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ALMOST SURE INVARIANCE PRINCIPLES
FOR LOGARITHMIC AVERAGES

I. BERKES and L HORVATH

Dedicated to Endre Csaki on his sixtieth birthday

1. Introduction

Let X\, X2,... be independent, identically distributed random variables
with EX\ =0, EXf = 1 and let Sn=X\ + eee+ X n. By the as. central limit
theorem (Brosamler [4], Schatte [15], Lacey and Philipp [11], Fisher [9])

(1.2) Ik < x5 = ™(x) a.s. for all x,

yl\}mno log N ' ly.
where / denotes indicator function and 4>stands for the standard normal dis-
tribution function. Several papers dealt with ‘logarithmic’ limit theorems of
the type (1.1) and many generalizations of (1.1) have been obtained. In par-
ticular, the following theorem extends (1.1) for a large class of independent
sequences:

Theorem A (Berkes and Dehling [2]). Let Xi,X2,..- be independent
random variables and (an) a positive numerical sequence such that setting
Sn=X1H— = Xn we have

sn 1+1
(12 E Mog log (n=1,2,...)

(1.3) at/akzC(l/ky  (1Zkgl)

for some positive constants C, K, 6 and 7. Then for any bounded Lipschitz 1
function f on R we have

a9yl E 1+ (TXakd- B (akD¥
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2 I. BERKES and L. HORVATH

Theorem A and standard properties of weak convergence (see e.g. Dudley
[7], Theorem 8.3) imply that under (1.2), (1.3) the relations

(1.5) i\l)-r>noo-l-o_g"N_ k_l\(a_f: <X Jl = <& a.s. for all x

and

I\Eggo oG N k_P<\[§ < le = $(3:) forall x

are equivalent. In particular, a sufficient condition for the a.s. central limit
theorem (1.5) is

Sn/an® N ( 0,1).

Condition (1.3) is satisfied, e.g., if n~7an is nondecreasing or if an =npL(n)
where p>7 and L is a slowly varying function.

The purpose of the present paper is to prove a.s. invariance principles
corresponding to relation (1.4). Our first result is the following

Theorem 1. Let X\,X", ««¢ be independent random variables, f :R-rR
a bounded measurable function and (an) a positive numerical sequence such
that

S a
(1.6 E N <k (n=12..)
x.7) Esug - f for Ca-I'2"h <\
m
(1.8) ai/ak"C (l/ky (L gfcgld)
(1.9) Xn m—Var £ \ f( C7(logN)6
kZN
for some positive constants K, C, a, B, 7, Asatisfying
(1.10) a>38, R>8, A>5/6.

Then there exists a Wiener process W such that
(L11) Ej(/(S)-"(t))=")+0(4D -

for some positive constant 77.



ALMOST SURE INVARIANCE PRINCIPLES FOR LOGARITHMIC AVERAGES 3

COROLLARY 1. Under the conditions of Theorem 1 we have

U2> VI2E i (/(1)-21(g))™ "(»*)

(1.13) limsup (2AjvioglogA/v) 1/2Y ] =1a-s-
N-yoo k<NT™" '

7"

The surprising feature of Theorem 1 is that the Wiener approximation
(1.11) (and thus the CLT (1.12) and LIL (1.13)) hold regardless the limiting
behavior of S k / a For example, the conditions of the theorem are satis-
fied if X n are i.i.d. r.v.’s with symmetric stable distribution with parameter
0<p <2and an=nlp (This special case is treated in Corollary 4 and
in [3].)

Conditions (1.6) and (1.7) are very mild and are satisfied in most sit-
uations of interest. The bounds (1.10) for a,R,5 can be weakened but
we made no effort to find the minimal values. (Actually, the proof of the
theorem will show that the result is valid for any triple (a,B8,6) such that
min(a, /3) > 4/(35—2) and thus choosing 6 closer to 1 leads to weaker bounds
for a, B.) Condition (1.6) is trivially satisfied if Sn/an has bounded p-th mo-
ments for some p >0 and (1.7) is valid if / is a Lipschitz function or even if
it is logarithmic Lipschitz, i.e.,

\f(x +h) - f(x) I™ const «*log » (0<h<l)

with some R>0. Moreover, (1.7) is satisfied if / is the indicator function of
an interval and (Xn) obeys

. sup <— <a+hy 0g or Ca-~ <1l
(1.14) P My ~ K “og for Ca~12"h<1

In applications (1.14) can be verified by using standard concentration func-
tion inequalities (see the proof of Corollaries 2, 4). For example, (1.14) holds
(even with KhP on the right-hand side) if X n are i.i.d. r.v.’s with EAd =0,
EX2=1and an=y/n or if Xn are i.i.d. r.v.’s in the domain of normal at-
traction of a symmetric stable law with parameter 0<p <2 and an=nl'p.
Finally, (1.9) can also be shown to hold in a number of standard situations.
For example, in Section 2 we shall see that (1.9) holds with ak —Vk if
EXn=0, EX2=1(n= 1,2,...) and X 2 is uniformly integrable, i.e.,

(1.15) sup EX2I{AXn\"t)-~0 as t-too.
n
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This covers the i.i.d. case and leads to Corollaries 2, 3 improving and ex-
tending several earlier results in the field, in particular the CLT’s and a.s.
invariance principles in [5], [10], [18]. It is also worth noting that if we
strengthen (1.6) and (1.7) then the rate (logN)0in (1.9) can be substantial-
ly weakened. In fact, we have the following

THEOREM 2. Let X\,X2,... be independent random variables, f-.R-"R
a bounded measurable function and (an) a positive numerical sequence such
that setting Sn= X\ + eee+ X n we have

(1.16) E <k (h=1,2,. ),
(1.17) E sup <,Kh? for h”"Canl/2,
(1.18) at/ak~C (I/ky (L EfcEZ),

2m+n -

1i,19) \& E |’/((-g Zu(N)  for all

where K,C,p,B,7 are positive constants and u is a positive function with
uj(N) —»+00. Let

(1.20y
k<N y K

Then there exists a Wiener process W and a positive constant r) such that
(1.11) holds.

We mention now a few consequences of our theorems. To simplify the
formulas, let C denote the class of nonconstant Lipschitz functions, i.e., the
set of nonconstant, bounded functions f :R->R satisfying

\f(x + h)~ f{x)\"KhB  (xER, h> 0)

for some 3 >0; let further T denote the set of indicator functions of intervals
(finite or infinite, but » R).

Corollary 2. Let Xi, X2,... bei.i.d random variables with EXi = 0,
EX~=1and let f ECUT. Then there exists a constant aj >0, a sequence
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Av~ 0/k>gTVand a Wiener process W such that (1.11) holds with ak = \/k.
In particular, we have

(L21)

and

limsupfB log N loglog log N)-"'12E \(fF (™) “E/(

This extends earlier results of Csérg6 and Horvath [5] and Horvéth
and Khoshnevisan [10] who proved (1.11) under the additional assump-
tion EXM(log(JAfil + 1)) 15 < +00 for some 6 > 0. We note also that in
the case when X\,X2,... are independent random variables with P (X n=1)
=P(X,=—3=1/2 (n=1,2,...) and / is an indicator function of an inter-
val, (1.21) was proved by Weigl [18].

The following result relaxes the assumptions of Corollary 2.

COROLLARY 3. Let X\,X2,... be independent random variables with
mean zero and variance 1 and set Sn= X\-\------\-Xn. Let f GC and assume
that (Xn) satisfies one of the following conditions:

@ SLIJ]p EX?J{AXm\*t)"0 as t—¥oo,
(b) (Si - Sk)NA~—k N(0,1) as I-k-> oo,
(c) (Sn—W(n))/y/n 0 for some Wiener process W.

Then the conclusion of Corollary 2 holds.

As a comparison, note that the proofs of the a.s. approximation theorems
in [5], [10] use invariance techniques and require the existence of a Wiener
process W such that

(1.22) Sn—W(n) —(~(Vriilogn)-1-7 as.

for some g >0. Condition (c) of Corollary 3 is similar to (1.22) but it is much
weaker and, unlike (1.22), does not require the existence of any moments of
X'n beyond the second.

We note that condition (a) implies condition (b) by an extension of the
Berry Esseen theorem (see [13], formula (5.26)).
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Corollary 4. Let X\, X2,... bei.i.d. random variables with distribu-
tion function F satisfying

(1.23) 1—(x) ~cx~a and F(—x)~cx~a as x-"oc
where ¢ >0, 0<a<2 Letf ££U I and let Xn be defined by (1.20) with

(c= ~1U/a- Thenaj = \im (log N)" 1AV exists and ifoffi*O then there exists

a Wiener process W and a positive constant 7 such that (1.11) holds with
ak=kl/a.

For additional information on aj (including criteria for 07 70) we refer
to [3]

2. Proofs

We begin with the proof of Theorem 1 Let (Xn), (an), / satisfy the
assumptions of the theorem; without loss of generality we can assume that

I/l di-
lemma 1. Let r <p <q be positive integers and

2< 2«
— *'= V. -f(s'-s*
X= 'y 5f{s z—J n
i=op+1 v(*/a’ 2P+1 dn

Then for any d*. 1 we have

N 1
E|X —X"\d 5 A\ h—nr1
where A\ is a positive constant* and 71 =min(a,R).
Proof. Set
QO i sh-s 2 for p+I<i<2q.

Relation (1.8) implies that for any 2P" i 2q we have ai/a2r » C21’p r) and
thus by (1.6) we obtain

S2r S2r
p(\/Qi» @ =1 <3 or > 220 1) 1<const (b—r)c

* Here, and in the sequel, constants may depend on / and the distribution of the se-
quence (Xn).
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Hence by (1.7) and |/| ™ 1 we get,, setting h —const -2 r) and observing
that h ”~ const/y/af by the estimates above,
1
EIQ(i)|"Esup f + const ¢ <const ¢
mh (p—r)a P~r)71

Thus observing that by |/| 1 we have

2
WX —X\"2 £  -72(g-p)
i=2p+1 1

we obtain
E|X - X'\d%const *(q- p)d~'EAX - X "\ £
1 v

d'i 1/ 1 »
A const «{q—p) e m E 7Scemst("Ty:(«-P>
i=2P+1

Lemma 2. Let

Then for any M~ 1, N A 1 we have

/ M+N \ 2
EE =ON
Vic=M+l /
M+N
EE ~CB
\k=M+1 /

for some positive constant C\.

Proof. We prove (2.2); the proof of (2.1) is similar (in fact simpler).
Clearly

M+ N *\64 M+ N
E'#'=E' 6 £ B
fc=M+ | / Ja=Al+ | M+17Mi<juM+N
+4 A2 ESf6j + 12 EnJjafc
M+\AijAM + N M+17A8(jAKiM +N
ifij
+ 24 2 EM,<M,=:S() + - + S{B).

M+Iri<j<k<I*M+N
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By I/l ~1 we have |i,,| * 2 and thus
SW+SP+SO"AN2,

where A is a positive constant. Next we show

(2.3) 5G)"AiN3
where A\ is a positive constant. To this end we first prove that ii M + 1£
i<j<k<l + N and at least one of j —i and I —k is » V~N, then
(2.4) [E(5j<5j5fc<di)] ~ const ¢ TV-2.

Assume, e.g., that j —i*. y/N and set

2J+1

h=£ \ii S sy e

u=2J+l

Using Lemma 1 we get

E|(5] —&J ~const m ! <const-AT 71 <consteN 2
u-i-NHn

since 71 > 4 by (1.10). Similar estimates hold for EA* —84J, H&, —  and
thus

(2.5) I[EftijM,) - E(<5t""/L)| ~ const eN~2

forall M +1Si<j<k<I”.M +N such that j — ~ \/N. Observing
that Si and are independent and EG6; = 0, we see that the second
expectation in (2.5) equals 0 and thus (2.4) is valid in the case j — \/N.

The case | —k™. VN can be treated similarly.

Relation (2.4) implies that the contribution of those terms in S~ where
at least one ofj — and I —k is greater than \fN is at most const *N 2. On the
other hand, the contribution of the remaining terms is less than const <IV3
since the number of 4-tuples (i,j,k,l) satisfying M +1*i<j<k<I”
M+ N, j —i S\IN, I—k~ VN is clearly at most N 3. Hence we proved
(2.3); a similar argument applies for and thus Lemma 2 is proved.

Let us divide [1, 00) into consecutive intervals Ai = [pi, Qi], Ax= [px d[l,
A2t=[P2,92], A2= [p",*],... wherepi =I,p'’k=gk and pk=dk_v We choose
these intervals so that

A =[V/2], Al =[V]
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hold, where |A| denotes the length of the interval A and 1/4 fir < 1/2
satisfies

(2.6) min(a,/3) > 2/r, <5>2(r + 1)/3.
In view of (1.10), r = 1/4 will do, but other values of r are also of interest:

for example, choosing r close to 1/2 shows that for 6 close enough to 1, the
value 8 in (1.10) can be replaced by 4. Set

By Lemma 1 we have for any integer d”~ 1

E Igffc —£I\d = const ¢ -------- 1 :-{Qk-Pk)d
) (Pk-Qk-1)71
N const *A2 7IT £ const ek *~2~¢
and similarly
(2.8) E|% —WK\d = const «kdT~'¥ ~ const «ki~IXT ~ const ek*~2~¢
for some e > 0 since 71r > 2 by (2.6).
Lemma 3. We have
k
(2.9) -Era) =0 (k (T+I~21ogk) as..
2=1

PROOF. Applying (2.8) with d= 1 and using the monotone convergence
theorem we get

00
(2.10) A(T?Ii-ET7?0)-(7T7¢ -E ¢*)|<+o00 as..
i—

Also, (2.8) with d =2 and Lemma 2 give

hi ~E%ll ~ 16 - E%Il + 0 (1)~ const «h'k-Pk)”~2Uconst «kT/2
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where | ¢|| denotes the L2 norm. Thus
(2.11

Since the r.v.’s r/£ are independent with zero means, (2.11) implies that the
series

is a.s. convergent and thus by the Kronecker lemma

k
- Er/*)=0 (k » 2logk) as..

Together with (2.10), the last relation implies (2.9).

k
Lemma 4. Let = YD) ([i/2] + [IT])- Then we have

(2.12)

for some g> 0.
Proof. Lemma 2 implies that

Var rji 5l const s T
and thus using (2.8) with d =2 we get

Var rj* ~ const «iT.

Hence by the independence of the 77 it follows that

(2.13) Var

Using (2.13), the Minkowski inequality and (2.7), (2.8) with d =2 we see
that the first two of the quantities
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differ at most by O{k"T+x"2) while the second and third differ at most by
0(k"~~e2). Since the third expression in (2.14) equals A!I\% we proved that

(2.15) Varl/2 =A$ +0(fcr+1)/2)= A $ (1 + O(AT*))

for some g> 0, where the second equality follows by observing that by (1.9),
(2.6) and Nk~ const mA3/2 we have
(2.16) A2 ~ const «(log2iM) A2 i>const *k354 i>const (1+«)

for some €' >0. Since ££ are independent, (2.15) implies (2.12).
Lemma 5. There exists a Wiener process W such that

(2.17) ]#(& - E&) = W (\2N\Kk) + O(A2i27) 05,

for some » > 0.
Proof. Let

Zi=9% - E£ S i m ;o-m 2-

By Lemma 2 we have
(2.18) E(£C- E~)4” const «(gk - pk)3Uconst «A3/2

and thus applying (2.7) with d=A it follows that (2.18) remains valid if we
replace fk- Efk by fk - B*. Thus

EZk S const «A32.
Also, by Lemma 4,
(2.19) sk=X2nk(1+ 0(k~e)).
Thus using (1.9) we get for any 0< i9< 1, sufficiently close to 1,

+00

00 1 m 0o |1 r
EA7 | x2dP(Zk<x)~Y2~M [ ~dP(Zk<x)
k=1s* X2> if *:=ibk
7 £ 3K
=Ezw =o0H -
f=i s* =8 2"

"oE Hron £ <0

fca
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since the second relation of (2.6) and r ~ 1/4 imply &> 5/6 and thus we
have 3i90 > 5/2 if R is sufficiently close to 1. Thus using an a.s. invariance
principle of Strassen ([17], Theorem 4.4) we get

K
(2.20) IT(E* - EE) = W(sl) + 0 (4 1+tD)/2 logsk) as.
Z—1

with some Wiener process W. Now by (2.19), the relation const ¢ (logiV)5*
An " const ¢(logiV) (cf. (1.9) and Lemma 2) and well-known properties of
Wiener fluctuations (see, e.g., Csorgé and Révész [6], Theorem 1.2.1) we
have

(2.21) IW(sR) - W(\2NK\=0(AZ7) as.

for some constant rj> 0. Also, (2.7) with d = 1and the monotone convergence
theorem imply

(2.22) £1(& -E6)-(E-E£)|<+o00 as.
i=1

Now (2.17) follows from (2.20), (2.21), (2.22), (2.19) and 0<1.
We can now easily complete the proof of Theorem 1. By Lemma 3 and
Lemma 5 we get

= W(\2,k)+ 0(Ar2") + 0 { k  / 2logk)
=W (\2NK) + 0 (\2R- 1) as.

for some rj > 0 by using (2.16). Now if 2Nk * N < 2Nk+1, then the expression

differs from its value at N = 2Nk by at most

12"+, \
0 E - \=0{Nk+I-Nk) =0{kl12)=0{Nl,i)
\i=2"k 1]

=0((logN)13)=0 (\tf-T)
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for some r/" >0, where in the last step we used (1.9) and (1.10). Also,
Minkowski’s inequality and (2.24) imply for 2Nk # N 2 NcH

J2%%4i |\
(2.25) IAV2-A”2 =0 ( 7J =0(AMNW )
\i=2"k

and thus we have 1/2 » XA/X2Nk ~ 2 for k » homHence (2.25) yields

|Aet—A2A. I= 0(AN 1)
and thus using again Cstrgd and Révész [6], Theorem 1.2.1 we get
[IV(AW) - W (A2NIg)| = 0 ( a.s.
for sime 77" > 0. Thus (2.23) implies (1.11), completing the proof of Theo-
rem 1

Proof OF Theorem 2. Since conditions (1.16) and (1.17) of Theorem 2
imply, respectively, conditions (1.6) and (1.7) of Theorem 1, in order to prove
Theorem 2 it suffices to prove that the conditions of Theorem 2 imply (1.9).
This statement is contained in Lemma 8 below; for the proof we need two
auxiliary lemmas.

Lemma 6. Assume the conditions of Theorem 2 and let r <p <q be
positive integers. Put

] LI Y% E /('
i:%wll_l v 2
P

I
_izgﬂ Vv \ *
Then

(2.26) E|X-A'12"c12~-Cp-1)
where ¢\ and cd are positive constants.

PROOF. Our argument is similar to that used in the proof of Lemma 1
Put

- N N -
Ep, )/ (8): EAL(T )
Since X —X"' = (Y —Y'") - E(T - Y'), it suffices to show that

(2.27) EIT-y.,[l27ci-2%C2(p_r).
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By (1.16) we have

P .
E S2r < const U2r

and thus by the Markov inequality

~ p/2
%z ,/— )<conste az_r
di di
Hence letting
Qi) = f f St- Ser h = (a2r/di) 12

df

we get, using |/| 91, (1.17) and the fact that h ~ const/y”,

ElQ(*)[2=2E|Q(i)]

p/2
d2r
N 2E + tul_
(2.28) b a constel i
<conste 9%
di
for some constant 0>0. Now by (2.28)
2« 2q 1
Ely-y'12n E E  wE|Q(0Q0Y)
i=2v+1j=2p+1
2 3 1
229 ~ E E -(EQ(1)212(EQ(j)2)12
i=2P+1j=2P +1
2% 2« n 2q
A const-atr E E . g2 g2 =consta® |
i=2P+1j=2P+IlJai aj i=2P+

Relation (1.18) implies that for any 1

min  diii Ca2«
2n<i<2n+1

and thus

EV 7"E argt=-" E AL

i=2n+1 lai a2n i=2n+1 1
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Hence using (1.18) once more we get

1 A 1
_ _ e/2
i=2P+1 lai n~p U2n

1. 1 1.
<const, B—js >  5-——=ss-=f- < CONSt B—js.
ugilgZ n=p @n p)7 o i%{JJZ
Substituting this into (2.29) and using (1.18) we get

E\Y-Y"\2~conste(— V <CI2-Qp~-1)
\cLep J

proving (2.27).

Lemma 7. Assume the conditions of Theorem 2 and letm <n<p<gq
be positive integers. Set

Then
[E (™M)~ ce3]lil]2-cMp-t)

where ¢3,C4 are positive constants.
PROOF. This follows immediately from the previous lemma. Put

5 1/ si-s2\ [Si- Son
. E /

i=2P+l
Clearly £ and r/ are independent and EE = E?'= 0. Thus by Lemma 6
|E(ED) = [EEG/ - V)T IFILh - rflAC3||E][ 2 ~ A ).

Lemma 8. Assume the conditions of Theorem 2. Thenfor any O<e< 1
there exists a constant ¢> 0 such that

2m+n
(2.30) Var X (—)~teNl £ for any MAO, NA.1.
i=2M+1
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PROOF. Clearly if (1.19) holds then it remains valid if we replace uj(N)
by any 0 < ui\(N) ~ ui(N). Thus without loss of generality we may assume
that to is nondecreasing and slowly varying. Hence given 0 < e < 1 we can
choose No =Nq(e) so large that

(2.31) 2ui{N) 1/4/ uj([N/3]) /2 " e 2, U{N) 14" e2N/% (N~NO)
and
(2.32) w([JVI3])", C3.2-Cr Mllre?2 (IVNIVO0),

where G3 and Clare the constants in Lemma 7. With No chosen, choose ¢> 0
so small that

(2.33) u(k) ~ck!=8  for 17 kAN .

We shall prove by induction on N that (2.30) holds for all M ~ 0, N * 1

By (2.33) and (1.19), relation (2.30) is valid for al M ~ 0 and 17
AN UNo- Let now N > Ng and assume that (2.30) is valid if N is re-
placed by any 1" N1<N and M ~ 1 is arbitrary. Assume, e.g., that N is
even; the argument is similar if N is odd. Put

Qi
then SN
S:= Y, Z4=Si+S2+S3
i=2m +1
where
2MHN2-r(N) 2VHN2+1(N) 2VHN
si= E = E & s3= %ﬁ(
i=2M+1 J=2M+N/2-r(N)+1 i 2MHATRHOM) + 1
with
(2.34) ~(N) = [u(N)1 4]
By the induction hypothesis, (2.34) and the second relation of (2.31) we have
N 1—9 1—£
ESthc r(N) N:—:
and similarly
1—£
est 1% N1
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On the other hand, using |/| 5 1, the Minkowski inequality, (2.31), (2.34)
2n+l

and the fact that Y1 1/i~ 1forall n”™ 1, we get

i-2"+1
2M+N/2+r(N)
|"21: E jrf2r(7V)S2W7V)l/4
i 2MHN2-r(W) +1

NE2u,([AT/3N)LI27£2|S 1),

where the last inequality follows from (1.19) and N/2- r(N) ~ N/3 (which
is valid by (2.34) and the second relation of (2.31)). Thus

|[E5152|S1|S"1| ||S2||" £ 2ES?
and similarly

|[ES3S2| N £2ES?.
Finally Lemma 7, (2.32) and (2.34) imply

\ESxS3\ ge2||Sil| £2|ISi 2

since ||5i|| * 1 by the last inequality of (2.35) and (2.32). Collecting now all
our estimates, we get

ES27 ES? + ES? - |2ESiS2|- |2ES2S3|- [2ES)XS3|
N ES? + ES? - 2e2ES? - 2e2ES? - 2e2ES?
(2.36) li_c-2\i-e
N(L- 4c2)(ES?+ES?) M 2cl—— j (1-4c2iVi-e
N CIVLE
provided

(t T o« * - * Ty

which is true for 0 < £ ~ Eq since the derivative of the left-hand side at e= 0 is
In2>0. (2.36) completes the induction step and thus we proved the lemma
for 0 < £S£0o; clearly this implies the lemma for all 0<e<1

Proof of Corollary 1 The approximation (1.11) trivially implies
(1.12) and by the LIL for W it also implies the inequality ~ 1in (1.13). To
prove the inequality ~ 1in (1.13) note that by the Minkowski inequality and
I/ ~1 we have |A7"2j —A2| ™ 2 which, together with (1.9), implies that
Av+i/Alv—1 Thus for any a > 1 there exists a sequence of integers
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such that AM. ~a/c. By the standard proof of the LIL for Wiener process we
have

limsup {2\ivk log log Av*) 1/2W {XNk) - e(a) a.s.,
N—00

where e{a) =0 if a—00. This implies the inequality * 1in (1.13).

Proof of Coroltary 2. We will verify the conditions of Theorem 1
with an —yjn. Since (1.16) and (1.17) imply (1.6) and (1.7), respectively,
it suffices to check (1.16), (1.17) and (1.9). Clearly (1.16) holds with p =2
and (1.17) is also obvious if f EL. To verify (1.17) for f Ex we apply a
concentration function inequality of Esseen (see, e.g., [13], Theorem 2.14) to
get

(2.37) SupP a< —/7= <a , . A Ua
a yin ( J  x2dFs(x)J

[x|ahv/n

where A is an absolute constant and Fs is the distribution function ob-

tained from the distribution function F of Ai by symmetrization. Since
+00

J x2dFs(x) = 2, there exists a constant ¢ > 0 such that the integral in
—00

(2.37) isat least 1 for hilc/y/n, but then (2.37) implies (1.17) for / EX with
R —1. To complete the proof of Corollary 2 it remains now to prove the
following

Lemma 9. Let Xi,X2,... be i.i.d. random variables with EWi = 0,
EX'f=1and let f ECUX. Then

AX= Var » ~OflogN as N —o0,
k<N

where ay is a positive constant depending on f .

PROOF. From an a.s. invariance principle of Major (see [12]) it follows
that there exists a Wiener process W such that

(2.38) (Sn—W(n))/\/n—0 in probability.

Also, the results of [10] imply that for any f ELAX (and in fact for a larger
class of functions / defined by conditions C1-C4 there)

1
(2.39) Av:=Var £ IlZf ~aflogN as N —00
k<N



ALMOST SURE INVARIANCE PRINCIPLES FOR LOGARITHMIC AVERAGES 19

for some constant aj > 0 depending on /. (Note that XN =0 if/ is constant,
but this case is excluded in both L and I.) Thus it suffices to prove that

(2.40) lim WN/\u = I.
N —yoo

To prove (2.40) we first note that above we verified (1.17) for any / 6 CU |
and an =\fn\ observe also that
P{\Sk/V i\Ah)ih  for k<1, h=(k/)

by the Chebyshev inequality. Thus using (1.17) and |/| » 1 we get for any
k<l

Ef(x ¢ o SK GEsup . + 2h
(2.41) J Wi Si m ) - ( , -

A const e (hfR + h) ~ const’

for some constants a > 0, B > 0. Since for k <1 the random variables Sk and
Si —Sk are independent, using (2.41) and |/| £ 1 we get

(A
Wi
2.42 = Cov (/ (ii) j -
(2.42) ( \(NH)J (Vi fr( Vi
g2E / \S/I| St;/iSk < const «

Fix e > 0 and set

(2.43)

Relation (2.38) implies that ckj —ck; —=0 if min(fc, 2 —+o00 and thus there
exists an integer A=7A(e) such that

(2.44) \ckti-c*kB*e 2 for A"k<I.

Set also B = [1/e], then for IV™ A we get
N
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I/k~"B

+ 2l Cot(/ 0 1)1 (51

I/k>B
W L ) i W
Clearly XN’ =0(1) and by (2.42)
1
A”N ~constm £1-0/1+0
ANK<IMN
I/k>B
N’ j 00 A A
Seonste, s g iy s = COMStC 2y ek
fc=A I=Bk+I k=A
A const m? Qlog TV
Thus we get for V. T\
(2.45) Ava- 2 J]1 ~cfic Sconstei? Qlog V.
ANK<I%N
1/k-gB

In a similar fashion we get for TvA W

(246) AAU - 2 yy £/4 A const W/? O |OQ-IV,

Agk<IAN
1/kfiB

where XN A is defined similarly as \ n ,a, just with replaced by W (k). Now
by (2.44)°

1 A 1 2" 1 Bk
E g Sk 1-ckil < £2 E k}uieZ\z/ {( l’s [ B e Kk
ANK<IAN A<k<IAN T k=A  k<I<BK k=A

1/k-gB I/k~B
AN const eBe2log TV

which, together with (2.45) and (2.46), gives
(2.47) IAva-A N1 "~ const-(e+e“)logT™V.  for TVATVo(e).
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By Minkowski’s inequality
(2.48) |A”2- Xty =0(1), I(AMY2- (A™)Y2!=0(1).

Now (2.40) follows from (2.39), (2.47) and (2.48).

Proof of Corollary 3. Inthe proofofCorollary 2 above the identical
distribution of the X n was used only at two places: to verify (1.17) and to
guarantee (2.38) which was needed, in turn, to show that

(2.49) e/ —ck1—=0 as min(fc, I) —o00.

Since in Corollary 3 we assume / GC under which (1.17) is trivially valid,
it suffices to prove that under the conditions of Corollary 3 we have (2.49),
where ckti and ¢kt are defined in (2.43) and W is an arbitrary Wiener process.

Clearly, (2.49) is valid under condition (c) of Corollary 3 and we also note
that condition (a) of Corollary 3 implies condition (b) by a generalization
of the Berry-Esseen inequality (see [13], relation (5.26)). Thus it remains
to verify (2.49) under condition (b). To see this let us observe that the

characteristic function of the vector (Sk/Vk, S[/Afl) (k <) can be
written as
I- kS -Sk
<Fkl(t’u) = E exp Eexp yru

and a similar formula holds for the characteristic function @k I of the vector

(W(k)/y/k, W{l)/\fl). Using this observation, condition (b) and the fact
that the variance of the r.v. (Si —Sk)/y/l —k is 1, we get easily that

(2.50) sup  \igki(t,u) —Ok [(t,u)\—>0 as k<I, k—>00

for any C >0. Using a two-dimensional version of Esseen’s inequality (see
[14]), (2.50) implies that

(2.51) s\ip\Fkti (x,y)-FKi(x,y)\-*0 as k<I, k-+00,
X,y

where Fkj and Fkl are the distribution functions corresponding to ipkii and
ipk1. Also, by Chebyshev’s inequality

(2.52) |J drkil(x,y)i2T-2, ] dFax y) z 212
(X Y)$A(T) (XY)EA(T)

for any T>0, where A(T) is the square {Ja:] T, |y| *T}. Now (2.49) follows
from (2.51), (2.52) and integration by parts.
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Proof of Corollary 4. We first show that (X n) satisfies (1.16) and
(1.17) with an=n}a. Let Ya, be a symmetric stable random variable with

00
characteristic function exp(—plija), g=2cf y~asinydy. Relation (1.23)

(o]
implies (see, e.g., [8], p- 544) that X n are in the domain of normal attraction
of Ya,c, he., Sn/nl/a Ya’c. Hence [1], Theorem 6.1 implies

(2.53) SupE <Too forany p<a,

n Voc

i.e.,, (1.16) is valid. For / GC relation (1.17) is obvious; to verify (1.17) for
/ G 1 we use the concentration function inequality in [13], Theorem 2.14 to
get

(2.54) supP [a < ANV}

< + /i
nl/a fl+ /i 2.

1/
n f  x2Fs@)

A \x\*hnl/a

where A is an absolute constant and Fsis the distribution function obtained
from F by symmetrization. Relation (1.23) implies (see [8], p. 271)

1 —Fs(x) ~2cx~a as X —yo0o0

whence we get by integration by parts

I x2dFs{x) ~ const®2~a as t—00
li|St
and thus for = n~1/2a the right-hand side of (2.54) is ~ const *ha/2.
Since for f £1 the left-hand side of (1.17) is bounded by the left-hand side
of (2.54), relation (1.17) is valid for f €I.

By Theorem 3 of Simons and Stout [16] there exists a symmetric stable
process Va’ (i.e., a process with independent increments satisfying MQc(0)=:0

and VatC(t) —PQc(s) = (t —s)I"aYae for all 0~ s <t < Too) such that
(2.55) [Sh—Vva”n))/nlla-TO in probability.
Let

Aat:= Var 1/
IGN

In [3] it is proved that the limit
(2.56) at— lim (\ogN)~IXN
N - hx
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exists. Using (2.55) instead of (2.38), the proof of Lemma 9 can be repeated
to give

~ =o0(logdV) as /V—too,

and thus ifaj 0 then (1.9) holds. Hence Corollary 4 follows from Theo-
rem 1
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THE FIRST PASSAGE DENSITY OF THE BROWNIAN MOTION
TO A LIPSCHITZ-CONTINUOUS BOUNDARY

Zs. BIRO and Gy. MICHALETZKY

Dedicated to Endre Csaki for his sixtieth birthday

Abstract

In this paper we are going to investigate the crossing probabilities of the Wiener
process to a Lipschitz continuous boundary. Our method is similar to that one applied in
Durbin [2] to differentiable boundaries. Also we are going to derive a differential equation
for the crossing probabilities.

1. Introduction

Let W (u) be the standard Wiener process on [0,+00) and let a be a
continuous function on [0,+00). We are interested in the distribution and
density of the first hitting time

ra= inf{t IW(t) = a{t)}.

There are many papers dealing with this topic. V. Strassen [11] has shown
that, if a is a continuously differentiable function, then ra has a continuous
density. His proof is based on the following lemma: If a and b are piecewise
continuous functions on [0, +00) and t> 0 such that a” bin (0,t] and a~ b
in (i,t +6) where $> 0, a and b are differentiable at t, then

. 'Fa(t+k)-Fa(t-h)  Fb(t + k) —Fb(t —h)
',i',?;'_s%i‘? h+k h+k

where

FA(t) = P[W(u) ~ ip(u) for some u € (0, t]].
A. A. Novikov [7] has given an estimation for the tail distribution of the
first hitting time applying the Girsanov theorem. If the function a satisfies
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some smoothness conditions, and also conditions describing its increasing
rate then

T
InP(ra>T) =—J aWdt(l +o(l)) T ->+00.
S

P. Salminen [10] with similar methods has derived expressions for the first
passage distribution and density. In J. Durbin [3], B. Ferebee [6], C. Park
and S. R. Paranjape [8] one can find integral equations used to compute this
density numerically.

We shall use the following notations:

I(W,a, v)=/{sup [W(u) —a(u)] ~0};
M

IdW, a, v) = I{W(u) < a(u) \u £ [0, u]};
(W, a,v, t) —/{sup [W(u) —a(u)] ~ 0},
M

IQW,a,v,t) =1{W(u) <a(u) \u G|v,t]},

where 1{ } denotes the indicator function and Ic= 1—. Denote p(t) the
first passage density of W (u) for boundary a at point t, then

@ p()=1im-"—[P{D)-P(V)],

if the limit exists, where P(z) = E[I(W,a,z)\. Thus p(t) = P[{t), where P[
denotes the left derivative of the function P . Obviously

P(t) - P(v) =E[I(W,a, t)- (W, a u)]=E[IGW,a, Vv)I{W, a, t)],
thus

p(t) —lim = E[IQW, 3, v)I(W, &, )],
if the limit exists.

Remark 1. If P is an absolutely continuous function, then p exists a.e.
(with respect to the Lebesgue-measure) and

t
P(t) =\] p(u)du,
0
so p can be considered as a “density” function, although in general an un-

+ 00

normalized density, because, f p(u)du is not necessarily 1. Kolmogorov-

0
Petrovsky-Erdés (cf. [5]) give a condition for the function a assuring that
+00

f p(u)du—1
0
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An explicit formula for this density was given by J. Durbin [3], namely

2 p(t) = b{t)ft[a(t)},

where

b{t) = lim ~"—E[lc(W, a,s) (a(s) - W(s)) [W(L) = a(t)]

and

X2

ft{x) .

is the density function of the distribution N(O,t).
This is a generalization of the Bachelier-Levy formula

(3) pLy =12 ftL (D}

where L(t) t 6 [0, +00) is a line, with L(0) > 0.

Durbin uses a very elegant but heuristic argument working with sets of
zero probability, and in this way eliminating all the problems concerning
differentiability and changing the orders of different operators such as limit
and integration. In this paper we are going to prove (2) for a larger class of
function.

In the first passage problems the boundary a is usually continuously
differentiable, but we shall study a more general class of function.

Definition 1. A function / defined on [0,+00) is called Lipschitz-
continuous on finite intervals if for all 0 < m < +o00 the restriction of the
function / to the interval [0,m] is Lipschitz-continuous.

We shall use some further notations. Let Y, Z be real random variables
and denote fy, fy,z, fy\z their probability density, joint density and con-
ditional density. For the sake of simplicity instead of fw(t) we are g°ing to
use the notation ft- The notations ftiz, ft.\z have similar meanings. The
function $ denotes the normal distribution function.

2. The first passage density

Lemma 1. Ifa is a Lipschitz-continuous function onfinite intervals then
the function P — defined in (1) — is also Lipschitz-continuous function on
finite intervals.

Proof. As P is an increasing function, it is enough to show that for all
m there exists a constant Km such that

P(t) —P(v)"Km(t—v) when O~”vAtAm.
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Using the Lipschitz continuity of a there exists a constant Cm such that
\a(x) —a(y)\* Cmix —\ when 0rx,y"m.
Let Oju<i”mbe fixed points and
Lv(x) =a(v) - Cm{x—v) a6 [0\

Obviously,
a(x)"Lv(x) if X GO, vl;

a{x)'tLv{x) if XE[v,t}.
Consequently,
lc(W,a,v)ilc(W,Lv,v);
(W, av,t) UI(W,Lv,v,t).
Thus

0 ~P(t) - P(v) = E[IGW,a v)I(W, a,i)] = E[1QW,a, V)I{W, a, v, )} »
t

a E[lc(W,Lv,v)I(W,Lv,v,t)\ = I pv{u)du,
\
where pv(u) is the first passage density of W for the boundary Lv.

Thus
t

P(t)-P(v)Z J[ [JL v(0)fu[Lv(u)]du.

The function in the argument of this integral is continuous, therefore
Iir\ngtjp — [P{t) - P(V)] " th t(0)/t[t(i)] = ¥[a(f) + Cmt]ft[a(t)].
But if 0<tS3m then
j[a(t) + Cmt]ft[at)] » 2Cmf t[a(t)\,

and as a(0) >0
limi/,[a(()] = 0.

The function ft[a(t)] is continuous so taking

Km=2cm sup ft[a(t)]
o<t<m
we get that
P(t)-P{v)ZKm(t-v). a

Since Lipschitz continuity implies absolute continuity we get the following
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Corollary 1. If the function a is Lipschitz-continuous on finite inter-
vals then P is an absolutely continuous function.

Corollary 2. If the derivative of the function P exists at t, then p(t) =
P'(t) and

Pit) + Cte}ft[aft)}.

Corollary 3. Let 0<eSm befixed positive numbers. 1f 0<e”x <
y A m, then there exists a constant K that

SIJ—[;([P[Y)-P(X)]iK-

Let 0<sfLvut and consider the functions
Ps{t, vix) = E[IQW, a,v)I{W, a, t) | IGW,a s) = 1,XS=x]
gs(x) = E[lc(W,a,S)\ X s =x]fx3(x),
where Xs = a(s) —VF(s) and fxs(x) is the probability density of Xs at x.
(These functions are defined for almost all x values.)
Proposition 1. Let a be an arbitrary continuous function on [0,+00),

then
+00

P{t)-P(v)= J Ps(t,vix)gs(x)dx.
0
Proof.

P{t) - P(v) =E IQW,a, s)I(W, a,i)] =

= | EDicw,a,s)1{w,a,0\r(W,a,5) =1,Xs=x\x
R
x E [IGW, &, s) IXs=x] fx. (x)dx+
+j E[lc(W,a,s)l(W,a,t)\lIc{W,a,s) =0,Xs=x\x
n
X P[lc(W,a,s) = 01Xs=x] fx,(x)dx.
Observe that
E[IQW, a, s)I(W, a,t) \IGW, a,5) = 0,Xs—x] =0 for a.e. x, and
E[IQW, a,s) IXs=x\=0 for a.e. x in the interval (—o0, 0).

So

P(t)-P(v)= J Ps(t, v Ix)gs(x)dx

0



30 ZS. BIRO and GY. MICHALETZKY

which is the assertion of Proposition 1 O
Definition 2. Let
ps(t Ix)=limsup-—- Ps(i, v Ix).
vt t~v
Using this definition we prove

Proposition 2. If a is Lipschitz-continuous on finite intervals and the
derivative of the function P exists at t, then there

+00
p(t)=J Ps(t Ix)gs(x)dx.
0
Proof. If P'{t) exists at t, then at this point obviously

P'(t) = lim— [P{t+ (t- v)) - P{t)] =
vit t —V
+00
=liminf /| — Ps[t+ (t —v),t\ x] gs(x)dx.
vt J t—V
Thus applying the Fatou lemma we obtain that
+00
] H 1INFaeee . /\
4 P " ( tj I"\T/]fjtnft—vPS[H (t —v), t \x\gs(x)dx " 0.
0

Let
° Ps{t\x) = E[1(W,a,t) \lc(W,a,s) =1,Xs=x\ (s<t).

This function Ps{t \x) is increasing in t for every X, thus its generalized
derivatives satisfy the following inequality:

limsup — y [Ps(t Ix) - Ps(vIX)] " Ii\r/r]\itnfV

VIR t— P [Ps(v ) - Ps(t\)]

Therefore (we remark that Ps{t,v \x) = Ps(t \x) —Ps(v |x), v <t)

/[ limsup--—- Ps(t,v \x)gs(x)dx ~
vit t-v

®) +00
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From the Fatou lemma it would follow that
+00
Ilr\r/1/stup j t—_—V—P,(I, Vv 1X)gs(x)dx
+00
S / limsup-—- Ps(i, v IxX)gs(x)dx.
vt t-v

Obviously,

+00

(7 Iir\n//slgtjp J{ v Ps(t,vix)gs(x)dx =\Vijy[nﬁ[P(t) - P(V)] =Puyp).

According to the inequalities (4), (5), (6) and the equality (7) we obtain that

t~v

P'(t)< Tolimsup ............ Psit, v k)gs(x)dx U
6 v/'t
§ { liminfe — Pslt+ (t—), 12gs()dx SIP'(i),
SO

p(t) = P'{t)= j ps(t\x)gs(x)dx,

hence

pJt Ix) = limsup------ Ps(i,u Ix).
vit t-v

We have to show that the conditions of the Fatou lemma in the inequality (6)

are fulfilled. We are going to prove that there exists a constant M depending
on s such that

1=y Ps{t.vAx) gs{x) fiMfxAx)i if  -TI~<v<t.

Ps(t,v\x)ga(x) -
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=E[IGW, a,v)I(W,a,i) [1QW, &, 5), = a] x
XE[T(W,a,8)|Xs=*]/*>) =

E[/c(W, a,s)/c(jy, a, w/(W, a, t) \Xs=X]
E[lc(W,a,s)\Xs=x] X

XE[f(™a,s)]|d s x]/XsW =
= E[/c(H",a,s)/c(VF a, s,v)I{W,a,v,t) \X s =x]fXs(x).

(If x > 0 then E[IQW, &, s) \Xs=x] >0 for a.e. x.)
Thus

Ps(t, v IxX)gs(s) * E[1QW, a,a v)I(W, a, v, t) \ X S=x\fXs ().

Since the Wiener process is a homogeneous Markov process, after a simple
computation we obtain that considering the point (a, a(s) —x) as the new
origin the conditional expectation can be expressed as follows:

E[IAW, a s, V)I(W, a,v, t)\Xs=x] =E[IGW,a*,v- s)I{W, a*,t - a)],
where
a*(u) =a(s+u) —(a(s) —x), Uu£[o, +o0], (a fixed).

E[IQW,a*,v- s)I(W, a*,t-s)] =P*(t-s)-P *(v- s),

and
P*(u)=E[I{W,a*,u)}

the crossing probability defined for the function a*.

If x >0, then the function a* satisfies the conditions of Corollary 3. It
follows that — if v is sufficiently near to t, for example pp G v 5t —, then
there exists a constant K, which is independent of x such that

E[IQW,a s V)I{W, a, v, )\X,=x] =P*{t-s)-P * {v-s)i K(t- V),

But then there obviously exists a constant M, such that
E[1QW, a5, V)I(W,a, v,t) \Xs=x] UM (t —v) SAVAL,
Thus

—yPs(t VIX)gs(x) £ M Xs (x).

The inequality
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+00

/ MEXS(X)dX fi m < o0

gives that the Fatou lemma could be applied in (6). O

Now we would like to approximate the function a by a suitable chord
and show that the first passage probability density of this new function
approximates p{t). So let us define a function &

a(u), if uGIoO, g]
a(u) =
a{s) +j — [aft) - a(s)|{u- s), if uG(s,t).

We shall show that
limps(t)=p{Y),
if P'(t) exists at t, where ps denotes the first passage probability density of
W for boundary &
Let
Ps(t,vix) = E[IQW, a, v)I(W, &, 1) I1QW,05,s) = 1, Xs =X).

Obviously, &(s) = a(s), a(t) =a(i), and 1QW, 4, s) = 1QW, a, s), respectively.
Let us denote the chord by L:

L(u) = a(s)-|---—[a(t) —a(s)](u —s), and let

limsup——Ps(t,v\x), if x>0
vi't ot n
Ps{t\x)= <

0, if x=0.

Proposition 3. Let a be a Lipschitz-continuous function on finite in-
tervals, with a(0) >0, then

ps{t Ix) = Ivl(p t—vas{t, vix) = ;[-:-Sxfs(t 1X),

where

fs(t\x) = ft\x3[a(t)\x].
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PROOF. Let s <v <t and x > 0, then

E[lc{W,&,v)I(W,a,t)\lc(W,a,s) =1,Xs=x] =
E[1QW, a, s)Ic{W, & s, V)I(W, & v, t)\Xs=x]
E[E(W,a,s)\Xs=x\
=E[nW,a,s)\Xs=x1 ELaw al ciwn

=E[IQW,L, s, v)[(W;L, v, t) \X,= x],

VW, OV, )\ Xs=x]

5' =x]

where we have used that W is a Markov process and a(u) = L(u) ifs®u~t.
As earlier

E[ICW, L, s, V)I(W, L, v,t)\X s =x] = E[IQW, L* ,v —s)I{W, L *,t-s)],

where
L*(u) = L(s + u) —a(s) —x\ OruNMt —s.
Thus
ps(t 1x) = IirRAs/up *—_—VE[/c(IT, L*v —s)I(W, L*t- 9)] =
=lim-i-M /W ,L*,v-s)I(W, L*t—s)\=
utt t —V

_SL*(O)ft-s[L*(t —s)] =

isx/i_s[a(i) - (a(s) —a)]
But

ft-s[a(t) - (a(s)- s)] = ft\s[aft) \a{s) -x] = FtXs [&t) |s],
therefore
ps{t\x) = — -xft\xs[<(*) | - U

Corollary 4. ps(t),s <t, always exists and

00

Ps(t)= J Y N x fs(t\x)gs(x)dx.

Remark 2. It can be easily proved that

fs(t Ix) —fw(t)\lc(W,a,s),Xa(a (t) 11)®)»
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where
fw (H)\lc(W,a,s),x,(a(i)|l,z) = — P[W(t) <y\lc(W,a,s) = 1, Xs=x\
y=a(t)

Remark 3. We would like to emphasize — as we have seen in the proof
of Proposition 3 — that

ps(t 1x) = j~-2xft-s[a(t) - (a(s) - a)].
Lemma 2. Let a be a Lipschitz-continuous function on finite intervals,
with a(0) > 0 and t G[0, -foo) such a point, where P'(t) =p{t) exists, then
\pps{D=p(0),

Proof. Suppose that P'(t) =p(t) exists at t£ [0, +00). In this case

Ps{t)= Joops(t.x)gs{x)dx,
0
20

P(t) = p(t\x)gs(x)dx, respectively (0<s<i).
0

We show that there exists a constant K <+o00 (K = K(t) <+o00 depending
on t) such that

1 Ps(t) -p(t)\*KVit-s.
Since gs(x) >0 a.e., if x >0, the following inequality is obvious:

) Ips(i)-p ()] 7 \] \ps{t\x) -p{t\x)\gs{x)dx.

Now we would like to estimate the difference
Ips(i [x) -p (t[x)].
Let sAv~t and consider the constant C = Ct for which
\a{x)-a{y)\"C\x-y,\ x,ye[O,t}.
Let
L1(u,v) =a(v) -hC(v —u), ue[s,t];

L2(u, v) =a(v) + C(u - v), u€[s,fl;
Ls(u)—a(s) + C(s —u), uGIo, sJ.
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Let

P](t,v\x) = E[1QW, LLa v)I(W, LI,v,t) \XS=x];

P2{t,v\x) = E[IQW, L2,s, V)I{W, L2,v, t) IXs =4
Obviously,

Pa(t, v\x)*Ps(t,v\x)" P}{t,v Ix) forae. x
Thus we obtain that
IPs{t,v Ix) - Ps(t,v\x)

©) ~ max[Ps(f, v 1x) —P2(t, v\x), P} (t,v \x) —Ps(t,v\ X)\.
Let

PI(tI = | — Ps (Lv Ix),
=\im-"—
ps{t\x) \Llnrpt_VPz{t,v\x).

After simple computation from the inequality (9) we obtain that

(10) \ps{t\x)-ps(t\x)  max[|ps(t\x)-p2{t\x) |,\pl{t |x)-p s(t\x) ],
Remark 3 implies that

pI{t IX) =jZTgHt) + C(t - s) - (a(s) - x)]ft-s[aft) - (a(s) - X)I;

1 [a(t) - C{t-s)- (a(s) - x)Ift-s[a(t) - (a(s) - x)]
Ps(t\x) = if x 7 a(s) —Ja<) —C(i —s)]

As ps{t Ix) = — -x/t_s[a(i) - (a(s) - x)], so

\p{t\x)-ps(t\x) |g

<—t is a(t) - a(s) + C(t - s) I-ft-s[a{t) - (a(s) - X)] g

A2 Cft- S[aft) - (a(.s) -x)],
since |a(i) —a(s)| %C(t —s); and
\ps{t\x)-p2{t1x) |g
2C/i_s[a(i) - (a(s) - x)], if x~™a(s) - [a(i) - C{t- 9)],

) _Xft-s[alt) —a(s) —x)],  otherwise.
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But, if 0" x < a(s) —[a{t) —C(t —s)], then x ~ 2C(t —s) so
(11) Ips{t Ix) - p3{tIx) |g 2C/i_s[a(t) - (a(s) - &)].
Prom the inequalities (9), (10) and (11) it follows:

Ips(tIx) - ps{tIx) 2Cft-s[a(t) - (a(s) - x)] =

_ 1 exp [a®) - (a(s) —x)12
s/2ir(t-s) 2(t-s)

So we obtain that

1 at) - (a(s) - 2"
\ps(t\x) - ps{t\x) e [a(t) 2((;1_(5)) )

where D=2C !
yl2V

From the inequalities (9) and (12) we obtain that

(12

IP*(t) ~Ps{t) |g
+00

(13) N D\/t —s J ------ exp

[9(t)-(9(s)-3)];
2(t-5) gs(x)dx.

We are going to show that the integral in (13) is bounded in a small left
neighbourhood of t. Consider an e > 0 such that e < 3aWe prove that

(14) sup o Toexp (. [a® '9{(?555)7'--35”—2 ' gs(x)dx < +00.
As

gs(x) = E[IQW, a,s) \X s =x\fXs (x)
and

a(u)™Ls(u), u6lo, g,
we obtain that
gs(x) I E[1QW,Ls,s)\Xs- x}fx3(x).

Since the line Ls can be transformed into a horizontal line using a linear
transformation, an easy application of the reflection principle gives that (cf.
Durbin [2])

(a(s) + Cs)x

E[IGW, Ls,s) IXs=x]=1- exp 25

Jifx > 0.
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Since 0 fxs(x) = we obtain that

ey @509

9s(x) " V2t

Ifl~i—e <t, then

a(s) +Cs » a(O) + a(s) —a(0)+ Cs ~ a(0) A
~ 28 = 2s =T“+C’

so using that 1—exp(—x) ™ x we obtain that

gs(x) 5i77|"r? (et +2C ) x.

Thus
[P [Q(t);((?(ss))-X)], gs(x)dx "
0
+0
smi X e [(t)2—(1§(_)5)+>§2
where

1 (a{0
y/nt v A

+2C

Applying the identity

x= [alf) —&(s) +X{—=) 6]

the integral above can be written as a sum of two integrals. The first one
can be integrated giving that it is bounded by one, the second one can be
transformed into the integral of a normal density function. Finally, using
the inequality

t—s =
we obtain that

AM(1+ 22Tz{t-s)C) * M{1+ CVirt) —N < Too.
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So we have shown that the integral (14) is finite. From this and (13) it
follows that

IPs(t)~Ps(t) \*"DNy/t-s,
ift—e ™ s <t, i.e. we have also proved that

limps(t)=p(t). O

Corollary 5. Ifais a Lipschitz-continuous function onfinite intervals,
with ci(0) > 0 and p(t) = P'(t) exists at point t, then

+00
pt) = lim -— j" xfs{t\x)gs{x)dx
sft t —s
(see Durbin [3]).

Proposition 4. Let
gs(x It) = 4-E[I(X, <x)lc(W, a,s) \W(t) =a(t)}.

Then
fs(t Ix)gs(x) = ft[a(t)]gs(x \t) ae. x>0

(cf. Durbin [3]).

THEOREM 1. Let a be a Lipschitz-continuous function on finite intervals,
tuith a(0) > 0. Then the first passage density of the Wiener process for the
boundary a exists and

p(t) = lim —E[IQW, a s)(a(s) - W(s)) \W{t) =a(t)]ft[a(t)]
ae. f€[0, +00), where

0(0
()=~ 2 exp 21

PROOF. From Lemma 1 it follows that the function p{t),t 6 [0,+00),
exists, and p(t) =P'(t) a.e. fG[0,+00). Lemma 2 and Corollary 5 imply
that

+00
p(t) = Islptw o \{ xfs(t \x)gs(x)dx a.e. tG[0, +00).
0
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Using Proposition 4,

As

and

+00
p{t) = lini I xgs(x It)dx.
sft o

gs(x Ln) = — E[I(XS<x)Ic{W.,a, s) |W(t) =a(t)]

Xs=a(s) —W(s),

it is obvious that

+00
I xgs(x It)dx = E[IQW,a,s)(a(s) - W(s)) \W{t) = a{t)}.
0]
Thus
Pit) =lim J - E [ 1 QW, a, s)(a(s) - W(s)) |W() =a()]ft[a®]. O
sfi t —
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ALMOST SURE SUMMARBILITY OF PARTIAL SUMS
M. CSORGO, L. HORVATH and Q.-M. SHAO

Dedicated to Endre Csaki on the occasion of his sixtieth birthday

Abstract

Let {Xn,n N 1} be a sequence of independent r.v.’s and let {Sn,n ™ 1} be their
partial sums. We study the problem of having ~  |Sn|p/g(n)<oo a.s. for 0 <p< oo and
lisn<oo

functions q(n) > 0 under tight g-weighted summability conditions of moments of X n and of
quantiles of the distribution function of SnmWe show that, in the i.i.d. case, our conditions
are optimal for the indicated summability problem of partial sums, and discuss also some
applications of our results.

1. Introduction and results

Studying the asymptotics of Lp-functionals of the uniform empirical pro-
cess, Csorgd, Horvath and Shao [5] reproved the following dichotomy result.

Theorem A. Let {W(t),0"t <00} bea Wiener process, 0 <p <00 and
g be a positive function on [l,00). Then

(00]
(1.1) J\W (t)\p/q(t)dt <oo as.
I

holds if and only if we have

(12 < 00.
1

Shepp [10] obtained Theorem A when p —2. His proofis based on Radon-
Nikodym derivatives of Gaussian measures. Rajput [9] proved Theorem A for
10Gp < o0o. The proof of Csorgd et al. [5] for the general case of 0 <p <00,
as stated in Theorem A, is direct and elementary. The main aim of this
paper is to get necessary and sufficient conditions for (1.1), when W{t) in it
is replaced by partial sums of independent r.v.’s.

1991 Mathematics Subject Classification. Primary 60F15, 60F17; Secondary 60G50.
Key words and phrases. Partial sums, summability, inequalities, Lp-norms, applications.

0081-6906/97/$ 5.00 ©1997 Akadémiai Kiadd, Budapest
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Throughout this paper we assume that
(1.3) {Xn,nt 1} is a sequence ofi.i.d.r.v.’s.

To make the presentation and the proofs simpler, we impose some regu-
larity conditions on g as follows:

(1.4) g{n)>0 forall n"I,

(1.5) there is a constant C\ such that lrga<x q(i) UcC\q(n)
forall nt 1, ="

(1.6) there is a constant Cz2 such that g(zn) 5 C2q(n)
for all n't. L

We note that if gq(n) is a positive regularly varying sequence with positive
exponent, then (1.4)—€1.6) hold true.

We wish to prove our theorems under weak moment conditions via using
guantiles of the distribution function of Sn= ~ /- Let

(1.7) Bn{a) = inf{.-r: P{|Sn|lire} “0}, O<ac<l,
and
(1.8) mn(a) = \T&Xn fii(a), O<ac<l.

Our main result is summarized in the following theorem.
Theorem 11. Let0<p<oo. We assume that (1.3)—1.6) hold true. If

E mp{a)/q(n)< 00,

lan<oo
(1.9) max IXAP
EE 1<i<n < 00
"t eoo g(n) +n 1@% \Xi\p

for some 0<a<1/(2(1 + 3P)), then we have

(1.10) "n2 \Sn\p/Q{n) <oo as.
1N 72< 00
and
1.11 max \Si\p/gq(n) < 00 a.s..
(1.11) y p/q

I<n<oo
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In general, (1.11) or (1.10) do not imply (1.9). This is illustrated by a
simple example. Let 0<p < 00 and define

Cl

PEXT=KARY= K log2rc)i

k=1,2,...,

where C3= 1/ Yf, ™log"Tjj7- Eet xj = 0 for j ~ 2. It is clear that

lafc<oo
{Xn,n~t 1} are independent r.v.’s, satisfying

Y — max |5ilp= "2 X%/n2<00 as..
177i<o0 1"n<o00

Thus we have (1.11) and, therefore, (1.10) as well. However, it is easily seen
that

fRps XAP *ilp

Y. Epg+enmax IxA2 £ E 4 nwxap
I<n<oo 1<71<00

N ~ =
E_ nP{|X1|p >n} = oo.

15;71< OO

Consequently, (1.9) fails to be true. Hence it is interesting and somewhat
unexpected that (1.11) and (1.9) turn out to be equivalent if {x n,n ~ 1} are
independent, identically distributed random variables (i.i.d.r.v.’s).

Theorem 1.2. Let O<p<oo. We assume that (1.3)—1l.s) hold true
and that {Xn,n” 1} are i.i.d.r.v.s5. Then (1.11) holds if and only if (1.9) is
satisfied for all 0<a < 1.

If we assume more regularity conditions on the distribution of X{, then
we can get the equivalence of (1.10) and (1.11) as well.

THEOREM 1.3. Let O<p<oo. We assume that (1.3)—1.6) hold true,
{Xn,n"i 1} are i.i.d.r.v.s and that there are constants C4 and ao € (0,
such that

1.12 d(5j)| ~ Clipn(ato) f Il ro”l.

(1.12) fpax Imed(5))] * Clipn(ato) for all ro

Then the following statements are equivalent:

(1.13) Y PSp/@{n)<oo a.s.
17r71<00

(1.14)

MaX \Si\p/q(n) < oo a.s.
J I<i<n

1<77<00
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1.15 ISnlP_ < o,
(1.15) £ Eq(n) +n\sn\P
I<n<oo
16 03 S o
(1-190) ’
I"£n<oo - q(n) *n II‘Q&X|5£D
max \Xi\P
ien <00 and vy < 00
(1'17) I"nCoo q(n) *n ITi%)é IX’I'P I"n<o00 an_)h
for all O0<a<],
1max |X,|P ‘
1.18 . cq(n)+n max [x; 00 and N _na)<00
( ) ) I"nCoo g I<t<n ’ 1472<00 q( )

forall O0<a<l

We note that (1.12) holds true in case of symmetric random variables. If
(1.12) does not hold, then (1.13) still implies (1.17) with a = 1/2 as follows.

Theorem 1.4. Let 0<p<oo. We assume that (1.3)—1.6) hold true
and that {Xn,~1} are i.i.d.r.v.5. Then (1.13) implies
£ rf(1/2)
I1<7i<00 q{n)
(1.19) max \Xi\P
1SiSn

<00 and

q(n) +n max |XA = 0o
Ign«x> g I<i<n le

Section 2 contains the proofs of Theorems 1.1-1.4. We give some applica-
tions of the results of this section and discuss the optimality of our conditions
in Section 3.

2. Proofs

We start with some preliminary lemmas.
Lemma 2.1. Let {fn,n 1} be a sequence of r.v.5. If

161

< 00
EY + |fn|

(2.1 £

1<71<00
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then we have

(2.2 Y lin|<oo as..
I"n<o0

If {En,n~1} are independent r.v.5, then (2.2) implies (2.1).
Proof. Let £n= £nL{|En|”" 1} On observing

and i{li"I>1)S2T T~

we get
(2-3) Y, EIMNl<~
lan<oo
and
(2.9) Y P{I*n|>1}= Y p{lEnI~nl}<°0.
I"n<o0 Ign<oo
Now (2.3) implies
(2.5) Y lEnl<®® as>
liinCoo

and applying (2.4) together with the Borel-Cantelli lemma, we get (2.2).

47

Conversely, we assume that (2.2) holds and that {£€n,n” 1} are indepen-
dent r.v.’s. Using the Kolmogorov three series theorem (cf., e.g., Chow and

Teicher [3], p. 114), we get (2.3) and (2.4). It is easy to see
{&!>1>.

and hence we have (2.1).

Lemma 2.2. Let £ be an arbitrary r.v. and a,p be positive constants.

Then we have

Ea 51';2)2{% | >x3x.

x2
Proof. Setting f(x) = oy we obtain immediately

E/(E]) =/(0) +j f'(x)P{\X\Ix}dx
0
00 -1
=apj0 (™~ r F{mix)dz-
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Lemma 2.3. We assume that (1.3) holds true. Thenfor eachO<a <1/2
and x ii éBmn(a) we have

pmax SA>x] < g pdmax Pl 5

H--—--— Xf| >
122 P gy Xtz 5,

PROOF. It is well-known (cf.,, e.g., Breiman [2] and Peligrad [8]) that

(2.6)

@7) (o, I5il > x] p(*”
2.7 p ipg.g( 5i| >x | <~
n J N Qi
! 1@‘313(2'“’{[15” STy 33
and
1 _ N
. ,,I>3x5< max P )ergl%|5,| 33

>*
-3
Pl 257

for all x>0. Putting together (2.7) and (2.8), we obtain

< max 1Sir>x >
LI<i<n ~J

inax P-j 15
(2.9) < -\(I max [5j|l> 34
1—max Pris -s.pgq(} 'S0 3

1<2<71

>
> g o 5

1—3J
L5
Using the definition of mn(a), we get for all x

max P<ISn—51>" <2 max |
laign V 1 3J 121

2.10 <2
210 MRt
<2 max 1

< 2a.
Now (2.9) and (2.10) yield Lemma 2.3.
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Lemma 2.4. Let 0<p<oo and {a(n),n ™ 1} be a sequence of positive
numbers. We assume that (1.3) holds true. Then, for all 0<a<
2(1 + 3Py’
we have
Xi
a mu{a) N Ir2|a<>]<1\ \p
2P+11 a(n) + mn(a) a(n) + max \Xi\p

Imzax |5'i|p

a(n) + Eﬁ% \SAp

@ e, RGP

) 1—2a(l + 3p) [a(n) + m?(a) a(n) + max [X;|p [

prooF. It follows from the definition of mn(a) that

P< max ISil* x>~ a for all O<a;<m,(a).

Hence, by Lemma 2.2, we have

\SI
Irglasﬁ \p

a(n) + max 15ilp

,\ J(Q)_ Vi |
(2.12) pa{n) () + xp)"P( max ISi 1> x\ dx
e xP-1 mp{a)

L apa(n) [ o %)% = 2 a(n) + mlia)’

An elementary argument gives

p{max ] >x) >p{ max IXd >2x\
Igi Ilgign

for all x > 0. Hence, using again Lemma 2.2, we obtain
max [5dp
I<i<n
------ Flwax \S|\>x3dx

a(n) + max |51 b pPain )f @fn) +xpﬁ1p



50 M. CSORGO, L. HORVATH and Q.-M. SHAO

. dx
=pa(n) j =
(2.12)
rP- 1
N 2 ~ppa,(n) <max |Xj| * x \dx
(a(n) + xp)2
max \Xi\p
=2-p Igign
a(n) + max [ Xilp
Observing that N1 + 2P, (2.11) and (2.12) imply the left-hand

side inequality of Lemma 2.4.
Lemmas 2.2 and 2.3 yield

max \SI\p

I<i<n
a(n) + max |SJP
Igign

(2.13)
6mn (at) A

= i,%(n) O/ (a(nT+tf)2pP { s ISil = 1} “<1

oo

+Mn) j @(n)+ AP{,W JSil - *¥}** = A") +A« >

émn(a)

ann (oi) 1 6
(2.14) An]<,pa{n) P A= OPmN(@)

@a(n) +xp)2 ~ _ a,(n)+mn{ot)
0
and
(n) @ rP~1
2apa(n LA
4 2)< 1-23 / (a(n) +Xp)2p( max ISil }dx
(2.15) om..(2)
pain) o max \X,\i>%), dx
1- 2a | (a(n) + Xp) QI<|<n "3
6m,,(a)

=43+ 49
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Using again Lemma 2.2, we get

B 2 M) E j *P-e pf.nM|s|>IW
n ~ 1—2a J(a(n) + xP)2 ligisnl 1 /
6m,,(a)
2apa.{n)3p rP~1 .
<
(2.16) 1—2a / (a(n)+a:P)2" N/, 11> X dx
2a3p {nax IS'ip

1—2a a(n) + Irgj% ISUp

and a similar argument gives
max \XAP
3P I<i<n

2.17 4 4>F E
217) 1—2a a(n) + [nax \Xi\p

Putting together (2.13)—2.17), we obtain immediately

/[, 2 "™Nv s errnila)
V 12al a(n)+ mﬁénlé'ilP —a(n) + mfi(a)
XAP
3p . Z[Dia<xn'\ A
+ 1
1—2a a(n) {na<>l(<;]XAp

and this completes also the proof of Lemma 2.4.

Lemma 2.5. Let 0<p<oo0 and {g(n),n”. 1} be a sequence of positive
numbers. If

(2.18) E \Sn\p/g{n) < oo as,
"n<m

then we have

(2.19) E

lara<oo

Pn{a)
a{n)

prooF. It follows from Lemma 2.1 in Csorgd et al. [5].
Proof of Theorem 1.1. By (15) and (16) we have

<oo forall O<a<1l

E  max |5i|7g(n) g E i E 1n)1<atzx*l|$||o
laraCoo 07k<oo xfran<2fcHl L
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" 2k
SC\ Y 2K i max 1\SAP
0O<fc<o0 q( ) =<2
N
sC\Cl v, rrE+2) I<I<2k+1 P
0"c<oo
Thus, by Lemma 2.1, it is enough to prove

max 1 |p
I<i<2i+1

(2.20) X Eo- < 00
e 2Ro2lr2) + _max,, 5dp

Applying Lemma 2.4 and the conditions (1.5) and (1.6), we get

max |Sj max |3,
|<i<2)|§+1| Ilp E I<|<2|<+1| P
2~kq(2k+2) + max. . BAP 22*+'gn<2*+2 q(zk+2)+zk|<gr<1g35+l hSdp
ISilp
<. y I<|<zk+|
2 i*«k<»«q(n)ICl + 2° . |Silp

IT|a<)§1 |5df

<2 >

dortmeep (THIC N Ra Isilp
max |SJP
E I="=n

21z 9N 0 max [5dp

This yields
max . \SAP
E E, I<i<ek+
0"k<00 ~kq(2k+2)+|<ir225k(+| [5dp
A max \Si\p
<2 Y B
Ign<oo q(n) 1y ap
ax |2Q|P
2Ci6p E mp(a) :[TI | Ql
—2a(Ifc + 3pj |U<n<ooq(n;+nmn(a)7 Ign<00 qsn)+n max |ATp

Thus we have (2.20), which completes also the proof of Theorem 1.1.
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Proof of Theorem 1.2. By Theorem 11 it is enough to prove that
(1.12) implies (1.9) for all 0 <a< 1 If (1.11) holds, then by (1.6) we have

) : |5Jp<
..n Max |5Jp<oo as,
0<k<00 q(2 k)
which implies
221 max  \S| —SKIp< 00 as.
| ) O<kE<OO q{zk) 2k<i/\;(k+ ! |p

Observing that \  max IS*—52fdp, k 1> are independent r.v.’s, Lem-

ma 2.1 and (2.21) yield

max \Si - Sz2k\p
Y' E 2k<i%2k+1

. < 00
61,<\ 2~kqg(2k) + N3 | |S'i-S 2*Ip

k<oo

(2.22)

We assumed that {Xn,n”. 1} are i.i.d.r.v.’s. Consequently, (2.22) holds if
and only if

max |5dp
(2 23) E I<i<2* <00
' 2 kq(2k) + max \SAp '
O"fcCoo I<i<2k

By Lemma 2.4 we have (2.23) if and only if

(2.24) E M) for all 0
: <oo fora <ac<
0<keo0 2 kg(2k) + mgk(a) 2(1 + 3?)
and
Ima>2<k \Xi\p
(2.25) E r e < 00.
2~kg(2k)+ max [IXA?
07k<o0 i<i<2k

Using (2.24), we get
mik(a) = o(2~kq(2k)) as k-> oo,
and, therefore, we have

(2.26) E 20“%:(8) < 00,

O<fc<oo q
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By definition, rrik{ot) Gmk+iioi) for all a, so applying (1.5) and (1.6) we
obtain from (2.26) that

rag (a) <oo forall 0<ac<

1
(2.27) E q(n) 2(1 + 3?)'

I<n<oo

Also, mn(a') » mn(a) ifa' ™ a, so by (2.27) we have for all 0<a < 1 that

00.

mp(a)
E o ©

I<n<oo
Using (2.25), similar arguments give

max \XAP
I<i<n )
S Y — | <00,

g(n) + N max LA

I"n<o0

which also completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Let {Yn,n ~ 1} be i.i.d.r.v.’s satisfying

Yn 3X\. We assume also that {Xn,n” 1} and {Yn,n ~ 1} are independent
sequences. We define

Xji—Xn Yn and Sji— " X{
I7idn

Then {Xn,n” 1} are i.i.d. symmetric r.v.’s. Using the Levy inequalities (cf.,
e.g., Chow and Teicher [3], pp. 71 and 325), we get for all 1" i~ n

P{|5i[ i 2Mh(a/8) + |med(5i)[} AP{|$ - med(5)| ~ 2/in(a/8)}
Uz2pr{si| * 2Mn(a/8)} ~ 4p{|5.| " 2/i,(al8)}
"8P{|S,|"M(a/8)}qga.

Thus we have

(2.28) mn(a) N 2/rn(a/8) + max |med(£j)|.

Now (1.12) and the monotonicity of /i,,(a:) in a give

(2.29) i5|?e>§1 Imed(5i)| ~ (74/in(a) for all O<a”ao-

Combining (2.28) and (2.29), we get
(2.30) Hn{a)*mn(a) *(Ci + 2)fin(a/8) for all 0<a”ao-
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Thus the equivalence of (1.17) and (1.18) is now proven.
If 0< a <min (ao, 5), then by Lemma 2.2 we have

{T<1Ia<xn \Si\p
q(n) +n Irgia<xn 15 |p
(2.31)
{ ) 6m, (a)
PaLn
LG A S o o,
I @hixe? (S
00
e G pyp P | MaRce \SiV-Axhdx =+ AN
cl+a;
6m,, (a)

It is easy to see that we have
4 (6mn(a))p <6p(2+ C4)Vn(«/8)

(2.32) -n& I+mP@)- n  sM + mp(a)

N OPRECOPY 4 niig(ass)

Using (2.7), we get

(e]e]

. pq(n) xP-1 P{lAlAlx}
Aib)< n% / (2™ + xp)21- max p{IS«-5*1 " f}
6m,,(a)
®
< pa{n) XP-1 PLISNI"H gy
“ n2 [ (9fcl+xP)21-2 max P{|5*|"[}
6mn(a)
pa(n)
<
(2.33) n2(1—2a)
6m,(a)

ud p-I
< (2/3Y pag{n) [ -1 :

P{[5.,| *x}d
~1—2a n2 J PL5.| xidx

(2/3)pE |5n|P
1—2a qg(n)+nl|5,|p
Applying again Lemma 2.2, we obtain
w
E 15'nlp pg(n) r xp- 1 P{|5,|*x}dx

N3 (2+2p)2

55
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Uhiét/)
[n) rP~1
(2.34) > "“n” | (20 +a.p) P00 = x}dx
>a [iE(a/8)

-8 afcl+~(a/8)°
Thus, by (2.31)—2.34), we can find Cs = Cs(p) such that

Ef% \SAP
" ¢ 5e - \sn
g(n)+n MaX \Si\p g(n) + n\S,\p"
\<i<n

and, therefore, (1.15) implies (1.16). It is trivial that (1.16) implies (1.15).

According to Lemma 2.4, the statements in (1.16) and (1.18) are equiva-
lent. By Theorem 1.2 we have (1.14) ifand only if (1.18) holds true. Thus, it
suffices to show that (1.13) implies (1.17). According to Lemma 2.5, (1.13)
yields

<oo forall O0<a<l

(2.35) E

1<71<00
Recalling the definition of Sn, we have

(2.36) A \Snyp/q(n) <oo as..
I*nCoo

Hence Lemma 2.5 gives

1A(a)
(2.37) E < oo,
I<n<oo q(n)

where _
/i,,(a) = inf{x: P{|S.,.| » x} S a}.
By (2.36) we obtain

(2.38) A2 Y2 I'S'n+2fc+ 1IP/Q ,(n + 2fc+1) C °o a-s ->

k<o +

and hence, by (1.5) and (1.6), we have

(2.39) E E \Sn+2k+i\p/g(n)<oo  aS..
lgfc<oo 2fc+ Igng2*+1
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Putting together (2.36) and (2.39), we get

(2.40) X X I"+2*%+i - S n\p/g{n)<oo as.,
17c<oo ¥+

which implies

(2.41) X! X \Sn+2~ - S n \p/q(22k)«x> a.S..
INc<o0 22c+ 1N7iN22%+1
Observing that < |5,,+22c+i - S 7l|p, k ~ 1>are independent r.v.’s,
X+ lgn<22%+> J

it follows from Lemma 2.1 that
(2.42)

XE X \Sn+2”~ -S n\PR(q(22k)+ X \Sn+2”" ~Sn\P)}<oo.
I$fc<oo  2Xc+ Igni?22<+1 2%+ Ign” 2 2fcl

We have for all x >0

p{ X \Sn+2 A -S n\P~ x}
22X+ 1M 22k+1

=p{ X \Sn+22k+'-Sn\PZx}
\%n"22k

~Nop | X (2~p\S22k+i—S 22 |p—2p|5 71+22%+i —5 22k+i \p —2p\S22ic—S n\p)~".x
ngnnh22x

522 - 52 |p” w +2ao max |Sb+22%+i - 520cHi |p
+ 220 max \Sok —5n
a)I’\n%Z ? |p

~p{ IAm/@%(Z( \Sn+22kH —S2-k+i\*jl22k(a)}

X p¢ max \Sok —Sn\"*Jl22k(a)}
I"n<22%

X e j|5 2% - Sak|p” 22ptlg 2(a)}.

Using again the Levy inequalities (cf., e.g., Chow and Teicher [3], p. 71), for
O<a” 1/4 we get

P{ max |5n (2ox+1 —S2Kk+1~ B2K(ayy
I<n<2Z



58 M. CSORGO, L. HORVATH and Q.-M. SHAO
=P{ max_ [S22k—Sn|”" /x2X(a
{,max, | |~ h2x(a)}
N 2P{(Sb« | N M2« («)} N 2« ™ 1/2,

and by Chow and Teicher ([3], p. 73) we have
plis2%- S2, rg +2rir2tM}
=plls21"g |i +2241°, (<)}
i 5p{i“iy [Hl AP +241<)}
A p{,§S . AP {+22" 9l (Y

Thus, for each ao € (0,1/4), there is a positive constant Cq= C”ao) such
that

P E \Sn+22k+i- S n\ A x \
(2.43) N2 2k+H\YiYe k+H !
i «iPj,™ * \x>ri + 2

for all x >0and O0<a " ao.
It follows from Lemma 2.2, (2.42) and (2.43) that

I - 1Br-+22c+1 ~ Sn
-I; e{22k+{"‘En"22k+1IS”+2> « S»r/(g(zz);'-zfm|<nE< 22fe+1|$ ° \p)}

(00]
optit

INT > -7r57—+ 22p+2” 2k{a) \dx
-g(ZM)/O h(P +xPF{1Ir2$(« g% P {)

(2.44)

AV 1A An- .

Z'pRAx ‘ID (022 F2zkx)2 VighiSos IIP 7230
2P+2lp (a)

OPL D25, X Ip i1y

- 2~(p+1)q{2k)ZZ(JJ (226 + 22kxy2 . O
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2p+V22*(Q)p{ max \Xil\p > x\

2EARK ] s
- (q(22k) + 22kx)?2

|ma§(2<\XAP kJlpek
<
> 2 BHDUE 2'k< " szz(zfi) @
~ + ma i q
2~2kq(220) \<i<§(2< e
Using (2.37) we get
Pa E E A22k(a)<ool
ISfc<oo 22+ 1nng2 2K <A22e)
Consequently, (2.42) and (2.44) yield
| mazka\XAP
<I<
(2.46) E E E ! < 00.

~ + -
Inkex> 22kt 1AnA22ken 2 2KA(22K) + Nax, \Xi

We apply (1.5) and (1.6) to deduce from (2.46) that

max XAP
I<t<n

(2.47)
|gn<oo .g(n) +n max \XAP
We note that Lemma 1 in Chow and Teicher ([3], p. 325) gives
XilA x| A A Xi — SV A Xi
p{”rﬂg}(] |Xj| xJ 2p{max \Xi —med(Xi)| x5
A-pj mae | Xj| Mx + med(Xi)|l.

Hence, by Lemma 2.2, we have

max IXAP 00P bmax \XAP >X
1<i<n =
E dx
(n)+nlma<x\XAp n 2 J (™ + xf
<iI<n

qin) fp(tlg?é( WP (X UP + |med(X1)|)pL
>

202 J (N +2 o
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)3 pl% N

2n2
(2.48)
max IXAP
> 2 p-ie i<i<7i' 1 |2med(Xi)|P
g(n)+n ln<1fa<>§] \Xi\p g(n)

According to Lemma 2.5, (1.13) implies (2.35). Using now (2.30), we get

m”(a)

(2.49)
Necoo 4(M)

By definition, mn(a) %mn+i(a) for all a, and, therefore, (2.59) implies
o
(2.50) E -—-r<°e-
,<«00 «(">
Putting together (2.47), (2.49) and (2.50), we obtain

max \Xi\p
I<i<n
E— - | | < oo,

B q(n) + N M A Xi\

which completes proof of the equivalence of (1.13) and (1.17).

Proof of Theorem 1.4, It follows immediately from the proof of The-

orem 1.3.

3. Applications and discussion

We show first that Theorem A remains true if the Wiener process is

replaced by partial sums of i.i.d.r.v.’s with finite variance.

Theorem 3.1. Let O0<p<oo. We assume that (1.4)—L.6) hold true
and that {Xn,n”. 1} are i.i.d.r.v. 5 with EXi = 0 and 0< var X\ <o00. Then

(1.13), (1.14) and

yvt2
(3.1 E atmy <

1<71<00

are equivalent.
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PROOF. The central limit theorem implies
(3.2) 71Iir(a)lO n~I%fin(a) =/(a) >0 forall 0<a<l.

Thus, (3.1) holds if and only if

fin(«)
(3.3 IAnE((m aln) < 00.

Using Lemma 2.2, we obtain

Z{Ela<)l(1 Xivp - ) oo ’
(ix
q(n) +n \rgfa%(n \XAp n2 / (Sfel+ 1)2
nR'2
<A T T 4w gxe pimax [X2PAnp2j | A+t o
B IP/2
Np/2
z ) +P(\XI\Zny! \

and it is well known that EX2 <oc if and only if

J2 P(|*i|"n1/2)<o0.
I<n<oo
Theorem 3.1 remains true for not necessarily identically distributed r.v.’s.

Theorem 3.2. Let Q<p<oo. We assume that (1.3)—1.6) hold true
and that EXn—0, EX2 < 00. Setcr2= EX2. Then

@/Q(n)<°°

\<n<oo

and

.- }/ P{|Xi|*an}<oo
I"n<oo = 15i=n
imply (1.14).

PROOF. It goes along the lines of the proof of Theorem 3.1 and hence
omitted.

If EXj2= 00, then, in general, condition (3.1) is not enough to have (1.13).
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P roposition 3.1. Let g(x) be anon-decreasing continuous function sat-
isfying XIir}noog(x) =00. For any 0 <p <oo we can find a sequence {Xn,n > 1}

of i.i.d.r.v.5 with EXi = 0, EX2/g{\X\|) < 00 and a sequence {g(n),nii 1}
satisfying (1.4)—€1.6) such that (3.1) holds true but (1.13) does not.

Proof. We can find a sequence {nk,k” 1} such that
(3.4) nk+l/nk i>2k and gink)*ek, k=1,2,....
The distribution of X\ is given by

P{Xl=#+n*}=- " , k=12,..,

and {Xn,n " 1} are independent copies of X\. Let
h(i) = kp/4, if n\"Mi<nR+x.
There is a sequence {q(n),n 1} such that (1.4)—1.6) hold, and

3.5 < 00,
&) 15§<00 9(0
IP/2h{l)

(3.6) . TY. —oo_
INi<oo 9(0)(

One can easily verify that EXi = 0, EX2= 00 and E X2/g{\X\\) < oo.
Let L{x) = EX2I{\X\\ E x}. Since EX? = 00, we have )liﬂ.)L(x) = 00.

By (3.4) we have also

\L(@ax)-LoN = J2FA] =2 v ~ m{gk: nkAx3)-12-+0
for all a > 0, where U = {k: nk is between x and ax}. Thus, we conclude
that L is a slowly varying function at zero. Using Theorem 8.3.1 in Bingham

et al. [1], we get

. ‘A o 1A R 199N ) _
nll[gopll ni~n122))-1/2 4 X; <>3I <h(x)
for all x1where 4>is the standard normal distribution function. Thus we get

med \Sn\

3.7) n300 (nlAn12))12”
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Next we show that

(med \Sn\Y
=00

(3.8) a{n)

1<71<00
Using (3.4) and (3.6) we get

(tV2L (iV2))P @U2L (il12))v

E E E

M=% «®) I<fc<oo np<i<nf,i-1 W)
(ill2L(nk)y
>
E E 910

I"A:<o0 7ij*aianj* +1—

*E E AN(EANT

I"fc<oo n£giSnE+1-1

/
ao E E - ,P/2

Igfc<oon;Mignj*+1- |

SEg YA *pg_?%%(o _ o)

I<fc<oo

and hence (3.7) implies (3.8). The distribution of Xi is symmetric, therefore
(1.12) holds true. Applying Theorem 1.3, (3.8) yields

(3.9 ,{ £ qin) >0.

I<n<oo

Proposition 3.1 now follows from (3.5) and (3.9).
It is interesting to note that the condition (3.1) is not sufficient for

(1.13). We saw in the proof of Theorem 3.1 that ) < 00 implies
ISInCoo  *

mex | Xi|p
J2 Eg(n)+n=mex |A"|» < °°if < °°> in case of i-i.d.r.v.’s. However, if
1"n<o0 1Stgn
max [7NilP

EX2= 00, then A (I(n)+n mex |a |p < 00 is the necessary and sufficient
IgnCoo
condition.

Theorem 3.3. Let O0<p<oo. We assume that (1.4)—1.6) hold true
and that {Xn,n~" 1} are i.i.d.r.v.5. We assume that there is a sequence
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{a(n),n” 1} such that

S(n) vy

a(n) ’
where Y is a non-degenerate stable r.v. with exponent 0<v < 2. Then (1.13),
(1.14) and

fnax IXAP
(3.11) E

., < 00
larKoo q(n)+n|r:r13:xn |XJ|p

are equivalent.

Proorf. Let G(t) = P{|Xi| ~ t}. According to Theorem 8.3.1 in Bing-
ham et al. [1], (3.10) implies that G(t) is a regularly varying function with
index —v with some 0< v < 2. Also, if G~I denotes the inverse of G, then
we have as well

G~\l/n)

(3.12) 0< nlll;noo a(n) < o0o0.

Using (3.10), we get that (1.12) holds true, and

hn{a)

(3.13) nI-I)mo a(n) = 7(a).
Thus we have
Pn{a)
(3.14) E < 00
1< 72< OC q{n)
if and only if
(3.15) E (G -(I/-))-<o00
1771<00 q(n)
Using Lemma 2.2 we obtain
- fopx, 1Xtlp gy " HAZ XA >R N
N .
q(n) +n {)(b%llx b n2 6 - (g 1 Xy
> g(n) - iip> 2 )W + X2
= n2 (IITia<)§1 IXilp> 2J'i)§:1f( +X> dx
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) o (G-1(1/n))p
P{max [Xt|* (G -1(I/n))P} q(n) + n(G~1(I/n))P

Since G has a regularly varying tail, we get

l|>n80Pl max IXAi)>(G“1(I/n))p5 =1- e-1.

Thus, (3.11) yields

y ' (G "' (lin))p

<7700 ?(n) + n(G~1(1/n))f>

which immediately implies (3.15) and (3.14).

So, if {Xn,n ~ 1} are i.i.d.r.v.’s in the domain of attraction of a stable
law, then the necessary and sufficient condition for having (1.13) and (1.14)
is given in terms of max |X,|. This observation rhymes very well with the

main results in Csorgd, Csorgd, Horvath and Mason [4], and Csorg6, Horvath
and Mason [6]. They showed that S(n)/G~x(\/n) is asymptotically stable
on account of II;(IIQ\)F] \Xi\ being very large. Namely, S(n) and m% |X,| are of

the same order asymptotically. However, it is still of interest to see whether
(3.11) can be replaced by a straightforward moment condition.

THEOREM3.4. Let2”p<oo0. We assume that {Xn,n”1} arei.i.d.r.v.%
and 6 >1+p/2, 671+ p. Then the following statements are equivalent:

(3.16) E \Sn\p/ne<oo a.s,,
I<n<oo

(3.17) E max [Silp/n0<o0  as.
I<n<oo

and

(3.18) E|XYp/(0-1) <00 and EX,=0 ifd<\+p.

Proof. First we show that (3.16) implies (3.18). By Theorem 1.4 we
have
maX \Xi\p

i=*=
% | n 00

<
ne+n max IXA?
15=n<00 € | /\an

It is easy to see

0 foax 1xitg

I\ max \Xi\pZ 1
1 X VAP £ne } °—ne+nrpax|XJP
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and, therefore, we get

—pf max \X|\10> ne 1}<oo
N n iaian
lanCoo

Elementary calculations show

X oOaPimE . /

=E E MmjgWint}

A4E 2 E p{s?Ixii™ D

Oéfc<oo 2fidn<2fe+2

W i HC- DV
0’\/c<oop{ SA Z ’C :I)}
Therefore, we have
(3.19) mf P{m [Xijp"2f(0- 1) < oo.

lafcaoo ==

Hence, I|m p(ﬂ max |X*|P"22(O A 0, and thus we get

lim P( max |Xip” 260 1)/ (2P {|Xilp~ 260" DY) = 1

Using (3.19), we obtain

(3.20) 2fP {|Xi|p~ 2 10 1)}<00.

lafc<oo

From (3.20) we can easily derive

Y, Peixi|>n p}<00,
lan<oo

which is equivalent to E ~il*1 < 00. If 9< 1+p, then E|Xi| < oo and,
therefore, the strong law of large numbers and 3.16 imply that EX\ =0.
Now we show that (3.18) implies (3.17). By Lemma 2.2 we have

max XAP

latan

ne + n max IXAp
latan
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(3.22) =n® 2 [ (n° x+x) 2p( max \Xi\p~ x\dx
0

00
+n0~2 [ (n°~1+x)~2 max \Xi\p ~ x\d x
J IO{\|=*=n J
na~|
=c"N +c".

It is elementary to check

(3.22) C$2)gn _lp{miuc \Xi\p~ n0-1} *p {|*i|*n" }.

Next we note

n«-1
C"*"no-2 | {ne-ly 2v{ max \Xi\p”~n 0~I\dx
0
nel
(3.23) +ne~2 [ (n0_1+x)-2pja: " max \Xi\p~ nO_l]»cta:
t ia*=n

n«*“1

APAAIANG 13*«10 1 PixglXilPAn0-1}4

n1-0E(|X 1| 1+51- MH|A[LIP~n0-1})
(3.24)

A 1-T n~@DE+~)E (|X i|1+)/{|X i|P ~Ano0-1}),
1_(p+ 20-1))

on account of d+ 2gy¥" < 1 The assumptions of Theorem 3.4 give that
+ 2(<f-i)) > 11land hence we arrive at

J2 n*(O_ P+ "TT)E(Xi|1+/{|X i|P*n 01}
I$n<o0

= Y n~{e=D(p+wr>) Y, E(7i|1+ 1{ (7 —)0_1<Kki|pg7°})

I"n<o0 1
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(3.25) £ Y, E n_(0_)(p+A ) E(Xi|1+* 7 { (j- D&-1<|Xi|PA/})

14jCoo jan<oo
=0"1 E r A EREPu{U-)0i<dn/- 3
2 1<j<oo
Z g)/p - E EXPYA(H)0I4XIN/ -
“F laj<oo
2p _ A
2(6 —1) —p E|ALAT.
Combining (3.21)-(3.25), we obtain
max \Xi\p
(3.26) Ién£Coo g(n) +n Irgi%)ﬁl IXite =%
Next we show
(3.27) E m‘f'(a)
lanCoo
First we note
(3.28) lira nP{|Xilp~ne' 1} =0,

and, by the Markov inequality, we have

P{|5n|*x} p im_ax AXi\ A n~p~!|

(3.29) +P{[ E Xj mSnW}"*}

laian
gnP{|Xilp" n0-1}+ x~2{nE(Xil{\Xi g n0-1})

+ riE(X 1/ (|X 1lp ~ n 0- 1))}.

