ) ( 2 s - l ) n
■■ COS----------------- — ---------------- T 2N - 2 M + k  >

2M -1 2M — |fc|
cos l ( k -  M)

(2s — 1)7T 
4M

x TN+(4p— l)M+ki
2M-1

^ N , 2 P- l , s  ~  E
2 M - \ k \

I.--2M+1 v/2M 2 + 2 (M - |/ t |)5
sin ( (fc — 3M)

(2s — 1)7T 
4M

x T,N+(4p—3)M+k i

and
2M -1

V’jv,2’) - l , s  — E^  v/ 2 M2 + 2 (M -fc)2
2JV-2M ^

E /c(2s — 1)7T ^  
c o s ----F77----Tk

k(2 s — 1W 
cos---- r r -:----8 M

k=2N—3M 8 M
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^  4 M - k  (2N — 2M + k)(2s — ÍW
+ > , cos -------------— --------—

\ / 8 M 2 + 2(k — 2 M ) 2 8M

X r̂ 2N-2M +k-

W ith appropriate choices of N  and M  given by successive doubling of cer­
ta in  initial N  and M, the pairwise orthogonal wavelet packet functions just 
described can be used to define an orthogonal Schauder basis for C[—1,1] 
consisting of polynomials of optimal degree at most n(l + e). For this con­
struction, the initial values of N  and M  are determined by the given value of 
e. We have mentioned this problem already in the introduction; the details 
are given in Kilgore, Prestin, and Selig [5].
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ZUR GEOMETRIE DER TRIDENS-KURVEN 
DER ISOTROPEN EBENE

J. TÖLKE

A bstract

D. Palman [2] and H. Sachs [6] studied cubic curves in an isotropic plane with the 
property that the linear power of a point P  with respect to a given curve is independent 
from the straight line through P. There axe three classes of such curves. We show that the 
class of the Tridens-curves can be generated by special circumscribed tangent foursides of 
isotropic circles. So every Tridens-curve is a focal curve.

Die zirkulären Kurven 3. Ordnung spielen eine wichtige Rolle bei den 
Untersuchungen von H. Sachs [4] über oskulierende und hyperoskulierende 
Kegelschnittbüschel. Die Unterklasse der vollständig zirkulären Kurven 3. 
Ordnung wurde von D.Palman [2,3] und H. Sachs [6] untersucht. Speziell 
wurde in [2] die Geometrie der sogenannten Tridens-Kurven behandelt.

Vorliegende Note gibt dazu Ergänzungen. Wir zeigen, daß jeder Tridens- 
Kurve ein zulässiges Sehnenvierseit eingeschrieben werden kann. Es ist zu­
gleich Tangentenvierseit eines isotropen Kreises. Durch solche zulässigen 
Haupttangentenvierseite isotroper Kreise lassen sich alle Tridens-Kurven er­
fassen. Hiermit gelingt eine neue (elementare) Deutung für den Radius 
des asymptotischen Kreises der Tridens-Kurve. Erwähnt sei noch, daß jede 
Tridens-Kurve Fokalkurve der einem zulässigen Sehnenvierseit einbeschriebe­
nen Kegelschnittschar ist.

1
Bezeichne {£,r/} affine Koordinaten in der isotropen Ebene 12 - Sind 

(x :y :t) die zugehörigen homogenen Koordinaten, so wird die absolute Ge­
rade f  durch t = 0 und der absolute Punkt F durch (0:1:0) beschrieben. Die 
zugrundeliegende Fundamentalgruppe ist die dreiparametrige Bewegungs­
gruppe H3 [5]. Die Geometrie der Tridens-Kurven 3. Ordnung

( 1) £r) =  a£3 +  ai(,2 +  a 2£ +  a 3

wurde von D. Palman [2] behandelt. Für die Bewegungsinvariante a  -  bzw. 
den Radius des asymptotischen Kreises von (1) -  fand H. Sachs eine ge­
ometrische Deutung [6, S. 381]. Wir wollen eine weitere elementare Deutung

1991 Mathematics Subject Classification. Primary 51N25; Secondary 51N15.
Key words and phrases. Isotropie plane, Tridens curve, completely circular curves of 

third order, focal curve.
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aufzeigen. Sind f i , . . . ,  £4 vier Geraden von / 2, so sagen wir, daß die vier Ge­
raden ti ein zulässiges Vierseit bilden, wenn keine drei Geraden kopunktal 
sind, keine zwei Geraden parallel sind und keine Gerade isotrop ist.

LEM M A . Jeder Tridens-Kurve läßt sich ein zulässiges Sehnenvierseit ein­
beschreiben.

Das soll heißen, daß die drei Gegenpunktepaare des Vierseits Punkte der 
Tridens-Kurve sind.

B ew eis, (a) Wir wählen eine Gerade, welche die Tridens-Kurve (1) in 
drei verschiedenen reellen Punkten schneidet, als neue £-Achse. Dann folgt 
mit den Schnittpunktsabszissen 01,02,03

(T) £r7 =  ex(£-ai)(£ —a2) ( £ - a 3).

Sollte es i , j , k  mit { i , j , k }  =  {1,2,3} geben derart, daß di + cij =  0, so 
drehen wir die £-Achse so, daß die neue Lage wieder drei reelle, verschiedene 
Schnittpunkte hat

Tl=paß,+rj, £ =  £, p^O.
Dann folgt

=  a [ - p l 2 + (£ -  ak) (£2 -  a2)].
Wären auch jetzt noch zwei Punkte £ =  ±c, rj =  0 Tridenskurvenpunkte, so 
müßte c(c2 — a2) = 0, wegen p ^  0, also c = 0 sein. Also läßt sich (1) durch 
eine isotrope Bewegung auf die Form

(i")
mit

(ä +  Ä){ä +  B ) ( Ä + B ) ( ä - Ä ) ( ä - B ) ( Ä - B ) B ^ 0

bringen, wobei o.B.d.A. ä < A sei. Die Schiebung £ =  £ — B, 77 =  p liefert 
schließlich

(2) V(£ + B) = a Z ( t - a ) { t - A )
mit

a = ä — B, A = A  — B, a,A(a — A)j£ 0, a + A + 2B ^  0,
B ^  0, aA + 2B{a + A + 2B) = {ä + B){Ä  + B )  ^ 0 ,  a< A .

(b) Wir betrachten eine Gerade rj = ap£ mit p ^ 0 , für die

(4) X 2 := (o + A + p)2 — 4aA + 4Bp

positiv ist und die keine Tangente von (2) im Punkte (0,0) ist. Diese Gerade 
schneidet (2) in den reellen, verschiedenen Punkten1 (i = 1,2)

(5) Zi = l/2{(a + A + p) + ( - i y X } ,  TH = ap

1 D a  F  D oppelpunkt ist, gilt (£1 — a)(^2 — A) A 0.



und es gilt (& 7̂  0) 

( 6 )
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a A — Bp  7̂  0.

Die Verbindungsgerade von (a, 0) mit (£i,r/i) bzw. die von (A, 0) mit (£2,772) 
schneidet die Tridens-Kurve (2) im weiteren Punkt (£0, rja) bzw. (£.4, tja) und 
es gilt

e a ( 6 - a ) - K i - ( ^ i - « ) ( 6 - A ) }  =  0,

bzw.
£4(62 - A ) -  {p£2 -  (£2 -  a )(6  -  4̂ )} = 0.

Wegen (5) ist £a =  £.4 äquivalent mit

(A — a — X){p2 + 2p(a + A) -  X 2 + (a -  A)2} = 0,

was mit (4) auf

(7) { A - a - X ) B p  = 0

führt. Wegen pB 7̂  0 folgt also unter den gemachten Voraussetzungen

(8) £a =  £.4 äquivalent X  — A — a.

Aus X  = A — a folgt mit (4)

(9) 2(a + A +  2 B) + p  = 0.

Setzen wir umgekehrt (9) voraus, so gilt
(i) Aus (3) folgt p ^  0;

(ii) Aus (4) folgt X 2 = (A — a)2, also mit (3) X 2 > 0;
(iii) aA —Bp = aA + 2B(a + A  + 2B), was nach (3) von Null verschieden 

ist, sodaß (6) gilt.
Damit sind die Voraussetzungen, die zu (8) führten, erfüllt. Mit (9) 

verifizieren wir X  — A — a, d.h. £a =  £4. □

2

Für ein zulässiges Sehnenvierseit einer Tridens-Kurve ist keine der Di­
agonalen isotrop. Allgemein nennen wir zulässige Vierseite, für die keine 
Diagonale isotrop ist, zulässige Hauptvierseite.

Satz 1. Ein zulässiges Hauptvierseit ist genau dann zulässiges Sehnen­
vierseit einer Tridens-Kurve, wenn es zulässiges Haupttangentenvierseit eines 
isotropen Kreises ist.
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B e w e i s , (a) Wahl des Koordinatensystems.
Sei t i , . . . ,  <4 ein zulässiges Vierseit. Wir setzen

Tik ■— A tk = Tki-

Damit ist z.B. A(Ti3,TD,T34) ein zulässiges Dreieck [5, S. 22]. Durch eine 
isotrope Bewegung können wir erreichen, daß die genannten Dreieckseck­
punkte die Koordinaten (A , B , AeR)

(10) T13 = (0,0), Ti4 =  (A,0), Tm = ( \ B 1B) mit \ ( \ B  — Ä)AB  yf 0 

bekommen. Damit folgt (a, beR)

(11) Ti2 =  (a,0), T23 =  (Afe, b) mit (a — A)(b — B){bA — aB){a — Xb)ab^0,

und es gilt für die Koordinaten von T24 =-{(t,Vt)

(12) (a B -b A ) £ t =ß, {aB-bA)rit = b B ( a -A ) ,

wobei abkürzend gesetzt wurde

(13) ß : = - a A { b - B )  + \ b B ( a - A ) .

(b) Die durch Tu- bestimmte Tridens-Kurve.
Unter einer vollständig zirkulären Kurve 3. Ordnung versteht man eine 

Kurve 3. Ordnung k^3\  für die F  ein dreifacher Schnittpunkt von k ^  mit 
der absoluten Geraden /  ist [2,6]. Für die durch die Punkte bestimmte 
-  eventuell reduzible -  vollständig zirkuläre Kurve 3. Ordnung findet man 
nach einfacher, längerer Zwischenrechnung2 die Darstellung

(14) £(£ — a)(£ — A) +  7̂ 77 — Xäg2 + A(A 2bB — aÄ)r) = 0

2 Man verwendet zweckmäßig zunächst das angepaßte affine Koordinatensystem x = 
£ ~  A77, y  =  r).
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mit den Abkürzungen

(15) (aB — bA)6  := (a — b\)(BX — A)a, a := a — A — \(b  — B) 

und

(16) 7 - i : = A [ o  + i4-A(6 + ß)].

Damit ist <5 = 0 mit er =  0 äquivalent. Wegen aB  — bA ^  0 und

(17) { b - B ){7 - S )  = \{{b + B)a  -  2{aB -  6A)} 

kann der Fall 7 =  6 =  0 nicht eintreten.

Für o =  03 zerfällt die Kubik (14) genau dann, wenn die isotrope Rich­
tung zu einer der Diagonalen T23 V T u , T u  V T34, T13 V T24 parallel ist.
Sie zerfällt dann in die betreffende isotrope Diagonale und den isotropen 
Kreis durch die anderen beiden Gegenpunktepaare des zulässigen Vierseits. 
Also ist für <7 =  0 die Kubik (14) genau für zulässige Hauptvierseite nicht 
zerfallend. Der absolute Punkt ist dann ein Doppelpunkt. Nach (14), (15) 
und (17) sind die absolute Gerade und die isotrope Gerade

(18) 2 { b - B ) t  + A B - a b  = 0

die Doppelpunktstangenten. Die Kurve ist also eine Tridens-Kurve [2].
(c) Die geometrische Deutung von a =  0.
Für die isotropen Linienkoordinaten w :u:v  (wrj = + v) der Geraden

ti unseres zulässigen Vierseits gilt gemäß Teil (a) im festgelegten Koordi­
natensystem

 ̂ ti: u = v = 0, t2 '- w = a — \b, u = —b,v = ab,
Í3 : w =  A, u = 1, u = 0, Í4: w =  A — \B ,  u = —B, v — AB.

Für den Fall a ^  0 sei auf [8] verwiesen.3
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Damit folgt die Darstellung der dem zulässigen Vierseit t \ , . . . ,  Í4 einbeschrie­
benen Parabel zu

(20) X(aB — bA)u2 — (aB — bA)uw +  auv + (b — B)vw =  0.

