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I. The goal of the research

The field of this thesis is the numerical solution of linear and nonlinear elliptic partial
differential equations. These classes of equations are widespread in modelling various
phenomena in science, hence their numerical solution has continuously been a subject
of extensive research. The common way is to discretize the problem, which leads to an
algebraic system normally of very large size, then usually a suitable iterative solver is
applied. An important measure of efficiency is the optimality property, which requires
that the computational cost should be of O(n) where n denotes the degrees of freedom in
the algebraic system. This holds for some special PDE problems, which can then be used
as preconditioners to more general problems. Then a crucial property of the iteration is
mesh independence, i.e. the number of iterations to achieve prescribed accuracy should be
bounded independently of n in order to preserve the optimality.

The numerical study of elliptic PDEs has often relied on Hilbert space theory, to name
e.g. the finite element method and the Lax-Milgram approach as fundamental examples.
In fact, it has been held since a famous paper of Kantorovich that the methods of functional
analysis can be used to develop practical algorithms with as much success as they have
been used for the theoretical study of these problems. Thus one can often incorporate the
properties of the continuous PDE problem, from the Hilbert space in which it is posed,
into the numerical procedure. The importance of this is expressed by the law of J.W.
Neuberger, stating that analytical and numerical difficulties always come paired.

A fundamental approach here is the Sobolev gradient theory of J.W. Neuberger, which
was shown to give a prospect for a unified theory of PDEs with extensively wide numerical
applications. Sobolev gradients enable us to define preconditioned problems with signifi-
cantly improved convergence via auxiliary operators in Sobolev space. In the linear case, a
strongly related approach comes from the theory of equivalent operators by Manteuffel and
his co-authors, which gives an organized treatment of mesh independent linear convergence
based on Hilbert space theory. Moreover, they have shown that for a preconditioner arising
from an operator, equivalence is essentially necessary for producing mesh independence,
further, that this approach is competitive with multigrid and other state-of-the-art solvers.

The primary goal of this thesis is to complete the above theories such that an organized
framework is obtained for treating a wide class of iterative methods for both linear and
nonlinear problems. A particular attention is paid first to mesh independent superlinear
convergence for linear problems, which is a counterpart of Manteuffel’s results. For non-
linear problems our goal is to give a unified framework for treating gradient and Newton
type methods. A common concept in both studies is the preconditioning operator, whose
role is to produce a cheap approximation of the original operator in the linear case and of
the current Jacobian operator in the nonlinear case. Our next goal is to show that this
treatment results in various efficient computational algorithms that exploit the structure
of the continuous PDE problem and in general produce mesh independence.

In addition, it will be shown that operator theory can be applied to study the reliability
of the numerical solution. New results on the discrete maximum principle, which is an
important measure of the qualitative reliability of the numerical scheme, will be given
in a common Hilbert space framework. Then sharp a posteriori error estimates will be
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established for nonlinear operator equations in Banach space, and shown to be applicable
to several types of elliptic PDEs.

II. The methods of the research

In general, we study a linear or nonlinear operator equation

Lu = g or F (u) = b (0.1)

(in a Hilbert or, more generally, Banach space) that will then model an elliptic PDE includ-
ing boundary conditions. A Galerkin discretization yields a respective finite dimensional
problem

Lhuh = gh or Fh(uh) = bh .

In the major part of this work we consider iterative methods. A one-step iterative
method reads as

ui+1 = ui − S−1
h (Lhui − gh), or ui+1 = ui − B−1

h (Fh(ui)− bh),

where Sh resp. Bh should be properly chosen, and Bh is in general allowed to depend on
i. In the considered methods the basic idea is to obtain Sh resp. Bh as the discretization
of a suitable operator in the given space.

Our study naturally uses the basic theory of iterative methods, including various types
of widespread CG iterations instead of the above one-step method for linear problems. For
instance, the CG method for symmetric linear systems Au = b reads as

uk+1 = uk + αkdk, where αk = − ⟨rk,dk⟩
⟨Adk,dk⟩

; dk+1 = rk+1 + βkdk, where βk =
∥rk+1∥2
∥rk∥2

where rk := Auk − b are the residuals. Suitable generalizations for nonsymmetric systems
(GCG-LS, GCG-LS(0), CGN iterations) will be applied together with their preconditioned
versions, and their linear and superlinear convergence estimates will be used to start with.
Similarly we rely on gradient and Newton type methods for nonlinear problems.

The study of iterative methods and then of the qualitative reliability will involve basic
or special operator theoretical tools for the equations (0.1):

• Hilbert space calculus for linear operators: bilinear forms, energy spaces, energy
norms, coercivity properties, weak forms of unbounded operators.

• Theory of singular values of compact operators.

• Estimates for elliptic operators: Lebesgue and Sobolev norm calculations, Sobolev
embeddings.

• Galerkin discretizations in Hilbert spaces, finite element methods for elliptic prob-
lems.

• Nonlinear potential operators, monotone operators, minimization, norm estimates
for nonlinear operators, weak forms of unbounded nonlinear operators.

• Banach space calculations, dual spaces, energy functionals.

Some basic references related to the topic are [5, 14, 15, 16, 18, 34].
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III. A brief summary of the main results

The results are twofold. On the one hand, this work is theoretically oriented in the sense
that many of the new results are related to Hilbert space theory, such as the introduction
of new concepts in order to derive a general framework for certain classes and properties
of iterative methods. On the other hand, the goal of this theory is to present efficient
computational algorithms producing mesh independent convergence, which is illustrated
with various examples: to this end, altogether fifteen subsections of the thesis are devoted
to such applications.

The main results of this thesis can be grouped as follows.

• We introduce the notion of compact-equivalent linear operators, which expresses
that preconditioning one of them with the other yields a compact perturbation of
the identity, and prove the following principle for Galerkin discretizations: if the
two operators (the original and preconditioner) are compact-equivalent then the pre-
conditioned CGN method provides mesh independent superlinear convergence. This
completes the analogous results of Manteuffel et al. on linear convergence. Mesh
independence of superlinear convergence has not been established before.

We characterize compact-equivalence for elliptic operators: if they have homogeneous
Dirichlet conditions on the same portion of the boundary, then two elliptic operators
are compact-equivalent if and only if their principal parts coincide up to a constant
factor.

• We show that the introduction of the concept of S-bounded and S-coercive operators
also gives a simplified framework for mesh independent linear convergence. In fact,
the required uniform equivalence for the Galerkin discretizations is obtained here as
a straightforward consequence.

• We also derive mesh independent superlinear convergence for the GCG-LS method
for normal compact perturbations, and introduce the notion of weak symmetric part
so that we can apply the abstract result to symmetric part preconditioning for general
boundary conditions.

• Based on the above described theory, we present various efficient preconditioners that
mostly produce mesh independent superlinear convergence for FEM discretizations
of linear PDEs, including some computer realizations with symmetric preconditioners
for nonsymmetric equations, parallelizable decoupled preconditioners for coupled sys-
tems, preconditioning operators with constant coefficients including nonsymmetric
preconditioners.

• We introduce the concept of variable preconditioning, and show that this gives a
unified framework to treat gradient and Newton type methods for monotone nonlinear
problems. Applied in Sobolev spaces, we thus extend the Sobolev gradient theory of
J.W. Neuberger to variable gradients. A general convergence theorem, which puts a
quasi-Newton method in this context, enables us to achieve the quadratic convergence
of Newton’s method via potentially cheaper subproblems than those with Jacobians.
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• Two theoretical contributions to Newton’s method are given. First, related to the
above-mentioned variable Sobolev gradients, we prove that Newton’s method is an
optimal variable gradient method in the sense that the descents in Newton’s method
are asymptotically steepest w.r. to both different directions and inner products. Sec-
ond, we show via a suitable characterization that the theory of mesh independence is
restricted in some sense: for elliptic problems, the quadratic convergence of Newton’s
method is mesh independent if and only if the elliptic equation is semilinear.

• We also give some new Sobolev gradient results for variational problems. These
results, the variable preconditioning theory, and suitable combinations of inexact
Newton iterations with our above-mentioned methods for linear problems form to-
gether a framework of preconditioning operators as a common approach to provide
nonlinear solvers with mesh independent convergence. Based on these, we present
various numerical applications of our iterative solution methods for nonlinear elliptic
PDEs, including computer realizations for some real-life problems.

• Operator approach is used to establish results on the reliability of the numerical
solution. First, a discrete maximum principle (DMP) is established in Hilbert space
for proper Galerkin stiffness matrices, which allows us to derive DMPs for general
nonlinear elliptic equations with mixed boundary conditions and then for nonlinear
elliptic systems, for which classes no DMP has been established before. The results
are applied to achieve the desired nonnegativity of the FEM solution of some real
model problems. Finally, a sharp a posteriori error estimate is given in Banach space
and then derived for nonlinear elliptic problems.

IV. A detailed summary of the results

1 Linear problems

In what follows, let H denote a Hilbert space. It will be assumed real unless explicitly
stated to be complex. We are interested in solving an operator equation

Lu = g (1.1)

for an unbounded linear operator L in H, where g ∈ H. Our main interest is superlinear
convergence [10], which expresses that – roughly speaking – the same improvement in
accuracy needs less effort in the final phase of the iteration than in the initial phase.

1.1 Compact-equivalent operators and superlinear convergence

1.1.1 S-bounded and S-coercive operators

The notion of compact-equivalent operators needs a preliminary notion of weak form of
unbounded operators. This also clarifies in which space equation (1.1) is well-posed. For
this, we will use an auxiliary (also unbounded) linear symmetric operator S in H which is
coercive, i.e., there exists p > 0 such that ⟨Su, u⟩ ≥ p∥u∥2 (u ∈ D(S)). Recall that the

4

               dc_212_11



energy space HS is the completion of D(S) under the inner product ⟨u, v⟩S = ⟨Su, v⟩, and
the coercivity of S implies HS ⊂ H. The corresponding S-norm is denoted by ∥u∥S, and
the space of bounded linear operators on HS by B(HS).

Definition 1.1 Let S be a linear symmetric coercive operator in H. A linear operator L
in H is said to be S-bounded and S-coercive, and we write L ∈ BCS(H), if the following
properties hold:

(i) D(L) ⊂ HS and D(L) is dense in HS in the S-norm;

(ii) there exists M > 0 such that |⟨Lu, v⟩| ≤M∥u∥S∥v∥S (u, v ∈ D(L));

(iii) there exists m > 0 such that ⟨Lu, u⟩ ≥ m∥u∥2S (u ∈ D(L)).

Definition 1.2 For any L ∈ BCS(H), let LS ∈ B(HS) be defined by

⟨LSu, v⟩S = ⟨Lu, v⟩ (u, v ∈ D(L)). (1.2)

Such an LS exists and is unique, and satisfies

|⟨LSu, v⟩S| ≤M∥u∥S∥v∥S, ⟨LSu, u⟩S ≥ m∥u∥2S (u, v ∈ HS). (1.3)

The Lax-Milgram lemma provides a weak solution of equation (1.1) defined by

⟨LSu, v⟩S = ⟨g, v⟩ (v ∈ HS). (1.4)

1.1.2 Coercive elliptic operators

Now the corresponding class is described for elliptic problems. Let us define the elliptic
operator

Lu ≡ −div (A∇u) + b · ∇u+ cu for u|ΓD
= 0, ∂u

∂νA
+ αu|ΓN

= 0, (1.5)

where ∂u
∂νA

= Aν · ∇u denotes the weighted form of the normal derivative. For the formal

domain of L to be used in Definition 1.1, we consider those u ∈ H2(Ω) that satisfy the
above boundary conditions and for which Lu is in L2(Ω).

The following properties are assumed to hold:

Assumptions 1.1.1.

(i) Ω ⊂ Rd is a bounded piecewise C1 domain; ΓD,ΓN are disjoint open measurable
subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN ;

(ii) A ∈ (L∞ ∩ PC)(Ω,Rd×d) and for all x ∈ Ω the matrix A(x) is symmetric; further,
b ∈ W 1,∞(Ω)d (i.e. ∂ibj ∈ L∞(Ω) for all i, j = 1, ..., d), c ∈ L∞(Ω), α ∈ L∞(ΓN);

(iii) we have the following properties which will imply coercivity: there exists p > 0
such that

A(x)ξ · ξ ≥ p |ξ|2 for all x ∈ Ω and ξ ∈ Rd; ĉ := c − 1
2
divb ≥ 0 in Ω and

α̂ := α+ 1
2
(b · ν) ≥ 0 on ΓN ;
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(iv) either ΓD ̸= ∅, or ĉ or α̂ has a positive lower bound.

Let us also define a symmetric elliptic operator on the same domain Ω with otherwise
analogous properties:

Su ≡ −div (G∇u) + σu for u|ΓD
= 0, ∂u

∂νG
+ βu|ΓN

= 0, (1.6)

which generates the energy space H1
D(Ω) := {u ∈ H1(Ω) : u|ΓD

= 0}, under the following

Assumptions 1.1.2.

(i) Substituting G for A, Ω, ΓD, ΓN and G satisfy Assumptions 1.1.1;

(ii) σ ∈ L∞(Ω) and σ ≥ 0; β ∈ L∞(ΓN) and β ≥ 0; further, if ΓD = ∅ then σ or β has
a positive lower bound.

Proposition 1.1 If Assumptions 1.1.1-2 hold, then the operator L is S-bounded and
S-coercive in L2(Ω), i.e., L ∈ BCS(L

2(Ω)).

1.1.3 Compact-equivalent operators

Now the notion of compact-equivalent operators can be introduced.

Definition 1.3 Let L and N be S-bounded and S-coercive operators in H. We call L
and N compact-equivalent in HS if

LS = µNS +QS (1.7)

for some constant µ > 0 and compact operator QS ∈ B(HS).

We can characterize compact-equivalence for elliptic operators:

Theorem 1.1 Let the elliptic operators L1 and L2 satisfy Assumptions 1.1.1 with the
same ΓN and ΓD. Then L1 and L2 are compact-equivalent in H1

D(Ω) if and only if their
principal parts coincide up to some constant µ > 0, i.e. A1 = µA2.

1.1.4 Mesh independent superlinear convergence in Hilbert space

Equation (1.1) can be solved numerically using a Galerkin discretization in a subspace
Vh = span{φ1, . . . , φn} ⊂ HS. Finding the discrete solution requires solving an n × n
system

Lh c = bh (1.8)

with bh = {⟨g, φj⟩}nj=1.

Now we present mesh independent superlinear convergence estimates in the case of
compact-equivalent preconditioning. Bounds on the rate of superlinear convergence are
given in the form of a sequence which is mesh independent and is determined only by the
underlying operators.

For simplicity, in what follows, we will consider compact-equivalence with µ = 1 in
(1.7). This is clearly no restriction, since if a preconditioner NS satisfies LS = µNS + QS

then we can consider the preconditioner µNS instead.
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1.1.5 Symmetric compact-equivalent preconditioners

Let us consider operators L and S as in Definition 1.1, and assume in addition that L and
S are compact-equivalent with µ = 1. Then (1.7) holds with NS = I:

LS = I +QS (1.9)

with a compact operator QS. We apply the stiffness matrix Sh of S as preconditioner for
system (1.8). By (1.9), letting Qh =

{
⟨QSφj, φi⟩S

}n

i,j=1
, the preconditioned system takes

the form
(Ih + S−1

h Qh) c = b̃h (1.10)

where Ih is the n× n identity matrix.

In order to have mesh independent bounds, one must estimate the sums of eigenvalues
of the perturbation matrices (which appear in the standard superlinear estimate) by those
of the corresponding operator.

Proposition 1.2 Let H be a complex Hilbert space. If QS is a normal compact operator
in HS and the matrix S−1

h Qh is Sh-normal, then

k∑
i=1

∣∣λi(S−1
h Qh)

∣∣ ≤ k∑
i=1

∣∣λi(QS)
∣∣ (k = 1, 2, . . . , n).

If H is a real Hilbert space (as it is in this paper) then H and HS can be extended to
a complex Hilbert space. From Proposition 1.2 and the standard estimate we can then
derive

Theorem 1.2 Under the conditions of Proposition 1.2, the GCG-LS algorithm for system
(1.10) yields(

∥rk∥Sh

∥r0∥Sh

)1/k

≤ εk (k = 1, ..., n), where εk :=
2

km

k∑
j=1

∣∣λj(QS)
∣∣ → 0 as k → ∞

and εk is a sequence independent of Vh.

The most important special case here is symmetric part preconditioning, when both
normality assumptions are readily satisfied, in fact, QS is antisymmetric in HS. Then the
GCG-LS algorithm reduces to the truncated GCG-LS(0) version, the Lh-norm equals the
Sh-norm and we have m = 1.

In the general case without normality, we have the following bounds and convergence:

Proposition 1.3 Any compact operator QS in HS satisfies the following relations:

(a)
k∑

i=1

λi(S
−1
h QT

h S−1
h Qh) ≤

k∑
i=1

si(QS)
2 (k = 1, 2, . . . , n),

(b)
k∑

i=1

∣∣λi(S−1
h QT

h + S−1
h Qh)

∣∣ ≤ k∑
i=1

∣∣λi(Q∗
S +QS)

∣∣ (k = 1, 2, . . . , n),
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Theorem 1.3 The CGN algorithm for system (1.10) yields(
∥rk∥Sh

∥r0∥Sh

)1/k

≤ εk (k = 1, 2, ..., n), (1.11)

where

εk :=
2

km2

k∑
i=1

(∣∣λi(Q∗
S +QS)

∣∣+ λi(Q
∗
SQS)

)
→ 0 as k → ∞ (1.12)

and εk is a sequence independent of Vh.

