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ABSTRACT 

Importance of the field: The current regulation of parathyroid hormone and the 

development of parathyroid disorders in chronic kidney disease involve complex 

mechanisms. Factors such as calcium, phosphorous, calcitriol, vitamin D receptor, 

calcium-sensing receptor and fibroblast growth factor 23 (FGF23), play a key role in the 

regulatory process in the pathogenesis of secondary hyperparathyroidism. 

Areas covered in this review: This review provides an analysis of published 

results related to the different models and approaches used to study the mechanisms 

involved in the pathogenesis of secondary hyperparathyroidism. The review includes 

clinical studies, animal and ex vivo/in vitro models which have been extensively used in 

this area. 

 What the reader will gain: Readers will have an overview of the main findings 

and progresses achieved in the knowledge of the parathyroid function combining the 

results obtained from the different models used to understand the parathyroid gland 

regulation. 

Take-home message: Each of the available models used to study the complex 

system of parathyroid regulation has advantages and limitations; therefore, it is 

necessary to combine the information obtained from more than one model in order to 

have a more complete knowledge of the mechanisms involved in parathyroid hormone 

regulation. 
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1. INTRODUCTION 

The progression of chronic kidney disease (CKD) leads to a reduction of 1-alpha 

hydroxylase in the kidney, which in turn results in low levels of the active form of 

vitamin D (1.25-dihydroxyvitamin D3-[1,25(OH)2D3] or calcitriol) impairing calcium 

absorption in the intestine favoring the reduction in serum calcium
1
. As a result, the 

decreases in serum calcium stimulate parathyroid hormone (PTH) synthesis and release, 

which in turn increase bone turnover, bone resorption and stimulate 1-alpha 

hydroxylase. All these mechanisms lead to compensatory increases in serum calcium.  

In addition, the progressive reduction of the renal function impairs phosphorous 

excretion, leading to increases in serum phosphorous, which increases fibroblast growth 

factor 23 (FGF23) and PTH; both mechanisms increase urinary phosphorous excretion. 

However, FGF23 and PTH exert opposite effects on calcitriol synthesis: FGF23 inhibits 

1-alpha hydroxylase, whereas PTH stimulates it.  

As the renal function decreases, all these complex and tightly interrelated 

mechanisms of parathyroid gland regulation fail to adequately control the parathyroid 

gland function. As a result, low serum levels of calcitriol and calcium and phosphorous 

retention are present at late stages of CKD. Furthermore, at advanced stages of this 

disorder, CKD stage 5 patients show severe forms of secondary hyperparathyroidism 

with diffuse and nodular hyperplasia and a significant reduction in the vitamin D and 

calcium-sensing receptors (VDR and CaSR) expression with a poor response of the 

parathyroid glands to calcium changes and vitamin D analogs therapy, and a clear trend 

towards autonomous (tertiary) parathyroid gland behavior. 

Several of the mineral abnormalities end up inducing not only a bone disease, but 

also several cardiovascular disorders, including vascular calcifications and a greater risk 

of mortality
2
. The recently coined term “Chronic Kidney Disease-Mineral and Bone 
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Disorder” (CKD-MBD) encompasses all these abnormalities
3
. CKD-MBD includes 

either one or a combination of (a) calcium, phosphorous, PTH, or vitamin D 

metabolism; (b) bone turnover, mineralization, volume, linear growth or strength; and 

(c) vascular or other soft tissue calcification. There are excellent reviews focused on 

different aspects of CKD-MBD
4-7

; however, this review will deal mainly with aspects 

related to the parathyroid gland regulation. 

 

1.1 Parathyroid Hormone 

PTH is synthesized by the parathyroid cells; through the blood stream PTH 

reaches the main target sites: the kidney and bone
8
. The main role of PTH is the 

regulation of calcium homeostasis. Under physiological conditions, osteoblasts are 

stimulated by PTH via its specific PTH receptor, which then send signals to bone 

marrow-derived osteoclast precursors to stimulate their fusion, differentiation and 

activation. The mature and active osteoclasts resorb bone and release calcium to the 

blood. In addition, PTH provides an additional calcium homeostatic response in order to 

preserve normal serum calcium levels acting in the kidneys by increasing tubular 

calcium reabsorption.  

