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Abstract

Tracking with a Pan-Tilt-Zoom (PTZ) camera has been
a research topic in computer vision for many years. How-
ever, it is very difficult to assess the progress that has been
made on this topic because there is no standard evaluation
methodology. The difficulty in evaluating PTZ tracking al-
gorithms arises from their dynamic nature. In contrast to
other forms of tracking, PTZ tracking involves both locat-
ing the target in the image and controlling the motors of the
camera to aim it so that the target stays in its field of view.
This type of tracking can only be performed online. In this
paper, we propose a new evaluation framework based on a
virtual PTZ camera. With this framework, tracking scenar-
ios do not change for each experiment and we are able to
replicate online PTZ camera control and behavior includ-
ing camera positioning delays, tracker processing delays,
and numerical zoom. We tested our evaluation framework
with the Camshift tracker to show its viability and to estab-
lish baseline results.

1. Introduction

Tracking with a single Pan-Tilt-Zoom (PTZ) camera has
been a research topic in computer vision for many years
[10, 1, 2, 12, 4]. However, it is very difficult to assess the
progress that has been made on this topic because there is no
standard evaluation methodology. The difficulty in evaluat-
ing PTZ tracking arises from its dynamic nature. In contrast
to other forms of tracking, PTZ tracking involves both lo-
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cating the target in the image and controlling the motors of
the camera to aim it so that the target stays in its field of
view (FOV). This type of tracking can only be performed
online. As a result, it is very difficult to compare two algo-
rithms with a real PTZ camera because the same experiment
is not repeatable. Even under a strict scenario with actors
performing predefined actions, the tracking conditions will
never be totally identical.

Recent datasets like VOT2014! only test the quality of
the target location in each frame. Although important, it
does not account for the online constraint of tracking with a
PTZ camera. For example, in an online setting with a PTZ
camera, if an algorithm processes a frame in one second, it
is essentially blind during this entire time lapse. It means
that the target may move over a large distance between two
observations. Moreover, centering the camera on its pre-
vious location may result in the target leaving the FOV. In
general, with PTZ tracking, there is a compromise between
two requirements:

1. Designing a fast tracker that can process every frame
without dropping any, and that always recenters the
camera at the target’s previous position (which is a
good approximation of its next position since the frame
processing rate is high). Such an algorithm is however
more likely to localize the target poorly.

2. Designing a slower, but more sophisticated tracker that
can localize the target accurately. Since being slow
also means being blind for long periods of time, in or-
der to improve robustness to fast target motion, another
algorithm needs to be designed to control the cam-
era. A typical approach is to determine the target’s

Ihttp://www.votchallenge.net/vot2014/
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most probable location in the next frame, and center
the FOV on that position.

In short, the processing time budget is important in PTZ
tracking because of its online nature, and slow processing
means missed observations, which might be crucial for ac-
curate results. With this paper, we hope to inspire the de-
velopment of better PTZ tracking methods by proposing a
virtual camera that allows panning, tilting, and zooming in-
side pre-recorded spherical panoramic videos. Under our
new proposed evaluation framework”, tracking conditions
do not change for each experiment. Besides, we replicate
online PTZ camera control behavior by considering camera
positioning delays, tracker processing delays, and numeri-
cal zoom. Note that in this work, we focus only on single
object tracking. Our contributions are:

* apublicly available C++ library implementing a virtual

PTZ camera that behaves like an actual PTZ camera.
It offers basic functionalities (image acquisition, cam-
era movement) as well as online evaluation of tracking
performance using four metrics;

* three publicly available spherical panoramic scenarios
taken in two real-world environments, featuring a total
of 36 manually annotated tracking sequences for vari-
ous object types; and

* aset of baseline performance results obtained using the
Camshift tracker [3] on the abovementioned dataset.

2. Related Work

To the best of our knowledge, only two works specifi-
cally addressed the evaluation of tracking with a PTZ cam-
era [11, 9]. In the work of Qureshi and Terzopoulos [9], a
virtual world is simulated where animated pedestrians can
be tracked by various virtual sensors, including virtual PTZ
cameras. This approach is very interesting as it allows re-
peatable evaluation. Its drawback is that it does not repro-
duce real-world settings such as change in lighting condi-
tions, nor addresses the limits of real camera sensors (reso-
lution, motion blur, etc.) because the scenes are artificial. It
was used in the context of sensor networks. Salvagnini et al.
[11] proposed an experimental framework where a real PTZ
camera tracks objects moving on a large screen. The goal of
this work was the same as ours: it does provide repeatable
scenarios for internal use in a given research laboratory, but
other research groups cannot repeat the same experiments
as they are equipment-specific. Furthermore, the PTZ cam-
era motion is limited to a very small portion of its operating
range.