Recall that a self-adjoint compact operator C is called a Hilbert-Schmidt operator if
∥|C∥|2 ≡

∑
λi(C)

2 <∞ (see e.g. [16]). Then we obtain a more explicit rate O(k−1/2):

Theorem 1.4 If QS is a Hilbert-Schmidt operator, then the CG method yields(
∥ek∥A
∥e0∥A

)1/k

≤
(

3

2k

)1/2

∥|QS∥| . (1.13)

1.1.6 Nonsymmetric compact-equivalent preconditioners

Now let N be a nonsymmetric S-bounded and S-coercive operator which is compact-
equivalent to L with µ = 1, i.e., (1.7) becomes LS = NS+QS. We apply the stiffness matrix
Nh of NS as preconditioner for the discretized system (1.8). Since N is nonsymmetric, in
order to define an inner product on Rn we endow Rn with the Sh-inner product ⟨c,d⟩Sh

:=
Sh c · d as earlier. The preconditioned system N−1

h Lh c = b̃h takes the form

(Ih +N−1
h Qh) c = b̂h (1.14)

where Ih is the n×n identity matrix. With a proper estimation of sums of singular values,
we obtain

Theorem 1.5 Let L and N be compact-equivalent S-bounded and S-coercive operators,
i.e. LS = NS +QS with a compact operator QS on HS. Let si(QS) (i = 1, 2, . . . ) denote
the singular values of QS. Then the CGN algorithm for system (1.14) yields(

∥rk∥Sh

∥r0∥Sh

)1/k

≤ εk (k = 1, 2, ..., n) (1.15)

where εk =
2M2

N

km2
L

k∑
i=1

( 2

mN

si(QS) +
1

m2
N

si(QS)
2
)

→ 0 (as k → ∞) (1.16)

and εk is a sequence independent of Vh.
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1.1.7 Mesh independent superlinear convergence for elliptic equations

In this section we consider nonsymmetric elliptic problems{
Lu := −div (A∇u) + b · ∇u+ cu = g

u|ΓD
= 0, ∂u

∂νA
+ αu|ΓN

= 0,
(1.17)

on a bounded domain Ω ⊂ Rd, where ∂u
∂νA

= Aν · ∇u denotes the weighted normal deriva-
tive. We assume that the operator L satisfies Assumptions 1.1.1, that is, L is of the type
(1.5), and further, that g ∈ L2(Ω).

Using FEM to solve (1.17), we define a subspace Vh = span{φ1, . . . , φn} ⊂ H1
D(Ω) and

seek the FEM solution uh ∈ Vh, which requires solving an n× n system

Lh c = gh. (1.18)

First we consider symmetric preconditioners. In order to obtain superlinear convergence
based on Theorem 1.1, we define S to have the same principal part as L, i.e.,

Su ≡ −div (A∇u) + σu for u|ΓD
= 0, ∂u

∂νG
+ βu|ΓN

= 0, (1.19)

assumed to satisfy Assumptions 1.1.2. We introduce the stiffness matrix Sh of S as pre-
conditioner for system (1.18), and then solve the preconditioned system

S−1
h Lh c ≡ (Ih + S−1

h Qh) c = g̃h (1.20)

(with g̃h = S−1
h gh) with a CG method. Let us decompose LS = I +QS, where

⟨QSu, v⟩S =

∫
Ω

(
(b · ∇u)v + (c− σ)uv

)
+

∫
ΓN

(α− β)uv dσ (u, v ∈ H1
D(Ω)). (1.21)

Theorem 1.6 If QS is normal, then the GCG-LS algorithm for system (1.20) yields(
∥rk∥Sh

∥r0∥Sh

)1/k

≤ εk (k = 1, ..., n), where εk :=
2

km

k∑
j=1

∣∣λj(QS)
∣∣ → 0 as k → ∞

(1.22)
and εk is a sequence independent of Vh.

Theorem 1.7 The CGN algorithm for system (1.20) yields(
∥rk∥Sh

∥r0∥Sh

)1/k

≤ εk (k = 1, 2, ..., n), (1.23)

where

εk :=
2

km2

k∑
i=1

(∣∣λi(Q∗
S +QS)

∣∣+ λi(Q
∗
SQS)

)
→ 0 as k → ∞ (1.24)

and εk is a sequence independent of Vh.
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Efficient solvers arise from symmetric preconditioners such as e.g. the symmetric part,
Laplacian or Helmholtz operators [13, 32, 33], and in the general case one can use multigrid
solvers for S [41].

The magnitude in which εk → 0 can be determined in certain cases. The following
estimates are available when the asymptotics for symmetric eigenvalue problems

Su = µu, u|ΓD
= 0, r

(
∂u
∂νA

+ βu
)
|ΓN

= µu (1.25)

are known, as is the case for Dirichlet problems where µi = O(i2/d). (A similar result in
2D will be seen later for symmetric part preconditioning for GCG-LS.)

Theorem 1.8 The sequence εk in (1.24) satisfies εk ≤ (4s/k)
k∑

i=1

(1/µi) for some con-

stants s, r > 0, where µi (i ∈ N+) are the solutions of (1.25). When the asymptotics
µi = O(i2/d) holds, in particular, for Dirichlet boundary conditions,

εk ≤ O
( log k

k

)
if d = 2 and εk ≤ O

( 1

k2/d

)
if d ≥ 3. (1.26)

Nonsymmetric preconditioners may be needed if the original problem has large first-
order terms, when the symmetric approach may not work satisfactorily and it may be
advisable to include first-order terms in the preconditioning operator too. Let us consider
the nonsymmetric elliptic equation (1.17) with Laplacian principal part. As before, we
are interested in FEM discretization. Let us introduce the following type of nonsymmetric
preconditioning operator:

Nu := −∆u+ w · ∇u+ zu for u ∈ H2(Ω) : u|ΓD
= 0, ∂u

∂νK
+ ηu|ΓN

= 0

for some properly chosen functions w, z, η, such that N satisfies Assumptions 1.1.1 in the
obvious sense.

Theorem 1.9 The CGN algorithm for the preconditioned system N−1
h Lh c = b̃h yields(

∥rk∥Sh

∥r0∥Sh

)1/k

≤ εk (k = 1, 2, ..., n) (1.27)

where εk =
2M2

N

km2
L

k∑
i=1

( 2

mN

si(QS) +
1

m2
N

si(QS)
2
)

→ 0 (as k → ∞) (1.28)

and εk is a sequence independent of Vh.

In general, the operator L has variable coefficients b and c, and one can well approxi-
mate it with a preconditioning operator with constant coefficients:

Nu = −∆u+ w · ∇u+ zu for u ∈ H2(Ω) : u|ΓD
= 0, ∂u

∂ν
+ ηu|ΓN

= 0, (1.29)

where w ∈ Rd, z, η ≥ 0 are constants such that z > 0 or η > 0 if ΓD = ∅. Then separable
solvers are available for N , see [32, 33]. The preconditioning operator (1.29) can be further
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simplified if one convection coefficient, say b1(x), is dominating. Then one can include only
one nonsymmetric coefficient, i.e. propose the preconditioning operator

Nu = −∆u+ w1
∂u
∂x1

+ zu for u ∈ H2(Ω) : u|ΓD
= 0, ∂u

∂ν
+ ηu|ΓN

= 0, (1.30)

where w1, z, η ∈ R have the same properties as required for (1.29). The presence of the
term w1

∂u
∂x1

itself may turn N into a much better approximation of L. Nevertheless, since
this term is one-dimensional, the solution of the auxiliary problems remains considerably
simpler than that of the original one, e.g. via local 1D Green’s functions [8].

1.1.8 Mesh independent superlinear convergence for elliptic systems

We consider convection-diffusion type systems, coupled via the zeroth order terms. (Stokes
type systems will be mentioned in subsection 1.4.6.) Here an important advantage of the
equivalent operator idea is that one can define decoupled (that is, independent) operators
for the preconditioner, thereby reducing the size of auxiliary systems to that of a sin-
gle elliptic equation. The decoupled preconditioners allow efficient parallelization for the
solution of the auxiliary systems.

We consider an elliptic system

Liu ≡ −div (Ai ∇ui) + bi · ∇ui +
l∑

j=1

Vijuj = gi

ui |ΓD
= 0, ∂ui

∂νA
+ αiui |ΓN

= 0

 (i = 1, . . . , l) (1.31)

where Ω, Ai and αi are as in Assumptions 1.1.1, bi ∈ W 1,∞(Ω)d, gi ∈ L2(Ω), Vij ∈ L∞(Ω).

We assume that bi and the matrix V =
{
Vij

}l

i,j=1
satisfy the coercivity property

λmin(V + V T )−max
i

divbi ≥ 0 (1.32)

pointwise on Ω, where λmin denotes the smallest eigenvalue; then system (1.31) has a unique
weak solution u ∈ H1

D(Ω)
l. Such systems arise e.g. from suitable time discretization and

Newton linearization of transport systems.

The preconditioning operator S = (S1, . . . , Sl) will be the l-tuple of independent oper-
ators

Siui := −div (Ai ∇u) + hiu for ui |ΓD
= 0, ∂ui

∂νA
+ βiui |ΓN

= 0 (i = 1, . . . , l)

such that each Si satisfies Assumptions 1.1.2. The preconditioner for the discrete system
is defined as the stiffness matrix Sh of S in H1

D(Ω)
l, and we apply the CGN algorithm for

the preconditioned system S−1
h Lh c = g̃h.

Theorem 1.10 The CGN algorithm for the preconditioned system S−1
h Lh c = g̃h yields(

∥rk∥Sh

∥r0∥Sh

)1/k

≤ εk (k = 1, 2, ..., n), (1.33)

where εk :=
2

km2

k∑
i=1

(∣∣λi(Q∗
S +QS)

∣∣+ λi(Q
∗
SQS)

)
→ 0 as k → ∞ (1.34)

and εk is a sequence independent of Vh.
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If QS is normal, then one can apply the GCG-LS algorithm and obtain(
∥rk∥Sh

∥r0∥Sh

)1/k

≤ εk (k = 1, ..., n), where εk :=
2

km

k∑
j=1

∣∣λj(QS)
∣∣ → 0 as k → ∞

and εk is a sequence independent of Vh. As in the scalar case, our theory for GCG-LS
only covers symmetric part preconditioners here (besides the practically uninteresting case
of an original L with constant coefficients in L); however, the experiments in [25] show a
wider validity of the mesh independent superlinear convergence result.

The proposed preconditioner has inherent parallelism, owing to the independence of
the operators Si that also implies a block diagonal form of the preconditioning matrices.
Parallelization on a cluster of computers will be discussed in subsection 1.4.5. We finally
note that these results can be obviously extended to uncoupled nonsymmetric precondi-
tioners of the form (1.29).

1.2 Equivalent S-bounded and S-coercive operators and linear
convergence

1.2.1 Mesh independent linear convergence in Hilbert space

Let us consider the operator equation (1.1), where L is S-bounded and S-coercive in the
sense of Definition 1.1, and g ∈ H. Using a Galerkin discretization, we want to solve the
arising n × n system (1.8). If no compact-equivalence is assumed then one can obtain
general results on linear convergence from the S-bounded and S-coercive framework [11].

(a) Symmetric preconditioners. Let S be the symmetric coercive operator from
Definition 1.1, and introduce the stiffness matrix of S as preconditioner for system (1.8).
To solve the preconditioned system

S−1
h Lh c = b̃h, (1.35)

one can apply a CG method using the Sh-inner product ⟨., .⟩Sh
.

Proposition 1.4 If the operator L satisfies (1.3), then for any subspace Vh ⊂ HS the
stiffness matrix Lh satisfies

m (Sh c · c) ≤ Lh c · c, |Lh c · d| ≤M ∥c∥Sh
∥d∥Sh

(c,d ∈ Rn), (1.36)

where m and M come from (1.3) and hence are independent of Vh.

Theorem 1.11 Let the operator L satisfy (1.3). Then the GCG-LS method for for system
(1.35) provides (

∥rk∥Sh

∥r0∥Sh

)1/k

≤
(
1−

(m
M

)2)1/2

(k = 1, 2, ..., n) (1.37)

and the CGN algorithm satisfies(
∥rk∥Sh

∥r0∥Sh

)1/k

≤ 21/k
M −m

M +m
(k = 1, 2, ..., n), (1.38)

both independently of Vh.
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We note that (1.37) holds as well for the GCR and Orthomin methods together with their
truncated versions. We mention as a special case when L itself is a symmetric operator:
then its S-coercivity and S-boundedness simply turns into a spectral equivalence relation,
which immediately implies that κ(S−1

h Lh) ≤ M
m
.

(b) Relation to previous conditions. Now we can clarify the relation of our setting
to that by Faber, Manteuffel and Parter in [14]. Thereby they consider a more general
situation than ours, similar to the Babuška lemma for well-posedness, which would mean
with our terms that coercivity (the second inequality in (1.3)) can be replaced by the two
weaker statements

sup
v∈HS

⟨LSu, v⟩S
∥v∥S

≥ m∥u∥S (u ∈ HS), sup
u∈HS

⟨LSu, v⟩S > 0 (v ∈ HS). (1.39)

However, in contrast to (1.3), the above inequalities are not automatically inherited in
general subspaces Vh with the same constants, i.e., no analogue of Proposition 1.4 holds.
Instead, the corresponding uniform relations for the discrete operators had to be assumed
there, see (3.37)-(3.38) in [14]; with our notations, this means that one has to assume

sup
d∈Rn

Lh c · d
∥d∥Sh

≥ m̃∥c∥Sh
(c ∈ Vh), sup

c∈Rn

Lh c · d > 0 (d ∈ Rn)

with a uniform constant m̃ > 0 to obtain mesh independent linear convergence. (The
first bound is an LBB type condition.) Although our assumptions (1.3) are more special,
they hold for rather general elliptic operators as shown by Proposition 1.1, and provide
mesh independent linear convergence for arbitrary subspaces Vh ⊂ HS without any further
assumption.

(c) Nonsymmetric preconditioners. Let us consider a nonsymmetric precondi-
tioning operator N for equation (1.1). We assume that N is S-bounded and S-coercive for
the same symmetric operator S as is L. Then we introduce the stiffness matrix of NS as
preconditioner for the discretized system (1.8). To solve the preconditioned system

N−1
h Lh c = b̃h (1.40)

(with b̃h = N−1
h bh), we apply the CGN method under the Sh-inner product ⟨., .⟩Sh

, which
converges as follows (where κ(N−1

h Lh) is the condition number):(
∥rk∥Sh

∥r0∥Sh

)1/k

≤ 21/k
κ(N−1

h Lh)− 1

κ(N−1
h Lh) + 1

(k = 1, 2, ..., n). (1.41)

In the convergence analysis of nonsymmetric preconditioners, we must distinguish be-
tween the bounds of L and N , i.e., (1.3) is replaced by

mL∥u∥2S ≤ ⟨LSu, u⟩S, |⟨LSu, v⟩S| ≤ML∥u∥S∥v∥S,
mN∥u∥2S ≤ ⟨NSu, u⟩S, |⟨NSu, v⟩S| ≤MN∥u∥S∥v∥S

(1.42)

for all u, v ∈ HS.
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Theorem 1.12 If the operators L and N satisfy (1.42), then for any subspace Vh ⊂ HS

κ(N−1
h Lh) ≤

MLMN

mLmN

and κ(N−1
h Lh) ≤

(
1 +

mL +mN

2mLmN

∥LS −NS∥
)2

(1.43)

independently of Vh.

Hence, by (1.41), the CGN algorithm converges with a ratio bounded independently of Vh.

1.2.2 Mesh independent linear convergence for elliptic problems

Let us consider again the nonsymmetric elliptic problem (1.17). Its FEM solution in an
n-dimensional subspace Vh ⊂ H1

D(Ω) requires solving the n × n system (1.18). As a pre-
conditioning operator, we consider in general a symmetric elliptic operator S as in (1.6):

Su ≡ −div (G∇u) + σu for u|ΓD
= 0, ∂u

∂νG
+ βu|ΓN

= 0 (1.44)

assumed to satisfy Assumptions 1.1.2, but in general A ̸= G. We introduce the stiffness
matrix Sh of S as preconditioner for system (1.18), and then solve the preconditioned
system S−1

h Lh c = g̃h with a CG algorithm. The basic conditioning estimate is as follows:

Proposition 1.5 For any subspace Vh ⊂ H1
D(Ω),

κ(S−1
h Lh) ≤M/m (1.45)

independently of Vh, where

M := p1 + CΩ,S q
−1/2∥b∥L∞(Ω)d + C2

Ω,S∥c∥L∞(Ω) + C2
ΓN ,S∥α∥L∞(ΓN ) ,

m :=
(
p−1
0 + C2

Ω,L∥σ∥L∞(Ω) + C2
ΓN ,L∥β∥L∞(ΓN )

)−1

.
(1.46)

Theorem 1.13 For the system S−1
h Lh c = g̃h, the GCG-LS algorithm satisfies(

∥rk∥Sh

∥r0∥Sh

)1/k

≤
(
1−

(m
M

)2)1/2

(k = 1, 2, ..., n), (1.47)

which holds as well for the GCR and Orthomin methods together with their truncated
versions; further, the CGN algorithm satisfies(

∥rk∥Sh

∥r0∥Sh

)1/k

≤ 21/k
M −m

M +m
(k = 1, 2, ..., n), (1.48)

where both ratios are independent of Vh.