 PTH can also exert other anabolic actions in bone. Intermittent or pulsatile 

injections of recombinant PTH, as well as injections with amino-terminal fragments, are 

able to increase bone formation and bone mass; the latter became the basis for the use of 

PTH injections to treat osteoporosis
9
. Besides vitamin D, PTH is the only other anabolic 

bone agent known.  
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1.2 Parathyroid gland regulation 

PTH regulation involves a complex mechanism in which calcium
10

, calcitriol
11

, 

phosphorous
12

, and FGF23
13

 play a central role. 

Both calcium and calcitriol act on the parathyroid cells trough their specific 

receptors; CaSR and VDR. While the CaSR is a cell-membrane receptor member of the 

G-protein-coupled receptor family, the VDR is a nuclear receptor that, when bound to 

vitamin D, acts as a transcription factor. The differences in the nature of the two ligands 

and their receptors lead to two different mechanisms of action with a complementary 

function on the parathyroid cells. 

On one hand, small decreases in extracellular calcium concentrations are rapidly 

sensed by the CaSR, triggering, within seconds or minutes, an increase in PTH release. 

Small increases in calcium are also sensed by the CaSR, yielding opposite results
14-16

. If 

the stimulus persists for longer periods (hours, days), calcium is able to regulate PTH 

synthesis post-transcriptionally by modifying the mRNA stability through differences in 

binding of the parathyroid proteins to an element in its 3'-untranslated region
17-18

. As a 

result, the decreases in serum calcium reduce mRNA degradation by increasing its 

stability and the half-life of mRNA PTH. By contrast, the active form of vitamin D 

(calcitriol) inhibits the PTH gene transcription resulting in a reduction of the PTH 

synthesis
19-22

. 

In CKD, the reduction of renal function and active renal mass, together with the 

increase in serum FGF23
23

, decrease 1-alpha hydroxylase synthesis with the consequent 

reduction in calcitriol synthesis which, in turn, decreases intestinal calcium absorption 

but also leads a lower PTH gene transcription suppression. Both mechanisms favor the 

increase of PTH.  
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High phosphorous is another factor able to act on the parathyroid cells by 

increasing PTH synthesis
12, 24-25

 through a post-transcriptional mechanism stabilizing 

the PTH mRNA
17

. Finally, calcium, calcitriol and phosphorous, are well-known factors 

involved in parathyroid cell proliferation, thus, abnormalities of these factors may 

contribute to the development of parathyroid gland hyperplasia
26-27

. 

Although the effects of calcium, calcitriol and even phosphorous on the 

parathyroid function take place through specific mechanisms, these three factors also 

produce additional complementary effects, mainly through their interaction with the 

CaSR and VDR parathyroid receptors. 

The main function of the CaSR is to sense calcium; however, the CaSR 

expression in parathyroid glands does not seem to be regulated by the extracellular 

calcium levels
28-30

. In contrast, it has described that CaSR expression can be regulated 

by calcitriol, which can increase CaSR even under hypocalcaemic conditions
28, 31-32

. 

Also, phosphorous may influence the CaSR expression; in fact, a reduction in the 

expression of CaSR has been described in the presence of hyperphosphataemia
33-35

. 

Regarding VDR regulation, contrary to what occurs with calcium and CaSR 

regulation, calcitriol does regulate its own receptor, VDR, stimulating its synthesis and 

half-life
28, 36-37

. In addition, calcium is also able to modify the VDR expression
28, 32, 38-40

. 

Finally, FGF23, initially described as a potent phosphatonin
41

, is involved not 

only in the control of phosphorous but also in the regulation of vitamin D metabolism
42

 

and PTH synthesis
13

. Elegant studies performed by Silver et al.
13

 have demonstrated a 

direct effect of FGF23 on the parathyroid gland through the MAPK pathway, leading to 

a decrease in PTH synthesis and secretion. In addition, the putative, indirect regulation 

of PTH by estrogens through FGF23 has been also recently described
43

. The importance 

of FGF23 in the pathogenesis of secondary hyperparathyroidism is still under 
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investigation; nevertheless, alternative paradigms for the pathogenesis of secondary 

hyperparathyroidism in chronic kidney disease involving FGF23 have been recently 

proposed
44

. 

