
An Optimal Linear Time Algorithm for Quasi-Monotonic
Segmentation

Daniel Lemire
University of Quebec at Montreal (UQÀM)

100 Sherbrooke West
Montréal, Qc, Canada, H2X 3P2

lemire@ondelette.com

Martin Brooks, Yuhong Yan
National Research Council of Canada

1200 Montreal Road
Ottawa, ON, Canada, K1A 0R6

First.Last@nrc.gc.ca

Abstract

Monotonicity is a simple yet significant quali-
tative characteristic. We consider the problem of
segmenting an array in up to K segments. We want
segments to be as monotonic as possible and to al-
ternate signs. We propose a quality metric for this
problem, present an optimal linear time algorithm
based on novel formalism, and compare experi-
mentally its performance to a linear time top-down
regression algorithm. We show that our algorithm
is faster and more accurate. Applications include
pattern recognition and qualitative modeling.

1 Introduction
Monotonicity is one of the most natural and im-

portant qualitative properties for sequences of data
points. It is easy to determine where the values
are strictly going up or down, but we only want
to identify significant monotonicity. For example,
the drop from 2 to 1.9 in the array 0,1,2,1.9,3,4
might not be significant and might even be noise-
related. The quasi-monotonic segmentation prob-
lem is to determine where the data is approxima-
tively increasing or decreasing.

We present a metric for the quasi-monotonic
segmentation problem called the Optimal Mono-
tonic Approximation Function Error (OMAFE);
this metric differs from previously introduced OP-
MAFE metric [2] since it applies to all segmenta-
tions and not just “extremal” segmentations. We
formalize the novel concept of a maximal ∗-pair
and shows that it can be used to define a unique
labelling of the extrema leading to an optimal seg-

In ICDM-05, November 2005.

mentation algorithm. We also present an optimal
linear time algorithm to solve the quasi-monotonic
segmentation problem given a segment budget to-
gether with an experimental comparison to quantify
the benefits of our algorithm.

2 Monotonicity Error Metric
(OMAFE)

Suppose n samples noted F : D = {x, . . . ,xn}→
R with x1 < x2 < .. .xn. We define, F|[a,b] as
the restriction of F over D∩ [a,b]. We seek the
best monotonic (increasing or decreasing) func-
tion f : R → R approximating F . Let Ω↑ (resp.
Ω↓) be the set of all monotonic increasing (resp.
decreasing) functions. The Optimal Monotonic
Approximation Function Error (OMAFE) is
min f∈Ω maxx∈D | f (x)−F(x)| where Ω is either Ω↑
or Ω↓.

The segmentation of a set D is a sequence S =
X1, . . . ,XK of intervals in R with [minD,maxD] =S

i Xi such that maxXi = minXi+1 ∈ D and Xi ∩
X j = /0 for j 6= i + 1, i, i− 1. Alternatively, we
can define a segmentation from the set of points
Xi ∩ Xi+1 = {yi+1}, y1 = minX1, and yK+1 =
maxXK . Given F : {x1, . . . ,xn} → R and a seg-
mentation, the Optimal Monotonic Approximation
Function Error (OMAFE) of the segmentation is
maxi OMAFE(F|Xi) where the monotonicity type
(increasing or decreasing) of the segment Xi is de-
termined by the sign of F(maxXi)− F(minXi).
Whenever F(maxXi) = F(minXi), we say the seg-
ment has no direction and the best monotonic ap-
proximation is just the flat function having value
(maxF|Xi−minF|Xi)/2. The error is computed over
each interval independently; optimal monotonic
approximation functions are not required to agree
at maxXi = minXi+1. Segmentations should alter-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by R-libre

https://core.ac.uk/display/35146087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

nate between increasing and decreasing, otherwise
sequences such as 0,2,1,0,2 can be segmented as
two increasing segments 0,2,1 and 1,0,2: we con-
sider it is natural to aggregate segments with the
same monotonicity.

We solve for the best monotonic function as fol-
lows. If we seek the best monotonic increasing
function, we first define f ↑(x) = max{F(y) : y≤ x}
(the maximum of all previous values) and f ↑(x) =
min{F(y) : y ≥ x} (the minimum of all values to
come). If we seek the best monotonic decreas-
ing function, we define f ↓(x) = max{F(y) : y≥ x}
(the maximum of all values to come) and f ↓(x) =
min{F(y) : y ≤ x} (the minimum of all previous
values). These functions, which can be computed
in linear time, are all we need to solve for the best
approximation function as shown by the next theo-
rem which is a well-known result [5].