Für ihren Berührpunkt mit der absoluten Geraden (u = w = 0) gilt daher

(b — B)w + au = 0.

Somit gilt genau dann a =  0, wenn die dem zulässigen Vierseit einbeschriebene 
Parabel ein isotroper Kreis ist. □

H. Sachs hat in [6, S. 381] eine geometrische Deutung des Koeffizienten 
a  der Tridens-Kurve (1) angegeben. Wir wollen eine weitere, elementarge­
ometrische Deutung für a  zeigen. Nach D. Palman [2, S. 39] gilt für den 
Radius R  des asymptotischen Kreises R = a.

S a t z  2 .  Sei t i , . . .  , < 4  ein zulässiges Sehnenvierseit einer Tridens-Kurve 
und bezeichne T{k := tt A tk = Tki die Schnittpunkte der Sehnen tj. Dann gilt 
für den Radius R des asymptotischen Kreises

(21) R  = t j )
d ( T i k , T j k ) + d ( T u , T j i )

mit { i , j ,  k, 1} = {1,2,3,4}. Dabei bezeichne d bzw. < den isotropen Abstand 
bzw. den isotropen Winkel.

B E W E I S .  Wir zeigen etwa die Fälle i =  4 , j  =  2 und i =  3, j  =  1. Im 
Koordinatensystem von Abschnitt 2 gilt nach (12)

—R  = 7 = -----b — B---- — + A  — X(b + £)],

wobei A vermöge (15) und er =  0 definiert ist. Mit (10) und (11) folgt

d(T4i,T21) +  d(T43,T23) =  2A(6-R) ,  
d(T32,T12) + d ( T 34 ,T 14) = a + A -  X(b + B).

Nach (19) gilt

< ( t 2 , t  4 )
bA — aB  

( a -  X b ) (A -  XB)
Cb - B )2
bA -  aB  ’ <(^1,^3)

1
X' □

B e m e r k u n g . Nach ( 2 0 )  und [5, S. 27] gilt für den Radius R* des dem 
zulässigen Sehnenvierseit einbeschriebenen isotropen Kreises
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was eine weitere geometrische Deutung des asymptotischen Kreisradius 
ergibt.

4

Um eine weitere Eigenschaft der Tridens-Kurven aufzudecken, betrachten 
wir die einem zulässigen Vierseit t \ , . . . ,  t\ einbeschriebene Kegelschnittschar. 
Im Koordinatensystem von Abschnitt 2 folgt mit einem Scharparameter k 
nach (20) und (12)

, , X(aB — bA)u2 +  (er — nß)uv — n(aB — bA)v2 — (aB  — bA)uw
+ [b — B  + nbB(a — A)]uu; = 0.

Für die isotropen Hauptachsen [7, S. 389] w : u : v gilt demnach das Glei­
chungssystem

2\(aB  — bA)u + (er — nß)v — (aB — bA)w =  0

(er — nß)u — 2 k(üB — bÄ)v + [b — B + nbB(a — A)]w = 0.

Somit hüllen die isotropen Hauptachsen den Kegelschnitt

(iaB — bA){ 2 \ßu 2 + A\(aB — bA)uv + 2 av2 

— [2A bB(a — A) +  ß]uw + bB(a — Ä)w2}
-{ß (b  -  B)  +  abB(a -  Ä) + 2(aB -  bA)2}vw = 0

ein. Genau für a =  0 ist die Enveloppe der isotropen IJauptachsen somit eine 
Parabel P. Für ihre isotropen Tangenten gilt

u{ßu + 2(aB — bA)v} = 0, w — 0.

Wegen (13) und (15) ist also der eigentliche isotrope Brennstrahl von P  nach 
(18) die Asymptote der Tridens-Kurve (14).

Nach M. Greiner [1, S. 33 und S. 39] ist die Fokalkurve der Kegelschnitt­
schar (22) eine Kurve 3. Ordnung durch die 3 Paare von Gegenpunkten des 
zulässigen Vierseits. Sie hat (l.c) im absoluten Punkt einen Doppelpunkt. 
Die Doppelpunktstangenten sind die Brennstrahlen der Enveloppe der iso­
tropen Hauptachsen. Damit ist gezeigt:

Satz 3. Jede Tridens-Kurve ist Fokalkurve der einem sie erzeugenden 
zulässigen Sehnenvier seit einbeschriebenen Kegelschnittsohar.
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A NONLINEAR EIGENVALUE PROBLEM 
RELATED TO GABRIELLA BOGNÁR’S CONJECTURE

W. PIELICHOWSKI

A bstract

In this paper we show the simplicity and some other properties of the principal eigen­
value of the Dirichlet problem for a quasilinear second order elliptic operator in a non­
smooth domain.

1. Introduction

Let Cl be a bounded domain (i.e., an open and connected set) in the space 
(N  ^  1) with the closure Cl and boundary dCl. We shall be concerned 

with the eigenvalue problem of the form

( 1 )

N
' Y  Dj(ai(a;)[Aw(a:)]p)-|-ao(a:)[u(a;)]p =  Am(x)[u(x)]p, Vx € Cl,
Í— 1

ii(x) =  0, Vx € dCl,

where p € (1, oo) and [u]p := |u|p~2it for u E R. In what follows the coefficients 
a,i ( i  =  1 , . . .  , N ) ,  ao  and m  are supposed to be essentially bounded in i f  and 
satisfy the following conditions:

(2) 3 a > 0 :  ai(x)~ta  for a.e. x € if (i =  1, . . . ,  N),
(3) ao(x)^0 for a.e. x G Cl,
(4) m + := max(m, 0) ^  0 a.e. in Cl.

Putting ß j ( x )  = 1, a o ( x )  = 0 and m ( x )  =  1, we obtain the eigenvalue problem

(5)

N
~ Y Di ([A «]?)=  aM p

t = l
u \dQ — 0-

in Cl,
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The problem (5) was investigated (in the case N  =  2) by G. Bognár [4], who 
conjectured that the smallest eigenvalue of (5) is equal to the infimum of the 
Rayleigh quotient

R{u):=

N
/ ^  \Diu\p dx 

o i=l

/  \u\p dx
n

taken over an appropriate space of functions, contained in Wq’p(Q). Bognár 
also conjectured that the smallest eigenvalue is simple and has a positive 
eigenfunction. She partly proved her conjecture under some additional as­
sumptions, including the hypothesis that p ^  2. The main purpose of this 
paper is to obtain similar results for the first eigenvalue of problem (1), which 
include those conjectured by Bognár. It is worth noting that we make no reg­
ularity assumptions on the domain if and also the function m, usually called 
the weight function, may change sign in Q. Our approach is based on the 
methods developed in the papers [3], [8], [7], [5] and [9], which were devoted 
to the study of the first eigenvalue of the pseudo-Laplacian Ap =  div([V]p) 
and some related quasilinear elliptic operators.

2. Preliminaries and main results

In this note we use real function spaces only. Let us recall that W 1,p(if), 
with 1 < p <  oo, denotes the space of all functions which together with their 
derivatives (in the distribution sense) DiU (i = 1,..., N ) belong to Lp(ff). We 
define the norm in W 1,p(ff) by setting

Vu € W1,p(if).

As usual, the symbol W01,p(if) stands for the subspace of W1,P(Q) obtained 
by closing the set of all C^-functions with compact support in if. The space 
W01,p(il) inherits the norm from W 1,p(if).

Any nontrivial function u is said to be an eigenfunction of problem (1) 
if and only if

u e w 01>p(ff),

(Ea) a i [ D i u ] p D p p  +  ao[u]p (p j  dx — A J  m[u\ptpdx,
< 1 ' n

v ^ e  w 01,p(n).
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We shall make use of the following notations:

A(v) := /  a j \D{v\p + a0 |u|pNj dx, Vv G W01,p(fl), 
n ' i=1 '

M(v):= j  m\v\p dx, Vv G W01,p(ii), 
n

J\(u) := A(u) — XM(u), VAg M, Vu G W01>p(il).

The main result of this paper is the following:

THEOREM 1 . Suppose that the functions ( i  =  1, . . . ,  N), clq and m  
satisfy all the assumptions of Section 1. Then the following assertions hold:

(Ai) 0 < Ai < oo,
(A2) for Ag [0, Ai ) the problem (EA) admits no eigenfunction,
(A3) J aj(u) ^ 0  for all uG W01,p(il),
(A4) a nontrivial function u G W01,p(i2) is an eigenfunction of problem 

(EAl) if and only if J Al (u) =  0,
(A5) there exists a function u\ G W()l,p(fl) n C (il) such that ui(x) > 0 for 

all x  G ii, u\ is an eigenfunction of problem (EAl) and the set of all solutions 
of (EAl) is of the form {tui \ t G K},

(Aß) the problem (EA) with A > 0 admits a nonnegative eigenfunction if 
and only if A = Ai,

(A7) the first eigenvalue Ai is isolated.

The proof of Theorem 1 will be given in Section 5. It is preceded by 
some auxiliary results.

3 . Regularity of eigenfunctions

In this section we state two lemmas concerning the regularity of eigen­
functions of problem (EA).

Lem m a  1. Suppose that «G  Wn1,p(0 ) is an eiqenfunction of problem 
(Ea). Then u G

PROOF. It is sufficient to show that there exists a constant C > 0 and a 
sequence of real numbers {xn}, satisfying

( 6) lim =  +00 and
n —*-oo

ll L"n ^ C, Vn G N.
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In this connection see [1], Theorem 2.8. Our proof is a slight modification of 
th a t of [5], Lemma 3.2. For the sake of completeness we present it here in 
detail.

We first introduce a family of auxiliary functions ut : —>■ R (T € K+)
defined by

ut(x) min(u+(x),T), Vx&fl.

It is easy to see that ut £ W01’p(fl) nL°°(il)  and hence

(7) itji := (u t )P £ f lL°°(Q), V ß Z l

(compare with [6], Lemma A.3). Next, we use the functions (p = u ^ >+i (where 
k ^  0) as test functions in (E*), which is legitimate because of (7). As a result 
we obtain the equality

( 8 )
^  /  a,i[Diu]pDi(uj?+1) dx = /  ( \ m  — ao)[u]pU^>+l
i=1n n

0, VT > 0.

dx ,

Let us note that the left-hand side of (8) can be estimated as follows

( 9 )

y y  f  Oi[Diu\pDi(vij?+l) dx = í  a,i[Diu]p{kp+ Í)u^ D í{u t ) dx 
<=i n i=1 n

N
= y y  / a,i(kp + \)u^ \ D í (ut)\p dx 

i=1 n
N

a(kp + 1) / u^p|Di(u7’)|p dx
i=1n

TV
£  I  \Di{u^+1)\p dx

a(kp +  1)
T + w  t r

Na(kp +  1)
I F T T j r  £

Here we have used inequality (2). Moreover, according to the Poincare in­
equality (see for instance [1], Section 6.26) we have the estimate

N
v r ^ c . y m vW, 1=1

r P ’( 10) VueW o’p(H),
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where C\ > 0 is a constant independent of v. Prom the Sobolev embedding 
theorem (see, e.g., [1], Theorem 5.4) it follows that there is a real number q, 
greater th an p (for example q — 2p when p ^ .N  and q = when 1 < p <  N),  
such that IPq (Í2) C Lq(Ci) and the embedding is continuous, so that

(11) M l^ C 2\\v\\K p, V i>eW 0l j , (n ),

where C2 > 0 is a constant independent of v. Combining inequalities (9), 
(10) and (11) we conclude that

( 12) at [Diu]pDi (uj?+ ')dx^.
a (k p + 1)
(k + l)rC3

p / q

for all k 0 and T  > 0, where C3 := CiCp is a constant independent of k 
and T.

We now estimate the right-hand side of (8):

( 1 3 )

/
(Am — ao)[u]pii.kp+1dx Ú

/
|Am — a  o | |u|p- 1 4 p + 1  dx

n

'  <
/

|Am -  a o |  ‘u ^ +1)pdx
J
n

< c 4
/ "

( f c + i ) p
+ dx , Vfc^O, VT >  0,

n

where C4 := ||Am — ao||Loo (since the integrals are taken over the support of 
the function u+).

The inequalities (12), (13) yield the estimate

p / q

Í C 5 (fc +  l ) p
kp+  1 J  uf+1)pdx, Vfc^O, VT > 0,

where C5 := C3C4a  l . Equivalently,

1 f k +1 1 *Tf
(14) { (fcp+1)i/p )  IK U l<‘+1>”  Vfc^O, V T>0,

where Ce := C\jv .