 

1.3 Other important factors involved in parathyroid hormone secretion 

Other factors such as calcimimetics and aluminum can also act on the PTH 

regulation. 

Calcimimetics, the CaSR allosteric modulators recently introduced for the 

treatment of secondary hyperparathyroidism, act by increasing CaSR sensitivity to 

extracellular calcium, decreasing PTH synthesis and secretion
45-47

. Moreover, 

calcimimetics are also able to cooperate with VDR activators, increasing the VDR 

expression in the parathyroid glands
48

. As a result, the use of calcimimetics not only 

achieves the known effect on the CaSR, but they can also increase the VDR expression. 

Finally, several studies have demonstrated the inhibitory effect of aluminum on 

PTH mRNA levels through complex and combined mechanisms, including a direct 

action on the CaSR, by reducing its gene expression through a post-transcriptional 

mechanism
49-50

. It seems clear that the parathyroid gland is a target tissue for aluminum, 

and part of the direct inhibitory effect of aluminum is also due to its capacity to reduce 

cell proliferation in the parathyroid gland
50

. 

Most of the previously described findings have been obtained thanks to the 

contribution of different in vivo and ex vivo/in vitro models used to study the regulation 

of the parathyroid gland function. The remaining part of this review will describe and 

analyze different models which have been used to investigate the complex mechanisms 

involved in PTH regulation.  
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2. MODELS USED TO STUDY THE PARATHYROID GLAND FUNCTION 

2.1 Contribution of human clinical studies 

The human clinical studies were mostly aimed to obtain information at the 

functional, morphological, molecular and genomic levels.  

Clinical studies carried out in humans have revealed important aspects of the 

pathogenesis of secondary hyperparathyroidism. Functional studies carried out in 

humans have clearly shown that hypocalcaemia stimulates PTH secretion, while 

hypercalcaemia suppresses it. The mathematical model which best relates PTH and 

serum calcium is a sigmoidal curve
51

. The set-point for calcium has been defined as the 

calcium concentration at which the maximal PTH is reduced by 50%
52

. In the CKD 

patients with secondary hyperparathyroidism, the set-point of calcium is shifted to the 

right, meaning that a higher concentration of calcium is necessary to suppress the PTH. 

This is the result of a sum of factors which end up increasing the size of the parathyroid 

gland and decreasing VDR and CaSR expression, the main receptors known to be 

involved in the parathyroid gland regulation
53-56

.  

This functional relationship between calcium and PTH has been extensively 

used in humans to investigate the effect of VDR activators and calcimimetics on the 

parathyroid gland, assuming that if they are effective they should be able to partly or 

totally correct the abnormal calcium and parathyroid sigmoidal relationship observed in 

the advanced forms of secondary hyperparathyroidism. So far, both have been able to 

shift the set-point of calcium to the left, partly recovering parathyroid sensitivity to 

calcium 
57

. Finally, a successful parathyroidectomy has also proved to be effective in 

reducing PTH levels and shifting the PTH-calcium curve to the left
58

.  

The importance and contribution of high phosphorous in the pathogenesis of 

secondary hyperparathyroidism was experimentally demonstrated many years ago
59

. 
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However, since then, human studies have not been able to fully differentiate and dissect 

the effect of phosphorous independently from the changes in serum calcium
60

 and/or 

calcitriol levels. 

As secondary hyperparathyroidism progresses, the parathyroid glands become 

refractory to medical treatment and parathyroidectomy is frequently needed. Human 

parathyroid tissue obtained from parathyroidectomies has been used for genetic, 

genomic and molecular studies aiming to investigate in depth the mechanisms involved 

in parathyroid gland deregulation in advanced stages of parathyroid hyperplasia. 

