
Compressed bitmap indexes: beyond unions and intersections

Owen Kaser1∗ and Daniel Lemire2

1Dept. of CSAS, University of New Brunswick, Saint John, NB, Canada
2 LICEF, TELUQ, Université du Québec, Montreal, QC, Canada

SUMMARY

Compressed bitmap indexes are used to speed up simple aggregate queries in databases. Indeed, set
operations like intersections, unions and complements can be represented as logical operations (AND,OR,
NOT) that are ideally suited for bitmaps. However, it is less obvious how to apply bitmaps to more advanced
queries. For example, we might seek products in a store that meet some, but maybe not all, criteria. Such
threshold queries generalize intersections and unions; they are often used in information-retrieval and data-
mining applications. We introduce new algorithms that are sometimes three orders of magnitude faster than
a naïve approach. Our work shows that bitmap indexes are more broadly applicable than is commonly
believed.

KEY WORDS: T-overlap queries; compressed bitmaps; threshold functions; symmetric functions; opt-
threshold queries

1. INTRODUCTION

There are many applications for bitmap indexes, from conventional databases (e.g., Oracle [1])
all the way to information retrieval [2] and column stores [3]. They are used in data-warehouse
platforms such as Apache Hive, LucidDB [4], Druid [?] and Sybase IQ [5].

We are primarily motivated by the application of bitmap indexes to common databases (i.e., row
stores). In this case, it has long been established that bitmap indexes can speed up several queries,
e.g., joins [6], as well as intersections and unions (e.g., SELECT * WHERE A=1 AND B=2).

Databases are commonly used for data mining and machine learning. An algorithm could seek
to identify all movies that are “similar” to a target movie, or all customers that “almost” fit a given
profile. Such queries need neither an intersection nor a union, but something in-between: a threshold
function where only some of the criteria need to be satisfied. We aim to show that such queries
(specifically Many-Criteria queries and Similarity queries, see § 4) can be answered efficiently
using bitmap indexes. Because the result of the query is itself a bitmap, we can then further process
it using the standard operations permitted on bitmaps (OR, AND, XOR, NOT) to answer more
complicated queries efficiently.

Of course, the set of basic operations supported by bitmap indexes may be sufficient to synthesize
any required function. However, the efficiency of such approaches is unknown. To our knowledge,
the efficient computation of threshold functions over bitmaps has never been investigated in depth:
the exception is Rinfret et al. [7] where two algorithms are compared on a related problem (top-K
queries).

∗Correspondence to: Owen Kaser, Dept. of CSAS, University of New Brunswick, 100 Tucker Park Rd, Saint John, NB
E2L 4L5 Canada. email: owen@unbsj.ca

Contract/grant sponsor: Natural Sciences and Engineering Research Council of Canada; contract/grant number: 261437

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by R-libre

https://core.ac.uk/display/35146190?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 O. KASER, D. LEMIRE

Table I. Algorithms considered in this paper.

Algorithm Source Section Main idea

SCANCOUNT [9] § 5.1 Allocate array of counters, scan values while increment-
ing counters and, finally, scan array of counters for
matching counts.

MGOPT [10, 11] § 5.2 Set aside the largest T − 1 inputs, merge the remaining
N − T + 1 inputs using a heap, then look up matching
values in the largest inputs.

DSK [9] § 5.2 Similar to MGOPT, but during the merger of the small
inputs, some values are skipped; requires a tuning
parameter.

BSTM modified from [7, 12] § 5.3.1 Transforms the query into a Boolean circuit to be
evaluated on the bitmaps.

W2CTI novel § 6.1 Merge inputs two-by-two starting with lowest-cardinality
inputs while maintaining counters, prune results as early
as possible.

LOOPED novel § 6.2 Allocates T temporary bitmaps corresponding to the
count values 1, 2, . . . , T , the first bitmap updates the first
temporary bitmap, the second bitmap updates the first
two temporary bitmaps, and so on.

RBMRG novel, inspired by [13] § 6.3 Using a heap, merge RLE-compressed words.

This paper considers several algorithms for threshold functions over compressed bitmap indexes
(see Table I). Some of these algorithms are novel (LOOPED, W2CTI), whereas other algorithms are
adaptations of known algorithms that had operated over sorted integer lists (SCANCOUNT, MGOPT,
DSK) or over bitmaps (BSTM). (A companion report [8] considers additional algorithms that do
not perform as well, and also considers the use of uncompressed bitmaps.) The theoretical analyses
of these alternatives, summarized in Table III†, suggests that there would be no single best algorithm
for all cases, as the algorithms’ running times depend on different factors. Experiments described
in § 7 confirm this conclusion. Thus one of our contributions is a set of rules for automatically
choosing algorithms.

Our work is organized as follows. In § 2, we formalize the problem. In § 3, we present some
background material and related work. In § 4, we present the queries over database tables that
we use for benchmarking. In § 4.1, we begin our experimental report by showing that using a
bitmap index, albeit naïvely, is better than a full table scan: the indexed version is anywhere from
1.1 to 6 times faster. In § 5 and § 6, we present our various algorithms. Finally, in § 7 we assess
them experimentally and show that one can do significantly better than a naïve approach: up to
1100× better, in one case. Over a large workload that we constructed, we could more than triple
performance.

2. FORMULATION

We take N sorted sets over a universe having r distinct values. For our purposes, we represent
sets as bitmaps using r bits. For example, if N = 2 and r = 8, we might have the sets {1, 4, 5}
and {4, 5, 7} of integers in [0, 8) represented using the bitmaps 00110010 and 10110000, where the
least-significant bit represents the smallest value in the universe (see § 3.1). The notation we use
throughout is described in Table II.

The sum of the cardinalities of the N sets is B: in our example B = 3 + 3 = 6. The cardinality of
a set is also given by the number of 1s in the corresponding bitmap. (By extension, the cardinality of
a bitmap is the number of 1s it contains.) Therefore, the value B is also the total number of 1s in all
bitmaps. We apply a threshold T (1 ≤ T ≤ N ), seeking those elements that occur in at least T sets

†The notation used throughout can be found in Table II.
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Figure 1. Solution to a threshold query with T = 2 over N = 3 bitmaps.

Name City
John Montreal
Peter Montreal
Jack Toronto
Jack Toronto
Jill Toronto
Lucy Paris
Mary Toronto

→

Montreal︷ ︸︸ ︷
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0
0
0
1
0


Figure 2. Bitmap index of the attribute City.

(see Fig. 1). Because the cases T = 1 and T = N correspond to intersections and unions, which are
well understood, we assume that 2 ≤ T ≤ N − 1. These queries are often called T -overlap [14, 15],
T -occurrence [9, 16] or T -threshold [11, 17] queries.

We can map a T -overlap query to a query over bitmaps using a Boolean threshold function:
given N bits, the T -threshold function ϑ(T, {b1, . . . , bN}) returns true if at least T bits are true;
it returns false otherwise. For example, given T = N , such a function would just be a logical
conjunction (AND) and given T = 1, it would be a logical disjunction (OR). That is, we have
ϑ(N, {b1, . . . , bN}) = b1 ∧ · · · ∧ bN and ϑ(1, {b1, . . . , bN}) = b1 ∨ · · · ∨ bN .

A (unary) bitmap index over a table has as many bitmaps as there are distinct attribute values
(see Fig. 2). Each attribute value (say value v of attribute a) has a bitmap that encodes the set of
row IDs that satisfy the predicate a = v. A T -overlap query seeks row IDs that satisfy at least T of
N predicates. Since each predicate is encoded as a bitmap, we need to compute a bitwise threshold
function over the N chosen bitmaps.

Threshold functions are a subset of the symmetric Boolean functions (see § 3.2). They include
the majority function: given N bits, the majority function returns true when 1 + bN/2c or more
bits are true, and it returns false otherwise. We can compute the majority function as any other
threshold function. Other potentially useful generalizations include setting up a maximum (no more
than T bits are set) or setting a range (the number of set bits is in [T1, T2]). They can be rewritten
in terms of threshold functions: e.g., we can determine whether at most T bits are set by evaluating
ϑ(N − T, {¬b1, . . . ,¬bN}). We do not consider such generalizations further.

We denote the processor’s native word length as W (typically‡ W = 64). An uncompressed
bitmap will have dr/W ewords; givenN bitmaps, there areNdr/W ewords. To simplify, we assume
logN < W < r as well§ as log r ≤W , which would typically be the case in the applications we
envision. Also, we assume that B ≥ N , which would be true if there is no bitmap containing only
0s: such empty bitmaps could be virtually deleted without harm.

‡Common 64-bit PCs have SIMD instructions that work over 128-bit (SSE and AVX), 256-bit (AVX2) or 512-bit
(AVX-512) vectors. These instructions might be used automatically by compilers and interpreters. Other general purpose
processors in embedded or mobile devices sometimes have a 32-bit word size.
§In this paper, logn means log2 n.
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Table II. Notation used in analyses.

Symbol Meaning

Ai or Bi ith bitmap
|Bi| number of 1s in ith bitmap
Bi[j] value of the jth bit in the ith bitmap
B

∑
i |Bi|

B′ number of 1s not in the T − 1 largest bitmaps
EWAHSIZE storage size in bytes of a collection of compressed bitmaps
N Number of bitmaps in the query
r length of bitmaps (largest index covered)
RUNCOUNT number of runs of 0s and 1s in a collection of bitmaps
T Minimum threshold
ϑ(T, {b1, . . . , bN}) threshold function over bits bi
W machine word size
⊕, XOR exclusive or
∧, AND logical and
∨, OR logical or
¬, NOT logical negation

Table III. Time and memory complexity of threshold algorithms over RLE-compressed bitmap indexes.

Algorithm Time complexity Memory Comment

SCANCOUNT O(r +B) O(r) Efficient access pattern
MGOPT O(B′(log(N − T ) + T ) +B −B′) O(N) Pruning can reduce B
DSK O(B′(log(N − T ) + T ) +B −B′) O(N) Pruning can reduce B′ & B
BSTM O(Nr/W × logN) O(logN × r/W ) Note 1

W2CTI O(B(N − T )) O(B)
LOOPED O(NTr/W ) O(Tr/W ) Note 2

RBMRG O(RUNCOUNT × logN) O(N)
1 O(N logN) basic bitmap operations are used, producing temporary results. There are O(logN)

temporaries live at any time. An O(Nr/W × logN) time bound ignores any benefits of compression for
storage or processing.

2 Fewer than 2NT basic bitmap operations are used, and T temporary bitmaps are used. The bounds shown
ignore compression’s benefits.

Our focus is on algorithms that run in main memory; we assume that the N bitmaps involved in
the threshold query have already been read into main memory. Our memory bounds in Table III are
based on the additional working memory required, not including the input and output.

A lower bound (and beating it): Towards a lower bound for the problem, note that if the output
indicates that X entries meet the threshold, at least TX 1s have been observed in the input. If
each such observation triggers Ω(1) work (as it does with SCANCOUNT (§ 5.1), when a counter
is incremented), this implies an Ω(TX) lower bound. Barbay and Kenyon [11] have established a
data-dependent lower bound for the problem, assuming the data is presented in sorted arrays and
using a model where comparisons are the only allowed operations on array elements. However,
both bounds leave open the possibility of using parallelism. One such approach, parallelization of
SCANCOUNT on GPUs, is described by Li et al. [14]. We can use bit-level parallelism (readily
available in bitmap inputs) to process several events per machine operation. (See § 5.3 and § 6.2.)
The bounds also leave open the possibility of using Run Length Encoding (RLE), whereby many
consecutive events can be succinctly represented and processed together. Our compressed bitmap
inputs are suitable for such an approach: see § 6.3.
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3. BACKGROUND AND RELATED WORK

We review some key concepts on compressed bitmaps, Boolean circuits, and Boolean functions—
especially symmetric and threshold functions.