It follows from (3.28) and (3.29) that

Iinligcpm,,(a){nE(XI/ﬂX lpgn0'1}) + nE(Xi7{|*i|pg n0- 1})}* V2 < oo.
n

Thus, it is enough to verify

(3.30) A n-0(NEFY{|X 1" n (0- 1)/p}))p/2<00

lan<oo
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and

(3.31) Y  n-0[nE(XL/{|Xi|~n(@-1)/p})|p<oo.

lan<oo
Using the Holder inequality, we obtain
E (X?/{|Xi|gn(0-1)/p})
NEIXTHAT)ER (E(Xi|@2" ~ )2/{X i|*n O L)/p)r
p P-2 . . g-1 2 (p-2)(g-U (n P A
MNE|XT«-i) p (EdXip/dXilAn® }))?« p?
and therefore, we get

Y n-o(ri{xfI{xi " n(0-1)/p}))p/2

lan<oo

NEIXINT)2ZY B nf B2 SIPT)(9_158}2)E(X"?/{|Xi|gn‘?_1})
lan<oo

MEIXASD) A E n=I0) Y VXTI -1)V<x! £ &
I$n<o0 I<j'Sn

g(EIXdM22 E Y n-pl~DE(XMI{j- &< * =~ <)
I<?<00j"n<00

Ap(El*il»-Q2 18 _ N

PESt Y HEBIDV KOO i)

PERIDT Y EXATHij- IVUR&EIj))

20—1)—p 14jCoo

s P(E|Xi|"T)8§
=20—)—p -
The proof of (3.31) is similar to that of (3.30) and hence omitted.
It may seem to be curious that the case of 0= 1+p is excluded in Theo-

rem 3.4. However, this is not due to the lack of power of our method. Indeed,
Theorem 3.4 may fail if 0= 1-I-p.

Example 3.1. Let {X,,,n™ 1} be i.i.d.r.v.’s with distribution
P{Xi = -1} =c0,

00

PiX' =)=c°® | 7 (Hv)k\"y?iyif| =¢"
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where
@ 1 1
o— 1+ [dy
[ y2(iogy) (log logy)3

We show that this sequence of r.v.’s has the following properties:

(3.32) EXi=0,
(3.33) n (1+p)(med|5'ri))p= oo for all p>0,
I"n<o0
and
(3.34) \ max |SJp=o00 as.
I"n<o0

The definition of X\ implies (3.32) without any calculations. By Theo-
rem 1.2, (3.34) follows from (3.33). Hence, it suffices to verify only (3.33).

Let F(x) = P{Xi and L(x) = cO/((logx)(loglog:r)2). Clearly,
X(I-F(x) +F(x)) _ )
®-»00 T(a;) '
and
F(-x)

A 1 Fx)+ F(—) - O

Therefore, F belongs to the domain of attraction of a stable law with expo-
nent one (cf. Theorem 8.3.1 in Bingham et al. [1]). This means that

E Xi-b{n)

(3.35) - 3y,

where Y is a random variable with characteristic function
f{t) =exp(-]i| -i"t log |iQ,

and
h

o(n) 2co(log logn)2logn’
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(cf. Theorem 8.3.2 in Bingham et al. [1] or Mijnheer [7], p. 16). We note
that

0]
b{n) —na{n) J[ (sm a{ﬂ;----awr)dF(x)
—00
v m/ 1\, 1 sinA ~ ife dv |
y2(loglog?/)2logy y
and, therefore, we have
£ \yan)f
= yla{n
AN
50" s - p1ogiogyy21ony
(00]
-2y dy} =D £\
{ W y 2(log logy)2 logy
@
-y
o SDT'\(n){"Wh] 2a(n)y2(loglogy)2logy
2a(n)
Elementary properties of slowly varying functions give
n|-|>r20 /J \ Iog log a(n)/) =1
lim @11 = \

n—=00 n / V2logloga(n)/ ’

and thus we conclude

3.36 ~2co < liminf~  *“e™* <limsup iX(,) 2g “°S" <
(3.36) N->00 n n—>oop ) f

Using (3.35) and (3.36), we obtain

cOn
. C s
I%legfp{ |£ Xi 3loglogn .

e /(3log |
A'Lﬂio’(}fp I<i<n N < - (n)—cz?ng og log n)
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£ Xi-b(n) n
Al i=*=n C
“Hq—;&)fp a(n) ~ 7a(n)log logn
(3.37)
£ - b(n)
—liminfp < 2co(log logn) logn
71—>00 a(n) n
=1
Now (3.37) vyields
lim i med|Sn| c0
im inf

n->00 (n/loglogn) 3

which implies (3.33) immediately.
Only Theorem 3.4 has a restriction on the value of p. The following
example shows that Theorem 3.4 may not be true if 0 <p < 2.

Example 3.2. Leto<p<2and 1+p/2<9 <2 Let {Xn,n" 1} be
i.i.d.r.v.’s with density function

aola:|1+f-r (log Im[)(log log |[m[)2, if |a;|"ee

0=, if |x| < ee.

We establish the following properties of {Xn,n ii 1}:

(3.38) X\ is symmetric,
(3.39) E|Xi|"T<oo and EA4=0 if 90 1+p,
Dk AP
(3-40) £ Bo+n max \XAp ~ °%
I<n<oo 1<i<n
and
(3.41) n_0|Snjp=o00 as.
I"n<oo

Elementary calculations give (3.38) and (3.39). Applying Theorem 1.3, we
can see that (3.40) implies (3.44). So we need to verify (3.40) only. Let

I 6a0fl—)n \V1

a(n) \p(loglogn)2lognJ
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It is easy to see
2a0(fl —1)

N0 PEXAXE T xoro-1) ((0g logs)2logx ) -

and hence we have
. - _
nIlg nP{|Ai |~ a(n)} =3

If 0 < x Ua(n), then we obtain

P{max \XA’\xJ>" P max \XA>a

i=*=n

assuming that n is large enough. Using Lemma 2.2, we get

o Wi B FP TP (1% J
B e max iXa- P (n6 1+ xp)2 dx
1<i<n
pn <z J 0~l] ap(n)
d] + xP)27 6n(n 0.1+ aP(n))
A 1/6fIO(e-I)\g-| 1

~ 12\ v ) n((logn)(loglogn)2)e-\"
if n is large. Since s < 2, the proof of (3.40) is complete.
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ON THE HAUSDORFF DIMENSION OF THE SET GENERATED
BY EXCEPTIONAL OSCILLATIONS OF A WIENER PROCESS

P. DEHEUVELS and M. A. LIFSHITS

Dedicated to Endre Csaki on his sixtieth birthday

Abstract

The rescaled A-increments Yt ~(u) = (2h\og(l/h))~172{W(t + hu) —W(t)}, for u€
[0,1], of a Wiener process {W(t):t ~ 0}, are considered as elements of the space Co[0,]]
of all continuous functions g on [0,1] with g(0) = 0. We endow Co[0,1] with the topol-
ogy defined by a norm || m||,, chosen within a general class C for which the limit law
lim/lj.o{supO<t<1 < oo holds with probability 1. We show that, for each / €

I

Co[0,1] with f{£f(u)}2dun 1, the set £,,(/) = {t G[0,1] :liminf/40 \\Ylyh - f\\u = 0}
0
contains, with probability 1 for each v£C, a subsetI £(/), independent of || «I™ EC and

with Hausdorff dimension equal to dim(£(/)) = 1—f {~f(u)}2du.
0

1. Introduction and statement of main results

Let {Wi (t):i” 0} denote a standard Wiener process. For each h >0 and
tg 0, set X tth(u) =h-1/2{W{t+hu)-W(t)), Lh=L{h) = (21og(l/h))1 2 and
Ytih(u) = L~ 1X t'h(u) for u”0. Fix any to G[0,1]. Lévy [14] established that
with probability 1,

@ 1™ { P ||*tftjw} =1,
h+e 1t€[0,l] ]

(1D log(Il/ly 14/

S 2
(i) “%S.éjpisoglog(llli)} \\YtoA\ = h

where ||/]lw = supuGJ01]|/(u)| stands for the sup-norm of /. Orey and Tay-
lor [17] precised (1.1)(i) by proving the existence with probability 1 of a

1991 Mathematics Subject Classification. Primary 60F17, 60F15, 60F10, 60G15.
Key words and phrases. Wiener process, law of the iterated logarithm, modulus of
continuity, strong laws, Hausdorff dimension, fractals.
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(random) subset C Q[0,1] such that, for each t6 £,

(1.2) limsup|lyt)/,|w= 1
140

The following notation is needed for the exposition of refinements of
(1.1)—€1.2) obtained in the recent literature. Denote by C[0,]] the set of all
continuous functions defined on [0,1], and set Co[0,1]={"€C'[0,1]:g(0) = 0}.
Aside of the uniform topology U generated by ||/||w, there is a large choice of
normed topologies on Co[0,1] (or C[0,1]) which are appropriate with respect
to the derivation of limit laws for the Wiener process. To characterize a
general class including most of the possible norms of interest, we follow the
notation and vocabulary of Deheuvels and Lifshits [5], [6] By a norm on
a vector space X (with emphasis on the cases where X = Co[0,1]] or X =
C[0,1]), is meant a mapping v :/ —v(f) —||/||,, of X onto [0, 00] fulfilling
(A) below, with the conventions 0x oo = 0and 0+ oo = 0o. When it is defined
on either X = Co[0,]] or X = CJ[0,1], v is said to be a consistent norm if it
satisfies (A), (B) and (C) below. By a consistent semi-norm on X = Co[0, 1]
(resp. X = C[0,1]) is meant a mapping v :/ —n(f) = W\\u of X onto [0, oo]
satisfying (A)(i,ii)-(B)-(C) but not necessarily (A)(iii)-

(A) Forall f,g6 X and cER

() Hf +g)%v{f) + v{9),
@) v(cf) = \c\{f),
(iii) v{f) = 0=>/=0.

(B) v is lower semicontinuous with respect to the uniform topology IA
(C) There exists an e > 0 such that with probability one

(1.3) sup n(w{dl+ {I-02)-)-W{61)) <oo0.

The space X endowed with the topology defined by v = 1isil, is denoted by
(X ,u). We note that, with the above definitions a norm (resp. a semi-norm)
is possibly infinite. Moreover, any norm (resp. semi-norm) u on Co[0,1] may
be extended to a norm (resp. semi-norm) on CJ[0,1] by setting u(f) = oo
for all / GC[0,]] —Co][0,1]. Therefore, in the sequel we will not distinguish
the case where u is defined, on C[0,1] from that where v is initially defined
on Co[0,]] only. Throughout, we will denote by C the set of all consistent
norms on Col[0,1]. We will repeatedly make use of the observation that (A)-
(C), when combined with the scaling property of the Wiener process, jointly
imply that

(1.4) P(n(W) <o0) = 1

We refer to Deheuvels and Lifshits [5], [6] for further discussions and
examples of norms which satisfy (A)-(B)-(C). In particular, the weighted
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sup-norm, the Holder norm and the Lp-norm defined, respectively, for / £
Co[0,1], a< 1/2, R<I/2 and p" 1, by

sup t~a(l-t)~R\f{t)l sup {t-s)~a\f(t) -f{s)\,
O<t<lI Ogs”igl

(l \f(u)\pd u) I/P,
0

are consistent norms in the above sense. Following the discussion in [5], [6],
we mention that the technical assumption (B) may be relaxed in part in
the statement of our forthcoming results at the expense of huge technical
difficulties. Since, to our best knowledge, there is no interesting norm with
respect to the Wiener process which does not satisfy the latter condition, we
will limit ourselves to the present framework.

The following notation and facts, taken from probability theory in Ba-
nach spaces will be useful. Let X = (X,r) denote a vector space X , endowed
with a Hausdorff locally convex topology r, and algebra of Borel sets Bx-
We denote by X* the space of all r-continuous linear forms on X . An de-
valued random variable Z whose distribution Pz(B) = P(Z £ B) for B £ Bx
is @ Radon measure on X is said to be centered Gaussian whenever the
distribution of n(Z) is centered Gaussian for all #£ X*. The Gaussian
measure Pz allows to imbed X* into L2 = L2(X, Bx, Pz) via the mapping
Iz Wl £ X* —=%(Z) £ L2. The closure of X* = 1z(X*) into L2 is called the
space of measurable linear forms (with respect to P%) on X and denoted by
X%. For each centered Gaussian distribution Pz on A, there exists a kernel
Hz which is a linear subspace of X, endowed with a Hilbert norm |e. )
such that the following property holds (see e.g. Section 9 in Lifshits [15]).

For each h £ Hz, there exists an hE Xtf satisfying the equalities

Pz{B +h):\] (h(z) - */ilhz)P z(dz) foreach BeBz, and

(L5) B
j h{z)2Vz{dz) =\h\@az.
X

The space Hz is called the reproducing kernel Hilbert space [RKHS] of Pz-
The unit ball of Hz will be denoted by Kz = {he Hz :H hz = I}

We will specialize in the case where X = Co[0,]] (or C[0,1]), t = U,
Z = W is (the restriction on [0,1] of) a Wiener process, and Pw is the Wiener
measure. In this case, (1.5) is the Cameron-Martin formula (Cameron and
Martin [4]) and |*n w = |*n is the Wiener process Hilbert norm |e. .
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conveniently defined by setting, for each / £ C[0.]]
I
nn= 1(S)ak) 7,

when / £ Co[0,]] is absolutely continuous on [0,1] with Lebesgue derivative
f(u) = ~-/(u), and |/|n = o0 else. The RKHS of Pw isthen Hw=H= {/ £
Co[0,1]: |/|nh < 00}, with unit ball Kw = K= {/ £H:|/|n ~ 1} equal to the
Strassen set ([21]).

For each consistent semi-norm v on CoJ[0,1], introduce the limit sets

Ct{y) = {/ GCo[0,1]: lim inf v(Yeh- ) =0},

16 — .
(1.6) C{u) = {/ £ Co[0,1]: Iuysz (@ﬂu{Yth -1)) O}m

For each consistent semi-norm i/, / £ Co[0,1] and a ” 0 introduce the sets of
exceptional points (in [0,1], and with respect to v, /, a and W), defined by

T(v,f) = {te[0,1]:f €Ct{v)},
(17) T(is, a) = {tE [0,1]: limsup ( inf v(Ytyh-f)) >0}
hio /e»K

Here, and elsewhere, we set AK = {\z :z € K} for AER and K QX.
By extending the functional law of the iterated logarithm of Strassen [21]
to increments, Révész [18] and Mueller [16] improved (1.1) by showing that,
with probability 1,
CV)= K

Deheuvels and Lifshits [5] obtained a general version of this statement by
showing that, for any consistent norm v £ C, we have, with probability 1,

(1.8) C(v)= ﬁ ct(u) = K
o]

It follows from the versions of (1.1) (ii) which hold with U replaced by
v £ C that, with probability 1 for each specified to £ [0,1], the set cto(v)
contains only of the null function (see [5], [6]). This is not in contradiction
with (1.8) because of the continuum cardinality of [0,1]. In addition, (1.8)
implies that, with probability 1, T(i*,/)=0 for each /EC0[0,]1] with |/|//>1,
and T(v,a) =0 for each a ™ 1

On the other hand, it follows from (1.8) that, with probability 1, the sets
T(u,f) and T(v,a) are not empty for |/|# ~ 1and a s [0,1). We will now
show that each of these sets, being of Lebesgue measure zero and dense in
[0,1], constitutes a random fractal, whose Hausdorff dimension is independent
of v £ C with probability 1.
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We refer to Falconer [9], [10] and Stoyan and Stoyan [20], for expositions
of the theory of fractals. Below, we limit ourselves to simple definitions.
By a fractal subset of [0,1], is meant here a set A [0,1] with an arbitrary
Hausdorff dimension dim(yl) 6 [0,1]. The latter is defined by

(1.9) dim(i4) = inf jp > 0: lim ~inf 6 —  =0j,

&° id
where the infimum is taken among all ¢ce;. bi) ;i E1} ER2such that A Q
Uiex[Ri,bi] and 0< f§—3*" & for each i EIl. The first steps in the evalu-
ation of Hausdorff dimension for sets generated by exceptional oscillations
of Wiener processes were made by Orey and Taylor [17]. They established
that, for each <*€ [0,1], with probability 1,

(1.10) dimit E [0,1]: limsup |Vt/i|jlw «} =1-a 2.
L 140 J

Deheuvels and Mason [7], [8] obtained the functional version of (1.10) stated
in Theorem 1.1 below.

THEOREM 1.1. (a) For any aE [0,1], with probability 1,

(1.12) dim(T(77,a)) = 1—a2.
(b) For any f £ K, Wthprobability 1,
(1.12) dim(T(ZY.)) = | —1/&.

The aim of this paper is three-fold. First, we will extend the validity of
Theorem 1.1 to the case where the uniform norm U is replaced by any norm
v within the class C of consistent norms. The corresponding result is stated
in Theorem 1.2 below in the somewhat more general setting of a countable
family J\f—{un:nM }C C of consistent norms.

Theorem 1.2. LetM = {vn:nM }QC be a countable family of consis-
tent norms. Then, with probability 1,

(1.13) dim” T(y,a) = 1—a2, Va€[0,l],
oA

and

(1.14) dim( P| 7>,/)) =1—/|B, VI/EK
ileAf

Second, we will make use of Theorem 1.2 to establish in Theorem 1.3 the
existence with probability 1 of norm-independent sets of exceptional points
(in the sense of (1.6)—€1.7)) with the same fractal dimension than that which
is obtained for a single norm u EC.
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THEOREM 1.3. There exist families of random subsets {Ta:a G [0,1)},
{T":a G [0,1)} and {Tj,f c K} of [0,1], indexed by a £ [0,1) and f E K,
respectively, such that, with probability I,

(1.15) dim(T™) = dim(T") =1-a 2, VaG|[o,l),
(1.16) dim(Ty) = 1—/|h, VIG K,
and, for each consistent norm vEC, with probability 1
(1.17) TaQT(u,a) QT", VaG [0,1),
(1.18) Tf QT(n,f), VIG K

Remark 1.1. The meaning of the second half of Theorem 1.3 is that, for
each specified consistent norm u GC, there exists an event O,, of probability 1
on which (1.17)—1.18) hold. In particular, on the event £ for each / G K
and t ETf, the function / belongs to the limit set Ct(n) of the increment
functions {Y//,:h >0} as /i/0. In other words,

(1.19) P(Ihninfn(Yuh- /) =0ViGTA V/Gk) =1 VnGC

The arguments given in the sequel show that, even though Ta, T" and Tj
may be defined independently of v GC, the event of probability 1 on
which (1.17)—1.18) hold depends upon UEC. The existence of an event of
probability 1 implying (1.17)—1.18) independently of uEC is unlikely even
though we have not been able to disprove its existence.

The proofs of Theorems 1.2 and 1.3 are given in Sections 2 and 4.

To motivate the remaining third part of our paper, it is useful to outline
some of the ideas which will be uied to prove Theorem 1.3. We will make
an instrumental use of the observation that the set C of consistent norms
may be equipped with a separable metric topology. This will allow us to
infer Theorem 1.3 from an application of Theorem 1.2 to a properly chosen
countable dense subset J\f of C. The large deviation bounds for distances of
norms within C which are needed to complete this part of our proof have
interest in and of themselves and will be established in the forthcoming
Section 3.

2. Proof of Theorem 1.2

2.1. Introduction. To prove Theorem 1.2, it is enough to check the
validity of the upper bound in (1.11), and the lower bound in (1.12). In
other words, we need only show that, under the assumptions of the theorem,
with probability 1,

2.1) dim( 13 T(i/,a)) ~1—a2 Vae[0,l],
vert
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and

(2.2) dim( D 7W ))A1 —l/lh V/igK.

By combining (2.1)-(2.2) with the implications, holding for / GH and a S0,
(2.3) |/|h >a=>T(i/,f) CT(i/, a),

it is readily seen that (2.1)~(2.2) hold as equalities, which establishes (1.11)—
(1.12).

We postpone the verification of (2.1) and (2.2) when Af = {\V} consists
of a single norm v GC to Sections 2.2 and 2.3. Below, we limit ourselves to
show how the result for Af = {i'} can be extended to the case where Af QC
is an arbitrary countable set of consistent norms.

Assume therefore from now on that, for each specified i/GC, (2.1)—2.2)
hold with probability 1 for Af = {i"}. Consider any countable set Af =
= {vi :i » 1} CC of consistent norms. It follows from (A) in combination
with the scaling property of Wiener processes that a norm u satisfying (1.3)
for some e > 0, also satisfies (1.3) for all e € (0,1). In addition, the integra-
bility properties of Gaussian seminorms (see (2.24) and Remark 2.1 in the
sequel) imply that for each e € (0,1) and each consistent norm u GC

(2.9) O<e {Iaﬂﬂv{W{OH (1-02)-)-w (0i))) <oo.
By (2.4), we may let, for *=1,2,...,

ktzz!e{/moggéaﬂz]vi(W{el +{1-62)-)-W(91)))

and define properly a new norm vg on Co[0,1] by setting

)= V'l hi-
(V74

In view of the easily verified fact that ug is a consistent norm on Co[0,1], we
conclude the proof of Theorem 1.2 by an application of (2.1)-(2.2)-(2.3) to
Af = {Vo} QC, in combination with the straightforward inclusions of sets, for
all / GH and a ~ 0,

_UT Ka)iT(p0,a) and f| T(vitf) 2 T(vo,f).
I>1 I>1
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2.2. Upper bounds. In this subsection, we prove (2.1) when AT={n} CC
reduces to a single element. We first observe that (2.1) is trivial for a =0
since the Hausdorff dimension of a subset of [0,1] is always bounded above by
1 We may therefore limit ourselves to the case where a E (0,1], and assume
from now on that this condition holds. Select an arbitrary e > 0 together
with a pE (1 —a2,1). Below, we will show that the Hausdorff dimension of
the set

(2.5) T[u,a,e)fLE [0,1] :Iin}ﬁp W(Yt,w-/)) >e3,

is bounded above by p. This will be achieved by the construction of an
“economic” covering of T(v, cc e), as follows. Throughout the sequel, we will

set 7n = and tj,n=jn~17,, forj EN= {0,1,..} and n~ 1 Moreover
we set, for n * 1,

Jn={jE N:0O" AL oinf v{Ytnn - /) M el2}.
We will show that, with probability 1 for all large no, the inclusion
(2.6) T(v,a.,e)Q (3 j [J [tj,n>tj+,n]"
n'tno  j&JIn

holds. In addition, setting |A| for the Lebesgue measure of A QR and #J
for the cardinality of J, we will show that, with probability 1,

@) El U =E (I(n JH)P<-

n=1 jedn

Let us first assume that the claims (2.6)-(2.7) hold with probability 1
for each choice ofe>0and pE (1 —a2,1). The definition (1.9) of Hausdorff
dimension, implies in this case that, with probability 1, for each choice of
E>0and pE(1—a2,1),

(2.8) dim(T(n, a,e)) * p.
We note from the definitions (1.7) and (2.5) that
T(is, “)—[J T(u, a, 1/n).
n"l

By applying (28) to e= 1/n for n = 1,2,..., we obtain readily that
dim(T(z7 a, 1/n)) ~ p with probability 1, foreachpE (1—a2,1) and alln* 1
The cr-stability of Hausdorff dimension (see e.g. (2.20), p. 17 in [20]) implies
in turn that, with probability 1, for each pE (1- a2, 1),

dim(T(n, a)) = sup jdim(T(n, a, 1/n)) | ~ p.
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By choosing in this last inequality p = pm, where pmG(1—a2,1), m =1,2,...
is any sequence such that pm 1—a2 as m -> 00, we obtain readily that, with
probability 1, for each a G[0,1]

(2.9) dim(T(i, a)) * 1—a2.

This in turn implies that (2.9) holds with probability 1 for all a GA, where
A is a countable dense subset of [0,1]. Since the function a G [0,1]] —
dim(T(i/,a)) is obviously nonincreasing, an easy argument shows that (2.9)
holds with probability 1 for all a G[0,1].

By all this, the assertion (2.1) when Al = {v} consists of a single element
is a consequence of (2.6)-(2.7). The following arguments are oriented towards
proving the latter two assertions.

We will make use of the isoperimetric inequality of Borell, Sudakov and
Tsyrelson, which we cite for convenience below in the general framework of
Section 1 (see e.g. Section 11 in [15]). We will apply this inequality in the
special case of ZX: W,ZX —(Cb[0,1],W), Hz = H and Kz = K. Denote by

$(x) = (2r9-1/2 J e~f/2dt the standard normal distribution function, and
—00

define <> 1(s) for sG (0,1) by the equality i>(i>-1(s)) =s for all s G(0,1).

Fact 1. Let X be a Hausdorff locally convex space with Borel a-algebra
Bx- Let Z denote an X-valued random vector with distribution given by a
centered Gaussian Radon measure P% on X . Denote by Hz the RKHS of
Z and by Kz its unit ball. Then for any r ~ 0, A GBx and B GBx with
Bn(A + rKz)= 0, we have

(2.10) P(ZeB )MI-$ ~ “LP(ZGA)) +r).
PROOF. See Borell [1], Sudakov and Tsyrelson [22], and e.g. Section 11
in [15]. O

Since E(|X]) <00 =P (JAJ < 00) = 1, to establish (2.7), we need only

show that
o0

(2.11) NE (#Jn)(n-17nr<oo.
71=1

Recall the definitions of Xt*, Yt,h and L(h) = (210g(l//i))Y2. By the scaling
property of the Wiener process in combination with (A), we obtain readily
that, for all large n,

E#in)i [ni~1+ WD P( mk NTar,,- /)i el2)
(2.12) =2n™n 1P (, inf ,(*07,-h)Z eL(7,)/2)

=2n7-1 pR/iGaﬂ?,;n)Kv(W-h)ZeL('yn)/2),
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where, here and elsewhere, [uj ® u < [tij + 1 denotes integer part of u. We
apply Fact 1with Z =W, X = (co[0,],u), Hz = H, Kz = K. Letting Dm =
= {/ € c*o[0,]] : v{h) < M}, we observe that (1.4) implies the existence of a
large M > 0 such that

(2.13) V{W GDm) =P{v{W) < M) > <i(l).

We apply (2.10) with A = Dm, B —Co0[0,]] —{Dm + aL{7n)K} and r =
aL(jn). Since L(7n) = (logn)¥2—00, there exists an no < oo such that
eL(7n)/2 > M for all n ™ no- We obtain therefore that, for all n 'Ano,

P (/i€al_i?{n)Ku(W -h)2 eL{in)IZ) = P(W 0 DsLhn)/2 +aL{In)k)
AP (V £Z?M+aL(7,)K) =p(ILeR)
(2.14) AL-$ (r(P(if64))+r)
=1- $(V XP(W GDm)) +aL(7n))

<il-<f>(I + aL(7n)).

Since 1—4>(i) r)-1/2e-x2/2" e~x2/2 for x ~ 1, it follows readily from
(2.14) that for all large n,

(215 p( inf  u(W —h)>EL()n)/2\ N exp ( —az2L{-yn)2/2) = 7“2
We infer from (2.12) and (2.15) that, for all n sufficiently large,

E(#Jn)(n_17n)P™ 2H7*1) x 7" x (n_17,,)"
=2nl-pexp f—a2+p—1) j,
which in turn, given that a24-p—1> 0, readily implies (2.11), and hence

2.7).
The following Lemmas 2.1-2.2 are oriented towards proving (2.6).
Lemma 2.1. For each consistent norm uEC and each z> 0 we have
(2.16)

E{ E PL, sup sup  u(YtA - Ygni7n) >e/2) | < Q0.

n=1 j;0<£jn<I NNL-n>+Ln] ~E[7n+]lj7n]

Before giving the details of the proof of Lemma 2.1, we will show that
its conclusion (2.16) implies (2.6). Assume therefore that (2.16) holds. By
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combining this claim with the Borel-Cantelli lemma, we obtain readily that
the property (V) below is satisfied with probability 1 for all large n. Recall
that tjtf=jn~Ilyn for j ~ Q.

(V) For any t £ [0,1], the choice of j = j(t) = \tnp~X\ ensures that
HYth~ Ytj,,,, 73 ~e/2 for all he [7n+i,7n], so that

teT(i/,a,e) j infhv(Yth- f) ~e for somehe [7n+i, 7n]}
=*{ "(Ytj.n,in- /) ~e/2} ) e dn

Uu { U ~Ln"M+I,n]|-
n'tno jedn

Since (V) holds with probability 1 uniformly over t e [0,1], we obtain
(2.6) as sought.
The following Lemma 2.2 gives a version of the isoperimetric inequality
which will be instrumental in the forthcoming proof of Lemma 2.1.

Lemma 2.2. Let Z denote a random vector with distribution given by
a centered Gaussian Radon measure on a Hausdorff locally convex space X .
Let | m| be a seminorm on X, measurable with respect to P% and such that
P(||Z|]] < 00) = 1. Let m be a median of the distribution of \Z\\. For any
c>m set B =/3(| m|,c,Z) =c/$_1(P(]|Z|| < c)). Then for any R,.m the
following inequality holds

(2.17) P(MZWIR)ZI-*((R-m)/R).

PROOF. See e.g. Lemma 3.2 in [6], or Lemma 2.1 in [5]. O

REMARK 2.1. It is easy to check from (2.17) that, for any measurable
norm | m on X, the condition P(]|Z|| < 00) = 1 is equivalent to E(||Z||m) < oo
for an arbitrary m > 0.

Proof of Lemma 2.1. Recall that t*n=jn~l and = e-v/” for
j ~0and n”™ 1 The scaling property of the Wiener process in combination
with (A) show that, for all n sufficiently large, the left-hand-side of (2.13) is
bounded above by

1/(Yitth ~ Fo,7n) ~ e/2
n7n 1+ 1 p(te[ n17,] Se[fndl7n] ( ) )

A2NT7~1P(  sup sup _ Vv(Yth- )Oz,pf/%)-

t€[o,n->7,] Se[7n+l,7n]

(2.18)
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Set X = Xofg, g="Ynand T= 7n+i/7n- Recalling that {X(u) =g~I1'2W (gu):
u” 0} is a Wiener process, we have the following key identity for h E [Tg, g],
tE[O,bg]l and u” 0

2.19

(Xtihiu) =h~1/2(W(t +hu) - W(t)) =(g/h)"2g-"2(W(t +hu) - W(t))
={g/h)"2g-1/2W{gu) + (g/h)1"2> 1/2{W(i + hu) + W(t) - W{gu))
=(g/h)"2X(u) + (g/h)/2{X(01+ (1 - 02)u) - X(0i) - *(«)},

where 6\ :=t./g* band 02:= 1—h/g E[0,1 —T]. Therefore, by (2.19),

(220) Y, h~Ye =L * Xtk -L? X
+ (g/h)", 2Lk{* (01 + (1 - fc» - X(0i) - *(+)}e

Next, uniformly over F~/i/g ™1, we have ultimately in F| 1 and g 4-0,
Og(g/h)r2LM1-L ;173 (l-r)L -1 and
(g/h)r2n 17 r-2% -1M2L -1

The combination of these estimates with (2.20) yields

P( sup sup v(Ytih-Y oig) APi(0,F) + P2(M ,r)
'te[o,bg] /ie[rs,9]

(2.21, =P (v{X) ~ Lge/{121 —T)})

sup sup  u(X(91+(l-e2)-)-X(el)-X(-))"Lge/8).

0ig[o,6] 02e[o0,i-r]

Since for the choices of g =yn and T = 7n+i/7n we consider, we have T11
and g 4-0, we note that (2.21) holds uniformly over T” h/g U 1 for large n.
Below, we derive upper bounds for Pi((?,r) and P2(f> g,r), making use of
Lemma 2.2.

Recalling that X and W are identically distributed, we first apply Lemma
22t0 Z =W, || =06(), R =Lge/{12(1 —T)} and c= ci, chosen, via (2.13),
in such a way that P(v(W) < ci) > $(1). Since then, B —B(u, c\,W) =
ci/$_1(P(™(W) < Ci)) ~ ci, the observation that, for all largen, (R—m)/R>
1IR/R™ yR /ci allows us to write, via (2.17), the following inequalities. For
all large n, with g=7,, and F= 7n+i/7n>

Pi(9,r)=p(i,(W)*Lge/{12(l-r)})gi-$(v/{i3ci(i-r)})
(2.22)

,(9/8)2
%

o L¥ \ 5
= eXPC-2{13ci(l-F)}o In —
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where gn := e2/{13ci(l —T)}2. Here, the fact that 00 (whence gn”*
(9/8)2 ultimately), follows from the observation that Y = jn+i/jn =
_eVn-Vn+i_"i A n—»00.

Second, we apply Lemma 22 to Z=W and | ¢|| = || *||0 given for
/e C 0[0,1] by
(2.23) [1/110= sup u(m +(l-e2)-)~/(0i)-/())m
i,0 Fo,('j]

Our assumption that v satisfies (A) and (B) readily implies that || |0 defines
on Co[0,] a lower semi-continuous norm with respect to U. The fact that
P(I|WI|Ifl < 0°) = 1 (which is needed in Lemma 2.2) follows from the last
consistency condition (C) via (1.3). This, together with an application of
the zero-one law (see Cameron and Graves [3], Kallianpur [12], Jain [11])
following the lines of proof of Lemma 2.4 in [6], implies the existence of a
constant @< oo such that, with probability 1,

(2.24) hm||H"||0= c2.
Since (2.24) implies that P(||W||0"C2 + 1}=1as 0 |0 and 4X10e~1(c2+ I)) —1

as e 0, there exists an £o > 0 such that, for each 0 < e £0, a choice of
90 = #o(e) > 0 sufficiently small guarantees that, for all 0 <6 %9qg= 90{e),

(2.25) p(IW [0gc2+ 1) A$(10£-1(c2+ 1))>1/2.

By (2.25), any median m(0) of the distribution of | W||0 is such that c2+1 >
m(0). Moreover, with the notation of Lemma 2.2, uniformly over 0 <6 ” 0o,

(2.26) B{\ «]|0,c2+ L, W) ={c2+ [J/i-*PdI*IIl, <c2+ 1)~ e/10.
By combining (2.24)-(2.25) with (2.17), taken with 8 = R{\\ |00 c2+ 1, W),

| *]l = || *llBOand to= m(Ro)i we see that there exists an i?0 ~ ¢2+ 1 such that,
forall RZRq,
¥ p(M\WW0og r) Z1- mR - @- 1)/B) » 1- 4>(10(J?- @- 1)/e)

S 1- 459R/e) " exp (- 92i72/2e2).

We now choose R = Lge/ss in (2.27) with g=jn, and assume n to be so large
that R*"Rqg,n_1 6egand 1—T= 1—7n+i/7n ~ $o- By combining (2.21)
with the definition (2.23) of || ¢||0, we infer from (2.27) that, for all large n,
with b=n_1,9=7, and Y =7,,+i/7n,

p2(6,ffr) =p v6i?el[lor,)6] mes[gﬁ-r] u(x(er+ (i-e2))-x(el)-x(-))"Lg£

(228)  gp(lI*1[00™)=p ([|W [|00"i?)

gexp (-92L2{2x82} ) - 7°/8)2-
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By combining (2.21) with (2.22) and (2.28) we see that the left-hand side
of (2.18) is ultimately bounded above by

(2n7~1) x (2779/8)2) =4n xexp (- ~\/n),

which is summable in n. The convergence of the series (2.16) is therefore
established. O

2.3. Lower bounds. In this section, we establish the validity of (2.2)
when M = M QC consists of a single element. We start by proving that a
version of (2.2) holds for a fixed / E K. Namely, we claim that, for each v£C
and / EK, we have with probability 1

(2.29) dim(T(n, 7)) » 1—{/|n -

We postpone until the end of the section the proof that (2.29) holds with
probability 1 uniformly over / GK.

Since (2.29) is trivial when |/|h = 1, we may limit ourselves without loss
of generality to prove this claim in the case where |/|n < 1. We will give
below the arguments needed when 0 < |/|nh < 1 and assume from now on
that this assumption holds. The case where / = 0 is obtained by routine
modifications which we omit for the sake of conciseness. We will obtain a
lower bound for the Hausdorff dimension of T{v,f) by following the ideas of
Orey and Taylor [17] (see also [8]). The next two facts will be instrumental
for our needs.

Fact 2. Let T Q[0,1] be such that T = flI*Lno *n>where Tno2 ... 2Tn2

.. for n A~ no, and Tn = Uib=\Ink with {Ink w1~ k ~ M,} being for each
n ”~ no a collection of disjoint closed intervals. Let p> 0 be a constant, and
assume that there exist two constants ¢>0 and 6 > 0 such that the following

property holds. For each interval J Q[0,1] with there exists a finite
integer n{J) such that for all n * n(J)
(2.30) Mn(J) := #{7ncCJ : 17 ki Mn} g c\J\pMn.

Then dim(T) ~ p.
Proof. Seeeg. Lemma 2.2 in [17] and Lemma 3.5 in [8]. D
Fact 3. Let A be a symmetric Borel subset of (Co[0,1],W). Then

(2.31) P(W-heA)Z P(W GA) exp (- "\h\2Hj.

PROOF. See e.g. Lemma 2.2 in [5]. O

The following arguments aim to construct appropriate Cantor-type sets
T=T{f) QT{v,f) as in Fact 2, satisfying (2.30) for suitable choices of p.
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We start by choosing an R > 0 so large that P(u(W) *R)> 1/2. This is
rendered possible by (1.4) and the assumption that £ GC is consistent. For
each b> 0 and g> 0 with g~xGN and b~l € N, we define, for g € K, the
families of intervals

(2.32)

In (2.32), we will set b=bn=1/n and g=gn forn't 1, where {gn:nt 1} isa
rapidly decreasing sequence of positive constants which will be precised later
on. We assume that this sequence is such that, for each n't 1, g~I GN and

bnQn/Qn+ = QV {ngn+i} GN. We construct T(f) by induction as follows.
First, we introduce a sequence {fn:ntl} QK such that

(F.D) limn~oo v{fn - f) =0.

The following parameters are needed for the statement of the assump-
tions (F:2)-(F.4) and (C.2) (C.5) below. We select a sequence {en:nt 1}
of constants such that O <en”™ 1 for nt 1 and YI™=ifn < log 2. Let-
ting £ —exp ( £n)i we observe that 1< £ < 2. Moreover, we select
a AGQO, | min{//]jj, 1—|/|fj}, and set p=1—/|jj —2A. We note for
further use that

0<6A<p< 1—/Ih —A < 1—/lii< 1—-8A.
Second, we consider a sequence {J-n:n 1 1} QK of finite subsets of K fulfilling
with {/n:n " 1} the following properties.

(F.2) For eachn't 1, ©, :=

(F.3) For each n1 1, and each g GTn, 2A < |?h < 1—2A.

(F.4) Foreachn” 1/, GTnand |/,,|[H™ |/|n-

We will give later on some additional conditions which will be imposed
upon {/,, :nt 1} and {Tn:nt 1} Third, we select a large no GN and set

(2.33) Tno(f) = [{!"w 1eT,0(/)}, Tno(f) =jS:6Un0)-
Fourth, for each n t no we define Tn+\ (/) and Tn+i(f) out of Tn(f) by setting

Tn+1(/) = [3{/:1G Tn+i(/)},

(2.34)
T.+1(/) = {/G jimwn(/n+1),
Finally, we put
00

(2.35) T(f)= f|
71=710
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The induction (2.33)-(2.35) may end if, for some n ~ no, we have Tn{f) = 0.

If such is the case, we will set Tm{f) = 0 for m*n and T(f) =0. Below, we
will list a series of conditions which will exclude such a degenerate situation.
In particular, we will need the following minimal assumption (C.I) which
implies that the first step (2.33) of the induction may be achieved for all
sufficiently large no.

(C.1) There exists an n\ < oo such that

#»797(s) =1 forall g&Fn with n”.n\.
We assume from now on, unless otherwise specified, that (C.I) holds, and
investigate in more detail the conditions we need impose upon {gn :n ~ no}

and {fn:n " 1} to ensure that T(f) is properly defined by (2.35) and fulfills
(2.30) for suitable p, c and 0.
We note for further use that the definitions (2.33)-(2.35) imply that,

for each n"no, Tn(f) is the union of a finite (eventually void) collection

of closed intervals of length bngn. If Tn{f) 70 for all n*no, then T(f) is
the intersection of an imbedded sequence of non-void closed subsets of [0,1],

which entails that T(f) 70 In order to check that Tn(f) fulfills a version of
(2.30) , we need evaluate, for an arbitrary interval J C [0,1], the number of

component intervals I  Tn(f) included in J, of lengths equal to bngn. The
following notation will be needed. Recalling (2.32), we set, for each g GK,
each interval J Q[0,1], each q> 0 with I/g GN and each n " no,

= 'm =N, *+ )< € Jq(g) for soméi GNj,
(2-36) Mn@,f) =#{/QJ :1 = [ign, (i + bn)gn] GTn{f) for soméi GNj,

Na{f) =Nq([0, 1I./), Mn(f) = Mn([0,1],/)*
By combining (2.34) with (2.36), we get the following recurrent formula. For
each interval J* Q[0,1] of the form J* = [rgn,sqn] with r GN, s GN and
n”no,
(2.37) Mn+i(d*,f) = Y, Nagra(lJn+l).
leTn(f

1Q
Recalling that R > 0 is chosen in such a way that P(u(W) ~ R)  1/2, an
application of (2.31) to A = {ip G(T00,1] : v{ip) » R} and h = Lgng shows
that, uniformly over g GK,

Pn{g) := p([0,9,]e Jan{g)) =v[y{Yanfi-g)"R/L o]
(2.38) =P (n(Wono- Lag) Zr) =P (y{W - Lag)" r)

ZP(UW)gR)exp{- i \gBLN} " +qf«.
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Wec infer from (2.32), (2.36) and (2.38) that, for each n"*.riQ and each
interval | Q[0,1] of the form | = [rgn+\, with r,s6 N and r <s, we
have, uniformly over g GK,

(2.39) En+1(\I\,g) ~E N gn+Hl(l,g9)= Q—IT x pn+i{g) = (s - r)pn+x{g).

We note for further use that (2.39) holds when / ETn{f) with \I\ = bngn.

It is convenient to add the following claims (C.2)-(C.5) to (C.I). In afirst
step, we will assume their validity to complete the proof of the lower bounds
we seek. In a second step, we will show that they hold with probability 1
In a last step, we will give the proof that (2.29) holds with probability 1
uniformly over / GK.

(C.2) Let || *Jlo and @ be as in (2.23) and (2.24). For n ™ 1, let

(2.40) u,, = max{6n,/?(|| m||ffn,c2+ 1, W )}1/2,

with /3(]| «]l,c, W) = ¢/$-1(P(|VF|| ~c)) as in Lemma 2.2. There exists an
n2 < oo, such that, uniformly over all {fn:n ~ 1} QK, for each n ”* n2,

I = [ign,{i + PIn}€ Jgn(fn), and te[iqn, {i + bn)gn],
(2-41) —fn) IKR/Lgn -\-Un.
(C.3) There exists an «3 < 00 such that, for each n'tn” and each interval

I ~ [0,1] of the form I = [rgn,sgn], with r,s £ N and |/| = (s —r)gn ™ gAl,
we have, uniformly over gG!Fn+1,

(2.42) eXp{-£, (S "+IF ySexp{£&}

(C.4) There exists an «4 < 00, together with a constant G such that, for
each n'tn” and each interval I Q[0,1] of the form I = [rgn+1, sffo+i], with
r,s6 N and |/| = (s —r)gn+\ ~ gn+1, we have, uniformly over g E T n+i,

(2.43) Naon+1 (1, @) £ c3|J [N -~ h- ASEN,,,+1(0).

(C.5) Let un be as in (2.40). There exists an ns < 00 such that, for all
n ”~ ns, we have

() O0<an+1<bnonsn;

2aq Q"”:ﬁjl r,]n:, (i’ggz‘nl-l-mbga

(i) on+i=exp( 1/uf+1):
vy
QnH
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Recalling the relations 1 —p—|/|jj = 2A < | and |/|jj < 1, we observe
that, whenever land I Ih ~l/In,

gql~p-\fih — g &2 and q Qg\\U qisin.

In particular, (2.44)(ii) entails that, for all m ~ no + 1> ns,

m m—1

Qm n—o n=no

Step 1. We start by proving a version of (2.29) under (F.1)-(F.4) and
(C.1)-(C.5). We set no = max{nj :1~j ~ 5}. Making use of (C.2) and (C.5),
we infer from (2.32)-(2.35) that, for each tET(f) and n”"no, we have

fe€ T(f) i Tn(f) =-3in t£ [inQni (hi "Fbn)gn]~ [inQm {}n 4" 1)fon] G 3gn(ln)e.

Since e >0 in (2.26) may be chosen arbitrarily small, we infer readily from
this inequality and our choice of bn = 1/n —0 that, as n->00,

(2-45) B\ m(,,cj+ W H O |

By (2.45) and the definition (2.40) of un, we see that un—0. By (F.l), it
follows that

li“ @IF U(YE* - fy=£9% o "(Yt(n+)p-t-f)

= n™+oo U(XtN »--**“ fn) + nlToc ~ f)
=rSO ~(yh(in+))9n-t - fn) ~ W K +Un)=0.

This shows that t £ T(v, /). Since the just proven implication t £ T(f) =>t£
T(n,/) holds uniformly over tET(f), we obtain therefore that

(2.46) t((f)QT(u,f).

The following arguments are oriented to prove that (2.30) holds with T =
T(f) and Tn=Tn(f). By Fact 2 and in view of the notation (2.36), we need
only prove the existence of a $> 0 and a ¢ > 0 such that, for all intervals
J Q[0,1] with |J|*<5,

Mn(JJ) c\I\pMn{f).

Consider an arbitrary interval J with 0< |J\ ~ gnC+i- By the assumption,
implied by (C.5), that {q& k ™ no} is decreasing, there exists a unique k*n o
such that I\ £ [gh+h gk)- Obviously, we have

(2.47) Mm(J,f) =0 for no”m"k,
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so that we need only evaluate an upper bound for Mm(J,/) when m”~.k + 1
We start with a simple observation. Let J —[a, 6]. Recalling that gk+\ »
g |J| <gk, weset J* = [rk+igk+hsk+igk+l], whererk+i=ma,x{i GN:igk+i*a}
and sk+1= min{i GN :igk+ ~ b}. It is straightforward that J QJ*, and
I*\VAIN A 1+ 2gk+i/AJ\ A 3. Moreover, our assumptions on {gn :n * 1} entail
that J* Q[0,1] is of the form [rgn,sgn] for all n ~ k+ 1 By (2.44) (i) in (C.5),
forany n~ k+1and / GTn(f), we have |/| = bngn > < j > g"+i- This, when
combined with (F.4), (2.37), (2.39) and (2.42), shows that, for all n*k + I,
Mn+I{J,f)ZMn+1(rj)= Y, Ngn+(l, fn+l)
ieTng)
1QJ
(2.48) I #{f1 J* o GIn{f)} exp{e,} En+i{bngn,fn+l)
= Mn(J*,f) exp{en} * ~ p n+i(/n+i).
Qn+1
Likewise, we obtain that

Hi+If/) - Ngn+ {1t fn+I)
ler,,(/)
(2.49) N#{] GTn{f)} exp{—en}En+i{bngn,/,,+i)

= Mn(/)exp{-e,,27’r\]ﬁipn+i(/,,+i).

Below, we use the notation £]0(-) = 0and n« (') = 1- The following inequality
is straightforward when m =k + I, and readily implied by (2.48) taken with

nG {HI,..,m—1} when m”~ k+ 2 For each m ~» k+ 1, we have
m— m—
Mm(J,f)iMk+1(3* flexp{ £ £,} [] ( nQmPn+1(fn+l))
HoH  n=rerr S
(2.50)
ofcH

AM fe+l(J*,/)5 6n_IPn(/n)}.
gn  n=k+2
Likewise, making use of (2.49), we obtain that, for m~no + 1
771—1 =
/ bngn
Mm(/)~M no(/)exp { e h d P+l (fn+1))
n=n0 n=no N+l

(2.51)

JI' s, IR}

n=no+l

o iN{n<>}
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Our assumptions imply that for m A no+ 1 2, N2E~17M 1. More-
over, we have p/(1—|/|h)>p> A > A2. It follows therefore from (2.44)(i)

that
) n/d- -a -I/1i,
wo M g 4 <Iang+/14 \f\EI)il Aonognéf ! > 1
This, when combined with (2.49) and (2.44) (ii) entails that, for each m ” no,
(2.52) Mm(f) 4 Mno(f).

We note for further use that (2.52) holds under (C.3) and (C.5) only. A

consequence of this fact is that (C.1)-(C.3)-(C.5) jointly imply that T{f) ~ 0

From now on, we assume that all five assumptions (C.1)-(C.5) hold.
Here, (C.lI) is used to ensure, via (2.52), that Mm(f) 20 for m't. k + 1. By
combining (F.4) with (2.38), (2.50) and (2.51), we obtain that, for all m ii no,

mm tl< Logk+IMk+4 J\F)f fr -
MmE\I\P = Mno{f)gno\\P  \J L +1

£V +IMFcH(I* /) N *»r{ a}'l
QUO1J\PPK+1 (/fc+1) =no n—no-\-1

We complete (2.53) by an evaluation of Mk+i{J*,/)e Towards this aim, we
consider the following two cases.

Case 1. Assume that |J| S [gE+i,qk)- By (2.33)-(2.34), (2.36), (2.39) and
(2.42),

(2.53)

MK+(J4F)iN gk+4 rk+1J k+diexp{ek}t ~ p k+I(fk+l)
Qks 1

A 3exp{ek}W Phe(fke)) z 3gIIR--I(AI-D,

+ 1

By combining this bound with (2.44)(ii) in (C.5), (2.53) and |J| * gk, we
obtain that, forallm” k+ 1

< 3£3\)\1p

GRS

n=no

ri (rf6/*)}

no+l

fc-
il }i_;. N &0k,

It follows in this case that (2.30) holds with c—6£3/gno-

(2.54)
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Case 2. Assume that |J| 6 [<9EH,%+i)- In this case, we will need the

assumption (C.4). By combining (F.4) with (2.33)—2.34), (2.36), (2.39) and
(2.42) in (C.4), we obtain that, for all m ~ k + 1,

MK+I(r,f)i N gkH(*k+1, fk+I)
ac3k*+ill" /1" " AEIVA+L(/*+1)
g 3c31J|1~1/|H -A ( Pfc+1” fc+lH .
a kH )
Recall that p= 1—|/|jj —2A. The inequality above, when combined with
(2.53) and (2.44)(ii), which entails that |J|A %qk, implies that, for all

mA™Kk+ 1,
Qno n—o n:n!:!rl |& m y
" 3cE2 { fl f[ faA/2)}"1
« a
(2.55) Q0 " heno n=no+l
2.p k . k-2 1
I *.}-{ n
Qo T_—“Q } {n=n0+l
<6C382
Qo

By combining (2.47), (2.54) and (2.55), we see that (2.30) holds with c=
6(c3 + £)£2/qno and 6 = gno+i- If follows from (2.46) and Fact 2 that
dim(T(p,/)) ~» dim(T(/)) » p. We note that this conclusion does not al-
low us yet to conclude (2.29) since the statements of (C.3), (C.4) and (C.5)
depend not only upon the choice of p <1—]/|jj, but also upon the construc-
tion of {/,, :n”™ 1} and {J-n:n " 1}. The next step will be needed to get rid
of these restrictions.

Step 2. We recall that, for our choice of / 6 K, 0< |/|h < 1- In this case
it is always possible to define {/,, :n ~ 1} and {Fn :n ~ 1} fulfilling (F.l) -
(F.4) by setting fn=f and Tn= {/} for each n 1 Likewise, we may set
A =M1Af\h-p} for each specified choice of p G(1—{/|ij— min{|/||j, 1—
I/& U -1/& ). This allows us to make use of Step 1to establish that, under
(C.I) (C5), dim(T(p,/)) *p. We now turn to prove that, for each possible
choice of pG (1 —/|jj — min{|/[jj, 1—/1n), 1—/In), there exists an event
of probability 1 on which (C.1)-(C.5) hold. To infer from this fact that (2.29)
holds with probability 1, we select a sequence 0<p =p(n) f 1—|/|fj. Since
then dim(T(p,/)) ~ p(n) with probability 1 for each n, the conclusion is
straightforward.
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(i) The Assumption (C.5) Since (C.5) is a collection of recurrent inequal-
ities, the construction of a sequence {gn :n ~ n\} fulfilling (2.43) may be
achieved by induction, given any choice of n\ and ofgni * 1

(if) The Assumption (C.2) By combining the Borel-Cantelli lemma with
the triangle inequality and the definition (2.32) of Jgn{fn)i we obtain readily
that, independently of / 6 K and {fn:nii 1}, (2.41) holds with probability 1
for all large n whenever

: sup v(Yti(i+H)gn_t  Yign, A
(2.56) ”E_l P(/OAMQ“ {1te[iqn Al+bn)gn] angn )} “«n)

*E 1l g/t€[8%pg] v{Yton-t ~YOtgn) ~un) - AR

Set, for convenience g = gn, b=bn, T= 1—bhn and e = 2un. Keeping in
mind that our assumptions imply that </4-0 and rfl, we write
Vn=p( sup v(Yt"n-t-Y Otgn)"i
Me[o,ng]

Ap( sup  sup u{Yth- Y(Og) "“e/2),
Vte[0,bg] /i6[rg,qg] 2

which allows us to use the estimates (2.21), (2.22) and (2.28) with % =
max{6,1—} =6,, 1—T =bn and e= 2un. We so obtain that

VntP{?m ZLge/{12(1- F)}) + P \\WA\In " Lge/s)
(2.57)
=P (v(W) ZLgun/{ebn}) + P(\\w\\lng Lgun/4) .

By (2.44)(iii), we have Lgun= (21og(llgn))Illzun > I/un—00 as n—»o.
Let ci be chosen, via (2.13), in such a way that Y(v{W) <ci) > 4>(1). This
implies that B —B(v, c\, W) = ci/4>_1(P(W) < ci) ~ ci- We apply (2.17) with
R —Lgun/{ebn} in combination with the fact that, ultimately, (R —m)/R>
(2/3)1,2fi—00. This shows that, for all large n,

P (v(W) ~ Lgun/{66n}) g 1- $((2/3)¥2Lsu,/{6cCi6il})

zexp(-i»{s3~})"

Since the definition (2.40) of un implies that u2/62 ~ I/6n—seo, for all large n,

(2.58) p(v(W)ZLgun/{sebn}) “exp(-L @) =qa.
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Next, if @ is as in (2.24), and Bn=/3(|| *|I(h,2+ 1, W), we infer from (2.17)
and (2.27) that, whenever R ~C2 + 1, we have

PAWW\BNZ R)il-$ ((R-c2-1)/Rn).

By applying this inequality with R = Rn:=Lgun/4, in combination with the
fact that, ultimately, Rn —ci —1” (2/3)12i?n—200, we obtain that

p(\W\\bnZLgUn/4) iexp(-

By combining the definition (2.40) of un, which implies that un” BIJS/Z, with
(2.45) we obtain that u2//32”~ 1/8n->0c. We have therefore, for all large n,

(2.59) p[\W\W\\bn™ L gun/4) gexp(-Lg) =ql

By combining (2.57) with (2.58) and (2.59), we see that, for all large n,
Vn ™ 292. Since (2.43)(ii) entails that gn= 0(l/n!) as n —o00, we have
(2.56).

(iii) The Assumption (C.I) We need show that, with probability 1 for all

large n,
oo
n

Let IV=1/g,. By (2.32), for each n™ 1and g€ Tn, SN := #Jg¥{g) =
ifcjgnig) follows a binomial distribution with parameters N and p =pn(g) =
P(z/(Y9ni0—g) » R/Lgn). Therefore, by (2.38) and the inequality (1 —u)T"
exp(—u) for r* 0 and u G[0,1),

P{SN=0)=(l-pn(g)y " (I- 1?7 =exp{ —~qn I+Islh}

- CXp{ ~ - fR exp{ - A}=:""-
By (2.44)(iv), we obtain readily that @nlzn, which establishes our claim

by combining the Bonferroni inequalities with the Borel-Cantelli lemma.

(iv) The Assumption (C.3) We start with the following fact concerning
large deviation probabilities for binomial random variables. Let

AlogA—AT 1 for A>0,

(2.60) 1 for A=0.

Fact 4. Let Spf follow a binomial distribution with parameters N ~ 1
and p G[0,1]. Then, for all Ag[1,1/p],

(2.61) P{SN~ANXp)~exp{-Nph(X)),
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and for all A6 [0, 1],
(2.62) P{SNANXp)iexp(-Nph(X)).
Proof. See Lemma 3.8 in [s]. O

Since (C.5)(i) requires that g+l ~ g™+ Sbngn gn, we need check (2.42)
for all intervals | of the form | = [rgn,sgn] with r,sGN and 0~ r <s” l/gn.
Moreover, by (2.36) we see that any two intervals /' and I" within this
class are such that Non+1 (/' U 1", g) = NGiHL(/', 5) + AL (/", 3) whenever
[/'n /™| =0. In view of (2.39) our proof boils down to establish (2.42) for all
intervals / of the form | —Ir\—[(r —1)gn,rgn] with r GN and 19r ~ lqn.
Now, for each 1~ 1/gn, Ngn+1(lr,g) follows a binomial distribution with
parameters N =gn/gn+\ and p =pn+i(g), as in (2.38). We note for further
use that our assumptions entail that en -*0 as n—o00, whence, by (2.60), for
all large n,

(263) \zIl & h(exp{zxe»}) =11+ e

Set, for convenience = exp{zxen}. By (2.38), (2.44)(ii) and (2.61)—2.63),
we obtain readily that, for all large n and all gGTn,

I/<7n

Ngn+1(Au d) N o
8 > p(25WAEIVAL
r:LIJ PNgnH (hie) - P tdbe.yH)Ti-p(£5wrEiVALD)

N—exp{- ATph™M)} g — exp{- Jgjf{»h(exp{zx£Eri})}
on A J  9n Aogn+l1A '

- gr P{~\qgnergr } = exp { } = n n+i-

Since (2.44) (iv) implies that 0 n7?,,< 00, the proof that (2.42) holds with
probability 1 for all no sufficiently large is completed by the Borel-Cantelli
lemma.

(v) The Assumption (C.4) First, recall from (2.39) taken with | = [4,1]
that

P'Ngn+1 (g) —Pn+l (g)/gn+l »

Next, observe that, for each | = [rgn+i, sgn+\] with 0~ r <s l/gn+i,
NgnH (I, g) follows a binomial distribution with parameters N = s —r and
p =pn+i(g). It follows from (2.62) that
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P (X, +i(/, ) Zc/|=-1*Ih-* EATAxL(g))

(2.64)

P(\nml(/,9) Zc{Ngn+iy-~H ~{pn+l(g)/gn+1})

p (sn £ AH{c(7VI7I+1) - |5H -Alp)
Aexp | - ATy VIN+i)* IH AN |

Observe that oAK7i+1)_BIH A ~ c. Since h(A) = (1 + o(l))A log A> Afor all
large A there exists a G” 1 such that

h(c3(7V9;i+i)-1fIH-A) A 3(7V<Tn+)~Is|H~A £ (Ngn+l)-M»-*.

This, when combined with (2.38), (2.64) and N —s —r ~ 1, implies that for
all large n

P(Ngn+l(l,9)Zc\IN\:-M«-AENg+) iex p { -
(265) V ' 2

aexp{--g-"}.

Denote for convenience by An the event that (2.43) does not hold. Since
the total number of intervals / = [r*n+i, s$<h+i] with 07" r < s ™ I/<7n+l is
bounded above by I/gfl+l, it follows from (2.65) in combination with the
Bonferroni inequalities that

NNN _/\7_|_1 =0On+1"\n+
P(™M) 9n+?Xp1_ 8’ 3 OnH L

Since (2.44) (iv) implies that J2n9n”~n < 00, the proofthat (2.43) holds with
probability 1 for all no sufficiently large is achieved via the Borel-Cantelli
lemma.

Step 3. We conclude by showing how to modify our just-given proof of
(2.29) for a specified / GK in order to assess its validity uniformly over all
fe k. A crucial step in this argument is the fact, following from Theorem
2.1 in [6], that K is a compact subset of (Co[0, I],p) for each iSEC. This
implies in particular that, for each g GH

(2.66) vig) Jliln gup vih)  [En ",

where Ku < 00 is a finite constant.
For any A G(0, ™), set

KA={/ GK:8A~\f\li <1- 8A} g K.
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Since H is separable, there exists a sequence Q= {gn :n ~ 1} CK fulfilling (i)-
(ii)-(iii) below. Set M(A, f) ={n ™ 1:™H™ |/|h, 2A ™ M, HN 1- 2A}
for / gKa. Then,
(i) Qis dense in (K,|+[n);
(2.67) (i) For each / GKA, M(A,/) "0
(iii) Foreach/gKa, Ilim q min 1/—,9m|H}: 0.
n—00 I“ra”n
mEA4(A f)
It, follows from (2.66) and (2.67) that Q is dense in (K.i/). Moreover, the
compactness of K in (Co[0,1], u) entails that, for each sequence {9n :n " 1}
with en |0, there exist integers 1lis0i 5,02 5l ..., such that the following
property holds. For each nii 1and / GK*,

(2.68) Ad(A,H)D{I,...,0,,}*0 and 1min v(f-gi)<on,
ieM(A])

We now set Tn= {gt:1~i”0,}. Forany / GKA, we define a sequence
{fn-.n't 1} by setting, via (2.68), for each n ~ 1, fn—gi for some g, GTn
fulfilling u{f —gi) < 9n and i G /) D{I,...,0n}. It is obvious that
{Tn:n " 1} and {/,, :n " 1} fulfill (F.1)-(F.4). Moreover, it follows from
Step 2 that we may construct with probability 1 a sequence {gn :n " no}
fulfilling (C.l1) -(C.5), independently of / GKA and {/,, :ji ™ 1} as defined
above. Therefore, the inequality dim(T(iz,/)) » 1—]|/|jj holds with proba-
bility 1 for all / GKA. By applying this result to a sequence A = A,, 40, we
obtain readily that the same statement holds with KA replaced by (Jn KAn =
= K—{0}. By treating separately the case of / = 0, we conclude that (2.29)
holds with probability 1 uniformly over all / GK. In view of the arguments
of Sections 2.1 and 2.2, this last step completes the proof of Theorem 1.2,

3. Large deviation theorems for differences of norms

In the following Theorem 3.1, we evaluate upper tail probabilities for
differences of lower semi-continuous norms on a Gaussian space. In spite of
the fact that this result is very similar to analogue upper tail bounds which
have been described in the literature for distributions of Lipshitz functionals,
to our best knowledge it does not seem to be an immediate consequence of
any classical estimate of this type. Therefore, it has interest in and of itself.
We inherit the notation of the previous sections. The following facts will be
useful.

Fact 5. The space Xf, of measurable linear forms is separable in
LI{X,B, P2Z).
Proof. See Theorem 2, p. 86 in [15]. O

MAGYAR
UfUOMANYOS AKADEMIA
KONYVTARA
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Fact 6. A mapping u:X —[o, 00] is a lower semi-continuous semi-norm
on a Hausdorff locally convex space X if and only if there exists a convex
and symmetric subset n QX* such that v(x) = sup,.en |7r(:r)| for all x E X ..

Proof. See e.g. Chapter Il in Bourbaki [2], o

Fact 7. Let Z denote a centered Gaussian random variable with distri-
bution given by a Radon measure Pz on a Hausdorff locally convex space X .
Then, for any convex subset C EBx such that C = —C, and each x E X, we
have

(3.1) Pz (C)"Pz(C +x).

PROOF. This is Anderson’s inequality, see Theorem 9, p. 135 in [15]). O

We denote, as usual, by $ the distribution function of a standard normal
random variable.

Theorem 3.1. Let || m|li =sup7reni |7r(-)] and | +|[2=sup7ren2|7r(-)| de-
note two lower semi-continuous seminorms on a Hausdorff locally convex
space X, generated by the families of continuous linear form,;s 111 C X* and
12 Q X*. Let Z denote a centered X-valued Gaussian vector with Radon
distribution Pz, and denote by Kz the unit ball of the RKHS ofV%.

Let M e R be any constant so large that

(3.2) P(1Z]li = M) =1/2 and e:=E \AV. UM/12.
Letoo =3W<& I(1—2e/M). Then, for each r*O and RZ'&MJ+ (Jgv,

(3.3) PQ//eSruIEZ {k\\Z+ /112- \\Z+f\\i3 A Li) gl-$% (\ R- 5;&6— r-V) .

Moreover, if P(||Z||i is M) » 3/4, then for each r*O and R~ 4M + |<70C

(34) P( sup W\z+f\2-\Z +fh Zr) z2{i-$ (" -5 M A
XferKz J v 00 ) } -

Proof. We proceed in three steps.

Step 1. Estimate of the size of the set ITi.

Denote by \riv = {E|7r(2")|2}¥2 the L2-norm induced by P% on X* Q
L2(X, B, pz) via the mapping 1%:7 E X* —>w(Z) EL2. And observe that,
with this notation, n(Z) follows a normal N(O, I*2) distribution for each
# E X*. The definition of || «||i implies that [7r(Z)| ~ ||*||i for each #E lIx.
Thus, by (3.2), we have for each 76 If]

P(r(Z) gM) =$(M/M2)=1~\ P(j(Z)| A M) Z 1- i P(||*]|, £ M) 7 +.

O n >ir-V(alr,;>
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Since ¢ 1(3/4) = 0.67449... 0.66666... = 1/(1.5), we infer from this inequal-
ity that

(3.5) suP_ [td2gM /{$-1(3/4)} g 1.5M.
Trelli
Step 2. Estimate of the closeness of the sets Ili and I12-
In view of Fact 6, without loss of generality, we may and do assume that

the sets I11and 112 are convex and symmetric in X*. We will prove in this
case that

(3.6) SUp inf ITL 7RRf=
t2en2 '*’neni >

Fix an arbitrary 72EIT2 and assume that
a = aiirf) := T'r%ﬁ, [2—i 12> 0.

Choose any & E (0, cr/2). Then, there always exists a if EIlli such that

3
(3.7) oA m— Mo+ 1< - e

Define a continuous linear form g EX* on X by setting
g= (-7 9772 - 712,

It is noteworthy that g(Z) follows a standard normal N(0,1) law. More-
over, since, for each # E 111, the joint distribution of n(Z) and g(Z) is centered
normal in R2, if we set c(ir,g) = E(n(Z)g(Z)) and define ng via

n=Ta+c{n,g)g,

then 79(Z) := n(Z) —E(n(Z2)g(2))Z is independent of g{z). Since Il is
symmetric, it follows that

WZw2 - W2\ = sup \ir{Z)\- sup [&(Z)| » n2(Z) - sup *#(2)
7ren2 TrElli uClli
=(Z) +\n2 - mag(Z)- sup \ng{Z) +c(n,g)g(2)\
3.8 A\e{n,g) + |[&2- n2 - s \g(Z) - 2 sup \ng(2Z)\
(38) \c{n,g) + | 2 né&c(tﬂa@l),@l( ) sup. 9(2)

= {|7r2-7r|2- su,o [c(7r,g) - c{n,9)\\g{Z) -2 sup [7ff(Z)].
1 7relll 7 Treeni
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By geometric arguments based upon the convexity of TIi we obtain that,
for each n Ellj,

c(n,g) -c{n,g) ™ [MT—A2{["2- 7r||-a 1} 1 /|7Tr2-7r|2
(N7
(3.9) AN{k|2+ [g2)|2(7(5 + 52| la
AR5 Biil2
g2 s 2 - —2 b
J r’Trl'élFl):)I‘111 >19 hcr’\]

By (3.5), (3.7), (3.9), 0<S<as2 and 5/2 = 2.5 < (1.6)2= 25G, we obtain
that

(3.10) c¢{n,g)-c{ir,g) g 2{15m }{~ } 12 g 3M1.6(a/<r)12~ 5(i/a)l/2.

By combining (3.7), (3.8) and (3.10), we see that the condition g(Z) * 0
implies that

I1ZI12- WAU ~ {a - 5(5la)l12\g{Z) - 2 sup \WO{2)\.
J

tGITi

In particular, with the notation of the Theorem,

eM~I=E([[IZ|[1- [Iz][2))m -1 £ p ([Z][2- [IZ]li * m )

(3.11) _
5K 1/2}<7(Z)"3m ) p ( sup \rg{2)\ A

It follows from Anderson’s inequality (3.1) that

(3.12) p( sup ME)(Z)\*m) *p (sup \e(Z)\ Um \ ~ 1/2.

Thus, by letting 4j,0 in (3.11) we obtain that
p (/(Z)"3m) =1-<I>(3M/a)*2eM“1,
and hence,
crr3M/{$_1(1-2e/M )} =a0.

Step 3. Reduction to a convex functional.
Let 6> 0,/ € rK. For each #2E 12 we can find a @2 € ITi such that
jme —m2 ~ ao + 6, the application #2 — «\ being measurable. Set f =
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sup2en2{7i2—A(Z). We start with the inequalities
W +fh-\\Z +f\\|=7%1£127|2{z+f)~ _I_s"uCg"TI'I{Z+f)
A ﬁségﬂ2{712-7r2}(z +/)
(3.13) + ]szgﬂ2|{7r2-7r2}(/)|’“\+ %R2{|7f2'7f2|2}f"’\ + (cr0+ (B)r
gllZ12+ [|1Z||1+ (a0+ i)r~ 2||Z||1+ HZIU - [|Z||2 + (a0+ Hr.
Note that our assumptions imply that 2M + 4e * (2 + 1/3)M =

= (2.333...) x M ~ 2.34M . By applying (3.13) with / =0 and r = 0 we see
that the distribution of £ obeys the bounds

PA g234A0) AP £2M + 4c)

Ap 2lIZ][EN2Zm Y =P Al M2 = 4e)
A 1/2 —1/4 = 1/4.

Keeping in mind that $ 1(1/4) = —0.6744... » —0.68, we use the isoperi-
metric inequality (2.10), to obtain that, for each i?°2.34M

P Nl— (12 —2.34m 5/| sup 2 —m2P
vL 1#2en2
S1_ .U-2.34M
vV (To+ |
Since eA"M /12, we have fc-~1 -2e/M) ~ $-1(1 - 1/6) » " 0.96.

The definition of ao= 3M/<h_1 (1 —2e/M) yields 0.68 ao” {30.68/0.96}M 5
2.13M and

—2.34M —0.68<10- < R-5M-S
a0+ 6 )S ‘" *( ao+s

In view of (3.13) we obtain (3.2) by letting i|0 in (3.14).
To obtain (3.4), we note that, whenever P(||Z]i 3/4, the Cheby-
shev inequality yields

P(IZ[|274M /3)"P(|[Z]|17M )-P ([|Z][2-][Z [|1*M/3)
£ PAIZHX ~ M) - P(||Z]|2- ||Z]li ~ 4e) £ 3/4 - 1/4 = 1/2.

(3.14) p(Cr-R)™ML-$( R

By applying (3.3) with the formal change of || ¢||i and | «F2 into | «||2 and
I+||i, and with the formal replacements of M and oo by M' =4M/3 and

ao = 3M/<1?-1(1 —2e/M") ™ 4ad 3, respectively, we obtain readily (3.4). O
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4. Norm-independent exceptional sets

In this section, we inherit the notations of Sections 1-3. In particular,
W denotes a Wiener process, K stands for the Strassen set, and a) and
T(v,f) are the exceptional sets defined in (1.5). We aim to prove Theorem
1.3 by showing that these exceptional sets are essentially independent on the
consistent norm u£ C. Our proof will be decomposed into the following two
steps.

Step 1. Consider any countable family Af of consistent norms dense in
C with respect to the L1norm of the Wiener measure, and let K' denote any
countable subset of K dense in (K, |mh). We will show that (1.12)- (1.13)
and (1.14)—1.15) hold with

(4.1) Tz=\jT{v,a), T/= D ?>,/), K= [J Tf.
veM ueM /IGK'|[I|lH>a

Since AT is countable, it follows readily from Theorem 1.2, in combination
with the CT-stability of Hausdorff dimension, that, with probability 1 for each
a €[0,1],

4.2) dim(T")=1-a 2.
Moreover, Theorem 1.2 also implies that, with probability 1 for each / € K,
4.3) dim(7» = 1-|/lhe
It follows readily from (4.2)-(4.3) that, with probability | for every a £ [0,1),
dim(Ta" sup dim(Ty) = sup (- |/In) = 1* «2-
We note that this inequality also holds trivially when a= 1. On the other
hand, the obvious inclusion TACT", when combined with (4.2), yields
dim(T~) A dim(T") = 1- a2.
Thus, with probability 1, uniformly over all a£ [0,1]
dim(T?) =dim(T") = 1—a2.

The proof of the “dimensional” part (1.15)—1.16) of Theorem 1.3 is there-
fore completed. The following arguments are aimed towards proving the
remaining inclusions (1.17)—1.18).

We make use again of the sequences 7n = e_v/” and tjtl = jn~x'n for
j 6 Nand n”™ L Foreach ££ [0,1) and h £ (0, e_1) there exist unique integers
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n=n(t) ii 1and i =i(t) ~ 0 such that h G[7/n+i>7n) and i G[i®,,, ii+i,,). For
such choices of n and i, set

Y=Y linim
The random field Ytjt is easier to handle than Yj/j, being defined on a dis-
crete set of indices. By applying the Borel Cantelli lemma in combination
with Lemma 2.2, we obtain readily that for each consistent norm u with
probability 1

(4-4) lim { sup v(Yuh-Y tH)}=0.

We omit the details of this argument. In the sequel we will assume, without
loss of generality that our random variables are defined on the event of
probability 1 on which (4.4) holds for all vEj\f.

Lemma 4.1. Let 7GC and v(zC be any two consistent norms, and set
e = £(77,u) —EI7AM) —u{W)|. Assume that M = M(r? > 0 is so large that
P(i7(IV) ~ M) 3/4 and e M/12. Then, with probability I,

(4.5) I ( S { SUPW(YLH - /) - v(Yth - ))1[) 7 A,

I-° vte[o i]
where A = A(77,v) = 9M/4> 1 (1 —2e/M).

prRooF. By definition of vth and making use of the distributional in-
variance by translation of the Wiener process increments, we obtain that,
forany n~ 1

p( sup sup {sup\v{Yt}h ) ~v(Yth~f)\\ta)
v Ne[7n+i,7n) te[o,i] | /eK

g 1T P( sup|t/(YG,,, M- /) - v(Ythn/n - )N a)
07jn_17ngl

= In7nl+ 1) p ( supli/(Yb,in-/) -7(40,M-/)|" a7)
vie k
=MTnlP( -sup KTFfF-/)-T7(W -/)|*AL(7n)).
VIGA(7n)K 7

We now apply Theorem 3.1 to | -|1= 7, |[*F= v, r —L(7n), R = AL(7,,)
and 00 = A/3. Since we have 5M +rao <3AL(7n)/8 = 3A/8 for all large n,
by (3.4), we get

PI sup \u(W —f) —THW—/)| ~ AL(7n)j ~ 2[1 —4>(3i?./800]
vie6(7,)K 7

= 2[1- $(9L(7n)/8)] g 2exp{-92L(7,)2/(2 x 82)} A
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. N g
The convergence of the series Y*"nn7n = implies therefore that

(00
~op( sup ( sup { supli/(yt)/l- /) -v(Yt,h-f)\\) “a) < oo.
n v /ie[7n+i,7n) v te[0,i] L/eK >> 1

The Borel-Cantelli lemma completes the proof of (4.5). O

Step 2. For each t G[0,1], a G[0,1], and any two norms ) GC and v GC,
we have

limsup inf i/(yti/i-/)-lim sup inf r)(Ylth- f)
Ao /CaK /a0 JleaK

Alimsup sup v{Yth- f) - 7]{Ytih- /)
/40 IGckK

limsup sup v{Ytth- f) - v(Yth- /
g Hop/gork{ ) - v( )

+ limsup sup r2(V - /) - viYth- /)
HO /GaK

+ limsup sup v(Yt,k-f)~v(Yth-f)
Ho /Gevk

lim su -yt + limsup”?y” - Yt
g hiop yt) Mop y )

+ limsup sup HYth-f)~v(Yth-f
Hop/gOpK )~V ( )

:THi(a, i) + D2(a, t) + D3(a, t).

Assume now that vEJ\f. It follows from (4.4) that, with probability 1,
D\(a, t) = T>2(a, t) —O for all t G[0,1]. Moreover, by Lemma 4.1, for each
fixed pair of norms r/,v GC with e(r/,v) » M(r])/12, we have with probabil-
ity 1, Dz(a,t) ™ A(r],u). Thus, for each r?GC, we have with probability 1,
for all t G[0,1], a G[0,1) and vGJV such that e(r/, /) » M(ry)/12,

4.6)  lNimsup inf i/(YiiA- /) - limsup inf 22(ya - /)|~ A7, 7).

140 /le° K ho le« K

The same arguments show that, on an event of probability 1, for all t G[0,1],
/ GK and u GAT7 with e{r),v) UM(i))/12,

4.7 Iii%f v(Ytdl- f) - Ii%f rj(Ytth - £)\* A{d, v).
Fix an arbitrary consistent norm 7GC, and choose any a G[0,1) and t G
T(rj:a). By the definition (1.7) of the set T(r/,a), we have

limsup inf ri(Ytih- /) >0.
/40  [egK
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Our assumption that Al is dense in C with respect to the iil-norm of the
Wiener measure implies that there exists a norm vEAi such that e(rj,u)
M(rf)/\2, and
A7, v) <limsup inf r)(Yofl - /).
140

/£« K
Moreover, (4.6) yields that, with probability 1,

limsup inf v{Ylh- /) >0,
h-yO le« K

ie. tET(v,a) CT”. Thus, by (4.1), the first inclusion in (1.17) is satisfied.

Let now aG [0,1) and tET'a. By the definition (4.1) of the set T* there
exists an /' GK7 such that |/'|h >0 and tETf. In view of (1.7) and (4.1),
this means that, for all u GAT,

4.8) liminf v{Yth~ /") = 0,
whence, by (4.7),

. - . NIYY H f i = ]
|IFH6‘If r(Yt,h-f)a |'/€A':e(n',ILB"A_(77)/12A(f/"/) 0
By (4.8) and the triangle inequality, this entails that, with probability 1,
limsup inf n{Ytth- /) £ I|msup |nf {v(f-f)~MYtji- /")}
li->0  /£9gK

Ainf 2 —)} - limjnf i{Yth- /)
= L&D}

Recalling (1.7), we see that this implies that t ET(r),a). Since this holds
with probability 1 uniformly over t£T &, we see that the second inclusion in

(1.17) s satisfied.
Let now / GK and i GTy. By the definition (4.1) of Ty, for all v GAf,

lim pf u(Yth-f)= o,

Hence, by (4.14)
Iir{l;Bf ri{Ytth inf A(v)=0.

T2
It means that tET(rj, /). We have therefore completed the proof of (1.18).
The proof of Theorem 1.3 is now complete.
Acknowledgement. We are greatly honored to be allowed to dedicate
this paper to Endre Cséaki, whose considerable achievements have remained
a constant example and inspiration for our own research.
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ON THE BEST APPROXIMATING ELLIPSE
CONTAINING A PLANE CONVEX BODY

P. ERDOS E. MAKAIL, Jr* and I. VINCZE**

Dedicated to Endre Csaki on his sixtieth birthday

In the paper [EV] by P. Erd6s and I. Vincze, § 6, the following statement
is proved:

Theorem 1. Let K be a convex body in the plane and let us consider
the set £ of ellipses containing K along with the Blaschke distances of the
elements of £ from K. Then there exists a unique element of £ having a
minimal Blaschke distance from K.

This theorem with its proof was published in Hungarian in [EV]. The
authors give below the proof in English, applying a slight modification of
the original version.

In our paper we turn also to a geometric characterization of this unique
ellipse closest in Blaschke’s sense to K. This question was raised as a problem
in [EV],

Theorem 2. Under the hypotheses of Theorem 1, the boundary of the
unique closest ellipse E £ £ has at least three points in common with K, say,
A\, Ai, A3, and also has at least three points having maximal distance from
K, say, B\, B2, Bs, in such a way that they lie alternately on the boundary
of E: A\, B\, A2, B2, Az, B3. Conversely, an ellipse E £ £ having this
property is identical with the unique ellipse in £ having minimal distance
from K .

For basic facts on convex bodies we refer to [BF].
In the following we turn to the proofs of our statements. At the end of
the paper we will point out how Theorem 1 follows also from Theorem 2.

Proof of Theorem 1. Aneasy compactness argument shows the exis-
tence of an ellipse E 6 £ closest to K, which, of course, cannot be degenerate.
Suppose there exist more than one element of £ having the same minimal
(Blaschke) distance from K, which distance will be denoted by d. Consid-
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ering two such ellipses, both of them are contained by the parallel body K,j
and their convex hull is also contained by K This convex hull also has the
distance d from K.

Let C be a common interior point of the two ellipses, and let the radial
functions of the two ellipses with respect to C be rq, rd- Then for the numbers
i, j of the simple zeros and multiple zeros of r\ —rq we have i + 2j S4. We
will make our discussion according to the number of zeros and sign changes
of r\ —r2 We speak of an intersection of the ellipses if rq— has a zero
and there is a sign change there, a simple intersection if r\ —r%has a single
zero there, and a non-intersectional common point if rg —2 has a zero and
there is no sign change there.

a) Let us consider the case when the two ellipses have four different
points of simple intersection. In this case the body K is contained in their
intersection. Each of the two ellipses has two parts outside their intersection.
Let us draw a line through one of the four points, which lies outside the
intersection and does not touch any of the two ellipses. We shall now consider
that further ellipse whose boundary passes through the four common points
and touches the mentioned line. This ellipse is determined uniquely, lies
in the interior of the union of the two ellipses, except the four common
points of the boundaries of the two ellipses. (Analytically, if the ellipses
are given by the quadratic inequalities f \ 0, /2 L 0, then we consider an
ellipse given by A/i + (1 —A)/2 ~ 0, for some 0< A< 1)) In this way we have
obtained an ellipse which contains K, but does not have a common point
with the boundary of Kd- This ellipse has a smaller distance to K, which is
a contradiction.

b) Let us consider that case when the two ellipses touch each other and
have two other points of simple intersection. If the touching point A has a
smaller distance from K than d, then our above procedure leads to the stated
result: That ellipse E, which has a tangent at A, coinciding with the tangent
| of the two ellipses at A, and whose boundary passes through the two other
points and at one of the two points has as tangent a line as described in case
a), contains K and has from it a distance smaller than d. (We can give this
ellipse also analytically, like above.)

Now suppose A has a distance d from K. Then E lies in the interior
of Kd, except for A, and | is tangent to E at A. Let l1be a translate of I,
close to |, intersecting £ in a small chord BC. Then for a small £> 0 there
is a homothetic copy Ee of E, close to E, with ratio of homothety 1+ e,
also having BC as a chord, such that the open large (small) arc BC of the
boundary of E lies in the interior (exterior) of Ee. (By affine invariance it
suffices to show this for E a circle, where this is immediate.) In particular,
Atfz Es and, for l1 sufficiently close to I, and e sufficiently small, Ee contains
K and lies in the interior of Kd- Thus the distance of Ee from K is smaller
than d, a contradiction.

c) If the two ellipses have two points of intersection, B, C, say, then
consider the analytically given ellipse E, like in a). If both at B and C the
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tangents of the two ellipses are different, then E lies in the interior of FQ,
a contradiction. If at one of B and C the tangents are different, then we
proceed with E as in the second case considered in b). Ifboth at B and C the
tangents of the two ellipses coincide, then a short calculation shows that the
ellipses have non-intersectional common points, a contradiction. (By affine
invariance, it suffices to perform this calculation for the cases B = (—1,1),
C = (1,1), the tangents beingy = —x, y=x, and B =(—1,0), C = (1, 0), the
tangents being x = —1, x = 1, and in both cases considering the boundary
points on the y-axis.)

d) If the two ellipses E\, E2 satisfy that say E\ lies in the interior of E2,
then Ei has a smaller distance from K than tZ a contradiction.

e) If the two ellipses E\, E2 have one non-intersectional common point
A, and, say, E\ CE2, then E\ lies in the interior of , except for A. Then
we proceed like in the second case considered in b).

f) If the two ellipses E\, E2 have two non-intersectional common points
Ai, A2 and, say, E\ CE2, then E\ lies in the interior of K< except for A\,
A2. Ifone of A\, A2 lies in the interior of K <, we have the cases considered in
d), e). If both Ai, A2 have a distance d to K, then consider the tangents Z,
2 of Ei at Ai, A2. Let I[,l2 beTranslates of Zi,Z2, close to I\,12, intersecting
Ei in small chords B\Ci, B2C2, such that B1C1/B[C[ =B2C21B2C2, where
B\C[, B2Cz2 are the (affine) diameters of Ei, parallel to BiC\, B2C2- Now let
e > 0 be small, and A*, A2 the points on the segments OA\, OA2 satisfying
OA\/ OAi —OA2/0A2= 1—£, where O is the centre of Ei. Then there is an
ellipse E* whose boundary passes through A\, B1, C1, B2, C2. Moreover, it
passes through A2, too. (By affine invariance, it suffices to show this for Ei
a circle, where it follows from a symmetry consideration, for a conic passing
through B\, Ci, B2, C2 and a point of the symmetry axis.) Then O lies in
the interior of E*, A\, A2 lie in the exterior of E*, and for /(, 12 sufficiently
close to Zi, 2, and £ sufficiently small, E* contains K and is contained in the
interior of K, a contradiction.

Having checked all possible relative positions of our two ellipses (that
have common interior points), the theorem is proved. O

In this way we have proved the uniqueness of the ellipse which contains
a planar convex body and has minimal Blaschke distance from it. Now
we turn to the geometric characterization of this ellipse, that is analogous to
the Bonnesen characterization of the minimal circular ring of a closed convex
plane curve, cf. [B], p. 487, [BF], pp. 54-55.

The Bonnesen characterization is the following. The boundary of a plane
convex body K can be covered by a circular ring bounded by two concentric
circles, of radii i2.” r, such that R —r is minimal under the above conditions.
This minimal circular ring is unique. If the common centre of the circles is
O, there are four directed segments OAi, OB\, OA2, OB2, their directions
following each other in the above order, such that

A\,B\,A2,B2€ bd K, OAi =0OA2=r, OBi=0B2=R.
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Conversely, this alternation property characterizes the minimal circular ring.
Still we note that the outer circle, inner circle and mid-circle (of centre
O, and radius (r + R)/2) of the minimal circular ring are the best outer,
inner approximating circles of K, and the best approximating circle of K,
respectively, in the sense of Blaschke distance.

PROOF OF Theorem 2. The question will be handled by an analogue
of the Chebyshev approximation method ([N], Ch. 1I, 8§ 2, Ch. Ill, §4).

(1) Let E be the ellipse containing K with the distance d(K, E) minimal.
We will show the alternation property of Theorem 2.

Let the support functions of E and K be hR ~.hx- If for some a £ S1
(the unit circle in K2) we have hE(a) —hx(a), then the boundary point A
of E, having {A, (cos a, sin a)) maximal, is a common boundary point of K
and E. Recall that the Blaschke distance d(K[. K'i) of two plane convex
bodies K\, K¥ with support functions h\, h2 equals mvax\h\((p) —h2 (<p\.

Thus for the above ellipse E we also have hE hx + d(K,E). If for some
B £ S1we have hR(B) = hx(R) +d(K,E), then the boundary point B of E,
having (B, (cosB, sinB)) maximal, satisfies that B —(cos/3, sin/3)d(LI, E) €
bd K, and B lies at a distance d(K,E) to K. Therefore, in order to show
the alternation property in the theorem, it suffices to prove that there are
aq, /7, e12 /721 «3) Rz £ 81, following each other in this cyclic order, such that
di is a minimum point of h —hx, and i is a maximum point of hR —hx
*=1,2,3).

( To pr())ve our statement it suffices to investigate the case E K. Then
we have

max (hE(g) - hK(ip)) > 0.

Now we consider the set of minimum and maximum points of the function
hE —hx- Ifa GS1lisa minimum point, then consider a maximal arc [a',a"} C
S 1 such that a€E [a',a"], a7 a" are minimum points and [&, a’’] does not
contain any maximum points. We admit the case that [a', a"} reduces to
the singleton {a}. Dually, for B a maximum point we consider maximal arcs
[B*,R"] c 51, with the dual properties. These arcs are disjoint. If [ala’] is
such a maximal arc of the first type, then the extremum of hE —hx, greater
than a" (in the cyclic sense) and nearest to it, is a maximum. The dual
statement is valid for the maximal arcs [/?, R"] of the second type. Hence the
arcs of type [a',a"} and those of type [R',R"} follow each other alternately. If
there follow three intervals of type [a7 a"] and three intervals of type [R1 1"}
each other, we are done.

Now let us suppose that there are at most two intervals of type [a7a"],
and at most two intervals of type [R',R"]. In this case there are values
tpi, ip2, B, VAE£ S1, following each other in this cyclic order, such that the
intervals of type [a',a"} lie in the open arcs (ipi,(p2) and (<"3,4), and those
of type [R',R"] lie in the open arcs (™2,”3) and (</4,</%). (Not each of these
arcs 1 needs to contain an interval of type [a',a"} or [R',R"].)
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Let us consider the polar E° of E with respect to an interior point O of E.
Then E° is an ellipse, and the polars of the support lines of E with outer
normals (cos pi, sin</?j) are points Pi of bdP°. Let us consider an ellipse Fq
whose boundary passes through P\,..., P4 and through a point P close to a
fixed point Q on the open arc P1-P2 of E°, P being either inside, or outside
E°. Then bdP° and bd.E° have only these points Pi in common, since five
points uniquely determine an ellipse. Moreover, the arcs (Pi,Pi+1) of bd£q
pass alternately inside or outside the arcs (Pi,P2+i) of bdE® (i.e., of E°). In
fact, else, at some P,, E° and E° would have a common tangent, implying
E° = E°. Moreover, one can prescribe that the arc (P\,P2) of bdFqg should
pass inside or outside of the arc (Pi, P2) of bdP°.