The most advanced form of this disorder, nodular hyperplasia, has been 

associated with chromosomal aberrations
61

 and also with severe changes in gene 

expression
62-63

. To study these specific aspects in diffuse and nodular parathyroid 

glands from renal patients who underwent parathyroidectomy, several techniques have 

been used, such as comparative genomic hybridization
61

, microarrays and bidirectional 

subtraction library
62

. The combination of these techniques has allowed to demonstrate 

that the progression of secondary hyperparathyroidism damages several cell pathways at 

different levels, a fact which partly explains the multiple, complex and integrated 

cellular mechanisms involved in the progression of the disease
62

. 

Cell growth is highly promoted in the nodules; DNA stability is severely 

compromised because the protective mechanism and repair systems fail; RNA synthesis 

and stability are also in jeopardy. Finally, protein synthesis, processing and destination 

become clearly hindered due to failures in the folding, assembly and sorting of the 

polypeptides. All these striking alterations, dominated by the profile of gene repression 

found in the severe cases of nodular secondary hyperparathyroidism, are almost 

impossible to control at this late stage of the disease and alert to the need of an early 

approach in the management of secondary hyperparathyroidism in CKD patients
62

. 
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In the nodular severe forms of secondary hyperparathyroidism, the monoclonal 

growth of the parathyroid gland dominates the scene. A study revealed that 64% of 

hemodialysis patients with refractory secondary hyperparathyroidism showed at least 

one parathyroid lesion with monoclonal growth
64

, whereas another study found that the 

monoclonal pattern was present in 58% of hyperplastic nodules in females
65

. However, 

the genes implicated in the genesis and evolution of secondary hyperparathyroidism 

monoclonality are not those observed in primary hyperparathyroidism
63

. 

Despite human studies being very useful to understand some aspects of the 

pathogenesis and progression of secondary hyperparathyroidism, they show several 

limitations, mainly due to the lack of homogeneity of the studies. As an example, most 

of the published works have been carried out in patients with different ages and 

different degrees of severity of secondary hyperparathyroidism receiving different 

treatments. Thus, the experimental models have been of great value to complement and 

further expand the investigation on parathyroid regulation.  

 

2.2 Contribution of the in vivo animal models 

The main advances in the understanding of the pathogenesis of secondary 

hyperparathyroidism have been possible mainly thanks to the results obtained using 

experimental animal models of CKD. Partial nephrectomy has been the most common 

technique used to produce CKD
26, 66-69

, although more recently the addition of adenine 

to the diet has become a current model to study CKD-MBD
47, 70

. Five/six or 7/8 

nephrectomy induce a moderate renal insufficiency, which in most cases is not enough 

to develop severe secondary hyperparathyroidism. To increase the magnitude of the 

latter, the concomitant use of high phosphorous diet was introduced to provide a 
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substantial extra stimulus, resulting in a more severe degree of secondary 

hyperparathyroidism.  

The studies performed following the previously described procedures obtained 

significant increases in PTH gene expression
71

 and severe secondary 

hyperparathyroidism. The stimulatory effect of high serum phosphorous on PTH is 

powerful enough to exert its action independently of the serum calcium levels
72

, 

achieving PTH levels 20-40 times higher than those obtained using only partial 

nephrectomy with no phosphorous supplementation
33, 73

. 

 The rat model with CKD has been used to describe that the regulation of the 

parathyroid function by calcium and phosphorous occurs at posttranscriptional level by 

regulating the binding of proteins to the 3´-UTR of the PTH mRNA
74

. Furthermore, the 

addition of high phosphorous levels to the diet not only induced a severe parathyroid 

hyperplasia, but also triggered a reduction in the expression of CaSR in the same areas 

of the parathyroid gland where an increased cell proliferation was observed
33

. Similar 

studies have also shown that the increase in cell proliferation rate produced by a high 

phosphorous diet precedes the down-regulation of CaSR
75

, suggesting that the 

mechanisms which stimulate the parathyroid cell proliferation precede the reduction in 

CaSR expression. 

The in vivo animal studies also have been fundamental to demonstrate the 

important effects of calcitriol, calcium and calcimimetics. Calcitriol inhibits PTH gene 

expression and stimulates VDR expression in parathyroid tissue
76-77

. Despite VDR 

being the specific receptor for calcitriol and other active vitamin D metabolites, serum 

calcium levels also influence VDR expression; in fact, a recent study has shown that the 

higher the serum calcium, the higher the expression of VDR levels
32

. 
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The increased PTH gene expression in experimental uremia has been also 

reversed using calcimimetics which act via a posttranscriptional mechanism involving 

the trans-acting factor AUF1 present in the parathyroid glands
47

. 