Efficient solvers arise for symmetric preconditioners such as e.g. Laplacian, Helmholtz,
separable or piecewise constant coefficient operators or in general MG solvers [32, 33, 41].
The results can be extended to suitable systems, see as an example the Navier system
(1.72).
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1.3 Symmetric part preconditioning

Let us consider an algebraic system Lh c = gh arising from a given elliptic FEM problem,
and, as usual, we look for a preconditioner to provide a suitable preconditioned system
S−1
h Lh c = g̃h. A famous particular strategy is symmetric part preconditioning, introduced

by Concus and Golub (see further analysis in [9]). Here

Sh :=
1

2
(Lh + LT

h ), Qh :=
1

2
(Lh − LT

h ), (1.49)

that is, the symmetric and antisymmetric parts of Lh, respectively. The main advantage is
a simplified algorithm: the full GCG-LS algorithm then reduces to the truncated version
GCG-LS(0) that uses a single, namely the current search direction [4].

We are interested in the mesh independent convergence of CG iterations. In order to
apply the theory of the previous sections, we must identify the underlying operators. The
elliptic problem is represented, as usual, by an operator equation Lu = g for an unbounded
linear operator L in H, where g ∈ H. On the other hand, we must find the operator S
whose stiffness matrix is the symmetric part of Lh, further, the operators L and S must fit
in the framework developed in section 1.1. We assume for the discussion that H is complex
and there exists p > 0 such that

Re⟨Lu, u⟩ ≥ p∥u∥2 (u ∈ D := D(L)). (1.50)

1.3.1 Strong symmetric part and mesh independent convergence

Let us consider equation Lu = g under the conditions D(L) = D(L∗) =: D, and let S and
Q be the symmetric and antisymmetric parts of L:

Su =
1

2
(Lu+ L∗u), Qu :=

1

2
(Lu− L∗u) (u ∈ D). (1.51)

Further, we impose the following conditions:

Assumptions 1.3.1. We have R(S) = H, and the operator Q can be extended to the
energy space HS, and then S−1Q is a bounded operator on HS.

Theorem 1.14 Let H be a complex Hilbert space. Let L satisfy (1.50) and D(L) = D(L∗),
further, assume that Assumptions 1.3.1 hold, and consider the GCG-LS(0) algorithm for
the preconditioned system S−1

h Lh c = g̃h.

(1) Then (
∥rk∥Sh

∥r0∥Sh

)1/k

≤ ∥S−1Q∥√
1 + ∥S−1Q∥2

(k = 1, 2, ..., n). (1.52)

(2) If, in addition, S−1Q is a compact operator on HS, then(
∥rk∥Sh

∥r0∥Sh

)1/k

≤ εk (k = 1, ..., n), where εk :=
2

k

k∑
j=1

∣∣λj(S−1Q)
∣∣ → 0 as k → ∞

(1.53)
and εk is a sequence independent of Vh.
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The above situation is applicable to Dirichlet problems as a special case of (1.17):{
Lu := −div (A∇u) + b · ∇u+ cu = g

u|∂Ω = 0,
(1.54)

where we assume that L satisfies Assumptions 1.1.1. and the Kadlec conditions (i.e. Ω is
C2-diffeomorphic to a convex domain and A ∈ Lip(Ω,Rd×d)). Then an easy calculation
shows that the symmetric part of L is the operator

Su ≡ −div (A∇u) + ĉu for u|∂Ω = 0, (1.55)

where ĉ := c− 1
2
divb.

Theorem 1.15 Let the operator L in (1.54) satisfy Assumptions 1.1.1. and the Kadlec
conditions. Let S be the operator (1.55). Then the GCG-LS(0) algorithm for system
S−1
h Lh c = g̃h converges superlinearly according to (1.53).

The superlinear convergence rate can be determined for 2D problems with constant
coefficients. Let us consider a special case of problem (1.54) on a bounded domain Ω ⊂ R2,
namely, Lu = −∆u+b ·∇u+ cu, where b = (b1, b2) ∈ R2, c ∈ R+ and g ∈ L2(Ω). The
symmetric part becomes the preconditioning operator Su = −∆u+ cu.

Theorem 1.16 Then for any FEM subspace Vh ⊂ H1
0 (Ω), the GCG-LS algorithm for the

preconditioned system S−1
h Lh c = g̃h yields(

∥rk∥Sh

∥r0∥Sh

)1/k

≤ C√
k

for some constant C > 0 independent of h and k.

1.3.2 Weak symmetric part and mesh independent convergence

Let us consider the operator equation Lu = g again. If D(L) ̸= D(L∗), then the symmetric
part operator S defined in (1.51) may have no real meaning. Therefore the symmetric
part and its relation to L have to be handled in a more general weak sense using suitable
sesquilinear (i.e. conjugate bilinear) forms [21]. This is the case when an elliptic problem
has mixed boundary conditions.

(a) Construction of the weak symmetric part. We define the weak symmetric
part as an inner product:

⟨u, v⟩S :=
1

2

(
⟨Lu, v⟩+ ⟨u, Lv⟩

)
(u, v ∈ D(L)). (1.56)

Here assumption (1.50) implies the positivity of ⟨., .⟩S. The space HS is the completion of
D(L) w.r.t. the inner product ⟨., .⟩S. Further, we can define the operator QS as follows:
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Proposition 1.6 Let the form u, v 7→ ⟨Lu, v⟩ be bounded in HS-norm. Then

(1) there exists a unique bounded sesquilinear form on HS satisfying

⟨u, v⟩L = ⟨Lu, v⟩ (u, v ∈ D(L)); (1.57)

(2) there exists a unique operator QS : HS → HS, defined for given u ∈ HS by the
expression

⟨QSu, v⟩S :=
1

2

(
⟨u, v⟩L − ⟨v, u⟩L

)
(∀v ∈ HS). (1.58)

Further, we have
⟨u, v⟩L = ⟨u, v⟩S + ⟨QSu, v⟩S (u, v ∈ HS). (1.59)

(b) Preconditioning by the weak symmetric part. Now the weak form of Lu = g
is

⟨u, v⟩L = ⟨g, v⟩ (∀v ∈ HS). (1.60)

Using (1.59), if f ∈ HS is such that ⟨f, v⟩S ≡ ⟨g, v⟩ (∀v ∈ HS), then (1.60) becomes

(I +QS)u = f. (1.61)

We now summarize our conditions.

Assumptions 1.17. L satisfies (1.50) and the form u, v 7→ ⟨Lu, v⟩ is bounded in
HS-norm, further, the operator QS : HS → HS, defined in (1.58), is compact on HS.

Theorem 1.17 Let Assumptions 1.17 hold. Then the the GCG-LS(0) algorithm applied
for the preconditioned system S−1

h Lh c = g̃h yields(
∥rk∥Sh

∥r0∥Sh

)1/k

≤ εk (k = 1, ..., n) where εk :=
2

k

k∑
j=1

∣∣λj(QS)
∣∣ → 0 as k → ∞

(1.62)
and εk is a sequence independent of Vh.

(c) Symmetric part preconditioning for mixed boundary value problems. Let
us consider again the nonsymmetric elliptic problem (1.17). Then one can calculate easily
the weak symmetric part of L, which is the inner product generated by the preconditioning
operator

Su ≡ −div (A∇u) + ĉu for u|ΓD
= 0, ∂u

∂νG
+ α̂u|ΓN

= 0, (1.63)

where ĉ := c− 1
2
divb and α̂ := α+ 1

2
(b · ν). One can also calculate QS and prove that it

is compact, and thus derive

Theorem 1.18 Let the operator L in (1.17) satisfy Assumptions 1.1.1., and S be the op-
erator (1.63). Then the GCG-LS(0) algorithm for the corresponding preconditioned system
S−1
h Lh c = g̃h converges superlinearly according to (1.62).
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1.4 Applications to efficient computational algorithms

1.4.1 Helmholtz preconditioner for regular convection-diffusion equations

A regularly perturbed convection-diffusion process is described by the elliptic problem{
Lu ≡ −∆u+ b · ∇u+ cu = g

u|ΓD
= 0, ∂u

∂ν |ΓN
= 0 ,

(1.64)

where L satisfies Assumptions 1.1.1. Using the Helmholtz preconditioning operator

Su ≡ −∆u+ σu for u|ΓD
= 0, ∂u

∂ν |ΓN
= 0

where σ > 0 is a constant, Theorem 1.7 yields mesh independent superlinear convergence
for the PCGN algorithm. The auxiliary Helmholtz problems can be solved by some fast
solver such as multigrid or a parallel direct solver [13]. Numerical experiments confirm the
theoretical convergence estimates [29].

1.4.2 Convection problems for viscous fluids

The study of the discrete steady-state of an incompressible viscous flow leads to the Oseen
equations as a linearized form of the Navier-Stokes equations, where ν = O(1). The
widespread Uzawa iteration for the Oseen equations defines the consecutive systems{

−ν∆uk +w · ∇uk +∇pk = f , uk |∂Ω = 0

pk+1 = pk + αk divuk = 0
(1.65)

(for k = 1, 2, . . . , and where divw = 0), that is, one must stepwise solve uncoupled auxiliary
problems for uk which are special convection-diffusion type equations. Since their solution
error accumulates during the outer Uzawa iteration, they require an accurate solution. The
symmetric part preconditioning operator is

Sz ≡ −ν∆z for z|∂Ω = 0,

and Theorem 1.14 yields mesh independent superlinear convergence for the GCG-LS(0)
iteration. The auxiliary Possion equations can be solved by a variety of fast Possion
solvers [32, 33].

1.4.3 Scaling for problems with variable diffusion coefficients

If the diffusion is space-dependent, then the Laplacian is replaced by a variable coefficient
diffusion operator. We are then led to the problem

Lu ≡ −div (a∇u) + b · ∇u+ cu = g, u |∂Ω = 0 , (1.66)

where L satisfies Assumptions 1.1.1 and we assume that a ∈ C2(Ω), a(x) ≥ p > 0.
If a fast Poisson or Helmholtz solver is available, then one can still achievemesh indepen-

dent superlinear convergence by applying the method of scaling. Using the new unknown
function v := a1/2u, (1.66) adopts the form

Nv ≡ −∆v + b̂ · ∇v + ĉv = ĝ , v |∂Ω = 0 , (1.67)

hence the previously seen Poisson or Helmholtz preconditioners can be applied.
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1.4.4 Decoupled preconditioners for linearized air pollution systems

Air pollution processes are described by compound nonlinear transport systems involving
diffusion, convection, reaction and deposition terms [43], and such systems may consist
of a huge number of equations. Properly using a standard time discretization and then a
suitable linearization, one gets a linear elliptic system

−div (Ki∇ui) +wi · ∇ui +
l∑

j=1

Vijuj = gi

ui |∂Ω = 0,

 (i = 1, . . . , l) (1.68)

which is a special case of system (1.31). To solve this system using FEM and PCG iteration,
the equivalent operator idea can be employed very efficiently. One can define a decoupled
(that is, independent) l-tuple of operators for the preconditioner, thereby reducing the size
of auxiliary systems to that of a single elliptic equation:

Siui := −div (Ki ∇u) + hiu for ui |ΓD
= 0, ∂ui

∂νA
+ βiui |ΓN

= 0 (i = 1, . . . , l)
(1.69)

such that each Si satisfies Assumptions 1.1.2. Then Theorem 1.10 yields mesh independent
superlinear convergence.

We have run numerical tests for a model problem based on [43], involving 10 equa-
tions. The mesh independent superlinear convergence was observed, and our solver was
considerably faster compared to the direct solution with the original system matrix.

1.4.5 Parallelization on a cluster of computers

The proposed preconditioner in the previous subsection has inherent parallelism, hence the
preconditioning step can be implemented without any communications between processors.
Indeed, a considerable speed-up has been obtained in the tests in [26]. Here the GCG-LS
iteration was used and mesh independent convergence was obtained again, but now the
main interest was the parallelization. The tests were realized in the Institute for Parallel
Processing of the Bulgarian Academy of Sciences, executed on a Linux cluster.

The obtained parallel time Tp on p processors, relative parallel speed-up Sp = T1

Tp
≤ p

and relative efficiency Ep =
Sp

p
≤ 1 were analyzed. Figure 1 shows the speed-up Sp of the

full version of the algorithm obtained for h−1 = 128 and l = 3, 4, . . . 10. As was expected,
when the number of equations l is divisible by the number of processors p then the parallel
efficiency of the parallel algorithm is higher.

1.4.6 Regularized flow and elasticity problems

(a) Viscous flow: the Stokes problem. A fundamental model of viscous flow is the
system of Stokes equations {

−∆u+∇p = f , u|∂Ω = 0 ,

divu = 0
(1.70)
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Figure 1: Speed-up of the GCG-LS algorithm for an elliptic system.

in a bounded domain Ω ⊂ Rd (d = 2 or 3) with f ∈ L2(Ω)d. The numerical solution of
this system has been widely investigated. Since the crucial LBB-condition restricts the
suitable possible pairs of subspaces, an important effort has also been done to circumvent
the LBB-condition via regularization. We consider a regularized version studied in [6]:

Lh

(
ξh
ηh

)
≡

(
diagd(−∆0

h) σ−1/2 ∇h

σ−1/2 div h −∆ν
h

)(
ξh
ηh

)
=

(
fh

σ−1/2 div fh

)
(1.71)

where σ is the regularization parameter. Then Theorem 1.14 yields mesh independent
superlinear convergence using symmetric part preconditioning for GCG-LS(0) algorithm:(

∥rk∥Sh

∥r0∥Sh

)1/k

≤ εk (k = 1, ..., n) where εk :=
2

σ1/2k

k∑
j=1

∣∣λj(QS)
∣∣ → 0 as k → ∞

and εk depends only on σ but not on h.

(b) Linear elasticity: Navier’s system of equations. Let us consider an isotropic
elastic body Ω subject to a body force f in the case of pure displacement. A mixed
formulation of the elasticity model leads to a form much similar to the Stokes problem: −∆u+∇p = 1

µ
f , u|∂Ω = 0 ,

divu+ (1− 2ν)p = 0.
(1.72)
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Now symmetric part preconditioning yields mesh independent linear convergence of the
GCG-LS(0) algorithm for the preconditioned FEM system of the Navier equations. Using
Theorem 1.14, one can derive(

∥rk∥Sh

∥r0∥Sh

)1/k

≤ 1√
2(1− ν)

(k = 1, . . . , n). (1.73)

We note that one can regularize this system similarly to the Stokes problem, and obtain
superlinear convergence for symmetric part preconditioning.

1.4.7 Nonsymmetric preconditioning for convection-dominated problems

Convection-dominated problems arise when the magnitude |b| of the convection coefficient
is large, or equivalently, with a small coefficient ν of the Laplacian (singularly perturbed
problem). There exist various approaches, mostly based on some stabilization, but here
only linear convergence can be achieved. In contrast to this, our main interest is superlinear
convergence. In estimating superlinear convergence, however, one cannot achieve indepen-
dence of ν. Our numerical results give instead a milder deterioration of the convergence
rate with increasing ν using a properly chosen preconditioning operator.

We consider the convection-dominated problem

Lu ≡ −ν∆u+ b · ∇u = g, u|∂Ω = 0 , (1.74)

where L satisfies Assumptions 1.1.1. A nonsymmetric preconditioning operator is chosen
as

Nu := −ν∆u+ w · ∇u for u|∂Ω = 0 ,

where w is a constant vector function. Then systems with Nh are much cheaper to solve
with some fast solver than systems with Lh. We have chosen |w| = O(|b|).

We have derived mesh independent superlinear convergence, and numerical experiments
have shown a mild deterioration of the convergence rate with ν: in a range of ν = 1 to
ν = 0.05, the number of iterations for ∥rk∥Sh

≤ 10−8 grew from 4 to 26.

2 Nonlinear problems

2.1 Sobolev gradients for variational problems

2.1.1 Gradient iterations in Hilbert space

We present iterative methods that model the situation to be discussed in subsection 2.1.2
on Sobolev gradients. This relates to preconditioning via the spectral notion of condition
number, which can be extended in a natural way from symmetric and positive definite
matrices to nonlinear operators. The condition number is infinite for differential operators
in strong form, which explains the phenomenon that cond(Th) is unbounded as h → 0
from proper discretizations of T . The first theorem provides preconditioning of a nonlinear
operator T by a linear operator S such that cond(S−1T ) ≤ M

m
. It extends a classical

result of Dyakonov, involves a weak form of an unbounded nonlinear operator in a similar
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manner as we did in the linear case, see (1.2), and will connect it to the Sobolev gradient
context, see (2.7). The iteration in Hilbert space mainly serves as a background to construct
iterations in finite dimensional subspaces as suitable projections of the theoretical sequence
in a straightforward manner. We note, however, that one can use the theoretical iteration
itself in a few cases such that a sequence is constructed in the corresponding function space
via Fourier or spectral type methods.

Definition 2.1 The nonlinear operator F : H → H has a bihemicontinuous symmetric
Gateaux derivative if F is Gateaux differentiable, F ′ is bihemicontinuous, and for any
u ∈ H the operator F ′(u) is self-adjoint. (If these hold then F is a potential operator.)