3.1. Bitmaps

We find bitmap indexes in several database systems, going as far back as the MODEL 204 database
engine, commercialized in 1972 [18]. Most commonly, a bitmap index associates a bitmap (also
called bitset or bit vector) with every attribute value v of every attribute a; the bitmap represents the
predicate a = v. In the example of Fig. 2, we see that we could identify all rows where the value
of the attribute is either Montreal or Toronto by computing the bitwise OR between two bitmaps.
Such bitwise operations can be computed quickly by most processors. In an experimental evaluation
using the Oracle database system, Sharma found that a bitmap index is preferable to a B-tree when
the data is infrequently updated [19].

We consider compressed and uncompressed bitmaps. The density of a bitmap is the fraction of its
bits that are 1s. A bitmap with low density is sparse, and such bitmaps arise in many applications.
A bitmap with density closer to 1 (perhaps 5 % or more) is dense.

Uncompressed Bitmaps An uncompressed bitmap represents a sorted set S over {0, 1, . . . , r − 1}
using b(r +W − 1)/W c consecutive words. The W bits in the first word record which values in
[0,W − 1] are present in S. The bits in the second word record the values in [W, 2W − 1] that are in
S, and so forth. Within a word, the least-significant bit represents the smallest value. For example,
the set {1, 2, 7, 9} is represented as 10000110 00000010 with W = 8. The first word (10000110)
represents the first 3 integers ({1, 2, 7}) whereas the second word (00000010) is used to store
the value 9. The density is 4

16 . The exact mapping between integers and the bits within a word
is unimportant, as long as it is always consistent (e.g., {1, 2, 7} could be written as 10000110 or
01100001). The number of 1s is always equal to the cardinality of the set.

Uncompressed bitmaps have the advantages of a fixed size (updates do not change the size) and
an efficient membership test. However, if r is large, the bitmap occupies many words and uses much
memory—even when representing a small set (B � r).

Compressed Bitmaps In a bitmap, there are runs of consecutive 0s and runs of consecutive 1s.
The number of such runs is called the RUNCOUNT of a bitmap, or of a collection of bitmaps [20].
For example, in the bitmap index illustrated by Fig. 2, there are 2 + 4 + 3 = 9 runs. In the unary
bitmap index of an attribute containing N distinct attribute values, given that there are r rows, the
number of runs must be between 3N − 2 and 2r +N − 2. Correspondingly, for r � N , the average
length of the runs is between ≈ r/3 and ≈ N/2. In many situations where bitmaps are generated,
we expect to find many long runs (e.g., with length greater than W ).

Though there are alternatives [21], the most popular compression techniques are based on the
(word-aligned) RLE compression model inherited from Oracle (BBC [1]): WAH [22], Concise [23],
PLWAH [24], EWAH [13], COMPAX [25], VAL-WAH [26], among others. The r bits of the bitmap
are partitioned into sequences of W ′ consecutive bits, where W ′ ≈W depends on the technique
used; for EWAH, W ′ = W ; for WAH, W ′ = W − 1. When such a sequence contains only 1s or
only 0s, it is a fill word, otherwise it is a dirty word. For example, using W ′ = 8 , the uncompressed
bitmap 0000000001010000 contains two words, a fill word (00000000) and a dirty word (01010000).
Techniques such as BBC, WAH or EWAH typically use special marker words to compress long
sequences of identical fill words. When accessing these formats, it may be necessary to read every
compressed word to determine whether it indicates a sequence of fill words, or a dirty word. The
EWAH format [13] supports a limited form of skipping because it uses marker words not only to
mark the length of the sequences of fill words, but it also uses these markers to indicate the lengths
of the sequences of consecutive dirty words. Because of this feature, one can skip sequences of dirty
words when using EWAH.
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Though there are many good compressed formats to choose from, we have picked EWAH. In a
benchmark between various formats where the authors used our implementation (the JavaEWAH
library [27]), Guzun et al. [26] found that “Although EWAH does not compress well, (. . . ) it offers
the best query time for all distributions.” Moreover, EWAH is used in a major data database system
(Apache Hive). We refer the reader to previous work for the exact format specification [13].

Compressed bitmaps are often appropriate for storing sets that cannot be efficiently handled by
uncompressed bitmaps. For instance, consider the bitmap consisting of a million 0s followed by a
million 1s. This data has two runs (RUNCOUNT = 2) but a million 1s. It can be stored using EWAH
in only a few words.

However, some RLE compressed bitmaps are not efficient for storing extremely sparse data that
does not have dense clusters. For instance, consider EWAH: sparse data with very long runs of 0s
between elements will result in a marker word and a dirty word for each 1 bit. Because EWAH
uses 64-bit words by default, we would use 128 bits per element. This would be less efficient
than explicitly listing the set elements (e.g., 32 bits) by a factor of 4. Observe, however, that using
(compressed) bitmaps for such sets is likely inefficient in any case: bitmaps are efficient due to
bit-level parallelism when there are many words containing a mix of 1s and 0s.

Software libraries for compressed bitmaps will typically include an assortment of basic Boolean
operations that operate directly on the compressed bitmaps. One would expect to find operations
for AND, OR, and often one finds XOR, ANDNOT, and NOT. EWAH, like most other RLE-based
formats, allows the operations AND, OR, XOR and ANDNOT between two compressed bitmaps
(B1 and B2) to execute in time O(EWAHSIZE(B1) + EWAHSIZE(B2)). Moreover, the output
of such an aggregate has compressed size bounded by the size of the input (EWAHSIZE(B1) +
EWAHSIZE(B2)). (For AND, the output is bounded by min(EWAHSIZE(B1), EWAHSIZE(B2)).)

Some libraries support only binary operations, whereas others support wide queries: for instance,
a wide AND would allow us to intersect four bitmaps in a single operation, rather than having
to AND bitmaps together pairwise. Explicit support for wide operations can allow for better
performance [28]. Threshold functions are wide queries when N > 2.

Our complexity analysis (Table III) assumes that we can iterate over the 1s in a compressed bitmap
in Θ(1) time each. We can indeed iterate over the 1s in a compressed EWAH bitmap quickly. Runs
of fill words are not problematic: e.g., 64-bit EWAH uses 32-bit counters for the length of such runs,
so runs of up to 232 × 2W identical bits can be marked with a single marker word. Moreover, we can
also extract 1s from dirty words quickly. In Java, we can use the Long.numberOfTrailingZeros
function and a simple loop: this function is commonly compiled to efficient machine instructions by
the JVM (e.g., bsr on Intel and AMD processors).

3.2. Boolean Functions and Circuits

A Boolean function is a function of the form f : {0, 1}k → {0, 1}. For relevant background on
Boolean functions, see Knuth [29]. A Boolean circuit over some basis (e.g., AND, OR, NOT) is a
directed acyclic graph where each vertex is either a basis function or an input, and where some of
the vertices are outputs. Boolean functions can be computed by Boolean circuits. As discussed in
§ 2, some Boolean functions are symmetric. These functions are unchanged under any permutation
of their inputs. I.e., a symmetric function is completely determined if one knows the number of 1s
(the Hamming weight) in its inputs. An example symmetric function outputs 0 ⇐⇒ the Hamming
weight of its inputs is a multiple of 2: this is the XOR function.

3.3. Threshold Functions

Threshold functions, in the guise of T -overlap queries, have been used for approximate searching.
Specifically, Sarawagi and Kirpal [10] show how to avoid unnecessary and expensive pairwise
distance computations (such as edit-distance computations) by using threshold functions to screen
out items that cannot be approximate matches. Their observation was that strings s1 and s2 must
have many (T ) q-grams in common, if they have a chance of being approximate matches to one
another. Given s1 and seeking suitable s2 values, we take the set of q-grams of s1. Each q-gram



COMPRESSED BITMAP INDEXES: BEYOND UNIONS AND INTERSECTIONS 7

is associated with a set of the words (more specifically, with their row IDs) that contain that q-
gram at least once. Taking these N sets, we use a threshold function to determine values s2 that
can be compared more carefully against s1. Using q-grams, Sarawagi and Kirpal showed that
T = |s1|+ q − 1− kq will not discard any string that might be within edit distance k of s1. In
applications where k and q are small but the strings are long, this will create queries where T ≈ N .
(Similar formulae are known for Jaccard, cosine and dice similarities [9, 10].)

Closely related to T -overlap queries, we have Opt-threshold queries [11, 30]. In these queries, T is
unspecified: the algorithm is responsible for choosing the largest threshold value that leads to a non-
empty result. We could further generalize such queries by asking for the largest value T such that
the result of the T -overlap query contains at least K elements. “Top-K” versions of the problem [7]
are closely related, but are not symmetric bitwise Boolean operations—if the Opt-threshold result
yields two elements, a top-1 query will return only one of them, despite both meeting the same
threshold.

4. ADVANCED QUERIES

To obtain results that correspond to a practical applications of bitmap indexes, we focus on using
threshold functions over bitmap indexes to answer two different types of queries, Many-Criteria
queries and Similarity queries.

Many-Criteria Queries: The first type of query has a set of criteria, and we are seeking those
records that meet some minimum number of the criteria, but perhaps not all. E.g., consider a query
that might be typical of some human-resources system (in pseudo-SQL).

SELECT * FROM table WHERE Gender="F" AND
(City="Montreal" OR City="Vancouver") AND
experience >=24 AND education >= college;

If it corresponds to an application where we filter job candidates, maybe applying all constraints at
once could lead to a small (or empty) result set. Or maybe we want to include exceptional candidates
who fail to satisfy a few conditions. So we are willing to relax the constraint somewhat, by maybe
requiring that only three of the constraints hold, as in the following example.

SELECT * FROM table WHERE
CASE WHEN Gender="F" THEN 1 ELSE 0 END

+ CASE WHEN City="Montreal" THEN 1 ELSE 0 END
+ CASE WHEN City="Vancouver" THEN 1 ELSE 0 END
+ CASE WHEN experience >=2 THEN 1 ELSE 0 END
+ CASE WHEN education >= college THEN 1 ELSE 0 END

>= 3;

Similarity Queries: The second type of query presents a prototypical item. We determine the
criteria that this item meets, and then seek all items that meet (at least) T of these criteria. For
example, if a user liked a given movie, he might be interested in other similar movies (e.g., same
director, or same studio, or same leading star, or same date of release). As part of a recommender
system, we might be interested in identifying quickly all movies satisfying at least T of these criteria.
This might be viewed as setting a threshold on the Hamming distance between tuples.

Once the criteria have been defined, SQL can handle the rest of the query, as in the previous
example. Critchley [31] proposes an alternative SQL-only solution using joins and SQL aggregation.
We consider the evaluation of such external-memory approaches outside our current scope.
Similarity queries have been used with approximate string matching [9, 10]. In this case, items
are small chunks of text, and the occurrence of a particular 3-gram (a sequence of 3 consecutive
letters) is a criterion. In that previous work, an index maps each 3-gram to a sorted list of integers
that specify the chunks of text containing it. More recent work by others [32, 33] solves similar
problems using bitmaps, one for each 2-gram.
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Algorithm 1 Row-scanning approach over a row store.
Require: A table with D attributes. A set κ of N ≤ D attributes, and for each such attribute a

desired value. Some threshold T .
1: Create an initially empty set s
2: for each row in the table do
3: counter c← 0
4: for for each attribute k in κ do
5: if attribute k of the row has the desired value then
6: increment c
7: if c ≥ T then
8: add the row (via a reference to it) to s
9: return the set of matching rows, s

A generalization of a Similarity query presents several prototypical items, then determines the
criteria met by at least one of them. We then proceed as before, finding all items in the database that
meet at least T of the criteria. If there are n prototypes, we have a “Similarity(n)” query.

Assuming one has a bitmap index, can one answer Many-Criteria and Similarity queries better
than using the row-scan that would be done by a typical database engine? One of our contributions
is to show that it is indeed the case. In § 4.1, we show that a simple bitmap-based algorithm
(SCANCOUNT, see § 5.1) is able to outperform a row scan (e.g., by a factor of 6). Then in § 7
we show that other bitmap-based algorithms can outperform this simple approach (SCANCOUNT),
sometimes by hundreds of times.

4.1. An index is better than no index

Could a simple T-occurrence query can be more effectively answered without using a bitmap index?
Before continuing our investigation with various novel algorithms, we want to establish that bitmap
indexes can accelerate some T-occurrence queries. Our purpose is merely motivational: detailed
experiments, including a description of our queries and datasets is given in § 7.