Regarding regression of the parathyroid hyperplasia after different treatments, 

the animal models have helped to enhance the knowledge in this area. Calcitriol has 

shown to decrease cell proliferation and increase apoptosis restoring the levels of CaSR 

and VDR, leading to a regression of the parathyroid hyperplasia in uremic rats
78

. The 

direct injection of calcitriol or other vitamin D analogs into hyperplasic glands has also 

been able to induce cell apoptosis, suggesting this could be a valid, alternative method 

to reduce the size of the parathyroid gland
79

. Similarly, calcimimetics have proven to be 

able to reduce parathyroid cell proliferation and gland size in uremic rats with 

secondary hyperparathyroidism
80

. 

The animal models used to study secondary hyperparathyroidism have also been 

used to analyze other aspects of CKD-MBD, such as vascular and other soft tissue 

calcifications
81-83

. A recent study demonstrated that, after 20 weeks, rats with CKD 

receiving a high phosphorous diet developed not only severe secondary 

hyperparathyroidism but also severe vascular calcifications leading to changes in the 

gene and protein expression profiles of the calcified aortas
73

. In addition, other recent 

studies have been useful to show the effects and interactions of drugs such as calcitriol, 

paricalcitol, calcimimetics and biphosphonates in the production and regression of 

vascular calcifications
84-86

. 

One important general limitation of the animal models is that even though 

several parameters cannot be controlled, others frequently associated or related to 

uncontrolled or unmeasured parameters cannot be controlled, leading to undesirable 

modifications in other factors involved in PTH regulation. In some studies, this issue 
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makes it difficult to reach definitive conclusions about the chronology and/or the 

importance of the factors and mechanisms studied. To limit the influence of all these 

uncontrolled factors, other models such as knockout models or ex vivo/in vitro models 

have been extensively used to better understand the regulation of the parathyroid 

hormone secretion. 

 

2.3 Contribution of the knockout models 

Knockout models have been of great value to precise the role of several known 

factors in the pathogenesis of secondary hyperparathyroidism. 

CaSR knockout has demonstrated the key role of this membrane protein in 

calcium homeostasis and PTH regulation
87

. Mice with a partial CaSR knockout are 

characterized by modest elevations of serum calcium and PTH levels as well as 

hypocalciuria, whereas mice with complete CaSR knockout show elevated serum 

calcium and PTH levels, parathyroid hyperplasia, bone abnormalities, retarded growth 

and premature death, thus demonstrating the great importance of the CaSR in several 

aspects of parathyroid gland regulation and bone health. 

Recently, it has been described the role of the CaSR in maintaining calcium 

homeostasis in the absence of PTH and consequently the CaSR-regulated PTH 

secretion, by using single and double knockout mouse models for CaSR and/or PTH
88

. 

Thus, the double knockout for CaSR and PTH showed high serum calcium levels, 

similar to those presented in the single CaR-null mice, supporting the fact that CaSR 

defends against hypercalcemia independently of its regulation of PTH secretion by 

increasing the urinary calcium excretion. 

On the other hand, several papers have tried to demonstrate the effect of VDR on 

parathyroid gland regulation by using VDR null mice
89-91

. In all cases, VDR null mice 
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presented severe hypocalcemia and secondary hyperparathyroidism that could be 

corrected with a high calcium rescue diet, indirectly demonstrating the role of VDR in 

the normal parathyroid physiology. Furthermore, a recent study with a specific deletion 

of VDR has provided additional information on the role of this receptor in the control of 

the parathyroid gland. The deletion induced a moderate increase in PTH levels but also 

a reduction in the parathyroid CaSR expression, suggesting that the VDR has a limited 

role in the parathyroid gland regulation
92

.  

 

2.4 Contribution of the ex vivo/in vitro models 

The functional and molecular studies of the response of the parathyroid glands 

using ex vivo/in vitro models have been limited: first, because of the lack of functional 

parathyroid cell lines and second, because of the limited functional long-term response 

to calcium observed when isolated parathyroid cells were cultured.  