446 W. PIELICHOWSKI

Since p < q, we may choose ko > 0 in such a way that (ko +1 )p = q. Hence 
the inequality (14) with k:=ko  gives

I M I , « . « ,  S  Q + 1 { (^ ) l / r } ^  l l» +  llt , , v r  >  o .

Letting T  -+ oo, we see by Fatou’s lemma that

Now we can choose k\ > 0 so that (k\ + l)p = (ko +  l)q — q2/p■ Putting k := k\ 
in (14), we obtain the estimate

llu r | | < c .H+í f + 1 \  kl
l (kip+iy/p j

+1
||tt+ || (fc0+i)9, VT> 0,

which as before leads to the conclusion that

Ik+llrOU+l)« = C&
fci+1 k

(k \P

i +  l ) *1+1
'+ i  y/p  j llu+H ̂ (*0 + 1)9 ■

By induction we obtain the estimate

||u+|L (*«+i)<, ^ C 6kn+1
kn + 1 \  kn+1

(knp + i y / p  j llU +  ll^(i n - l  + 1)<I ) VnGN,

where kn + 1 =  (q/p)n+i (n =  0 ,1 ,...) . Finally, we arrive at the inequality

KILifcn+i), ^ C lf °

(15)

Since

ki +  l  I b + i

Ü  \ ( A i P  +  1 ) 1/p
»«+11,

_ sii=0— Og
£  fc7+r nn

i= 0

f ki + l 1 Vki+1 

l  (k ip+iy/p  j

/ki + l
Ih+llro, VnGN.

lim /  y+1 \ ^  = 1,
y-+oo (  ( y p + \ ) l IP J 

there exists a constant C7 such that
1

ki + l \ v+i+i
(16)

( k i p + i y / p j
<:C7, Vi G ]
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From (15) and (16) we infer the estimate

n n

(17)

E *i+i E v̂7+r
U+ Hr?

oo oo
V  — V _l__ki + 1 L̂ i Jki + l

< cr° cr° :l«+l

By similar computations we get the inequality

oo oo

E fc,+l E s /i^+ \ti=0 syi=Q(18) ||u_ ||L(fcn+1)̂ C r 0 C'f

It follows from (17) and (18) that

OO oo

E fc-+r E
|u|| <*„+,), i 2 C ' f °  C)=° | |u ||,,,

Note that

and that

OO . 00

Ern=Ew?>"+,<~
i=0 H “ i=0

OO 1 OO

i  7 T̂+T = i

Vn £ N.

Vn 6 N.

VnGN.

n+1
P/Q ) <°o,

i=0 ^  ' * i=0

since p<q.  Thus we can put >cn := (kn + 1 )q (n =  1, 2 , . . . )  and

OO OO

y ' -I— v ... i . ..L-t q + 1 Z-j s/ki +1
C:=2C ' f°  C'7=° 1Lq

to see that the conditions (6) are satisfied. This completes the proof. □

Lemma 2. Let u be an eigenfunction of problem (E,\). Then for any 
compact K  C Cl there exists a  6 (0,1) such that u € C°’a(K). Furthermore, 
if u ^  0 in Cl, then u(x) > 0 for all x £ fi.

P roof. On the base of Lemma 1, the ( ^ ’“-regularity of the eigenfunc­
tion u can be derived from [10], Theorem 2.2. Now the positivity of u follows 
from the Harnack type inequality of Trudinger [10], Theorem 1.1. □
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4. Inequalities of the Anane-Lindqvist type

Following the ideas of Lindqvist [7], which are continuation of those 
introduced by Anane [2], we formulate some inequalities in Lemma 4 below. 
They are one-dimensional versions of inequalities implicitly used in [7] and
[5]. In  order to prove them we need the following

L e m m a  3. If p ^  2, then there exists a constant C(p) > 0  such that

(19a) |í2|p -  ItiT - p | í i r 2M *2 -* i)  ^ C(p)\t2 -  t l \*, Ví l Íí GR.

If  1 < p  <2, then there exists a constant C(p) > 0 such that 

(19b)
m p -  i*i r  -  p\h (t2 - h ) ^  c(p) ^ +  ̂+^ 21̂ 2- p » Vti, i2 £

The proof of Lemma 3 can be found in [7], Section 4, where it is explained 
that one can choose

C(p) =
for p ^  2,2P -1 -1

TéP(p~ 1) for K p <2.
□

Now, let us introduce the set

5 := { u e I T 1’p( iI )n L 0O(f2)| 3e > 0 : u Z e  in fi}. 

It is easy to see that for every u ,v& S  the functions
up — vv , vp — vP

- lup
belong to W l,p(fl). Moreover,
( 20)

'vP - v p

and
vP- 1

Di

and
( 21 )

vP~l ^ = | l  +  ( p - l )  D i U ~ p { f f f ) P D i V  =

L e m m a  4. Ifp^ .2,  then there is a constant C(p) > 0  such that for every 
u ,v  G S  the inequality

iu\pD

t C ( P )

U1' — IF
vP- 1

+ [Div\pDi
vp - u p

vP- 1

— + — ) IvDiU — uDiv\p 
UP vp 1 1 1

(22a)
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holds almost everywhere i n  Q  (i =  1 , . . . ,  N ) .
If 1 < p < 2, then there is a constant C(p) > 0 such that for every u ,v  € 5  

the inequality

(22b)
tC {p )

UP -
H up~
1 1 '

— H----UP vp

+ [Div\pDi
VP - u p 

vP- 1 

I vDiU — uDiV \2

holds almost everywhere in Q (z =  1 , . . . ,  N).
P R O O F .  T o  begin with we transform the left-hand side of (22). Using 

formulae (20) and (21), we obtain

L .— [Diu]pDi
uP-vP

uP- 1
+ [Div]pDi

vH -  u‘ 
vP_1

=  { l +  ( p -  1) 0 ' }  \D,u\” +  ( l  +  1) Q ”} I

~ p {
v\p~l 
u J

' U\P- 1 D1v \p- 2D1vD1\Díu\p 2DíuDív ~ p { ^ )

= (up -  VP)(\t2\P -  | U n -pvP\t2 \P-H2{h -  t2) - j m P ^ P - H ^  -  <0 
= uP{\t2 \P - \ t 1\P-p\tl \P-2t 1(t2 - t l )} + vP{\tl \P - \ t2 \P-p\t2 \P-2t2 (t1 - t 2)}, 

D ■ v T) ■ u
where t \ :=  —— and t2 := ——. In the case p ^  2 inequality (19a) gives 

v u
L ^  C(p)(up + vp)\t2 — ii |p

= C(p) (  uP ^  vP )
I vD{U — uDiv\p,

as desired. In the case 1 < p < 2  inequality (19b) implies that

1̂2 “  U |2L ^C (p ){up + VP) 

— C(p)
1 1

+ —

(l + M  + M )2- p
I vDiU — uD{V |2

uP vP)  {uv + \vD íu\ + \uD ív\)2 p '
and the lemma follows. □

5. Proof of Theorem 1

Since the proof of assertions (Ai )-(A4) is quite similar to that of [8], 
we can omit the details here. Therefore we pass to the proof of the state­
ment (A5). Let us observe that the functional A : lT01,p(O) —> R, defined in 
Section 2, is weakly lower semicontinuous and it is coercive on the set

Ad:={ueVPo’p(H)| M(u) = 1},



450 W. PIELICHOWSKI

by the assumptions (2), (3). Thus we can find in Ad a minimizer uq ^  0, 
characterized by

A(uq) = inf{A(u) I uG A4}

(see for instance [3], Theorem 6.1.1). Hence A(uo) =  Ai and so J â uo) = 0. 
According to the assertion (A4), uq is an eigenfunction of problem (EaJ .  
Since J \ 1 (|uo|) = J \ x («0) =  0, the function u\ := |uo| is also an eigenfunction 
of (Eaj). Now Lemma 2 shows that u\ € <7(ii) and ui(x) > 0  for all x£Ü .  
Next, let us suppose that v is another eigenfunction of problem ( E a x) .  Ob­
serve that v cannot change sign in Í2, because otherwise the function |t>| 
would be a nonnegative eigenfunction of (EaJ  vanishing somewhere in Í2, 
which contradicts Lemma 2. Thus we can assume that v £ C(fl) and v(x) > 0 
for all x E Í 1. To simplify our notation, we put u:=u\.  Since, by Lemma 1, 
u, v E T°°(H), we see that the functions

V>-=
pUe PVe

p —1«e
and

V V
Ve ~  Ue

p — 1 ’Ve

where u£ = u + £ and v£ =  v +  e (e > 0), belong to the space W01,p(ii). We 
now use the test function ip in (EaJ  to conclude that

N
(2 3) E u% \Diu]pDi

pUe VPe
p — 1Ue

dx = / (A ,
n

m — ao)M
pWe PV%

p — 1 ue
dx.

Analogously, putting tp in (Eax), we get the equality

N
(24) y  /  al[Dlv)pDi

Í— 1

V V
Ve -  Ve

p — 1
Ve

d x — (Aim —ao)[u]
p p

Ve ~  U £
P p — 1

Ve
dx.

Note that

(25) D i U  — D i U e , D iV = D i V £ , V e>0 ( i  = l , . . . , N ) .

It follows from (23), (24) and (25) that

NY, j  a i i \ D i U e \ p D i  + [ D l Ve\p D

i=1 n E

= J (A im -ao) -

P p
Ve ~ Ve

p-
Ve ?)} dx

(up — vp) dx.
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Given any e > 0, we see that uE,vE € S and hence we can use Lemma 4, which 
together with the assumption (2) implies that

/ (A‘m- a„){(^) - (£ )
n  ̂ '

Z a C { p ) Y J j  (~ p + ~p )  \veDiue -  ueDiVe\p dx 
i=1 n

when p ^  2, and that

m — ao)
n

(up — vp)dx

> IV e D j U e  - U £P j V e |2 

(U£U£ +  |l>eA u e| +  |lie-DjZ7e|)2-P
dx

in the case 1 <p  < 2. Hence, letting e —> 0, we get by the Fatou lemma the 
equalities

\v D í u  — u D í v \ = 0 in Í2 ( i  =  1 , . . . ,  N ) .

Thus there exists a constant t £ R  such that v — tu in 0, and so part (A5) is 
proved.

In a similar way we prove assertion (Aß). We first assume that m  ^  0 in 
Í2. Let u be a nonnegative eigenfunction of problem (E ^ ). Suppose, contrary 
to our claim, that there is a nonnegative eigenfunction v of problem (E^) 
with A > Ai. The case A < Ai is excluded by assertion (A2). Then we can use 
y P  _  yP y P  _  y P

£ _ £ as a test function in (E^J, and £ , £ as a test function in (Ea) to
U? Ve

obtain the equality
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It follows from Lemma 4 that the above expression is nonnegative. Letting 
£ —̂ 0, we find that J (Ai — A)m(up — vp) dx 0.

Hence
 ̂J  mup d x ^  J  m vp dx.
n

Since v may be replaced by r>w, etc., we conclude that
n

/ mup dx = 0.

Consequently, mup =  0 in fb Thus the positivity of the eigenfunction u 
contradicts assumption (4). This completes the proof of (Ae) under the 
temporary assumption that m ^  0. Now we can take any function m  € L°°(0) 
such tha t m + ^  0 a.e. in O and argue as in [8], with obvious modifications, 
to complete the proof of part (Aß).

The proof of assertion (A7) is based on ideas of Anane [2], We begin by 
showing that there is a continuous function R 3 A >-> B{\)  € R+ such tha t if 
v is any eigenfunction of problem ( E a ) ,  for which V- ^ 0, then

(26)

where Í2 =  {x € | v(x) <  0}. To see this, we c 
(Ea), which yields

(27) Y  J  ai\D{V-\p dx — J  (Am—
i=1 q n-

Note that

(28)
n  ry  j  ai\DiV-\p dx^t  ^ - | | ‘ 

i=1 h

’ dx.

Lq ’

where q and C3 are the constants introduced in Lemma 1. On the other 
hand, the inequality p <q  implies that

j  (Am — ao)|w-|p dx ^ B\  (A) \v-\p dx

= B\(X) |0"
.