Letting E[ be the polar of E\ with respect to O, E\ is also an ellipse
(for P sufficiently close to Q). For the support functions hx and hxx of E
and E\ we have hBRpi) =hx(pi), and hxx(p) —hx{p) is alternately positive
and negative in the open intervals (pi,pi+i), and we can prescribe its sign
in So we may suppose hxl{p) —hsip) positive in (pi,P2) and
(<P3 4, and negative in (<€>273) and (p4,pi).

Hence, recalling the choice of pi, we have, for some £0 > 0, hxl{p) =
dx{p)+£0 in [Pi,&] and [p$,p4], and hEI{p) » hx{p) + d(K, E) - €0 in
[p2,'Fs] and [¢4 p{\. For P sufficiently close to Q we have also that hxx(p)
hx(p) + d(K, E) £0 in [p\,P2] and [*3,*4], and hEI{p) » hK{p) + €0 in
[p2,ps] and [y4 p\\. In conclusion, hx A hx + £o” “Ei » hx + d(K, E) —£0,
implying K ¢ E\ and d(K, E\) —max (hxx{p) —hx{p)) * d(K,E) —£0, con-

tradicting the choice of E. Hence the best approximating ellipse E satisfies
the alternation property.

2 Now we show that the alternation property implies the best approx-
imation property. So let the ellipse E D K satisfy the alternation property,
where again we may suppose E »# K. We have to prove that there does not
exist an ellipse E' DK, such that d{K, E') <d(K, E).

Let ¢t and Bi denote the angle of the outer normal of E at Ai and Bt.
These angles have the cyclic order ag, R\, a2, /%, «3, B$. We have hx{oti) =
hx{&i)- Let Ci be the point of K closest to Bi. Then K has a supporting line
at Czthat is perpendicular to Cj-Bj. Moreover we have d(Ci,Bi) =d(K,E),
and E is contained in the d(K, .*-neighbourhood of K, so the tangent of E
at Bi is also perpendicular to BiCi. These imply hx{Ri) = hx(Bi) + d(K, E).

Now suppose that there exists an ellipse E' D K such that d(K,E") <
d(K,E). Let the support function of E' be He: Then hx » hx' » hx +
d(K,E") <hx +d(K, E). By inflating E' a bit about its centre, we may
even suppose that hx <hxi<hx +d(K, E). Also we have hx » hx ™ hx +
d(K, E).

Consider the arc [0q,/?1]]. We have

hE'(ct\) - lie{ol\) > 0, hx'ii) - hE{R\) <O.
Hence hx>—hx has a zero in (aq,B\). Similarly we proceed for the other arcs
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(Bi, »2)1 »ee, (/73,ai). So hR" —h,E has six zeros. Choosing a suitable centre
of polarity, the polars of E' and E will be ellipses having six common points,
therefore they must coincide. Hence E1= E, d(K,E") = d(K, E), contrary to
the choice of E'. This proves that the alternation property implies the best
approximation property, and thus finishes the proof of the theorem. O

Remarks. 1. In fact the characterization of the best approximating
ellipse E D K in Theorem 2 implies its unicity, i.e., Theorem 1, analo-
gously to [N], Ch. IlI, § 2, Theorems 3, 4, Ch. Ill, § 4, Theorems 3, 4.
Namely, if E\,E2 D K are both best approximating ellipses, and are given
by quadratic inequalities f\ ~0, " 0, then for 0 < A< 1 we can define
an ellipse E by A/i + (1 —A)[2~0. We have K c E Cc E\ UE2 Cc Kd for
d=d(K,E\) =d(K,E2), so E is also a best approximating ellipse contain-
ing K. So there exist A\, B\, A2 B2, A3, B3 satisfying the alternation
property in Theorem 2. Moreover, E lies in int K <, except for the common
points of bd E\ and bd i?2- By d(K, BR —d each point Bi is a common point
of bdid and bd E2. Then E\,E2 c Ky implies that at fi, both E\ and E2
have the same tangent, for *= 1,2, 3. Hence E\ = E2.

2. An analogous property by three alternating minimum and maximum
pointsoi,..., /2 could be proved for the best inner Hausdorff approximation
by ellipses, and for the best Hausdorff approximation by ellipses, provided we
knew that these are not degenerating to segments. Conversely, the respective
alternation property implies the best inner, or best approximation property.
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P. ERDOS and P. REVESZ

Dedicated to E. Csaki for his sixtieth birthday

1. Introduction

Let {W(t) = (Wi (i), Wa(t),..., Wd(t)) e I d, t~ O} be a Wiener process
in the d-dimensional Euclidean space where d” 3 and let
C{x,r) ={y: yERd, [ly-i[|*r}.
Consider a path W (t,g ) of W(t). We say that C(x,r) is left empty by W (i, w)
if
V(x, r) =V(X, r,u) = C(x, r) fl {W(t, w),t" 0} = 0.
Let

P{R) =p(R,iv) =
=max{r: 3xE  such that C(x,r) cC(0, R) and V(x, r) = 0}

be the radius of the largest empty ball in C(0,R). We are interested in
studying the properties of the stochastic process {p(R), R>0\.
Since W (0)=0, clearly

(1) p(R) f-

First we give a sharper upper bound than the trivial one of (1). In fact
we prove

Theorem 1. For any e>0,

2 as..

if R is big enough.

Our next Theorem tells us that the upper bound of (2) is not very far
from the best possible result.
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T heorem 2.

R .
(3) 4109-ﬁ! 1.0. a.s..

Here and similarly in the sequel i.0. a.s. (infinitely often almost surely)
means that for almost all to E  there exists a sequence 0< R\ = R\ (l® <
f?2 = Riiv) < eee such that

lim Rn{u) —oo

71—>00

and
/H» \\ Rn Rn

P{ n)= 2 4logRr,

Theorem 2 tells us that for some R the p{R) will be very big. The next
Theorem tells that for some R the p(R) will be much smaller.

T heorem 3. For any e > 0 we have

R .
(4) p(R)I' (|og |OgR)|/d 1.0. a.sS..

Now we show that the upper bound of (4) is close to the best posssible
result.
Theorem 4. For any e> 0

R
(5) P(R) = (logfl)n+V)/ii=5) ok
if R is big enough and d*. 4. Further
p{R)"R(logR)~{1+e) a.s.

if R is big enough and d = 3.

The proofof Theorem 1is based on atheorem that seems to be interesting
in itself. In order to formulate it we introduce a few notations.

For any x 6  with ||x|| = 1 and 0< d < 1 define the cone /C(x,i?) as
follows:

IC{x,d) = Sy: yeRd, ( ' X) =1- ‘

Clearly for any 0 < d < 1 there exists a positive integer K —K{d) and a
sequence x\,xv,...,xr such that

jitl =1 (=12,
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'UI e {Xi,0)=Rd, K"L{1- (1—-9)2)-(d-i)/2

where L is an absolute positive constant.
Let

Ci=Ci(R) = £i(R,e,0) = {y:yelC(xi,4), REE(y,Xi)ZRI-e}

where
i=1,2,..., K, 0<£<1/2, 7>0.

Now we have
Theorems. For any O<e< 1/2, 1/2<i?<1,

P llimsup U {Cin {W(t,u>), t~0}=0}1=0.
Ifi->OOp2:1{ (WLU>) } }J

Note that Theorem 5 tells us that for any R big enough W(t) meets all
frustum of cones Ci{R) {i=1,2,..., K).
Remember that
limsupAR= P| (J A,

2. Proofs of Theorems 1 and 5

Lemma 1. Let {W{t) e ~0} be a Wiener process. Then

P{ sup N (2Jloglog T)Y2¥~exp(—logT)1-2%)

for any 0<e<1/2, 0<e6< 1/2, if T is big enough.

Proof. Let
tk = exp(A; log k), A’=1,2,..)
ki = ki(e,T) = mm{k: tk"Te},
k2= k2{e,T) = max{k:
Then
k2 —k\ ~ (L—2s)log T
loglogT

tk 1
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P{t~I1{2(W(tk+1) - W(tk)) " (251loglogT)V2} " (logT ~log logT)“1

and
P{k\r&?é(gt;l[z(W(tkﬂ) - W(tk)) <(25loglog T)¥2}~

Note that if
t~I[2(W(tk+1) - W(tk)) > (25loglogT)¥2
and
ifetllvV (ifcH)<(<5loglogT)¥2

then
(251loglog T) Y2 < th]I2W (tk+i) —iN1/2 7 W(ifo<
<loglogT)"2-t~12 " W(tk)

and

NN (FF)<-(21/2-1) " (5loglogT)Y2-

~ -(212- I)fcl/2(log logT)¥V2.
Consequently
{Vic: k Mk ik 2,t~I[2(W(tk+1)- W(tk)) g (25loglogT)¥2}U
U{3fc: kirk" k2, tM1/2W(tk)» -(2Y2- Dfc¥2(5loglog T)V2} D
D {V/c: K\ k" kz,tr]J2W (tk+\) U (5log log T)1/2}.
Since
P{£1/2W(tfc) < -(2¥2- Nfcl2(5loglogT)¥2}g
A exp ((2]/2 — —~Ablog log T\j :
we have
P{ |nf AN 12N (tfg < - (2 1/2-1)A:1/2(510glogT) /23~

2v2-)2
N (k2 —Ag)exp kie log logT

1—29) logT exp (2¥2—-1)

e A -
log logT SlogT I~ T-Q,
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where
a=48(2"72-1)2
and
P{ sup t I/2W{t) *{SloglogT)V/2}

AP{ sup tN_[2W{tk+i) ~ {Ologlog T)V2}~
{ki<,lg‘k2 _[2W{tk+i) * {Ologlog T) ¥ 2}

AP{ sup t-1{2(W(tk+])-W (tk))i(26\oglogT)1'2}+
{ gup t-H{2(W(tk+)-W (1K))i(26\0gl0gT)12}
+P(Inf t=12W{tk)<-{212 - 1) k' /2{5 log\ogT)i/2}

1 —2e)(log T) !
(loglogT)2
Hence we have Lemma 1
Lemma 2. Let
{W(t) = (VPi(f),iy2(f),...,w”(i))eRd, tz O}

be a Wiener process. Then for any

=exp + T~a” exp(—logT)125).

0 <e< A, 1/2<i?7< 1,

and R big enough we have
P{3t: V L(f)€E(f?)}"1-C (logjR 132
where
C(R) ={y = (yi,y2,...,yd)-- yelC(ei,li), RE" (y,ei) "R 1"}
={y: REAYIi"R I~E Vi NCIKL: , oo, 2d)[},
ei=(1)0,0,..., 0) 6 Kd,

NN D
Q@—1—=m2)12
and C is a positive constant.
Proof. Let
T =R2,
to=to{T,£,8) = mi{t: t"Te, Wx(t)" (26tloglogt)l2=r},
r = (26t0log log t0) 1/2-
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By Lemma 1
P{*o£ T I~e} " 1-expHlogT)1l 2
if 0 <6 < 1/2. Hence
P{Re2grgB1-"2} " 1- exp(—2logi?)1*2%
Observe that

[ o\ 12
P{|I("2(i0), mm Wd(tO)\ Z (3i0loglogtO)2- (~J  r}i

- 6XP (_"loglogi®) =exp (~ " loglogT£) = (2elog7?)_3/2,

P{3i: "0, W{t)e£(R)} =
= P{3t: tE0, R *W A 1R 1", QW(Wa(t),...,wd(t))\IWy(t)}*
A (1 —(2e log -R)_3/2)(I —exp(—2 log R) 1~20))

26
<
T 7
i.e. if fl > 1/2 and 6 < 1/2 is close enough to 1/2.
Hence we have Lemma 2.

02

Lemma 3. By the conditions of Theorem 3 we have
pliJ{A n{W(i,w), t"O} =0}> <C (logR) 32

where C is a positive constant depending only on d.
Proof. Lemma 3 is a trivial consequence of Lemma 2.

Proof of Theorem 5. Let Rk=ek (k=1,2,...). By Lemma 3 we
have

k> =1
Let Rk "R < Rk+i- Then

P II limsup |J{jCj(.Rfc) 0 {W(t,Lo), f~ 0} = O}Jj>: 0.

RE2MRE and Al'®R2"/?7
which, in turn, implies Theorem 5.
Proof of Theorem 1. It is a trivial consequence of Theorem 5.
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3. Proof of Theorem 2

First we recall two known Theorems.
Theorem of Hirsch ([1], p. 39).

inf fFi(i)» T ~logT)-1 io0. as.

Theorem A ([1], p. 242).

-2
P{3t"0:W(t)eC(u,r)}=

where |ull = R>r.
Proof of Theorem 2. By Theorem A we have
P{{W{t),t*R2}nC{0,R) = Q,\W{R2)\\"2R}*p,

where p >0 is an absolute constant. Even

P1{W(), t"R2}IC(0,R) = O, IVK(?2)| ~ 20 Jnf, WA(t) > 2Iog/3\R

N P ]
Consequently,

R
{W{t), i~0}n la: = (ari,x2, -mm*«<): " 2logR’ \WxW\ZR

=0 a.s. i.0..
Hence we have Theorem 2

4. Proof of Theorem 3
Let K = K(R) be the smallest positive integer for which

- /loglogfix I~£d

ed < 1).
V log3 ( )

Then there exists a sequence ®i,®2; me, xk such that

K
|9 @=C(O,R),
i=i
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where
C=C(X- *
Vv ’Tloglog RYVd~E
Observe that if for some i (i=1,2,...,if)
{w(t,w),t20}nCi?Q,

then the probability, that a neighbouring ball of G will be visited by IT(-),
is larger than or equal to 32-rf. Hence

P r{{W (i,w),i0}nciog0} " 3-K(d-J
1—ed'
rexp —(log3)2(d —2) | 1°9109R _ R
V 1°g3
and N
t aR{k): co
k=1
if
Observe also that
R(k + 1)

(loglog R(k + 1)) ¥~

Hence we have Theorem 3 by Borel Cantelli lemma.

5. Proof of Theorem 4

Recall the following two Theorems.

Theorem of Dvoretzky-E rdés ([1], p. 195) For anye>0 andd> 3
we have

W(W2 (1), Wa(t),...,Wd(t))\Atl'2(logt) A 1+E o as.

if t is big enough.
Theorem B ([1], p. 253) Let d=3 and

{(R) =\{t:t>0,\MH\ERN
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where A is the Lebesgue measure. Then
f(R)"R2(\ogR)1te as.
if R is big enough.
Lemma 4. Consider the cone /C(x, $) with x = (1,0,...,0) andd = du =
(logR) . Then
IC(@;,i?)n(Mrf-C (0,iD))n{VL(i,w), i"O}=0 a.s.
if R is big enough.
PROOF. Clearly if WA (t) * r then
>
2 loglogr
Hence by the Theorem of Dvoretzky-Erdés

NW2(t), W dON A ---gl()gr)H/2(2 logr)_(1+£)4d 3) »

Nr(logr)- M+2eMd_ 30
Hence (WA (), W2{t),..., Wd(t)) ~ K(x,fl) if t is big enough and we have
Lemma 4. Theorem 4 in case d” 4 is a simple consequence of Lemma 4.
Theorem B implies Theorem 4 in case d —3.

In order to prove Theorem 4 in case d = 3 observe that in C(0,R) one
can find (logi?.)3+3£ disjoint balls of radius

"~ (logl2.) 1
The visit of (logi?)3+3e disjoint balls of radius R* requires at least

AT L _(10g fl)3+3%J A2(log Rf+’1*

time. Hence Theorem B implies Theorem 4 in case d=3.
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ERDOS-RENYI-SHEPP TYPE LAWS IN THE
NON-I.1.D. CASE

A. FROLOV, A. MARTIKAINEN and .1 STEINEBACH

Dedicated to Professor E. Csaki for his sixtieth birthday

1. Introduction

Consider a sequence X\, X2,... ofindependent, but not necessarily iden-
tically distributed random variables (non-i.i.d. r.v.’s) with moment-generat-
ing functions = EexpjiAj} (i=1,2,...). The following conditions will
be assumed:

(Al) EXi=0(i=1,2,...);

(A2) There exist positive constants H and ci,C2,... such that \Li(z)\ =
llog i)l ~ G in the complex circle \2\ < H . Here log £ denotes the principal
value of the natural logarithm of 2

N n+J
A3) limsups N (c24-Q) < 00,
(A3) I,,_>0L(|)p lep B n>J i=n+i( 9
where .
n-+j
Bn,j= E a3=ox 3 0=1,2,.);
1

(A4) There exist $> 0, jo such that Bnj >jS Vn W"jo-

It is well known that, under (A2), Li{z) can be expanded into a conver-
gent power series

00

(1.1) LA) =ETr**’  \*\<H,
k=1

where 77, is the /c-th cumulant of x }. We have 71 =0 and 72%—erf by (Al)
and (A3). From Cauchy’s inequality on the derivatives of analytic functions,
it is obvious that (A2) is equivalent to the following condition:

1991 Mathematics Subject Classification. Primary 60F15; Secondary 60F10.
Key words and phrases. Erdds- RényiShepp type laws, sums of independent random
variables, large deviations, increments of sums, exact convergence rates.
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(A2') There exist positive constants H and ci, C2,... such that Lj(z) can
be expanded into a power series (1.1) with

fe. & Kl VK, .

For integern”~ 0and j ~ 1, put So =0, €n)o= 1,

n+j
Sn="W , = Eexp{i(bn+j —sn)} = </>i{t),
z=1 2=n+l
1.2 < () Y .
SO Mnji = wanry mif) —{10g MOV = 1,2....),
2=71+1

prjra) = NinfA{$nj(i)exp(-ial,j)}, a>0.

For ¢> 0, let anj =anj(c) denote the positive solution of the equation

Pn,j(oi) = exp(—/c),

provided this solution exists. In fact, since Sn+j —Sn is nondegenerate, it
follows from Lemma 2.1 in Deheuvels [9] that the function

=- IOg/U<|’>ni,jn(T)<oo{$nj(<)eXp(-ia)}“ll’

satisfies
aILmoo dni(a)/e = Hnj =sup{f: $nj(t)< oo}
= n<r|'}{|o1+j {sup{f: < 00}} =tnj.

The solution of the equation

ANj(tt-Bnj ) = J/c

has been discussed in detail by Deheuvels, Devroye and Lynch [11] and De-
heuvels [9]. In particular, it has been shown there that this equation has a
solution for cE (cnj, 00), where

)
cnj=is | tnj @t
0
So, if c is sufficiently large, a solution exists. We assume that
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and if the function exp(—taBnj) attains its minimum in (0,H), let
t*nj = t4 y(c) denote the corresponding argument. Note that, by definition,

(1.3) Pn,j(anj) = exp{-t*njanjB nJ)=exp(-j/c),
(1.4) Mnj(tnj) =arsBnj.

For integer sequences K = K (N) consider the following Erd&s-Rényi-
Shepp type statistics:

_ 1 2\ A N 1
(1.5) UI\V/ O’\%-Km i1((SnA-K  Sn  0”n,K*n,K)i
(1.6) WN= max max thk{Sn+k-S n-a n*"KBn"/k),
O~n~N-K IMKAK
.7 Tff  AMliaj)itn fi*n){Sn-\-K(n)~Sn~OlreK (n) KBn'K(n)/K{'rl))-

In the case of independent, identically distributed random variables (i.i.d.
r.v.’s) with EX] —0, E = 1, Erd6s and Rényi [13] studied the critical
choice of K = K(N) = [clog A"], where [a] denotes (here and in the sequel)
the integer part of x and 0 agq<c=c(a) <00, 0< a <A,

H
A=WImi), @=1/ { tm(dt, H =sup{i>0: 4%i() < oo}.
0

They proved that

(1.8) NI|_r>aoo(Un/K) =0 as,

ie.,

(1.9 lim  max [Sn+K—Sn)/K =a as.
N—y00 0<n<N—K

The definition of A and co as given above has been introduced by De-
heuvels, Devroye and Lynch [11], p. 211. It implies a necessary restriction on
¢ which was not mentioned in explicit form in the original papers of Shepp
[21], and Erd6s and Rényi [13]. Moreover, several authors following these
first papers made the oversight of stating their theorems as valid for all c> 0
(see Remark 3, p. 212 in [11]). For a full form of the Erd6s-Rényi law of
large numbers covering also the case 0 < c” co, and for a further discussion
of co, confer [10].

Under the same assumptions, Shepp [21] earlier proved that

(1.10) lim {Tn/K) =0 as,,
N-yoo
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ie.

111 i +K{n) - K =
( ) l\\JI-I’\>06’On<]na<)N(—|<(Sn {n) - Sn)/K{n) =a as

Csorg6 and Steinebach [7] obtained a first convergence rate statement
for (1.8)—1.9) by showing that

i | =
(1.12 l\II_F;](IJ(Un/K].,Z) 0 a.s.,
i.e.,
K- K= K~12) as.
(1.13) o<Ln<a|il(-K{Sn+ Sn)/ a+o(K~22) as

An analogous assertion was also given for W,\. The exact convergence rates
have been derived by Deheuvels, Devroye, Lynch [11] (for Un, Tn) and
Deheuvels and Devroye [10] (for Wn). They are summarized in the following
theorem:

Theorem A. FOr ag< €< oo, choose K —K(N) = [clogN], Then

(i) lim {UN/\ogK) =-- in probability;
N —too 2

) limsup (C/yv/logK) =~ as.;
(hi) I'erlior;f (Un/log K) = - as..

In statements (i)-(iii), Un can be replaced by Wn and T*, respectively.

While the Erd6s-Rényi-Shepp laws of (1.8)—1.11) retain if K —[clogN]
is replaced by any integer sequence K(N) ~ clog N as N —o00, their con-
vergence rate counterparts of Theorem A critically depend on the specific
choice of K(N). This is obvious from an extension of Theorem A due to
Bacro [1] who proved:

Theorem B. FOr @< c< oo and Ac R, choose K = K(N) = [clog N +
Alog log At]. Then

(i) lim (Un/ logK) —— --—in probability;
N-%00 2 c
(0) limsup (Un/ logK) = -——-as.;
N —00 n Cc

(iii) Im)grgf (Un/ logK) = — ---éa.s..
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In statements (i)-(iii), Ujv can be replaced by T/v.

Some analogues of the above partial sum results have also been obtained
for renewal processes (cf. e.g. Bacro, Deheuvels, Steinebach [2], Deheuvels,
Steinebach [12] and Steinebach [22]). For a rather general methodology con-
cerning the increments of stochastic processes, we also refer to the work
of Csorgé [8], Steinebach [23], Csaki, Foldes, Komlos [6], Csaki [4], De-
heuvels [9], and Cséaki, Csorgd [5].

Main aim of our present work is to extend the results of Theorems A
and B to the non-i.i.d. case as follows:

Theorem 1. Let Xi, X2,... beanon-i.i.d. sequence of r.v. 5 satisfying
(A1)-(A4). Choose K —K{N) = [clog Af+ Alog log N], andletUN, WN, TN
be as defined in (1.5)—1.7). Then, there exists ®" 0 such that for any c> o
and AGR, we have

) 1 A .
(i) NIl_%O(UN/\og K) =- in probability;
(ii) limsup ([7/v/logK) =i — a.s.;
N—y00 z C
L 1 A
(iii) I;\Im inf {UN/ log K) = —2---Ea.s.

In statements (i)-(iii), [/~ can be replaced by Wn or Tfi, respectively, if
additionally a\"*.a2>0.

For an earlier extension of the Erdds-Rényi law of large numbers to the
non-i.i.d. case see also Lin [17]. His results correspond to the convergence
rate statements of Csorgdé and Steinebach [7] in the i.i.d. case which preceded
Theorems A and B. Under stronger conditions, Frolov [14], [15], [16] obtained
a first version of Theorem 1 in the case K —[clogN], i.e. A=0.

The proof of Theorem 1 is essentially based on the following extension of
Petrov’s [18] large deviation result for sums of (non-i.i.d.) random variables
which is of independent interest. To formulate this result, we consider an
array {Xnj,n "1, j=1,..., kn} of row-wise independent random variables.
Assume that

(A5) EXnj =0 Vn,j;
(AB) There exist positive constants H, Cn,i, h,2, = such that \Lnj(z)\fé
cnj in the complex circle \z2\<H, where Lnj(z)—og(f)nj(z)=\ogEexp(zXnj);
Nk
(A7) W = limsup — + cnj) <oo,

7i—=00 s
J=1

where Bn= v EX,, *-* 00 as h —00.
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Similarly to (1.1), Lnj(z) can be expanded into a convergent power series

(1.14) Lnj{z) =J 2 "~ Zk, \z\<H.
k=1
7fc,n,j the A-tli cumulant of X nj, and an equivalent condition to (A6) is given
by
(AB") There exist positive constants H, and cnt\,cn”, mmm such that
\Ln,j(z)\ ~cnj can be expanded into a power series (1.14) with

. Kenjj .
(1.15) I7fenjl = ) VK.
We have 7i,nj = = 0 by (A5), and J2,nj = EX][ = Set
nn 1 F -t
Fn(x)=p(*"2xnj<x\/Bnj, 8{x) =-j= | wWdt.
_m
Theorem 2. Assume (A5)-(A7). Then
) 1-Fn(x) t ~3
(I) 1-4>(X) exp { vb;)}[‘+0(Vk)
Fn{~x) _ J X3 xf x 7

(U *(_*) XPI 7 srnv '

/or a/l £ 0 such that x/\JBn remains sufficiently small. Here
0]

(1.16) An(t) =J 2 akntk
k=0

denotes the generalized Cramer series (cf. Petrov [18], Ch. VIII. 2) which,
for n sufficiently large, is majorized by a power series with coefficients not
depending on n, and convergent in some circle |f| <to, so that the series
An(t) converges uniformly in n for [t| <fo-

For later use, put
ki
bfcii = 5 ;—7I Tknj-
It. will be proved below that



ERDOS—RENYI-SHEPP TYPE LAWS IN THE NON-I.I.D. CASE 133

where z —z{t) is defined by (2.18) and (2.20), and that that An(t) ~ —I3>3
as t—20.

Hence the coefficients afcn can be expressed in terms of the cumulants of
Xn™i, ..., Xn*n up to the order k + 3. In particular,

aon="3,/6, Ri,n= (T+n—3r3,)/24, OG2n= (Ts,«—lO IAnl~ + 15r3 n)/120.

2. Large deviation results

In the sequel, all limits are supposed to be taken as n —+ oo if not men-
tioned otherwise, and C\, C2, =¢* denote some positive constants.

Proof of Theorem 2. Via the Esschcr transform, we first introduce
an auxiliary array {Xnj,n” 1,j =1,..., kn} of row-wise independent r.v.’s
with distribution functions

X

Vnj(x) =exp( Lnjw) f exp{zy)dvni(y), —H <z <H,

where Vhj(x) = P(Xnj <x). We write
kn kn
Tnj- EXnj, <hj=E(Xnj Tm,j) ; X[n=" ~Tfin> =A
i=1 1=1
kn
Gnj(x) Amj(xTTInj), Sjj= Xnj, Fn(x)=r Siji n x
3=l
Note that vnj,fnny etc. critically depend on the choice of 2. This will be

important in the proof below. Direct calculation shows that the cumulant-
generating function

Ln,j{h) = log Eexp{hXnj) = -L nj(z) + Lnj(h + 2)

exists for h such that \h +z\< H. Clearly

rton \dde;Ji(h)] . r’\U;t{(il’)]
&0 t—2
For the first two cumulants, it follows now that
= uu
(217)  mnj-= 7i.nj EP 76N ni=E

(*-D!
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Both series converge in the circle \2\ <H.
We write

M .

Bn s (k-iy.

This series converges for \2\ < H, too. By (A6) and (A7), its coefficients can
be estimated by

ko

[Plc,n| k

(219) (k—1)! = BnHk

°n,j = ClI
J=1

so that the series in (2.18) is majorized by a power series with coefficients not
depending on n and convergent for \A <H. In any smaller circle \2\ <H,
0< Hi < H, this series converges uniformly in n and z.

For all sufficiently small |f|, (2.18) has the unique real root

A3n 2 TI4n

—A 13+
2

(2.20y Z=t-
This root tends to zero as t —0. If t remains small as n —o00 (which is
assumed further) z also remains small.

By (A6) and the theorem on the inversion of analytic functions (cf. Pri-
valov [19], p. 258), there exists a circle, the same for all sufficiently large n,
with center at t= 0, within which the series on the right-hand side of (2.20)
converges, and the absolute value of its sum does not exceed H\. Applying
the Cauchy inequality to the coefficients of this series, we find that for all
sufficiently large n the series itself is majorized by a series with coefficients
independent of n and a positive radius of convergence.

X
The definition of Vnj implies that Vnj(x) —eLn™z* J e~zydVnj(y).

— 00

Hence
kn

P(5n"~x) =exply™Lnj(")| J e~zudV{Sn <u).

X

Writing yi =2\[-B~n and substituting u=Mn+y\/Bn we get

(221) 1- Fn(x)- expl-zM n+ ~ Lnj(2)j Jm e~yy'dFn(y)
Y (XVA-M,,)IVIBT
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Put rn=Fn(x) —<&(X). We will use the following estimate due to Ro-
zovsky [20]:

kn
sup [rn(x)| ~ CiB;*12(\Dn\+ £ Enj),
X j=i
where
Dn— I dGny(x), Eny—SUpzZ 1| X dGmyj(x).
J:IM’\‘\]/'Bn sz

The well-known relationship between the cumulants and central moments
yield the equalities

—mnj) =WBnj’ —mnj) =74nj+ 38N m
It is clear that
i kn p
\DN\VAAVE (X nj -rinjfl +AT I Ix|3dGnj(x)

= J:1|x|>\//:B-n
k k

NE 173njl + K I/2E E(XnJ —mnJd)4
j=i j=i

Sf£ Im,ai+5;12E 174, ji+3
j=i =i j=i

Note that E,,j can be estimated from above by Enj ~ j if the supremum is
achieved at z=z(n,j) * 1, and by Enj » z~2E(Xnj-m nj)a ™ |[74nj|+ 36"],
otherwise. Hence

| ®nj=Bn+  174nj 1+ 3E | *nj»
j=I j=i j=i
and we arrive at the estimate
Sgplrn(XN
(2.22) k k k

gC2B;32(Bn+£ 173ndl+ 1+ B~X2E 174nj +6£ <,e).
j=1 J=1 j=1
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It follows from (2.17) that
Br ' M@

A " fo2
Bn Br,Si:I I =1+ E o (fe-2)

and, like in (2.p9), this series is again majorized by one with coefficients
independent of Il and a positive radius of convergence. Hence

(2.23) C3BnUBn~B nC4.

We find from (1.15) and (2.17) that
(224) ol , <¢ & i
nj=eo (fc-2)!

in the circle \2A\ » H\ for every positive H\ <H. As in (2.17) we write for

"

and, as in (2.24), we find that

(2-25) 17301 = cn,jCF,, 174,n,jl UCI’],jCj.
Substituting (2.23), (2.24) and (2.25) in (2.22), we get
kn
(2.26) sup\rn{x)\ » CsBnz/2 (*2(cn,j+cid)+BnJ fiC9B'n']J2
31
Here, we have also used (A7).
Now take
(2.27) t'
'IBn

Then t remains small, and by (2.18) we integrate in (2.21) from O to oo.
By (2.26) we have

CcXJ

J exp{-yyi)dFn(y)

Ty KTy S Y

(2.28)
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{2 + dfli

where
(2.29) M

In the sequel, we confine ourselves to the case x > 1, because, for 0" x is 1,
an application of Rozovsky’s above estimate to 8n = sup |F,,(ai) —$(a;)| gives,
X

similarly to (2.26), Bn=0(Bn~"2), implying (i) and (ii) for O"x ~ 1
By (2.17) to (2.19), we conclude that
@ p
M,, =Bnz+B,,V -m-"-J1-1=B,,z(\+0(2))

and similarly
uu p

(2.30) Bn=Bn+BnY, 7J7rkzk~2=Bn(l+ 0(z2)).
k=3 "

Note that the constants in O(-) depend only on H and W so that O(-) does
not exceed 1/2 for all large n and small 2. It follows from (2.20), (2.27) and
(2.30) that

(2.31) yi = x(I + O(2)).

Hence, yi > 1/2 for large n and small z. Set

Substituting u =yyi we find that

00

1> ili pdu> J exp(—u —2v?)du > 0.

By (2.30) we get

(2.32) Clo <z\[Wnl\ < C\\,
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Recalling (2.28), (2.29), we find that for small z

(2.33) sTexp{-yyi)an(y) =-A=l1+an=-"=11l +0 (2)).
0

In the further arguments, we make use of Mill’s ratio

(e]e]

y

and write I\ I2—"(x)- We have ip(x) —ip{yi) = (x —yi)ip'(u), where
u is between y\ and x. Furthermore \ijj'[u)\ = \uip{u) —1 < u~2 for u > Q.
By (2.31), x —y\ = O(zyi), and consequently ip(x) —ip(yD) = 0{z/y\). So, in
view of (2.23) we conclude that 12 —1\ = 0(Bn1*2). It follows from (2.32)
that 1\ =72(1 + 0(2:)). Hence from (2.33) we find that

J]DeXp(—yyi)d Fn(y) = -"=ip(x){1+ 0(2)).
0
This reduces (2.21) to the relation

(2.34)  1- Fn(.x):exp|y2 oM Lnj(z)j[1- $(x)](I + O(z)).
=i

By (1.14) and (2.17),

0 k-1
zmn,j Tjnj(z):k — RNz (=12, j=12,..., kn).
=2

This and (2.20) imply that

(I kn
—(zMn — Lnj(
n I=i
VAN —)rkn k t2 r3n 3 r4n—3F|
E—z ----- in------ 2 =T"IT * ——rn — I +m

or
kn

2 B ¥Z" n IE_yLn,j{z)] An{t)e
=i
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Hence
2 i
Y - zMn+ 22 Ln,j(z) = Bnt'Xnit).
j-1
Note that by (2.18), (2.20) and (2.27), = — O{xI\[Bff). Then, by (2.34),
we obtain (i).

Assertion (ii) can be proved in the same way.
Remark 1. It follows from the conditions (A6) and (A7) that

sup BN ¢ oo
n m

PROOF. Put. An—{j:cnj A, 1= * An—{1,..., fm}\ An. By
Cauchy’s inequality and (A7), for large «,

V EXRiSme ¥, &isaaV G204 18,
jeAr, JEAN JEAN

0 E EXh S

J€ An
if A=A(W +1)H-2. Hence

Bh=2X ErJ = e X od= '
jeAn je An

Lemma 1. Lei i/ie assumptions of Theorem 2 hold, and
. . .Bn
2.35 lim inf > (.
(2.35) am

Consider the function

(2.36) Un(i) = T- sup {ztBn- vy tLnj(z)}, i>0,
"-n 0<z<H A i
and its inverse vn —u~Il. There exists ¢' > 0 suc/i that if 0<c” ¢' then

the sequences tn = vn{c) and zn=zn{tn) are bounded and separated from O:
O<t'~Mtn™t" and 0< z'~ znUz" for all large enough n.

PROOF. For any fixed n, the derivative
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equals 0 at z =zn(t), which is a solution of equation (2.18). Moreover, it is
positive as z £ (0, zn(t)) and negative as z >zn(t).

The function zn(t) satisfies (2.20) for all sufficiently small t > 0. The
inverse function t =tn(z) satisfies (2.18) as 0*z<H . It follows from (2.19)
that

(2.37) thzn(t)*2t as Ogthi

for large enough n and some i >0, which does not depend on n. Hence
zn(t) < H for some t £ (0, f], and for all t £ (0, f],

kn
(2.38) un(t) = — ( 'y "Lnj(zn(<)))>
3=1
By (2.18) we have
(2.39) knvn(t) = Zn(t)tBn + zn(t)Bn- Mn(zn{t))z'n{t) =zn{t)Bn

and therefore

Un(t) = ~JTj zn(s)ds.
0

By (2.37), (2.35) and Remark 1, we have for some positive C13> C12> 0 and
all sufficiently large n

t2
C12— " un{t) » Cut2,

The functions un(t) are continuous, increasing and un(0) =0. The inverse
functions Vn—u f1 have the same properties. Moreover,

Vols™()=\/cE “ °Sc=ip"'
In view of (2.37), the assertion of Lemma 1 follows.

Lemma 2. Let the assumptions of Lemma 1 hold. Then for any cE (0,c']
and any e,
P(Sn>sn”B~n)=e"**"- N 2+f
tri’n
with sn —tn + elogBn/(Bnzn), tn,zn as in Lemma 1 Here Cu4 Ci15
for some positive constants C14, C15 and all sufficiently large n.

PROOF. Put x = an\JBn. Let x =00, anf*, an> 0. By (2.34) and
(2.38) ,
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2 , kn V
PGSn> (In\/Bn) = N—6Npf—Zn(an)anBn 4" TLnj (*n((In)) JRn
(2.40) anV % ' | N '
1 Alh(On) &

where |f?,, —1/\/274 ii 1/10 for large enough n if  remains small.
The functions u,,(f) and z,,(f) are analytic in a small circle |f| f. It is not
difficult to check that the sequence {sup |u"(f)|} is bounded for sufficiently
[t|Sto
small to > 0. Actually, by (2.18) we have

Bct2n €
t’n(z)zl+&(_’\|~JTZ,

where \Tk+2tn\/k\ GC{k + 1){k +2)H~«- 2 in view of (2.19). Hence tn(z) * 1/2
for all small enough z, and Zn(t) 2 for all small enough t, |t| * to- By (2-39),
(2.35) and Remark 1, we obtain sup |u"(i)| 5 C\S.

t|to

Let an=tn+en, |a,| * fO, tn * t0. We have

An(un) =A*n{in) T Twn=oc+ zngn+ whn,

where \Wn\*C\7. Put en=-elogBn/(Bnzn). Then
un(sn)=c+zne® Bn + Wn.
13nzn

The assertion of Lemma 2 follows from (2.40) and Remark 1

3. Proof of Theorem 1

Once a suitable large deviation estimate like that of Lemma 2 has been
established, the proof of Theorem 1 can be given adapting the methodol-
ogy of the i.i.d. case (cf. Deheuvels, Devroye, Lynch [11], Deheuvels, De-
vroye [10], Bacro [1]). However, due to the fact of having independent, but
not necessarily identically distributed suipmands, a number of modifications
are necessary. For sake of readability of the paper, we outline the main steps
of the proof.

Put Un = Un/ log K. Applying Lemmas 1 and 2 to the sums Sn+j — Sn
we get the following results.
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Lemma 3. There exists ™ 0 having the following property. For any
¢ > @ there exist sequences {an,j} and satisfying (1.3) and (1.4).
Furthermore, there exist positive constants ot\, o1z, t\, t\ such that a\ N
anj Ua.z, t\ Men j N2 for n and j sufficiently large.

Lemma 4. For any e, there exist positive constants C\%, C\g such that

logk\ K Ci% kic
fcl/2+<zl/2+e)

189"‘de 1 '
yni2desliasy) =PYSN+k=Sn =Bnrans + Axiren

/or all n and k MA.
The next result is well known (cf. Chung and Erdos [3]).
LEMMA 5. For any events A\, A2,m. m, An the following inequality holds:

‘Epa
=R

"(I»s . .
$:| El P("™) +th P("A))
Lemma 6. For any e >0,

(tfjva 12 /::+e)—>1 as N —oo0.

Proof. By Lemma 4 we have

P(UNZ—A\——C+e)

N-K
log kK
N n~n2 pfsn+tk —Sn <:otn,KBn,K + - - - +e)
70 m,K
» C\gNe~K/c* CO n
= .KI Xlc =w ~e° o«

Lemma 7. For any a, b, g, and positive integers v < k, and for any
positive t, t\, the following inequality holds:

P{Ai+k ~  » o, Si+v+K  sen ~ b)
S $2+n,fc-n(0e~9+ P(Si+fc - ™ a)$i+c,,, (ii)e-il(>".

PROOF. Confer Deheuvels, Devroye, Lynch [11], Lemma 4, in the i.i.d.
case.
Now choose

5 log k
E_—(Z-I-n,f(> o:i+v,kddi+v,k T ™ u m
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q=ai+VikBi+<k - j log$i+k,v(t) + j'(s logv - * log fc).

Note that, by Lemma 3, i > £2> 0 for all i, v and large enough k. If <
is such that tj <£2, then the inequality t\ <t holds for large k.

Lemma 8. Ife>0,0>0, s>0, u+s+e” 0, then
P(Si+k-Si I a,SI+v+k-S1+v Zb)i e » cv~skx/c+P(Si+k-S1Za)ku+s+Ev~e

for any real a and k * v v\ = v\(s).
Proof. Put Qhk = P{Si+k —Si*. a). By Lemma 7,

—Sj A QS Sifv=b) A {t) oxp{—toii+vkBi+Vk}> fcl +
+ Qi Kktl{u+£)/tvstl/t expir-ti(Mlog<!>I1+k'V(t) -  log (i) 1

Ne~klcv~skx/c+ Qukkuts+Eexpl-ti A (- log>r (i) - —logshr (ii)H .

V. w—> L L1 1

Here we have used (1.3) and the inequalities t\ <t, v~k. Furthermore

i+k+v - N

(MNTge'r(i)--log™r(il))

r=z+/c+l n

(3.41) R fost
=52 t\)Bi+kv+ ("2 —4) TV + *

By (A2) and (A3), for /=3, 4,,

B flsc B, (i)

r=i+fc+l
Moreover, for 0< t\ <i2< £2,
491 INT2-1T) (-4

Hence, if 0 < £2 < H, the series in (3.41) can be bounded from below by
rBi+j}V for some r > 0, which in view of (A4) can again be underestimated

by (o/t\) logu for any o, provided v*v\ =vi (s).
Lemma 9. For any £>0,

P(flyvii—2 —7—) >1 as N —00.
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Proof. Writing

. 1 A \logK
An— Sn” On,A™n,K "h
we get by Lemma 5,
N —K
3.42 P1l= i/,4-i-"-£)= U 4,)as
(342) P ( )=p(U 4)as, o
N-K )
with P2= Y1 P(-4n) and P3=_ pr{AtA))
71=0 I
By Lemma 4,
(3.43) Z- K-e-\/c
and
(3.44) P2~ {N - K + I)Clse-K/cK £+x/c >C22K £

for large enough N.
Via independence of the events A* and Aj for \i —j\ >K, we have

N -K N - K
P3= E P(*n)J + E (P(*n)-(P("n))2)+
(3_45) 2i=0 n=0
+ Y (P(~Ai)-P(24i)P(Aj))gp2 + P2+ PS5,
\a\i-j\rK
where
N-K K
p 5= Y E p (AN ) -
«0 j=1

Applying Lemma 8 with k =K, v=j. u= 1/2, s=2, we get for
sufficiently large,

P(AiAi+j) N e~Kicj~ 2K x/c + P(Ai)A5/2+£j 6.

Put /= [Af#2]. Recalling (3.43), we get

K-

By (A)+E pOMVH)

j=/+I
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N —K 00
A A2 (2IP(Al) + erK/cK x/cJ 2 j-2+ P(AYK7/2+£r °)
*=0 j=I

UC2aK 3e/2 + C5+ C26K 7/2+2£K -2 e'2 = 0{K 3¢/ 2),

provided 9 is chosen such that (9+ 1)e/2 > 7/2 + 2e.

By (3.42) and (3.45), Pi ~p2/(p2+ P2+ P5), Wwhere P2= o(P~), and
P5 = o(P.;;) as N -+CO by (3.44). This proves Lemma 9.

The assertion (i) of Theorem 1 follows from Lemmas 6 and 9.

Lemma 10.

limsup[/yv/------- as..
2 Cc

N —o00

Proof. Choose e > 0. Taking Lemma 4 into account, we get

Nk - A \logK A
> +E) Una P(M+K~Sri; B mK+ (- +e
n=0 ' Ln,K
< C|9Ne"‘K/CI’ 027k _(1+0

JMl+e-X/c

For any natural j put Nj = max{N :[clogN + AloglogN] —j}. We have

p(UN]>\-~+e)lcoar *

R 1 \
and the series j—1P (}ij,- >i ---6---he/) converges for any e > 0. By the

Borel-Cantelli lemma and the inequalities Un A~ U  for Nj- 1< N ~ Nj, we
complete the proof of Lemma 10.

IN’n_;&)f Ujy » > % as..

Proorf. It follows from Lemma 6.

Lemma 11.

Lemma 12.

limsup[/;v~--—as..
iv—0 2 cC

Proof. Choose e>0. Forj =1,2,... we define Nj = min{A”":[clogN +
Aloglog N] =j } and put
Ri = max ~n,j(Sn+j Sn anjBnj)
DT NG-ENG- I°g]
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Evidently,

1 A M
{Rj " - e} = (J Ai, where A{= {5m+i+j - Sm+i ~ xm+i},
i—1
. o 1 A j . Lo
m =Nj-: xn=anjBnj + -evs)’gjj, M=Nj-Nj-1-]j.
Z C Inj
Wi ithout loss of generality we can take m = 0. Note that

c28ej/cr xlcim i W cr Xx'c

for all large j.
An application of Lemma 5 yields

] M 2
p(as----e=p(Ua)s s

Pfi + P?

M
where P6=Y, p (*i), P7= J2 p(AAT).
i—1 i

By Lemma 4,

(3.46) rog CloMe~j'q - [+x'cte » Csor 14E
and
(3.47) pee MCiSe-jlcr 14X/cH£ " C3ij~ 1+£.
As in (3.45) we have
M
(3.48) P7API + P6+~ E P(AiAi+r)-

t=1 r=1
An application of Lemma 8 with k=j,v =r,u = —1/2, s= 1+ 2/e, gives
P (AtAi+r) Qe-j/cr - {i+2/e)j x/ic + P {At)j1/2+2/E+Er~e,

for large enough r, where 9 is an arbitrary positive constant.
Put I —[je/2]. We have

M j M 1-1

Y Y P(A'A'+A =Y { H P (AjAj_(_r) +

i=1r=1 i=l r=1 r=I
M i

<Y (IP(AQ) + e-jlcjxIc Y r_(1+2£) + p (Ai)j3/2+2/e+Er ©)
2—1 r=1
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(3.49)
NCr 1+3e/2 + Me-jlor 2ejx/c 1+ C2j" 1+ J2+2/E+e) _(E2
r—
sc3,r3/2+ c2r log;+c2>22%2 " 2s ¢ 1H3/2

since 0 can be chosen arbitrarily large. Here we used the definition of I,
(3.46), (3.47) and the definition of M.
By (3.46)-(3.49)

(3.50) p7Acr 2426+ cAr l+e+ ¢ We'27hcr 14362

if e <2 (without loss of generality).
From (3.46), (3.47) and (3.50), we obtain

for large enough j.
oo 1 \
Hence the series j"_}P&?j B e) diverges for any e > 0. Since

the random variables Rj (j —1,2,...) are independent, an application of

the Borel-Cantelli lemma combined with Rrj n,for Nj AN < Nj+i and
j —K, completes the proof of Lemma 12.

Lemma 13.

Ilklin—'arlf Un> T a.s..

Proof. Take e> 0. For any natural j, we put
Nj —min{77:[clogn + Aloglogn] = j}.
Define 3j = {m:m = r[je/2, r=1,2,... % L=max{l : 21 + 1)j —1 ~
Nj-ggr' any j, the random variables
Qi = max ti,j(Si+j IoSgij otijBij) o1 e L

are independent and u v > max oi. Hence
3 “ O<1<L

;=P(UN oA )SL(I)*(® <1_jf" ‘).
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Putting
-Si* atjBij + Noog)
we get
p (Q /'~ -~ -~ - §)y= p (U ~ )= Si_E2"
where
Ei"PIA i),
ieii
s2=J] P(AtAp), li={i:21j~i<(21 +1)j,iedj}.

We denote the cardinality of /; by M/. Then M/~ j1 £/2asj —oo0 for
all 1.
By Lemma 4,

Si A~ Z C36e-jlcj Alcj 1+£/2

for large enough j.

We have
M-I

SiSEE P(iA+rlj./>))-
ig/| r=1

Applying Lemma 8 with k—j, v=m, n= 1/2, s= 2, and Lemma 4, we
conclude

P(A,.4,+,) Se->lcm-"1j xlc+ PiA,)j5/1+'m
SC,e-*"r~Yl/er' +CMe-V=jVc//2+2a-»r »e/2

for large enough j, where 0 is an arbitrary positive constant. Hence

M-
P(A2AIHIL2U2]) A Case - A - £+ C38M e /o f/pp/ar2e-—0ei2
r—1
=o(jx'ce-i'c)=o(jxlcfe-i'c)
as j -4 oo, since 0 can be chosen arbitrarily large.

Thus
S2= o(jx"cj 1+e™2e~"c)=0(Er) as j ->o00,
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and for large enough j,
P(Qir“ -\ ~e) ZCioj l+e/2j Xice~j/c.

We have

PB8E(1-CA4Gi+ftjv'e-*/0)1*1
Nexp{-Cdo("™+ I)ji+el2] Xlce~j/c} "exp{-Caije/2}

for large enough j, where we used the inequality 1—x"exp{—} and
L M~ -27Ca2r Ir xlceslc,
N

for large enough j. 1A

o
Hence the series _Y1I PlMal < R —e)J converges. By the Borel-
i= c

Cantelli lemma and the inequalities un ~ UNj fOor Nj ~ N < Nj+i, we get
the conclusion of Lemma 13.

Assertions (ii) and (iii) of Theorem 1 follow from Lemmas 10, 11, 12, 13.

The last statement of Theorem 1 concerning Wn and 71y can be proved
in a similar way.
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EXTENSIONS OF BONFERRONI TYPE INEQUALITIES

B. R. HANDA and S. G. MOHANTY

Dedicated to Professor E. Csaki for his sixtieth birthday

Abstract
The classical Bonferroni type inequalities are given in a probabilistic framework in
terms of joint occurrence of events. We provide two extensions of such type of inequalities,

one being a multivariate case and the other being a general case, which go beyond the
usual probabilistic interpretation.

1. Introduction

Consider n arbitrary events A\,Az2,..., A n in the probability space
(S,5,pP). Let Bng, 09t~ n denote the event that exactly t among these

n
occur. Let p(Bng) =p[t] and P(tj= ~ P[r]. A well-known generalization of

r=t
inclusion-exclusion principle leads to the following expressions:

0 =

where
si,n= J2 p™MnAi2n.--n".), 50,,=I.
IMii<i2<-<ijan

In view of the relations
Sj,n— and sj — @>

1991 Mathematics Subject Classification. Primary 60C05; Secondary 05A20.
Key words and phrases. Inclusion-exclusion principle, Bonferroni inequalities, Pdlya
frequency sequence, inverse relation.

0081-6906/97/$ 5.00 ©1997 Akadémiai Kiaddé, Budapest
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(1) and (2) follow from the inversion relation given below.
For sequences {y/Jogfcgn and {wk}0" n of numbers,

3) W5,

if and only if

(4) »* =B -ir‘(?y
s=k V'

A number of statistical applications require upper and lower bounds for
Plg and P(t) in term of linear combinations of SjtTl. These bounds are called
Bonferroni type inequalities. It is well known that if partial sums are taken
in (1) and (2) the following inequalities will result:

=201 t+ou
(5) E ) »SPI<]SE<-T-()«,>,
j=t j=t
and
t\-2u-\ [ 4\ t\-2u [ w
€ e (]1:] si»spdse (-i)ji£(i: J s*-

These inequalities are extensions of classical Bonferroni inequalities (Gum-
bel [11], Takacs [17]). The proofs of these inequalities as well as some of the
bounds that improve upon these, depend on the relation of the type

tfa /

(") Pw= (iJ ")

i-ta /A
| [1 (1 [\ V1%L AL 1
O  RFEC-DL(CL, @+("D+1™n
for a”n —t where S and & (~0) are the remainder terms (see (1) and (2)).
If a lower bound for remainder S(t,a,n), say ai(f,a,n), where si(t,a,n)

depends on Sj>nj =t, t+1,..., t+a+ 1 can be obtained, then (7) provides
inequalities

t+2u-\-1 /
E (\ ) Si,n+<4(, 2u + 1,1) g P[]
j=t r
©) Pl /

[)sj,n+si(t,2u,n)
j=t Vv
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which are sharper inequalities than (5). Similarly, improved bounds over (6)
can be written for Pp) by starting with (8).

Two different forms of remainder terms e and 5* are available in litera-
ture. The first one we shall refer to as Galambos’ form of remainders (see
Galambos [4]), which as observed in Recsei and Seneta [6] is applicable to
general sequences {y"} and {w"} related through (3) and (4) and has the
following form

Both (7) and (8) follow from (10) by choosing {wt} and {yt} appropriately.
In fact, for (7) we set wt = P[t\ and yj = sj<iy while for (8) we set wt = P(t)/t
and yj=Sjtn/j.

Following Galambos [4] we conclude that

S—t -
5{t,a,n)= "2 Wo
{ ) a
(11) s=t+a-\
a+ Ifa +t+ I\
>n_ L — yya+t+i (=4i(f,a,n)).

Thus (9) is true with the value of 6i(t, @, n) given by (11) where yj = sj>n
By similar arguments one can get improved inequality for Pry using (10)
and (11).

The second form of remainder terms is due to Hoppe [12] which arises out
of a method of iteration proposed in Hoppe and Seneta [13]. Hoppe’s form of
remainders is in terms of multiple summation of probabilities of unions and
intersections of events A\, A2, mm An. The derivation being solely in prob-
abilistic framework, does not lead to any apparent analogue for sequences
{wt} and {yt) similar to (10).

In this article we shall concentrate on Galambos’ form of remainder terms
and his technique outlined above for constructing Bonferroni type inequali-
ties. This essentially consists of first writing the numbers in the remainder
form (10) and then looking for a suitable lower bound for the remainder
term which when used in (10) gives improved bounds for the required num-
bers. This technique will be extended to multivariable case in Section 2 to
obtain Bonferroni type bounds for probability of at least some given num-
ber of events from each of several classes of events in the probability space.
As is apparent from our earlier description the probabilistic setting is of no
significance after the numbers involved have been shown to follow the re-
lation of the type (3). In Section 3, we show that the Galambos form of
remainders can be extended to write Bonferroni type bounds for wt when bi-
nomial coefficients in (3) are replaced by numbers forming a Pdlya frequency
sequence.
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2. Multivariate extensions of Bonferroni type inequalities

Let {Ai,A%..., Am} and {f?,B2,..., Bat} be two arbitrary classes of
events in the probability space («S5,P). Let BM,N-mm 0*m =M, O~n~N
be the event that exactly m among M A’ and n among N BiS occur. Let

M

P[mn] P{BMN;m,n) and rz()n Ss=n P[r,s]-
Let
Sm,n\M,N = P~Afl +t>H BjpJ-
1<7i<j2<"'<jniN
Starting with relation of Fréchet [3] given by

M+ N

(12) E<

and the inverse relation

M+N

(13) Sm,n;M,N E E P [mb

t=m+n i+j=t

Meyer [15] obtained the bivariate form of Bonferroni inequalities generalizing
(5) as below.

m+n+2k+l 3
E E L \n SH-MN =7
t=m+n  i+j— cmiAn
(14)
TfI+TI+2k /A T
S . e 0 s«* WV
i=m-fn

where A® (M'+ AT —I)/2 is a non-negative integer and M' =M —m, N' —
N —n. Analogous results for P(m,,) are

M+ N . /. [ U A T

@  v,= e e (-)-1"1 10 )
t=m+n i+ j—t —
M + N

*— -
(16) Si,j:M,N= 1731

' o . (m,n);j
L eeny YN —1
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and
m+n+2k+| /. N
t=mAn i-\j=t wm —1) (N-1) =)
(17) raHnA2R o1
s e E ,

t=m+n 1+7=1

It is now possible to improve upon these bounds by deriving the Galambos
form of remainders for bivariate case analogous to (7) and (8) or more specifi-
cally (9) of one variate case. First, note that the following inversion relations

hold: For any double sequences {ym,n}, 0~Am3AaM, 0 rn~ATV,
M N / =\ /[ \
(18) ymn=£ X ) (m)(N)u>ij
I=m j=n
if and only if
M N )
i —i*+j-(m+n) 1 11 F i
4 n i et 2 v

Next forany 0 a”™ M'+ IV, we can write

(20
moe f11Q

wiy= E E t(m+n)\”1]) Sn vij+ (-1)a+1a(m, n; a; M, TV)
t=m+n itj=t

mii*M
n~jAN
where
M+N
@) S(mnaM ™= £ £ (Tt
i=m+n+ad-l . m \n
mAIAM
n~jAN

Substituting for y* from (18) into (21) we have

6(m, n;a;, M, V)
M’ A\-N' / \ \ A7 / Vo1
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(22)
MN pem\ (g+n 2ot
= £ £ rn n Wp+m'q+n{ 1) £ £ < -1)°+ 0
P=0 Q=0 a+l"x+y"p+q
O™xap
o=y=9

Now for any positive integer u =x +y we have the relations (see Galam-
bos [4])

£Em) 0O =-£(-'">'0
x—Vi§'1

x—0
Using these, it follows that
Q .
P\ . \ip-1
Ee (O, % =(-ij E e
xj \y y=a+l-p Yi‘a-y
OSixp
¥
a+l(p +q -1

=(-D

Substituting the last expression into (22) we finally get the remainder term
as

6(m,n;a; M, N)
p+m\ fg+n\ip+qg—1
(23) =L £ m)Vn )\ a pmen
a+Irp+qfiM'+N'
O'p-"M
Ofig"N’

which is clearly non-negative if utij's are assumed to be non-negative.

Thus we have the Galambos form of remainder representation as given
by (20) and (23). It gives rise to a bivariate extension of Bonferroni type of
inequalities.

Theorem 1.

m-+n+2fc+l
£ £ i Vi
t=m+n  i+j \mj \n
(24) m+n+2K
L S £ <Dt m \n Vii
i-m+n i+j=t

for I"n~AN and k"-{M 1+ N’- 1).
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We obtain (12), (13) and (14) by setting Wij = P[tj] and yi,j = Sij-m,n
in (18), (19) and (24), whereas (15), (16) and (17) follow by setting Wij =
P(ijysij and yij =sij-m,N/ij, i,j~ 1in (18), (19) and (24).

These inequalities can be further improved by following Galambos’ ap-
proach. For this, let

+m\ fy+n
(25) o*mnaM Ny = E X YT xemy+n

m n
where a+ 1~ M'+ N'. We show that
(26) g{m, n;a; M, N) ~ n; a; M, N).

For proving (26) we note that carrying out manipulations on (25) similar
to that which was done on (21) to bring it to the form (23), we will get

S*(m, n; a; M, N)
E E p+m g+n\p+q (p+q Wool
= m nooL{1 a p-i-m.g+n
a+lrp+g~M*+N'
pM1
O\

+
which is ~ M—-_I-_-ll\l—le(m,n; a; M, N). Hence (26) is true.

a
Finally, using lower bound for J given by (26) in relation (20) yields the
improved Bonferroni type inequalities given below.

Theorem 2.

m+n+2k+l
2k+2 * B N
_ MI+N'6 (mlnlk+1lMlN)
t=m+n
(27) »
mn+2/C
2k +2
E E (- 1)Mm+n) M'+N.O (m’n’Zk’M’N)

i=m+n i-\-j=t
for 12mAM, 12n TV, kU—M1+ N1—1) and 6* given by (25).

The improved Bonferroni bounds on P[mn] and P(min) follows from (27)
by particular choices of wnen and ylJ as discussed before.

Another type of extension of Bonferroni type inequalities is possible in
the bivariate situation, by considering an alternative of type (20) with a
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different remainder term. The derivations follow argument similar to those
used for obtaining (20) with remainder in the form (23) and therefore we
state the result below without derivation:

M= fdres -iptr)gr o e
(28) + (—Ha+t+1@E (m, n; a, BM, N) + (—)a+1i2(m, n; o; M, N)
+ (-1) f+LJ3(m, n; 6, M, N)
where
Si(m, n;a, M, N)

_ MV p+m\ (q+n\ (p—1\ fg—1 _
_p:a+l ==L nJ\ a merma
&(rn,n;a; 'Mo+HN,Nj
i3(m,n; 'V\Mq+n_

Now starting with equation (28) and choosing a, 6 suitably as odd or even,
it is possible to construct new Bonferroni inequalities by using the following

bounds for <, € and B:

at+ l{a+m+\\b+1 fb+n+1 . .
yatm+i,6+n+i *  (rn, n; a, 6; M, N)

"M7 m N1 n
< +m+ 1\ /&+ m+ 1\
m n lya+m+l,6+n+l)

L{m,n-,a:M N)g R @+ R+ 7 jaimei7v,

and

NoF [0+ |
071

ga’{m,n;l%;l\/l,ﬁl")" e [V/M t+n+r

As an illustration, we will arrive at the following inequality by choosing both
a and b as even.
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Theorem 3.

m+2t nHau [ /A

2t+ 1 fm$2th1l

(29) M\ m ym\-2t+1,
2u -j-1 fitF2u -f-1
N' V N 2IM n+2w+H
21-f-1/ui 2t 1\ 2x-f-1/t 5 2ia-f-1
MV m ION [ N 2/7721, ve2ixHl
for 1<m”AM, 1"n" ATV, t< —1), un 2/ ~

All the derivations in this section have been carried out for bivariate
situation for simplicity of presentation. The extension to more than two
classes of events is now obvious and hence is not discussed here.

At the end of this section we remark that it may be of interest to examine
which form of the remainders (20) or (28) can yield sharper bounds. How-
ever, from a practical point of view upper bound in (27) may be more useful
than the bound given by (29). In (29) terms ym+2t+i,N and yM,n+2u+\ are

resent which involve anc™ Sm,t+2ut+1;Mn when bounds for
mN| or RmMnN) are required. In this case, the difficulty arises if probabilities
M N

1=

For further references on bivariate and multivariate Bonferroni inequali-
ties one may see Chen and Seneta [2], Galambos and Lee [5], [6], Galambos
and Simonelli [7], Galambos and Xu [8] [10], and Lee [14].

of events _p)I A{ or I| Bi are not available.
1=

3. Bonferroni type bounds for a class of sequences

In this section we provide an extension of Galambos’ technique from
completely non-probabilistic point of view. As remarked earlier the crux of
the technique lies in the relations (3) and (4) between non-negative sequences
of numbers {m*} and {yk}- In this section, we deal with the extension of
Bonferroni type bounds for any sequence {wk} related to a sequence {y
through the relation (3) in which binomial coefficients have been replaced
by a general set of numbers. We shall obtain a set of sufficient conditions
on the numbers to provide Bonferroni type of bounds for any w*- First, a
lemma on a generalized inverse relation is given.
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Lemma. Letai,i=0,1,...,n, ig™ 0 be agiven set of numbers. The fol-
lowing inversion relation hold for any two sequences {u>k}o<k<n anil{Uk}o<k<n
n

(30) yk —" ' bs-kws,
s=k
if and only if
n
(30) wt= " (-1)s~(as-iys,
S=t
where bo= 1/ao, andforr ~ 1
cli- a2 w . Cly— cly
a0 u! .. ClLy—2 dy —1
(32) 6 - 1 0 ao .+ dy-3 dy—2
- aptl
O O . ao ai
PROOF. Substitute for ys from (30) in (31) and rearrange. Then we have
n n
at=~ ~wu~ A 1) as-tbu-s-
ust  s=t

It can be checked that the second summation is 1 if it= i and is zero if u >
since it is equal to

a0 ai a2 = Qut—I bt
ao al a? ese du—i—i au-t
0 ao al . Ou—+t—2 d'u——l
0 0 O ao ai
when expanded by its first row. Similarly,
n u
Uk —" "Du/ '( 1) Qu-sbs—k
u=k s=k
n u
=N AMuN (1) Qv—kbu—v
u=k v=k
by substituting v=u—s+ k. The r.h.s. is of the same form as the r h - of
the previous expression. This proves the lemma. O

A sequence of numbers {an}n>o is called a Pélya frequency sequence if
all minors of infinite matrix (cij-i)ij>qhave non-negative determinants (see
Brenti [1], p. 9). Next we give a sufficient set of conditions for Bonferroni
type bounds to hold for wtm
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THEOREM 4. Let n*O be afixed integer. Let {ufcjogfe<n be a sequence
of non-negative numbers. Let another sequence {yk}o<k<n, be defined by
relation (30). If {a~}c>0 is a Polya frequency sequence with ao > 0, for
t=0,1,...,n and u” 0, then the following inequalities hold:

(33) E
j=t j-t

Proof. We rewrite (31) as
i+p-1 n
—v (-irv”" +(4 _
W=y, (-1rv”™ ')'?Ep (-1

Denote by (—2)pS(t,,p—I,n) the second term on the r.h.s. of the last expres-
sion. Then by substituting for yj from (30), we have

n n
e{t,p-1,n)="Y (-1)j~t~Paj-tY bl-jW
i=t+b |:J

Nty
(34) =Y wy+iY A r - Paxby-x
y=p X=p

n—t

E My —6--1,p—1
Wy+| y-p+1

y:p ao

where
as+l a-s+2 mee As+r—1 ClLs+r
ao ai o  @®r—  Cr—1
(35) Mrs — © ao .. W= a2
0 0 ao a\

Since {oAMco is a Polya frequency and My~ p+i>p i are minors of the matrix
(a,j-1)ij>o0, we have My_p+i,p-i ™ 0 and consequently 6(t,p—1,n) ~ 0. Hence
the inequalities follow. O

Interestingly, the inequalities can be sharpened by finding a lower bound
for remainder 6(t,p—,n). For this purpose we require a preliminary result,
which is as follows:
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Tipa 1l .
If {a/lc}/c>0 is a Pdlya frequency sequence, then P is a non-
decreasing sequence. To prove this, we observe that
hdpRMp+\,;t  Mp+iBMpj

at-+i at-2 m ®t+p—  atP

ol a2 ap— cip Bp+i

(36) p ao ai ap_2 dp_‘ dp

o o ao ai az

which can be established by comparing the coefficient ofat+i (i= 1,2, ...,p+ 1)
on both sides, by actual expansion of determinants involved. Now since
(ai}j>o is a Polya frequency sequence, it implies that the determinant on
r.h.s. of (36) is *# 0. Hence Mp+lit/Mp+jo » MPittMP) for p~ 1, implying

th that | > i - ing.
ereby tha i M%)f}[ Tpon IS non-decreasing
Next we give the improved form of Bonferroni bounds.

THEOREM 5. If the non-negative sequences of numbers {wt}”o and {vt}t"o

satisfy (30), where {afc}c>0) a0 > 0 is a Polya frequency sequence, then the
following inequalities hold:

t+2u-\-1
M n-t-2u-2,2u+2\
{-1)j 'aj-tVj + (02«+2 - «0 =T 7 -=m=mmmmmmmmmmmaee . Vi+2u+2
j=t tVin-t-2u-2fi
(37) t+2u '
, . . . M n——2u 12«+1\yt+u+|
thff N -I /\a -tV - _ y
i~ (-lyraj-tVij- (RamHl —ao Mo_t2u-20 ' J" 2

where t —0,1,...,n, u”™ 0.
ProoF. Expanding the determinant m p_p+iir_i by its first column we
get My-p-itp-\ —OpAly—plR  a*My—pp. Thus

- N -
My—p+ip= )My PP Uy R

My—p.0 My-p,0 Mn—+-5,0
h|p,{1 is nondecreasing. Using this bound in 6(t,p—I,n) given by
Mpfi Jp™o

(34) we get

Ma—tpp E My-pp
s(t,p- I.,n) A (ap- a0 PP ok
(t.p )~ (ap htP .y P wy+H

= (ap - aoI/I ;n-tt-;;-b-')yP+t (from (30)).
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Using this lower bound for remainder term, we get the desired inequali-
ties (37). O

In conclusion, it is remarked that the Bonferroni type inequalities can be

extended beyond its original probabilistic framework.
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ALMOST SURE LIMIT THEOREMS
FOR DEPENDENT RANDOM VARIABLES

G. HURELBAATAR

Dedicated to Endre Csaki on the occasion of his sixtieth birthday

Abstract

For partial sums Sp of strongly mixing and associated random variables we prove that

(1/1ogn) £(I/*)1{S fda*€-}-+G (-)
k*n

with probability 1 if and only if
(1/1ogn) £(l/fc)P(S*/a*S )-+G()
k"n

under the same moment condition as assumed for independent random variables.

1. Introduction

One of the extensions of classical probability limit theorems is the so-
called almost sure limit theorem. The basic result and starting point of
these investigations is the almost sure central limit theorem, discovered by
Brosamler [2] and Schatte [8] for i.i.d. random variables having finite (2+ <5)th
moment and later proved by Fisher [3] and Lacey and Philipp [4] to hold
under assuming only finite variance:

Theorem. Let Xi,X2, .. he i.i.d. random variables with EATI = 0,
EX2=1and set Sn=X\ + «®+ Xn. Then

lim - = (2nm-~v2 | e~t22dt as.
n —00 Iogn
k<n A

for any Borel-set A C E with A(cL4) = 0; moreover, the exceptional set of

probability zero can be chosen to be independent of A. Here | denotes indi-
cator function and A denotes the Lebesgue measure.

Later Berkes and Dehling [1] proved a more general version of the almost
sure central limit theorem and its functional version for independent, not
necessarily identically distributed random variables.

1991 Mathematics Subject Classification. Primary 60F15, 60F05.
Key words and phrases. Strongly mixing, associated random variables, almost sure
central limit theorem.

0081-6906/97/$ 5.00 ©1997 Akadémiai Kiad6, Budapest
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Theorem A (Theorem 1 of Berkes and Dehling [1]). Let Xi,X2,... be
independent random variables and let an > 0, bn be numerical sequences such

(LD £/ g(loglogn)-1- e/ (e (logB)1'") (n " no)

for some e> 0, where f(x) ” 0 is a real function such that f(x) and x/f(x)
are nondecreasing and the right-hand side of {1.1) is nondecreasing for
n~rro- Assume that

42» ~/\C||,y v=k=no)

for some constants C >0 and 7 > 0. Then for any distribution function G
the following statements are equivalent:
(a) For any Borel set with G(dA)= 0 we have

(1.3) £ {5k kaa} =G(A)  as.

yuS logn

where the exceptional set of probability zero is independent of A.
(b) For any Borel set I1G 1 with G(dA) =0 we have

(1.4) limoichn Y TP (G A) =GIA)

In this paper we prove Theorem A for some dependent random variables
under the assumptions (1.1) and (1.2). An interesting result of Berkes and
Dehling [1] is that weak and strong laws of large numbers are equivalent
on a set of log-density 1. We also prove this fact for strongly mixing and
associated random variables.

2. Almost sure limit theorems

Definition 2.1. Let Xi,X2,... be a sequence of random variables on
some probability space (LI,F,P) and let ab be the er-algebra generated by
the random variables Xa, Xati.... .A;,. For any two o-algebras A,BCT

define
a(A, B) =sup {|P(AB) —P(A)P(f?)| ; Ae A, BEB}

and put
a{n) =sup a{a”, o*+n).
kZa



DEPENDENT RANDOM VARIABLES 169

The sequence X\, X2,... is called strongly mixing if a(n) —o0 as n —oo.

Definition 2.2. The sequence of random variables X\, X2, m.., Xn is
called associated if

Cox(f(Xu Xz2,...,Xn),g(X1,X2,...,Xn))"0

for every n't 2, whenever /, g: Kn-> K1 are coordinatewise increasing. The
following results will be used in our proofs.

THEOREM 2.1 (Theorem 1.1 in Rio, E. [7]). Let X and Y be two in-
tegrate real-valued random variables. Let a =a(a(X),o(Y)) ™ 1/4. Let
Qx(u) =inf{t:P(|X| >t)*u} denote the quantile function of \X\. Assume
that Qx Qy Is integrate on [0,1]. Then

2 a
ICovw )2 | ox QY fudu.
0
This theorem implies immediately that if |[X| * K and |[V| A K then
(2.1) \Cov(X,Y)N\idKza(o(X),a(Y)).
Hoffding’s equality. If the covariance of X andY exists, then
Cov(X,Y) {P(X >x,Y >y) —P(X >x)P(T >y))dxdy.
Theorem 2.2. Let X\, X2,... bestrongly mixing random variables and
let an>0, bn be numerical sequences satisfying (1.1) and (1.2). Assume that
(2.2) a(k) —0((log log k)~1~s)

for some 6>0. Then the statements (a) and (b) are equivalent.

PROOF. Without loss of generality we can assume bn=0. Let g(x) be a
bounded Lipschitz function, e.g. |*(xX)| » K and |g(x) —g(y)\" K\x —\ for
some K >0 and for all x,y. It suffices to show that

(2.3) m -— IF&: 0 as,

li
n—00 | 71z
I R

where = ff(f") —®3(ff) (c” ['])» Assume that | >2k. Then we have

E&6)|= Co-(. () (55 =

(2.4) < Covigl— I,g St _g St sZx
ak al ai
Sk\ (Si- Sek

+ Cov (*(ak 9 i
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By (2.1) it follows that
Si- SX
(2.5) covit(~ .9 > g4 K2a(k),

since g is bounded. ~
Setting X=ai/az and using x/y Uf(x)/f(y) for x * y we get

Si- Sk .
* * <CE(!'M ai,=
¢4 (Vads (ai ai (N
(2.6)
_p Cis
A v a2k
Now
e(E"N)2Zs
@2.7) £ m o242y E@EL K 1El§|“)1
fos Ne<(En 1K<y
2k<lI

“E i+512+S 3-

By trivial estimation |E(EfcE/)| E4K 2 we get that
()

(2.8) E ,S’\ZE?(!<O°
fc=
n 2k -

(2.9) E ~~E £ Tr=0(logh
kK—\ 1—k-\-1

By (2.4)-(2.6) we have

E ’8«21 E 1r+C1A¥I_An m)/(\szk\\

V a2fc /
(2.10) 2Kel. 2k<l
Vigg ¥V, ®
(2.2) implies that

(2.11 =2 K=

AC(loglogn) 1 Alog2n.
“ /(loglog!)145 (loglogn) d
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If I/2k Sexp(logL £2n) then by (1.1) we have

R /(e logl~£")
(2.12) K 45 = CllogloSn) L ceingt g2

bi

) I<k<l<n

N C(log logn)_1 £ log2n.

If 1/2k ~ exp(logl £/2n) then using |E(EfcE/)| 4 K2 we get that
1

E Psc3 E «-

fca/afcexpPogl e/2n)

(2.13) i
~NC4n  —logl-2n < Clog2_2n.
fc=i
Setting Tn=1log 1n * we have

k™n
ET2” Ci(loglogn)-1"min(E$5.
Choosing nfc = exp(exp(/c1-£/2)) we have

<

Thus Trfc—0 a.s.. Now for nkfLnu nk+1 we have

_lognt

IT,-T,Jg 1 logn

Since logrifc/logn—1, it follows Tn —0 a.s.. This completes the proof of
Theorem 2.2.

Theorem 2.3. Let X\,X-i,... be associated randorn variables and let
an > 0, bn be numerical sequences satisfying (1.1) and (1.2) with 7 S 1/2.
Assume that

(2.14) u(n)=sup 5Z Cov(v¥fc, Xj) <C
“L1"k-1\a.n

for all n*. 1. Then the statements (a) and (b) are equivalent.

PROOF. The proof is similar to that of Theorem 2.2. The difference is
only the estimation of Cov (g{Sk/ak), g{{Si —*S2fc)la/)) and consequently to
show that

A 31= 0(l°gn).
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From the definition it follows that Sk and Si —S 2k are also associated. There-
fore

H(x, y) = P(Sk >xak, Si - S > yai) - P(Sk >xak)P(Si - SX >\<H

is nonnegative for every x,y € R
Using Hoffding’s equality and the absolute continuity of ¢ we have

(Sk Si - SX
9

Cov o " g'(x)g'{y)H{x,y)dxdy »
<Kacoy(SK ST- 8% _ o K
al Akal

since Cov(Sk, Si —S2k) S C\ku(k).
Now we put O(k/a,kai) in (2.11) instead of a(k) and we get that

E 31s C* JqE utj=

as desired.

3. Laws of Large Numbers

Definition 3.1. For a set A CN of positive integers, the log density
1) of A is defined by

yL{A)= lim

Flign o
provided that the limit exists.
Definition 3.2. Let ,72,+-+and £ be r.v.’s. We say that

£ (log)

if there exists a set iL ¢ N of log density 1such that £n —pl (asn-> 00, nf w .
We say that
in->£ as. (log)
if for a.e. u>there exists a set H + C N of log density 1 such that £n(cu) -A £(tn)
as n —o00,n G
Theorem B (Theorem 3 of [1]). Let Xi, x 2,... 6€independent random

variables and let an > 0 be a numerical sequence satisfying (1.1) and (1.2)

with bn = 0. Then the following statements are equivalent:



DEPENDENT RANDOM VARIABLES 173

and
(3-2) Sn/Cin-—-->0  (log).

Moreover, if Xn/an —=>0 also holds then a third equivalent condition is (3.3)-
(3.4) as follows:

E *- — -

(3.3) Iogn , ie{G ;(@afc)Al}—>0 as n->o00
k<n

and

(34) 4 — Y Al} —>0 & n-—»00,

los " t r J
where
Gk(\) =Y
=1 w2 IX|<A IX<A

N(A=X|E | X(iFAX)
i=1\x\<\
and Fj is the distribution function of X j.

Theorem B was first proved by Berkes and Dehling [1] under the assump-
tions of Theorem A. Now we show the equivalence of (3.1) and (3.2) under
the assumptions of Theorems 2.2 and 2.3.

THEOREM 3.1. Let X\, X2,... be strongly mixing random variables with
EXt=0 and let an > 0 be a numerical sequence satisfying (1.1) and (1.2) with
bn —0. Assume that

a(k) = 0((log log A) 1 ).
Then the statements (3.1) and (3.2) are equivalent.

THEOREM 3.2. Let X\,X2,... be associated random variables with EX,=0
and let an > 0 be a numerical sequence such that (1.1) and (1.2) hold with
bn=0. Assume that

u(n)=sup " Coy(Xk,Xj)<C.

Then the statements (3.1) and (3.2) are equivalent.
In the proofs of Theorem 3.1 and 3.2 we use the following lemma.
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Lemma 3.1 (Lemma 2 of [1]). Let x\,X2,-.- be a numerical sequence.
Then the following statements are equivalent:
(i) There exists a subset H ¢ N of log density O such that xn —0 as
n—o00, N"H.
(i) For all e>0, the set A(e) —{n; \xn\> e} has log density O, that is,

M9y 1 9gm d M ki (lafd > £} = 0
g Fcgn
Moreover, if xn is bounded then (i) and (ii) are equivalent to
(iii) nllm)oo logn ;r//\n X\Xk\ =0
Proof of Theorem 3.1. Clearly, in the case when bn=0and G is the
distribution concentrated at the origin, statements (a) and (b) in Theorem A
reduce to

(3.5) Ii>m P Y _?lfISWaJ >e}=0 as. forany e>0
«->00 o&n kAn

and

(3.6) nl_:(r)r(L Iog_lv' - 'IP“SIUafq >e} =0 forany e>0,

respectively. By Lemma 3.1, (3.5) is equivalent to (3.1) while (3.6) can be
written equivalently as

(3.7) MNn:P(|5,/an|>e)>&F=0 forany e>0, £>0.
Setting

xn=inf{p>0:P(|5,/a,] > q)”" g}
(3.7) implies

AL{n:xn>e} " fiL{n:P(\Sn/an\>¢e) >e} =0 forall £>0,

whence we get, using Lemma 3.1, that xn->0 along a sequence H C N of log
density 1. We can easily see that the following two statements are equivalent:

(1) P(|5n/an|>e)*e forany e>0.

(i) P(]5n/ard>¢e) —»0 as n->oo.
Thus we get Sn/an—pi) as n-»00,nGfL that is, (3.2) holds. Conversely,
(3.2) trivially implies (3.7) and thus (3.6).

Proof of Theorem 3.3. Our proof immediately follows from Theorem
2.3 applying the same procedure as in the proof of Theorem 3.1.
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ESCAPE RATES FOR LEVY PROCESSES*

D. KHOSHNEVISAN

Dedicated to Professor E. Csaki on the occasion of his sixtieth birthday

Abstract

We prove a space-time estimate for a Lévy process to hit a small set. As an application,
we present escape rates for Lévy processes with strictly stable components.

8 1. Introduction

Let X denote a d-dimensional Levy process. It is a classical fact that a
Borel set Ac  is polar for X if and only if A has positive X-capacity; cf.
Blumenthal and Getoor [BG]. A sharper variant of the aforementioned fact
is the consequence of more recent investigations such as those of Benjamini
et al. [BPP], Fitzsimmons and Salisbury [FS], Peres [Pe] and Salisbury [Sa].
Roughly speaking, these results provide in a variety of different contexts,
quantitative estimates of the type: P°(Xi € A, for some t > 0) x e-1(A),
where / x g implies the existence of some universal C > 1, such that C~xg "
f ~C f pointwise, and e(A) is the X-energy integral associated with A. One
of the many uses of such an estimate is that one can often approximate the
chance that X ever hits a small set. Wishing to study escape rates, we
present a different sort of a quantitative estimate below. Our notation is
more or less that of Markov process theory.

THEOREM 1.1. Suppose X is a d-dimensional Lévy process. For any
b>a>0ande>o,

. Pe(|Xr |~ e)dr

R =P°(Xr|~ £, for some a”t"b)~
/Pe(lXrige)
0
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2ba
f Pe(|Vr|~2e)dr

<
J “pe{\Xr\"E)dr
0

whenever the integrals exist and are nonzero.

The above extends the estimates of Perkins and Taylor [PT], Takeuchi
[Tl, T2] and Takeuchi and Watanabe [TW], to cite a few examples. To
illustrate the use of such a general inequality, let us restrict our attention
to the class of processes described in Hendricks [HI, H2, H3]. Namely, we
consider the case where X is a d-dimensional Lévy process with strictly stable
components. In other words, there exists w,x£ K+ and a € (0,2]d, such that

forall t>0and all f € Rd,
1Y 10414 *Y 1) (0)

Throughout, we shall assume that the coordlnate processes are not com-
pletely asymmetric, i.e.,

(1.3) < tan(7raj/2), IXjl>0, forall j=1,..d

Viewed coordinate by coordinate, such processes scale, albeit differently in
each. Define,

d
(1.4) - Ei-

j=i 3
Our intended application of Theorem 1.1 is the following:

Theorem 1.5. Suppose X is a Lévy process with stable components with
parameters given by (1.2)—1.4). When R < 1, X hits points. When 8 =1,
singletons are polar, but X is neighbourhood recurrent. When 8 > 1, X is

transient. For R fl, let ip: be a decreasing function and define
0]
f t~1(pR~I (t)dt, if 3> 1
P=<

I1t~j ln</j®)_1di, if R=1-

When ~ 1, P°-almost surely,

X
I i 3 < o0
liminf )
t—>00 tp{t) 0, if 3(<p) = oo.

(50%)
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When a is a constant vector, the above appears to various degrees of
generality in Dvoretzky and Erdés [DE], Spitzer [Sp], Takeuchi [T1,T2] and
Takeuchi and Watanabe [TW]. When a is not a constant vector, a different
but equivalent formulation can be found in Hendricks [HI] with a longer
proof. Our formulation has two distinct advantages over the latter: (1) the
large-time results and the small-time results are the same; (2) ours incorpo-
rates all the known results as one. Note that the critical case (i.e., R= 1)
only applies to two cases: d= 1and a = 1 (Cauchy process on R1) or d=2
and at =«2 = 2 (planar Brownian motion).

Above and throughout, we have used the notation: Inx = loge(a V1),
X 7 0.

8 2. Proof of Theorem 1.1

Fix 0< a<band define T = inf(s > 0:|Jfs| Ue). Apply the strong
Markov property at time T to see that

2b—a
P° j I(ATr|~2e)dr~P°~ j I(|Xr|g2e)dr\T UbjP°(T ~b)
a a
b—a

Ainf P1/ I{\Xr\"2e)drP°(T"b)

b—a
AP 1 I{\Xr\ge)drP°(Tg6).
0

Divide to obtain the upper bound. The lower bound follows along similar
lines. Consider,

b 2 b r
IOAXr\Ee)drj =2Poj j I(\Xr\*£ \Xs\"e)dsdr
a a
b r
2.1 <i2p0J J 1(1aci~e)I(JArr —X s\~ 2e)dsdr
a a

b b
:ZJ J PO(\Xs\"*e) PO{\Xr”s\"*2e)drds
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0 0
512P° j 1(Xr|ge)dr | P°(|Xr|*2e)dr.

By the Cauchy-Schwartz inequality,

6 b
P o/ I(Xr|re)iir = PON | I(IXr|”~eydr: T

“v (a 1d”l-£dr) "vv A~
Use (2.1) and solve to obtain the desired lower bound. O

Remark 2.2. An inspection of the proof shows that for any a GKd,

2ba
f PXx(ATr|”~2e)dr

PRIAM <e, for some a<t<b)=<

0. a

f POXr\AE)dr
0

§ 3. Proof of Theorem 1.5

Throughout this section, X denotes a Lévy process with strictly stable
components given by (1.2)-(1.4). Let us start with a technical lemma.

Lemma 3.1. The random variable |Afi| has a bounded Pa-density, uni-

formly over all ae Rd. When a= 0, this density g is positive on some neigh-
bourhood of 0. Moreover, s\vp g(x)/g(0) < oo.
X

P roof. By properties of convolutions, it suffices to show that each com-

ponent of X has the given properties. The lemma follows from the inversion
theorem for Fourier transforms. O

For the rest of this section, define
S(x) = max, Ief1 , a;GRd.
(x) max

Lemma 3.2. Forallr,a>o0,

P°(5(A:r)~a)x(r* 1aAl)/3
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P roof. Since the components X 1 are independent ay-stable processes,
by Lemma 3.1,

d
Po(5(Xr)ge)=J] P(XFIA el«r-17)
3=1

This proves the lemma. O

Since otj A 2 for all j, it is not hard to show that for all x,y € Rd,
S(x +y) ™ 4(S(x) +S(y)). As such, S(x) behaves much like |rc|. Going
through the proof of Theorem 1.1 and using Lemma 3.2, the following esti-
mate emerges:

Corollary 3.3. Forallo<a< band all e> 0 small,

P°(S(Xt) e, for some a”t“b)"h(e),

where
(1 if A< 1,
h{e) =l (In(l/e))-1 ifB=lI,
[ eo-1 if B>\,

We are now ready toprove Theorem  1.5We shall do so for t —o00.
The case t -0+ is done similarly. The case R < 1 follows immediately from
Corollary 3.3. Let us restrict our attention to the case 8 ~ 1. We shall assume
without loss of generality that <p(x)J,0 as x  0o. (When infxf>(x) >0, the
result is simpler and also follows from the proof given below.)

Define tn = 2n, gn = <p(tn) and
(3.4) En={ inf S(Xt)£ 2ngn\.
Note that from Corollary 3.3,
(3.5 P°(En)~h(<pn).
From the definition of 2(f) given in (1.5), it follows that £]P0(En) < oo if
n

and only if 2(ip) < oo, when ip(x) = Aip(Bx), for any A, B > 0.
Suppose 2(f) < 0o. The previous paragraph shows that for any ¢ > 0,

V P°( inf |Altl<c2W(27_1)) <oo0.
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Since c is arbitrary and tp is decreasing, by the Borel-Cantelli lemma,

X\ _
M o -

P°-a.s.. Now suppose 3(tp) = oo. Note that Remark 2.2 holds with |X.|
replaced by S(X.) everywhere. Using the Markov property and Lemma 3.1,
for all n large enough,

P°{EnnEn+k)~P O(En)supPx(En+k) ~ P NE n)P°{En+k).
X

Theorem 15 follows from (3.4),(3.5), Kolmogorov’s 0-1 law and the Kochen-
Stone lemma ([KS]). O
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ON THE NUMBER OF COMPARISONS
IN HOARE’S ALGORITHM “FIND”

B. KODAJ and T. F. MORI

Dedicated to Professor E. Csaki on the occasion of his sixtieth birthday

Abstract

In 1961 Hoare gave an extremely simple algorithm for finding the median from a list
of size n. That algorithm was later investigated by Knuth, who derived a closed form
expression for the expected number of comparisons. In the present paper we show that
the (random) number of comparisons, divided by n, has a limit distribution as n —o0,
and the rate of convergence measured in Wasserstein metric is 0(logn/n), while using
other probabilistic distances, such as ~-average compound distances with convex Young
functions $, the rate of convergence is 0(1/n).

1. Introduction

One basic problem in numerical data processing is to find, as quickly
as possible, the fc-th smallest element, say the median, out of n different
numbers. This can be done without sorting the whole set of numbers by
the help of a large variety of algorithms. If speed of algorithms is measured
by the number of comparisons, the quickest algorithms only require O(n)
comparisons even in the worst case. But if we are also satisfied with an
algorithm of O(n) comparisons on the average, the most simple one, no
doubt, is Hoare’s algorithm FIND [7]: In order to select the k-th. smallest of
n numbers a\, 02,..., an, let us take the first one and compare it with all the
other numbers. In that way the remaining numbers 02,03,... ,an are divided
into two groups according as they are less or greater than a\. Then we can
decide which group contains the element we are looking for, and what is its
rank in that group, or — if we are lucky — it may turn out that a\ is just
the number we need. In the latter case we can stop immediately, but if not,
we are given a new, smaller list to select from. Repeating subsequently the
step above the process finally terminates with the desired element.