A great number of the in vitro studies have been carried out to demonstrate the 

viability and functionality of primary monolayer parathyroid cell cultures. The 

methodology followed for this type of culture is simple and there are no important 

differences in all the published papers
93-98

. Briefly, the parathyroid tissue is minced into 

small fragments and digested with collagenase in culture medium. Then, the parathyroid 

cells are released from the tissue to the culture medium, the cells are collected, 

centrifugated and resuspended in a growth media to work with them. 

Unfortunately, despite the simplicity of the procedure to obtain the cells, 

dispersed or primary monolayer parathyroid cells such as those from bovine often 

become progressively less responsive to changes in extracellular calcium
93-94

 likely due 

to a rapid decrease in CaSR mRNA and protein levels, a phenomenon observed after a 
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few hours of culture, which seems not to be influenced by the culture conditions 

(medium serum, calcium, or calcitriol). 

In contrast, another study has found that proliferating bovine parathyroid cells in 

early passages preserve their functionality, and they were able to respond to calcium and 

calcitriol even after 72 hours after subconfluency
95

. Under these conditions, it has been 

found that calcitriol is able to suppress cell proliferation. Similarly, positive results have 

been also obtained with a human parathyroid cell culture model from uremic patients 

with secondary hyperparathyroidism
96

, in which the parathyroid cells remain viable and 

functional until the fifth passage, which corresponds approximately to 5 months of 

follow-up as assessed by persistent responsiveness to changes in extracellular calcium. 

In addition, by using this model, it has been found that calcium, calcimimetics 

and calcitriol were able to decrease parathyroid cell proliferation, whereas phosphorous 

increased it
97

. Monolayer cultures of bovine parathyroid cells have been also 

successfully used to study the ability of FGF23 to regulate PTH and 1alpha-hydroxylase 

expression
98

. 

In summary, despite the mentioned controversy and limitations, mainly 

concerning the study of PTH regulation by calcium, primary monolayer cell cultures 

have been of great usefulness to study the other important factors involved in 

parathyroid gland regulation, such as calcitriol, calcimimetics, phosphorous and FGF23. 

To improve the performance of the parathyroid cell culture model, a new 

approach has been recently employed. It consists in the coincubation of the bovine 

parathyroid cells with a t-tail type I collagen; after 1-2 weeks, the parathyroid cells 

coalesce into a three-dimensional organoid, termed “pseudoglands”. It has been shown 

that the CaSR mRNA expression in these pseudoglands decreased after 1 day of 

incubation; however, later on, this negative effect apparently disappears and the CaSR 
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expression increased becoming almost normal after longer periods of culture. Using this 

model it was proven that PTH mRNA can be suppressed by extracellular calcium, 

demonstrating its usefulness to the study of the calcium-mediated control of the 

parathyroid gland
99

. 

In addition, it has been recently described that parathyroid cells in culture were 

able to produce cell aggregates called “spheroids” which secreted parathyroid hormone 

for more than 150 days
100

. These has been recently used in parathyroid cells obtained 

from patients with secondary hyperparathyroidism in order to suppress the production 

of PTH by small interfering RNA (siRNA), a method which provides a useful approach 

for further studies. The results from the innovative parathyroid spheroid cell culture 

model stress once more the importance of maintaining a three-dimensional structure in 

order to have adequate parathyroid cell functionality. 

Due to some of the above-mentioned limitations of parathyroid cell culture, non-

parathyroid cells have also been used to study some specific mechanisms involved in 

parathyroid hyperplasia. For example, the human epidermoid carcinoma cell line, A431 

which mimics hyperplastic parathyroid cells, has been used to demonstrate that the 

TGF-alpha/EGFR system is one of the key elements in the regulation of parathyroid 

hyperplasia
101-102

. In addition, Human Embryonic Kidney cells (HEK293) cotransfected 

with bovine CaSR have been used to demonstrate that aluminum is a strong agonist of 

the CaSR
50

. In addition and more recently, the same kidney cells cotransfected with 

both human CaSR and human PTH plasmids were used to study the regulation of PTH 

gene expression by the calcimimetic R568
103

. The results indicated that in the cells 

cotransfected with CaSR, the PTH gene expression was regulated by calcium and the 

calcimimetic R568; conversely, there was no response in cells without CaSR 

transfection. The PTH CaSR-dependent decreased gene expression observed in these 
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engineered cells occurs via the balanced interactions of the trans-acting factors KSRP 

and AUF1 with PTH mRNA, as already described in vivo
47, 74

. 