As a reference, we use a full table scan (see Algorithm 1), where the table is stored in RAM. To
test the basic usefulness of a bitmap index, we use a simple algorithm (SCANCOUNT, see § 5.1 for
details): we create an array of r counters initialized to zero. Then the bits of each bitmap are scanned
in sequence, one bitmap at a time. When a 1-bit is found, the corresponding counter is incremented.
The algorithm concludes with a full scan of the all counters.

We made 30 trials, on each of the datasets CensusIncome, Weather and TWEED. These are
described in § 7.2 and have 42, 19 and 53 attributes, respectively. We randomly chose one value
per attribute and randomly chose a threshold between 1 and the number of attributes, exclusively.
This query corresponds to a Many-Criteria query. Table IV shows that using an EWAH index for
this query was 4–6 times faster than scanning the table. The advantage persisted, but was smaller,
when we did a Similarity query against a randomly chosen row. It is reassuring that a bitmap index
using SCANCOUNT answered our queries faster than they would be computed from the base table.
It remains to determine whether we can surpass SCANCOUNT. Section 7 shows that two algorithms
can run at least 1000× faster than SCANCOUNT on certain queries, although speedups of 3× to 5×
seem more typical.

5. EXISTING APPROACHES FOR THRESHOLD FUNCTIONS

We next present several different approaches to computing threshold functions that have been
proposed in the literature. Several generalize to handle all symmetric functions, and several can
be modified to solve Opt-threshold queries.
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Table IV. Total time (ms) required for queries in our workload.
Top: Many-Criteria query. Bottom: Similarity query.

CensusIncome Weather TWEED

EWAH SCANCOUNT 109 201 6
Row Scan (no index) 487 1212 23

Row Scan/SCANCOUNT(%) 450 600 380

EWAH SCANCOUNT 327 508 20
Row Scan (no index) 557 1344 22

Row Scan/SCANCOUNT(%) 170 260 110

5.1. Counter-based approaches

In information retrieval, it is common practice to solve threshold queries using sets of counters [34].
The simple SCANCOUNT algorithm of Li et al. [9] (previewed in § 4.1) uses an array of counters,
one counter per item. The input is scanned, one bitmap at a time. If an item (as a bit set to 1) is seen
in the current bitmap, its counter is incremented. A final pass over the counters can determine which
items have been seen at least T times. In our case, items correspond to positions in the bitmap. If the
maximum bit position is known in advance, if this position is not too large, and if one can efficiently
iterate over the bit positions in a bitmap, then SCANCOUNT is easily implemented. These conditions
are frequently met when the bitmaps represent the sets of row IDs in a table that is not exceptionally
large.

SCANCOUNT is part of a family of counter-based approaches that have the characteristic that
they count the occurrences of each item. They can handle arbitrary symmetric functions, since one
can provide a user-defined function mapping [0, N ] to Booleans. However, some counter-based
approaches can be optimized specifically to compute threshold functions (see § 6.1).

To analyze SCANCOUNT, note that it uses Θ(r) counters. We assume N < 2W , so each counter
occupies a single machine word. Even if counter initialization can be avoided (see Li et al. for
details) the algorithm compares each counter against T . Also, the total number of counter increments
is B. Together, these imply a time complexity of Θ(r +B) and a space complexity of Θ(r). Aside
from the effect of N on B (on average, a linear effect), note that this algorithm does not depend
on N . (Li et al. [9] also present an alternative SCANCOUNT algorithm that generates an unsorted
list in O(B) time. Generating a RLE-compressed bitmap would require sorting this output, and this
could be a major overhead for queries with large outputs. Thus we do not consider this variation.)

The SCANCOUNT approach fits modern hardware well: the counters are accessed in sequence,
during the N passes over them when they are incremented. Experimentally, we found that using
8-bit byte counters when N < 128 usually brought a small (perhaps 15 %) speed gain compared
with 32-bit int counters. Perhaps more importantly, this also quarters the memory consumption of
the algorithm. One can also experiment with other memory-reduction techniques: e.g., if T < 128,
one could use a saturating 8-bit counter. Experimentally, we found that the gains usually were less
than the losses that come from the additional conditional check required to ensure saturation. Based
on our experimental results, the SCANCOUNT implementation used in § 7 switches between byte,
short and int counters based on N , but does not use the saturating-count approach.

SCANCOUNT fails when the bitmaps have extreme r values. If we restrict ourselves to bitmaps
that arise within a bitmap index, this implies that we have indexed a table with an extreme number
of rows. However, instead of using r counters, we could use a small number and effectively partition
the problem: choose a fixed number of counters r′ and execute SCANCOUNT dr/r′e times, always
reusing the same counters. We exploit this idea in § 6.3 with the RBMRG scheme.

It is easy to obtain an Opt-Threshold algorithm: SCANCOUNT begins as usual and obtains the r
counters. T is the maximum value in the counters, and the algorithm then returns those elements
whose counters equal T .
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5.2. T-occurrence algorithms for integer sets

Prior work [9, 10] has studied the case when the data is presented as sorted lists of integers rather
than bitmaps. We consider the following T-occurrence algorithms: WHEAP [10], MGOPT [10, 11],
and DSK [9]. For full details of these algorithms, see the papers that introduced them. All can be
viewed as modifications to the basic WHEAP approach. This approach essentially uses anN -element
min-heap that contains one element per input. Using the heap, it merges the sorted input sequences.
As items are removed from the heap, we count duplicates and thereby know which elements had
at least T duplicates. This approach can be generalized to compute any symmetric function, but it
requires that we process the 1s in each list, inserting (and then removing) the position of each into
an N element min-heap. The total time cost is thus O(B logN) for sorted lists.

The WHEAP approach has been shown to have worse performance than MGOPT or DSK [8, 9, 10]
and thus is not considered further.

The remaining algorithms are also based around heaps (MGOPT and DSK), but they are designed
to exploit characteristics of real data, such as skew, that allow us to skip certain input elements.
In contrast with other algorithms (e.g., WHEAP, RBMRG and SCANCOUNT), MGOPT and DSK
do not generalize to arbitrary symmetric functions because such functions preclude skipping any
input. This is illustrated by the (wide) XOR function, whose output always depends on all input
bits—knowing all but one input bit is never enough to determine the output.

Algorithm MGOPT: Sarawagi and Kirpal’s MGOPT algorithm [10] sets aside the largest
T − 1 inputs. Any item contained only in these inputs cannot meet the threshold. Then it uses an
approach similar to WHEAP with threshold 1 on the smallestN − T + 1 inputs. For each item found
in the smallest inputs, say with count t, the algorithm checks whether at least T − t instances of the
item are found in the largest T − 1 inputs. The items are checked in the largest inputs in ascending
sequence. If one of the largest inputs is checked for occurrence of item x, and the next check is for
the occurrence of item y, we know that y > x. Items between x and y in the big input will never be
needed, and can be skipped over without inspection. Whereas we use bitmaps as inputs, Sarawagi
and Kirpal use sorted lists of integers as inputs. Thus they can use a doubling/bootstrapping binary
search to find the smallest value at least as big as y, without needing to scan all values between x
and y. The portions skipped have been pruned.

As noted in § 3.1, providing random access is not a standard part of a RLE-based compressed
bitmap library, although it is essentially free for uncompressed bitmaps. However, with certain
compressed bitmap indexes one can “fast forward”, skipping portions of the index in a limited way:
the JavaEWAH library [27] uses the fact that we can skip runs of dirty words (e.g., when computing
intersections).

To bound the running time, we can distinguish the B −B′ 1s in the T − 1 largest bitmaps
from the B′ 1s in the remaining N − T + 1 bitmaps. A heap of size O(N − T + 1) is made
of the N − T + 1 remaining bitmaps, and O(B′) items will pass through the heap, at a cost of
O(log(N − T + 1)) each. As each item is removed from the heap, it will be sought inO(T ) bitmaps.
Because the items sought are in ascending order, the T − 1 bitmaps will each be processed in a
single ascending scan that handles all the searches. Each of the B −B′ 1s in the remaining bitmaps
should cost us O(1) effort. Thus we obtain a bound of O(B′(log(N − T + 1) + T ) +B −B′) =
O(B′(log(N − T ) + T ) +B −B′) for the time complexity of MGOPT.

A similar algorithm was earlier presented by Barbay and Kenyon [11]. Any input may appear
in their heap, but at any time there will be T − 1 inputs that are not in the heap. Setting
aside the largest items (as with Sarawagi and Kirpal) seems like a useful enhancement. Indeed,
consider our complexity bound of O(B′(log(N − T ) + T ) +B −B′): each of the B′ elements
has a multiplicative cost factor of log(N − T ) + T whereas each of the other B −B′ elements
has a cost factor of 1. This reflects the fact that the B′ elements are stored in a heap whereas the
B −B′ elements are merely accessed sequentially. Thus we prefer to minimize B′, which is done
by setting aside the largest bitmaps.

Our analysis does not take fully into account the effect of pruning, because we might be able to
skip many of the B −B′ 1s as we search forward through the largest T − 1 bitmaps. Since these are
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the largest bitmaps, if T is close to N or if the sizes (number of 1s) in the bitmaps vary widely,
pruning could make a large difference. This depends on the data. Barbay and Kenyon present
a detailed running-time analysis (with input as sorted integer lists) in terms of a “t-alternation”
parameter for the problem instance. It matches their comparison-based lower bound for the problem
in many cases, and in all cases it is within a factor of O(log(N − T + 1)) of the optimal complexity.

Barbay and Kenyon also describe how to obtain an Opt-threshold algorithm from any T -overlap
algorithm by successively trying T = N , T = N − 1, . . . until a non-empty answer is obtained.
Although naïve, the empty T -overlap queries have a predictable cost for MGOPT (no worse than
the final query), whereas a binary search for T may make some more expensive queries.

Algorithm DSK: Algorithm DSK is essentially a hybrid of MGOPT and another pruning
algorithm called MERGESKIP. MERGESKIP [9] is like WHEAP except that, when removing copies
of an item from the heap, if there are not enough copies to meet the threshold, we remove some
extra items. This is done in such a way that the extra items removed (and not subsequently re-
inserted) could not possibly meet the threshold. (MERGESKIP is not described further here, because
its performance is worse than DSK [8, 9]). Algorithm DSK processes the heap as in MERGESKIP,
while it sets apart the largest bitmaps as in MGOPT. However, rather than following MGOPT and
always setting apart the T − 1 largest sets, it chooses theL largest sets whereL is a tuning parameter.
Li et al. determine another tuning parameter µ experimentally, for a workload of queries against a
given dataset. From µ and the length of the longest input, Li et al. use a heuristic formula for L (see
§ 7.3). With a suitable L, we would not expect DSK to perform significantly worse than MGOPT.

Our running-time complexity bound for DSK is identical to that for MGOPT, and based on the
same reasoning that ignores pruning. We cannot easily account for the pruning opportunities that
DSK inherits from MERGESKIP and MGOPT. However, as with MGOPT, data-dependent pruning
could reduce the B −B′ term. As with MERGESKIP, the multiplicative B′ factor can be reduced by
data-dependent pruning [8].

Considering memory, note that MGOPT and DSK partition the inputs into two groups. Regardless
of group, each compressed bitmap input will have an iterator constructed for it. The first group also
go into a heap that accepts one element per input. Thus we end up with a memory bound of O(N).

5.3. Boolean synthesis

A typical bitmap implementation provides a set of basic operations, typically AND, OR, NOT,
XOR and sometimes ANDNOT¶. Since one can synthesize any Boolean function using AND, OR
and NOT operations in combination, any desired bitwise bitmap function can be “compiled” into a
sequence of primitive operations. For instance, the threshold functions over individual bits are, for
N = 3,

• (T = 1) ϑ(1, {b1, b2, b3}) = b1 ∨ b2 ∨ b3,
• (T = 2) ϑ(2, {b1, b2, b3}) = (b1 ∧ b2) ∨ (b2 ∧ b3) ∨ (b1 ∧ b3),
• (T = 3) ϑ(2, {b1, b2, b3}) = b1 ∧ b2 ∧ b3.