Knuth in [8 examined the average performance of Hoare’s algorithm.
Average is meant over all the n! possible orderings, or, if one prefers proba-
bilistic terms, it is the expected number of comparisons when the underlying
distribution is uniform on the set of n-permutations. He was able to compute
explicitly the expectation for every k,n (1*k”~n). From his result it follows

1991 Mathematics Subject Classification. Primary 60F05; Secondary 68P10.
Key words and phrases. Median, coupling, Wasserstein metric, probability distances,
Young functions.
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that the expected number of comparisons, divided by n, converges to a finite
limit as n —00 and k/n -» ¢, 0~ ¢5 1 In 1969 Singleton described a mod-
ification of the original algorithm, known as median-of-three selection [14].
Recently, Anderson and Brown have studied Hoare’s and (Singleton’s) algo-
rithm from the combinatorist’s point of view [1],

The first algorithm of linear cost even in the worst case was invented by
Blum, Pratt, Tarjan, Floyd and Rivest [3]. Since then several papers have
been devoted to pushing farther and farther down the upper bound for the
worst case performance, see [11], [12], [13] or [15]. Bounds for the average
case selections are derived in [3]. Generalizations of other types are also
known, e.g., much effort was made to construct so-called parallel algorithms
in various sorting and searching problems ([5] is only one example of those
works).

The aim of the present note is to answer the following questions. Consid-
ering that the expected number of comparisons in Hoare’s algorithm, divided
by n, converges to a certain limit as n —o00 and k/n —c, is it true that a
limit distribution also exists? If yes, how can it be described? And what is
the true rate of convergence?

For the thorough analysis let us repeat Hoare’s algorithm in a more
mathematical form leading to another interpretation which will then show
what kind of limit distribution can be expected here.

The problem of finding the &-th smallest item from a list of n items
{ai, 0 2 ,, an} will be addressed here as the (n, k) selection problem. Take
the first item of the list and compare it with the remaining items. This makes
n —I comparisons and it turns out that a\ is the j-th number in increasing
order. Let bi,..., 6j_i denote the items less than ai and c\,..., cn-j those
greater than aj. Now there are three possibilities.

If j =k, then ai is the number sought for.

Ifj >k, then we are reduced to the (j —1,k) selection problem with the
list {&i,... ,6j_I}.

Ifj <k, then we are reduced to the (n—j, k —) selection problem with
the list {ci,..., cn-j}.

If each permutation of ai,a,2, m,an is equally likely, then the events
{j =1},..., {j =n} are also equiprobable. Let X(n,k) denote the (random)
number of comparisons needed to solve the (n, k) selection problem. Then
one can easily check the following equations. The first one mirrors the sym-
metry between increasing and decreasing ordering. The rest of the lemma is
a stochastic recursion for X (rt, i), 17 gn.
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Lemma 1.1.

d
X(n, i) =X(n, n+ 1),
X (1,1) =0 and
d *~i
X i)=n-1+"2 XU~1<w <j)x (n-j,i-j)
=1
n—1
+_Y|.xij<w<j+ irni,*)
J:

where X(') denotes the indicator of the event in brackets, W is uniformly
distributed on (0,n) and independent of the X s on the right-hand side. O

Making use of Lemma 1.1 one can write down a recursion for the expecta-
tions EA(n, i). Analysing the recurrence relation Knuth found the following
interesting result. Let Hn=l + 5+ "+ —- -+ /A then

(L1) El(n,K) =2((n+ 1Hn- (n+3- K)Hn+L k- (k +2)Hk + {n + 3)) .

For x £ [0,1] let H(x, 1—x) = x log k + (1 —x) log the entropy function
(except that here log is meant to the base e). Then (1.1) easily implies that

ira_=E£X(n,k) =2+2H(c,l-c).
deT

In the second interpretation of X(n, i) below we always choose at random
from increasingly ordered lists instead of taking the first item of a randomly
ordered list.

Let Ux, /21 «m be independent random variables distributed uniformly
on (0,1), and let 19/ 5n. Let us start with the initial interval Jo = (0, n)
which we imagine sectioned into n pairwise disjoint unit intervals. These
subintervals represent the items on the list in increasing order. We aim at
selecting the item represented by the subinterval (*—,i). Let us choose a
subinterval randomly: that can be done by observing the value \nU{\ =j,
then subinterval (j —1,j) represents the first item in the original list. Stop
ifj =i; and in the opposite case cut the interval (j —1,j) out from Iq, thus
obtaining two smaller intervals (0,j —1) and (j,n) (one possibly empty).
Let I\ be the one containing the target unit interval. Then I\ represents the
remaining list after the first round of comparisons. In the second step we
choose one from the unit intervals contained in I\ at random, by taking the
one with number f|Ti|C2lmThen I\ is bisected by cutting the chosen interval
out from it, and 1" is defined as that one of the two remaining subintervals
which contains (i —I,i), etc. In the fc-th step Ik-\ is bisected, and in doing
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that |/fc-i| —1 comparisons are made. Let r be the number of steps needed
till hitting the target interval, then

T
X(Nn,i) =~ (-treent — 1y
k=l

This model can be modified in a suitable way for obtaining a continuous
analogue. That continuous model will be given in Section 2 together with
its most important properties.

2. The continuous model

The second interpretation of Hoare’s algorithm naturally leads to the
following continuous analogue which can be considered as the limit of the
discrete model as n —»oo0.

Let Ui,U2,..- be independent random variables distributed uniformly
on (0,1), and let 0™ ¢~ a. Let us start with the initial interval Jo with
endpoints So= 0 and To= a. Let us divide Iq into two subintervals by the
random point Pi = So + Pi (To —S0). Let I\ be the subinterval containing c.
Thus the endpoints of I\ are Si = Pi, Ti = To if Pi <cand Si = So, Ti = Pi
if Pi Sc. Similarly, for j = 2,3,... let the interval 1j~\ be sectioned by
the random point Pj —Sj-1 + Uj(Tj-\ —Sj-1), and /7 be the subinterval
containing ¢, with endpoints Sj =Pj, Tj = Tj-i if Pj<cand Sj = Sj-1,
Tj —Pj if Pj ~ c. Finally, let Y(a, c) denote the sum of lengths of the random
intervals Ij\

(2.1) y@.c) = |7i|=~ (T ,-Si)
j=o j=o

These quantities are meant to approximate the X'’s of the discrete model.
The construction just described will be referred to as the continuous model.

It is easy to see that the infinite sum in (2.1) converges a.s. and in mean,
too. Indeed, introducing the notations

%——(C SjA)/N\jN, Tj—max(Pj, 1 Uj)
we have
(2.2) Mjv= (X (Ujixj-1)(1-Uj)+ x(Uj>xj- DU - D\ \Lj-ilrjj
hence

(2.3) Y(@c)ga(l + 71+ + U2ZIB o) =: af
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where rjj,j = 1,2,... are i.i.d. random variables, uniformly distributed on
(®, 1). Now it follows that

Eld S|elG-1S«uS (])JIEM0i=a(])J,
and so
EY(a,c)"a.

From (2.3) it is also clear that all moments of EY(a, ¢) are finite, because
the same is true for £. More precisely, taking Lp-norm we obtain

lIElp A 1+ Im lip+ HmAp + eee= [T —
1 171U’

Since

for p > 1 we have

(2.4) K<')SIEEi((4+)*-1)""s

Sometimes we shall need a refinement of the continuous model. One strik-
ing difference between the constructions of X and Y is that the contribution
of every single interval in Y is greater by 1 than that in the correspond-
ing X. Therefore the distribution of X (n,k) would be better approximated
if we summed (|//t| —1)+ instead of \I"\ in the continuous model. Thus, let
io, I'i,... be defined as above and

M = inf{n: |/n|< 1},
X
fc=l

For a< 1 we have Af= 0, hence Z(a, c) = 0.
Some simple facts about the continuous model are collected in the fol-
lowing lemmas.

Lemma 2.1.
(2.5) Y(a,c)—Y(a,c —a), Z(a,c) =Z(a,c—a)
(2.6) Y(0.,c)
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and

2.7) Y(a,c)ia+ X(W <c)Y{fa- W,c- W) + X(W * c)Y{W,c),

(2.8) Z(a,c)= (a—1)+ + x(W <c)Z(a—W, c—W) + x{W =c)Z(W, ¢)

where W is uniformly distributed on (0,a) and independent of the Y 5 and

Z s on the right-hand side. O
Therefore the expectation /(c) = ET(1, c), 1, satisfies the follow-

ing equation

oo o 1o )

It is not a great surprise that the solution of (2.9) is the limit of Knuth’s
formula

/(c) =2+ 2H{c, 1—¢) = rI]i_%oﬁEX(n,k),
k/n—Yc

thus we obtain the following result.
Lemma 2.2. FOI‘O"C’\a.

EY(a, ¢) =2a(l + logo,) - 2clog c—2(a —<) log(a —<¢),

where Olog0= 0. O

The assertion of our next lemma may be intuitively clear, but it needs a
rigorous proof.

Lemma 2.3. Suppose c'lc and a'—c'Ua —c. Then Y(a\c') *pY(a, c),
Z(a'.c) Z(a,c), where denotes stochastic ordering.

Proof. The lemma can be proved via coupling technique. Let us de-
fine Y(a',d) and Y(a,c) by the help of the same sequence of i.i.d. random
variables Ui, Uz, mmm To this end let us shift 1o by ¢—d so that the target
point, originally d, coincide with c. Thus let 50 = 0, To= 0o, and Sq—c—d,
Tg—o' +¢ —d. Then still 1o C lo- Firstly, construct Pv 1j, j =1,2,... as
described in the beginning of this section. Then let the stopping times tj
and intervals /j be defined successively as follows: wo= 0 and for j d |

T=inf{n>Tj_i: PnEI'j"},
Sj- PTj if PTJ<C, and S5=5'-_1 if PTjdc,
Tj=Tj-1 if Plj<c, and T-=PTj if PfLc
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In this way we clearly have /m C ITjm Since PTj is uniformly distributed in
I'j-i, one can see that the joint distribution of the intervals /', j 0, is
identical with that described in the definition of Y (a',c’). Thus we obtain

(e]e]

o UNE LE Ly
]j=0 j=0

j=0
and similarly
Z(a',c') & -D+ME(Ih I D+AE dTl- R+=Z@°°y D
j=0 j=o j=o

The next lemma shows how the continuous model relates in distribution
to the discrete one.

Lemma 2.4. For every n —1,2,..., i=1,2,...,n andi—I*c™i we
have
(2.10) X (n,i)rpz(n,c).

PROOF. This can be proved by induction in n. We have -X{1,1) =
Z(l,c) =0, and using the second interpretation of Hoare’s algorithm we
can write

d vV X
X(n,i)=n- 1+22XU- 1<W <j)X(n-j,i-j)
F1
n—
+22xu<w<j+i)x(j,i),
3=1

where the random variable W is uniformly distributed on (0,n) and indepen-
dent of all X ’s appearing on the right-hand side. By the induction hypothesis

i—
X(n,i) gpn - 1+ 22 XU —1<W <j)Z{n-j,c-j)
3=1
+22x(j<W<] +1)Z(j,c).
3=1

From Lemma 2.3 and (2.8) it follows that
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i-1
X(n,i)<spn- 1+J2 xU - 1<w <j)Z{n-W ,c-W)

n—1
+J2xU<W<j+1)Z(W,c)

From (2.10) it is clear that Z(n,c) approximates X(n,i) better than
Y(n,c) does, but the analogue of (2.6) does not remain true: Z(-,-) is no
more homogeneous.

3. The exact rate of convergence

Since all random variables mentioned so far are integrable, we can mea-
sure the rate of weak convergence in Wasserstein metric (also known as Gini’s
index of dissimilarity): for integrable random variables X and Y let

K(X, Y) =inf{E[X"' - Y\ :X'=X,Y'=Y}

where X 1and Y' are defined on the same (suitably enlargened) probability
space. This defines a metric on the space of (one dimensional) probability
distributions with finite expectation. In terms of distribution functions one
can write

—00

In case where one of the random variables stochastically majorizes the oth-
er one, simply k(X, Y) = |EW —Ey|. Convergence in Wasserstein metric is
equivalent to weak convergence plus convergence of expectations [10, Theo-
rem 14.2.1],

At this point the first question of Section 1 can easily be answered.

Theorem 3.1. Let 0<c5ll befixed. Then the distribution of ~X(n,[cn])
converges weakly to that ofY (I,c) as n —oo0.

pPRoOOF. From Lemma 2.4

hence
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by Knuth’s result. O

In this theorem [cn] can be replaced by any sequence (kn, n ~ 1) such
that 1™ kn~ n and nll}rgokn/?i —¢, see the end of the section.

The main result of this section says that the rate of convergence in The-
orem 3.1, measured by Wasserstein metric, is 0 (*p).

Theorem 3.2. Let A(n,i) = k(X(n,i),Y(n,i —4)) Then

i5(n —i + 1)J
AMi) log 20D
ni
holds uniformly in 1~ i” n, as n -» oo.
Proof. Since Hn=logn +'y+0(") =log(n—]) + 7+ O("), where 7 is
the Euler Mascheroni constant, we obtain from (1.1) that
EX(n,i) - 2*(n+ DHn—(n + 3—)Hn+\-i - (i +2)Hi + (n + 3)j

o+ SRTCS E TR0
—b5(log* + log(n —i + 1)) + 2logn + 0(1),

thus
A(n, i) = 5(logi -} log(n — + 1)) —2logn + 0(1)
uniformly in i. O
Remark 3.1. Comparing X(n,i) with Y(n +\,i) instead, one obtains
n(X(n,i),Y(n +1,i)) =4(logi + log(n + 1- i)) +0 (1).

The following lemma estimates the modulus of continuity of the process
T(l,c), O~c™I, in Wasserstein metric.

Lemma 3.2. Leto~rc< cln 1/2, = ¢ — ¢. Then
k{Y(,c),Y (1rc)) <44l + 2log

prooF. Similarly to the proofs of Lemmas 2.3 and 2.4 coupling will be
used again. We define Y(a',c') and Y(a,c) with one and the same sequence
U\, U2,  Consider the stopping time

r=inf{n't 1: PnG(c,c)} - inf{n: 7n In}
Then

(e]e] (e]¢] 0o

ly (Le)-r(he )l =10 [-1751) g 5 1x (T =n)5](173]+ [*]).
n—T n=I j=n
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Using (2.2) we obtain

ly (i,c)-r(i,c,)|*"”x(r=n)(|/n|+ |/;i)en
00 71=1
= A~ AX (7= n)I*n-1jpn = \le—dign>
n=1
where the random variables £n = 1+r]n+l + Vn+iVn+2 ee are identically dis-
tributed. Since £, and |/n_i|x(r = n) are independent for every n, so are £T
and |/T_i|. Let us determine the distribution of |/T_i|.

Let us define t\ = \{n ~ r : pn >}, that is, if one only considers the
(decreasing) subsequence of those pj that are greater than c, t\ is the relative
index of the first to fall in (c,c!). Similarly, we introduce T2= \{n ~ r :
Pn<c'}\. Thenr =r\+ +2—1 Furthermore,

T\=infln~ 1: V{V2eee <~ } | Tt_x- c= (1L- cJVivfe ... Un _i,

and
C

r2=infin * 1: V;v2... V,,<-}, ¢- ST.i=c'V”" .. U],

where V\, V2, ... are i.i.d. random variables, uniformly distributed in (0,1).
Since —log(U) is of unit exponential distribution, we can take negative log-
arithm to bring our random variables into connection with a homogeneous
Poisson process with unit intensity. For any A> 0 define

n
v=max{n”0: VIV2emVn>e A}=maxjn * 0: *T—og Vi) Ua|,
i=l
then the distribution of A—" \ (—og V)) is exponential truncated at A With
=

A= log we have

Tt-l-czoI L-c)exp(-~(-log
(3.2) —4

= (1 —c) exp(E AA-A) éjiA(I-c)

where £ is a mean 1exponential random variable, U = exp(—£) is uniformly
distributed on (0,1) and A stands for minimum. Similarly,

(3.2) d ~ ST-1="Ac'.
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Thus
« (y(i,e)ly (i,i")y)gE |y (ilc)-y (i>3")|gE|/T_1|EC
i
=ae~ Au-co+ AC'-0]<sr | Ndu+Sj- 487+ 2log” . o

REMARK 3.2. Using (2.6) we immediately obtain for 0" c< ¢'~ | that
(3.3) k{Y(d ). Y (ac")) <4i(l + 2log
On the other hand,

k{Y(a, c),Y{a,c)) " \EY(a, c)- EY{a, )|

St =, Sl

H(x, 1—x) is convex, therefore the right-hand side attains its maximum
for fixed a and 6 when c=0and c' =6. Then
C C
* ) A (. _ H
{Y{a,0),Y (a, 1)) 2af|(a, 1 as > 26logé.
Thus, the estimate of (3.3) for the modulus of continuity is sharp up to
the order of magnitude.

COROLLARY 3.1. Let the sequence of integers (/c,,,n*l) satisfy 1"kn”n
and lim % = c. Defineen= %m—c -1then
n->o00 " n | n

Ji(*X (n,fcn),y (1,¢)) = OASn log

PROOF. This immediately follows from Theorem 3.2 and Lemma 3.2. O

4. Convergence of higher moments

The surprising shortness of the proof of Theorem 3.2 was due to the fact
that Knuth had been able to express EX(n,i) in a closed form. However,
there exists another way of estimating the rate of convergence based on (2.7)
and Lemma 1.1, which can be applied for other probability metrics as well.
This method will require the following lemma.
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Lemma 4.1. Let A(n,i), Ifijén, n=1,2,... be arbitrary nonnegative
numbers satisfying

AN i—1 n—1
4.1) A" -V A(n-j,i-j)+-E A(,1)+npe{n)
i-1 j=*

where {e(n),n N 1} is a nondecreasing sequence of positive numbers andp”.o.
Then, forp=0

(4.2 A(n, i) ~e(n) ™ + logi + log(n — + 1)J,
and for p> 0
(4-3) A (n,1y< 5= R4 npe{n).
On the other hand, if
1i—1 1n—-1
(4.4) ANi) g ELAM" &F~" + -8 AN+ e(n)
1=1 J=1

with a nonincreasing nonnegative sequence {e(n),n"1}, ifien
(4.5) A, i)~ *EMN)(I + logi + log(n—i + 1)]j.

Remark 4.1. Ifp >0 and

Lol 1n-1
A(n,i) » n ;_.A (n-j,z-j) ti E. AOQ,i) +npe(n)
I=i j=i
with an arbitrary nonnegative sequence {e(n),n” 1}, then even the trivial

lower estimation A[n,i)> npe{n) attains the order of magnitude of the upper
estimate (4.3).

Proof. The proof will be performed by induction in n.

Let us first deal with the upper estimate. For n =i=1 (4.2) and (4.3)
clearly hold. For n” 2 let us apply the induction hypothesis and the mono-
tonicity property of e(n) in (4.1). For p= 0 we obtain

A(n,i) ~ e(n) H—j E_, e(n—)(1+ log(i—) + log(n — + 1))+
3=1
j nn—1
thg £0)(1+ logi + logo' - %+ 1))

J:))
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Ne(n) (1+ - 571 +log(i - j) + log(n - 1+ 1))

vV nj=l
1 V]
+- ENLH +Ho0™~*+1) J
J=l
( i . n—i 1 .
Ne(n) 1H--——Ilog(n- i+ 1) H---—-- logz+ - (1 + logj)
\ j=i
i "z* \
+-E (1+1%7)
J=i /
[
(1 Htlog(n —z+ 1) 4-2Aogi 4—"1'1 + 1og
n n n \}
T+
+— vy (I + logi)cii®
1

=e(n) M 4 logz 4 log(n —i + 1)V

For p>0 let C denote then we similarly have
1 7~ 1
A(n, i) " npe(n) + C - ( -j)pe(n-j)+E AOY)
j=1 j=i
SE(,,)(,P+Ci( g j'+4g.i"))
J=N—+1 =1
n n

=ANCpHATT)( [« + W)
=e(n) (np+ gn(pk1)@2nptl- (n- i+ 1)ptl- +1)).
Let us make use of the convexity of the power function tp+l.
A(n,)SEM)(N-+c— A (n"+- (U14)1+1))

gnpe(n) (I + C 2y (I - 2-P-1)) = Cnpe{n).

197
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The lower estimate is deduced in a similar way. A(l,1) > e(l)/2, and
from (4.4) and the induction hypothesis we get

2 Il
A(n,i) ~e(n) + - ~ -e{n- j)(I +log(i-j) + log(n- *+ 1))+
Uj=i
i~ 1
+ 2en) (1t +logh -+ 1)
1 / 1
N-e(n) 2+ - V(1 +log(t- j) + log(n- »+ 1))
\% j=1

1n1 . \
+-£7(1 +1ogt+log(j-» + 1))

3=
i- 2 : n—i+1 L
= -e(n) 2+ I-----Iog(n—|+1)+ |og|+-1Vd+|ogj)
n n ng:—2
n—i+1
1=2

i
1, . i—2 . Lon—*+1
Ze(n) 2 HATH < i L) Hemmoee logi H | + logf)df
() | 2H-—Tlog(h - i+ O H - ogi nj( + logf)

YA

n—z+I
+— [ (I +logf)dt
|

= ne(n)(2 + (logi + log(n-i + 1))).

Since
n—(logi +log(n-i+ 1) <1,
we have
A(n,i) ™ -e(n) (I +logi +log(n- i+ 1)),
as asserted in (4.5). O

For the generalization of Theorem 3.2 and Corollary 3.1 let us replace the
Wasserstein metric with the broader family of so called $ -average compound
distances, see [10, Example 3.3.1].
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Let (p: [0,00) -> [0,00) be a nondecreasing, left continuous function,
9?(0)=0, and let tp denote its generalized inverse: i/>(s)=sup{t"0: </?(f)<s}.
Define

X y
BN =3 <p(b)dt, V{y)= I ip(s)ds.
0 0
$and T are called a pair of conjugate convex Young functions. Several
properties of convex Young functions and the corresponding Orlicz spaces
are contained in [9]. Some important facts we state below.
A convex Young function $ is said to satisfy Orlicz’s condition if

Xg>(x

P=RH= sup—(—-) <00.
X

This p is called the characteristic exponent of 4> In that case the function is
$(x)x~p nonincreasing, hence 4>@) " 4>(l)ap, x * 1, and

4>(2
K$ =: sup (22) <2
x  4>(a)

If the conjugate function ~ also satisfies Orlicz’s condition with characteristic
exponent g, then p~1+qg~I~ 1, and

PR q
© R q-1

Furthermore, ~>(x)/xi-" is nondecreasing, hence 4>(r) » $(l)a;%-1, x ~ 1, and

. £$(25)
©F

For a convex Young function $ satisfying Orlicz’s condition let us define
fi<b(X, Y) = inf{ED(IAT—Y"'\): X =X', Y =Y'}

where X' and Y' are defined on the same probability space. This isa distance
on the space of probability distributions with finite “»-moments (the only
difference from being a metric is the presence of a constant factor in the
triangle inequality which now looks as /14>(X, Y) " K$(BRS$(X, Z) +fi&(Z, Y)).
By the Cambanis-Simons-Stout formula [4]

|
MX,Y)=J *(Fx'W-Fy'mdt,
0
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which shows that in the definition the minimum is attained when X' and Y'
are related through the quantile transform. In the particular case $(f) =tp

(p> 1), (fip)p is a metric, which induces weak convergence plus convergence
of moments of order not greater than p. Formally, the definition of jip has
sense for (i) = t, and it gives back the Wasserstein metric k. In general,
Jensen’s inequality gives p<p(X:Y) * Y)).

Since ¢ is superadditive, X Z "pY implies p<p(X,Z2) + p$(Z,Y) ~
fi$(X,Y).

In the sequel we are going to estimate both distances p$(X(n,i),
Y(n,i —7)) and p,*(*X(n,i),Y(1 , They are no longer equivalent,
for is not homogeneous unless $(x) = Cxp. That will be done in two
steps: we first estimate the distance between X(n,i) and Z(n,i —*), then
between Z(n,i —5) and Y(n,i —5). One part of the proof deserves to be
separated as a lemma.

Lemma 4.2. Let )M be the stopping time in the definition of Z(a,c),
a>1 Then
E$(A0 N E4>(1 + 7a),

where is a Poisson random variable with expectation A= (loga)/
(1 —log 2).

PROOF. From (2.2) it follows that \ik\ | ap\p2==s  Where 77%s are in-
dependent random variables, each distributed uniformly on (#, 1). Hence

n
a<mm [n-~ (- log% )>loga}.
k=1

The distribution of the random variables —og r* is equal to the conditional
distribution of a standard exponential random variable given that it is less
than log 2. This distribution possesses the aging property NBUE (in fact,
it even belongs to the smaller subclass IFR). Consider the renewal process
defined by these variables, and let N (f) denote the number of renewals before
time t. According to Theorem 3.17 on p. 173 of [2], for arbitrary convex
increasing function /
Ef(N(t))NEf(nt/li)

where p —E(—og”i) = 1—log 2. Clearly, Af = Al(loga) + 1, so let f(x) =
$(a: + 1). O

Theorem 4.1. Suppose both 4> and its conjugate T satisfy Orliczs con-
dition. Then

(4.6) max/i<i,(x(n,i),Y (n,i - =

@ X PR (X (0.0, Y (=) = O
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prRooOF. The proof is based on the representation of X(n,i) given by
Lemma 11 and formulas (2.7)-(2.8) obtained for the continuous model.
Then different ways of coupling will yield lower and upper estimations, re-
spectively.

Let us start with the upper estimation in (4.6).

Ibi>(Y (n,i- _ i
Ao 2/ I i
gi*"(A<F(z(n,*--),X(n,i)) +fi*(Y(n,i- -), z(n,i- J.

(4.8)

The first, term on the right-hand side is the first to be treated. On the one
hand,

¢ §
X(n,i)y=n- 1+ XU- 1<W<j)Xin~3,i~])
=1
71—1
FY XU <w <i+ DAT(,)
j=

and on the other hand,

+X{>-\<w)z(w,i-\)
=n—1+ /i\ilx(j —1<W <j)Z(ji—W',i—H- — 4+
3=1 |
+;_];i1xu<w><j+l)z(w' 12)
X ([ ~1<W <i-i)Z(n- w\i-1i-W)

+Xx(i-\<W'<i)z(w',i-%)

with W and W' uniformly distributed over (0,n).
By Lemma 2.3 we have

1 i—1 i

Z(n,i~2) =pn'~l+Y Ix? ~l<w'<3)z[n-j +1,i-j + )
3=1
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n— -
+Y1lxu < w <j+i)z(j+i,i-

3=i
+x(i - 1I<w <i-D)Z(n- i+ Li)+x{i~~r<w <i)z¢,i- i).
(Here W is independent of all the other random variables appearing on the

same side.)

Consider the following one-to-one correspondence between W and W',
Let

3
W'=W +1 on the event {O0<W <i —-},

W—i+3— on theevent{i—-3<W < —-]},

W +n —i —" onthe event {i—" <W <i +
W -1 on theevent[i + - <W <n).
Then
z(ni-\) n- 1+ x(*-\<W<*+\)z (ni*- \)
i-2 J
+7M"2xU - 1<W <j)zZ(n —j,i —j - =)
31
X*—2<W <i —7)z(n-i + 1)
n1 . . 1 1 1
+ X(i<hA<i+1)M0,*-2)+X(*+2<wW <i + 1)zZ{i,i- -).
j=r+
Hence
Z(n,i- A)y-X{n,i)
i-2 1

3=1

(4.9) FX(*-2<1T <i- |)A(n-i+1,8)-X(n-z-]-1,1)j
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F(+N< W <+ +X(0,0))
+X(.-|<H'<i+i)z(n,i).

Let each X in the right-hand side be the quantile transform of the corre-
sponding Z. Then putting (4.9) into 4>and taking expectation we obtain

A, iy=/fi*[z(n,i- "~ ,X(n,1))

Then, using Orlicz’s condition on 4> we have
E$(z(n , i-"E4><)"E("p4>(n).

Orlicz’s condition on 4/ implies that
- -1 AN=nANn
nE$Qz(\p,| |)2)/</2E(£P)n n"Te(n)

where e{n) = 2E(Ep)4>(n)/n«-T is nondecreasing. Thus, (4.1) is satisfied.
Hence (4.3) gives

(4.10) MZ(n,i-2,X(n,%=0 (~).

Let us continue with the second term on the right-hand side of (4.8). By
definition
Y(a,c)=2Z(a,c)+M+Y(TV- SV,c- 5%),
hpnrp
Y (a,c) —Z(a, ¢) ,A/*+ £,

where £ is independent of Al. Prom this it follows that
MY (n,i-i),Z(n,i-\)) <E$AT+0 < K*(E$(Af) + E$(£)).

The latter does not change with n. As to E4>(A%), it can be estimated by
Lemma 4.2:
E$(A0 N ES$(I + 1a) g $(L)E((1 + mw)p),

where #A is a Poisson random variable with expectation A= (logn)/
(L —log?2). It is easy to see that E((I + #Ap) ~ Ap for fixed p > 0 and in-
creasing A Hence E4>(A/) = 0((logn)p) as n —00. This is asymptotically
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negligible compared to $(n)/n ~ i>(I)n& 1. Combining this with (4.10) we
obtain

A>(y (n,i— =C)(~~)-
The lower estimation in (4.6) is quite obvious. Since P (X(n,i) =n—1)*
Nand Y (n, i —NAn+min(z— n—i+ "), clearly
F<t>(Y(n,i - >-$(min(i, n- i)).

Thus, with 0<e<  for every i between ne and n(l —e) we have

(4.11) (n,i—h.X{n,i)) » -$(ne)

The proof of (4.6) is completed.
Estimation (4.7) can be proved either in a similar way, or by applying

(4.6) with the Young function 4>g) = Its conjugate is T(y) = T(ny)
and p —p, g=¢ Since all estimations in the proof of (4.6) depended on o
only through p and g, (4.7) immediately follows. 0

Remark 4.2. Now we outline how to estimate A(n,i) = K(X(n,i),
Y(n,i —”)) without Knuth’s explicite formula, only by using Lemma 4.1.
Namely, we shall prove that

(4.12) 1+ logi+ log(n— + 1) A(n,i) » C"l + logi + log(n —i + 1)]

holds for every 17 i~ n, n=1,2,..., with C =4(1 + log 2).
On the one hand, in a similar way that led to (4.9) we obtain

=p <3)(Y(n-3,i-3 ~g)~x (n-3>i-jj)
=1
n—1 ]
+ A XU < W <j + 1)(Y(j,i--)-X(j,i))+1
)=

+X{i~-<W <i+i)Y (ni- "
X (F-A<W <i-D)Y{n-i+1,2)-x{i<W <i+")Y(i,i-i).

Hence
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i-1 n—t
A(n, z) ~
n n
3=1 3=1
2 f 1\
e T n, i - -
n < 2/
1i—1 . n—1
1 i_1
=7 Y1 n e +C*
j=i =*

that is, (4.1) holds with e(n) = C.
For getting a lower estimation we can proceed analogously. Let us build

Y (n,i—4) with the same uniformly distributed random variable W that we
used for constructing X(n,i).

y(n,i-H2En +YXU-KW <j)Y (n-w,i-1-w)
=1

+ Y X(j<W<j.+1)Y (w,i--)
3=1
(n-W ,i-~w'j +x(i~"<W

+x[i-KW
"pn+ Y IX(j~r<w <j)Y(n-j,i-j--)
3=1
n— . i 1
+'52x(J<w <i +
3=1
+X(*-1 <w +1 0) +x(i-\<W

Comparing this with the representation of X(n, i) we can see that

Y(n,i--X(n,i)
i-1 j
ap *2xU0-K W <j)(Y{n-j,i-j--)-X{n-j,i-j)]j
3=1
n—
+Y1 X0-<w <j +
3=1

#x(i-I<VF <i-B)y(**-i +20)+Xx(<-j<w<i)y(t-i,0)+i.

(Vo> @*)
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This, after integration, leads us to

li—a 1n—
AN, HN- T2AMN-j,i-j) +~y2 A(,i) +2
j=i j=i

that is, (4.3) is satisfied with e(n) = 2
Now Lemma 4.1 completes the proof of (4.12). O

Finally, we prove the analogue of Corollary 3.1. First, let us extend
Lemma 3.2 to fi*(Y(a,c),Y(a,c')).

Lemma 4.3. Suppose both 42 and 4/ comply with Orlicz’s condition. Let
orc<cd™aj2 s—c —c. Then

R<i>(Y(a, ¢), Y(a, ) = >

where the constant involved in the O notation only depends on 4>
Proof. From (3.1) and (3.2) it follows that

A=:1R*(Y(a,c)y (ac)gES(ly(ac)- Y(ac))
= E4>(aly(l,c)- y (L, c))) g E$(alI " 1k)

NE(e(allr-t1)) " KIiE(ep)E(S$ (A A(a- c)) +$ Ac') + $(*))

by the triangle inequality for <2 Here U is uniformly distributed on (0,1).
Thus, using the convexity of and the growth condition on 4' we can write

EeRES( e ()} AIEHR) $)du+80)

/a

AL

1
gfLIE("p)(2 / $(a)(iH " (i« +i%$(a)/a)

S/a

’\AT|E(eP)$(a)a-(2g-I). O

COROLLARY 4.2. Let the sequence of integers (kn,n”l) satisfy 1*kn”n
and lim —==c. Define again 6n m 2, then

A*(TA’(n,fcB)y(l,c)) =0(6n). O
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THE CENTRAL LIMIT THEOREM FOR L-STATISTICS
R. NOR.VAISA

Dedicated to E. Csaki for his sixtieth birthday

Summary
We consider a linear combination Ln=n-1 cninxn.i) of @ function of order
ISiin
statistics Xn:i » ~ X n:n corresponding to a sample of independent random variables

with a common distribution function. Two improved variants of known sufficient conditions
for the central limit theorem for Ln to hold are given. The first one concerns the case when
iln
the weight constants cni, ..., cnn are given by cnj=n j Jd\, where J is a Lebesgue
(i-1)/n
integrable function. The second one allows the weight constants to be arbitrary. To obtain
these results, we invoke differentiability of superposition (or Nemytskii) operators induced
by an integral representation of Ln and a central limit theorem for the empirical process
with sample paths in a Banach function space.

1. Introduction and results

Let X\, Xn be independent random variables with a common dis-
tribution function (df) F, and let Xn:i [ s ~ Xn:n be their corresponding
order statistics. Consider a linear combination of a function of these order
statistics, or an L-statistic, of the following form:

n

1
Ln m— 7 'cnj/i(Arj),
Nz4

where the function h is assumed to be an indefinite integral with the corre-
sponding Lebesgue-Stieltjes signed measure dh and the total variation mea-
sure nh.

The first main result is an asymptotic normality of the L-statistic Ln
when the weight constants cni, ..., cnn are given by a function J, i.e. when

n
(1.1 cni = n J Jd.\, i=1,...,n.
(»N/«

1991 Mathematics Subject Classification. Primary 62G30; Secondary 60B12, 47H30.
Key words and phrases. L-statistic, empirical process, central limit theorem, superpo-
sition operator, differentiability, Banach function space.

0081-6906/97/$ 5.00 ©1997 Akadémiai Kiadd, Budapest
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The function J defined on [0,1] is assumed to be integrable with respect to
Lebesgue measure Aand is often called a score function. Recall that a point
s is called a Lebesgue point of J if

S+X

)!LnOX_J () - sy dt = o

THEOREM 1.1. Let 0 <p,q <oo. Consider a df F and an indefinite
integral h such that

(L2) + Fpl2{1-F)g/2dph < oo.

Let a score function J be such that

(1.3) :F{t) is not a Lebesgue point of J}) =0
and assume that there exists afinite constant C such that

(1.4) W(u)\ ~ Chip/2~1/2(1 —u)92-1/2, for X-a.a. u G[0,1].

Then the L-statistic Ln given by the weight constants (1.1) satisfies the cen-
tral limit theorem, i.e.,

yin(Ln-L{J,F)) -A N(0,az2(J, F)), as n-»o0,

where

(1.5) L(J,F) :j Jho F~1d\

and

(1.6) a2(J, F) —JJ[F(tAs)-F{t)F(s)]I(F{t))I{F(s))h{dt)h{ds).

Example 3 in Shorack [28] and example 5.6 in Stigler [33] show that
the central limit theorem ceases to hold if a score function J and a ”“prob-
abilistic” inverse function F~1 have common discontinuities. To prevent
such pathologies it is customary to require for J to be continuous at F(t)
for yu/j-aa. t, even when the less stringent condition (1.3) is sufficient (see
e.g. the proof of Theorem 1 in Boos [2]). Also, the discontinuity points of
J in the above mentioned examples are not Lebesgue points. Using more
general integrals in (1.1) than that of Lebesgue, one may hope to weaken
condition (1.3) (see Remark 3.3 below). Mason and Shorack [18] proved
that the sufficient condition (1.2) can be replaced by the necessary condition
a2 (F,J) < oo, whenever the L-statistic Ln is slightly trimmed and a score
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function J behaves regularly. We do not know whether (1.2) may also be
weakened in the present context.

The second main result extends the first one to arbitrary weight constants
and incorporates a more general integral condition on a score function than
that of (1.4). It costs us the restriction of the parameter p (and g) to the
range [l,00) and an additional assumption on the image measure F(ph)
when p > 1. To be more precise we need some more notation. As usual, for
a given measure space (T,p) denote by Lr(T,p) —Lr(p) a Lebesgue space
of /*-measurable functions f on T for which the norm

f (/UUN/r)d/r, if 17r < o0,
1 ess supl/|, ifr = oo,

is finite. Let J be a Lebesgue integrable function on an interval / C 1. The
Hardy-Littlewood maximal function M J of J is defined by

X

.7 (MJ)(x) sup  --------- /|J[dA, XxEI
flexexs x1~ %1 J

X1

The operator M \J  MJ is called the Hardy-Littlewood maximal operator.
Let 1<r < o00. The condition on the measure F(ph) we are going to assume
is that there exist another measure v on [0,1] and a finite constant Cr such
that

(1.8) i \MJ\rdF(ph) i C rJ \J\rdv.

Lr(f)

If F(pij) is a Lebesgue measure on [0,1], then one may take for v the same
Lebesgue measure and (1.8) becomes a classical Hardy-Littlewood maximal
theorem (see e.g. Stein [30]). A more general result is used in Example 3.9
below. Ifr = oo, then a sup variant of (1.8) always holds for v = F(ph). For-

given arbitrary weight constants cni, ..., cnn, define a sequence of functions
{Jn; 1} on [0,1] by

(1.9 Jn{u) = cni, if it6 ((*—I)/n,i/n] and i=1,...,n,

and Jn(0) = c,,i.

Now we can state our second main result:

Theorem 1.2. Let 15ip < oo. Consider a df F and an indefinite integral
h such that

(1.10) i[F{I-F)}p/2dph < oo,

Assume that there exists a measure v on [0,1] such that (1.8) holds for r —
P1:—p/(p—1)- Suppose also that {Jn;n~1}cL p/(r/) and that there exists a
Lebesgue integrable function J £Lp(r/) such that (1.3) holds and

lim [|dn - J[|r ,(,) = 0.
n—00 pVv
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Then the L-statistic Ln satisfies the central limit theorem, i.e.,
\/In(Ln—L(@Jn,F)) — N(O, a2(J, F)), as n—00,

where L(J,F) and a2(J,F) are given by (1.5) and (1.6), respectively.

The proofs of both theorems are carried out through sections 3, 4 and
5 where we deal with differentiability of superposition operators, the central
limit theorem for empirical processes and L-statistics, respectively. Section
2 contains some notations and results related to a theory of function spaces
equipped with a structure of Banach lattice (or Riesz space).

Now we briefly comment on known results and relations of our paper with
some of them. One can find a more complete survey and historical comments
in Stigler [31], [32], Shorack [27] and Serfling [25]. Most general results on the
asymptotic normality of L-statistics have been given by Shorack [28], Stigler
[33], Boos [2], Serfling [25] and Mason [17]. The conditions of Theorem 1 in
Shorack [28] as it applies to Ln requires the existence of a finite constant C
such that

[/i(x)|] g Cx-pla+t{|-x)-q 2+,

for some e>0, in addition to assumptions of Theorem 1.1 above. The main
ingredient in his proofs was a ”special construction” of an empirical process
and a Brownian bridge (see for example Shorack and Wellner [29] page 93).
The method of projection was used in Stigler [33] for L-statistics Ln with
the weight constants given by

oni = J(i{n+1), i=1,....n.

His results have been extended by Mason [17]. Theorem 1 in Mason [17]
asserts the asymptotic normality of slightly trimmed L-statistics Ln centered
by ELn in fact under the same conditions as in Theorem 1.1 above. Centering
by L{J, F) then requires Holder type smoothness of a score function J (see
Theorem 2 in Mason [17] and Theorem 4 in Stigler [33]). The differentiable
statistical function approach has been used to L-statistics by Reeds [22],
Boos [2], Serfling [25]. For example, if a score function J is continuous then
our Theorem 1.1 in the case oip —q = 1 coincides with Theorem C on p. 284
in Serfling [25]. Later on a theory of differentiable statistical functionals
received considerable attention (see e.g. Fernholz [10], Esty et al. [8], Shao
[26]). Unfortunately, these results as applied to L-statistics require trimming
and/or appropriate smoothness of a score function.

In this paper we follow an approach proposed by Shorack [28] for the
first step. Namely, by performing integration by parts one may represent
the L-statistic Ln as (or approximately in probability by) a composition of a
nonlinear superposition operator (induced by a df F and a score function J)
acting from some Banach function space into Li (/i/j) and a linear functional
[/ —f f dh acting from into E and use a general idea of the above
mentioned theory of differentiable statistical functionals. New ingredients
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we invoke in this way are a technique developed in the theory of integral
equations for handling superposition operators and a central limit theorem
in an arbitrary Banach space. In particular, for a class of weakly compact
sets C, we prove C-differentiability of a composition operator (a special case of
a superposition operator) previously known to be Hadamard differentiable,
i.e. C-differentiable with C being a class of norm compact sets. This and other
statements from Section 3 are closely related to corresponding results due to
Reeds [22], Fernholz [10] and Dudley [5]. It is worthwhile to mention also
that continuity results of superposition operators and laws of large numbers
in Banach function spaces for the empirical df have been used in an above
mentiond way in Norvaisa [21] to obtain laws of large numbers for L-statistics.

2. Banach function spaces

In this section we consider Banach spaces of measurable functions com-
patible with an order structure. This class of spaces includes classical Le-
besgue spaces Lp, 15 p 5 oo, Orlicz spaces and their generalizations (such as
Musielak Orlicz spaces), Lorentz, Marcinkiewicz and symmetric spaces.

Let (T,B) — (T, T,R) be a complete cr-finite measure space with a a-
algebra T of subsets of T. Denote by M= M(T, R) the linear space of all
equivalence classes of p-measurable real-valued functions defined and finite
p-a.e. on T. A map | ¢||: M—[0, oo] is called a function norm if

(@) [l i1sa norm;

2 1 =18l (M-ae) implies ||/|| llall;

(3) if E CT is of finite p-measure and xe is its indicator function

then Wcell < oo.
Given a function norm on M, define the set

HT,B) := {f EM(T,RB) : |[/]| < 00}

Then E= (B(T, B), | | is a normed linear space. If 1 is complete, it is called
a Banach function space (B.f.s.). We will also assume further that B.f.s.’s are
order complete (or Dedekind complete). We refer to Zaanen [34] for notation
not explained here.

Let {fn- n = 1} be a sequence in M= M(T,r). As usual, fn converges
in M, if it converges in p-measure on every finite measure subset of T. The
convergence to zero p-a.e. of a sequence {/n: n” 1}, say /n—90 /i-a.e., means
its convergence in order in M. Let 1 = (B(T, ), | |)) be a Banach function
space. A sequence {/,,;; n” 1} converges in order in 1 to zero if /,, —0 /x-a.e.
and there exists / € 1 such that |/,,| is|/| for all n» 1 A subset A C ®of a
B.f.s. 1 is said to be of uniformly absolutely continuous norm (u.a.c. norm)
whenever, given e> 0 and a sequence {En\n ” 1} of p-measurable sets with
Enl 0, there exists an index N such that ||/xe,l| < e holds for all n ~ N
and all / GA simultaneously. An element / € B is said to have an absolutely
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continuous norm if the set {/} is of u.a.c. norm. A B.fs. | is said to be
order continuous, (or to have an absolutely continuous norm) whenever every
element of B has an absolutely continuous norm. It is worthwile to recall that,
by Theorem 1.3.7 in Luxemburg [15], a B.f.s. B= (B(T, p), | m|) is separable
if and only if B is order continuous, and the measure p is separable. Note
that Lp, 1 p<oo, are order continuous B.f.s.’s and that an Orlicz space

is order continuous if and only if 4>satisfies A2-condition at infinity.

The following lemma is essentially due to Luxemburg [15].

Lemma 2.1. Let {/n:n " 1} be a sequence of dements of a B.f.s. 1=
(B(T,p), | wil). ///,,—0 in p-measure and the set {/,,; n " 1} is of u.a.c.
norm, then ||/n||—0. The converse implication holds true if, in addition, B
is order continuous.

Remark. For the B.fs. Lp, I"p<oo0 this statement is known also as
Vitali’s theorem (see Theorem 111.3.6 in Dunford and Schwartz [6]). One
can find in van Eldik and Grobler [7] (see Theorem 2.5) even a more general
theorem than stated here.

PrRooF. Dueto Lemma 1.2.2 in Luxemburg [15], one only needs to notice
that if d e | has u.a.c. norm and if E is a set of finite /r-measure, then
[fx E n|| =0 uniformly over A for every sequence of subsets {En:n~ 1} of E
such that p{En)—0.

A subset AC1 of a B.fs. 1 is said to be L-weakly compact if it is
norm bounded and if ||/n|| =0 for every disjoint sequence {fn:n ~ 1} in
the positive part of the solid hull of A. By Satz I11.2. in Meyer-Nieberg [19],
a norm bounded subset A is L-weakly compact if and only if given e> 0
there exists a positive element g E B with order continuous norm such that
A C [~9g,0\ + F(e), with V(e) = {/ GI :||/|| < e}. The following statement
has been proved in van Eldik and Grobler [7] (see Proposition 2.8).

Lemma 2.2. Let B be an order complete B.f.s. A norm bounded subset
A ¢ B is L-weakly compact iff A is of u.a.c. norm.

One can find in Dodds and Fremlin [4] additional characterization re-
sults of L-weakly compact sets. For example, by their Theorem 4.2, relative
(norm) compactness implies L-weak compactnes whenever B is order contin-
uous.

3. Superposition operators
Let (T, p) be a complete cr-finite measure space, and let 4—(j){t,x) be a
real-valued function defined on T x M Given a function / = f(t) on T, one

can associate another function

(3.1) $/(*) =
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that is also defined on T. In this way the function () induces a map $
called superposition operator (or Nemytskii operator). A function (it is said
to be sup-measurable if the operator $ maps every measurable function into
measurable function, i.e., the superposition f(t)) is measurable for every
measurable function /. This property allows to consider $ as a nonlin-
ear operator acting between B.f.s.’s induced by function norms on M(T,p,).
We refer to Appell and Zabrejko [1] for more information on the subject.
Here we are interested in differentiability properties of superposition opera-
tors defined by (3.1).

Let (1, || m|j), i= 1,2, be two normed spaces, and let C= C(Bi) be a
collection of bounded subsets of Bi, containing all singletons {/}, /€B i.
An operator $between Bi and 12 is said to be C-differentiable at fo € Bj if
there is a bounded linear operator $'(/0) from Bi into B2 such that

*(lo+ 1)-*(I<>) = $'(/o) + A())
and for every CE£C
Jim [IA(X/)[|2=0

uniformly for / £ C. The linear operator <f>(/0) is called the derivative of 4
at /o. C-differentiability was defined by Sebastido e Silva [24], In statistics
usually there are three particular types of differentiation that are of interest:
(1) C(Bi) = {bounded subsets of Bi}; this corresponds to Fréchet differ-
entiation.
(2) C(Bi) ={(norm) compact subsets of ®i}; this corresponds to Hada-
mard (or compact) differentiation.
(3) C(li) = {single point subsets of Bi}; this corresponds to Gateaux
differentiation.
Other collections C of subsets of Bi have been considered recently by Dudley
[5]. It is shown below that Hadamard differentiability of a superposition
operator 4> may be extended in some cases to CL(Bi)-differentiability, where

(3.2) Ci1(Bi) = {L-weakly compact subsets of Bi}.

Now we pass to differentiability conditions for the superposition operator
$ induced by a sup-measurable function g)and acting between two B.f.s.’s.
The arguments from the paragraphs just before equation (2.55) in Appell and
Zabrejko [1] assures that the Gateaux derivative <h'(/o) of $has necessarily
the form

f —o/oli

i.e.,, $'(/,) is always a multiplication operator by some measurable function.
Moreover, Gateaux differentiability yields that

(3.3) afoft) = /i-lim S[<>{tfo(t) +X)-<f>{tfo®)], teT,
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where g- lim denotes the convergence in g-measure on each set of finite mea-
sure.

For a given B.f.s. B= (B(T, g), | s|) and for a non-negative function w G
M(T,//), define a weighted B.f.s. = (MMT, g), || *H") by

Bw{T,v) = {/EM (T,/i): W\ <+00, V/GB},

with the norm | m|w := | =mtu||. Now our first statement reads as follows:

P roposition 3.1. Let B= (B(T,/i), | =|]) be an order continuous B.f.s.,
and let f be a sup-measurable function. For a given function /o GM(T, g)
such that d>(/o) GB, assume that there exists a function af® G M(T, g) such
that (3.3) holds. Suppose also that there exist a non-negative function w G
M(T, g) and finite constants C\, C2 such that

(3.4) \afo\ ~ Ciw,

(3.5 [$(/0+ a:)-$(/o)| g C2\x\w, VzGR,

and fow GB. Then the superposition operator $ maps the weighted B.f.s. Mv
into B and <$is CI [Bw)-differentiable at /o with the derivative

<E>'(/0)/ = al0l,
where the class Cf,(B) is defined by (3.2).
Proof. By (3.5) it follows that

mm A cA\F- FOW\-AMION <00,

for all f EEW. Hence the superposition operator 4> acts between Mv and 1.
By (3.4), the derivative 4>'(/o) is a linear bounded operator from Mv into B.
The remainder in the claimed differentiation is

A(l) = $(/, +1)-* (/o) ~afof.

All single point subsets of B,, belong to Cg(Ew) since B, and hence B too,
are order continuous B.f.s.’s. Let C be an L-weakly compact subset of Bw.
It is enough to show that

(3.6) xﬁ%% AL = 0

for an arbitrary sequence {/,,: n~1}cC . By (3.4) and (3.5), it follows that
|A(S,,/n)fan S ¢ci + canfnw
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for all n't. L This in conjunction with Lemma 2.2, yields that the sequence
{A(xnfn)/xn:nt 1} in 1 has u.a.c. norm. Since every ball in a B.fs. is a
bounded subset in M, it can be shown that (3.3) yields

fi- lim — |A(zn/n)| = 0.
xn—0 Xn

Now, the desired relation (3.6) follows from Lemma 2.1 and the proof is
complete.

Now consider a special case of a superposition operator corresponding to
a composition of two functions, i.e., the case when the function <f(t, ¢) = <X
for all tET, and

(3.7) = Vier,

A function >from R into Ris called Lipschitz if for some K < 00, >{x) —f>{y)\
5 K\x —y|Ifor all x, y. Then for Lebesgue almost all x, the derivative <=
exists, with |<\(a;)] ~ K. The following statement improves and extends
Proposition 6.1.2. in Fernholz [10], where ¢&>was assumed to be continuous
and piecewise differentiable with bounded derivative, and C was taken to be
a class of (norm) compact sets in the B.f.s. B= Lp[0,1], 1* p< oo0.

Corollary 3.2. Let B= (B(T,p), | |])) be an order continuous B.f.s.,
and let f be a Borel measurable Lipschitz function from R into R. For a
given function /o € B such that 0/ g€ B assume that

(3.8) p({tET: eis not differentiable at /o(i)}) = 0.

Then the superposition (composition) operator $ given by (3.7) maps B into
B and $ is C/,(B)-differentiable at /o with the derivative

W 0)/ = (<f>'ofo)f-

Proof. Take the function w in Proposition 3.1 to be equal to the Lip-
schitz constant k.

Remark 3.3. Lipschitz condition and (3.8) imply that (3.3) holds /i-a.e.
Thus one may hope to weaken condition (3.8) if () would not be require to
be a Lipschitz function. For this one may invoke a variant of a generalized
derivative considered among others by Khintchine [13]. Namely, la dérivée
generate of 0 is a function defined a.e., such that for any e> 0

(B h) —4(9

AS . .
lunA({rr: |— &g(x)|>e}) =0.

The existence of an approximate derivative Fgp a.e. on an interval implies
the existence of 4] on the interval, and f'ap = 4g a.e., while Khintchine
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constructed a function 0 such that 4§ exists on [0,1], and pap only on a null
set. In connection with L-statistics one may consider a Denjoy-Khintchine
integrable score function J. Recall that a function 0 on [a § is the Denjoy-
Khintchine integral of a function J provided 0 is ACG on [a 6], and ap =
J a.e. (see Saks [23] for details).

Let O be a normed space of parameters 0. We wish to consider a linear
family of sup-measurable functions 0 = > t, x) = x) on 0 xT x R such
that

(1) O#(-, *) is a sup-measurable functiono n | x | for all 9GO;

(2) O(-;t,x) is a linear function on 0 for all (i,i)EIXR,

Then one can define an operator $ from 0 x M(T, B) into M(T, p) by

(3.9) #(0,/)(i) := 0(0; *,/(*)), VigT.

Note that <X /) is a linear operator on 0 whenever a function / is fixed. A
simple example of a linear family of sup-measurable functions may be given
by any normed space © of sup-measurable functions 0 =xf>(tx) onl x 1 or
Borel measurable functions 0 = if(x) on K in these cases 0(0; t, &) := 0(t, x)
or p(ip;x) := ip(x), respectively. The last example induces the composition
operator <= (V1/) —xip°/- Still another example will be considered below
(see (3.19)). Define also the maximal operator Md> on 0 x M by

M $(0,/)(i) := sup +  -<Mi, )]
x™0

where sup means a lattice supremum inm. Let 85 = (sicr. R); ymiiy, %= 1.2,

be a pair of B.f.s.’s. The generalized dual space (or multiplicator space) ®2/®i

is defined to be the set

(12/11)(T,p,) = {/ GM(T,R) : /gG B2 for each g G®i}.
Equipped with the natural norm
W21 :=sp{ HAR: Nlligl  iSBi},

the set fi2/1i becomes a B.f.s. (B2/Bi)[T,R), || *||2/i) (see Maligranda and
Person [16], or p. 62 in Appell and Zabrejko [1]).

Now we are ready to state and prove the following differentiability result
for the operator $ given by (3.9).

Proposition 3.4. Let BJ = (Bj(T,//), ” °|lj), i=12, he apair of B.f.s.%
with a generalized dual B2/Bi * {0}, and let (O, | ¢||]) be a normed space. Sup-
pose a linear family of sup-measurable functions p = 0(0;t, on
0x T x| and elements /o £ ®i, $0£ © ore such that for some finite constant
C the following hold:

(3.10) WM mfo)h/irci\lell,
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(3.11) Al o) 6 B 2,

for all 9€ 0. Assume also that there exists a p-measurable function a —
a(0o,/<)m on T such that

(3.12) a(t) = Yim-[fgfit, fo(t) +x) - @p{tfoft))]

in p-measure. Then the operator $ defined by (3.9) maps a product space
(0 x Bi, || ||+ || m|i) into & and $ is C-differentiable at (0o,/0) with the
derivative

(3.13) $'(00,/0)(0,/) = $(0,/0) + a(0o,/0)/,

where C is a collection of all sets B x K such that B isaball in 0 and K is
an L-weakly compact set in |j.

Proof. For any real-valued function / on T, and for any element 9, just
by the definition of the maximal operator M $ we have

13(0.)(<)1 g /(1) -/ Q)M $(0,/0)(t) + [$(0,/0)(i)I,

for all t £ T. Due to the definition of the generalized dual space fi2/®i and
by the assumptions (3.10), (3.11), it follows that

N$(0,N2Uc||/-/,11i0]] + 1$(0,/0)I|2 < oo,

for all (9,/) €0 x Ei. Therefore the operator $ maps 0x i into B2. More-
over, the linear operator $'(00, /0) is bounded. Let K be an L-weakly com-
pact set in ®i, and let B be a ball in 0. It is sufficient to show for arbitrary
sequences {/,,; n™ 1} CK and {9n:n " 1} C B that

(3.14) Xlnl[po < |[A(®nOn,®,,/n)||2 = 0,
where the remainder in the claimed differentiation is

A(0,/) = $(00 +e,fo +f)~ $(00,/0) - $(0, /o) - af
= [$(00, fo +f) - $(0Q/0) - af] + [$(0, /0 +/) - $(0, /0)]

(3.15) =: Al (00,/) + A2(0,/).
To estimate the first term Ai(Oo, /), we will use Lemma 2.1 for the sequence
(3.16) {Ai(xnfn,90)/xn5nl> 1} C 12.

Let E be a /*-measurable set. By the definition of the generalized dual space
®2/Bi we have

o IXEALQ0 @/ M2 ~ [IM$(0Q/Q + allZIIXEM]I,
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for all n ~ 1. Then, for any sequence of /i-measurable sets E/: with ~ j, 0, by
Lemma 2.2 it follows that

%Sﬂp \\XEKAi(00,xnfn)/xn\2
A |IM$(00,/0)+al|2i f(l;'>naofng \\xEkf\i = 0.

Therefore, the sequence (3.16) is of u.a.c. norm. Since the sequence {/,,; n*I}
is norm bounded in Bi, it is bounded in M, too. This fact, in conjunction
with the assumption (3.12), yields that the sequence (3.16) tends to zero in
/i-measure. Thus, by Lemma 2.1, it follows that

(3.17) XIn|f1>1oﬂ||A|(00,a:n/n)||2 = 0.

As to the second term in (3.15), due to the definition of the generalized dual
space B2/Bi and by the assumption (3.10) we have

— ||A2@&n0n,xn/n)j|2 » Cxn\\en\\ ||/,,]]i,
Xn

for all n ~ 1 This inequality combined with (3.17) yields (3.14) and the
proof of Proposition 3.4 is now complete.

In general, C-differentiability of the operator $ cannot be extended to
Fréchet differentiability, even for a fixed parameter 6 € 0, without additional
assumptions. By Theorem 2.15 in Appell and Zabrejko [1], there is a class
of pairs of B.f.s.’s Ig and B2 such that the generalized dual are not order
continuous and Fréchet differentiability of a superposition operator (>given
by (3.1) yields that the function (p is equivalent to an affine function in x.
This class includes a pair Bi = B2 = LP(T,/r), for any 1*p<oo0 and for the
atomic free measure /i on T.

A stronger assumption than sup-measurability, often made on the super-
position operator given by (3.1), is that ~ is a Carathéodory function, that
is to say 4>{-x) is /z-measurable for each and *) is continuous for
fizaa. te T. The following lemma is a crucial ingredient in the proof of
Fréchet differentiability of the operator 4»

Lemma 3.5. Let Bj, i = 1,2, be a pair of B.f.s. 5, and let ip be a Cara-
théodory function on T x K such that the induced superposition operator T
maps Bi into 12. Then the operator T is continuous whenever the B.f.s. B2
is order continuous.

Proof. It isa part of Theorem 2.6 proved in Appell and Zabrejko [1],

We are now ready to formulate conditions for the Fréchet differentiability
of the operator $ given by (3.9). ‘
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PROPOSITION 3.6. Under the hypothesis of Proposition 3.f, assume in
addition that the generalized dual space B2/®i is order continuous, and (p is
a linear family of Carathéodory functions, i.e., </>#ss*) is a Carathéodory
function for every o EO and ()@, t,x) is a linear function on © for every
(t,x) ETxR. Moreover, assume that (3.12) holds p-a.e. Then the operator
$ defined by (3.9) maps a product space (© x Bi, || ¢|| + || ||i) into @ and 4>
is Fréchet differentiable at (0,/0) with the derivative (3.13).

PROOF. The proof goes along the same lines as that of Proposition 3.4.
Here, in addition, we have to establish (3.17) for an arbitrary bounded se-
guence {/n:n” 1} C Bi. To this end, we use Lemma 3.5 for the function if
defined by

AT = fo{t) +x) - (mo{t, fo{t))], ifz"0,
a(t), ifx = 0.

Since (3.12) holds /r-a.e., ip is a Carathéodory function, and the induced su-
perposition operator T acts between B.f.s.’s Bi and B2/B1. Now, by Lemma
34, it follows that

limsup — ||Ai(0Oo, ah/n)||2
Xn-©0 9%
i sup /11 limsup lly (xnfn)- ~(0)|]2/1 =0,
n xn—0

since ||xn/n]|li =0, as n —00. This, we noted earlier, is what had to be
proved and the proof of Proposition 3.6 is now complete.

Reeds [22], in the proof of Theorem 6.4.3, and Fernholz [10], by Propo-
sition 6.1.6, show that the composition operator

(3.18) *(</>/) = (pof

is Hadamard differentiable from DJ[0,1] x Lp([0,1], A into Lp([0,1],A) at
(0o, /0) where <o is the identity, /o is a diffeomorphism and D[0,]] is the
space of right-continuous functions with left limits in the supremum norm.
Dudley [5] extended this result with respect to the directions of differentiabil-
ity (o from sup (norm) compact sets to much larger sets. Namely, his Theo-
rem 5.1 says in particular that (3.18) is jointly differentiable at (o, /0) from
Rp/gx Lp([0,1], A into L9([0,1], A whenever 1" q<p < +00, for Fréchet
differentiability in / and C-differentiability in < where qo is Lipschitz func-
tion, /o is increasing with /O~ R >0 a.e. and C is the class of uniformly
(p/0-Riemann sets C, i.e., the restrictions of functions in C to any bounded
interval are uniformly Riemann and

sup{ I<p(x) —0(0) /(1 + \xWvq) : x € M 0€ C} <+00.
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To conclude this section, we give an example illustrating the above state-
ments. Let p be a <j-finite Lebesgue-Stieltjes measure on T = R. Consider
a pair of B.f.s.’s B2= L9(R, p), 19q< +00, and Bi = Lp(M p), qup < +00.
Then B2/B1= Lr(R,/i) with r=pq/(p —q) is a generalized dual space. Let J
be a Lebesgue integrable function on R from a parameter set 0 to be spec-
ified below, and let /o 6 Lp(R,p). Define a linear family of Carathéodory
functions 4>by

(3.19) (p@J;t,x) = J dX, tET, XER
Mt)

Consider the operator $defined by (3.9). Note that <X(J,/0) = 0 (cf. (3.11))
and

M $(J,/0)(f) g (MJ)(/0(F)), VIGT,
where M J is the Hardy-Littlewood maximal function of J defined by (1.7).
Let /o(/i) denote the image measure on R given by fo(p)(A) = A(/J"1(A))

for all measurable sets A. Thus, it follows by the image measure theorem
that

/ \M<HJJO\rd pi | \MJ\rdfo(p).
R R

To estimate the right side one may use the Hardy-Littlewood maximal the-
orem whenever fo(p) is a Lebesgue measure. This classical result has been
extended to inequality of the type

(3.20) \MJ\rvdXL']CH] \J\rv dX,
/ /

where 1<r <00, | is a fixed interval, Cr is a finite constant independent of
J and MJ, and v is a non-negative function. Stein [30] showed that (3.20)
is true for I =R and v(x) —\x\a for —/r <a<1—1/r. Fefferman and Stein
[9] showed that (3.20) is true for | =R if Mu ~ Cu a.e.. It was Muckenhoupt
[20] who gave a characterization of a weight function v for (3.20) to hold.
Namely, he proved that (3.20) is true if and only if there is a finite constant
K such that

U DfA N KXr(E),
E E

where E is any subinterval of I. Moreover, it is said that v satisfies condition
Ar on | whenever the later property holds true. The 70’s and 80’ witnessed
a real flood of papers on weighted inequalities triggered by this result and
extensions were obtained to many different directions (see e.g. Garcia-Cuerva
and Rubio de Francia [11] for a survey). Due to obvious reasons we do not
attempt here to use the most general results.
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CONDITION 3.7. Assume that the measure fo{p) on K is absolutely con-
tinuous with respect to the non-negative density function d.fo{p)/d\ satisfy-
ing condition Ar on K

Then, by (3.20), it follows that

I \M$(JJo)\rdvLZCrJ \J\rdfo{R),
R R

for some finite constant Cr depending on r only. This gives us condition
(3.8) if one takes a parameter set 0 to be Lr(K,/oQu)).
Condition 3.8. Assume /o0 € Lp(/K) and let Jo € Lr(fo{p)) to be such

that
fi({x ER: fo(x) is not a Lebesgue point of Jo }) = 0.

Then, by Lebesgue’s theorem on derivation of the indefinite integral,
(3.12) holds /i-a.e. for do=Jo and for a= Jg°foe Thus , by Propositions 3.4
and 3.6 we have:

Example 3.9. Under the previous notation, assume that conditions 3.7
and 3.8 hold. Then the operator $ defined by (3.9) with  given by (3.19)
maps the product space hr{fo{p)) xhp(p) into hg{p), where r = pg/{p —g) and
p'tq. Moreover, $ is Fréchet (C-)differentiable at {Jo, fo) with the derivative

*’(Jo,fo)(J,f) = Joofo-S,

whenever p> q (p=gq, respectively).

4. Empirical processes

To use C-differentiability of a superposition operator defined on a B.f.s. B
for L-statistics we will need paths of the empirical process to be concentrated
in probability on sets from the class C. Here we show for a large class
of B.f.s.’s 1 that this property (say C-tightness) of the empirical process
is equivalent to the central limit theorem whenever C contains all (norm)
compact sets of 1. A more precise statement follows in Corollary 4.5 below
which may be considered as a main result of this section whose proof will be
shown to be a consequence of some results from the theory of Probability in
Banach spaces.

DEFINITION F. Let F be a non-degenerate df, i.e., assume that F is not
a df of a constant rv, and put

a:=inf{J € K: Ft.) >0}, b:=sup{f€M: F{t) <1}.

Then we can and will consider F to be defined on a non-empty set T which
is assumed to be equal to the interval (a, b) with endpoints {a} and/or {6}
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included or not included depending on F(a) > 0 and/or F(b— <1, respec-
tively.

Let Fn be the empirical df based on a sample of independent identically
distributed real rv’s X\, ..., Xn with non-degenerate df F, and let an =
{an(i); t. v be the corresponding empirical process given by

(4.1 an(t) := y/n(Fn(t)-F(t)), teT.

We give another representation of an (see (4.4) below) which is better suited
to characterize the central limit theorem and to handle L-statistics in the
next section. First define a symmetrized empirical df Sn by

( ~Fn(), if t<c,

(4.2) I 1-Fn(t), ift~c,

for some point ce T to be specified by Condition H in the next section and
put
—F(1), ift<c,

(4.3) MmO =ESNO = gy iftnc

Then

Sn{t) = -Y lip{Xit), t€T,
i=i
where the function on T x T is given by

. N X[x,0) 1 ifx<c
|p(X’ ) - )([C,X)I |f Xlt.C,
forall x £T, and
(4.4) an(y o Enx,x), ter

where the function Y on T x T is given by
Y(x,t) = ip(x,t) —m(f), x,tGT.

Note also that Fn(t) —F(t) = m —Sn(t).

Let B= (1(T,R), | «I) be a B.f.s., where p is a cr-finite Lebesgue-Stieltjes
measure on T such that B([c, dj) < oo for all compact subsets [c,d CT. We
will assume throughout this section that B is separable. Since /i is a separable
measure, the B.f.s. B is separable if and only if it is order continuous. Let £
= {£(E); t&T} be a Pr x//-measurable stochastic process with a.a. sample
paths in B. Then, in a standard way (see e.g. Cremers and Kadelka [3]),
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£ induces a Borel measurable map from Il into B, say £ again, called a 1-rv,
and a probability distribution £(£) on 1. Concerning the empirical process
an, it follows from the representation (4.4) that an induces a B-rv if and
only if m GB.

Let 1 be a separable Banach space. A B-rv g is Gaussian ifg(g) is a real-
valued Gaussian rv for any continuous linear functional g on B. Recall that
one may describe any Gaussian B-rv g by an operator R from the Banach
space of continuous linear functionals 1* into B, called Gaussian covariance,
which appears in the expression of the characteristic function of g. The
description of Gaussian covariances on B.f.s.’s is given by Gorgadze et al.
[12]. In particular, they proved:

PROPOSITION 4.1. Let B be an order continuous B.f.s.. Then the fol-
lowing is true:
(1) If asymmetric positive operator RW>* —aB is a Gaussian covariance,
then there exists a measurable function r :T x T —=Msuch that

@5 (RO)®) = ] g©)r{s.tp(ds), teT.g<E B
T

and the function t—\/r(t, t) GB.

(2) The operator R given by (4.5) with the symmetric positive definite
function r such that t —»\/r(t, t) GB, is Gaussian covariance if and
only if B does not contain I* uniformly.

According to this statement, a measurable version of a Brownian bridge
g={g(t): t GT} with the covariance structure F(t As) —F(t)F(s) has a.a.
sample paths in B, and hence induces a B-rv, if and only if

(4.6) y/F{l -F) GB.

Let {£n: n ~ 1} be a sequence of measurable stochastic processes with a.a.
sample paths in a B.f.s. B. We say that fn satisfies the central limit theorem
(CLT) in Bifthere exists a Gaussian B-rv g such that C(fn) converges weakly
to C{g). Note that if £i, ..., £,,... are iid B-rv’s and if

4.7) 2 5.

then we say also that  satisfies the CLT in B. A B-rv f is said to be pregaus-
sian if there exists a Gaussian B-rv G(£) such that Eg2(£) = Eg2(G(£)) for
all g GB* Note that CI, as well as fn itself, are pregaussian B-rv’s whenever
the sequence fn given by (4.7) satisfies the CLT in B. We say that a Banach
space B satisfies the inequality Ros(p), 1 < -foo, if there is a constant C



226 R. NORVAISA

such that for any finite sequence of independent pregaussian B-rv’s (i, ...,
(n with associated Gaussian B-rv’s G(Ci), m, G((n) (which may be assumed
to be independent) we have

5>GHp+e £ g(C0

In particular, Lp-spaces with 1"Lp~ 2, satisfy inequalities Ros(g) for every g,
1S qg< o0, and Lp-spaces with 2 <p < oo, satisfy the inequality Ros(p) for
the corresponding p. For the proof of the following statement we refer to
Theorem 10.10 in Ledoux and Talagrand [14].

PROPOSITION 4.2. Let B be a separable Banach space satisfying the in-
equality Ros(p) for some p > 2, and let {£n: n ~ 1} be a sequence of B-rVs

given by (4.7), where (i, ..., (n, ... are iid B-rvs. Then fn satisfies the
CLT in B if and only if G is pregaussian and
(4.8) lim x2Pr({||Ci||>a;})=0.

According to this statement, the empirical process an given by (4.4)
satisfies the CLT in a B.f.s. B if and only if (4.6) holds and

(4.9) Jimg x2 PrdUVIIA'-)|| > x3) =0.

Next we show that the last condition is superfluous for the empirical pro-
Cesses.

Lemma 4.3. Let F be a df defined on T, and let B = (B(T,p), || *|]) be
an order continuous B.f.s. Then (4.6) implies (4.9).

Proof. Suppose first that
(4.10) F{a)=0 and F(b9=1
Define a family G = {gs: s GTj of functions on T by
V F (s)X[s,0){t), ifs<c,
V1 —F(sIx[cs))i ifs™c
for all t GT. It is easy to check that

Os(t) m=

gs g 2\JF(1 —F), VsGT.

Thus, by (4.6), the family G has u.a.c. norms. Moreover, by the assumption
(4.10), it follows that

lim gs(t) =0, VigT.
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Hence, by Lemma 2.1, one may conclude that

lim -
sasti> o = 0.
Choose an arbitrary number e> 0, and take si, GT such that

ol ~ 272, VsG T\(s1,52).
Then for all x > ||X(si,s2) lI2Ve/2, we have

*Pri{IM®, A>>/}) =
= % [Pr({ llge || > y/xF(X)t X ~ Sl h+

+Pr({ [|9XN> >/*('-m -)), X "s2P] "
i X[Pr{F(X)Te/(2x) P + 1- Pr({F(X-)"*1-¢e/(2x) D] " e
where in the last step we have used the inequalities
Pr{{ F(X)"u}) " u

and

Pr({F(X-)"u}) *u,
for all u G[0,1]. See, e.g., p. 5 in Shorack and Wellner [29] for the proof of
the first inequality. The second one follows from

urF{F-\u)), WuGI0,1],

and from the fact that x F-1(u) if and only if F(x-) ~ u, where F-1(u)
= inf{x :F(x) ~u} (see also p. 5 in Shorack and Wellner [29]). Since e is
an arbitrary positive number, Lemma 4.3 is proved under the assumption
(4.10). Suppose now that F(a) > 0 and F(b—) <1 Then (4.6) implies
Hctll < °°i and hence (4.9) is true in this case as well. If F(a) >0 and
F(6— = 1 or, conversely, F(a) = 0 and F(b—) < 1, then one may reduce the
task to 1-rv’s ip{X, -)X[c6) and ip(X, -)X(ac)) respectively. Now (4.9) follows
from (4.6) making use of analogous arguments to those in the case of (4.10).
This completes the proof of Lemma 4.3.

COROLLARY 4.4. Let an be the empirical process based on a df F, and
let E = (B(T,/M), | <) be an order continuous B.f.s. satisfying the inequality
Ros(p) for some p> 2. Then otn satisfies the CLT in E if and only if (4.6)
holds true.

Assume for a moment that the empirical process an is bounded in prob-
ability in 1, i.e., for each e> 0 one can find a finite number M such that

supPr({ [la,[[>M}) qe
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Due to the representation (4.4), one may invoke a terminology from Ledoux
and Talagrand [14] and say that an satisfies the bounded CLT in B. Then, by
Theorem 10.3 in Ledoux and Talagrand [14], the B-rv Y (Xi, ¢) is pregaussian
whenever 1 does not contain an isomorphic copy of cq. Thus, for the class
of B.f.s.’s which satisfies the conditions of Corollary 4.4, the bounded CLT
for the empirical process is equivalent to the (usual) CLT.

5. L-statistics

This section contains the proofs of main results.

Let F be a non-degenerate df defined on the interval T (see Definition
F in the previous section), and let Xn\ ~ ... A Xn:n be the order statistics
corresponding to a sample from the df F. We consider a linear combination
of a function of these order statistics, an L-statistic, given by

n

I
Ln o Y 1Cnih{Xn-1i),
i=l

for some weights constant cni, ..., cnn and for a function h described by

Condition H. Assume a function h to be left-continuous and of bound-
ed variation on every compact subset of T. Suppose also that there is a point
c&ET such that h{c) —O.

For any function h satisfying Condition H, there exists a signed Lebesgue-
Stieltjes measure dh on T such that

" f dh, ifx>c,
[cx)
< 0, if x =c
—f dh, ifx<c
[i,c)

Associated with any such h, denote the induced total variation measure
by ///;, We note in passing that by the definition of the interval T and

due to Condition H, is a finite measure on [a, b] whenever F(a) > 0 and
F(—b) <1
The L-statistic Ln may be expressed in the form
ol Fn
(5.1) | HE~DInay
0 T 112

where Fn, Fn lare the empirical df, the empirical quantile function, respec-
tively, corresponding to a sample from the df F and Jn is defined by (1.9).
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The integral representation (5.1) may be considered as a functional on a class
of step functions. To extend it to larger classes of functions, the following
formalities seem to be useful. Define a finite measure v on [0,1] by

T d
v((c,d\) .-\] JdX,  VOgc<d£l,

C

and for any measurable map H :[0,1] —T define H(v) to be the image
measure on T. Note that for any df F

FIxg)
(5.2 F~1(/)((xi,x2]) = J JdxX, (xi,x2]c T,
F(xi)
where F~I(x) = inf{f € T : F(x) ~ t}. Thus, by the image measure theo-

rem and due to (5.2), for any function h€ Li(T,F_1(")) we have hoF~1s
Li ([0,1], v) and

.l L ]
JhoF~1Jd\: | nor~1av—] nar-1g)

(5.3) :\] hd(l\J ‘]dXIJ = Lh(3.F) =L{J.F).

Note that, by (5.1), Ln = L(Jn,Fn).
The following representation of an L-statistic goes back to Shorack [28]
and its various forms have been used later on in many papers.

Lemma 5.1. Consider a df F, afunction h satisfying Condition H, and
a Lebesgue integrable function J over [0,1]. Assume that

r i

(5.4) /1 JdX dji+ 1 f JdX dgh < oo.
(a,c) O [c6) F

Then the functional Lh(J,F) given by (5.3) exists and

(5.5) L{J,Fn) - L(J,F) = - dh  as.
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Proof. First assume that
(5.6) F@ =0 and F(b-)=1

One may rewrite (5.3) into the following form
(5.7)

Take any point d £ (a, ). Integration by parts for Lebesgue Stieltjes inte-
grals yields

. F
j JdX dh.
0

By the assumption (5.7), it follows that

d)
1im X[d) (t) j( \W\dX =0  V{ET.
0

Hence, due to (5.4), by the dominated convergence theorem we get

F(d)
lim\h(@\ f \Ndx —o0,
0

since |/i(d)| 9 Bn{[d, c)). Thus, letting d go to a, one may conclude the
existence of the first integral in the right side of (5.7). The existence of the
second one follows in the same way. Now, if the assumption (5.6) does not
hold, i.e., ifthe df F has a jump at one or both endpoints, then one may use
integration by parts for the corresponding integrals over the intervals [a, c],
(c, 5], or [a 6], respectively. The representation (5.5) follows by performing
integration by parts in the same way for all samples such that a<Xn.\ U
Xn:n < b whenever F(a) = 0 and/or F(b—) = 1 Now the proof of Lemma 5.1
is complete.

For the following statement, recall the definition of the symmetrized
empirical df Sn and its expectation m, respectively given by (4.2) and (4.3)
above.
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Proposition 5.2. Consider the L-statistic Ln corresponding to a sam-
ple from a df F and with a function h satisfying condition H.

I. Assume the weights constant to be given by a score function J (see
(1.1)) such that the representation (5.5) holds. Suppose also that there exists
a B.f.s. B and afamily of operators {4>e: e > 0} such that:

(i) the empirical process an given by (4.1) has aa sample paths in B
and the sequence {an: n ” 1} is uniformly C(W)-tight for some class of
bounded subsets c(B) of B, i.e., for every e>0 there exists K GC(B)
such that

(5.8) s%p Pr({an€Kc}) g €

(if) for every e> 0 and for all sufficiently large n ~ 1 there exists a subset
Ant of U having Pr(™4,,e) > 1—e on which

Fn
Ae(Sn) - $Em) = / JdX-
F

(iii) for every e> 0, maps B into Li (T, p/fi and 4f is C(B)-differentiable
at m with the derivative

&e(™)(f) = a(F)(-) f = af,
for all f £B.
Then the L-statistic Ln satisfies the central limit theorem, i.e.,

(5.9 MLn-L(J,F))-+>N(0,a2(a,F)),

where
a2(a,F) HAS) —F()F(s)]a(b)a(s) h(dt) h(ds).
=l

Il. Assume the weights constant to be arbitrary and let the representation
(5.5) hold for all J —Jn, n ™1 given by (1.9). Suppose also that there exists
a B.f.s. B; a normed space of functions (0, || *|]) and an operator $ such
that (i) of I holds;

(i) ¢(In:in~ 13 CO and there exists JE© such that \Jn—s;; — 0;

(i)

n
<HJI’1,SI’1)- $(J,m) :JJnd\, VoA

F

(iv) $maps 0 x B into Li (T, ph) and is C-differentiable at (J,m) with
the derivative

QS m)(0,/) = a(J,F)(-)f = af,
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for all f 61 and 6 £ 0, where C= {B x K : B isaball in ©,
KeC{s) .
Then the L-statistic Ln satisfies the central limit theorem, i.e., (5.9) holds
with L(Jn,F) instead of L(J, F).

PROOF. We prove the first part only because the second one is analogous.
Due to the representation (5.5), we have

n
Vn{Ln—L(J, F)) = y/n\T JdX+aan anadh
F
=:rn + (an,a).
Note that
<an,a>= —=
yjin
where YT, ..., Yn, ... are independent identically distributed zero mean rv’s
with E = o02(a,F). Due to the classical central limit theorem our task is
to prove that
(5.10) nI|_r.gorn = 0 in probability .

The remainder in the differentiation of the operator is
A6(/) = ®(m+f)-$t{m) -af,

for all /6 1. Then, by the assumption (ii) and since a,, —-y/n(Sn—m),
we have on the set Ant

rn <e(m) + aan/\/n}dh

- y/n{Ac(~an/*/n)}dh.
T

Choose an arbitrary number e > 0. In virtue of the assumption (i), there
exists a set K eC(B) such that (5.8) holds. By C(B)-differentiability of $e,
there exists a number N > 1 such that

Vn||AE(//vIn)||LI(TiAi) < e,
uniformly for / €K and all n}IN. Therefore, we have the inequality

Pr({[rn|*e}) ~ Pr(*H+ Pr({a, GKc}
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. pe (oo sin\kt(-an/\I\diih* ZtA) ~ e
T

for all n*N . Since e is an arbitrary number, the desired relation (5.10)
holds true and the proof of Proposition 5.2 is now complete.

Now, we are ready to give the proof of the first main result.

Proof of Theorem L1.1. It is based on the part | of Proposition 5.2.
First note that the representation (5.5) holds by Lemma 5.1, since (5.4)
follows from (1.2) and (1.4). To verify assumptions (i)-(iii), we are going to
use Corollary 4.4 and Proposition 3.1. For the B.f.s. 1 take a weighted B.f.s.
(Li(T,Bh))wpg = Li{T,wPtonh), where

(5.11) wpg = Fpl2- U2X@0 + (1- ~)9/2 U2X[chy

Then, by Corollary 4.4 and (1.2), the assumption (i) holds with the class
C(B) being all norm compact sets of Li (T, wRdfj.n). To define the family of
operators {4>£: e > 0}, recall the linear bounds in probability for the empirical
df Fn (see van Zuijlen [35] for the case when F is an arbitrary df); namely,
for given an e > 0 there exist Me£ (0,1) and a subset Ant of 12 such that
Pr(>1,,f) > 1—e and on an(:

\Sn(t)\i\m(t)\/M..  Vier.

Moreover, by the Glivenko-Cantelli theorem, for any 7 6 (1/2Vsupt |m(t)|, 2
there exists a finite number N such that a.s.

IS, ~ [FL()-F()[+ m(@)] g7,  VIET,
and all n~N . Define a family of functions {(j)e:e>0} on T x E by
[X|A[m (i)[/M eAr
(5.12) (e(t,x) := Jc(s,t)ds, tET, x£R,
M<)I
where
(5.13) Je{s,t) = J(s)x(a,c)(t) ~ J(! ~s)X[c,b)(1), se[o,i], teT.

Define a family of superposition operators {$e: e> 0} by (3.1) and note that
the assumption (ii) holds. We will show that the assumption (iii) holds, too,
using Proposition 3.1 for the B.fs. 1 = Li(T, fih), for the weight function
w = Wptg given by (5.11), for the sup-measurable function (>= <f given by
(5.12), for /o=m and a*°* = JoF. Note that 4e(m) = 0 and (3.3) is true due
to Lebesgue’s theorem on derivation of the indefinite integral and by (1.3).
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It is easy to see that (3.4) is nothing else than (1.4) and rriwvRq€ In (T, p/J
because
Imwpa\ i Fp/2(l —F)g/2 G Li(T,Hh).

All what is left is the verification of the most tedious condition (3.5). Using
the properties of the number 7, by (1.4) it follows that we have

I<kE(m + x) —4e(m))|
|m+x|A|m|/ME |m+x|Alm|/ME

= CIX(a,c) I SP/2~1/2ds + C2X[ch) I Soleis
\m \m

(5.13) =: C]lpX@ac) + C2lgXch)-
We estimate the integral Ip only, since the estimation of Iq is identical.
Invoking the inequality (p > 0)
llalp+1 —|6]p+11~ (p + 1)2p[\a-b\p+I+\b\p\a-b\],
we arrive at
|[m+x|

2 m + :rlptl —m|p+1

p+ 1im+ x\p/2+1/2 | |m|p/2+1/2
A 2p+\WX\[\X\p\rnv-pr 2~ 2 + \m\pl 2~ 112].
For all x such that \m+x\ * |m|/Me, we have X\ * (1+ 1/Me)\m\ and
Ip S 2P+1[1+ (L + I/M £)]Im|p/2-1/2]:r].
Otherwise, \\ A (1/Me—I)|m| and
\nV/Mt
Ip = J sh-rds - D(Mep/2* /2 - 1)\m\pl2- X 2\x

From these we get the bound

IP g CRie\x\\m\pl2~1/2,

for some finite constant CPE. Returning to (5.13), one may conclude that the
desired condition (3.5) holds true. Thus, by Proposition 3.1, the superposi-
tion operator  maps Li (T, tOp™p/j) into Li (T, p/J and is C*-differentiable
with the derivative

K(rm)f =JoF-f
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for every e> 0. Since h\(T,Wp~(ph) is order continuous B.f.s., by Theorem
4.2 in Dodds and Fremlin [4] every norm compact set is L-weakly compact set
too, i.e., C(B) C C1. Thus, the assumption (iii) of Proposition 5.2 is satisfied.
Now, the statement of Theorem 1.1 is a consequence of Proposition 5.2 and
this also completes the proof.

We conclude with the proof of the second main result.

Proof of Theorem 1.2. We will deduce it from part 1l of Proposition
5.2. Assume first that p> 1. To check the representation (5.5) for J —Jn,
one can verify the condition (5.4) of Lemma 5.1. Using Holder’s inequality,
the image measure theorem and Muckenhoupt’s weighted version of Hardy-
Littlewood maximal theorem (see (3.20) for the case r = p', J —Jn and
v=dF(ph)/d\), we have for the first integral in (5.4)

F

/ Ind\ dph = \WEx(a,c)\Lp(nh)yw Jn\\L, (F (Bh))
@c 0

= Lp®h)\WJIn\\Lp,(F(vh)) < -

Since the estimation of the second integral in (5.4) is analogous, by Lemma
5.1 we conclude that the representation (5.5) holds for J = Jn. To verify the
other conditions of Proposition 5.2, take a B.f.s. B = Lp(T, ph), a normed
space 0 = Lp([0,1], F(ph)) and a superposition operator 4>defined by (3.9)
and by a linear family of Carathéodory functions €ion 0 x Kx T defined by

<p(J;t,x) = \]FiJc(s,t)ds,

where Jc is given by (5.13). The assumption (i) follows from Corollary 4.4
and (1.10) with the class C(B) of all norm compact sets in 1. Since the
assumption (ii) is obviously satisfied and it is easy to see that

Isn(t)! Faa(t)
$(JIn,Sn)(t) - ~*I,m)() = j Jofs,t)ds= | Jnd\, VieT,
[m(t)] F(t)

we have to check only the assumption (iv). For this purpose we use Propo-
sition 3.6 where the pair of B.f.s.’s is taken to be ® = LP(T,p.") and 12 =
Li (T, ph), 0 as above, fo=m, 99=J and a=JoF. Then the generalized
dual space B2/B1 = L7(T, p”) is order continuous because we have assumed
p> 1. It is plain that

[m (t)+x]
M$@J, m)(t) =sup \ [ Jc{s,t)ds
X

\m(H\
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where M J is a Hardy-Littlewood maximal function (1.7). Thus, (3.10) is
a consequence of Muckenhoupt’s weighted version of the Hardy-Littlewood
maximal theorem (see (3.20) for r—p' and v=dF(ph)/d\). Since <f>(J,m)=0
and (3.12) holds by Lebesgue’s theorem on derivation of the indefinite inte-
gral, by Proposition 3.6 one may conclude that € maps bp’([0,1], F(ph)) X
Lp(T, ph) into Li(T,//l,) and $ is Fréchet differentiable at (J,m) with the
derivative
&(J,m)(e,f) = JoF-f.

This yields the assumption (iv) with a —JoF, and by Proposition 5.2 we
may infer that the statement of Theorem 1.2 holds in the case p> 1. For
the case p = 1 one may follow the pattern of the previous case only using
Proposition 3.4 instead of Proposition 3.6. We omit obvious details and
Theorem 1.2 is thus established.
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MODERATE DEVIATION OF A BRANCHING
WIENER PROCESS

P. REVESZ

Dedicated to Professor E. Csaki on the occasion of his 60th birthday

1. Introduction

Consider the following model:

(i) a particle starts from the position 06 and executes a Wiener

process W (t) €
(if) arriving at time t —1 to the new location W(1) it dies,
(i) at death it is replaced by Y offspring where

P{Y=I}=pi (1=0,1,2,..)

and

1=0

(iv) each offspring, starting from where its ancestor dies, executes a Wie-
ner process (from its starting point) and repeats the above given steps
and so on. All Wiener processes and offspring-numbers are assumed
independent of one another.

A more formal definition is given in Chapter 6 of [3].

Let A C Rd be a Borel set and let A(A,t) (t—0,1,2,...) be the number
of particles located in A at time t. Then

B(t) = X(Rd,t)
is the number of particles living at t and {B(t), i —0,1,2,... }is a branching

process. From now on we assume that

00
1<m —  kpk <o00
k=0
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and

0<a2="P(/c —m)2pk < 00.
k=0
It is well known (cf. [2]) that the limit

t—=m m
exists a.s. and
(1.1) E Brﬁta B =o(m-Y2) (i=1,2,.)
where B is a non-negative r.v. with
(1.2) Efl = 1,
(1.3) P{B =0}=q

and g < 1 depends on the distribution {pk}-
It is easy to see that

(1.4) E(X(A,T)\B(T)) =B(T) J <p(x, T)dx

where
Rx,T) = (x, T) = (@7TT)-d 2exp (- * ) .

(1.4) suggests that X(A,T) as T —too should behave like the right-hand side
of (1.4). A result, saying that it is indeed so, is the following

Theorem A ([3]). Let
C(x)=C(xi,x2,...,xd)=

= {y=(yu vz, mme,yd) mxi - Vivi - (*= 1,2,....d)}

\(x,T) =\(C(x),T)
and x = x(T) £ Zd be a sequence with ||z|| ~ T7 (0~ 7~ 1). Then for any
£>0
p " rp(co—27—2e)/2 A(r;‘f) mH(C(x),0,T)B £1 Uexp(-CTA
where C > 0,

P(x —y,t)dx if t>0,
H(A,y,t) = A
(A.y.D) 1 if t=0andy£A,
,0 if t=0andy£A
and 5 is a small enough positive number.
In case x —0 we get the following consequence
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Theorem B. For any e >0 there exist aC =C(e) >0 and a5=0(e) >0
such that

P TI  A@T)@uaT)az- B 1] "exp(-CTs
m

forany T =1,2,....