The evaluation metrics used in previous work on track-
ing with a PTZ camera are varied but are essentially very
similar to those for the evaluation of single object trackers
or multiple object trackers. For example, in Cai et al. [4],
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tracking is evaluated with multiple object tracking metrics.
There is no specific evaluation of camera control, although
for this work the PTZ camera mostly zooms (it does not pan
or tilt significantly). In the rest of the literature on this topic
however, most authors evaluate camera control to some ex-
tent. In both the work of Lee et al. [6] and Liu et al. [7]
tracking is evaluated by the percentage of frames where the
tracked object is in the FOV. Such a metric roughly evalu-
ates both camera control and tracking performance simulta-
neously.

Since tracking with a single PTZ camera requires the
evaluation of both tracking and camera control perfor-
mance, Darvish and Bilodeau [12] and Salvagninietal. [11]
proposed metrics for both aspects. Center Location Error
(CLE) and overlap ratio [5] were used for tracking accu-
racy, and the distance between the center of the ground-
truth target position and the center of the image was used
to evaluate camera control. The assumption for the evalua-
tion of the camera control is that if it is done properly, the
target will always be close to the center of the FOV. If not,
the probability that the target will leave the FOV after sud-
den movements or direction changes is high. In addition to
those metrics, Darvish and Bilodeau [12] and Paillet et al.
[8] also included a track fragmentation metric, that is, the
number of frames for which the target is out of the FOV.

3. Evaluation Framework

Our PTZ evaluation framework is composed of three
components: 1) a C++ library that simulates a PTZ cam-
era and includes an evaluator, 2) a collection of spherical
panoramic videos for different scenarios, and 3) their corre-
sponding ground-truth annotated sequences. The PTZ sim-
ulator grabs panoramic images from a video file, builds the
scenario model and provides a typical viewing frustum for
the tracker based on camera parameters. The evaluator uses
basic ground-truth data and the same camera parameters to
generate ground truth bounding boxes for the current FOV,
and then compares them with actual tracking results.

The framework has been designed based on videos cap-
tured by a Point Grey Ladybug 3 Spherical camera and
OpenGL to project the videos on a sphere. The Ladybug
camera gives a near 360° spherical view of the scene that
can be mapped on such a surface. It is thus possible to de-
sign a virtual camera that can observe specific portions of
the sphere. Therefore, we obtain a virtual PTZ camera that
can be controlled as desired to track objects in pre-recorded
videos. For convenience, the center of the spherical model
is set at the origin of the world coordinates.
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Figure 1: Rectangle EF'G H is the image plane. Its normal vector oD represents the direction vector of the camera. 7' is the position of
the tracked object and its projected point on the image plane is P. (a) shows the projection relation in world coordinates, and (b) shows the
projection frustum in world coordinates. Frustum EFGH — E'F'G’H' defines the projection volume.

3.1. PTZ Camera Model
3.1.1 Camera viewing direction

After building the model of the scenario, the virtual camera
is placed at the origin O as Fig. la shows. Though the po-
sition of the camera is constrained, it still has three degrees
of freedom. They are: 1) pitching, or forward and back-
ward tilting; 2) yawing, or left and right panning; and 3)
rolling, or the rotation on the axis between O and the target
point, T'. Since we are simulating a PTZ camera, rolling
is ignored and changing the pitch and yaw angles achieves
the functionality of tilting and panning, respectively. Con-
sequently, we use the normal vector OD of the image plane
to define the direction vector of the camera in world coordi-
nates. This direction is determined by the tilt angle 6; and
the pan angle ¢4, shown in Fig. la, both of which can be
obtained from the position of D = (24, y4, 24):

2d

04 = arccos(———————— (D
¢ (\/xz—&-y?l—i—zﬁ)
bq = arctan(%) 2)
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Refer to Fig. la for the meaning of the variables.

3.1.2 Perspective projection

In the pinhole camera model, the real object is projected
onto an image plane through a hole (center of projection).
The image plane is located on one side of the pinhole while
the object is on the other side. The relation between these

two follows the rule of light propagation. It is mathemati-
cally equivalent to place the image plane £ F'GH between
the object T" and hole O, as Fig. 1a shows. Under this situa-
tion, the projected point P is the intersection of image plane
EFGH and vector OT.