As a bitwise operation over EWAH bitmaps B1, B2 and B3, we have the corresponding Java
expressions:

• (T = 1) EWAHCompressedBitmap.or(B1,B2,B3),
• (T = 2) EWAHCompressedBitmap.or(B1.and(B2), B2.and(B3), B1.and(B3)),
• (T = 3) EWAHCompressedBitmap.and(B1,B2,B3).

Of course, these are examples: several Boolean expressions are equivalent to a given
threshold function, and some are more efficient than others. For example, we can also write

¶The x86 extensions SSE2 and AVX2 support AND NOT, as do several bitmap libraries (EWAH included). Specifically,
Intel has the pandn and vpandn instructions; however it does not appear the standard x86 instruction set has a
corresponding instruction.
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2
1
3
1
0
3
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→

A1︷ ︸︸ ︷

0
1
1
1
0
1
0



A2︷ ︸︸ ︷

1
0
1
0
0
1
1


Figure 3. Example of a bit-sliced index [12].

ϑ(2, {b1, b2, b3}) = (b2 ∧ (b1 ∨ b3)) ∨ (b1 ∧ b3)—saving one Boolean operation over the alternative
((b1 ∧ b2) ∨ (b2 ∧ b3) ∨ (b1 ∧ b3)).

In § 5.3.1 and 6.2 we introduce threshold algorithms BSTM and LOOPED that synthesize the
desired bitmap function from standard bitmap operations (binary AND, OR, XOR, and ANDNOT
operations). One major advantage is that this approach allows us to use a bitmap library as
a black box, although it is crucial that the primitive operations have efficient algorithms and
implementations. O’Neill and Quass [12] and Rinfret et al. [7] implicitly used this idea when doing
arithmetic and comparison operations bitwise over a bit-sliced index. They note the opportunities
for bit-level parallelism that arise. For example, the expression ϑ(2, {b1, b2, b3}) = (b1 ∧ b2) ∨ (b2 ∧
b3) ∨ (b1 ∧ b3) can actually compute 64 thresholds using only 5 bitwise operations on a 64-bit
architecture. Without bit-level parallelism, we would need at least 3× 64/2 = 96 binary operations
so that each input is used once: the benefits of bit-level parallelism are at least a factor of 96/5 = 19.2
in this case.

Unfortunately, it is computationally infeasible to determine the fewest required primitive
operations that realize a desired Boolean function, except in the simplest cases [29]. In any case, for
RLE compressed bitmaps, the relative costs of the primitive operations depend on the data.

5.3.1. Adding: The BSTM algorithm. Rinfret et al. [7] used the Boolean synthesis approach to
solve a problem closely related to thresholding. In their information-retrieval problem, one seeks
the top k documents that best match a set of keywords. The input is provided as a collection of
bitmaps, one bitmap for each keyword. Set bits in a bitmap indicate the presence of the keyword in
a document. The result of the query is a bitmap with k bits set.

While the “top-k” aspect means that the required computation is not a bitwise Boolean function,
their method of solution can be adapted to solve our threshold problem, leading to the following
algorithm, BSTM.

The algorithm begins with a Boolean bitwise function that views each of the N input bitmaps
as representing a vector of single-bit numbers. Conceptually, these vectors of single-bit numbers
are successively added (pointwise) to an accumulator vector whose entries may eventually grow to
require Θ(logN) bits each. The multi-bit accumulator is represented as a “bit-sliced index” [12], a
collection of bitmaps A1, A2, . . . , Ablog 2Nc, where bitmap A1 stores the least-significant bits of the
totals,A2 stores the next-least-significant bits, and so forth (see Fig. 3). The totals can be considered
to give the bitwise Hamming weight of the inputs; see Fig. 4. We express a Hamming weight using
blog 2Nc bits, the minimal number of bits required to write N in binary form.

(Successive addition into an accumulator is not necessarily the best approach to adding N 1-bit
numbers to obtain blog 2Nc-bit Hamming weights. It is also possible [8] to use a balanced binary
tree of adders, a “carry-save” adder approach [35], or (perhaps best) a “sideways-sum” circuit
presented by Knuth [29, 7.1.2]. However, we choose to present the approach that most closely
resembles the published BSTM algorithm.)

Once we have the Hamming counts, we need to check them to see which meet threshold T .
For this, we can simplify the Range Predicate computation for bit-sliced indexes, Algorithm 4.2
of O’Neil and Quass [12]. Rather than check for ≥ T , we do a greater-than comparison against
T − 1. In Fig. 4, for T = 2 we should compute the bitmap 1010. . . , since the Hamming counts of
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Inputs Hamming weight Outputs
B1 B2 B3 A2 A1

0 1 1 0 + 1 + 1 = 2 1 0
0 0 1 0 + 0 + 1 = 1 0 1
1 1 1 1 + 1 + 1 = 3 1 1
1 0 0 1 + 0 + 0 = 1 0 1

...
...

...

Figure 4. Computing the bitwise Hamming function.

the first and third rows exceed 2− 1: 102 > 1, 012 6> 1, 112 > 1 and 012 6> 1. (Again, it is possible
to improve somewhat on the number of bitmap operations [8], but we choose to use the previously
published algorithm, specialized to compute only greater-than.)

The BSTM algorithm is presented in Algorithm 2. The correctness of the computations of
Hamming counts and greater-than have been previously established [7, 12].

We can illustrate the algorithm as follows:

1. Suppose we begin with three bitmaps: B1 = 0011, B2 = 1010, B3 = 1110. Before the main
loop of the algorithm, we have A1 = B1 = 0011 and A2 = 0000.

2. During the first pass through the main loop (i = 2), we first computeC = 1010 ∧ 0011 = 0010
and A1 = 1010⊕ 0011 = 1001. Because C is not empty, we further need to update A2 to
0010. We now have jmax = 2.

3. During the second pass through the main loop (i = 3), we first set C = 1110 ∧ 1001 =
1000 and A1 = 1110⊕ 1001 = 0111. Because C is not empty, we have to update A2 to
1000⊕ 0010 = 1010.

4. At the end of the main loop, we have A1 = 0111 and A2 = 1010 with jmax = 2.
5. Suppose that the threshold is T = 2, then the last loop in the algorithm runs from 2 to 1.

When j = 2, we set bgt = A2 = 1010 and beq = ¬A2 = 0101. When j = 1, we set beq =
0101 ∧ 0111 = 0101. The final answer is 1010.

To analyze the number of bitmap operations, we consider the following worst-case situation. The
first item occurs in every bitmap and hence has a Hamming count of N . The second item occurs
in every bitmap except the first, and in general the ith item, for 1 ≤ i ≤ N , occurs in all bitmaps
except for the first i− 1. With this worst case, the first for loop iteratesN − 1 times, doing 2 bitmap
operations before beginning the while loop. On beginning the ith iteration, the items have Hamming
counts ranging from 0 to i− 1; in particular, some have Hamming counts with Θ(log i) trailing
1s. Thus there will be Θ(log i) other slices where carry propagation (involving two operations) is
done. Together, we have 2(N − 1) +

∑N−1
i=1 Θ(log i) operations to compute the Hamming weights.

This quantity is Θ(N logN), so the number of operations grows more than linearly in N , in
the worst case. There are a few operations required to compare the Hamming weights against
T . In the worst case, jmax = blog 2Nc, and this many iterations are done. Each iteration does 3
bitmap operations (counting ANDNOT as a single operation), except when a bit of T − 1 is 1; in
that case, only 1 bitmap operation is done. If #(T − 1) denotes the Hamming weight of T − 1,
we need 3blog 2Nc − 2#(T − 1) bitmap operations. When N is large, the number of operations
for comparison is inconsequential, due to the Θ(N logN) worst-case cost to compute Hamming
weights. Nevertheless, this algorithm can do very few operations in some cases (approximately 2N
if the maximum Hamming weight is 1 and T > 1).

An Opt-threshold algorithm can be obtained from a bit-sliced index with O(logN) bitmap
operations using ideas from Rinfret et al. [7].

Symmetric functions beyond threshold: We could apply a bit-sliced index to compute general
symmetric functions. One could use the previous approach to compute the blog 2Nc-bit Hamming
weights of the inputs followed by a computation of basic bitmap operations for the corresponding



14 O. KASER, D. LEMIRE

Algorithm 2 BSTM algorithm. Each input bitmap Bi is treated as a bit-slice index encoding 1-bit
numbers.
Require: N bitmaps B1, B2, . . . , BN , a threshold parameter T ∈ {2, . . . N − 1}

1: // A is the bit-slice-index accumulator for the Hamming weights
2: create blog 2Nc empty bitmaps A1, A2, . . . , Ablog 2Nc
3: A1 ← B1

4: jmax ← 1
5: // keep track of the Aj’s being modified
6: // Add remaining bitmaps (1-bit numbers) to the accumulator
7: for i← 2 to N do
8: C ← Bi ∧A1; A1 ← Bi ⊕A1

9: // Propagate carries (C) to other slices
10: j ← 2
11: while C is not empty do
12: C,Aj ← C ∧Aj , C ⊕Aj

13: j ← j + 1
14: jmax ← max(j, jmax)
15: // Compare Hamming weights against T − 1
16: beq ← 1111 · · ·
17: bgt ← 0000 · · ·
18: if jmax < blog(2(T − 1))c then
19: return 0000 · · ·
20: for j ← jmax down to 1 do
21: if bit j is set in T − 1 then
22: beq ← beq ∧Aj

23: else
24: bgt ← bgt ∨ beq ∧Aj

25: beq ← beq ∧ ¬Aj

26: return bgt

test (e.g., is the result between T1 and T2?) in lieu of the > computation making up the second half
of Algorithm 2.

In cases where N is small, we are guaranteed to use few operations. Indeed, Knuth [29, 7.1.2]
observes that since he has calculated the minimum number of operations (12) to realize any 5-
input Boolean function, we can realize any symmetric Boolean function of N ≤ 31 inputs using
no more than 12 + s(N) operations, where s(N) = 5N − 2#(N)− 3blogNc − 3 is the number of
operations that a sideways-sum circuit uses to compute the Hamming weight [29, Prob. 7.1.2.30].
(For instance, if N = 31 we use 5× 31− 2× 5− 3× 4− 3 = 130 operations to compute the
Hamming weight; with at most another 12 we can realize any symmetric function.)

6. NEW APPROACHES FOR THRESHOLD FUNCTIONS

In addition to existing approaches for computing threshold functions, we also propose a few novel
techniques. They can be modified to solve Opt-threshold queries.

6.1. Mergeable-count structures.

A common approach to computing intersections and unions of several sets is to do it two sets at
a time. To generalize the idea to symmetric queries, we represent each set as an array of values
coupled with an array of counters. For example, the set {1, 14, 24} becomes {1, 14, 24}, {1, 1, 1},
where the second array indicates the frequency of each element (respectively). If we are given
a second set ({14, 24, 25, 32}), we supplement it with its own array of counters {1, 1, 1, 1} and
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can then merge the two: the result is the union of two sets along with an array of counters
({1, 14, 24, 25, 32}, {1, 2, 2, 1, 1}). From this final answer, we can deduce both the intersection and
the union, as well as other symmetric operations.

Algorithm W2CTI takes this approach. Given N input bitmaps, it orders them by increasing
cardinality and then merges each input, starting with the shortest, into an accumulating total. (The
merge step is akin to the merge operation in the merge-sort algorithm.) A worst-case input has
bitmaps of equal cardinality, each containing B/N items that are disjoint from any other input. At
the ith step the accumulating array of counters will have Bi/N entries and this will dominate the
merge cost for the step. The total time complexity for this worst-case input is Θ(

∑N−1
i=1 Bi/N) =

Θ(BN). For memory use, the same input ends up growing an accumulating array of counters of
size B.

Algorithm W2CTI refines this basic approach: although it ends up reading its entire input, during
the merging stages it can discard elements that cannot achieve the required threshold. For instance,
we can check the accumulating counters during each merge step. If there are i inputs left to merge,
then any element that has not achieved a count of at least T − i can be removed from consideration
(“pruned”).