Theorem 2.1 Let H be a real Hilbert space, D ⊂ H a dense subspace, T : D → H a
nonlinear operator. Assume that S : D → H is a symmetric linear operator with lower
bound p > 0, such that there exist constants M ≥ m > 0 satisfying

m⟨S(v − u), v − u⟩ ≤ ⟨T (v)− T (u), v − u⟩ ≤M⟨S(v − u), v − u⟩ (u, v ∈ D). (2.1)

Then the identity
⟨F (u), v⟩S = ⟨T (u), v⟩ (u, v ∈ D) (2.2)

defines an operator F : D → HS. Further, if F can be extended to HS such that it has a
bihemicontinuous symmetric Gateaux derivative, then

(1) for any g ∈ H the equation T (u) = g has a unique weak solution u∗ ∈ HS, i.e.

⟨F (u∗), v⟩S = ⟨g, v⟩ (v ∈ HS). (2.3)

(2) For any u0 ∈ HS the sequence

un+1 = un − 2
M+m

zn ,

where ⟨zn, v⟩S = ⟨F (un), v⟩S − ⟨g, v⟩ (v ∈ HS),
(2.4)

converges linearly to u∗, namely,

∥un − u∗∥S ≤ 1

m
∥F (u0)− b∥S

(
M −m

M +m

)n

(n ∈ N) , (2.5)

where ⟨b, v⟩S = ⟨g, v⟩ (v ∈ HS).

(3) Under the additional condition R(S) ⊃ R(T ), if g ∈ R(S) and u0 ∈ D, then for any
n ∈ N the element zn in (2.4) can be expressed as zn = S−1(T (un)− g), that is, the
auxiliary problem becomes Szn = T (un)− g.

Now we can formulate the discrete counterpart of the above theorem. Let the conditions
of Theorem 2.1 hold, let g ∈ H and let Vh ⊂ HS be a given subspace. Then there exists a
unique solution uh ∈ Vh to the problem

⟨F (uh), v⟩S = ⟨g, v⟩ (v ∈ Vh), (2.6)

and the same convergence result holds:
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Theorem 2.2 For any u0 ∈ Vh the sequence (un) ⊂ Vh, defined by replacing all v ∈ HS in
(2.4) by all v ∈ Vh, converges to uh according to the same estimate (2.5), i.e. with a rate
independent of Vh.

More generally, it readily follows that if the constantM in assumption (2.1) is replaced
by M

(
max{∥u∥S, ∥v∥S}

)
for some increasing function M : R+ → R+, then Theorem 2.2

holds in a modified form such that the constant M is replaced by M0 depending on u0:

M0 :=M
(
∥u0∥+

1

m
∥F (u0)− b∥

)
.

2.1.2 Sobolev gradients and preconditioning

Theorem 2.1 relates to Sobolev gradients developed by J.W. Neuberger. Let cond(T ) = ∞.
The operator F : HS → HS in (2.2) has a potential ϕS : H → R, then ϕ′

S denotes the
gradient of ϕ w.r. to the inner product ⟨., .⟩S. On the other hand, for ϕ|D as a functional
in H w.r. to the original inner product ⟨., .⟩, the gradient is denoted by ϕ′. Then

ϕ′
S(u) = F (u) (u ∈ HS) and ϕ′(u) = T (u) (u ∈ D). (2.7)

The steepest descent iteration corresponding to the gradient ϕ′
S is the preconditioned se-

quence in (2.4), whereas using the gradient ϕ′ one would have a steepest descent iteration
un+1 = un − α̃(T (un)− g) whose convergence could not be ensured.

Altogether, the change of the inner product yields the change of the gradient of ϕ,
namely as a formally preconditioned version of the original one. For elliptic problems, the
space HS is a Sobolev space corresponding to the given problem, and the above gradient
ϕ′
S plays the role of the Sobolev gradient. Whereas the latter was applied by Neuberger

mostly to least-square minimization, our problems below will be variational.

2.1.3 Dirichlet problems for second order equations

First we illustrate the method on a very simple problem{
T (u) ≡ −div f(x,∇u) = g(x)

u|∂Ω = 0
(2.8)

on a bounded domain Ω ⊂ Rd, such that the following assumptions are satisfied:

Assumptions 2.3.

(i) The function f ∈ C1(Ω×Rd, Rd) has bounded derivatives w.r.t. all xi, further, its

Jacobians ∂f(x,η)
∂η

w.r.t. η are symmetric and their eigenvalues λ satisfy

0 < µ1 ≤ λ ≤ µ2

with constants µ2 ≥ µ1 > 0 independent of (x, η).

(ii) g ∈ L2(Ω).
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We look for the FEM solution uh ∈ Vh in a given FEM subspace Vh ⊂ H1
0 (Ω). (For standard

FEM subspaces, uh is well-known to converge to the unique weak solution as h→ 0.)

Let G ∈ C1(Ω,Rd×d) be a symmetric matrix-valued function for which there exist
constants M ≥ m > 0 such that

m G(x)ξ · ξ ≤ ∂f(x, η)

∂η
ξ · ξ ≤M G(x)ξ · ξ ((x, η) ∈ Ω×Rd, ξ ∈ Rd). (2.9)

We introduce the linear preconditioning operator

Su ≡ −div (G(x)∇u) for u|∂Ω = 0. (2.10)

The corresponding energy space is H1
0 (Ω) with the weighted inner product

⟨u, v⟩G :=

∫
Ω

G(x)∇u · ∇v. (2.11)

Theorem 2.3 Let Assumptions 2.3 hold. Then for any u0 ∈ Vh the sequence

un+1 := un − 2
M+m

zn ∈ Vh

where

∫
Ω

G(x)∇zn · ∇v =

∫
Ω

f(x,∇un) · ∇v −
∫
Ω

gv (v ∈ Vh),
(2.12)

converges linearly to uh according to

∥un − uh∥G ≤ 1

m
∥F (u0)− b∥G

(
M −m

M +m

)n

(n ∈ N) , (2.13)

where F and b are the weak forms of T and g.

The sequence (2.12) requires the stepwise FEM solution of problems of the type

Sz ≡ −div (G(x)∇z) = r, z|∂Ω = 0,

in Vh, where r = T (un)− g is the current residual. Various examples of efficient choices for
the preconditioning operator S will be given in subsection 2.1.5.

The method can be extended to similar but more general equations, such as mixed
boundary value problems or fourth order equations.

2.1.4 Second order symmetric systems

Now we consider symmetric nonlinear elliptic systems on a bounded domain in the form

−div fi(x,∇ui) + qi(x, u1, . . . , ul) = gi

ui |ΓD
= 0, fi(x,∇ui) · ν + αiui |ΓN

= 0

}
(i = 1, . . . , l). (2.14)

Assumptions 2.4.

(i) (Domain:) Ω ⊂ Rd is a bounded piecewise C1 domain; ΓD,ΓN are disjoint open
measurable subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN .
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(ii) (Smoothness:) The functions fi : Ω×Rd → Rd and q = (q1, . . . , ql) : Ω×Rl → Rl

are measurable and bounded w.r. to the variable x ∈ Ω and C1 in their second
variables ξ ∈ Rl resp. η ∈ Rd; further, αi ∈ L∞(ΓN) and gi ∈ L2(Ω) (i = 1, . . . , l).

(iii) (Coercivity:) for all i = 1, . . . , l, the Jacobians ∂fi(x,η)
∂η

are symmetric and their eigen-
values λ satisfy 0 < µ1 ≤ λ ≤ µ2 with constants µ2, µ1 > 0 independent of x, η
and i. Further, the Jacobians ∂q(x,ξ)

∂ξ
are symmetric and positive semidefinite for any

(x, ξ) ∈ Ω × Rl and η ∈ Rl. Finally, αi ≥ 0 (i = 1, . . . , l), and either ΓD ̸= ∅ or
infi,Ω α > 0.

(iv) (Growth:) let p ≥ 2 (if d = 2) or p ≤ 2d
d−2

(if d ≥ 3), then there exist constants

c1, c2 ≥ 0 such that for any (x, ξ) ∈ Ω×Rl,
∥∥q′ξ(x, ξ)∥∥ ≤ c1 + c2|ξ|p−2 .

The coercivity and growth assumptions imply that problem (2.14) has a unique weak
solution in the product Sobolev space H1

0 (Ω)
l. Let Vh ⊂ H1

0 (Ω) be a given FEM subspace.
We look for the FEM solution uh = (uh,1, .., uh,l) in V

l
h.

Let Gi ∈ L∞(Ω,Rd×d) be symmetric matrix-valued functions (i = 1, . . . , l) for which
there exist constants m′ ≥ m > 0 such that each Gi satisfies (2.9) with M replaced by m′.
We introduce a linear preconditioning operator S = (S1, . . . , Sl) as an independent l-tuple
of operators

Siui ≡ −div (Gi(x)∇ui) for ui |∂Ω = 0, ∂ui

∂νGi |ΓN

= 0.

The corresponding energy space is H1
D(Ω)

l with a G-inner product which now denotes the
sum of the Gi-inner products. We introduce the real function

M(r) := m′ + c1ϱ
−1 + d1K

2
2,ΓN

+ c2K
p1
p,Ωr

p−2 (r > 0), (2.15)

where d1 := maxi ∥αi∥L∞ and Kp,Ω, K2,ΓN
are the Sobolev embedding constants, further,

ϱ > 0 denotes the smallest eigenvalue of the operators Si.

Theorem 2.4 Let Assumptions 2.4 be satisfied. Let u0 ∈ V l
h and

M0 :=M
(
∥u0∥H1

D(Ω) +
1

m
∥F (u0)− b∥H1

D(Ω)

)
, (2.16)

where M(r) is from (2.15) and F and b are the weak forms of T = (T1, . . . , Tl) and
g = (g1, . . . , gl). Let the sequence (un) = (un,1, .., un,l) ⊂ V l

h be defined as follows: for
n ∈ N let

un+1 = un −
2

M0 +m
zn , (2.17)

where zn = (zn,1, .., zn,l) ∈ V l
h and its coordinates satisfy∫

Ω

Gi(x)∇zn,i · ∇vi =
∫
Ω

(
fi(x,∇un,i) · ∇vi + qi(un,1, .., un,l)vi

)
+

∫
ΓN

αiun,ivi −
∫
Ω

givi

(2.18)
(v = (v1, . . . , vl) ∈ V l

h). Then (un) converges linearly to uh according to

∥un − uh∥G ≤ 1

m
∥F (u0)− b∥G

(
M0 −m

M0 +m

)n

(n ∈ N) . (2.19)
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The sequence (un) requires the stepwise FEM solution of independent linear elliptic
equations of the type Sizi ≡ −div (Gi(x)∇zi) = ri

zi |ΓD
= 0, ∂zi

∂νGi |ΓN

= ϱi
(i = 1, . . . , l) (2.20)

in Vh, where ri = T (un,i)− gi and ϱi = fi(x,∇un,i) · ν + αiun,i are the current interior and
boundary residuals. Thus the proposed preconditioning operator to the original system
involves a cost proportional to a single equation when solving these auxiliary equations.

2.1.5 Some examples of preconditioning operators

Discrete Laplacian preconditioner. The most straightforward preconditioning opera-
tor for problem (2.8) is the minus Laplacian (i.e. with coefficient matrix G(x) ≡ I):

S = −∆, satisfying M = µ2, m = µ1

for the constants in (2.9) independently of Vh. The solution of the linear auxiliary systems
containing the discrete Laplacian preconditioner can rely on fast Poisson solvers [32, 33].

Separable preconditioners. Let us assume that the Jacobians of f are uniformly
diagonal dominant, i.e. that introducing the functions

δ±i (x, η) :=
∂fi(x,η)

∂ηi
±

d∑
j=1
j ̸=i

∣∣∣∂fi(x,η)∂ηj

∣∣∣ , we have δ−i (x, η) ≥ µ1 > 0 (2.21)

(for all x ∈ Ω, η ∈ Rd, i = 1, ..., d) for some constant µ1 independent of x, η and i. Now,
for any x ∈ Ω and 1 ≤ s ≤ d, let Ωs = {z ∈ Ω : zs = xs} and

as(xs) = inf
x∈Ωs
η∈Rd

δ−i (x, η), bs(xs) = sup
x∈Ωs
η∈Rd

δ+i (x, η).

Then one can propose the separable preconditioning operator

Su := −
d∑

s=1

∂
∂xs

(
as(xs)

∂u
∂xs

)
satisfying M = sup

x∈Ω
max
s=1,..,d

bs(xs), m = inf
x∈Ω

min
s=1,..,d

as(xs)

for the constants in (2.9) independently of Vh: i.e. the bounds from the Laplacian are thus
improved. The solution of the auxiliary problems relies on fast separable solvers [32, 33].

Modified Newton preconditioner. The popular modified Newton method involves a
preconditioning operator arising from the initial derivative of the differential operator:

Sz = −div
(∂f
∂η

(x,∇u0)∇z
)
, satisfying

M

m
≤

(1 + γ̃∥F (u0)− b∥H1
0

1− γ̃∥F (u0)− b∥H1
0

)2

under our conditions, assuming the Lipschitz continuity of F ′ and a small enough initial
residual, and with γ̃ = Lµ−3

1 µ2 where L is the Lipschitz constant of F ′.

Some other natural choices of preconditioning operators are e.g. the biharmonic oper-
ator for fourth order equations and independent Laplacians for second order systems.
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2.2 Variable preconditioning

2.2.1 Variable preconditioning via quasi-Newton methods in Hilbert space

We give two theorems on general iterations that include the gradient and Newton methods
as special cases [22]. Namely, the choice Bn = I below in (2.22) reproduces the gradient
method and its well-known linear convergence rate, whereas Bn := F ′(un) can reproduce
Newton’s method and shows (since M and m can be arbitrarily close) that convergence is
faster that any linear rate. More subtle estimates will be given in Theorem 2.6.

Theorem 2.5 Let H be a real Hilbert space. Assume that the nonlinear operator F : H →
H has a symmetric Gateaux derivative satisfying the following properties:

(i) (Ellipticity.) There exist constants Λ ≥ λ > 0 satisfying

λ∥h∥2 ≤ ⟨F ′(u)h, h⟩ ≤ Λ∥h∥2 (u, h ∈ H).

(ii) (Lipschitz continuity.) There exists L > 0 such that

∥F ′(u)− F ′(v)∥ ≤ L∥u− v∥ (u, v ∈ H).

Let b ∈ H and denote by u∗ the unique solution of equation F (u) = b. We fix constants
M > m > 0. Then there exists a neighbourhood V of u∗ such that for any u0 ∈ V, the
sequence

un+1 = un −
2

M +m
B−1

n (F (un)− b) (n ∈ N), (2.22)

with properly chosen self-adjoint linear operators Bn satisfying

m⟨Bnh, h⟩ ≤ ⟨F ′(un)h, h⟩ ≤M⟨Bnh, h⟩ (n ∈ N, h ∈ H), (2.23)

converges linearly to u∗. Namely,

∥un − u∗∥ ≤ C ·
(
M −m

M +m

)n

(n ∈ N) (2.24)

with some constant C > 0.

Now we turn to the more general version of Theorem 2.5. We will use the following
norms:

∥h∥n = ⟨F ′(un)
−1h, h⟩1/2 (n ∈ N), ∥h∥∗ = ⟨F ′(u∗)−1h, h⟩1/2. (2.25)

Using damped iteration and variable spectral bound preconditioning, the theorem gives a
variant of quasi-Newton method that provides global convergence up to second order.

Theorem 2.6 Let H be a real Hilbert space. Let the operator F : H → H have a symmet-
ric Gateaux derivative satisfying the properties (i)-(ii) of Theorem 2.5.

Denote by u∗ the unique solution of equation F (u) = b. For arbitrary u0 ∈ H let (un)
be the sequence defined by

un+1 = un −
2τn

Mn +mn

B−1
n (F (un)− b) (n ∈ N), (2.26)

where the following conditions hold:
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(iii) Mn ≥ mn > 0 and the properly chosen self-adjoint linear operators Bn satisfy

mn⟨Bnh, h⟩ ≤ ⟨F ′(un)h, h⟩ ≤Mn⟨Bnh, h⟩ (n ∈ N, h ∈ H), (2.27)

further, using notation ω(un) = Lλ−2∥F (un) − b∥, there exist constants K > 1 and
ε > 0 such that Mn/mn ≤ 1 + 2/(ε+Kω(un));

(iv) we define τn = min{1, 1−Qn

2ρn
}, where Qn = Mn−mn

Mn+mn
(1+ω(un)), ρn = 2LM2

nλ
−3/2(Mn+

mn)
−2∥F (un)− b∥n(1 + ω(un))

1/2, ω(un) is as in condition (iii) and ∥ . ∥n is defined
in (2.25). (This value of τn ensures optimal contractivity in the n-th step in the
∥ . ∥∗-norm.)

Then ∥un − u∗∥ ≤ λ−1∥F (un)− b∥ → 0, namely,

lim sup
∥F (un+1)− b∥∗
∥F (un)− b∥∗

≤ lim sup
Mn −mn

Mn +mn

< 1 . (2.28)

Moreover, if in addition we assume Mn/mn ≤ 1 + c1∥F (un) − b∥γ (n ∈ N) with some
constants c1 > 0 and 0 < γ ≤ 1, then

∥F (un+1)− b∥∗ ≤ d1∥F (un)− b∥1+γ
∗ (n ∈ N) (2.29)

with some constant d1 > 0.