1 V_
L q ’

(29)
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where By(X) := 1 +  ||Am — aol^oo >0. From (27), (28) and (29) we get the 
estimate (26) with

Now, let us suppose that Ai is not isolated and so there is a sequence {An} 
of eigenvalues A„ > Ai (n =  2, 3 ,. . .)  such that lim„_*oo An = Ai. Let {un} 
denote the sequence of corresponding eigenfunctions scaled in such a way 
that M(un) =  1 (n =  2 ,3, ...)•  Using un as a test function in (Ea„) we 
conclude that A(un) =  XnM(un) = A„. Consequently, the sequence {un} is 
bounded in W01,p(f2). Passing to a subsequence if necessary, we can assume 
that the sequence {un} is weakly convergent in W g ’p ( f i ) .  We denote the 
limit function by uq- Observe that

(30) A(uq) ^ liminf A(un) =  lim An = Aj.n—>oo 7i—>oo

Since the embedding W01,p(fi) Lp(fl) is compact (see, e.g., [1], Theorem 
6.2), the sequence {un} converges in LP(Q). Therefore M(uq) = 1 and hence 
uo ^ 0  in fi. The inequality (30) shows that uq is an eigenfunction of (E^J. 
By assertion (A5), the function uq does not change sign. Without loss of 
generality we may assume that uq(x) > 0 for all x € ÍL We can assume, 
after passing to a subsequence, that {un } converges almost everywhere in 
fi. According to the Jegorov theorem, the sequence {un} converges almost 
uniformly in O to the positive function uo, which contradicts the estimate 
(26) applied to un. This completes the proof. □
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ON A CHARACTERIZATION OF ABELIAN GROUPS 
BY SUMS AND DIFFERENCES

KATALIN KOVÁCS

Let G = {g\-,9 2 i ■ ■ ■ 19n} denote an abelian group of n elements, (a) =  
(a i ,02, • • • ,an) € Gn, A =  {oi,Ű2, . . . ,  an} Q G and ||A|| := the number of the 
different elements of A.

T h e o r e m  1. (i) There exists an (a) E Gn such that

(1) {ai +  ü2 , ü2 + Ű3, . . . ; an + a{\ — G

if and only if 2 jfn.
(ii) If G = Zn, then max ||A|| = n — 1 if 4 | n, max ||A|| = n if n is odd and 

min ||Á|| = O(yjn) if n =  3 or 4 mod 4.

C o n j e c t u r e . 7 /n  =  lm od4, then m i n | | A | |  < n .

THEOREM 2. (i) There exists (a ) £ G n such that

(2) {a2 - a i , a 3 - a 2, . . . , a i  - a n} = G

if and only if the number of the elements of order 2 in G is not 1.
(ii) If G = Zn a n d 2 \n ,  then max ||A|| = n — 1 and min ||A|| = 0( \ /n ) .
P r o o f  o f  T h e o r e m  1 . (i) For n =  Ak +  2 there exists a g E G such that

n
o(g) = 2 and 9 i = 9 - If there exists an (a) such that (1) is satisfied then

i= 1

n
(3) 2 y : = 2 y£ 2 , g i =  g ,

i=l

i.e. 4y = 0. Therefore o(y)|g.c.d.(4, |G|) =  2 which implies y = g or y = 0. 
Replacing in (3) g = 0 contradicts the existence of (a).
We assume that n ^  Ak + 2. We show a sequence (a) such that (1) is 

satisfied. Let us see the construction in the case G = Zn. Suitable sequences 
are for example the following ones:

(1, 2 , . . . ,  n) if n = 2 k +  1

1991 Mathematics Subject Classification. Primary 11A99; Secondary 20C99.
Key words and phrases. Characterization of abelian groups by sums (differences).

0081-6906/97/$ 5.00 ©1997 A k a d é m i a i  K i a d ó ,  B u d a p e s t



456 KATALIN KOVÁCS

(0 ,1 ,1 ,2 ,2 ,. . . ,  k — 1, k — l,3k, k , k , . . .  , 2 k  — l ,2k  -  1) if n = 4k 
(0 ,0,1,1,2 ,2 , . . . ,  k  — 1, k  — 1,3 k ,  k ,  k , . . . ,  2 k  — 1,2 k  — 1) if n =  4 k  +  1 

(0, 1,1, 2, 2 , ,  k —1, fc—1, fc, fc +  1, k  +  1, . . .  , 2 k — 1,2 k —í ,  2k) if n =  4k—1 
(0 ,0 ,1 ,1 ,2 ,2 , . . . ,  k  -  1, k  -  1, k ,  k  +1,  A: +  1 , . . . ,  2 k  - 1 , 2 k  -  1,2 k )  if n  =  4 k .

If 4 | n  then G = Z2 ®Z2 ® T  or G = Z2° ®T  with a  ^ 2 and T  =  {fi, í2, • ■ ■, t3}. 
For Z 2 © Z2 we have

(9) =  (<7i> • • • >94) =  ((0,0), (1,1), (1,0), (1,0))
as a suitable sequence. For the cyclic group Z21, we showed a suitable 
(g) =  (qrl5. . .  ,^27). If 2a II |G| then the construction for G is as follows:

(<?2,0), (93, <1), ( 9 4 , 0 ) , . . . ,  (g2“- i ,  h ), (92“ , 0),
(91,^2), (92,0),  (93,h ), ( 9 4 , 0 ) , . . . ,  (92«-1, i 2),(92“ ,0),

(91, ^), (92,0), (93, is), (94 ,0 ),..., (<?2“- i , is), (92“ , 0)).
fc-i

For odd n we prove by induction. Then G = ®  Tj © Zm. We assume that
2=1

( < ! , . . . , is) is a suitable choice for the direct sum. Then a suitable sequence 
for G is the following one:

((tl, 1), (Í2,0), (i3, 1), (Í4,0), . . • , (is-1,0), (ís, 1),
(i!, 2), (Í2,0), (i3, 2), (Í4,0),. . . , (ís-1,0), (ts, 2),

(ii, 0), (Í2,0), (í3, 0), (í4, 0 ) , . . . ,  (is_ i ,0), (ia,0)).

(ii) Maximum for Zn: For odd n we may choose at = i for i  =  1 ,. . . , n. 
For n = 4t a2S =  4í — s +  1 for s = 1 , . . . ,  í, ű2S = 4f — s for s =  t  +  1 , . . . ,  2t 

and ö2s -i —2 t — s for s  =  1 , . . . ,  2í is a maximal sequence.
Minimum for Zn: We can choose less than n different sums a +  b such 

th a t a, bE [0, \/n\. So \ /n  is a trivial lower bound for the minimum of ||A||. 
For an arbitrary n £ N  n = 2,3 mod 4 there exists a dE N  such that

4d2 + 4 d ^ n  = 4d2 + 4d + 4k + i<4{d  + l )2 + 4 { d + l ) - 6

with i =  0 or i = — 1 and 0 ^ k ^ 2 d .  So d =  0(y/n)  and k = 0(y/n).
The integers in [0,4d2 +  4d — 1] can be obtained by the following con-

struction:
0, 4 jd, 1, 4 jd  + 2d,

2 i — 2 , 4 jd, 2 i — 1, 4 jd  + 2d,

2 d — 2, 4jd, 2d — 1, 4 jd  + 2d,
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where j  runs over the integers of the interval [0, d\. We needed only 2d + 
(2d+ 2) = 0{y/n)  integers. Let us continue the previous sequence by

0 , . . . ,  0 ,4d2 + 4d +  Aj, 1,4d2 +  Ad +  Aj A- 2 ,0 , . . . ,  1,4d2 + Ad +  Aj +  Ak +  2.

We have the integers in [0,4d2 + Ad + Ak +  3] (case 4|n) adding only 2k +  2 =  
0(y/n)  numbers. Deleting the first 0 we get the same result for n = Ak +  3.

Proof of T heorem 2. (i) If there is only one element g  of order 2 
in G , then

0 =  (ö2  — űi ) +  (ö3 — 02) +  • • • +  (oq — a n ) — 0,1 +  02 +  ■ • ■ +  a n — g

i
excludes this case. Otherwise a* =  ^  gj is a suitable sequence.

j = 1
(ii) Maximum for Z\&: We may assume that a* € [l,n]. One of the dif­

ferences has to be 0, so ||A|| ^  n — 1. For n =  Ak + 1 the maximum can be 
obtained by the following sequence:

(0 ,0 ,1 ,-1 ,... ,  k - k , - ( k + 1), (fc+l),-(fc+2), (k+2 ),... ,-(2 fc-l), 2 k - l - 2 k).

If n = Ak + 3 we continue the previous sequence by 2k and —{2k +  1).
Minimum: The minimum cannot be below sjn as [\/n\ numbers have less 

than
16r2 ^  n < 16r2 +  1 -(- 2 k < 16(r + l)2.

Here r = 0(s/n)  and k < 16n +  8 = 0{-^n). We write the blocks

{m, 1, —m, 1, m, 2, — m, 2, m . . . ,  m, Ar — 1, —m, Ar — 1, m, 0}

for to =  4r, 12r,. . . ,  4r(2r — 1) and the block

{8r, 0, 16r, 0, . . .  8 r ( r - l ) ,  0, 8r2, 0, 0}.

So we needed less than 8r = 0(y/n) numbers to cover all the integers in 
[—8r2,8 r2]. For fc>0w e add a further block:

{8r2 + 1 , 0, 8r2 +  2, 0, . . . ,  8r2 + jfe, 0}.

We needed to add k =  0 (i/n ) new integers to the previous ones to cover all 
the integers in [—8r2 +  k , 8r2 + k].

Problems, (a) What is the minimum of ||v4|| if G is not cyclic?
(b) In general: Determine a lower bound ci and an upper bound C2 for 

II>1||. Let k be an integer in [ci, C2]. Is there a sequence (a) such that || A|| =  k7

(Received, December 19, 1995)
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STABILITY OF STOCHASTIC POPULATION MODELS

M. H. VELLEKOOP and G. HÖGNÄS

Abstract

In this paper we derive sufficient conditions for the stability of a wide class of stochastic 
population models in discrete time. The class we study is the largest possible in some sense 
if one takes into account two fundamental biological premises which population models have 
to satisfy. The conditions for this stochastic stability that we obtain cure of some interest, 
since studying certain statistical characteristics of these stochastic population processes is 
only possible if the process converges to an invariant distribution.

1 . Introduction

One of the most fundamental recent discoveries in theoretical ecology is 
the possibility of extremely complex dynamics in even the simplest single­
species population models [7]. This observation is particularly important 
since in most models some parameters, especially the ones which describe 
the influence of an environment on the population, vary around a certain 
fixed value in a stochastic way. This may pose a serious problem for the 
study of population models, since large scale stochastic simulations have to 
be used to study the variations but it is not clear on beforehand (and in 
some cases indeed not true) that these simulation results are valid, unless 
some ‘stochastic stability’ conditions are met. Only then can we guarantee 
that certain statistical properties converge to stationary values, which can 
then be found by appropriate measurements. Some of the stability questions 
for stochastic population models have been addressed earlier [1, 2] but the 
results are only valid for one particular model due to Ricker [10]. In this 
paper we will show that the results obtained there are a special case of 
conditions for a more general model that we will derive here. Indeed, we try 
to show that stochastic stability is an intrinsic characteristic of all population 
models which satisfy two fundamental biological premises.

This paper was presented at the Conference on Stochastic Differential and Difference 
Equations, Győr, Hungary, August 1996.
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2. A general population model

In [3] Hassell has introduced a systematic approach to the development 
of so-called density-dependent population models for a single species of the 
form

X t+i =g(Xt).
Here Xt  represents the population size at time t and g is a known func­
tion which is usually assumed to be continuous. Hassell argued that these 
population models should be based on two fundamental premises:

(P I) The population should have the potential to increase exponentially 
for small populations.

(P2) There should be a density-dependent feedback which reduces the ac­
tual rate of increase as the population grows.

Ecologists usually look at the ‘mortality’ as a measure of this density-de­
pendent feedback, which is characterized by the following density dependence 
function:

(2.1) ln X j—>ln—— .
At+1

In experimental data [3], it is often found that there is a pronounced density- 
dependence for large Xt  which becomes negligible as Xt  decreases, and that 
the density-dependence for large X t is characterized either by a fixed slope 
b (in so called contest models) or that this slope increases rapidly with in­
creasing Xt  (in scramble models). A simple linear contest model describing 
this situation is for example

(2.2) In f = — In r + b In Xt
Xt+1

with r > 1 and b > 1, resulting in

Xt+1 = rX (1- 6)
t

Clearly, this model is not very realistic for small populations since it 
predicts that

lim Xt-i-i = oo,Xt~>0
which means that for very small populations there is an infinite capacity to 
grow. A simple correction, as proposed in [12] is:

(2.3) X t + i  —
r \ x [ l b) X t >  X c 

X X t X t g  X c

with A > 1 a constant and X c a critical population value. This means that 
there is either density-dependence as before for populations which are larger
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than the critical population, or exponential growth for populations which are 
smaller than the critical population. However, this model is not smooth at 
X c and has some other properties which are unsatisfactory from an ecological 
point of view [3].