In large-threshold cases, this pruning is beneficial. For instance, suppose T = N − τ for some
τ ≥ 1. Any item that has not occurred in one of the first τ + 1 bitmaps will be pruned. As these are
the smallest bitmaps, they can contain no more than (τ + 1)B/N items, and this bounds the size of
the accumulator in any of the N merge operations. The total cost of the merge operations is thus
in O(B +N(τ + 1)B/N) = O(τB) = O((N − T )B). However, pruning is mostly unhelpful with
the worst-case input, if T = 2. We cannot discard any item until the final merge is done, because the
last input set could push the count (currently 1) of any accumulated item to 2, meeting the threshold.
Thus, with T = 2 we find a worst-case time bound of Ω((N − T )B).

6.2. LOOPED algorithm

Given N bitmaps B1, B2, . . . , BN , the LOOPED algorithm (see Algorithm 3) seeks to compute
the threshold problem for all thresholds 1, 2, . . . , T using corresponding temporary bitmaps
C1, C2, . . . , CT . Let us consider a concrete example: B1 = 0011, B2 = 1110 and B3 = 1000 with
T = 2. At first, we process bitmap B1 and get C1 = 0011, C2 = 0000. We then process bitmap
B2 and get C1 = 1111, C2 = 0010. We then process the last bitmap to get C1 = 1111, C2 = 1010.
As with BSTM, the LOOPED approach also combines basic bitmap operations to synthesize the
threshold operation.

Our algorithm uses dynamic programming and is based on the following recurrence
formula: ϑ(T, {b1, b2, . . . , bN}) = ϑ(T, {b1, . . . , bN−1}) ∨ ϑ(T − 1, {b1, . . . , bN−1}) ∧ bN . I.e., we
can achieve a given threshold T over N bits, either by achieving it over N − 1 bits, or by having
a 1-bit for bN and achieving threshold T − 1 over the remaining N − 1 bits. We can use bit-level
parallelism to express this as a computation over bit vectors; loops can compute the result specified
by the recurrence. Although Θ(NT ) bit-vector operations are used, we need only Θ(T ) working
bitmaps during the computation, in addition to our N inputs.

The number of binary bitmap operations is 2NT −N − T 2 + T − 1 and depends linearly on T ,
which is unusual compared with our other algorithms. However, the number of bitmap operations
is not necessarily a good predictor of performance when using compressed bitmaps. It depends on
the dataset.

An Opt-threshold algorithm is easily obtained from LOOPED: first do the calculation with the
maximum permitted value of T— i.e., N or N − 1. Then find the maximum value i such that Ci is
not empty. This algorithm does Θ(N2) bitmap operations, requiring Θ(N2r/W ) time if we assume
bitmap compression is ineffective.
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Algorithm 3 LOOPED algorithm.
Require: N bitmaps B1, B2, . . . , BN , a threshold parameter T ∈ {2, . . . N − 1}

1: create T bitmaps C1, C2, . . . , CT initialized with false bits
2: C1 ← B1

3: for i← 2 to N do
4: for j ← min(T, i) down to 2 do
5: Cj ← Cj ∨ (Cj−1 ∧Bi)
6: C1 ← C1 ∨Bi

7: return CT

B1 B2 Count
→ 0 0 0
→ 0 1 1
→ 1 1 2

1 1 2
1 1 2

→ 0 0 0
→ 0 1 1
→ 0 1 1

Figure 5. Runs, showing positions where new runs begin (and where the current Hamming-weight count
needs to be adjusted).

6.3. Exploiting run-length coding: RBMRG

Algorithm RUNNINGBITMAPMERGE (henceforth RBMRG) is a refinement of an algorithm
presented in Lemire et al. [13]. The simplest form of the algorithm is for bitmaps that have been
run-length encoded; handling word alignment adds additional complexity that is discussed in § 6.4.

See Algorithm 4 and Fig. 5. The approach considers runs as integer intervals, and each bitmap
provides a sorted sequence of intervals. For example, the bitmap B1 = 00111000 might be viewed
as the sequence (bit: 0, range [0, 1]; bit 1, range [2, 4]; bit 0, range [5, 7]).

Heap H enables us to quickly find, in sorted order, those points where intervals begin (and the
bitmaps involved). At such points, we calculate the function on its revised inputs; in the case of
symmetric functions such as threshold, this can be quick. As we sweep through the data, we update
the current count. Whenever a new interval of 1s begins, the count increases; whenever a new
interval of 0s begins, the count decreases. Assuming logN ≤W , the new value of a threshold
function can be determined in Θ(1) time whenever an interval changes. (The approach can be used
with Boolean functions in general, but the complexity analysis might differ.)

Every run passes through a N -element heap, giving a running time of O(RUNCOUNT logN).
One can implement the N required iterators in O(1) space each, leaving a memory bound of O(N).

As an extreme example where this approach would excel, consider a case where each bitmap is
either entirely 1s or entirely 0s. Then RUNCOUNT = N , and in O(N logN ) time we can compute
the output, regardless of r or B.

6.4. Implementing RBMRG with EWAH

The EWAH implementation of RBMRG processes runs of clean words as described, but word
alignment means that we must consider dirty words also. If the interval from a′ to a corresponds to
Nclean bitmaps with clean runs, of which k are clean runs of 1s, the implementation distinguishes
three cases:

1. T − k ≤ 0: the output is 1, and there is no need to examine theN −Nclean bitmaps that contain
dirty words. This pruning will help cases when T is small.
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2. T − k > N −Nclean: the output is 0, and there is no need to examine the dirty words. This
pruning will help cases when T is large.

3. 1 ≤ T − k ≤ N −Nclean: the output will depend on the dirty words. We can do a (T − k)-
threshold over the N −Nclean bitmaps containing dirty words.
We process the N −Nclean dirty words as follows.

(a) If T − k = 1 (resp. T − k = N −Nclean), we compute the bitwise OR (resp. AND)
between the dirty words.

(b) If T − k ≥ 128, we always use SCANCOUNT using 64 counters (see § 5.1).
(c) Otherwise, we compute β, the number of 1s in the dirty words. This can be done

efficiently in Java since the Long.bitCount function on desktop processors is typically
compiled to fast machine code. If 2β ≥ (N −Nclean)(T − k), we use the LOOPED
algorithm (§ 6.2), otherwise we use SCANCOUNT again.

We arrived at this particular approach by trial and error: we find that it gives reasonable
performance.

Like MGOPT and DSK, RBMRG has minimal memory usage (O(N), see Table III). Indeed,
the memory usage of RBMRG does not depend on the length of the bitmaps (r) in contrast to
competitive schemes like SCANCOUNT, BSTM and LOOPED. This might make RBMRG especially
suitable for multicore processing where all cores share the same limited cache memory.

When the bitmaps are poorly compressible, we can view RBMRG as a memory-conscious version
of SCANCOUNT. Indeed, whereas SCANCOUNT uses r counters, RBMRG uses only 64 counters—
constantly recycling them.

The algorithm would be a suitable addition to compressed bitmap index libraries that are RLE-
based; as a result of this work, we have added it to JavaEWAH [27]—the complete implementation
is freely available online.

To illustrate the algorithm, consider the following problem involving 4 bitmaps and a threshold
query with T = 3.

1. Without compression, but in terms of 64-bit words, our 4 bitmaps are
B1 = {0x0, 0x0F, 0x00, 0x00, 0x00, 0x0F, 0x01},
B2 = {0x0, 0xF0F, 0xF· · · F, 0xF· · · F, 0x0F, 0x0F, 0x01} and
B3 = B4 = {0xF· · · F, 0xF· · · F, 0xF· · · F, 0xF· · · F, 0x0F, 0x0F, 0x01}.
When using EWAH compression, we have that B1 contains two runs of fill words (containing
0s and shown underlined) and two runs of dirty words. We have that B2 contains two runs of
fill words, and two runs of dirty words, B3 contains one run of fill words and one run of dirty
words. Finally, B4 is identical to B3.

2. The algorithm considers four runs (one for each bitmap). Initially, it considers a run of 0s from
B1 (of length 1 word), a run of 0s from B2 (of length 1 word), and two other runs of 1s (of
length 4 words) from B3 and B4. Using a heap, it determines that the shortest run has length
1 word. The Hamming weight of the fill words is 2 and there is no dirty word, so immediately
it outputs a single fill word of 0s by case 2.

3. We have a run of one dirty word from B1 (0x0F), a run of one dirty word from B2 (0xF0F)
and the same run of fill words from B3 and B4 (with a remaining length of 3 words). Because
T = 2 and we have one fill word made of 1s, the algorithm outputs the bitwise OR of the two
dirty words (0xF0F) by case 3a.

4. The algorithm then looks at the beginning of a run of 0s (of length 3 words) in bitmap B1,
and at runs of 1s (of length 2 words) in B2, B3 and B4. The algorithm immediately outputs
two fill words of 1s by case 1.

5. We have a run of 0s of length 1 word in B1, and runs of dirty words from B2, B3 and B4.
The algorithm thus outputs the bitwise AND between the first dirty words from B2, B3 and
B4 (0x0F) by case 3a.

6. The algorithm looks at 4 runs of dirty words of length 2 words fromB1,B2,B3 andB4. In this
instance, case 3c applies. It collects the first 4 dirty words from the 4 bitmaps (0x0F, 0x0F,
0x0F, 0x0F). The algorithm computes the number of 1s (β = 16) and it uses the LOOPED
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Algorithm 4 Algorithm RBMRG.
Require: N bitmaps B1, . . . , BN over r bits, some Boolean function γ such as ϑ(T, {·})
Ii ← iterator over the runs of identical bits of Bi

Γ← a new buffer to store the aggregate of B1, . . . , BN (initially empty)
γ ← the bit value determined by γ(Ii, . . . , IN )
H ← a new N -element min-heap storing ending values of the runs along with their iterators
a′ ← 0
while true do

let a be the minimum of all ending values for the runs of I1, . . . , IN , determined from H
append run [a′, a] to Γ with value γ
a′ ← a+ 1
for iterator Ii with a run ending at a (selected from H as root element) do

increment Ii; if Ii has reached the end, terminate the algorithm
Update γ with the new value of Ii
Update the heap H with the new value of Ii

algorithm, outputting 0x0F. On the next four dirty words (0x01, 0x01, 0x01, 0x01), it finds
that β = 4 and uses the SCANCOUNT algorithm on the last four dirty words; it outputs 0x01.

7. The algorithm concludes with the solution
{0x0, 0xF0F, 0xF· · · F, 0xF· · · F,0x0F, 0x0F,0x01}.

7. DETAILED EXPERIMENTS

We conducted extensive experiments on the various threshold algorithms, using EWAH compressed
bitmaps generated from real datasets. The various bitmaps in our study, even within a particular
dataset, vary drastically in characteristics such as density. We discuss this in more detail before
giving the experimental results.

7.1. Platform

Experimental results were gathered on a desktop with an Intel Core i7 2600 (3.4 GHz, 8 MB of
L3 CPU cache) processor with 16 GB of memory (DDR3-1333 RAM with dual channel). Because
all algorithms are benchmarked after the data has been loaded in memory, disk performance is
irrelevant.

The system ran Ubuntu 12.04LTS with Linux kernel 3.2. During experiments, we disabled
dynamic overclocking (Turbo Boost) and dynamic frequency scaling (SpeedStep). Software was
written in Java (version 1.7), compiled and run using OpenJDK (IcedTea 2.4.7) and the OpenJDK
64-bit server JVM.

We used the JavaEWAH software library [27], version 0.8.1, for our EWAH compressed bitmaps.
It includes an implementation of the RBMRG algorithm. Our measured times were in wall-clock
milliseconds. All our software is single-threaded.

7.2. Data

Real data tests were done with datasets IMDB-3gr, PGDVD, PGDVD-2gr, CensusIncome, TWEED
and Weather‖. Our first three datasets (IMDB-3gr, PGDVD and PGDVD-2gr) are similar to datasets
used in related work [9]. They are not indexed as if they were database tables. The last three datasets
(Weather, TWEED and CensusIncome) are more representative of content from relational databases
and they are indexed as such (see Fig. 2).