Theorem 1 Given F : D = {x1, . . . ,xn} → R, a
best monotonic increasing approximation func-
tion to F is f↑ = (f ↑ + f ↑)/2 and a best mono-
tonic decreasing approximation function is f↓ =
(f ↓+ f ↓)/2. The corresponding error (OMAFE)

is maxx∈D(| f ↑(x)− f ↑(x)|)/2 or maxx∈D(| f ↓(x)−
f ↓(x)|)/2 respectively.

3 A Scale-Based Algorithm for Quasi-
Monotonic Segmentation

We use the following proposition to prove that
the segmentations we generate are optimal (see
Theorem 2).

Proposition 1 A segmentation y1, . . . ,yK+1 of F :
D = {x1, . . . ,xn} → R with alternating monotonic-
ity has a minimal OMAFE ε for a number of alter-
nating segments K if

A. F(yi) = maxF([yi−1,yi+1]) or F(yi) =
minF([yi−1,yi+1]) for i = 2, . . . ,K;

B. in all intervals [yi,yi+1] for i = 1, . . . ,K, there
exists z1,z2 such that |F(z2)−F(z1)|> 2ε.

For simplicity, we assume F has no consecutive
equal values, i.e. F(xi) 6= F(xi+1) for i = 1, . . . ,n−
1; our algorithms assume all but one of consecutive
equal values values have been removed. We say
xi is a maximum if i 6= 1 implies F(xi) > F(xi−1)
and if i 6= n implies F(xi) > F(xi+1). Minima are
defined similarly.

Our mathematical approach is based on the con-
cept of δ-pair:

Definition 1 The tuple x,y (x < y ∈ D) is a δ-pair
(or a pair of scale δ) for F if |F(y)−F(x)| ≥ δ and
for all z ∈ D, x < z < y implies |F(z)− F(x)| <
δ and |F(y) − F(z)| < δ. A δ-pair’s direction
is increasing or decreasing according to whether
F(y) > F(x) or F(y) < F(x).
δ-Pairs having opposite directions cannot overlap
but they may share an end point. δ-Pairs of the
same direction may overlap, but may not be nested.
We use the term “∗-pair” to indicate a δ-pair having
an unspecified δ. We say that a ∗-pair is significant
at scale δ if it is of scale δ′ for δ′ ≥ δ.

We define δ-monotonicity as follows:
Definition 2 Let X be an interval, F is δ-
monotonic on X if all δ-pairs in X have the same
direction; F is strictly δ-monotonic when there ex-
ists at least one such δ-pair. In this case:

• F is δ-increasing on X if X contains an in-
creasing δ-pair.
• F is δ-decreasing on X if X contains a de-

creasing δ-pair.

A δ-monotonic interval X satisfies
OMAFE(X) < δ/2. We say that a ∗-pair x,y
is maximal if whenever z1,z2 is a ∗-pair of a
larger scale in the same direction containing x,y,
then there exists a ∗-pair w1,w2 of an opposite
direction contained in z1,z2 and containing x,y.
For example, the sequence 1,3,2,4 has 2 maximal
∗-pairs: 1,4 and 3,2. Maximal ∗-pairs of opposite
direction may share a common point, whereas
maximal ∗-pairs of the same direction may not.
Maximal ∗-pairs cannot overlap, meaning that it
cannot be the case that exactly one end point of a
maximal ∗-pair lies strictly between the end points
of another maximal ∗-pair; either neither point lies
strictly between or both do. In the case that both
do, we say that the one maximal ∗-pair properly
contains the other. All ∗-pairs must be contained
in a maximal ∗-pair.

Lemma 1 The smallest maximal ∗-pair containing
a ∗-pair must be of the same direction.

Our approach is to label each extremum in F
with a scale parameter δ saying that this extremum
is “significant” at scale δ and below. Our intuition
is that by picking extrema at scale δ, we should
have a segmentation having error less than δ/2.

Definition 3 The scale labelling of an extremum x
is the maximum of the scales of the maximal ∗-pairs
for which it is an end point.