Owing to the equivalence of the norms ∥ . ∥ and ∥ . ∥∗, the orders of convergence corre-
sponding to the estimate (2.29) can be formulated with the original norm:

Corollary 2.1 (Rate of convergence in the original norm.) Let the variable bounds satisfy
Mn/mn ≤ 1 + c1∥F (un − b)∥γ with some constants c1 > 0, 0 < γ ≤ 1. Then

∥F (un+1)− b∥ ≤ d1∥F (un)− b∥1+γ (n ∈ N)

for some d1 > 0, and consequently

∥un − u∗∥ ≤ λ−1∥F (un)− b∥ ≤ const. · ρ(1+γ)n

with some constant 0 < ρ < 1.

Remark 2.1 Theorem 2.6 can be generalized by only assuming Hölder continuity instead
of Lipschitz: ∥F ′(u) − F ′(v)∥ ≤ L∥u − v∥α (u, v ∈ H) with some constants L > 0,
0 < α < 1 independent of u, v. Then the same results hold with 0 < γ ≤ 1 replaced by
0 < γ ≤ α for (2.29), i.e. the fastest feasible convergence is of order 1 + α.

Remark 2.2 The above results can be considered in the context of Sobolev gradients,
similarly to (2.7). Now, using a variable preconditioning operator, one obtains the variable
Sobolev gradient

ϕ′
Bn

(u) = B−1
n F (u) (u ∈ H).
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2.2.2 Variable preconditioning for elliptic problems

2.2.3 Problems with nonlinear principal part

Let us consider problem (2.8) again:{
T (u) ≡ −div f(x,∇u) = g(x)

u|∂Ω = 0.
(2.30)

Assumptions 2.7. Assumptions 2.3 imposed for (2.8) are satisfied and, in addition,

the Jacobians ∂f(x,η)
∂η

are Lipschitz continuous w.r.t η.

A general iteration with variable preconditioning. Let Vh ⊂ H1
0 (Ω) be a given

FEM subspace; we look for the FEM solution uh again. First we derive convergence when
general preconditioning operators are used. Some efficient particular choices will be given
afterwards. The main idea is that the preconditioning operator (2.10) is modified with
stepwise redefined diffusion coefficient matrices.

Theorem 2.7 Let u0 ∈ Vh be arbitrary, and let (un) ⊂ Vh be the sequence defined as
follows. If, for n ∈ N, un is obtained, then we choose constants Mn ≥ mn > 0 and a
symmetric matrix-valued function Gn ∈ L∞(Ω,RN×N) for which there holds

mn Gn(x)ξ · ξ ≤
∂f

∂η
(x,∇un(x)) ξ · ξ ≤ Mn Gn(x)ξ · ξ (x ∈ Ω, ξ ∈ RN), (2.31)

further, Mn/mn and τn satisfy the conditions (iii)-(iv) in Theorem 2.6. We define

un+1 = un −
2τn

Mn +mn

zn , (2.32)

where zn ∈ Vh is the solution of the problem∫
Ω

Gn(x)∇zn · ∇v =

∫
Ω

(
f(x,∇un) · ∇v − gv

)
(v ∈ Vh). (2.33)

Then un converges to uh according to the estimates of Theorem 2.6.

Piecewise constant coefficient operators. An efficient choice for variable precondi-
tioners is obtained if the Jacobians are replaced by the discretizations of piecewise constant
coefficient preconditioning operators, motivated by the case of nearly singular Jacobians.
Formally we write

Snu := −div
(
wn(x)∇u

)
, where wn |Ωi

≡ ci > 0 (2.34)

on proper subdomains Ωi (i = 1, . . . , s). Let us now introduce the spectral boundsmi and
Mi of Jn := ∂ηf(.,∇un) relative to Ωi. If ci is some (arithmetic, geometric or harmonic)
mean of mi and Mi, then we obtain the improved bounds Mn/mn = max

i
Mi/mi. The

numerical performance of such preconditioners will be illustrated in subsection 2.5.1.

General scalar coefficient preconditioning operators. One can more generally define
any operator S with a scalar diffusion coefficient, i.e. wn is replaced by kn ∈ L∞(Ω) such
that kn ≥ k0 > 0. Then the discretized operator still has a better sparsity pattern. A
useful choice for kn(x) is the diagonal of Jn(x).
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2.2.4 Variable preconditioning for semilinear problems

Let us consider a semilinear equation with mixed boundary conditions{
−div (k(x)∇u) + q(x, u) = g(x)

u|ΓD
= 0, k(x) ∂u

∂ν
+ αu|ΓN

= 0
(2.35)

on a bounded domain Ω ⊂ Rd (d = 2 or 3) under the following assumptions:

Assumptions 2.2.

(i) the domain Ω and the functions q, α and g satisfy the corresponding parts of As-
sumptions 2.4, further, k ∈ L∞(Ω) and k ≥ k0 > 0.

(ii) (Lipschitz condition) There exists 3 ≤ p (if d = 2) or 3 ≤ p ≤ 6 (if d = 3), and there
exist constants c1, c2 ≥ 0 such that for any (x, ξ1) and (x, ξ2) ∈ Ω×R,∥∥q′ξ(x, ξ1)− q′ξ(x, ξ2)

∥∥ ≤
(
c1 + c2 (max |ξ1|, |ξ2|)p−3

)
|ξ1 − ξ2|.

We introduce the variable preconditioning operator

Snv ≡ −κ∆v + cnv for v|ΓD
= 0, ∂v

∂ν |ΓN
= 0

with given constants κ > 0 and cn > 0. If CΩ denotes the Poincaré-Friedrichs constant then
one can derive (2.27) with Mn := 1 + (CΩ/k0)max q′ξ(x, un), mn := 1/

(
1 + (CΩ/k0) cn).

Corollary 2.2 If Mn/mn and τn satisfy the conditions (iii)-(iv) in Theorem 2.6, then un
converges to uh according to the estimates of Theorem 2.6.

Since Sn has constant coefficients, its updating is much faster than for F ′(un), and fast
solvers are available for the auxiliary problems. The inclusion of the variable coefficient cn
allows to follow the variation of the magnitude of the lower order term during the iteration.

2.3 Newton’s method and operator preconditioning

2.3.1 Newton’s method as optimal variable gradients

In this subsection we study the relation of the gradient and Newton’s method. The usual
gradient method defines an optimal descent direction when a fixed inner product is used.
In contrast, let us now extend the search for an optimal descent direction by allowing the
stepwise change of inner product. Whereas the descents in the gradient method are steepest
w.r. to different directions, we prove that the descents in Newton’s method are steepest
w.r. to both different directions and inner products up to a second order approximation in
a neighbourhood of the solution.

We study an operator equation F (u) = 0 in a Hilbert space H under

Assumptions 2.8. The operator F : H → H is Gateaux differentiable, uniformly
monotone and F ′ is locally Lipschitz continuous.
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Let u0 ∈ H and let a variable steepest descent iteration be constructed in the form

un+1 = un − B−1
n F (un), (2.36)

where we look for Bn in the class

B ≡ {B ∈ L(H) self-adjoint : ∃ p > 0 ⟨Bh, h⟩ ≥ p∥h∥2 (h ∈ H)}. (2.37)

Let n ∈ N and assume that the nth term of the sequence (2.36) is constructed. Then the
next step yields the functional value

m(Bn) := ϕ(un −B−1
n F (un)) . (2.38)

We wish to choose Bn such that this step is optimal, i.e. m(Bn) is minimal. We verify that

min
Bn∈B

m(Bn) = m(F ′(un)) up to second order (2.39)

as un → u∗, i.e. the Newton iteration realizes asymptotically the stepwise optimal steepest
descent among different inner products in the neighbourhood of u∗. (Clearly, the asymp-
totic result cannot be replaced by an exact one, this can be seen for fixed un by an arbitrary
nonlocal change of ϕ along the descent direction.)

We can give an exact formulation in the following way. First, for any ν1 > 0 let

B(ν1) ≡ {B ∈ L(H) self-adjoint : ⟨Bh, h⟩ ≥ ν1∥h∥2 (h ∈ H)}, (2.40)

i.e. the subset of B with operators having the common lower bound ν1 > 0.

Theorem 2.8 Let F satisfy Assumptions 2.8. Let u0 ∈ H and let the sequence (un) be
given by (2.36) with operators Bn ∈ B. Let n ∈ N be fixed and

m̂(Bn) := β +
1

2

⟨
Hn(B

−1
n gn −H−1

n gn), B
−1
n gn −H−1

n gn
⟩
, (2.41)

where β := ϕ(u∗), gn := F (un), Hn := F ′(un). Then

(1) min
Bn∈B

m̂(Bn) = m̂(F ′(un));

(2) m̂(Bn) is the second order approximation of m(Bn), i.e., for any Bn ∈ B(ν1)

|m(Bn)− m̂(Bn)| ≤ C∥un − u∗∥3 (2.42)

where C = C(u0, ν1) > 0 depends on u0 and ν1, but does not depend on Bn or un.

That is, up to second order, the descents in Newton’s method are steepest w.r. to both
different directions and inner products.
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2.3.2 Inner-outer iterations: inexact Newton plus preconditioned CG

When the Jacobians are ill-conditioned, it is advisable to use inner iterations to solve
the linearized equations. Hereby one can use preconditioning operators for the latter. The
convergence of such inner-outer (Newton plus PCG) iterations relies on standard estimates.
We give two classes of efficient preconditioners for the inner iterations.

(a) Symmetric problems with nonlinear principal part. In general, we have seen
in section 1.2.1 that the spectral bounds m and M of a self-adjoint operator LS imply
κ(S−1

h Lh) ≤ M
m

independently of the given subspace Vh. Let a nonlinear Gateaux differen-
tiable potential operator F : HS → HS satisfy the uniform ellipticity property

m∥v∥2S ≤ ⟨F ′(u)v, v⟩S ≤M∥v∥2S (u, v ∈ HS) (2.43)

with M,m > 0, which ensures well-posedness of equation F (u) = 0. If un is the nth outer
Newton iterate and LS := F ′(un), then an inner CG iteration thus converges with a mesh
independent convergence rate.

The following class of operators forms the most common special case to satisfy (2.43).
Let HS be a given Sobolev space over some bounded domain Ω ⊂ Rd, such that its inner
product is expressed as

⟨h, v⟩S =

∫
Ω

B(h, v) (2.44)

for some given bilinear mapping B : HS × HS → L1(Ω). Let the operator F : HS → HS

have the form

⟨F (u), v⟩S =

∫
Ω

(
a(B(u, u))B(u, v)− fv

)
(u, v ∈ HS), (2.45)

where f ∈ L2(Ω), further, a : R+ → R+ is a scalar C1 function for which there exist
constants M ≥ m > 0 such that

0 < m ≤ a(r) ≤M, 0 < m ≤ d
dr

(
a(r2)r

)
≤M (r ≥ 0), (2.46)

Proposition 2.1 Under assumptions (2.45)–(2.46), the operator F satisfies (2.43).

For a corresponding boundary value problem, the inner iterations for the linearized FEM
systems converge with a mesh independent rate. The above bounds can be sharpened to
depend on n, which can be more efficient in practice: we have

mn

∫
Ω

B(v, v) ≤ ⟨F ′(un)v, v⟩S ≤Mn

∫
Ω

B(v, v) (2.47)

where, using notations p(r2) = min
{
a(r2), d

dr

(
a(r2)r

)}
, q(r2) = max

{
a(r2), d

dr

(
a(r2)r

)}
(r ≥ 0), we have mn := infΩ p(B(un, un)) ≥ m, Mn := supΩ q(B(un, un)) ≤M .

For example, various second order nonlinear elliptic problems (elasto-plastic torsion,
magnetic potential, subsonic flow) lead to the weak form∫

Ω

a(|∇u|2)∇u · ∇v =

∫
Ω

gv (v ∈ H1
0 (Ω)),
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where the given coefficient a satisfies (2.46). This falls into the above type where (2.44)
is the standard H1

0 (Ω)-inner product. Then Proposition 2.1 implies mesh independent
convergence of the inner CG iterations such that one has to solve inner Poisson equations.

However, for strongly nonlinear a(r) a much better preconditioning operator is the
piecewise constant coefficient operator (2.34). Then one can derive the improved bounds

mn = min
i

(
inf
Ωi

p(|∇un|2) /ci
)
, Mn = max

i

(
sup
Ωi

q(|∇un|2) /ci
)

determined only by the values of |∇un| and the given scalar function a. In practice, for a
magnetic potential problem, favourable condition numbers have been achieved [7]: e.g. 6
subdomains reduce the convergence factor from Q = 0.9785 to Q = 0.6711.

The elasto-plastic bending of clamped plates is described by a fourth order problem,
whose weak formulation falls again into the above type where [u, v] := 1

2
(D2u : D2v +

∆u∆v). Using fixed preconditioners generated by this inner product, we are led to auxiliary
biharmonic problems, for which fast solvers are available. For highly varying material
nonlinearities, one can construct piecewise constant coefficient operators in an analogous
way. A similar description holds for elasticity systems (see subsection 2.5.5).

(b) Semilinear problems. We consider nonsymmetric systems on a bounded domain
Ω ⊂ Rd (d = 2 or 3), involving second, first and zeroth order terms as well:

−div (ki∇ui) + bi · ∇ui + qi(x, u1, . . . , ul) = gi

ui |∂Ω = 0

}
(i = 1, . . . , l). (2.48)

Assumptions 2.3.2.

(i) (Smoothness:) ki ∈ L∞(Ω), bi ∈ C1(Ω)d and gi ∈ L2(Ω) (i = 1, . . . , l), further,
the function q = (q1, . . . , ql) : Ω ×Rl → Rl is measurable and bounded w.r. to the
variable x ∈ Ω and C1 in the variable ξ ∈ Rl.

(ii) (Coercivity:) there is m > 0 such that ki ≥ m holds for all i = 1, . . . , l, further, using

the notation q′ξ(x, ξ) :=
∂q(x,ξ)

∂ξ
,

q′ξ(x, ξ) η · η −
1

2

(
max

i
divbi(x)

)
|η|2 ≥ 0 (2.49)

for any (x, ξ) ∈ Ω×Rl and η ∈ Rl.

(iii) (Local Lipschitz continuity:) let 3 ≤ p (if d = 2) or 3 ≤ p < 6 (if d = 3), then there
exist constants c1, c2 ≥ 0 such that for any (x, ξ1) and (x, ξ2) ∈ Ω×Rl,∥∥q′ξ(x, ξ1)− q′ξ(x, ξ2)

∥∥ ≤
(
c1 + c2 (max |ξ1|, |ξ2|)p−3

)
|ξ1 − ξ2|.

The FEM discretization and Newton linearization of this system leads to the FEM
solution of linear elliptic systems of the form (1.31). We use the PCGN method based on
a preconditioning operator S, which is the independent l-tuple of elliptic operators

Siui := −div (ki∇ui) + βiui for ui |∂Ω = 0 (i = 1, . . . , l), (2.50)
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where βi ∈ L∞(Ω) and βi ≥ 0.

The following theorem provides superlinear convergence independently of both the mesh
size h and the outer iterate un. To formulate the result, we denote

s
(p)
i := min

Hi−1⊂H1
0 (Ω)l

max
v⊥Hi−1

∥v∥2
Lp(Ω)l

∥v∥2S
,

where Hi−1 stands for an arbitrary (i − 1)-dimensional subspace and orthogonality is un-
derstood in S-inner product. (These are related to the Gelfand numbers of the compact
Sobolev embeddings.)

Theorem 2.9 Let Assumptions 2.3.2 hold. The CGN algorithm with Sh-inner product,
applied for the n× n preconditioned FEM system at linearization un, yields(

∥rk∥Sh

∥r0∥Sh

)1/k

≤ ε̂k (k = 1, ..., n) with ε̂k :=
2

km2

k∑
i=1

(
C1s

(2)
i + C2s

(p)
i

)
→ 0 (2.51)

as k → ∞ , and here the sequence (ε̂k)k∈N+ is independent of Vh and un.

Remark 2.3 (i) One can give explicit asymptotics using the related Gelfand numbers and
eigenvalues. In particular, when the un are uniformly bounded as h→ 0, then (1.26) holds.

(ii) Instead of the above Dirichlet problem, one could include mixed boundary condi-
tions or interface conditions, see [3] and the numerical tests in subsection 2.5.6.

2.4 Newton’s method: a characterization of mesh independence

A missing part of the theory so far is the mesh independence of quadratic convergence
of Newton’s method for general elliptic problems. A related property, the classical mesh
independence principle (MIP) has been established on a general level in [1], and then a
lot of important work has been done, see [42] and refs. there. The MIP states that the
number of required iterations for some tolerance remains essentially the same as the mesh
is refined. The real strength of the result is that this common convergence is quadratic.
(Mesh independent linear convergence can be produced by much cheaper methods.)

This and all later results are based on the underlying Lipschitz continuity for the
derivatives of the operator. However, in the mentioned works this Lipschitz continuity
appears only as an assumption in general, and it is only proved for semilinear problems.