‖See http://lemire.me/data/symmetric2014.html.

http://lemire.me/data/symmetric2014.html
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Table V. Characteristics of real datasets. Overall bitmap density is the number of 1s, divided by the product
of the number of rows and the number of bitmaps (B/(Nr)).

Dataset r Attributes Bitmaps Average Density
Overall In M-C workload In Sim workload

IMDB-3gr 1783816 — 50663 4.1× 10−4 — 1.9× 10−2

PGDVD 2439448 — 11118 2.9× 10−4 — 3.7× 10−3

PGDVD-2gr 3513575 — 755 2.8× 10−1 — 6.1× 10−1

CensusIncome 199523 42 103419 4.1× 10−4 1.5× 10−1 3.4× 10−1

TWEED 11245 53 1167 4.5× 10−2 2.0× 10−1 5.5× 10−1

Weather 1015367 19 18647 1.0× 10−3 7.6× 10−2 1.2× 10−1

IMDB-3gr is based on descriptions of a dataset used in the work of Li et al. [9], in an application
looking for actor names that are at a small edit distance from a (possibly misspelt) name. Each
bitmap corresponds to a 3-gram found in some actor’s name. The kth bit in the bitmap indicates
whether the kth actor’s name contains this 3-gram.

The PGDVD dataset has a bitmap for each of 11 118 files on the Project Gutenberg DVD [36].
Each bitmap represents the vocabulary set found in that file (the total vocabulary had over 2.4 million
words).

PGDVD-2gr is similar to IMDB-3gr except that, instead of actor names, we formed 2-grams
from chunks of text from the Project Gutenberg DVD. Each chunk was obtained by concatenating
paragraphs until we accumulated at least 1000 characters. We rejected any paragraph with over
20 000 characters—this protected us from some non-text content (e.g., the digits of π) on the Project
Gutenberg DVD.

We also chose three more conventional datasets in the context of relational databases. Two have
many attributes, CensusIncome [13, 37] and TWEED [38]. The former is a census extract; the latter
is a small dataset containing historical information on terrorist attacks in Europe, for which we
used all attributes, rather than the projection used by Webb et al. [39]. We also used the entries
for September 1985 of a larger dataset (Weather) [40, 41]. This particular month has been used
previously [41], although the previous use had projected only 9 attributes, whereas we used all of
them. We selected just one month of data because the full dataset (123 million rows) caused several
of the tested algorithms to run out of memory. It would have been difficult to report meaningful
aggregate results with such failures.

A bitmap index was built for each conventional dataset, and it had a bitmap for every attribute
value. Row reordering can improve RLE-compressed bitmap indexes [13], but it is not always
possible. Our indexes used the given (unsorted) row order. In CensusIncome, one attribute is
responsible for 99 800 of the bitmaps; the remaining 3619 bitmaps are much denser than these
99 800. Together, our real datasets cover a range of application areas, lengths, widths and densities.

By design, our work does not consider external-memory indexes on very large datasets. Thus our
datasets are chosen so the bitmaps for each query fit in RAM. However, even if our machines had
more than 16 GB of RAM, we might still want to partition the problems so that bitmaps do not span
much more than a few million bits, to alleviate caching issues.

7.3. Queries Used

To assess our algorithms, we generated two random workloads, one with 5000 Many-Criteria queries
and the other with 5000 Similarity queries (see § 4).

• To generate a Many-Criteria query, we randomly chose a dataset. Many-Criteria queries
do not make much sense for IMDB-3gr, PGDVD or PGDVD-2gr. For instance, almost
all 3-grams have extremely sparse bitmaps and empty results can be expected, even
with N large and T small. Therefore, we chose the dataset with equal probability from
{CensusIncome, TWEED, Weather}. Having determined the dataset, we chose N next. We
could pick random values of N uniformly at random in a range ([3, 1000]), but most values of
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N would then be relative large (� 10). Instead, we used a discretized log-uniform distribution
with logN ∼ U [log 3, log 1000], which resulted in a workload where small values of N were
more common, but large values of N sometimes occurred. We then chose (uniformly at
random, with replacement) N attributes on which criteria were established, by choosing one
of their bitmaps uniformly. We finally randomly chose an integer threshold T uniformly from
[2, N ′ − 1], where N ′ is the number of attributes on which criteria had been established.

• We considered Similarity queries with n prototypes (henceforth Similarity(n)). For such a
query, we selected (with equal probability) one of our datasets. Then we chose n distinct
prototypes {ri | i ≤ n}, each represented by a row identifier chosen uniformly from [0, r). We
then found the set of bitmaps matching at least one of them,

⋃
{Bi | ∃j such that Bi[rj ] = 1};

we have that N was the number of matching bitmaps.
The probability of Similarity(1), Similarity(5), Similarity(10), Similarity(15) and Similar-
ity(20) queries were 20 % each.

In the last columns of Table V, we present the average density of the bitmaps involved in our
query workloads.

We agree with Jia et al. [16] that it does not make sense to time queries whose answers are empty.
Regardless whether we had a Many-Criteria or a Similarity query, if the answer to the threshold
query was empty and T > 2, we chose (uniformly at random) a new value of T between 2 and the
existing value of T . If the threshold query had an empty answer when T = 2, we discarded the query
and generated a new one.

Considering the 10 000 queries in the two workloads, there were 54 queries with N > 1000: the
maximum value of N was 11 115 whereas the average N was 165. The maximum value of T was
10 863, but the average was 42. The largest set of input data, in terms of storage, was 185 MB; in
terms of cardinality, it was 740 million items.

The bitmaps involved in our queries are denser than the average bitmap. Indeed, the last three
columns in Table V differ: the first shows the average density of bitmaps from the dataset, whereas
the second and third respectively show the average density of the bitmaps actually selected in our
two workloads. We see that the latter are denser (anywhere from twice as dense to 1000 times
denser). This is a consequence of how we pick the queries.

• Many-Criteria queries tend to choose dense bitmaps because the sparsest bitmaps frequently
come from the same (high cardinality) attribute, and all attributes are given an equal
probability.

• For Similarity queries, we note that denser bitmaps are more likely to appear in⋃
{Bi | ∃j such that Bi[rj ] = 1}.

Choosing µ for DSK: The DSK algorithm requires a tuning parameter µ, which depends on the
dataset. Li et al. [9] sketch a process for choosing µ:

• For each dataset, select a representative workload of queries.
• For each query, execute DSK with various choices of µ, recording the µ that produced the

fastest answer for that query.
• Average the recorded µ values for a dataset.

We followed their approach. For the workload, we generated 500 queries using the random query
generation process already described for Many-Criteria queries. We tried up to 20 values of µ for
each query, using the relationship L = T/(µ logM + 1) given by Li et al. (M is the cardinality
of the largest bitmap) to choose µ values. When T ≤ 20, we tried L = 1, L = 2, . . . , L = T − 1.
Otherwise, we tried all values in [T − 5, T ) ∪

{⌈
T−6
15 i

⌉
| i ∈ [1, 15]

}
. For CensusIncome, TWEED

and Weather, the respective µ values were 0.0388, 0.0452 and 0.0444. We then repeated the process
with 500 Similarity queries, obtaining µ values of 0.180 (IMDB-3gr), 0.0752 (PGDVD), 0.004 81
(PGDVD-2gr) 0.0560 (CensusIncome), 0.0112 (TWEED) and 0.0351 (Weather).
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Figure 6. Effect of N on the running times of the algorithms, for Many-Criteria majority queries on
CensusIncome. For clarity, we use two plots to represent the 7 algorithms: the same RBMRG timings appear

in the two plots.

Competitions: We assess the effectiveness of the various algorithms by measuring their wall-
clock times on the queries in our workload. Each query can be viewed as a competition between
algorithms.

Unfortunately, for some of the larger queries, W2CTI (§ 6.1) was not able to complete without
running out of memory. It is unfair to give the algorithm a nearly infinite running time when trying
to compute its aggregate performance over the workload. However, it is also unfair to omit the
running time from an average, as it is excusing a result where even a good algorithm would take a
long time. Our solution is to assign the running time of the slowest algorithm that did complete the
competition.

7.4. Experimental Effects of N and T

As previewed in Table III, our theoretical bounds suggest that the various algorithms’ running times
are all affected∗∗ by N . Some algorithms are affected by T and others are highly sensitive to the
characteristics of the datasets being processed. A few anecdotal examples given here illustrate these
effects and help confirm/augment our theoretical bounds, as well give some idea of the constants
that are abstracted away during our asymptotic analyses. (See [8] for more extensive experiments.)

We first fixed the dataset (CensusIncome) and kind of query (Many-Criteria majority) to examine
the effect of N in that particular scenario. For chosen values of N , we took 100 queries on
CensusIncome and, for each algorithm, averaged their running times. These are majority queries:
threshold queries with T = dN/2e and N odd. (Unlike our normal workload, we had a mixture of
queries returning empty and non-empty results.) In this scenario, we have that r and W are fixed
whileB,B′, T andN − T grow withN . From Table III, we might expect (using an admittedly naïve
analysis) the running time of SCANCOUNT to grow linearly (N ), the running time of MGOPT,
BSTM, DSK and RBMRG to grow as N logN and the running time of W2CTI and LOOPED
to grow quadratically (N2). (Experimentally, it is often difficult to distinguish linear growth from
N logN , but quadratic growth will stand out as having a larger slope on a log-log plot.) Figure 6
shows how our algorithms behaved in this particular test as N was changed.

Focusing on N ≥ 9, we see that RBMRG had the best absolute performance except when N
was very large. In such cases, SCANCOUNT was faster. In terms of growth rate (corresponding to
slope in a log-log plot), LOOPED stands out, with a growth rate that corresponds to approximately
N log3 5 ≈ N1.5 — better than our O(N2) worst-case bound suggests, but still worse than the other
algorithms. The slopes of RBMRG and DSK are higher than those of the other algorithms. In other
tests we rarely see W2CTI performing well, due to its large memory requirement. However, on
these queries against our small CensusIncome dataset, it seemed to display a slightly sub-linear

∗∗For table entries (such as that for SCANCOUNT) where B is given but N is not explicit, note that B grows as N grows:
given a set of N bitmaps with B 1s, if a new non-empty bitmap is added, the total number of 1s increases.
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Figure 7. Effect of T on the running times of several algorithms. N = 171, and the dataset is PGDVD-2gr.
Other algorithms were less affected by T . The SCANCOUNT and BSTM algorithms took about 1500ms for
all values of T . The W2CTI algorithm dropped steadily from about 13 000ms for small T to about 10 000ms

for the largest T values.

running time growth in N , far better than our quadratic bound indicated. SCANCOUNT was similar
in apparently having sub-linear growth. The query-generation approach means that B, the number
of set bits, grows proportionally with N . However, the total number of possible items, r, is constant
and, for this dataset, we have r approximately 8 times larger than the number of set bits in an average
input bitmap. With N = 3, we have B significantly less than r. They are comparable at N = 9. This
can explain apparently sublinear growth as N grew from 3 to moderately large values of N . The
explanation for W2CTI appears simpler: on this dataset, our majority queries had empty answers for
N > 27. The ever-larger thresholds presented more opportunities for pruning that W2CTI exploited.
We might have expected similar improvements from both MGOPT and DSK, but only MGOPT
seems to have had them. The reason may be that DSK prunes especially well when N − T is small.
Since we have T ≈ N

2 , we see DSK outperforming MGOPT for small N , but then becoming closer
to MGOPT as N increases.

Discussion during our theoretical analyses has indicated that large T values improve pruning
possibilities—and hence should lead to improved running times—for several algorithms (W2CTI,
MGOPT, DSK and RBMRG). However, these pruning effects are data dependent and hence, except
for W2CTI, were not reflected in our asymptotic bounds. (In fact, our bounds for MGOPT and
DSK actually suggest running time might increase somewhat with T .) Our LOOPED algorithm is
expected to grow linearly with T , due to aNT term. Moreover, small values of T can lead to pruning
in RBMRG. Experiments can help us see, at least in specific cases, the effects of pruning that are
not captured by our asymptotic running-time bounds.