For example, given the sequence 1,3,2,4 with 2
maximal ∗-pairs (1,4 and 3,2), we would give the
following labels in order 3,1,1,3.

Definition 4 Given δ > 0, a maximal alternating
sequence of δ-extrema Y = y1 . . .yK+1 is a sequence
of extrema each having scale label at least δ,
having alternating types (maximum/minimum), and
such that there exists no sequence properly contain-
ing Y having these same properties. From Y we de-
fine a maximal alternating δ-segmentation of D by
segmenting at the points x1,y2 . . .yK ,xn.

Theorem 2 Given δ > 0, let P = S1 . . .SK be a
maximal alternating δ-segmentation derived from
maximal alternating sequence y1 . . .yK+1 of δ-
extrema. Then any alternating segmentation Q hav-
ing OMAFE(Q) < OMAFE(P) has at least K + 1
segments.

Sequences of extrema labelled at least δ are
generally not maximal alternating. For exam-
ple the sequence 0,10,9,10,0 is scale labelled
10,10,1,10,10. However, a simple relabelling of
certain extrema can make them maximal alternat-
ing. Consider two same-sense extrema z1 < z2 such
that lying between them there exists no extremum
having scale at least as large as the minimum of the
two extrema’s scales. We must have F(z1) = F(z2),
since otherwise the point upon which F has the
lesser value could not be the endpoint of a maxi-
mal ∗-pair. This is the only situation which causes
choice when constructing a maximal alternating se-
quence of δ-extrema. To eliminate this choice, re-
place the scale label on z1 with the largest scale of
the opposite-sense extrema lying between them.

3.1 Computing a Scale Labelling Efficiently

Algorithm 1 (next page) produces a scale la-
belling in linear time. Extrema from the original
data are visited in order, and they alternate (max-
ima/minima) since we only pick one of the values
when there are repeated values (such as 1,1,1).

The algorithm has a main loop (lines 5 to 12)
where it labels extrema as it identifies extremal ∗-
pairs, and stack the extrema it cannot immediately
label. At all times, the stack (line 3) contains min-
ima and maxima in strictly increasing and decreas-
ing order respectively. Also at all times, the last
two extrema at the bottom of the stack are the ab-
solute maximum and absolute minimum (found so
far). Observe that we can only label an extrema as
we find new extremal ∗-pairs (lines 7, 10, and 14).

• If the stack is empty or contains only one ex-
tremum, we simply add the new extremum
(line 12).

• If there are only 2 extrema z1,z2 in the stack
and we found either a new absolute max-
imum or new absolute minimum (z3), we
can pop and label the oldest one (z1) (lines
9, 10, and 11) because the old pair (z1,z2)
forms a maximal ∗-pair and thus must be
bounded by extrema having at least the same
scale while the oldest value (z1) doesn’t be-
long to a larger maximal ∗-pair. Other-
wise, if there are only 2 extrema z1,z2 in the
stack and the new extrema z3 satisfies z3 ∈
(min(z1,z2),max(z1,z2)), then we add it to the
stack since no labelling is possible yet.

• While the stack contains more than 2 extrema
(lines 6, 7 and 8), we consider the last three
points on the stack (s3,s2,s1) where s1 is the
last point added. Let z be the value of the new
extrema. If z ∈ (min(s1,s2),max(s1,s2)), then
it is simply added to the stack since we cannot
yet label any of these points; we exit the while
loop. Otherwise, we have a new maximum
(resp. minimum) exceeding (resp. lower) or
matching the previous one on stack, and hence
s1,s2 is a maximal ∗-pair. If z 6= s2, then s3,z
is a maximal ∗-pair and thus, s2 cannot be the
end of a maximal ∗-pair and s1 cannot be the
beginning of one, hence both s2 and s1 are la-
belled. If z = s2 then we have successive max-
ima or minima and the same labelling as z 6= s2
applies.

During the “unstacking” (lines 13 and following),
we visit a sequence of minima and maxima forming
increasingly larger maximal ∗-pairs.

Once the labelling is complete, we find K + 2
extrema having largest scale in time O(nK) using
O(K) memory, then we remove all extrema hav-
ing the same scale as the smallest scale in these
K + 2 extrema (removing at least one), we replace
the first and the last extrema by 0 and n−1 respec-
tively. The result is an optimal segmentation having
at most K segments.