In order to specify the perspective projection, a frus-
tum should be defined as the one shown in Fig. 1b, noted
EFGH — E'F'G'H’. All the points inside it will be pro-
jected onto the image plane EFGH. To determine a frus-
tum, the following parameters are required: 1) the tilt angle
64 and pan angle ¢4 of the camera; 2) the vertical FOV q«;
3) the aspect ratio rr = %; 4) the distance from the vir-
tual camera to the near clipping plane n = |OD|; and 5) the
distance from the virtual camera to the far clipping plane.

If we ignore the computer graphics concepts and simply
consider the principle of projection, the fourth parameter of
the projection model, n, can be any positive value that is
relatively small, and the fifth parameter (the distance from
the viewer to the far clipping plane) is unnecessary. The de-
tailed mathematical pipeline used to obtain the 2D coordi-
nates of a point on the image plane from its 3D coordinates
in world space is described next. This “forward” pipeline
is used to calculate the mapping relation from world coor-
dinates to image coordinates, as opposed to the “inverse”
pipeline, which calculates the reverse transformation.

3.1.3 From the 3D world to 2D images

Theoretically, it is possible to compute the transformation
that directly projects a 3D point in the model onto the 2D
image plane, but the corresponding geometric computations
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Figure 2: Rectangle EFGH is the image plane. Its normal vector oD represents the direction vector of the camera. 7 is the position of
the tracked object and its projected point on the image plane is P. (a) shows the coordinate system in world space, (b) shows the coordinate
system along with the projection volume transformed to camera space (with a similar notation), and (c) shows the camera rotation used to
center a point on the image plane. In (c), target 7" is originally projected to point P on the image plane £ F'G H. Following the rotation, it

is projected to the middle D’ of image plane E'F'G'H'.

are complex. To simplify the problem, we first transform
the coordinate system so the camera points toward the —Z
axis and has upward vector +Y’, as shown in Fig. 2b. The
reason behind using the —Z axis instead of 47 axis is to
make the +X axis in right-hand direction and the +Y" axis
upwards. After this view transformation, the points in 3D
space are projected to image coordinates through perspec-
tive projection.

View transformation Through view transformation, the
coordinates of points in 3D world space are transformed to
3D camera space. In Fig. 2a, the camera shown in world
space has a vertical direction angle 64 and a horizontal di-
rection angle ¢4. To make its coordinate system match with
the world coordinate system, we use the following transfor-
mations: 1) rotate the camera and its target point around the
Z axis by an angle of (5 —¢q), and 2) rotate the camera and
its target point around the X axis by an angle of (64 — 7).
Both rotations follow the right-hand rule and the axes are
from the world coordinate system.

Mathematically, the rotation which transforms a point
T = (x¢Ys,2) in world space to the point T =
(x},y},z) in camera space is determined by the view
transformation matrix M;e.,, Which is obtained by multi-
plying the rotation matrices R, (0q — ) and R.(5 — ¢a).
These relations are as follows:

Ty Lt ™ ot

yél = M’uiew' Y| = Rw(ed_ﬂ)-Rz(a B de) b

zy 2t =t
(3)

where
1 0 0
R,(0g—7m)= |0 cos(0g—m) —sin(0g—m)| (4)
0 sin(0g—m) cos(0g— )
and
- cos(5 — ¢a) —sin(5 —da) 0
RZ(§ —¢aq) = |sin(§ — pa) cos(§ —a) 0| (5)
0 0 1

Projection transformation Through projection trans-
formation, the 3D coordinates of points in the camera space
are transformed to the 2D image space. In Fig. 2b, the
target point 7" = (z}, vy, z;') is projected to point P" =
(x5 Yy, 2, ). According to the relationships between simi-

. " /! 1 .
lar triangles, x;, and y;, can be obtained as:

n

n
Yy =Yy - 27 (7

In the image plane rectangle E” F”G" H”, the location
of a projected point can be determined by its local 2D co-
ordinates. First, the height |E” H"”| and width |H"G"| are
obtained using:

|E"H"| :2n-tan<%) 8)

|H//G//‘ — T|E//H//| (9)

Considering the bottom-left vertex H'" as the origin and
utilizing the pixel as the unit length, we obtain the coordi-
nates (u,v) of projected point P as:
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where w and h are the width and height of the camera image
in pixels.