The goal of this section is to clarify this phenomenon for a general class of second
order elliptic problems solved by FEM discretization. It will be shown that mesh uniform
quadratic estimates in fact cannot be produced unless the principal part is linear. For this
study, the ’mesh independence principle for quadratic convergence’ (MIPQC) is introduced,
which only requires that the quadratic convergence rate is uniformly bounded as the mesh
is refined.

Briefly, our result then states that the MIPQC holds if and only if the elliptic equation
is semilinear. Moreover, this is an inherent property for this class of problems, not due
to too little smoothness etc. The underlying property is that in the case of a nonlinear
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principal part the derivative F ′ of the differential operator is not Lipschitz continuous in
the corresponding Sobolev space.

We consider second order nonlinear elliptic boundary value problems of the form
− div f(x,∇u) + q(x, u) = g(x) in Ω

f(x,∇u) · ν + s(x, u) = γ(x) on ΓN

u = 0 on ΓD .

(2.52)

We impose the following conditions:

Assumptions 2.10.

(i) (Domain.) Ω ⊂ Rd, d = 2 or 3, is a bounded domain with piecewise smooth boundary,
ΓN ,ΓD ⊂ ∂Ω are measurable open subsurfaces, ΓN ∩ ΓD = ∅, ΓN ∪ ΓD = ∂Ω and
ΓD ̸= ∅.

(ii) (Smoothness.) The functions f : Ω×Rd → Rd, q : Ω×R → R and s : ΓN ×R → R
are measurable and bounded w.r. to the variable x ∈ Ω resp. x ∈ ΓN and C1 in the
other variables. Further, g ∈ L2(Ω) and γ ∈ L2(ΓN).

(iii) (Ellipticity.) The Jacobians f ′
η(x, η) := ∂f(x,η)

∂η
are symmetric and have eigenvalues

between constants M ≥ m > 0 independent of (x, η); further, for any x ∈ Ω resp.
x ∈ ΓN and ξ ∈ R, we have 0 ≤ q′ξ(x, ξ) and 0 ≤ s′ξ(x, ξ).

(iv) (Lipschitz derivatives for the principal part.) The Jacobians f ′
η are Lipschitz contin-

uous w.r. to η, i.e., there exists a constant lf > 0 such that for all (x, η1), (x, η2) ∈
Ω×Rd we have ∥f ′

η(x, η1)− f ′
η(x, η2)∥ ≤ lf |η1 − η2|.

(v) (Lipschitz derivatives for the lower order terms.) Let 3 ≤ p1 (if d = 2) or 3 ≤ p1 ≤ 6
(if d = 3), then there exist constants c1, c2 ≥ 0 such that for any (x, ξ1) and (x, ξ2) ∈
Ω×R, ∣∣∣q′ξ(x, ξ1)− q′ξ(x, ξ2)

∣∣∣ ≤
(
c1 + c2 (max |ξ1|, |ξ2|)p1−3

)
|ξ1 − ξ2|. (2.53)

Further, let 3 ≤ p2 (if d = 2) or 3 ≤ p2 ≤ 4 (if d = 3), then there exist constants
d1, d2 ≥ 0 such that for any (x, ξ1) and (x, ξ2) ∈ ΓN ×R,∣∣∣s′ξ(x, ξ1)− s′ξ(x, ξ2)

∣∣∣ ≤
(
d1 + d2 (max |ξ1|, |ξ2|)p2−3

)
|ξ1 − ξ2|. (2.54)

The Sobolev space H1
D(Ω) := {u ∈ H1(Ω) : u|ΓD

= 0}, corresponding to the Dirichlet
boundary ΓD, is endowed with the standard inner product.

Definition 2.2 Problem (2.52) satisfies the mesh independence principle for quadratic
convergence (MIPQC) of Newton’s method for admissible discretizations if under Assump-
tions 2.10, there exist constants h0 > 0 and δ > 0 independent of Vh with the following
property:
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taking into account admissible FEM subspaces Vh ⊂ H1
D(Ω) with mesh parameter h,

and initial guesses u0 = uh0 ∈ Vh, the Newton iterates satisfy

sup
{ ∥Fh(un+1)∥H1

D

∥Fh(un)∥2H1
D

: h < h0, ∥u0 − uh∥H1
D
< δ, n ∈ N

}
< ∞. (2.55)

Theorem 2.10 Let Assumptions 2.10 hold and f ∈ C2(Ω × Rd, Rd). Problem (2.52)
satisfies the MIPQC of Definition 2.2 if and only if η 7→ f(x, η) is linear, i.e. the elliptic
equation is semilinear.

We note that Assumption f ∈ C2(Ω ×Rd, Rd) is only required to prove the ’only if’
part, the ’if’ part holds under Assumptions 2.10 themselves.

2.5 Applications to efficient computational algorithms

2.5.1 Nonlinear stationary Maxwell equations: the electromagnetic potential

The 2D stationary electromagnetic field in the cross-section of a device Ω ⊂ R2 under
nonlinear dependence between the magnetic field H and induction B is described by the
nonlinear Maxwell equations

rotH = ρ and divB = 0 in Ω, B · ν = 0 on ∂Ω

and in general the relation H = b(x, |B|)B. The electromagnetic potential u is defined
by curlu = B, for which one is led to a special case of (2.30). An example of arising

nonlinearity is b(x, r) ≡ a(r) = 1
µ0

(
α+ (1− α) r8

r8+β

)
(r ≥ 0), see [18]; the realistic values

α = 0.0003 and β = 16000 show that the problem is almost singular. We consider this
nonlinearity a and solve the problem (2.30) with f(x,∇u) ≡ a(|∇u|)∇u.

We have run experiments [22] by applying the variable preconditioning procedure with
piecewise constant coefficient preconditioning operators, developed in Theorem 2.7. We
considered the unit square domain Ω and piecewise linear elements. The experiment was
made using 2k node points of the mesh with k = 6, 8 and 10. Table 1 summarizes
the number of iterations that decrease the residual error ∥F (un)∥ below 10−4 and 10−8,
respectively. The results exhibit mesh independence, i.e. the number of iterations remains
the same when the number of node points is increased.

node points: 26 28 210

# iterations for ε = 10−4: 10 10 10
# iterations for ε = 10−8: 16 16 16

Altogether, our method is less costly than either a Newton or a frozen coefficient itera-
tion due to the structure of the stiffness matrix, which only slightly increases the complexity
of a discrete Laplacian. Comparison with some related results for such problems showed
that our method required the smallest number of iterations [22].
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2.5.2 Elasto-plastic torsion of a hardening rod

Let us consider a hardening rod with cross-section Ω ⊂ R2, the lower end of the rod being
clamped in the (x, y)-plane. The Saint-Venant model leads to the problem

− ∂
∂x

(
g(T )∂u

∂x

)
− ∂

∂y

(
g(T )∂u

∂y

)
= 2ω , u|∂Ω = 0 (2.56)

where τ = (τx, τy) is the tangential stress vector, u is the stress function, T := |τ | = |∇u|
and the stress-strain nonlinearity g ∈ C1[0, T∗] satisfies 0 < µ1 ≤ g(T ) ≤ (g(T )T )′ ≤ µ2

(T ∈ [0, T∗]) with suitable constants µ1, µ2 independent of T . This problem is a special
case of (2.30).

We have solved problem (2.56) numerically using a FEM discretization and then Sobolev
gradient preconditioning with the discrete Laplacian preconditioner. The mesh indepen-
dent convergence of the algorithm follows from Theorem 2.3.

We have run numerical experiments for a copper rod with a square cross-section 10
mm × 10 mm, heat treated at the temperature 600◦C for 1 hour. The numerical tests used
ω = 0.3613. We applied C1-elements, based on the hp-FEM [40] for qualitative aspects,
since the continuity of the tangential stress field τ is thus reproduced by the numerical
approximations without postprocessing. The computations were executed up to accuracy
10−4, and we have determined the regions of elastic state, plastic state and crack. It took
16 iterations to achieve the prescribed accuracy.

2.5.3 The electrostatic potential equation

The electrostatic potential in a bounded domain Ω ⊂ R3 is described by the problem

−∆u+ eu = 0, u|∂Ω = 0, (2.57)

see e.g. [18]. We have solved this problem numerically on a ball with radius R = 2
using Sobolev gradient preconditioning, see [27]. The main feature is that one can realize
Theorem 2.1 directly in the Sobolev space H1

0 (B) by keeping the iterates in the class of
radially symmetric polynomials where the Laplacian can be inverted exactly.

The advantages of this method is the simplicity of the algorithm that allows straight-
forward coding, and the obtained fast linear convergence: the residuals achieved accuracy
10−6 in 9 steps.

2.5.4 Some other semilinear problems

Here we briefly mention some further applicability of our Sobolev and variable gradient
methods to semilinear problems.

Nonlocal boundary-value problems. Such models arise when the flux on the boundary
is influenced by the behaviour on the whole surface. A detailed model was elaborated and
Sobolev gradient preconditioning was applied by properly adapting Theorem 2.4 in [19].
Numerical experiments for the problem

−∆u+ u3 = g(x, y) in Ω, ∂u
∂ν

+

∫
∂Ω

u dσ = 0 on ∂Ω (2.58)
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were executed via truncated Fourier series, and accuracy 10−4 was achieved in 21 iterations.

Gradient systems. Reaction-diffusion systems where the reactions form a gradient vector
function are described by a system of boundary value problems that is a special case of
(2.14). We apply the iteration (2.17)–(2.18) whose convergence is ensured by Theorem
2.4. The iteration requires the solution of independent linear elliptic problems. Numerical
experiments were run in [20] in the same spirit as for the nonlocal problem above: the
system 

−∆u+ u− v + u3 = g1(x, y)
−∆v + v − u+ v3 = 0

u|Γ1 = v|Γ1 = 0, ∂νu|Γ2 = ∂νv|Γ2 = 0
(2.59)

was solved numerically by solving the auxiliary Poisson equations via truncated Fourier
series, and accuracy 10−4 was achieved in 18 iterations.

Radiative cooling. The steady-state temperature u ≥ 0 in a radiating body Ω ⊂ R3 is
described by the problem

−div (κ(x)∇u) + σ(x)u4 = 0 in Ω, κ(x)∂u
∂ν

+ α(x) (u− ũ(x)) = 0 on ∂Ω (2.60)

where κ(x) > 0 is the thermal conductivity, σ(x) > 0 is the Boltzmann factor, α(x) > 0
is the heat transfer coefficient, ũ(x) > 0 is the external temperature. Problem (2.60) is
a special case of problem (2.35), hence Corollary 2.2 provides convergence of the variable
preconditioning procedure using constant coefficient operators with stepwise redefined co-
efficient of u. We can cite the numerical tests executed in [28], which show that this variable
preconditioning iteration is faster w.r.t. run time compared to Newton’s method, due to
the lack of updating the coefficients.

2.5.5 Nonlinear elasticity systems

The description of an elastic body in structural mechanics leads to an elliptic system of
three equations with mixed boundary conditions:{

− div Ti(x, ε(u)) = φi(x) in Ω

ui = 0 on ΓD , Ti(x, ε(u)) · ν = γi(x) on ΓN

}
(i = 1, 2, 3), (2.61)

where the vector function u : Ω → R3 represents displacement, and the tensor T is
expressed with the scalar nonlinear bulk modulus k and Lamé’s coefficient µ having fixed
spectral bounds Λ0 ≥ λ0 > 0.

One can solve this problem by an outer-inner iteration as described in paragraph (a)
of subsection 2.3.2. Then a crucial step is the choice of preconditioner for the inner linear
systems which consist of three equations. An efficient choice of inner preconditioning
operator is the triplet of independent Laplacians:

Sz =
(
−∆z1, −∆z2, −∆z3

)
,

called separate displacement preconditioner. Then the corresponding stiffness matrix is
block diagonal, and hence the three subproblems can be solved in parallel.
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Theorem 2.11 The separate displacement preconditioner satisfies

cond(S−1
h L

(n)
h ) ≤ κ

Λ0

λ0
(2.62)

where κ is the Korn constant and λ0 and Λ0 are the spectral bounds of k and µ.

Consequently, the inner PCG iteration converges with a ratio independent of both the
mesh size h and the outer Newton iterate.

2.5.6 Interface problems for localized reactions

Chemical reaction-diffusion equations may involve reactions that take place in a localized
way on a surface (interface), leading to so-called interface conditions. We consider com-
pound nonlinear interface problems that involve reaction terms both inside the domain and
on the interface:{

−∆u+ q(x, u) = f(x) in Ω \ Γ,

[u]Γ = 0 on Γ,
[
∂u
∂ν

]
Γ
+ s(x, u) = γ(x) on Γ, u = g(x) on ∂Ω,

(2.63)

where [u]Γ and
[
∂u
∂ν

]
Γ
denote the jump (i.e. the difference of the limits from the two sides of

the interface Γ) of u and ∂u
∂ν
, respectively. The weak form and corresponding iterations can

be described in an analogous way to mixed boundary conditions, therefore an analogue of
Theorem 2.9 can be derived for outer-inner iterations [3]. Thereby, we have run experiments
on a test-problem on the domain Ω = [0, 1]×[0, 1] with Γ = [0, 1]×{1

2
}, and we have chosen

polynomials q(x, ξ) := 1+ξ3 and s(x, ξ) := 1+ξ5. We used Courant elements for the FEM
discretization using uniform mesh. The stopping criterion ∥Fh(unh) − fh∥S ≤ 10−10 was
reached in 15 outer Newton iterations for either h = 1/64, 1/128 or 1/192 points, and also
the number of inner CG iterations was mesh independent.

2.5.7 Nonsymmetric transport systems

Various steady-state transport (convection-reaction-diffuson) problems are described by a
system

−∆ui + bi · ∇ui + fi(u1, . . . , ul) = gi , ui |∂Ω = 0 (i = 1, . . . , l), (2.64)

where bi represents convection and the fi characterize the rate of reaction between the
components. Such systems satisfy suitable coercivity conditions that are typically special
cases of Assumptions 2.3.2, in which case the system becomes of the form (2.48). One can
solve this problem by an outer-inner iteration as described in paragraph (b) of subsection
2.3.2. For an inner preconditioning operator one can propose the l-tuple of independent
diffusion operators as in (1.69). The solution of the linearized systems admits efficient
parallelization, as mentioned in subsection 1.4.5. For such preconditioning both the outer
and inner iterations produce superlinear convergence.

We have made experiments on the test system on the domain Ω = [0, 1]× [0, 1], where
bi = (1, 1)T for all i, and f(u) = 4A |u|2u where A is the lower triangular part of the
constant 1 matrix. The auxiliary problems were solved with FFT. The stopping criterion
∥Fh(un) − bh∥ ≤ 10−5 was always reached in 11 Newton iterations for mesh sizes ranging
from h = 1/16 to 1/96, and also the number of inner CG iterations was mesh independent.
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2.5.8 Parabolic air pollution systems

The modelling of air pollution leads to a parabolic system which is a compound nonlinear
transport system involving diffusion, convection, reaction and deposition terms [43], and
often consists of a huge number of equations:

∂ui
∂t

− div (ki(x)∇ui) + bi(x) · ∇ui + ci(x)u+ fi(x, t, u1, . . . , ul) = 0

ui(x, 0) = φi(x) (x ∈ Ω), ui |∂Ω×R+ = 0

 (i = 1, . . . , l).

(A linearized form was studied in subsection 1.4.4.) Such problems are normally solved by
time discretization, Newton linearization and inner PCG iteration. The nonlinear systems
arising after time discretization are similar to (2.64), studied in the previous section.

Now we were interested in the convergence in time and the behaviour of the overall
algorithm, so as to demonstrate that the so far developed elliptic solvers are suitable to be
a subroutine to a parabolic solution process. Numerical tests were run on the unit square
domain for a system consisting of 10 equations, with chemical reactions arising from the
air pollution model in [43].

Regarding space discretization, the number of outer DIN iterations (executed in every
time step) and the number of outer PCG iterations (carried out in each DIN step) were
found mesh independent, using stopping criterion ∥Fh(u)− bh∥ < 10−8. Regarding time

discretization, since no exact solution was available, we compared u
(τ)
h and u

(τ/2)
h . We found

that the error ∥u(τ)h −u(τ/2)h ∥ → 0 numerically as τ → 0, which shows numerical convergence
of the method w.r.t. time.

3 Discrete maximum principles

The discrete maximum principle is an important measure of the qualitative reliability of
the numerical scheme, including FEM, see [24] and the references there. Whereas the most
classical DMP has the form max

Ω
uh = max

∂Ω
uh, we will study the case

max
Ω

uh ≤ max{0,max
∂Ω

uh} (3.1)

which arises when Lhuh ≤ 0 for operators including lower order terms.

3.1 Algebraic background

Let us now consider a system of equations of order (k +m) × (k +m) with the following
structure: [

A Ã
0 I

] [
c
c̃

]
=

[
b

b̃

]
. (3.2)

The goal here is to establish the algebraic analogue of (3.1):

max
i=1,...,k+m

ci ≤ max{0, max
i=k+1,...,k+m

ci}. (3.3)
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Definition 3.1 [12] A (k +m)× (k +m) matrix Ā with the structure (3.2) is said to be
of generalized nonnegative type if the following properties hold:

(i) aii > 0, i = 1, ..., k,

(ii) aij ≤ 0, i = 1, ..., k, j = 1, ..., k +m (i ̸= j),

(iii)
k+m∑
j=1

aij ≥ 0, i = 1, ..., k,

(iv) There exists an index i0 ∈ {1, . . . , k} for which
k∑

j=1

ai0,j > 0.