It is worthwhile to mention that this theorem is the best possible in the
following sense:

THEOREM C ([3]). For any C> 0 there exists a S—6(C) >0 such that

Note that in case ||x||=T7 (j> 1/2) Theorem A does not say too much
on the limit behaviour of m~7\(x, T). The case ||x|| T2 is studied by
Biggins [1]. In fact it is proved that the limit behaviour of A(x, T) is similar to
that of the right-hand side of (1.4) even ifx is large but no rate of convergence
is given. In the present paper we intend to study the rate of convergence
when ||x||*>T'/2 but |rr|| <AT. The expression “moderate deviation” refers
to this fact.

Our main result is the following:

Theorem. Let h—h(T) (T=1,2,...) be afunction with
(logT)I+EA /i~ T(logT)_£1 (e>0).

Then
AN _ _ A >
h(T)(ogTyiserz S0P, " h(V (X T))-1-8 " (logT) £/41 <T°
1¥117h

Consequently,

A( ) _
£2 h(T)(logry +&2 xezFl (VOTH~1—B =0 as.
t

In order to enlighten the meaning of the above Theorem we give two
examples.

Example 1. Let

h=T70ogT) " (0~7<1, £50).
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Then
J 17 AKX, T)
" Ms.T))- B ~ (logT)-£4 U 2
(log T)2+2e ;gfd mi s-1)) (logT)-& '
| \
[IX[|gT"i'(logT)1+£
and
yl-7 AX,T)
! =0 as.
TMOO (logT)2HE  soby T "
lIx-HgT-TogT) 1+

Note that this result is clearly stronger than Theorem A and slightly
stronger than Theorem B.

Example 2. Let
h=T(logT)_Q (a>1).

Then for any e> 0

pjOogT)“-1- sup - B "\ogT)~eA £T-2
xezd rni
[IX[[*T (logT)-Q
and

. £ AX,T) L _
lim (logT)2 sup 20 (<pfx,T) T-B =0 as.
T—00 Xez m *
Ix11=T(log T)~a

The proof of the Theorem in case d > 1 is the same as in case d —1
Hence the proof will be presented only in case d= 1

2. Two lemmas

Introduce the following notations:
X
s(.x) = (21ry~-12 | e~ut2du,

—00
£+1/2

Ji=Ji{x,T)= | (p(u,T)du,
X—4/2
J2=1J02(x,T,t) =
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I QTR 9=

-00 \r-1/2
+00

=J (Ji(x-y,T-t))2(p(y,t)dy.
Lemma 1. Assume that |x|~*2T. Then

(2-1) exp(-" )N ’T)=M=exp(4r)r""T)

Proof. Clearly

1/2 1/2
Ji= | yg+uT)dt =¥xIT) | exp(-y) exp(-*)du,
-1/2 2172
/1 [ P2\ /1 1\
@P\ 8T)S“p(-ff) = (-272)
and
12 . an/ /N ( x\\
_OT\gy-  \exP\2TJ1- eXp("27))
| exp(- 1y )
- 1/2
Since

AMgW -40) (N)

\4Tz

we have (2.1).

Lemma 2. Assume that

|<|’x|’<;—T— and 0<i<
l°g T logT
Then
2lx| . ix2
nR=exp(“A-fAN (1 + —)(™Ma;,T))24
(2.2

/21\il2 1 T (YA
+y H exp(-2r)-

243



244 P. REVESZ

Proof. By (2.1)

1
| Gigx-y, T-t) 20000y <
-1*1

el
_ exp(z(T~—t))(|qX-yiT~0) Wy A

-i%i
j (Px—y, T —t)2ip(y, t)dy
where
fo (P (x-y,T-t))2<p(y,t)dy =

27r)-F2r ]/2/
T-t s £~ ¢ + £1))n~
[ eqH (

400
@m=“32r 12 [ x T+t

Tot PP Tar P pyroy U2y

")
= 7)-1T2-i2)-12e xp (-") =

= (P(x, T))2T(T2- 12)-Y2exp (" - N
M TH2(1+ ) exP (") m
Now we have
k= \] (Ji(x-y,T -t))2<p{y,t)dy+

11
+ J (Ji{x-y,T -t))2ip(y,t)dy.
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We also get

I (Ji(x~y, T-t))2ip(y,t)dy”
vi“M

=/ Plytydy=2(l-8(~L))"

I1/=IxI
< (2tyr2 i xf \
vm/ X 21 /'

Hence we have (2.2).

3. The moments of A(x,T)

Let Pi = Pi(T), P2=P2(T),..., PR(T) = Pb(T)(T) be the locations of
the B(T) particles living at time T in an arbitrary but fixed order. Con-
sider the paths (Wiener processes) {Wi(t),Wz2{t),... O AT}
of these particles, i.e. WAT) = P;(T) (*= 1,2,..., B(T). Define a partition
Ci,Ca,..., Ct of the set {Pi,P2,... ,PR(T) } as follows: Pj EC, if

Wj(i) = Wi(i)  for inl-

and for any e > 0 there exists a 0< £1 = £i(e) < e such that

Wi(t+ E1)#W i(t + £i).
Finally let
if Pi&C(x),
if P2EC(x)
and
ICi1—Cj.
Note that
Ec,.= (m—d)mT_* *=1,2,..., T—1).
Since
B(T)
A®T)=£ i,

by Lemma 1 we have
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LEMMA 3. Assume that \x\"2T. Then

exp(“8 M (rm)jB(T)- JIB(T) =
=E(AX, T) IB(T)) I exp(~ )R x,T)B(T).

Consequently,

exp(-M)</(a:,r)mr g EAXT) *exp(jjlOv?(x,T)m'7.

Lemma 4. Assume that

I<|x]|<
logT
Then

(3.1) EA2(X,T) ~(2 + e)(m-1)m2V (x,T)

for any £> 0 if T is big enough.

Proof. By Lemma 2

Vhij =J2(x,T,k)Z
2% AR
=0 1, o1)(' E)<cx 1))z
L (K21 (X2
(v) R P -2

T
A< and 1<|x
ck, log A X logT
Hence
[ T/logT :
R E E ™=
Y fc=i Pjeck
T/logT
=(m—l)ym7 m~kJ2{x,T,k) *
Jk=l
T/logT

Am-)m T(™(x,T))2 exp A(Iogm-’\Z).)(I +
Z1 '
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T/IogT

1 /2\ /2
m  Ym 1—L ])/ *D <
N+ e)(m —I)m7(<AET))2
for any e> 0 if T is big enough.

Since
Eg(f' E E 7)
k=T/log TPJECk
g I T
=l Dl cf) A (m~ Hm7exp (g )¥(S|IT) ~
lc=T/logT 7 k=T/logT

E@+e)(m- Dmr (</3(x,T))2,
we have (3.1).

4. Proof of the Theorem

Let yi, y2, mm. yB(t) be the locations of the B(t) particles living at time t.
Let Aj(a;, T, t) be the number of those offsprings of the i-th particle which
are located in x at time T. Clearly

B(1)
a(z,t)=
i=l

Lemma 5. Let K> 2(logm + 2) and

Qi =i2i(i,if) = {jrii "Ks, i=1,2,...,B(s), s"t}.
Then
(4.1) PAJAL-e“*
foranyt=1,2,... .
Proof.

P{il-iii} "EIrS(s)exp(-")'j ue~l.

''s=t 7

Hence we have (4.1).



248 P. REVESZ

Let
J7(t) = 7{X(x,s), reell, s=0,1,2,... ,i}

be the smallest er-algebra with respect to which the array
{A(x,s), xGK1, s=0,1,2,... £}
is measurable.

Lemma 6. Let

I T
™= (logT)'+°
t A logT (A>0),
K >2(logm 4 2).
Then on the set Q\(t,K) we have
42 (@- AmT~t(p(x, T) G e(xi(x, T,)\T(t)) g 1+ A)mr-V(~, T),
where

2KAW\log T + 2K2A2(log T f
A=A(AK,xT)= Aol 2Az(log

Proorf. Observe that on the set Q.\(t,K)
T
-yili + Kt <2(T —t).
\X-yil i (log T) 1+ (T—1)
Hence by Lemma 3
E(Aiix. TAmt))"

- exp(4(T—t))v(x-yuT ~t)mT~t U
KA logT\ Tt -yj, T -t
AeXpA_IrOI+ 99T x.Tym - <p(zp(§J’T) )

Since
V>(x-yi,T-t) j T ~12  ( ifix-yirz 22\\s
(p(x,T) = \T~—)  exp = 2\-Y"T ~t) =
< T N2 ( x\yj\ x2t |y A
\T-t) eXP\T-t +2T(T-t) +2(T-t)) =
T a]jzexp/\x\KA logT x2AlogT K2A2(\ogT)2
T-t +2T(T-t) +  2(T—t)

AlogT 2\ x\KA log T + K2A2(log T f
S(> J ) exP A d (log gl +A,

<

we have the upper part of (4.2). The lower part can be seen in the same way.
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Lemma 7. Under the conditions of Lemma s on the set Oi(i, K) we have
E(A?0r, T, t) IF(1)) » 2+ e){m- DA+ 2A)m2(T"V (2, T) »
~a3m —1nmea2r ~N\ip(X,T))2.
Proof is the same as that of Lemma 6.
Lemma 8. Under the conditions of Lemma 6 on the set fii(i, K) we have
(1- AWABItM x, T) T E(X(x, T) IF(t)) U
g(l +A)YmT-tB(t)(p(x,T)

and
Var(A(x,T) |F(t)) » 3(m —L)m2(T~"B(t)<p2(x,T).

Proof of the Theorem. Let

IC= {|A(s,T) - E(A(X T) IT())\ » mBA(Var(A(x,T) |*(i))) V2}.

By Lemma 8

where
C=11A(XT) - E(AAT) IF(t)\* mTh(x, T) (3(m- 1) nNY
M = { A)—r;]\L—I'é(m— 1 )’n\‘ll)/'IZm-’\4<

¥

and M isthe complement of M. By Chebyshev inequality on the set ii] (t, K)
we have
P[M IT(t)} g PyC 1T (1)} N m-il/2.

Hence
A(X,T) B(t) . B(Y) ATV Aom~ A
( MTipx,T)  ml t M —=hrhgy tam=tdy <m-r2
and
A(x,T)

" h(T)(logT)1veiz ygrg MTip(x, T)
2447 (r)

if T is big enough. Choosing A of Lemma 6 big enough we have the Theorem.

-B ~(logT)-#4} » m~t/2h(T)
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ON LAST EXIT DECOMPOSITIONS OF LINEAR DIFFUSIONS

P. SALMINEN

Dedicated to Professor E. Csaki for his sixtieth birthday

Abstract

Let A be a regular one-dimensional diffusion living on an interval 1 Q 3R In this note
we study the last exit decompositions of X at a fixed time t and at the life time. It is seen
that these decompositions can be simply proved by using symmetry properties of X. Some
further implications are also presented.

1. Introduction and notation

Let X = {Xt; t” 0} be a one-dimensional diffusion (in the sense of Ito
and McKean [9]) living on an interval / QJR We assume that X is regular, i.e.,
Px(Hy < 00) > 0 for every X,y Gi1 where Hy = inf{t: Xt =y} and Px is the
probability measure associated to X when started from x. It is proved in It6
and McKean [9] p. 149 ff. (see also McKean [11]) using the theory of eigen-
differential expansions that X has a transition density, denoted p(t-,X,y),
t>0, x,y G1, with respect to its speed measure m, i.e., for every t >0,
X G1 and / Ggeb(1) (:= the set of all bounded real-valued Borel-measurable
functions on 1)

e X{f{{Xt))=j p(t; x, y)f (y)m(dy).
I
The function p isjointly continuous in all variables, non-negative, and, which
is important here, symmetric in x and y, that is
p(t-x,y)=p{t;y,x) forall x,yGlI.

The Green function is given by

0
9a(x,y) :- \T e~atp(t; x, y) dt.
0

1991 Mathematics Subject Classification. Primary 60J60; Secondary 60J25.
Key words and phrases. Last exit time, bridges, excessive transforms, scale function,
speed measure, Green function.
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Using the fundamental increasing and decreasing solutions ip and ip, respec-
tively, the Green function can be expressed for x y as

9a(x,y) = w~lipa{x)<pa(y)
where

mam=  (x)ipa(x)- Ipa(x)ft (x)= va (®)  (x)~ Ipa(x) 8 (x)
is a constant, so called Wronskian. Here, letting s denote the scale function,
e.g.,

. _ pira Va jx) ~ (V) o _ i Va(V)~Va(g)
P (0 = W 0 -sy) Va()=Im s(y)-s(x)

Recall also the usual normalization wo= 1 Further, p satisfies the Chapman-
Kolmogorov equation for all s <t

p{t\x, y) = | p{u-,x,z)p(t-u;z,y)m(dz).
/

Existence and some regularity properties of p have been proved also by
Rogers [14] for diffusions which can be obtained as solutions of stochastic
differential equations with smooth coefficients.

Recall further (It6 and McKean [9) p. 154) that the redistribution of Hx
has a density ny(t,x), t> 0. From the eigen-differential expansion it is seen
that ny(t,x) is continuous (at least) in t and y, non-negative, and satisfies
for all s <t

(1) ny(t,x) =J p(u-,y,z)nz(t —u,x)m(dz),

where p is the transition density of the diffusion obtained from X by Killing
it at the time HXx.
For given x and t >0 introduce

Gy =supfu<t:Xu=x} and Dp=inf{u>t:Xu=x}.
Then the celebrated last exit decomposition says that for u<t<v
PX(Gpedu,xtedy,D?edv) =
=p(u;x,x)ny(t—u, x)ny(v —t, x)du dv m(dy).

This is usually stated without Dp which enters into the formula by a standard
application of the Markov property. Last exit decompositions are valid, of
course, for very general Markov processes. In Getoor and Sharpe [5], [6]
the result is proved for Hunt and standard processes. For continuous time
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Markov chains, see Chung [3], and Williams [18]. In Maisonneuve [10] last
exit decompositions are put into a general framework, called exit system,
which shows connections to excursion theory. This is further developed in
Getoor [4] and Getoor and Sharpe [8]. For Brownian motion see Chung [2].

In this note we prove (2) using time reversal. Although the approach is
natural and intuitive we are not aware of any work where this is exploited.
The idea is not, of course, new. In fact, in Williams [18] p. 222 this point
of view is taken up for continuous time Markov chains. In spite of this we
believe that it is worthwhile to present the following study mainly due to its
simplicity.

Our approach leads also to complete characterizations of the laws of the
processes {Xu: 0 u” Gf}, {X,: GfFrun <} and {Xu: t N Df}.
Moreover, we prove, in the transient case, last exit decompositions at the
life time. These provide a new derivation for the distribution of the last exit
time; a result originally due to Pitman and Yor [12] in a special case, see
also Getoor and Sharpe [7]. For other proofs see Salminen [15, 16].

2. Time reversal of diffusion bridges

We consider X in space-time, that is, we study the process X = {(Xj, t):
t~ 0}. Assume that Xg=a and let B € /. Introduce

ul\x,B), O0ru<t,x€l,

- . =i N
h{x, u) :=h(x, u; B, t) := j otherwise.

Using the Chapman-Kolmogorov equation it is seen that h is excessive for X:

0MNu<v<t,

Extuth (Xv,v,B,t)) = { otherwise

For / GBb{l) and u <v At let P{fu be the semigroup defined by

C/W==g,(/M. - ) ) 1 ~)

Here and in many cases below we consider X in its canonical framework
and let u> [0, 00) =1 denote a generic element in the space of continuous
functions. Let (X¥T13 be the strong non-time-homogeneous Markov
process induced by P,,u. We refer to Sharpe [17] p. 298 and (62.19) Theorem
p. 296 where existence is proved in the general framework using multiplica-
tive functionals. Because 0 < h <oo on / x [0,t) and equals zero elsewhere
X atP lives on / x [0,t). Due to the symmetry of the transition density p
the process X a'?* has a very clean time reversal property stated in the next
proposition. The sign means that the processes on the left- and the
right-hand side are identical in law.
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P roposition 1.
{X"f:0<u<t} ~ {X"a:0<uc<t}
Proof. For 0< u\ < mm<un <t we have

P"’113(u(t - ui) edyi,... ,uj(t —un) £ dyn)
= Ea(h(yu t-ui-,B,t)Juj(t-un)edyn,... ,u(t - ui) Edyi)
=p{t - unsa, yn)m{dyn)p(un- un-p,yn,yn-i)m(dyn-i)

m.. -p(Uz2-u 1;yz,yi)m(dyi)’p;‘;t"\’g’"éf;)
=p(ui;B, yiym{dyi)p(uz - up, yuyz)m(dy2)
. . p(t-un-yn,a)
m.. m(un- un-i-yn,yn-i)m(dyn-0 o{t-a,R)
= P, MsM ui) Gdyi,.. .,uj(un) e dyn). O

Notice from the definition of P”*v that the finite dimensional distributions
of X a,t' are obtained from the distributions of X by conditioning on Xt = R.
Due to this and the next result the process is called an X-bridge from
a to R having the length t.

P roposition 2. lIJT;J(X utB==R as.

prooF. Clearly, by continuity of paths, lIJi_nQOXuz a a.s.. The measures

PQ and P“™*3are equivalent when restricted to Tu := ofui(u) : 0" v " u},
u<t, and, hence, a.s.

limXftR=a.

U0

The claim follows now from Proposition 1 O

Remarks, (a) It isassumed above that B € I. However, it is also possible
to take R =r, say, where r, the right-hand end point of I, is supposed not
to be in I. Assume, furthermore, that Hr < 0o with positive probability
(strictly speaking, here Hr :=inf{u: XM=r}) and let

é nx(t-u;r), O0*u<t,xel

h(x.u):= \' 0, otherwise.

From (1) it follows that h is space-time excessive for X, and we can construct
X at,r. Intuitively, X at,r is obtained from X by conditioning X to hit r at
time t. Proposition 1is true also in this case. The process X rt’Qis governed
by the measure obtained as a weak limit

mrta iimPAiQ.
BT
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Existence of the limit follows from the fact (Itd and McKean [9] p. 154)
oy = i PAEXY)
D= sn) —s(y)
where s is the scale function of X. Notice that s(r) < oo because Hr < 00
with positive probability.

(b) We give here a more informative construction of the process X rta
introduced above. Let Z be the process obtained from X by conditioning X
not to hit r. Then Z can be realized as an h-transform by taking

f s(r)-s(.x), if Hr < oo as.
\ Px[Hr=o00), otherwise.

Hence, Z is a diffusion. It can be proved that r is an entrance-not-exit
boundary point for Z. In particular, this means that Z can be started from
r and it never returns there. The diffusion bridge Zai,/3 can be constructed
in the usual way, and straightforward computations show that

3) Xatls ~ ZatR.

Moreover, Zr , t is well defined and (3) is valid also for a =r.

(c) The absolute continuity property of the measures PQand point-
ed out in the proof of Proposition 2 extends by standard arguments to be
valid at stopping times. To formulate this let T be a stopping time and Ft
an Fr-measurable bounded random variable then

A ) N p(t —T;XT,a) _
Ea™(Ft; T <1)=Eq( o{t:a,8) Fo; T <t).

3. Last exit decompositions and distributions

Let X be a regular diffusion and Gf the last exit time at x before a fixed
time t. We start with by proving the last exit decomposition at a fixed time.

P roposition 3. For t> 0
Px(G'i 6 du, Xt e dy) =p(u; x, x)ny(t —u,x)dum(dy).
Proof. Prom Proposition 1we obtain u <t

Px(ct >u, Xt€dy) =Px{cx >u\Xt=y)p{t; x, y)m(dy)
=P X)y)m (dy)
= Py, tx(Hx <t- u)p(t; x,ij)m(dy)
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= Ey(P" Hx <t —u)p(t] x, y)m(d
y( >\ )p(t] X, y)m(dy)
t—u
=m(dy) j p(t—v;x, x)ny(v, x) dv.
0
Differentiating with respect to u gives the claim. O

Let X be the diffusion obtained from X by killing at Hx and X x'uy

the X-bridge from x to y having the lenght t —u (see Remarks (a) and (b)
above). For Brownian motion the second statement in the next proposition
can be found in Revuz and Yor [13] p. 454.

P roposition 4. (a) Conditionally on Gx =u
{Xs: 0"rv<Gf} ~ {XXux: 0”u<u}.
(b) Conditionally on Gf =u and Xt =y
{Xv: Gk*rv<t) ~ {Xx1I-Uy: o rv<t-u}.
PROOF, (a) Consider for 0 < t\ < mmm< tn

Px{xti Edxi,..., Xth Edxn, tn "G x, X tE 1)
= | PXtywu>tiy B dx\,... ,uj(tn) Edxn, tn < G x)p(t\x, y)m(dy)
/
= j Vytx{u(t-tn)edxn,..., u){t-ti)edxi, Hx < t-tn)p(t-,x,y)m(dy)
t-tn
= 1 m{dy)p(t-x,y) j Pytx(HxEdu)
[ 0
PXjTM™* ~1In) Sdxn,..., uj(t —t\)E dx\)
t tn

=1 m(dy)p(t\x,y) j Py'tx{HxEdu)

oPX1 U.x(ui(t—u —tn)E dxn,... us(t—u —ti) €dxi)
t-tn
= j"m(dy)p(t]l x,y) j Py’tx(Hx Edu)P x’t~"u'x {u>(ti) Edxx,... ,uj{tn) Edxn)
/ 0

{

j m(dy)p(t;x,y)\] PxMy(Gx Edu)Px'u'x{u(ti) Edxx,... ,uj(tn) E dxn)
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'f Gdu, Xt€ I)PxuXx(u(t!) e dxx,..., w(tn) Gdxn).

The second equality is based on Proposition 1, the third one on the strong
Markov property, and the sixth again on Proposition 1 The claim (b) can
be proved very much in the similar way, and we leave it to the reader. O

Assume now that X is transient and let ( denote its life time. Define the
last exit time at x:
Gx:=sup{u < £: Xu=x}.

Let k denote the killing measure of X, and recall the formula (see Ito and
McKean [9] p. 184 or Borodin and Salminen [1])

(4)

A

Below we give last exit decompositions at £. In the first one X dies inside the
state space I, in the second one X dies at a killing boundary point or drifts
toward a boundary point, and finally these results are combined to give the
distribution of Gx.

P roposition 5. Foryel
Px(Gjf Gdu, Gdy) =p(w, X, x)Py(Hx < 00) du k(dy).

Proof. From (4) it is seen that X conditioned to have £=u and X*_ =
y e | can be realized as X x,u,y. To prove the claim, we compute for t > 0 and
ye | as follows

00 00

V—tu=v
00 00

V—t U=V
00 u

00
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_ ; (u- Hx;x,x)
=/ E(p _ “Hx<u-t)Px((edu, XAGdy)
p{u; v, X)

= k(dy) i du \Tdvp(u —V; X, X) ny(V, X)

t 0
Q0

= Py(Hx<oo)k(dy)J p(u;x,x)du. O

Before proceeding recall that for y ~ x

=i -aHty = |im 9a{x.y)  90(x.y)
©) Pythx < oo) Iclllr(?Ey(e ) dzrl-r)\9ct(.x"*’3 go(x,x)"

Proposition e. (a) Assume that the right-hand end point r is not in

I, and that Hr < oo with positive probability or Hr = oo as. and LIjir>nCXu =r
with positive probability. Then

. _ p(s-,X,X)
PX{GZ Eds, lim Xu=r) ~ipo(r)To(x)

(b) For the left-hand end point | we have similarly

P(s-,X,X)

Px(G?eds, limXu=I)=
A u»C ipo{lHo(x)

Proof. We prove (a); the proof of (b) is similar. Consider first the
case Hr < oo with probability 1. Let P be the measure associated with
the diffusion Z introduced in Remark (b) above. The speed and the scale
measure of Z (see Borodin and Salminen [1]) are

(6) m(dx) =h2(x)rfi(dx) and s(dx) =h~2(x)m(dx),
respectively, where h(x) := po{x) = s(r) —s(x). Notice also that in this case
7o = |- The transition density p with respect to mh is given by
p{u;x.y)
™ PUXY) | eohi)
and
o(u: 1, Y) pu; % y)  ny(u;r)

itr hGOh(y) — My)
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Then, because £= Hr,

o
PT{Gf>v limXu=r)= I Px(Gf Gds, £6 du, limXt=r)
u-+C g J C
00 oo
= -J [ Pxur(GzZeds)Px((edu,limXt=r)
S=V U-S
00 u
=f j p*ur(Gueds)nx(u,r)du
u=vs=v

_J prux(Hx <u —v) nx(u,r) du

\%
OO

= [EpLu-HXXx) |-|I<<u—v)nx(u r \du
o PWr, x)

@ u—

I I P\?—S X}X’\Pr{er ds) nx(u,r) du
u=v5=0

00 U—v

I J p(u-s-,x,x) limPy(Hx 6 ds) nx(u, r) du.
p(u; r, x) jlfr

u=vs=0

Using the formulae for the transition density p given above, absolute conti-
nuity, and changing the order of integration give

) J(H < 00) J .
Px(Gy > v, LI)‘%Xu—r) —|y|trp s(r)-s(y) p(u; X, x) du

- lim <po{y)_ \.Tp{u\x,x) du.
jitr (s(r) -s(y))ipo(x)

The second equality follows from (5). The proof of the first special case is
now complete. Next assume that 0 < Px(Hr <o0) < 1 for every x 6 I, and
introduce
h*(x) := Px(Hr < o00) =
() =Px(Hr<o0)=
Then X conditioned by {Hr < oo} is a diffusion and can be realized as an
h*-transform of X. The speed and scale measure, m* and ,s* respectively,
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are as in (6) and the transition density, p*, as in (7) with h* instead of h.
Furthermore, for xy

T, yyde= R WY = M x¥n ")
0
giving
Vo (*) = s*(r) - s*(*) = Vo(r) .

Applying now the result in the special case above to the conditioned process
we obtain

PX(GS Gdt, J[n =r)= PX(JJiﬂ’] =r) PX(G% Gdi| lﬂ[ﬂ X,=7)
— h* * 1 dt :j I B A L
- h t! 1
CPEEXN o) mofn)(pa)

as claimed. Next assume that X drifts to r with probability one, that is, a.s.
Hr = oo and lIJ'_rgEXu: r. Then, of course, also a.s. £= 00. Moreover, ito= 1,

and b= s(r) —s(-). Let {r(n)} be a sequence increasing to r as n —00. For
7 > 0 we have

Ex(e_7G<) = Ex(e~7GC limX, =r) = lim Ex(e~7G<> Xc(n) = r(n)),

where £(n) = £Ai/r(n)=iir(,)Let and be the fundamental decreas-
ing and increasing, respectively, solutions associated to X when stopped at
c(n) :

VAHX)=V-y(X)- \VQ;E:((Q))))

ipilh)(x)=ip1 (x),
and especially for 7=0

Fn)(x) = (x) - Vo(r(n)) = s(r(n)) - s(i),
~0")(a;)="00(3:) = I-
Hence, using the first special case above and the fact that nIlrpmipa(r(n)) =00
when a > 0 (see I1t6 and McKean [9] or Borodin and Salminen [1]) we obtain
«7G2% i i=rY= h -
Ex(e"'*< iI_|»r(§1 Xj=r)= nI_|»r(1)1OG{‘\x,x) = G7(x,x)

&) P00
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proving the claim. When 0< Px(lim Xt=r) < 1 we can proceed similarly as

in the second special case above, and we leave the details to the reader. O
Proposition 7.

p{t',x,x) _  p{t;x,x)

go{x,x) (po(x)ipo(x) ("

Proof. Because P.r(G* < 00) = 1 and

Px(Gx£€dt)

[e]e]

) p{t; X, X) dt = go (x, X) = ipo{x)ipo{x)

the claim follows from Propositions 5 and 6. O

Remark. From Propositions 5, 6, and 7 we obtain under the made
assumptions on the boundary behaviour the following identity for the Green
function:

1 1 90(x,y) 1
go{x,x) ipofr)ipo(x) 90(x,X) Kay) + <Po(l)ipo(x)'

To explain this analytically notice that

[ 9 » i k{iy)= S My)+Ww pj/My) k(dy)
| | X

_ iba{x) V>o(f+)  y>0(r~)  Vo(x)
ipo{x) \Voi®) <Po(X) <Fo(x)
1 , yo(r~) i>0(1+)
go{x,x)  ®(x)  po{x)
We have used here the fact that ipo and ipo satisfy a generalized differen-

tial equation (see It6 and McKean [9]); it is also assumed that k does not
charge x. Consequently, we must have

wo = | =ipo(l)ipo {I+) = ij>o(r)(pQ(r-)
or, equivalently,
<ANi>0 ,(r-) = ipo(l)<PO(*+) = 0
which is not, perhaps, obvious when r, say, is exit-not-entrance or natural.
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DISTRIBUTIONS BASED ON SMIRNOV ONE-SIDED AND
RELATED RANK ORDER STATISTICS

JAGDISH SARAN and M. K. SUKLA

Dedicated to Professor E. Csaki for his sixtieth birthday

Abstract

This paper deals with the two-sample problem and investigates the joint and marginal
distributions of the Smirnov one-sided statistic, RmniA), the index where D”n is

achieved for the i11time, j), the length of the interval between the ith and the jth
maxima (1 ~ i~ j) and Qmn, the number of times D)nn is achieved.

1. Introduction

Let < X(2) < emw< A(m) and Y”) < Y(2) < mwe< Y(n) be the order
statistics from two independent samples of i.i.d. random variables having
continuous distribution functions F and G, respectively, and let Fm(x) and
Gn(x) be the corresponding empirical distribution functions. Let Z\ <Z2<
eee< Zm+n denote the ordered combined sample and let Ri denote the rank
of in the ordered combined sample. The statistical problem in question
is to ascertain whether or not two samples are from the same population
(i.e., F = G), and thus it is important to derive probability distributions of
various statistics when Hq:F = G is true. The Smirnov one-sided statistic
iS given by

Dmn = Sl%p{Fm(f) —Gn(t)} = { Ir{?)r% (k(m +n) - mRKk).

rnn |

This follows from Maag and Stephens [3] and also from Steck [7]. If
mnD+n = d, let R+m(i) denote the index of the point where fc(m-fn)-

mRk = d for the ith time (*=1,2,...), i.e, denotes the index where
D*m is attained for the zth time. Let denote the length of the
interval between the *th and the jth maximum (17 i5=i), i.e.,

Mmn(iJ) =KanU)~C (¥
and let Q”n denote the number of times ,» IS attained.

1990 Mathematics Subject Classifications. Primary 62G30.
Key words and phrases. Two-sample problem, lattice path, Smirnov one-sided statis-

tic, index of the ith maxima, length of the interval between the ith and the jth maxima,
number of times the maxima is achieved, Steck determinants.

0081-6906/97/$ 5.00 ©1997 Akadémiai Kiadd, Budapest
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The distributions of Rf*n(i), D  and have been discussed by sev-
eral authors viz., Vincze [9], Sarkadi [6], Steck [7], Geller [2], Steck and
Simmons [8], Saran and Sen [4] and Saran and Rani [5] in certain special
cases. In this paper it is proposed to investigate, for finite m and n, the
joint and marginal distributions of D+n, R+n(i), M+n{i,j) and Q+n, for
1=*=ji under the hypothesis F =G.

2. Path representation

The (m + n) observations in the ordered combined sample Z\ < Zi <
cem< Zm+n are represented by a minimal lattice path from (0,0) to (n, m)
with the kth step being one unit up or one unit to the right according as Z*
is an X or aY observation, respectively. It can be observed that after the
kth step up, the path is at the point (Rf. —k, k) and that k(m +n) —mR* is
m times the horizontal distance from (R* —k,k) to the diagonal y = mx/n.
Thus is m times the maximum horizontal distance from the path
to the diagonal y=mx/n. In the sequel we shall use the word ‘distance’ to
denote ‘horizontal distance’. Distances to the diagonal will be taken positive
if the point is to the left of the diagonal and negative otherwise.

The results obtained in Sections 4 and 5 also have an interpretation in
terms of the ballot problem. In that context A scores m votes, B scores
n votes, all possible vote sequences are (m}n) in number, and a path is
interpreted as a vote sequence.

3. Some auxiliary results

The following two results, needed in the sequel, are quoted from Bizley [1]
and Steck [7], respectively.

Lemma 3.1. Letp be the greatest common divisor (g.c.d.) of sample sizes
m and n, i.e., m =ap and n = bp where a and b are coprime positive integers.
Then the number of minimal lattice paths from (0,0) to (kb, ka) having just
t contacts with the liney = mx/n (not counting (0,0),) and having no points
above this line (where k is a positive integer) is given by (pkt where

(3.1) = coeff. of yk in the expansion of {1 —exp(—A\y —A2J2—. .. )}

and

(3.2) ja+b)\ ja )
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Lemma 3.2. Letbi 627 ~ bm and c\ » 2~ ~ cm be sequences of

integers such that i*bi*Ci*n + i, i=1,2,..., m. Tien
m+n TR
(3.3) PiA AQ allg=det & H*I—i*1
n j- *+1 1+
where
max(x, 0)

and j =21,2,...,m.

4. The joint distribution of D”*n,R"n(i), M +1Ji, j) and Q+n

LEMMA 4.1. The number of paths from (0,0) to (n,m) through the points
(x\,yi), (£2,2/2), (23,2/3) and (£4,2/4), Xi*nyi/lm, i=1,2,3,4; £1 "~ £2 7
£3 ~ £4, 217 22~ 23~ 2/4, that attain their maximum distance from the diag-
onal y =mx/n for the first, zth,jth and Ith (i.e., the last) time @ ai Uj »
Ny at (x\, 2/11), (£2,2/2), (£3,2/3) and (x4,yi), respectively, is the same as the
number of paths from (o0,0) to (n, m) through the points (£2 —£1,2/2 —2/1),
(E3 —£1,2/13 —2/1), (E4 —£j, 24—2/1) and (n —xi,m —yi) that are never above
the diagonal and, moreover, never touch the diagonal after (£4 —£1,2/4 —2/1)
except at (n, m) and having exactly (I —1) contacts with the diagonal up to
the point (£4 —£1,2/4 —2/1) °/ which the first (i —1) contacts occur up to the
point (x2 —£1, ji2 —2/1) and the next (j —i) contacts occur up to the point

(£3 '£1,Ja - yl)'

Proof. Let OP1P2... PimPj ... P{T (Fig. 1) be a lattice path from
(0,0) to (n, m) which attains its maximum distance from the diagonal y —
mx/n for the first, z , yth and the Ith (i.e., the last) time at P\{x\,y\),
Pi(x2,y2), Pj(x3,y3) and Pfix", yfi), respectively. Now we apply the following
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transformation to this path. The path segment OP\ is shifted up (m —yi)
units and shifted right (n —x4) units. Then OP\ is transformed to a path
from (n —x\,m —yi) to (n,m) remaining entirely below the line y =mx/n
never touching it in-between (as shown by TP\ in Fig. 2). Similarly, let
the path segment P1P2 ... Pi... Pj ... P{T of Fig. 1 be shifted down y\ units
and shifted left x\ units. Then it is transformed to a path from (0, 0) to
(n —x\, m —y\) not rising above the line y = mx/n and passing through the
points (x2-xi,y2-yi), {x3- x\,y3- yi) and {x4 -xi,y4-yi), each point
lying on the diagonal y = mx/n, and having in all Z—1) contacts with the
diagonal y =mx/n; the (Z—!)st contact occurring at the point (x4—x4,ys4 —
yi), the (j —I)st contact at the point (x3 —x\,y3—y\) and the (i —I)st
contact at the point (x2 —x\,y2 —y\) (as shown by OP2 m sPi mmPj mmsPiT
in Fig. 2). Thus the complete transformed path OP2 mmPi msPj wmP{TP\
(Fig. 2) is in one-to-one correspondence with the original path in Fig. 1. This
proves Lemma 4.1.

To derive the joint distribution of D/nn,R+in(i),M+in(i,j) and we
first obtain an expression for the probability

p [mnE£>+n=d, R *n{l)=r, R”*n{i)=s, RAn(l)=u, Qtnn=lI]
PLTTMDmn Q@i?mn(l) r,Rmn(i) 5Rjjiji() Bh Rmn"S) Qmn

for O"r™Mu —s, 1 and d> 0. For this we consider a path
from (0, 0) to (n, m) through the points (a:i,yi), (x2,y2), {x3,y3) and (x4,y4),
Xi M nyi/m,*=1234; x\ Tx2" £3" x4, y\ » y2~ y3 ™ y4 that attains its
maximum distance from the diagonal y = mx/n for the first, *th, jth and
Zh (i.e., the last) time at (x4,yi), (x2,y2), (x3,y3) and (x4,y4), respectively
(as in Fig. 1). This corresponds to a path for which =ny\ —mx\ =
ny2 - rnx2=nys3- mx3 = ny4 - mx4, ii+n(1) = x4+ y4,i?+,(i) = x2 +y2,
R/nnU) =x3+W and #+n(@ =x4+y4. By Lemma 4.1 and Fig. 2, the
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number of such paths is equal to the product of the following five factors,
viz.

jA\ = the number of paths from (0,0) to (x? —x\, 12—\) that are never
above the diagonal y = mx/n and having exactly (i —1) contacts with
the diagonal, the (i —)st contact occurring at (x» —aq, 22—y i),
i<2 = the number of paths from (22 —x\, 22—2/1) to ("8—£1,2/3 —2/1) that are
never above the diagonal y = m x/n and having exactly (j —i) contacts
with the diagonal, the (j —)th contact occurring at (23 —21,2/3 —2/1),
F3 = the number of paths from (23 —xi, 23—y\) to (24 —21, 24—y\) that are
never above the diagonal y = m x/n and having exactly (1 —j ) contacts
with the diagonal, the (I —j)th contact occurring at (24 —21, y\ —y1),
N(24,2/4) = the number of paths from (24 —21,2/4 —yi) to (n —24, m —y\)
that remain entirely below the diagonal y = mx/n and never
touch it in-between except at the initial point (24 —21,2/4 —2/1),
and
.£5(21,2/1) = the number of paths from (n—x\,m —y\) to (n, m) that remain
entirely below the line y =mx/n and never touch it in-between
except at the end point (n,m).

As each one of the points (22 —21,2/2 —2/1), (23 —21,2/3 —2/1) and
(24 —21,1/4 —21) lies on the diagonal y = m x/n, We suppose that (22 —21,
Ve ~y\) = (A6, Aa), (23-21,2/3-2/1) = (yb,ya) and (24-21,2/4-2/1) = (6b,6a),
where A= [(22+ 22 —®i + J/)]/(0 + 6), M= [("3+ 23 - (ag +2/1)]/(« + 6) and
6 = [(24 + YA —(mi +2/i)]/(a + B) are all integers such that Aayas, ANi—1,
linj —1 and €9 Z—1. Then on using Lemma 3.1, we have

(4.1) F\ =

and on taking (22 —21,2/2 —2/1) and (23 —21,2/3 —2/1) as new origins, we have

(4.2) F2= (pn-xj-i

and

(4.3) 3=

where is given by (3.1). In what follows we shall use the symbols {2}

and (2) to denote, respectively, the smallest integer greater than 2 and the
smallest, integer greater than or equal to 2.
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Taking (04—x\,y\ —y\) as a new origin, F4 (x4, y4) equals the number of
paths from (0,0) to (n—£4, m —24) for whichRk~k > nk/m, k=12, m —
yt. Thus Fi(2:42/4) is given by Lemma 3.2 with sample sizes m* = m —y4,

n"=n—24 ci—i—n —x4and bi —i={m/m}, *=1,2, m—24 Hence, for
d>0,
(4.4) ~4(2:4,214) =
@—)@—{ln/m}ﬂ An—x4 f}n —Xa —{(nr‘]n_yyz;)u/m}_l_l)
1 n—>4 n—X4—{(m~y4n/Tn
\Y m—y:— }t1)
0 0 f\?—XA —{(m—lyA)n/m}+1)

{m-y4)x(m-y4).

To determine -£5(211,2/1), we observe that the point (n —x\,m —2n) is

yi units below and xi units to the left of (n, m). Considering the reversed
path (i.e., rotating the path from (n —Xi,m —y\) to (n,m) in Fig. 2 about
its left end through 180° in the clockwise direction so that its starting point
becomes the end point and vice-versa) and then taking (n, m) as a new origin,
F5(xi,2/i) equals the number of paths from (0,0) to {x\,y\) that remain
entirely above the line y = mx/n. Thus FA{x\,y\) is given by Lemma 3.2
with sample sizes m! = 2/1, ri* —*1; bt i =0, i —1,2, eem2/i; ci =1 and

Cj-j + 1=Wj=min fx\ + 1, \ln{rj;]'l)/\)\_ j=2,3,... 121 Hence, for >0

[y ) P!
)

\V
i Aaim)

(4.5) Fs(xiyyi)= 0 1 @n/mpj AB/m)j
0 0 0 cr)

(1-0)X @N-1y

since the first row of the determinant in Lemma 3.2 becomes (1,0,0,..., 0).

The foregoing leads to the following theorem.

Theorem 4.1. Letp=g.c.d.(m,n), i.e., m=ap, n—bp with g.c.d. (a, b)=\.
Let X=(s—r)/(a+h), p=(s+t—r)/(a+b), 6 = (u—r)/(a+b), 9—r/(a +D),
e=s/{a+b) and ( = (s+t)/(a+b) beall integers such that X*i —, p.".j —1,
61 —1, 071, £~ and £/ where 1=i=j =1 Then

@) ford>0, r*s™~u”m+n, 0"NtNu —s,
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m + n
firiTiDmn  d,Rmn(l) t,Rmn (i) s, Mmn(ij) —t,

(4.6) M0 ~iQmn A
] [x 4i 24)-"5  1jW\ >
1 0,

according to whether or not there exists an integer solution to the equations
nyi - mx\ = ny2- mx2-NYy3- Mi3=Ny4- Mida=d, x\ + Yi =r, x2+y2=s,

+yz=s+1t X4+ yd=u such that 0~ X\ A~ x22AxA ~AX4rn, ONy\ Ny2 N
23= 24" m, and

(b) ford=0, rasam +N, 0~trm + N—s,

@4.7)

Dmns=°>c (!) = Mmn(hj) =~

n
2 (1)=m +n,Q+n=/

m + n

= 0,8+,(1) = r,A+n(i) = s, M+n(i,i) =i, g+, - /

\
0,

according to whether or not O is an integer N1, € is an integer N and G is
an integer Nj.

Remark. It may be pointed out that the joint distribution of D"nr
mn(™)i 7w7,(0* Amni®) aad Qrn when 1)Ind 0, as given in
(4.7), could be obtained directly without applying any transformation.

Theorem 4.1 gives immediately the joint distribution of D~n, A+n(i),
M+,,(t,j) and Qmn 30 follows:

Corollary 4.1. Let p— g.cd.(m,n), ie., m=ap, N = bp witn
g.c.d.(a, =1 Then

@ for d > O,
Til “F*TI\ ) o
n JPMmnDmn=d,R]nn{i) = s. MHN(G,j) =t, Q=]
(4.8) fXs s 214y5(ML. 2/1))

0,
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according to whether or not there exists an integer solution to the equations
ny2—m x2=Nj/3—m x3=d, X2+ 2—s, £+ 3= s +t such that O £2
NEINAN,0Ny22235iM. The summation extends over all possible points
(El,il) and (£4,i4) satisfying the following conditions:

(i) fC1,2/1,£4 and 14 are aZ integers with 0 E1 ™ £2 N E3 N £4 7 0,

0ryiry2ry3ryitrn,

(ii) ny\ —mxi=ny<i —mx<i=d,

(iii) A= (s—@E1 +yi))/(a + b) is an integer i —1,

(iv) pp= (5 + i—(E1+ y\))/{a + 6) is an integer j — I,

(V) s —y = ((E4+ d4) —s—t)/(a *+ b) is an integer ~tl —j, and

(b) for d= 0,

(m +n) P[DU =o,F+n(i)=s. MU (iJ) =t,QU =1} =
(4-9) ' \ é

10,

according to whether or not e=s/(a+b) is an integer Al and th=(s+t)/ (a+b)

is an integer >7.

Particular Cases. (A) Setting i —1 in Theorem 4.1 implies s =r,
£2=£1, 2—21 A=0,n t/(a +b)=/3 say (where B is an integer * j —1),
O= (u—r)/(a+h), e=9=r/{a+b), (= (r+i)/(a+6=R+0, Fi=1
F2= <>Rj-1, P3= 4>0-R,I-j and <4£ o0,i~i = 1L Hence Theorem 4.1 reduces to

Corollary 4.2. (a) For d>0,
(4.10)

(777. -4- 77\

JP[mnF+, = d,i?+J1) =

r,M +J31,/) = i,#+,(/) = u,Qmn = 2

_ 1 f>B,j-i4>06-B,i-jFA{x4,y4)F5(xi,yi),

[
I 0,
according to whether or not there exists an integer solution to the equations
nyi—mzxi =ny3~mx3=nyd—mxd=d, x\+y\ =r, £3+13—r+t, £4+ 14=u
such that ON£1~NE3Ng45In, 0N 21 =23=24= and
(b) /lor d=0,

(m=* PEmMm=0,C Q) =r,M+n(L,j)=tF+n(D=m+n,Q+,=7=
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(4.11)
= (mf n) P[Dmn=0,Rmn{l) =r, M+n(l,j) =t, G =1]=

I 0,

according to whether or not 6 —r/(a +b) is an integer * 1 and B =t/(a + b)
is an integer N j —1.

(B) Setting j =1 in Theorem 4.1 implies u =s +t, Xo= £4, = y4,
\=(—r)/(a+b), S=(@{=(s+t—r)/(a+ b), 9—r/(a +b), e=s/(a +b),
C=p, F$=1and 4p-£j-j = L Hence Theorem 4.1 reduces to

Corollary 4.3. (a) For d>0,

(4.12)
(m PMnDmn= Rmn()=»>Rmn(*)=s>Mmn(*0 =t.Q L = *=
_f eidS(i—AHM (M) yi)FE(Xi, 211),
10,

according to whether or not there exists an integer solution to the equations
nyi —mxi = ny2—mx2 = ny*—mxi =d, X\ +y\ = r, £2+42/2 = >4+ 24 = s+
such that 05£1 2 2" £4=n>0=21=22 24= and

(b) lor d=o,
(4.13)
(m ")P[E+,=0A+B(l) =, Q=aM+n(t2) =1,Q+B=1/]=
_f fiRRRe—0,i—L0p—£,i—ii
10,

according to whether or not 9=r/(a +b) is an integer 1 and £—s/(a + )
is an integer " i.

(C) Setting j =1 in (4.10) and (4.11) implies i = 0, 23= x\, 23= 2i>
R=0, S—(u—r)/(a+Db), 9=r/(a +b) and 4>p,j-i = 1. Hence Corollary 4.2
reduces to

Corollary 4.4, (&)FOI’d>0,

(mnn)P = d’jR’In(1)= rrAmn(0 = «.Qmn = ] =

= f </>5,-7(a74,2/4)5(371,2/1),
10,

(4.14)
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according to whether or not there exists an integer solution to the equations
ny\—m x\=ny\—mx\=d, x\+y\=r, X4+y~=u such that 0~xi~*x~n, 0NN
iA™m, and

(b) for d= 0,

77741 77\ .

n JP\Dm=0,Kin()=r,Kn()="*+eQ+,, =3

(4.15)

= ("7 ")PIKn =0,iCn(l) =r,Qmn =4

_ ( 00,2<Pp-0,I-I,

"10,
according to whether or not 9= r/(a + D) is an integer 1

The same results (4.14) and (4.15) could also be deduced from Corol-
lary 4.3 by setting therein i = I, in which case t = 0, = x4, 2= 4a,
A= A= (s-r)/(a+6),9=ri{a+D),e=p, €8-\d-i=1 and op_ei/l_i=1.

Remark. Corollary 4.4 is in agreement with "Corollary 2 of Saran and
Rani [5].

(D) Settingj = i in Theorem 4.1 impliest=0, x3— ,23= 22,y = X =
(s—r)/(a+6), J=(n—r)/(a+5),9=r/(a+bh), ~—e=s/(a+b), F2=1,
F3= <f>s-\ti-i and = 1. Hence Theorem 4.1 reduces to

Corollary 4.5. (a) For d>0,

(4.16)

(mn?”)y PMnD™=d’ V=r (*)=*. Am(0 = &<2dm=
_ f 0A,i-i0tf-A {-iF4(a:4,y4)F5(a:i,2/i),
“ 1 o

according to whether or not there exists an integer solution to the equations
nyi —mx\ = nyi —mx” = ny4—mMx4=d, x\-\-y\ = r, £2+ R2=5s, x*+ y* = u
such that 0AXx\A"X2~AX4 ~n, 07~rliis22~ 24=m, and

(b) for d=0,
(4.17)

(7?n "YPomwa=° > i 1)=r>C (0==C ()=m+n,Q+, =12
= (m7n)P[Kn =0R+n(l) =r,Rmn(i) = s, Qmn= [} =

_ | 00,10£—s,i—10p—=,1—il
7 10,
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according to whether or not 9=r/(a +b) is an integer * 1 and e —s/{a-\-b)
is an integer " i.

Remark. Corollary 4.5 is in agreement with Theorem 1 of Saran and
Rani [5].

It may be noted that Corollary 4.4 could also be deduced from Corol-
lary 45 by setting eitheri = 1 (in which case s = r,xi —x\,72= y\,A= 0,

1= 1,e=9=r/(a+ b), \'=1) or i —I (in which cases =u,
Xe=£4, 2= 24, A=S= (u- n/{a+b) "S\,I-i=1,0=r/(a+b),e=p,
an—-el—=1)e

5. The joint distribution of R+n(i), M+,,(i,j) and Q+n

Lemma 5.1. The number of paths from (0,0) to (h,m ) which attain
their maximum distance from the diagonal y = m x/n for the first, ith,jth
and 4h (i.e., the last) time (L~ i~ j~1) on the rth,sth, (S+ f)th and uth
steps (r’\s"u, ONiNu —S), respectively, is the same as the number of
paths from (0,0) to (n,m) that are never above the diagonal and, moreover,
never touch the diagonal after the (u —r)th step except at (I"I,m) and having
exactly (I — l) contacts with the diagonal; the (/—|)St contact occurring on
the (u —r)th step, the (j — |)St contact occurring on the (s + t — I’)th step and
the (i —|)St contact occurring on the (s — F)th step.

PROOF. Consider all points (x\, 21), (E2,2/2)1 (£3,2/3) and (£4,2/4) such
that x\ + y\ =1, £2+ 2=, £3+23=s+ L £4 + o1 = xi = nyi/rni *—
1,23,4, 1"\ " X2 MNESINEAND, 1NN =202"23=24=m- The set of
required paths is the union of the disjoint subsets of paths through each of the
possible quadruple of points {(E1,2/1), (£2,2/2), (£3,2/3), (£4,2/4)}- By Lémma
4.1, the paths in each of these subsets are in one-to-one correspondence
with those in the disjoint sets of paths from (0,0) to (n,m) through the
points (x2 —ad,2?2 —2/I)? (2:3-£1,2/3-41) and (£4 - £i,24 ~ 2i) that are
never above the diagonal y = m x/n and, moreover, never touch the diagonal
after [x4 —£1,7/4 —y\) except at (n,m) and having exactly (Z—1) contacts
with the diagonal up to the point (E4 —£1,2/4 * 2/1) °f which the first {i —1)
contacts occur up to the point (E2 —£1,2/2 —2/1) an(l the next (j —i) contacts
occur up to the point (E3 —£1,2/3—i)- Hence the elements in the set of paths
in question are in one-to-one correspondence with the elements in the set of
paths from (0,0) to (n,m) that are never above the diagonal and, moreover,
never touch the diagonal after the (u —r)th step except at (n, m) and having
exactly (Z—1) contacts with the diagonal; the (Z—)st contact occurring on
the (u —r)th step, the (j —l)st contact occurring on the (s + Z—r)th step and

the (*—I)st contact occurring on the (s —)th step.
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THEOREM 5.1, Let p = g.c.d.{m,n),i.e.,m = ap and n = bp with
g.cd.(a,b)=1 Thenfor ["iuj al,rdsdu and 0"t u —s
(5.1)

(,un n) P = r’R™n#)= ssMmn{hj) = >R mn(0 = Qmn =1]=

(A% iAQRA, i—i45-8, I§L'A(*8b,8a-\-\),
" 1 O ,

according to whether or not X= (s—r)/(a + b) is an integer 't.i —\,p =
(s+t—r)/(a+ b) is an integer *j —1 and 8 = (u—r)/(a + b) is an integer
Z1- 1

PROOF. The number of paths envisaged in the left-hand side of (5.1) is
given by Lemma 5.1. According to Lemma 5.1, the (i —)st, the (j —)st and
the (I —I)st contacts with the diagonal y —mx/n occur on the (s —)th, the
(s + t —r)th and the (u —r)th steps, respectively. Hence each one of (s —),
(s+t—r) and (u—r) should be integer multiple of (a+b). Let us assume, as
in Theorem 4.1, that s—r = A(a+ 5),s+ 1— =p(a+b) and u—r=6(a+h)
where A p, and 6 are all integers such that prS, XMi—1,/x"j —1 and
g ill —1. Then the number of transformed paths in Lemma 5.1 is the same as
the number of paths from (0, 0) to (A6, Aa) that are never above the diagonal
y = mx/n and having exactly (i —1) contacts with y = mx/n, times the
number of paths from (0, 0) to ((p —A)6, (p —A)a) that are never above the
diagonal y = mx/n and having exactly (j —) contacts with y = mx/n, times
the number of paths from (0, 0) to ((&—p)b, (8 —p)a) that are never above
the diagonal y =mx/n and having exactly (/ —) contacts with y = mx/n,
times the number of paths from (0,0) to (n—sb,m —sa) = {{p—s)b, (p —8)a)
that remain entirely below the line y=mx/n and never touch it in-between.
Call these numbers T\, T2, T3 and T4, respectively. By Lemma 3.1, the
numbers T\, T2 and T3 are given by

(5.2) T\ 1

(5.3) R —(fiiXJ—+

and

(5.4 T3 - :

respectively. The number T4 corresponds to those paths for which —k>

nk/m, I"fc"m —sa—1, Rm-6d —{m—sa) = n —sh. Thus T4 is given
by Lemma 3.2 with sample sizes m'=m —sa, nl = n —& d— —n —sh,
i=1,2,...,771 sa; bj- j={nj/m} j=L2,...,m-sga- 1and bm5a-
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(m —ba) =n —>5b, i.e.,

(5.5)
Ap_(eq. G{m —Sa—I)n
M-jfifead+] o ”f*’fén—; FY
a ,[ m-—a n.
1 ‘ wsie D 0
_ O 1 "n—(56—r(m_sr2_l)n +1 O
T4= m —(5(—3 3*1)
. fim-Sa—n
0 0 7i—(56— e }+1) 0
0 0 1 1
|:+(5b . 1) (m—Sa) x (m—Sa)
= - H a + H

which is given in (4.4). This proves Theorem 5.1 which in turn gives the
joint distribution of R*if), M.”n(i,j) and Q”n given below:

Corollary 5.1.

(7Un ") P W =S"Mmn(bj) =t,Qmn =1]=
(5.6)
=N AR A A —x j—ifis—p,i—§FN (76,58 + 1),

r u

where the summations extend over all possible positive integer values of r and
u such thatr ™ s A (m+n), 0~tMu —s and for which X= (s—)/ (a+ 6)
is an integer *.i —I,n —(s+t—r)/(a +b) is an integer * j —1 and 5—p =
(u—s —t)/(a + b) is an integer .1 —.

Particular Cases. (A) Setting i = 1in Theorem 51 implies s =r,
A=0,p=t/(a+b)=R,say, 5=(it—r)/(a+ b). Thus Theorem 5.1 reduces
to

Corollary b5.2.

""n)P UCNU) = FMmn{*j) = <KiAl)= Qtn=I}=
(5.7) \APRY .
1 6B,j-i¢>S-0,1-jFi{5b,5a+ I),

"tO,

according to whether or not B = t/(a + b) is an integer * j —1 and 6 —
= (u—r)/(a + 6) is an integer " | —1.

(B) Setting j = 1in Theorem 5.1 implies u =s +t, X=(s—r)/(a +b) and
&= p=(s+1—r)/(a+Dh). Thus Theorem 5.1 reduces to
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Corollary 5.3.

(m* PK n(l)=r,R*n(i) =s,M+n(i,])=t,Qtn=1=

=( &4-i"R-\,1-iF4(Sb,06a + i),
I o
according to whether or not X= (s —r)/(a +b) is an integer * i —1 and
fi=(s+t—r)/(a+b) is an integer | —1.

(C) Setting j —1in (5.7) impliest=0, B =0 and S= (u—r)/(a + h).
Thus Corollary 5.2 reduces to

Corollary 5.4,
(5.9) (mr)pK ., ()=r,«i,(i)=Uel,=i]={ +

according to whether or not S—(u —r)/{a + b) is an integer ~ | —1.

The same result (5.9) could also be deduced from Corollary 5.3 by setting
i =Z in which case t=0 and /j,= X—(s—r)/(a + b).

Remark. Corollary 5.4 is in agreement with Corollary 4 of Saran and
Rani [57.

(D) Setting j =i in Theorem 5.1 impliest=10,9 = A= (s—)/(a+h) and
6 = (u—r)/(a +b). Thus Theorem 5.1 reduces to

Corollary 5.5.

(mn)PIKnn()=r,Kn(i)=s,R*n(l) =u,Q]m=1}=

= ( 4\,i-i(1>6-\,1-iF4(6b,6a + 1),
to,
according to whether or not A= (s—)/(a 4 b) is an integer * i —1 and
6= (u—r)/(a+b) is an integer ~ | —1L
Remark. Corollary 5.5 is in agreement with Theorem 2 of Saran and
Rani [5].

It may be noted that Corollary 5.4 could also be deduced from Corol-
lary 5.5 by setting either i = 1 (in which case s=r and A=0) or i =1 (in
which case s=wand X=6 = (u—r)/ (a + b)).
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INTEGRABILITY AND LOWER LIMITS OF THE LOCAL TIME
OF ITERATED BROWNIAN MOTION

ZH. SHI and M. YOR

Dedicated to Endre Csaki on his sixtieth birthday

Summary

We study the extraordinarily large and small values of the local time of iterated Brow-
nian motion. It is known that the local time has exponential moments for deterministic
times. We prove that, taken at appropriate random times, the local time has finite a-th
moment if and only if a < 2/3. We also investigate the almost sure lower asymptotics of
both the local time at a fixed level and the maximum local time. The critical rate func-
tions for these two processes are obtained, which improves previous results of Csaki et al.
[15]. Our approach essentially relies on Ray-Knight theorems and the general theory of
stochastic calculus, notably some refined martingale inequalities.

1. Introduction

Let {Wi(t); t~ 0} and {"(t); t~ O} be independent one-dimensional
Brownian motions, starting from 0, and let

(L.1) ZOAWi(\w2p)>  tho,

The process {Z(t); t*O}, which is often referred to as “iterated Brownian
motion”, a terminology coined by Burdzy [9]—f10], has received much re-
search interest from many mathematicians. See for example Hu [23, Chap.
I1I] for a detailed account of history, motivations, as well as many refer-
ences prior to December 1995. We only mention some more recent publi-
cations and preprints by Arcones [1], Cséki et al. [15]-[16] and [19], Cséki
and Foldes [18] (extensions to more general iterated processes), Benachour
et al. [4], Hochberg and Orsingher [22] (connections with partial differential
equations), Bertoin and Shi [6] (one-sided small values), Khoshnevisan and
Lewis [25] (stochastic calculus with respect to iterated Brownian motion),
and Xiao [28] (local times).

The starting point of the present paper is the following theorem due
to Cséki et al. [15] (see also Burdzy and Khoshnevisan [11] for a slight-
ly different model): there exists a jointly continuous version of {Lz{t\x)\
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Key words and phrases. Local time, iterated Brownian motion.

0081-6906/97/$ 5.00 ©1997 Akadémiai Kiadd, Budapest
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t~ 0, —00 < x < 00}, the local time process of Z. Moreover, it can be repre-
sented as

00

Lz {t-X) =J L 2 (t-,u) duLi(u;x)
(1.2)
L2(t;u) +La(t; -u)J a),

where L\, L2 and L2 denote, respectively, the local times of W\, W2 and
\W2\. For notational convenience, we write

(1.3 Lz(t) =Lz (@t,00=jL 2{t-u)duL x{u- 0).
0

We aim at studying extraordinarily large and small values of Lz{t). We
first consider the large values of Lz{t). The following law of the iterated
logarithm (LIL) is due to Cséki et al. [15] and Xiao [28]: there exist (finite)
universal constants c\ >0 and c2 > 0 such that

Lz(t) S

i34(loglogtyya~ 2 o

(1.4) ci Uligsup

(To be precise, the upper bound in (1.4) is proved in [28], and the lower
bound in [15]) The LIL (1.4) tells that, as t tends to infinity, Lz(t) can
infinitely often reach the level of (a constant times) i¥4(loglogt)3¥4. To get
additional information about the large values of Lz , we can for example
investigate the integrability of Lz- It is not hard to see that for any fixed
t> 0, Lz{t) admits finitte moments of all orders (and indeed, it even has
exponential moments, a property largely exploited by Xiao [28].) However,
the situation becomes considerably different, ift is replaced by some carefully
chosen random times, say T. Our choice for T is

(15) r2(r) =finfjf >0: L2(i;0)>r|,  r>0,

the inverse local time at 0 of w 2. The reason for which we have chosen «2
is very simple: intuitively, in order to keep LZ{T) at a high level, Z has to
cross 0 very frequently over [0,T], which at least intuitively will be satisfied
if T is a non-left isolated zero of Z. Since this is the case for T = r2(r), with
respect to W2 (thus to Z as well), and moreover since rz2(r) is closely related
to both Lz and L2, it has become our immediate candidate.

Here is our main result for the integrability of Lz(rz(r)).
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Theorem 1.1. For any r>0 and a~O,
(16 E[(Lz(r2(r)))a < oo,

if and only if 0~ a <2/3.

Remark 1.2. Theorem 11 tells that L ztair)) has polynomial (rather
than exponential) upper tails. From (1.6) and using standard arguments,
we can easily deduce the almost sure upper asymptotics of Lz (r2{r)),
which are rather different from those of Lz taken at a deterministic time.

Concerning the lower asymptotics of Lz{t), Cséki et al. [15] establish the
following interesting bounds: with probability one,

(1'7) h™ £fi3/4(loglogi)i/2Lz(<) =
(/1.8) I{m inf A Lz{t) = oo, for all 3>\.
—»0 /4 2

There is an obvious gap between these two estimates. Our aim here is to
close the gap, namely, to show that i3 4/log< is, in some sense, the “critical
level” for the lower asymptotic behaviour of Lz(t).

Theorem 1.3. With probability one,

lim inf 0 ifRi 4,
t—pe0 00 otherwise.

Theorem 1.3 provides a clear image of the liminfasymptotics of the local
time of Z at a fixed level. Not surprisingly, the situation is considerably
different for the maximum local time. Indeed, it is proved by Cséaki et al.
[15] that for some universal constants CG3> 0 and G} > 0,

.. _(loglogt)¥4
(1.9) I|,m|nf(09<034)]/ sup Lz {t-,x)"c3 a.s.

i-K X)

(loglogi)34
<34

1.10 lim inf sup Lz{t',x) ~C4 a.s..
( ) —»o ng { )

It turns out that the lower bound (1.10) is optimal (up to multipli-
cation by a constant). Our next result is Chung’s form of the LIL for

suPxeR Lz{t\x).

THEOREM 1.4. There exist absolute constants ¢s >0 and oq > o such
that
log log <3/4
(loglog 9 s%ng(t]x)gce as..
X

(&3 Iit%f



282 ZH. SHI and M. YOR

We say a few words about the proofs of the theorems. Those of Theorem
1.1 and the second part of Theorem 1.3 heavily rely on Ray-Knight theorems
for Brownian local times and the general theory of stochastic calculus. More
precisely, we apply some powerful martingale inequalities (Facts 2.10 and
2.11 below) to iterated Brownian motion. In the proofs of Theorem 1.4 and
the first part of Theorem 1.3, we use an idea we have learnt from Cséki et
al. [15], with some refinement. The first-order stochastic calculus plays an
important role in our approach, though we certainly have not exhausted all
its advantages. We feel that, to get a better understanding of the local time
of iterated Brownian motion, it would be worth studying the two-parameter
process L2{t]G\(y)) Wi(v) (for the definition of Gi, cf. (3.4) below), whose

local time at 0 is f L2(t;u) duLi(u;0).

0
Section 2 is devoted to some preliminaries on Bessel processes and the
general theory of martingales, especially the first-order stochastic calculus
and martingale inequalities. Theorems 1.1, 1.3 and 1.4 are proved, respec-
tively, in Sections 3-5.

2. Notation and preliminaries

The key ingredients in the proofs of Theorems 1.1 and 1.3 are: (a) Ray-
Knight theorems for Brownian local times; (b) special properties of Bessel
processes; (c) first-order stochastic calculus and martingale inequalities. We
briefly recall some known results relative to (a)-(b) in the first half of the
section, and to (c) in the second half.

2.1. Rmy-Knight theorems and Bessel processes

A d-dimensional Bessel process (d” 0) is a linear diffusion on Mt with
generator Qf[x) = + 47/'(x) (at least, if / has compact support in
(0,00)), and in the particular case d™ 1 is an integer, it can be realized as
the Euclidean modulus (in Rd) of d-dimensional Brownian motion. We refer
to Revuz and Yor [27, Chap. XI] for a detailed account of general properties
of Bessel processes.

We keep the notation introduced in Section 1, and add the following:

(2.1) (f7(t); t~ O} is a Bessel process of dimension 0, with U(0) = 1,

(2.2) C=finf{i>0: U(t)=0},
(2.3) {i?(t); t~0} is a Bessel process of dimension 4, with 7?(0) = O,
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In words, ( denotes the life-time of U, and £ the Last exit time of R from 1
We also define the first hitting times associated to W2 and [LV2L: for r£ 1,

(2.5) H2(x) € inf{f > 0: W2{t)=x},

(2.6) Rofx) Tl inffi > 0: W2(t)\=x},  (inf0& 00)

with R for Hitting time. Throughout the paper, unless stated otherwise, the
processes W\, W2, R and U are assumed to be mutually independent.

The next item is a collection of known results concerning Brownian and
Bessel processes, which we shall need later on.

Fact 2.1 (First Ray-Knight theorem). For a> 0, {-"("(d;a —x);
x N 0} is a continuous inhomogeneous Markov process. When 0 Ux ™ a, it
is a squared Bessel process of dimension 2 starting from 0, and becomes a
squared Bessel process of dimension O for x”.a.

Fact 2.2 (Second Ray-Knight theorem). Fix r >0 and let T2(r) be as
in (1.5). Then {£2(72(0;x); x ~ 0} and (L2(r2(r); —); x ~ 0} are two in-
dependent squared Bessel processes of dimension 0, starting from r.

Fact 2.3 (Normalized Bessel process). Let {f?(t); t~0} and £ be as in
(2.3) and (2.4), respectively. Define the normalized Bessel process

def R;s £)

2.7 O<s<1

For any bounded functional F, we have
(2.8) E[f (p(s); 0"anD] =E[-~y F(r(s)y0gagl)

Explanation. The relation (2.8) may be deduced from the fact that,
given C—a, {f?(i); 0 t £} is a 4-dimensional Bessel bridge, on the time
interval [0, a], starting from 0 at time 0, and ending at 1 at time a

Fact 2.4 (Bessel time-reversal). Recalling (2.1)-(2.4), we have
{u((-tfi 0 ~c } = {fI(i); 0 £},

where “= ”” denotes identity in distribution. In words, a Bessel process of
dimension O, starting from 1, is the time reversal of a Bessel process of
dimension 4, starting from 0O, killed when exiting from 1 for the last time.

Fact 2.5 (Integration by parts). Let {3?(i); i*0} be a Bessel process of
positive dimension, starting from 0. Let 0™ a” b<oo and f, g: [a,6 K+
two continuous functions, with f nonincreasing, and g nondecreasing,

b b
1 R@x))d(-f(x)) +f m 2(9(b)) '= 6(a)5R2(/(a)) + I M (f(x)) dg(x).

a a
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Amplification. The integration by parts formula remains true when /
and g are two continuous, -valued stochastic processes, independent of R
with / nonincreasing, and g nondecreasing.

Remark 2.6. The classical Ray-Knight theorems can be found in Revuz
and Yor [27, Chap. XIl]. See also Yor [31, Chap. Ill] for many extensions.
The absolute continuity relation (2.8) is due to Yor [32, p. 52] who actually
provides a proof for all transient Bessel processes. The time reversal theorem
for Bessel processes, stated in Fact 2.4, can for example be found in Revuz
and Yor [27, Exercise XI.1.23]. It actually holds for each couple of Bessel
processes of dimensions d and 4 —d, respectively. The integration by parts
formula in Fact 2.5 is found in Yor [31, EXercise 2.5].

2.2. Martingale theory
Let {X(£); t~ 0} be a continuous local martingale, {Lx{t)', t~ 0} its
local time process at 0, and {(X)(f); t~ 0} its increasing process. Write
X* (t) *=! supO<s<(|X(s)|. For each t”. 0, define

Gxit) & sup|s5if: X(S)=0j, (sup0c0)

the last zero of X before t.
FACT 2.7. If K is a locally bounded predictable process,
t
K(Gx (t))X(t) = K(0)X(0)+ I K(Gx (s))dX(s).
0
In particular, {K(Gx(t))X(t); f~ 0} is a continuous local martingale, with
local time at O equal to
t
f AK(Gx (s))\dsLx (s).
0

Fact 2.8. For any locally bounded function E+ i—ML7
t

FAx (1) X(1) = (p(0)X(0) + f {x (8)) dX(s).
0

Consequently, {(f{Lx{t))X{tD\ t ~ O} is a continuous local martingale, whose
increasing process is given by
t

{4 ) X) (1) = Jef>2(Lx(s))ds(X)(s),

(0]
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N
while its local time at 0 equals $(Lx{t)), where <F(a)d§ff <j)(x)dx.
0

Remark 2.9. Facts 2.7 and 2.8 are special examples of first-order stochas-
tic calculus. For a full story, cf. Azéma and Yor [2], and also Revuz and Yor
[27, Chap. VI].

FACT 2.10. Assume X(0)—O0 and letO”"p <1. There existfinite positive
constants Ce(p) and cs(p), depending only on p, such that

c7(P)e [(X*(00))p] £ e [(L*(00))p] ™ CB(P)E[(X*(00))"].

Fact 2.11. If X(0) =0, T is a positive random time, a >0 and p > 1,
there exists a finite positive constant cg(a,p), depending only on a and p,
such that

E n ilp
((a:))(r)) 1- C9(ap) [E((X*(M)) P)

Remark 2.12. Although (2.9) is reminiscent of the Burkholder-Davis-
Gundy inequalities, one cannot take p—1 on the right-hand side, even for T
varying among stopping times (cf. Barlow et al. [3]).

Remark 2.13. Fact 2.10 (and much more) can be found in Lenglart [26]
and Yor [29], and Fact 2.11 due to Barlow et al. [3] (cf. also Yor [33, Chap.
13]). Some weaker versions of (2.9) may also be obtained using the ratio
inequalities in Yor [30], Gundy [21] or Dellacherie et al. [20, Chap. XXIII],
followed by an application of Holder’s inequality. However, (2.9) is more
powerful, and more “user friendly” in practical examples.

(2.9)

3. Proof of Theorem 1.1

For brevity, we shall write L\(t) = L\(t;0).
Proof of the “if” part in Theorem 1.1. By (13),

Lz{T2(r)) =J L 2{T2{r);u)duL I(u) + J L 2(T2(r)-, -u) duLy(u).
0 0

Since the two terms on the right-hand side have the same distribution, we
only have to verify

(3.1) E L2{R2(r)Ju)duLi(u)  <o0o,
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for 0~ a < 2/3. According to the second Ray -Knight theorem (Fact 2.2)
and the scaling property, (3.1) is equivalent to:

(3.2) E IU\u)dMu)"j < 00.
0
To prove (3.2), let us recall (2.2) and observe that

oiL;JtBE R2(t)Li(C),

the last identity in distribution following from Bessel time-reversal (cf. Fact
2.4). By scaling, the last expression is distributed as 4T supg™ * R2{t)
Hence, in the notation of (2.7),

E C2(u)dulLi <E \fC sup R2{t)Li
(u)duLi(«) sup_Ra{t)

= E (p(1)) 3“(02sz£)| p{s)f° {Li{l)Y

:c10(a)E (p(1)) "( sup p(s))

O<s<lI

where cio(a)é& E((Li(l))a) G(0,00). Applying the absolute continuity rela-
tion (2.8) yields

(e]e]

Q
(33) E {) Uz2{u) duL\(u) A 2cio(a) E .F(i?(|)1)2+3“( sup R(s))2a .

Since E(/2I11)) < oo for all g > —4, and E(supO<s<j Rqg{s)) < oo for all q> 0,
it follows from the Holder inequality that the expectation term on the right-
hand side of (3.3) is finite once 2+ 3a < 4, which means a <2/3. This yields
(3.2), hence the “if” part in Theorem 1.1. O

To prove the “only if” part in Theorem 1.1, we need the so-called “Brow-
nian meander” process, which is introduced by Chung [13], and which turns
out to be an important process in the study of many “usual” Brownian
functionals, cf. Bertoin and Pitman [5], Biane and Yor [/1H8], and Yor [32].

Fact 3.1 (Brownian meander). Fort> 0, define

(3.4) Gi(t) =f supjs It WFI(s) = 0,
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the last zero of W\ before t. Let T >0 a.s. be a random time independent of
W\. The process

(3.5)
1
I mi(s) = m[ (s)& WIGI(T)+s(T-GLT)") :0gSqgl},
(s) [ (s) VT - Gi(T) (GI(T)+s( (M)) :0g9Sgl}
which is independent of T and {fF"u); is called a Brownian
meander.

Proof of the “only if” part in Theorem 1.1. It suffices to show
that

(3.6) = 00.
Recall Gi(t) from (3.4). Consider the continuous local martingale

t
N ()& Uz{Gx(t))WI(t,)z\] U2(Gl(s))dWI(s),  tZ 0,
0

the second equality following from Fact 2.7, which moreover confirms that
the local time at 0 of N, denoted by L/y(-), is

t
Ln{i)—J U2(u) duL\(u), tZ0.
0
Applying Fact 2.10 to X & N and p =f2/3 yields (with cn &f07(2/3))

\]>O 213 §
E  J Uz{u) dulx (u) A CHE[(supC/2(Gi(t)|1Fi(i)]) 2/

A clle [([/2(g 2(0) |vF,(C)|) 2/31

Writing 0 &f[/2(Gi(()) [IFi(()| for brevity, the proof of (3.6) is reduced to
showing the following estimate:

(3.7) E(©2/3) = oo.

Applying 35) to T’ aef £, we obtain, from the independence properties stated
in Fact 3.1,

E(023)=e [(d2(Gi(0) X/C-EM CM i))275
= 2E MIGO)CGIO)13
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with ¢j2 =<E ((mi(l))2/3) € (0, 00). According to Lévy’s arc sine law, for
any fixed t > 0, the density function of t —G\(t) is: P(f —G\{t) € ds)/ds =

{l/TTyls(t-s))l {o<s<t}» By means of Bessel time-reversal (cf. Fact 2.4),

d
E(023)= ci2 E S Uds{(-s)s?
| T4 s(C -s)
ds
. E 31/6(C-S)l/2 c/4/3(C -s)
ds
=" E 1/6(£_s)12 F14/3()

def

Recalling (2.7)-(2.8), this leads to (writing CI3'= "/ w):

E(02/3)= C13E C | s

<0/6(1- s)lr2 "A3(8)

1

o ds

=203 E le)l sue(l_ )2 RYEE)
i

ds
. lw  1)A1}
"2CBE THa(y 4 sue(l_s)I2

R 4/3(s)
Consider the function

hr) = E | ds i243() fi(l)=r 0<r<1

si/6 (1 —s)1/
0

Via the Bessel bridge, it is easily checked that h is continuous and strictly
positive over [0,1]. Hence, infO<r<i h(r) >0. Accordingly,

E(©23)~ cl4E | 1%”%:;} =0

proving (3.7). U
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4. Proof of Theorem 1.3

We first study the integrability of a negative power of a two-dimensional
iterated Brownian motion under the L2-norm.

Proposition 4.1. Let {B(t); <~0} be standard Brownian motion with
local time L at 0, and (SR(i); t 0} a two-dimensional Bessel process starting
from 0, independent of B. Then

[ ,
4.1) E f K2(L(S)) ds o < 00, for all p <1,
while
! 11
(4.2) E J Uz2(L(B))ds :00.

Proof. We begin with the proof of (4.1). Only the case of positive p
needs to be treated. By enlarging the filtration of B with <«{&R(if); . ~ 0},
it is seen, with the aid of Fact 2.8, that SR(L(i)) B(t) is a continuous lo-

t

cal martingale, with increasing process f $t2(L(s)) ds. Applying (2.9) to
0

Xty ¢ =(L(t)) B(t), a=2p and T —1, we have, for all p> 1,

I
B 2up 1 ilp
E R(L(s))ds ~cofa,p) {E[( sup PR(L(s)B(s)) W1}

It remains to show that for all u<2,

4.3) Ad E[( sup \R{L{s))B{s)\X < 00.
L' O<s<lI '

Let s* G[1/2,1] satisfy |-B(s*)| = supl/2<s<1|i?(s)|. Note that s* is indepen-
dent of the Bessel process SR Hence

OS;S%I ISR(L(S)H(s)| P ISR(L($))H(S)]

su

29s9
£»(L(0)|B (0]

by scaling. The last term being greater than (or equal to)

SR yRTXR) suPl/2gigl \B(s)\, we obtain:

A BT @ Uy ratsupirzr s (sTW-
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Since
e (3?6(1)) < oo, for all a> —2,

e(1“(1/2))<oo, for all a> —1,

E sup \B(s)\ < 00, for all aE IR
{/I/Zggf\l (s) )

it follows from Holder’s inequality that A < 0o. This proves (4.3).
The proof of (4.2) follows from the subsequent inequality and identity in
law:
I

32(L(s)) dsii sup 5Pqu)'E L(l) sup 9fr(u),
/ 052u$L(l) Ogital

and the fact that E(I/L (1)) = oo. O
Corollary 4.2. For all n< 1,
I
(4.4) E ! 32(1—s)dL(s) < 00.

Proof of Corollary 4.2. Taking f(x) = 1-x, g(x) —L(x), a= Oand
b= 1in the integration by parts formula in the amplified form of Fact 2.5,
we have I

jl\/lz{L(s))dsI: | =a-s)aLe),
0 0
which implies that (4.4) is equivalent to (4.1). O

Remark 4.3. It would also be possible to show directly the integrability
property (4.4) frortn the following argument:

The process {/ (1 —s) dL{s)\ 0" t~ 1} is the local time at 0 of the mar-
i

tingale {572(1 —G(s)) B(s)\ 0~ s~ 1} with respect to the enlarged filtration
already considered in the proof of Proposition 4.1, where G(s) = sup{u s:
B(u) —0}. Moreover, if u* E [0,1/2] satisfies |-B(u*)| = supog”j \B(u)\, we
find:
inp (k21 - G{v.)) \B(u)\) » K2(I - G{u*)) \B(u*)\
«<

= RN (-G (u™)) B

> F2(1) sup |B(it)|.
2 Ogugl/2
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This implies that

E ( sup R(1-G(u))|5(u)]) " < oo, forv<1l

S/Ogugl

To obtain (4.4), it then remains to use either the random time inequalities
in Barlow et al. [3], which in this case yield:

i/p

for 0O<p< 1 p>1/(1 —p) and positive random time T (cis(p,p) being a
constant depending only on p and p), or the ratio inequalities as in Yor [30],
Gundy [21] or Dellacherie et al. [20, Chap. XXIII],

The main ingredient in the proof of Theorem 1.3 is the following estimate
of the lower tail of Lz{1), which is obtained by means of Corollary 4.2.

Proposition 4.4. Let Lz{t) be the local time at O of the iterated Brow-
nian motion process Z defined in (1.1). For each p< 1, there exists ci$(p,) €
(0, 00), depending only on p, such that

4.5) p(Lz(l)<e) ~cl6(p)e”, for alle> 0.

PROOF. Note that Lz{t) inherits a scaling property from that of Brow-
nian motion; precisely, for any given ¢ > 0,

(4.6) {Lz(ct); t~0}  {c3'aLz(t); t" 0}

Let r > 0, whose value will be chosen ultimately. Recall the definition of

V.2(r) from (2.6). It is easily seen that Lz(Hz2{r))}F ra/2Lz(H 2(1))- Ac-
cordingly,

P(1z{1<e)~prP(Lz(H2(r))<e)+p (212(r)> 1)
(4-7) Ap(Lz(@z2(l))<-")+ p (aSupdlY2(§)[<r)

gP(Lz(H2(l))<™)+2exp(-£).

In the last inequality, we have used Chung’s exact distribution function of
Brownian motion under the sup-norm (cf. [12, p. 221]).

Let us treat the first term on the right-hand side of (4.7). Write e * e/r3/2.
Starting from 0, when W2 exits from [—1,1] for the first time (at time %2(1),
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by definition), there are two possibilities: W2{H2{\)) equals either 1, or —L
In other words, 'H2{\) = %2(1) A By symmetry,

1 2{H2{1))<6) a2v (1z{H{1))<6; n 2(1) = 7*2(1))
(4.8) "2p (1z(W2(1))<5)

~2p J L2{'"H2(iy,u)duL1(n)<s),
0
using (1.2). According to the first Ray-Knight theorem (cf. Fact 2.1),

I . .
\] LAnAlyAdM U) '=J R(L-u)dL (u),
0 0
in the notation of Proposition 4.1. By (4.4),

'l
E\ J L2(H2(1);u)duL1(n)) < 00.

Using (4.8) and Chebyshev’s inequality,
‘(Lzyu2{i))<i) ~cl7(/i) 6r

Recall that 4= e/r3/2. Going back to (4.7), and taking r =f1/\/log(l/£:), we
get the desired estimate (4.5). O

Proof of the “otherwise” part in Theorem 1.3. Pick B > 1
There exists small 6 >0 such that B > 1+ 6. Let tk'=fek for k* 1. By
(4.6) and (4.5) (with p'= 1—0/2),

t3/4 ,

P (Lz(ifc) < (log **)I+«) = P (Lz(1) < (logifc) 1+fl)
A cu(o/2)
= (logi*)(1+»)(1- fI2)”’
which is summable for k. Applying the Borel-Cantelli lemma yields: almost
surely for sufficiently large k, Lz (tk) ~  4(l°g tk)1+6m Let t G [i*, ifc+H].
Then for large t,
3/4 314

Ik _ p-=3l/4 r*+1 > p—3/4
Lz {t)ZLZ{tk)Z (lOgiA,)l‘l‘O (Iogtfc)1+e _ (lng)AO’
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which implies

a.s..
t—00 ta/ 4
Since B > 1+ 0, we obtain
logt
I|m ( £g4) Lz (t) =00 a.s..
This yields the desired lower bound in Theorem 1.3. O

Now let us recall Kesten’s LIL for the maximum local time. For an
extension in the form of an integral test, cf. Csaki [14].

FACT 4.5 (Kesten [24]). With probability one,

1
li L =1 S..
I?j¥oo (21Iog|og|)]/2x££ (1 x) = as

Proof of the “if” part in Theorem 1.3. Only the case R = | needs
to be treated. The proof, as well as that of Theorem 1.4 in Section 5, is
based on an idea we have learnt from Cséki et al. [15], with some refinement.

Fix e> 0, and let tk& kk for k ~ ko, where ko '=fko{e) is a sufficiently large
initial value. Define the events:

,1/4
Dk={ sup (VFi(s)-ITi(24/2))~ p r },
|2 10S ifcd

Ek'= {sup(L2(tfc;x) - L 2(tk- i; Nl o2;

su \W2{s)-W2(tk-i)\"t1/2\,
tk_ I’\g"tk ts) (th-1) J

Fk = DknEKk.
Observe that

P("fc) =p (/o)‘{Bl W) iz 2log tk) _I('Jlsg-['k>

V(Ek):P iSUELZ(\\X)A 1; SUP Jir2(¢f)|n 1) o c18>0,
V Xe <i<Si

which yields
piiU-puwpuMajgif,

Since the events {Fk)k>ko are mutually independent, by the Borel-Cantelli
lemma, almost surely there exist infinitely many k's such that Fk is realized.
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On the other hand, by the usual and Kesten’s LILs (for the latter, cf. Fact
4.5), for all k™ k\ =fk\ (e, 0>),

114
Aig3 loglogt]I\) 12~

A27~2("_1loglog 1)12"4]2,

where
Ai = either PFi (2£\(2), or sup  VFi(s),
O<s<2ij/2,
A2= either supL2{tk-i\x), or \W2{tk™.i)\, or sup \Wz2{s)\.

x€R

Consequently, for those infinitely many k's for which Fk holds and such that
k™. ki, we have

2etlA
(4.9 sup WAs)M— k-
0Ssg2i[/2 'k
(4.10) %%Lz(tk;x) A 2tD 2,
(4.11) sup |W2(s)| ~ 2tD 2.
Oisiit

According to Lévy’s identity, the supremum process {supg”” VFi(s); t ~0}
is distributed as the local time {L\(t)\ £20}. Hence, there exist infinitely
many k's such that (4.10), (4.11) and

N

(4.12) £1(2412)S | i

hold simultaneously. Now, assuming (4.10)-(4.12),

Az(ifc) = j La2{tk]u)duL x(u)

0
2qL/2

/ L2{tk-u)duLi{u)

>

2sup L2(tk]x) L\ (2tD 2)
xER

< 8 AN
logtfc 1



LOCAL TIME OF ITERATED BROWNIAN MOTION 295

which implies

Ii%f ’\£’§/21LZ{\$\) < 8e a.s..

Sending e to 0 gives the “if” part in Theorem 1.3. O

5. Proof of Theorem 1.4

In view of (1.10), only the upper bound needs to be proved. We first
recall the following estimate due to Cséki and Fdéldes [17]: for 0<a” 1,

(5.1) P (supLj(lix) "al " exp(—y),

for some absolute constant cjg > 0.
Define Q0I=f\/8 cig and tkd= kk (for large k). Consider

Sk d:efé {tk loglog£fc) 1/2,

14
Dk = { ™ p (i, < ) - %)) s (BN -
* - ,1/2
-{X€R SnILIwJ-

Fkd= Dkr E k.
We have, by means of (5.1),

P(Ot)gp(suplL,(x)S 2(log,”™ (1)1/2) aexp(-i loglogi*).

P(S*)&p (bupzZ2(1;”)S (j-"~-jl/&) aexpf-iloglogiU.

Hence
1
(k log A)5/8’
which implies YIk P(-P&) = oo. Thanks to the independence of the Fk's, we
can apply the Borel-Cantelli lemma to conclude that, almost surely there
exist infinitely many k's for which Fk is realized. On the other hand, by
Kesten’s LIL (cf. Fact 4.5), for all large k,

P(Fk) = P{Dk)P{EKk)"

li/«
supLi(s/-_i;i) is2(s/c_ lloglogs™)V2~r @0 k
xelg (log log t*,)1/4
L 112
supL2(tk-i;x)"™2{tk-i loglogtk iy1/2 <i---cz % .
o -2t ix) 24 9O e < Tog By 12
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Therefore there exist infinitely many k's such that

2c0th A
5.2 L\(sk;x) »
2 SUp LMK ™ oglogtio e
2c20t]j2
5.3 ®) N
3) igglz(tk,@) (loglog ifc)v/2

For those Asatisfying (5.2)-(5.3), we have, by the usual LIL,

supLz (ifcx) —sup / L2(tkJu)duLi(u-,x)
XER xGR%

—sup / L2(tk-,u)duLi(u-,x)
XER .

g2supL2(ifcy) supLi(sfca;)
j/GR X£R

812, t3/4
(log log ifc)3/4°
proving the upper bound in Theorem 1.4. O

<
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A DIRECT DECOMPOSITION OF THE CONVOLUTION SEMIGROUP
OF PROBABILITY DISTRIBUTIONS

G. J. SZEKELY and A. ZEMPLENI

Dedicated to Endre Csaki on his sixtieth birthday

Abstract

We show that the convolution semigroup of probability measures over the real line is
the direct sum of the subsemigroup of normal distributions and the set (not subsemigroup!)
of probability measures without nondegenerate normal convolution factor. For higher than
one dimensional probability measures this kind of direct decomposition does not hold.

1. Introduction

Infinitely divisible probability distributions play a very important role
in probability theory. In the language of algebra, infinitely divisible distri-
butions are the divisible elements of the (commutative) convolution semi-
group of probability distributions. For commutative (Abelian) divisible
groups (where all elements are divisible) there are three basic results (see
e.g. Fuchs [3]):

(i) One can embed every Abelian group into a divisible Abelian group.

(if) If a divisible group D is a subgroup of an Abelian group G, then D

is a direct summand, i.e. G—D + H is a direct decomposition where
H is a subgroup of G.

(iii) (structure theorem) Every divisible Abelian group is the direct sum

of quasicyclic and full rational groups.

One can prove that (i) remains valid for semigroups, i.e. every commu-
tative semigroup is embeddable into a divisible one. We plan to return to
this result and its applications in probability theory. The extension of the
structure theorem (iii) does not seem to be easy and we cannot state any
structure theorem for semigroups. In this paper we plan to study property
(i), i.e. the direct decomposability of commutative semigroups and especial-
ly an interesting direct decomposition of the convolution semigroup of one
dimensional probability measures.
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Key words and phrases. Convolution semigroups, direct decompositions, normal dis-
tributions.
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2. Direct decompositions of semigroups

Definition 1. A semigroup S is a direct sum of its subsets Si and Sz if
for all s € S we have s= S1S2 where si £ Si, S2 € S2 and this decomposition
is unique. In this case S1and S2 are called direct summands. If S has only
trivial direct decompositions (one of the summands consists of the single unit
element) then S is called direct indecomposable.