Despite all progresses, efforts and sophisticated adaptations such as the one 

described above, parathyroid cell culture is still a model with some limitations when 

used to study the PTH regulation by calcium. Therefore, some authors have had to use 

ex vivo/in vitro cultures of isolated parathyroid glands to further explore parathyroid 

regulation. In fact, the latter has become the reference model to analyze the parathyroid 

molecular mechanisms in response to different stimuli
12, 25, 104-105

. 

In this type of ex vivo/in vitro culture the whole rat parathyroid glands are 

extracted and excised from the surrounding thyroid tissue and then immediately placed 

in well plates containing the experimental culture medium. In the case of human 

parathyroid glands, slices of tissue are cultured following the same procedure.  

By using this model and culturing parathyroid glands from rats, it has been 

found that calcium is able to acutely suppress PTH secretion as previously described in 

vivo
12, 106

. Similar results were obtained in human hyperplastic parathyroid glands
25

. 

This model has also allowed for the study of the effect of serum calcium and 

phosphorous on the parathyroid function
12, 106

. In fact, it has been shown that calcium 

does not influence the expression of its own receptor (CaSR), but, in contrast, it is able 

to upregulate the parathyroid VDR
28

. On the other hand, the effect of phosphorous on 

PTH secretion is slower than that observed for calcium
12

, increasing PTH mRNA, as it 

demonstrated in parathyroid tissue obtained from parathyroidectomies of hemodialysis 

and kidney-transplant patients
25

. The effect of phosphorous on PTH secretion has also 

been demonstrated in bovine parathyroid tissue slices but not in dispersed cells, pointing 

out again the importance of having a three-dimensional architecture in order to obtain 

adequate functionality in these cells
107

. 
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The use of parathyroid glands from rats has also showed that calcitriol 

upregulates not only VDR but also CaSR, even in the presence of low calcium levels
28

, 

a finding not described in previous studies
29

. Furthermore, using human parathyroid 

tissue it has been demonstrated that calcitriol suppresses parathyroid cell proliferation, 

as long as the phosphorous concentration in the culture medium is normal
108

. In 

addition, the ability of calcimimetics, alone or in combination with calcitriol, to 

suppress PTH secretion and to increase VDR expression has also been proven in human 

and rat hyperplastic parathyroid glands
48

, showing that the effect of calcimimetics was 

exerted, independently of calcium levels, in a concentration-dependent manner.  

 The ex vivo/in vitro parathyroid gland culture model has also been used to 

demonstrate that aluminum suppresses not only PTH secretion but also PTH mRNA by 

a posttranscriptional mechanism, acting as a true CaSR agonist
50

. 

Finally, this model has proven to be useful to test the functionality of fresh and 

cryopreserved fragments of parathyroid glands which are currently used for the re-

implantation of parathyroid tissue
109

. This is a practical matter of great interest because 

one of the still unsolved problems for surgeons is how to select the best fragments of 

parathyroid tissue to be re-implanted, either as fresh or cryopreserved. Several 

techniques have been used to help in this selection but the results have been quite 

heterogeneous
110-112

. Still, in most cases, the decision has to be made in the operating 

theatre based only on the macroscopic appearance of the parathyroid gland and, 

unfortunately, no definitive solid results on this matter have been achieved.  

The functional studies with fresh or cryopreserved parathyroid fragments seems 

to indicate that fresh tissue preserves almost all biological properties whereas after 

cryopreservation, the parathyroid glands maintain some functionality but their capacity 
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to fully respond to some effectors, such as calcium, for long periods of time seems to be 

impaired
113-114

. 