Two famous examples exist of models which ‘smoothen’ this model. The 
first one is the Hassell model [3]:

X rXt
i+1 (1 +  X t )»

with r > 1 and b > 1. It is clear that for this model

f r Xt Xt  ~  0
**+1 “  1 X t » 0

and it can thus indeed be interpreted as a smoothed version of model (2.3). 
Note that the density dependence function is given by

In t ■■ =  — ln r + b ln(l +  X t)
Xt+1

which means that the density dependence relation (2.1) will be approximate­
ly linear with fixed slope b for large X t . As mentioned before, we also need 
scramble models in which this slope increases rapidly as the population Xt 
increases. An example of such a model is due to Ricker [10]:

X t+i = r X te - bK'.

It satisfies
In — — = — In r  +  beln Xt,

Xt+1
so the density dependence increases exponentially when X t goes to infinity. 
Remark that in all these models r  represents the exponential growth factor 
for very small populations, the natural growth in ideal circumstances, and b 
the density-dependent feedback because of limited environmental conditions.

In order to smoothen the model (2.3) we propose a more general one:

(2.4) In = — In r +  6 In / (Xt)
At+i

with r > 1, b > 0 and in which the function /  : [0, oo[-> K is called the density 
function. We require it to satisfy:

(Al) / :  [0, oo[—> E is strictly positive and continuously differentiable on its 
domain.

(A2) /(0) =  1.
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(A3) The function L : [0, oo[— defined by L(x)  = xf 'jx)
f ix )

creasing.
is strictly in-

Condition (Al) guarantees that the transitions are indeed smooth. Con­
dition (A2) makes sure th a t the model satisfies the first fundamental assump­
tion in ecological models (PI): for small populations exponential growth 
should be possible

* t « 0  =» Xt+\ ~  r X t.

Remark that it can always be satisfied by choosing suitable r and b, as long 
as r > 1, b > 0. The last condition (A3) represents the second fundamental 
assumption in population models (P2). It guarantees that for b > 0 the 
density dependence increases for increasing population size since the slope 
of the density is:

din A’i
A't+i

dlnXt
= bL(Xt).

As mentioned in the preceding section, models with liin^oo L(x) < oo 
are usually called contest models while models where L has no finite limit 
are called scramble models. We will see that there is an important difference 
between the two types when we consider stochastic perturbations of the 
models.

Note that the Hassell model and the Ricker model are both special cases 
of our general framework, with f(x) = 1 +  x  and f ( x ) =  ex, respectively. The 
first one is a typical contest model and the second one a typical scramble 
model. Also remark that the linear model (2.2) does not belong to our class of 
models since it violates the second condition: it does not permit exponential 
growth for small population sizes.

Our general model can be rewritten in the transition form 

(2.5) X t+1=g( Xt) : =r Xt [ f (Xt)]-b,

which clearly shows the capacity for exponential growth (with exponential 
growth factor r > 1) and the density-dependent feedback that reduces growth 
(and of which the intensity is characterized by the positive parameter b). The 
model (2.4) together with the conditions on /  can thus be seen as a general 
population model for non-overlapping generations which unifies models like 
the Hassell and Ricker models, taking into account the premises of ecological 
population models and the experimental observations on density-dependence 
(see for example [3]).

In the following lemma some elementary but useful properties of the 
functions /  satisfying (A1)-(A3) and g are derived, that will be needed later
on.
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LEMMA 2.1. All f  satisfying (A1)-(A3) and g as defined in equation
(2.5) derived from these satisfy:

1. f  is strictly increasing and f (x )  ^ 1 for all x ^ . 0 .
2. For all x  > 0:

(2.6) l n f ( e x) ^ f ( l ) - l + x L ( e x).

3. If the function L has a finite limit L =  lim L(x) then
x —>oo

lim x~x In f{ex) = L.
x —>oo

P r o o f . 1. Since L(0)=0 and L(x) is strictly increasing, we have L(x)>0 
for x  > 0 and since /  is strictly positive, condition (A3) implies that f  is 
strictly positive. Therefore we have that f (x )  ^  /  (0) = 1.

2. Since In /(0) = 0 we have

o o l

Because of the first part of the lemma we find 

l l

J ^ d s i f  f ( s ) d s = m - m = n i ) - i
0 0

and for the second integral

ex ex x

(2,8) S  w > d s = I  Í  L ^ d T = xL{-ex^
1 1 0

where we have used condition (A3) in deriving the last inequality.
3. We use de l’Hospital’s rule:

lim In f{ ex) / x — lim f '{ex)ex/ f ( e x) — lim L(ex). □
X—¥00 X-AOC X-AOO

The general population model (2.4) has two free parameters once the 
function /  has been specified: a natural growth parameter r  > 1 which is 
the exponential growth factor in an ideal environment and an environmental 
parameter b > 1 which represents the rate of density-dependent feedback of 
the environment. We now want to consider population models in which the
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environment (that is, the parameter b) varies stochastically. That is, we now 
take

r X
<2-9)

in which Xo > 0 can be chosen freely and {7* 11 £ N} is a set of independent 
identically distributed random variables with a distribution function which 
satisfies some mild conditions that will be specified later on. Remark that 
this implies that {Xt \ t 6 N} is a stochastic Markov process. We will denote 
the probability space for this process by (ÍÍ, X, P ) with fl the sample space, 
T  an appropriate cr-field and P  the probability measure. We use the notation 
P(A) =  P({lo I A(w)}) and take the symbol X  ~  tt to state that the stochastic 
variable X  has probability distribution ix. The symbol E denotes the usual 
expectation operator. The indicator function of a set A will be denoted by 
1^; it has the value one on A  and the value zero outside A.

We will now address the question under what conditions there exists an 
invariant distribution 7 r ,  tha t is, a distribution satisfying

X i  ~  7r  = >  - X j + i  ~  7r .

It is easy to see that an initial distribution of this kind does not change in time 
and it is therefore important if we are interested in the limiting behaviour 
of our stochastic population process. The invariant distribution represents 
a ‘stochastic equilibrium’ and if the probability distribution of the process 
converges to a stationary distribution, this distribution has to be invariant. 
Moreover, studying certain statistical properties of the distribution function 
of the population only makes sense if the distribution is stationary in time.

We will now state some preliminary results on discrete time Markov 
processes on a continuous state-space that we will need in the sequel. All 
results are stated without proofs. These can be found in standard textbooks 
about the theory of Markov processes, for example [11] or the references in 
[1, 2]. We are interested in transition probabilities

F { X t e A \ X 0 = x)

for x  <E]0, oo[ and A a Borel-set. When the distribution of the noise {£t 11 € N} 
has a positive density everywhere on K+, we have

¥ { X t e A \ X 0 = x) = J  pt{r \x) dr
A

with pt(r  I x) the t-step transition density which is strictly positive for all 
values of x  and t E]0, xr l [. This implies that the process is Lebesgue irre­
ducible: every set in the state space with positive Lebesgue measure can be

M. H. VELLEKOOP and G. HÖGNÄS
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reached from any initial value X q. Furthermore, we may conclude that the 
process is aperiodic: there are no cyclic subsets in the state space. For h a 
bounded measurable function on the state space, the mapping

h - >  E [ h ( X i )  | X 0  =  s ]

is called the transition probability operator of the process. Under our assump­
tions, the transition probability operator maps bounded continuous functions 
to bounded continuous functions.

An irreducible Markov process is called recurrent if the expectation of 
the number of returns to A is infinite:

OO

P  (Xt G  A I A T o  =  x) =  o o

í=i

for all sets A with positive Lebesgue measure. Otherwise the process is 
called transient. Every recurrent process has a er-finite invariant measure 7r, 
satisfying

n( A) = f  f ( X t e A \ X 0 =x)-n{dx)
R +

for any Borel set A.  If the measure n is finite:

f  n(dx)  <  o o

R +

and we can therefore make it a probability measure by normalizing it, the 
process is called positively recurrent, otherwise it is called null-recurrent. In 
the latter case there exists at least one set A with positive Lebesgue measure 
such that

n
lim - V  P(Xt G A |X 0 =  :c) =  0.

n—yoo n  j '

It is clear from these results that it is interesting from a biological point 
of view to know whether a certain biological process is positively recurrent 
or not: if we are interested in an invariant probability measure, we must 
first prove positive recurrence. We will use the following theorem to obtain 
results for our class of stochastic population models (see [9, 11]):

THEOREM 2.1 .  Suppose that a Markov process {ATj 11 G N} is Lebesgue 
irreducible and that its one step transition probability maps continuous func­
tions to continuous functions. If there exists a compact set K , an e > 0, 
C  > 0 and a function V such that
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1. (VzeM) V { x ) ^ 0 ,
2. ( V x e K c) E[V(Xi)  \ X q — x] — V(x) < —e
3. (V xeK ) E [V p fi) 1 X 0 = x \ ^ C

then the process {X t 11 6 N} is positively recurrent.

The conditions of the last theorem are called mean drift conditions and 
they roughly state that the process V(Xt)  is a supermartingale outside some 
compact set, with an expectation which decreases uniformly. The function 
V  is often called a Stochastic Lyapunov Function. Note that the Lyapunov 
function is not required to be continuous.

3. Sufficient conditions for stationarity

Using the results of the last section we will now give sufficient condi­
tions for the stochastic population models to have an invariant probability 
measure. We will assume, as stated earlier, that the model has the form

r X
(3-D X t+1 = G (X u l i =

and tha t the following conditions are satisfied:
(B l) X q > 0 (initial population not trivial) and r > 1 (there is natural 

growth),
(B2) {7t I t 6 N} are independent identically distributed stochastic vari­

ables with finite first and second order moments,
(B3) the random variables {71 11 6  N} have an absolutely continuous dis­

tribution, with a probability density which is positive on the whole 
R+ .

Under these assumptions, the transition probability operator maps con­
tinuous functions to continuous functions. Indeed, if h is a bounded contin­
uous function on R+ and <f> is the distribution of the noise 7 then

E[h(Xi) \ X 0 =x] = j  /i(rx/(a:)"'7)̂ (d7)
R

and this is continuous in x  by Lebesgue’s dominated convergence theorem, 
since /  is continuous.

Our result is split into two separate theorems, one for the contest models 
and one for the scramble models, since the analysis for these two cases is 
different.
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T heorem  3.1. Consider the stochastic process given by (3.1) satisfying 
conditions (B1)-(B3) and with the function f  satisfying conditions (A l)- 
(A3). If

lim L{x) = L < oox-f-oo
and

(3-2) E ( ( 1 - L 7t ) l {7tgi } )  < 1

then there exists a unique invariant probability distribution n on IR+  for this 
process.

PROOF. Define the process Yt = In X t ,  then we have that {Yt \ t £ N} pos­
itively recurrent if and only if { X t  \ t £ N} positively recurrent, and obviously

(3.3) Yt+i =  Tj +  In r — 7t In /  (ey‘).

Since the probability density is positive on the whole E+ and ln r  >  0 the 
process is irreducible. We will therefore prove that the function V : K —> R+ 
defined by

V(y) =
{

y ,

- a y ,

y Z  o 
y <  o

with a  > 0 a suitably chosen constant that we will specify later on, is a 
Lyapunov function for the process {Tt}. We introduce the functions

B ( y )  =
y + lnr  
In f(ey)

and
p(y) =  P(7t ^ B(y)) = P(Fi+i ^  0 1 Yt = y). 

Because of Lemma 2.1 we have

(3.4) lim B(y)  =  l /L.
y-> oo

It is also easy to establish that we must have

(3.5) lim p ( y ) = 0 .
y—y—oo

Evaluating the expected growth of V  in a point y we find

E[V(Yi)| Y0 = y]~ V(y) = E (y +  ln r  — 7t ln /(e y) ) l{7(̂ fí(j/)} 
+E {—ay - a l n r  + a'yt ln /(e y) ) l{7t>ß(y)} -V {y ) .
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Rearranging terms gives

E [ F ( y 1 ) | F o  =  y ] - V ( y )

(3.6) =(y  + In r)p{y) -  (E7tl {7t^B(j/)}) \n f (ey) 
+ ( - m / - a l n r ) ( l  -p (y))  +  a ( E 7 t l { 7( >£( , , ) } )  l n / ( c y ) -  V(y).

Now for y <C 0 the first term will become equal to or smaller than zero because 
of (3.5), the second and the fourth term both go to zero since \n f ( ey) —> 0 
as y —> — oo and the expectations have upper bounds which do not depend 
on y. The third term is asymptotically equal to —ay — alnr  and the last 
term  is equal to —(—ay) =ay.  Therefore we have

(3.7) E[V(Y1) \ Y 0 = y ] - V ( y ) < - ± a h i r ,  (y « 0 ) .