4 Experimental Results and Compari-
son to Top-Down Linear Spline

We compare our optimal O(nK) algorithm with
the top-down linear spline algorithm [4] which runs
in O(nK2) time. It successively segments the data

Algorithm 1 Algorithm to compute the scale la-
belling in O(n) time.

1: INPUT: an array d containing the y values in-
dexed from 0 to n− 1, repeated consecutive
values have been removed

2: OUTPUT: a scale labelling for all extrema
3: S← empty stack, First(S) is the value on top,

Second(S) is the second value
4: define δ(d,S) = |dFirst(S)−dSecond(S)|
5: for e index of an extremum in d, e’s are visited

in increasing order do
6: while length(S) > 2 and (e is a minimum

such that de ≤ Second(S) or e is a maximum
such that de ≥ Second(S)) do

7: label First(S) and Second(S) with δ(d,S)
8: pop stack S twice
9: if length(S) is 2 and (e is a minimum such

that de ≤ Second(S) or e is a maximum such
that de ≥ Second(S)) then

10: label Second(S) with δ(d,S)
11: remove Second(S) from stack S
12: stack e to S
13: while length of S > 2 do
14: label First(S) with δ(d,S)
15: pop stack S
16: label First(S) and Second(S) with δ(d,S)

starting with only one segment, each time picking
the segment with the worse linear regression error
and finding the best segmentation point; the linear
regression is not continuous from one segment to
the other. The regression error can be computed
in constant time if one has precomputed the range
moments [3]. We run through the segments and ag-
gregate consecutive segments having the same sign
where the sign of a segment [yk,yk+1] is defined by
F(yk+1)−F(yk).

4.1 Data Source

We used samples from the MIT-BIH Arrhyth-
mia Database [1]. These ECG recordings used a
sampling rate of 360 samples per second per chan-
nel with 11-bit resolution. We keep 4000 samples
(11 seconds) and about 14 pulses, and we do no
preprocessing such as baseline correction. We can
estimate that a typical pulse has about 5 “easily”
identifiable monotonic segments. Hence, out of 14
pulses, we can estimate that there are about 70 sig-
nificant monotonic segments, some of which match
the domain-specific markers (reference points P, Q,
R, S, and T). A qualitative description of such data

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

O
M

A
FE

K

scale-based
topdown

Figure 1. Results from experiments
over ECG data: the optimal algorithm
is considerably more accurate.

is useful for pattern matching applications.

4.2 Results

We implemented both the scale-based segmen-
tation algorithm and the L2 norm top-down linear
spline approximation algorithm in Python(version
2.3). Each run was repeated 3 times and we ob-
served that the scale-based segmentation imple-
mentation is faster than the top-down linear spline
approximation implementation by a factor of 10.

The OMAFE with respect to the maximal num-
ber of segments (K) is given in Fig. 1. By counting
on about 5 monotonic segments per pulse with a to-
tal of 14 pulses, there should about 70 monotonic
segments in the 4000 samples under consideration.
We see that the decrease in OMAFE with the addi-
tion of new segments starts to level off between 50
and 70 segments as predicted.

References
[1] A. L. Goldberger et al. PhysioBank, PhysioToolkit,

and PhysioNet. Circulation, 101(23):215–220,
2000.

[2] M. Brooks, Y. Yan, and D. Lemire. Scale-based
monotonicity analysis in qualitative modelling with
flat segments. In IJCAI’05, 2005.

[3] D. Lemire. Wavelet-based relative prefix sum meth-
ods for range sum queries in data cubes. In CAS-
CON. IBM, October 2002.

[4] T. Palpanas, M. Vlachos, E. Keogh, D. Gunopu-
los, and W. Truppel. Online amnesic algorithm of
streaming time series. In ICDE, 2004.

[5] V. A. Ubhaya. Isotone optimization I. Approx. The-
ory, 12:146–159, 1974.

	Introduction
	Monotonicity Error Metric (OMAFE)
	A Scale-Based Algorithm for Quasi-Monotonic Segmentation
	Computing a Scale Labelling Efficiently

	Experimental Results and Comparison to Top-Down Linear Spline
	Data Source
	Results