We then chose an arbitrary query (a Similarity(1) query against PGDVD-2gr): Fig. 7 shows the
effect of varying T , on one particular set of 171 bitmaps. Absolute times are shown, but on a
logarithmic scale. Increasing T (and thereby decreasing the size of the answer) affected algorithms
differently, and DSK is particularly notable, improving two orders of magnitude and going from one
of the worst algorithms for small T , to the best for large T . It is difficult to see, but RBMRG had
a 43 % speedup when T increased from 169 to 170. Overall, it tended to perform best when T was
small, however. The different pruning opportunities can affect which algorithm is fastest for a given
T . For this collection of bitmaps, we got best results from LOOPED at T = 2, then RBMRG until
T ≈ 160, after which DSK was fastest. The potentially enhanced pruning of DSK over MGOPT was
not manifest until T = 145 on this dataset, whereas for Fig. 6 even majority queries usually showed
an advantage for DSK.

7.5. Comparing Algorithms on Our Workloads

Because the state of our system varies slightly over time, we make an error when measuring the
time required by the implementation of an algorithm. We think of the true performance of the
implementation of the algorithm as its best possible speed on a given query. We can measure this
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best possible speed with little error by repeating the execution hundreds of times. However, given
our 10 000 queries and 7 algorithms, these repeated tests would require more than a year to complete.
Thus we tested each algorithm on each query only a few times.

Moreover, when comparing algorithms, we did not merely want to decide whether an algorithm
is superior to another; for this purpose a standard statistical test would have sufficed. Instead
we wanted to compare the results numerically, so we first estimated our measurement error by
generating 5 random queries. Because timings errors are always additive, given a query, we ran
each algorithm on each query 200 times. The minimum timing is assumed to be error-free: the
fastest test out of 200 tests is a good approximation of the fastest possible result. Any larger timing
is in error. We have 6 datasets and 7 algorithms, so we collected 200× 6× 7 measurement errors
per query. We found that the 99th-percentile error was less than 10 % for the 5 reference queries.

We then considered our set of 10 000 queries. For each query, dataset and algorithm, we fixed the
number of repetitions so that the total running time is at least 1 s. Supposing the measured running
times on some query are t1 and t2 for two given algorithms, we say that the first algorithm is faster
only if t1 < 0.8× t2. We anticipate mis-identifying a superior algorithm less than 1 % of the time.

Tables VI and VII compare each pair of algorithms using our two workloads. The cell associated
with the row for algorithm A1 and the column for algorithm A2 gives the number of times that A1

had performance superior to that of A2.
For all cases when t1 ≤ t2, we record the percentage improvement measured. (A percentage

improvement of x means that A1 is 1/(1− x) times faster than A2. That is, improvements of
99 %, 90 %, 80 %, 50 % indicate that we have 100×, 10×, 5× and 2× the speed.) To assess these
performance improvements (ignoring the possibility of measurement error), we show the time
reductions that could be obtained for the query, by using A1 instead of A2. We show the 50th-
and 75th-percentile and maximum time reductions in percentage.

We round percentage reductions down, thus percentage reductions of 99 mean speedups of at
least 2 orders of magnitude are possible by switching algorithms. Note that even the weakest
algorithm outperforms each of the others (excepting RBMRG), even if rarely. The final column
in the table shows the number of workload queries where the row’s algorithm was the best (ignoring
possible measurement error). We see that results are similar on the two workloads, and the superior
algorithms are RBMRG (80 % of the queries), SCANCOUNT (15 %).

The final row represents the case where an oracle picks the fastest algorithm for each query.
As expected, because RBMRG is best about 80 % of the time, the median of the percentage
improvements is zero for this algorithm. The final row shows that every algorithm performs badly on
at least one instance (e.g., RBMRG is beaten by 80 % once, which means that another algorithm is
5× faster). We see that SCANCOUNT, DSK, LOOPED, MGOPT and W2CTI are sometimes at least
two orders of magnitude slower than necessary. At the 75th percentile level RBMRG is the clear
winner (which is expected, given that it is best 80 % of the time). SCANCOUNT and BSTM are
similar : each is typically about five times slower than the best algorithm. Although SCANCOUNT is
the fastest algorithm at least 15 % of the time versus 0 % for BSTM, the comparison may not seem
so lopsided when we consider that BSTM was clearly superior to SCANCOUNT more than 20 % of
the time.

Beating SCANCOUNT: In § 4.1 we suggested that SCANCOUNT could be beaten; indeed, we
can see this by inspecting the SCANCOUNT column in Tables VI and VII. To be more precise, our
workloads contained a query that, compared to SCANCOUNT, was answered 1100× faster using
RBMRG, another query that was also 1100× faster with LOOPED, one that was 300× faster with
BSTM, one that was 70× faster using DSK, one that was 34× faster with W2CTI, and one where
MGOPT was 81× faster. These extreme cases involve 3 datasets with long bitmaps (r is large)
and queries involving a few especially sparse input bitmaps (N ≤ 4 and B is small)—conditions
especially difficult for SCANCOUNT. At least in such cases, SCANCOUNT can be beaten by orders
of magnitude.
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Table VI. Percentage of competitions (Similarity workload) where the row’s algorithm was at least 20%
faster than the column’s algorithm, and beneath it, the percentage improvements from the row’s algorithm.
We show the median, 75th-percentile, and maximum percentage improvement. An improvement of 99%

means at least 100× speed.
The final column shows the percentage of cases where the row’s algorithm was measured to be fastest.

vs RBMRG SCNCNT LOOPED DSK W2CTI BSTM MGOPT fastest

RBMRG 76 %
73 86 99

96 %
86 91 99

94 %
91 97 99

99 %
93 97 99

100 %
75 81 98

98 %
91 96 99 80 %

SCNCNT 12 %
56 69 80

73 %
72 88 99

77 %
86 90 96

90 %
83 87 97

58 %
52 68 96

82 %
85 90 98 15 %

LOOPED 2 %
30 46 66

19 %
62 82 99

54 %
74 90 99

62 %
65 83 99

17 %
38 68 96

51 %
69 89 99 3 %

DSK 1 %
17 39 64

17 %
57 74 92

38 %
72 86 99

31 %
32 66 99

24 %
50 71 94

22 %
21 40 96 3 %

W2CTI 0 %
13 17 30

8 %
60 75 92

27 %
54 72 99

36 %
25 36 69

14 %
35 51 89

29 %
22 36 90 0 %

BSTM 0 % 21 %
28 38 99

70 %
53 67 99

64 %
83 89 96

76 %
80 87 98

71 %
78 87 95 0 %

MGOPT 0 %
7 12 29

13 %
58 74 93

37 %
58 76 99

21 %
15 23 49

27 %
25 52 98

15 %
38 64 88 0 %

fastest 0 0 80 65 84 99 87 92 99 90 97 99 93 97 99 77 83 98 91 96 99

Table VII. Results on the Many-Criteria workload, in the same format as Table VI.

vs RBMRG SCNCNT LOOPED DSK W2CTI BSTM MGOPT fastest

RBMRG 75 %
66 80 99

91 %
75 86 98

99 %
88 94 99

98 %
89 95 99

99 %
66 79 99

99 %
86 93 99 77 %

SCNCNT 9 %
20 29 48

56 %
72 84 96

82 %
85 89 96

95 %
80 83 87

63 %
51 59 75

82 %
82 86 95 18 %

LOOPED 3 %
26 51 76

34 %
58 76 98

65 %
70 89 99

70 %
71 87 99

33 %
33 58 93

61 %
64 86 99 5 %

DSK 0 %
5 13 16

12 %
57 77 98

19 %
35 53 89

24 %
49 76 99

9 %
37 54 87

7 %
15 26 65 0 %

W2CTI 0 %
16 30 57

4 %
47 68 97

16 %
33 50 83

50 %
30 42 77

2 %
36 55 86

23 %
16 30 70 1 %

BSTM 0 %
2 6 11

23 %
42 62 98

45 %
49 66 91

83 %
72 83 99

95 %
67 76 98

84 %
65 76 98 0 %

MGOPT 0 %
7 14 28

13 %
54 78 98

21 %
33 51 84

41 %
19 27 63

30 %
32 65 99

8 %
36 55 85 0 %

fastest 0 0 76 59 78 99 74 86 98 89 95 99 89 95 99 67 80 99 87 93 99

7.6. Performance Across Workload Subsets

Table VIII shows the total time taken by each algorithm across both workloads, or across a portion
of the workload(s) meeting certain criteria shown in the first column. (Since Tables VI and VII
showed such similar results, we combine the two workload into an overall composite workload.)
Table VIII shows the effect of large N , small T or N , the kind of query, or the dataset.

The table shows that LOOPED, DSK, MGOPT and W2CTI can have some extremely expensive
queries, although fewer than 25 % of the queries are extremely expensive. The apparent preference
for RBMRG toward the top of the table partly breaks down when we examine individual datasets at
the bottom of the table. The large size of PGDVD-2gr and the excellent performance of RBMRG
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Table VIII. Total time to process queries of various groups. The top line of each group is the total time. Then
four lines give the 25th-, 50th-, 75th-percentile, and maximum query times. Values for RBMRG are absolute
(seconds for total time; ms for percentile values). Values for all other algorithms are relative— the measured

time has been normalized by dividing it by the corresponding time for RBMRG.

data RBMrg ScnCnt Looped DSk w2CtI BSTM MgOpt

N ≤ 15

3.9× 100

0
1
3
15

3.18
4.3
6.0
4.0
2.7

2.99
1.5
1.9
2.4
5.8

4.55
3.8
3.3
4.0

12.9

5.56
5.4
4.9
5.3
9.5

2.65
2.1
2.2
2.5
3.2

4.18
3.3
3.2
4.0
9.7

N ≥ 16

1.3× 103

2
13
102
2484

1.40
3.3
2.6
0.9
1.0

32.69
5.7
5.7
5.1

827.7

15.94
13.3
13.9

6.3
25.7

16.33
11.7
12.9

5.6
31.1

2.78
5.2
3.4
2.7
5.4

17.33
12.5
12.0

6.1
24.6

T < 5

3.2× 101

0
1
7
619

2.11
5.5
6.2
2.2
3.1

1.32
1.6
1.9
1.7
1.0

27.54
7.2
6.8
9.4

103.3

17.74
8.4
7.3
7.5

103.3

3.62
3.4
2.5
3.1
6.9

27.87
6.0
6.0
8.0

98.8

Many Criteria

2.7× 102

0
4
34
745

0.87
4.1
2.5
1.4
0.7

6.33
3.0
4.0
4.3

19.6

7.63
10.9
13.8
10.7
10.6

5.17
13.7
11.0

7.8
5.3

2.16
3.8
3.3
3.2
2.1

6.36
9.1

11.1
8.5
8.9

IMDB-3gr

1.0× 102

11
21
228
615

0.39
1.2
1.2
0.3
0.2

5.48
4.6
5.9
3.5
9.0

2.01
1.7
2.8
2.0
1.8

2.69
2.6
3.6
2.6
2.4

1.95
3.2
3.1
1.9
1.3

2.69
2.3
3.1
2.6
2.3

PGDVD

6.6× 101

1
4
22
2484

0.43
7.8
2.7
0.9
0.3

346.58
2.4
5.5

11.6
827.7

2.44
3.3
3.0
2.8
3.5

2.55
3.1
2.6
2.4
6.2

5.12
2.6
3.7
4.9
5.4

7.84
3.2
3.3
3.8

16.4

PGDVD-2gr

8.0× 102

550
872
1514
2071

1.75
2.5
2.0
1.3
1.2

19.93
8.0

12.0
17.8
37.8

21.55
20.7
23.6
19.0
30.9

23.02
28.6
20.3
15.6
37.3

2.85
3.4
2.5
2.7
2.3

23.77
25.9
26.2
19.0
29.5

CensusIncome

7.5× 101

3
7
29
290

1.30
2.7
4.7
1.7
0.8

6.20
2.1
7.1
5.2

17.5

11.27
9.0

32.9
17.8

9.7

7.29
10.9
25.5
11.3

3.8

2.70
3.4
4.5
3.9
2.2

9.26
7.9

24.5
13.4

8.8

TWEED

1.7× 100

0
0
1
6

3.70
7.9
8.4
3.8
1.9

17.14
3.8
8.3
9.0

44.8

42.68
21.7
55.8
41.7
42.3

25.07
37.9
54.6
28.1
14.8

5.75
7.4
6.2
5.8
4.5

32.76
21.6
43.3
36.2
36.0

Weather

2.3× 102

7
21
88
745

0.96
3.9
2.5
1.2
0.7

6.28
4.3
3.7
4.9

19.6

7.58
5.4

12.8
8.1

10.6

5.74
14.5
12.1

7.1
5.3

2.23
4.7
2.8
3.0
2.1

6.40
5.5

11.6
7.3
8.9

All

1.3× 103

1
7
60
2484

1.41
4.0
2.9
1.1
1.0

32.60
4.4
6.3
4.8

827.7

15.91
13.0
10.0

8.9
25.7

16.30
17.4
11.1

6.5
31.1

2.78
3.9
4.4
3.1
5.4

17.29
12.4

8.9
8.6

24.6
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(b) Reduced y

Figure 8. Aggregate throughput on each dataset. Bar height represents the number of seconds for a workload
containing 1MB of bitmap data from each dataset. Hopt, Hds and H are discussed in § 8.2.
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(a) Similarity
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Figure 9. RBMRG excels in both workloads, but for the Similarity workload, SCANCOUNT does a better
job on IMDB-3gr.

on this large dataset act together to dominate the overall results. Also, results are dominated by
larger values of N , despite our generating workloads so that small-N queries were more frequent
than large-N ones. For instance, in all the cases where SCANCOUNT did best overall (Many-
Criteria queries, IMDB-3gr, PGDVD and Weather), note that RBMRG significantly outperformed
SCANCOUNT at the median level. As well, costs were dominated by Similarity queries; while equal
in number to Many-Criteria queries, they included the queries with the largest values of N .