Sometimes it is possible to choose the summands so that they be sub-
semigroups. In this case we emphasize this extra property. E.g. in the
above mentioned direct decomposition for Abelian groups (property (ii)) if
D is not divisible then we cannot guarantee that in the direct decomposition
G —D + H the subset H is a subgroup but we can guarantee the existence
of such a direct decomposition.

The difference between divisible groups and semigroups is not only the
possible abundance of idempotents in the semigroup case. For the additive
group Mof real numbers there exists a direct decomposition into the direct
sum of rationals while for the additive semigroup of nonnegative integers we
have the following result:

PROPOSITION 1. The additive semigroup of nonnegative real numbers is
direct indecomposable if the direct summands are supposed to be subsemi-
groups.

PROOF. Suppose indirectly that there were a direct decomposition with
nontrivial direct summands A and B and select an arbitrary a> 0 from A
and a b>a from B. Then by the supposed direct decomposition there exists
a' £ A, b£B such that b—a=a'+b and thus b=0+ b= (a+ a’) +b". Since
a+ a' £ A (semigroup property) and a-fa'~ 0, the decomposition of b is not
unique.

If in S there is a unique prime factorization then 5 is clearly the direct
sum of the subsemigroups {Sp= {p"}*L0:p is a prime element in S}. The
proof of Proposition 1 shows that these subsemigroups are direct indecom-
posable if the direct summands are supposed to be subsemigroups since a
direct decomposition of the semigroup of nonnegative integers (in the ex-
ponent of p) into the direct sum of two subsemigroups is impossible. (If
we drop the subsemigroups restriction then we may split further the cyclic
semigroups that were indecomposable in the strict sense.)

It was proved by Ruzsa and Szeékely [7] (see also Ruzsa and Székely [8])
that in case of the convolution semigroup of probability measures there is
no unique prime factorization, moreover, there are no prime elements at all
in this semigroup (although there are many irreducibles, and there exists a
decomposition into the product of irreducibles — with a possible remainder
term, called antiirreducible — see e.g. Khinchin [5], Kendall [4], Rizsa and
Székely [8]) therefore it is an interesting problem to find direct decomposi-
tions in this convolution semigroup.
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3. A direct decomposition of the convolution semigroup
of probability measures

One of the most important subsemigroups of the convolution semigroup
of probability measures is the semigroup of normal distributions. It was
proved by R.A. Fisher and D. Dugué [2] that the set of distributions without
normal convolution component — let us call them antinormal distributions
B is not a semigroup (in other words, the convolution of two antinormal
distributions is not necessarily antinormal). We still have the hope to get a
direct decomposition into the subsemigroup of normal distributions and the
set of antinormal ones.

Denote by D (IR") the convolution semigroup of probability measures over
the n-dimensional Euclidean space Rn.

Theorem 1. D(R) is the direct sum of the subsemigroup of normal dis-
tributions and the set of antinormal distributions (the unit dement, i.e. the
degenerate at O distribution, is considered both normal and antinormal). This
kind of direct decomposition, however, does not exist for D(Rn) ifn".2.

PROOF. The first part of Theorem 1 follows from a general observation.
Let us first recall the following definition (see Ruzsa and Székely [8]):

Definition 2. A commutative topological semigroup S with a unity e
and a Hausdorff topology is called Hungarian if
(i) the associate graph {(x,y) ES xS :x ~ y} isclosed (x ~y if x \y and
y 12);
(i) in S* =S/ ~ the set of divisors is compact for each element s*;
(iii) x ~y implies the existence of a unit (associate of the unity) such that
X —uy.
The family of Hungarian semigroups is quite wide, for example the convolu-
tion semigroup D(G) of probability measures for a locally compact Abelian
group G is always Hungarian.

PROPOSITION 2. IfS is a closed subsemigroup of a Hungarian semigroup
T then S is a direct summand in T if

(i) for every pair of elements s,t in S either s\t or t\s;
(i) we can always cancel in T by elements from S (i.e. if sv=sz for an
SE S and v,z ET then v—z);
(iii) ifsES ands~s\ thensiES.

PROOF. The set V= {VET :v=st with sGS and tET can hold only
for s=ej (e is the unity in S) is the direct complement of S in T, i.e. T is
the direct sum of S and V.

To see this first we recall that S fulfills the definition of the set of “atoms”
in Ruzsa and Székely [8], thus any element tE T can be decomposed as t = s-v
where sES and v EV. (The original decomposition theorem claims only that
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s= Si with § £ S but for a closed subsemigroup the product belongs to
S as well.)
Now let us observe that property (i) sitq = S2F2 implies ss2”i = S2V2 (or
= ss1V2) and thus by (ii) siq =\ (or v\ = Then by the definition
of V s—e, V\ = \2 and hence si = 02- O

One dimensional normal distributions can clearly play the role of S in
the convolution semigroup T of all probability distributions.

For simplicity we prove the second part of the theorem for the bivariate
case only; it is straightforward to generalize the proof for higher dimensions.
For the proof of this part of the theorem we need the following lemma (we
omit the simple proof).

Lemma 1. A bivariate, absolutely continuous distribution with density
function f, for which 3(x,y) £!2:f{x,y) = 0, cannot have a nondegenerate
normal component.

Now let y be the following signed measure: /i(0,0) = —5,
pCl,1) = 7i(l, -1) =/7i(-1, 1) = At(—1, -1) = ~(1 + 5)

where 6 is a small positive number such that 5<

LEMMA 2. Let (X,Y) be a bivariate nondegenerate normal random vari-
able with zero expectation. Denote its distribution and density functions by
&x,Y and <Y, respectively. Then 3c> 0 for which y* <&x,cY GD(R2) (i.e.
the convolution is a bivariate probability distribution).

Proof of Lemma 2. The density function h of the convolution of y
and <>is the following:

@) h(x,y) =-0-<fi{x,y) + {l/4 +6) ~ Sikt+ey ty).

e=+l,r;==%I

We have to show that h(x,y) ~ 0 for all (x,y) £ R2. Let us distinguish two
cases:
a) OEN = [x—Lx+ I x [y—Ly+ 1], In this case we have

2) h(x,y)Z-6-0(0,0) + 4(1/4 + 6)1
where /= ( ir}EN 4>{x,y) by (1). Inequality (2) implies h{x,y)'Z. 0 for c”co-
X,y

b) 0 £ N. As the same values of pform a nondegenerate ellipsoid cen-
tered at the point (0,0), the value 4>{x)y) lies between s>x—I,y —1) and
<px+ 1,y + 1), h(x,y) >0 is a consequence of 6 < 1/3 for any positive c.

The suitable c’s form a nonempty closed set, so there is a minimal G
The functional 7(c) = (Xn;)iQN h(x, y) is continuous, and we see from the proof

above that y(co) = 0 by the minimality of cq.
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Now let us consider two different bivariate normal distributions. By
Lemma 2 we have that the corresponding convolutions are probability dis-
tributions, and both p.*<3 and p *$2 fulfill the condition of Lemma 1
By this statement we have that u has two different direct-decompositions:
v=(p*€l)*$2 = (p *$2) *$i- O

4. Further problems

In Rizsa and Székely [6] (see also Ruzsa and Székely [8]) it is proved
that there exists a homomorphism tp: D(R) —R which is an extension of
the expectation. Hence D (R) = Do + R is a direct decomposition where
D0= {F:F £ D(R),ip(F) = 0}.

CONJECTURE 1. If D{R) is the direct sum of two subsemigroups then
one of them consists of degenerate distributions only.

PROBLEM 1. Is it possible to decompose D(M) into the direct sum of
(direct) indecomposable subsets? (Not even every Abelian group is a direct
decomposition of direct indecomposable subgroups.)

Remark. Ifthe word direct is replaced by subdirect then such a decom-
position always exists for all semigroups, and also for more general algebraic
structures, as it was proved by G. Birkhoff [1], In fact, every commuta-
tive semigroup is the subdirect sum of a family of subdirect indecomposable
subsemigroups.

PROBLEM 2. Characterize all commutative semigroups S that are direct
summands in every commutative semigroup that contains S.

Conjecture 2. If in S there exist two elements si and S2 such that
si {S2 and S2fsi, then one can always find a semigroup T DS such that S is
not a direct summand in T .
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WEIGHTED APPROXIMATIONS OF
PARTIAL SUM PROCESSES IN D{0,00). Il

B. SZYSZKOWICZ

Dedicated to Endre Csaki on the occasion of his 60th birthday

Abstract

Let X\, X%, mmbe independent, identically distributed random variables with EXi = 0
and EX2= 1. In Szyszkowicz [11] we obtained the weighted version of Donsker’s theorem
in G[0.1] for the optimal class of weight functions, which is the same as the class of func-
tions q for which lim("o |W(£)|/q(t) =0 a.s.. In this paper we show that there is no need
for a similar assumption for the weak convergence of weighted partial sum processes in
Z?[l,00). Namely, we prove weighted approximations of n-1/2S(nt), 1~ t< oo, by a stan-
dard Wiener process {W(t), 0™ t<oo} in probability, and hence also weak convergence
of the n-1/2S(nt)/h(t) processes in £>[l,00) for the largest possible class of weight func-
tions which is the same as the class of functions h for which limsup””™ \W (t)\/h(t) < oo
a.s.. This paper is a continuation of Szyszkowicz [11] in that we improve on those re-
sults, for which additional conditions on weight functions were used in there. These two
papers, together with Szyszkowicz [10], establish in probability approximations and weak
convergence of partial sum processes in D[0,00) in weighted supremum and Lv, 0<p < oo,
metrics under the assumption of two moments only for X\ and for the optimal classes of
weight functions.

1. Introduction

Let X\, X2,... be independent, identically distributed random variables
(i.i.d.r.v.’s) with EXi = 0, EX]2= 1, partial sums S(n) = Xi A-——-- EXn and
let {W(t), <00} denote standard Wiener process starting at zero.

Let Q be the class of positive functions g on (0,1] which are nondecreasing
near zero, and let

1
I(g,c)= f t~lexp(—et~lg2(t))dt, 0O<c<oo0.
0
It is well known (cf. discussion in Section 2) that for £ Q
(1.1) lim W(t)\/q(t) —0 as.
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if and only if

I(q,c)<ou for all ¢ > 0,

and

(12) lim sup \W(t)\/q(t) < o0 a.s.
<40

K
if and only if

I(q,c)<oo for some ¢ > 0.

In Szyszkowicz [11] we proved the following result which we state here

for the completeness of our presentation.

Theorem I.A. Let X\, X~ ... be independent, identically distributed
random variables such that

ead=0o, EX2- 1

[nt]
and for each n~ 1 let S(nt) = Xt. Then a standard Wiener process

1=
{W(t), o t<ooy can be constructed in such a way that the following state-
ments hold true.
(ay Let gEQ. Then, asn o

sup In~|/\2(S(nt) —W(nt))\/q(t) = op ()

O<«M

if and only if I(g, c) <00 for all c>o.
() Letq&Q. Then, asn—00,

sup iN-1/2(S(nt) —W nt)\V/g{ty = o » (1)
0<th

if and only if 1(q, ¢) < oo for some ¢c> o.

As a corollary we obtain “weighted” Donsker’s theorem for the optim al
class of weight functions which is the same as the class of functions q£Q

for which (1.1) holds. Namely, we have the following result (cf. Szyszkowicz

Corollary 1.o . Let X\,X>, mmbei.i.d.r.v.s such that
E A i=0, EXf=1.

Let g: Q and {W(t),t ~0o; be a standard Wiener process. We have, as
n —00,

n-x2S{nt)/q{t) ~ W(t)/g(ty in D[o.1;
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if and only if 1(q.¢) < oo for all c> o.

Throughout, this paper weak convergence statem ents on Skorohod spaces
are stated as corollaries to approxim ations in probability. Naturally, when
talking about weighted weak convergence on such spaces we will always as-
sume that the weights are c.d.l.g. functions.

For motivation and elaboration on the history of these results we refer
to [11].

In the first part of this paper we prove the following theorem , which
improves Theorem 2.2 of [11] by dropping the condition of regular variation

of weight functions.

Theorem 1.1. Let X\, Xz ... bei.i.d.r.v.5 such that
EXX- o, EX2=:

and let {W(t),t ~ oy be a standard Wiener process. Let g E Q be such that
I(g, ¢) < oo for some c> o. Then, as» — oo, We have

I/h&gl n 22(S(nt) —W(nt)) jg{t) = op{:).

As a corollary we obtain the following convergence in distribution result
for the sup-functional of weighted partial sum s for the optim al class of weight
functions which is the same as the class of functions qEQ for which (1.2)

holds.

Corollary 1.1. Let Xi, X2, mmbe i.i.d.r.v.s such that
EX\ - 0, EX? = ..
Let gEQ and (17 (), r ~ o3 be astandard Wiener process.
(ay We have, as» —» oo,

g™ V28 {n)\a (td&pgl \W{t)\/q(t)

if and only if I(q, c) <00 for some ¢ o.
) We have, as » —> oo,

dqp/\l n~12S(nt)/q(t) a d<lb| W{t)/q{t)

if and only if 1(g,c) < 0. for some c> o.

Proofs of Theorem 1.1 and Corollary 1.1 will be given in Section 2.

O bviously, Corollary |I.A im plies convergence in distribution of any con-
tinuous in sup-norm funclionalofn"‘l'zs(nt)/q(t) to the corresponding func-
tional of W(t)/q(t) w ith qEQ and such that (1.1) holds. However, for the
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sup-functionals Corollary 1.1 yields convergence in distribution for the op-
timal class of weight functions which is the same as the class of functions
of g GQ for which (1.2) holds. Consequently, for the convergence of the
sup-functional of weighted partial sum processes we do not have to assume
the restriction that lim\W(t)\/q(t) =0 a.s., which is the optimal condition

for having Corollary 1.LA. Such a phenomenon was first noticed and proved
for weighted empirical and quantile processes by Csorgd, Csorgd, Horvath
and Mason [2], and then by Cs6rg6 and Horvath [3] for partial sums as well
when assuming the existence of more than two moments for X\. In [11] we
proved Theorem 1.1 and Corollary 1.1 under the additional condition that
q(t)/tu2 is slowly varying at zero (cf. Theorems 2.2 and 2.3 there). We note
that the assumption of qE Q, i.e., that q is nondecreasing near zero, is not
really restrictive since if q decreases near zero then lim |W(t)\/q(t) = 0 a.s..

For weighted Lp-approximations of partial sum processes in Z)[0,]] in
terms of the optimal class of weight functions when only two moments are
assumed to be finite for Xi, we refer to Szyszkowicz [10]. It is of interest to
note that the latter class of functions is yet bigger than the one obtained in
Corollary 1.1.

Obviously, all our results for t£ [0,1] can be restated on [0, T] for any
0< T <o00. On the other hand, since W(t) ->o00 a.s. as t—>o00, there is
no weak convergence of n-1/2S(nt) on [l,00). In [11] we introduced weight
functions h(t), where h(t) —»o00 as t —»o0, in order to study such phenom-
ena near infinity. In the case of assuming the existence of more than two
moments, in the mentioned paper we obtained a complete solution of the
problem in DJ[l,00) (cf. Theorem 3.1 and Corollary 3.1 there). Namely, we
obtained approximation in probability, and hence also weak convergence, of
our weighted partial sum processes in D[l,00), whenever

limsup\W(t)\/h(t) <oo a.s..
t-y00

We note that a similar result on D[0,1] does not hold. Namely, we do
not have the weak convergence of weighted partial sum processes in D[0,1]
for all weight functions such that (1.2) holds. Indeed, we have to assume
(1.1) even if we assumed the existence of more than two moments.

In this paper we obtain a complete solution of this problem in D[1, 00),
assuming the existence of two moments only.

Let H be the class of those positive functions h on [1, oo) for which h(t)/t
is nonincreasing in the neighbourhood of infinity, and let

00

700(h,C): I t"'lexp(—Ct"’IhZ(t))dt, 0<c<oo.
|
It is known (cf. Section 3) that for h 6 %
(1.3) lim \W(t)\/h(t) =0 as.
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if and only if

loo(h,c)<oo forallc>0,
and
(1.4) limsup|W (<)|/h(i) <00 as.
if and only if o

loo{h, c) < oo for some ¢ >0.

The main result in the second part of this paper is the following theorem.
Theorem 1.2. LetX\,X2,... bei.i.d.r.v.5 such that

E X i=0, EX? = 1.

Let hEH and loo(h, c) < oo for some ¢>0. Then a standard Wiener process
{W(t), 0~ < o0} can be constructed in such a way that, as n —00, we have

up In-1/2(S(ni) - W(nt))\/h{t) =oP(l).

«

The above theorem implies weak convergence of weighted partial sum
processes in Z)[l,00). Namely we obtain the following result.

Corollary 1.2. Let Xi, x 2, mmbe i.i.d.r.v.s such that
EXi=0, EXf=1

Let h£'H. Then the following three statements are equivalent:
(a) There exists a standard Wiener process {W(t), 0*"t<oo0} such that

& I 1/2(S(nt) —W (nt))\/h(t) = op(l)

as n =00, and

Iﬁtu&D\W(t)\/h(t) <00 as,;

(b) For all measurable, bounded, continuous functions g :Z)[l,00) =K
we have

g{n-"28(n-)/h(-)) A g(W(-)/h(-)),
asn—00, where {W(t), O”iCoo} is a standard Wiener process.
(©

loo(h,c)<oo for some c>0.

We note that the class of weight functions in Corollary 1.2 is the largest
possible, since in order to have weak convergence at all, the limiting process
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has to be finite, i.e., we have to assume (1.4) to begin with, in any case. We
emphasise again the lack of analogy with results on -D[0,1]. Namely, in order
to have weak convergence of n-1/2S(nt)/q(t) in -D[0,1] with q(zQ, we have
to assume (1.1). There is no need for the similar assumption of (1.3) for the
weak convergence of weighted partial sum process in .D[l,00).

In [11] we proved Theorem 1.2 under the additional condition that h(t)ft12
is slowly varying at infinity (cf. Theorem 3.2 and Corollary 3.2 there). We
note that the assumption that heTi, i.e., that h(t)/t is nonincreasing near
infinity, is not really restrictive, since if h{t)/t is increasing there, then it
follows from the strong law of large numbers for W (t) that tlrgo \W(t)\V/h(t) =
0 as..

For optimal weighted Lp-approximations of partial sum processes on
[1, 00), which are complete analogs of those on [0,1], we refer to [11].

Theorem 1.2 will be proven in Section 3.

We wish to note that, even though some parts of the proofs of Theo-
rems 1.1 and 1.2 are similar to parts of the proofs of Theorems 2.2 and 3.2
of [11], we decided to give the complete proofs of our results here for the
convenience of the reader, as well as for the sake of clarity of presentation.

2. Proof of results on [0,1]

As in the Introduction, let Q be the class of functions g defined on (0,1]
which are positive, i.e.,

(2.1) inf q(t)>0 forall 0< &< 1,

and nondecreasing in a neighbourhood of zero. Using terminology introduced
in [6], such a function g will be called a local function of a standard Wiener
process {W(f), 0"i<oo} if (1.2) holds.

A local function g of a standard Wiener process W will be called a
Chibisov-O’Reilly local function of W if (1.1) holds.

Introduce the following integrals:

I
E(g,c) = | t~3/2q(t) exp(—et~102(t)) dt,
0

and |

1(g,c) —J f 1exp(—et~lgz2(t)) dt,
0
for some constant 0 < ¢ < oo.
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The integral E(q, ¢) appeared in the works of Kolmogorov, Petrovski,
Erd6s and Feller. For details we refer to 1t6 and McKean ([7], Section 1.8).

The integral 1(q, c) appeared in the works of Chibisov [1] and O 'Reilly [9].

For further comments on these two integrals, as well as for the proof of the
next three theorems, we refer to [2], (cf. also [6]). We have (cf. Proposition
3.1, and Theorems 3.3 and 3.4, respectively, of [2]):

Theorem 2.A. (i) Whenever the integral 1{g,c) <oo for q &Q, then
E(g, c+ e) < oo for every e>0 and q(t)ftv2—00 as tf.0.

(i) Whenever E(q,c) < oo and q(t)/tv2 —o00 as tj 0 for q*Q, then
I(g,c)< oo. O

Theorem 2.B. Afunction g”*Q is a local function of a standard Wiener
process starting at zero if and only if the integral 1 (g, ¢) < oo for some ¢> 0
or, equivalently, if and only if the integral E(g, ¢) < oo for some ¢ > o and

YunqlD/tl/2 = 00. I:I
tHo

THEOREM 2.C. A function g&Q is a Chibisov~0Reilly local function
of a standard Wiener process if and only if the integral I(q, ¢) < oo for all
c> o or, equivalently, if and only if the integral E{q, c) < oo for all ¢c> o and
\(LBq(t)/tllz= 00. O

REMARK 2.1. Due to Theorem 2.A, the results in Theorem I.A and
Corollary 1.A, as well as those in Theorem 1.1 and Corollary 1.1, stated
in terms of the integral 1(q, ¢) can be restated equivalently in terms of the
integral E(«7, c).

By Lemma 4.4.4 of Csorg6 and Révész [5] (cf. also Section A.2 in Csorg6
and Horvath [4]), we can assume without loss of generality that our prob-
ability space (Q,M, P) accommodates all random variables and stochastic
processes introduced so far and later on.

In the proof of Theorem 1.1 we will use the following result of Major [§].

Theorem 2.D. Let a distribution F(x) be given with f xdF(x) =0,
J x2dF(x) —1. Define

%R / \

[ x2dF(x) — / xdF(x) if 2n0k <2n+l, n=1,2,...
J

v/2" \-v/2” /

A sequence of i.i.d.r.v.s X\, X2, mm with distribution function F{x) and a
sequence of independent normal random variables Y\,Y2,... with EYj; —0,

= <4 can be constructed in such a way that the partial sums
S(n) —X1H— «+ Xn, T(n) = Y\A-—-- (-Yn, n=1,2,... satisfy the relation

I5(n)-T(n)| =" o(nl/2).
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Proof of Theorem 1.1. LetXi,X2,... and Yi,>2;*+¢ be as in The-
orem 2.D and {W(t), 0"t <oo} be a Wiener process such that

n

(2.2) W{n) =Y JYi/°u n=1212....
1—1

[nt\
Let T(nt) :2_1Y), 0Mt~ 1, and qEQ. We have

|/I§1Q"| In 112(S{nt) —W(nt))\/q(t)
(2.3)

Nosup [In“22(5'(nt)-T(ni))|/g,(i)+ sup [n 1%2(T(nt)-W(nt))\/q(t)
I/ngt<I I/ngt<I

=/i(n)+ /2(n).
By Theorem 2.D we have
A(ni) —T(nt)] *=" o((nt)V¥2), as nt-too,
and, consequently,

sup \S(nt)—T(nt)\/(nt)yrr2 &= 0(1), as n-> oo.

lani<oo
Let 5G(0,1) be fixed and n be such that 1/n < 8. Then, a.s., as n-> 0o,

(2.4) sup |n_1/2(S(ni) - T(nt))\/q(t) ~ 0(1) sup tlI*/q(t).

i/n-gt<6 0<t<6
Using Theorem 2.D once again, we get
(2.5) sup_|n-1/2(5(ni) —T(nt))\/q(t) =" o(l)
sM<i
for any 8 G (0,1). Taking &> 0 arbitrarily small, by (2.4) and (2.5) we
conclude

(2.6) fi(n)= sup |n-1/2(5(nf) —T(nt))\/q(t) &= o(l)
I/ragtgl

for any q GQ such that
2.7 'Z[Di1/2/9(<) = 0.
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Let 6 >0 be small enough, so that q is already nondecreasing on (0, 6) and
let n be such that I/n <. By (2.2) we have
[nt]
12(ny~ sup  n- Y2(r{nt) - ~2 Yi/a®j jq(t)
Un"t<s i=1
[ni]

+ sup N YZ(e(nt)-£Yirki)  q@)

b<t< i=1
[nt]
(2.8 < sup A
vz ™5 (O, A W
+ 77
q(I/n)/nJ_2<t<6 '-/% (l )HAGO
+ sup n 2

el 75_|(i-éW 0

=4 0n +42)(n)+43(0)

n

Since G —1 as i —00, we have * A i-1)2->0 as n-> oo, and by Kol-
i=i

mogorov’s inequality we obtain

[nt]

sup n Yi = 1),
o<te) i = I | °ptd)
which implies
[nt]
(2.9) 4 3)(n)= sup n 125" (!'-—  /g{t) =0oP())

i=1 Gl
for any s € (0,1).
In order to show that /~(n) = op(l), we note that due to g{t)/t1*2 -> 00

as f|0 (cf. Theorem 2.A) and <*-> 1 as i —00, for any e > 0 there is n large
enough such that

1
nlgl/in) A C*—H2=e2
Consequently, using again Kolmogorov’s inequality, we have

[
pwivgpunyns B (1 )1 WS>
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[ni]

<P< sup -1Yi “nll2q(l/n) >e
I/n~tAq(l/n)/n 12 ’3_1 H a

n1/27(1/n)

E {°i-1)2
< 2—1
ngz2{l/n)e2

< e2
n1/2g(l/n)e2
1

n12g(l/n)
Since q(t)/tu2—00 as ij,0, we obtain
(2.10) 4 1)(n)=op(l)

as n —00.
Next we show that 1*\n) = op(1). Since <j —1 as i —»o00, for any
[nt]
e> 0 there is a large enough n such that E (& —I)2=£2 whenever [nt]*
2=1
) ) [ M] \
A nl2g(l/n), which gives Ei0 - 1)2) ~ q(t). Next we note that for
2=1 2

eachn>1

["-1E (IE ) r"°=<<1} ~ {~(iE (-.-»D. 0s*si}

as well as for each e>0
[nt]

{M"(NE(M«-»»SSI2{ N 1> -1> D.°s*si}.

Hence, we have

4 2>(n)2 sup
q(l/n)/nl2<t<(5
[nt]
nez .
sup 2=1
q{l In)/nY/2<t<& [n] (%)

(" E L)
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e sup
<7(I/n)/n12<t<6

Q

for any e> 0.
Consequently, by letting S—0 and hence also n —» 00, and combining
(1.2) with Theorem 2.B, we arrive at

sup j q{i)=eOP{2).
<7(l/n)/nY 2<t<6

Since e > 0 can be taken arbitrarily small, we have
(2.12) 4 2)(n) = oP(2).

Combining now (2.3) with (2.6) and also with (2.8)—2.11), we get the result.

Remark 2.2. Given now the embedding theorem, i.e. Theorem 1.1, as
far as the intervals (0,1/n) are being concerned, there remains only the
Wiener process to be dealt with. But this is exactly what Theorems 2.B
and 2.C can be used for. Hence Theorem 2.1 of [11] (cf. Theorem L.A here)
follows from Theorem 1.1 here.

Proof of Corollary 1.1 is similar to that of Theorem 2.3 in [11].

3. Proof of results on [1, 00)

[ni]
Let X\,X2,--- be ii.d.rv.’s and for each n't. 1 let S(nt) —_’\21X{,
1=
0N t<00. Let {W(t), 03t<00} be a standard Wiener process.
A function h :[1, 00) —(0, 00) will be called positive if | in'z hit) > 0 for

all 1<K <00.

As in the Introduction, let H be the class of those positive functions h
on [1,00) for which h(t)/t is non-increasing in a neighbourhood of infinity. A
function h G% will be called a global function of a standard Wiener process
{W(t), o"t< 00} if

limsup\W(t)\/h(t) <00 as..
t—00
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Introduce the following integrals:

Eoo(h, ¢) = j0t~3/2h(t) exp(—et~Ihz{t))dt
1
and

loo(h,c) = J t~1 exp(—et~1h2(t))dt,
I
where 0 < c< oo0.
For a global description of the behaviour of a Wiener process near infinity,

as well as for the following two results which are analogs of Theorem 2.B and
2.C for the case of t —00, we refer to [6].

Theorem 3.B*. A function h£7i is a global function of a standard
Wiener process if and only if the integral loo{h,c) < oo for some c¢> 0 or,
equivalently, if and only if the integral E~/i, ¢) < oo for some ¢> 0 and

lim /i(i)/i2= oo.

t—yoo

Theorem 3.C*. Let h~'"H and W be a standard Wiener process. Then
Urpo IW(t)\/h(t) =0 as.

if and only if the integral loo(h, ¢) < oo for all ¢ >0 or, equivalently, if and
only if the integral (h,c) < oo for all c> 0 and lim h(t)/tv2=oo.

£—*00

Remark 3.1. Ifgf Q then q(l/t) is well defined for t G [l.00), positive
and non-increasing in t as t —»o00. Hence tq(l/t) GTL and our results on [0,1]
and on [l,00) can be stated in terms of the integral 1{qg,c) (or E(g,c)) for
both cases (cf. also [6]).

Proof of Theorem 1.2. Let Xi,X2,... and Yi, Y2,... be as in The-
orem 2.D and {W(t), 0"t < o0} be a Wiener process such that

W(n)=Y Y ilol, n=1,2,...
2

M
By Theorem 2.D, with T{nt) = Yh 0~ t <o0, we have
2=1

A(ni) —T(ni)| = o((ni)’/2) as.
as nt —00. Hence
sup \n~1/2(S(nt) —T (nt))|/i¥2=0(1) as.

I$t<oo
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as n —00, and for any 1< K < 00, we have as n-loo

sup \n~I/2(S(nt) —T(nt))V/h(t) = o(l) as.,

as well as
sup \n~I/2(S(nt) - T(nt))\V/h(t) ~ 0(1) sup tl*2/h(t.) a.s..
K<t< o0 K<t<oo

Consequently, taking K arbitrarily large, we obtain, as n —»00

(3.2) sup \n~1/2(S(nt)—T(nt))\/h(t) =o(l) as.
I"Koo

for any h:[1, 00) —(0, 00) which is positive and such that I,@g t¥2/h(t) =0.
0

In particular for h 6 7i and such that /~(/i, c) < oo for some ¢ > 0O, the latter
is true.

Next we have, for any 1" K < 00

sup In 1/2(T(nt) —W(nt))\V/h(t)

I<t< 00
= sup \n-I'"2(T(nt)-W(nt))\/h(t)
Igtg/C
(3.2) + sup \n-1/2(T(nt)-W([nt]))\/h(t)
K <t<o00
+ sup \n~ll2(W(nt) —W([nt]))V/h(t)
K <t<oo0

li(n)+ T2(n)+13(n).

T(nt)-W(nt) = v1
i=1

and G ->1asi—00, by Kolmogorov’s inequality, we have for any positive
function h(t):[1, oo) —(0, 00), as n —00

Since

°l

(3.3) \{n) = op{)).
Let
a1
3.4 X
(34) B lime Ty T RoriRo h(t)

due to
loo(h, ¢) < 0o for some ¢>0.
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We note that for each n * 1

it]

E{AQE(-.»3.°5'<"}

Given e > 0, however small, Ehfn on account of O —1 as i =00, we can
nt
take K large enough so that — - )2~ £2 whenever [nt\ * Kn. Taking
I
1M
K even bigger if necessary, so that h(t) is increasing for oz :f(u, —l)2<

, X M .
t <00, and hence, in particular, \y—" / X ai ~ 1)2) =h{t), we arrive at
j=i

sup
K<t<o0

\Y
— sup
K<t<oo0

¥ sup
K<t< o0 h(t)

Ne sup
K <t<oo

Consequently, using (3.4), we have for any e > 0

sup Ih(i) =" /feO(l)

K<t< o0
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as K —oc.
Since e > 0 can be taken arbitrarily small, we obtain
(3-5) 12(n) = oP(I).

On account of having, as nt -4 oo,
\W(nt) —kI/([n£])| = 0((logni)'/2) as.
we have also

Iél%%o \n~1/2{W(nt) - W{[nt]))\/tv2 =o(l) as.

as n —00. Consequently, for any 1< K < 00, we get as h —00

sup  \n-1"2(W(nt)-W ([nt}))\/h(t)

K<t< oo

go(l) sup tl/2/h{t) a.s.,
K<t<oo

which gives
(3.6) lj,(n) =o(l) as.
for any h positive and such that limsupt¥2//~) < oo.

t—y00
Combining now (3.3), (3.5) and (3.6), we obtain the result.
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LIMIT THEOREMS FOR WEAKLY REINFORCED
RANDOM WALKS ON Z

B. TOTH

Dedicated to Endre Csaki on his 60-th birthday

Abstract

The weakly reinforced random walk (WRRW) on the one-dimensional integer lattice
Z starts from the origin of the lattice and at each step it jumps to a neighbouring site, the
probability of jumping along a bond being proportional to w (number of previous jumps
along that lattice bond), where w :N-»R+, with w(n) ~ na for large n, and a G(0,1) is a
fixed parameter. We prove that the properly scaled local time process of WRRW converges
in probability to a deterministic function. Using this result we also prove a limit theorem
for the position of the random walker at late times.

1. Introduction

We continue to investigate the long time asymptotic behaviour of self-
interacting random walks on the one-dimensional integer lattice Z. The walk
Xi, i=0,1,2,... starts from the origin of the lattice and at time i + 1 it
jumps to one of the two neighbouring sites of Xi, so that the probability of
jumping along a bond of the lattice is proportional to

w (number of previous jumps along that bond)

where
w N-> K+

is a weight function to be specified later. Formally, for a nearest neighbour
walk Xg= (xqg,x\,... ,Xi) we define

(1.1) r{xo) = #{0"j <i: {xj,xj+x) = {xi,xi + 1) or (xj + |,®*)}
(1.2) Ixj,) = #{0~i<f: {xj,xj+i) = (xi,xi- 1) or (xj- la;f)}.
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That is: the number t(xq) (respectively, 1(x'q) shows how many times has
the walk xs visited the edge adjacent from the right (respectively, from the
left) to the terminal site x,. The random walk X Lis governed by the law:
P[Xit =Xi +1 X)j=ggy= (0D
(1.3

=1-P (*j+] = Xi- 1 x\ =nq)-

The long time asymptotic behaviour of the random walk Xt depends strong-
Iy on the choice of the weight function w(-). In three previous papers we
analyzed the following cases:

(1) The so-called ‘true’self-avoiding walk, with w(n) —exp(-g-n), g> 0,
was studied in [6]. There we showed that for long times Xn scales as n2/3
and we proved a limit theorem for Xgs/A, as A —00, where 99A is a
geometrically distributed random variable with distribution V(0JA=n) =
(1 —exp{—s/A}) exp{—ns/A}, independent of the random walk Xn.

(2) The generalized ‘true’self-avoiding walk, a generalization of the pre-
vious model, with subexponential self-repulsion w(n) = exp(—g mK), g> 0,
k E (0,1) was investigated in [5. In this case we found that Xn scales
as and we proved a limit theorem for A~"K+ K+2"Xg3/A, as
A —m00.

3 Finally, in [7] weight functions with power-law asymptotics were con-
sidered: the so-called polynomially self-repelling walks, with w(n) ~ n~a,
a >0, respectively, the asymptotically free walks, with w{n) = 1+ 0(n-1)
asymptotically, for n > |. In these cases the correct scaling of Xn was n-1/2
(as for ordinary random walks) but the scaling limit was not gaussian. A
particular case of asymptotically free walks, the once reinforced random walk
or random walk partially reflected/attracted at its extrema has also been con-
sidered in [2].

In the present paper we consider self-interacting random walks with
polynomial self-attraction. That is: we assume that the weight function
w :N—2(0, oo) is monotone increasing and for large values of n E N it obeys
the asymptotics

(1.4) u=(l-a) 1Q) -5(1-a)"2Q)  +0(na~2),
or, equivalently
(1.5) «(n)->.(I-«)(=)-+5(i)-,- +0(>— ).

where a E (0,1) and B e K are fixed constant parameters. Since in the
definition (1.3) of jump probabilities only ratios of w-s play any role, the
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constant factor in front of the leading term is chosen for convenience only.
Note that the next-to-leading term is assumed asymptotically ‘smooth’.

We call these walks weakly reinforced random walks (WRRW) since the
self-attraction of trajectories is slightly weaker than in the linearly reinforced
case (with w(ri)= 1+Bn, B > 0). According to Davis [1] self-attracting ran-
dom walks on Z are recurrent if and only if w(n)~I = oo, otherwise the
random walker eventually sticks to one (randomly selected) edge of the lat-
tice, jumping back and forth on it indefinitely. Pemantle [4] proved that the
linearly reinforced random walk has an asymptotic distribution on Z without
any scaling. These two remarks explain why we confine our investigations
to a G(0,1) in (1.4), (1.5).

The paper is organized as follows: In Section 2 we formulate our main
results: Theorem 1 describes the asymptotics of the local time process of
WRRW, Theorem 2 is a limit theorem for the position of the WRRW at
late times. In Section 3 we give a representation of the local time process of
our random walks in terms of generalized Pdlya Urn Schemes. Section 4 is
devoted to the proof of Theorem 1. As the proof of Theorem 2 is identical
to a similar proof in [7], we do not repeat those details here.

In order to keep the paper self-contained we had to include parts of our
previous paper [7]. These overlapping parts are typed with petite and thus,
they are clearly distinguishable from the genuinely new parts.

2. Results

The present section is divided in two subsections: in subsection 2.1 we
formulate the limit theorems referring to the local time processes and hitting
times of the WRRW. In subsection 2.2 we formulate the limit theorems for
the position of the SIRW at late times.

2.1 The local time process and hitting times

We define the following (bond) local time process:

(211 L(lLi) =#{0~j<i:Xj =1, Xj+x=I1-1}, leZ i€N

and stopping times

(212) T>_1=0, T>m=inff> X4i=k- LA =K k>0 mno0
(21.3) T<0=0, T<M=M{i>T<m_I :Xi. 1=k +1,Xi=k)kZ0, 1

In plain words: L(1, i) is the number of leftwards jumps on the bond | | —1

performed by the random walk up to time i. Tjf is the time of the m + 1-th
arrival to the lattice site k coming from left, T fm is the time of the m-th arrival
to the lattice site k coming from right.
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In formula (2.1.4) below and thereafter the superscript * stands for either <
or >. We consider the following shifted (bond) local time processes of the walk
stopped at m:

(2.1.4) Sim(l) =L (k-1,TIm).

Sk ro(0 's roughly half of the total number of jumps across the bond {k — —L,
k-1):

@15)  #{0~j <T™m:{Xj, Xj+13={k-1-1,k-1}} =2SIm{)+ 1M) (/).

Denote
(2.1.6) = hIf{/~ 0: > 0},
2.17) usm= (Sjim) = spfZ” ©:SEME@ > O}

In plain words: k —gt, respectively k—jt~ —1, is the leftmost, respectively

rightmost, site visited by the stopped walk Xq
Prom (2.1.5) it clearly follows that

B

k,m 0o

(2.1.8) Tm=2 1] Sim@+®=: A SIml)+k

Looking at the formal definitions only, in principle, these local times or hitting
times might be infinite, i.e. it could happen that the site K€ Z is never hit. From
the results of Davis [1] it follows that in case of WRRW:-s considered in the present
paper, with probability one, this does not happen: all the random variables defined
above are finite almost surely.

The following theorem and its corollary describes the precise asymptotics
of the local time processes S”m(-) and hitting times TEm of WRRW:

Theorem 1. The sum

1

(2.1.9) Wi + 1)

exists and D € (0, 00).
Let x 6 [0,00), hit 0 and *=< or > be fixed.

(2.1.10) A NAZTpP/IO-«)/*] A —D-~lhl-a

= 1-0
(2.1.11) [AXWAIIL-*] 2¢+D=h
(2.1.12)

SUP- A -m i- &) STAXUAIN-)hjiHV]) —{AL'0 + D(x - Iy - ~pypl(1-2)

as A —o00.
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Remarks. Note that the non-trivial scaling of the local time process
provides convergence in probability to a deterministic function rather than
convergence in distribution to a genuinely stochastic process.

Prom the previous theorem and (2.1.8) it follows immediately:

COROLLARY 1. Letx, hand * and D be as in Theorem 1
(2.1.13)
' * A - HE13 | -
B/ R g Iweor] © 2-a D (x+ (D=InfiaY Z-0)

as A -»00.

2.2. Limit theorem for the position at late times

The second result concerns the limiting distribution of the WRRW Xn
for late times. We denote by P(n, k), n £ N, k £ Lthe distribution of our
WRRW at time n:

(2.2.1) P(n,k) =2 (xn=Kk)

and by R(s,k), s£ R+, k£ Z the distribution of the walk observed at an
independent random time &S, of geometric distribution

(2.2.2) P(os= = (I - e~s) e~sn,
(00]

(2.2.3) R(s,k) =P (XG®B=kj = (1- e~s) ™ e~snP{n,k).
n=0

We define the following rescaled ‘densities’ of the above distributions

(2.24) NA{t, x) = A(l-aW - Q>P([AL], [ t1-«)/12" “)®))
(2.2.5) TA(s,M) = A (1_a)l(2“ QP (M _1s,[>1(1_0)/(2_a)a))
t,s£IRf, x£R

THEOREM 2. For any SER+ and X £ R

(2.2.6) nA(s,x) -"p”~\s,x)

as A —00, where
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and
(2.2.8)
1 /22« P\ U2-QjV2—« i\ (»-“W M | “/Q q)
POM.X) 2.2« \2-al) I\2 —2« 15)

This is of course a local limit theorem for the WRRW, observed at an
independent random time @/a of geometric distribution with mean e_S//,4x

X (I —e~s!A) 1 A/s. In particular the (integral) limit law follows:

(2.2.9) via~ M /"M X &la<x)” pr"(s,y)dy.

— COo

This is a little bit short of stating the limit theorem for deterministic time:

X
(2.2.10) P (A-(L-«)/(2-«)x[idt]l<x)-> J PA\t,y)dy.
—00
But, of course, we can conclude that if the sequence with

t GR4- fixed and A —00, converges in distribution then (2.2.10) also holds.

Remark. On the other hand we have good reason to expect that the
sequence of random processes t"r XMA\t) = is not tight
in the function space Z)[0,1] and there is no continuous lim it PrOCESS.

Given Corollary 1, the proof of Theorem 2 is formally identical to the
proof of Theorem 3 in [7]. We omit the repetition of those details here.

3. Representation of the local time process in terms of Polya urns

3.1 Generalized P6lya urn schemes

Given two weight functions

(3.1.1) r:N—M+
(3.1.2) 6:N->-K+,
a generalized Pélya Urn Scheme is a Markov chain (pi,i) on N x N with transition
probabilities

e . r(k)
(3.1.3) P,( (Pi+1,Ri+1)=(k+ L) (puRi)= (M)) = (k) + b(l)’

6(0

(3.1.4) ((Pi+i,A+i) = (M + i) (pi,Bi) = (kD)j - (

r(k) + 6(0°
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and no other transitions allowed. Usually the initial values (po,Ro) —(0,0) are
assumed and Bi and pi are interpreted as the number of blue, respectively red
marbles drawn from the urn up to time i. Denote by rm the time when the m-th
red marble is drawn and by p{m) the number of blue marbles drawn before the
m-th red one:

(3.1.5) rm=min{i\pi=m},
(3.1.6) p(m) = RBTm.

The functions defined below are essential in the study of the Pélya Urn Scheme
defined above:

n-1

(3.1.7) Rp(n) = *~2(r(j))~p, PEN
1=0
n—%

(3.1.8) Bp(n)="y" (b(j))~p, PEN.
i=0

We shall be particularly interested in p= 1, 2
Lemma 1. For any m£ N and X< min{r(7") ©< 'Sm -
identity holds:

(3.1.9) ‘ irJo >+&);) - 'r:]o it-m)

In particular,

(3.1.10) E (B1(p(m))j = Ri (m)

B(m)-I m—1 co
]

(3.1.11) Bi(p(m)) - Ei?i(p(m)) 2)= R 2(m)+E"B2(/i(

P roof. The proof of (3.1.9) follows from standard martingale considerations,
using the representation of the generalized Pélya Urn Scheme in terms of two
independent renewal processes with exponentially distributed waiting times (see
e.g. the Appendix of [1]). Expanding (3.1.9) to second order in Xyields (3.1.10)
and (3.1.11). We leave the standard details of this proof as an exercise for the
reader. |

3.2. The local time process

For sake of definiteness we consider the case of superscript >, i.e. we stop
the WRRW at the hitting time . The case of superscript < is done in a very

similar way, with straightforward slight changes.

Let {p(ne&1~), /£Z be independent Pélya Urn Schemes with weight func
tions

321 r)G)=wei+ D) Gy = weh for 1 £ (—e0, ] U [A+ 1, 00)

(322) r@)) = w(zj) 64G)=wj+ D for1£[1,k —1]
3.2.3) r() ) = w{2j) b(Nj) = w{2j) for 1= k.

327
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Denote by (57(m) the random variables defined in (3.1.6), the superscript | show-
ing to which of the Urn Schemes it belongs.

The extension to self-interacting walks of F. Knight’s description [3] of the
local time process Sj! (i), | GZ as a Markov chain is formally exhaustively

explained in [6]. According to these arguments S? (1), | € Z is obtained by

patching together three homogeneous Markov chains in the following way:
() In the interval | G(0, k —2), that is steps 0—1,1 —12,..., (k—2) —=¥(k—L):

(3.2.4) S>ra(0)=m, SIm(I+1)=R{I+1)(S>m()+ 1), 1=10,1, 2.
(I1) The single step (k —1) —k is exceptional

(3.2.5) S "m(k —1) = given by (3.2.4), Sfrofc)=p{K (S m(k- 1)+ 1) .
(1) In the intervals | G (—00,0), respectively | G(A+ 1,00), that is steps

0—¥—1,1—>—2 —2—->-3,..., respectively k (k+ 1), (fc+ 1) —=(fc+ 2), (fc+ 2)

—>(/c4-3),(fc + 3)—+(/c-f-4),...:

(3.2.6) 5>m@0)=m, 5>m({/- 1)=/r(l) (S>tn(l)), 1=0,-1,-2,...

respectively

3.2.7) ~ven by (3.2.5), 5>mE+ 1) =/r(i+1) (S>m(i)) ,
I=k k+ 1A+ 2,....

Due to (3.2.1) these last two Markov chains have the same transition laws.

4. Proof of Theorem 1

4-1. Preparations

As suggested by the representation of the local times given in the previous

section, we consider two homogeneous Markov chains Z{1) and Z(l), 1= 0,1, 2,...
on the state space N, defined as follows:

(4.1.1) Z(1+ D)y=pa+13(Z(H) + 1), Z{l + 1) =R (I+1)(Z(1))
where the processes ( ' ) arethose defined in (3.1.5)-(3.1.6), belonging to
i.i.d. Polya Urn Schemes < fIe , with weight functions
| J N
(4.1.2) r(j) = w(2j), b()=w{2j+1)

and similarly, the processes {//” (*)} N belong to i.i.d. Polya Urn Schemes

\ with weight functions

<
I 1 ' JeN

(4.1.3) r() = w{2j + 1), b(j) = w{2j).
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We shall also need the hitting time
(4.1.4) ?0=20 (Z()) = inf{J: Z(l) = O}.

From (4.1.1) and (3.1.5)- (3.1.6) we see that ao is actually the extinction time of
f():

(4.1.5) 2(0=0 for /" <0.

Lemma 1 suggests the introduction of the following functions:
n—%

(4.1.6) Up(n) = 22(w(2j))-p, p= 1.2,
j=0
n—t

4.1.7) W AW 2 J+1))-, P=12
j'=o

Using formulas (3.1.10) and (3.1.11) of Lemma 1 and the functions introduced
above we get the following identities:

(4.1.8) E(Vi(Z(1 + 1))\Z(I) = n) = U\(n + 1)

(4.1.9) D2(VI(Z( + DO\Z(I) =n) = U2(n+1) + E(V2(Z(1+1)\Z (1) = n)
(4.1.10) E(ilj (2(/+1)) \Z(1)=n) = VI (n)

(4.1.11) V2(UI(Z(1+\)N\Z(1)=n) = V2(n)+E(U2(Z(1+\))\Z(I) = n).

As both functions n Ui (n) and ni=>Vj(n) are bijections between N and their
ranges it is more convenient to consider the Markov chains

(4.1.12) y(1) = vizqy),  y() = Uiz(l)), 1=0,1,2...

instead of Z(l), respectively Z(l). With this change of variable formulas (4.1.8)-
(4.1.11) transform as follows:

(4.1.13)
e(y(i+i)ly(0=X)=ifj (v-"x) +1)
(4.1.14)
d2(W +i)fly(i)=X) =U2(uf'(x) + 1) + E(v2ov~1(y(i + i))iy(i) =X)
(4.1.15)
E(y(i+i)m)=x)=vIOurl(x)
(4.1.16)

D2(y(i +i)]y(0 - *)=\V2ot/fl(x) + E(U20i/fl(y(i+m m =%*).

We introduce the functions F, G :Ran(M)—1Rand F, G :Ran([/i)—K defined
below

f)=e(w +i) y(0=x) X
=ui (URUx)+i) -x,

(4.1.17)
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G(x) = E([;y(i+1) - E(y(i+1)]y(0 =%)] T(0=%*)
(4.1.18)

= U2 (Vfrid + J+EAVaoV fAyil)) -|©ZA

() =ely(i+ 1) y(0="%)
=W o[7t1() —X,

L e

Since y(-) and y(-) are Markov chains, from (4.1.13)—4.1.20) it follows that the

(4.1.19)

processes
I-i
M(i) =y (i)-y (0)-JI2F(y()),
(4.1.21) J/:f

are martingales with quadratic variation processes

/-1 i-1
(4.1.22) (M, M) (1) =3 2 G(yU)), (M,M)() =~G(y(i)).
3=0 3=0

4-2. Asymptotics of the relevant functions

In the present subsection we give the asymptotics of the relevant func-

tions, F, G, F, G to be used in the proof of Theorem 1 All formulas are
valid for large values of the variable and are obtained from (1.4) and (1.5)
in a straightforward way.

From (1.5) we get

(4.2.1) Ui(n) =nla+u+o0(n
(4.2.2) Vi(n) =ni-a+V+0(n

(o (n2-20) if O<ac<
(4.2.3) V2(n),U2(n) = < O (logn) if a=b

I 0(1) if S5<a<],
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u and v in (4.2.1) and (4.2.2) are two real constants. We define

(4.2.4) D= lirn (i7i(n)-Vi(n))=u-w.
Clearly,
o/ i 2\
D A W 27 w(2j +1)J
1 oo | 1 2\
M'2'50 w0 "W 2j-i) ~(2)/

and hence, due to (1.4),
(4.2.6) 0< D <ie(0)-1 < oo.

The asymptotics of the functions F, F, G, and G is given in the next Lemma:
Lemma 2. The following asymptotics hold for x 3> 1:

(4.2.7) F(x) =D+ 0{x~a™1° V i'l
(4.2.8) F(x) =-D + 0{x-a"v-“IV T 1
(o (xM-NMd-.,, if 0<a<\
(4.2.9) G(x),G(x)- { O (logx) if a=h
1 0(1) if s<a<u

PROOF. Note first that (4.2.1) and (4.2.2) imply

(4.2.10) U7ix) = 1—a mQ/(1“a) + 0(1)
and
(4.2.11) Vrix) =x»ni» - T_—axa/il-a)+ 0(1),

respectively. Inserting (4.2.1) and (4.2.11) into (4.1.17) [respectively, (4.2.2)
and (4.2.10) into (4.1.19)] we readily get (4.2.7) [respectively, (4.2.8)].

In order to prove (4.2.9) we note first that, due to (4.2.10), (4.2.11) and
(4.2.3) we have:

U2(VI-I(X) + 1), V2oV{f\x), V20 | U 20U~x) =
O (x(I-20)/(I-a)" it o<a<q
(4.2.12) O (logx) if a=\
0(1) if 5<a<l
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Inserting these into (4.1.18) and (4.1.20), and applying Jensen’s inequality

(note that the functions x t-> and x  logx are concave), we get
eventually (4.2.9). O

Note also that the functions x h»F(x) and x  F(x) are monotone de-
creasing, with

D= lim F(x) "F{x)"F{0)= ,
(4.2.13) X—>00 w(o)
-D = lim F(z)EF(x)gF(0) = 0.

4-3. Scaling

The proper scaling of the processes y(-) and y( ) is determined by the dom-
inant terms in the asymptotics of the functions F, G, respectively F, G. The

scaling of the processes Z(-) and Z(-) is determined by the functional relations
(4.1.12).
(4.2.9)-(4.2.11) suggest the following scaling:

(4.3.1) YA(t) = A~1y([At}), YA(t) = A~1y(IAt}).
The rescaled martingales M A{-), MA() and their quadratic variation processes
will be
(4.3.2) MA(t) = A~IM{[At]) = YA(t)-Y A{0)- J F(AYA(s))ds,
0
A- LAt
(4.3.3) MA(t) = A~IM([At]) = YA(t)-YA(O0)- j F(AYA(s))ds
0
2 ‘Jl[At\
(4.3.4) (MA,MAM = A~2(M,M)([At])= A~XG (AYa(s)) ds,
(4.3.5) MA,MA) (1) = A-2(M,M)([AtDH1= |  A-1G(AYA{s))ds.

The functional relations (4.1.12), the asymptotics (4.2.1), respectively (4.2.2), and
the scaling (4.3.1) determine the proper scaling of the processes £(m) and Z(-):

(4.3.6) ZA(t) = A~1/(1- Q)Z([A]),  ZA(t) = A~1{1- a)Z([AL}).
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4-4- Convergence of the processes

We assume that the initial conditions converge in probability to the de-
terministic constants yo, respectively yo: denoting the events

(4.4.1) Asa={|[ra(0) —20 <4}, Am={|*(0) —\b <S

we have for any fixed 5> 0
(44.2) p (M<sa) “%1, P (As,a) —I

First we show that the martingales MA@ and M, (® converge to zero in
probability, uniformly on compact intervals s [0, t]. Indeed:

A-'[AL]
EA(MAMA)(1)= |  A-~te (g {AYA(s)))ds

o R[N
(443 ,\A:C\ A;]1[At](evA(s)y~ nds +A-IC2

A~1At
AA~°Ci j  (y™MO) + C3s)1_6ds + yI-1C2i->0.

In the first inequality the asymptotics (4.2.9) of the function G is used, the
second one follows from Jensen’s inequality, finally in the last inequality we
have used (4.3.2) and the fact that the function F is bounded. Define the
events

(44.4) BtiSA={ sup |Ma(s)| <<5), Bsa={ sup M/i(s)<jl.
10"t } SgsgD-iyo J

From (4.4.3) and a similar argument applied to the martingale MA{) we
conclude that for any t E [0, 00) and any J > O fixed

(4.4.5) p(Xm)-+i> p(Bsa) ->1
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as A —»00. Due to (4.3.2) (respectively, (4.3.3)) and (4.2.13), on the sets
As,a HBt,s,A (respectively, on the sets As,a OBs,a) we have for s G[0, t\ (re-
spectively, for s E [0, D ~ Iyo])

(4.4.6) YA(s)"{yo+Ds-26}+,

respectively,

(4.4.7) YA(s)*{y0-Ds-26}+.

Consequently, given any t G [0, 00) fixed, on the set As,a 0 Bt,s,A

0 for O07s"D 13S0} Al
N N
(4.4.8) y"(s) 5 for D~1{36 - yo}+ At <s5i t.

On the other hand, on the set As,a OBs,a

& for 0Ars< D -1{y0-36}+
0 for D-'iyo - 3G} D~lyO0.

(4.4.9) Ya(s)?

Now, choose A big enough to have

(4.4.10) F{AS) - D <6, F{AS)+D <.

Prom (4.3.2) and (4.4.8) it follows that for any tE [0, 00), on As,an Bt,s,A
sup Y\ 1(s)-(yo + £,9)|

A-1[A]
Aly+(0) - 2ol+ i {F{AYa(s)) - D)ds+ sup \Ma(s)\
oSt

(4.4.11) <6+ 3{w(0)-1- D)D*O + (t+A~1)6+0
i(t +3{w(0)D)~1)6,

and hence for any t E [0, 00)
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On the other hand, from (4.3.3) and (4.4.9) it follows that, on the set
*As,a 0 Bs,a

sup * [Y)i(s)-(yo-£>s)|

0"s"D~lyo
A-'IAD-'yo]

< H A

(4.4.13) Ta(@) —yo[ + ] (F(AYA(s)) + D*jds
+ sup M MA7is)
0£sED~Iyo

gJ+3a+ (i+i4_1i+Jg (D~lyo+56)S
and hence:
(4.4.14) SUP  Ya(s)- (yo-Ds)

0"s"D~1yo

4-5. Convergence of the extinction time
The forthcoming argument is a repeat of the proof presented in subsec-
tion 5.7/A1 of [7].

For x 6 K+ we denote

(4.5.1) ax =infZz™ 0: y{1) g x}
(4.5.2) S*,a = inf{t » 0: Y~(t) ™ x}.

We prove now that for any r)> 0:

(4.5.3) lim lim P (op A~>g
which is equivalent to

45.4 lim_lim P (ctq> A
( ) y—+OA—f00 \( a g

From (4.2.13) it follows that there exists an xo < oo such that for x*xg

(4.5.5) F(x)"~y <0
and thus

(4.5.6) m=m + ji
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is supermartingale as long as Y(I) ™ xq. Applying the optional sampling theorem
to the supermartingale Af(l) we get for y > xo

(4.5.7) e (?,0 HO)=y)g-8y.
Now, we prove (4.5.4):

. . _ A
yI|_rl10All_r)n)OOP\(('l'o> Ar) F(0) Ay/)

5. A i > = Aj/1+
(4.5.8) yll_rtr(l)AllmoP$<T>«) Ar\f2 (y(0) Aj//]

lim sup p(ao>Ai)/2 (V(0)= a:).
Applying Markov’s inequality and (4.5.7) we get

A —too

(4.5.9) yli_r}no lim p (aXo>Aii/2 y(O):Ay3 E)IIi-gbﬁB:O'

On the other hand, since .« is constant independent of A, the second limit on the
right-hand side of (4.5.8) clearly vanishes. Hence (4.5.4), or equivalently (4.5.3),
follows.

From (4.5.3) and (4.4.14) it follows that

(4.5.10) aAo A D-%.

4-6. End of the proof

Collecting the results of subsections 4.1-4.5 we conclude that, provided

that ZA(0) — >zq, for any fixed t € [0, 00):

(4.6.1) sup. ZA(s)-{4~a+ DS},i/(i-«)
O<s<i

and, provided that Za{0) — > zq,

(4.6.2) &0,A -1~1-Q
and
(4.6.3) sup ZA(s) —{zQ-a- Ds/ (=) 0
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Given the representation of the local time process described in subsection
3.2, Theorem 1 follows directly from (4.6.1)-(4.6.3), after noting that due to
(3.1.11) it iseasily seen that the single exceptional step (3.2.5) does not spoil

the continuity of the limit process at y —x. O

Corollary 1 follows directly from Theorem 1 Note that the joint con-

vergence of the processes S*uj” ini_a)hl{[A-])/ and extinction times

WLAXW\AMM)h\IA is needed in this proof. a
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GENERALIZED MEANDERS AS LIMITS OF WEIGHTED BESSEL
PROCESSES, AND AN ELEMENTARY PROOF OF SPITZER’S
ASYMPTOTIC RESULT ON BROWNIAN WINDINGS

M. YOR

Dedicated to Professor E. Csaki on his sixtieth birthday

Let (Bt, t” 0) be a 1-dimensional Brownian motion starting from 0, and
gi = supq{i < 1, Bt = 0}. Recall the definition of the Brownian meander (due
to Chung; see e.g. [2]):

mu= A 1-A9i+tt(1-gi)l u=I>
and, more generally, of the Brownian meander of length t:
m” = Vimu't, ifEt.

It is well known (Imhof [3], Biane-Yor [1], [2]) that Mt, the law of as
defined on C'([0,<j;R+) satisfies:

(D) Mt t* *

where Pq denotes the law of a 3-dimensional Bessel process starting from Q.

More generally, we may define a two-parameter family M?'d of distributions
on C([0, g; M+) by

td/p

Td,d!
= cdd

()d, d1 M Rgrat

X? Ft

where Pq denotes the law of a d-dimensional Bessel process starting from 0;
and cdyd is a normalizing constant.

For some important properties of these distributions, see Yor [4], and
Pitman-Yor [6].

Amongst these laws, the laws of the meanders associated to Bessel pro-
cesses with dimension 6 < 2 are found: precisely, if 6 = 2(1 + r), with

—1</z< 0, and (R"\t ~ 0) denotes a Bessel process starting from 0, with
dimension § then the law of

m (fi)(u) = V71;~=9;-’\9i.+u(i-9)J)> u=1

1991 Mathematics Subject Classification. Primary 60J65.
Key words and phrases. Meanders, Brownian windings.
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340 M. YOR
or rather M[R\ the law of \/im”™\(u/t), u”t, satisfies

t~v

M= (2 Tt

In this note, we show that some of those generalized meander laws med
may be obtained as weak limits as r -* 0 of

where

and we found it more convenient to refer to the law P/ as Pr\ where // is
the index associated with 6 by: &= 2(1 + p).

We shall use in an essential way the following absolute continuity rela-
tionship:

Proposition 1. Letp> —1, andlet ~ 0 ber « measurable. Then, for
r >0, and X*O, one has

(2

where v = (p2+ A2)1/2.

Remark that, if /i <0, then: (t <To) < 1, where To = inf{f : Xt = 0},
and we obtain from (2), by letting A—0,

(2)0 /\[Al(AO)]:/\'P)d>

These different results are found, e.g., in [5], where they play an important
role in the computation of the laws of exponential functionals of Brownian
motion.



WEIGHTED BESSEL PROCESSES 341

1. Weak limits for fixed A™ 0, as r =0

We have the following

Theorem 1. Fix A 0. Then, if <& is a hounded, (Ft) measurable,
continuous functional, one has

11

3) - ThENS
(r—0

X r

Consequently, Tt N >Mfs, where S—v —fj, and S'=2+ v + /.

The proof of (3) follows easily from (2); note that in particular

and we have
rgi+n)
rgi+")
where, to obtain the last formula, we have used the fact that X 2 is distribut-
ed, under as: 2Zi+/, with Za denoting a gamma (a) variable.

2. Weak limits for A= A —=>0

r—0

In this situation, we need to discuss separately the cases when 0, or
M<0.

Theorem 2. Let Then, if Ar —0, and if <& is a bounded, (Ft)-
measurable, continuous functional, one has

r ! JF f dsV .
EM *, - ~ (r*"-"ENiNM),
(5) exp(-T j X2). t o )
where
Vr = (Hz2 + X1)1/2.

Consequently,
p(fi)Ar u)
T, r-v0 R/B
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Theorem 3. Letft<o0. Then, if A —(;\o, and if <& is a bounded con-
tinuous functional, one has

A? ds )

(6) Ep* $texp ~ rVr-HE\f P
X 10 X f28-
Consequently,
p(®).M
Ft r-+0
Again, the proofs of Theorem 2 and 3 follow easily from (2). Moreover,

it is interesting to look at the equivalences in (5) and (6) when =1

For instance, if we take in (5) /i= 0, we obtain:

=0 | AN )]~ R ir(I0R))
so that, if Ar = with A”™ 0, one obtains

A2

} ds_
EIQ) exp - 2(log 1”)2}1 rgoexp(—A).

Using the scaling property of Brownian motion, it is easily seen that this
result is equivalent to Spitzer’s result about the asymptotics of the winding
number et of planar Brownian motion, ast 00, precisely:

20t (law)
) logt t-yoo 1

where C\ denotes a standard Cauchy variable.

REFERENCES

[1] Biane, Ph. and Yor, M., Valeurs principales associées aux temps locaux browniens,
Bull. Sei. Math. (2) 111 (1987), 23-101. MR 88g:60188

[2] Biane, Ph. and Yor, M., Quelques précisions sur le méandre brownien, Bull. Sei.
Math. (2) 112 (1988), 101-109. MR 89i:60156

[81 imnos, J. P., Density factorizations for Brownian motion, meander and the three-
dimensional Bessel process, and applications, J. Appl. Probab. 21 (1984), 500-
510. MR 85j:60152

[4 Yor, M., Some aspects of Brownian motion. Part 1. Some special functionals, Lec-
tures in Mathematics, ETH Zirich, Birkhauser-Verlag, Basel, 1992. MR 93i:
60155

[5] Yor, M., Onsome exponential functionals of Brownian motion, Adv. in Appl. Probab.
24 (1992), 509-531. MR 94b:60095



WEIGHTED BESSEL PROCESSES 343

[] Pitman, J. W. and Yor, M., Quelques identitas en loi pour les processus de Bessel,
Astérisque 236, Hommage & P. A. Meyer et J. Neveu, Paris, 1996, 249-276.

(Received July 23, 1996)

LABORATOIRE DE PROBABILITES
UNIVERSITE PARIS VI

TOUR 56-3éme ETAGE

4, PLACE JUSSIEU

F—75252 PARIS Cedex 05

FRANCE

secret@proba.jussieu.fr


mailto:secret@proba.jussieu.fr

PRINTED IN HUNGARY
Akadémiai Nyomda, Martonvasar

MAGYAR )
riIDOMANYOS AKADEMIA
KONYVTARA



RECENTLY ACCEPTED PAPERS

Roszak, B., On the pointwise approximation by Borel and Euler means

Barbe, P. and Broniatowski, M., Deviation principle for set indexed processes with
independent increments

Pielichowski, W., A nonlinear eigenvalue problem related to Gabriella Bognar’s conjec-
ture

BAyasgalan, Ts., Fundamental reducibility of normal operators on Krein space

Moszynska, M., Remarks on the minimality rings of convex bodies

Stanimirovic, P. S., Computing minimum and basic solutions of linear systems using
the hyper-power method

Mala, J., Finitely generated quasi-proximities

Gratzer, G. and Schmidt, E. T., On finite automorphism groups of simple arguesian
lattices

Kiss, Gy., Generalized cotangency sets in projective spaces

Manuscripts should be submitted in duplicate, typed in double spacing on only one
side of the paper with wide margins. Only original papers will be published and a copy of
the Publishing Agreement will be sent to the authors of papers accepted for publication.
Manuscripts will be processed only upon receipt of the signed copy of the agreement.

Authors are encouraged to submit their papers electronically. All common dialects
of T~X are welcome. The electronic file of an article should always be accompanied by a
hardcopy, the printed version exactly corresponding to the electronic one.

Figures should be submitted on separate sheets, drawn either in India ink at their
expected final size, or as printouts and matching files processed electronically, preferably
as encapsulated PostScript (EPS) ones.

Rii.S'h!



CONTENTS

Berkes, |. and Horvath, L., Almost sure invariance principles for logarithmic

AVEEAJES  weeeteteueeteeeeteete e e te et ettt et ete st e st et et e b e et e Rt eE et e Rt eR e Rt e b et R e ee e Rt Re et eReeee e be e enenaeeas
Birs, Zs. and Michaletzky, Gy., The first passage density of the Brownian
motion to a Lipschitz-continuous boundary ...
Csérgé6, M., Horvath, L. and Shao, Q.-M., Almost sure summability of
PArtIAl SUMS .ot e
Deheuvels, P. and Lifshits, M. A., On the Hausdorff dimension of the set
generated by exceptional oscillations of a Wiener process.........ccccceeeveuene
Erdés, P., Makai, E., Jr. and Vincze, l., On the best approximating ellipse
containing a plane convex body ...
Erdés, P. and Révész, P., On the radius of the largest ball left empty by a
WVIBNEE PIOCESS ..eniitinieiieteiete ettt ettt sttt et e be b e be e ebe b e e ebese e b e be e ebesnenea
Frolov, A., Martikainen, A. and Steinebach, J., Erdés-Rényi-Shepp type
laws N the NON-I.i.0. CASE ..o

Handa, B. R. and Mohanty, S. G., Extensions of Bonferroni type inequalities
Hurelbaatar, G., Almost sure limit theorems for dependent random variables
Khoshnevisan, D., Escape rates for Levy proCesses .......cceimienenniennns
Kodaj, B. and Méri, T. F., On the number of comparisons in Hoare’s algo-
LT T 1 1N 1 ST
Norvaisa, R., The central limit theorem for L-statiStiCS ........cccecvevviiiiieiiininnen.
REVESZ, P., Moderate deviation of a branching Wiener process ............oo...
Salminen, P., On last exit decompositions of linear diffusions .............c.......
Saran Jagdish and Sukla, M. K., Distributions based on Smirnov one-sided

and related rank order StatiStiCS ......ccccciiviiciiie e
Shi, Zh. and Yor, M., Integrability and lower limits of the local time of iterated

Brownian MOTION ....c.oooiiiecie ettt ettt ere e sbeere e eaeennas
Székely, G. J. and Zempléni, A., A direct decomposition of the convolution

semigroup of probability distributions ...
Szyszkowicz, B., Weighted approximations of partial sum processes in D[0, 00).

T 6th, B., Limit theorems for weakly reinforced random walks on Z ...............
Yor, M., Generalized meanders as limits of weighted Bessel processes, and an
elementary proof of Spitzer’s asymptotic result on Brownian windings ..

HU ISSN 0081-6906

1

25

43

75

117

127
153
167
177

185
209
239
251

263
279
299

305
321

339



VeV

NXVIIVICX W v X IVIVXUXXVX Illiliilili}&
315704 V.V XVITVXX W v X w2z IvivXvX XV,

EDITOR-IN-CHIEF
G. O. H KATONA

DEPUTY EDITOR-IN-CHIEF
I. JUHASZ

EDITORIAL BOARD

H. ANDREKA, L. BABAI, E. CSAKI, A. CSASZAR

I. CSISZAR, A. ELBERT, L FEJES TOTH, A. HAJNAL
G. HALASZ, P. MAJOR, E MAKAI, JR., L. MARKI

D. MIKLOS, P. P. PALFY, D. PETZ, I. Z RUZSA

M. SIMONOVITS, V. T. SOS, J. SZABADOS, D. SZASZ
E. SZEMEREDI, G. TUSNADY, I. VINCZE

“VVV.V

VOLUME 33 "W
NUMBER 4

1997 AKADEMIAI KIADO, BUDAPEST



STUDIA SCIENTIARUM
MATHEMATICARUM HUNGARICA

A QUARTERLY OF THE HUNGARIAN
ACADEMY OF SCIENCES

Studia Scientiarum Mathematicarum Hungarica publishes original papers on mathematics
mainly in English, but also in German, French and Russian. It is published in yearly
volumes of four issues (mostly double numbers published semiannually) by

AKADEMIAI KIADO
H-1117 Budapest, Prielle Kornélia u. 19-35

Manuscripts and editorial correspondence should be addressed to

J. Merza
Managing Editor

P.0. Box 127
H-1364 Budapest

Tel: +36 1 118 2875 Fax: +36 1 117 7166
e-mail: merza @ math-inst.hu

Subscription information

Orders should be addressed to

AKADEMIAI KIADO
P.O.Box 245
H-1519 Budapest

For 1998 volume 34 is scheduled for publication. The subscription price is $ 144.00,
air delivery plus $ 20.00.

Coden: SSMHAX November, 1997
Vol: 33 Pages: 345-478
Number: 4 W hole: 65

© Akadémiai Kiado, Budapest 1997



315704

Studia Scientiarum Mathematicarum Hungarica 33 (1997), 345-350

PERIODIC SOLUTIONS OF CERTAIN THIRD ORDER
NONLINEAR DIFFERENTIAL EQUATIONS

B. MEHRI and D. SHADMAN

Abstract

Periodic solutions of second order nonlinear ordinary differential equations have been
considered by many authors (see for example [1], [2], [3] and [4]). Third order equations
have also been the subject of many investigations. The differential equation x"** + ip(x")x"" +
(P)x" + f(x) —p(t). p(t) = p(t + uj) has been treated by Reissig [5] and several other

authors. In [5] the author treats the cases p(x) = k2 and ip(x') = c, respectively. In this
paper we make use of the method used in [5] to obtain sufficient conditions for the existence
of an ~-periodic solution for the general case of the differential equation cited above.

We consider the third order differential equation

(1) X"+ G (X)X + a>(X)X' + f(t,x) =p(t), p(t + ui)=p(t)

where the functions i/>(y), (f{x), f(t,x) andp(t) are assumed to be continuous
and in addition / is assumed to be w-periodic in t.

THEOREM 1. The differential equation (1) admits at least one ui-periodic
solution if

+2 t
1)) | p(t)dt=0 “i.e., P(t) =/ p(t)dt is uj-periodic'j,
0 0
A - '
o VRGNS, )=
(iii) " —0, x —00 *(*)=|
(iv) "{t)’(x 0, x—>00 (uniformly in t),
(v) f{t,x) sgnx*0O, \x\fip.
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346 B. MEHRI and D. SHADMAN

For the proof we make use of the Leray-Schauder principle. First we look
at the following differential equation containing a parameter y, 0"y 1,

2 X" +ax' +bx =y\p(t) —r. X) —=x —%p(X)X" + ax" + bx\,

where a and b are positive but otherwise arbitrary constants.

We notice that fory = 1, (2) is identical with (1) and for /x= 0 we obtain
a linear homogeneous equation

(3) x" +ax"'+ bx=0.

It is well known ([6], [7], [8]) that (2) admits at least one periodic solution for
each y G[0,1], iffory 6 (0,1) all periodic solutions as well as their derivatives
of first and second order are bounded, provided that (3) has no w-periodic
solution except for the trivial solution. This is indeed the case under the
condition of positiveness of a and b.

Let x(t) =x(t+u) be a solution of (2), then the derivative y = x" satisfies
the following equation:

y"+ay=q{t), q(t+u)=q(t)
(4) of) =y P~ f(tx(1)) 4 G@®) + k@, (@) + ax(1)
-(1 —y)bx(1).

Now let G(t,s) be the Green’s function of the boundary value problem

y" +ay =q(t), O thu;
y(0)=3/M,  y'(0)=y'{uj),

where

1 cosVa( +t- ., O0~tAsAy
5 Glts)= U ® ]
2viasin(y/fa— | cos\/a{——t+5s) 0 sHOtS.;
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We obtain the following representation for y(t) and for its derivatives
U

y{i)= I G{ts){y\p{s) - f{s,x{s))] - (L -y)bx{s)}ds
0

FIAG L) 50xs)) + 1y(s)) + ax(s)1ds,

UdG(t,S)
l«)=1 45 PW{s) ~ H{sx{s))] - (L - y)bx{s)}ds

+$(x(1) + 'P(y(1) +ax(t)
LLJ N
T AN S @) 1L (y(s)) +arE(s)lda

For O<w<rr/v/a we obtain the following bounds for Green’s functions and
its derivatives
daGc. . < 7 d2G
2iva’  Si"(<'s) 2Uiylr  dtds 2P
Denote
R — max_ |x(t)]

te[ow]
$(/7) = max <)
IxlgA

F(R)= te[om‘)]%%!/(*>*)l

and let 0<y, <1, then we derive the following estimates for y(t) and y'{t):

6) hKDis={iw+an ) + AN+ (1 +vs) «},

N

Now term by term integration of (2) yields
g
I [6(1- fi)x(t) 4/(i, x(i))]dt=0.
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However, for /i £ (0,1), 1—A&> 0, and we get
6(1 —p)x{t) sgnrr + f(t,x) sgnx >0, \x\'tp.

Therefore |a;(i)| » p for all t E [0, 4] does not hold and we have |x(r)| < p for
some r E (0, a)).
Applying the mean value theorem to an arbitrary interval [r, t\ C [t, t + t0).
we find
(1) — ()| = (t —t)|ic (s)]; r<s<t

ey )
ey <P+ 2 -a\p\+ -aF(R) +S/j/\a$(R) +/i\/aG + (\_a +VA3F -

The above estimates are valid for all t, hence

Trug

max\x(f) I=R <p+ ° #\p\+1F(R) +{m ) +0=

t E [0, uj\.
Choosing

. a

(9) Uy < mm

n\- + Va

a
we obtain
(10 i>(i
1 W 1 TUFR) 7m <)

I —— p+ Taw+ R + 2° 12 + A

From Assumptions (iii) and (iv)

F(R) HR) o
R 1A '

therefore we conclude from the inequality (10)

—£0, as R —oo,

R —max \x(t)\<Rn,

te[o,ij]ll W I -

FR)= g, M(OVFo= - max VL)

te[0,w],[*|Mio

HX(?) = RO [$(@) ~ o= max |<&m|.
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Using the above results and the estimates (6) and (7) we obtain the a priori
bounds

|® (i)] g.Ro,

[i*(i)lr s {f \™M + + U b + ~5*0 + (™~ + \'~)so}

@I =1 {7501+ (! +0 {G+" +ToF°+ (6+1 +°)M

which ensure the existence of an cu-periodic solution of the equation (2).
Remark. In the case

(V") [ (t,x) sgn(x) * 0, \x\tip

we introduce the new independent variable x = —z and we obtain a differen-
tial equation of type (1). Thus Theorem 1 remains valid if the assumption
(v) is replaced by (V).

Exampte. We consider the differential equation
(11) X" +ci(cosx)x" + C(sinx)x" + C3(sin2f)x U3= CGicos t
where ci, @ and (3 are given constants. Here we denote
ip{y) = c\ cosy, O0(x) = C2sinx, f(t, x) = C3(sin2f)"13.

Hence the conditions (i)-(v) are satisfied Theorem 1 ensures the existence of
at least one 27r-periodic solution of (11).
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a4-PROPERTY VERSUS *-PROPERTY
IN TOPOLOGICAL SPACES AND GROUPS

T. NOGURA, D. SHAKHMATOV and Y. TANAKA

Abstract

W give a series of examples demonstrating that A-property (due to E. Michael) and
«s -property (due to A Arhangel’skii) behave independently from each other in general
spaces and groups. They are known to coincide for Fréchet spaces, but are different for
sequential spaces (T. Nogura). We show that these properties coincide for: (i) sequential
spaces each point of which is a G™-set, and (i) hereditarily normal, sequential topological
groups.

1. Introduction

All topological spaces and groups considered in this paper are assumed
to be Tychonoff.

In what follows A always denotes the closure of a set A in a space X . A
space X is called:

sequential if for every non-closed set AQ X, there is a sequence of points
in A converging to some point outside of A,

Fréchet (=Fréchet-Urysohn) if whenever A QX and x £ A, there exists
a sequence in A converging to x,

strongly Fréchet [26] (=countably bi-sequential in the sense of [13]) if,
whenever {An :n £ w} is a decreasing sequence of subsets of x and x G
n{A,, :n Guj}, then there exists a sequence {xn :n Gw} converging to x with
xn 6 An for all nEui.

Clearly

first countable => strongly Fréchet  Fréchet => sequential.

In this note we provide a comparison of two convergence properties of
topological spaces.

The first one, the og-property, was introduced by Arhangel’skii [2,3] in
1972 as an important tool for studying the behaviour of the Fréchet Urysohn
property under the product operation and classification of Fréchet Urysohn
spaces. A countable collection S = {Sn :n Gai} of convergent sequences in
a space X is called a sheaf (with a vertex x) if each sequence Sn converges

1991 Mathematics Subject Classification. Primary 54A20; Secondary 22A05, 54H11.
Key words and phrases. A-space, Q -space, convergence, convergent sequence, Fréchet-
Urysohn space, sequential space, topological group
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to the same point x GX . A space X is an ag-space (equivalently, X G (4)
in the sense of [2,3], or X is an (a4)-space in the sense of [16]), if for every
point x GX and each sheaf S = {5%:nGoi} with the vertex x, there exists a
sequence converging to x which meets infinitely many sequences Sn.

The second property, the A-property, was invented by Michael [14] in
1973. He calls a space X an A-space if, whenever {An:n£u] is a decreasing

sequence of subsets of X, and x GX is a point with x Gn{An\{a:} :n Gw},
then for every nEco one can find a (possibly empty) set Bn QAn such that
U{Bn :nEu>} is not closed in X.

Arhangel’skii [3, Theorem 5.23] showed that strongly Fréchet spaces are
precisely Fréchet ag-spaces. Both countably compact and countably bi-k-
spaces (in the sense of [13]) are A-spaces. We refer the interested reader
to [2,3,6,16,22,25] for properties of ag-spaces, and to [15] for properties of
A-spaces.

Our starting point is the following fact (in which (i) follows from [15,
Proposition 81] and [3, Theorem 5.23], and (ii) was established in [27, The-
orem 1.1]):

Fact 1.1. (i) A Fréchet space is an ag-space if and only if it is an
A-space.
(ii) A sequential a™-space is an A-space.

Nogura showed that the implication in (ii) is not reversible:

THEOREM 1.2 [16, Corollary 3.11]. There exists a sequential compact
space (hence an A-space) which is not an aq-space.

In this note we study an interrelationship between a4-spac.es and A-
spaces in the absence of sequentiality, and also in topological groups. We
show that in general ag-property and A-property are independent from each
other even for topological groups (Sections 3-5), but in some special cases
the implication in 1.1(ii) is reversible (Section 6). We also formulate some
open questions.

2. su versus s2 for topological groups

In this section we establish a specific, albeit somewhat technical, property
of convergence in topological groups which will be used only in the proof
of Theorem 6.2. It is therefore possible for the reader to pass directly to
Section 3 without losing a continuity of exposition.

The sequential fan Sw is the quotient space obtained from a topological
sum of a countable family of convergent sequences by identifying all their
limit points to a single point [4],

The Arens space S2 is defined as follows [1]. Let 52 = (wxw)UwU{00},
where each point of u x U>is isolated, a kth basic open neighbourhood of
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n 6 a consists of all sets in the form {n} U{(m,n) :m ~ k}, and U is a
neighbourhood of oo if and only if oo £ U and U is a neighbourhood of all
but finitely many n £ tu.

We refer the interested reader to [20] for background results on spaces
containing copies of 5 and 62, and to [19] for applications of these spaces
to metrizability of topological groups.

Lemma 2.1. A topological group contains a (closed) homeomorphic copy
of Sg if and only ifit contains a (closed) homeomorphic copy 0/S2.

PrRoOF. Let, G be a topological group with the identity element e.

First we establish the “if’ part. Let F = {e}U{xm:m £ tu}U{ymn:m,n £
tu} be a (closed) subset of G naturally homeomorphic to S2, with xm->e
and ymn xm for all m £ tu.

Using continuity of algebraic operations in G, one can easily check the
following property:

(*) For every function / £t a point p £ G is a cluster point of the
set {x*ymk:m £ty k </(m)} if and only if p is a cluster point of the set
{Vmk :m£tu,fc</(m)}.

By continuity of group operations, each Lm= {e} U{x"ymn :n £ tu}
iS a sequence converging to e. According to (*), every set {n £tu:LmD
Ln is infinite} is finite, so we can find some injection g £ tuw and a pairwise
disjoint family [Agm):m£tu} with each Ag(m) an infinite subset of Lg(my
Define A = U{Ag(mj :m £ tu}.

Let F be the set of all functions $ from tu into the set G<u>of all finite
subsets of G such that <fXm) Q Ag(mj for all m. For $ £ F define Eq =

U{$(m) :m£tu}. We claim that

(1) egU{I"n A\E,j> PET).
Indeed, from (*) and the choice of T it immediately follows that

2 e"bEpforall $ £T.

Thus, if (1) fails, then one can find A£ tu and two sequences {<Fn :n £ tu} Q
F,{zn:n £t} QAg* such that zn£ EAn\E"n for all n, and zn ” zng for
n~n'. Define'k £ iF by i'(m) = Uii'/im):Z* m}. Now it can be easily seen
that e£ 1 in contradiction with (2). Thus (1) holds, which allows us to
conclude that

T={e} UA\ U{ENMS$ £F)

is a (closed) copy of Su.

For the “only if’ part, let H= {e} U{ymn mm,n £ tu} Q G be a (closed)
copy of Su, where ymn ->e for m £ tu Every Rm= {yomUmh mn € u;} is a
sequence converging to e. Arguing in a way similar to the “if’ part we may
choose fi£tu‘’, a pairwise disjoint family {B/j(m) :m£tu} with every B”m)
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an infinite subset of Rm, and an appropriate open neighbourhood V of e
such that

s={u{Bhm MEW}IU{y0Jm) :raccntU{e}) fIF
would be a (closed) homeomorphic copy of 12 O

Remark 2.2. Clearly Lemma 21 is specific for topological groups. In-
deed, Su does not contain a homeomorphic copy of S2, and vice versa, S2
does not contain a homeomorphic copy of Su.

3. A compact group which is not an og-space

We use cto denote the cardinality of the continuum.

EXAMPLE 3.1. Dc is a compact topological group which is not an aq-
space. (Observe that Dcis an A-space, being compact.)

CONSTRUCTION. Let T —uF, the set of all maps from v to v and D =
{0,1}. Since \\=¢ Dcand DT are isomorphic, so we will work in D1. For
/ Ep 1 welet S(f) = {tet :f(t) = 1}, and we use 0 to denote the point
of Dt which has all its coordinates equal to 0. One can easily verify the
following

FACT. A sequence {fn:n Eu} QDJ converges to 0 if and onlij if {S(fn):
n E cn} is a point-finite family in T; that is, {n E lo:t E S(fn)} is finite for
each tET.

For m,n Ew let Fmn = {t ET :t{m) = n}, and define fmn EDT by
R(fmu') ~ Frm- Since Fmi O FAj —O0 if i4J, each sequence L  {fmn o
n Eu)} QDt converges to 0 by the above fact. Thus {Lm :mE oo} is a sheaf
with the vertex 0. We claim that this sheaf violates the ag-property in Dr .
Indeed, let ip, 'fiEw" be arbitrary maps such that ip is an injection, and de-
fine gi = /\{iY\(i) EL”"j) for each i Eu. Choose any point t* ET such that
t*((p(i)) = ip(i) for i E lo (which is possible by injectivity of ip), and observe
that t* E D{S{qgi) :i Eu>}. Therefore the family {S(gi): i Eu)} is not point-
finite, and so the sequence {gl\iEw] does not converge to 0 (Fact). This
implies that Dr is not an o0;4-space. O

REMARK 3.2. Nyikos [22, Theorem 1.8] constructed a countable space X
of weight bwhich is not an a4-space. (Here bdenotes the smallest cardinality
of a <*-unbounded subset of , where for f,gEcou we write / <* g iff there
exists n such that f(k) <g(k) for all k~tn.) Being a zero-dimensional space
of weight b, X can be embedded as a subspace into Db. A subspace of an
CLj-space must be an a4-space, so we conlude that Db is not an a”-space.1

1 Combining this with the first part of [22, Theorem 1.8] one obtains that DT is an
«4-space iff tis b. See also [19] for other relevant convergence properties of DT.
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Since b~ ¢, this improves Example 3.1. We decided to give an elementary
proof of 3.1 only for the reader’s convenience.

4. A countable A-space need not be an og-space

Exampte 4.1. A countable A-space (with a single non-isolated point)
which is not an ciq -space.

To construct such an example we need some preliminaries. Let Ruj be the
Stone-Cech compactification of tv. For AQu>, we set A* = Clga A\A, where
Cl/3UA denotes the closure of A in /v, in particular, tv* = /3odcv. Symbols
Clw*Z and I n t denote the closure and the interior of a set Z Q/* in w*,
For a family S of infinite subsets of tv we define S* = {S*:S ES}.

Let V be a maximal almost disjoint family of infinite subsets of tv; that
is:

(i) P n P 1is finite for different P, P' EP, and

(i) if S Qu is infinite, then S DP is infinite for some P EV.

Choose arbitrarily an infinite, countable Qf=.V, and let Z=V\Q. Since
each A* is a clopen subset of tv*,P = cv¥\U7?2.* is a closed subset of tv* . Let
X =tvU {*} be the quotient space obtained from the subspace tvUP of Rui
by identifying the set F to a single point *E X. Then every point of tv is
isolated in X, and {AU{P} :F QA*} is a neighbourhood base of *in X. We
claim that X is the required space. But before we proceed with verification
of that, we need two facts. The first fact, taken from [10] (see also [17]),
holds for every closed subset P of tv*:

Fact 1. LetEQu). Then:
(i) *EE ifand only if E*fIP 0O, and
(i) E is a sequence converging to * if and only if E* QP.

Our second fact uses the specific choice of P and does not hold for an
arbitrary closed subset of tv*.

Fact 2. Let U be a clopen (= simultaneously closed and open) subset
oftv*. If the setV = {P6?:f/nP*~0} is infinite, then:

@) |P'| ™ tvi, and

(i) C/nP~O.

Proot, (i) Suppose that V is infinite and countable. Then z -
U\ U(V)* is a non-empty zero-set in tv*, and sol n t [24 Theo-
rem 3.3]. By the maximality of the family V, there exists P EV such that
0N P*nInt®. ZgP* nu, which implies that P EV', and so P* fiInt"*z C
P*CZ = 0 by the definition of Z, a contradiction.

(if) Use Fact 2(i) to choose pairwise distinct sets Pn€77.~P, and note
that

0+ CL-(U{Prfnu:ne w}\U{P* :n Gtv} Qu DP,
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because C1»(U{P* HU :nEuj}) is a compact set not covered by any finite
union U{Pf:k%m}. O

Claim 1 X is not oq.

PROOF. Indeed, let Q —{Qn:n E.j; be any enumeration of Q. Since p
is an almost disjoint family of infinite subsets of w,P* = Q* UP* consists of
pairwise disjoint subsets of ui* [7, p. 98], and S0 u<2~ QF =16*\UTZ*. Then
Fact 1(ii) implies that Q is a sheafin X with the vertex *. Suppose now that
E C 4 is a sequence converging to * which meets infinitely many elements
of Q. Since Q is almost disjoint, taking a subsequence of E if necessary, we
may assume that each intersection E fl Qn is finite. Now one can easily see
that E does not converge to * by Fact 1(ii). O

Claim 2. X is an A-space.

Proof. Let {An: n E uj} be a decreasing sequence in X with * E

ntanvi=) :NEUj}. We may assume that <o u ¢a »: nEco}. Then, for each
nEuj, we have a~ 1 F =£0 by Fact 1 (i), and so one can choose Qn E Q with

A*? FQ*n”" 0.

Case 1. Some A* is covered by finitely many elements of V*, say A* Q
US* for some finite S QV. Since the family V* is disjoint, and Am G A*
for m ~ n, it follows that {Qm:m " n} QS. Since S is finite, there exist
Qg5DQ and k™ tm such that A*fl Q* 7 for I k. Now choose E AiC\Q
for each I~ k. Then {xi :1*.k} converges to * by Fact 1(ii).