3.1.4 Getting images from the virtual PTZ camera

The virtual PTZ camera is designed to simulate as well as
possible an off-the-shelf PTZ camera. First, it returns an
image based on the current FOV as defined by 6,4, ¢4 and
« (see Fig. 1b). Points in world coordinates are projected
using (6) and (7) and expressed in image coordinates using
(10) and (11). In our implementation, the virtual camera can
provide images only when it is still. We preferred this op-
tion to artificially generating motion blur. Although debat-
able, previous works seem to agree on the fact that images
with strong motion blur are not really usable [12].

3.1.5 Camera control

The virtual PTZ camera also includes commands to change
its orientation, either by using specific pan and tilt angles,
or by recentering on a pixel position expressed in image
coordinates. The zoom can also be simulated by changing
the vertical FOV angle of the camera («). To reproduce
the behavior of an actual PTZ camera, we consider that ori-
entation changes are not instantaneous. Instead, the simu-
lated camera pans and tilts based on the maximal angular
speeds of a commercial PTZ camera (Sony SNC-RZ50N).
This means that the image acquisition delay after a reori-
entation depends on the amplitude of camera’s motion. To
simulate this first type of delay (which we note 7,,,), frames
are simply skipped in the video.

A PTZ camera can pan and tilt to face a certain direction
that the user wants. If the tracker finds an object of interest
in the current image, a good way to follow it is to orient
the camera on its current position (or its next predicted po-
sition), so that it stays near the center of the FOV. Inversing
the “forward” pipeline of section 3.1.3, we can compute the
required camera direction vector by using the current 2D
coordinates (u, v) of the point to follow and known camera
parameters (initial direction, FOV and output image size).

The geometric relations used to rotate the camera in or-
der to center it on a point in the image plane is shown in
Fig 2c, which is in world space. Originally, target T is pro-
jected to point P in the image plane EF'GH, but P is not

at the center (D) of this rectangle. Then, the virtual camera
is rotated both vertically and horizontally to the new direc-
tion OD’, where the center D’ of image plane E'F'G'H'
is co-located with OT'. In this way, the target 7" will be pro-
jected to D’ and placed at the center of the camera view. To
obtain the required direction vector of the camera (Ob’ ),
we can compute the direction of OP'. In fact, both these
vectors have the same direction as OT. However, only or
is independent of the camera. For convenience, we describe
the direction with the tilt angle 6, and pan angle ¢4 of or
shown in Fig. la. Hence, our task can be described as ob-
taining 04 and ¢g.

With the 2D coordinates (u, v) of the projected point P”
in image space, the direction of the original point is ob-
tained by reversing the projection process of section 3.1.3.
There are two steps to follow: 1) transform the image coor-
dinates to camera coordinates using:

2l = (%—0.5>-|H”G”| - 2nr(%—0.5)tan(%) (12)

Y = (%—0.5)-\E”H”\ - 2n(%—0.5)tan(%) (13)

2 =—n (14)

p
where w and h are the width and height of the image in
pixels; and 2) transform the camera coordinates to world
coordinates using:
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Then, we can obtain 6; and ¢, using:
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3.1.6 Delay simulation

A second type of delay, noted 7, corresponds to the time
required for a tracker to process a frame. We also con-
sider a third type of delay, 7., which is the communica-
tion delay over a network in the case of an IP PTZ cam-
era. The user fixes this last delay. Note that all delays are
simulated by skipping frames in the pre-recorded videos to
mimic dropped frames.

Following a camera motion, the tracker will observe the
scene again after a 7 = 7, + 7, + 7. delay. Therefore, ide-
ally, a tracker should try to minimize 7, as much as possible
and also try to predict the position of the target after the 7
delay to make sure it stays in the FOV.



3.2. Performance Evaluation

Apart from the basic operations described in the last sec-
tion, our PTZ camera framework also calculates four per-
formance metrics to evaluate an actual tracker. Let ¢}, and
' be the center locations of the ground-truth target and
the predicted target (by the tracker) at time ¢, respectively,
and A%, and A%, be the bounding boxes of the ground-
truth target and the predicted target at time ¢, respectively,
and ¢t be the location of the center of the image FOV at
time ¢. These values are all expressed in image coordinates.

