PINNULARIA BOREALIS: DISENTANGLING THE EVOLUTIONARY HISTORY OF A TERRESTRIAL DIATOM USING GENETICS, FOSSILS AND ECOPHYSIOLOGICAL DATA.

<u>Caroline Souffreau</u>^{1°}, Pieter Vanormelingen¹, Bart Van de Vijver², Elie Verleyen¹, Koen Sabbe¹ & Wim Vyverman¹

Pinnularia borealis Ehrenberg is a terrestrial diatom, commonly found in moist soils and temporary freshwater habitats all over the world, including the (sub)Antarctic. Given the widespread (pseudo)cryptic species diversity in diatoms and the restricted distribution patterns of many (sub)Antarctic diatoms revealed by dedicated morphological studies, we asked whether Pinnularia borealis is indeed a single species and started reconstructing the evolutionary history of this cosmopolitan diatom. We observed that, unlike freshwater diatoms, resting cells of P. borealis are tolerant for at least short periods of desiccation, suggesting that airborne dispersal is possible which may limit opportunities for allopatric speciation. Nevertheless, molecular phylogenies based on the plastid gene rbcL and the nuclear 28S rDNA (D1-D3 region) revealed that P. borealis consists of multiple lineages, including a distinct continental Antarctic lineage. Ongoing work includes the addition of isolates from the maritime Antarctic and the (sub)Antarctic Marion Island. A molecular clock for Pinnularia estimates the age of P. borealis at 35.8 (30-47) million years (Ma), and the continental Antarctic lineage at 7.8 (2-15) Ma. Compared to the lineages from non-polar regions, the continental Antarctic lineage of P. borealis has a lower optimal growth temperature and upper lethal temperature, indicating niche differentiation. The distinct molecular lineages, the old age of these lineages and the (partial) thermal niche differentiation suggest that long-distance dispersal is not common enough in P. borealis to prevent speciation, despite the desiccation tolerance of the resting cells, and indicate that besides freshwater diatoms, also terrestrial diatoms are not as ubiquitous as previously thought.

¹Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University

²Department of Cryptogamy, National Botanic Garden of Belgium

[°]current address: Aquatic Ecology, Evolution & Conservation, KULeuven