To visualize or aggregate this data, we should consider that the workload involves datasets of
widely different size: there are three orders of magnitude difference between the total volume of
data for our TWEED queries and our PGDVD-2gr queries. Instead of merely timing the queries,
we measure their throughput: amount of input data divided by the time necessary to complete the
query, expressing the result in MB/s. Given an algorithm and a dataset, we use the harmonic mean
to obtain an aggregate throughput value. However, for display purposes it is convenient to show the
reciprocal throughput. For instance, the stacked bar charts in Fig. 8 can be viewed as representing
times (in seconds) on some hypothetical workload in which 1 MB of bitmap data had been processed
by the queries for each dataset. For our workload, RBMRG, SCANCOUNT and BSTM are strongly
preferred to the others. Figure 9 shows that, for our relational datasets—the only ones that were
used with both Many-Criteria and Similarity queries—RBMRG is the clear winner.

In several applications we can expect that N will not be particularly large, or that typical queries
will usually have T ≈ N . Figure 10 shows the results for these cases. On such queries, while
RBMRG is best, BSTM is better than SCANCOUNT: for a typical query with N small, the cost
of initializing and scanning the r counters is being amortized over a small volume of bitmap data.
We also see that LOOPED is a viable algorithm for N ≤ 16.
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(a) Queries with N ≤ 16
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(b) Queries with T ≥ .75N

Figure 10. Normalized workload times for queries with small N and for queries with T ≥ .75N .

Figure 10 also shows the situation for the workload queries where T ≥ 0.75N . This situation
is one where pruning-based algorithms such as W2CTI, MGOPT and DSK can excel. Indeed, we
see them doing well on IMDB-3gr, Weather and (for W2CTI and DSK) PGDVD. However, there
are other datasets where they still perform badly. Altogether, on workloads similar to ours, the
benefits from pruning do not seem to be worth the risks of using these algorithms. Nevertheless,
there are some applications where the requirement for a large T can be met. For instance, using the
formula of Sarawagi and Kirpal [10] with strings of length N = 64, if we are interested in finding
the strings of edit distance at most two from some target using trigrams, the appropriate threshold is
T = 64 + 3− 1− 2× 3 = 60.

7.6.1. The advantage of RBMRG. Our results show that RBMRG was usually the fastest algorithm,
especially over datasets coming from relational tables and for Many-Criteria queries. This speed
advantage is due to fewer executed instructions, rather than cache effects: experiments showed that
the processor executed about two instructions per cycle (IPC) for all implementations. (We saw
1.9 IPC for SCANCOUNT; 2.0 for W2CTI; 2.1 for BSTM, LOOPED and RBMRG; and 2.2 for
MGOPT and DSK.)

One reason for the advantage of RBMRG is that it ends up solving a threshold problem over
the dirty words, and our implementation adaptively switches between algorithms LOOPED and
SCANCOUNT. In essence, it gets a benefit from RLE encoding, and then combines the strengths
of two other efficient algorithms. An initial implementation had done a naïve computation (iterating
over all bit positions) and this implementation of RBMRG was usually not competitive with
SCANCOUNT or BSTM. Solving the threshold subproblem effectively on the dirty words was
crucial, and our hybrid of SCANCOUNT and LOOPED made the revised implementation fast.

8. HYBRID ALGORITHMS

Our success in handling dirty words adaptively suggests that an adaptive, hybrid approach might
also be a better way to solve threshold problems on compressed bitmaps.

8.1. An Execution-Time Model

To guide an adaptive algorithm, we need to estimate the running times of the more promising
algorithms, in terms of the limited data that a DBMS might be expected to maintain.

Table IX shows estimates of the running-time functions over our workload. They were derived by
least-squares fitting our running-time bounds in § 5–6 and Table III to the measured times for the
competitions in the workload. To account for bitmap compression, we substitute EWAHSIZE where
Nr/W occurred in Table III. Given a bound of O(f(x1, x2, . . . , xk)), we modeled the running time
as cf(x1, x2, . . . , xk) and fitted c according to the measured running times. Algorithm SCANCOUNT
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Table IX. Running time estimates for good algorithms (this excludes W2CTI, MGOPT and DSK).

Algorithm Time complexity estimate Fitted coefficients

SCANCOUNT csc,1 × r + csc,2 ×B csc,1 = 2.072× 10−5 ± 7.6× 10−7

csc,2 = 2.683× 10−6 ± 6.1× 10−9

LOOPED cLOOPED × T × EWAHSIZE cLOOPED = 1.306× 10−6 ± 2.9× 10−9

BSTM cBSTM × EWAHSIZE × lnN cBSTM = 3.133× 10−5 ± 1.6× 10−7

RBMRG cRBMRG × EWAHSIZE × lnN cRBMRG = 1.592× 10−6 ± 5.3× 10−9
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Figure 11. The running times for BSTM and RBMRG depend on the total compressed size of the input
bitmaps and a logN factor. The running time for LOOPED depends on the total compressed size and T . We

show least-squares lines (passing through the origin) to fit these models.

had two independent terms and we used a separate constant for each term. Also, for RBMRG, we
felt it would be unreasonable to expect the RUNCOUNT of the bitmaps to be cataloged. Instead, we
used EWAHSIZE as a proxy.

Our time-complexity estimates for BSTM, LOOPED and RBMRG are shown against the actual
data in Fig. 11. We see the fits are not particularly good, but we seldom underestimate running times
by more than a factor of 2. (Our overestimates are frequently off by larger factors.) This may be
good enough to avoid selecting an algorithm that is badly suited for a query.

8.2. Algorithms

We experimented with hybrid algorithms H and Hds, described below. For comparison purposes,
Hopt is the hybrid algorithm that always chooses the fastest algorithm for any query.

Hybrid algorithm, H. Since we have multiple alternative algorithms for the same problem, there
are sophisticated approaches for choosing the best algorithm for a given application [42]. However,
we can get reasonably good performance with two simple approaches for choosing the appropriate
algorithm.

Our first approach, hybrid algorithm H, evaluates the running-time estimates given in Table IX.
It then selects the algorithm predicted to run fastest. Mathematically, the estimate for BSTM is
about 20 times larger than the estimate for RBMRG, so we should never choose BSTM. Algebraic
manipulation of the time estimates for RBMRG and LOOPED shows that when T < cRBMRG

cLOOPED
lnN

we should choose LOOPED in preference to RBMRG. Conveniently, one does not need to know
EWAHSIZE.

A weakness of this approach is that it is based explicitly on the performance of our particular
test computers. While slightly inaccurate estimates may not lead to bad decisions, those using this
approach on systems that differ significantly should conduct their own benchmarks and adjust the
coefficients.

Adjust-by-dataset algorithm, Hds. Faced with a collection of queries over disparate datasets, an
obvious approach is to select the algorithm entirely on the basis of the dataset. Perhaps some initial
profile runs would be used to select the algorithm to be used consistently on a dataset. This Hds
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(a) N ≥ 200
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(b) Text-derived datasets

Figure 12. Some cases when it is best to mix RBMRG and SCANCOUNT.

approach was tested; on our workloads we used SCANCOUNT for all queries against IMDB-3gr,
and RBMRG for all other queries. (We chose this combination by inspecting Fig. 8.)

Optimal hybrid algorithm, Hopt. For comparison purposes, we can determine the effect of the
optimal hybrid algorithm, Hopt, which always selects the best algorithm for any competition as an
oracle would. Since we have already run every algorithm during the competition, this is easy for
us to do. Of course, in practice one would not have this information—Hopt exists only to make
comparisons.

8.3. Evaluation of Hybrid Algorithms

As Figs. 8–10 show, sometimes there is little reason to rely on anything other than RBMRG,
and choosing otherwise only hurts performance. Yet Fig. 12 shows two other cases where hybrid
approaches helped. On queries with large N , H had a 28 % improvement over RBMRG. (Hopt and
Hds had respective improvements over RBMRG of 31 % and 13 %.) For our text-derived datasets
the improvements were smaller: 4 %, 9 % and 23 % respectively for H, Hds and Hopt. Looking at
Figs. 9b and 10a we see cases where H and Hds incorrectly chose to use algorithms other than
RBMRG, leading to slightly worse results.

Algorithm RBMRG requires a detailed knowledge of the internal workings of a RLE-compressed
bitmap representation and is best added by the maintainers of a compressed bitmap package. Thus,
it is reasonable to look at the tradeoffs that come from hybrid algorithms that omit RBMRG. Our
comparison corresponds to bar heights in Fig. 12, and the time for H increased by 66 % for the
N ≥ 200 case and 154 % for the text-derived datasets. Excluding RBMRG, the best non-hybrid
algorithm was SCANCOUNT. When H could not choose RBMRG, its result was 2 % worse than
SCANCOUNT on the text-derived datasets but 6 % better for the N ≥ 200 cases. Note that hybrid
algorithms can do much better: if Hopt chooses between BSTM, SCANCOUNT and LOOPED, on
the text-derived datasets we can get a result 56 % better than SCANCOUNT (and only 13 % worse
than RBMRG).

9. CONCLUSION AND FUTURE WORK

We reviewed several novel and several known algorithms for computing thresholds. We found that
a novel algorithm (RBMRG) was generally superior to alternatives, sometimes being orders of
magnitude faster.

Although RBMRG could be considered the overall winner, each algorithm examined was weak
in some circumstances. However, we combine them in a hybrid algorithm that improves on any
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individual algorithm. In future work, we might create better hybrid algorithms, perhaps by applying
machine-learning processes to choose the fastest threshold algorithm [43, 44].

Our work has considered N values up to a few thousand (at most 11 115). Yet datasets whose
indexes have millions of bitmaps are not out of the question. Would there be applications where
a threshold computation with N = 1 000 000 would be useful? If so, which algorithms should be
used? Can new algorithms be developed for this case?

When possible, data should be indexed in sorted order [13]: this can improve compression and
processing speed. Some algorithms might benefit more than others from sorting, and this warrants
further investigation.

Finally, algorithms can be parallelized, and while most of our threshold computations take only
a few milliseconds, some take tens of seconds. If we try extremely large N values, this may
increase. At some point, it may become important to have one threshold computation run faster
than is possible using a single core. For multicore processing, a particular challenge with current
architectures is that all cores compete for access to L3 and RAM. E.g., this means that it is best if
intermediate results fit in L2 cache. It might be advisable to partition the problems.
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