Case 2. No A* is covered by finitely many elements of V*. Since each A*
is a clopen subset of w*, in this case we have |{P GP :A* n P* ™0} " cui for
every n E lo (Fact 2(i)). Therefore one can choose pairwise distinct P*e TZ
with P* fl A* 0. Now observe that each set En = Pn HAn is non-empty,
and E*ilF = Thus every En is closed in X by Fact 1(i). To show
that the set U{P,, :n E.;; =U{En :n E uj} is not closed in X, it suffices

to check that *E U{En:nEuj}. In its turn, to get this we only need to
prove, by Fact 1(i), that (U{P,, :n EwWH)*flF 7. Since {E* :n EIq} is a
disjoint collection of nonempty, clopen subsets of Clw*U{P* :n Ew}, we have
CIn. U{P* :n Eu}\U {P* :n Euj} 70 by compactness of CI"* U{E* :n E uj}.
Pick arbitrarily p E CP* U{P* :n EwW}\ U {P* :n E 4} Since P* consists of
pairwise disjoint clopen subsets of ui* and {En:n E uj} Cp, it follows that
p 0 UP*, and so p Euf*\ UP* QF. Therefore p EF fl (™ U{P* :n Euj} Q

(U{P* :nEw})* n P 770 m
Let CP(l) denote the space of all real-valued continuous functions defined
on the unit interval I = (0,17 with the topology of pointwise convergence, i.e.

the topology inherited by CV{X) from RA. Note that CP(l) is a topological
group (even a topological ring).

Example 4.2. The function space CP(l) is an A-space (with a countable
network) which is not an a”-space.



0¥-PROPERTY VERSUS -4-PROPERTY 357

The fact that CP(l) is an A-space was apparently noticed first by Roman
Pol (see [15, Remark added in proof]). Since the argument is very short (and
not included in [15]), we present it here for the sake of completeness. Suppose
that Anc cp(/)\{0} for every n s w, where o is the function identically equal
to zero on 7. Assume also that 0OED{An:n€c}. Forn€u and / € CP(l)
define UJ = {x El :f(x) < 1/n}. Observe that each {UJ :f € An} is an
open cover of 7. By compactness of 7, there exists a finite set Bn An with
7=U{E" :/ EBn}. Now it can be easily checked that 0 E U{7?n:nEw},

which means that U{7?n:nEw} = U{7?, :n £ 15} is not closed in CP(1).
Gerlits and Nagy [6, Corollary to Theorem 8] showed that CP(I) is not
an ag-space. Finally, it is well-known that CP(l) has a countable network.
To get such a network, fix countable bases U and V for 7 and E, respectively,
and note that AT={F(U, V):UEU, V EV} is as required, where F(U, V) =
{fECp(1):f(U)QV}.2 O

5. A countable a\ -group which is not an A-space

LEMMA 5.1. There exists a countable space X with the following prop-
erties:
(i) X has only one non-isolated point,
(i) X has no non-trivial convergent sequences (and therefore, X is obvi-
ously an as4-space), and
(ifiy X is not an A-space.

Proof. Fix an arbitrary point p ERuj\u, and define Y =wu {p} and
Z =Y x N, where Y is equipped with the subspace topology inherited from
Ru), and N is the set of natural numbers with the discrete topology. Define
F={(,n):nEw}, and let/ :Z —=X = Z/F be the quotient map collapsing
F to a point gEX. We claim that X is as required. Only the verification of
the fact that X is not an A-space is necessary, because other properties are
immediate. So let A,, = /(U {y X {i}:i~ n}) for nEw. Then {An:n Ew} is
a decreasing sequence in X with g E fl{A,\{p} :n E w}, but for any choice of
BnQAn,n Eus the set U{Bn:nEu)} is closed in X. O

Example 5.2. A countable Abelian group G without non-trivial con-
vergent sequences which is not an A-space. (Therefore, G is an 04-space,
but not an A-space.)

We shall give two examples below. The first example uses a result from
the theory of free topological groups, while the second one does not require
any knowledge of such a theory.

Example 1. Let X be the countable space constructed in Lemma 5.1,
and let G = F(X) be the (Graev) free topological group over X. (For the

2 The construction of Af is essentially due to Michael [12].
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theory of free topological groups see [8] or [11].) Since A is a paracompact
space in which every compact subset is finite, it follows from [5 Theorem
15] that the (countable) topological group F(X) contains no non-trivial
convergent sequences. Since F(X) contains a closed copy of X , which is not
an .A-space, F(X) is not an A-space either.3 O

To construct the second example we need to remind ourselves some gen-
eral construction. Let F be a free filter on uv>with the finite intersection
property, i.e.

(@) DF=0, and

(b) ifFeF and H € F, then F DH EF.

Let Ay =uU {p} be a space such that all points of g are isolated and
{{p} UF :F £ F} is a neighbourhood base of the point p. Then Xy is
completely regular. Let Q be the family of all finite subsets of u with the
group operation (A,B) A +B = (A\B) U(B\A) which makes Q an Abelian
group. The zero element of F is the empty set and A+ A = 0 for every A e Q.
For F e F the set F* = {A EQ:AQ F} is a subgroup of Q We can take
the family By = [F* :F EF} of subgroups of Q as neighbourhoods of zero
of some group topology on Q\ see [9. We use the symbol Q? for denoting
the group Q with this group topology. From (a) it follows that fI3y = {0},
so Qjr is Hausdorff [9].

Observe that the map i:Ay —»(yy defined by i(n) = {n} and i{p) —O0 is
a homeomorphic embedding.

Lemma 5.3. <y contains a non-trivial convergent sequence if and only
if Ay does.

PROOF. Sincei: X ? —G? is a homeomorphic embedding, the “if” part
holds. To check the “only if’ part, suppose that S = {An:n Ew} is a non-
trivial convergent sequence in Q?. Without loss of generality one may assume
that S converges to 0, and that An/ 0 for all nEoJ.

Claim. There is a sequence {n” :k Eu>} such that the family {Ank :k E oj}
is pairwise disjoint.

Indeed, arguing by induction, suppose that we have already chosen a
sequence no,..., n*, such that Ano,..., A,tare pairwise disjoint. Since Bk =
U{Ani :i Kk} is finite, and F is a free filter with the finite intersection
property, Ffi =0 for some F EF. Since F* ERy and S is a sequence
converging to 0, there exists | Eu such that Aj E F* (equivalently, Aj L F)
for all j ~ 1. In particular, AiQFC uj\Bk, and so we can set nk+\ = 1. O

Now if one picks m, E Ani for each i Eu, then S = {{mi} :i Eto} QAY
would be a non-trivial sequence converging to the point p. O

3 The use of the free topological group F(X) in our construction gives us the resulting
(algebraically) free group G. To get an Abelian group as promised in Example 5.2, we
should replace the free topological group F(X) by the free Abelian topological group A{X)
of X in our construction. The same argument works in this case.
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Example 2. Now let X be the countable space with a single non-isolated
point, say p, which was constructed in Lemma 5.1, and let.JF be the family
of all open neighbourhood of p with the point p deleted. Then T satisfies
(@) and (b), so we can consider X? and Qyr. Since i(Xgr) is a closed subset
of Q: homeomorphic to X = Xjr, and Xjr is not an A-space, Qr is not an
A-space either. Since Xjr contains no non-trivial convergent sequences, the
same is true for Qjr (Lemma 5.3). O

Remark 5.4. It should be noted that Lemma 5.3 does not have an
analogue for X and the free topological group F(X) of X instead of X? and
Gjr. Indeed, Tkachuk [28] established that the free topological group F(Y)
of the Alexandroff double Y of to does contain a non-trivial convergent
sequence, while Y obviously does not have such a sequence.

Remark 5.5. The reader definitely noticed that, in Lemma 5.1 and
Example 5.2, we constructed ag-spaces which are not A-spaces in a somewhat
brutal (and to a certain extent trivial) way, by simply killing all non-trivial
convergent sequences. Fact I.I(ii) shows, however, that this might be a
necessary approach, since such examples cannot be sequential.

Remark 5.6. Obviously both X from Lemma 5.1 and G from Example
5.2 are even ag-spaces.

6. Special cases when sequential A-spaces are aq

Theorem 6.1. Let X be a regular sequential space such that each point
of X is a Gg-set. Then X is an ou-space if and only if X is an A-space.

PROOF. In view of Fact L.I(ii) we need only to check the “if’ part of our
theorem. So let X be an A-space with all points Gg. We are going to derive
a contradiction by assuming that X is not an «4-space. This assumption
allows us to fix a point x € X and a countable sheaf {An:n£cj} with the
vertex x such that any sequence converging to x meets only finitely many
An. We will also assume, without loss of generality, that {An :n Gw} is
pairwise disjoint. Pick a collection [Un:nGw} of open subsets of X such
that {x} = C{Un :n E uj} and Un+t\ QUn for n £u. Now if Bn = AnQdUn
for n€u then S=u{u, :nfwlu {x} is closed in X, and no sequence of
{xn:nfw} with xn GBn converges to any point of S. Since X is sequential,
we conclude that S is homeomorphic to Su (see Section 2 for the definition
of Su). Thus X contains a closed copy of S”. Since the last space is not an
A-space, this gives us a contradiction. O

For topological groups we can get especially strong result:

THEOREM 6.2. Suppose that G is a sequential topological group such that
either
(@) eEG is a Gg-set, or
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(b) G is hereditarily normal.
Then the following conditions are equivalent:
(i) G is an ag-space,
(i) G is an A-space, and
(iii) G is strongly Fréchet.

PROOF. The implication (iii) — (ii) was proved in [3, Theorem 5.23],
and the implication (i) — (ii) can be found in Fact 11(ii). So it remains
only to check the implication (ii) — (iii). Assume that G is an A-space.
Then from [27, Theorem 1.1] it follows that G contains no closed copy of Sw.
Applying Lemma 2.1 one concludes that G does not contain a closed copy
of 52- Finally, G is strongly Fréchet by [27, Theorem 3.1]. O

REMARK 6.3. Example 4.1 and Lemma 5.1 show that sequentiality of
X is essential in Theorem 6.1 (note that points of a countable space are Gg),
while Theorem 1.2 demonstrates that at least some additional condition like
“points are Ggv is also necessary in Theorem 6.1. Furthermore, Example 4.2
shows that the sequentiality of G cannot be omitted in Theorem 6.2 (observe
that every space with a countable network is hereditarily normal and has all
points Gg).

In conclusion we will formulate some open questions.

Question 6.4. Is a sequential A-group an ag-space?
Question 6.5. Is every sequential A-group Fréchet?

Nyikos [21] showed that (i) sequential ag-groups are Fréchet, and (ii)
Fréchet groups are ag-spaces, so Questions 6.4 and 6.5 are in fact equiva-
lent.4 In view of Fact I.1(ii), a positive answer to Question 6.5 would be a
strengthening of Nyikos’ theorem (i). Nogura’s example from Theorem 1.2
shows that Questions 6.4 and 6.5 are specific for topological groups, and their
analogue for general (even compact) spaces has a negative answer. Theo-
rem 6.2 provides a partial positive answer to both of the above questions in
case when G is hereditarily normal, and when e €G is a Gg-set.

Since countably compact spaces are A-spaces, the following particular
version of Question 6.5, due to Shakhmatov [23, Problem LI1], could be
especially interesting:

QUESTION 6.6. Are countably compact, sequential groups Fréchet?

Quite surprisingly, a counterexample to Question 6.6 (if any) seems to
be unknown. Finally, Examples 4.1 and 5.2 justify the following

Question 6.7. Is there a countable A-group which is not aq?

4 Nyikos’ property (**) from [21] is equivalent to ag-property, so (ii) follows from [21,
Theorem 4]. To get (i), one needs to combine [21, Theorem 1] with the remark in the last
paragraph on p. 797 of [21] saying that (*) can be replaced by (**) in [21, Theorem 1].
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ON LASKERIAN LATTICES AND Q-LATTICES

H. M. NAKKAR and E. A. AL-KHOUJA

Let R be a commutative ring with identity. Recall [2] that a ring R is
called a Q-ring if every ideal of R is a product of primary ideals. Also recall
that R is called a Laskerian ring if every ideal of R is a finite intersection of
primary ideals.

We define a multiplicative lattice L to be a Q-lattice (Laskerian lattice) if
every element x A | of L is a finite product (intersection) of primary elements
(see [8]).

The purpose of this paper is to characterize the relation between Q-
lattices and Laskerian lattices. We show that if the multiplicative lattice L
is a Q-lattice, then it is Laskerian (Theorem 1). But the converse of this
theorem need not be true. Our main result is that the multiplicative lattice
L is a Q-lattice if and only if L is Laskerian and every nonmaximal prime
element of L is multiplication (Theorem 2). This theorem generalizes the
result of ([2], Theorem 10) in commutative rings to the multiplicative lattice
and improve the result of [7] that every element in a Noetherian lattice is a
product of primary elements if and only if every nonmaximal prime element
is multiplication.

Let L be a multiplicative lattice. Recall that L is called a AT-lattice if it
is a CG-lattice (every element of L is a join of compact elements) and if x
and y are compact elements of L, then x -y is a compact element of L. Also
recall that L is called an i?-lattice if it is a PG-lattice (every element of L is
a join of principal elements) and every principal element of L is compact.

Let L be a AMattice in which the greatest element | is compact. An
element p £ L is said to be prime if I and ifab”p impliesoip or
for all a, 6£ L. An element g£ L is said to be primary if g+ | and if for all
compact elements a,b £ L, amh” g implies a”~ g or bk~ g for some positive
integer k. By the radical of an element g, we shall mean the join of all
elements x having a power contained in g. We shall use the notation "q
to denote the radical of g. If q is primary, then sjq is the minimal prime
containing g, and then we shall say that q is p-primary.

An element b is said to have a primary decomposition if there exist
primary elements g\,..., gm such that b—qg\/\---/\qm.

1991 Mathematics Subject Classification. Primary 06F10; Secondary 06A06.
Key words and phrases. Multiplicative lattice, lattice modules, primary element.
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For any element b of a multiplicative lattice A,V (b) will denote the set
of all prime elements of L containing b

Let L be a CG-lattice and let b be an element of L, then the prime
element p E L belongs to Ass(fe) (Ass(6)) if and only if there is a compact

element h EL such that p= (b:h) (p is minimal in V(b:h)).

A non-empty subset S of L is called multiplicatively closed if it is closed
under multiplication and every element of S is compact in L. Let L be a
AT-lattice. For every element x of L, we define S(x) = \fS(x :s). Clearly

se

b~d S(b) = S(d) (b,d EL) is an equivalence relation. Let [ be the
equivalence class of band let S~IL = {[6]: bE L}. The quotient lattice S~IL
is a multiplicative lattice. It is again AT-lattice. If p is a prime element of
L and Sp={s:sEL,s”p and s is compact }, then we write Lp instead of
SpIL.

Recall that the multiplicative lattice L has Noetherian spectrum if L
satisfies the ascending chain condition for radical elements.

Let p be a prime element of L. The least upper bound of the length of
chains p > p\ > p2eee> Pk where the pi (i=1,..., k) are prime elements of
L is called the rank of p or the height of p (htp).

The dimension of L is the supremum of the length of all chains of distinct
prime elements of L and it is denoted by dimL.

Multiplication elements will be used in several places in this paper. An
element b is called a multiplication element if for every element d ~ b, there
exists an element ¢ with d = ch. In general, we adopt the lattice terminology

of [3], [4], [B] and [6].

Lemma 1. Let L be a K-lattice in which the greatest element I is com-
pact. Suppose thatp is a prime element that is multiplication element. Ifpn
is p-primary for some positive integer n and if (pn+1:pn) =p, then pn+l is
p-prim,ary.

Proof. Let X,y be two compact elements of L such that x-y"Spn+
and x ~p. It follows that x my ~ pn. Since pn is p-primary, then y 5Tpn.
By assumption p is a multiplication element, so is pn. Hence, there is an
element c of L such that y = cpn and then x-y = xcpn 5Tpn+1. It implies that
xcS (pn+l :pn)=p and hence cSp. Thus ?/5Tpn+1.

Lemma 2. Let L be an R-lattice. Suppose that p is a minimal prime
element that is a multiplication element. 1f {pi}*;1 is the set of distinct p-
primary elements of L, then there exists aprincipal element a of L such that
a’“p with af mom”~pm+t for each positive integer t.

Proof. Nowp< (pm+l :pm), because if we assumep = (pm+l :pm), then
Lemma 1 shows that pm+l is p-primary. Hence pm=pm+1l. It means that
p —fpm+l ;pm) =/, a contradiction.
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Let a be a principal element such that a“p and a S (pm+l :pm). It
implies that apm G p m+l and hence atpm Spmi< for each positive integer t.

PROPOSITION 1. Let L be an R-lattice and let d be an element of L.
Suppose that p is a multiplication prime element minimal over d. If d =
gi ... gt where qgi is pi-primary (i=1,...,t), then there exists a principal
element a”p such that (d:a) is p-primary.

PROOF. Since p is prime and dSip, we may assume that qj Sip for some
j (@A~] Sit), where gj is py-primary, sopj = p. Since every p-primary element
of L is a power of its radical p (Lemma 4 in [7]). Then in the decomposition
for d we replace every p-primary element by a power of p. Therefore by
rearranging, we can obtain the following decomposition for d, d = png\ s
where qi is pj-primary (i=1,...,1) and pi,... ,p; are primes of L, each of
them different from p. Now, we show that there is a principal element b” p
and a positive integer k such that (d:b) ~ pka\ .. .qi with pk is p-primary
and pi,...,pi are primes of L with Pi ~ p for each i (1-Si Sl). For, if
rank p=0and m <n where m is the least positive integer such that p,p2,
.., pm are the distinct p-primary elements of L (Theorem 1 in [7]), then
Lemma 2 shows that there is a principal element b”p such that b-pm 5ipn.
Hence, (d:b) ~ pmm\ .. .qp But if rank p=0 and m ~ n, we may take
b= 1. Finally, if rank p > 0, then pn is p-primary for each positive integer n
(Theorem 1in [7]). So we may take b=1.

Since A Pi~P, then there exists a principal element xS f\_ pl with x*p.
i=i i=i
Thus, there exists a positive integer s such that xs Uq\... gi. This implies
that xs pk” q\ ... qipk S (d:b). Therefore pk” (d:bxs) Sip. We consider two
cases. Assume first that (d :bxs) Sipk, then pk = (d: bxs). If we denote a by
bxs, then a is principal with a%p and (d:a) is p-primary. Now assume that
(d:bxs) Mpfc then there exists a positive integer j,j Sk such that (d:bxs) S
p7-1 and (d:bxs)*pJ. Since p7-1 is multiplication, there is an element c of
L such that (d:bxs) =cpi~l and c*p. So, there exists a principal element
y~c with y*p. Hence yplr17(d:bxs). Thus p7-1” (d:bxsy) Sp. On the
other hand (d:bxsy)y S (d:bxs)*p71 with y~p. Since p7-1 is p-primary,
then (d: bxsy) ~p 7-1. Therefore (d:bxsy) = p7_1. We denote a by bxsy, then
a is also principal with a%.p. Thus (d:a) is p-primary.

Corollary 1. Let L be an R-lattice and let d be an element of L.
Suppose that p is a multiplication prime element minimal over d. If L is
a Q-lattice, then there exists a principal element a%p such that (d:a) is
p-primary.

PROOF. Let d” p be an element of L. Then d=q\.. ,gn where q\,..., gn
are primary. Proposition 1 shows that there exists a principal element a%p
such that (d:a) is p-primary.
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Proposition 2. LetL be an R-lattice and let d be an element of L which
is contained in afinite number of minimal primes. Then, for every prime
element p minimal over d and maximal, there exists a principal element a of
L such that a”p and (d:a) is p-primary.

. Proof. Let pi,P2, mmPn P be the only primes mininp]al over d. Since
A Pi”P, then there exists a principal element r of L,r ~ A Pi with r %p.

Since p is maximal, it follows that pVr=1. By assumption,_L is PG-lattice,
so there exist principal elements xi,..., x& with Xi*p (i=1,..., k), such
that XiveeevXkvr~ 1. But r(xi Veeevx*) Vd (Theorem (2-4) in [1]).

Then, there is a positive integer i such that rl{x\ v eeev x*)1" d. We say
a—rl, then ais principal with a”p, and we have (xi Vv eem/ Xk*" (d:a) " p.
Now, each pif (d:a) (i=1,... ,n), because in the converse case, we obtain
I = x\ vmevXkvr"Pi- Thus | =pi, a contradiction.

Since (d:a) | and p is minimal prime over (d:a), then there is a
compact element t of L such that t p and (d:a) ” ((d:a) :t) Sip. Thus
p £ Ass(d :a). On the other hand, let g £ Ass(d :a). So there exists a

compact element h £ L such that qis minimal in V((d:a) :h) (Remark (2-3)
in [6]).

Since d” (d: a) » {d:ah) = ((d:a) :h) ~ g, then g contains one of the
elements p\,... ,pn,p. But q”Pi for each i (i =1,...,n) because in the
converse case, it follows that g=1. Then g~ p and hence p —q, since p is
maximal. Thus Ass((d:a)) = {p}. Proposition (4-2) in [6] shows that (d :a)

is p-primary.

THEOREM 1. Let L be a modular R-lattice. If L is a Q-lattice then L is
Laskerian.

PROOF. Since L is Q-lattice, then by Theorem 4 in [¢], L has Noetherian
spectrum. On the other hand, let d™ | be an element of L and let p be a
prime element minimal over d. We consider two cases. Assume first that p is
a maximal element of L, then by Proposition 2, there is a principal element
a of L with a”p and for which the element (d:a) is p-primary. Now assume
that p is not maximal, then p is multiplication (Theorem 4 in [8]). Hence,
by Proposition 1, there is a principal element a of L with a%p and for which
the element (d:a) is p-primary. Thus L is a Laskerian lattice (Theorem 2 in
[8])-

Remark. Let L be a multiplicative lattice. If L is Laskerian, then L
need not to be a Q-lattice. For example, the polynomial ring R=K[X\,..., X n\
in a finite number n(n ~ 3) of indeterminates over a field K is a Noetherian
ring. If we take L{R) the lattice of ideals of R, then L{R) is a Noetherian
lattice in which every element has a primary decomposition. Therefore L{R)
is a Laskerian lattice and dimL(R) ~ 3. But this lattice is not a Q-lattice,
because the Q-lattices have dimension at most two.
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THEOREM 2. Let L be a modular R-lattice. Then L is a Q-lattice if
and only if L is Laskerian and every nonmaximal prime element of L is a
multiplication element.

Proof. (=) Suppose that L is a Q-lattice. By Theorem 1, L is a Laske-
rian lattice. By Theorem 4 in [8], it follows that every nonmaximal prime
element of L is a multiplication element. (<=) Suppose that L is a Laskerian
lattice in which every nonmaximal prime element is a multiplication ele-
ment. Then by Theorem 2 in [7], every element of L is a product of primary
elements, so L is a Q-lattice.

Proposition 3. Let L be a K-lattice in which the greatest element | is
compact and a an element of L having a primary decomposition. Let b be
any element of L and let S be a multiplicatively closed subset of L. Then

[(@a:b)]s=[a]s:[bls in S~IL.

PROOF. Let a= g\ A ***Agn be a primary decomposition of a. Since

[(91 A -mmA (n):b]S=[(gx:h) A «ee A (Qn :6)]s =
= [<i :b)]sA <A [(On :6)]s.

So, we can assume that a is p-primary. Of course, we always have that
[(a:6)]s” [a]s: [bls. If s£a for some sG S, then s” (a:b) and so, [(a:6)]s=
[1]s. It follows that [g]s: [6]s = [I]s. Hence [(a:b)]s= [a]s:[6]s. So we can
assume that s %a for every s GS. Let h be a compact element of L with
[N ~ [o]a: [bls. Then [/iJs[6]s * [aJA Therefore, h ®~ S(a) = a, and hence
h~(a:b). It implies that [h]s” [(a:b)]s. Thus [a]s:[6]s” [(a:6)]s.

Theorem 3. Let L be a K-lattice in which the greatest element | is
compact and every principal element not equal to | has a primary decom-
position. For an element a of L which is a join of principal elements the
following statements are equivalent:

(1) a is a multiplication element.

(2) a is locally principal.

(3) a is finitely generated and locally principal.

(4) a is principal element.

PROOF. (1)=»(2). Let a= V xa where xa is principal of L, and let p be
a prime element of L. By passing to Lp, it follows that [o]P= V[xo]p- Since

a is a multiplication element, so is [a]p in Lp. This implies that [a]p = [aiojp
for some index i, by Proposition (1-1) and Theorem (1-2) in [1].

(2)=»(3). Let a=\JaQ where aa is principal, then for any maximal
a
element p of L we have: [a]p= [V aQJp —V[aa]P- By Theorem (2-3) in [4]
a a
there exists an index B such that [a]p= [ap]P- On the other hand, let 0(a) =
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V(og :a) and let m be a maximal element of L. Then by Proposition 3,

a

we get that [0(a)]m = V[(aa :a)Jm= V([°a]m : [a]m) since each principal
a a

element of L has primary decomposition. But [a\m = [ap]m for some ap
since a is locally principal. Thus [0(a)]m= [I}m for every maximal element
m of L, so ©(a) —I (Proposition (5-3) in [5]). Since | is compact we get
that | = (aai :a) V mmv (a(n :a) ~ (aai v weVvaln:a), where aai is principal
with aQ ” a. This implies that a—aai v ***Vv 0Q,.

(3=S>(4) and (4)=4>(1) are always true.

THEOREM 4. LetL be a modular R-lattice. L is a Q-lattice if and only if
L is Laskerian and every nonmaximal prime element of L is locally principal.

PROOF. It follows immediately from Theorem 2 and Theorem 3.
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ON THE POINTWISE APPROXIMATION
BY BOREL AND EULER MEANS

B. ROSZAK

Abstract
The rates of approximation of Lebesgue-integrable functions by the Borel and Euler

means of its Fourier series are estimated by the characteristics created by the relation
defining the Lebesgue-type points. Some corollaries for Lipschitz functions are also derived.

Introduction

Let Law, with 1*p< o0, be the class of all 27r-periodic complex-valued
functions that %re Lebesgue-integrable withp-th power in the interval [—t, 7],

ie./ £L2n ifi?\f(x)\pdx < 00. Given any function / £ L2n, let Sn[f] be the

n-th partial sum of its Fourier series. Introduce the Borel and Euler means
of this series:

M Br{f](x) = e~-r"020 +’—kSk[f]{x), for every r > 0,
k=0 K
) En[fl]x) =~ J 2 ~ S K[f{x), forn=0,1,2,...

(see e.g. [, p. 79 and p. 70, respectively).
As a measure of deviation of those means from f(x) in a fixed point x £ R
we will use the quantities:

)
WIS :’\] \dx(O\d,

S
Wx,a[/](<5) = /\] \(EA{t + a) —(@x(t)\dt,
0
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where {x(t) = Mf{x +1t) + /(x —t) —2f{x)) and >0, a> 0.
The function / GL\v is said to satisfy a Lipschitz condition of order a,
with 0< a ~ 1 (notation / GLip (a,p)), if

o[f](6)p~MSa
for some constant M > 0 and all 6 > 0, where

s

is the modulus of continuity of /.

In the case when p = oo, we write / G N 00 = ess sup|/(a;)| < oo
—TVX<TT

and the above definitions remain unchanged. Of course, if Cm denotes the
class of all 27r-periodic continuous complex-valued functions, then C'mC /8£
and

P= sup [|</>.(@)llp=sup( fF\(i)x{t)\lOO'X)

= max IV (m)|= ess sup|/ (M)|= for /| GCZr.

Simple calculations show that the Borel and Euler means defined by (1)
and (2) can be represented in the forms

B ﬂ(X) A wa(X Y HKr (b,

where
Krt)=e2roinzigslans e ld g,
and
150 [](04) =-":\] F{x —t)Kn(t)dt,
—F
where ( )
1 sin™(n+ 1)i
tfn(i) = - n=0,1,2,...
n(i) = cosn(-i) " ( )
respectively, (see e.g. [1], p. 364 and [2]).
Hence

Brlfl() ~f{x) = =y (f(x +1) +f(x-1)-2f(x)) KT(t)dt
-3

-\
- \]W <|>x(t)Kr{t)dt="\] (DK r(t)dt,
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and in the same way

m

En[fl{x) -fix) =i | E&{t)Kn{t)dt.

Statement of results

We present here four approximation theorems.
Theorem 1. LetBe{\,\) and put

ay=-—--1 and br=-—for r™* —
r+2 (I’+W

Then there exists a constant M >0 such that

\Br[f]{x)- f(x)\
T

371

M wix(2aT)+ br| — . war (br) + \Tr — Nt +—Jy\4>x{t)\Tdt
A a

r
forany f € L\n,r ” and x6R.
Theorem 2. LetB€ (], and put

2n 2n
dj) — ~  (@m%a Oon — for n=0,1,2,....
n+1 n  (n+\)P

Then there exists a constant M > 0 such that
VEn[f1{x) - f (x)\g
2’F th
[ ~d t +w,,(<>,)+ dt
tn Q
forany f G n=012,. andifR.
Theorem V. There exists a constant M > 0 such that
MM /]-/lip g
2t u
. f K> (1)-(H)Xt + an)\
M 2aT +
(ui(2a [ wifdt

1 t (LJI v

, dt



372 B. ROSZAK

for any f £ L\n, with 15ip” oo, r* " and i ER, where ar and br are the
same as in Theorem 1.

THEOREM 2'. There exists a constant M > 0 such that

ar bn
\(A.() - fft + an\»

En[f] —f\\p~AM / t

forany f £ELwith 12p”~oo0,n=0,1,2,... and x £R, where an and bn
are the same as in Theorem 2.

Applying Theorem 1' we can readily derive the following

COROLLARY 1. Let0O<a<1land 1”p” oo. Putar= —+f-¥ for r*.h. If
/ GLip (a,p) is such that

a

Qf > (t)-<p,{t+ar)\dt , N
t

for some N >0 and all r » then there exists M > 0 that
WBr[f]-f\p"Mr-a

for all r~.2,
Analogously, from Theorem 2' we can obtain

Corollary 2. Let0O<a<land1l p”oo Putan=" forn—

1,2,.... Iff £Lip(a,p) is such that
B <+ 2,) dt <Nn~a
/ t

for some N>0andn=1,2,, then there exists M >0 that
\En[f]-f\piM n-a

forn=1,2,----

Remark 1. The similar result as in the above corollary was obtained
by Chui and Holland in [2] for / £ Lipa, with 0<a <1, i.e. for / £ C2n and
satisfying a Lipschitz condition of order a.
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Remark 2. We mention here the following simple consequence of our
theorems that was also obtained in [3]: If u)(t) is the modulus of continuity
of / E C2rT, then there is a constant M > 0 such that

2+t
WBr[f]-f\\iM forral, and
|
714 Qjfil
\En[f] —\\ =M ~ forn=1,2,....
Lemmas

We will need further a few auxiliary results.

LEMMA 1. The following relations hold for the quantities wx[f] and
TM*’ar[/].

) wx{6) "2wx{20), foro> 0,
) wx,a{0) “wx(20), foré”™anZ 0.
Proof of Lemma 1. Indeed, for (3) we have

S 5
wx{8) = /\] X (t)\dt = 2o~ \T \Ex{t)\dt = 2wx(26),
0 0
and (4) follows from

5
RLqg(E) = ’\] Wx(t + a) - 4x(D\dt <

0
5 AWM | e 1T
= Mif + a)\dt+ t t' J k< (D)\dt, W {t)\dt"
0 0 a 0
25 25
S2.1 / \&>{thdt+ 2- ~ y Mx{t\dt, = Awx(28). D
0 0
Lemma 2. Ifar= and br = , with j <B < then, for r ~ 12,

the following relations hold:
2t

(5) wx{2br) L 5br

br
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a

nr
iff &t A
© I S {Lon0l® ey mar@yr 1 A O
Lemma 3. Ifan= and bn= with | <B< then, for n »~ 12,
the following relations hold:
2t
@) wx{2bn)*20bnl ~jrdt,
fn
@) fn
N N
o) INXW - &x(F+ ®n)| A / @x,an(l) dt.
Qn fin
Proof of Lemma 2. InitiaIIy it is
2r ZI’
f dt 1 11
21 - Rt 2t2Jg 8 _ 8r+=p 8 &R

1 l\l 1
>8 g£ g 8ns

since ra » 5 when r A 12. Next,

*(26r) = 10e—wx{2br) < lobl / wx{2br)-" =

ar
r Fi P, 4
= 106" \pfuNdus & = 5brv [V IsMu)irfe . 5 ¢
% 0 % 0

2 Jt n \]m t
o j U U~ = sor 1 —jp-dt<bbrd VYt
Zr o

thus the inequality (5) holds.
Further, integration by parts yields

br tr

14X (0 — (frxif 4-Qr)1 I

¢ t ({u” of)\dud dt
J
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t L b t

A () - H{U+alhdu \A(u)~ M u+ar)\du dt=
0 ar 0
br

That ends the proof of the lemma. O

Proof of Lemma 3 is very similar to the preceding one. Initially we
make the following estimate valid for n't 12:

2n 0
2 fdt_n( 1\ 1 442 N 1
éni3 nl 2f2) 2 8 sgm2(n+1lp >8 2nt
2

1 1 1 1 _1
> g« > 8~ T5 ~40-

Taking bn instead of br and ~ instead of and proceeding similarly
as in the proof of the inequality (5) we can obtain the (7) one. Further,
similarly as in (6), integration by parts yields (8).

That completes the proof of Lemma 3. O

To estimate the order of magnitude of wx(n) we use the next lemma:
Lemma 4. The following inequalities hold for the function wx[f]:
2«
wx(n) In\i2 ~ £ wer

Proof of Lemma 4. If ¥<t<2n then
9 wx(n)~2wx(t) and wx(t) g 2wx(n).
Indeed,
T 1t
wx{t) = j I Wx(u)du+ | ex(udutj r\(I)x(u)\dut
0 n 0

m

0
and, since (fx is even and 27r-periodic function for every x 6 R, we can write
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Wl - () ) = o) P =

0 T
'0

II\]7r \ex{u)\du + J

Now using the inequalities (9) we find that

7] 7/
Awx(n)nz=j \ W )\dtA J Wir dt A 2wx(n) | jdt = 2wxfed) In 2,

\ N
wxfu)du 1= | \]W‘(b((u)\du" ] X (U\U = 2w x (0.

that completes the proof of lemma. O

Proofs of main results

For convenience, throughout the proofs, M and N stand for positive
constants not necessarily the same at each occurrence.

Proof of Theorem 1. First assume that r  12. In this case let us
write

® p ™ tdt
Br[f](x)-f(x) : IR+ (02] + |P3,

I }é+d/0+é “

. _ _ . A
say, where as previously ar r,JZ and br e , with B € (j, ).

Now b{
ei :T‘(J) |§/| t)e- 2rsin2"18in(r;inn;[\t+ )dt <
LS T T

I it ~ t
Crnd s mon )
0

In this way, by inequality (3),
lpi 1 Uirwx (ar) ~ 2nwx (2ar) = Mwx(2ar).
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Let us pass now to the integral £3. Then,

sinit
br

’\]W \43{{t)\e~2rsi"2%-"-dt='IT\]w OOV —2rsinz iy gy

br * br
It is clear that, forr » 4 and br <t < 7r, we have

-2r-
g—2rsin2it < g—2rsin2ifcr < g-2r(ihr)2 _ g (r+7ii <

_ ( 1\ 1 - ox i/ I n1-2/31

PR r+2)r+jH "7 [-H2)
It could be shown that for every R € (0, i) there exists a constant M >0
(that depends on B) such that exp —{r+ 5)1 23 <M, V,- Using this
fact and partial integration we find that

[i731= exp dt =
br br

Whence, by Lemma 1.4 we may write
2t it \ 27t

2 2t
< 2oM 2 Ut 4 - v dt.

=InvRR2 r/ T2- /| 12
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The study of @ is more complicated and requires some calculations. The
main idea of the proof is to manage the task in the following way:

uw

- S-2r8inaitBin(rsint+5i) -
2nQ2 ZJ <M<) sind o
ar
bT
— icQ] _ A\ *
2/ i “SIn(r S |1,_+ 8In(rt+ +
PRl e o
+2 |X|t 2r5|n2rt5|n(_r _ )tdt:
Sin rjf
ar
QO
J -2rsin2itSin(r + i)|’d
= t—
fo+ sin if
V 2, , 2rsin2ifi+aT sin(r+ i)i »~ _
j = ar)e sinl(< 4:__5F§((t
u
_ Ax (1) + ar) -2rsin2i2'k§n,r+: dt+
_/°+/ sin ( 2"
ar
br
+ f NN+ ar) (e-2r sin28t _ e-2rsin2|(i+a,)) sin(r+ 1V rfe+
& sinif ' 2/

+ fwt .+ ar)e-2sin2 f (i+a’)

sinif  sini(f +ar)

0 st + ar) —2rsin2|(t+ar),si + If dE+
J sini (f+ ar) K+ )

+ J AN+ Q’-),_e-2rsin21(t+ar)sin(r + 1) tdt-=
sin i(E + ar) \% 2/

g dr
=do+ dl + 72+ 48+ /4 + f§ sa¥

Now, for Jgwe obtain
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IO
' . . - ,
-2rsinz ltsin(rsinf + ~) - sin(ri +
\lo\ = J <t>4t)e Zreme ( sir)1 ( o dt
bt
(s
,J’r ,. In2 i,2c0s rAnt+(r+1)t sin ligllLEzil
(pxtt) SiN bt ot
@
br
=2
ar mt
J:r
= J | il -
20V OO Sy L5 g 9
Q@
sbr
= Z2re| wx{t)\ri J+5 740 dt<
o _
br br
<ane TH(r + A) | \G{OW2dt =MA- j \x(D)\tzdlt.
@ @

Next, we will estimate the integral li as follows

br

<px(t) Oi(i+ dr) _-2rsin2ifigs A A <
- n~r+ AJtdt
\h = \] sin Wt a'si Jtd
br
wxd)  id3enl
Sl/ dt.
ar

Equality (6) implies that
(\NxaT(br) -W Xar(ar) +\]Dr ™a (), -

ar

‘@
A KWK ar (br)+K J Wxar{t)dt,

since wXiar(ar) *0.
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Now, let us consider the integral

br
@({t-‘ ér)f 2r5|n29 _é-ermZtr(|+ar))5in(r + i) tdt
a sin4f \Y
By the mean-value theorem there exists a € (f, i + ar) such that
g—=2rsin2it _ g—2rsin2+(t+ar) = rarg-2rsin2fa gin”?

Here it is ar<t< <t+ar <21, so we get

o
ns / Kﬁ{gm\tdr%f/ﬂfW(H ar)\(r+Nj-~dt=

ar or
br et 2or
i wx{O\dtanz j \x{O\dt =
2ar 0

:2n2brwx(2br)(ilon2b2\]MW\ dt,

by inequality (5).
Let us pass to the 73-integral. We have as follows:
u

_ ' oy 32r8in2|(i+ar)f sin
3= J"4x ron) Vsinit  sin4(t+ ar) K )

@ . )
—orsin2n(trar) S RIL T @) —sinbt ./ AV

/
/ sin bt sin k(t + ar) \/r 2/

Q

Ex(t +ar)e 252 i(i+ar)2Cosj(t +ar+1f)sin| (t+ar—t)

sin btsin\ {t + ar)

dr

x Sill(r+i)t<

S \Vj.u M har _7f2 (i + °r)| _
:‘J Ifc< r)li(i(t+ar) 2\] t(t+aT) dt~
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br br
Y, f\4>x{tt anl g, I’ W\
' \ G’J
\"X{t[T'Or)l - |<M*+ onl _ |<MQ1 j UL=

7|22|6>(( ar)| 1”"xMl Im/l)d\

W it W,

- 60l - 10x(<)] t-\_GJJjW()
or | |<£xm|dt<

A // k[r|<|v|ﬂ+ arzl ~ 1<V dt-|-2_ o ;ar PR =
| n ﬁf e TAOV QL +n3NX(zar)A
il T
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Now, taking into account the relation (6) we arrive at
/ v
\Is\*m (wx(2ar) +wXar(br) + | w x,atrjt) dt
df

Consequently, to estimate the next term, we note that

|’ W""'ar,) -2rsin2i(i+ar)sin tdt
)

YT sinA(i + ar) K

of Lr
, 26l adr 4

2r+2 | \(f)x{t)\dt"zn2"-J wux{O\dt = 24¢wx (2ar).

For 1$ we have

by
= I q—lX(t"" dl’) "_2rsin2\(t+ar)sin tdt
J sin|(i+ ar)
br o
- f —_""—e—2rsin2"sinf|’+|2)tdt
J sin ht \Y/ /
br-\-dr
£ ] \hAie-2SiAdtATTj 7O 2 dt.
br br

Now, following the same procedure as for g3 we achieve the estimate

X t
W)t(( ) dt.

\M\UMbzj

br

Collecting the estimations for /; we may write
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u
+

In this way we arrive at the conclusion that for r ~ 12 our theorem holds.
It remains now to consider the case when »~ r < 12. In this case we can
estimate the kernel. Namely,

in2it si ini rsint+t [t + ¢ITt
\Krgy= —rsin2itsin(Tsini + [Fsint+"t  Mrt + A3t
sinjt ~Tt

for0<1<. and " r <12
Since we have | < br ™ 7r, hence, by Lemma 1.4, we find that

ir 7

Br \(SXEOWKr {O\tMITTA j Wx(t)\dt
0 0
2 2
=13™ M < J["d t < [ 'ZMdt =
\ Iny/2 t2  ~Iny/2) 12
2Ir 2t
26t2 1 WX() 42 26 w2 um | wxfi)_y; —
n V202 t2  ~lIny2 1 t2
br
2t
My WO
/ I2
In this way the proof of Theorem 1 is complete. O

Proof of Theorem 2. This proof is similar to that of Theorem 1 It
also splits into two main parts. First we assume that n't. 12. Let us write

En[fl{x) - f{X)\ = ~{J +J + \]m | I>x(Kn{)dt <
KD dh I
N>\ + \fa\ + \fal  say,

where, in this case we have, an — and bn= yWith B G ([, ).
For pi we obtain
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. , in+ , . i
I/*,(*)(Iﬁ‘(ilt)smsir(]n,:mdt . nr‘ﬂ i(n+ )Idt:
Gn

= —J/ |">a; ()N = “wx(an) N 27ru;x (2an) = Mwx (2an),
an

by inequality (3).
Let us pass now to the integral g$and write

" m
1. sin 5(71+ 1E
7103 = \]WhX{t)cos Lysins(m+ DE IMCOS™fdt.
2 sin s<7 t
bn bn

For n > 7 and bn <t< # we have

1A +D)-1
“s"M 1M i)mA (- O0*)“- T m(IiTif)
n2 I xAMn+1)A-, Vin+1)1®

<8 1- — e )
=3 4 (n+ 10 S3exp(-T<"+1)" W)~

since the expression between square brackets increases and tends to e-1 as
n —>+ 00. Hence, recalling the similar fact as in the proof of the preceding
theorem, we conclude that there exists a constant M > 0 such that for n 12
and bn MATT

1 Att2
cos" ot <M- -----I)%%
We can now proceed analogously as before and conclude that

m /

m \
wx (t) ot

b
( & _ n ZttA ]
Lotwinn 1w g gy ) g

Invi2r < In V2|

The term Q can be handled in the sant® way as in the proof of Theorem 1
Similarly, let us write

AMbi
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7 Lsink(nsyt T Un-+I
dill(frx(%ycon ;| S-I-rl-z(n )t f (ix{t+an) cosn - {t an ):{:L -n-i--)(ét =

fiit+an

bn

(fixity si;ﬁ:iitH an) cos ‘l-iéih-gn + I')!f'dfzél
" th

bn
4+ | (fizit+ atty /cogn K _ cosn I(£ + on)~ SINA(n + I)idt+
j sinni N z / z
0=
bn
+ / (fixit+an)cosn-it +an)[ — T- L sin-(n + Didi—
d%( ) 2 ) 2u  sin™(i+a,,)/ 2( )
ch
_ i <fixit+ an) cogn 1(f+ Q>t)s~ I(n + I)idt+
A sin fi(t + an) 2 2
+ 0 0Wkice ny cogn [ dndgini(n+ 1)idi=
J siniit +an) 2
bn dn

=\-\-12 + Bot+ty + Ibi say.
To estimate the integral 7i, we note that

bn

|A: v (fixity  (fixit+ on) COSIX _1|15|n (n + ﬂ?dt <
tfn sin if

bn
(fixit  Q>n) Idt<

ch
bn_
K ™ oxocanftn) £ 7 [ LXan it gy,
ch
by relation (8).
Now, let us consider the integral
bn
l/al = [ (fixit+n) (GBNif - cos” A(t +an] sin~(n + 1)tdt
- \ 2 2 / 2

sin fit
tin
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Here again, we apply the mean-value theorem which assures that there exists
a E(i,t+ ar)such that

cos" Mt- cos' t+an)=-~nancos"-1”" tsin”t.

Here ar <t < &<t+ ar <2t, so we get, by (8),

.m m
e | A(n+1)ary ztdthnz | Wxgt+an)\dt=
0-n 0,n

J \(p({t)\dt"th wx{t)\dt =

2 Cln

21

= nz2bnwx(2bn) * 2 ®207rm: 7Ut<2(|) dt.
I/
o]

Let us pass to the integral 73. Similarly, as earlier, we conclude that

n 1 \ 1
¥81= 7/ 4>t + an) cos" -2(<+an)(s-in ﬂt_smh|+ 5/ /sm (n + Didi <

2 I \Mt +an)\dt

h i(i +0,) 2 (_X'an(bn) + Ihwx,anW d, +n2wx(2an).

For the integral 74 we can get

_ 0 Msx{t+ an) cogn sini(n + Didi — 2 Ax(Mn) m
J sin i+ On)

As in the preceding proof,  can be estimated similarly as it was done for ps

5l = I A+ Q) cos" I(t+an)sm|(w+|)<dt =

~ sin5 i+an
In &n

bn+0,,
AX cos" -fsin-(n + Dtdt <
j sin iff) 2 2(\/ )

bn
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m 2m
NTp M A CIBnI-tdtL’JMbIj'-W)t(Z(t)dt.
mn o

Collecting the above estimations we obtain, for n —12,13,...

\EN[f{x)~ f{x)\

2ir n
<M\w ;(2an) + bn [ "9 t-\-Wx an\n) X ] YeEO gt
tn tin

In the case when 0 n < 12, we can also estimate the kernel:

n/l,\ sin*(n+ 1)t

, i(n + Nt
I*n(i)l = Ccos |(* sin

< N7, for O<tAN T

Using the relations <bn <237r, for 17 <12, and mx (7r) AZWX{O, for
n~t~2n (inequality (9)) we obtain

\EN[f{x) - /(x)| =~ \]w \(>x{O\Kn (D)\dt < 77rA \]N Wx{t\dt = 7nwx(n) g
0 o 2“:O

<7tj _
" Inas J K.,t-hl2BJ t

2
23T 297

r Wwdind< A L fid(<

2
< 1T wa T wx(t)
In25 J ~p-~
bn
¢
2-14u2 1 (%) dt <
In23 bl f2
m

dt =

2n 2ir
3eBII2 2 2. f wx(i)j* *72 wa(t)"
=216/ — wi=MBV - a
bn bn
For n=0, an=bn=2n, and so
[En[/]1(s) - /(z)| ™ Tnwx(n) ~ 287rma;(47r) = M w x(2an).

In this way the proof is complete. O
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PROOF of theorem 1. we have BG (I, B5) therefore by Theorem 1

there is an M> 0 such that

\Br[f]-f\PZ
l2tt Dr

r
<M wx(2an+bj | ~~-dt. wxar@n+ ] wearades j\(j)x(t)\tZdt

Applying the generalized M inkowski inequality, when 1 7 p<OO, we can

estim ate the quantity

\ilp \a 1/p

(fr(wx(S))pde n n (//é1 A)(\ dE)p _I
g (VLI

M) =] oE
CACL S () (y=

AWpdtj :u}[f]{O)p for any 5>0.

=I\j[

W hen p = 00 we have

0 0

IKDII(D:. J Wx(t)\dt  ~-5j HMlocdti

00 o

:Aj bj(6)mdt:u)(5)00, again <$> O.
0

Using (6) and (4) we have
7

I _ / A_ﬂ.f -I-ar)l <
W.,aT(br)+ dt = W.,ar(ar) f dt,

dr \ dr

Dr

\<frXt)-(f>.{t + ar)\
:Ik-,ar(ar)||p+J )(t{ Moo <
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br :
o Gan)p+ | \(E>{0-0){t +an

This completes the proof. O

In the same way, applying in turn Theorem 2 we can prove Theorem 2.
Proof of Corollary 1. Put B = "t5. We have then B ¢ (5, 5) for

a 6 (0,1). By the assumption / € Lip(a,p), so u*[f](6)p 5 NSa for some
N >0 and any €> 0. Hence

<42ar)pg N(2ar)a=N- 1" g Nr-~a,
(r+2>

2T ‘]ztt Wi
I ined N dt= NbZJ ta- ldt<

br br br
g Nbl  1-feQ 1=Nba+1 =
1—a

=N <N
(r+ 0@ T
) (a+1)2
<t )< <a<l.
since a < =2 lor ()<a<l
Further we obtain for r A~ A
@ m
J _<T'(t tar\ o < IEO- 0.(i+ Qg <Nr-a.
/

For the last component we have

br br
— f U(t)\Lt2dt™— 1 coft)pt2d t~ — [ Nta+2dt
drJ () CrJ op &J[

1\ 1 3)[3 .
st =N(r+L VR iny
ar 2/

since 1- (a+3)R~ —a (recall that B =~ 5). Thus the proof is complete. O

Proof of Remark 2. Inltla“y, for 1,

20
2?@3_ 2 101 1 1 1
ar o
20

>
2) yr 8 B(r+i) B8 8e§5 24
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Further, using the previously stated lemmas we can obtain, successively,

— f wx{t)\ted t" — f t\dt » —wx(bT) =
T § WDted £ O\t A —wx(on)

=n2(r +"j wx (br) A nawx (br) A 24rwx (2br)
2t 2t 2 ;
<27ty " dt <wm 7Vdt<2om wx@t) g
134

W 2 2
t
Wx(zar)"12ar\} AN_dtA ]_ZJF/\J'/\_dt/\ 24\T‘IWX{2)dt,

PEM D0 MtV

wx {2t
re. .ar (&) = 4u;x (284) is4 w6 #2 | 5 )dt,

i war(di<4j WK(at) g,

CLr

Thus
2z 20r+2) A
|Br[/](y)'/(,)|AM/AM dt=M J Aadf,
o
and
2(r+1i) 2(r+i)
IM ¥)IL,_ f &@TT-) 4

2q+i)
A M(4n + 1) \] wx(1) g,

by the relation (A5 (A+ Ien((5), valid for any A” 0 and & 0.
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Similarly we can obtain that

for n=1,2,...,
I

and since u){t) is non-decreasing function we conclude that

1 k~1 k

O
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DEVIATION PRINCIPLE FOR SET INDEXED
PROCESSES WITH INDEPENDENT INCREMENTS

P. BARBE axd M BRONIATOWSKI

Abstract

Let {XX(A):a e -4},\>0 be afamily of processes indexed by a collection of sets A. As-
suming that these processes have independent increments, and that for any fixed
A €a, {X\(A)}a>o obey a large deviation principle LSI?’DP) as A—00, We prove that
the processes (A € A —.X\(A)}a>o0bey a functional . As an application, we obtain a

for partial extreme processes based on i.i.d. r.v.’s and the sequential empirical mea-
sure. Then, we show how to apply this result to obtain a LDP for weighted V-statistics.

1. Introduction

Consider a family of stochastic processes A(eA-+ X\(A) GV, AG(0, oo)
indexed by some sets A GA. Suppose that there exist two functions

(A, A) G(0, 00) h(A A) G[0, o0]

and
(ttcX,AeA) >>J(fi, A) G[0, o]

such that for any fixed AeA,
(1.2) P{X\(A) GiI} =exp(—h(\, A)I(tt, A)) as A—>00

(see Section 2 for a more precise statement). If (1.1) holds, we say that the
family of set indexed random processes {X a(.)}a>o Obeys a marginal large
deviation principle. Of course, (1.1) concerns only the marginal behaviour of
the processes Xa(.), i.e. for any fixed A GA. Now, a natural question arises:
if (1.1) holds, what can we say about the processes X\(.) as A—»00?

These processes may be viewed as random functions in some space T of
functions from A into X . Hence, one can ask whether there exist functions

Ai=>h(A) G0, od]

and
G(Fe>J (fl) GO, o0]
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394 P. BARBE and M. BRONIATOWSKI

such that
(1.2) P{XA(.)eii}"“ exp(-/i(A)J(ii)) as A-too.

A special case of this problem was solved by Varadban [27], McBride [23],
Lynch and Sethuraman [22] and Broniatowski and Mason [12] when
AEN, A={01 :t>0} and X\(A) = is a sum of independent
and identically distributed (i.i.d.) random variables (r.v.’s). It turns out
that the approach of McBride [23] or Lynch and Sethuraman [22] may be
substantially extended to obtain (1.2), assuming that (1.1) holds and that
for every Athe process X\ has independent increments (see Section 2 for the
precise assumptions).

The main result is given in Section 2. In Section 3 we deduce from our
main theorem a functional large deviation result for partial extreme process-
es. In Section 4 we give a large deviation principle for a sequential empirical
probability measure which extends previous results by Groeneboom, Ooster-
hoff and Ruymgaart [19] and Bahadur and Zabell [2] among others. This
result is of very broad applicability and some applications will be presented
in a series of forthcoming papers. All the proofs of our results are postponed
to the last section.

2. The main result

Before stating our main theorem, we first need to precise the meaning of
(1.1) and to make some assumptions.

Consider a class of sets A, and a Hausdorff topological space X. We
denote by T the set of all A-valued functions defined on A. We shall consider
a family X\(.) of random elements in T with independent increments in the
sense that

(21) IfA/B£A and ADB =0, then X\{A) and X\(B) are independent.

One can easily exhibit such a process as follows: first define an associative
operation T on X. Consider an ordered discrete set V and let A be the set
of all subsets of V. Then let :d£V} be a set of i.i.d. r.v.’s and define

for any AeA,
X(A):= dEAX d.

To make (1.1) and (1.2) more precise, we introduce the following defini-
tion.

D efinition 2.1. A function /(.) from a topological space 0 in [0, 00] is
a good rate function if

(2.2) 0g/(.)"oo0
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(2.3) /(.) is lower semicontinuous (lsc).

A consequence of (2.3) is that the level sets rc:= {XE© :I(x) ~ c},cE
[0, 00], are closed in ©. But we do not assume that they are compact which
is of importance for the applications (see Remark 2.4).

Definition 2.2. The processes Aa(.) ET satisfy a marginal deviation
principle (MDP) if for any A EA, there exists a good rate function I(x, A)
from X into [0, oo] and a real valued function h{A A) such that for any closed
set F C X,

(2.4) limsuph(A,A)-1logP{AAA)GF}*-/(F,A)
A->00

while for any open set G C X,
(2.5 IiAr\n infh(A, A)-1 log P{Xa(A) e G} -1(G, A),
->00

where for any tt C X,
(2.6) I(fl, A) := )l(g}‘] 1(x, A).

Remark 2.1. In (24) and (2.5), the functions h(\, A) and 7(.,A) are
not uniquely defined. For example, it is obvious that we can divide h(A A)
by some constant p(A) and multiply 7(.,A) by p(A) without changing the
meaning of (2.4) or (2.5); similarly, we can replace h(X, A)“1by A-1.

Remark 2.2. Definition 2.2 is nothing else than what is often called
a large deviations principle ([27], [17], [16]). However, the terminology is
not well established, since if Aa(.) is a partial sum process, our definition
includes small or moderate, large or super-large deviations (see e.g. [4]).

Following Lynch and Sethuraman [22], we introduce the definition:

Definition 2.3. The processes Aa(.) are marginally deviation tight
(MDT) if for any A e A and any M > 0 there exists a compact set Ka,m C X
such that

2.7) limsup/i(A, A)-1 logP{X\(A) * Kam] " —M.
A—-00

An important consequence of (2.7) is that provided we deal with a fixed
marginal Aa(A) of our processes, we can reduce X to its compact subsets
when we evaluate a probability of deviation.

Definitions 2.2 and 2.3 are concerned with the marginal behaviour of
the process in the sense that AEA is fixed. Now, to consider the function
A—ATa(A) we assume that

T is equipped with the topology of pointwise convergence
or any coarser topology.
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Consequently, ifa sequence {gn)n>l in X converges to g£F, then nIlr>n00gn(A) =

g(A) for any A 6 A.
We can make (1.2) more precise:

Definition 2.4. The process X\(.) satisfies a functional deviation prin-
ciple (FDP) ifthere exists a function h(A) and a good rate function /(.): T
[0, oo] such that for any closed set F CX,

(2.9) lim sup h{A)-1 logP{XAEF }" -I{F)
A—00

while for any open set G cf,

(2.10) lim inf /i(A)-1 l0gP{XAGG} ~ -/(G),

where for any Q cF, we denote

(2.11) Q) = inf 1(x).

Remark 2.3. As in Definition 2.2, the functions h(.) and /(.) are not
uniquely defined. It is also clear that if h(.) is monotone, then one can always
take h(X) = Aby changing the way X\ is indexed (i.e. replace Aby h~1(A)).

Now, the question we asked in Section 1 becomes: if the processes X\(.)
satisfy a MDP, do they obey a FDP?

The answer is yes if we assume (with notation of Definition 2.2) that
there exist functions fi: A [0, 00] and h: [0, 0o] t=> [0, 00] such that

(2.12) Jim h(A, AR = 5,(A)

and

for any the function
AeA—fi(A)I(g(A),A) GO, o0] is subadditive.

By (2.13) we mean that if A,B,C£A with A=BUC and RnC =0

then

fi(A)I1(g(A), A) g fi(B)I(g(B), B) +1ii(C)I(g(C), C).
Next, we have to relate the rate function /(.) in (2.9—2.10) to the rate
function I[.,A) in (2.4)-(2.5). For this, we say that A = {A\,..., AK) £ Ak
is a partition if all the sets A\,..., Ak are disjoint (but we do not suppose
that their union covers A). We denote by V the set of all partitions. For
any / GZi, we denote

(2.14) Jf :=sup £ [Li{Ai)I{f(AI), Ai).
Aev ABA
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A consequence of (2.13) is that the sum in the r.li.s. of (2.14) as a function of
A gV increases when we refine the partition A. We shall assume that there
is a sequence of partitions (A*)n>j such that

the (7-fields a(A*) increase with n, and forany / e T,

<Fey> =5 » E c(@a;,,)(/(a',),a;j -

a’ gal
For the upper bounds on closed sets we also need to assume that

(2.16) lim h(A = oo.
A-»00

THEOREM 2.1. Assume that the processes X\ obey a MDP given by
(2.4)-(2.6), and that (2.12)—2.14) hold. Then

(i) X\ obey a FDP on open sets given by (2.10) and (2.11) with the
function h(.) given in (2.12) and rate function J(.) given in (2.14).

(i) Moreover, if (2.15), (2.16) hold and X\(.) is MDT, then (2.9) also
holds.

REMARK 2.4. It must be noticed that the pointwise topology on T is
not crucial in our upper bound result. It is only used to show that J(.) is
Isc (see our Proposition 5.1.1). Therefore, any topology under which J(.) is
Isc is suitable to get Theorem 2.1. In particular, if X\(.) is a partial sum
process in the space V[0,1], we can use Skorokhod topology and strength
Lynch and Sethuraman’s result [22] (see their comments p. 621). Also, we
do not need 7(.,A) to be continuous (compare to the proof of Theorem 4.1
in [22]), which is crucial for some applications, as well as not supposing that
X is a metric space (see Remark 5.3.1).

3. Large deviations for partial extreme process

Let (-Aj)j>i be a sequence of i.i.d. real valued r.v.’s with common distri-
bution function F which is assumed to be continuous. Then, let

Mn(t)::lmax At, O<igl, n'tl

be the associated partial extreme process. In this section we present a FDP
for Mn{.) which is a direct consequence of results of Theorem 2.1.

We view Mn(.) as a random element in the space V| (0,1] of all non-
decreasing and cédl&g functions from (0,1] to F*~(R), the compactified of
supp F equipped with its usual topology. The space V t (0,1] is equipped
with the topology of pointwise convergence.
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THEOREM 3.2. The family of processes {Mn}n>i obeys a FDP. If 12 is
closed in X>f(0,1], then

limsupn-1logP{M,,(.) GD} —J(H),

n—o

and if Q isopen inV f (0,1], then
liminfn-~1logP(M,(.) GD} » —3(fi),

where
J(il):= Sgg;;J(g),

and |

J(9) := - f log F(g(t))dt.
0

4. Empirical process based on i.i.d. random field

Let Z :={Zi :i GZ+d} be a random field of i.i.d. r.v.’s with common
probability measure (p.m.) ». each zi taking its values in some Hausdorff
space S equipped with its Borel cr-field B(S). Define the sequential empirical
measure

Fn;=n y] &i/nzi)-
i€n(0,1]*

The term sequential is introduced to point out that the knowledge of Pn
enables us to reconstruct the whole field while the usual empirical
measure only gives the sequence up to a permutation. The result of Section 2
leads to some LDP for pn.

LDP for the usual empirical p.m. have been obtained among others by
Borovkov [9], Donsker and Varadhan [18], Bahadur and Zabell [2], Groene-
boom, Oosterhoff and Ruymgaart [19] (GOR in the sequel), Csiszar [13],
Deuschel and Stroock [17], de Acosta [1].

To state our theorem, we need some topology on the space Sd-=(0, 1]dxS
which will be equipped with its corresponding Borel a-field B(Sd)-

It is well known (see e.g. Billingsley [8]) that a measure on Sd is complete-
ly determined by its values on the rectangles A x B, AGB{0, I]d, B GB(S).
Let A be the set of all p.m.’s on Sd and let A be the class of all Borel subsets
A C (0, I]d such that

lim #{nA)/nd—\A\:

71—00
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where |A| denotes the d-dimensional Lebesgue measure of A. In particular,
A contains all the open and closed subsets of (0, \}d. If (Qn)n>1is a sequence
in A, we say that Qn converges to Q if for any A EA and any B E B(S),

71ILrTcw)o Qn(A x B) = Q{A x B).
Hence, we consider on A the product topology of convergence on all elements
of A with the r-topology (see e.g. [19]) on S. This topology is of course much
thinner than the weak topology.
If Q, R EA, we define the Kullback-Leibler information number between
Q and R hy

( f log(dQ/dR)dQ ifQ< R and Q(AxS) =R(A x S)
K(Q,R) =< for any A ER(O, I]d,
| oo otherwise.

Theorem 4.3. 7/P is tight, the sequential empirical p.m. Pn obeys the
following LDP. If U is closed in A, then

limsupn-d logP{Pn G0} » —K(LI, P),

71—00
while if it is open in A,
liminfn~dlog P{P,, E A} » —K (0, P),

71—00
where P:= A*x P, and is the Lebesgue measure over the unit cube (0, I]d,

and )
K(U,f):=

REMARK 4.5. The assumption that P is tight has to be taken in the sense
that for any e> 0, there exists a compact set C(CS such that P(C'e) > 1—e
(see [6]). The only use of this assumption is to prove that the usual empirical
measure is deviation tight.

After the writing of the technical report of Barbe and Broniatowski [3],
we have been aware of the paper of Dembo and Zajic [15], where a large
deviation principle is given for the process t>-+n~I Sxr The reader

may notice that the mapping Q E Si (t i=>f Bot](u)6xdQ(u, x) is contin-
uous (equip the space of measured-valued functions defined on [0,1] with
the pointwise convergence and use the r-topology on the set of nonnegative
measures). The result of Dembo and Zajic [15] may be viewed as a conse-
quence of Theorem 4.3 (see also Remark 5.1.1). Our result also shows that
it is possible to build up a LDP for a p.m. (the sequential empirical p.m.)



400 P. BARBE and M. BRONIATOWSKI

which encompass both the LDP for partial sum process and the LDP for the
empirical p.m.

One can easily get a moderate deviation result, using the same techniques.
More precisely, if {an)n>i denotes a sequence of positive real numbers such

that lim a\/n =0, one can introduce the signed measure lIn:=an(Pn —P).

n —>o00

Next, if p is a signed measure, we define its chi-square norm by

f (d[i/dF)dfj, if /i«P,
oc otherwise.
We can extend the topology on A to the set of all signed measures A4

on ((0, \]d x S,B(0, Ild<g>B(S)), and, using our result and extending [19], one
can show that p, obeys a moderate DP given by

(4.2) limsupaz2m~dlog P{a,,P,, GD} ™ -(1/2)xp(fi)
n—00

if 17 is closed, while
(4.2) lim inf log P{a,,Pn GO} ~ -(1/2)xp (fl)

if 0 is open, and with

XB(fi):= wnx1(0).

However, if (4.1)-(4.2) are very useful to generate conjectures, the topology
on A4 is too coarse to give interesting applications.

To illustrate shortly the use of Theorem 4.3, let us consider the case
where d —1, and introduce the weighted H-statistic

vh:=n~k y B y w(ii/n,...,ik/n)h{Xil,..., Xik)
lailan
where m(.) is a weight function and h(.) a kernel which are both symmetric
in their arguments. The limiting distribution of Vn or of the corresponding
[/-statistics has recently been obtained by O’Neil and Redner [25] in the case
k=2 and Major [24] in the general case. Clearly, we have
vn=v(rn),

with
Q) = \] w{ui,... ,uk)h(xi,... ,xk)dQ(ui,xi).. .dQ{uk,xKk).
0.1kxSk
If w(.) and h(.) are bounded and continuous, V is a continuous mapping

from A into K We readily infer a large deviation principle on Vn from

MAGYAR
TUDOMANYOS AKADEMIA
KONYVTARA
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Theorem 4.3, using a contraction principle. The rate functional cannot be
given explicitely. However, if we assume that the X,’s are real valued and
admit a density p(x) with respect to the Lebesgue measure, one can evaluate
the rate functional in minimizing K (Q, P) under the constraint V (Q) * x. We
obtain
Ilv(x):= J  (\ogc(u) + X9(u,x))c(u)f(x) exp(X9(u,x))dudx,
(0,11 XR

where the functions <c, and $(.,.) are defined by the system of integral
equations:

g(u,x) = c(u)f(x) exp(A9(u, x)),

cu) = (/ f(x)exp(Xo(u,x))dxp
'R
9(u,x) = J w(ui, ..., Uk~i,u)h(xi, ..., Xk-i,x) x
(0,1]* 4AXR*-1

x q(ui,xi)...q(uk-i,Xk-\)dui...duk-idxi...dxk-1i,

and

uk)h{xi,  Xk)q(ui,xi)...q(uk,xk)dui...dukdxi...dxk =x.
(0,1]* XR*

If h(.) is unbounded, we can use a truncature argument similar to that of
Donsker and Varadhan [18] to get a LDP for Vn.

5. Proofs

5.1. Proof of Theorem 2.1

The proof follows the general scheme of Lynch and Sethuraman [22]
but some difficulties happen due to the weakness of our assumptions and
the lack of compactness of the level sets and the lack of continuity of the
rate functionals. The proof will be captured by a series of lemmas and
propositions. Prom now on, we assume that the assumptions of Theorem
2.1.i hold. It is convenient to introduce the notation

AieA
forany / €T and AeV.
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P roposition 5.1.1. The function /e JF —J(f) is Ise.

Proof. Using (2.13), we have for any ¢>0,

(5.1-1) {/:3(f) gc}yen,{/: V>AT) Uc}
Then (2.8) and the lower semi-continuity of ip ensures that the r.h.s. of (5.1.1)
is an intersection of closed sets. So the I.h.s. of (5.1.1) is a closed set. O

A consequence of Proposition 5.1.1 is that the level sets {/ : J(f) ~ c}
are closed.

P roposition 5.1.2. For any open set GdF,
(5.1.2) Iim)i(%f logP{XAg G }" - J(G).
PRoOF. Let e>0 and let / g G such that J(G) ~ J(/) + e/2. There
exists a partition A = (Ai,..., Ak)€V such that
(5.1.3) J(G)MN(A,f) +e
For 1= 1,2,...,/; let Vi be an open neighbourhood of f(A{), and let
NAM,...,Vk)={heF:VIfigk,h(Ai)eVi}.

Under (2.8) the set Na{V\, ... ,viy is open in T. The open sets Vi,..., VK
may be chosen such that

NA(Mu...,VK)cG.
Then the following inequalities hold:

Iim infh(A)-1 logP{Aa€ G} I'!m infh(A)-1 logP{XAENa(Vi,..., V*)}
~ Iige inf log P{V 1~ *g fc, X x{Ai) € Vt}
=liminfrha)_1 V  log P{Xa(A-) GVi}
S ife

E »(AT)I(Vi,AT)

E  p{Ai)I(nAi),Ai)

1=+

Finally use (5.1.3) and let e tend to O to get (5.1.2). O

Now, we deal with the upper bound on closed sets and we assume that
the assumptions of Theorem 2.1.U hold.

The next lemma asserts a minimax property and is the analogue of The-
orem 3.5 in [22], but we do not assume the compactness of level sets of

3().
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LEMMA s...1. For any closed set tLKzT,

18k 0 = fige piep IPA 1.

PROOF. Let 7:= sup inf ¥¢j(A, /) and 7z:= inf J(/).
AeF /en /en
The inequality 774~ 772 follows trivially from the fact that '0(A, /) ~ J (/)

for any AeV, f &T

W e prove 772~ 771 Consider the sequence (A *)n>! in Vdefined in (2.15).

Then
jnf > (A *,/) gr?1-

Thus, for any e > 0, the set
Gn(e):={fen:iP(A*n,f) i Vl+e}

is nonempty. Since er(A* ) is increasing, {Gn(e))n>1|s a sequence of nonem p -

ty nested closed sets (the closeness comes from (2.8) and the lower semi-

continuity of I(',A) for any A) Therefore,
G(e):= 7DlAlGn(e) 7N 0.

L et/€G (e). Then, J(f) 771 -t-e due to (2.14) and (2.15). Since ﬂ is closed,

/ 6 Q and 72~ 771+ e. O

Proposition s5.1.3. Let F be a closed set of T. Then

lim suph(A)-1logP {X A6 f} ~ 'J(F)
A =00

Proof. Let A: (AT, ..., AA)e Vand define the closed subset of Xk
A= ((M))ISiL /6
Also define

Ve:=a: s XKk P{ANI(Xi, A{) > int isar) - ej.

Since X\ is M DT, there exists a compact subset K of stuch that

(5.1.4) timsuph(a)-1 1og 1 2{{X\{AI))I"KEK) S-M<JI{F) - 1.
A—>o0

Since /(.,Aj) is Isc, so s |p(A,), and Ve is open in Xk Thus, VtC\K is

open in K equipped with the relative topology. Since K is normal (see e.g.
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Bourbaki [11] (1.9, no. 3) and [10] (IX.4, no. 1), we can find an open set
Ue C K such that
FAnKcUeCclK(Ue)cVe.

For x = (xx,... ,Xk) € Xk, let

IA(x):= "2 li(Ai)I{x,Ai).

Igigk

Define further
Ia(F):=)gE'f:IA(x).
Using the fact that cli({Ue) is closed in XKk,
limsup h(\)~1logP{XAG F}” limsuph(A)“ 1log P{(Xa(Ai))I*"ae FAn K
ph(\)~1logP{ } ph(A)* 1log P{(Xa(Al)) )

(5.1.5) 5 limsup/i(A)_1log PAA~NA;))A*. 6 clK{Ue)}

A—yco

é -1 a(c\k (UE))

(the second inequality uses (5.1.4) and the last one comes from Exercise 4.2.7
of Dembo and Zeitouni [16]. Next, observe that

(5.1.6) 1jB'f__ip(A, f) - eg IA(Ve) I 1A(cIK (Ue))

so that making etend to O, (5.1.4), (5.1.5) and (5.1.6) give for any A gV,

(5.1.7) limsup/i(A)_1 logP{XAG f}i —iR(A,F).
A—00

Of course, we can choose A such that
NMNAF)>I(F)~ 1
so that (5.1.4) and (5.1.7) yield

(5.1.8) limsuph(A)-1llog P{XAE F} g -ip(A, F).
A0

Then, take the infimum over A £V in the rhs of (5.1.8) and apply Lemma
5.1.1 to get the result. O

Remark 5.1.1. A careful look at our proof shows that the independence
of the increments of the processes X\ is used only when we need to apply
Exercise 4.2.7 of [16]. Thus, our result still holds under the much weaker
assumption (A-l) of [15].
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5.2. Proof of Theorem 3.1

Let >I:={(a,6],0Ma<6”1}. Observe that if AEA, then

“52 JH{nA)Y/n =|T|.
We define the partial extreme process indexed by A

Bn(A) := {Eﬁ/)\( X{.

405

One easily shows that /a.,() obey a MDP as in Definition 2.2 with h(n, A) =n

and I{x, A) = —\A\ log F(x). Obviously (2.7), (2.12) and (2.16) hold.

Now, we view gn as a random element in the set T>of all functions g from
A into E such that for any disjoint subsets A, B e A, g(AUB) =g(A) Vg(B)
and g(0,1] < oo. The set V is equipped with the topology of pointwise

convergence and we are going to apply Theorem 2.1.

Clearly, condition (2.12) holds with p{A) = 1L To check (2.13) take ¢ € v,

B,C e A disjoint and let further A=BI)C. Then
1(g(A),A) = -\A\\ogF(g(A))
= -\A\logF(g(B)Vg(C))
= -\A\(logF(g(B))VIogF(g(C)))

i-\B\\ogF(g(B))-\C\logF(g(C)),
so that (2.13) holds. The rate functional will be given for ¢ e v by

(5.2.1) J(g) =sup - ~2 \AII°gF (s {Ai))-

To check (2.15), let
Liim:=((i-1)/2m,i/2m], lg*g2m,

and define
Am:= {Li,m:1=*=2m}.
Since Li<mEA we just need to prove that

(5.2.2) liminf- VvV \Lhm\log F(g(Lhm)) Z J(g).

For this, let e> 0 and let A e V such that

ip{A,9) = - |AillogF (™ (=)™ I(f])-«.
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Next, write
= 01,m+ 02,m+ 03,m
with, for m large enough

onMmm=E E  wvm~-ailogF(g{Lj<mn~))),

‘2m ==F E \Lj,m n Ai| log F(g{LjmnAj)),

I Lj,mnA?#0

03,M==-0/2) E E \h,m\\ogF(g{Lj,mCAi
f L, ,mnAIN0
| Lj,mnAS#0
(the factor 1/2 in 03jm comes from the fact that if intersects At but is

not included in Ai then it intersects exactly one other Aj if m is such that
2-m < linig |Aj|). Due to the subadditivity of /(#(.), .), we have
, €

(5.2.3) 0i iTMi/>(Ag).

Let e> 0. Since an Lj>mintersects at most two Ax€ A and \LjtT\= 2-m, we
have
0r02m” 2(#A)2~mlog F(g(0,1]) ™ -e

if m is large enough, and clearly A 0. Therefore with (5.2.3) we deduce
that
O(A™ ff) "O(A,s) ~ 2¢

for any m large enough. Thus, (5.2.2) holds and so (2.15).

We can apply Theorem 2.1 to get that gn{) obeys a FDP with rate J(.)
defined in (5.2.1).

Now, we map the partial extreme process gn(.) indexed by A into partial
extreme process Mn(.). For this, let 9 be the function from V into T>\ (0,1]
defined for any g€V by

6(5)(®) = 6(0,ar], 0O <sgl.

Clearly, 9 is continuous from T>into V'l (0,1] both equipped with the topolo-
gy of pointwise convergence, and moreover 9(gn) = Mn. Hence, we can apply
the contraction principle, and Mn(.) obeys a FDP with rate J(9~1(.)). It
remains to prove that for any g GX>t (0,1],

(5.2.4) =- 1 \ogF{g{x))dx.

0.1
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Define the mapping 0 from D | (0,1] into V by
@ A):=s\ipg(x).
{9){A) X££g( )

Then, for any g£V | (0,1], the function 0(g) belongs to 9 1(g) so that

(5.2.5) J(@(9))"I(9-1(9)).
But using Riemann’s integral,

J(®(9)) = sup 1™ inf_ ~ los F(9(*))

. XeAr

— f “10 g F(g(x))dx.
0.1

Next, let h €9 !(g), so that h(0,a:] = g{x) for any x G(0,1]. IfFAEV, we
can write A = {(cq, 6;]: 1~ i~ ifA} and get

1>(Ah) =- J2 171 log F(h(Ai))
AEA

(5.2.6) g- J2 |AillogF(/i(0,6i])
AICA

=~ A2 (bi~ai)log F (9(bi)),
A&A

where the first inequality comes from the fact that h£V. Then, since g(.)
is monotone, the sum (5.2.6) tends to f logF(g(x))dx when max 6, —3;

(0,1] 1™ n
tends to 0. Thus,
(5.2.7) limsupi/>(;4m>h) » — / log F(g(x))dx.
m—00 J
(0.1
Then, (5.2.5), (5.2.7) and definition and property (2.15) of An show that
(5.2.4) holds, and so Theorem 3.2 is proved. O

5.3. Proof of Theorem f.1

To use Theorem 2.1, we first define the measured-valued measure on the
Borel CT-field of (0, 1]d,

fn(A):=n~d £ SXi, AeB(0,I]d.
iEnA
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Clearly, {A ->Pn(.A)}n>i is a sequence of processes with independent incre-
ments as defined in Section 1L The weak convergence and strong approxi-
mation of these processes when the Xi s are real valued and A runs over all
the intervals (0,t], 0 <t g 1, have been studied by Bickel and Wichura [5],
Kiefer [20], Koml6s, Major and Tusnady [21], M. Csorg6 and Révész [14].

We shall use a slightly different construction than in the proof of Theo-
rem 3.2 since we shall use a bigger set A to index P(-). We shall first prove
a MDP, then apply Theorem 2.1 to get the functional version, and finally,
we shall identify the process Pn(-) to Pn as defined in Section 4.

Our proof is captured by a series of lemmas and propositions. But let
us first introduce some notation. Let M," be the space of all nonnegative
measures on S with total mass less or equal 1 equipped with the r-topology
(see [19]). Clearly, for any A E £2(0, I]d, Pn(A) EM*. For *,vEM”", we
define the Kullback-Leibler information number between j, and u by

f log(dfi/du)dQ ifQ R and /.(S) = v(S),
00 otherwise.

If 11 is a subset of and u E M+, we define
K(ILi/):= /'x%fn

Remark 5.3.1. The space M* equipped with the r-topology is not

metrizable and the function K(.,v) is Isc but not continuous. So the full
form of assumptions of Theorem 2.1 is required here.

For any e, A> 0 and 12C M+, we introduce
a2 :={t/itnE12 (1- e)/Ag2g (1+elA}.

Next, if B = (Bi,..., Bk) Is a partition on s, with Bi E B(S) we define a
pseudo-metric on by

dB(/i,i/):= max \~i{BI) -u{Bi)\

for any fi,v EMx. Then we set

DFA:= {/ilA :n E123BEV(S), {v:d#(/i, V) < e} c 11}.
Clearly, for any 2C M,+, we have
(5.3.1) AOEAC 2C AiZe A

and 12Ais r-open if 12 is open, while i\,\ is r-closed if 12 is closed.
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LEMMA 5.3.1. If U is T-closed in My , then
(5.3.2) lim £(n£EAP)=tf(fJ/A ,P)
and if 12 is T-open in My , then
(5.3.3) limK (fieA P) = UF(FA, P).

Proof, (i) We consider the case where is r-closed. The inclusion
(5.3.1) implies

(5.3.4) limsupK(ilBAP) gk {n/AP).

To prove (5.3.2) assume first that

lirainf K(Qttx,P) = ¢ < oo.
t4o

Since iltiA is r-closed, Lemma 3.2 of [18] shows that there exists gcc il§A
such that .
K{ge,P) =K(QftX,-p).

There exists a sequence, say gn, such that
lim K(gn,P) =c.
Nn—o00

Thus, for n large enough, we can assume that gn belongs to the compact set

{/i :K(p,P) c+ 1} (see Lemma 2.3 in [19] for the compactness), so that
there exists a subsequence gnk converging to some g. Since fit)A is closed,

fl/A = p| ilHAand g € I1/A. Using the Isc of K(.. P) (see Lemma 2.2 of [19]),
£>0
we have

(5.3.5) c= Iilln inf K(gnk, P) ~ K(g, P) » K{SI/A P).

Clearly, (5.3.4) and (5.3.5) yield (5.3.2).
(if) Now, consider a r-open U in My . Then (5.3.1) gives

(5.3.6) liminftf(ii&\ P) Ak (1 2/A, P).
0

Next, let /in GSI/A such that

lim k(p.n, P) = [f(il/A, P).
n —00
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Since 12 is r-open, there exist BnGV(S) and sn > 0 such that
{v :dBn(pn,v) < en} C U/X.
Thus, fin€ttSnXand UT(Q<nAP) ~ K(yin,P) and

(5.3.7) Ihn sup K (B5XP) ~ K (/A P)

Since JT(fiEAP) decreases when e decreases to 0, (5.3.7) yields to
limsup™(QEAP)NX(i2/A,P),
£->0

which with (5.3.6) is (5.3.3). O

We shall consider Pn(-) as a set indexed process, and with the notation
of Section 2, we consider A the set of all Borel sets A C (0, I]d such that

(5.3.8) lim n~d#(nA) = Xd(A) = \A\

For example, any open or closed subset of (0,1]¢ belongs to A.
We can now prove a MDP for Pn(-).

Proposition 5.3.1. The processes {Pn(-)}n>i °bey a MDP given by

(5.3.9) limsupn-d logP{P,(T) Gi2} » —A\K(D./\A\, P)
n—

if fi is t-closed in , while

(5.3.10) lim.inf n~dlog P{Pn(T) G2} ~ —j4|if(0/|T|, P)

if Q is r-open.

Proof. It is convenient to introduce an i.i.d. sequence of S-
valued r.v.’s, with common p.m. P. Then let

Pn:=n_1

be their empirical p.m. Clearly, for any A C (0,1] ,

Vn(A)xn-d#{nA) P#(nyd).
Then, since (5.3.8) holds, for any AeA, any e> 0 and any n large enough,

(l-e)/|Algnd/#M )=g (1l + e)/|A].
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Consequently, for any e> 0 and A e A,
Ihnsup n~d logP{Pn(yl limsupn_dlogP{P#{n4) € ile Mi
i supn~d logP{Pn (y) imsupn_dlogP{P#{n4) € ile M}
z-\A\K (nedA,p),

where the last inequality comes from Lemma 3.1 of [19]. Then use Lemma
5.3.1 and let e—0 to obtain (5.3.9).

Now, we prove the lower bound (5.3.10). If K{Q,/\A\, P) = oo, the result
is trivial, so we can assume that the rhs of (5.3.10) is finite.
Observe that for any e> 0 and provided n is large enough, then

(5.3.11) fIEW C (ndi#(nA))fb

Indeed, for /iGfi, let pn:=p#(nA)/(nd\A\). Since A GA, we have

lim sup sup fjn) =0,
n >ocVen Bev(s)

which gives (5.3.11).
Then Lemma 3.1 in [18] and (5.3.11) and (5.3.1) imply for any e>0,

lim infn~dlog P{P,,(i4) i} " —\A\K(Df\A\ P).

Let e tend to 0 and use Lemma 5.3.1 to get (5.3.10). O

The next step is to use Theorem 2.1 to get the functional version of
Proposition 5.3.1. For this, let T be the set of all a-additive functions from
A to Mj+ equipped with the topology of pointwise convergence.

Proposition 5.3.2. The family of processes {Pn(.)}n>i obeys a FDP.
If 12 is closed in T, then

limsupn-£i log P{Pn() G12} » —J(fl, P)

71—00

and if isopeninT,

lim infn~dlogP{Pn() GO} » —J(f2, P),

where
3(ii,P):=inf I(s,P),
(5.3.12) J(g, )= sup E IMKigiAMAIIY)
AevAi£A
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and V denotes the set of all partitions of (0, I]d in sets belonging to A-

PrRooF. We check that the conditions of Theorem 2.1 hold.

Check of condition (2.7): We first prove that Pn is large deviation tight
in modifying the arguments of Lynch and Sethuraman ([22], Lemma 2.6)
in our case where the underlying space is not metrizable. Let (fi*,)*." be a

sequence in (0,1/2) converging to 0 as k —o00, and let rk such that
(5.3.13) {6k/2)log{6k/2rjk) > k +e~I.
Since P is tight, there exists a compact set Ck C S such that
RGO >1+Hc
Define the partitions Ak := {AkA := S —Ck,Ak” := Ck} and let for any ¢c> 0
rc:={QGA(S):iL(Q,P)gc},

where A(S') denotes the space of all probability measures on S endowed with
the r-topology, and K (.,.) the usual Kullback-Leibler number of informa-
tion. For any R e A(S), and AeA(S) let

B(R,A,6):={QeA(S):dA(Q,R):= ]T \R(AD)- Q(A)\< O}
AieA

For any R, A and 6,B(R,A,S) is T-open in A(S), and
{B(R,AK, k) :R € 2rcm)

is an open covering of r 2kM which is r-compact (see Lemma 2.3 of [19]).
Thus, we can extract a finite covering

{B(Ri, Ak, Sk):ie 7"}} (# 4 1}<o00)
Wic:= U B(RLAKS@,
ien?

we get, using that T2kM C WKk,

and if we define

limsupn-llogP{Pn£ Wk}i -K(WE, P) " -K(T2kM, P)

T1—KX>

< - 2kM.

Consequently, we can extend N() into a finite set 1k such that

P{P,, Wk} exp{-knM)
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for any n ~ 1, with
Vk-= U B(RuAK,sk).

ieh
Next, let
Gk:= U cITB(Ri,Ak,sk).
ieh
Then, WKk CVKC Gk, and let further

C:= fl Gk.
Kt1
We now prove that
limsupn-1 log P{P,, » C} » —M,
Nn—00

and that C is compact. Clearly,

P{PriEC} =plp,,G U U £ exp(-fcnM)
kAlielk 3 kAl
= exp(—M)/(I —exp(-nM)).

Thus, Pnis LDT if we prove that C is r-compact. Following the arguments
of Lemma 2.3 of [19], we just need to prove that C is r-closed in the space S
of all functions from B(S) into [0,1] equipped with the r-topology. In fact,
all we need to prove is that if (Qn)n>i is a sequence in C which converges
to some Q in S, then Q is also cr-additive.

If Qn € C, for any k, Qn G Gk which implies that there exists R G TZ&kM
suchthat Qn Gc\TB(R, Ak,6k). Since R GT2kM and P{Ak") <r)k, the proof

of Lemma 2.3 of [19] shows that R(S —Ck) < 6k since (5.3.13) holds. There-
fore,

Qn(2Ifc,i) = Qn{S - Ck)
u\Qn(Aktl) -R (A ktl)\ + R(AkA)
~3 K
and (Qn) is a tight sequence. Since {Qn)n>l converges to Q in S, Q is also
a probability measure, and this proves that P,, is LDT.
Since Pn(A) = Pﬁvfn/p,#(nA)/ndand lim #(nA)/nd= |v4], P,(.) isMDT,
and assumption (2.7) holds.
Check of conditions (2.12), (2.13), (2.15) and (2.16): condition (2.12) is

obvious. To check (2.13), take ¢ GT and d = BL)C with Bn C =0 and
A,B,C GA. Then

\A\K(g(A)NAL,Y>)
= (\B\ +\C\)K((\BV/(\B\ + \C\))g(B)/\B\ +J\CV/(\B\ + \C\))g(C)/\C\,P)
A\B\K(g(B)/\B\, P) + \C\K(g(C)/\C\, P)
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the last inequality coming from the fact that the function x logx is concave
and Jensen’s inequality.

Assumption (2.15) is checked hereafter, along the proof of Lemma 5.3.2,
and (2.16) obviously holds.

Theorem 2.1 gives Proposition 5.3.2. O

To end the proof of Theorem 4.3, we now proceed to the identification
of P,,(.) and Pn.

Notice first that A is a field, and g(A), A G A is a measure on A. It can
be extended on the c-field a(A). Since A contains all the open and closed
sets of (0, I]d, a(A) = 0(0, I]d.

Next, we define a mapping ip from A to T by, for any Q GA,

forany A6 A, B gB(S), ip(Q)(A)(B) = Q(A x B).

Since the set of all rectangles {A xB :A£A, B € B(S)} is a 7r-system (see
Billingsley [7]) which generates the cr-field B(0A]d <8>B(S), ip defines a one-
to-one mapping from A into ip(A). Clearly P,,(.) =ip(Fn)(.). Consequently,
iffic A,
P{Pn Gfl} = P{*(P,,)GV’(«)}-

The mapping ip is continuous for the topologies we defined on A and F,
and using the contraction principle, we infer from Proposition 5.3.2 that the
sequence (Pn)n>i obeys a LDP with rate function J(ip(Q), P) where J(.,P)
is defined in (5.3.12). Therefore, Theorem 3.2 holds if the following lemma
holds.

Lemma 5.3.2. For any QgA, we have

J{xP(Q).V) =K(Q,P)
where «/(.,.) is defined in (5.3.12) and K(.,.) in Section 2

Proof, (i) We first show that J*K: if AGA, and Q is a measure on
(0, I1d x 5, we denote Q(A x .) the measure on S defined by Q(A x .){B) :=
Q(A x B) for any B &B(S). Then,

JGP(Q)IP) = sup V. \AINK{Q{AI x .)/|Aj|,P).
A&A

Using the definition of K and relation (2.2) in [18],

J(rp(Q), P)

-sup V. ( sup V  log(Q(Aj x Bj)/\AI\P(Bj))Q(Ai x Bj)
fAANNS) B s

+ 001{Q{Ai X S) M\ A Iy
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~sup V' 1og(Q{Ci)/(X x P)(Ci)Q(CI)

C€VI Ciec
+ 00 sup | Q I xS)N |4

= K(Q, Xx P H{QAXx5)/ |4
(Q, Xx )+002%pA {Q(AX5)/ i}

where V\ denotes the set of all finite partitions of (0, \]dx 5 into measurable
subsets.