(v) A is irreducible.

Then, if (Āc̄)i ≤ 0, i = 1, ..., k, then (3.3) holds [12].

The irreducibility of A is sometimes difficult to check, hence we will use the following

Definition 3.2 A (k +m) × (k +m) matrix Ā with the structure (3.2) is said to be of
generalized nonnegative type with irreducible blocks if properties (i)–(iii) of Definition 3.1
hold, further, property (iv) therein is replaced by the following stronger one:

(iv’) For each irreducible component of A there exists an index i0 = i0(l) ∈ Nl =

{s(l)1 , . . . , s
(l)
kl
} for which

k∑
j=1

ai0,j > 0.

Theorem 3.1 Let Ā be a (k +m)× (k +m) matrix with the structure (3.2), and assume
that Ā is of generalized nonnegative type with irreducible blocks in the sense of Definition
3.2.

If the vector c̄ = (c1, ..., ck+m)
T ∈ Rk+m is such that (Āc̄)i ≤ 0, i = 1, ..., k, then (3.3)

holds.

3.2 A matrix maximum principle in Hilbert space

First we describe the operator equation and its discretization. Let H be a real Hilbert
space and H0 ⊂ H a given subspace. We consider the following operator equation: for
given vectors ψ, g∗ ∈ H, find u ∈ H such that

⟨A(u), v⟩ = ⟨ψ, v⟩ (v ∈ H0) (3.4)

and u− g∗ ∈ H0 (3.5)

with an operator A : H → H satisfying the following conditions:

Assumptions 3.2.1.

(i) The operator A : H → H has the form A(u) = B(u)u+R(u)u, where B and R are
given operators mapping from H to B(H).

(ii) There exists a constant m > 0 such that ⟨B(u)v, v⟩ ≥ m ∥v∥2 (u ∈ H, v ∈ H0).
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(iii) There exist subsets of ‘positive vectors’ D,P ⊂ H such that for any u ∈ H and
v ∈ D, we have ⟨R(u)w, v⟩ ≥ 0 provided that either w ∈ P or w = v ∈ D.

(iv) There exists a continuous functionMR : R+ → R+ and another norm ∥|.∥| on H such
that

⟨R(u)w, v⟩ ≤MR(∥u∥) ∥|w∥| ∥|v∥| (u,w, v ∈ H). (3.6)

Now we turn to the numerical solution of our operator equation using Galerkin dis-
cretization. Let n0 ≤ n be positive integers and ϕ1, ..., ϕn ∈ H be given linearly indepen-
dent vectors such that ϕ1, ..., ϕn0 ∈ H0. We consider the finite dimensional subspaces

Vh = span{ϕ1, ..., ϕn} ⊂ H, V 0
h = span{ϕ1, ..., ϕn0} ⊂ H0 (3.7)

with a real positive parameter h > 0.

We formulate here some connectivity type properties for these subspaces that we will
need later. For this, certain pairs {ϕi, ϕj} ∈ Vh × Vh are called neighbouring basis vectors,
and then i, j are called neighbouring indices. The only requirement for the set of these
pairs is that they satisfy Assumptions 3.2.3 below, given in terms of the graph of neigh-
bouring indices, by which we mean the following. The corresponding indices {1, . . . , n0}
or {1, . . . , n}, respectively, are represented as vertices of the graph, and the ith and jth
vertices are connected by an edge iff i, j are neighbouring indices.

Assumptions 3.2.3. The set {1, . . . , n} can be partitioned into disjoint sets S1, . . . , Sr

such that for each k = 1, . . . , r,

(i) both S0
k := Sk ∩ {1, . . . , n0} and S̃k := Sk ∩ {n0 + 1, . . . , n} are nonempty;

(ii) the graph of all neighbouring indices in S0
k is connected;

(iii) the graph of all neighbouring indices in Sk is connected.

(In later PDE applications, these properties are meant to express that the supports of basis
functions cover the domain, both its interior and the boundary.)

Now let g̃ =
n∑

j=n0+1

gjϕj ∈ Vh be a given approximation of the component of g∗ in

H \H0. To find the Galerkin solution of (3.4)–(3.5) in Vh, we solve the following problem:
find uh ∈ Vh such that

⟨A(uh), v⟩ = ⟨ψ, v⟩ (v ∈ V 0
h ) (3.8)

and uh − g̃ ∈ V 0
h . (3.9)

Using Assumption 3.2.1. (i), we can rewrite (3.8) as

⟨B(uh)uh, v⟩+ ⟨R(uh)uh, v⟩ = ⟨ψ, v⟩ (v ∈ V 0
h ). (3.10)

Let us now formulate the nonlinear algebraic system corresponding to (3.10). We set

uh =
n∑

j=1

cjϕj, (3.11)
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and look for the coefficients c1, . . . , cn. Using a partition of coefficients corresponding to
V 0
h and its complement, we obtain a system

Ā(c̄)c̄ ≡
[
A(c̄) Ã(c̄)
0 I

] [
c
c̃

]
=

[
d
g̃

]
. (3.12)

Now we formulate and prove a maximum principle for the abstract discretized problem.
The following notion will be crucial for our study:

Definition 3.3 A set of subspaces V = {Vh}h→0 in H is said to be a family of subspaces
if for any ε > 0 there exists Vh ∈ V with h < ε.

First we give sufficient conditions for the generalized nonnegativity of the matrix Ā(c̄).

Theorem 3.2 Let Assumptions 3.2.1 and 3.2.3 hold. Let us consider the discretization of
operator equation (3.4)–(3.5) in a family of subspaces V = {Vh}h→0 with bases as in (3.7).
Let uh ∈ Vh be the solution of (3.10) and let the following properties hold:

(a) For all ϕi ∈ V 0
h and ϕj ∈ Vh, one of the following holds: either

⟨B(uh)ϕj, ϕi⟩ = 0 and ⟨R(uh)ϕj, ϕi⟩ ≤ 0, (3.13)

or ⟨B(uh)ϕj, ϕi⟩ ≤ −MB(h) (3.14)

with a proper function MB : R+ → R+ (independent of h, ϕi, ϕj) such that, defining

T (h) := sup{∥|ϕi∥| : ϕi ∈ Vh)} , (3.15)

we have

lim
h→0

MB(h)

T (h)2
= +∞. (3.16)

(b) If, in particular, ϕi ∈ V 0
h and ϕj ∈ Vh are neighbouring basis vectors (as defined for

Assumptions 3.2.3), then (3.14)–(3.16) hold.

(c) MR(∥uh∥) is bounded as h→ 0, where MR is the function in Assumption 3.2.1 (iv).

(d) For all u ∈ H and h > 0,
n∑

j=1

ϕj ∈ kerB(u).

(e) For all h > 0, i = 1, ..., n, we have ϕi ∈ D and
n∑

j=1

ϕj ∈ P for the sets D,P

introduced in Assumption 3.2.1 (iii).

Then for sufficiently small h, the matrix Ā(c̄) defined in (3.12) is of generalized non-
negative type with irreducible blocks in the sense of Definition 3.2.

By Theorem 3.1, we immediately obtain the corresponding matrix maximum principle
(or algebraic discrete maximum principle):

Corollary 3.1 Let the assumptions of Theorem 3.2 hold. For sufficiently small h, if
di ≤ 0 (i = 1, ..., n0) and c̄ = (c1, ..., cn)

T ∈ Rn is the solution of (3.12), then

max
i=1,...,n

ci ≤ max{0, max
i=n0+1,...,n

ci}. (3.17)
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3.3 Discrete maximum principles for nonlinear elliptic problems

3.3.1 Nonlinear elliptic equations

We consider a nonlinear boundary value problem of the following type:
− div

(
b(x,∇u)∇u

)
+ q(x, u) = f(x) in Ω,

b(x,∇u)∂u
∂ν

+ s(x, u) = γ(x) on ΓN ,

u = g(x) on ΓD,

(3.18)

where Ω is a bounded domain in Rn, under the following assumptions:

(A1) Ω has a piecewise smooth and Lipschitz continuous boundary ∂Ω; ΓN ,ΓD ⊂ ∂Ω are
measurable open sets, such that ΓN ∩ ΓD = ∅ and ΓN ∪ ΓD = ∂Ω.

(A2) The scalar functions b : Ω × Rn → R, q : Ω × R → R and s : ΓN × R → R
are continuously differentiable in their domains of definition. Further, f ∈ L2(Ω),
γ ∈ L2(ΓN) and g = g∗|ΓD

with g∗ ∈ H1(Ω).

(A3) The function b satisfies
0 < µ0 ≤ b(x, η) ≤ µ1 (3.19)

with positive constants µ0 and µ1 independent of (x, η), further, the diadic product

matrix η · ∂b(x,η)
∂η

is symmetric positive semidefinite and bounded in any matrix norm

by some positive constant µ2 independent of (x, η).

(A4) Let 2 ≤ p1 if d = 2, or 2 ≤ p1 ≤ 2d
d−2

if d > 2, further, let 2 ≤ p2 if d = 2, or

2 ≤ p2 ≤ 2d−2
d−2

if d > 2. There exist functions α1 ∈ Ld/2(Ω), α2 ∈ Ld−1(ΓN) and a
constant β ≥ 0 such that for any x ∈ Ω (or x ∈ ΓN , resp.) and ξ ∈ R

0 ≤ q′ξ(x, ξ) ≤ α1(x) + β|ξ|p1−2, 0 ≤ s′ξ(x, ξ) ≤ α2(x) + β|ξ|p2−2.

(A5) Either ΓD ̸= ∅, or q increases strictly and at least linearly at ∞ in the sense that
q(x, ξ) ≥ c1|ξ| − c2(x) (with a constant c1 > 0 and a function c2 ∈ L1(Ω)) ∀(x, ξ) ∈
Ω×R, or s increases strictly and at least linearly at ∞ in the same sense.

Theorem 3.3 Let (A1)–(A5) hold, and let us consider a family of simplicial triangulations
Th (h > 0) satisfying the following properties:

(i) for any i = 1, ..., n, j = 1, ..., n̄ (i ̸= j)

∇ϕi · ∇ϕj ≤ −σ0
h2

< 0 (3.20)

on supp ϕi ∩ supp ϕj with σ0 > 0 independent of i, j and h.

(ii) The triangulations Th are regular, i.e., there exist constants m1,m2 > 0 such that
for any h > 0 and any simplex Th ∈ Th

m1h
d ≤ meas(Th) ≤ m2h

d (3.21)
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(where meas(Th) denotes the d-dimensional measure of Th).

Then for sufficiently small h, the matrix Ā(c̄) is of generalized nonnegative type in the
sense of Definition 3.1.

More generally, triangulations Th are allowed to be only quasi-regular such that the
left-hand side of (3.21) is replaced by c1h

γ ≤ meas(Th) for some γ = γ(d, p1, p2) ≥ d.

Theorem 3.4 Let the conditions of Theorem 3.3 hold, and let

f(x)− q(x, 0) ≤ 0, x ∈ Ω, and γ(x)− s(x, 0) ≤ 0, x ∈ ΓN . (3.22)

Then
max
Ω

uh ≤ max{0,max
ΓD

gh}. (3.23)

In particular, if ΓD ̸= ∅ and g ≥ 0 then max
Ω

uh = max
ΓD

g̃, and if ΓD ̸= ∅ and g ≤ 0, or

if ΓD = ∅, then we have the nonpositivity property max
Ω

uh ≤ 0.

Remark 3.1 (i) One can verify in the same way the discrete minimum principle under
reversed sign conditions.

(ii) In the special case q ≡ 0 and s ≡ 0, the equality max
Ω

uh = max
ΓD

g̃ holds without

assuming g ≥ 0. Moreover, the strict negativity in (3.20) can be replaced by the weaker
condition ∇ϕi · ∇ϕj ≤ 0, and no regularity of the mesh needs to be assumed.

3.3.2 Cooperative elliptic systems with nonlinear coefficients

We consider cooperative and weakly diagonally dominant systems, for which the (contin-
uous) maximum principle holds.

Formulation of the problem. We consider nonlinear elliptic systems of the form

−div
(
bk(x, u,∇u)∇uk

)
+

s∑
l=1

Vkl(x, u,∇u)ul = fk(x) a.e. in Ω,

bk(x, u,∇u)∂uk

∂ν
= γk(x) a.e. on ΓN , uk = gk(x) a.e. on ΓD

 (k = 1, . . . , s)

(3.24)
with unknown function u = (u1, . . . , us)

T , under the following assumptions. Here ∇u
denotes the s× d tensor with rows ∇uk (k = 1, . . . , s), further, ’a.e.’ means Lebesgue
almost everywhere and inequalities for functions are understood a.e. pointwise for all
possible arguments.

Assumptions 3.5.

(i) Ω ⊂ Rd is a bounded piecewise C1 domain; ΓD,ΓN are disjoint open measurable
subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN and ΓD ̸= ∅.

(ii) (Smoothness and boundedness.) For all k, l = 1, . . . , s we have bk ∈ (C1 ∩ L∞)(Ω×
Rs ×Rs×d) and Vkl ∈ L∞(Ω×Rs ×Rs×d).
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(iii) (Ellipticity.) There exists m > 0 such that bk ≥ m holds for all k = 1, . . . , s.

(iv) (Cooperativity.) We have Vkl ≤ 0 (k, l = 1, . . . , s, k ̸= l).

(v) (Weak diagonal dominance.) We have
s∑

l=1

Vkl ≥ 0 (k = 1, . . . , s).

(vi) For all k = 1, . . . , s we have fk ∈ L2(Ω), γk ∈ L2(ΓN), gk = g∗k |ΓD
with g∗k ∈ H1(Ω).

Finite element discretization. We define the finite element discretization of problem
(3.24) in the following way. First, let n̄0 ≤ n̄ be positive integers and let us choose basis
functions

φ1, . . . , φn̄0 ∈ H1
D(Ω), φn̄0+1, . . . , φn̄ ∈ H1(Ω) \H1

D(Ω), (3.25)

which correspond to homogeneous and inhomogeneous boundary conditions on ΓD, re-
spectively. (For simplicity, we will refer to them as ‘interior basis functions’ and ‘boundary
basis functions’, respectively, thus adopting the terminology of Dirichlet problems even in
the general case.) These basis functions are assumed to be continuous and to satisfy

φp ≥ 0 (p = 1, . . . , n̄),
n̄∑

p=1

φp ≡ 1, (3.26)

further, that there exist node points Bp ∈ Ω (p = 1, . . . , n̄0) and Bp ∈ ΓD (p = n̄0+1, . . . , n̄)
such that

φp(Bq) = δpq (3.27)

where δpq is the Kronecker symbol. (These conditions hold e.g. for standard linear, bilinear
or prismatic finite elements.) Finally, we assume that any two interior basis functions can
be connected with a chain of interior basis functions with overlapping support. By its
geometric meaning, this assumption obviously holds for any reasonable FE mesh.

We in fact need a basis in the corresponding product spaces, which we define by re-
peating the above functions in each of the s coordinates and setting zero in the other
coordinates. That is, let n0 := sn̄0 and n := sn̄. First, for any 1 ≤ i ≤ n0,

if i = (k − 1)n̄0 + p for some 1 ≤ k ≤ s and 1 ≤ p ≤ n̄0, then

ϕi := (0, . . . , 0, φp, 0, . . . , 0) where φp stands at the k-th entry, (3.28)

that is, (ϕi)m = φp if m = k and (ϕi)m = 0 if m ̸= k. From these, we let

V 0
h := span{ϕ1, ..., ϕn0} ⊂ H1

D(Ω)
s. (3.29)

Similarly, for any n0 + 1 ≤ i ≤ n,

if i = n0 + (k − 1)(n̄− n̄0) + p− n̄0 for some 1 ≤ k ≤ s and n̄0 + 1 ≤ p ≤ n̄, then

ϕi := (0, . . . , 0, φp, 0, . . . , 0)
T where φp stands at the k-th entry, (3.30)

that is, (ϕi)m = φp if m = k and (ϕi)m = 0 if m ̸= k. From (3.29) and these, we let

Vh := span{ϕ1, ..., ϕn} ⊂ H1(Ω)s. (3.31)

Using the above FEM subspaces, the discretization of problem (3.24) leads to a system
of the form (3.12). In what follows, the (patch-)regularity of the considered meshes used
in Theorem 3.3 will be usually weakened in some way. The following notions will be used:
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Definition 3.4 Let Ω ⊂ Rd and let us consider a family of FEM subspaces V = {Vh}h→0

constructed as above. Here h > 0 is the mesh parameter, proportional to the maximal
diameter of the supports of the basis functions ϕ1, ..., ϕn. The corresponding family of
meshes will be called

(a) regular from above if there exists a constant c0 > 0 such that for any Vh ∈ V and
basis function φp ∈ Vh,

meas(suppφp) ≤ c0h
d (3.32)

(where meas denotes d-dimensional measure and supp denotes the support, i.e. the closure
of the set where the function does not vanish);

(b) quasi-regular if (3.21) is replaced by

c1h
γ ≤ meas(suppφp) ≤ c2h

d (3.33)

for some fixed constant
d ≤ γ < d+ 2, (3.34)

and regular if γ = d.