¢ C'LE (Center Location Error) at time ¢ is defined as
CLE" = |cbp — cborp (18)

It is invalid and assigned -1 if the target is out of the
FOW. Its corresponding overall metric CLFE is the av-
erage of all valid CLE!. This metric evaluates the
quality of target localization.

* OR (Overlap Ratio) at time ¢ is defined as

AGr N Abp

OR' =
Agr U Apr

19)
Its corresponding overall metric OR is the average of
all OR!. This metric also evaluates the quality of target
localization.

e TCFE (Target to Center Error) at time ¢ is defined as
TCE" = |cboy — chrl (20)

It is invalid and assigned -1 if the target is out of the
FOV. Its corresponding overall metric TC'E is the av-
erage of all valid TCE?. This metric evaluates the
quality of the camera control.

» TF (Track Fragmentation) at time ¢ is defined as

1 if CLE" is invalid
t_
TrE { 0 otherwise @D

This metric indicates if the target is inside or outside
the FOV. Its corresponding overall metric T'F' is the
sum of all TF*® divided by the number of processed
frames. This metric also evaluates the quality of the
camera control.

3.3. Spherical Panoramic Scenarios

Three spherical video sequences were captured in two
indoor environments with 4 or 5 randomly moving per-
sons. The videos contain a total number of 3,179 panoramic
frames recorded at a frame rate of 16 fps (the maximum
frame rate of the Ladybug 3). The first video was captured
in a laboratory room cluttered with desks, chairs, posters
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Figure 3: Difficulty distribution over the whole dataset.
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Figure 4: Examples of tracked objects in the proposed dataset.

and technical video equipment in the background. The La-
dybug 3 camera was mounted on a tripod and placed in the
center of the room. The two other spherical videos were
recorded in the middle of a large atrium within a build-
ing with glass walls causing uneven illumination condi-
tions. Our complete dataset includes 36 manually annotated
tracking sequences extracted from the three initial spheri-
cal video sequences. The length of each tracking sequence
varies from a few seconds to one or two minutes. For each
of the 36 annotated sequences, the tracked target is one of
the following: the full body of a moving person, a torso, a
head, or an object carried by a person.

In real world scenarios, many perturbation factors can
affect tracking performance. For our dataset, we used the
difficulty categorization proposed in [13]. Three track-
ing difficulties are present in all our sequences: Motion
Blur (MB), Scale Change (SC), and Out-of-Plane Rotation
(OPR). Moreover, we defined subsets of videos correspond-
ing to other perturbation factors: Fast Motion (FM), Clut-
tered Background (CB), Illumination Variation (IV), Low
Resolution (LR), Occlusion (OCC), presence of Distractors
(DIS), and Articulated Objects (AO). The histogram of Fig.
3 illustrates the difficulty distribution in our dataset. Note
that one tracking sequence may include multiple difficul-
ties. Fig. 4 shows examples of targets that are tracked in
our sequences.
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Figure 5: Transformation of bounding boxes. (a) shows an exam-
ple of basic GT (the target is centered in the image), and (b) shows
how the four vertices of the original bounding box are mapped to
four points in the new FOV before being rectified to make a rect-
angle.

3.4. Ground-Truth

In order to evaluate actual tracking methods, getting ac-
curate tracking ground-truth (GT) sequences for our sce-
narios is important. The GT annotations for a PTZ camera
video are very different from those of a fixed camera video.
A traditional camera with a fixed view frustum simply re-
quires a sequence of bounding boxes for each tracked ob-
ject, which can all be defined by width, height and 2D cen-
ter position. A PTZ camera GT is much more complex: the
camera may have different FOV angles and output image
sizes to observe the same target. It is necessary to make the
GT applicable to all possible observation configurations.

3.4.1 Basic ground-truth

First, we define the “basic” GT as the GT that is manually
annotated for a chosen camera position. The actual GT re-
quired for evaluation in any other situation can be obtained
by directly transforming the basic GT.

For the basic GT, during the annotation phase, the target
is always in the middle of the image, as shown as Fig. 5a.
Four values are recorded for each frame of the video, which
can be transformed to different target points and bounding
boxes according to the virtual camera’s viewing direction,
FOV and output image size. Two of these four values are
related to the current orientation of the camera: they are
the pan and tilt angles. The other two values are simply
the width and height of the target’s bounding box. While
collecting basic GT, the other parameters of the camera are
fixed but they must also be recorded since they are used in
the evaluation phase. These parameters are the camera’s
vertical FOV angle and its output image width and height.