For y 3> 0 we find, using equation (3.6) and the fact that in this case 
Y(y) that

E [V(Yi) I Y0 =  y) -  V(y) = ay (^>{y) -  1 +  ^ — ^-E^tl{lt>B(y)) J

(  In f(ey) \
+ y [ p ( y ) -  1 ------------E7il{7<gB(y)}J

+ p(y) ln r — a (l —p(y)) In r.
The last two terms have an upper bound which is independent of y. 

Because of dominated convergence and Lemma 2.1 the bracketed expression 
in the second term will converge as y —> oo:

P(y) “  1 ------—^E7<l{7,gß(y)} J—* E(! -  ^7t)l{7t^i/L} -  1

which implies, because of (3.2) that for y big enough, the second term will 
be smaller than — u\y\ for some v>  0. Analogously, the bracketed expression 
in the first term converges according to the dominated convergence theorem:

p(y) -  1 + i ^ ^ E 7 tl {7t>ß(3/)} ^  -P (7 t > 1 ß )  + LEl t l bt>1/L},

so for y sufficiently large it will become smaller than the positive value D  := 
LE7tl{ 7t>1/£j. Therefore, if we take a < \ v / D ,  the first term will become 
smaller than y , and therefore we find for the total in (3.6):

(3.8) E[V(Y1) \Y 0 = y ] - V ( y ) < C - ^ y

for y big enough, with C  a constant which is independent of y. Taking (3.7) 
and (3.8) together we see that there exist positive y i,j/2 such that if we take 
K  =  [—y \ , 2/2] we have for y £ K \  K\

E[V(Yl ) \Y 0 = y ] - V ( y ) < - e
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with
e =  min{-i't/2 — C ,  -a ln r} .

This shows that the conditions of Theorem 2.1 are satisfied since it is easy 
to see, using (3.6), that for every y £ K  we have

E [V (Yi) I Y0 = y } ^ y 2 + In r  +  (1 +  a)\E'yt \ \n f{ey2) + ayx + y i :=  C.

The result now follows from Theorem 2.1. □
We have thus found a sufficient condition for the existence of a stationary 

distribution in contest models. Remark that this condition will automatically 
be satisfied if the probability density of the environment 71 is taken small 
enough (or even zero) for negative values since then

E (1 — Z,7t)l{7(<X} ~  E (1 — Z7t)l{0, 7(, . }  < 1-

The following example illustrates this.
E x a m p l e  3.1. Contest models with Gaussian distributed environments. 

Suppose we have a stochastic contest model where the {7* | t € N} are in­
dependent Gaussian random variables with mean y  and variance a 2. Then 
the process Xt  as defined in (3.1) has a unique invariant probability measure 
when

1 \ /2 tx

Indeed, evaluating the conditional expectation in (3.2) gives:

[Í !  z M e- \ ^ d x < i  
J oV2̂  ~ J

l / L —X 1 / X - L - 1 \ 2  ,-----= r -  e 2  ̂ <7 > dx.
o V 2tt

Introducing a new integration variable s = ~ — x  we find that the conditional 
expectation is smaller than

0

which proves that there exists indeed an invariant probability measure for 
this case, since the other requirements of the theorem are trivially satisfied 
for Gaussian random variables. □

Having established a sufficient condition for stationarity when L  has a 
finite limit, we now turn to the scramble models, where L diverges to infinity. 
The following theorem is an extension of results in [1], where a proof is given 
for the specific case of the Ricker model.
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T heorem  3.2. C o n s i d e r  t h e  s t o c h a s t i c  p r o c e s s  (3.1) s a t i s f y i n g  c o n d i ­

t i o n s  (B1)-(B2) a n d  w i t h  t h e  f u n c t i o n  f  s a t i s f y i n g  c o n d i t i o n s  (A1)-(A3).
I f

lim L{x) =  oo£—>00
a n d  t h e  {71 \ t  €  N} h a v e  a  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  w h i c h  i s  p o s i t i v e  o n  

] 0 ,  0 0 [ ,  z e r o  o n  ] — 0 0 , 0 [ ,  b u t  w i t h  p o s s i b l y  a n  a t o m  a t  t h e  o r i g i n  s a t i s f y i n g

(3.9) P(7í =  0)< (lim sup^ppy-)
V  X - > 0 O  I'\X) J

t h e n  t h e r e  e x i s t s  a  u n i q u e  i n v a r i a n t  p r o b a b i l i t y  m e a s u r e  n  o n  M+ f o r  t h i s  

p r o c e s s .

P r o o f . We use the Lyapunov function

y <  0

for the process Yt := In Xt- Here a > 0 will be specified later on. We have

E[V(Yl ) \ Y 0 = y} -V (y )
(3.10) =  E(y +  ln r  — 7i ln /(ey))L(e!/+lnr_7tln/(e,' ))l{7t^B(y)}

+  E (- a y  -  a In r + In / (ey)) 1 Í7í >ß(y)} -  V(y).

For y <C 0 this will become smaller than — |o l n r  for y < —y\ with yj > 0 
large enough, since 7t ^  0, L > 0 and In f{ey) -> 0 as y -4 —00 together imply 
that the above expression is asymptotically equivalent to

{-ay — a ln r ) ( l  — p{y)) -  F(y) ~  —ay — a In r — (—ay) 

as y goes to —00. For y > 0  we find that (3.10) is smaller than

(y+  ln r)L (eJ/+lnr)y(y) - a ( y  + I n r ) ( l  -p(y))
+a|E7í l{7t>B(2/)}l [/(l) -  1 +  yL{ey)\ -  yL{ey) 

because of (2.6). Rearranging gives

yL ( e » ) \ p ( y ) y ^ l (  1 +  ~ 1 ] + ay\p(y) -  1 +  |E7tl {7i>B(y)}\L{ey)\

+<*[(/(!) -  l)|E7tl{T»>B(»)}I +  ln r(p(y) -  1)]. 

x-yoo L(x) = 0 0  we have that lim ^oo B {y ) =  0 so 

lim p(y )=  lim IP (74 ^ B{y)) =  P(7t = 0)
y —>00 2/—> 00

Since lim
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so for y ^ 2/2? with y2 > 0 large enough we have, because of (3.9) 

yL{ey)\p{y)L̂ r~ y (l + -  1] < -uyL{ey)

for a certain positive v and choosing

v
a < 2(l + |E7il {7(>0}|)

gives

E [V(Y1) I y0 =  y] ~ V(y) < C -  ^vyL(ey)

with C  a constant which is independent of y. So again, if we take K  = 
[ -y i,y 2] the conditions of Theorem 2.1 are satisfied outside K  and on K  we 
find

E[V(Y1) \Y 0 = y) = E (y +  ln r -  7t ln/(e»)) L(ey+lnr~* lnf^ ) l ltűB{y)
-  E {ay + a ln r -  a7t In f{ey))l{lt>B(y)}

^(y2 +  \nr)L(rey2) + ayi + ay 2E7t ln /(e y2)

and thus the theorem has been proven. □

Remark that there is a fundamental difference between the class of sto­
chastic processes we use in these two results: in the second one we assume 
that 7t can only attain nonnegative values.

Now that we have found sufficient and almost necessary conditions for 
the existence of an invariant probability measure for the stochastic popu­
lation models, we will address the question of stochastic stability. That is, 
we would like to know under what conditions an arbitrary initial probability 
distribution on the state space converges to this invariant probability distri­
bution and what can be said about the speed of convergence. This is of some 
importance, because if we cannot guarantee that an arbitrary initial popu­
lation will converge to a stationary random variable in time, some attempts 
to measure statistical properties of the population over time may be useless. 
Moreover, we can only compute the invariant distribution numerically by 
iterating an arbitrary initial distribution and hoping that this converges to 
the invariant one.

Since we want to prove a stronger result than simple pointwise conver­
gence of the distributions, we introduce the following total variation norm 
for signed measures u on R+:

Hi/|| =  sup I v(g)\— sup u(A) — inf i'(A) 
hrlslgi} ’ A£B(r+) A€B(r+)
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w ith Ö(K+) the Boréi sets in R+ . If we define P* to be the probability mea­
sure of Xt  given the initial condition X q =  x , and 7r the stationary probability 
measure, we can now state precisely the property we would like to establish: 

D e f in it io n  3.1. The Markov process [ X t \ t 6 N} with invariant proba­
bility distribution n is called ergodic if for every x E R+

lim ||P Í -7 t||= 0 .

The question of stochastic stability is completely resolved by the follow­
ing result, which is a special case of results proven in [9]:

L e m m a  3.1. Suppose that the irreducible Markov process {Xt | t € N} 
admits a stationary probability distribution and is Harris recurrent, that is, 
it visits every Borel set in its domain infinitely often:

OO

(VA e B(R+)) (VXo € A) p ( ^  1 { X t e A }  =  oo) =  1.
t=i

Then the process is ergodic.
Since conditions (B1)-(B3) imply already that every positive Borel set 

will be visited infinitely often, we immediately have from Lemma 3.1:
C o r o l l a r y  3.1. All processes (3.1) satisfying conditions (B1)-(B3) and 

with the function f  satisfying conditions (A1)-(A3) which admit a stationary 
probability measure, are ergodic.

So in all cases where we have proven that a stationary distribution ex­
ists, every initial population will converge to a random variable having this 
distribution. That is, the population models are stochastically stable.

4. Examples of applications

We will now illustrate our results by some numerical examples.
EXAMPLE 4.1.. Stochastic stability of a contest model. We consider a 

stochastic perturbation of the Hassell model. We take the environmental 
parameters identical independently distributed Gaussian random variables 
w ith mean 3 and variance 1, and a natural growth rate r = 2:

r X
Xt+l = {1 + X t p P  r = 2’ 7< ~  i.i.d. iV(3,1).

For this model we have
X -

L(x) = ------- => L =  lim L{x) = 1.x  +  1 x->oo
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So for this particular choice of the environmental random variables, condition
(3.2) for the existence of an invariant distribution becomes

E ( l - Z 7í ) l{7íá-L}~  0 .0084«!

and therefore the distribution of the stochastic process {Xt} should converge 
to a stationary distribution n. Figure la  shows the distribution of X t for 
t  =  1,2, . . . ,  5 when we take the initial condition Xo =  1, and Figure lb  when 
X q = 0.5. We see that the distribution converges indeed to the same sta­
tionary distribution in both cases. Taking the same stochastic perturbation 
model but now with environmental variables which have zero mean:

Xt+i =
r X t

(1 +  X«)7t’
2, 71 ~  i-i.d. N (0,1)

we find

E ( l - L 7t) l {7|g£ }«  1.083 >1

so our condition is not satisfied here. Looking at the distribution functions in 
Figure 2, we see that in this case the system is not stochastically stable. The 
initial distribution ‘wanders off’ in the positive direction, and it will eventu­
ally spread out over the entire positive axis, while converging pointwise to 
zero in every single point. These two examples clearly show the importance 
of our conditions for stochastic stability in the analysis of populations in 
stochastic environments.

Fig. 1. Hassell model, r  — 2, b ~  7V(3,1)
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Fig. 2. Hassell model, r =  2, 6 ~ iV (0 ,1), .Xo = 0.5

E x a m ple  4 .2. Stochastic stability of a scramble model. We now take a 
look  at a typical stochastic perturbation of a scramble model:

X t+i =  2 X te~Xat, =  0) = p o
P (7 í =  \Zt \) =  1 -po

w ith Zt ~  i.i.d. N (3, ^). For the Ricker model we have

f (x)  = ex => L(x ) =  x
and according to Theorem 3.2 this means that a stationary distribution exists 
if

(  L(rx)  \  1 f  r x \ ~ l 1
Po < hm sup = urn sup — = -  = 0.5.

V x->oo L(x)  )  \  i _kx> x )  r
First the distributions for po = 0.2 were calculated; after seven iterations 

the distribution function showed no significant changes any more and the 
stationary distribution of Figure 3a was obtained. Remark that peaks are 
found at distances which differ by a factor r due to the atom at zero in the 
environment which implies a population growth with factor r.

(b) p o =  0 .8 >  4

Fig. 3. Distributions for Ricker model, r =  2
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For po — 0.8 we find the distribution functions of Figure 3b. The distri­
bution spreads on the entire positive axis, with peaks travelling to infinity 
due to multiplication by r in every iteration, while the distribution converges 
to zero in every single point.

5. Conclusions

In this paper we have addressed the question of stability in single species 
discrete population models. A sufficient condition for stability was derived, 
which turned out to be satisfied in all cases where the environmental influence 
was purely adversary, but also if there was a limited possibility of favourable 
environments in the contest case.