We can then prove the following nonnegativity result for the stiffness matrix:

Theorem 3.5 Let problem (3.24) satisfy Assumptions 3.5. Let us consider a family of
finite element subspaces V = {Vh}h→0 satisfying the following property: there exists a real
number γ satisfying

d ≤ γ < d+ 2

(where d is the space dimension) such that for any p = 1, ..., n̄0, t = 1, ..., n̄ (p ̸= t), if
meas(suppφp ∩ suppφt) > 0 then

∇φt · ∇φp ≤ 0 on Ω and

∫
Ω

∇φt · ∇φp ≤ −K0 h
γ−2 (3.35)

with some constant K0 > 0 independent of p, t and h. Further, let the family of associated
meshes be quasi-regular according to Definition 3.4.

Then for sufficiently small h, the matrix Ā(c̄) is of generalized nonnegative type with
irreducible blocks in the sense of Definition 3.2.

Theorem 3.6 Let the assumptions of Theorem 3.5 hold and let

fk ≤ 0, γk ≤ 0 (k = 1, . . . , s).

Let the basis functions satisfy (3.26)–(3.27). Then for sufficiently small h, if uh = (uh1 , . . . , u
h
s )

T

is the FEM solution of system (3.24), then

max
k=1,...,s

max
Ω

uhk ≤ max
k=1,...,s

max{0,max
ΓD

ghk}. (3.36)

Remark 3.2 (i) The above result implies in particular that if fk ≤ 0, γk ≤ 0 and gk ≤ 0
on ΓD for all k, then we obtain the nonpositivity property uhk ≤ 0 on Ω for all k .

(ii) Analogously, by reversing signs of all fk, γk and gk, we obtain the famous nonneg-
ativity property: uhk ≥ 0 on Ω for all k .
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3.3.3 Systems with non-coefficient type reaction terms

The terms
∑
Vkl(x, u,∇u)ul can be replaced by terms of the form qk(x, u1, . . . , us), i.e.

not using coefficients of ul, if they do not depend on ∇u. If qk grow at most linearly, then
the same results hold if the assumptions on Vkl are replaced by the same assumptions on
∂qk
∂ξl

. We do not formulate this separately. On the other hand, here one may allow the qk
to grow superlinearly, which needs strengthened assumptions. These are studied below.

Let us consider the system

−div
(
bk(x,∇uk)∇uk

)
+ qk(x, u1, . . . , us) = fk(x) a.e. in Ω (k = 1, . . . , s)

(3.37)
with the boundary conditions of (3.24), under the following assumptions:

Assumptions 3.7.

(i) Ω ⊂ Rd is a bounded piecewise C1 domain; ΓD,ΓN are disjoint open measurable
subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN .

(ii) (Smoothness and growth.) For all k, l = 1, . . . , s we have bk ∈ (C1 ∩ L∞)(Ω × Rd)
and qk ∈ C1(Ω×Rs). Further, let

2 ≤ p < p∗, where p∗ := 2d
d−2

if d ≥ 3 and p∗ := +∞ if d = 2; (3.38)

then there exist constants β1, β2 ≥ 0 such that∣∣∣∣∂qk∂ξl
(x, ξ)

∣∣∣∣ ≤ β1 + β2|ξ|p−2 (k, l = 1, . . . , s; x ∈ Ω, ξ ∈ Rs).

(iii) (Ellipticity.) There exists m > 0 such that bk ≥ m holds for all k = 1, . . . , s. Further,
defining ak(x, η) := bk(x, η)η for all k, the Jacobian matrices ∂

∂η
ak(x, η) are uniformly

spectrally bounded from both below and above.

(iv) (Cooperativity.) We have ∂qk
∂ξl

(x, ξ) ≤ 0 (k, l = 1, . . . , s, k ̸= l; x ∈ Ω, ξ ∈ Rs).

(v) (Weak diagonal dominance for the Jacobians w.r.t. rows and columns.) We have for

all k = 1, . . . , s, x ∈ Ω and ξ ∈ Rs:
s∑

l=1

∂qk
∂ξl

(x, ξ) ≥ 0,
s∑

l=1

∂ql
∂ξk

(x, ξ) ≥ 0.

(vi) For all k = 1, . . . , s we have fk ∈ L2(Ω), γk ∈ L2(ΓN), gk = g∗k |ΓD
with g∗ ∈ H1(Ω).

We note that one might include additional terms sk(x, u1, . . . , us) on the Neumann
boundary ΓN , which we omit here for technical simplicity; then sk must satisfy similar
properties as assumed for qk.

When considering a FEM discretization developed as in subsection 3.3.2, we need a
strengthened assumption for the quasi-regularity of the mesh such that (3.34) for γ is
replaced by

d ≤ γ < γ∗d(p) := 2d− (d− 2)p

2
(3.39)

with p from Assumption 3.7 (ii).
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Theorem 3.7 Let problem (3.37) satisfy Assumptions 3.7, and let the assumptions of
Theorem 3.5 hold except that the mesh quasi-regularity is understood with γ satisfying
(3.39).

Then for sufficiently small h, the matrix Ā(c̄) is of generalized nonnegative type with
irreducible blocks in the sense of Definition 3.2.

Accordingly, if fk ≤ qk(x, 0), γk ≤ 0 (k = 1, . . . , s) and the basis functions satisfy
(3.26)–(3.27), then for sufficiently small h, if uh = (uh1 , . . . , u

h
s )

T is the FEM solution of
system (3.37), then (3.36) holds.

3.3.4 Sufficient conditions and their geometric meaning

The key assumption for the FEM subspaces Vh and the associated meshes has been property
(3.35). A classical way to satisfy such conditions is a pointwise inequality like (3.20)
together with suitable mesh regularity. However, one can ensure (3.35) with less strong
conditions as well, for instance:

• there exists 0 < ε ≤ γ − d such that the basis functions satisfy

∇φt · ∇φp ≤ − σ

h2−ε
< 0 on Ωpt, (3.40)

but in the quasi-regularity assumption γ is replaced by γ − ε;

• there exist subsets Ω+
pt ⊂ Ωpt for all p, t such that inf

p,t

meas(Ω+
pt)

meas(Ωpt)
> 0 and the basis

functions satisfy

∇φt · ∇φp ≤ − σ

h2
< 0 on Ω+

pt, ∇φt · ∇φp ≤ 0 on Ωpt \ Ω+
pt . (3.41)

These weaker conditions allow in theory easier refinement procedures than for the classical
strict acuteness: (3.40) allows the acute mesh angles to deteriorate (i.e. tend to 90◦) as
h → 0, and (3.41) allows some right mesh angles, only requiring that the measure of
elements with acute mesh angles must not asymptotically vanish.

3.3.5 Nonsymmetric systems with linear convection coefficients

Finally we consider systems including first order terms. First, we may include linear
convection terms in each problem considered in the previous subsection. We only formulate
this for the first problem. Thus we consider systems of the following form, with the
boundary conditions of (3.24), where k = 1, . . . , s:

−div
(
bk(x, u,∇u)∇uk

)
+wk(x) · ∇uk +

s∑
l=1

Vkl(x, u,∇u)ul = fk(x). (3.42)

Assumptions 3.8. The convection coefficients satisfy wk ∈ W 1,∞(Ω), divwk ≤ 0 on
Ω and wk · ν ≥ 0 on ΓN (k = 1, . . . , s). The domain Ω and the other coefficients satisfy
Assumptions 3.5.
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When considering a FEM discretization developed as in subsection 3.3.2, we need again
a strengthened assumption for the quasi-regularity of the mesh such that (3.34) for γ is
now replaced by

d ≤ γ <
d(d+ 2)

d+ 1
. (3.43)

Theorem 3.8 Let problem (3.42) satisfy Assumptions 3.8, and let assumptions of Theo-
rem 3.5 hold except that the mesh quasi-regularity is understood with γ satisfying (3.43).

Then for sufficiently small h, the matrix Ā(c̄) is of generalized nonnegative type with
irreducible blocks in the sense of Definition 3.2.

Hence, if fk ≤ 0, γk ≤ 0 (k = 1, . . . , s) and the basis functions satisfy (3.26)–(3.27),
then for sufficiently small h the FEM solution of system (3.42), satisfes (3.36).

3.3.6 Nonsymmetric systems with nonlinear convection coefficients

Finally we study a system containing nonlinear convection terms. The required strength-
ening in the other assumptions is the strong uniform diagonal dominance (3.45) and the
homogeneity of the Dirichlet data.

Let us consider the system (for k = 1, . . . , s):

−div
(
bk(x,∇u)∇uk

)
+wk(x, u) · ∇uk + qk(x, u1, ..., us) = fk(x) a.e. in Ω,

bk(x,∇u)∂uk

∂ν
= γk(x) a.e. on ΓN , uk = 0 a.e. on ΓD .


(3.44)

Assumptions 3.9. The convection coefficients satisfy wk ∈ L∞(Ω×R). The domain
Ω and the other coefficients satisfy Assumptions 3.7, except that item (v) in the latter is
strengthened as follows: there exists µ > 0 such that

s∑
l=1

∂qk
∂ξl

(x, ξ) ≥ µ,

s∑
l=1

∂ql
∂ξk

(x, ξ) ≥ µ (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs), (3.45)

moreover, µ > ∥w∥2L∞(Ω)s/4m where m > 0 is the lower bound of the bk.

When considering a FEM discretization developed as in subsection 3.3.2, we need a
strengthened assumption for the quasi-regularity of the mesh such that (3.34) for γ is
replaced by

d ≤ γ < min
{
γ∗d(p),

d(d+ 2)

d+ 1

}
(3.46)

with p from (3.38) and γ∗d(p) from (3.39).

Theorem 3.9 Let problem (3.44) satisfy Assumptions 3.9, and let the assumptions of
Theorem 3.5 hold except that the mesh quasi-regularity is understood with γ satisfying
(3.46).

Then for sufficiently small h, the matrix Ā(c̄) is of generalized nonnegative type with
irreducible blocks in the sense of Definition 3.2.

Accordingly, if fk ≥ qk(x, 0) and γk ≥ 0 (k = 1, . . . , s), then for sufficiently small h,
the FEM solution uh = (uh1 , . . . , u

h
s )

T of system (3.44) satisfies

uhk ≥ 0 on Ω (k = 1, . . . , s). (3.47)
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3.3.7 Some applications

The above obtained DMP result can be used for various models, mostly where discrete
nonnegativity is required. Using the mesh conditions descibed in subsection 3.3.4, one
may e.g. reproduce the following properties of the true solution:

• nonnegativity of the desired quantity in semilinear reaction-diffusion equations in
chemistry (e.g. concentration in autocatalytic chemical reactions), biology (e.g. con-
centration in enzyme-substrate reaction by the Michaelis-Menten rule) and physics
(e.g. temperature in radiative cooling).

• boundary maximum of the subsonic flow potential;

• nonnegativity of the concentration in chemical reaction-diffusion systems with cross-
catalysis and autoinhibition;

• nonnegativity of the agents (pollutants) in transport type (diffusion-convection-re-
action) processes.

4 A posteriori error estimates

4.1 A sharp global error estimate in Banach space

Based on [23], sharp error estimates are given for an operator equation

F (u) + l = 0 (4.1)

in a Banach space V with a given nonlinear operator F : V → V ∗ and a given bounded
linear functional l ∈ V ∗. Later we will impose conditions ensuring that equation (4.1) has
a unique solution u∗ ∈ V .

In this section we consider some approximate solution u ∈ V of equation (4.1), i.e.
u ≈ u∗ where u∗ is the exact solution, and our goal is to estimate the error arising from this
approximation. For this purpose, we will use the following (energy type) error functional
for equation (4.1):

E(u) := ⟨F (u) + l, u− u∗⟩ ≡ ⟨F (u)− F (u∗), u− u∗⟩ (u ∈ V ). (4.2)

Since F will be assumed uniformly monotone, we have E(u) ≥ m∥u− u∗∥2V , in particular
E(u) ≥ 0 = E(u∗) (u ∈ V ).

Assumptions 4.1.

(i) Let V and Y be Banach spaces and Λ : V → Y a linear operator for which

∥Λu∥Y = ∥u∥V (u ∈ V ). (4.3)

(ii) The operator A : Y → Y ∗ has a bihemicontinuous symmetric Gateaux derivative
(according to Definition 2.1).
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(iii) There exists constants M,m > 0 such that

m ∥p∥2Y ≤ ⟨A′(y)p, p⟩ ≤ M ∥p∥2Y (y, p ∈ Y ). (4.4)

(iv) The operator F : V → V ∗ has the form

⟨F (u), v⟩ = ⟨A(Λu),Λv⟩ (u, v ∈ V ).

(v) There exists a subspace W ⊂ Y with a new norm ∥.∥W such that A′ is Lipschitz
continuous as an operator from Y to B(W,Y ∗).

Theorem 4.1 Let Assumptions 4.1 hold and u∗ ∈ V be the solution of (4.1). Let u ∈ V
be an approximation of u∗ such that Λu ∈ W . Then for arbitrary z∗ ∈ W and k ∈ V ,

E(u) ≤ ˜EST (u; z∗, k) :=
(
m−1/2 |Λ∗A(z∗) + l| + L

2
m−3/2 D̃(u; z∗, k) (4.5)

+
(
⟨A(Λu)− A(z∗), Λu− z∗⟩ + L

2m
D̃(u; z∗, k) ∥Λu− z∗∥Y

)1/2
)2

where
D̃(u; z∗, k) :=

(
M ∥z∗ − Λk∥Y + |Λ∗A(z∗) + l|

)
∥Λu− z∗∥W . (4.6)

Proposition 4.1 Estimate (4.5) is sharp in the following sense: if Λu∗ ∈ W then

min
z∗∈W,
k∈V

˜EST (u; z∗, k) = E(u).

When Y is a Hilbert space, one can find the optimal k for the above estimate via a
kind of ’adjoint’ equation: let kopt be the solution of the problem

⟨Λkopt,Λv⟩ = ⟨z∗,Λv⟩ (v ∈ V ), (4.7)

i.e., kopt is the orthogonal projection of z∗ on the range of Λ. Then for all k ∈ V one has
∥z∗ − Λkopt∥Y ≤ ∥z∗ − Λk∥Y , i.e., kopt provides the smallest value of ∥z∗ − Λk∥Y in (4.6).

4.2 Applications to nonlinear elliptic problems

Let us consider a problem{
−div f(x,∇u) = g

u|ΓD
= 0, f(x,∇u) · ν |ΓN

= γ
(4.8)

as a special case of (2.52) under Assumptions 2.10. Then Theorem 4.1 holds with the
following choices: V := H1

0 (Ω), Y := L2(Ω)d, W := L∞(Ω)d and the operator Λ := ∇.

One can determine the optimal y∗ and w in EST (uh; y
∗, w) in the following way. First,

the optimal value of the parameter z∗ should be a sufficiently accurate approximation of
∇u∗. For finite element solutions, a common way is to use an averaging procedure, i.e.,
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to replace the unknown gradient ∇u∗ of the exact solution by z∗ := Gh(∇uh), where Gh

is some averaging operator: for piecewise linear finite elements, Gh(∇uh) is closer to ∇u∗
than is ∇uh by an order of magnitude. Next, the optimal k for this z∗ is given as the
solution of the ’adjoint’ problem (4.7), which now amounts to finding kopt ∈ H1

0 (Ω) such
that ∫

Ω

∇kopt · ∇v =

∫
Ω

z∗ · ∇v (v ∈ H1
0 (Ω)), (4.9)

that is, the weak solution of a Poisson problem. The latter is linear, hence its numerical
solution costs much less than for the original one. When obtained from a piecewise linear
FEM, its right-hand side is constant on each element, hence it requires minimal numerical
integration and is therefore a cheap auxiliary problem. Now using a finer mesh for (4.9)
than the one used for uh may considerably increase the accuracy of the estimate.

Remark 4.1 One can apply the error estimate in the same way for problems with the
same structure as (4.8).

(i) For fourth order problems

div2B(x,D2u) = g, u|∂Ω = ∂u
∂ν

∣∣
∂Ω
= 0

on a bounded domain Ω ⊂ Rd, defined via a matrix-valued nonlinearity B with analogous
properties to f in (4.8), Theorem 4.1 holds with the following choices: the spaces V :=
H2

0 (Ω), Y := L2(Ω)d×d, W := L∞(Ω)d×d and the Hessian operator Λ := D2.

(ii) For the second order elasticity system (2.61), Theorem 4.1 holds with the spaces
V := H1

D(Ω)
3, Y := L2(Ω)3×3

symm (symmetric matrix-valued functions with entries in L2(Ω)),
W := L∞(Ω)3×3

symm and the operator Λ := ε where ε(u) := 1
2
(∇u+∇ut).
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[3] Antal I., Karátson J., Mesh independent superlinear convergence of an inner-outer iterative
method for semilinear elliptic interface problems, J. Comp. Appl. Math. 226 (2009), 190-196.

[4] Axelsson, O., A generalized conjugate gradient least square method, Numer. Math. 51 (1987),
209-227.

[5] Axelsson, O., Iterative Solution Methods, Cambridge University Press, 1994.

[6] Axelsson, O., Barker, V. A., Neytcheva, M., Polman, B., Solving the Stokes problem on a mas-
sively parallel computer, Math. Model. Anal. 6 (2001), no. 1, 7–27.
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[10] Axelsson, O., Karátson J., Mesh independent superlinear PCG rates via compact-equivalent
operators, SIAM J. Numer. Anal., 45 (2007), No.4, pp. 1495-1516
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