(i) We prove now that K(.,.) ~ J(ip(.),.) and that (2.15) holds: We
first assume that Q <A x P and define q(x,y) = (dQ/d(\ x P))(x,y). Let
T(x) = x log x.

For any AeV, let

S(A) = AINK{Q(AI x )|yli|,P).
AteA
One can easily check that

s(ay= 52 1M TN T g(x,y)dvd(x)yv(y).
A'eA S A,

For any r N 1, let

gT=qgl{q» £} + c1{a> 1}
be the density g(.,.) truncated at the level r. Since T(.) is increasing on
(1, 00), we have

(5.3.14) S(A) Z 52 \AI\ I TO\AN 1 gT(x,y)d\d(x))dP(y).
ANA s I
Now, we define the sequence of partitions
An = {An,i:i G2n(0, I]d0 Nd} and

Andi= (- DA for i= (0, k)

For any x G(0, I]d, let in(x) be the index such that x GAn i x\. Then let

TONANMX)\ 1 f gqT(u,y)d\d(v))dP(y) if x(£Qd
on, T{xiy) f x 6O
if x ]

One easily checks that the rhs of (5.3.14) is

gn,r{x,y)d\d{x)dP{y).
(0,1]dxS



416 P. BARBE and M. BRONIATOWSKI

We prove that, as n —00 and along A*n the family of step functions gn;T
converges pointwise to some function gT which in turn converges to g as r
tends to infinity.

Since for any x G (0, I]d the sets (An,in(2))n>i shrink nicely to x in the
sense of Rudin ([26], Ch. 8), we have

Jim gntT{x,y) =gT(x.y)

where

T{gr(x,y)) if x£Qd
ar{x.y) 0 otherwise.

Since qT is upper bounded by r, we also have
on,r{x,y) e[0,T(r)] for any x,y.

Thus, Lebesgue’s dominated convergence theorem yields

(5.3.15) lim  f  gnTd{XdxP) = [ gTd(XdxP).

n-»00
(0,11dxS (0,11dx5
Clearly, the measure defined on (0, I]dx 5 by
f qTd{\dx P)
AxB

converges (whenr —00) to Q on any Borel set of (0, I]Jdx S. Then, the lower
semi-continuity of the Kullback Leibler information number ensures that

(5.3.16) IiTm L';‘f J/ gTd{\dx P) » K(Q, P).
(0,11dx5

Combine (5.3.14)-(5.3.16) to show that

(5.3.17) ]h%S(A*n)'ZK{Q,P).

Wi ith part (i) of the proof of Lemma 5.3.2, (5.3.17) shows that the sequence
{An)n>\ verifies condition (2.15) as soon as Q <€ Xd x P.

Finally, if Q is not absolutely continuous w.r.t. Xd x P, we can take
Q + (*d x P) as a dominating measure and use the same technique to show

that
. .\ =
n|lﬂ 5(T*)= oo

in this case. O
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POLYNOMIAL WAVELETS AND WAVELET PACKET BASES

T. KILGORE, J. PRESTIN and K. SELIG

Abstract

We discuss wavelet-oriented ideas to construct bases of algebraic polynomials. In
particular, the splitting in the frequency domain is extended in order to define wavelet
packets.

1. Introduction

We show here how algebraic polynomials on the interval [—1,1] can be
treated as wavelets and can be handled by wavelet techniques. Benefits in-
clude the potential for computational efficiency and accuracy in applications,
for example to approximation problems. Theoretical developments also fol-
low from systematic development and exploitation of orthogonality and from
a generalization of the concept of shift invariance, which allow the applica-
tion of the wavelet techniques on the interval. We will give here some of
the basic ideas and techniques used in the wavelet approach to polynomials,
which is also related to an important application, the construction of a series
of mutually orthogonal polynomials of “optimal degree.”

As the idea of wavelets originated in connection with signal analysis, let
us look first at the original setting. Signal analysis naturally involves a “time
domain” and a “frequency domain”. One splits the frequency domain dyad-
ically into wavelet spaces, with dilations and translations of a single function
(mother wavelet) employed systematically to construct bases for these spaces.
Wavelet packet spaces are subspaces which in turn further split the wavelet
spaces, using smaller frequency ranges. In signal analysis, a function (signal)
is “time-localized” if it is relatively large in magnitude at a certain “time”
and relatively small otherwise. A “frequency-localized” function on the other
hand is more or less of a single frequency. In a manifestation of Heisenberg’s
uncertainty principle, perfect time localization and perfect frequency local-
ization are mutually incompatible. Thus, one goal in signal analysis is the
construction of “time-frequency-localized” bases, involving a balanced con-
sideration of both domains. In a wavelet treatment of polynomials on [—1,1],

1991 Mathematics Subject Classification. Primary 41A10; Secondary 33C25, 42C15.
Key words and phrases. Wavelet packets, Chebyshev polynomials, orthogonal bases,
generalized Chebyshev shift.
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the time domain clearly should correspond to the underlying interval [—1,1],
while the frequency domain should correspond more or less to the degree of
involved monomials. More precise statements and adaptations of this and of
other concepts require more systematic treatment.

Wavelet techniques for polynomials on the interval [1,1] with respect
to the Chebyshev weight have been developed in Kilgore and Prestin [4],
in Tasche [12] and in Plonka, Selig, and Tasche [7], where the generalized
Chebyshev shift was discussed and applied to the development of wavelets
on the interval. An adaptation of the uncertainty principle can be found in
Rosier and Voit [10], which in turn could be applied to wavelets on [—1,1]
analogous to Narcowich and Ward [6] and to Selig [11].

More recently, in Kilgore, Prestin, and Selig [5], wavelet techniques have
been used to show the existence of and to perform the construction of an
orthogonal Schauder basis of polynomials of optimal degree for the space
C[—1,1], where optimal degree signifies that the nth polynomial in the basis
is always of degree less than n(l + e), for previously given e> 0. Here, the
use of wavelet packets is precisely what is needed to construct a polynomial
basis in which the degree of the polynomials grows within the prescribed
limitations; as e decreases, the dimension of the packet spaces decreases, and
the number of packet spaces into which a given wavelet space must be split
increases. This basis problem has a long history which is discussed in further
detail in the paper [5].

Here, we will construct different wavelet bases and wavelet packet bases
on the interval. At first, we will define polynomial subspaces by means of
bases with the most frequency localization. Then, the idea of time-frequency-
localized bases will be realized by building finite linear combinations in order
to obtain wavelets and wavelet packets as generalized translates within each
subspace.

The wavelet spaces as well as the wavelet packet spaces will be orthogonal;
their orthogonality is given with respect to the weighted inner product

Hence, we use the orthogonal Chebyshev polynomials Tn(x) = cosn arccos x
(n 6 .IMo) for which

(1)

We will directly and explicitly describe the algebraic polynomials used in
our wavelet and wavelet packet bases by giving their Chebyshev expansions.
Our examples are related to the trigonometric Dirichlet kernel and the de
la Vallée Poussin kernels and corresponding shift-invariant spaces (see e.g.
Privalov [9], and Prestin and Selig [8]).
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Note that in our construction the Chebyshev polynomials can be replaced
by other polynomial systems orthonormal with respect to an arbitrary weight
function w which yield corresponding bases for L2. Having similar frequency
localization in terms of the involved orthonormal polynomials, the resulting
polynomials will differ in their properties of localization on [—1,1] according
to the weight w which will be related to different approximation properties
of the bases. For the construction of the wavelets orthogonal with respect to
an arbitrary weighted inner product we refer to Depczynski and Jetter [1, 2]
and Fischer and Prestin [3]. However, results for the wavelet packets and the
uncertainty principles are still in progress. Therefore, we restrict ourselves
here to the Chebyshev weight and Chebyshev polynomials.

2. Wavelets and wavelet packets on [-1,1]

Let N,M GIN be fixed, with N = 274 M for some £ IN, 7" 2. Fur-
thermore, let us introduce, for any 1= 0,..., 2V—2, real coefficients

aM(k), (k=—M,...M) and a\M(k), @=-2M,...2M).

With any fixed set of such coefficients, we define the following spaces of
polynomials
Vijf:=span {Tk:k=0,...,N —M }
UMKk —M)Tn—MHK + M (M —K)Tp/+M-k *k = 1, m.., M }),
Wtf :=span ({&M{-k)TN+k - &M(K)TN_k :k=1,..., M - 1}
U{Tk:k=N+M,..., 2N - 2M}
U {a2M(k~2M)T2Ar 2Ai+)fcta2Ai(2-kf—k)T2N+2M-k w = 1, ..., 2M}),
m=spaniia®—«)TN+2M {I-i)+k~aM1IM™T/+2M(l-i)-ifc: k =1, ..., m —1}
U {aM(k —M) T n+M{i-\)+k+adM{M —Kk) TN+M(2i+i)-k -k =0, ..., M}),

forl=1,... ,2~—2, and

span({a”- 2(-fc)T2jv_4M+fc - aM~2{k)T2N-iM-k :k=1,..., M —1}
U{Tk :k=2N —3M,..., 2N —2M}

o 1a2M - 2w )7 2ar 2Mstfe + a2ai(2M - k)T2N+2M-k -k —:
Given a general scheme for constructing the coefficients aM, it is then

possible to double repeatedly the values of M and N together. This suc-
cessive doubling gives a nested sequence of spaces , a corresponding
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sequence of spaces W~ f, and inside of each space Wjtf a set of subspaces
W > s WM

Three relevant examples for the choice of the coefficients are the follow-
ing, where forall /=1,... ,2V—2

<m _J 1, -MikiO,

(a)

{ o 0<kAM,
(b) @m (") —or*
M -k
_ -MAKAM
© anl(") 2M 2+ 2k2’

and a2M (k) = a&M(k/2) for all —2M ~ k™ 2M. Arisen from their trigono-
metric analogs, example (a) yields functions related to the Dirichlet kernel
whereas examples (b) and (c) come from de la Vallée Poussin means and from
an orthogonalization procedure applied to translates thereof, respectively.

For the sake of good time localization for the wavelet and wavelet packet
bases to be constructed we generally suggest that the coefficients aM (k)
should decrease monotonically with increasing k and should be normalized
such that aM(—M) =1

Based on the examples (b) and (c), the following graphs represent the
size of the coefficients aM with respect to their distribution in the frequency
domain (see also the definition of the wavelet packet functions on p. 425)
and thus illustrate some of the many possibilities for constructing the spaces
WTff, for I=1,..., 2n—1 and =2 (left) and 4= 3 (right). The graphs for
1j = 2 also depict one doubling of N and M.

N =8M N = 16M
N 2 N 4 N N
Example (b)
N 2 N 4 N N 2 N
Example (c)

Now we study the spaces defined above and show that under certain
conditions on the coefficients they span

V N oi=span({Tt: k=0,... ,2N - 2M}
u {a2M(k-2M)T2N-2M+k +a°2M(2M-k)T2N+2M_k mk = I, ..., 2M}).
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Theorem 2.1. For any real coefficients aM(k) and a2M(k), it holds that

vjif*uw”rf CV2f, ViflW tf,
and

w(fjcwif, forl=1,..,2V- 1.
If
) o 9 =©° for 1= 1,..., 2" —2,
then

wNh  wNh > for [Eh <I2i 21—1,

and if moreover the coefficients satisfy for all 1 —0,..., 2V—2
3] (aM{k))2 + {aM{-k))2 >o, for all k=o,...,M,

@M (k)2 + @M(-k))2 >0, for all k=0,...,2M - 1,

then we have

4 vif-v? ewjf
and

20—+
(5) Wjf=@ W *“ .

PROOF. The inclusions VAfuWff c V™ and W”\ ¢ Wj!f follow direct-
ly from the definition of the spaces.

Using (1) and (2) the orthogonality Vjfi L and Wjtf* T WA fi2 can
be easily checked. In particular, for | =\ = I2—1 we obtain for any k =
0,...M —1

(aM(-fc) TiviAndic+ aM (M) TNEMAME ) aM (k) TN#2M -k -aM(-k) TN+2M-Lk)
= aM(—k) aM{k) ((TN+2Ml-k ffiN+2MI-k) —(Tn+2M-Hc, Tn+2Mi+lg)
- 0.
For |/i —/21> 1 the orthogonality Wjtf* T Wj~ 12 is evident.
Let us now prove (4) and (5). From (3) it follows that both of aM (—k)
and aM(k) cannot vanish. Hence,
dimspan {aM(-k) TN+2Mi+k ~ aM{k) TN+2MI-k =
k=1,...,M-1} =M -1,
dimspan {aM(k - M)TA+M(2i-i)+fc + gm (M - fc)7V+M(2H-i)-fc :
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k=0,...,M}=M + 1,

dimspan {a2M(k - 2M)T2N-2M+k + a2M{2M ~ k)T2N+2M-k =
k=1, ,2M}=2M .

Then, for the dimensions of the spaces we obtain
dimVjf =N + 1, dimIT~ =N, dimW~" = 2M,

forl=1 , 2n—2, and
dim =4M .

Hence
dimHZ =dim + dim

and
2, -1
dimwn = dimWffj.
I=i
Together with the imbedding and orthogonality relations this proves the
assertion. 0O

Following [7] one can define scaling functions and wavelets in terms of
Chebyshev polynomials as generalized Chebyshev shifts of one function.

We define scaling functions for s=0,..., N, by
1 N —M , N+M—I ksn
-To+ "2 cos_™_ifc+ "2 aM(k —Ar) cos N- Tk,
k=1 k=N-M+I
and wavelets, for s=1,..., N, by
N+M-I
tf=- T ° H
! k=N-M+1 k=N+M
2N+2M-1
+ E «8«(*-2IV) cos M aziﬁdh
k=2N-2M+I

In this paper we introduce corresponding wavelet packet functions, for p =
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1 ,2Vv1—lands=1,...,2M, by

N+(4p-3)M-1 k(Zs -
E  am2Ne @ —4M-k) sin =gy
k=N+(4p—-5)M+\
N+(4p-)M -1 -
+ E  am-\k-N - (4p-2)M) sm-> 11)
k=N+(4p-3)M
. N+{4p—)M— (23
—1)77
\/Ih/,IZp,S — E a%ﬂj \n + (4p —2)M ~ k) Cs - 4'|"\7F_____ 7%
k=N+(4p-3)M+I
N+(4p+1)M-1
+ B ap(k—N —apM) g kS DT
k=N+(4p—h)M -
and for 5=1,..., 4M, by
2N—-3M—X
AN,2n-1,s m= E A {k -2N - 4M) cos %”H'ﬁc
Jfc=2N-5M+l
2N M (25 — 17T
+ E G:S— A
k=2N—M
2N+2M—
+ E azAfr~22NM)c 0 s ATzN.k-
k=2N-2M+I

In order to illustrate their time localization, we have drawn corresponding
functions for the coefficients from the examples (a) and (b) for N = 128 and
M = 16. The corresponding functions for the example (c) are not shown;
they would be quite similar to those for (b).

Example (a) Example (b)

Scaling functions ¢\\g 32
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Example (a) Example (b)

Wavelet packet functions t/'ifs i 8

We can show that the functions defined above build bases of the previ-
ously defined spaces.

Theorem 2.2. For N,M GJN, with N = 27)+IM , we have
Vpf = span s=0,...,Nj,
W™ = span {0V5:s=1,..., N},
Wfa =span {tpN,I,s:a= 1, mmm 2Af}

for1=1,...,2%- 2, and

W x2v-1 = span {iPn 2i-is-s=1

PROOF. Let us write the basis used in the definition of in the order
given there as a column vector vjy, that is,

yN—(To,—Tn-m, _m)Tn-m+i + &M{M - )TN+M-i,
] + M) TN+i, 2eM (QTI\TY

Let us similarly represent the given basis of Wj!f as a column vector wnf
and the given basis of W ~t as a column vector w ;.
Now we can write

(to =A ~, (Miz1=B.wiv
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where
N
A, = -(3_____9-k-°- ---E‘S'N Cos xen
s,k=o0
“ N,2N
s 2- Ok2N _ k(2s - 7T
2N S:|7|(:N+|

Also, for 1=1,..., 2V—2, we have

M M 1 'M ._rM™M M
N,I ¥-N,I » VPN,2V-l,s)a=i —~N,2» -1 WjV,2i - | »

where, forp=1,..., 27711 —1,

r<M 2 MN+pM _ k{zs  1)F MMM
"~N,2p = Cos AM
s=I,k=N+(4p—=2)M+1

iAi 2 ~ &Kk, N+(]4:1p_%_|v| in k(25 — 1)77 2M,N+(4p—2)M
IN,2p-\ s B = SIN et ee e

4M s=I,k=N+(4p—4)M+I

and

- 2 -<5fe)2A A(2s-1)7t 4M.2N
'MZl-l—— cos M

s=\,k=2N-4M+\

The proof of the theorem is now completed by noting that the regularity
of these matrices is well-known and follows directly from (see Tasche [12])

AIVARF = (Dhs k

s,k=o0

N

BAByv = (yE£SA@2- SkN
y (y (: )S,k=1

and

civ.2o)r civipo— X p- I8N x —(Mis 2 - som)PE1. O

Note that in the above proof the transformation matrices between cor-
responding bases of the scaling function spaces, wavelet spaces, and wavelet
packet spaces are given. The transformation from one basis to another can
also be carried out by use of fast algorithms (cf. [12, 7]).
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3. Orthogonal bases

Here we further impose orthogonality of the bases given in Theorem 2.2.
It turns out to be guaranteed by a certain condition on the coefficients aM.

T heorem 3.1. If

6) aM(M)=0, forI=1,.,20—2,

-

(a2m (M)2+ (a2 =1 for kZO,... ,2M —1,

and

2—1 fork=o,... M, /=0,..27-2,

then we have the orthogonality properties

(8) (Svr, N9 =NSrs1+ +~-A, forr,s=0,..., N,
€)] (®*N,r~*N ,s)=NSr>s, forr,5=1,...,N,
(10

(Vai,ir)Vs$,s>=MJns foralll=1,...,27—1landr,s=1,..., 2M ,

(11) (V$2»-1,r JAN"-hs) = 2marss  fOorr,s=i,... ,am.

Notice the connection between the conditions (3) giving linear indepen-
dence and (7) giving orthogonality.

Proof. For the proof, we will use the orthogonality properties (1) of
the Chebyshev polynomials T”. In order to show (8), we note that

N-M km ksn
<0]£r ,<BNs g -+ c0S N cos V-l
fc=i
M2 oM —k)2 (N—k)m _ (N-K)sn
+fC:EAr+i oM2+2M- k) TN T N
i+(-ir TE-I krn ksn
R—F

k=1
2+ ()r-s+ (hr+s 1

+

N-1
k(r — k(r +
(r—s)n + cos (r +s)n

jt=i N N
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— Nfirls 1+ fls,ﬁ)ﬂr ﬂSjn

where we used that

5+ I'I)"+E W =JvAgmodon

The proof of (9)—11) follows the same ideas. O

The conditions (6)-(7) hold for our example (c). For this special case,
the functions are

M1

E 2M -k (N—M + k)sn
N,s- ~To+ cos- W‘Tk+ E x/2M2+2(M-A)ZCOS ~Ir
X Tiv-M+k,
AL A (N —M + k)(2s —I)7r__
,c::’ cos . Tjv-M+c
X2M 2+ 2(M-A-) 2V
2N—2M
A7
+ E cos—5—
k=N+M 2N
M= 4M -k (2N-2M +k)(2s-)n k
xCOS T2N-2M
E yemo+2(k-2my Tz
2M-1
2M —D7T
—d cos I (k- M) (2s—1)
4M
X TN+(4p—) M+ki
2M-1
M -\k . 2s —N7T
AN,2P-1,s ~ E PM - 5'”((fC—3M)(S4M)
|.--2M+1 VI2M 2+ 2(M -|/t|)5
X TN+(4p—8)M+K i
and
_ 2t L K(zs—1w
VIVLS — R yoMmak 2 (Mfe)2 o BM

2JV-2M N
le(2s —1)TA

cosgrr FI7-—-Tk
k=2N—3M 8M
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" AM -k Lo (2N —2M (25 —TW
\/'sM 2+ 2(k —2M)2 8M
XP2N-2M+k-

Wi ith appropriate choices of N and M given by successive doubling of cer-
tain initial N and M, the pairwise orthogonal wavelet packet functions just
described can be used to define an orthogonal Schauder basis for C[—1,1]
consisting of polynomials of optimal degree at most n(l + €). For this con-
struction, the initial values of N and M are determined by the given value of
e. We have mentioned this problem already in the introduction; the details
are given in Kilgore, Prestin, and Selig [5].
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ZUR GEOMETRIE DER TRIDENS-KURVEN
DER ISOTROPEN EBENE

J. TOLKE

Abstract

D. Palman [2] and H. Sachs [6] studied cubic curves in an isotropic plane with the
property that the linear power of a point P with respect to a given curve is independent
from the straight line through P. There axe three classes of such curves. We show that the
class of the Tridens-curves can be generated by special circumscribed tangent foursides of
isotropic circles. So every Tridens-curve is a focal curve.

Die zirkuldren Kurven 3. Ordnung spielen eine wichtige Rolle bei den
Untersuchungen von H. Sachs [4] uber oskulierende und hyperoskulierende
Kegelschnittblischel. Die Unterklasse der vollstandig zirkuldren Kurven 3.
Ordnung wurde von D.Palman [2,3] und H. Sachs [6] untersucht. Speziell
wurde in [Z] die Geometrie der sogenannten Tridens-Kurven behandelt.

Vorliegende Note gibt dazu Ergdnzungen. Wir zeigen, dal} jeder Tridens-
Kurve ein zul&ssiges Sehnenvierseit eingeschrieben werden kann. Es ist zu-
gleich Tangentenvierseit eines isotropen Kreises. Durch solche zulédssigen
Haupttangentenvierseite isotroper Kreise lassen sich alle Tridens-Kurven er-
fassen. Hiermit gelingt eine neue (elementare) Deutung fur den Radius
des asymptotischen Kreises der Tridens-Kurve. Erwéahnt sei noch, daR jede
Tridens-Kurve Fokalkurve der einem zuldssigen Sehnenvierseit einbeschriebe-
nen Kegelschnittschar ist.

1

Bezeichne {£,r/} affine Koordinaten in der isotropen Ebene 1>- Sind
(x :y :t) die zugehorigen homogenen Koordinaten, so wird die absolute Ge-
rade f durch t =0 und der absolute Punkt F durch (0:1:0) beschrieben. Die
zugrundeliegende Fundamentalgruppe ist die dreiparametrige Bewegungs-
gruppe H3 [5]. Die Geometrie der Tridens-Kurven 3. Ordnung

(1 fr)= a3+ ai(,2+ a2k + a3

wurde von D. Palman [2Z] behandelt. Fur die Bewegungsinvariante a - bzw.
den Radius des asymptotischen Kreises von (1) - fand H. Sachs eine ge-
ometrische Deutung [6, S. 381]. Wir wollen eine weitere elementare Deutung

1991 Mathematics Subject Classification. Primary 51N25; Secondary 51N15.
Key words and phrases. Isotropie plane, Tridens curve, completely circular curves of
third order, focal curve.
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aufzeigen. Sind fi,..., =4 vier Geraden von /2, so sagen wir, daf} die vier Ge-
raden ti ein zuldssiges Vierseit bilden, wenn keine drei Geraden kopunktal
sind, keine zwei Geraden parallel sind und keine Gerade isotrop ist.

LEMMA. Jeder Tridens-Kurve l&aRt sich ein zuldssiges Sehnenvierseit ein-
beschreiben.

Das soll heil3en, dal die drei Gegenpunktepaare des Vierseits Punkte der
Tridens-Kurve sind.

Beweis, (@) Wir wahlen eine Gerade, welche die Tridens-Kurve (1) in
drei verschiedenen reellen Punkten schneidet, als neue £-Achse. Dann folgt
mit den Schnittpunktsabszissen 01,02,03

(T 7= ex(£-ai)(E —2)(£-a3).

Sollte es i,j,k mit {i,j,k} = {1,2,3} geben derart, daR di +cij = 0, so
drehen wir die £-Achse so, daR die neue Lage wieder drei reelle, verschiedene
Schnittpunkte hat

Tl=paB,+rj, £=£ p~O.
Dann folgt

=a[-plz2+ (E- ak)(£2- a2)].

Waren auch jetzt noch zwei Punkte £= +c, rj= 0 Tridenskurvenpunkte, so
mfRte c(c2—a2) = 0, wegen p ™ 0, also c= 0 sein. Also laRt sich (1) durch
eine isotrope Bewegung auf die Form

(i)
mit
(a4+A){a+B)(A+B)(4-A)(4-B)(A-B)B~o

bringen, wobei 0.B.d.A. & <A sei. Die Schiebung £=£—B, 7= p liefert
schliel3lich

2 VE+B)=azZ(t-a){t-A)
mit
a=4a—B, A=A —B, aA@—A)J£0, a+A+2B"0
Br0 aA+2B{a+A+2B)={a+B){A+B) "0, a<A.
(b) Wir betrachten eine Gerade fj=ap£f mit p~0, flr die
4 X2:=(0+ A+p)2—4aA + 4Bp

positiv ist und die keine Tangente von (2) im Punkte (0,0) ist. Diese Gerade
schneidet (2) in den reellen, verschiedenen Punktenl (i = 1,2)

5) a=1/2{(a+A+p)+(-iyX}, TH=ap

1 Da F Doppelpunkt ist, gilt (E1 —a)(*2 —A) A 0.
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und es gilt (& 70)
6) aA —Bp ™0.

Die Verbindungsgerade von (a, 0) mit (£i,r/i) bzw. die von (A, 0) mit (£2,772)
schneidet die Tridens-Kurve (2) im weiteren Punkt (£0, ja) bzw. (£.4, tja) und
es gilt

ea(6-a)-Ki-("i-«)(6-A)} =0,
bzw.

£4(62-A)- {pf2- (E2- a)(6 - 2)}=0.

Wegen (5) ist £a= £4 dquivalent mit
(A—a—X){p2+ 2p(a+A) - X2+ (a- A)2}=0,
was mit (4) auf
(7 {A-a-X)Bp =0
fihrt. Wegen pB 70 folgt also unter den gemachten Voraussetzungen
8 fa= £4 aquivalent X —A —a.
Aus X = A—a folgt mit (4)
9) 2@+ A+ 2B) +p=0.

Setzen wir umgekehrt (9) voraus, so gilt
(i) Aus (3) folgt p™ O
(i) Aus (4) folgt X 2= (A —a)2, also mit (3) X 2> 0;
(iii) aA—Bp =aA + 2B(a +A + 2B), was nach (3) von Null verschieden
ist, sodaR (6) gilt.
Damit sind die Voraussetzungen, die zu (8) fihrten, erfillt. Mit (9)
verifizieren wir X —A —a, d.h. fa= £4. O

2

Fur ein zuldssiges Sehnenvierseit einer Tridens-Kurve ist keine der Di-
agonalen isotrop. Allgemein nennen wir zuldssige Vierseite, fur die keine
Diagonale isotrop ist, zulassige Hauptvierseite.

Satz 1. Ein zul&ssiges Hauptvierseit ist genau dann zuléssiges Sehnen-
vierseit einer Tridens-Kurve, wenn es zulé@ssiges Haupttangentenvierseit eines
isotropen Kreises ist.
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Beweis, (&) Wahl des Koordinatensystems.
Sei ti,..., < ein zuldssiges Vierseit. Wir setzen

Tik m— Atk = Tki-

Damit ist z.B. A(Ti3,TD,T34) ein zulassiges Dreieck [5 S. 22]. Durch eine
isotrope Bewegung kdnnen wir erreichen, dal die genannten Dreieckseck-
punkte die Koordinaten (A,B, AeR)

(10) T13=(0,0), Ti4= (A0), Tm=(\B1B) mit \(\B —A)AB yf0
bekommen. Damit folgt (a, beR)

(11) Ti2 = (a,0), T23= (Afe, b) mit (a—A)(b—B){bA —aB){a —Xb)ab"0,
und es gilt fir die Koordinaten von T24 =-{(t,Vt)

(12) (aB-bA)Et=R, {aB-bA)rit =bB(a-A),

wobei abkirzend gesetzt wurde

(13) R:=-aA{b-B) +\bB(a-A).

(b) Die durch Tu- bestimmte Tridens-Kurve.

Unter einer vollstandig zirkularen Kurve 3. Ordnung versteht man eine
Kurve 3. Ordnung k*3 fir die F ein dreifacher Schnittpunkt von k”* mit
der absoluten Geraden / ist [2,6]. Flr die durch die Punkte bestimmte
- eventuell reduzible - vollstdndig zirkulédre Kurve 3. Ordnung findet man
nach einfacher, langerer Zwischenrechnung2 die Darstellung

(14) £(£ —a)(£E —A) + 77 —Xag2 + AA2B —ak)r) =0

2 Man verwendet zweckméfig zunédchst das angepalite affine Koordinatensystem x =
£~ A7, y=).
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mit den Abkirrzungen

(15)  (aB —bA)s :=(a—b\)(BX —A)a, a:=a—A —\(b—B)

und

(16) 7-i:=A[0 +i4-A(6 + B)].

Damit ist = 0 mit er= 0 4quivalent. Wegen aB —bA " 0 und
7 {b-BX7-S) =\{{b+B)a - 2{aB - 6A)}

kann der Fall 7 = 6 = 0 nicht eintreten.

Fir o = 03 zerféllt die Kubik (14) genau dann, wenn die isotrope Rich-
tung zu einer der Diagonalen T23vTu, Tu VT34, TI13vT24 parallel ist.
Sie zerfallt dann in die betreffende isotrope Diagonale und den isotropen
Kreis durch die anderen beiden Gegenpunktepaare des zuldssigen Vierseits.
Also ist fir <= 0 die Kubik (14) genau fiir zuldssige Hauptvierseite nicht
zerfallend. Der absolute Punkt ist dann ein Doppelpunkt. Nach (14), (15)
und (17) sind die absolute Gerade und die isotrope Gerade

(18) 2{b-B)t+AB-ab =0

die Doppelpunktstangenten. Die Kurve ist also eine Tridens-Kurve [2].

(c) Die geometrische Deutung von a = 0.

Fur die isotropen Linienkoordinaten w :u:v  (wrj=  + V) der Geraden
ti unseres zuldssigen Vierseits gilt gemaR Teil (a) im festgelegten Koordi-
natensystem

n ti: u=v=0 t2~-w=a—\b, u=-—-b,v=ab,

i3:w=A u=1u=0 1[4 w=A—\B, u=—B, v—AB.

® Fur den Fall a~ 0 sei auf [8] verwiesen.
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Damit folgt die Darstellung der dem zuléssigen Vierseit t\, ..., 4 einbeschrie-
benen Parabel zu
(20) X(aB —bA)u2 —(aB —bA)uw + auv + (b—B)vw = 0.

Fur ihren Beruhrpunkt mit der absoluten Geraden (u=w =0) gilt daher
(b—B)w +au =0.

Somit gilt genau dann a = 0, wenn die dem zuldssigen Vierseit einbeschriebene
Parabel ein isotroper Kreis ist. O

H. Sachs hat in [6, S. 381] eine geometrische Deutung des Koeffizienten
a der Tridens-Kurve (1) angegeben. Wir wollen eine weitere, elementarge-
ometrische Deutung fiir a zeigen. Nach D. Palman [2, S. 39] gilt fur den
Radius R des asymptotischen Kreises R =a.

Satz 2. Seiti,... <. ein zul&ssiges Sehnenvierseit einer Tridens-Kurve
und bezeichne T{k := tt Atk = Tki die Schnittpunkte der Sehnen tj. Dann gilt
far den Radius R des asymptotischen Kreises

(21) R = )

T d(Tik,Tjk) +d(Tu,Tji)

mit {i,j, k, 1} ={1,2,3,4}. Dabei bezeichne d bzw. < den isotropen Abstand
bzw. den isotropen Winkel.

BEwWEIs. Wir zeigen etwa die Félle i=4,j = 2und i= 3 =1 Im
Koordinatensystem von Abschnitt 2 gilt nach (12)

R =7=---b—B-—— +A-Xb+£)],
wobei A vermdge (15) und er= 0 definiert ist. Mit (10) und (11) folgt
d(T4i,T21) + d(T43,T23) = 2A(6-R),
d(T32,T12) +d(T3:,T14) =a+ A - X(b+B).
Nach (19) gilt

bA —aB ®-B)2

1
(a- Xb)(A- XB) bA-ap® (19 x =

<(t2,te)

Bemerkung. Nach (20) und [5, S. 271 gilt fir den Radius R* des dem
zulassigen Sehnenvierseit einbeschriebenen isotropen Kreises



TRIDENS-KURVEN 439

was eine weitere geometrische Deutung des asymptotischen Kreisradius
ergibt.

4

Um eine weitere Eigenschaft der Tridens-Kurven aufzudecken, betrachten
wir die einem zuléssigen Vierseit t\, ..., t\ einbeschriebene Kegelschnittschar.
Im Koordinatensystem von Abschnitt 2 folgt mit einem Scharparameter k
nach (20) und (12)

. X(aB —bA)u2+ (er —R)uv —(aB —hbA)v2—aB —bA)uw
+ [b—B + nbB(a —A)]Juu; = 0.

Far die isotropen Hauptachsen [7, S. 389] w :u :v gilt demnach das Glei-
chungssystem

2\(aB —bA)u + (er—RBR)v —(aB —bA)w =0

(er —nBR)u —2k(uB —bA)v + [b—B + nbB(a —A)]w = 0.
Somit hillen die isotropen Hauptachsen den Kegelschnitt

(@B —bA){2\Ru2 + A\(aB —bA)uv + 2av2
—[2AbB(a —A) + Bluw + bB(a —A)w2}
-{B(b - B) + abB(a- A) + 2(aB - bA)2}vw =0

ein. Genau fur a = 0 ist die Enveloppe der isotropen lJauptachsen somit eine
Parabel P. Fur ihre isotropen Tangenten gilt

u{fu + 2(aB —bA)v} =0, w—0.

Wegen (13) und (15) ist also der eigentliche isotrope Brennstrahl von P nach
(18) die Asymptote der Tridens-Kurve (14).

Nach M. Greiner [1, S. 33 und S. 39] ist die Fokalkurve der Kegelschnitt-
schar (22) eine Kurve 3. Ordnung durch die 3 Paare von Gegenpunkten des
zuléssigen Vierseits. Sie hat (l.c) im absoluten Punkt einen Doppelpunkt.
Die Doppelpunktstangenten sind die Brennstrahlen der Enveloppe der iso-
tropen Hauptachsen. Damit ist gezeigt:

Satz 3. Jede Tridens-Kurve ist Fokalkurve der einem sie erzeugenden
zuldssigen Sehnenvierseit einbeschriebenen Kegelschnittsohar.
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A NONLINEAR EIGENVALUE PROBLEM
RELATED TO GABRIELLA BOGNAR’S CONJECTURE

W. PIELICHOWSKI

Abstract

In this paper we show the simplicity and some other properties of the principal eigen-
value of the Dirichlet problem for a quasilinear second order elliptic operator in a non-
smooth domain.

1. Introduction

Let d be a bounded domain (i.e., an open and connected set) in the space

(N~ 1) with the closure d and boundary dCl. We shall be concerned
with the eigenvalue problem of the form

N

'Y Dj(ai(a;)[Aw(a:)]p)-[-ao(a:)[u(@;)lp = Am(x)[u(x)Ip, Vx € G,
(1 i—

ii(x) =0, Vx € ddl,
where p € (1,00) and [u]p:= |u|p~2it for u ER. In what follows the coefficients

ai (i=1,... ,N), ao and m are supposed to be essentially bounded in if and
satisfy the following conditions:

)] 3a>0: ai(x)~ta forae x€if (i=1,...,N),
(3) ao(x)"0 for a.e. x GQ,
4) m+ :=max(m,0)* 0 ae. in d.

Putting gj(x) = 1, ao(x) = 0and m(x) = 1, we obtain the eigenvalue problem

N

) -y Di ([A«]?)= aMp NG,

u\dQ —O0-

1991 Mathematics Subject Classification. Primary 35P30, 35J60.
Key words and phrases. First eigenvalue, quasilinear elliptic operator.
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The problem (5) was investigated (in the case N = 2) by G. Bognar [4], who
conjectured that the smallest eigenvalue of (5) is equal to the infimum of the
Rayleigh quotient N

[~ \Diu\pdx
]
R{u):= °!
[ \u\pdx
n

taken over an appropriate space of functions, contained in Wqgp(Q). Bognar
also conjectured that the smallest eigenvalue is simple and has a positive
eigenfunction. She partly proved her conjecture under some additional as-
sumptions, including the hypothesis that p~ 2. The main purpose of this
paper is to obtain similar results for the first eigenvalue of problem (1), which
include those conjectured by Bognar. It is worth noting that we make no reg-
ularity assumptions on the domain if and also the function m, usually called
the weight function, may change sign in Q. Our approach is based on the
methods developed in the papers [3], [8], [7], [5] and [9], which were devoted
to the study of the first eigenvalue of the pseudo-Laplacian Ap= div([V]p)
and some related quasilinear elliptic operators.

2. Preliminaries and main results

In this note we use real function spaces only. Let us recall that W 1,p(if),
with 1 <p< oo, denotes the space of all functions which together with their
derivatives (in the distribution sense) DiU (i = 1,..., N ) belong to Lp(ff). We
define the norm in W 1,p(ff) by setting

VU € W Lp(if).

As usual, the symbol WQ,p(if) stands for the subspace of W1PQ) obtained
by closing the set of all C*-functions with compact support in if. The space
Wa,p(il) inherits the norm from W 1,p(if).

Any nontrivial function u is said to be an eigenfunction of problem (1)
if and only if

uew @ff),
(Ea) ai[DiulpDpp + ao[ulp(pj dX —A\] m[u\ptpdx,
<1 ! n
vie w@p(n).
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We shall make use of the following notations:

AW):= | aj\D{Vp+a0uly dx, W GWaLp(f),
0 el :

Mv):= | mwpd,  WGewWaii),
n

J\(u) := A(u) —XM(u), VAg M Vu GWaxJil).
The main result of this paper is the following:

THEOREM 1. Suppose that the functions (i=1...,N), caqg and m
satisfy all the assumptions of Section 1 Then the following assertions hold:

(Ai) 0< Ai < o0,

(A2) for Ag [0, Ai) the problem (EA admits no eigenfunction,

(A3) Jaj(u) ~0 for all uG Wap(il),

(A4) a nontrivial function u GWQ@,p(i2) is an eigenfunction of problem
(EA) if and only if JA(u) = 0,

(A5) there exists afunction u\ GW({,p(fl) nC (il) such that ui(x) >0 for
all x Gii, u\ is an eigenfunction of problem (EAI) and the set of all solutions
of (EAI) is of the form {tui \ t GK},

(AR) the problem (EA) with A> 0 admits a nonnegative eigenfunction if
and only if A= Ai,

(A7) the first eigenvalue Ai is isolated.

The proof of Theorem 1 will be given in Section 5. It is preceded by
some auxiliary results.

3. Regularity of eigenfunctions

In this section we state two lemmas concerning the regularity of eigen-
functions of problem (EA).

Lemma 1. Suppose that «G wWr,p(0) is an eigenfunction of problem
(Ea). Thenu G

PROOF. It is sufficient to show that there exists a constant C >0 and a
sequence of real numbers {xn}, satisfying

(6) nli_g])JO = +00 and I n"C VnGN
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In this connection see [1], Theorem 2.8. Our proofis a slight modification of
that of [5], Lemma 3.2. For the sake of completeness we present it here in
detail.

We first introduce a family of auxiliary functions ut : —aR (T € K+)
defined by

ut(x) min(u+(x),T), VX &fl.
It is easy to see that ut £ WQ@p(fl) nL°°(il) and hence
(7 itji ;= (ut)P £ fIL°°(Q), VRZI

(compare with [6], Lemma A.3). Next, we use the functions (p=u”">t (where

k ~ 0) as test functions in (E*), which is legitimate because of (7). As a result
we obtain the equality

N[ ai[Diu]pDi(uj?+1)dx = / (\m —ao)[u]pu >H dx,
(8)

i=1n n
0, VT>0.

Let us note that the left-hand side of (8) can be estimated as follows
Yy f Gi[Diu\pDi(vij?+1)dx = i ai[Diulp{kp+ Nu*D i{ut)dx
<=in i=ln

N
=yy [/ aikp+\)u"\Di(ut)\pdx
i=1n
N
(0 a(kp + 1) [ u™p|Di(u7’)|pdx
i=1n
v
akp+ 1) | \Digur+1)\pdx
T +w tr
a(kp+ 1) "
IFTTjr £

Here we have used inequality (2). Moreover, according to the Poincare in-
equality (see for instance [1], Section 6.26) we have the estimate

N

heLymovo o ps VueWop(H),
1=1

(10y v w
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where C\ >0 is a constant independent of v. Prom the Sobolev embedding
theorem (see, e.g., [1], Theorem 5.4) it follows that there is a real number g,

greater thanp (for example g—2p when p~.N and g= when 1< p < N),
such that IPq (i2) C Lq(Q) and the embedding is continuous, so that
(11) MI1rC 2K p,  Vi>eWdj,(n),

where C2> 0 is a constant independent of v. Combining inequalities (9),
(10) and (11) we conclude that

p/q
a(kp+ 1)

. o A
(12) at [Diu]pDi (uj?+")dx”. (k+ 1)rCs

for all k 0 and T >0, where C3:= CiCp is a constant independent of k
and T.
We now estimate the right-hand side of (8):

| (Aam —a0)[ulpii " Ldx U |Am _ o Julp- 14 5o dx
(13) < |Am - ., U™ +1)pdx

n

<ca TP dy VMO, VT 0,
.
n

where C4:= ||Am —ao||Lm (since the integrals are taken over the support of

the function u+).
The inequalities (12), (13) yield the estimate

p/a

icslct]) \]Uf+])pj( Vfcho, VT > 0,

kp+ 1

where C5:= C3C4a |. Equivalently,

1 f k+1 1*Tf
(14) { (fcp+1)ilp)  IKUIZ+E  VichO, VT>0,

where Ce := C\jv.
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Since p <, we may choose ko >0 in such a way that (ko+1)p=g. Hence
the inequality (14) with k:=ko gives

IM T«.«, SQ +1{(" JUry ™ dbdit,,  vr>o.

Letting T -+00, we see by Fatou’s lemma that

Now we can choose k\ >0 so that (k\ + I)p = (ko+ I)q —g2/pmPutting k := k\
in (14), we obtain the estimate

, +1
lur || <C.H+ ic(kip-r-iyl//p} K™ | @+,  VT>o,

which as before leads to the conclusion that

foi+1 ki+ 1 ) >4
= . . +HA*0+1)9m
Ik+lIrOU+)« = C& P TYID | llu+H A(*0+1)9

By induction we obtain the estimate

kn+1 \ kn+1
(knp+iy/p ]

where kn+ 1= (g/p)n+i (n=0,1,...). Finally, we arrive at the inequality

lut]L (s A C sast U+ INin-1+14) VRGN,

. . ki+ | | b+i
KlLifcn+i), ACt° <+,
U \(AiP + 1)1/p
(15)
£ o : . ki +l
= f ki+l 1Vk
A ki Ih+lIro,  VnGN.
izo | (kip+iy/pj
Since
lim/ y+l \~ =g,
y-+00 ((yp+\)IIPJ
there exists a constant C7 such that
1
.- R
(16) ki+1 \ v+t <cr. ViG]

(kip+iy/p]
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From (15) and (16) we infer the estimate

n n
E* EVWHr
U+H?
(17) 00 00
Vx4 sl
<Cr Ccr Jct] VnE N

By similar computations we get the inequality

. t,“fl Lo s/in+\
(18) Ilu_ [y C “rE% @TEQ Vne N
It follows from (17) and (18) that
Q0 00
Efir E
lul| <*,+), 12C'f° 0=° [lull,,, VnGN.
Note that @ o
— 1]
Ern=Ew?>"+<~
=0 H “ =0
and that

00 1 (0/0] n+1
i » ~FT=i, PIQ) <o,

since p<q. Thus we can put > := (kn+1)q (n=1,2,...) and

Vi gleT 2% gkilet
C:=2C'f°  C 14

to see that the conditions (6) are satisfied. This completes the proof. O

Lemma 2. Let u be an eigenfunction of problem (E\). Then for any
compact K C d there exists a 6 (0,1) such that u € C°a(K). Furthermore,
ifu” 0ind, then u(x) >0 for all x £ fi.

Proof. On the base of Lemma 1, the (”~ ™-regularity of the eigenfunc-
tion u can be derived from [10], Theorem 2.2. Now the positivity of u follows
from the Harnack type inequality of Trudinger [10], Theorem 1.1. O
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4. Inequalities of the Anane-Lindgvist type

Following the ideas of Lindgvist [7], which are continuation of those
introduced by Anane [2], we formulate some inequalities in Lemma 4 below.
They are one-dimensional versions of inequalities implicitly used in [7] and
[5]. In order to prove them we need the following

Lemma 3. Ifp” 2, then there exists a constant C(p) >0 such that
(19a) [i2p- IIT-p |iir2M*2-*i) ~ C(p)\t2 - tI\* Vil i GR.
If 1<p <2, then there exists a constant C(p) >0 such that
(19b)

m p- i*ir - p\h (t2-h)"~ c(p) ™ + ™22, » Vi, i2E

The proof of Lemma 3 can be found in [7], Section 4, where it is explained
that one can choose
2P-1-1 forp” 2, 0
TéP(p~ 1) for K p <2.
Now, let us introduce the set

5:={uelT1p(il)nL0f2)| 3e>0: uZe in fi}.

It is easy to see that for every u,v&S the functions

C(p) =

up _IVV and vp —vP
up vP-1
belong to W I,p(fl). Moreover,
(20)
Di 'VP-vp _ .
boyp~p YA (R DiU~p{fff)P DIV =
and
(21

Lemma 4. Ifp”.2, then there is a constant C(p) >0 such that for every
u,v GS the inequality

. UL —F . . Vp-up
iu\pD VP 1 + [Div\pDi VP 1
(22a)

tC(P) p* D % !t/DiU —uDiv\f
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holds almost everywhere in @ (i=1,..., N).
If 1< p <2, then there is a constant C(p) > 0 such that for every u,v € 5
the inequality

P miwppi PUP
o H wp- FOMDI o
1 1 vDiU —uDiV\2
tC{p) _lPH_\_/_p

holds almost everywhere in Q (z=1,..., N).

PROOF. To begin with we transform the left-hand side of (22). Using
formulae (20) and (21), we obtain

. . uP-vP . . VH- u*
L .—[Diu]pDi uup_vl + [Div]pDi va_f
={l+(p-1)0 '} \D,u\”+ (I + 1)Q "}

~ "U\P-1
~p{ UV}p | \Diu\p 2DiuDiv~p{") Divyp-2D1vD1

= (up- W)(\t2\P- |U n -pvP\t2\P-H2{h - t2)-jmP*"P-H " - <0
= uP{\M2\P-\t1\P-p\tlI\P-2t1(t2 - t 1)} + vP{\tI\P -\t2\P-p\t2\P-2t2(t1 - t 2)},
UL

D
where t\:= T. and t2 ;= - In the case p ™ 2 inequality (19a) gives
L~ C(p)(up+vp)\t2 —i|p
= VD{U —uDi
C(p) (WP 7 \P) { uDiv\p,
as desired. In the case 1<p<2 inequality (19b) implies that

Y2« uj2
LreEup P o
c L VDiU —uD{V 2
—C0) et TP) {uv+ WDiu\+ uDivy2 p
and the lemma follows. O

5. Proof of Theorem 1

Since the proof of assertions (Ai)-(A4) is quite similar to that of [8],
we can omit the details here. Therefore we pass to the proof of the state-

ment (A5). Let us observe that the functional A :ITAp(O) —R, defined in
Section 2, is weakly lower semicontinuous and it is coercive on the set

Ad:={ueVPop(H)| M(u) = 1},



450 W. PIELICHOWSKI

by the assumptions (2), (3). Thus we can find in Ad a minimizer ug” 0,
characterized by

A(uq) = inf{A(u) 1uG A4}

(see for instance [3], Theorem 6.1.1). Hence A(uo) = Ai and so J&" uo) = 0.
According to the assertion (A4), ug is an eigenfunction of problem (Eal.
Since J\v1(Juo]) = J\x(«0) = 0, the function u\ := |uo| is also an eigenfunction
of (Eaj). Now Lemma 2 shows that u\ € <7(ii) and ui(x) >0 for all x£U.
Next, let us suppose that v is another eigenfunction of problem (eax). Ob-
serve that v cannot change sign in 12, because otherwise the function [t
would be a nonnegative eigenfunction of (Eal vanishing somewhere in 12
which contradicts Lemma 2. Thus we can assume that v £ C(fl) and v(x) >0
for all xE 1 To simplify our notation, we put u:=u\. Since, by Lemma 1,
u, v ET®°(H), we see that the functions

9z} \/5’ Ve ~ Us
= and PR
V> «8_1 \B !

where uE=u+ £ and vE= v + e (e > 0), belong to the space WQ@p(ii). We
now use the test function ip in (Eal to conclude that

N
(23) E wADiulpDi w{ﬁ_\f) dx =/(A, m —a0)M \Aﬁ%_}%dx.

n

Analogously, putting tp in (Eax), we get the equality

N Wy V]
(24) y / al[Dlv)pDi o1 Ox—  (Aim—ao)[ul, ;" dx.
i vé vé
Note that
(25) piu —Dive, DiV=bpivg, Ve>0 ¢=1,...,N).

It follows from (23), (24) and (25) that

- P
YI,J aii\DiUe\pDi +[D IVe\pD vepivs)}dx

Ve
i=1 N E '

=V (Aim-ao) - (up —vp) dx.
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Given any e > 0, we see that uEVEE S and hence we can use Lemma 4, which
together with the assumption (2) implies that

@A) ~(E)

2aC{p)¥3] (~p+ -p) \eDiue- ueDivepdx
i=1n

when p” 2, and that

m —ao) (up—vp)dx

IVeDjUe - U £PjVe|2 dx
(UBLE+ [beA ue| + [lieDzZe))2-P

in the case 1<p < 2. Hence, letting e —=0, we get by the Fatou lemma the
equalities
wDiu—uDivi=0 inl2 (=1,...,N).

Thus there exists a constant tER such that v—tu in 0, and so part (A5) is
proved.

In a similar way we prove assertion (AR). We first assume that m ~ 0 in
[2. Let u be a nonnegative eigenfunction of problem (E ). Suppose, contrary
to our claim, that there is a nonnegative eigenfunction v of problem (E*)

with A> Ai. The case A< Ai is excluded by assertion (A2). Then we can use
yP _ yP yP _ yP
£ £ as atest function in (E~J, and £ £ as a test function in (Ea) to
e

U2 :
obtain the equality
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It follows from Lemma 4 that the above expression is nonnegative. Letting
£—0, we find that

J (Al —AYm(up—vp)dx 0.

Hence /\] \]
mupdx”® Vv mvpadx.

n n
Since v may be replaced by mw  etc., we conclude that

/ mupdx = 0.

Consequently, mup= 0 in fb Thus the positivity of the eigenfunction u
contradicts assumption (4). This completes the proof of (Ae) under the
temporary assumption that m ~ 0. Now we can take any function m € L°°(0)
such that m+” 0 a.e. in O and argue as in [8], with obvious modifications,
to complete the proof of part (AR).

The proof of assertion (A7) is based on ideas of Anane [2], We begin by
showing that there is a continuous function R 3 A>>B{\) € R+ such that if
v is any eigenfunction of problem (ea), for which V-~ 0, then

(26)

where 2 = {x€ |v(x) <0}. To see this, we ¢
(Ea), which yields

(27) Y \] ai\D{V-\pdx—\] (Am— "dX.
i=1 q n-
Note that
'r
(28) Y J ai\DiV-\pdx~t - || Lq’
i=1 h

where g and C3 are the constants introduced in Lemma 1. On the other
hand, the inequality p <q implies that

j (Am—ao)|w-|pdx * B\ (A)  \v-\pdx
(29)

=B\(X) 0" 1V,
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where By(X) := 1+ [|[Am —aol™00 >0. From (27), (28) and (29) we get the
estimate (26) with

Now, let us suppose that Ai is not isolated and so there is a sequence {An}
of eigenvalues A, > Al (n= 2,3,...) such that lim,_ *oo An = Ai. Let {un}
denote the sequence of corresponding eigenfunctions scaled in such a way
that M(un)=1 (n=2,3,...)¢ Using un as a test function in (Ea,) we
conclude that A(un) = XnM(un) = A,,. Consequently, the sequence {un} is
bounded in WQ,p(f2). Passing to a subsequence if necessary, we can assume

that the sequence {un} is weakly convergent in wgp(fiy. We denote the
limit function by ug- Observe that

(30) A(ua) ” limipf A(un) =_ligg. A= A]

Since the embedding WQ,p(fi)  Lp(fl) is compact (see, e.g., [1], Theorem
6.2), the sequence {un} converges in LP(Q). Therefore M(ug) = 1 and hence
uo~0 in fi. The inequality (30) shows that uqg is an eigenfunction of (E”J.
By assertion (A5), the function uq does not change sign. Without loss of
generality we may assume that uqg(x) > 0 for all x € IL We can assume,
after passing to a subsequence, that {un} converges almost everywhere in
fi. According to the Jegorov theorem, the sequence {un} converges almost
uniformly in O to the positive function uo, which contradicts the estimate
(26) applied to un. This completes the proof. O
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ON A CHARACTERIZATION OF ABELIAN GROUPS
BY SUMS AND DIFFERENCES

KATALIN KOVACS

Let G = {g\-,92immOn} denote an abelian group of n elements, (a) =
(ai,02,¢%¢,an)€ Gn, A = {0i,2,..., an} QG and ||A|| := the number of the
different elements of A.

Theorem 1. (i) There exists an (a) E Gn such that
N {ai + w2,z + (B,...;an+a{\ —G

if and only if 2 jfn.
(i) If G=2Zn, then max ||A]| =n —1if4|n, max ||JA]|=n ifn is odd and
min |JA|| = O(yjn) if n= 3 or 4 mod 4.

Conjecture. 7/n = Imod4, then min||A|| <n.
THEOREM 2. (i) There exists (a)£Gn such that
2 {az-ai,a3-a2,...,ai -an}=G
if and only if the number of the elements of order 2 in G is not 1
(i) If G=2Zn and2\n, then max ||Al| = n—1 and min [|A]| = 0(\/n).
Proof ofnT heorem 1. (i) For n= Ak+ 2 there exists a g E G such that
o(g) =2 and _ oi=o9- If there exists an (a) such that (1) is satisfied then

1=1
n
(3) 2y:=292,9i=g,
i=l
i.e. 4y = 0. Therefore o(y)|g.c.d.(4, |G|) = 2 which impliesy=gory =0.
Replacing in (3) g = 0 contradicts the existence of (a).
We assume that n~ Ak + 2. We show a sequence (a) such that (1) is

satisfied. Let us see the construction in the case G = Zn. Suitable sequences
are for example the following ones:

1,2,...,n) ifn=2k+ 1

1991 Mathematics Subject Classification. Primary 11A99; Secondary 20C99.
Key words and phrases. Characterization of abelian groups by sums (differences).

0081-6906/97/$ 5.00 ©1997 Akadémiai Kiaddé, Budapest
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(0,1,1,2,2,..., k—1L, k—I,3k, k ,k,... .2k — 1,2k - 1) if n =4k
(0,0,1,1,2,2,..., k — 1,k — 1,3k, k, k,..., 2k —l,2k —1) ifn=4xk+ 1
0,11,22 ,, k4, fc4, fc, e+ L,k +1,... ,2k—1,2k—i, 2k) ifn=4k—1
(0,0,1,1,2,2,..., k- Lk- Lk k+1, A+ 1,...,2k-1,2k- 1,2k) ifn = 4k.
If4|nthen G=Z2®Z2®T or G=22°®T witha™2and T = {fi, i2, -sm t3}.

For Z2 © Z2 we have
(9) = (@>+++>04)= ((0,0), (1,1), (1,0), (1,0))

as a suitable sequence. For the cyclic group Z21, we showed a suitable
(9) = (@5... ,~27). If 2a |G| then the construction for G is as follows:

(<22,0), (93, <1, (94,0),..., (g2*-i, h ), (92*,0),
(91,72), (92,0), (93,h ), (94,0),..., (92«-1,i2),(92“,0),

91,n), (92,0), (93,is), (94,0),..., (L2-i,is), (92*,0)).
fc-i
For odd n we prove by induction. Then G = 2(rngj©Zm. We assume that

(<1,...,is) is a suitable choice for the direct sum. Then a suitable sequence
for G is the following one:

((tl, 1), (12,0), (i3, 1), (14,0), .., (is-1,0), (is, 1),
(it, 2), (12,0), (i3,2), (4,0),. .., (is-1,0), (ts, 2),

(ii, 0), (12,0), (i3,0), (i4,0),..., (is_i,0), (ia,0)).

(i) Maximum for Zn: For odd n we may choose at=1i fori=1,...,n.

For n =4t a2S= 4i—s+ 1fors=1,...,1, ti2S=4f—sfors=t+ 1,..., 2t
and 062s-i —t—s fors = 1,..., 2i is a maximal sequence.

Minimum for Zn: We can choose less than n different sums a + b such
that a, bE [0, \/n\. So \/n is a trivial lower bound for the minimum of ||A]|.

For an arbitrary n £ N n =2,3 mod 4 there exists a dE N such that

4d2 +4d™n = 4d2 + 4d + 4k + i<4{d + )2 +4{d+1)-6

with i=0ori=—and 0*"k”2d. Sod= 0(y/n) and k=0(y/n).
The integers in [0,4d2 + 4d —1] can be obtained by the following con-
struction:

0, 4jd, 1, 4jd + 2d,
2i —2, 4jd, 21 —1, 4jd + 2d,
2d —2, 4jd, 2d —1, 4jd + 2d,
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where j runs over the integers of the interval [0,d\. We needed only 2d +
(2d+ 2) = 0{y/n) integers. Let us continue the previous sequence by

0,...,0,4d2+ 4d + Aj,1,4d2+ Ad+ Aj A2,0,..., 1,4d2+ Ad+ Aj + Ak + 2.

We have the integers in [0,4d2+ Ad+ Ak + 3] (case 4|n) adding only 2k + 2=
0(y/n) numbers. Deleting the first 0 we get the same result for n = Ak + 3.

Proof of Theorem 2. (i) If there is only one element g of order 2
in G, then

0= (62 —i)+ (63—02)+ ese+ (00 —an) —01 + 02+ mem+ an —g

i
excludes this case. Otherwise a*= " (gj is a suitable sequence.

=1
(i) Maximum for Z%& We may assume that a* € [I,n]. One of the dif-
ferences has to be 0, so ||A|| # n—1. For n = Ak + 1 the maximum can be
obtained by the following sequence:

(0,0,1,-1,..., k-k,-(k+ 1), (fc+l),-(fc+2), (k+2),... ,-(2fc-1), 2k - | - 2K).

If n = Ak + 3 we continue the previous sequence by 2k and —{2k + 1).

Minimum: The minimum cannot be below sjn as [\/n\ numbers have less
than
16r22 n <16r2+ 14-2k < 16(r+ 1) 2.

Here r = 0(s/n) and k <16n+ 8= 0{-"n). We write the blocks
{m,1,—m, 1m, 2, —m,2m..., m Ar—1 —m, Ar—1 m, 0}
for to= 4r, 12r,..., 4r(2r —1) and the block
{8r, 0, 16r, O, ... 8r(r-I), 0, 8r2, 0 0}

So we needed less than 8r = 0(y/n) numbers to cover all the integers in
[8r2,8r2]. For fc>0we add a further block:

{8r2+1, 0, 8r2+2 0, .., 8r2+j O}

We needed to add k= 0(i/n) new integers to the previous ones to cover all
the integers in [8r2+ k,8r2+ K].

Problems, (a) What is the minimum of |v4| if G is not cyclic?
(b) In general: Determine a lower bound ci and an upper bound Q for
II>]|. Let k be an integer in [ci, @]. Is there a sequence (a) such that ||A|| = k7

(Received, December 19, 1995)
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STABILITY OF STOCHASTIC POPULATION MODELS

M. H. VELLEKOOP and G. HOGNAS

Abstract

In this paper we derive sufficient conditions for the stability of a wide class of stochastic
population models in discrete time. The class we study is the largest possible in some sense
if one takes into account two fundamental biological premises which population models have
to satisfy. The conditions for this stochastic stability that we obtain cure of some interest,
since studying certain statistical characteristics of these stochastic population processes is
only possible if the process converges to an invariant distribution.

1. Introduction

One of the most fundamental recent discoveries in theoretical ecology is
the possibility of extremely complex dynamics in even the simplest single-
species population models [7]. This observation is particularly important
since in most models some parameters, especially the ones which describe
the influence of an environment on the population, vary around a certain
fixed value in a stochastic way. This may pose a serious problem for the
study of population models, since large scale stochastic simulations have to
be used to study the variations but it is not clear on beforehand (and in
some cases indeed not true) that these simulation results are valid, unless
some ‘stochastic stability’ conditions are met. Only then can we guarantee
that certain statistical properties converge to stationary values, which can
then be found by appropriate measurements. Some of the stability questions
for stochastic population models have been addressed earlier [1, 2] but the
results are only valid for one particular model due to Ricker [10]. In this
paper we will show that the results obtained there are a special case of
conditions for a more general model that we will derive here. Indeed, we try
to show that stochastic stability is an intrinsic characteristic of all population
models which satisfy two fundamental biological premises.

This paper was presented at the Conference on Stochastic Differential and Difference
Equations, Gy6r, Hungary, August 1996.
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dynamics.
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2. A general population model

In [3] Hassell has introduced a systematic approach to the development
of so-called density-dependent population models for a single species of the
form

Xt+i =g (Xt).

Here Xt represents the population size at time t and g is a known func-
tion which is usually assumed to be continuous. Hassell argued that these
population models should be based on two fundamental premises:
(P1) The population should have the potential to increase exponentially
for small populations.
(P2) There should be a density-dependent feedback which reduces the ac-
tual rate of increase as the population grows.
Ecologists usually look at the ‘mortality’ as a measure of this density-de-
pendent feedback, which is characterized by the following density dependence
function:

—>>ln—

(2.1) InXj InAt+1'

In experimental data [3], it is often found that there is a pronounced density-
dependence for large Xt which becomes negligible as Xt decreases, and that
the density-dependence for large Xt is characterized either by a fixed slope
b (in so called contest models) or that this slope increases rapidly with in-
creasing Xt (in scramble models). A simple linear contest model describing
this situation is for example

(2.2) In_ f =—nr+blnXt
Xt+1

with r > 1 and b> 1, resulting in
Xt =rx {9

Clearly, this model is not very realistic for small populations since it
predicts that

)&I;n)OXt-I-I = 00,
which means that for very small populations there is an infinite capacity to
grow. A simple correction, as proposed in [12] is:

r\x[l b) Xt> Xc

(2.3) Xt+i —
XXt xtg Xc¢

with A> 1a constant and X c a critical population value. This means that
there is either density-dependence as before for populations which are larger
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than the critical population, or exponential growth for populations which are
smaller than the critical population. However, this model is not smooth at
X cand has some other properties which are unsatisfactory from an ecological
point of view [3].

Two famous examples exist of models which ‘smoothen’ this model. The
first one is the Hassell model [3]:

X rxt
i+1 (1 + X t)»

with r> 1and b> 1. It is clear that for this model

f rXt Xt~0
ol - | Xt»0

and it can thus indeed be interpreted as a smoothed version of model (2.3).
Note that the density dependence function is given by

In_ tm= —nr + bIn(l + Xt)
Xt+l

which means that the density dependence relation (2.1) will be approximate-
ly linear with fixed slope b for large Xt. As mentioned before, we also need
scramble models in which this slope increases rapidly as the population Xt
increases. An example of such a model is due to Ricker [10]:

Xt+Hi=rXte-bK'.

It satisfies

In— —= —nr + belnXt,
Xt+l
so the density dependence increases exponentially when Xt goes to infinity.
Remark that in all these models r represents the exponential growth factor
for very small populations, the natural growth in ideal circumstances, and b
the density-dependent feedback because of limited environmental conditions.

In order to smoothen the model (2.3) we propose a more general one:

2.4 In = —nr+ 6In/ (Xt
24) At+i (Xt)

with r > 1, b>0 and in which the function / : [0, oo[-> Kis called the density
function. We require it to satisfy:

(AD) /. [0, oo[—E is strictly positive and continuously differentiable on its
domain.

(A2) 1(0) = 1
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(A3) The function L : [0, 00— defined by L(x) = Xff_J);) is strictly in-
iX
creasing.

Condition (Al) guarantees that the transitions are indeed smooth. Con-
dition (A2) makes sure that the model satisfies the first fundamental assump-
tion in ecological models (PI): for small populations exponential growth
should be possible

*t« 0 > Xt+\ ~ rXt.

Remark that it can always be satisfied by choosing suitable r and b, as long
as r>1, b>0. The last condition (A3) represents the second fundamental
assumption in population models (P2). It guarantees that for b > 0 the
density dependence increases for increasing population size since the slope
of the density is:
din A
AtH

= bL(Xt).
dinXt (X1)

As mentioned in the preceding section, models with liin*o0 L(x) < 00
are usually called contest models while models where L has no finite limit
are called scramble models. We will see that there is an important difference
between the two types when we consider stochastic perturbations of the
models.

Note that the Hassell model and the Ricker model are both special cases
of our general framework, with f(x) =1+ x and f(x) = ex, respectively. The
first one is a typical contest model and the second one a typical scramble
model. Also remark that the linear model (2.2) does not belong to our class of
models since it violates the second condition: it does not permit exponential
growth for small population sizes.

Our general model can be rewritten in the transition form
(2.5) Xt+1=g(Xt):=r Xt [f(Xt)]-b,

which clearly shows the capacity for exponential growth (with exponential
growth factor r > 1) and the density-dependent feedback that reduces growth
(and of which the intensity is characterized by the positive parameter b). The
model (2.4) together with the conditions on / can thus be seen as a general
population model for non-overlapping generations which unifies models like
the Hassell and Ricker models, taking into account the premises of ecological
population models and the experimental observations on density-dependence
(see for example [3]).

In the following lemma some elementary but useful properties of the
functions / satisfying (Al1)-(A3) and g are derived, that will be needed later
on.
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LEMMA 2.1. All f satisfying (A1)-(A3) and g as defined in equation
(2.5) derived from these satisfy:

1 f is strictly increasing and f(x) ~ 1for all x".o.
2. For all x> 0:

(2.6) Inf(ex)Af(1)-1+xL (ex).

3. If the function L has afinite limit L= lim L(x) then

X —>00

lim x~xInf{ex) = L.

X —>00

Proof. 1 Since L(0)=0 and L(x) is strictly increasing, we have L(x)>0
for x > 0 and since / is strictly positive, condition (A3) implies that f is
strictly positive. Therefore we have that f(x) ~/ (0)= 1

2. Since In/(0) = 0 we have

0 0 I
Because of the first part of the lemma we find
I I
JNAdsif f(s)ds=m-m=ni)-i
0 0
and for the second integral

ex ex X

(298 S w>ds=| i LA dT=xL{ex"
1 1 0

where we have used condition (A3) in deriving the last inequality.
3. We use de I’'Hospital’s rule:

Xl_lg)wo Inf{ex)/x —X!Arglc f'{ex)ex/f(ex) —X!/@O L(ex). O

The general population model (2.4) has two free parameters once the
function / has been specified: a natural growth parameter r > 1 which is
the exponential growth factor in an ideal environment and an environmental
parameter b> 1 which represents the rate of density-dependent feedback of
the environment. We now want to consider population models in which the
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environment (that is, the parameter b) varies stochastically. That is, we now
take

rX
9)

in which Xo >0 can be chosen freely and {7*11£ N} is a set of independent
identically distributed random variables with a distribution function which
satisfies some mild conditions that will be specified later on. Remark that
this implies that {Xt\t 6 N} is a stochastic Markov process. We will denote
the probability space for this process by (i, X, P) with fl the sample space,
T an appropriate cr-field and P the probability measure. We use the notation
P(A) = P({1lolA(W)}) and take the symbol X ~ ttto state that the stochastic
variable X has probability distribution ix The symbol E denotes the usual
expectation operator. The indicator function of a set A will be denoted by
17; it has the value one on A and the value zero outside A.

We will now address the question under what conditions there exists an
invariant distribution 7, that is, a distribution satisfying

X i~ 7r => X i~ Tr.

It is easy to see that an initial distribution ofthis kind does not change in time
and it is therefore important if we are interested in the limiting behaviour
of our stochastic population process. The invariant distribution represents
a ‘stochastic equilibrium’ and if the probability distribution of the process
converges to a stationary distribution, this distribution has to be invariant.
Moreover, studying certain statistical properties of the distribution function
of the population only makes sense if the distribution is stationary in time.

We will now state some preliminary results on discrete time Markov
processes on a continuous state-space that we will need in the sequel. All
results are stated without proofs. These can be found in standard textbooks
about the theory of Markov processes, for example [11] or the references in
[1, 2]. We are interested in transition probabilities

F{XteA\Xo0=x)
for X <EJ0, oo[and A a Borel-set. When the distribution of the noise {£t 11€ N}
has a positive density everywhere on K+, we have
¥{XteA\Xo0=x) :\] pt{r\x) dr
A

with pt(r Ix) the t-step transition density which is strictly positive for all
values of x and t E]JO,xrI[. This implies that the process is Lebesgue irre-
ducible: every set in the state space with positive Lebesgue measure can be
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reached from any initial value Xq. Furthermore, we may conclude that the
process is aperiodic: there are no cyclic subsets in the state space. For h a
bounded measurable function on the state space, the mapping

h s ethixi)ix o= s

is called the transition probability operator of the process. Under our assump-
tions, the transition probability operator maps bounded continuous functions
to bounded continuous functions.

An irreducible Markov process is called recurrent if the expectation of
the number of returns to A is infinite:

00

P (Xte A aTo = X): 00

i=i
for all sets A with positive Lebesgue measure. Otherwise the process is

called transient. Every recurrent process has a er-finite invariant measure 7,
satisfying

n(A)= f f(XteA\X0=x)-n{dx)

for any Borel set A. If the measure n is finite:

f ndx) < oo
R+

and we can therefore make it a probability measure by normalizing it, the
process is called positively recurrent, otherwise it is called null-recurrent. In
the latter case there exists at least one set A with positive Lebesgue measure

such that
n

lim -V P(XtGA|X0=:)=0.
n—yoon |

It is clear from these results that it is interesting from a biological point
of view to know whether a certain biological process is positively recurrent
or not: if we are interested in an invariant probability measure, we must
first prove positive recurrence. We will use the following theorem to obtain
results for our class of stochastic population models (see [9, 11]):

THEOREM 2.1. Suppose that a Markov process {ATj 11G N} is Lebesgue
irreducible and that its one step transition probability maps continuous func-
tions to continuous functions. If there exists a compact set K, an e> 0,
C >0 and afunction V such that
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1. (VzeM) V{x)"0,
2. (VxeKc) E[V(Xi) \ Xg—x] —V(x) <—e
3. (VxeK) E[Vpfi) Xo=x\"C

then the process {Xt 11 6 N} is positively recurrent.

The conditions of the last theorem are called mean drift conditions and
they roughly state that the process V(Xt) is a supermartingale outside some
compact set, with an expectation which decreases uniformly. The function
V is often called a Stochastic Lyapunov Function. Note that the Lyapunov
function is not required to be continuous.

3. Sufficient conditions for stationarity

Using the results of the last section we will now give sufficient condi-
tions for the stochastic population models to have an invariant probability
measure. We will assume, as stated earlier, that the model has the form

i rx
(3-D Xt+1=G(Xu li=

and that the following conditions are satisfied:

(BI) Xg>0 (initial population not trivial) and r > 1 (there is natural
growth),

(B2) {7t 1t 6 N} are independent identically distributed stochastic vari-
ables with finite first and second order moments,

(B3) the random variables {7111s N} have an absolutely continuous dis-
tribution, with a probability density which is positive on the whole
R+.

Under these assumptions, the transition probability operator maps con-
tinuous functions to continuous functions. Indeed, if h is a bounded contin-
uous function on R+ and <=is the distribution of the noise 7 then

E[h(Xi) \X 0 =x] :j AndE) “7YXd)

and this is continuous in x by Lebesgue’s dominated convergence theorem,
since / is continuous.

Our result is split into two separate theorems, one for the contest models
and one for the scramble models, since the analysis for these two cases is
different.
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Theorem 3.1. Consider the stochastic process given by (3.1) satisfying
conditions (B1)-(B3) and with the function f satisfying conditions (Al)-
(A3). If

x“l'moo L{x) =L <00

and
(3-2) E ((1-L7t)1{7tgi }) <1

then there exists a unique invariant probability distribution n on r+ for this
process.

PROOF. Define the process Yt=Inxt, then we have that {Yt \t £ N} pos-
itively recurrent if and only if {xt \t £ N} positively recurrent, and obviously

(3.3) Yt+i = Tj+ Inr —7t In/ (ey*).

Since the probability density is positive on the whole E+ and Inr > 0 the
process is irreducible. We will therefore prove that the function V : K—=R+
defined by

_ Y yZo
V(y)—{_ay’ y< o

with a > 0 a suitably chosen constant that we will specify later on, is a
Lyapunov function for the process {Tt}. We introduce the functions

y+Inr

BOD = Inf(ey)

and
p(y) = P(7t ~ B(y)) = P(Fi+i * 0 lYt=y).

Because of Lemma 2.1 we have

(3.9 yl_|>n30 B(y) - I/L.

It is also easy to establish that we must have

3.5 lim =0.

(3.5) y p(y)=0

Evaluating the expected growth of V in a point y we find

E[V(Yi)| Yo=y]~ V(y) =E(y+ Inr —7tIn/(ey)) I{7“fi(i)}
+E {—ay -alnr +aytin/(ey)) I{r>R(y)} -V{y).
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Rearranging terms gives
E[F(y1)I[Fo = y]l-V (y)
(3.6) =(y + Inr)p{y) - E7tI {7t"B({N}) \nf(ey)
t(-m/-alnr)(l -p(y)) + a(ETtI{7(>E(,,)}) In/(cy)- V(y).

Now for y <CO the first term will become equal to or smaller than zero because
of (3.5), the second and the fourth term both go to zero since \nf(ey) —=0
as y ——o00 and the expectations have upper bounds which do not depend
on y. The third term is asymptotically equal to —ay —alnr and the last
term is equal to —(—ay) =ay. Therefore we have

(3.7) E[V(Y1)\Yo=y]-V(y)<-zahir, (y«0).

For y 3>0 we find, using equation (3.6) and the fact that in this case
Y (y) that

E[V(Yi) IYo=y) - V(y) =ay (5fy) - 1+ A — AEMI{It>B(y))J
( In f(ey) \
+Y[p(y) - 1o eet E7I 7B ()}

+p(y) Int —a(l —p(y)) Inr.

The last two terms have an upper bound which is independent of v.
Because of dominated convergence and Lemma 2.1 the bracketed expression
in the second term will converge as y —00:

P(y)“ 1------ —NET<I{7,00(y)} F—* E(! - ATO)I{7tN/LY - 1

which implies, because of (3.2) that for y big enough, the second term will
be smaller than —u\y\ for some v> 0. Analogously, the bracketed expression
in the first term converges according to the dominated convergence theorem:

p(y) - 1+ i7" AE 7 tH{7ToREB)} A -P(7t > 1R) + LEItIbt>1/L},

so for y sufficiently large it will become smaller than the positive value D :=
LE7tI{7t>1/£]. Therefore, if we take a <\v/D, the first term will become

smaller than vy, and therefore we find for the total in (3.6):
(3.8) E[V(Y1)\Yo=y]-V(y)<C-"y

for y big enough, with C a constant which is independent of y. Taking (3.7)
and (3.8) together we see that there exist positive yi,j/2 such that if we take
K = [y\,22] we have for y £ K\ K\

E[V(YD\Yo=y]-V(y)<-e
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with
e=min{-i't/2—c, -alnr}.

This shows that the conditions of Theorem 2.1 are satisfied since it is easy
to see, using (3.6), that for every y £ K we have

E[V(Yi) IYo=y} y2+Inr + (1 + a)\E'yt\\nf{ey2) + ayx+yi := C.
The result now follows from Theorem 2.1. O

We have thus found a sufficient condition for the existence of a stationary
distribution in contest models. Remark that this condition will automatically
be satisfied if the probability density of the environment 71 is taken small
enough (or even zero) for negative values since then

E(1—Z7t)I{7(<X} ~ E(1 —Z71)1{0,7(,.} < I

The following example illustrates this.

Example 3.1. Contest models with Gaussian distributed environments.
Suppose we have a stochastic contest model where the {7*|t € N} are in-
dependent Gaussian random variables with mean y and variance a2. Then
the process Xt as defined in (3.1) has a unique invariant probability measure
when

1 \/2tx

Indeed, evaluating the conditional expectation in (3.2) gives:

[it

. | /L—X /X -L-1\2
M e- \ A dx<i -—-==r-"¢ ﬁ/\ % > dx.
J° oV2A ~

oV2u

Introducing a new integration variable s = ~ —x we find that the conditional
expectation is smaller than

0

which proves that there exists indeed an invariant probability measure for
this case, since the other requirements of the theorem are trivially satisfied
for Gaussian random variables. O

Having established a sufficient condition for stationarity when L has a
finite limit, we now turn to the scramble models, where L diverges to infinity.
The following theorem is an extension of results in [1], where a proof is given
for the specific case of the Ricker model.
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Theorem 3.2. cConsider the stochastic process (31) satisfying condi-

tions (Bl)-(BZ) and with the function f satisfying conditions (Al)-(A3)

' éi_ggDL{x) = oo

and the {71\t€ N} have a probability density function which is positive on
]o, OO[, zero on ] —O0O,0[, but with possibly an atom at the origin satisfying

(3.9) P(7i = 0)< (limsup”, \%3

then there exists a unique invariant probability measure n on Mt for this

process.

Proof. We use the Lyapunov function

y< 0
for the process Yt := In Xt- Here a> 0 will be specified later on. We have
E[V(YI)\Yo=y}-V(y)
(3.10) = E(y + Inr —7iln/(ey))L(el/+Inr_7tIn/(e,"))I{7t"B(y)}
+E(-ay - alnr+ In/ (ey)) 1i7i>By)}- V(y).

For y <CO0 this will become smaller than —olInr for y <—y\ with yj >0
large enough, since 7t~ 0, L >0 and Inf{ey)-> 0 as y -4 —oo together imply
that the above expression is asymptotically equivalent to

{-ay —alnr)(I —pfy)) - F(y) ~ —ay —alnr ——ay)
as y goes to —00. For y > 0 we find that (3.10) is smaller than

(y+ Inr)L(ed+Inny(y) -a(y +Inr)(l -p(y))
+a|ETII{7t>B@H [/(1) - 1+ yL{ey)\ - yL{ey)

because of (2.6). Rearranging gives

yL(e»)\p(y)y I(1+ ~ I]+ay\p(y) - 1+ |[E7tI{7i>B(y)}\L{ey)\
+<*[(/(1) - DET{T»>BX)H + Inr(p(y) - D]
Since limxyooL(x) = oo we have that lim”~oo0 B{y) =0 so

Jim p(y)=_lim 7" B{y)) = P(7t=0)
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so for y N 22?with y2> 0 large enough we have, because of (3.9)

yL{ey)\p{y)L: -y (I + - < -uyL{ey)

for a certain positive v and choosing

\'
a < 2(1 + [E7il {7(0})

gives
E[V(Y1) ly0O=Y] ~ V(y) <C - "vyL(ey)

with C a constant which is independent of y. So again, if we take K =
[-yi,y 2] the conditions of Theorem 2.1 are satisfied outside K and on K we
find

E[V(Y1))\Yo=Yy)=E (y+ Inr - 7tIn/(e»)) L(ey+Inr~* Infr ) | ItiB{y)
- E{ay+ alnr- a7tiInf{ey))I{lt>B(y)}
Ny2+ \nr)L(rey2) +ayi +ay2E7tIn/(ey2)

and thus the theorem has been proven. O

Remark that there is a fundamental difference between the class of sto-
chastic processes we use in these two results: in the second one we assume
that 7t can only attain nonnegative values.

Now that we have found sufficient and almost necessary conditions for
the existence of an invariant probability measure for the stochastic popu-
lation models, we will address the question of stochastic stability. That is,
we would like to know under what conditions an arbitrary initial probability
distribution on the state space converges to this invariant probability distri-
bution and what can be said about the speed of convergence. This is of some
importance, because if we cannot guarantee that an arbitrary initial popu-
lation will converge to a stationary random variable in time, some attempts
to measure statistical properties of the population over time may be useless.
Moreover, we can only compute the invariant distribution numerically by
iterating an arbitrary initial distribution and hoping that this converges to
the invariant one.

Since we want to prove a stronger result than simple pointwise conver-
gence of the distributions, we introduce the following total variation norm
for signed measures u on R+:

Hilll = hr?sulgi} (gN\— AEél@Jr)u(A) —AéiEEl(l:r_'_) i'(A)
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with O(K+) the Boréi sets in R+. If we define P* to be the probability mea-
sure of Xt given the initial condition Xqg= x, and 7 the stationary probability
measure, we can now state precisely the property we would like to establish:

Definition 3.1. The Markov process [ Xt\t 6 N} with invariant proba-
bility distribution n is called ergodic if for every x E R+

lim ||Pi-74|=0.

The question of stochastic stability is completely resolved by the follow-
ing result, which is a special case of results proven in [9]:

Lemma 3.1. Suppose that the irreducible Markov process {Xt |t € N}
admits a stationary probability distribution and is Harris recurrent, that is,
it visits every Borel set in its domain infinitely often:

(00]
(VAe B(R+)) (VX0 £ A) p(”" 1{xteA} =00)=1
t=i

Then the process is ergodic.

Since conditions (B1)-(B3) imply already that every positive Borel set
will be visited infinitely often, we immediately have from Lemma 3.1:

Corollary 3.1. All processes (3.1) satisfying conditions (B1)-(B3) and
with the function f satisfying conditions (Al1)-(A3) which admit a stationary
probability measure, are ergodic.

So in all cases where we have proven that a stationary distribution ex-
ists, every initial population will converge to a random variable having this
distribution. That is, the population models are stochastically stable.

4. Examples of applications

We will now illustrate our results by some numerical examples.

EXAMPLE 4.1.. Stochastic stability of a contest model. We consider a
stochastic perturbation of the Hassell model. We take the environmental
parameters identical independently distributed Gaussian random variables
with mean 3 and variance 1, and a natural growth rate r = 2:

rX
Xt+l = {1+ XtpP r=2’ <~ i.id. iV(3,1).

For this model we have

W=y = L= i L =1



STOCHASTIC POPULATION MODELS 473

So for this particular choice of the environmental random variables, condition
(3.2) for the existence of an invariant distribution becomes

E (1-Z 71) {7413~ 0.0084«!

and therefore the distribution of the stochastic process {Xt} should converge
to a stationary distribution n. Figure la shows the distribution of Xt for
t=1,2,..., 5when we take the initial condition Xo = 1, and Figure Ib when
Xqg=0.5. We see that the distribution converges indeed to the same sta-
tionary distribution in both cases. Taking the same stochastic perturbation
model but now with environmental variables which have zero mean:

Xt+i = Xt 2, 71~ i-i.d. N(0,1)
1+ X7t

we find

E(1-L7t)1{7jgE}« 1.083>1

so our condition is not satisfied here. Looking at the distribution functions in
Figure 2, we see that in this case the system is not stochastically stable. The
initial distribution ‘wanders off” in the positive direction, and it will eventu-
ally spread out over the entire positive axis, while converging pointwise to
zero in every single point. These two examples clearly show the importance
of our conditions for stochastic stability in the analysis of populations in
stochastic environments.

Fig. 1. Hassell model, r —2, b~ 7V(3,1)
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Fig. 2. Hassell model, r = 2, 6~iV (0,1), .Xo= 05

Example 4.2. Stochastic stability of a scramble model. We now take a
look at a typical stochastic perturbation of a scramble model:
= O) =po
P(zi= \Zt)=1-po
with Zt ~ i.i.d. N(3,”). For the Ricker model we have
f(x) =ex=L(x)=x

Xt+ = 2Xte~Xat,

and according to Theorem 3.2 this means that a stationary distribution exists

if

( L(rx)\ 1 f rx\~1_1_

VISP |y ) Caumgue Sy =108

First the distributions for po = 0.2 were calculated; after seven iterations

the distribution function showed no significant changes any more and the
stationary distribution of Figure 3a was obtained. Remark that peaks are
found at distances which differ by a factor r due to the atom at zero in the
environment which implies a population growth with factor r.

Po <

(b) po=10.8> 4

Fig. 3. Distributions for Ricker model, r = 2
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For po —0.8 we find the distribution functions of Figure 3b. The distri-
bution spreads on the entire positive axis, with peaks travelling to infinity
due to multiplication by r in every iteration, while the distribution converges
to zero in every single point.

5. Conclusions

In this paper we have addressed the question of stability in single species
discrete population models. A sufficient condition for stability was derived,
which turned out to be satisfied in all cases where the environmental influence
was purely adversary, but also if there was a limited possibility of favourable
environments in the contest case.

The most surprising aspect of the results presented here is their very
general nature. The two intuitively appealing premises stated in the first
paragraph apparently contain sufficient information about the ’nature’ of
the dynamics to prove stability in the stochastic model for favourable envi-
ronments. Therefore one may state that the possibility of a stable stationary
probability distribution in their stochastic perturbations is a consequence of
the ecological principles behind population models, and not of the details of
a particular model. Since it is impossible in practice to describe any popula-
tion exactly with one particular model, this should be a reassuring point for
those who use population models to fit experimental data. If the stability
of a stationary distribution of a stochastic population model can be proven
for a particular model, but not for a model which is ‘close’ to this one, then
the calculation of mean, variance and other statistical characteristics would
be useless from a mathematical point of view. In this way the framework
provided here can be used not only as a theoretically interesting generaliza-
tion, but also as a rigorous justification for the use of population models to
obtain theoretical statements about experimental data.

The question arises naturally if the conditions we have found are not
only sufficient but even necessary for stochastic stability. The simulation
results presented in the previous section clearly indicate that this might be
true, and this topic is currently under investigation.
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This volume is the Proceedings of a conference held in memory of Roberto Magari
(1934-1994) in Pontignano (Siena, Italy), April 26-30, 1994. The conference was origi-
nally planned to celebrate Magari’s 60th birthday by putting together researchers from
mathematical logic and general algebra. Here is the list of invited papers:

S. Artemov and A Chuprina: Logic of proofs with complexity operators.

M Comini and G. Levi: Beyond the s-semantics: A theory of observables.

D. Finberg, M Mainetti and G.-C. Rota: The logic of commuting equivalence rela-
tions.

J.-Y. Girard: Proof-nets: The parallel syntax for proof-theory.

P. Hajek: Magari and others on Godel’s ontological proof.

L. Hendriks and D. de Jongh: Finitely generated Magari algebras and arithmetic.

J. Lambek: The butterfly and the serpent.

F. W. Lawvere: Adjoints in and among bicategories.

A Macintyre: Exponential algebra.

R. McKenzie: An algebraic version of categorical equivalence for varieties and more
general algebraic categories.

A F. Pixley: Boolean universal algebra.

R. Wille: Restructuring mathematical logic: An approach based on Peirce’s pragma-
tism.

G. Zappa: The development of research in algebra in Italy from 1850 to 1940.

In addition, the volume contains 20 research papers, mainly on model theory and
universal algebra, including a iaosthumous paper of Magari, jointly with G. Simi, entitled
‘Arevision of the mathematical part of Magari’s paper on “Introduction to metamorality™”.

Many papers in this volume are valuable contributions to mathematical logic, universal
algebra, and category theory, and the volume is recommended to researchers in these fields.
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(pbk). £ 29,95

This book is meant as a one-year course in mathematical methods for advanced under-
graduates or beginning graduate students in applied mathematics, physics and engineering.
The first half of the book deals with linear systems to prepare the reader for the second
half which deals with nonlinear systems, especially with weakly nonlinear oscillatory sys-
tems and nonlinear difference equations. It is very easy to read the book, since the author
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introduces the methods by giving examples with a lot of introductory, accompanying and
concluding remarks.

It is not easy, however, to see the purpose of the author by writing of this book. For
example, the text treats only the . x . matrices, so in the reviewer’s opinion, somebody
with a minimum knowledge of mathematics would not much learn from this book.

The content of the book is as follows.

Part I. Linear systems. — Matrix theory — The Gamma and related functions —
Elements of asymptotics — Evaluation of sums: The Euler-Maclaurin sum expansion —
Evaluation of integrals: The Laplace method — Differential equations.

Part Il. Nonlinear systems. — The simple harmonic oscillator and the Io?istic equation
— Aspects of harmonic motion and the concept of secular terms — Equilibrium points
and the phase plane — Conservative systems — Nonconservative systems — The method
of averaging — The method of multiple times scales — Higher-order calculations — Error
analysis — One-dimensional iterative maps and the onset of chaos.

Appendix. A discussion of Euler’s constant.

T. Fényes (Budapest)

Multigraph. Version 1.0c from IntelliPro, Wiley College Software, John Wiley and
Sons, Inc., Chichester, 1996, ISBN 0471 10618+. £ 22,50

If you need a lightweight and easy-to-use software to make some mathematical analysis,
Multigraph is a reasonable choice for you. This software is not for professional users and
professional mathematicians, but for students (or anyone who likes maths and computer

raphics). You can make nice and useful drawings of simple or complicated 2-variable
unctions with some simple steps.

It is a good idea that the software does not leave the user alone with a cryptic collection
of menu points, but draws sample graphs with one mouse click, and from this state you
can build the graphic you need by simply changing parameters step-by-step.

You can create 3-dimensional colour surface graphs, 2-dimensional vector fields even
with a line integral along a user-specific path, or contour diagrams. You can set everything
by an easy-to-use graphical interface and see the resulting graphics immediately. Pictures
then can be printed out or saved — but only in a special format used by the software, so
you cannot export them to other applications.

G Sipbczy (Budapest)
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