The most surprising aspect of the results presented here is their very 
general nature. The two intuitively appealing premises stated in the first 
paragraph apparently contain sufficient information about the ’nature’ of 
the dynamics to prove stability in the stochastic model for favourable envi­
ronments. Therefore one may state that the possibility of a stable stationary 
probability distribution in their stochastic perturbations is a consequence of 
the ecological principles behind population models, and not of the details of 
a particular model. Since it is impossible in practice to describe any popula­
tion exactly with one particular model, this should be a reassuring point for 
those who use population models to fit experimental data. If the stability 
of a stationary distribution of a stochastic population model can be proven 
for a particular model, but not for a model which is ‘close’ to this one, then 
the calculation of mean, variance and other statistical characteristics would 
be useless from a mathematical point of view. In this way the framework 
provided here can be used not only as a theoretically interesting generaliza­
tion, but also as a rigorous justification for the use of population models to 
obtain theoretical statements about experimental data.

The question arises naturally if the conditions we have found are not 
only sufficient but even necessary for stochastic stability. The simulation 
results presented in the previous section clearly indicate that this might be 
true, and this topic is currently under investigation.
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1996, 728 pp. ISBN 0 8247 9606 3. $ 175.00

This volume is the Proceedings of a conference held in memory of Roberto Magari 
(1934-1994) in Pontignano (Siena, Italy), April 26-30, 1994. The conference was origi­
nally planned to celebrate Magari’s 60th birthday by putting together researchers from 
mathematical logic and general algebra. Here is the list of invited papers:

S. Artemov and A. Chuprina: Logic of proofs with complexity operators.
M. Comini and G. Levi: Beyond the s-semantics: A theory of observables.
D. Finberg, M. Mainetti and G.-C. Rota: The logic of commuting equivalence rela­

tions.
J.-Y. Girard: Proof-nets: The parallel syntax for proof-theory.
P. Hájek: Magari and others on Gödel’s ontological proof.
L. Hendriks and D. de Jongh: Finitely generated Magari algebras and arithmetic.
J. Lambek: The butterfly and the serpent.
F. W. Lawvere: Adjoints in and among bicategories.
A. Macintyre: Exponential algebra.
R. McKenzie: An algebraic version of categorical equivalence for varieties and more 

general algebraic categories.
A. F. Pixley: Boolean universal algebra.
R. Wille: Restructuring mathematical logic: An approach based on Peirce’s pragma­

tism.
G. Zappa: The development of research in algebra in Italy from 1850 to 1940.
In addition, the volume contains 20 research papers, mainly on model theory and 

universal algebra, including a posthumous paper of Magari, jointly with G. Simi, entitled 
‘A revision of the mathematical part of Magari’s paper on “Introduction to metamorality” ’.

Many papers in this volume are valuable contributions to mathematical logic, universal 
algebra, and category theory, and the volume is recommended to researchers in these fields.
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systems, Peter B. Kahn, Wiley Science Paperback Series, John Wiley and Sons, New 
York, 1990, XIX, 469 pp. with illustrations. ISBN 0 471 62305 9 (cloth), 0 471 16611 0 
(pbk). £ 29,95

This book is meant as a one-year course in mathematical methods for advanced under­
graduates or beginning graduate students in applied mathematics, physics and engineering. 
The first half of the book deals with linear systems to prepare the reader for the second 
half which deals with nonlinear systems, especially with weakly nonlinear oscillatory sys­
tems and nonlinear difference equations. It is very easy to read the book, since the author
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introduces the methods by giving examples with a lot of introductory, accompanying and 
concluding remarks.

It is not easy, however, to see the purpose of the author by writing of this book. For 
example, the text treats only the 2 x 2  matrices, so in the reviewer’s opinion, somebody 
with a minimum knowledge of mathematics would not much learn from this book.

The content of the book is as follows.
Part I. Linear systems. — Matrix theory — The Gamma and related functions — 

Elements of asymptotics — Evaluation of sums: The Euler-Maclaurin sum expansion — 
Evaluation of integrals: The Laplace method — Differential equations.

Part II. Nonlinear systems. — The simple harmonic oscillator and the logistic equation 
— Aspects of harmonic motion and the concept of secular terms — Equilibrium points 
and the phase plane — Conservative systems — Nonconservative systems — The method 
of averaging — The method of multiple times scales — Higher-order calculations — Error 
analysis — One-dimensional iterative maps and the onset of chaos.

Appendix. A discussion of Euler’s constant.

T. Fényes (Budapest)

M ultigraph. Version 1.0c from IntelliPro, Wiley College Software, John Wiley and 
Sons, Inc., Chichester, 1996, ISBN 0 471 10618 6 . £ 22,50

If you need a lightweight and easy-to-use software to make some mathematical analysis, 
Multigraph is a reasonable choice for you. This software is not for professional users and 
professional mathematicians, but for students (or anyone who likes maths and computer 
graphics). You can make nice and useful drawings of simple or complicated 2-variable 
functions with some simple steps.

It is a good idea that the software does not leave the user alone with a cryptic collection 
of menu points, but draws sample graphs with one mouse click, and from this state you 
can build the graphic you need by simply changing parameters step-by-step.

You can create 3-dimensional colour surface graphs, 2-dimensional vector fields even 
with a line integral along a user-specific path, or contour diagrams. You can set everything 
by an easy-to-use graphical interface and see the resulting graphics immediately. Pictures 
then can be printed out or saved — but only in a special format used by the software, so 
you cannot export them to other applications.

G. Sipőczy (Budapest)

M A G Y A R

ADOMÁNYGS AKADÉMIA
KÖNYVTARA



Studia Scientiarum 
Mathematicarum Hungarica

Editor -in- Chief 
G. 0. H. Katona

Deputy Editor-in-Chief 
I. Juhász

Editorial Board

H. Andréka, L. Babai, E. Csáki, A. Császár, I. Csiszár, A. Elbert 
L. Fejes Tóth, A. Hajnal, G. Halász, P. Major, E. Makai, Jr., L. Márki 
D. Miklós, P. P. Pálfy, D. Petz, I. Z. Rúzsa, M. Simonovits, V. T. Sós 

J. Szabados, D. Szász, E. Szemerédi, G. Tusnády, I. Vincze

Volume 33

Akadémiai Kiadó, Budapest 
1997





STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA

Volume 33

CONTENTS

A l-K houja, E. A. and Nakkar, H. M., On Laskerian lattices and Q-lattices 363 
B arbe, P. and Broniatowski, M., Deviation principle for set indexed pro­

cesses with independent increments ................................................................  393
Berkes, I. and Horváth, L., Almost sure invariance principles for logarithmic

averages ...............................................................................................................  1
B író, Zs . and Michaletzky, Gy., The first passage density of the Brownian

motion to a Lipschitz-continuous boundary .................................................  25
Book reviews .............................................................................................................. 477
Broniatowski, M. and B arbe, P., Deviation principle for set indexed pro­

cesses with independent increments................................................................  393
Csörgő, M., Horváth, L. and Shao, Q .-M ., Almost sure summability of

partial sums ........................................................................................................  43
D eheuvels, P. and Lifshits, M. A., On the Hausdorff dimension of the set

generated by exceptional oscillations of a Wiener process.........................  75
Erdős, P., Makai, E., Jr . and Vincze, I., On the best approximating ellipse

containing a plane convex body ...................................................................... I l l
Erdős, P. and Révész, P ., On the radius of the largest ball left empty by a

Wiener process ....................................................................................................  117
Frolov, A., Martikainen, A. and Steinebach, J., Erdős-Rényi-Shepp type

laws in the non-i.i.d. case .................................................................................. 127
Handa, B. R. and Mohanty, S. G., Extensions of Bonferroni type inequalities 153 
Horváth, L. and B erkes, I., Almost sure invariance principles for logarithmic

averages ...............................................................................................................  1
Horváth, L., Csörgő, M. and Shao, Q.-M., Almost sure summability of

partial sums ........................................................................................................  43
Högnäs, G. and V ellekoop, M. H., Stability of stochastic population models 459 
Hurelbaatar, G., Almost sure limit theorems for dependent random variables 167
Khoshnevisan, D., Escape rates for Lévy processes ...........................................  177
Kilgore, T., P restin, J. and Selig, K., Polynomial wavelets and wavelet

packet bases ........................................................................................................  419
Kodaj, B. and Móri, T. F., On the number of comparisons in Hoare’s algo­

rithm “FIND” ....................................................................................................  185
Kovács, K., On a characterization of abelian groups by sums and differences 455 
Lifshits, M. A. and Deheuvels, P., On the Hausdorff dimension of the set

generated by exceptional oscillations of a Wiener process.........................  75
Makai, E., Jr., Erdős, P. and Vincze, I., On the best approximating ellipse

containing a plane convex body .....................................................................  I l l
Martikainen, A., Frolov, A. and Steinebach, J., Erdős-Rényi-Shepp type

laws in the non-i.i.d. case .................................................................................. 127
Mehri, B. and Shadman, D., Periodic solutions of certain third order nonlinear

differential equations .........................................................................................  345



M ichaletzky, Gy . and B író, Zs., The first passage density of the Brownian
motion to a Lipschitz-continuous boundary ..................................................  25

Mohanty, S. G. and Handa, B. R., Extensions of Bonferroni type inequalities 153 
MÓRI, T. F. and Kodaj, B., On the number of comparisons in Hoare’s algo­

rithm “FIND” ........................................................................................................  185
N akkar, H. M. and Al-K houja, E. A., On Laskerian lattices and Q-lattices 363 
N ogura, T ., Shakhmatov, D. and Tanaka, Y ., ^-property versus A-prop-

erty in topological spaces and groups ................................................................ 351
N orvaisa, R., The central limit theorem for L-statistics ....................................  209
P ielichowski, W., A nonlinear eigenvalue problem related to Gabriella Bog-

nár’s conjecture ......................................................................................................  441
P restin, J., Kilgore, T. and Selig, K., Polynomial wavelets and wavelet

packet bases ............................................................................................................ 419
Révész, P., Moderate deviation of a branching Wiener process ........................ 239
Révész, P. and Erdős, P ., On the radius of the largest ball left empty by a

Wiener process ........................................................................................................  117
Roszak, B., On the pointwise approximation by Borel and Euler means .......  369
Salminen, P., On last exit decompositions of linear diffusions .......................... 251
Saran Jagdish and Sukla, M. K., Distributions based on Smirnov one-sided

and related rank order statistics .........................................................................  263
Selig, K., Kilgore, T. and P restin, J., Polynomial wavelets and wavelet

packet bases ............................................................................................................  419
Shadman, D. and Mehri, B., Periodic solutions of certain third order nonlinear

differential equations .............................................................................................  345
Shakhmatov, D., Nogura, T. and Tanaka, Y ., (^-property versus A-prop-

erty in topological spaces and groups ................................................................ 351
Shao, Q.-M., Csörgő, M. and Horváth, L., Almost sure summability of

partial sums ........................................................................................................  43
Shi, Zh . and Yor, M., Integrability and lower limits of the local time of iterated

Brownian m otion ....................................................................................................  279
Steinebach, J., Frolov, A. and Martikainen, A., Erdős-Rényi-Shepp type

laws in the non-i.i.d. case ...................................................................................... 127
Sukla, M. K. and Saran Jagdish, Distributions based on Smirnov one-sided

and related rank order statistics .........................................................................  263
Székely, G. J. and Zempléni, A., A direct decomposition of the convolution

semigroup of probability distributions ..............................................................  299
Szyszkowicz, B., Weighted approximations of partial sum processes in D[0, oo).