 

3. EXPERT OPINION 

The study of the parathyroid function regulation is very complex. In the last 

decades, great advances on the pathogenesis of the disease have been achieved. Human 

and experimental studies of all types have been crucial to better understand the 

parathyroid gland behavior in CKD, and also to know that the development and 

progression of secondary hyperparathyroidism occur due to a combination of factors. 

Many aspects of the main factors and feedbacks involved in the parathyroid 

regulation have been progressively researched and described in the past four decades. 

The late stages of CKD involve intrinsic molecular and genomic changes which are 

responsible for the morphological disturbances found in the parathyroid glands. Thanks 

to the combination of the results obtained from all the experimental models, some of 

them summarized in this review, the knowledge of the parathyroid function has greatly 

increased. 

 However, in more recent years, the molecular biology techniques have been 

crucial to further the knowledge about the parathyroid function. Fortunately, new 

findings in this field are published each year which allow us to better specify the role 

and weight of each known factor in the physiological and pathological regulation of the 

parathyroid gland at the different stages of CKD.  

 Phosphorous retention, low levels of calcium and calcitriol, all stimulate PTH 

production and parathyroid cell proliferation. In addition, FGF23, a recently discovered 

player, acts not only as a phosphaturic hormone but also as an important vitamin D and 

PTH regulator. Future studies might help to add new information about the role of 
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FGF23 in the different stages of CKD. However, with the information available it has 

been learned that one of the main advantageous and practical results of the FGF23 

action is that it prevents the coexistence of high serum phosphorous and calcitriol serum 

levels, a coincidence that may end up increasing undesirable outcomes, among others, 

the possibility of having vascular calcifications. 

If we had to pick up one topic in which striking improvements have been 

recently achieved, in no small measure thanks to the described models, we would 

choose phosphorous. As a result of the combination of results gathered from 

epidemiological, clinical and experimental studies, the role of phosphorus and the 

consequences of its overload have greatly increased in recent years, winning the 

spotlight when it comes to the general impact on health and its role in the parathyroid 

regulation and other CKD-MBD disorders, such as vascular function and calcification, 

cardiovascular disease and mortality. 

The introduction of the FGF23 and its multiple interactions, mainly with 

phosphorous, but also with vitamin D and PTH, has enriched the CKD-MBD 

constellation. In this area of research it should be expected important advances in the 

coming years which might complete and limit more precisely the role of FGF23 in the 

parathyroid regulation across the different stages of CKD. 

What clearly emerges from this review is that the intelligent use of the results 

obtained from different but complementary models, exploring the parathyroid function 

with a “bed to the bench” approach, has allowed for a more comprehensive knowledge 

about the parathyroid regulation in CKD which may be soon translated into practical 

measures to improve the daily management of CKD-MBD disorders. 
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HIGHLIGHT BOX 

• Chronic Kidney Disease Mineral and Bone Disorders are very common in 

dialysis patients. They are characterized by combinations of abnormalities in (a) 

calcium, phosphorous, PTH, or vitamin D metabolism; (b) bone turnover, 

mineralization, volume, linear growth or strength; and (c) vascular or other soft 

tissue calcification. 

• PTH is secreted by the parathyroid glands and it is the main responsible for the 

control of calcium homeostasis. 

• PTH regulation involves calcium, calcitriol, phosphorous, and the recently 

discovered phosphaturic hormone FGF23. 

• Other drugs used for the treatment of CKD-MBD, such as calcimimetics and 

aluminum, are also able to suppress PTH levels. 

• Clinical studies have provided important contributions to the knowledge of the 

pathogenesis of secondary hyperparathyroidism and also have allowed to 

identify the cell pathways and mechanisms involved in the progression of the 

disease. 

• Animal models of CKD have been also useful to study the different factors 

involved in the regulation of the PTH; in addition, they have been crucial to 

confirm that phosphorous is one of the main players in PTH regulation. 

• In vitro/ex vivo models have contributed to a better understanding of the 

molecular mechanisms involved in the pathogenesis and progression of 

secondary hyperparathyroidism. 

• The combination of the results obtained from clinical and experimental studies 

has been essential to better understand the parathyroid regulation and the effect 

of the different therapies on CKD-MBD. 
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