3.4.2 Ground-truth adjustment for current FOV

In the basic GT, the target center point is always at the center
of the camera’s output image; as a result, the direction to

Te=0 7.=18 71.=1/4 TC:1/2|

CB 99.1 107.1 113.9 139.5
occ 86.7 96.6 100.5 117.8

v 130.5 143.9 150.7 152.6

AO 150.9 148.0 153.8 141.5

LR 129.6 133.3 175.6 136.2
FM 80.5 113.6 151.6 134.3
DIS 30.9 39.1 42.6 158.6
full dataset  83.2 89.9 92.1 123.8

Table 1: Center Location Error (CLE) in pixels for Camshift with
four different communication delays in seconds.

the target (Oﬁ“) is the same as the camera direction (Ob) (a
similar situation is demonstrated in Fig. 2¢).

In order to obtain the 2D coordinates of the target on the
image plane of a camera with different parameters, we can
find its 3D coordinates in the world space by using its direc-
tion. It is first transformed to camera coordinates, and then
to image coordinates using the equations of section 3.1.3.

The transformation of bounding boxes is more compli-
cated. Not only can their position shift, but their size,
width/height ratio, and shape can vary. We use the four
vertices of the rectangle to represent the bounding box, and
compute their 2D coordinates on the image plane. Using the
inverted pipeline of section 3.1.5, their directions (consist-
ing of horizontal and vertical angles) are computed. Then,
using the configuration of the tracker’s virtual camera, these
four directions are projected back to the tracker’s image
plane with the forward pipeline (section 3.1.3). Due to dis-
tortion (the bounding box is not viewed in the same plane
as originally drawn), the four projected points are unlikely
to make up a rectangle, as shown in Fig. 5b. They are thus
rectified by projecting the pairwise means of their 2D co-
ordinates on the horizontal and vertical axes of the image
space. Then, they are connected on these same axes to form
an axis-aligned bounding box. A rectified bounding box is
also shown in Fig. 5b.

4. Baseline Evaluation Results

In order to provide baseline tracking results, we used our
virtual camera framework to evaluate a simple PTZ tracker
based on the well-known Camshift algorithm [3]. Looking
back at the two general PTZ tracking design families de-
scribed in section 1, we can classify this tracker as part of
the first family (i.e. fast, but not very robust). As such,
we used the typical camera control strategy of this design
family, meaning that the camera FOV is continuously re-
centered at the target’s previous location.

We tested the Camshift tracker on the proposed 36 se-
quences at a 640x480 resolution with a 90° vertical FOV
angle, using the categorized difficulties defined in section



Te=0 7.=18 T.=1/1 Tc:1/2|

CB 972 1041 1113 1346
occ 853  93.1 1005 116.0
v 1284 1386 1434  148.1
A0 1469 1400 1440 1450
LR 1274 1259 1610 1319
FM 81.1 1058 1461 1325
DIS 33.0 446 542 1616
| full dataset 819 883 93.5 1235 |

Table 2: Target to Center Error (TCE) in pixels for Camshift with
four different communication delays in seconds.

| Te=0 7.=18 1.=1/ TC:1/2|

CB 0.260 0.234 0.197 0.121
occ 0.323 0.303 0.259 0.228
v 0.207 0.169 0.122 0.030
AO 0.239 0.183 0.147 0.118
LR 0.274 0.203 0.110 0.064
FM 0.327 0.263 0.257 0.156
DIS 0.405 0.401 0.415 0.110

| full dataset 0317 0298 0273  0.195 |

Table 3: Overlap Ratio (OR) for Camshift with four different com-
munication delays in seconds.

| Te=0 71.=18 1.=11 71,.=1/ |

CB 0.470 0.467 0.498 0.581
occ 0.482 0.481 0.446 0.491
v 0.562 0.592 0.613 0.687
AO 0.522 0.515 0.618 0.541
LR 0.466 0.543 0.592 0.668
M 0.543 0.602 0.467 0.595
DIS 0.188 0.282 0.307 0.735

full dataset  0.440 0.442 0.405 0.520

Table 4: Track Fragmentation (TF) for Camshift with four differ-
ent communication delays in seconds.

3.3. Tables 1, 2, 3, and 4 present the results of Center Lo-
cation Error (CLE), Target to Center Error (TCE), Overlap
Ratio (OR), and Track Fragmentation (TF), respectively. In
all these experiments, we simulated the camera motion de-
lay 7,, of the commercial PTZ camera Sony SNC-RZ50N
based on its maximal angular speed of 300°/s. We consid-
ered the processing delay of the tracker (7;,) as the actual ex-
ecution time of Camshift for each frame. However, since the
Camshift tracker can typically process more than 16 fps (we
ran it on an Intel i5 3570 CPU at 3.4 GHz), its processing
delay can be considered null (7, = 0), as it will not cause
a significant number of frames to be skipped. On the other
hand, we evaluated this tracker using four different com-
munication delays (7,) as shown in the tables. Note that in

these tables, the Motion Blur (MB), Scale Change (SC), and
Out-of-Plane Rotation (OPR) difficulties are not included
because all the sequences of our dataset contain them. As
a result, studying these difficulties is equivalent to studying
the full dataset. Also, recall that sequences are not exclu-
sive to any difficulty category. For instance, sequences in
the Occlusion (OCC) category present some form of occlu-
sion but may also present illumination variations and thus
be part of the [llumination Variations (IV) category.

From our results, we can see that Camshift does not offer
very good performance for the challenges present in typical
PTZ tracking problems. For example, localization errors re-
ported by the CLE and TCE metrics exceed 80 pixels for all
but one difficulty, and Track Fragmentation (TF) is almost
always above 0.450. While Camshift’s histogram-based ap-
proach is effective for short sequences with no occlusions,
it was unable to track targets with no vivid colors or with an
appearance that was similar to the background, which make
up a good proportion of our test sequences. Furthermore,
in all sequences that provide an initialization bounding box
with visible background, Camshift rapidly dropped its tar-
get and started drifting through the entire scene randomly.
However, in sequences where the target is brightly colored,
only suffers from partial occlusions, and does not resemble
the background, Camshift took advantage of its high pro-
cessing speed to keep track of the target. Overall, these
baseline results show the usability of our framework and
demonstrate that tracking and controlling the virtual PTZ
successfully on our dataset is not trivial. More sophisticated
tracking algorithms are required to solve its challenges.

While it is hard to directly compare the proposed test
subsets due to their varying sizes and overlaps and the na-
ture of their targets, we note that the scores obtained for
all four metrics in the Distractors (DIS) category are gen-
erally better than those of any other category. In DIS, all
targets are human heads, which are rather easy to track with
a histogram-based method, as long as the background does
not match skin color. The Illumination Variation (IV) cat-
egory seemed to be the hardest to handle for Camshift; ex-
treme contrast and camouflage problems due to intense light
sources sometimes made tracking nearly impossible. The
Low Resolution (LR) and Articulated Objects (AO) cate-
gories share multiple sequences with IV, which might ex-
plain their similar scores.

More generally, we can observe that increasing the com-
munication delay (7.) has a deep impact on the effective-
ness of the tracking algorithm. While it could be expected
that increasing this parameter’s value would directly worsen
tracking performances, interestingly, this is not always the
case. In fact, for a handful of sequences presenting full oc-
clusions, adding a communication delay sometimes helps
the tracker by either completely eliminating these occlu-
sions or by replacing them with partial occlusions. This



is however uncommon. More typically, all metrics except
Track Fragmentation (TF) show decreases in performance
for each increment of 7.

5. Conclusion

In this paper, we have proposed a new publicly available
framework for the evaluation of PTZ tracking algorithms.
It allows realistic experiments to be repeated in identical
conditions. This framework simulates a PTZ camera that
can pan, tilt, and zoom to observe different parts of a scene
constructed using pre-recorded spherical panoramic videos.
It also considers various types of delays and limitations of
commercial PTZ cameras to provide a faithful reproduction
of real tracking experiments.

We provide a total of 36 annotated tracking sequences
along with our PTZ framework, which sum up to over
16,000 bounding boxes. Unlike the ground-truth used for
fixed-camera tracking, these bounding boxes were defined
using a spherical coordinate system and can be used to eval-
uate tracking performance under different camera config-
urations. To provide baseline results for our framework,
we tested the Camshift algorithm on these 36 sequences.
The four metrics we use to evaluate PTZ tracking perfor-
mance indicate that Camshift is generally unable to han-
dle the challenges present in typical PTZ tracking scenar-
ios. We are confident that tracking methods specifically de-
signed for PTZ scenarios can overcome the realistic diffi-
culties present in our dataset.
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