IT ................................................................................................................................ 305
Tanaka, Y., Nogura, T. and Shakhmatov, D., oq-property versus A-prop-

erty in topological spaces and groups ................................................................ 351
T óth, B., Limit theorems for weakly reinforced random walks on Z ............... 321
TÖlke, J., Zur Geometrie der Tridens-Kurven der isotropen Ebene ................. 433
V ellekoop, M. H. and Högnäs, G., Stability of stochastic population models 459 
V incze, I., Erdős, P. and Makai, E., Jr ., On the best approximating ellipse

containing a plane convex body .........................................................................  I l l
Y or , M., Generalized meanders as limits of weighted Bessel processes, and an

elementary proof of Spitzer’s asymptotic result on Brownian windings .. 339
Y or, M. and Shi, Zh., Integrability and lower limits of the local time of iterated

Brownian m otion ....................................................................................................  279
Zempléni, A. and Székely, G. J., A direct decomposition of the convolution

semigroup of probability distributions ..............................................................  299



RECENTLY ACCEPTED PAPERS

S e n , K. and G u p t a , R., Time dependent analysis of T-policy M/M/ 1 queues — a new 
approach

K iy o m u r a , J., K usano , T. and Na ito , M., Positive solutions of second order quasilinear 
ordinary differential equations with general nonlinearities 

Guo, S. and Qi, Q., On the simultaneous approximation of functions and their derivatives 
by the Gamma operator

M o l n á r , E., P r o k , I. and Szirmai, J., Classification of solid transitive simplex tilings.
II. Metric realization of the maximal simplex tilings 

Wu, J. and Li, R., The hypocontinuity and uniform boundedness for bilinear maps 
T ó t h , L., Asymptotic formulae concerning arithmetical functions defined by cross-convolu­

tion. III. On the function 7 7 .
C zlapinski , T. and K a m o n t , Z., Generalized solutions of local initial problems for quasi- 

linear hyperbolic functional differential systems 
A r gyr os , I. K., Approximating solutions of operator equations and applications using 

modified contractions
Guo, S. and Ql, Q., Pointwise estimates for Bernstein-type operators 
F én y es , T., Integral representations of the Laplace transform and moments of the modi­

fied Bessel function with respect to the order 
El M o u m n i , S., Optimal packings of unit squares in a square 
CSÖRGŐ, S., Rényi confidence bands 
Móri, T. F., Asymptotics of periodic permanents
C hud ak , F. and G r ig g s , J., A new extension of Lubell’s inequality to the lattice of 

divisors
M eg y e s i , Z., Coverage probabilities of Rényi confidence bands
B a u e r , C . ,  On the exceptional set for the  sum  of a prime and  the fc-th power of a prime

Manuscripts should be submitted in duplicate, typed in double spacing on only one 
side of the paper with wide margins. Only original papers will be published and a copy of 
the Publishing Agreement will be sent to the authors of papers accepted for publication. 
Manuscripts will be processed only upon receipt of the signed copy of the agreement.

Authors are encouraged to submit their papers electronically. All common dialects 
of TJjX are welcome. The electronic file of an article should always be accompanied by a 
hardcopy, the printed version exactly corresponding to the electronic one.

Figures should be submitted on separate sheets, drawn either in India ink at their 
expected final size, or as printouts and matching files processed electronically, preferably 
as encapsulated PostScript (EPS) ones.



CONTENTS

M ehri, B. and Shadman, D., Periodic solutions of certain third order nonlinear
differential equations ..............................................................................  345

N ogura, T., Shakhmatov, D. and Tanaka, Y ., Q4 -property versus ^-prop­
erty in topological spaces and groups .....................................................  351

N akkar, H. M. and A l-K houja, E. A., On Laskerian lattices and Q-lattices 363
Roszak, B., On the pointwise approximation by Borel and Euler means ......  369
B arbe , P. and B roniatowski, M., Deviation principle for set indexed pro­

cesses with independent increments ........................................................ 393
K ilgore, T., P restin, J. and Selig, K., Polynomial wavelets and wavelet

packet bases ...........................................................................................  419
T ölke, J., Zur Geometrie der Tridens-Kurven der isotropen Ebene ..............  433
P ielichowski, W., A nonlinear eigenvalue problem related to Gabriella Bog-

nár’s conjecture ......................................................................................  441
Kovács, K., On a characterization of abelian groups by sums and differences 455 
V ellekoop, M. H. and Högnäs, G., Stability of stochastic population models 459 
B ook reviews ................................................................................................  477

HU ISSN 0081-6906


	1-3. szám����������������
	Berkes I.-Horváth L.: Almost sure invariance principles for logarithmic averages���������������������������������������������������������������������������������������
	Bíró Zs.-Michaletzky Gy.: The first passage density of the Brownian motion to a Lipschitz-continuous boundary��������������������������������������������������������������������������������������������������������������������
	Csörgő M.-Horváth L.-Shao Q.-M.: Almost sure summability of partial sums�������������������������������������������������������������������������������
	Deheuvels P.-Lifshits M. A.: On the Hausdorff dimension of the set generated by exceptional oscillations of a Wiener process�����������������������������������������������������������������������������������������������������������������������������������
	Erdős P.-Makai E. Jr.-Vincze I.: On the best approximating ellipse containing a plane convex body��������������������������������������������������������������������������������������������������������
	Erdős P.-Révész P.: On the radius of the largest ball left empty by a Wiener process�������������������������������������������������������������������������������������������
	Frolov A.-Martikainen A.-Steinebach J.: Erdős-Rényi-Shepp type laws in the non-i.i.d. case�������������������������������������������������������������������������������������������������
	Handa B. R.-Mohanty S. G.: Extensions of Bonferroni type inequalities����������������������������������������������������������������������������
	Hurelbaatar G.: Almost sure limit theorems for dependent random variables��������������������������������������������������������������������������������
	Khoshnevisan D.: Escape rates for Lévy processes�������������������������������������������������������
	Kodaj B.-Móri T. F.: on the number of comparisons in Hoare's algorithm "FIND"������������������������������������������������������������������������������������
	Norvaiša R.: The central limit theorem for L-statistics��������������������������������������������������������������
	Révész P.: Moderate deviation of a branching Wiener process������������������������������������������������������������������
	Salminen P.: On last exit decompositions of linear diffusions��������������������������������������������������������������������
	Saran Jagdish-Sukla M. K.: Distributions based on Smirnov one-sided and related rank order statistics������������������������������������������������������������������������������������������������������������
	Shi Zh.-Yor M.: Integrability and lower limits of the local time of iterated Brownian motion���������������������������������������������������������������������������������������������������
	Székely G. J.-Zempléni A.: A direct decomposition of the convolution semigroup of probability distributions������������������������������������������������������������������������������������������������������������������
	Szyszkowicz B.: Weighted approximations of partial sum processes in D[0, ). II
	Tóth B.: Limit theorems for weakly reinforced random walks on Z����������������������������������������������������������������������
	Yor M.: Generalized meanders as limits of weighted Bessel processes, and an elementary proof of Spitzer's asymptotic result on Brownian windings�������������������������������������������������������������������������������������������������������������������������������������������������������

	4. szám��������������
	Mehri B.-Shadman D.: Periodic solutions of certain third order nonlinear differential equations������������������������������������������������������������������������������������������������������
	Nogura T.-Shakhmatov D.-Tanaka Y.: 4-property versus A-property intopoloical spaces and groups
	Nakkar H. M.-Al-Khouja E. A.: On Laskerian lattices and Q-lattices�������������������������������������������������������������������������
	Roszak B.: On the pointwise approximation by Borel and Euler means�������������������������������������������������������������������������
	Barbe P.-Broniatowski M.: Deviation principle for set indexed processes with independent increments����������������������������������������������������������������������������������������������������������
	Kilgore T.-Prestin J.-Selig K.: Polynomial wavelets and wavelet packet bases�����������������������������������������������������������������������������������
	Tölke J.-Zur Geometrie der Tridens-Kurven der isotropen Ebene��������������������������������������������������������������������
	Pielichowski W.: A nonlinear eigenvalue problem related to Gabriella Bognár's conjecture�����������������������������������������������������������������������������������������������
	Kovács K.: On a characterization of abelian groups by sums and differences���������������������������������������������������������������������������������
	Vellekoop M. H.-Högnäs G.: Stability of stochastic population models���������������������������������������������������������������������������
	Book Reviews�������������������

	Oldalszámok������������������
	_1���������
	_2���������
	1��������
	2��������
	3��������
	4��������
	5��������
	6��������
	7��������
	8��������
	9��������
	10���������
	11���������
	12���������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������
	36���������
	37���������
	38���������
	39���������
	40���������
	41���������
	42���������
	43���������
	44���������
	45���������
	46���������
	47���������
	48���������
	49���������
	50���������
	51���������
	52���������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������
	64���������
	65���������
	66���������
	67���������
	68���������
	69���������
	70���������
	71���������
	72���������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	101����������
	102����������
	103����������
	104����������
	105����������
	106����������
	107����������
	108����������
	109����������
	110����������
	111����������
	112����������
	113����������
	114����������
	115����������
	116����������
	117����������
	118����������
	119����������
	120����������
	121����������
	122����������
	123����������
	124����������
	125����������
	126����������
	127����������
	128����������
	129����������
	130����������
	131����������
	132����������
	133����������
	134����������
	135����������
	136����������
	137����������
	138����������
	139����������
	140����������
	141����������
	142����������
	143����������
	144����������
	145����������
	146����������
	147����������
	148����������
	149����������
	150����������
	151����������
	152����������
	153����������
	154����������
	155����������
	156����������
	157����������
	158����������
	159����������
	160����������
	161����������
	162����������
	163����������
	164����������
	165����������
	166����������
	167����������
	168����������
	169����������
	170����������
	171����������
	172����������
	173����������
	174����������
	175����������
	176����������
	177����������
	178����������
	179����������
	180����������
	181����������
	182����������
	183����������
	184����������
	185����������
	186����������
	187����������
	188����������
	189����������
	190����������
	191����������
	192����������
	193����������
	194����������
	195����������
	196����������
	197����������
	198����������
	199����������
	200����������
	201����������
	202����������
	203����������
	204����������
	205����������
	206����������
	207����������
	208����������
	209����������
	210����������
	211����������
	212����������
	213����������
	214����������
	215����������
	216����������
	217����������
	218����������
	219����������
	220����������
	221����������
	222����������
	223����������
	224����������
	225����������
	226����������
	227����������
	228����������
	229����������
	230����������
	231����������
	232����������
	233����������
	234����������
	235����������
	236����������
	237����������
	238����������
	239����������
	240����������
	241����������
	242����������
	243����������
	244����������
	245����������
	246����������
	247����������
	248����������
	249����������
	250����������
	251����������
	252����������
	253����������
	254����������
	255����������
	256����������
	257����������
	258����������
	259����������
	260����������
	261����������
	262����������
	263����������
	264����������
	265����������
	266����������
	267����������
	268����������
	269����������
	270����������
	271����������
	272����������
	273����������
	274����������
	275����������
	276����������
	277����������
	278����������
	279����������
	280����������
	281����������
	282����������
	283����������
	284����������
	285����������
	286����������
	287����������
	288����������
	289����������
	290����������
	291����������
	292����������
	293����������
	294����������
	295����������
	296����������
	297����������
	298����������
	299����������
	300����������
	301����������
	302����������
	303����������
	304����������
	305����������
	306����������
	307����������
	308����������
	309����������
	310����������
	311����������
	312����������
	313����������
	314����������
	315����������
	316����������
	317����������
	318����������
	319����������
	320����������
	321����������
	322����������
	323����������
	324����������
	325����������
	326����������
	327����������
	328����������
	329����������
	330����������
	331����������
	332����������
	333����������
	334����������
	335����������
	336����������
	337����������
	338����������
	339����������
	340����������
	341����������
	342����������
	343����������
	344����������
	344_1������������
	344_2������������
	344_3������������
	344_4������������
	345����������
	346����������
	347����������
	348����������
	349����������
	350����������
	351����������
	352����������
	353����������
	354����������
	355����������
	356����������
	357����������
	358����������
	359����������
	360����������
	361����������
	362����������
	363����������
	364����������
	365����������
	366����������
	367����������
	368����������
	369����������
	370����������
	371����������
	372����������
	373����������
	374����������
	375����������
	376����������
	377����������
	378����������
	379����������
	380����������
	381����������
	382����������
	383����������
	384����������
	385����������
	386����������
	387����������
	388����������
	389����������
	390����������
	391����������
	392����������
	393����������
	394����������
	395����������
	396����������
	397����������
	398����������
	399����������
	400����������
	401����������
	402����������
	403����������
	404����������
	405����������
	406����������
	407����������
	408����������
	409����������
	410����������
	411����������
	412����������
	413����������
	414����������
	415����������
	416����������
	417����������
	418����������
	419����������
	420����������
	421����������
	422����������
	423����������
	424����������
	425����������
	426����������
	427����������
	428����������
	429����������
	430����������
	431����������
	432����������
	433����������
	434����������
	435����������
	436����������
	437����������
	438����������
	439����������
	440����������
	441����������
	442����������
	443����������
	444����������
	445����������
	446����������
	447����������
	448����������
	449����������
	450����������
	451����������
	452����������
	453����������
	454����������
	455����������
	456����������
	457����������
	458����������
	459����������
	460����������
	461����������
	462����������
	463����������
	464����������
	465����������
	466����������
	467����������
	468����������
	469����������
	470����������
	471����������
	472����������
	473����������
	474����������
	475����������
	476����������
	477����������
	478����������
	479����������
	480����������
	481����������
	482����������
	483����������
	484����������


