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Abstract  

Outbreaks of the Pacific crown-of-thorns starfish (COTS; Acanthaster cf. solaris) have 

contributed greatly to sustained declines in coral cover on the Great Barrier Reef (GBR) 

throughout the last 50 years. With the intensity and frequency of bleaching and cyclonic 

disturbances predicted to increase, effectively managing these outbreaks may give reefs an 

opportunity to partially recover from these cumulative impacts. Major limitations in 

contemporary control programs of COTS revolve around understanding of the spatial and 

temporal patterns of COTS outbreaks. This research addresses these limitations by constructing 

a spatially explicit COTS-Coral metacommunity model for the GBR between 1996-2017, and 

building several key modelling tools towards this goal. Firstly, the disturbance history (1985-

2017) and abiotic regime were collated for the GBR at a 1x1km resolution as a standardized 

platform to develop regional scale models for the GBR. To synthesise the extensive and 

disparate streams of COTS observational data, an interactive visualisation and analytical 

platform, The COTS Dashboard was developed. This tool, currently being used by the Great 

Barrier Reef Marine Park Authority, allows researchers and managers to assess the severity 

and extent of COTS outbreaks and monitor progress towards stated management goals. Using 

the data collated by the two previous tools, a habitat suitability model for COTS was 

constructed. This model provides the first validated estimates of COTS outbreak probability 

across the GBR, identifying the importance of a variety of water quality, larval connectivity 

and abiotic variables in predicting COTS spatial distribution. Finally, a COTS-Coral 

metacommunity model was built to recreate the trajectories of coral cover and COTS density 

for the last 23 years accounting for major disturbances, water quality and larval connectivity 

variability. This model provides a framework within which future management scenarios for 

COTS outbreaks can be tested. Overall this research aims to provide modelling and data tools 

for researchers and managers to develop the most effective and efficient management of COTS 

outbreaks.
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1 General Introduction 

1.1 Cumulative disturbances on coral reefs 

Coral reefs globally are subject to extensive and sustained degradation (Hughes et al. 2003, 

Pandolfi et al. 2003, Hoegh-Guldberg et al. 2007, Jackson et al. 2012). Reef degradation began 

centuries ago with extensive coastal modification and over-exploitation of large and vulnerable 

species, but has accelerated in recent decades with increasing anthropogenic disturbances and 

compounding effects of environmental change (Pandolfi et al. 2003, De’ath et al. 2012, Jackson 

et al. 2012). Moreover, the condition of reef ecosystems is predicted to worsen in coming 

decades with increasing frequency and severity of dominant stressors (Hoegh-Guldberg 1999, 

Knutson et al. 2010, Rummukainen 2012, Hoegh-Guldberg et al. 2014, Hughes et al. 2017b). 

These stressors not only contribute to elevated mortality of habitat-forming organisms (mainly, 

corals), but undermine the resilience of reef communities. Resilience is  defined herein as the 

capacity of ecological systems to absorb the impact of a disturbance without drastically or 

permanently deviating from the its initial pre-disturbance state (Hughes et al. 2003, 2010, Folke 

et al. 2004). Resilience of coral assemblages is eroded by chronic stressors such as ocean 

warming and acidification, pollution, sedimentation and over-harvesting. Within the context of 

these chronic stressors, discrete periods of coral loss are most commonly attributed to acute 

disturbances such as severe tropical cyclones (Wolff et al. 2016), mass coral bleaching (Hughes 

et al. 2017b), outbreaks of coral disease (Miller et al. 2009b, Bourne et al. 2009) and predation 

from outbreaks of coral predators such as crown-of-thorns starfish (COTS) Acanthaster spp 

(De’ath et al. 2012, Baird et al. 2013). These disturbances can act independently, but commonly 

occur in concert with complex interactive effects (Ban et al. 2014, Vercelloni et al. 2017, 
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MacNeil et al. 2019). For example, on Australia’s Great Barrier Reef (GBR) poor water quality 

increases susceptibility to coral diseases and bleaching (Vega Thurber et al. 2014) and is also 

hypothesised to contribute to the proliferation of outbreaks of COTS (Fabricius et al. 2010, 

Brodie et al. 2017). Therefore, it is of vital importance for the future of coral reefs that we 

better understand the interacting effects of multiple disturbances. Herein, the term “cumulative 

disturbance” is used to encompass both additive (cumulative) and interactive (synergistic) 

effects of disturbance on coral reefs. 

Given the critical and urgent need for effective and innovative coral reef management (Hughes 

et al. 2017a, Bellwood et al. 2019), there has been increased focus on understanding the 

cumulative effect of disturbances and providing modelling frameworks that can adequately 

simulate their effect on coral cover trajectories (Burke and Reytar 2011, Ortiz et al. 2018, 

Mellin et al. 2019a). There has been significant development in these fields, such as cumulative 

impact mapping and assessment (Halpern and Fujita 2013), and the development of 

frameworks for resilience based management (McCook et al. 2010b, Anthony et al. 2015). 

However, the modelling frameworks used to determine the effects of multiple disturbances and 

identify the most resilient reefs are often simply mapping disturbance exposure for reef 

locations and only account for linear responses of ecosystems to stressors (Hughes et al. 

2017a). While these approaches can be useful, temporally explicit modelling frameworks that 

account for non-linear interactions of multiple stressors are essential. Fundamental to this 

approach is the collation and standardization of disturbance and environmental data to promote 

the development of complex regional scale models. Developing such models provides the 

opportunity to identify important disturbances that may be mitigated and simulate the potential 

gains (or reduced losses) that may be achievable through a variety of proposed interventions. 

Although there are many threats to the future of coral reefs, there are few interventions 

available for direct action at a local or regional scale that may stall the decline of reefs to allow 
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reefs to recover from multiple disturbances (Bellwood et al. 2019). Recently, significant effort 

has been directed towards identifying emerging technologies to promote coral reef restoration, 

which are aimed to be combined with existing management strategies such as pest and pollution 

control and no-take areas (van Oppen et al. 2017, Anthony et al. 2017). However, these 

technologies are in their infancy, while scaling and cost remain significant hurdles. As such, 

increasing the efficiency of currently available interventions is a key management goal 

(GBRMPA 2017). Since no management intervention can protect from cyclones, and given 

that mitigating the impact of climate change requires global coordination, most interventions 

on the GBR have been directed towards improving water quality (Kroon et al. 2016), creating 

marine reserves (McCook et al. 2010a) or the manual removal of the dominant coral predator, 

COTS (Westcott et al. 2016, Pratchett and Cumming 2019). The remainder of this introduction 

will focus upon the causes, consequences and management of COTS in the broader context of 

cumulative disturbances to coral reefs. Importantly the following sections will highlight key 

areas in which modelling tools can contribute to the improved management of COTS outbreaks 

with the ultimate goal of enhancing the condition and resilience of coral-dominated habitats. 

1.2 Outbreaks of crown-of-thorns starfish (COTS) 

Outbreaks of the coral-eating crown-of-thorns starfish (COTS, Acanthaster spp.) represent one 

of the most significant causes of coral loss throughout the Indo-Pacific (De’ath et al. 2012, 

Baird et al. 2013). During outbreaks, densities of COTS may reach 151,650 starfish km-1 

(Kayal et al. 2012). The combined feeding activity of high densities of large COTS cause 

extensive and widespread coral loss (Chesher 1969, Kayal et al. 2012). Given that corals are 

essential for maintaining productivity and biodiversity in reef ecosystems (Holbrook et al. 

2000, Jones et al. 2004, Wilson et al. 2006, Pratchett et al. 2008), COTS outbreaks directly 

contribute to the degradation of coral reef ecosystems, jeopardising ecosystem function and 

fisheries production. On Australia’s Great Barrier Reef (GBR), there have been four 
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documented outbreaks of the Pacific species of COTS (Acanthaster cf. solaris) since the 

1960’s, contributing to significant and sustained declines in coral cover (Pratchett et al. 2014). 

Since 1982, the average coral cover at reefs monitored by the Long Term Monitoring Program 

(LTMP) of the Australian Institute of Marine Science has declined by 50% and nearly half of 

this loss was attributed to successive outbreaks of COTS (De’ath et al. 2012).  Unlike other 

causes of coral loss (e.g., tropical cyclones, coral bleaching and disease), outbreaks of COTS 

may be amenable to direct action (Pratchett et al. 2014). Consequently, management strategies 

such as increasing the efficiency of direct control (Rivera-Posada et al. 2014, Fletcher and 

Westcott 2016, Doyle et al. 2017), developing biological controls (Endean 1969, Hall et al. 

2017a), or addressing the anthropogenic disturbances that may initiate or exacerbate outbreaks 

(Kenchington and Kelleher 1992, Brodie and Waterhouse 2012) are the most promising direct 

approaches to halt or reverse declining coral cover on the GBR (Pratchett et al. 2014). However, 

in order to predict and subsequently prevent the spread of future outbreaks and thus protect the 

remaining live coral on the GBR, it is essential to understand the mechanisms driving these 

outbreaks. 

Outbreaks of COTS are generally defined as starfish > 1,500 individuals km-2 (15 individuals 

ha-1 or 0.22 per 2 min manta-tow), which was estimated as the maximum sustainable density 

of starfish for a reef with average coral cover (Moran and De’ath 1992, Pratchett et al. 2014). 

More recent calibration however, has adjusted these thresholds due to lower than previously 

assumed detectability of manta tow to be >4,900 individuals km-2 (49 individuals ha-1 or 0.22 

per 2 min manta-tow) (De’ath 2003). One major school of thought suggests that outbreaks are 

initiated as a result of gradual accumulation of individuals from successive recruitment events, 

known as “primary outbreaks” (Endean 1974, Johnson 1992, Stump 1996, Pratchett 2005a). 

Once these primary outbreaks have established, the increased density of adult starfish 

overcome Allee thresholds and fertilisation is dramatically increased (Rogers et al. 2017). With 
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the combination of increased fertilisation rates and the immense fecundity of the species 

(Conand, 1984; Kettle & Lucas, 1987) it is almost inevitable that the dramatic increase in 

offspring production from a primary outbreak  give rise to a wave of “secondary outbreaks” 

that propagate southwards along the GBR (Endean 1974, Reichelt et al. 1990a).  Secondary 

outbreaks are a logical consequence of large established breeding populations (Pratchett et al. 

2014), and are expected to propagate across the GBR in accordance with predominant 

hydrodynamic flows (Dight et al. 1990a, 1990b, Hock et al. 2014, Thomas et al. 2014). 

Hypotheses accounting for the initiation of outbreaks have largely been concerned with factors 

affecting larval survival (e.g. ‘terrestrial-runoff hypothesis’ (Birkeland 1982)), or post-

settlement survival (e.g. ‘predator removal hypothesis’ (Endean 1969); ‘prey-threshold 

hypothesis’ (Antonelli and Kazarinoff 1984)). However, single factor hypotheses oversimplify 

the complex dynamics of COTS outbreaks (Babcock et al. 2016a) and overlook the 

predisposition of this organism to major fluctuations in abundance due to their immense 

fecundity (Conand 1984, Kettle and Lucas 1987), combined with the capacity for synchronous 

spawning and fertilisation over large distances (Babcock and Mundy 1992, Benzie 1992). 

Moreover, increased eutrophication (from terrestrial runoff) may promote increased larval 

survival, allowing the high reproductive capacity of COTS (Babcock et al. 2016b) to be 

translated to recruitment success. The terrestrial run-off hypothesis (first proposed by 

Birkeland 1982) has been further supported by experimental studies showing that increased 

phytoplankton concentrations (using chlorophyll-a as a proxy) lead to significant increases in 

rates of larval development and survivorship (Fabricius et al. 2010, Wolfe et al. 2015, 2017, 

Pratchett et al. 2017b). Periods of optimal Chl-a concentrations for larval survival (1 µg chl-a 

L-1) are natural background conditions for some inner shelf reefs and represent peak eutrophic 

conditions following storms and floods in the mid and outer-shelf reefs (Wolfe et al. 2015).  

Woolridge and Brodie  (2015) suggested that primary outbreaks are initiated by the 



Modelling tools to support the management of crown-of-thorns starfish (Acanthaster cf. solaris) on Australia’s 
Great Barrier Reef 

6  Matthews - December 2019 

combination of increased Chl-a concentrations and increased larval retention as a result of 

neutral ENSO conditions in the north-Central GBR (Cairns-Lizard Island), an area referred to 

as the “initiation box”. This claim is supported by recent larval connectivity models which 

highlight the formation of isolated clusters at small dispersal distances (<27km) (Kininmonth 

et al. 2010) and also elevated short and long-range connectivity within the “initiation” box 

(Hock et al. 2017).  

The focus of much COTS research on the “terrestrial run-off hypothesis” and extensions 

thereof, whilst providing significant advances to understanding larval survival, has diminished 

the emphasis on developing a more holistic explanation of COTS outbreaks (Pratchett and 

Cumming 2019). The causes of COTS outbreaks are complex and synergistic, requiring the 

alignment of environmental, hydrodynamic and demographic conditions and this complexity 

should be reflected by research priorities. There also remains a significant lack of empirical 

data on some key-life history demographics (e.g. fecundity, fertilisation success, spawning, 

and settlement cues). For our understanding to advance, it is therefore imperative to synthesise 

the extensive time-series field observations of COTS outbreaks with the increasingly accurate 

estimates of environmental thresholds (e.g., Chl-a and temperature), hydrodynamic modelling 

and increasingly available information regarding environmental conditions across the GBR. 

Synthesising these currently disparate aspects of COTS research into a single modelling 

framework may allow for the forecasting and early detection of COTS outbreaks, and 

ultimately the development of more effective mitigation strategies. 

1.3 Modelling COTS Outbreaks 

Increasingly, complex ecological models are being developed to understand species invasions 

and outbreaks of pest species (Elith et al. 2010, De Rivera et al. 2011, Václavík and 

Meentemeyer 2012, Cockrell and Sorte 2013, Mellin et al. 2016b). Below I outline four key, 
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generally independent modelling procedures of increasing complexity used to model range 

expanding species and show how each can act as a building block for a fifth; metapopulation 

modelling framework that will both generate predictions for management of the COTS problem 

and provide a novel template for modelling range-expanding marine species modelling.  

1.3.1 Species Distribution Modelling (SDM) 

Species distribution models (i.e. SDM; a.k.a. ecological niche or habitat suitability models) 

describe or predict the probability of presence of a species, or patterns of its abundance, across 

environmental gradients or in a specific geographical area (Pearman et al. 2008, Peterson et al. 

2011). SDM is essentially a correlative technique that fits a statistical relationship between 

observations and predictor variables (usually environmental conditions). Such models can be 

useful as a first step towards identifying newly suitable habitats.  For example, in response to 

warming temperatures, invasive species could expand once dispersal barriers are breached (De 

Rivera et al. 2011, Araújo and Peterson 2012, Jones et al. 2013). SDM only require 

geographically referenced presence/absence/abundance observations and associated 

environmental data to derive predicted distributions. These models are constrained by the 

underlying assumption that species occurrences accurately portray the range of suitable 

environments that the species is at equilibrium with (Thuiller 2005, Elith et al. 2010, Václavík 

and Meentemeyer 2012). This assumption, however, is often violated for range-expanding 

species as their range changes over time (Elith et al. 2010). Additionally, many SDMs rely 

solely on presence data as true absence data are missing and thus an assumed pseudo-absence 

matrix must be generated (Graham et al. 2004, Ferrier and Guisan 2006). For COTS however, 

these limitations are somewhat alleviated by the fact that outbreaks occur within their native 

range and that both presence and absence data are available.  Although substantial 

observational and environmental data exists, there has not yet been an attempt to model COTS 

spatial distribution and determine its drivers. 
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1.3.2 Biophysical/Mechanistic Modelling 

Mechanistic models (a.k.a. biophysical models) rely on species physiological tolerance limits 

and, in doing so, enable the modelling of species distributions across environmental gradients 

without using species distributions per se (Kearney and Porter 2009). Biophysical models tend 

to yield more robust predictions than SDM because they explicitly account for the relationships 

between environmental conditions and organismal performance, irrespective of a species’ 

current distribution that can sometimes misrepresent its potential range due to e.g. depletion 

from harvesting (Buckley et al. 2010). Therefore, biophysical models are particularly useful 

when a species’ distribution is not at equilibrium, or determined by a particular physiological 

response (Buckley et al. 2010). Such biophysical models are increasingly used to model range 

dynamics in response to climate change (Kearney et al. 2010, Cheung et al. 2011) or seasonal 

temperature gradients (Monahan 2009), and the use of such models is particularly promising 

when data are sufficient to couple them with SDMs to improve predictions (Elith et al. 2010, 

Fordham et al. 2013). As mentioned previously, the extensive work done on COTS larval 

development and survivorship offers the opportunity to create a coupled mechanistic-SDM that 

could overcome some of the difficulties associated with modelling outbreaking species. 

1.3.3 Larval Connectivity Modelling 

Larval dispersal/connectivity models are built upon underlying hydrodynamic 

models/empirical data for a given area, and can be interrogated to determine probabilities of 

larval dispersal between nodes of a network (Condie et al. 2012, Thomas et al. 2014, Hock et 

al. 2017). The advantage of this approach is that it explicitly deals with the potential for external 

sources and sinks, and they are particularly useful for modelling invertebrate species where 

populations are easily surveyed and migration is largely limited to a pelagic larval stage 

(Robinson et al. 2011). Larval connectivity models were first developed for COTS on the GBR 

in the late 1980s (Dight et al. 1990a, 1990b), however, recent advances in high resolution 
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hydrodynamic modelling in the GBR (Herzfeld & Waring, 2006; Condie et al., 2012; Thomas 

et al., 2014) has increased the feasibility of accurately modelling dispersal events within this 

complex system. Indeed, some network analyses have already confirmed the importance of the 

“initiation box” as a source of larvae for downstream outbreaks, and have been used to predict 

the likelihood of outbreaks (Hock et al. 2014, 2017). These efforts, however, do not take into 

account habitat suitability for COTS, and are built solely upon the maximum potential larval 

connectivity between reefs. An important extension of these models is to incorporate the 

extensive COTS observation and environmental data to predict reefs most likely to experience 

COTS outbreaks and to validate these predictions 

1.3.4 Demographic Population Modelling 

Demographic models that explicitly account for species vital rates (e.g. births, mortality, 

fecundity) and stage-specific growth rates are being increasingly used to model invasive or 

outbreaking species (Fordham et al. 2013). Demographic models overcome some limitations 

of SDM as they can incorporate dispersal as well as vital rates that can vary over space and 

time (Mellin et al. 2016b). Demographic models can be either population-based, accounting 

for population-level parameters such as survival and fertility rates and dispersal kernels, or 

individual-based, accounting for individual parameters such as body size, sex, behaviour 

(Mellin et al. 2016). For COTS some studies have developed age-structured population models, 

however they generally estimate vital rates from the model (Mccallum 1990, Morello et al. 

2014), even though there are data available on  growth rates of juvenile and adult COTS (Lucas 

1984, Caballes and Pratchett 2014, Wilmes et al. 2016), as well as size-dependent fecundity 

(Kettle and Lucas 1987, Babcock et al. 2016b). These studies provide a solid foundation for 

further developing stage based demographic models, with a number of independent (and 

calibrated) datasets (MacNeil et al. 2016) available for use in the validation process. Most 

importantly however, recent advances in the development and usage of statistical software 
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(such as R) allow the synthesis of other important factors for invasive species such as landscape 

dynamics, habitat suitability and dispersal/connectivity into a spatially explicit metapopulation 

framework (Lurgi et al. 2015). 

1.3.5 Metapopulation and Metacommunity Modelling 

A metapopulation is a “population of populations” (Levins 1969), a set of individual 

populations linked by source-sink dynamics (as estimated through larval connectivity 

modelling) and separated by unsuitable habitat (species distribution modelling). A 

metacommunity model, however represents a set of set of local communities that are linked by 

dispersal (Holyoak et al. 2005). A metacommunity model for COTS therefore, coalesces the 

outputs of the aforementioned modelling techniques with spatially explicit coral growth and 

disturbance to provide predictions representing a more comprehensive explanation of the 

complex ecological relationships than is possible using other methodologies. Metapopulation 

models have already been developed for COTS (Mccallum 1990, Scandol 1999), but do not 

account for spatially explicit coral growth, disturbance and recovery as in a metacommunity 

framework and were built using low-resolution hydrodynamic models that cannot accurately 

recreate near-shore processes.  Condie et al. (2018) advanced these approaches by 

incorporating coral growth and recovery from cumulative disturbances and management 

simulations, however this approach is currently not spatially explicit. Recent advances in both 

larval connectivity modelling on the GBR (Condie et al. 2012, Hock et al. 2014) as well as the 

development of disturbance datasets (Matthews et al. 2019) and coral growth models (MacNeil 

et al. 2019, Mellin et al. 2019a), allow for a more accurate spatially explicit metacommunity 

model to be developed for COTS on the GBR.  
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1.3.6 Crown-of-thorns modelling 

Previous modelling studies have tackled the COTS problem with varying levels of detail, 

drawing from a vast range of empirical and simulated data. However, there has not yet been 

any attempt to combine all of the best available data into a modelling framework that takes 

advantage of the computational and statistical advances of the last decade. Metapopulation 

models created in the 1990’s (Scandol and James 1992, Scandol 1999) were underpinned by 

the hydrodynamic models of Dight et al. (1990a), which have now been surpassed in spatial 

resolution (~10km vs ~0.25-4km) (Herzfeld and Waring 2006, Condie et al. 2012, Thomas et 

al. 2014). Furthermore, due to computational limitations, a number of important biological 

processes (namely coral growth and recovery after an outbreak) were oversimplified within 

these models. Morello et al. (2014) developed a model which incorporated trophic interactions 

as a mechanism for controlling COTS populations, focusing on the empirical data from Lizard 

Island. Aside from its limited spatial extent, this model only successfully recreated historical 

outbreaks when recruitment rates were artificially manipulated. The initiation of outbreaks 

within the “initiation box” was modelled mechanistically by Wooldridge and Brodie (2015) 

who combined simulated nutrient loads and hydrodynamic connectivity with empirical 

historical records of COTS outbreaks to highlight the coincidence of outbreaks following peak 

nutrient loading on strong local clustering of reefs during neutral ENSO conditions. This 

mechanistic approach, whilst explaining convincingly the initiation mechanism does not 

provide a framework to simulate COTS outbreak probabilities under a variety of scenarios or 

determine best management practices to control these outbreaks. There is a need to develop a 

metacommunity model framework that will combine the most up to date empirical and 

simulated data, building upon knowledge gained from recent mechanistic (Wooldridge and 

Brodie 2015), connectivity (Hock et al. 2014) demographic (Morello et al. 2014) and 

metacommunity models using simulated reef locations (Condie et al. 2018). This framework 

should extend the temporal and spatial scope of recent models whilst incorporating relevant 
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biological processes with finer spatial resolution to provide the most accurate information to 

managers of COTS outbreaks. 

1.4 Management of COTS on the Great Barrier Reef 

Widespread support for management intervention followed the first global reports of COTS 

outbreaks (Westcott et al. 2016) such as in the Ryukyu Archipelago in Japan in 1957 

(Yamaguchi 1986), in Guam (1967) and Palau (1969) and on the GBR near Green Island in 

1962 (Endean 1969, 1982). Although the question of whether COTS outbreaks represent a 

natural phenomenon remains largely unresolved (Dana and Wolfson 1970, Vine 1973, Uthicke 

et al. 2009, Pratchett et al. 2017a), the priority for managers has transformed into whether the 

threat to corals and in particular the GBR are sufficient to elicit direct intervention (Westcott 

et al. 2016). Indeed, most research throughout the 1980’s and 1990’s focused on the organism 

itself, and the processes underpinning outbreaks. While the efficacy of control efforts and best 

practices remain in doubt (Pratchett et al. 2017a, Pratchett and Cumming 2019), recent 

understanding of the interactions between COTS and other disturbances to coral reefs 

(Vercelloni et al. 2017, Ortiz et al. 2018, MacNeil et al. 2019, Mellin et al. 2019a), have 

highlighted the urgency of action. While tropical cyclones, bleaching events, outbreaks of 

COTS, and poor water quality act cumulatively to reduce coral cover, it is outbreaks of COTS 

that are most amenable to direct management actions at the reef scale (Pratchett et al. 2014). 

Control programs of COTS began as early as 1962 on the GBR, in an immediate response to 

the first documented outbreak at Green Island. Despite the initial success observed, control 

programs were soon overwhelmed, presumably from increasing propagule pressure from 

outbreaks on surrounding yet unmonitored reefs (Kenchington 1978). Initial failures and 

ineffective time intensive control methodologies (cut up in situ, removed and buried onshore) 

led to the widespread belief that COTS control was best focused on small sites with tourism 

value (Walsh et al. 1971, Westcott et al. 2016). However in recent years the development of 

single-shot lethal injections using bile salts (Rivera-Posada et al. 2011, 2014) and more recently 

household vinegar (Boström-Einarsson and Rivera-Posada 2016), has dramatically improved 
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the effectiveness of manual control (Pratchett et al. 2018), increasing the potential for an 

effective control program. 

Following the development of the lethal injection there has been a concerted effort to improve 

the strategic allocation of COTS control resources (Fletcher and Westcott 2016, Westcott et al. 

2016). The Great Barrier Reef Marine Park Authority (GBRMPA) began funding a dedicated 

COTS Control Program from 2012, operating 1-2 vessels and focused mostly on reefs with 

high tourism value between Lizard Island and Cairns (GBRMPA 2018a). However, the 

development of an integrated pest management approach to COTS control has aimed to 

increase the strategic allocation of current and increasing effort for the benefit of the entire reef 

ecosystem (Fletcher and Westcott 2016). With increased funding from 2018 to support five 

vessels across a greater extent of the GBR, a greater impetus has been put on identifying reefs 

where COTS control may have the greatest regional impact (Fletcher and Westcott 2016, 

GBRMPA 2017). Larval connectivity models developed for both COTS and corals have aimed 

to identify reefs that are disproportionately responsible for the spread of secondary outbreaks, 

and those which may effectively spread coral larvae and promote recovery and resilience at a 

regional scale (Hock et al. 2014, 2016, 2017). The combination of improved manual control 

technologies, combined with the development and implementation of reef-level and regional-

level strategic planning has reinvigorated the research and management communities to attempt 

broad scale COTS control in a bid to buy more time for coral reefs on the GBR. 

Alongside improvements to the contemporary control techniques for COTS, a number of 

emerging technologies may prove pivotal in the early detection and increased efficiency of 

control in the next wave of outbreaks. Foremost of these advances has been the development 

of eDNA larval detection methods to identify the presence of COTS larvae in seawater samples 

(Doyle et al. 2017). While initial trials were restricted to indicating simply a presence or 

absence, there is scope that this technology may be able provide a relative estimate of larval 

abundance (Uthicke et al. 2018). Clearly, methods such as these provide a realistic opportunity 

to identify the build-up of COTS preceding a primary outbreak and thus trigger the ramping up 

of manual control activities, to attempt to suppress or limit the spread of secondary outbreaks. 
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Additionally, larval monitoring could be conducted on reefs identified as important source reefs 

to allow the COTS control program to divert control resources in an effort to quickly suppress 

secondary outbreaks on disproportionately important reefs within the network. Furthermore, 

automated underwater vehicles (Dayoub et al. 2015, Llewellyn and Bainbridge 2015) may be 

used to provide more extensive monitoring for COTS (and potentially larvae) augmenting the 

capabilities of the control program fleet. Another potentially important development is the 

identification of COTS pheromones involved in both predator response cues and aggregatory 

behaviour (Beach et al. 1975, Miller 1989, Hall et al. 2017a, 2017b). In the context of COTS 

control, predator alarm cues could potentially be spread across a reef to disrupt spawning and 

feeding behaviour, while aggregation cues could be used to essentially create a ‘trap’ for 

COTS, further increasing the efficiency of manual control, particularly for the more cryptic 

sub-adult life stages of COTS.   

Although significant progress has been made in understanding and managing COTS outbreaks, 

especially on the GBR (Pratchett et al. 2017a), there is room for improvement, particularly with 

regards to the analysis and simulation of COTS populations over space and time. Primarily 

there is a need for the development of datasets that collate existing disturbance history and 

environmental variables, to provide a platform to model COTS outbreaks within the broader 

context of cumulative disturbances on the GBR. Secondly, extensive ecological data have been 

collected by the COTS control program and various organisations, and there is a need for tools 

that synthesises and help visualize these data. Such tools could provide managers with more 

timely feedback on the severity and extent of COTS outbreaks across the GBR and provide 

essential information on the progress towards stated management goals and the implementation 

of the integrated pest management process. Thirdly, while there have been many hypotheses 

put forward to explain the initiation and spread of COTS outbreaks, there has yet to be a study 

that compares the relative support of these hypotheses using empirical data and provide 

predictions of unmonitored reefs most likely to experience COTS outbreaks. Finally, with the 

focus of COTS control shifting towards the next major outbreak, and the emergence of new 

technologies to help control efforts, modelling frameworks that can simulate the initiation and 
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spread of COTS populations are needed to prioritise control efforts for the next wave of COTS 

outbreaks. 

1.5 Thesis Outline 

The overarching aim of this thesis is to develop effective modelling and management tools to 

aid in the efforts to control (or contain) COTS populations, and thereby improve the resilience 

of coral populations on the GBR. Research is developing rapidly with regards to both the 

understanding of COTS biology and behaviour, but also methods with which to more 

accurately model populations of COTS. While numerous studies have attempted to explain the 

causes and consequences of COTS outbreaks on the GBR, there still has yet to be developed a 

modelling approach that incorporates many of the contributing factors in a temporally and 

spatially explicit manner and places it within the context of cumulative disturbances. This 

thesis aims to build the modelling platform in which to achieve these goals through creation of 

a COTS-Coral metapopulation model for the GBR and documents the independent tools 

created along the way to aid in the effective management of COTS on the GBR. 

Chapter 2 collates existing datasets to create a near complete disturbance history and abiotic 

characterization for reef locations across the GBR. The reasoning behind this chapter is to 

provide a standardized framework upon which more complex regional scale models can be 

developed to limit the recreation of similar datasets by different groups of scientists. Most 

importantly, Chapter two promotes the building of models that account for cumulative 

disturbances across time and space, whilst being placed in the broader context of a reef’s abiotic 

environment. This data collection provides annual estimates between 1985-2017 for exposure 

to damaging cyclonic waves (Puotinen et al. 2016), exposure to thermal stress (Degree Heating 

Weeks, https://coralreefwatch.noaa.gov/satellite/bleaching5km/index.php), interpolated 

estimates of COTS density (Sweatman et al. 2008) and bleaching severity from three major 

bleaching events on the GBR (1998, 2002, 2016) (Berkelmans et al. 2004, Hughes et al. 2018b). 

Additionally, the dataset includes a mean and seasonal range estimates for environmental 

variables (Huang et al. 2013) as well as satellite derived relative exposure to flood plumes as a 
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useful proxy indicators of water quality (Devlin et al. 2012a, Alvarez-Romero et al. 2013). This 

chapter provides the foundation for modelling described in Chapters 4-6 and provides reef 

researchers with a standardised approach to building regional scale models for the GBR, which 

has already been implemented by recent modelling of coral growth disturbance and resilience 

on the GBR (MacNeil et al. 2019, Mellin et al. 2019). 

Chapter 3 develops a data synthesis and visualisation platform, essential to the expanding 

COTS control and monitoring activities. This data tool is built within the rapidly developing 

Business Intelligence (BI) software Power BI, and aims to leverage the advances of business 

software for conservation purposes. Specifically, The COTS Dashboard provides reef 

managers with up-to-date information regarding the severity and extent of COTS outbreaks 

across the GBR, progress towards reaching management goals on reefs prioritised for action 

and information on how integrated pest management practices are being implemented. As the 

COTS Control program has expanded 3-fold since 2018, synthesis tools such as this are integral 

for the COTS control program to embed data-driven decision making into each stage of the 

process. More broadly, the COTS Dashboard provides an example of the utility of applying 

powerful BI software to synthesise complex spatial and temporal data. This approach has the 

potential to be applied in much broader conservation contexts, as part of a well-developed 

adaptive management strategy. 

Chapter 4 aims to create a species distribution model for COTS in order to both evaluate the 

relative support given to competing hypotheses for the spatial distribution of COTS and create 

the first validated reef level predictions for outbreak probability. This Chapter uses the 

disturbance and environmental dataset developed in Chapter 2 as candidate predictor variables 

and the COTS observation data synthesised in Chapter 3 as response variables. Models of 

species distribution are built using both boosted regression trees (De’ath 2007, Elith et al. 2008) 

and generalised additive models (Fisher et al. 2018) to identify the most influential predictors 

of COTS distributions. Importantly, a number of variables are derived from larval connectivity 

networks, and used to account for spatial autocorrelation, making predictions more closely 

linked to the oceanographic processes that drive COTS spatial distribution (Hock et al. 2014). 
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Predictions are validated against independent data collected by the Australian Institute of 

Marine Science’s Long Term Monitoring Program (AIMS LTMP) (Sweatman et al. 2008), 

providing the first GBR predictions of COTS spatial distribution. Importantly, these models 

are a useful platform for COTS management that could be automated to leverage the extensive 

observation data being collected by the COTS Control Program and provide up-to-date 

predictions of COTS distributions for additional locations that have not been explicitly 

surveyed. This approach could help refine prioritisation procedures by filling in gaps regarding 

the current distribution of COTS across the GBR. 

Chapter 5 investigates the spatial resilience of coral populations across the GBR by developing 

a spatially explicit model of coral growth and disturbance, built upon the same 1x1km grid 

used in Chapter 2. This chapter builds upon MacNeil et al’s (2019) Gompertz based model of 

coral growth and disturbance that was derived for 47 reefs across the GBR monitored by the 

AIMS LTMP. This model estimates growth rates for each of these reefs and the effect size of 

each disturbance (cyclones, bleaching, disease, COTS). This chapter uses multivariate 

regression trees to characterise the benthic community type for each of the sampled locations 

using the abiotic component of the data collated in Chapter 2 and then predicts out to unsampled 

locations. Similarly, the initial (1996) and maximal coral cover for each surveyed reef is 

modelled using a boosted regression tree approach to define the environmental drivers of these 

two variables, before predicting out to the rest of the GBR. A yearly coral growth model was 

then calibrated to AIMS LTMP data using the disturbance history collated in Chapter 2 to 

recreate the trajectory of coral cover across the GBR between 1996-2017 at a 1x1km resolution. 

This model identifies both the major causes of coral decline and regions of the reef that have 

to date been the most resilient to disturbance. Importantly this model provides a foundation 

upon which to build a COTS-Coral metapopulation model to simulate the initiation and spread 

of COTS populations in order to simulate a range of potential interventions. 

Chapter 6 builds upon the knowledge and modelling frameworks developed in the preceding 

chapters to develop a spatially explicit metacommunity model for COTS-Coral across the 

GBR. This model aims to incorporate the extensive research that has gone into understanding 
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COTS outbreaks (Pratchett et al. 2014, 2017a). This stage-based model explicitly models larval 

survival rates based on nutrient conditions estimated across the GBR (CSIRO 2019), larval 

dispersal via estimated connectivity networks (Hock et al. 2017) and  fertilisation by density 

and Allee effects (Rogers et al. 2017). Importantly ratio-dependent mortality and fecundity 

responses are used to incorporate important biotic interactions between COTS and their coral 

prey (Mellin et al. 2016b). This model was validated against the extensive AIMS LTMP 

dataset, and provides independent estimates of uncertainty for each reef sector and cross shelf 

location. Importantly, once calibrated, this model provides a platform for simulating a variety 

of COTS control strategies proposed for the next outbreak cycle and investigating their 

potential effects. This model will prove a useful tool for COTS management to help allocate 

the strategic deployment of limited resources in both the current outbreak and future outbreaks. 

Chapter 7 is a general discussion, providing an overview of the major finding of the thesis. 

This chapter evaluates the significance and management implications of this research and 

highlights key further research to be undertaken to further improve the understanding of COTS 

outbreaks and refine best management practices.  

Finally, three publications are attached as appendices to this thesis.  These publications 

represent additional research related to COTS outbreaks and coral growth modelling in which 

I was involved during the course of my PhD. Appendix 1 focuses on modelling growth rates 

of COTS juveniles, for which I helped develop and analyse the models and reviewing drafts of 

the paper. Appendix 2 focuses on the theoretical importance of including biotic interactions 

when modelling species distributions using COTS-Coral as the case study. For this article, I 

helped synthesise literature for the framing of the research as well as reviewing drafts for 

submission. Finally, Appendix 3 developed the coral growth model which was used to further 

develop the Coral-COTS metacommunity model of Chapters 5 and 6. My contribution to this 

research was to collate the disturbance data and environmental data necessary to estimate effect 

sizes of different disturbances and to review drafts of the publication. 
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2 High-resolution characterization of the 

abiotic environment and disturbance regimes 

on the Great Barrier Reef, 1985–2017 

2.1 Abstract 

This data compilation synthesizes 36 static environmental and spatial variables, and temporally 

explicit modelled estimates of three major disturbances to coral cover on the Great Barrier Reef 

(GBR): (i) coral bleaching, (ii) tropical cyclones, and (iii) outbreaks of the coral-eating crown-

of-thorns starfish, Acanthaster cf. solaris. Data are provided on a standardized grid (0.01° × 

0.01° ~ 1km × 1km) for reef locations along the GBR, containing 15,928 pixels and excluding 

the northernmost sections (< 12°S) where empirical data were sparse. This compilation 

provides a consistent and high-resolution characterisation of the abiotic environment and 

disturbance regimes for GBR reef locations at a fine spatial scale to be used in the development 

of complex ecosystem models. Static estimates of environmental variables (e.g. depth, bed 

shear stress, average temperature, temperature variation) originally developed by the 

Commonwealth of Australia’s Environment Research Facility (CERF) Marine Biodiversity 

Hub (http://www.marinehub.org/) were provided by Geoscience Australia (Huang et al. 2010). 

Annual (1985-2017) disturbance estimates were either interpolated from empirical data (A. cf. 

solaris), predicted from proxy indicators (e.g. Degree Heating Weeks (DHW) as a proxy for 

bleaching severity), or explicitly modelled (e.g. wave height model for each cyclone). This 

dataset synthesizes some of the most recent advances in remote sensing and modelling of 

environmental conditions on the GBR; yet it is not exhaustive and we highlight areas that 

should be expanded through future research. The characterization of abiotic and disturbance 

regimes presented here represent an essential tool for the development of complex regional 
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scale models of the GBR; preventing redundancy between working groups and promoting 

collaboration, innovation and consistency. 

2.2 Introduction 

Over the past three decades, coral cover on the GBR has been steadily declining (Sweatman et 

al. 2011, De’ath et al. 2012) and there is a need to understand (i) when and where reefs have 

been affected by disturbance; (ii) the magnitude of these disturbances; and (iii) how reefs are 

likely to respond to future disturbance. Although there has been extensive long-term 

monitoring of the GBR since 1983 (Sweatman et al. 2008), the sheer scale of the GBR, with 

~3,000 individual reefs stretching ~2,300km (GBRMPA 2018b), renders comprehensive reef 

monitoring impossible. It is therefore imperative that researchers develop data tools and models 

to fill in the gaps to augment our understanding of the system, by incorporating large datasets 

into complex yet realistic models. There have been significant developments of regional-scale 

models for the GBR, especially in terms of hydrodynamic modelling providing estimates of 

larval connectivity (Condie et al. 2012, Hock et al. 2014) and a vast array of bio-geophysical 

parameters (Chen et al. 2011, CSIRO 2019). There have also been a number of studies 

characterizing disturbance regimes on the GBR (De’ath et al. 2012, Maynard et al. 2016), yet 

these are yet to be consolidated into a dataset and made accessible to reef researchers in a truly 

transparent manner, promoting consistency among the multiple ecosystem models developed 

at a regional scale. The lack of such data repository currently represents a significant obstacle 

for the advancement of ecological modelling and innovative conservation planning, which are 

of increasing importance due to the predicted impacts of climate change on the GBR (Van 

Hooidonk et al. 2016, Wolff et al. 2018).  

Here, we provide a compilation of static environmental and spatial variables as well as annual 

disturbance layers on the same 0.01°-resolution grid across the GBR. These variables have 

been used successfully to predict fish diversity (Mellin et al. 2010a) and spatial turnover 

(Mellin et al. 2014), and other inter-reef species richness and abundance on the GBR (Sutcliffe 

et al. 2014). These data were also used to assess the potential for model transferability to predict 
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species richness in data-poor locations (Sequeira et al. 2016). These studies highlight the utility 

of these types of environmental and relative spatial variables as proxy indicators for complex, 

and difficult to estimate, environmental processes. Such datasets allow researchers to 

extrapolate diversity patterns and thereby gain statistical and ecological insight into complex 

and large-scale ecological systems that until recently could only be analysed theoretically or 

through comprehensive sampling. 

In addition to static environmental and spatial variables, this dataset provides annual layers of 

disturbance severity for three major sources of disturbance on the GBR, namely (i) coral 

bleaching, (ii) tropical cyclones, and (iii) outbreaks of the coral-eating A. cf. solaris. The 

disturbance layers are presented on the same 0.01°-resolution grid and summarise the annual 

exposure to each type of disturbance. Heat stress exposure, linked to coral bleaching, is 

modelled from satellite data using the established Degree Heating Week metric (DHW) (Eakin 

et al. 2010, Liu et al. 2014, 2017), and complemented with interpolated values from previously-

published aerial bleaching surveys (Berkelmans et al. 2004). Whilst exposure to cyclone 

activity is to some extent captured by the static variable as cyclone induced bed sheer stress 

(Table S 9.2; GMCS_STRESS), explicit annual estimates of cyclone exposure are also 

included in this dataset. Annual cyclone exposure is modelled as cumulative hours exposed to 

potentially damaging waves (>4m) generated by tropical cyclones (Puotinen et al. 2016). 

Finally, densities of A. cf. solaris, originally recorded as number of individuals per sampling 

unit (manta tow) are drawn from the extensive Long Term Monitoring Program (LTMP) of the 

Australian Institute of Marine Science (AIMS) (Sweatman et al. 2008). These temporally and 

spatially explicit disturbance data are designed to be used either alone or in conjunction with 

the environmental and spatial variables, to understand complex ecological problems such as 

distribution patterns, benthic community assemblages, bioregional classification and predicting 

growth and recovery rates of coral communities.  

While the main objective of this dataset is for environmental, spatial and disturbance data to 

be more readily available and user-friendly for marine ecologists and managers, it is also useful 

to highlight knowledge gaps, such as our limited understanding of A. cf. solaris population 
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densities in time and space (MacNeil et al. 2016). This will guide future research and encourage 

contributions to the expansion and/or improvement of this dataset. Furthermore, it provides a 

temporal benchmark against which future progress or alternative models of disturbance 

estimates can be compared and improved upon. The release of this dataset aims to motivate 

further and more standardised implementation of regional-scale models of complex ecological 

processes on the GBR. 

2.3 Data Collation Methods 

Environmental and disturbance data were compiled for all inshore, mid-shelf and outer reefs 

along much of the length of the GBR, excluding the northernmost sections (< 12°S) where 

empirical data were sparse. The GBR was split into a total of 15,928 grid cells of 0.01° 

resolution (Figure S2) that contained reef habitats. The bioregion classification made by the 

Great Barrier Reef Marine Park Authority (GBRMPA), the cross-shelf location (inner, middle 

or outer shelf), and latitudinal sector defined by the Australian Institute of Marine Science’s 

(AIMS) Long Term Monitoring Program (LTMP) were identified for each grid cell (Figure 

2.1). 

Environmental data were obtained from the Commonwealth of Australia’s Environment 

Research Facility (CERF) Marine Biodiversity Hub (http://www.marinehub.org/). Disturbance 

data were sampled from satellite data and aerial surveys (Bleaching), modelled from storm 

wave models (Cyclones) or interpolated from empirical observations (A. cf. solaris). 

Environmental variables are given as a single static estimate (i.e. long-term average), whilst 

yearly estimates of disturbance exposure (1985-2017) are presented for the three sources of 

disturbances. 
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Figure 2.1 Marine Bioregions (colours) classifications defined by the Great Barrier Reef Marine Park Authority 
(GBRMPA), GBRMPA management areas (large latitudinal boundaries, e.g. Southern) and latitudinal sectors 
(smaller latitudinal boundaries, e.g. Swains (SW)) of the GBR surveyed as part of AIMS Long Term Monitoring 
Program. 
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2.3.1 Environmental and spatial data 

The set of 30 environmental variables were collated nationally at a scale of 0.01° resolution 

(15,928 grid cells across GBR reef locations) by the Commonwealth of Australia’s 

Environment Research Facility (CERF) Marine Biodiversity Hub 

(http://www.marinehub.org/). Environmental variables include long term average (1960-2006) 

and seasonal ranges of temperature and salinity as well as nitrate, oxygen, phosphate, and 

silicate concentrations. Averages (1997-2009) and seasonal variation are also provided for 

indices of ocean productivity (e.g., chlorophyll-a concentration); light attenuation (K490); 

benthic irradiance; and the strength and frequency of the combined wave–current bed shear 

stress. Bathymetric estimates (depth, aspect and slope) are single estimates derived from a 

0.00025° grid developed by combining ship-track, swath and satellite data from 1963-2009. 

Sediment composition (mud, gravel, sand and carbonates) are interpolated from samples 

collected between 1960-2009. The variables provided were collated due to their importance as 

drivers of coral reef community structure (Pitcher et al. 2007) (see Table S 9.2 and data 

limitations for further details). In addition, spatial variables including the shortest distances to 

the coast and to the barrier reef were calculated for each grid cell of the GBR (using great-

circle distance, i.e., the shortest distance between two points on the surface of the earth). 

Furthermore, we define the relative frequency of exposure to primary, secondary and tertiary 

flood plumes, representing turbid, sediment dominated plumes, chlorophyll dominated plumes, 

and the outer extent of plumes (as delineated by salinity less than 34ppt), respectively. These 

plume data were collated from remote sensing observations between 2007-2013 and are 

provided as a single estimate per grid cell. These data  have been used as useful indicators of 

water quality including turbidity, productivity and plume extent (Devlin et al. 2012, Álvarez-

Romero et al. 2013). Within this 0.01° resolution grid, reefs (as polygons) were categorised 

using the marine bioregion classification from the Great Barrier Marine Park Authority 

(GBRMPA) (Fig. S6), excluding any non-reef locations (e.g. cays, islands, mangroves).  
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2.3.2 Disturbance data 

Spatial layers of disturbance exposure for each year during the study period (1985-2017) were 

compiled at a 0.01° resolution for coral bleaching, cyclones and A. cf. solaris outbreaks, 

representing the current state of knowledge regarding disturbance extent and severity on the 

GBR (Figure 2.2).   

Heat stress exposure, which has been linked to coral bleaching, is presented as the annual 

maximum Degree Heating Weeks (DHW) (Figure 2.3). Satellite sea-surface temperature data 

from the National Oceanic and Atmospheric Administration (NOAA) CoralTemp dataset 

(https:/coralreefwatch.noaa.gov/satellite/coraltemp.php) at 0.05° (~5 km) resolution were used 

to calculate DHW values for 1985-2017. DHW values were determined using the standard 

Coral Reef Watch methodology (Liu et al. 2014, 2017). Data at 0.05° resolution were 

resampled using the nearest neighbour approach (assigning values from the nearest pixel) 

(Burrough 1986) to the nominal 0.01° grid. While there remains variation in bleaching response 

and subsequent mortality across reef sites of different composition and other environmental 

conditions, the use of the DHW algorithm in general has been successfully validated against 

empirical observation of bleaching events (Eakin et al. 2010, Heron et al. 2016, Hughes et al. 

2017b). Additionally, this most recent version of the NOAA Coral Reef Watch DHW metric 

(Version 3, https://coralreefwatch.noaa.gov/satellite/bleaching5km/index.php) has been used 

to explain spatial patterns of mortality along the GBR following the 2016 bleaching event 

(Hughes et al. 2018a). Complementing these annual remote sensing data, extensive aerial 

surveys from the 1998, 2002 and 2016 bleaching events (Berkelmans et al. 2004, Hughes et al. 

2018b) were interpolated (inverse distance weighted) to provide regional scale estimates of 

bleaching impact for these three extreme events. Categories used were as follows: 0 (<1% 

bleached), 1 (1–10% bleached), 2 (10–30% bleached), 3 (30–60% bleached), and 4 (>60% 
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bleached). Code and data to reproduce interpolation can be found at 

https://github.com/sammatthews990/GBRdata.  

Cyclone exposure is presented as exposure to potentially damaging cyclonic seas (in hours per 

grid cell), where the highest one-third of waves were on average 4m or higher (4MW). The 

4MW model developed by Puotinen et al. (2016) reconstructs the spatial distribution of cyclone 

winds of a range of speeds every hour for each of the 46 tropical cyclones that crossed the GBR 

during 1985-2016 at a spatial resolution of 0.04°. From this, the model calculates the duration 

of winds of various speeds for each cyclone, and together with estimates of fetch approximates 

the number of hours each location was potentially exposed to the a priori defined ‘damaging’ 

sea state. Testing with field data from seven cyclones on the GBR showed that the 4MW index 

outperformed previous methods for predicting a spatial zone beyond which severe cyclone 

damage does not occur even though damage within the zone is patchy (Puotinen et al. 2016). 

Data at 0.04° resolution were resampled using the nearest neighbour approach to the nominal 

0.01° grid. Exposure to damaging seas from each of 46 cyclones were summed across the 0.01° 

to give a total yearly exposure to damaging waves. Data from cyclone Debbie, which crossed 

the GBR in 2017, is still being compiled and will be added to the dataset once the data becomes 

available. 
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 1 

Figure 2.2 Maps of annual disturbance severity for tropical cyclones, outbreaks of the crown-of-thorns starfish (COTS) and coral bleaching, and predicted coral cover across 2 
the Great Barrier Reef. Shown are the number of hours of destructive waves generated by tropical cyclones (row 1); COTS mean density, with densities above 1 corresponding 3 
to active outbreaks (row 2), the percent coral cover bleached based on aerial surveys (row 3) and resulting predictions of coral cover generated by the model (row 4). 4 
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Figure 2.3 Annual maximum heat stress exposure measured as Degree Heating Weeks (DHW) for 2016, 
exemplifying the spatial resolution and extent of the dataset. 

 

Annual estimates of mean A. cf. solaris densities were also generated by inverse distance 

weighting (maximum distance = 1°; minimum observations = 3) from the manta tow data 
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collected by the AIMS LTMP for every year between 1985 and 2017 (Miller and Müller 1999, 

Miller et al. 2009a). The LTMP surveys estimate A. cf. solaris densities for between 50-239 

reefs annually (mean = 96 reefs). These empirical data consist of two-minute manta-tow 

observations (mean = 48 tows per reef), where observers are towed around the perimeter of 

each reef to search for A. cf. solaris individuals. The thresholds defining “incipient” and 

“active” outbreaks are defined as ≥ 0.22 and ≥ 1.0 individuals per two-minute tow respectively 

(Moran 1992, Sweatman et al. 2008, Pratchett et al. 2014).  Interpolated values therefore 

represent the mean A. cf. solaris densities per manta tow as a guide to estimating coral loss. 

Code and data to reproduce interpolation can be found at 

https://github.com/sammatthews990/GBRdata.  

2.4 Data Limitations 

2.4.1 Environmental Data 

There are a number of key limitations regarding the environmental data compiled in this 

dataset, namely the coarser resolution of original data (MARS, GEOMACS, CARS, MODIS, 

SeaWiFS) and the summarisation of temporal variability into static estimates rather than time 

series data. The variables were initially collected at the national level at a 0.01° resolution by 

the CERF Marine Biodiversity Hub (http://www.marinehub.org/) but are now maintained and 

made publicly available by Geoscience Australia. Full details of data collection for the 

compilation and further references can be found in Huang et al (2010). As environmental data 

in this compilation reflect a static estimate, temporal variation is addressed by the inclusion of 

the seasonal range variable, in addition to the mean over the entire times series where 

appropriate. 

Bathymetry and Geomorphology (GA Variables) 

National data was collated from surveys collected between 1963 and 2009, compiling 

approximately 1400 survey records combining ship-track, swath and satellite altimetry. The 

grid incorporates data from surveys acquired since 1963. Modern surveys that used GPS have 
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a positional accuracy of 5 - 30 m depending on several factors, while earlier surveys which 

used dead reckoning and Transit satellite fixes had positions accurate to 50-2000 m depending 

upon the water depth and strength of currents. These surveys overlap in an irregular 

distribution. As a number of approaches were used to process data and availability of data was 

variable, the resolution was reduced from ~0.0025° to 0.01° using inverse distance weighted 

interpolation to match the resolution of the satellite imagery used to infill areas without ship-

track or swath data (Whiteway 2009, Huang et al. 2010). All temporal data were combined to 

produce a bathymetry layer with ~0.0025° resolution from which aspect and slope were 

derived. For all GA variables, spatial resolution was interpolated to 0.01° using inverse distance 

weighted interpolation.   

 

Sediment Parameters (MARS Variables) 

It is important to note that these variables were interpolated using the inverse distance squared 

weighted algorithm to achieve the 0.01° resolution from the National Marine Sediments 

Database (MARS - http://www.ga.gov.au/oracle/mars/), containing over 200,000 samples 

within the GBR region spanning 1960-2009. Importantly, the positional accuracy of the some 

of the older source data unknown but assumed to be within 5km. Users are urged to be cautious 

when drawing conclusions using these variables and to consult the MARS database or Huang 

et al. (2010) to assess regional uncertainty. For all MARS variables, spatial resolution was 

interpolated to 0.01° and all temporal data were combined to produce a single mean % sediment 

composition for each variable. 

Geological and Oceanographic Model of Australia’s Continental Shelf (GEOMACS 
Variables) 

The GEOMACS model is a purely mathematical model with no direct field observations and 

does not include wave breaking or refraction. This model is thus not considered useful in depths 
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<10m (Huang et al. 2010) and users are urged to implement caution when using this variable 

in shallow water environments. For all GEOMACS variables, spatial resolution was 

interpolated to  0.01° using inverse distance weighting ((Huang et al. 2010). The temporal 

domain includes 11 years and therefore contains limited information on events with long return 

intervals at specific locations, e.g. tropical cyclones. GEOMACS variables are provided as two 

static estimates of mean and interquartile range estimated over the 11 years of data. The 

interquartile range is calculated as the difference between the Q25 and Q75 quartiles. The 

trimmed mean is the standard arithmetic mean calculated excluding the highest and lowest 25 

percent of the GEOMACS model observations. The interquartile range and trimmed mean are 

not guided by ecological theory or observations but are generic statistical observations (Huang 

et al. 2010). 

CSIRO Atlas of Regional Seas (CARS Variables)  

The CARS2006 database was compiled from all historical subsurface ocean property 

measurements (Ridgway et al. 2002) derived primarily from research vessels and autonomous 

profiling buoys. Data was collected over approximately 50 years (~1960-2006) to create an 

estimate and seasonal range for temperature (deg. C), salinity (PSU), oxygen (ml/litre), nitrate 

(micromole/litre), silicate (micromole/litre), phosphate (micromole/litre). While some regions 

of the CARS database has insufficient data (e.g. southern NSW) this was not the case on the 

GBR (Huang et al. 2010). For all CARS variables, spatial resolution was interpolated from 0.5° 

to 0.01° using inverse distance weighting to match the resolution of this compilation. The 

temporal domain spans ~50 years and therefore these variables are to be used as long-term 

averages and indicators of seasonal variability and should not be used to analyse acute events. 
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Satellite Data (MODIS and SeaWiFS Variables) 

The main consideration for the satellite-derived variables in this dataset is to appreciate that 

native resolution for the satellites (0.04°) was interpolated to 0.01°. Moreover, it is important 

to note that estimates for these variables are based on the monthly composites. Thus, seasonal 

ranges reflect the range of monthly means and mean estimates are the mean of monthly means. 

Whilst these estimates can be useful for understanding baseline conditions and variation, they 

should not be used where fine-scale temporal fluctuations are important, as these patterns are 

smoothed out in this dataset.  Finally, these data were collected for the years 1999-2008 and 

1997-2008 for MODIS and SeaWiFS respectively, and whilst representing a good estimate of 

the mean and variability of environmental conditions, they cannot be viewed as entirely 

representative of current or past conditions. These satellite derived variables are proxy 

indicators and thus their performance must be considered. Importantly, whilst general spatial 

patterns of Chlorphyll a and Kd490 (SeaWiFS) were captured, validation with in situ 

measurements in tropical north eastern Australia waters had poor accuracy if the inherent 

optical properties of the region were not considered (Qin et al. 2007). Moreover, SeaWiFS 

variables are not suitable for coastal waters, and therefore inferences must be cautious with 

regard to inshore GBR reefs (Devlin et al. 2012b). For all MODIS and SeaWiFS variables, 

spatial resolution was re-gridded from 0.04° to 0.01° by the authors of the original dataset 

(Huang et al. 2010) and temporal variation was captured as a seasonal range variable reflecting 

the range of monthly means across the times series. Where no data is available in a pixel due 
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to clouds or other interference, the previous 8-day average is carried forward in that pixel in 

this data set.  

2.4.2 Disturbance Data 

In contrast to the environmental data, disturbance data is provided for each year between 1985-

2017 for COTS, Cyclones and DHW and for 1998, 2002, and 2016 for aerial bleaching surveys. 

Crown-of-thorns starfish 

A lack of empirical observations makes it difficult to validate predicted COTS abundances; 

further research into COTS population dynamics is under way to address this issue (Matthews 

et al., in prep). As there are significant spatial gaps in the AIMS LTMP data used to create 

spatial layers of COTS abundance, individual data points were interpolated to 0.01° resolution. 

In order for a value to be estimated, a minimum of 3 observations had to be found within a 1 

degree radius for interpolation. This also means that there are many blank values as sampling 

for COTS is patchy and thus care must be taken to understand the temporal patterns before 

using these data. This makes the assumption that COTS will be present at all neighbouring 

reefs and does not take into account the array of environmental factors which make reefs 

suitable for COTS (Chapter 4) and thus should only be used as a starting point for regional 

scale models (Chapter 5-6) and not as a definitive estimate of COTS density at fine spatial 

scales. 

Cyclones 

The cyclone data presented were resampled from a native grid of 0.04° to the nominal 0.01° 

grid and represents every cyclone passing the GBR between 1985-2017. However, data were 

aggregated for each calendar year for consistency with other disturbance variables, so some 

years may contain the footprint of two or more cyclones (1986, 1990, 1993, 1996, 2000, 2009, 

2011, 2015). Furthermore, these data represent exposure to potentially damaging waves, which 
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does not always result in coral mortality and does not take into account the potential shielding 

effect that may occur on the leeward side of reefs. 

Bleaching Aerial Observations 

Bleaching observations were interpolated from reef-level estimates of bleaching severity to the 

0.01° grid for the 3 years for which surveys were provided (sensu Hughes et al. 2017). For 

1998, 2002 and 2016 bleaching events 638, 631 and 1156 reefs were surveyed respectively 

across the length of the GBR, representing a substantial portion of the GBR (~3800 reefs) 

(Berkelmans et al .2004, Hughes et al. 2018).  

Degree Heating Weeks (DHW) 

Regarding heat stress, although the relationship between DHW and coral mortality has been 

established (Hughes et al. 2018a), fine scale patterns of bleaching are often patchy and thus 

hard to resolve from the relatively broad-scale satellite-derived products. Additionally, the 

DHW product used here assumes that an anomaly at the surface of the ocean can be accurately 

related to anomalies at greater depths.  However, due to local hydrodynamics, this assumption 

is not always valid, limiting the ability to infer bleaching in deeper locations on the reef 

(Skirving et al. 2006). DHW products presented here were aggregated for the calendar year. 

These data were resampled from a native grid of 0.05° to the nominal 0.01° grid and thus should 

be considered carefully when investigating sub-reef processes. 

It is important to stress that the DHW and Cyclone data have been resampled to the nominal 

0.01° grid from more coarsely scaled products (DHW: 0.05°, Cyclones: 0.04°), while COTS 

data from manta tow surveys have been scaled up from fine-resolution reef observations onto 

the grid. This compromise of spatial scale is often a necessity in ecosystem modelling as the 
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spatial scales for biological data and environmental data vary greatly, but it is integral that users 

understand these compromises before using the product.  

2.5 Conclusion 

The disturbance history and abiotic context of the Great Barrier Reef is of central importance 

to any attempt to create accurate regional scale models. This initial data compilation acts as the 

platform upon which the modelling in the later chapters of this thesis will build upon, and 

importantly, as a template for regional scale modelling of the GBR in the broader research 

community. Whilst updates to the dataset will be required and improvements can be made to 

some variables, the compilation provides the first attempt to catalogue the abiotic environment 

and disturbance regimes for GBR reef locations with necessary resolution to facilitate regional-

scale models.  
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3 Conservation intelligence: Integrated 

visualisation and reporting tools in support of 

adaptive pest management and ecological 

monitoring 

3.1 Abstract 

Adaptive management has become a dominant paradigm in natural resource management and 

conservation. Embedding adaptive management into conservation interventions is essential to 

continually improve management outcomes, but necessitates the ongoing assessment of the 

extent of the problem, the current knowledge, the associated uncertainty, available intervention 

strategies, monitoring techniques and evaluation of outcomes. These tasks are not trivial, and 

there is an ongoing need for improved data tools to facilitate and enhance the uptake of adaptive 

management approaches to conservation. Here we demonstrate the utility of adapting 

established Business Intelligence (BI) software to provide near real-time analytics and decision 

frameworks for effective adaptive management of conservation interventions and ecological 

monitoring. These tools, which we define as Conservation Intelligence (CI) tools, synthesise 

complex spatial and temporal data streams to provide managers with an interactive and easy-

to-use interface to assess the extent of the problem, and to evaluate the progress of 

interventions. The utility of CI tools is demonstrated using crown-of-thorns starfish (COTS; 

Acanthaster cf. solaris) on Australia’s Great Barrier Reef (GBR). On the GBR, outbreaks of 

these corallivorous pests have caused widespread decline in coral cover and are the target of 

one of the largest (geographically and economically) coral reef pest control programs in the 

world, coordinated and delivered by the Great Barrier Reef Marine Park Authority 

(GBRMPA).  Our understanding of the extent and severity of these outbreaks and the 
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effectiveness of control actions to mitigate their impacts is integral to the adaptive management 

of this system. To this end a visualisation and reporting tool, The COTS Dashboard, was 

developed to visualise the severity and extent of outbreaks and evaluate the progress of the 

intervention against stated goals. The dashboard was developed in close partnership with 

GBRMPA, meaning the needs of the management agency were explicitly incorporated into 

each stage of the development process. The CI approach attempts to improve the effectiveness 

of the adaptive management cycle and to develop informative and flexible platforms embedded 

within the management agency, to assess and visualise progress towards conservation goals. 

Such initiatives provide managers with the interactive and user-friendly tools required to make 

adaptive data-driven decisions, ensuring the greatest strategic impact of conservation 

interventions. 

3.2 Introduction 

In a rapidly changing environment, there is increasing pressure to develop conservation 

interventions and governance arrangements that can respond to changes in the system and adapt 

to intensifying stressors (Folke et al. 2002, Olsson and Folke 2004, Hughes et al. 2005, Heller 

and Zavaleta 2008, Stein et al. 2013). The adaptive management framework (Holling 1978, 

Walters 1986)(Figure 3.1) has been adopted as an effective management tool to address such 

problems characterized by high levels of uncertainty (Gunderson and Holling 2002, Gregory 

et al. 2006, Anthony et al. 2015). However, there has been a lack of clarity regarding its 

appropriateness or feasibility due to the indiscriminate application of adaptive management 

where the burden of continual evaluation, stakeholder engagement and re-assessment has 

hindered or halted conservation outcomes (Gregory et al. 2006, Rist et al. 2013). One of the 

major issues with adaptive management lies in the reactive nature of the to acquire the 

necessary monitoring information, as funding cycles often lag behind conservation problems 

(Downs 1972, Hoey et al. 2016). Moreover, when funding is adequately provided and data are 

routinely collected, there are still lags in the retrieval of insight from this data due to the 

significant additional resources and ongoing commitment required to summarise, manage and 
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analyse data to inform decision making and to effectively communicate with stakeholders 

(Williams and Brown 2014). In large, spatially and temporally complex systems, managers are 

required to assess the extent of the problem, collate existing knowledge and identify areas of 

uncertainty while simultaneously tracking the progress of specific management targets. To 

successfully achieve conservation goals within the adaptive management framework, managers 

need to be equipped with tools to efficiently evaluate the effectiveness of interventions and to 

engage stakeholders at various stages of the process.  

Newly developed Business Intelligence (BI) software provides an extremely flexible platform 

to synthesise and visualise complex ecological data from disparate data streams which can be 

used to effectively inform the adaptive management process.  Interactive and informative data 

visualisations have been shown to be useful to this process by creating active engagement and 

knowledge generation amongst stakeholder groups (Keller and Tergan 2005, Evanko 2010) 

and by providing a vehicle for knowledge transfer between science, management and policy 

(McInerny et al. 2014). Despite the rapid increase in advanced data visualisation software, 

particularly in business and finance (Murugesan and Karthikeyan 2016, Ul-Ain et al. 2019), 
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there has been a slower up-take of interactive data visualisations within the fields of 

environmental management, science-for-policy, conservation and research.  

 
Figure 3.1 The adaptive management process (based on Walters (1986) and Holling (1978)) outlining the 6 major 
stages involved and the central role of stakeholder engagement in effective adaptive management; figure adapted 
from Rist et al. (2013). 

  

In environmental management and conservation, task-specific decision support tools are 

commonly used in the adaptive decision-making process. For example, software such as 

Marxan (Ball et al. 2009), has been developed with the explicit purpose of designing marine 

reserves, and have been instrumental in the planning of many marine reserves globally, such 

as the rezoning if the Great Barrier Reef Marine Park (GBRMPA 2004, Ball et al. 2009). Such 

tools, despite being a powerful and necessary component of a strong conservation initiative,  

by design, are limited in their scope and can suffer from long term stability issues whilst often 

requiring software development or programming expertise (Pınarbaşı et al. 2017). Following 

low-frequency usage, many decision support tools are not maintained and become unavailable, 

causing issues for the agencies relying on them (Curtice et al. 2012, Pınarbaşı et al. 2017).  

While decision support tools are essential for early stages of a conservation initiative, there is 

a need to improve the development and utilisation of tools for the evaluation of management 
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actions, monitoring, and the refinement of goals. There is a strong case for adapting freely 

available, easy to implement and maintain BI software to aide in these underrepresented stages 

of the adaptive management cycle. These software are already deeply entrenched in the 

business sphere and will only increase in functionality and technical support (Murugesan and 

Karthikeyan 2016), providing a stable platform from which to build visualisation and reporting 

tools that are adaptable to managers needs and evolution of the given management program. 

Adapting BI tools towards conservation goals (hereafter referred to as Conservation 

Intelligence (CI)), can provide user friendly, interactive platforms for managers and researchers 

to explore and communicate complex patterns in their data, evaluate and monitor management 

actions thus supporting adaptive decision making in conservation interventions.  

The Great Barrier Reef Marine Park is widely considered as one of the leading examples of 

best-practice adaptive management in marine ecoystems, with extensive zoning regulation 

(Day 2002, GBRMPA 2004) , mature adaptive management frameworks (Hughes et al. 2007a, 

McCook et al. 2010b, Dobbs et al. 2011), protective federal legislation and extensive ecological 

monitoring (Hedge et al. 2017). However, despite best-practice adoption of management 

principles, the Great Barrier Reef (GBR) is still vulnerable to disturbances that threaten its 

resilience and ecosystem function. For example, coral cover on the GBR has declined by 

approximately 50% over the last 30 years (De’ath et al. 2012) and the increasing frequency and 

intensity of disturbances, exemplified by the recent mass bleaching events (Hughes et al. 

2017b) and recurring outbreaks of the coral-eating crown-of-thorns starfish (COTS) (Pratchett 

et al. 2017a), suggests this pattern is likely to worsen (Pratchett et al. 2019). These declining 

trends in coral cover underpin an urgent need for effective and efficient management 

interventions to minimise coral loss on the GBR.  Currently, on the GBR the largest 

conservation intervention aimed at directly minimising coral loss is the Crown-of-thorns 

Starfish Control Program (COTS Control Program). Outbreaks of COTS have been responsible 

for 40% of the decline in coral cover on the GBR over the last 30 years (De’ath et al. 2012) 

and culling adult or sub-adult individuals (using lethal injection (Rivera-Posada et al. 2014)) 
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currently represents the most effective direct action to minimise coral loss from COTS 

outbreaks on the GBR (Westcott and Fletcher 2018).  

Since 2012, the Australian Government has funded a COTS Control Program delivered through 

the GBRMPA, in order to reduce the impact of this marine pest. The COTS Control Program 

uses dedicated vessels and trained crews that perform targeted culling of COTS at strategically 

selected reefs of high ecological and economic value (Hoey et al. 2016). The methods utilised 

to achieve the management goals of the COTS Control Program have evolved over the last 5-

6 years through an adaptive management process informed by collaboration between the 

GBRMPA, Commonwealth Scientific and Industrial Research Organisation (CSIRO), industry 

stakeholders, and leading COTS researchers, in order to deliver  an increasingly integrated pest 

management approach to COTS Control (Fletcher and Westcott 2016, Westcott et al. 2016). 

The program collects extensive ecological data, which is essential for monitoring the status and 

condition of high value reefs prioritised for control, for developing and validating ecological 

models of COTS outbreaks and spread the GBR, and for tracking progress of the individual 

vessels and the intervention program as a whole. In the context of recent mass bleaching and 

mortality of many corals on the GBR (Hughes et al. 2017b, 2018a) there has been an increased 

commitment to preserving coral cover and recognition that COTS control is a feasible on-

ground action to minimise coral loss and enhance the resilience of the GBR (GBRMPA 2017). 

Consequently, in 2018, the COTS Control Program underwent a three-fold increase in its 

operational fleet. The expansion of this program now enables the collection of unprecedented 

temporal and spatial resolution ecological data for the GBR. Within the context of COTS 

control, and also in the broader context of the monitoring needs of the GBR, there is an 

increasing need for data tools to efficiently synthesise, analyse and report on the state of the 

reef and the progress towards the stated goals of conservation interventions (GBRMPA and 

Queensland Government 2015, Hedge et al. 2017). 

Herein we present The COTS Dashboard as an example of a CI tool for data visualisation, 

reporting and assessment of the COTS Control Program on the GBR. The COTS Dashboard is 

designed to address four key components of the Control Program; 1) Provide an ecological 
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overview of the system; 2) Assess progress of the Program on designated priority reefs; 3) 

Assess the performance of the vessel providers contracted to deliver the program and 4) 

Provide a user-friendly interface for creating customisable summaries to share with program 

stakeholders and research partners. We highlight how developing these CI tools provide 

managers with the interactive and user-friendly information required to make adaptive, data-

driven decisions and foster efficient stakeholder engagement, ensuring the greatest strategic 

impact of conservation interventions. More broadly, we demonstrate the usefulness of these 

tools as a flexible and stable complement to bespoke decision support systems for pest 

management, ecological monitoring and conservation initiatives in general. 

3.3 Methods 

3.3.1 Data collection 

For the COTS Control Program, each of the control vessels collects three types of observational 

data. Manta Tow observations, in which an observer is towed around the perimeter of a reef 

(Miller et al. 2009a) are conducted to generate a broad-scale understanding of the coral cover 

and COTS abundances at a given reef. In the context of integrated pest management, these 

surveys are also used to determine whether culling action is required at the reef and site 

(Fletcher et al. in prep). Culling action is triggered by either the observation of an adult COTS 

or COTS scars. Once culling action has begun at a reef, the number of COTS culled is recorded 

in four size classes; 0-15 cm, 15-25cm, 25-40 cm; >40 cm alongside the number of diver 

minutes undertaken during cull activity. Each reef is split into equal sized (8-10Ha) culling 

sites, which are “opened” following the observation of adult COTS or presence of COTS scars. 

All sites across the reef with these signs of COTS activity are culled repeatedly, and then 

“closed” once culling activity has reduced catch-per-unit-effort (COTS culled per dive minute) 

below ecologically sustainable thresholds (CPUE = 0.04 COTS per minute) (Fletcher et al. in 

prep., Babcock et al. 2014). Subsequent Manta Tow observation are conducted every ~3-6 

months to determine whether the population is controlled, and sites are re-opened if COTS or 

scars are observed again. Reef Health Impact Surveys (RHIS) (Beeden et al. 2014) 
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(observations within a 5m radius of reef location) are also conducted at sites where pest 

management action is undertaken in order to monitor coral health.. The joint Field Management 

Program (FMP) and the Queensland Parks and Wildlife Service (QPWS) also collect extensive 

Manta Tow and RHIS surveillance data which is integral to informing prioritisation of control 

efforts. In total, the COTS Dashboard synthesises data collected from >30,000 RHIS surveys, 

>52,000 Manta Tows and > 10,000 culling dives across >900 reefs, averaging >10,000 surveys 

per annum.  

3.3.2 Data extraction, transformation and loading (ETL) 

One of the most important features of CI tools, such as the COTS Dashboard, is the capability 

for flexible data extraction, transformation and loading (ETL). The COTS Dashboard was built 

in Microsoft Power BI, which (like other BI software) includes powerful data connectivity and 

preparation capabilities (using PowerQuery) that allow users to integrate hundreds of different 

data sources and reshape and transform them to suit their needs, without requiring coding skills. 

For the COTS Control Program, data is predominantly entered via android apps in the field and 

stored in the GBRMPA’s Eye on the Reef Database (Beeden et al. 2014). However, some 

legacy datasets and spatial data are stored and maintained internally as spreadsheets which are 

integrated with other sources within the COTS Dashboard back-end. Importantly, data 

cleaning, and merging is easily handled within the Power BI platform, allowing these different 

data sources to be quality-checked before being analysed and reported on.   

3.3.3 Data relationships 

In order for CI tools to provide interactive filtering and aggregating of data, the relationships 

between the data tables must be described, creating a relational database upon which more 

complex analytics can be carried out. While BI software will auto-generate relationships 

between data tables containing similar identifiers (i.e ID columns and dates) they are best 

described explicitly. In the COTS Dashboard, observational data (Manta Tow, Culling and 

RHIS) are linked to a table holding spatial data for every one of the 3863 reefs in the GBRMP, 

to allow all forms of observational data to be filtered simultaneously by spatial identifiers (i.e 
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Reef Name, Marine Park Zone, Management Sector) (Figure 3.2). Similarly, the data for each 

observation is linked to a separate table containing generic temporal data, allowing all 

observational data to be filtered and analysed over a common time scale (Figure 3.2).  

 
Figure 3.2 Simplified representation of the relational database structure constructed within the COTS Dashboard. 
Variables highlighted in bold represent the primary keys used to link tables together. 

 

3.3.4 Design process 

Addressing the needs of managers to make adaptive decisions is fundamental to the successful 

development, integration and utilization of data tools in conservation. As these needs often 

change or shift focus, throughout the implementation of a conservation initiative, it is 
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imperative to have consistent direct feedback from end users. The COTS Dashboard was thus 

developed on-site at the GBRMPA ensuring the explicit needs of Marine Park managers were 

incorporated throughout the design process, and allowing end users to gain familiarity with the 

platform’s capabilities. Importantly, explicit targets and thresholds of the COTS Control 

Program are central to the COTS Dashboard, with visualisations and summaries being designed 

to highlight progress towards these goals.  

3.4 Results 

The major applications of CI tools in general, and the COTS Dashboard in particular, involve 

the ability of these tools to address specific stages in the adaptive management cycle (Figure 

3.1). Here we present four key applications of the COTS Dashboard:  

1) Provide conservation managers at the GBRMPA with the most up-to-date information 

on the current (and historical) extent of COTS outbreaks in a spatially and temporally 

explicit manner (Stage 1), whilst incorporating contemporary theoretical knowledge of 

the system (Stage 2) and estimating uncertainty (Stage 3). 

2) Provide a platform to track the implementation of COTS management interventions by 

vessel providers (Stage 4);  

3) Monitor the progress of these implemented management actions in achieving the 

ecological goals of the Control Program (Stage 5) and evaluate whether the 

management action had the desired outcome (Stage 6); 

4) Produce engaging visualisations alongside easily obtained and flexible data summaries 

as tools for stakeholder engagement throughout the adaptive management process.  

3.4.1 Synthesise current understanding: Assessing COTS outbreak status 

One of the key requirements for managers of the COTS Control Program is efficiently 

synthesise data coming from multiple monitoring and control vessels to generate up-to-date 

estimates of the distribution of COTS across the GBR. To serve this purpose, the first page of 

the COTS Dashboard (Figure 3.3) portrays the “Outbreak Status” of each reef with available 
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data, alongside a summary table, providing further insight into the data and uncertainty of the 

attributed “status”. Internally, the Dashboard is compiling several datasets to produce reef level 

estimates. This overview of the current state of the system can also be filtered interactively by 

the user, by adjusting a time “slicer” to inspect historical patterns, or by selecting zoning 

regulation, management sector or outbreak status itself to inspect spatial patterns in COTS 

outbreaks. Providing the historical and current context of the severity and extent of COTS 

outbreaks gives spatial and temporal bounds to the ecological problem to help set objectives 

(Stage 1). The incorporation of ecological thresholds to determine outbreak status reflects the 

ability to build in assumptions of the current understanding of COTS outbreaks (Stage 2). 

Finally, uncertainty in estimates are included in summary tables (as standard error) or revealed 

when hovering over a reef location (Stage 3). Temporal uncertainty can also be investigated by 

moving the time slicer. 

 
Figure 3.3 Outbreaks status page of the COTS Dashboard. The page contains 1) An input panel of “slicers” for 
filtering data by reef name, date, region and zoning regulation; 2) map of current outbreak status (relative to Date 
slicer); 3) Legend for 2) highlighting established thresholds for COTS outbreak status; 4) Filterable donut charts 
the proportion of reefs within each outbreaks category and the proportion of reefs across the Marine Park for 
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which we have current data; 5) Summary table of latest estimates of COTS densities, coral cover and number of 
surveys; 6) Information box explaining the temporal aggregation of data and usage of survey methodologies. 

3.4.2 Implement management actions: Integrated pest management process 

The ability to monitor how management actions are being implemented in the field is integral 

to managing the COTS Control Program. Specifically, the COTS control program requires 

vessels to undertake initial surveillance of a reef to determine where culling activities should 

begin, as part of an integrated pest management approach (Fletcher et al. in prep, Fletcher and 

Westcott 2016, Westcott et al. 2016). Culling “sites” are then opened and culled on subsequent 

voyages until COTS densities are restricted below established ecological thresholds. Reef wide 

surveillance is also conducted every 2-3 months to monitor the COTS densities and coral cover. 

The COTS Dashboard provides a page dedicated to tracking the implementation of this pest 

management process (Figure 3.4), allowing users to select a reef of interest, view initial (or any 

subsequent) surveillance data and the ensuing culling operations. These types of visualisations 

provides users with an interactive platform for tracking the implementation of management 

actions, ensuring the integrated pest management process was followed in the deployment of 

culling resources (Stage 4). 

 
Figure 3.4 Integrated pest management page of the COTS Dashboard. The page contains 1) An input panel of 
“slicers” for filtering data by reef name, date, voyage and zoning regulation; 2) map of current outbreak status 
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(relative to Date slicer) with “tooltip” of summary data; 3) Map of culling activity at sites for the selected 
reef/voyage 4) Map indicating the presence of COTS (green = absent; red = present) for the selected surveillance 
voyage; 5) Map indicating the presence of COTS feeding scars (blue = absent; white = present (1-10); grey = 
common (>10) for the selected surveillance voyage. 

3.4.3 Monitor the effect of actions: Progress towards management goals 

The COTS control program aims to reduce COTS densities to specific thresholds on reefs that 

are prioritised by culling. Visualisations within the COTS Dashboard allow managers to 

quickly assess progress towards achieving this goal at a site, reef or regional level. Specifically, 

the COTS Dashboard has a page dedicated to synthesising culling data (Figure 3.5). By 

selecting a reef from a list or from the map, managers can view the catch per unit effort (CPUE) 

of COTS over time and monitor the progress toward reaching the ecological threshold (Stage 

5). Furthermore, each culling site within the reef can then be selected in order to compare site 

and reef level trends and investigate the spatial variability in catch-per-unit-effort. Importantly, 

time series data can be aggregated at the Year, Quarter, Month or Voyage level allowing users 

to increase or decrease the temporal resolution of their analysis. Additionally, as reefs are 

closed for culling, this page provides the opportunity to evaluate the outcomes against the initial 

expectations (Stage 6). For example, the assessing the number of hours and repeated culling 
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trips required to achieve the goals allows management to refine the expectations and modify 

the approach for various outbreak densities of COTS.  

 
Figure 3.5 Catch per unit effort (CPUE) trends page of the COTS Dashboard. The page contains 1) An input panel 
of “slicers” for filtering data by reef name, date, voyage and zoning regulation; 2) Map of most recent culling 
activity at sites for the selected reef/voyage with “tooltip” of summary data (green = below cull threshold 0.04; 
red = above cull threshold; 3) Summary table providing reef and site level summaries 4); CPUE trends (colours 
represent different size classes of COTS: green=0-15cm; grey=15-25cm; red=25-40cm; yellow=40+cm) at the 
selected reef level, highlighting progress towards ecologically sustainable thresholds 5) CPUE trends at the site 
level (selected by 2) or 3)) to compare the progress of individual sites within a reef to the broader reef level trends. 

 

3.4.4 Stakeholder engagement: Data summaries and visualisations 

As the COTS Dashboard are simply visualisations built upon a relational database, it is a simple 

process to create ad-hoc summaries or visualisations for special purposes. For example, the 

GBRMPA has many research partners involved with the development of the control program 

and in COTS research more broadly and thus receives many requests for data. These requests 

vary greatly in their temporal and spatial scope as well as the level of aggregation required (i.e. 

site/reef/region or voyage/month/year). Having a tool such as the COTS Dashboard allows 

these requests to be addressed promptly while reducing the potential for error associated with 

manually creating summaries in a spreadsheet. Additionally, the diverse array of visualisation 
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options (Microsoft Power BI 2019) provides a useful tool for creating summary graphics for a 

variety of stakeholder audiences, or for communicating Program outcomes to higher level 

managers and policy makers. 

3.5 Discussion 

The COTS Dashboard provides a user-friendly interface, to understand and assess the severity 

and extent of COTS outbreaks, track the implementation of management actions and monitor 

progress towards stated goals. Importantly, such CI tools are completely customisable and 

require limited technical proficiency, making them an ideal, but as yet under-utilised platforms 

for adaptive management and ecological monitoring. COTS outbreaks evolve in complex 

temporal and spatial patterns (Vanhatalo et al. 2017), occurring in patchy aggregations at the 

sub-reef level (Ormond and Campbell 1974) and displaying cryptic behaviour (Pratchett et al. 

2014) making the control and monitoring of their outbreaks an intrinsically difficult task. 

Managers of the Great Barrier Reef have the difficult task of tracking and responding to 

emerging or established outbreaks over time, across a Marine Park that spans 344,400 km2 and 

encompasses 3864 reefs. Ensuring that these complex spatial and temporal patterns of 

outbreaks across the GBR are understood by managers, policy makers, contractors and 

researchers, is integral to implementing an effective COTS Control Program. As the Control 

Program relies on many stakeholders spanning socio-political boundaries it is also vitally 

important to develop efficient platforms for stakeholder engagement. The COTS Dashboard, 

and CI tools more broadly, can facilitate knowledge exchange of complicated ecological 

problems among a diverse array of stakeholders. While access to the Dashboard is currently 

unavailable outside of the GBRMPA, advances are being made to allow wider access as part 

of the broader Reef 2050 Integrated Monitoring and Reporting Program (RIMReP) (Dobbs et 

al. 2011, Hedge et al. 2017). 

Specifically, the Dashboard helps reef managers address the stages of the adaptive management 

cycle (to varying degrees) whilst fostering stakeholder engagement from a single platform. 

From the main page, managers can stay up-to date with the incoming data from the control 
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program allowing them to assess the current (and historical) extent of COTS outbreaks (Stage 

1). The dashboard also synthesises the available contemporary knowledge (Stage 2) of COTS 

outbreaks by comparing COTS densities and catch per unit effort trends to important modelled 

thresholds for outbreak densities (De’ath 2003, Babcock et al. 2014). Additionally, it provides 

a platform to identify uncertainty (Stage 3) within the control program by providing 

information on the number, standard error of estimates and spatial coverage of surveys used to 

estimate COTS abundances and coral cover. It also provides a platform to track the 

implementation of COTS management interventions by vessel providers (Stage 4); The 

dashboard collates the data necessary to monitor and evaluate the effectiveness of the program 

(Stages 5 and 6) by tracking the progress towards goals (reducing COTS to sustainable levels, 

reducing coral cover loss). Additionally, while not the explicit purpose of the Dashboard, it can 

be used as means to identify errors within the databases, to identify outliers or spatially 

mismatched observations. Most importantly however, is the flexibility of the platform, 

whereby any changes to management goals (e.g. altered thresholds or changing prioritisation 

of reefs) can be amended without requiring a software developer or extensive IT experience.  

On the GBR, there has been a concerted effort in recent times to develop reporting and 

integrated monitoring frameworks to inform the adaptive management of the GBRMP (Dobbs 

et al. 2011, Hedge et al. 2017). In particular, the GBRMPA is pursuing the development of 

interactive reporting tools (e.g. Power BI) because they were identified by the majority of 

survey participants ( > 75%) as the ideal type of platform to deliver the Reef 2050 Integrated 

Monitoring and Reporting Program (GBRMPA and Queensland Government 2018). CI tools 

such as the COTS Dashboard provide an important template and proof-of-concept for the 

successful delivery of an integrated monitoring and reporting program at the GBR scale. More 

broadly, developing CI tools is an important step forward for the global conservation 

movement. Over the last few decades there has been a vast increase in the number of 

monitoring programs and conservation initiatives, and whilst effective design is key to success 

(Legg and Nagy 2006, Guerra et al. 2019), the efficient management, analysis and 

communication of insights from the data are integral steps in generating knowledge from an 
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integrated monitoring framework (GBRMPA and Queensland Government 2018). As 

conservation initiatives mature, CI tools will play an increasingly important role in 

disseminating insight from programs and aiding in their adaptive management. 

Interactive data visualisations are becoming recognised as increasingly important to engage 

and educate relevant audiences, particularly in the context of science for policy and stakeholder 

engagement (McInerny et al. 2014). By providing an interactive platform to interrogate 

complex spatial and temporal data, CI tools aim to improve data literacy and knowledge 

transfer of the system for researchers, managers, stakeholders and policy-makers alike. 

However, understanding the realised impact of decision support (and CI) systems and 

stakeholder engagement on conservation outcomes remains somewhat elusive. Although there 

is some disagreement regarding the effectiveness of stakeholder engagement (Reed 2008, 

Young et al. 2013), increased levels can have important flow on effects, increasing trust and 

the perceived likelihood of a successful outcome (Young et al. 2013).  Additionally, in the 

business world, effective BI systems are generally accepted to increase productivity, improve 

decision-making performance, and enrich knowledge (Trieu 2017). The increased adoption of 

these BI tools in the conservation sphere could reap similar benefits. Despite the uncertainty 

regarding the concrete measurable outcomes of such tools, the development of effective 

visualisations, such as the COTS Dashboard, is regarded as one of the most pressing concerns 

for scientists and science policy (McInerny et al. 2014).  Importantly, with respect to the COTS 

Control Program, the GBRMPA are obliged to engage stakeholders, particularly in sharing data 

collected through the program, and thus the development of CI tools is a necessary step in 

maturing a large publicly funded conservation program. 

The COTS Dashboard was developed alongside the major end user (GBRMPA), thereby 

avoiding some of the major challenges associated with bespoke decision support tools 

(Pınarbaşı et al. 2017). More specifically, extensive understanding of the data needs of the end 

users from the outset increased engagement and greatly reduced development costs (McIntosh 

et al. 2011). We also intentionally used established software, which is thoroughly documented 

and supported, which importantly, can be created and modified independent of expert 
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developers. However, the use of commercial software does have some drawbacks, especially 

the inability to edit source code and uncertainty about long-tern access and availability to the 

product. More broadly, CI tools are applicable to any ecosystem and can be applied to any 

conservation initiative or monitoring project where interactive visualisations/summaries may 

be useful to understand complex patterns. There are multiple platforms upon which they can 

be built (Microsoft Power BI, Tableau, QlikView), and while these platforms are generally 

built to serve the business analytics industry, their capabilities go far beyond these applications. 

Importantly, the low cost (free in some cases) and relatively lower level of technical ability 

required to design such a tool makes CI  tools readily available to small scale conservation 

initiatives, NGO’s, government departments or researchers without requiring a significant 

software development budget. Moreover, CI tools can also be adapted towards a research 

orientated focus, particularly for sharing complex model outputs among collaborators and lay-

people, allowing uncertainty and parameter sensitivity to be viewed interactively. CI tools 

incorporate interactive visualisations, simple GIS capabilities, extensive options for data 

integration, easy to share reports and web apps (paid subscriptions), making them ideal 

platforms for pest management, marine spatial planning and ecological monitoring initiatives. 

3.6 Conclusion 

The construction of a specific and dedicated CI interface (the COTS Dashboard) has provided 

a number of benefits and efficiency gains for the COTS Control Program. The COTS 

Dashboard has greatly reduced time spent on the repetitive, non-reproducible and error-prone 

production of graphs and summary statistics within the Program. CI tools are extremely flexible 

and can be easily expanded to include new streams of modelled or empirical data as new 

research and management actions are implemented. More broadly, CI tools enable the effective 

implementation of adaptive management, particularly by increasing the user’s ability to assess 

the state of the problem, identify uncertainty, and monitor and evaluate the progress of 

conservation interventions, whilst providing a platform for stakeholder engagement. This 
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project highlights that currently available and accessible software can effectively address some 

of the foremost challenges to adaptive management in data-rich and complex systems. 
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4 Connectivity and water quality explain 

distribution and abundance of Crown-of-

thorns Starfish across the Great Barrier Reef 

4.1 Abstract 

Outbreaks of the coral eating crown-of-thorns starfish (COTS; Acanthaster cf. solaris) occur 

in cyclical waves along the Great Barrier Reef (GBR), contributing significantly to the decline 

in hard coral cover over the past 30 years. One main difficulty faced by scientists and managers 

alike, is understanding the relative importance of contributing factors to COTS outbreaks such 

as increased nutrients and water quality, larval connectivity, fishing pressure, and abiotic 

conditions. We analysed COTS abundances from the most recent outbreak (2010-2018) using 

both boosted regression trees and generalized additive models to identify key predictors of 

COTS outbreaks. We used this approach to predict the suitability of each reef on the GBR for 

COTS outbreaks at three different levels: (1) reefs with COTS present intermittently 

(Presence); (2) reefs with COTS widespread and present in most samples and  (Prevalence) (3) 

reefs experiencing outbreak levels of COTS (Outbreak). We also compared the utility of two 

auto-covariates accounting for spatial autocorrelation amongst observations, built using 

weighted inverse distance and weighted larval connectivity to reefs supporting COTS 

populations, respectively. Boosted regression trees and generalized additive mixed models 

were combined in an ensemble model to reduce the effect of model uncertainty on predictions 

of COTS presence, prevalence and outbreaks. Our results indicate that larval connectivity 

potential is the best predictor of COTS outbreaks (relative importance = 22.7%) while flood 

plume exposure (Presence=18.5%, Prevalence = 15.6%), chlorophyll concentration 

(Presence=15.3%, Prevalence = 20.5%) and temperature variables (Presence=23.1%, 

Prevalence = 7.5%) were among the most important predictors of COTS presence and 
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pervasiveness on a reef. Interestingly, whether the reef was open or closed to fishing had no 

significant effect on COTS presence or outbreaks. We identified major hotspots of COTS 

activity primarily on the mid shelf central GBR and on the southern Swains reefs. This study 

provides the first empirical comparison of the major hypotheses of COTS outbreaks and the 

first validated predictions of COTS outbreak potential at the GBR scale incorporating 

connectivity, nutrients, biophysical and spatial variables, providing a useful aid to management 

of this pest species on the GBR. 

4.2 Introduction 

Outbreaks of the corallivorous crown-of-thorns starfish (Acanthaster cf. solaris) occur on the 

Great Barrier Reef (GBR) approximately every 15 years (Kenchington 1977, Reichelt et al. 

1990b, James and Scandol 1992, Lane 1996, Seymour and Bradbury 1999) and have been 

responsible for up to 40% of the loss of hard coral cover on the GBR over the last 30 years 

(De’ath et al. 2012). Long term data suggest that outbreaks originate in the northern GBR 

within Cairns-Lizard Island region, known as the “initiation zone” (Wooldridge and Brodie 

2015, Vanhatalo et al. 2017). These are known as primary outbreaks, and are characterised by 

the build-up of COTS densities through local recruitment during repeated successful spawning 

seasons (Endean 1974, Johnson et al. 1992, Stump 1996, Pratchett et al. 2014). Inevitably, 

larger population sizes of adult COTS in the “initiation zone”  overcome Allee thresholds 

(Rogers et al. 2017), enhancing fertilisation and increasing propagule pressure, seeding 

downstream secondary outbreaks (Endean 1974, Pratchett et al. 2014). As the outbreak 

progresses, aided by the prevailing south-easterly flow of the East Australian Current, these 

secondary outbreaks spread southward down the GBR in “waves” (Kenchington 1977, 

Pratchett et al. 2014). Although the spatial patterns in the progression of an outbreak are 

somewhat consistent, predicting which reefs will be affected by an outbreak remains elusive.  

While oceanographic patterns of larval dispersal (Scandol and James 1992, Hock et al. 2014, 

Uthicke et al. 2015a), and the anthropogenic erosion of natural population regulation 

(‘terrestrial run-off hypothesis’ (Birkeland 1982) and ‘predator removal hypothesis’(Endean 
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1969)) are commonly used to explain the initiation of primary COTS outbreaks, the majority 

of reefs affected by COTS on the GBR are subject to the waves of secondary outbreaks. 

Understanding the spatial patterns of these secondary outbreaks and the role of their 

environmental drivers remains a key research and management knowledge gap (Pratchett et al. 

2017a). While recent research has used estimated larval connectivity networks to explain which 

reefs might be sources or sinks of COTS larvae across the GBR (Hock et al. 2014), it did not 

account for other important environmental drivers of COTS outbreaks (e.g. chlorophyll-a 

(Fabricius et al. 2010)), nor did it allow for the distinction between primary and secondary 

outbreaks.  

The density of COTS can vary greatly both within and among reefs over short time scales 

(Birkeland and Lucas 1990, Pratchett et al. 2014). This spatial and temporal variability of 

COTS populations indicates that there may be important differences between the drivers of 

COTS presence on a reef, and the drivers of COTS outbreaks (>0.22 individuals per manta tow 

(De’ath 2003, Sweatman et al. 2008)). Additionally, at a reef level, COTS are often found in 

patchy aggregations presumably linked to coral prey availability (Chesher 1969, Pratchett et 

al. 2017a) and to enhance fertilisation potential in spawning aggregations (Babcock et al. 1994, 

Rogers et al. 2017). Such patchiness suggests that the prevalence (herein referred to as the 

proportion of tows in which COTS are observed) of a COTS outbreak on a reef may again be 

linked to subtly different environmental and ecological drivers than COTS presence or 

outbreaks.  

Although several major hypothesis have been put forward to explain COTS population 

fluctuations, they generally fall into three major categories 1) Larval-nutrient supply 

hypotheses 2) Predatory release hypotheses and 3) Larval connectivity hypotheses, all 

underpinned by the immense fecundity and fast maturation of COTS individuals, making them 

naturally predisposed to large population fluctuations (Vine 1973, Antonelli and Kazarinoff 

1984, Uthicke et al. 2009, Babcock et al. 2016b, Mellin et al. 2016b). Enhanced nutrient levels 

since European settlement have been shown across multiple laboratory studies to have positive 

effects on COTS larval survival (Fabricius et al. 2010, Uthicke et al. 2015b, Wolfe et al. 2015, 
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2017, Pratchett et al. 2017b), while others have highlighted the confluence between elevated 

nutrient supply major and COTS outbreaks (Fabricius et al. 2010, Wooldridge and Brodie 

2015, Brodie et al. 2017). Some support for predatory release hypotheses has been provided by 

the reduced likelihood and intensity of COTS outbreaks on reefs with “no-take” zones closed 

to fishing (Sweatman 2008, Vanhatalo et al. 2017). These studies indicate that increased fishing 

pressure on large predatory fish, diminishes their ability to regulate COTS populations, thereby 

increasing of the risk of outbreaks, but these studies did not account for any other influential 

covariates other than latitudinal and cross-shelf location. While some progress has been made 

to identify potential predators of adult and juvenile COTS (Cowan et al. 2017a), it is still 

unclear how much changes to fish populations may affect the initiation and spread of COTS 

outbreaks. Finally, the recently developed hydrodynamic models for the GBR have been used 

to identify important source and sink reefs across the GBR network (Hock et al. 2014) and to 

help design decision frameworks to increase the effectiveness of COTS control on the GBR 

(Hock et al. 2016). These predictions are based entirely upon the potential larval connectivity 

estimates and assume all reefs have the same suitability for populations of COTS. An important 

extension of these models, is to explicitly incorporate known (and potential) drivers of COTS 

outbreaks and spatial patterns in COTS observation data. Most importantly these predictions 

should be validated against the available observation data to understand the associated 

uncertainty. 

Although COTS dynamics on the GBR are clearly influenced by a combination of factors, there 

has yet to be an attempt to empirically assess the importance of each of these competing 

hypotheses in a single study. Babcock et al. (2016a) provided the first qualitative assessment 

of competing hypotheses, focusing on the role of nutrients and predation in mediating COTS 

population dynamics.  While being a useful theoretical framework to understand COTS 

population dynamics, their model was not validated against empirical data and did not 

explicitly include larval connectivity. During the current outbreak cycle (2010-2019) there has 

been a vast expansion in the COTS control program, providing unprecedented monitoring data 

on COTS populations across a large extent of the GBR (Figure 4.1). This increased spatial and 
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temporal resolution of observation data and the availability of GBR-wide estimates of 

environmental variables and connectivity estimates provides a unique opportunity to compare 

competing hypotheses in a spatially explicit manner. Importantly, they also provide an 

opportunity to investigate how these variables drive the presence, outbreaks and prevalence of 

COTS populations. 

Species distribution modelling (SDM) is a powerful tool for predicting the spatial distribution 

of a species and identifying the relative importance of their environmental drivers across 

landscapes (Guisan and Thuiller 2005, Leathwick 2009, Franklin 2010, Robinson et al. 2011). 

The nature of many ecological relationships are often non-linear and recently machine learning 

approaches such as boosted regression trees (BRT) have been increasingly used to predict 

species ranges and identify important predictor variables (De’ath 2007, Elith et al. 2008, 

Sutcliffe et al. 2014). These approaches are often conducted in an ensemble model with 

generalized additive models (GAM) that can also account for non-linear trends by applying a 

smoother, providing useful flexibility for fitting ecologically realistic relationships in SDM 

(Leathwick 2009). Importantly, for species with dynamic ranges such as COTS it is important 

to include covariates pertaining to important biotic interactions and dispersal pathways in an 

SDM approach (Elith et al. 2010, Mellin et al. 2016b). SDM provides empirical and validated 

predictions of reefs most likely to experience COTS outbreaks while also modelling the relative 

importance of each of the competing hypotheses and their relationship to COTS. 

More specifically, this study will: 

(1) Identify key environmental, spatial and hydrodynamic drivers that may explain 

spatial patterns of COTS presence, outbreaks and prevalence across the extent 

of the GBR: 

(2) Construct an ensemble model to compare the relative influence and 

relationships between candidate predictors and COTS populations; 

(3) Compare the utility of contemporary COTS larval connectivity estimates over 

simple distance estimates of connectivity for accounting for spatial 
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autocorrelation and 

(4) Derive predictive maps of COTS presence, outbreaks and prevalence to help 

identify potentially important reefs for COTS control operations. 

4.3 Methods 

4.3.1 Crown-of-thorns Starfish Observation Data 

Two independent sets of COTS observation data were gathered: 1) manta tow data from the 

Australian Institute of Marine Science Long Term Monitoring Program (AIMS LTMP), and 2) 

combined manta tow observations collected by the Great Barrier Reef Marine Park Authority’s 

(GBRMPA) COTS control program and the Joint Field Management Program’s COTS 

Response Program (collected by the Queensland Parks and Wildlife Services) (Figure 4.1). The 

data used here represent the most recent, spatially and temporally extensive observational data 

for COTS. The AIMS dataset spans from 1983 to 2019, whereas the other datasets were 

collected between 2012-2019 and thus the temporal extent of this study has been limited to the 

most recent outbreaks of COTS (2012-2019). Due to the substantial culling activity and tourism 

in the Northern management area, sampling intensity is greatest in these regions, however 

substantial data has been collected in the Central and Southern GBR (Figure 4.1). Manta tow 

data from the FMP and the Control program was collated to calibrate the models, and the AIMS 

LTMP data was used to independently validate model predictions. However, using data from 

only the most recent outbreak (since 2009/09) may reduce the model’s performance in 

predicting the historical spatial distribution as this can vary between outbreak cycles (Figure 

2.2). This is addressed partially by validating model predictions against the 30 year AIMS 

LTMP dataset to test performance against historical trends. At least two complete manta-tows 

during the 2012-2019 period were required for a reef to be included in the analysis. In total 335 

reefs were included for model fitting with observations for 113 reefs used for model validation. 
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Figure 4.1 Reefs with available COTS observation data collected between 2012-2018, surveyed by either 
GBRMPA (Orange: COTS Control Program and the joint Field Management/Queensland Parks and Wildlife 
Services COTS Response Program) or Australian Institute of Marine Science Long Term Monitoring Program 
(Green) across the management areas of the GBRMP (FN=Far Northern, N= Northern, C=Central, S=Southern. 
Reefs surveyed by both institutions are shown in blue.  
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4.3.2 Response Variables 

Survey data were collated at the reef level and presence of COTS was defined as any 

observation of COTS during manta tow observations of that reef (0-1; Present/Absent). 

Outbreaks at a reef were defined as per AIMS guidelines (De’ath 2003, Sweatman et al. 2008) 

for manta tow data (>0.22 COTS/manta tow) (0-1; whether or not COTS had reached outbreak 

levels) and fitted using a binomial distribution. Prevalence of COTS at a reef was defined in 

this study as the proportion of tows where COTS were observed during a set of manta tow 

observations (a survey: observer towed around the perimeter of a reef (Miller et al. 2009a)). As 

reefs are towed multiple times throughout the study period, the maximum recorded prevalence 

was used as the response variable to reflect the upper limits of COTS prevalence per reef 

(Figure S 9.3). Using the maximum prevalence is biased towards high density observations of 

COTS. This is by design as the aim is to identify predictors of reefs that are susceptible to 

populations of COTS that are distributed widely across the focal reef. This approach does make 

the model susceptible to sampling intensity which was partially accounted for by using only 

reefs that had been surveyed at least twice over the study period. The prevalence proportion 

was logit transformed prior to model fitting using a gaussian distribution (Warton and Hui 

2011). For COTS prevalence a two-step modelling approach was used to accommodate for the 

zero-inflated nature of the proportion data (Cragg 2006, Potts and Elith 2006). Also called the 

hurdle model, this approach uses the results from the COTS presence model to define suitable 

reefs and then models the prevalence on suitable reefs only (e.g. (Mellin et al. 2012).  The 
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dataset was thus restricted to contain only reefs that have been observed to host COTS at least 

once before modelling the major predictors of COTS prevalence.  

4.3.3 Candidate Predictor Variables 

All predictor variables used within this analysis were originally compiled on a 0.01° (~ 1km) 

grid across the GBR (Matthews et al. 2019) over various time scales (Table 4.1). These data 

were then averaged at the reef level to match the spatial scale of the observation data. 

4.3.3.1 Water Quality Variables 

Estimates of water quality were included as potential predictors for COTS distribution patterns 

due to the suggested effect of water quality on COTS larval development, survival and 

outbreaks. Water quality was considered in the study using satellite derived estimates of flood 

plume exposure (Devlin et al. 2012a, Matthews et al. 2019) and annual model estimates of 

mean and standard deviation of chlorophyll-a concentration (CSIRO 2019). The average 

frequency of exposure to primary (turbid, sediment dominated plumes) and secondary 

(chlorophyll dominated plumes) flood plumes was calculated across the GBR as the proportion 

of weeks within the Australian wet season where exposure to the plume type occurred between 

2000-2014 (Devlin et al. 2012a). Daily estimates of chlorophyll concentrations were obtained 

from the eReefs 4km biogeochemical model (CSIRO 2019) 2013-2018 (all available data), and 

then annual mean and standard deviation were computed for each reef. 

4.3.3.2 Disturbance Variables 

GBR-wide estimates of mean annual exposure to potentially damaging waves generated by 

tropical cyclones and Degree Heating weeks (as an index of bleaching risk) (1986-2012) 

alongside exposure to the 1998 and 2002 bleaching events (Matthews et al. 2019). COTS 

typically prefer fast growing Acropora spp. corals (Pratchett et al. 2014), which despite being 

particularly susceptible to acute disturbances (e.g Hughes et al. 2018), recruit abundantly and 

often recover rapidly following disturbances (Linares et al. 2011, Osborne et al. 2011, Sato et 

al. 2018). COTS populations are thus presumably mediated by the disturbance history of a reef, 
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which are broadly captured by our indices of historical exposure to cyclonic waves, thermal 

stress and bleaching. 

4.3.3.3 Environmental Variables 

Static estimates of environmental variables, originally collated from the Commonwealth of 

Australia’s Environment Research Facility (CERF) Marine Biodiversity Hub (Huang et al. 

2013), were obtained from Matthews et al. (2019) over varying time scales (Table 4.1). These 

environmental variables include: annual mean estimates of nitrate, oxygen, phosphate, silicate, 

temperature and salinity, bathymetry, percentage cover of sediment components, multiple 

indices of the strength and frequency of the combined wave–current bed shear stress and spatial 

variables of minimum distances to the coast and the ocean at the edge of the GBR lagoon (Table 

4.1). These variables have been successfully used to predict benthic community composition 

(Mellin et al. 2019a), fish assemblages (Mellin et al. 2010a) and other inter-reef species 

richness and abundance on the GBR (Sutcliffe et al. 2014). Moreover the dataset includes 

estimates of a number of variables shown to be important in affecting different life history 

stages of COTS such as salinity, oxygen and water temperature (Table 4.1). 

4.3.3.4 Coral Variables 

Estimated maximum coral cover and benthic community were obtained from Mellin et al. 

(2019a). Benthic communities were identified using multivariate regression trees (De’ath 

2002), modelling the relationship between spatial and environmental covariates (Matthews et 

al. 2019) and the relative cover of benthic groups and coral taxa. Clusters of reefs were then 

defined by the multivariate regression tree corresponding to distinct taxonomic assemblages, 

characterized by its indicator taxa. The six benthic communities identified were: (i) outer reef 

– soft coral dominated; (ii) outer reef – digitate coral dominated; (iii) outer reef – tabulate coral 

dominated; (iv) mid shelf reef – mixed assemblage; (v) inner shelf reef – Porites dominated; 

(vi) Inner shelf reef – macroalgae dominated (Figure S 9.1).  

Maximum coral cover, an index of the amount of substrate available or reef carrying capacity, 

was estimated from a 22-year time series at the 46 long term monitoring sites on the GBR based 
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on a Gompertz model of coral growth (MacNeil et al. 2019, Mellin et al. 2019a). This model 

assumes that in the absence of disturbance, coral cover increases from its initial value (HCini, 

in 1996 in this case) to its asymptote (HCmax, determined by the reef carrying capacity or 

amount of available substrate).  

4.3.3.5 Spatial Variables 

Outbreaks of COTS are spatially patchy yet are more common within the mid-shelf reefs on 

the GBR and with some evidence suggesting higher outbreak probabilities at reefs open to 

fishing (Sweatman 2008, Vanhatalo et al. 2017). To account for latitudinal and longitudinal 

patterns we included the cross-shelf location (inner, middle, outer) and four latitudinal sectors 

(Southern, Central, Central-Northern, Far Northern). Additionally, the effect of zoning on 

COTS populations was included as a categorical indicating whether a reef was open or closed 

for fishing (i.e. no-take area). 

4.3.3.6 Larval Connectivity Variables 

On the GBR the development of advanced hydrodynamic and larval connectivity models 

(Condie et al. 2012, CSIRO 2019) has facilitated the development of larval connectivity 

networks for COTS (Hock et al. 2014). These networks are constructed from 4 years of 

hydrodynamic modelled data and estimate the potential connectivity between all reefs on the 

GBR (2009-2013).  Potential connectivity is a simplification of real-world processes which 

essentially represents maximal physically possible advective transport among reefs as implied 

by the model and expressed as a proportion of simulated larvae reaching destination reefs 

(Hock et al. 2014).  As our COTS observational dataset spans 9 years, and our goal is to 

highlight the most important factors promoting COTS outbreaks, we used an averaged 

connectivity network that identifies the most consistent between-reef larval connections across 

years. From this network we computed the weighted in-strength for every reef, defined at the 

reef level as the sum of the potential connectivity from every other reef on the GBR. A reef 

with high in-strength will be characterised by high potential connectivity from many source 
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reefs, thus potentially representing an important sink for COTS larvae. The in-strength s of a 

reef i is defined as  

#$ = 	& '$(
(

 

• where  wij is the potential connectivity from reef i to reef j (Barrat et al. 2004). 

4.3.4 Spatial Autocorrelation 

Outbreaks of COTS on individual reefs are not independent of one another, as an outbreak at 

one reef will likely seed an outbreak at a neighbouring reef if there is sufficient larval supply  

via ocean currents (hereafter connectivity). Connectivity between reefs and spatial correlation 

of environmental drivers means there will be spatial autocorrelation within our response 

variables. To account for this autocorrelation we adopted the autologistic model (Dormann et 

al. 2007) where a distance-weighted term (the auto-covariate) is added to the predictor set, to 

represent the influence of neighbouring observations.  

The auto-covariate A at any site i is calculated as:  

)$ = 	& *$(+(
(∈-.

	

where yj is the response value of y at site j among site i's set of ki neighbours; and vij is the 

weight given to site j's influence over site i (Augustin et al. 1996, Gumpertz et al. 1997). We 

calculated two competing auto-covariates: (i) a distance auto-covariate, whereby observations 

at site j were weighted by their inverse geographical distance to site i, and (ii) a connectivity 

auto-covariate, whereby observations were weighted by the estimated larval connectivity from 

site j to site i. Including the spatial auto-covariates allows the model to account for 

autocorrelation, but also allows the comparison of estimates of larval connectivity for COTS 

(Hock et al. 2014) to estimates based solely on distance. Additionally the connectivity auto-

covariate models the larval connectivity to reefs that have experienced outbreaks, compared to 
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the in-strength variable which measures how well connected the focal reefs is to all others 

within the network, regardless of the outbreak status of those reefs.  

Table 4.1 Predictor variable definitions, units, code used in SDM analyses: Env = envrionmental; WQ = water 
quality; Spat = Spatial; Cor = coral; Dist = disturbance; Conn = connectivity; = AutoCov = auto-covariate. 
References are provided for the source of the data and how these variables relate to COTS populations. *Indicates 
references that relate to the effect of the variable on COTS' coral prey and not COTS directly. 

Type Code Description Units Years Source COTS 
Reference* 

Env O2_SR Seasonal range oxygen mL.L-1 1960-2006 (Huang et al. 
2010, Matthews 
et al. 2019) 

(Lamare et al. 
2014, Hardy 
et al. 2014) 

Env NO3_A
V 

Average nitrate  µM 1960-2006  (Birkeland 
1982) 

Env S_AV Average salinity PSU 1960-2006  (Lucas 1973, 
Allen et al. 
2017, 
Caballes et al. 
2017b) 

Env S_SR Seasonal range salinity PSU 1960-2006   
Env BATH

Y 
Seafloor depth m 1963-2009  (Johnson 

1992) 
Env STRES

S 
Percentage of time for 
which the bed shear 
stress was > 0.4 Pa 
(Wave exposure 
proxy) 

% 2010  (Moran 1986) 

Env SST_M
IN 

Minimum sea surface 
temperature 

ºC 1999-2008  (Kamya et al. 
2014, Lamare 
et al. 2014) 

Env MUD percentage of a seabed 
sediment sample that is 
smaller than 63 µm in 
diameter 

% 1960-2009  (Wolanski et 
al. 2003)* 

WQ WQ_1 Primary (representing 
turbid , sediment 
dominated plume)  
flood plume frequency 
(weeks occurred/total 
weeks) during wet 
season (max = 26).  

Relative 
frequency 
(0-1) 

2000-2014 (Devlin et al. 
2012a, 
Matthews et al. 
2019) 

(Fabricius et 
al. 2010, 
Wolfe et al. 
2015, 
Wooldridge 
and Brodie 
2015, 
Pratchett et al. 
2017b, Brodie 
et al. 2017) 

WQ WQ_2  Secondary chlorophyll 
dominated plume 

Relative 
frequency 
(0-1) 

2000-2014   

WQ WQ_3 Further extent of 
plume, as delineated 
by salinity less than 
34ppt 

Relative 
frequency 
(0-1) 

2000-2014   

WQ CHL_A Wet season mean mg m-3 2012-2018 (CSIRO 2019)  
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V chlorophyll 
WQ CHL_S

D 
Wet season standard 
deviation chlorophyll 

mg m-3 2012-2018 (CSIRO 2019)  

Spat SHELF Cross shelf location 
(Inner, Middle, Outer) 

Factor  
(3 Levels) 

- (AIMS 2019) (Moran 1986) 

Spat SECTO
R 

Marine Park 
Latitudinal Sector 
(Southern, Central, 
Northern, Far 
Northern) 
 

Factor  
(4 Levels) 

- (GBRMPA 
2014a) 

(Moran 1986, 
Fabricius et 
al. 2010) 

Spat ZONE Open or closed to 
fishing 

Factor  
(2 Levels) 

- (GBRMPA 
2014b) 

(Sweatman 
2008, 
Vanhatalo et 
al. 2017) 

Cor BENT_
CL 

Benthic coral 
community type 

Factor  
(6 Levels) 

Estimated 
2018 

(Mellin et al. 
2019a) 

(Lucas 1984, 
Pratchett 
2007, 
Caballes et al. 
2017a) 

Cor HC_M
AX 

Predicted maximum 
hard coral cover 

0-100% Estimated 
2018 

 (Lucas 1984, 
Caballes et al. 
2017a) 

Dist DHW_
EXP 

Mean exposure to 
degree heating weeks 
1985-2012 

Num 1985-2012 (Heron et al. 
2016, Matthews 
et al. 2019) 

(Kamya et al. 
2014, Lamare 
et al. 2014) 

Dist CYC_E
XP 

Mean exposure to 
cyclonic waves (>4m) 
1985-2012 

Num 1985-2012 (Puotinen et al. 
2016, Matthews 
et al. 2019) 

(Osborne et 
al. 2011, Sato 
et al. 2018)* 

Dist BL_EX
P 

Mean exposure to 
1998 and 2002 
bleaching events 

1-5 1998,2002 (Berkelmans et 
al. 2004, 
Matthews et al. 
2019) 

(Hughes et al. 
2018a)* 

Conn IN_ST
R 

Weighted sum of 
strength of incoming 
connections 

Num 2009-2013 (Hock et al. 
2017) 

(Hock et al. 
2014, 2017, 
Wooldridge 
and Brodie 
2015) 

Conn LAR_R
ET 

Estimated proportion 
of larval retention 

% 2009-2013   

Auto 
Cov 

AC_DI
ST 

Auto-covariate 
weighted by distance 
to reefs with COTS 
present 

Num - (Dormann et al. 
2007) 

 

Auto 
Cov 

AC_CO
NN 

Auto-covariate 
weighted by estimated 
larval connectivity to 
reefs with COTS 
present 

Num - (Dormann et al. 
2007, Hock et 
al. 2017) 
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4.3.5 Model Fitting 

Boosted regression trees (BRT) were used to fit our candidate predictors set to COTS 

observation data. BRT is a machine learning algorithm that uses many simple decision trees to 

iteratively boost the predictive performance of the final models (Elith, Leathwick, & Hastie, 

2008). Model settings include the learning rate (lr) that controls the contribution of each tree 

to the final model and tree complexity (tc) that determines the extent to which interactions were 

fitted. The number of trees that achieved minimal predictive deviance (i.e., the loss in 

predictive performance due to a suboptimal model) was determined using cross-validation 

(Elith et al., 2008) (function gbm.step with tc = 3, lr = 0.001, bag fraction = 0.5).  

Multicollinearity was assessed between candidate variables, however none were omitted with 

Pearson’s correlation values <0.7 (Figure S 9.2).  To investigate the effect of spatial 

autocorrelation and the utility of connectivity- and distance-based auto-covariates, each BRT 

was fitted to our three response variables (Presence, Prevalence and Outbreak) 3 times: 1) with 

no auto-covariate; 2) with the spatial auto-covariate ; 3) with the connectivity auto-covariate, 

to give a total of 9 BRT models. One of the useful outputs of BRT is the relative influence 

(variable importance, in %) each predictor had in the classification process, allowing each 

predictor to be ranked in terms of their utility in predicting presence, prevalence or outbreaks 

of COTS. 

Generalised additive models (GAM) were also fit using the same candidate predictor set to 

potentially identify more parsimonious models. GAM provide a flexible middle ground 

between traditional generalized linear model models and machine learning approaches. All 

potential combinations of variables were fitted in a full subsets theoretic approach (Burnham 

and Anderson 2002) restricting the GAM to include a maximum of 6 variables and maximum 

5 knots per variable (n models = 40,815). Full subset models were fitted to each of our three 

responses in the same categories as the BRT: 1) with no auto-covariate; 2) with the spatial auto-

covariate; 3) with the connectivity auto-covariate, for a total of 9 GAM model categories. Each 

of the variables were then assigned a relative importance indicating the frequency of their 

inclusion in best-fit models (Fisher et al. 2018) . From the full subset of models for each of the 
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9 model categories the single best performing model was chosen via Bayesian Information 

Criterion (BIC). Partial dependency plots (which reveal the effect of a variable on the response 

after accounting for the average effects of all other variables (Elith et al. 2008)) were produced 

for the  top four most influential predictors for both BRT and GAM models, to investigate the 

effects of predictors independently. BRT and GAM models were fitted and validated in R 3.5.3 

(R Development Core Team 2017) using the “gbm” and “FSSgam” packages respectively. 

4.3.6 Model Validation 

Each of the 9 BRT and 9 GAM models were subsequently validated against the independent 

test data and using 10-fold cross validation to estimate prediction accuracy. Validation statistics 

were combined to produce a single validation metric /0, calculated for the mth model as: 

/0 =
120 + (5/.)550) + (891. )550)

3
			[1] 

where DE is the proportion of deviance explained; CV.ACC is the 10-fold cross-validation 

accuracy and IND.ACC is accuracy when validated against the AIMS Long Term Monitoring 

Program dataset. For binary response variables (presence, outbreak), accuracy refers to the 

proportion of validation observations that were correctly classified, assuming a 0.5 threshold, 

for gaussian responses (prevalence), accuracy refers to the mean prediction accuracy (1 – mean 

prediction error). 



Ch. 4. Connectivity	and water quality explain distribution and abundance of Crown-of-thorns Starfish across the 
Great Barrier Reef 

 
 Matthews – December 2019 71 

4.3.7 Ensemble Prediction 

The boosted regression tree and generalized additive models for each response were then 

combined to form weighted ensemble predictions based on the method below (Marmion et al. 

2009): 

>)$ = 	

∑ (/0 × AB210.
)0

∑ /00

			[2] 

Where >)$  is the weighted ensemble prediction for the ith location, AB210.
is the ith 

prediction for model m, and /0 is the validation statistic for model m (eqn. 2).  

A second ensemble approach was also made by “stacking” the predictions from all boosted 

regression tree and GAMs into a final boosted regression tree model (Wolpert 1992, Ting and 

Witten 1999). This is a machine learning approach to ensembles, allowing the boosted 

regression tree algorithm to choose which model predictions are the most useful in explaining 

the response variable. The weighted and “stacked” ensemble were then validated against an 

independent dataset (AIMS Long Term Monitoring Program) to test the generalisability of the 

two approaches.  Final predictions were then made across all reef locations on the GBR using 

the best performing ensemble model to indicate the reefs most suitable to COTS presence, 

prevalence and outbreaks. 

4.4 Results  

4.4.1 Presence Model 

Presence of COTS individuals on a reef was best explained by the model containing no auto-

covariate model for both BRT and GAM approaches according to both model fit (68.5 and 

61.8% deviance explained respectively) and validation against independent data (78.8% and 

71.7% accuracy respectively) (Table 4.2).   For the best fitting BRT, mean annual exposure to 

degree heating weeks (DHW_EXP = 13.1% relative influence); exposure to chlorophyll-rich 

secondary plumes (Secondary = 13.0 %) and minimum sea surface temperature (SST_MIN = 

10.8%) were the most influential predictors (Figure 4.2a).  Partial dependency plots indicated 
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a strong negative threshold response at ~1.1 DHW/year and minimum sea surface temperature 

of ~24°C. Conversely, increasing variability in chlorophyll concentration (CHL_SD) had a 

relatively linear positive effect of COTS presence, while the frequency of exposure to 

secondary plumes variables and COTS presence indicated a positive threshold type response 

at low levels, highlighting the importance of availability of larval nutrition for the 

establishment of COTS populations.  

For GAM models, exposure to cyclonic waves (included in 96.0% of top performing models), 

primary flood plume exposure (WQ_1 = 92.8%), variation in chlorophyll concentration 

(CHL_SD = 87.9%) were the most important predictors, followed by average nitrate 

concentration (NO3_AV = 20.4%) and minimum temperature (SST_MIN = 11.4%). Marginal 

effects plots of the top performing model reveal a strong positive relationship of both 

chlorophyll variability (CHL_SD) and in-strength (IN_STR) on the probability of COTS 

presence (Figure 4.3b). Exposure to primary flood plumes (WQ_1) indicated high probabilities 

of COTS presence in the absence of primary plumes and a severe dip at low levels before 

dramatically dropping off again at high exposure to these turbid flood plumes. This finding 

was relatively consistent for reefs either open or closed to fishing, although sample size was 

low at the upper extremes of primary flood plumes. Interestingly, cyclonic wave exposure 

(CYC_EXP) had a generally positive relationship with COTS presence, with a major dip 

apparent in closed fishing sites, however the confidence limits overlap substantially. 
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Table 4.2 Validation metrics for each model and ensemble for each of the three response variables; Presence, 
Outbreaks and Prevalence. Models presented in bold represent the best performing model for each response and 
model framework. * Accuracy for prevalence is calculated as 1-mean prediction error. 

Response Framework Model DE CV.ACC* IND.ACC* Vm 

Presence 

 BRT 

PA 0.68 0.87 0.79 0.78 

PAAC.Dist 0.68 0.87 0.75 0.77 

PAAC.Conn 0.66 0.85 0.74 0.75 

GAM 

PA  0.62 0.84 0.72 0.73 

PAAC.Dist 0.58 0.83 0.73 0.71 

PAAC.Conn 0.62 0.84 0.72 0.73 

ENSEMBLE 
Weighted NA 0.93 0.72 - 

Stacked 0.86 0.96 0.73 - 

Prevalence 

BRT 

PREV  0.85 0.85 0.87 0.86 

PREVAC.Dist 0.80 0.85 0.89 0.84 

PREVAC.Conn 0.88 0.85 0.88 0.87 

GAM 

PREV 0.59 0.84 0.85 0.75 

PREVAC.Dist 0.67 0.85 0.87 0.79 

PREVAC.Conn 0.57 0.83 0.85 0.75 

ENSEMBLE 
Weighted NA 0.89 0.87 - 

Stacked 0.9192 0.94 0.86 - 

Outbreak 

BRT 

OUT 0.75 0.85 0.77 0.79 

OUTAC.Dist 0.74 0.87 0.77 0.79 

OUTAC.Conn 0.77 0.86 0.78 0.80 

GAM 

OUT 0.61 0.81 0.71 0.70 

OUTAC.Dist 0.65 0.82 0.75 0.76 

OUTAC.Conn 0.61 0.82 0.71 0.71 

ENSEMBLE 
Weighted NA 0.94 0.77 - 

Stacked 0.87 0.97 0.80 - 
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4.4.2 Outbreak Model 

The outbreak potential of a reef was best explained by the connectivity based auto-covariate 

model according to both model fit (76.6% deviance explained) and validation with independent 

data (78.0% accuracy) for BRT. Importantly, the connectivity derived auto-covariate was by 

far the most influential predictor (AC_CONN = 22.7% variable importance) exhibiting a strong 

positive effect outbreak potential (Figure 4.2c). Cyclonic wave exposure (8.0% - Negative 

relationship), minimum sea surface temperature (8.0% - negative relationship), secondary 

(7.4% - threshold positive relationship) and primary flood plume exposure (6.8% - positive 

relationship) were also relatively useful predictors of COTS outbreak potential. 

GAM models performed best when including the distance based auto-covariate (64.9% 

deviance explained; 75.6% independent validation accuracy). The distance based auto-

covariate (AC_DIST = included in 98.7% of top performing models), bed-sheer stress (wave 

exposure proxy) (STRESS = 95.9%), exposure to cyclonic waves (CYC_EXP = 94.7%) were 

the most reliable variables, with exposure to secondary flood plumes (WQ_2 = 53.5%) and 

estimated maximum coral cover (HC_MAX = 30.9%) also included in a large portion of top 

performing models (Figure 4.3c). Although models containing the distance based auto 

covariate outperformed the larval connectivity auto-covariate, the in-strength of a reef was 

included in a large portion of top performing models (IN_STR  = 51.3%).  Similarly, marginal 

effects plots for the top performing model reveal a strong positive relationship for the distance 

auto-covariate, however the sharper increase suggests that reaching outbreak densities is easier 

than establishing a truly pervasive population. Outbreaks appear to occur most frequently at 

reefs that have experienced lower levels of cyclone exposure, however there is another increase 

in outbreak probability at the maximum levels of exposure. COTS outbreaks also occur at low 

to moderate exposure to primary flood plumes. Interestingly, there is a sharp increase in the 

probability of outbreak at relatively low levels of in-strength (i.e. potential larval supply) for 
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reefs closed to fishing, whereas reefs open to fishing have high chances of having COTS 

outbreaks regardless of their larval supply. 

4.4.3 Prevalence Model 

In contrast to COTS presence, the prevalence of COTS populations on a reef was best explained 

by the connectivity-based auto-covariate model according to both model fit (89.8 % deviance 

explained) and 10 fold cross validation (14.9 % mean prediction error) for BRT models (Table 

4.2).  Predictions for COTS prevalence were dominated by water quality variables (CHL_SD 

= 12.6%; WQ_2 = 8.2%; CHL_AV = 8.0%, WQ_1 = 7.4%) as well as the connectivity auto-

covariate (AC_CONN = 7.4%) and exposure to bleaching events (BL_EXP = 6.5%).  

Inspection of the partial dependency plots indicates generally positive relationships for each of 

the nutrient related variables (Figure 4.2d). Again, benthic community type (BENT_CL = 

0.55%), latitudinal sector (SECTOR = 0.21%) and zoning (ZONE = 0.42%) were poor 

predictors of COTS prevalence across a reef. 

For GAM models using the distance based auto-covariate yielded the best results for model fit 

(66.7% deviance explained) and validation against independent data (86.6% accuracy). The 

distance based auto-covariate (AC_DIST included in 98.4% of top performing models), bed 

sheer stress (wave exposure proxy) (STRESS = 98.0%), exposure to cyclonic waves 

(CYC_EXP = 49.6%) were the most reliable variables, followed by zoning (ZONE = 26.5%), 

exposure to secondary (WQ_2 = 25.9%) and primary (WQ_2 = 11.8%) flood plumes. As for 

outbreaks, although models containing the distance based auto covariate outperformed the 

larval connectivity auto-covariate, 88.1% of top-performing models included the in-strength 

(IN_STR) of a reef. Marginal effects plots of the top performing GAM model reveal strong 

positive effects of both the distance-based auto-covariate and the in-strength of a reef with a 

negative effect of bed sheer stress and a parabolic relationship with cyclone exposure, with 

prevalence increasing at higher levels of exposure (Figure 4.3d). 
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Figure 4.2 Proportion relative importance (Left hand side) (a) and partial dependency plots of the four most 
influential variables (Right hand side) for best fit boosted regression tree models of COTS Presence (b), Outbreak 
(c) and Prevalence (d). Best fit models (Table 4.2) are presented for each COTS response variable. 
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Figure 4.3 Proportion relative importance (a) and marginal effects plots of the four most influential (Right hand 
side) for best fit Generalized Additive models of COTS Presence (b), Outbreak (c), and Prevalence (d) . Variables 
with no coloration were not used in any of the best fit models as per the FSSgam procedure. For models including 
an interaction with zoning, red lines represent reefs closed to fishing and green lines are those that are open for 
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fishing. NB The partial dependencies shows the single best fit model. The single  best fit model does not 
necessarily include the all the top predictors. 

4.4.4 Ensemble Predictions 

Ensemble predictions were made for each of the three response variables by combining 

predictions from all six models (three GAM, three BRT) into both a validation-weighted and a 

stacked ensemble (Figure 4.4). While dramatically improving model fit and accuracy with the 

training data, the stacked ensemble method did not improve the accuracy of predictions made 

by the either best fit model alone or the weighted ensemble approach for the validation dataset 

(Table 4.2). For binary outcomes validated classification was more prone to Type II errors 

(Presence: false negative rate = 0.31; Outbreak: false negative rate = 0.30) than Type I errors 

(Presence: false positive rate = 0.21; Outbreak: false positive rate = 0.15).  

Whilst the upper limits of each of the response variables are generally located in the Swains 

reefs of the Southern GBR and mid-shelf reef of the Central GBR, distinct spatial patterns are 

observable for each response. Interestingly, relatively high probabilities (>0.5) of COTS 

presence were predicted offshore of the Whitsundays and Mackay Regions, where little 

empirical data exists (Figure 4.4a). While COTS may be present along inshore reefs (Figure 

4.4), our results highlight that these regions are not suitable for COTS outbreaks or pervasive 

populations. Interestingly, although a number of reefs in the central northern region of the GBR 
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are predicted to be suitable for COTS outbreaks, few in this region are predicted to have high 

levels of prevalence. 

 

 
Figure 4.4 Stacked ensemble predictions and cross-validation for COTS presence (a), outbreaks (b) and prevalence 
(c) across the management areas of the GBRMP (FN=Far Northern, N= Northern, C=Central, S=Southern. 
Validation statistics are presented as a confusion matrix for presence and outbreaks (0.5 classification threshold) 
and as linear regression for prevalence. 

Ensemble predictions estimate that at the GBR scale, 32% of reefs are suitable for COTS 

(>50% probability), whilst 12% are susceptible to outbreaks of COTS (>0.22 COTS/Manta 

Tow) and only 7% are likely to exhibit widespread pervasive population (> 50% tows 

observing a COTS). There is significant variation among cross-shelf locations and latitudinal 
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sectors (Figure 4.4), with COTS outbreaks and pervasive populations primarily on mid-shelf 

reefs in the Southern and Central Northern regions of the GBR (Figure 4.5). 

 
Figure 4.5 Percentage and number of reefs predicted to have COTS presence (b), outbreaks (b) or pervasive COTS 
populations (c), separated by management sector and cross-shelf location. Predictions use a 0.5 classification 
threshold to classify whether a reef is subject to COTS presence, outbreaks and pervasive populations 
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4.5 Discussion 

COTS presence, outbreaks and prevalence were explained, to varying degrees, by larval 

connectivity, water quality, and wave exposure (cyclonic and bed shear stress). For both 

modelling frameworks, predicting COTS presence on a reef was best achieved by models that 

did not include the spatial or connectivity based auto-covariate. Importantly however, for 

COTS to establish secondary outbreaks and/or pervasive populations, our results indicate that 

there needs to be a substantial larval input from connected reefs, as exemplified by the 

importance of the connectivity based auto-covariate variables for these responses. 

Respectively, the connectivity and distance-based auto-covariates act as modelled estimates 

and proxy indicators of COTS larval supply to a reef, and indeed both have been shown to be 

equally useful predictors in predicting the probability of an outbreak at a reef (Hock et al. 

2014). Together these results indicate that reliable connectivity pathways with COTS source 

reefs may not necessarily be a prerequisite for COTS presence, as intermittent larval supply 

may be sufficient to establish low-density COTS populations. However, the establishment of 

pervasive and/or outbreaking COTS populations are seemingly limited by larval supply from 

COTS source reefs, with continued propagule pressure promoting COTS outbreak populations 

above ecologically sustainable levels (Black and Moran 1991, Hock et al. 2014, Pratchett et al. 

2017a). These findings add empirical support for larval supply hypotheses and use of 

connectivity models to predict patterns of COTS secondary outbreaks.  

Proxy indicators of water quality (relative flood plume exposure frequency) and larval nutrient 

supply (annual maximum chlorophyll concentration) had strong positive effects on COTS 

presence, prevalence and COTS outbreaks. These findings are consistent with larval nutrient 

supply hypotheses and numerous recent studies highlighting increased larval survival at 

elevated food concentrations (Uthicke et al. 2015b, Wolfe et al. 2015, 2017, Pratchett et al. 

2017b) and correlations between outbreak cycles and chlorophyll-a peaks (Wooldridge and 

Brodie 2015, Brodie et al. 2017). Particularly important were the results from the BRT models 

that indicate sharp threshold-type responses at low levels of chlorophyll dominated secondary 
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plume exposure for all three COTS response variables and a spike in COTS prevalence at ~0.25 

and 0.6µg chl-a.L-1 (Figure 2c). These results provide some support to the contentious threshold 

responses to chlorophyll concentrations identified by Fabricius et al (2010), which occur 

between 0.25 and 1µg chla-a.L-1. Influential positive relationships were also observed for mean 

and standard deviation of chlorophyll concentration, indicating that both baseline nutrient 

concentrations (Fabricius et al. 2010, Wolfe et al. 2015, Pratchett et al. 2017b) and exposure to 

nutrient pulses are indeed important predictors of COTS outbreak dynamics (Wooldridge and 

Brodie 2015, Brodie et al. 2017). Low levels of exposure to the more turbid primary plumes 

was an important predictor, particularly for COTS outbreaks and prevalence, yet high levels of 

exposure appear to be deleterious to COTS populations, presumably due to decreased salinity. 

Reduced salinity (30% of ambient conditions) has been shown to increase larval survival 

(Lucas 1973), yet Caballes et al. (Caballes et al. 2017b) observed a sharp decline in fertilization, 

gastrulation and cleavage rates below 30%, indicating the importance of moderate exposure to 

plume conditions. These relationships are in accordance with Pratchett et al’s (2014) assertion 

that the spread of outbreaks is conditional on years of high larval survivorship, which is 

facilitated by major flood events (i.e. infrequent exposure to primary and secondary plumes) 

that enhance food availability, and promote larval survival.  Indeed, our results suggest that 

regulating water quality on the GBR remains one of the most important management actions 

for early intervention to reduce or mitigate damage caused by COTS outbreaks. 

Most importantly, our results highlight the importance of moving beyond simple (single or dual 

variable) approaches to modelling COTS distribution patterns. Whilst there is merit in creating 

easy-to-interpret and parsimonious models, there is an inherent trade-off with model accuracy. 

For COTS, prediction accuracy is key to determining the allocation of limited resources for 

COTS control. For example our full model predictions (~95% Accuracy) were far more 

effective than using solely the potential supply of COTS larvae to a reef (in-strength) (61.1%), 

exposure to flood plumes (68.1%) or combining both (68.1%). Previous research has used 

solely simulated connectivity networks to estimate the most important reefs for spreading 

waves of COTS outbreaks (Hock et al. 2014), planning optimized control procedures (Hock et 
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al. 2016) and identifying important coral source reefs which could help replenish depleted 

broodstock (Hock et al. 2017). These estimates of COTS and coral larval dispersal are also 

used by the GBRMPA to prioritise reefs for COTS control. Our findings do not undermine the 

utility of these connectivity estimates, but combining them with ecological and environmental 

parameters can improve predictions of COTS distribution patterns. Moreover, improvements 

to the underlying assumptions of the connectivity models, particularly the detail of maps 

(Roelfsema et al. 2018) used to determine reef habitats, and calibration with finer scale 

hydrodynamic models (Thomas et al. 2014, Bode et al. 2018, Mumby et al. 2018) will further 

improve modelling estimates and decision-making regarding the allocation of COTS control 

resources. 

One of the most persistent hypotheses to explain the differential occurrence of COTS outbreaks 

at individual reefs is the ‘predator removal hypothesis’. Most studies, however, do not focus 

on specifically on the abundance of the COTS high profile natural predator (the giant triton, 

Charonia tritonis) due to its scarcity on the GBR, and instead use fishing pressure (i.e. zoning 

regulation) as a proxy indicator for predator abundance (Sweatman 2008, Vanhatalo et al. 

2017). Our study found that zoning regulation was the lowest ranked predictor within the BRT 

framework, however a few interesting patterns were identified in the GAM models (Figure 

4.3b,c). Most significantly was the apparent interaction between potential larval supply 

(IN_STR) and zoning. The best-fit GAM model indicated low outbreak probability at low 

levels of larval supply for reefs closed to fishing, but outbreak probabilities remained high at 

all levels of potential larval supply for reefs open to fishing (Figure 4.3c). This suggests that 

reefs with lower larval supply may still be able to reach outbreak densities if predation pressure 

has been reduced. Therefore, our results provide some tentative support for predator-removal 

hypotheses, however it must be noted that when compared to the importance of other predictors 

(namely connectivity and water quality) the effect of zoning was small. Furthermore, it must 

be kept in mind that our analysis, like most other studies, does not account for the effect of the 

giant triton, as even at pre-harvest densities it is uncertain that they would have been effective 

at controlling COTS outbreaks (Pearson and Endean 1969, Pratchett et al. 2014). Contemporary 
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research is aimed at rearing giant tritons and synthesising their predator cues (Hall et al. 2017a, 

2017b, Bose et al. 2017) in an attempt to control COTS populations and thus future scenario 

modelling should aim to identify the potential utility of such approaches. 

Understanding and managing for the cumulative impact of disturbance on the GBR, and coral 

reefs globally, has been a key research objective in recent years (Burke et al. 2011, Hughes et 

al. 2017a, Mellin et al. 2019a) and our study highlights complex links between disturbance 

regimes (namely thermal stress and tropical cyclones) and COTS outbreaks. Interestingly, 

cyclone exposure was an influential predictor for all three responses across both modelling 

frameworks (Figures 2,3). GAM models revealed interesting marginal effects with a reduction 

of outbreak, prevalence and presence potential as exposure increased, before an increase at the 

highest levels of exposure. This can be partially explained by COTS feeding preference for fast 

growing corals (e.g. Acroporids, Pocilloporids) (Pratchett 2007) which are both the most 

acutely affected by and first to recolonise from severe disturbance events (Mellin et al. 2019b). 

In this way, recent exposure to damaging cyclonic waves may eliminate COTS preferred food 

source, yet after some years of recovery, these reefs may become ideal locations for COTS 

outbreaks. There was a clearer negative trend for wave exposure (i.e. non-cyclonic), indicating 

COTS preference for more protected mid-shelf reefs, where they are less likely to be disrupted 

from feeding via oceanic wave action.  

In our study, the impact of bleaching and thermal stress was less clear cut, likely because 

enhanced COTS larval survival in higher temperatures (Uthicke et al. 2015b) competes with 

the reduction of coral food supply for adults following severe thermal stress events. This means 

that temperature and thermal stress, whilst being important to COTS life history and prey 

availability, become difficult to interpret with regards to their effect upon COTS spatial 

distribution. Exemplifying this, although we found Degree Heating Week exposure and 

minimum sea surface temperature to be useful predictors of COTS presence (Figure 4.2,3), 

these more likely represent the latitudinal gradient that exists due to numerous severe outbreaks 

observed in the southern tip of the GBR and none observed in the warmer, most northern 

sections. Additionally, there is limited data in the northern region where the greatest impact of 
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the 2016-2017 mass bleaching events was recorded, making it difficult to draw solid 

conclusions about the effect of thermal stress and bleaching on COTS. It can be postulated 

however, that the impact of severe bleaching episodes may be similar to that of tropical 

cyclones, during which COTS preferred food sources (Acropora sp.) experience the most 

severe mortality (Hughes et al. 2018a), but are also the first to recolonise (Mellin et al. 2019b) 

given sufficient broodstock remains. Although reefs severely affected by bleaching may not be 

prone to COTS outbreaks in the short term, it is assumed that if they recover, they will once 

again become vulnerable to COTS outbreaks. It is important to note that as the incidence of 

severe bleaching events increases (Hughes et al. 2017b, King et al. 2017), coral cover may 

decline to a point where no self-sustaining COTS populations can be supported, altering the 

system entirely.  

A few important caveats need to be considered when interpreting our results. Primarily, it is 

important to note that sampling density plays an influential role in the predictability of COTS 

distribution patterns. Given that the major predictors of COTS presence, prevalence and 

outbreaks are were the auto-covariates which relate either the distance or connectivity to reefs 

with outbreaks, scarce empirical data result in uncertain predictions.  For example, high 

probabilities (>0.5) of COTS presence (Figure 3a) were predicted offshore of the Whitsundays 

and Mackay (Central-Southern) yet outbreaks or pervasive populations were not predicted in 

this region. Due to the lack of empirical data in this region, it is unclear if these predictions 

indicate connectivity between high density outbreak reefs in the Central GBR to the Southern 

region. It is more likely that our model underestimates the probability of outbreaks and 

pervasive populations in this region due to the high relative influence of the auto-covariates for 

these responses. However, as the COTS control program has expanded, there will be 

unprecedented levels of observational data for the GBR, particularly in the traditionally data 

poor regions of the far North and Central regions (Figure 4.1).  We suggest that as the data 

from the expanded COTS control program continues to be collected, filling in spatial and 

temporal gaps, such modelling exercises should be updated to include all available data, or 
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potentially automated as part of the GBRMPA’s planned Reef Integrated Monitoring and 

Reporting program to keep predictions up to date and continually improving.  

Our study is the first to compare the relative influence of these variables alongside a host of 

other potentially influential factors (i.e. salinity, temperature, wave exposure) on the presence 

of COTS individuals, the probability of COTS populations reaching outbreak densities and the 

prevalence of these populations. This highlights the importance of incorporating all available 

data (namely connectivity and environmental variables) for both the assessment of 

contemporary theory and also for embedding data into the decision making process. In a time 

where extensive observational and modelled environmental estimates exist for the entire extent 

of the GBR and reefs worldwide, it is imperative to build our predictions from all available 

data and using modelling frameworks that can accommodate them. Given that 30 years of 

research have not provided a satisfactory simple model to explain spatial patterns of COTS 

outbreaks (Babcock et al. 2016a, Pratchett et al. 2017a), it is vital to include as much relevant 

information as possible in our estimates. This study successfully integrates data from multiple 

disparate sources into a cohesive framework, comparing the relative influence of competing 

hypotheses for COTS population dynamics whilst also allowing for the nature of individual 

relationships to be interrogated. Continuing to build data-driven platforms for decision making 

and embracing emerging technologies for detection will prove crucial to the effective control 

of COTS on the GBR and globally.  
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5 Spatial resilience of the Great Barrier Reef 

under cumulative disturbance impacts 

5.1 Abstract 

In the face of increasing cumulative effects from human and natural disturbances, sustaining 

coral reefs will require a deeper understanding of the drivers of coral resilience in space and 

time. Here we develop a high-resolution, spatially explicit model of coral dynamics on 

Australia’s Great Barrier Reef (GBR). Our model accounts for biological, ecological and 

environmental processes, as well as spatial variation in water quality and the cumulative effects 

of coral diseases, bleaching, outbreaks of crown-of-thorns starfish (Acanthaster cf. solaris), 

and tropical cyclones. Our projections reconstruct coral cover trajectories between 1996 and 

2017 over a total reef area of 14,780 km2, predicting a mean annual coral loss of -0.67% y-1 

mostly due to the impact of cyclones, followed by starfish outbreaks and coral bleaching. Coral 

growth rate was the highest for outer shelf coral communities characterized by digitate and 

tabulate Acropora spp. and exposed to low seasonal variations in salinity and sea surface 

temperature, and the lowest for inner-shelf communities exposed to reduced water quality. We 

show that coral resilience (defined as the net effect of resistance and recovery following 

disturbance) was negatively related to the frequency of river plume conditions, and to reef 

accessibility to a lesser extent. Surprisingly, reef resilience was substantially lower within no-

take marine protected areas, however this difference was mostly driven by the effect of water 

quality. Our model provides a new validated, spatially explicit platform for identifying the reefs 

that face the greatest risk of biodiversity loss, and those that have the highest chances to persist 

under increasing disturbance regimes. 

  



Modelling tools to support the management of crown-of-thorns starfish (Acanthaster cf. solaris) on Australia’s 
Great Barrier Reef 

88  Matthews - December 2019 

5.2 Introduction 

Natural ecosystems are facing unprecedented and accelerating degradation (Ceballos et al. 

2015), as exemplified by increasing rates of losses of coral reef biodiversity in the 21st century 

due to anthropogenic and natural stresses and their interactions (Knowlton 2001, Hughes et al. 

2017b). Coral reefs are among the most species rich ecosystems globally (Caley et al. 2014), 

hosting hundreds of thousands of species (Fisher et al. 2015) and providing important 

ecosystem services (Costanza et al. 2014). Consequently, the potential impacts of 

anthropogenic stresses are especially high for coral reef ecosystems. 

The resilience of an ecosystem can be defined as its capacity to absorb the impact of a 

disturbance and return to its initial state (Hughes et al. 2003, 2010, Folke et al. 2004), thereby 

conferring upon it low vulnerability (Mumby et al. 2014). In this framework, temporal trends 

in coral cover is the most common indicator of coral reef resilience (Mumby and Anthony 

2015), reflecting both its resistance (capacity to withstand disturbance) and recovery (the rate 

at which coral cover returns to its pre-disturbance level). Threats that undermine coral reef 

resilience can be broadly grouped into chronic stressors (such as ocean warming, pollution, 

sedimentation, and over-harvesting) and acute stressors or disturbances (such as coral predation 

by crown-of-thorns starfish (COTS) Acanthaster cf. solaris, coral bleaching, coral disease, and 

tropical cyclones) that interact in complex ways (Vercelloni et al. 2017). For example, nutrient 

enhancement from terrestrial runoff can increase coral susceptibility to disease and bleaching 

(Vega Thurber et al. 2014), and potentially initiate outbreaks of COTS (Fabricius et al. 2010). 

Herein, ‘cumulative disturbance’ is used to reflect both the additive and synergistic effects of 

these acute and chronic stressors. Previous studies have begun to unravel the factors that make 

a reef more resilient to cumulative disturbance, including herbivory (Hughes et al. 2007b), 

connectivity (Hughes et al. 2005), and protection from fishing (Mellin et al. 2016a). However, 

the small percentage of locations where there is regular and detailed data collection represents 

a bottleneck for understanding resilience at scales relevant to regional conservation and 

management. Spatial resilience (sensu Cumming et al. (2017)), a subset of the resilience theory, 
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focuses on processes influencing a system’s ability to maintain its integrity and functions that 

operate across multiple locations and spatial scales, from local (e.g. environmental conditions, 

habitat characteristics) to regional or global (e.g., management regimes or the impact of 

regional disturbances exacerbated by global change). Yet there is currently no framework 

available for predicting which reefs are the most resilient based on spatial variation in 

underlying environmental, biological, and ecological processes at multiple spatiotemporal 

scales. Consequently, management plans are routinely designed and implemented with little 

capacity to quantify their effectiveness in supporting reef resilience, and to improve such plans 

adaptively.  

Australia’s Great Barrier Reef (GBR) offers a unique opportunity to disentangle the effects of 

acute disturbances from the impacts of fishing, which has remained low and well regulated 

compared to most reefs worldwide. Previous statistical assessments of historical trends for the 

GBR found a 50% decline in coral cover over the last three decades, mostly due to the effect 

of cyclones and COTS outbreaks (De’ath et al. 2012). However, those results were based on a 

subset of 214 reefs, representing 7% of the total reef area of the GBR with few inner-shelf 

reefs. Furthermore, this assessment did not account for coral recovery following disturbance – 

a critical requirement for accurately reconstructing coral trajectories and identifying key drivers 

of reef resilience. Recent advances have helped quantify the effect of cumulative stress on coral 

recovery potential (Ortiz et al. 2018); however they were based on even fewer samples 

collected prior to 2010, and consequently, do not include the latest and most severe bleaching 

events (Hughes et al. 2017b) and recent major cyclone impacts (Puotinen et al. 2016). Only 

few studies thus far have attempted to identify the environmental drivers of coral growth rate 

(e.g. Madin et al. 2012, Pratchett et al. 2015, MacNeil et al. 2019) and none has derived high-

resolution predictions of coral cover over the entire time series of available data. 

Here we develop a high-resolution dynamic model of coral cover for reefs of the GBR that 

directly incorporates the cumulative effects of disturbances such as coral bleaching, disease, 

COTS outbreaks, and tropical cyclones. By accounting for key ecological processes (coral 

growth and recovery potential), environmental drivers of coral cover, and observed disturbance 
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history, we reconstruct coral cover trajectories for >1,500 reefs at a 0.01° (~1 km) resolution 

over the last 22 years (1996-2017). Importantly, for the first time our model includes a spatially 

explicit index of water quality for the frequency of river plume-like conditions (Petus et al. 

2014), which can negatively affect corals (Fabricius 2005, Wolff et al. 2018). We 

independently validate our model predictions and provide quantitative estimates of model 

uncertainty – a critical requirement for informing decision-making and risk analyses (Mumby 

et al. 2011). We use this model to map the resilience of corals to anthropogenic and natural 

stressors across the GBR and show that resilience was negatively related to plume conditions.   

5.3 Methods 

5.3.1 Experimental design 

Model development followed two main steps (Figure 5.1): (i) estimate the Gompertz-based 

model parameters from long-term surveys and predict them in every 0.01° grid cell across the 

Great Barrier Reef (GBR), and (ii) couple these spatially-explicit estimates of coral cover with 

spatial layers of disturbance history and water quality to reconstruct coral cover trajectories 

between 1996 and 2017 across the GBR. 

Step (i) involved predicting benthic communities (i.e. ecological communities composed of 

hard corals and other benthic organisms or abiotic substrate) based on environmental and 

spatial correlates using multivariate regression trees. This was done using surveys of average 

benthic cover for a subset of reefs on the GBR. We then developed a Gompertz-based Bayesian 

hierarchical model that estimated intrinsic coral growth rate (DE), as well as the effect of various 

disturbances on coral cover, for individual transects nested within survey reefs and benthic 

communities. From these estimates, we predicted intrinsic coral growth rate across the GBR 

using boosted regression trees (BRT) based on environmental and spatial predictors. We also 

used our BRT model to predict the coral cover observed in 1996 (F5$G$ ) and maximum 

(F50HI) coral cover in every 0.01° grid cell based on observations at surveyed reefs.  
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Figure 5.1 Flow chart of the successive steps involved in model development. (1) Benthic communities were 
predicted across the Great Barrier Reef based on average benthic covers recorded at the survey reefs and 
environmental covariates using multivariate regression trees (MRT). Initial (HCini), maximal coral cover 
(HCmax) and coral growth rate (rs) determined from the Gompertz-based model were predicted using boosted 
regression trees (BRT). In both cases, environmental predictors from Matthews et al (2019) (see  
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Table S 9.2), in addition to past disturbance history for HCini and HCmax. Survey reefs and sample size used in 
each step are described in Table S 9.9. (2) The resulting layers were combined with disturbance history recorded 
for outbreaks of the crown-of-thorns starfish, coral bleaching and tropical cyclones, as well as an index of water 
quality (i.e. frequency of river plume-like conditions) in the Gompertz-based model of coral growth predicting 
hard coral cover between 1996-2017, further aggregated over years (coral cover mean annual change). The latter 
was compared to a cumulative disturbance index to define reef resilience based on a principal component analysis 
(PCA).    

  

Step (ii) involved predicting coral cover in each year of the time series by combining BRT 

predictions of F5$G$ , F50HI  and DE  with the impact (severity × effect size) of the various 

disturbance agents including coral bleaching, disease, COTS outbreaks, tropical cyclones, and 

unknown disturbance. This allowed us to predict coral cover in every grid cell and in every 

year between 1996 and 2017. We validated model predictions using an out-of-sample, 

independent set of survey reefs, mapped model uncertainty and identified its main sources 

based on a sensitivity analysis. Last, we compared predictions of mean annual change in coral 

cover with an index of cumulative disturbance to quantify reef resilience, defined as the net 

effect of resistance and recovery following disturbance. 

5.3.1.1 Survey reefs 

Australia’s Great Barrier Reef (GBR) consists of more than 3,000 individual reefs extending 

over 2,300 km between 9 and 24°S latitude. Reef communities of the GBR have been 

monitored yearly between 1993 and 2005, and then biennially thereafter, by the AIMS LTMP 

(Sweatman et al. 2008). As part of the AIMS LTMP, a total of 46 reefs were monitored for 

transect-based benthic cover between 1996 and 2017 in six latitudinal sectors (and management 

areas) (Cooktown-Lizard Island (Far Northern/Northern), Cairns (Northern), Townsville 

(Central), Whitsunday (Central/Southern, Swain and Capricorn-Bunker (Southern), see Figure 

2.1) spanning 150,000 km2 of the GBR. In each sector (with the exception of the Swain and 

Capricorn-Bunker sectors) at least two reefs were sampled in each of three shelf positions (i.e., 

inner, mid- and outer). An additional 45 reefs were surveyed using the same methodology as 

part of the Representative Areas Program (RAP)(Sweatman et al. 2008), and 17 reefs as part 

of the Marine Monitoring Program (MMP) (Thompson et al. 2017). Finally, reef-level 
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information on hard coral cover was collected by manta-tow for 97 reefs surveyed in 1996 and 

thereafter (44 of those being also surveyed for transect-based benthic cover). 

We used information from the 46 AIMS LTMP reefs in every step of model development, in 

addition to those from other monitoring programs where possible, depending on the number of 

survey years and whether associated disturbance data were available (Figure 2.2). We validated 

coral cover trajectories based on 10 manta-tow reefs that were not used for model calibration, 

and for which disturbance history as well as ≥10 years of data post-1996 were available. 

5.3.1.2 Survey methods and data collection 

For AIMS LTMP and RAP, transect-based photograph data on benthic assemblages (broad 

categories including subcategories: abiotic, hard coral, soft coral, coralline algae, macroalgae, 

turf algae, sponge, other, indeterminate) were collected at three sites separated by > 50 m within 

a single habitat on the reef slope (the first stretch of continuous reef on the northeast flank of 

the reef, excluding vertical drop-offs) (Jonker et al. 2008). Within each site, five permanently 

marked 50-m long transects (photographs taken at 1m intervals) were deployed parallel to the 

reef crest, each separated by 10 m along the 6-9 m depth contour. Percent cover of benthic 

categories were estimated for each transect using point sampling of a randomly selected 

sequence of 40 (out of 50) images (Jonker et al. 2008). The benthic organisms under five points 

arranged in a quincunx pattern in each image were identified to the finest taxonomic resolution 

possible (n = 200 points per transect) and the data were converted to percent cover. For MMP, 

the smaller size of inshore reefs dictated a reduced design that included two sites at each reef 

within which five 20-m long transects with n = 160 points per transect were used for estimation 

of percent cover.  In this study, we considered the combined cover of all hard corals, hereafter 

referred to as hard coral cover (HC; %).  

Manta-tow surveys were conducted around the perimeter of entire reefs to estimate hard coral 

cover and densities of COTS (Miller and Müller 1999). Manta-tow surveys involved a 

snorkeler with a ‘manta board’ (hydrofoil) being towed slowly behind a small boat around the 

entire perimeter of each survey reef close to the reef crest so that the observer surveyed a 10-
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m-wide swathe of the shallow reef slope (Bass and Miller 1996). The boat stopped every 2 min 

to allow the observer to record the mean coral cover into one of 10 categories (Bass and Miller 

1996), giving one cover estimate per tow (~200 m of reef edge) with the number of tows per 

reef varying from 3 to 325 depending on reef size. 

5.3.1.3 Environmental and spatial covariates 

A set of 31 environmental variables were collated across the GBR at a 0.01° resolution (12,670 

grid cells, spanning a total area of 14,778 km2) (Matthews et al. 2019). From these variables, 

we selected those with a reported effect on coral ecophysiology as our candidate model 

predictors (Table S 9.8). These environmental variables include long term annual averages and 

seasonal variation of temperature, salinity, chlorophyll a and nutrient concentrations (nitrate, 

phosphorus), oxygen levels and light availability, as well as sediment covers and bathymetry, 

which are all important predictors of coral reef and seabed biodiversity on the GBR (Mellin et 

al. 2010a, Sutcliffe et al. 2014) (Table S 9.8). In addition, spatial variables including the 

shortest distances to the coast and to the barrier reef were calculated for each grid cell of the 

GBR using great-circle distance (i.e., the shortest distance between two points on the surface 

of the Earth). Within this 0.01° resolution grid, reefs (polygons) were identified using the 

marine bioregion classification from the Great Barrier Marine Park Authority (GBRMPA), 

excluding any non-reef locations (e.g. cays, islands, mangroves) and restricting coverage to 

depths <30m. The grid was truncated by removing all cells with a latitude of <12°S due to data 

scarcity in northernmost locations. 

5.3.1.4 Water quality 

We used the average frequency of exposure to river plume-like conditions (PFc) as a proxy for 

exposure to dissolved nutrients and fine sediments delivered during the wet season (MacNeil 

et al. 2019). Based on satellite observations during the 2005-2013 wet seasons, the frequency 

(i.e. number of weeks per year) of exposure to primary, secondary and tertiary river plumes 

were estimated at a 1-km resolution (Petus et al. 2014). Primary water consists of the turbid, 

sediment dominated parts of the plume, secondary water consists of the chlorophyll-dominated 
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parts of the plume, and tertiary water consists of the furthest extent of the relatively clearer 

parts of the plume. Here we pooled these three water types to estimate the frequency of 

inundation of any plume water, expressed as a proportion of total wet season weeks. 

5.3.1.5 Disturbance data 

The disturbance data included two components (i) point-based records of coral damage 

collected concurrently with the benthic surveys (e.g., Mellin et al. 2016a) and (ii) spatial layers 

of disturbance history and associated severity across the GBR available in Matthews et al. 

(2019). 

(i) In point-based records of coral damage, disturbances were classified into five categories 

(i.e. coral bleaching, COTS outbreaks, coral disease, cyclones or unknown) following Osborne 

et al. (2011) based on visual assessment by experienced divers during reef-scale manta tow and 

intensive SCUBA surveys. A disturbance was recorded when the total coral cover decreased 

by more than 5% from its pre-disturbance value between two consecutive periods. Each 

disturbance was identified by distinctive and identifiable effects on corals, such as the presence 

of COTS individuals or feeding scars, or dislodged and broken coral indicative of cyclone 

damage (Osborne et al. 2011). An additional category labelled ‘unknown’ was used to classify 

unidentified disturbances. This dataset thus resulted in a series of five binary variables coding 

the presence (1) or absence (0) of each type of disturbance in each year and at each reef where 

transect-based surveys of benthic assemblages were conducted. 

(ii) Spatial layers of disturbance severity during the study period were available at a 0.01° 

resolution for coral bleaching, COTS outbreaks and cyclones (Matthews et al. 2019). In this 

dataset, per cent coral cover bleached was interpolated using inverse distance weighting 

(maximum distance = 1°; minimum observations = 3) from extensive aerial surveys at 641 

reefs for the 1998, 2002 and 2016 mass bleaching events on the GBR (Berkelmans et al. 2004, 

Hughes et al. 2017b) Interpolated maps of COTS densities were also generated by inverse 

distance weighting (maximum distance = 1°; minimum observations = 3) from the manta tow 

data collected by the Australian Institute of Marine Science in every year from 1996 to 2017 
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(Miller and Müller 1999). The potential for cyclone damage was estimated based on 4-km 

resolution reconstructed sea state as per Puotinen et al. (2016). This model predicts the 

incidence of seas rough enough to severely damage corals (top one-third of wave heights >4m) 

caused by cyclones for every cyclone between 1996-2016. We then used these spatial layers to 

associate the binary occurrence of each disturbance resulting in coral cover loss (as per [i]) 

with its severity. Note that, at the time of writing, aerial surveys following the 2017 bleaching 

event as well as the impact of the 2017 tropical cyclone Debbie (based on the methodology 

developed by Puotinen et al. (2016)]) were unavailable. Due to the unavailability of spatially 

continuous information on the occurrence and severity of coral disease and unidentified 

disturbance (which both had a low influence on coral cover compared to cyclones or COTS 

outbreaks), we randomly generated spatial layers for these disturbances in every year and every 

model simulation (N = 1,000) matching their observed frequency as per the AIMS LTMP 

historical records. 

Disturbance impacts are typically patchy at sub-reef scales, because some sections of the reef 

might not be exposed to cyclone-generated waves and/or be structurally vulnerable (Puotinen 

et al. 2016), or because of local COTS aggregation patterns (Pratchett et al., 2014). The 

consequence is a discrepancy between the expected effect of disturbance from our layers and 

the actual coral loss recorded at each transect during AIMS LTMP surveys. To explicitly 

account for such sub-reef scale effects, we resampled the disturbance data in every model 

simulation (N = 1,000) to match the actual disturbance frequencies observed during field 

surveys. In other words, we ‘turned off’ some disturbances assuming they would not result in 

a noticeable coral loss at the reef scale, with the frequency of these false positives (6.4% for 

coral bleaching; 6.9% for COTS outbreaks and 9.6% for tropical cyclones) being determined 

from the AIMS LTMP disturbance history and field-based records of coral loss. We further 
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assess model sensitivity to the adjusted disturbance data (among other sources of model 

uncertainty; see Model uncertainty and sensitivity analysis). 

5.3.2 Modelling 

5.3.2.1 Predicting benthic communities across the GBR 

We identified benthic communities using multivariate regression trees (De’ath 2002) (MRT), 

which allowed us to model the relationship between spatial and environmental covariates, and 

the relative cover of the different benthic groups and coral taxa. MRT forms clusters of sites 

by repeated splitting of the data, with each split determined by habitat characteristics (De’ath 

2002) and corresponding to a distinct species assemblage. Tree fit is defined by the relative 

error (RE; total impurity of the final tree divided by the impurity of the original data). RE is an 

over-optimistic estimate of tree accuracy, which is better estimated from the cross-validated 

relative error (CVRE). We determined the best tree size (i.e. number of leaves or clusters 

formed by the tree) as that which minimized CVRE, which varies from zero for a perfect 

predictor to nearly one for a poor predictor (De’ath 2002). We then examined the splits and 

quantified the variance that each of them explained, based on the entire dataset and for each 

individual functional group. We used the resulting MRT to predict community membership for 

every 0.01° grid cell on the GBR based on the spatial layers available for our covariates. MRT 

were fit in the R package ‘mvpart’. 

We subsequently characterized each cluster by its indicator taxa based on the Dufrêne-

Legendre index, which is based on the relative abundance and frequency of each benthic 

category within a given cluster (Dufrêne and Legendre 1997). The index varies between 0, no 

occurrences of a species within a cluster, to 100, if a species occurs at all sites within the cluster 

and in no other cluster. The index is associated with the probability of resulting from a random 

pattern, based on 250 reallocations of sites among clusters (Dufrêne and Legendre 1997). 

5.3.2.2 Gompertz model of coral growth 

We reconstructed coral cover trajectories over the last 22 years (1996-2017) for every 0.01° 

grid cell based on the parameters estimated from a Gompertz-based Bayesian hierarchical 
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model of coral growth previously fitted to the AIMS LTMP reefs (MacNeil et al. 2019). This 

growth model is an adaptation of the Gompertz-based model of benthic cover developed by 

Fukaya et al. (2010) that quantifies the intrinsic growth rate (DE ) and strength of density 

dependence (J) for sessile species, expressed as coverage of a defined sampling area. In our 

case, this was the percentage of visual points that contained hard coral within the AIMS LTMP 

data per transect (F5K). Using a Binomial (BIN) observation model of proportion of hard coral 

cover (L), we assumed a hierarchy where transect level observations (i) at time (t), were nested 

within reef (r), nested within each benthic community (c): 

F5MNK,$~Q89(100, LM,N,K,$) 

with mean model: 

log	(LM,N,K,$ × 100) 	

= DE,MN + V1 − JM,NXlog	(F5M,N,KYZ,$)

+	&[$	1\#]^D_$,K

$

+ 	&[$.`a	1\#]^D_$,K 	× 	5)N 	+	&[$.bcM	1\#]^D_$,K 	× 	AdM,N

$$

 

[Eq. 1] 

and where 

JM,N~9(JM, efM) 

DE,M,N~9(DE,M + gh5)N + gZAd`,N, 	eNM) 

JM, DE,M, gh, gZ, [$~9(0, 100) 

efM, eNM~i(0,100) 

Where  DE is the intrinsic growth rate, J is the strength of density dependence, [$ is the effect 

size of the ith disturbance occurring in year t (1\#]^D_$,K ; i.e. bleaching, COTS outbreak, 
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disease, cyclone or unknown), 5) is a binary indicating which reefs are located in a closed (i.e. 

no-take) area, AdM is the water quality proxy for river plume-like conditions (Petus et al. 2014) 

and [bcM its effect size, and [$.`a and [$.bcM are the effect size relating to interactions between 

disturbances and 5) and AdM  respectively. Our model was thus built at a yearly resolution, 

assuming that any reduction in coral cover measured during a survey (i.e. above the 5% 

threshold) reflected the impact of a disturbance occurring between that survey and the previous 

one. We did not include interactions among disturbances because only <1% of all grid cells 

were affected by two disturbances within the same year, with insufficient instances of AIMS 

LTMP reefs being exposed to co-occurring disturbances during the study period. Note that in 

this formulation, each benthic community had their own global mean at the top of the hierarchy. 

In the absence of disturbance, coral cover increases from its initial value (F5$G$, in 1996 in our 

case) to its asymptote (F50HI, determined by the reef carrying capacity or amount of available 

substrate in grid cell i) where  

lim
K→m

F5K = 	 lim
K→m

F5KYZ = 	F50HI [Eq. 2] 

which, once combined with Eq. 1, gives 

J =
Nn

o`pqr

  [Eq. 3] 

Because the strength of density dependence (J) depends on the intrinsic growth rate (DE ) 

(Fukaya et al. 2010), for which we needed separate predictions in each grid cell, we elected to 

predict F50HI (rather than J) in each grid cell using the same modelling technique to avoid 

circularity, and calculated J based on Eq. 3.  

Those models were run in a Bayesian framework, using the PyMC3 package in Python 

(Salvatier et al. 2016), with inferences made from 5,000 samples of the default No U-Turn 

Sampler (NUTS) algorithm. Parallel chains were run, from starting values initialized 

automatically by an Automatic Differentiation Variational Inference (ADVI) algorithm, to look 

for convergence of posterior parameter estimates using the Gelman-Rubin convergence 
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statistic (R-hat); posterior traces and predictive intervals were also examined for evidence of 

convergence and model fit.  

5.3.2.3 Predicting coral growth rate (st), initial (uvwxw) and maximal (uvyz{) cover 
across the GBR 

We predicted DE, F5$G$ and F50HI in each 0.01° grid cell from observed values at the survey 

reefs and as a function of spatial, environmental and disturbance-based correlates using boosted 

regression trees (BRT). BRT is a machine learning algorithm that uses many simple decision 

trees to iteratively boost the predictive performance of the final models (Elith et al. 2008). 

Model settings include the learning rate (lr) that controls the contribution of each tree to the 

final model and tree complexity (tc) that determines the extent to which interactions were fitted. 

The number of trees (nt) that achieved minimal predictive deviance (i.e., the loss in predictive 

performance due to a suboptimal model) was determined using cross-validation (Elith et al. 

2008) (function gbm.step with tc = 2, lr = 0.001, bag fraction = 0.5). 

We assumed a Gaussian error distribution in all three BRT, after a logit-transformation of F5$G$ 

and F50HIto achieve normality (no transformation was required for  DE). In addition to spatial 

and environmental predictors, we used past disturbance history over a 10-year period based on 

evidence that some disturbance impacts can have temporally-lagged and lasting effects on coral 

communities over this timeframe (Mellin et al. 2016a). We thus included the mean cyclone 

severity and the mean COTS density between 1985-1995 to predict the coral cover observed 

in 1996 (F5$G$); and the mean cyclone severity, COTS density during 1996-2016 in addition 

to the per cent coral bleached in 1998, 2002 and 2016 to predict the maximum coral cover 

observed between 1996-2017 (F50HI ). Because DE estimates already accounted for the 

influence of past disturbance (filtered out by disturbance parameters in the Bayesian 

hierarchical model), we only accounted for spatial and environmental variables in this BRT to 

avoid circularity.  

The relative contribution of the predictors to the final models of F5$G$ , F50HIand DE	was 

determined based on the variable importance score (%). For each response variable, the mean 
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prediction error was assessed using a 10-fold cross-validation (Davison and Hinkley 1997). 

This bootstrap resampling procedure estimates a mean prediction error for 10 % of observations 

that were randomly omitted from the calibration dataset; this procedure was iterated 1,000 

times. We also verified that model residuals were not spatially autocorrelated using Moran’s I 

and a Bonferroni correction (P > 0.05) (Diggle et al. 1998). Finally, we generated a set of 100 

model predictions across the GBR and calculated mean estimates of F5$G$, F50HI  and DE	and 

their standard deviation in each cell. BRT were fit in R 3.2.2 (R Development Core Team 2017) 

using the ‘gbm’ package, along with the tutorial and functions provided in Elith et al. (2008). 

5.3.2.4 Correction of systematic bias in manta-tow estimates 

To improve model predictive power and spatial representation, we used data from the manta 

tow surveys (in addition to the transect-based AIMS LTMP data) for calibrating BRT of F5$G$ 

and	F50HI  (Table S 9.9). However, due to a moderate yet systematic bias of manta-tow coral 

cover estimates being lower than transect-based ones (largely resulting from non-coral habitats 

such as sandy back-reef lagoons being included in the manta tow; Osborne et al., 2011), we 

first had to derive a corrected manta-tow estimate of coral cover accounting for this bias. We 

thus fitted a linear regression predicting transect-based coral cover (averaged to the reef level) 

as a function of manta tow-based coral cover, using data from the 44 reefs that were sampled 

both by manta-tow and along transects. We then used this regression to predict a corrected 

estimate of observed coral cover for all reefs surveyed by manta-tow, which we could then 

compare to transect-based coral cover estimates. For both datasets, we defined initial coral 

cover at each reef (F5$G$) as the mean coral cover observed in 1996 across all transects, and 

the maximum coral cover (F50HI ) as the highest mean coral cover observed at that reef 

between 1996 and 2017. 

5.3.2.5 Model validation, uncertainty and sensitivity analysis 

We validated predicted coral cover trajectories by comparing them with corrected manta-tow 

estimates of coral cover for reefs that were not used for model calibration, and for which at 

least 10 yearly samples were available from 1995 along with the associated disturbance history 
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(N = 10). Based on these 10 time series, we calculated the mean prediction error (PredErr, %) 

and the coefficient of determination based on the regression of predictions against observations 

(R2, %). 

We identified areas where model predictions were interpolated (thus resulting in high 

confidence in model predictions (Leathwick 2009, Yates et al. 2018) and those where 

predictions were extrapolated (lower confidence). We used a common procedure to identify 

the environmental envelope used for model calibration based on a principal component analysis 

(PCA) (e.g., Broennimann et al. 2007, Medley 2010) with environmental and spatial predictors 

at the survey reefs as input variables, and the 12,670 grid cells as individuals. Based on the 

PCA individual factorial plan, we outlined the modelled environmental envelope as the convex 

hull containing all survey reefs. Grid cells falling within this environmental envelope were 

defined as interpolated locations; conversely, those outside this envelope were considered part 

of the extrapolation areas. 

To account for model uncertainty, we ran a total of 1,000 model simulations in which we 

resampled every parameter from their predicted distribution. We used Latin hypercube 

sampling (Norton 2015) (R package ‘lhs’) to determine a total of 1000 combinations of 

percentiles, evenly spread out in the new parameter space, which we used to draw a single 

value forDE, F5$G$, F50HI and the disturbance effect sizes (from their posterior distributions) 

in each simulation. The resulting predictions of coral cover in every grid cell (rows), year 

(columns) and model simulation were stored as 3D arrays and further aggregated across the 

third dimension to derive coral cover statistics across model simulations (mean, median, 

interquartile range and 95% confidence interval). We mapped model uncertainty as the 

coefficient of variation (%) in predicted mean annual change in coral cover across all 

simulations.  

Finally, we ran a sensitivity analysis to identify, among all model parameters, the main sources 

of model uncertainty and any possible interactions among them (Pearson et al. 2014). In this 

analysis, we used the mean annual change in coral cover predicted in each simulation as the 
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response variable, and the (resampled) parameter estimates used in each simulation as the 

predictors of a boosted regression tree. This analysis allowed us to quantify the proportion of 

model uncertainty that is attributable to variation in parameter estimates (i.e., percent deviance 

explained by the BRT), the respective contribution of each model parameter (i.e., relative 

importance of each predictor, %) and possible interactions among them (Norton 2015). 

5.3.2.6 Mapping coral resilience 

We mapped coral resilience (i.e. the net effect of resistance and recovery following 

disturbance) based on the relationship between predicted mean annual decline in coral cover 

and cumulative impacts of mean annual disturbance at each reef. To do this, we calculated the 

cumulative disturbance index in each grid cell as the sum of all cyclones, bleaching and COTS 

outbreak severities weighted by their respective effect sizes from the Bayesian HLM. We 

defined categories of low/high decline, and low/high disturbance, based on the median of each 

index. 

We defined resilience as the second axis of a PCA based on predicted decline in coral cover 

and cumulative disturbance for all reefs (PC2; 21% variation explained). Reefs with relatively 

low decline following high disturbance (i.e., high resilience reefs) scored positively on PC2, 

while reefs with high decline following low disturbance (i.e., low resilience reefs) scored 

negatively. For this analysis, we excluded reefs located in extrapolated areas, for which we had 

lower confidence in model predictions. 

We investigated the relationship between coral resilience and potential anthropogenic 

covariates that included our water quality index (PFc), an index of reef accessibility based on 

potential travel time from nearest human settlement (Maire et al. 2016), and whether a reef was 

designated as a no-take marine protected area based on the 2004 zoning plan by the Great 

Barrier Reef Marine Park Authority. We fitted a generalized additive model (Hastie and 

Tibshirani 1990) to model the relationship between coral resilience and PFc, and that between 

resilience and reef accessibility, using a Gaussian error distribution and a cubic spline 

smoothing function (k=3). We tested whether coral resilience differed among no-take reefs and 
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those open to fishing using a non-parametric Kruskal-Wallis test. All code was written in R  

(except for the Gompertz model in Python; see corresponding section) and is provided in 

Supplementary Information.   

5.4 Results 

5.4.1 Regional impacts of disturbance on the GBR 

The impact of tropical cyclones, COTS outbreaks, and coral bleaching on coral cover varied 

greatly in space and time across the GBR (Figure 5.2). Based on the 46 reefs regularly surveyed 

by the AIMS LTMP, our Bayesian hierarchical model showed that tropical cyclones had the 

strongest, most consistent negative effect on coral cover, followed by COTS outbreaks and 

coral bleaching (Figure S 9.4). By combining these effect sizes with high-resolution maps of 

annual disturbance severity, we were able to predict the impacts of each disturbance on coral 

cover across the GBR from 1996 to 2017 (Figure 5.2a-c) and show regional differences in how 

these disturbances likely impacted individual reefs.  

Cyclone impact was greatest between Townsville and Mackay (Figure 5.2a), where tropical 

cyclones Hamish (2009) and Dylan (2014) generated some of the longest-lasting destructive 

waves (Figure 2.2). COTS outbreaks propagated in a southerly direction from reefs north of 

Cairns (Figure 2.2), and formed a second localised concentration further south. The highest 

COTS densities on average (and thus the largest COTS impact on coral cover) were recorded 

off Townsville and on offshore reefs between Mackay and Rockhampton (Figure 5.2b). The 

impact of coral bleaching, based on aerial surveys following the three mass coral bleaching 

events (1998, 2002, and 2016), was greatest on the northern half of the GBR (Figure 5.2c), a 

pattern that was mostly driven by the latest and most severe bleaching event (Figure 2.2). 
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Figure 5.2 Regional impact of major disturbances on the Great Barrier Reef and resulting trends in coral cover. 
Average 1996-2017 impact of (A) tropical cyclones, (B) outbreaks of the crown-of-thorns starfish (COTS), and 
(C) coral bleaching (note that only the three mass bleaching events were considered). (D) Mean predicted annual 
rate of change in coral cover (% y-1) during the same period, with greyed out areas indicating lower confidence 
in model predictions due to extrapolation. (E) Relative impact of each disturbance in each year. (F) Mean 
predictions of coral cover averaged across the entire Great Barrier Reef; envelopes indicate the 95% confidence 
interval across a total of 1000 simulations (light hue), the interquartile range (medium hue) and the mean trajectory 
(dark continuous line). 

Our coral cover predictions closely followed spatiotemporal trends in disturbance impacts, with 

the greatest decline in coral cover predicted for central reefs mostly impacted by cyclones and, 

to a lesser extent, northern reefs impacted by both cyclones and bleaching (Figure 5.2d). 

Between 1996 and 2017, we predicted an increase in coral cover for approximately 10.2% of 

the total reef area, mostly for southernmost reefs that were less impacted by cyclones and 
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bleaching (note this calculation excludes reefs for which predictions were extrapolated as this 

results in low confidence – these areas are enclosed within grey outlines on Figure 5.2d).  

Between 1996 and 2017 and across the breadth of the GBR, coral cover declined at a mean 

annual rate of -0.67% y-1 (Figure 5.2f). This decline was steepest towards the end of the time 

period (2009-2016; -1.92 % y-1), reflecting a response of hard corals to multiple severe and 

widespread cyclones (including Hamish in 2009, Yasi in 2011, and Dylan in 2014) and to the 

2016 mass coral bleaching event (Figure 5.2e). Coral cover also markedly declined between 

1996-2002 (−0.75% y-1), which encompassed mass bleaching events in 1988 and 2002 and a 

major COTS outbreak (Figure 2.2). In between those time periods, mean coral cover increased 

by +0.73% y-1 on average (2003-2009). 

5.4.2 GBR-wide recovery 

Coral recovery potential varied among the different coral communities, which we identified 

from the survey data and predicted across the GBR using MRT. Among candidate MRT 

predictors, the distance to the outer barrier reef edge, as well as seasonal variation in sea surface 

temperature and seabed oxygen concentration (strongly correlated to the latter: Spearman’s rho 

= 0.61, P < 0.001) were the main predictors of benthic community composition (Figure S 9.5). 

Using this model, we were able to define 6 benthic community types across the GBR, which 

consisted of major functional groups of corals as well as other benthic organisms or abiotic 

substrate. Outer-shelf communities were characterized by the fast-growing tabular or digitate 

Acropora spp., as opposed to inner-shelf communities that were characterized by Porites or 

macroalgae (Figure 5.3).  

Our Gompertz-based Bayesian hierarchical model revealed that the frequency of river plume 

conditions (PFc) had a strong negative effect on coral intrinsic growth rate (DE), which was 

higher for outer-shelf communities characterized by tabular or digitate Acropora spp. (Supp 

Fig. S2). Accordingly, high-resolution predictions of DE derived from the BRT across the GBR 
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increased from inner- to outer-shelf reefs, with 76% of deviance in DE  posterior estimates 

explained by the BRT (Figure 5.3a) and a mean cross-validated prediction error of 21 %.  

The distance to the reef edge (strongly correlated to PFc; Spearman’s  r = 0.63, p < 0.001) was 

the main predictor of coral growth rate (20% relative importance), followed by the benthic 

community (10%), and seasonal variation in salinity and sea surface temperature (9% each) 

(Figure 5.3b). Predicted coral growth rate was the highest for outer-shelf communities 

characterized by tabulate and digitate Acropora spp., and the lowest for inner-shelf 

communities with relatively high macroalgal cover (Figure 5.3c). The fastest-growing 
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communities characterized by tabulate and digitate Acropora spp. were concentrated in 2.1% 

of the study area overlapping the outer edge of the GBR (Figure 5.3a).  

 
Figure 5.3 GBR-wide predictions of benthic communities and coral intrinsic growth rate. (A) Benthic 
communities (left) and coral growth rate (right) were predicted based on major environmental covariates using 
multivariate (MRT) and boosted (BRT) regression trees, respectively. The insert shows the relationship between 
posterior estimates of coral growth rate from the Gompertz model for the AIMS LTMP reefs, used as observations 
in the BRT, and BRT predictions. (B) Marginal plots showing the partial effect of major environmental drivers 
on coral growth rate (with SST = sea surface temperature, sdev = standard deviation). The relative importance of 
each BRT predictor (%) is indicated in brackets. (C) Distribution of coral growth rate predicted by BRT among 
benthic communities. The thick line indicates the median, hinges the interquartile range, whiskers the 90% 
confidence interval and dots the outliers. 

Our spatially-explicit predictions of other Gompertz parameters, namely initial (i.e. F5$G$, in 

1996) and maximum (F50HI) coral cover at each reef, showed that BRT explained 78% and 

80% of the deviance in F5$G$ and F50HI at survey reefs, respectively (Figure S 9.6). The mean 

cyclone severity between 1985-1995 had the strongest negative effect on F5$G$, followed by 
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mean seabed temperature. Seasonal variation in salinity was a major driver of F50HI  at a 

regional scale, followed by longitude (reflecting cross-shelf environmental gradients in 

multiple environmental variables that increased or decreased with longitude). Mean cross-

validated prediction error was 5% and 11% for initial and maximum cover respectively, with 

high confidence in predictions within interpolated locations (64% of the study area) (Figure S 

9.6). 

5.4.3 Mapping coral resilience across the GBR 

Based on our cumulative disturbance index that represented the combined impacts of tropical 

cyclones, COTS outbreaks, and bleaching, most reefs experiencing low disturbance were 

predicted to show low decline in coral cover, and vice versa (Figure 5.4a). However, 15% of 

all reefs experienced strong decline following low disturbance, indicating they were low-

resilience reefs. Conversely, 17 % of all reefs exhibited low decline following high disturbance, 

thus representing high-resilience reefs. The latter were mostly located in the southernmost (and 

northernmost to a lesser extent) sections of the GBR, with a few clusters in the central GBR 

(dark green on Figure 5.4a). 

Reef resilience was strongly and negatively related to the frequency of river plume-like 

conditions (general additive model; 14.7% deviance explained; Figure 5.4b), and to reef 

accessibility to a lesser extent (3% deviance explained; Figure 5.4c). When all reefs were 

considered, reef resilience was substantially lower on closed reefs (i.e. within no-take marine 

protected areas) compared to open reefs (Kruskal Wallis test; p < 0.001) (Figure 5.4d). Most 

closed reefs were associated with less frequent plume-like conditions (lower median PFc) than 

open reefs; however the distribution of PFc was skewed and resulted in greater mean PFc within 

closed reefs (Figure S 9.7). When reefs with greater exposure to plume-like conditions were 

removed from the analysis, resilience did not differ between closed and open reefs (Figure 
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5.4d; PFc < 0.5; p = 0.412) although DE  remained substantially higher within closed reefs 

(Figure S 9.7; PFc < 0.5; p < 0.001). 

 
Figure 5.4 Map and correlates of coral resilience on the Great Barrier Reef. (A) Mean annual decline in coral 
cover vs. mean annual disturbance impact (i.e. the combined severity of all coral bleaching events, COTS 
outbreaks, and cyclones recorded over the study period, and weighted by their effect size). Low and high 
categories corresponded to values below and above the median, respectively. High-resilience reefs are 
characterized by low decline in coral cover following high disturbance, as shown by the resilience gradient (R 
arrow) used to assign a resilience value to each reef (see Methods). The intensity of the grey shading is 
proportional to the frequency of river plume-like conditions (PFc). (B) Relationship between coral resilience and 
PFc. The regression line was fitted using a general additive model (GAM), with the envelope showing the 95% 
confidence interval. (C) Relationship between coral resilience and reef accessibility (measured as potential travel 
time from major coastal cities) and GAM fit. (D) Distribution of coral resilience between open and closed (i.e. 
no-take) reefs, either considering all reefs (left) or only those with less frequent exposure to plume-like conditions 
(right; PFc < 0.5). The white dot indicates the median, the vertical black bar the interquartile range, and plot width 
represents the proportion of all reefs. 

5.4.4 Model validation, uncertainty and sensitivity analysis 

Projected coral trajectories closely matched historical records for 10 reefs surveyed using 

manta-tow that were not used for model calibration (Figure 5.5). For this independent dataset, 
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our model accurately captured the impact of multiple disturbances and subsequent coral 

recovery (mean prediction error = 6.7%; R2 = 0.57). When considering all reefs with at least 

10 years of coral cover data available (N = 54), the mean prediction error was 5.8% and the 

goodness-of-fit (R2) was 0.64. Uncertainty in model predictions tended to be higher in the case 

of rare yet severe disturbances (e.g. Ben Reef; Figure 5.5) compared to multiple, less severe 

ones (e.g. Credlin or Feather Reefs; Figure 5.5). We mapped the coefficient of variation in 

predicted annual change in coral cover across all simulations and found that average model 

uncertainty was 33.6% (ranging 0.7-84.4%). The lowest uncertainty occurred at survey reefs 

and the highest in central sections of the GBR distant from them (Figure S 9.8).  

 
Figure 5.5 Model validation. Predicted trajectories of coral cover (blue envelopes) compared with independent 
observations (black dots) for manta-tow reefs. Light blue envelopes indicate the 95% confidence interval across 
1,000 simulations; medium blue envelopes show the interquartile range (25th and 75th percentiles), and the dark 
blue line shows the median. Vertical lines indicate disturbances with blue = coral bleaching, orange = crown-of-
thorns starfish outbreak, red = tropical cyclone, grey = coral disease. 

Our sensitivity analysis revealed that predicted coral decline was the most sensitive to variation 

in DE (BRT relative importance = 75%) followed by F5$G$ (8.9%) and tropical cyclone impact 
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(4.9%) (Figure S 9.9). We found a weak interactive effect of DE and F5$G$ on overall patterns 

of predicted coral decline, with this effect being greatest at low DE combined with high F5$G$ 

(Figure S 9.9). 

5.5 Discussion 

By reconstructing coral cover trajectories at a fine spatial resolution across Australia’s Great 

Barrier Reef (GBR) over the last 22 years, we provide the most comprehensive, spatially 

explicit estimate of long-term coral cover trajectories for any marine system, and disentangle 

the relative impact of multiple agents of disturbance on coral growth at local-to-regional scales. 

We show that coral cover is likely to have declined on 90% of all reefs. Historically, this decline 

has primarily been attributed to tropical cyclones and COTS outbreaks (De’ath et al. 2012), 

and in more recent years to coral bleaching (Hughes et al. 2017b). High water quality correlates 

strongly with coral resilience, with low reef accessibility (remoteness) also having a positive, 

albeit weaker, association. Surprisingly, reef resilience was substantially lower within no-take 

marine protected areas; however, this difference was driven by the effect of water quality and 

was not evident among reefs with less frequent exposure to plume-like conditions. We have 

high confidence in these results because model predictions closely matched independent 

observation records. By incorporating the main environmental drivers of coral cover and its 

growth rate into a disturbance-based model of coral decline and recovery, we offer a new and 

robust framework for similar applications to other reef regions around the world – a critical 

requirement for sustainable reef management over the coming decades (Hughes et al. 2017b). 

Tropical cyclones were the strongest driver of coral cover on the GBR over the last 22 years, 

which stems from a combination of greater effect size and frequency compared to COTS 

outbreaks or bleaching. Only a broad-scale and high-resolution approach such as ours that 

explicitly maps spatial variation across individual reefs could reveal these spatiotemporal 

patterns, because most of the cyclone impacts occurred within unmonitored reef sections (e.g. 

Figure 2.2) that were not considered in previous studies (De’ath et al. 2012, Osborne et al. 

2017). The stronger effect size of cyclones likely reflects that cyclones typically alter habitat 
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structural complexity immediately, unlike other disturbances that can leave coral skeletons 

intact (Osborne et al. 2017). This loss of habitat complexity affects a range of coral-associated 

organisms such as herbivorous fishes and invertebrates that otherwise facilitate coral 

recruitment and recovery through grazing (Cheal et al. 2017, Osborne et al. 2017). In contrast, 

coral cover generally recovers faster following COTS outbreaks because the coral skeletons 

that remain in place provide suitable habitat for coral recruits and can sometimes shelter 

remnants of healthy living coral (Osborne et al. 2017).  

In our study, the relatively smaller effect of bleaching is partly due to the most severe bleaching 

event (2016) being only recent (compared to 14 years of cyclone impacts out of a total of 22 

years considered), as well as the possibility that some corals might have regained theirs 

symbionts and recovered by the time AIMS LTMP surveys were conducted. Furthermore, 

sampling bias might have reduced our estimates of bleaching impacts as we excluded the 

northernmost reefs (where bleaching impacts were the most severe) due to data paucity, and 

calibrated our model using observations from the 6-9m depth zone. Corals at these depths might 

have escaped the most damaging effects of bleaching, which were typically observed on 

shallow reef flats and crests where low water mixing allowed little cooling from deeper waters 

(Hughes et al. 2017b). However, such spatial patterns of coral bleaching on shallow reefs are 

typically patchy (up to a 10-100m scale; S. Heron, unpublished data) and are currently difficult 

to resolve at the scale of the GBR. Given that coral bleaching is predicted to increase both in 

frequency and severity over the next decades (Van Hooidonk et al. 2016, Wolff et al. 2018), 

its impact on coral cover will also likely increase and potentially surpass that of tropical 

cyclones in the future. 

Lower coral resilience coincided with a greater exposure to river plume-like conditions, 

suggesting that water quality could play an important role in exacerbating the effect of 

cumulative disturbances and synergies among them. Indeed, chronic stress related to land run-

off and poor water quality can affect the functional diversity of benthic communities and result 

in a loss of resilience (Wolff et al., 2018), potentially aggravating the impact of subsequent 

acute disturbances (Osborne et al., 2017, Ortiz et al., 2018). Although many indicators of water 
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quality exist, our results indicate that nutrient and suspended sediment concentrations (as 

predicted by plume-like water body characterization; Petus et al., 2014) are likely to have a 

strong negative effect on coral cover and, therefore represent a key management priority 

(Brodie and Pearson 2016). Conversely, high coral resilience characterized reefs that were 

previously identified as small and isolated (Mellin et al. 2010b), and thus less prone to 

deleterious, collateral effects from disturbances at neighbouring reefs. For example, isolated 

reefs are typically exposed to reduced levels of colonization by COTS larvae (Hock et al., 

2014), representing important spatial refugia from outbreaks that tend to propagate along 

prevailing currents (Pratchett et al. 2014). Identifying the exact drivers of coral resilience 

warrants further investigation, yet the clear spatial pattern in their distribution suggests that the 

relative importance of terrestrial influence, cross-shelf location, and spatial connectivity could 

play a key role in determining coral resilience to multiple disturbances.  

Importantly, our study defined resilience as both resistance to and recovery from cumulative 

disturbance (Hughes et al. 2003, 2010, Folke et al. 2004). While this framework does provide 

a broader understanding of resilience (as opposed to simply faster growing corals), it does not 

provide a delineation between the two processes. An important justification of this approach is 

the time step of the AIMS LTMP surveys used to calibrate and validate the model (1-2 years). 

In two years, some reefs would have had the time to decline and start recovering, and the 

absence of surveys in-between means it is impossible to accurately distinguish the resistance 

from the recovery component. Furthermore, it is important to incorporate resistance as a sub-

component of resilience, because greater resistance (i.e. lower impact given similar exposure 

to disturbance) can sometimes be the main driver of resilience when recovery time are 

comparable across reef systems (Mellin et al. 2016a). In our study recovery rates (rs) were 

characterised amongst benthic community groups and was highest on outer shelf reefs 

dominated by Acropora species. All benthic communities however, were predicted to return to 

near their estimated maximum (HCmax) after ~10 years if unimpeded by disturbance (Figure 

S 9.4) (MacNeil et al. 2019), suggesting relatively consistent recovery potential among reefs 

(in terms of return to previous maxima, not annual coral growth rate). While the model predicts 
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consistent recovery potential and performed well against calibrations and validation datasets, 

the spatial patchiness of survey data and disturbance impacts mean that predictions are 

unreliable in some parts of the GBR and uncertainty varies substantially among regions (Figure 

S 9.8). These limitations highlight that it is important to understand the spatial uncertainty of 

predictions and also consider the differences between resistance and recovery potential when 

attempting to predict spatial resilience. 

Assessing spatial resilience is an important step toward prioritizing areas for future reef 

management and conservation, whether the objective is to rescue the weakest or protect the 

healthiest reefs first (Game et al. 2008). Yet the effect of no-take marine protected areas on 

reef resilience was strongly determined by water quality, with lower resilience within no-take 

areas when all reefs were considered. In contrast, when reefs frequently exposed to plume-like 

conditions were excluded from the analysis, resilience did not differ between no-take or open 

areas and DE, our proxy for recovery potential in the absence of disturbance, was higher within 

no-take areas. This corroborates earlier results suggesting that marine protected areas have the 

potential to promote reef resistance and recovery following disturbance (Mellin et al. 2016a). 

The survey design of this earlier study was essentially paired within and outside no-take marine 

protected areas, with inshore reefs being underrepresented. Another study of inshore reefs 

found that coral cover was lower within no-take areas than on reefs open to fishing, especially 

after major flooding events, indicating that repeated exposure to reduced water quality impairs 

reef recovery following disturbance, regardless of their protection status (Wenger et al. 2016). 

Together, these results indicate that while no-take marine protected areas have the potential to 

promote reef resilience due to increased intrinsic growth rate of corals, this potential might not 

suffice to counteract the deleterious effect of frequent plume-like conditions on reef resilience, 

suggesting that the location and environmental context of marine protected areas strongly 

determine their net benefit in terms of resilience.  

Assessing the spatial resilience of the GBR has so far remained elusive and understandably 

ignored in the design of protective zoning. The southern region of the GBR, where we 

identified most high-resilience reefs, was previously predicted to act as a spatial refuge that 
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will experience warming later than other coral reefs of the GBR and beyond (Van Hooidonk et 

al. 2013). Such delayed warming in the southern GBR could contribute both to reduced 

bleaching-induced mortality, and reduced sub-lethal effects of thermal stress that can lead to 

lower coral growth rates (Osborne et al. 2017), fecundity, and resistance to disease over many 

years. Furthermore, more gradual warming may allow a shift to more resistant algal symbionts 

(Day et al. 2008), thus facilitating the selective emergence of more heat tolerant communities 

(Hughes et al. 2017b). Our finding of greater resilience in some areas of the southern GBR 

corroborates the potential for opportunities to intervene and enhance coral resilience through 

the integration of assisted evolution into coral reef restoration elsewhere on the GBR (van 

Oppen et al. 2017). However, future forecasts predict that even this ‘protective’ thermal 

tolerance induced by sub-lethal bleaching events might soon be lost under current climate 

change (Ainsworth et al. 2016) if the increased frequency of temperature anomalies outpaces 

the capacity of reefs to acclimatize and adapt to novel climatic conditions. This means that, 

ultimately, reducing carbon emissions and mitigating global warming represent the only ways 

to secure reef persistence in the long term (Hughes et al. 2017b). 

Environmental gradients accounted for 76% of variation in coral growth rate (the most 

influential parameter in our coral cover model), indicating that regional scale assessments 

based on comprehensive environmental data are key to capturing both the drivers and spatial 

patterns of coral cover decline and recovery. Low seasonal variation in salinity, temperature 

and oxygen levels were associated with the fastest growing coral communities, characterized 

by tabulate and digitate Acropora corals among others. This result seems intuitive, given that 

these taxa are characterized by a ‘competitive’ life history that can dominate communities in 

suitable environments, but are also very sensitive to environmental changes such as 

temperature anomalies (Darling et al. 2012) Temperature gradients are among the main natural 

drivers of species distributions, affecting somatic growth and body size (Lurgi et al. 2012), and 

directly reflecting the physiological influence that temperature exerts on individual species 

(Mellin 2015). Furthermore, the importance of seasonal variation in oxygen levels as a 

determinant of benthic communities indicates that different taxa respond differently to oxygen 
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depletion (Pitcher et al. 2012), which can reduce coral calcification rates (Colombo-Pallotta et 

al. 2010) and appeared strongly temperature dependent in our data. However, modelling coral 

growth rate across the breadth of the GBR was also greatly improved by including spatial 

variables (such as the distance to the reef edge) that can provide a proxy for environmental 

gradients either not considered or poorly estimated (Mellin 2015). 

Based on 20 years of data, our model provides a platform for projecting coral cover trajectories 

under past and future scenarios of climate change, which has and will continue to affect the 

frequency and severity of coral bleaching (Van Hooidonk et al. 2016), tropical cyclones (Walsh 

et al. 2016) and COTS outbreaks (Uthicke et al. 2015b). The critical question remains whether 

and when the capacity of reefs to absorb and recover from disturbances might be outpaced by 

future changes in these disturbance patterns. Our modelling approach is broadly applicable 

across reef ecosystems, especially given that relevant environmental and spatial layers are now 

increasingly available through the routine use of remotely sensed products (Mellin et al. 2009). 

Our framework thus provides the advance needed to forecast which reefs will remain as 

important refugia for sustaining coral reef ecosystems under increasing pressures from global 

change. 
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6 COTSMod: A spatially explicit 

metacommunity model for the management 

of Crown-of-thorns starfish and coral 

recovery 

6.1 Abstract 

Outbreaks of the Pacific crown-of-thorns starfish (COTS; Acanthaster cf. solaris) have been 

responsible for 40% of the decline in coral cover on the GBR over the last 35 years. With the 

intensity and frequency of bleaching and cyclonic disturbances predicted to increase, 

effectively managing these outbreaks may allow reefs an opportunity to recover from these 

cumulative impacts. Despite significant research surrounding COTS outbreaks, there is 

currently no framework available to simulate the effect of COTS management action at 

regional scales. We developed a stage-based metapopulation model for COTS at a 1x1km 

resolution using long-term time series and modelled estimates of COTS larval connectivity, 

nutrient concentrations and important vital rates estimated from the literature. We coupled this 

metapopulation model to an existing spatially explicit model of coral cover growth, disturbance 

and recovery across the GBR from 1996-2017 to create a metacommunity model. Our results 

were validated against a spatially and temporally extensive dataset of COTS and coral cover 

across the GBR, predicting an average coral decline of 1.3% p.a. across the GBR, and 

accurately recreating coral cover trajectories (mean prediction error = 7.1%) and COTS 

outbreak classification (accuracy = 80%). Sensitivity analyses revealed that overall model 

accuracy was most sensitive to larval predation (boosted regression tree; relative importance = 

46.7%) and two parameters defining juvenile density dependent mortality (21.5 and 17.5%). 

The COTS model underestimated peak COTS densities particularly in the Swains and 
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Townsville sectors of the reef, whilst overestimating COTS density during non-outbreak years. 

A better understanding of inter-annual variability in larval connectivity, and regionally variable 

density dependence for adult COTS life stages may improve model fit during these extreme 

outbreak events. Our model provides a platform upon which the effects of implementing 

varying combinations of COTS interventions can be simulated, providing guidance for 

management and researchers as to the most effective management strategies and technologies 

respectively. These advancements may allow the quantification of the potential gains in coral 

cover that could be expected under each strategy/technology and provide a vital tool for 

effectively managing COTS outbreaks and coral recovery at a regional scale. 

6.2 Introduction 

Crown of thorns starfish (COTS; Acanthaster spp.) are a prominent coral predator among coral 

reefs in the Indo-Pacific. COTS are characterized by an immense fecundity (Kettle and Lucas 

1987, Babcock et al. 2016b), combined with synchronous spawning and consequently high 

fertilization rates (Babcock and Mundy 1992, Babcock et al. 1994), making them predisposed 

to rapid increases in density, or outbreaks (reaching up to >1,000 individuals ha-1)(Chesher 

1969, De’ath 2003, Kayal et al. 2012). These factors combined with increased nutrient 

availability for larval COTS (Brodie et al. 2005), reduced predation on both juvenile and adult 

life stages (Endean 1969, Sweatman 2008), and favorable hydrodynamic conditions (Hock et 

al. 2014, Wooldridge and Brodie 2015) are hypothesized to be responsible for the initiation 

and spread of COTS outbreaks.  On the Great Barrier Reef, outbreaks of the COTS are a major 

cause of coral loss, responsible for ~40% of the coral declines over the last 30 years (De’ath et 

al. 2012, Mellin et al. 2019a). Also, among the major causes of coral loss (e.g cyclones and 

bleaching), COTS outbreaks are the only disturbance that may be readily amenable to direct 

interventions (De’ath et al. 2012).  Although outbreaks of COTS has been a key research and 

management focus (Pratchett et al. 2014, 2017a, Westcott et al. 2016, GBRMPA 2017), there 

remains considerable uncertainty regarding the exact mechanisms by which COTS outbreaks 

initiate, spread and halt (Pratchett et al. 2017a) as well as the efficacy of COTS management 
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more broadly. Creating predictive modelling frameworks that account for such uncertainties 

are fundamental in improving management of COTS and the desired outcome of protecting 

coral. 

Four major outbreak events have previously been documented on the GBR, beginning in 1969, 

1979, 1993 and 2010 (Pratchett et al. 2014). Primary outbreaks are typically initiated on reefs 

in the northern GBR (Endean 1974, Johnson 1992, Stump 1996, Vanhatalo et al. 2017) and 

followed by secondary outbreaks that propagate on downstream reefs through the transport of 

larvae via ocean currents (Endean 1974). Successive outbreak events have occurred roughly 

10-17 years apart, with COTS observed at outbreak densities (>0.22 COTS per 2 min manta 

tow) on individual reefs for 2-5 years depending on the amount of available coral prey and the 

rate of depletion (Pratchett et al. 2014). Primary outbreaks build up over a number of years 

within the Northern management region (Figure 6.1: Cairns and Cooktown/Lizard Island 

sectors) initiated in part by elevated nutrient conditions resulting from riverine input during the 

wet season, which is hypothesized to dramatically increase the survival of COTS larvae (Brodie 

et al. 2005, Fabricius et al. 2010, Wolfe et al. 2017). However, elevated nutrient conditions 

occur quite frequently (3-5 years) in this region and do not always result in primary outbreaks 

(Wooldridge and Brodie 2015). Wooldridge and Brodie (2015) highlighted how the initiation 

of primary outbreak occurred when elevated nutrients coincided with increased larval 

connectivity between reefs during neutral El Niño Southern Oscillation (ENSO) phases. Due 

to the preference of COTS for fast growing corals (Pratchett et al. 2014), and the relationship 

between maternal nutrition and fertilization success (Caballes et al. 2016), the time lag between 

outbreak cycles is also likely linked to the recovery period required for fast growing corals 

following a COTS outbreak.  

Once initiated, secondary outbreaks are generally observed on the mid shelf reefs south of the 

“initiation box” and are exemplified by large larval influx and more dramatic increases in 

COTS densities, aided by near-annual nutrient enrichment (Brodie et al. 2017). Primary 

outbreaks that occur in the southern Swain sector of the GBR were suggested to be somewhat 

independent from and concurrent with the northern outbreaks (Brodie et al. 2017)(Figure 6.1). 
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Following an outbreak, COTS populations decline dramatically, often completely absent in 

surveys the following year (Pratchett 2005b, Sweatman et al. 2008, Vanhatalo et al. 2017). 

These declines are presumably due to density dependent mortality processes such as starvation 

or disease (Pratchett 1999), although this process is poorly resolved and has not been well 

documented in the field or recreated in laboratory conditions (Pratchett et al. 2017a). After 

populations at a reef collapse, COTS are usually not observed again in significant densities for 

around 10 years, often allowing coral to recover (pending no other disturbance) before the next 

outbreak cycle begins (Figure 6.1). 

 
Figure 6.1 a) Representation of initiation zones for primary outbreaks (red boxes) and the subsequent propagation 
of secondary outbreaks at downstream reefs.b) Empirical estimates of COTS densities aggregated for six major 
sectors of the GBR from the AIMS Long Term Monitoring Program (AIMS LTMP). Also presented are the four 
management areas of the GBR. 

As outbreaks of COTS represent the only major disturbance amenable to direct action, the 

Great Barrier Reef Marine Park Authority (GBRMPA) has deployed significant resources into 

the tactical (short term) and strategic control of COTS on the GBR (Fletcher and Westcott 

2016, Westcott et al. 2016). Following the initiation of the current outbreak cycle in 2010-11, 

the COTS control program operated two vessels primarily in the initiation zone, with resources 
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being moved further south following the spread of secondary outbreaks. These vessels targeted 

reefs of high tourism and ecological value experiencing COTS outbreaks, to protect coral assets 

at a local scale (Westcott et al. 2016). In recent years there has been improvement and 

expansion of the COTS control program (5 vessels from November 2018) for example using 

hydrodynamic modelling estimates of COTS and coral larval transport to identify reefs which 

may be important reefs to protect from a network perspective, to promote recovery (Hock et 

al. 2014, 2017). Additionally, there have been significant developments in technology for the 

early detection of COTS outbreaks (Doyle et al. 2017, Uthicke et al. 2018) and some progress 

in identifying pathways to aggregate or disperse COTS populations for control purposes (Hall 

et al. 2017a, 2017b). Despite these technological and strategic advancements, there is currently 

no spatially and temporally explicit modelling framework upon which we can simulate the 

effect of these emerging management scenarios to understand the potential benefits of 

alternative COTS management options. Furthermore, there is no consensus on the spatial scales 

at which COTS control can be effective (Pratchett and Cumming 2019) and under what 

conditions control may inadvertently promote chronic infestations of COTS by disrupting the 

boom-bust cycle (Nakamura et al. 2014). Building simulation models at an ecosystem level is 

therefore a vital step in understanding the positive and negative consequences of interventions 

of this scale. 

COTS rapid expansion in range and boom-bust dynamics during outbreak cycles (Uthicke et 

al. 2009) mean significant care must be taken when modelling their population dynamics 

(Mellin et al. 2016b). Density dependent or resource dependent vital rates (e.g. mortality, 

fecundity) are key parameters for simulating boom and bust dynamics in a demographic 

population model (Caswell 2006). For COTS, Lokta-Volterra predator prey dynamics (Lotka 

1910, Volterra 1928) have traditionally been used to model outbreak cycles (McCallum 1993, 

Morello et al. 2014, Mellin et al. 2016b), focusing primarily on coral prey availability in 

determining COTS mortality rates. However, for COTS, it is not apparent that all “bust” phases 

of the outbreaks are necessarily linked to comprehensive depletion of coral resources (Pratchett 

2010), and density-dependent pathogenesis is also hypothesized to play an important role in 
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COTS population collapse (Zann et al. 1987, Birkeland and Lucas 1990, Pratchett 1999). Ratio-

dependent processes, where vital rates are linked to the ratio between available prey and 

predator abundance (Arditi and Ginzburg 1989, Abrams and Ginzburg 2000, Haque 2009), are 

an alternative approach to Lotka-Volterra type dynamics, aiming to represent both density and 

resource dependent processes.  Incorporating both predator and prey dependent processes may 

offer a solution to simulating boom-bust dynamics for COTS, particularly to capture a “bust” 

mechanism that does not require total resource depletion.  

Recent advances in hydrodynamic, COTS population and coral growth modelling were 

important precursors to the development of a modelling framework for a COTS-Coral 

metacommunity model at the GBR scale. MacNeil et al. (2019) developed a Gompertz-based 

coral growth model for reefs monitored by the Australian Institute of Marine Sciences Long 

Term Monitoring Program (AIMS LTMP). This model was extended by Mellin et al (2019a), 

who recreated the trajectories of coral cover across the entire GBR at a 1x1km resolution using 

a dataset defining the disturbance history and environmental characteristics of reef locations 

(Matthews et al. 2019). Furthermore, significant advances in larval connectivity modelling 

(Condie et al. 2012, Hock et al. 2014) have allowed connectivity networks for COTS to be 

derived over four spawning seasons (2012-2016) (Hock et al. 2017), whilst the development 

of the eReefs biogeochemical model allows estimates of important environmental conditions 

such as chlorophyll-a concentration to be estimated across the GBR for recent years (Johnson 

1992, Chen et al. 2011, CSIRO 2019). Additionally, recent studies have developed population 

models for COTS at small scales, highlighting the importance of trophic interactions in COTS 

population dynamics (Morello et al. 2014, Mellin et al. 2016b) and identifying important 

ecologically relevant thresholds for COTS control above which coral cover is reduced  

(Babcock et al. 2014) and fertilization rates (Rogers et al. 2017). Combined with the extensive 

literature surrounding COTS biology outbreaks (reviewed by Caballes and Pratchett 2014, 

Pratchett et al. 2014, 2017) these advances provide the platform necessary to build a COTS-
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Coral metacommunity model that will allow researchers and managers to investigate the likely 

effect of management actions. 

This study builds upon an existing model of coral growth and disturbance across the GBR 

(Matthews et al. 2019, MacNeil et al. 2019, Mellin et al. 2019a) by incorporating a COTS 

population model at each reef, linked by larval connectivity estimates (Hock et al. 2014, 2017) 

to create a COTS-Coral metacommunity model for the GBR at a 1x1km resolution. This study 

aims to: (1) use the best available data to recreate and validate the trajectories of COTS and 

coral populations across the entire GBR; (2) investigate which parameters are most important 

for recreating COTS outbreak patterns, to identify improvements required in our understanding 

to refine predictions and identify potential strategies that could be targeted by management and 

(3) provide a platform for future development to compare COTS management strategies. The 

results of these simulations and the metacommunity platform itself will provide managers a 

useful tool to direct the allocation of resources for the next outbreak cycle. 

6.3 Methods 

A COTS-Coral metacommunity model (https://github.com/sammatthews990/COTS_Model) 

was constructed at a 1x1km resolution to recreate the trajectories of coral and COTS across the 

GBR between 1996-2017. The metacommunity model framework can be summarized 

according to four subcomponents: (i) the coral dynamics model governing coral growth and 

impacts from other disturbances (cyclones, bleaching, disease); (ii) COTS population model 

recreating the life history and density dependent processes for each 1x1km grid cell; (iii) a 

larval survival model which controls the proportion of larvae surviving from each spawning 

event based upon the nutrient conditions,  and (iv) the larval connectivity model which 

disperses COTS larvae among reefs, linking individual reef population into a metapopulation 

model. COTS populations are initiated in the model using GBR-wide estimates of COTS 

density in 1996, derived from the AIMS LTMP (Matthews et al. 2019). Model simulations are 

then run to recreate trajectories between 1996-2017. The model is calibrated to fit manta tow 

observations for coral cover and COTS for 46 reefs that were surveyed at least 10 times 
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providing reef-wide estimates of coral cover and COTS densities. Validation statistics were 

calculated on a further 91 reefs that were surveyed between 5-10 times between 1996-2017. 

6.3.1 Coral Dynamics Model 

Coral growth was parametrized across a standardized 1x1km grid for reef locations, as defined 

by a Gompertz-based growth curve (Table 6.1). Previous research defined the growth curves 

and disturbance coefficients for 47 AIMS LTMP reefs (MacNeil et al. 2019). These growth 

parameters were then modelled for all reef locations across the GBR based on the predicted 

coral community composition (Mellin et al. 2019a). At each yearly time step, coral cover was 

affected by disturbance (cyclones, bleaching, disease) and then recovered as per the spatially 

explicit estimates for coral growth (Figure 6.2). Annual disturbance exposure for the model 

was provided from a dataset compiling the disturbance history for the GBR (1986-2017) on the 

standardized 1x1km grid (Matthews et al. 2019). Although this coral model was originally 

calibrated to include disturbance from COTS outbreaks as predicted from the AIMS LTMP, in 



Modelling tools to support the management of crown-of-thorns starfish (Acanthaster cf. solaris) on Australia’s 
Great Barrier Reef 

126  Matthews - December 2019 

our framework this portion of the coral dynamics model was replaced in the present study by 

a stage-based COTS population model. 

 
Figure 6.2 Results from the spatially explicit model of coral growth, disturbance and recovery from (Mellin et al. 
2019a), depicting the average impact from A) Cyclones, B) COTS, C) Bleaching, and D) the mean percent change 
in coral between 1996-2017, E) yearly estimates of disturbance impact and F) median coral cover (+/- 50%, 90% 
confidence intervals). This model provides the framework upon which the COTS-Coral metacommunity model is 
constructed 

6.3.2 COTS Population Model 

To represent COTS demography, we developed a stage-based metapopulation model with a 

larval, two juvenile and an adult stage (Figure 6.3). Basic life history parameters include rates 

of density dependent mortality across age cohorts, density-dependent fertilization and feeding 

rates on corals. Stage-specific mortality rates and fertilization rates were modeled as a function 

of conspecific densities and resource availability within each 1x1km grid cell. Initial values for 

these parameters were based on estimates from the literature where possible, and otherwise 
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from expert opinion (Pratchett, unpublished data) (Table 6.1). Stage-specific COTS 

consumption rates, also drawn from the literature, enable the COTS population model to link 

with the coral growth model as an additional disturbance factor. Importantly all the initial 

parameters estimates discussed here are allowed to vary within the model framework to test 

the sensitivity of model predictions to changes in estimates used. 

Table 6.1 Equations and sources for the population dynamics of COTS and Coral populations and vital rates for 
the demographic components of the COTS model where COTS abundances and coral cover are defined for the \th 
grid cell at the Dth reef in year +.There are 4 COTS life stages in the model (A=Adults, J2 = Subadult; J1= 
Juveniles, L= Larval), which are defined by: PredL = larval predation rate; SurvL = Larval survival as predicted by 
the logit chlorophyll model derived from Fabricius et al (2012); 5}99 = average connectivity potential between 
reefs on the GBR; ~�D]

ÄZ
 = logistic density dependent mortality juvenile COTS; ~�D]

ÄÅ
 = logistic density 

dependent mortality sub-adult (J2) COTS. ~�D]
a
= Ratio dependent mortality for adult COTS (A); d*1 = Von 

Bertnanffly growth curve for fertilisation by density;	dÇÉ = Ratio-dependent per capita fecundity for female 
COTS;	dÇÉ

0HI
   per capita fecundity without resource limitation; 55BÑ]\�

Z
 = ratio dependent thresholds onset of 

ratio-dependent fecundity and adult mortality; 55BÑ]\�
Å

 threshold below which COTS populations collapse; 
Hard Coral Cover: HC = Hard coral cover; rs = intrinsic coral growth rate; J =  strength of density dependence 
for sessile species; [

(
	1\#]^D_

(,Ö
 = Effect size and Estimate for jth disturbance (bleaching, cylones, disease, other);  

Ad = combined exposure to flood plumes.   

Name Equation Source 

Stage Transition Rates 

5}Üáà 9Ö,â.
= 	9Ö,a 	× dÇÉ	 × d*1	 × (1 − ADÇäâ) × á^D*â		 

NA 
5}Üáã1 9ÖåZ,ÄZ.

= 	 ç&9Ö,â.
× 5}99N$,Ö	

N

$

é 	× (1 −~�D]ÄZ)			 

5}Üáã2 9ÖåZ,ÄÅ.
= 	9Ö,ÄZ	

$
× (1 − ~�D]ÄÅ)		 

5}Üá) 9ÖåZ,a.
= 	9Ö,ÄÅ.	

× (1 −~�D]a)		 

Coral Growth 

5�DÑè 
è�êVF5ÖåZ,$X = DE,$ + (1 − J$)	è�êVF5ÖX +& [(	1\#]^D_(,Ö

(

+& [(	1\#]^D_(,Ö 	× Ad$
(

		 

(MacNeil et al. 
2019, Mellin et 
al. 2019a) 

Vital Rates 

d*1  àm	V1 − Ç
Yë(íì,î)X ; àm	 = 0.8, ñ = 0.0007 

(Babcock et al. 
1994, Rogers et 
al. 2017) 

ADÇäâ 9(òb, eb)	; 	9(0.98, 0.01) (Scandol 1999) 
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á^D*â	 è�ê\](á^D*â) = [h + [Zè�êÅ([5ℎè]) ; [h = [−0.4, 10], [Z = 2.02 
(Fabricius et al. 
2010, Wolfe et 
al. 2017) 
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Y†
) 

NA 
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Y-VíùûYIüX

	 ; 	à
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£
,			2Ç
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• ¶
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+ 1, •�D	55BÑ]\�Å <
F5

5}Üáa
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F5
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(Scandol 1999, 
Sweatman et al. 
2008) 
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F5
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F5

5}Üáa

≥	55BÑ]\�Z

¶_	 ×
F5

5}Üáa
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(Babcock et al. 
2016b, Caballes 
et al. 2016) 

dÇÉ0HI 9(òc, ec) ; 9(2Ç†, 1Ç†) 
(Babcock et al. 
2016b) 
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Figure 6.3. Conceptual diagram of the main factors involved in COTS outbreaks on the GBR and their relationship 
to various stages of the COTS life cycle. The white area represents the interactions currently included in the 
COTS-Coral metacommunity model, the shaded portion of the diagram represents potential management 
scenarios that could be incorporated into the modelling framework for projections. Coloured circles represent 
COTS food source for that life stage (green = phytoplankton/chlorophyll; pink = crustose coralline algae; coral = 
scleractinian corals). Solid lines represent a positive effect and dashed lines indicate a negative effect. Symbols 
are courtesy of the Integration and Application Network, University of Maryland Centre for Environmental 
Science (ian.umces.edu/symbols/). 

Adult mortality and fecundity rates are assumed to be linearly dependent on the ratio of 

available coral prey for each adult COTS (Figure 6.4c,d). Coral cover-COTS ratio (55BÑ]\�) 

was defined as %	FÑDä	5�DÑè	5�*ÇD 5}Üá	LÇD	≤Ñ≥]Ñ	]�'⁄ . Two thresholds were defined 

with respect to 55BÑ]\�, 55BÑ]\�Z aims to capture the ratio at which coral cover is expected 

to decline as a result of consumption of COTS (20-40 % Hard Coral Cover/COTS per manta 

tow, depending on coral cover levels (Babcock et al. 2014)). At this threshold it is assumed 

that coral prey resources become scarce - increasing mortality, decreasing maternal nutrition 

and therefore reducing fecundity (Caballes et al. 2016). In the model, fecundity (mortality) is 

highest (lowest) at large values of 55BÑ]\� and decreases (increases) linearly towards its 

minimum (maximum)(Figure 6.4). The maximum and minimum fecundity also use starting 

estimates from the literature (Babcock et al. 2016b). A second threshold 55BÑ]\�Å was defined 
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to capture the recurring dramatic collapse of COTS populations observed in the AIMS LTMP 

data (Figure 6.1b), below which the mortality rate was set to 100% (Table 6.1). This threshold 

was determined using empirical observation data from the AIMS LTMP (Figure 6.4a,b). We 

used two approaches to identify initial values 55BÑ]\�Z  and 55BÑ]\�Å . Firstly, we fit a 

generalized additive mixed model (GAMM) to the proportional change in COTS populations 

(-1 to 1) in the year following a recorded COTS outbreak (> 0.22 individuals Manta Tow-1) as 

a function of 55BÑ]\�, using cross shelf location as random factor (Figure 6.4a). Whilst this 

model did not explain a significant amount of variation (GAMM: R2=0.03, p=0.11), it suggests 

a threshold for 55BÑ]\�  between 5-12 where COTS populations beginning to decline 

drastically. The second approach was to model change in COTS population size (in the 

following year) for populations exceeding severe outbreak threshold (> 1 individuals Manta 

Tow-1) as a binary outcome in a generalized linear mixed model framework (increase in COTS 

density = 1; >50% decrease in COTS density = 0) to identify the 55BÑ]\� at which increased 

mortality is triggered (Figure 6.4). Despite a high level of dispersion in the data, results 

declining 55BÑ]\� is significantly related to COTS population crashes (GLMM; R2= 0.11, 

p<0.01). Importantly, there is no recorded case of COTS population increase below a Coral-

COTS ratio, 55BÑ]\� of 4.6 (Figure 6.4b).  From these results and the work of Babcock et al. 

(2014) we chose initial values of 5 for 55BÑ]\�Å (threshold below which COTS populations 
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collapse) and 25 for 55BÑ]\�Z (threshold below which COTS mortality and fecundity are 

negatively affected).  

  

 
Figure 6.4 A) GAMM model for proportional COTS population declines following extreme COTS outbreak 
densities ; B) Binomial Relationship between Coral Cover-COTS ratio and the change to COTS population in the 
following survey year from AIMS LTMP data to provide initial estimates for ratio dependent thresholds used in 
the metacommunity model. C) Schematic of potential initial values for ratio-dependent thresholds for COTS 
mortality and D) Fecundity in relation to coral cover-COTS ratios. 

We modeled juvenile and sub-adult COTS mortality as a function of COTS density (we chose 

not to use a ratio-dependent model for these life stages as juveniles feed on crustose coralline 

algae, while there is no data on sub-adult densities to estimate ratio-dependent thresholds) 
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within each 1km grid cell according to a standard logistic growth model. We initially 

parameterized these relationships on the basis of estimates of COTS densities at critical 

outbreak thresholds (De’ath 2003)(Table 6.2). Using these thresholds we estimated the number 

of juveniles and subadults present via an approximate estimate of COTS stable stage 

distribution generated using the R package ‘popbio’(Stubben and Milligan 2007) and vital rates 

from Table 6.1. 

Table 6.2 Estimated densities of different life stages of COTS at varying levels of Outbreaks to provide initial 
estimates for density dependent mortality curves. Adult densities are estimated using the calibration of De’ath 
(2003), *whilst earlier life stages are estimated from an approximate stable stage distribution. 

COTS/Manta	Tow	
Outbreak	

Status	

Approx	 Adult	

Density	 (Adult	

ind	km-2)	

*SubAdult	

Density	 (J2	 ind	

km-2)	

*Juvenile	

Density	 (J1	 ind	

km-2)	

0.01	 No	Outbreak	 1000	 6900	 390000	

0.1	 Potential	 3500	 23600	 1354000	

0.22	 Established	 5100	 33500	 1923000	

1	 Severe	 11100	 71900	 4122000	

  

6.3.3 Larval Survival Model 

To incorporate the well-established positive effects of prey availability on COTS larval 

survival (Fabricius et al. 2010, Uthicke et al. 2015b, Wolfe et al. 2015, Pratchett et al. 2017b), 

a logistic model of larval survival in relation to chlorophyll concentrations ([chl-a]) was 

developed based on the results from Fabricius et al. (2010). Other research has shown COTS 

ability to survive in oligotrophic conditions to be much higher than those estimated by this 

model (Wolfe et al. 2015, Pratchett et al. 2017b) and thus the intercept and slope term of this 

relationship were included as a model parameter for tuning. This provides the opportunity to 
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test the sensitivity of model predictions to this crucial relationship, within empirically 

supported bounds.   

In order to model larval survival, [chl-a] was estimated for the period 1996-2017 using the 

4x4km eReefs biogeochemical model for the GBR (CSIRO 2019). This model has produced 

[chl-a] estimates between 2010-2017 that we used to determine the reef-level relationship 

between [chl-a] and ENSO cycles. On the GBR, ENSO is commonly linked to rainfall, with 

strong La Niña events increasing rainfall and thus nutrient enrichment (Devlin et al. 2001, 

Lough 2001) and larval survival. Additionally, La Niña phases of the ENSO cycle are broadly 

linked to upwelling and phytoplankton blooms (Steinberg 2007) and thus using ENSO for 

hindcasting offers an opportunity to incorporate variation in [chl-a] from both rainfall and 

upwelling events. For each reef, a GAM was fit to determine the relationship between ENSO 

(using the September-November Nino 3.4 index (Rayner et al. 2003)) and [chl-a], and thus 

hindcast to 1996 using historical Niño 3.4 data (Table S 9.10)(Figure 6.5a,b). For each year of 

available eReefs data a matern variogram model (Matérn 1960, Rossi et al. 1992) was fit to 

determine the spatial autocorrelation in the model residuals, and a mean psill and range were 

calculated to determine the variogram model for La Niña, El Niño and neutral years. A total of 

100 spatially correlated random replicate sets of chlorophyll predictions were then generated 
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for each year based on the ENSO estimate to provide sub-reef (1x1km grid cell) level 

variability and incorporate uncertainty in model estimates. 

 
Figure 6.5 (A) GAM models fitting ENSO Nino 3.4 index to eReefs predicted chlorophyll concentrations for 3 
reefs with variable background concentrations and (B) the predicted chlorophyll concentrations for the period 
1990-2018 (Green) overlaying the Nino 3.4 index (black line). 

6.3.4 Larval Connectivity Model 

Estimates for larval connectivity between reefs on the GBR were obtained from Hock et al. 

(2017). These connectivity networks are constructed from 4 years of hydrodynamic modelled 

data and estimate the mean potential connectivity between all reefs on the GBR.  Potential 

connectivity (expressed as a proportion) is a simplification of real-world processes which 



Ch. 6. COTSMod: A spatially explicit metacommunity model for the management of Crown-of-thorns starfish and 
coral recovery 

 
 Matthews – December 2019 135 

essentially represents maximal physically possible advective transport among reefs as implied 

by the model (Hock et al. 2014). During the dispersal phase of our model, surviving larvae 

from each source reef were pooled at the reef level and then distributed among connected reefs 

using the strength of each connection averaged from the 4 years of modelled estimates.  Larvae 

are then evenly distributed among the grid cells at the sink reef, and thus did not take into 

account the potential for larvae to be attracted to either prey or conspecific aggregations.  

6.3.5 Model Validation and Sensitivity Analysis 

Model predictions were calibrated using AIMS LTMP manta tow to generate a base case model 

that provided the best fit to the data. Reefs chosen for validation were surveyed at least 10 times 

providing reef wide estimates of coral cover and COTS densities (N=46). Predictions were then 

validated against reefs within the AIMS LTMP dataset that were not included in the 46 reefs 

used for calibration, yet included over 5 years of data (N=91).  Using the initial parameter 

variables (Table 6.1), we used Latin Hypercube Sampling (McKay et al. 1978, Carnell 2009) 

to sample evenly across the parameter space, were starting values were varied by +/- 20%. For 

each parameter combination 100 simulated model runs were conducted to provide an estimate 

of the uncertainty of the stochastic (disturbance, chlorophyll concentrations and larval 

connectivity estimates), density and ratio-dependent elements of the model. Mean prediction 

error (MPE) for both COTS and Coral were estimated at each reef. Additionally for COTS, 

model accuracy (ACC) and kappa (KAP) statistics (Cohen 1960, Hossin and Sulaiman 2015) 

for predicting presence or absence of COTS outbreaks (OUT) (>0.22 COTS/Manta Tow) were 

calculated.  ACC and KAP were also used to classify COTS across the four outbreak categories 

(Table 6.2).The parameter set which reduced prediction error and maximized prediction ACC 

an KAP (after ACC an KAP standardization to a 0,1 range) across all reefs was thus identified 
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as the base-case model (Eqn 1). For the base-case model, mean prediction error was aggregated 

for each latitudinal sector to give a spatial and overview of model performance.  

/0 =
(1 − ~A2. F50) + (}iÜ. )550) + (}iÜ. ñ)A0) + (5à. )550) + (5à. ñ)A0)

4
				 [1] 

Where ~A2.F50  is the mean prediction error for hard coral estimates; }iÜ.)550  and 

}iÜ. ñ)A0 are the model accuracy and kappa statistic for the binomial classification of COTS 

outbreaks and 5à. )550  and 5à. ñ)A0  are the model accuracy and kappa statistic for 

multilevel classification of the four outbreak categories (Table 6.2). Additionally mean 

outbreak density was calculated for each latitudinal sector (Figure 6.1) as the mean COTS 

density (COTS/Manta Tow) for model estimates that exceeded the COTS outbreak threshold. 

This was compared to the values calculated for our validation reefs from the AIMS LTMP to 

investigate spatial variability in model performance in predicting COTS outbreak densities. 

To identify the sensitivity of predictions to parameter estimates, 200 latin hypercube samples 

were drawn with each parameter varying within +/- 15% of the bounds identified by the base 

case model. These parameter values were then scaled and used as explanatory variables for our 

validation metric Vm  (Eq. 1) using boosted regression trees (BRT) (Elith et al. 2008) to 

determine the most influential parameters and interactions between them for determining 

model accuracy (Norton 2015). Additionally, these scaled variables were also used to predict 

annual coral loss and COTS accuracy in multilevel classification (No COTS, No Outbreak = 

<0.11, Potential Outbreak = <0.22, Established Outbreak = <1, Severe Outbreak >1 

COTS/Manta Tow)  to investigate the variables most influential for driving COTS densities 

and coral loss in our model. All models were constructed using R v3.4.1 (R Development Core 
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Team 2017), with tools for sensitivity analyses provided by the ‘lhs’ (Carnell 2009) and 

‘dismo’ (Hijmans et al. 2017) packages. 

6.4 Results 

The base-case model calibrated against the long-term training dataset (1995-2017) had a mean 

prediction error (MPE) of 7.19% for coral cover across the entire time series, and a MPE of 

0.01 COTS/Manta Tow and mean prediction accuracy of 80.6% for COTS Outbreaks (/0= 

0.83). There was substantial spatial variation to the accuracy of model predictions (Table 6.3) 

most notably for COTS outbreaks. COTS densities were overestimated in both the Capricorn 

Bunker (CB) and Whitsunday (WH) sectors, with peak densities, particularly in the Townsville 

(TO) and Swains (SW) sectors, being underestimated.  

6.4.1 Spatial Patterns in COTS Outbreaks 

Outbreaks were initiated in 1996 in the “initiation box”, peaking between 1997-1998. 

Outbreaks in northern regions of the GBR peaked at slightly lower densities than those 

predicted for secondary outbreaks in the Innisfail, Townsville and Swain regions, however 

these peak densities were much lower than observed in the monitoring data (Table 6.3). 

Patterns for individual calibration reefs generally followed peaks and troughs in COTS 

densities, although the model tended to overestimate COTS abundance during the ~10-15 year 

break between outbreak cycles (Figure 6.6). Importantly, the second outbreak cycle beginning 

around 2010 was accurately predicted by the model. In southern regions however, the model 

produced a multiple boom-and-bust dynamic, where COTS densities collapsed and increased 
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again multiple times throughout the period, which was not supported by the empirical 

observations. 

 

 

  
Figure 6.6 A) Predicted mean COTS abundance for each GBR reef with coloured diamonds matching reefs in B 
classified into outbreak categories in terms of COTS/Manta Tow; No COTS (NC) = 0; No Outbreak (NO) <0.11; 
Potential Outbreak (PO) <0.22; Established Outbreak (EO) < 1; Severe Outbreak (SO) > 1.  B) Predicted mean 
(+/- 50% CI’s) COTS/Manta Tow (Coloured ribbon) plotted against observation data (black dotted line) for six 
calibration reefs across the GBR. C) Predicted mean (+/- SE) COTS/Manta Tow, aggregated at the GBR level. 

6.4.2 Spatial Patterns in Coral Cover 

As coral cover was predominantly predicted from a previously calibrated model, the 

trajectories more closely match the empirical data (Figure 6.7b). Overall reefs in the Southern-

Central (Pompeys and Whitsunday sectors) region of the GBR had the highest rates of coral 

decline, with the Northern region (Cairns and Cooktown/Lizard Island sectors) also 
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experiencing annual declines around 1% per year. However, some pockets of the GBR were 

predicted to experience annual increases in coral cover, particularly in the Capricorn Bunker 

and inner shelf Pompey sectors. Overall coral cover was predicted to decline 1.3% p.a. across 

the 22 years of the study. 

 

 
Figure 6.7 A) Predicted mean annual percent coral loss for each GBR reef with coloured diamonds matching reefs 
in B) Predicted mean (+/- 50% CI’s) percent coral cover (Coloured ribbon) plotted against observation data (black 
dotted line) for six calibration reefs (colour coded diamonds). Predicted mean (+/- 50% and 95% CI’s) percent 
coral cover, aggregated at the GBR level. 

6.4.3 Model Validation  

Predictions were validated against reefs within the AIMS LTMP dataset that were not included 

in the 46 reefs used for calibration, yet included over 5 years of data (N=91). For this 

independent dataset, our model captured the impact of multiple disturbances and subsequent 
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coral recovery (mean prediction error = 7.9%; R2 = 0.14) performing similarly as for the 

calibration data (7.4% R2=0.1). For COTS, whilst our model was able to recreate the general 

trajectories of COTS outbreaks (Figure 6.6), the accuracy of the model for predicting the 

presence or absence of an outbreak of COTS was insignificant for both calibration (Accuracy 

= 80.0%, Kappa = 0.193, p > 0.05) and validation (78.9%, Kappa = 0.014, p > 0.05) datasets 

(Table 6.3). Similarly, when classifying for the four outbreak levels model accuracy as 

insignificant for both calibration (Accuracy = 61.0%, Kappa = 0.176, p > 0.05) and validation 

(52%, Kappa = 0.04, p > 0.05) datasets. Additionally, for these models, the mean COTS 

outbreak density was overestimated in the Whitsundays and Capricorn Bunker sectors whilst 

underestimated for Swain, Townsville, Pompeys and Innisfail sectors, indicating a tradeoff 

between presence/absence accuracy and matching peaks in COTS outbreak densities within the 

model. Importantly, accuracy for predicting presence/absence of COTS was only marginally 

better than chance alone, indicating a general tendency to estimate low levels of COTS when 

none were observed in the data. 
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Table 6.3 Validation statistics for best-fit model parameters across latitudinal sectors of the GBR(Figure 6.1a PC 
= Prince Charlotte Bay; CL = Cooktown/Lizard Island; CA = Cairns; IN = Innisfail; TO = Townsville; CU = Cape 
Upstart; WH = Whitsundays; PO = Pompeys; SW = Swains; CB = Capricorn Bunker) where MPE = mean 
prediction error, ACC = model accuracy, KAP = Kappa and Outbreak Density = model predicted mean 
COTS/Manta tow when density exceeds 0.22 COTS/Manta Tow and Δ Outbreak Density  is the % difference 
between model predicted outbreak density and AIMS LTMP Manta Tow observation. 

Sector	 MPE	Hard	
Coral	(%)	

MPE	 COTS	
(COTS/MT)	

Acc	 COTS	
Presence	

Acc	 COTS	
Outbreak	

Kap	 COTS	
Outbreak	

Outbreak	
Density		

Δ	 Outbreak	
Density		

PC	 2.81	 0	 0.36	 0.82	 0	 NA	 -100%	

CL	 7.60	 0.066	 0.69	 0.91	 0.51	 0.50	 2%	

CA	 2.52	 0.010	 0.80	 0.98	 0	 0.46	 35%	

IN	 4.29	 0.057	 0.29	 0.85	 0.17	 0.53	 -80%	

TO	 3.94	 0.19	 0.61	 0.58	 -0.074	 0.65	 -80%	

CU	 4.79	 0.061	 0.43	 0.78	 -0.12	 0.67	 46%	

WH	 6.94	 0.049	 0.78	 0.92	 -0.04	 0.81	 113%	

PO	 7.64	 0.068	 0.32	 0.82	 -0.10	 0.67	 -78%	

SW	 4.81	 0.16	 0.55	 0.55	 0.21	 0.70	 -92%	

CB	 7.29	 0.15	 0.82	 0.76	 0.18	 0.64	 94%	

Overall	 7.20	 0.01	 0.627	 0.806	 0.219	 0.63	 -81%	

 

6.4.4 Sensitivity Analysis 

Our sensitivity analysis (Figure 6.8) using boosted regression trees (BRT) revealed that overall 

model performance was most sensitive to variation in the constant for larval predation rate 

(BRT relative importance; PredLarv = 46.7%), followed by the two parameters controlling the 

strength of density-dependent mortality for COTS J1 life stage (MortJ1k = 21.5%, 

MortJ1k0=17.5%). The coral cover-COTS ratio below which COTS populations crashed was 

less influential in overall prediction accuracy (CCRatio2 = 3.0%), alongside the maximum rate 

of fertilization of COTS larvae (FertLinf=2.0%) and maximum per capita fecundity fecundity 

(Fecmax=1.6%). Coral cover prediction error was most sensitive to larval predation rate (PredLarv 

= 32.7%) and maximum coral consumption rate (Consmax = 22.6%). COTS multilevel 
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classification accuracy was most sensitive to early life stage parameters (MortJ1k = 44.8%; 

MortJ1x0 = 34.6%; PredLarv  = 16.3%). 

 
Figure 6.8 Relative importance and partial dependency of COTS population model parameters in improving 
overall accuracy based on the combined Vm validation metric where PredLarv = larval predation rate; Mort = density 
dependent mortality parameters (A=Adults, J2 = Subadult; J1= Juveniles), CCRatio = ratio dependent thresholds 
for (1) onset of effect and (2) collapse of COTS populations; FertLinf = max fertilisations rate; Fertk = rate parameter 
for fertilisation; Fecmax maximum fecundity per female COTS; Fecsd = standard deviation for fecundity; Chlintercept 
= intercept term for the chlorophyll model, used to adjust larval survival; SelfSeed = Scaling parameter to alter 
the proportion of COTS larvae settling at home reef. 

6.5 Discussion 

Destructive outbreaks of COTS have been responsible for a significant portion of the loss of 

coral cover of the last 35 years and have thus been the focus of much research and management 

action (De’ath et al. 2012, Pratchett et al. 2017a, Mellin et al. 2019a). This research often 
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focuses on the hypothesized causes of outbreaks (Brodie et al. 2005, Wooldridge and Brodie 

2015), control technologies (Rivera-Posada et al. 2014, Uthicke et al. 2018) or spatial patterns 

in outbreaks (Vanhatalo et al. 2017, Mathews et al, in prep). Moreover, previous modelling 

studies have generated small scale population models (Morello et al. 2014, Chen et al. 2017), 

larval connectivity networks (Hock et al. 2014),  simulated hypothetical reef networks (Condie 

et al. 2018) or aimed to refine our knowledge of COTS life history characteristics (Rogers et 

al. 2017). Our work builds on this vast foundation of knowledge to provide a framework for 

spatially and temporally explicit predictions of Coral Cover and COTS abundances and fit them 

to the extensive observational data that exists for the GBR (Sweatman et al. 2008), whilst also 

accounting for the increasing cumulative disturbance in this region (Matthews et al. 2019).  

Model predictions were generally able to match the timing of peaks in outbreak densities and 

provided reasonable predictions of the presence or absence of COTS outbreaks. Importantly, 

following the initiation of COTS populations in 1996, the model was able to produce peak 

densities between 1996-1998 for northern reefs in the Cooktown/Lizard Island and Cairns 

sectors (Figure 6.6) whilst those further south in the Innisfail and Townsville sectors were 

predicted to experience peak densities between 1999-2001, similar to patterns in the 

observational data (Figure 6.1, Figure 6.7). This shows that, whilst COTS densities during an 

outbreak are difficult to predict accurately, our model captured the spatio-temporal patterns of 

outbreaks as described by other modelling studies (Vanhatalo et al. 2017). In our model, these 

spatio-temporal patterns are driven primarily by the spatial and temporal variation in 

chlorophyll concentrations, larval connectivity and prey availability estimates. Our results 

indicate the utility of these modelled estimates and provide further evidence in support of larval 

nutrition (Birkeland 1982, Brodie et al. 2005) and larval connectivity (Hock et al. 2014, 

Wooldridge and Brodie 2015) , at least for explaining secondary outbreaks.  

Some limitations on model performance surround the ability to recreate the extreme increases 

in COTS densities, most notably recorded in reefs in the Townsville and southern Swain 

regions. Using our best-fit model parameters, predictions of mean outbreak density in these 

regions were underestimated by 80% and 92% respectively (Table 6.3). Whilst higher densities 
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were predicted by some model configurations (results not shown), this generally led to 

overestimating densities in other regions and reducing overall model fit. Additionally, multiple 

boom-bust cycles were predicted on some Southern reefs that were not supported by empirical 

data. This is partly to ratio dependent thresholds in COTS density that promote population 

declines. This could be countered by forcing the model to only take into account prey-

availability but would limit the model’s ability to capture population decline when coral 

resources remain. Previous modelling attempts for COTS have run into similar issues in 

recreating peak densities, requiring for example larval input to be artificially introduced into 

the model to create the second wave of COTS outbreaks beginning 2010-2012 (Morello et al. 

2014). We estimated a time series for chlorophyll-a using the consistent link between ENSO 

and chlorophyll-a to drive COTS outbreaks and our model was able to reproduce these peaks 

without any artificial data manipulation. This is a novel and useful approach to predicting for 

missing years in chlorophyll-a data however more development is required to accurately 

capture dramatic peaks in COTS densities. 

 A number of alterations to the model structure could potentially improve model fit with regards 

to spatial variability in peak COTS outbreak densities. For example, allowing the threshold that 

triggers outbreak collapse to vary for each latitudinal sector and cross shelf location 

combination as estimated by the empirical data, could provide a mechanism for promoting 

these more severe densities in specific areas. This approach, whilst not allowing these regional 

differences to emerge intrinsically from the model, may significantly improve model fit. 

Allowing these regional differences in mean COTS outbreak density would act as a proxy for 

calculating spatially explicit carrying capacities that could account for some variation not 

captured by our current approach. Primarily, as COTS exhibit significant feeding preference 

for fast growing corals, especially table and branching Acropora spp.(Pratchett 2007), reefs 

with naturally higher proportions of these species should exhibit higher outbreak densities and 

thus higher carrying capacities. Increased COTS densities can be explained by both increased 

food supply supporting more adult COTS and increased maternal nutrition leading to 

significantly higher rates of larval success (Caballes et al. 2016, 2017a). There is also potential 
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to incorporate estimates of coral benthic community type (Mellin et al. 2019a) to help define 

peak outbreak densities, by allowing reefs predicted to be Acropora dominated to reach higher 

thresholds. Additionally, incorporating a “no settlement” or limited settlement period following 

a collapse, to simulate the attraction of larvae to other nearby reefs with dense adult populations 

(Cowan et al. 2016)  may help capture periods of low density populations. This would lower 

the influence of parameters that control rapid expansion of COTS and promote more dramatic 

peaks, without overestimating COTS abundance during the non-outbreak cycle. 

Whilst our model incorporates contemporary GBR-wide estimates of COTS larval 

connectivity, better integration of inter-annual variability in connectivity pathways provides an 

opportunity to improve model estimates. Larval connectivity pathways are hypothesized to be 

pivotal in determining COTS spatial distribution during waves of secondary outbreaks (Hock 

et al. 2014) and, together with primary productivity, inter-annual variability in connectivity has 

been linked to the initiation of primary outbreaks (Wooldridge and Brodie 2015). Incorporating 

more interannual variability in connectivity estimates will likely increase the model 

performance in capturing peak densities at outbreaking reefs since, due to COTS immense 

fecundity (Babcock et al. 2016b), any fractional increases in the proportion of larvae arriving 

at a reef may dramatically increase adult densities. The distribution of arriving larvae in this 

study was uniform across a reef and did not allow for the attraction of larvae to either coral 

prey or conspecifics. This would potentially tend to underestimate population establishment 

through fertilization success and local recruitment and may help to explain the lack of peak 

densities predicted for some reefs/sectors. Importantly, the connectivity estimates used in this 

study have received warranted scrutiny in their ability to accurately predict connectivity 

pathways primarily due to the relatively coarse spatial resolution (4km) (Bode et al. 2018, 

Mumby et al. 2018). Further development of the hydrodynamic models of the GBR to 

incorporate unstructured meshes and finer resolutions (Thomas et al. 2014) should increase the 

accuracy of these estimates and ultimately the predictions of regional scale ecosystem models. 

Additionally, recent important advances in satellite imaging have rapidly developed the 

understanding of potential coral habitat along the GBR (Roelfsema et al. 2018), and 
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incorporating these underlying habitat maps are essential for the refinement of both 

connectivity models and metacommunity models for the GBR.  

Our model makes use of a machine learning approach to sensitivity analyses to identify 

important parameters when optimizing overall model accuracy, coral cover estimates or COTS 

outbreak classification (Norton 2015). This approach highlighted that predictions were 

particularly sensitive to parameters controlling early life stages such as larval predation rate 

and density dependent juvenile mortality. Due to the demographic traits of the species 

(Babcock et al. 2016b), such sensitivity was anticipated, and indeed predatory and density 

related mortality rates of early life stages represent bottlenecks in COTS population dynamics 

yet have remained key gaps in the understanding of COTS outbreaks (Pratchett et al. 2017a). 

Whilst some recent work has highlighted potential predators of COTS larvae (Cowan et al. 

2016, 2017b, 2017a) and investigated juvenile predation rates (Wilmes et al. 2019), generating 

spatially and temporally explicit predictions of predator abundance or a suitable proxy seems 

beyond the scope of contemporary research. Potentially incorporating the effects of marine 

park zoning could account for some predatory effect on COTS larvae, however most identified 

predators of larvae and juveniles are not targeted by fishing activities (Cowan et al. 2017a) 

although they could indirectly impacted by fishing (e.g. habitat loss due to anchor damage). 

Moreover, given the links between outbreak probability and zoning are poorly understood 

(Sweatman 2008, Vanhatalo et al. 2017), a zoning parameter seems unlikely to drastically 

improve model performance. Alongside zoning, incorporating minor spatial and temporal 

stochasticity to the early life stage parameters provides clear improvements to the current 

framework.   

Our model provides the first framework for predicting coral cover and COTS densities in a 

spatially and temporally explicit manner, for reef locations across the GBR. Whilst 

improvements are required to fine-tune parameters, this framework provides a solid basis for 

further development, with scope to incorporate proposed management interventions and 

projections towards the next outbreak cycle. During the course of the most recent outbreak on 

the GBR there have been vast improvements to both control technologies and strategies 
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(Westcott et al. 2016), with a number of emerging technologies being investigated to help with 

the early detection of outbreaks (Doyle et al. 2017, Uthicke et al. 2018), use of pheromones for 

COTS aggregation and/or dispersion (Hall et al. 2017a, 2017b) and remote autonomous 

surveillance (Llewellyn and Bainbridge 2015). If deployed effectively (in time and space), 

some combination of these technologies may prove to be pivotal to reducing the impact of the 

next wave of COTS outbreaks. Incorporating a range of intervention strategies into our 

modelling framework would provide an avenue to empirically assess the probability of 

curtailing the next outbreak cycle and/or protecting high priority areas of the GBR to bolster 

the resilience GBR (GBRMPA 2017, Hock et al. 2017). Additionally, developing probabilistic 

models for disturbance events based on disturbance history could provide an avenue for 

running these models into the future to determine the effect of COTS outbreaks as disturbance 

severity and frequency are predicted to increase (Hughes et al. 2018a, Great Barrier Reef 

Marine Park Authority 2019). To achieve this goal, future projections of chlorophyll 

concentrations and connectivity patterns could be projected forward based on historical data, 

climate change projections, ENSO cycles and a variety of water quality management scenarios.  

This study aimed to provide the first spatially and temporally explicit COTS-Coral 

metacommunity model for the GBR, at a 1x1km resolution. Whilst successfully recreating the 

trajectories of coral cover and COTS outbreaks, it is currently not able to capture some of the 

spatial variability with regards to peak outbreak densities. It is important to note that fine-scale 

models such as these have low generality and thus forecasting skill, and are thus designed to 

simulate current conditions and management strategies and limited to near future forecasting 

(i.e. the next COTS outbreak cycle). Furthermore, in its current configuration, the model tends 

towards overestimating COTS abundances during low density years and does not differentiate 

between fast and slow growing corals. This study highlights critical knowledge gaps to set 

priorities for ongoing biological research (e.g. predation rates, natural mortality rates) and also 

key areas for improvement to this model framework, in order to better capture the spatial and 

temporal variability in COTS densities. The major improvements required include improving 

estimates of inter-annual variability in larval connectivity estimates and incorporating sector- 
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and shelf-level variation in the density dependent thresholds used to promote crashes of COTS 

populations in the model. Whilst improvements need to be made, this modelling framework is 

the first of its kind for the GBR and provides a platform upon which a variety of COTS 

management scenarios could be simulated. Further developing this framework will provide 

important guidance for the prioritization of reefs for COTS control as well as the combination 

of management strategies most likely to help protect coral cover in the next wave of COTS 

outbreaks. 
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7 General Discussion 

7.1 Cumulative disturbances and abiotic characterization of the 

GBR 

The Great Barrier Reef (GBR) has been subject to protracted and intensifying chronic and acute 

disturbances for several decades, resulting in sustained declines in coral cover (De’ath et al. 

2012, Mellin et al. 2019a - Chapter 5). Despite a long history of proactive, expansive and 

adaptive management (GBRMPA 2004, McCook et al. 2010b), the GBR faces an uncertain 

future in the context of intensifying and cumulative disturbances (Knutson et al. 2010, Maynard 

et al. 2015, Uthicke et al. 2016, Hughes et al. 2017b). In recent years, researchers have begun 

to focus on quantifying the impact and interactions between multiple disturbances in order to 

try to address this uncertainty (Osborne et al. 2011, Ortiz et al. 2018, MacNeil et al. 2019). For 

example MacNeil et al (2019 – Appendix 9.7) determined the negative effect size of individual 

disturbances (cyclones, bleaching, COTS, disease) on coral growth and disturbance recovery 

and how these interacted with poor water quality. This research showed that while poor water 

quality may offer some resistance to bleaching, it reduces the recovery rate and makes reefs 

more prone to oubtreaks of COTS and coral disease. Recovery rates on the GBR have also been 

reduced as a result of the cumulative effect of chronic stressors (warming, water quality) and 

acute disturbance events (Ortiz et al, 2018). These studies are however limited in their spatial 

scope, focusing on reefs for which extensive time series ecological data exists (Sweatman et 

al. 2008). In order to understand the effects of multiple disturbances on the GBR, datasets that 

catalogue the disturbance history and abiotic context for every reef (Matthews et al. 2019 - 
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Chapter 2) are required as a platform for regional scale simulation modelling to both recreate 

the history (Mellin et al. 2019a - Chapters 5,6) and predict the uncertain futures for the GBR.  

On the GBR, there are extensive data repositories for observational and modelled ecological, 

biogeochemical and hydrodynamic data (e.g eAtlas: https://eatlas.org.au/, eReefs: 

https://research.csiro.au/ereefs/, Eye on the Reef: http://www.gbrmpa.gov.au/eye-on-the-reef/, 

Coral Reef Watch: https://coralreefwatch.noaa.gov/satellite/product_overview.php). 

Groundbreaking studies and monitoring programs have provided large scale estimates for the 

most common disturbances to the GBR such as cyclones (Puotinen et al. 2016) thermal stress 

(Heron et al. 2016, Liu et al. 2017), bleaching (Berkelmans et al. 2004, Hughes et al. 2018b) 

and outbreaks of COTS (Sweatman et al. 2008), as well as characterizing environmental 

conditions (Huang et al. 2013). These data however have remained siloed and have yet to be 

compiled and distributed on a standardized grid. Chapter 2 of this thesis collated these data as 

a platform for regional-scale modelling of the GBR (Chapters 4-6). The aim of this endeavour 

was not only to collate the data necessary for the modelling of later chapters, but for the use of 

the wider research community to promote collaboration and reduce the duplication of effort of 

working groups working on related goals. The dataset has been used as the disturbance history 

and abiotic context in studies determining the coral growth and recovery rates for GBR reefs 

(MacNeil et al. 2019), the spatial resilience of the GBR (Mellin et al. 2019a - Chapter 5), 

proposing adaptive monitoring networks for the GBR (Thilan et al. 2019), and also as elements 

of the Reef 2050 Integrated Monitoring and Reporting Program (GBRMPA and Queensland 

Government 2015).  

Management on the GBR has become increasingly focused upon developing monitoring, 

reporting and modelling tools that that make use of the extensive empirical and modelled data 

that exists for the GBR (GBRMPA 2017, GBMRPA and Queensland Government 2018). It is 

important to ensure that these data do not become divided among research institutes and 

management agencies, but are easily transferred and integrated into spatial and analytical 

databases available to management agencies and researchers alike. Chapter 2 works towards 

this goal by collating data from multiple researchers, government agencies and existing 
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databases and providing data on a standard grid. However, in order to realize the goals of 

integrated monitoring and reporting programs, the production of these datasets should be 

partially automated to ensure estimates are up to date and does not rely on individual 

researchers processing data and providing it to a central organisation. For example, production 

of the COTS disturbance layers and Degree Heating Week data of Chapter 2 could be easily 

integrated into a larger reporting program as they rely on readily available data (Sweatman et 

al. 2008, Liu et al. 2017) and relatively simple R scripts for processing. While generating 

cyclonic wave estimates (Puotinen et al. 2016) and bleaching severity indices (Berkelmans et 

al. 2004, Hughes et al. 2017b) require more intensive modelling and field work respectively, it 

is important that these datasets are made widely available and incorporated into automated 

systems where possible. The production of standardized, centralized and freely available 

datasets is integral to reducing the duplication of effort, enhancing the productivity of, and 

collaboration between the research and management communities, and ensuring that research 

is conducted in a reproducible and consistent manner. Working towards these goals should be 

a key focus for management and researchers on the GBR in the coming years. 

7.2 Adaptive management tools for data synthesis, analysis and 

visualisation 

Of the major causes of coral loss on the GBR, outbreaks of COTS are the most amenable to 

direct intervention (De’ath et al. 2012, Westcott and Fletcher 2018) and have thus, been the 

focus of one the most extensive control programs in marine ecosystems (GBRMPA 2018a, 

Pratchett et al. 2018). The Great Barrier Reef Marine Park Authority (GBRMPA) coordinates 

the COTS Control Program which has been operating teams of divers on two vessels since 

2012, with that effort increasing threefold as of November 2018. Aside from culling adult 

COTS, this program contributes extensive data from extensive manta tow surveys, Reef Health 

Impact Surveys (RHIS) and culling data across the GBR (GBRMPA 2018a). The Great Barrier 

Reef Marine Park Authority (GBRMPA) collects COTS and coral data through the joint Field 

Management Program (FMP) - Queensland Parks and Wildlife Services (QPWS) COTS 
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Response Program which has collected extensive manta tow (Bass and Miller 1996) and RHIS 

data (Beeden et al. 2014) since 2011, and the Eye on the Reef (EoTR) program which collects 

RHIS data through numerous tourism and local stakeholder groups. Overall GBRMPA collects 

data from over 10,000 individual surveys annually across the different programs (Chapter 3). 

While systems exist for the storage and maintenance of such data, there has yet been an attempt 

to synthesise all the available COTS observation data to provide a visualisation and analytical 

platform to aid in the adaptive management of COTS on the GBR. Importantly, the 

development of such analytical tools have been identified by GBRMPA as key priorities in the 

development of the planned Reef 2050 Integrated Monitoring and Reporting Program (Hedge 

et al. 2017, GBMRPA and Queensland Government 2018) 

Advances in newly emerging BI software (e.g Microsoft Power BI) (Larson and Chang 2016) 

provide an opportunity for conservation interventions to leverage this innovation and aid in the 

implementation of adaptive management strategies. Chapter 3 of this thesis utilised the 

extensive ecological data collected by the GBRMPA and its partners to build an interactive 

visualisation and analytics platform for COTS, as the agency moves towards developing 

integrated monitoring and reporting tools (GBMRPA and Queensland Government 2018). The 

COTS Dashboard specifically aimed to address key elements of the adaptive management 

cycle by providing visualisations to (1) assess the extent and severity of outbreaks across the 

GBR; (2) track the implementation of management actions; (3) monitor and evaluate the 

progress made towards achieving ecological goals of the program and (4) provide engaging 

visualisation and flexible data summaries as tools for stakeholder engagement. Importantly, the 

Power BI platform is highly flexible, meaning that desired changes to the interface design, 

analysis or visual representation can be made rapidly, promoting the adaptive management 

ethos (Schreiber et al. 2004, Dobbs et al. 2011).  Furthermore as the Dashboard was developed 

using Microsoft’s Power BI, it does not require expert computer programming skills for further 

development and there is reduced risk that the software will stop being supported, which are 

common concerns with many decision support tools (Pınarbaşı et al. 2017). Indeed, tools such 

as the COTS Dashboard, characterized here as Conservation Intelligence (CI) tools should be 
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considered as important components to conservation interventions, particularly in date rich 

environments such as the GBR. 

In the specific context of COTS outbreaks on the GBR, the COTS Dashboard is the first tool 

to synthesise the available observation data for COTS allowing these multiple disparate streams 

of data to be interrogated simultaneously. This is an important first step in understanding the 

complex spatial and temporal patterns of COTS data. Importantly, the flexible nature of the 

platform and interoperability with more advanced statistical platforms such as R and Python 

provides scope to incorporate more complex modelling and prediction into the platform (see 

Chapters 4-6). Moreover, this research provides an important proof-of-concept of the utility of 

such tools as the GBRMPA and conservation organisations more broadly look toward 

developing integrated monitoring and reporting platforms for data driven adaptive management 

(Stephenson et al. 2015, Weatherdon et al. 2017, GBMRPA and Queensland Government 

2018). 

7.3 Competing causes of crown-of-thorns starfish outbreaks on 

the GBR 

COTS have been one of the most studied coral reef organisms, and there is a long history of 

research aiming to identify the underlying causes of, and contributors to, COTS outbreaks, yet 

several key knowledge gaps persist (Endean 1969, Birkeland 1982, Pratchett et al. 2017a). This 

research has focused on four primary areas: (1) identifying the life history characteristics of 

COTS that make them susceptible to boom-bust outbreak dynamics (Vine 1973, Uthicke et al. 

2009, Babcock et al. 2016b); (2) the anthropogenic influence of the removal of predatory 

regulation of COTS populations via over-harvesting of natural predators (Endean 1969, 

Sweatman 2008, Cowan et al. 2017a); (3) the enhanced larval survival as a result of terrestrial 

runoff  and elevated nutrient levels into the GBR lagoon (Birkeland 1982, Brodie et al. 2005); 

and (4) the role of hydrodynamics in retention versus dispersal of COTS larvae at the scale of 

individual reefs (Dight et al. 1990a, 1990b, Hock et al. 2014). While research has been 

relatively thorough for each of these lines of enquiry (Pratchett et al. 2017a), it has become 
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increasingly apparent that these factors act interactively (Wooldridge and Brodie 2015, 

Babcock et al. 2016a), and that single-factor hypotheses cannot explain the complex spatial 

and temporal patterns of COTS outbreaks.  

While some recent research has compared these complementary hypotheses from a theoretical 

perspective (Babcock et al. 2016a), there has yet been an attempt to use the extensive 

observation data available (Sweatman et al. 2008, Chapter 3) to identify the most important 

variables for predicting COTS spatial distribution. Chapter 4 of this thesis created a species 

distribution model (SDM) for COTS presence, prevalence and outbreaks using an extensive 

dataset of environmental variables (Matthews et al. 2019 - Chapter 2) and COTS observation 

data (Chapter 3) in an ensemble framework comprising boosted regression trees (BRT) and 

generalized additive mixed models (GAMM). This model confirmed the importance of water 

quality indicators (e.g. chlorophyll concentrations, flood plume exposure) as well as suggesting 

the importance of temperature gradients in predicting patterns of COTS presence (Lamare et 

al. 2014, Hardy et al. 2014, Uthicke et al. 2015b). In contrast, our results suggested that 

sustained larval supply from reefs with COTS was required to establish more severe and/or 

prevalent outbreaks. Interestingly, these results showed no strong influence of no-take fishing 

zones in predicting COTS spatial distribution, yet was slightly more influential for predicting 

outbreaks. While this finding is contrary to some contemporary thinking (Sweatman 2008, 

Vanhatalo et al. 2017), these other studies looked primarily at the influence of zoning and did 

not account for other factors. Importantly these results also provide the first validated estimated 

of COTS presence, prevalence and outbreak potential across the GBR and provide a useful tool 

for managers to refine the selection process for prioritizing reefs for COTS control. 

As the COTS control program expands and there is increasing spatial and temporal coverage 

in COTS observation data (see Chapter 3), there is scope to use this modelling framework to 

provide temporally explicit estimates of the distribution and abundance of COTS. Additionally, 

this approach may be used to identify the different drivers of primary and secondary outbreaks 

of COTS. This could provide a way to identify the reefs most likely to experience the gradual 

build-up of COTS that will initiate the next outbreak cycles. Developing such predictive 
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frameworks, and integrating them into analytical platforms such as those presented in Chapter 

3 is an important step in improving the adaptive management of COTS on the GBR and 

protecting the remaining coral cover. 

7.4 Spatially and temporally explicit simulation modelling for 

COTS and coral on the GBR  

On the GBR there has been increased awareness of the importance of cumulative disturbance 

on coral reefs (Ortiz et al. 2018, Mellin et al. 2019 - Chapter 5), combined with improved 

modelling and the collation of the disturbance history of the GBR (Matthews et al. 2019). With 

this increase in the availability of the necessary data alongside increase of computing power, 

there has also been a resurgence in the generation of regional scale ecological models for the 

GBR (Hock et al. 2017, Condie et al. 2018, Mellin et al. 2019a). These models have generally 

aimed to address three interwoven questions; (1) can we determine the recovery rate of coral 

reefs and the effects of interacting disturbances (Ortiz et al. 2018, MacNeil et al. 2019); (2) can 

we use hydrodynamic modelling to identify which reefs are the most influential in terms of 

spreading COTS outbreaks and/or replenishing degraded reefs through the provision of coral 

larvae (Hock et al. 2014, 2017); (3) can we recreate the historical trends in coral cover and 

COTS outbreaks for the GBR (Condie et al. 2018, Mellin et al. 2019 - Chapter 5, Chapter 6). 

It is important that these lines of research are consolidated into cohesive modelling frameworks 

that can be applied across the GBR. 

Chapter 5 of this thesis uses the predictions of coral growth rate, disturbance response and 

recovery rate of MacNeil et al. (2015) to predict the growth, disturbance and spatial resilience 

of GBR reefs in a spatially and temporally explicit fashion. This research recreates the 

trajectories of coral cover and disturbance which are extrapolated to all reefs on the GBR, 

providing the first validated estimates of spatial resilience, and importantly the first GBR-wide 

model for coral growth, disturbance and recovery at a 1km resolution. This research confirms 

the role that reduced water quality plays in undermining the resilience of coral reefs (Wenger 

et al. 2016, MacNeil et al. 2019), and provides the first high resolution spatial predictions of 
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resilience. Most importantly, this research provides a simulation modelling framework that 

accounts for the spatially explicit disturbance history, abiotic conditions, water quality, coral 

community composition and coral growth predictions. This framework could be extended to 

incorporate larval connectivity estimates creating a coupled COTS-Coral metacommunity 

model for the GBR (Chapter 6). 

Within the context of declining coral cover on the GBR, and the urgent need for effective 

interventions, there has been renewed interest in increasing efficiency of the COTS control 

program (Fletcher et al. in prep., Westcott et al. 2016, GBRMPA 2017). However, one of the 

major limitations is the lack of a validated simulation model that can make predictions about 

the spatial distribution and abundance of COTS. During the last wave of COTS outbreaks, 

significant advances were made in developing population models for COTS, modelling larval 

connectivity (Dight et al. 1990a, 1990b) and developing the first metapopulation models for 

the GBR (Mccallum 1990, Scandol and James 1992, Scandol 1999). However, limited 

computing power meant that a limited number of reefs (<300) and coarse spatial resolutions 

(>10km) were necessary. With rapid advances in the hydrodynamic modelling of the GBR 

(Hock et al. 2014, Thomas et al. 2014, CSIRO 2019) and computing power available to run 

simulation models, there has been renewed interest in developing simulation models for COTS 

outbreaks on the GBR.  Chapter 6 of this thesis combines the coral growth and recovery model 

of chapter 5 with contemporary understanding of COTS demography (Pratchett et al. 2014), 

larval survival  (Fabricius et al. 2010, Wolfe et al. 2017, Pratchett et al. 2017b) and larval 

connectivity estimates (Hock et al. 2014, 2017) to produce a metacommunity model framework 

for COTS-Coral on the GBR for 1996-2017. This model estimates a time series of chlorophyll 

concentrations using the relationship ENSO cycles to help drive outbreak patterns in COTS. 

Importantly, this novel approach is able to recreate general trajectories and timings of COTS 

outbreaks and the associated loss of coral cover. However, the model was not able to reproduce 
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the extreme densities of some secondary outbreaks, particularly in the Swains/Townsville 

regions.  

Improvements to the model structure could be made to improve predictions such as 

incorporating regional estimates of carrying capacity or using available estimates of coral 

community composition (Mellin et al. 2019 – Chapter 5) to redefine thresholds at which COTS 

populations collapse. This approach would accommodate the role of preferred prey availability 

for COTS (Acropora spp.) (Pratchett 2007) in promoting severe COTS outbreaks, primarily 

due to the increased fecundity of adults (Caballes et al. 2016) and viability of larvae (Caballes 

et al. 2017a). Improved estimates of inter-annual variability of COTS larval connectivity may 

also help to improve the model fit to empirical time series data, as they have been suggested to 

be crucially important to the initiation of COTS outbreaks. Additionally, laboratory and 

modelling research has indicated the importance of temperature gradients in survival of COTS 

larvae (Lamare et al. 2014, Uthicke et al. 2015b) and the spatial distribution of outbreaks 

respectively (Chapter 4) and thus, incorporating a temperature component to this model could 

improve predictions. Importantly, this modelling framework is the first high resolution 

temporally and spatially explicit simulation model for COTS outbreaks across the GBR, and 

provides a platform for simulating the effect of a range of proposed management strategies and 

emerging technologies for COTS control on the GBR. 

7.5 Future directions and management implications 

The overall objective of this thesis was to provide a range of modelling, visualization and 

predictive tools for the management of COTS outbreaks within the cumulative disturbance 

context of the GBR. The development of the COTS Dashboard (Chapter 3) and the CI approach 

to adaptive management are promising, but could benefit from further improvements. For 

example the tool, still relies upon some manual upload of data, which could be automated. 

Furthermore, one of the main objectives of adaptive management is to foster stakeholder 

engagement which could be further promoted by providing external access to the COTS 

Dashboard. Developments of GBRMPA’s Reef 2050 Integrated Monitoring and Reporting 
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Program (GBRMPA and Queensland Government 2018) will provide the infrastructure 

required to both fully automate the Dashboard and provide access to stakeholder groups. 

Moreover, future development of the modelling frameworks presented in Chapters 4-6 could 

be integrated into interactive visualisation and analytical tools such as the COTS Dashboard. 

Such integration could provide enhanced capabilities to make adaptive data driven decisions 

in terms of prioritizing reefs for culling action or perhaps identifying resilient reefs for 

enhanced protection. Additionally, integrating these more complex modelling frameworks with 

easy-to-use interfaces would promote a deeper understanding of the modelling process and 

appreciation of the associated uncertainty. 

Importantly, the modelling frameworks developed in Chapters 4-6 here should continue to be 

improved by increasing the spatiotemporal resolution of estimates of and understanding of 

important drivers of COTS distribution. Chapter 6 developed a novel approach to generating 

time series data for Chlorophyll-a, but this approach could be expanded to predict time series 

for other variables identified in Chapter 4 as important predictors of COTS outbreaks, namely 

larval connectivity and temperature. Importantly, continued improvements to hydrodynamic 

and biogeochemical models to create longer time-series at finer resolutions (1km) are essential 

to improve the accuracy of regional-scale models such as those presented in Chapters 4-6. 

There also remains a significant gap in understanding surrounding larval predation rates and 

early life stage mortality of COTS (Pratchett et al. 2017a), to which our model was most 

sensitive. Future research in this field is essential to reduce model uncertainties and to 

understand outbreak dynamics.   

Results from this thesis highlighted that both water quality and larval connectivity were integral 

in predicting the spatio-temporal patterns of COTS outbreaks. Importantly, this supports 

previous hypotheses (Birkeland 1982, Hock et al. 2014, Wooldridge and Brodie 2015) and 

presents a number of potential management avenues. While ambitious targets for water quality 

improvements have been set out by the federal and state government (Queensland Government 

2018) there is mounting evidence that these goals are unlikely to be met with current measures 

(Waterhouse et al. 2017) and thus more action is required to improve water quality and reduce 
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the impact of COTS outbreaks. While larval connectivity cannot be reduced via interventions, 

the hydrodynamic conditions can be monitored. Ideally existing outputs from hydrodynamic 

and biogeochemical models coupled with metacommunity (Chapter 6) or distribution models 

(Chapter 4) could be used to identify the reefs immediately at risk of outbreaks, define 

prioritization schedules for culling and develop a dedicated early warning system for the 

development of primary outbreaks. Development of these systems should draw upon important 

emerging technologies such as early detection of outbreaks via eDNA (Uthicke et al. 2018) or 

pheromones for aggregation (to make control easier) or dispersion (to decrease fertilisation 

success) of populations (Hall et al. 2017a). Simulating the effect of management interventions 

will allow us to identify which (if any) combination of management interventions may be able 

to stall or diminish the next cycle of COTS outbreaks. In particular, there is a need to be more 

strategic in the spatial and temporal allocation of management effort, especially given limited 

resources (Pratchett and Cumming 2019). This thesis builds upon foundational research in this 

field and provides the necessary tools for improved COTS management and a platform for 

future development of integrated analytical and simulation tools for the GBR. 
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9 Appendix 

9.1 Chapter 2 Supplementary Information 

Table S 9.1 Identification variables for each of the 15,928 pixels, produced either through GIS software or from 
definitions given by AIMS (Miller et al. 2009a) or GBRMPA (Great Barrier Reef Marine Park Authority 2001) 
Reefs are defined by cross shelf location as “inner”, “middle”, or “outer” as well as they latitudinal sector (Fig 
S3) Coordinates are defined by the WGS84 Coordinate reference system (EPSG:4326) in decimal degrees. 

Column Name Source Variable Definition Unit 

PIXEL_ID GIS Unique Grid Cell ID N/A 

X  Latitude Decimal Degrees 

Y  Longitude Decimal Degrees 

REEF_ID GBRMPA Reef Level ID Character 

REEF_NAME GBRMPA Common Reef Name Character 

SECTOR AIMS Latitudinal Sector 

(See Fig S1) 

Cape Grenville “CG”; Prince 
Charlotte Bay “PC”; 
Cooktown/Lizard Island “CL”; 
Cairns “CA”; Innisfail “IN”; 
Townsville “TO”; Cape Upstart 
“CU”; Whitsundays “WH”; 
Pompeys “PO”; Swains “SW”; 
Capricorn Bunker “CB” 

SHELF AIMS Cross-shelf location Inner “I”; Middle “M”; Outer 
“O” 
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Table S 9.2 Environmental and spatial variables available at a 0.01° spatial resolution for the Great Barrier Reef, 
comprising the Australia with mean = annual mean levels at the seabed (CARS/GA/ MTSRF/MARS/GEOMACS 
varaibales) or at the surface (SW/MT variables), seasonal range = a measure of seasonal variability, CARS = 
CSIRO (Australian Commonwealth Scientific and Industrial Research Organisation) Atlas of Regional Seas 
(Condie & Dunn, 2006), GA = Geoscience Australia (see Webster & Petkovic, 2005 for original  bathymetry 
dataset), MTSRF  = Marine and Tropical Sciences Research Facility (Beaman 2010), MARS = MARine Sediment 
database (Mathews et al. 2007), GEOMACS = GEological and Oceanographic Model of Australia’s Continental 
Shelf (Hemer, 2006), SeaWiFS = Sea-viewing Wide Field-of-view Sensor (NASA/Goddard Space Flight Center 
and Orbimage; e.g., Condie & Dunn, 2006), MT = Modis Terra (NASA). K490 is the diffuse attenuation 
coefficient at wavelength 490nm. Benthic Irradiance (BIR) is estimated from monthly surface photosynthetically 
active radiation (PAR; Modis) and K490 (SeaWiFS): PAR*exp(-K490*depth) (Kirk 1996). 

Column Name  Source Ref.Code Variable 
Definition 

Type Unit 

CRS_NO3_AV  CARS 1-4 Nitrate mean µM 

CRS_NO3_SR     seasonal 
range 

 

CRS_02_AV    Oxygen mean mL.L-1 

CRS_O2_SR     seasonal 
range 

 

CRS_PO4_AV    Phosphate mean µM 

CRS_PO4_SR     seasonal 
range 

 

CRS_S_AV    Salinity mean PSU 

CRS_S_SR     seasonal 
range 

 

CRS_SI_AV    Silicate mean µM 

CRS_SI_SR     seasonal 
range 

 

CRS_T_AV    Temperature mean ºC 

CRS_T_SR     seasonal 
range 

 

GA_BATHY  GA 1,5-6 Depth mean m 

GA_SLOPE    Slope Degree of 
slope of 
seabed 

º 
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GA_ASPECT    Aspect Degree 
aspect of 
slope 

º 

GBR_BATHY  MTSRF 7 Depth mean m 

GA_CBRNT  GA/MAR
S 

1, 8-9 Carbonate 
sediments 

mean % 

GA_GRAVEL    Gravel (∅ > 2 
mm) 

mean % 

GA_SAND    Sand (63 µm < ∅ 
< 2 mm)  

mean % 

GA_MUD    Mud (∅ < 63 
µm) 

mean % 

GMCS_STRESS
_TMN 

 GA/GEO
MACS 

1,10 Bed shear stress Trimmed 
mean 

Pa 

GMCS_STRESS
_IQR 

    Interquartile 
range 

Pa 

SW_CHLA_AV  SeaWiFS 1,11-12 Chlorophyll a mean mg.m-3 

SW_CHLA_SR     seasonal 
range 

 

SW_K490_AV   1,13-14 K490 
(Turbidity) 

mean m-1 

SW_K490_SR     seasonal 
range 

 

SW_BIR_AV  SeaWiFS 1,25 Benthic 
Irradiance 

mean Einsteins 
m-2.day-1 

SW_BIR_SR     seasonal 
range 

 

MT_SST_AV  Modis 
Terra 
(NASA) 

1, 15 Sea surface 
temperature 

mean ºC 

MT_SST_SR     seasonal 
range 

 

MT_SST_MIN     min  
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mindistbar  ArcGIS 16 Distance to the 
coast 

Minimum ° 

mindistcoa    Distance to the 
barrier reef 

Minimum ° 

Primary 
(representing 
turbid , sediment 
dominated 
plume) 

 (Devlin et 
al. 2012a, 
Alvarez-
Romero 
et al. 
2013)        

17,18 Primary flood 
plume frequency 
(weeks 
occurred/total 
weeks) during 
wet season (max 
= 26) 

Frequency  0-1 

Secondary 
(representing 
chlorophyll 
dominated 
plume) 

   Secondary flood 
plume 

Frequency 0-1 

Tertiary 
(representing 
further extent of 
plume, as 
delineated by 
salinity less than 
34ppt) 

   Tertiary flood 
plume 

Frequency 0-1 
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Table S 9.3 Reference guide for Table S 9.2 

Ref.No Citation 

1 

Huang, Z., Brooke, B., Whitta, N., Potter, A., Fuller, M., Dunn, J., and Pitcher, 
C. Roland (2010). Australian marine physical environmental data—descriptions 
and metadata. Geoscience Australia Record 2010/32. Geoscience Australia, 
Canberra, 141pp 

2 
Ridgway, K. R., J. R. Dunn, and J. L. Wilkin. 2002. Ocean interpolation by four-
dimensional weighted least squares - Application to the waters around 
Australasia. Journal of Atmospheric and Oceanic Technology 19:1357–1375. 

3 
Condie, S. A., and J. R. Dunn. 2006. Seasonal characteristics of the surface mixed 
layer in the Australasian region: Implications for primary production regimes and 
biogeography. Marine and Freshwater Research 57:569–590. 

4 Dunn, J. R. 2009. CSIRO Atlas of Regional Seas (CARS) Database. 
http://www.marine.csiro.au/~dunn/cars2009/. 

5 Whiteway, T. 2009. Australian bathymetry and topography grid. 
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_67703. 

6 Whiteway, T. 2009. Australian bathymetry and topography grid. Geoscience 
Australia Record 2009/21. 

7 Beaman, R. 2010. 3DGBR: A high-resolution depth model for the Great Barrier 
Reef and Coral Sea. Marine and Tropical Sciences Facility (MTSRF) Project. 

8 
Mathews, E., A. Heap, and M. Woods. 2007. Inter-reefal seabed sediments and 
geomorphology of the Great Barrier Reef: A spatial analysis. Geoscience 
Australia Record 2007/09:140pp. 

9 MARS (MARine Sediment) Database. 2011.  
http://www.ga.gov.au/oracle/mars/index.jsp. 

10 
Hemer, M. A. 2006. The magnitude and frequency of combined flow bed shear 
stress as a measure of exposure on the Australian continental shelf. Continental 
Shelf Research 26:1258–1280. 

11 
O’Reilly, J. E., S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. 
Garver, M. Kahru, and C. McClain. 1998. Ocean color chlorophyll algorithms for 
SeaWiFS. Journal of Geophysical Research: Oceans 103:24937–24953. 

12 Huang, Z. 2013. MODIS derived Chlorophyll a datasets. 
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_77004. 

13 Werdell, P. J. 2005. OceanColor K490 algorithm evaluation. 
https://oceancolor.gsfc.nasa.gov/reprocessing/r2005.1/seawifs/k490_update/. 
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14 Huang, Z. 2013. MODIS derived K490 datasets. http://www.ga.gov.au/metadata-
gateway/metadata/record/gcat_77007. 

15 Huang, Z. 2013. MODIS derived Sea Surface Temperature (SST) datasets. 
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_77009. 

16 
Mellin, C., C. J. a Bradshaw, M. G. Meekan, and M. J. Caley. 2010. 
Environmental and spatial predictors of species richness and abundance in coral 
reef fishes. Global Ecology and Biogeography 19:212–222. 

17 

Devlin, M. J., L. W. McKinna, J. G. Álvarez-Romero, C. Petus, B. Abott, P. 
Harkness, and J. Brodie. 2012. Mapping the pollutants in surface riverine flood 
plume waters in the Great Barrier Reef, Australia. Marine Pollution Bulletin 
65:224–235. 

18 

Álvarez-romero, J. G., M. Devlin, E. Teixeira, C. Petus, N. C. Ban, R. L. Pressey, 
J. Kool, J. J. Roberts, S. Cerdeira-estrada, A. S. Wenger, and J. Brodie. 2013. A 
novel approach to model exposure of coastal-marine ecosystems to riverine fl ood 
plumes based on remote sensing techniques. Journal of Environmental 
Management 119:194–207. 

19 https://coralreefwatch.noaa.gov/satellite/coraltemp.php 

20 
Berkelmans, R., G. De’ath, S. Kininmonth, and W. J. Skirving. 2004. A 
comparison of the 1998 and 2002 coral bleaching events on the Great Barrier 
Reef: spatial correlation, patterns, and predictions. Coral Reefs 23:74–83. 

21 Hughes, T. P., J. T. Kerry, and T. Simpson. 2018. Large-scale bleaching of corals 
on the Great Barrier Reef. Ecology 99:501–501. 

22 
Puotinen, M., J. A. Maynard, R. Beeden, B. Radford, and G. J. Williams. 2016. 
A robust operational model for predicting where tropical cyclone waves damage 
coral reefs. Scientific Reports 6:26009. 

23 

Miller, I. R., M. Jonker, and G. Coleman. 2009. Crown-of-thorns starfish and 
coral surveys using the manta tow and SCUBA search techniques. Long-term 
Monitoring of the Great Barrier Reef Standard Operation Procedure Number 9 
Edition 3. Page Standard Operation Procedure, AIMS. 

24 

Sequeira, A. M. M., C. Mellin, H. M. Lozano-Montes, M. A. Vanderklift, R. C. 
Babcock, M. D. E. Haywood, J. J. Meeuwig, and M. J. Caley. 2016. 
Transferability of predictive models of coral reef fish species richness. Journal of 
Applied Ecology 53:64–72. 
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Table S 9.4 Column properties for DegreeHeatingWeek_data: Annual maximum Degree Heating Weeks (DHW) 

Column name Ref.Code Variable definition Units 

PIXEL_ID  Unique Grid Cell ID N/A 

lon  Longitude ° 

lat  Latitude ° 

REEF_ID  Reef Level ID N/A 

annMaxDHW_1985 19 Thermal stress exposure °C-week 

annMaxDHW_1986 19 Thermal stress exposure °C-week 

………  ……… ……. 

annMaxDHW_2017 19 Thermal stress exposure °C-week 
 

Table S 9.5 Column properties for Bleaching_data_98_02_16.csv: Interpolated values of aerial bleaching scores, 
0 (<1% bleached), 1 (1–10% bleached), 2 (10–30% bleached), 3 (30–60% bleached), and 4 (>60% bleached). 

Column name Ref.Code Variable definition Units 

PIXEL_ID  Unique Grid Cell ID N/A 

lon  Longitude ° 

lat  Latitude ° 

REEF_ID  Reef Level ID N/A 

bleach_1998 20 Aerial survey score 1-4 

bleach_2002 20 Aerial survey score 1-4 

bleach_2016 21 Aerial survey score 1-4 
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Table S 9.6 Column properties for Cyclones_data.csv: Number of hours exposed to waves >4m height/year 
(4MW) 

Column name Ref.Code Variable definition Units 

PIXEL_ID  Unique Grid Cell ID N/A 

lon  Longitude ° 

lat  Latitude ° 

REEF_ID  Reef Level ID N/A 

Hs4MW_1985 22 wave exposure Hours 

Hs4MW_1986 22 wave exposure Hours 

………  ……… ……. 

Hs4MW_2017 22 wave exposure Hours 
 

Table S 9.7 Column properties for COTS_data.csv: Interpolated A. cf. solaris density per manta tow (A. cf. 
solaris.manta tow-1) 

Column name Ref.Code Variable definition Units 

PIXEL_ID  Unique Grid Cell ID N/A 

lon  Longitude ° 

lat  Latitude ° 

REEF_ID  Reef Level ID N/A 

COTS_1985 23 Interpolated COTS 
density 

COTS.manta tow-1 

COTS_1986 23 Interpolated COTS 
density 

COTS.manta tow-1 

………  ……… ……. 

COTS_2017 23 Interpolated COTS 
density 

COTS.manta tow-1 
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9.2 Chapter 4 Supplementary Information 

 
Figure S 9.1 Coral community estimates derived from Mellin et al. (2019). Coral communities represent (1) Outer 
shelf, soft coral dominated; (2) Outer shelf, digitate coral dominated; (3) Outer shelf, tabulate coral dominated; 
(4) Middle shelf, mixed community; (5) Inner shelf, Porites dominated and (6) Inner shelf, macroalgae dominated 
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Figure S 9.2 Pearson correlation values for all predictors. Red indicates a negative correlation, while blue indicates 
positive. 
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Figure S 9.3 Histogram of prevalence values (maximum proportion of manta tows in which COTS were observed) 
across all calibration data, excluding zero value.
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9.3 Chapter 5 Supplementary Information 

 

Figure S 9.4 Bayesian parameter estimates from a Gompertz-based mechanistic model 
of coral cover growth among AIMS long-term monitoring program (AIMS LTMP) reefs (n=46) on the Great 
Barrier Reef (GBR). A) Posterior distribution of intrinsic rate of increase (r) among benthic communities; B) 
median predicted recovery trajectories from 10% initial cover for GBR benthic communities, in the absence of 
coral loss from disturbance; C) scatterplot of joint posterior samples for model r (intrinsic rate of increase) and a 
(density dependence) Gompertz-based coral model parameters, where axis labels in A) and D) apply; D) posterior 
distribution of a among benthic communities; and E) posterior effect size plot for Gompertz-based coral model 
covariate parameters, including posterior medians (circle), 50% uncertainty intervals (thick line), and 95% 
uncertainty intervals (thin line), with grey dots indicating parameters where the 95% UI overlaps zero, and black 
dots where they do not. Benthic communities are coded as 1 (Out- Soft): Outer shelf communities characterized 
by soft corals; 2 (Out- Digit): Outer shelf communities characterized by Acropora digitate (among others); 3 (Out- 
tab): Outer shelf communities characterized by Acropora tabular (among others); 4 (Mid- mixed): mid shelf mixed 
communities; 5 (In- Porites): inner shelf communities characterized by Porites (among others); 6 (In-MA): inner 
shelf communities characterized by macroalgae (among others). 
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Figure S 9.5 Multivariate regression tree of benthic communities. Left: six benthic communities were defined by 
splitting all survey reefs (N = 110) based on environmental predictors. Numbers represent the proportion of each 
community on the GBR (%) and corresponding indicator taxa. Right: Map of survey reefs and corresponding 
benthic communities. With mindistbar: minimum distance to the barrier reef edge, CRS_O2_SR: seasonal range 
in seabed oxygen concentration, CRS_T_SR: seasonal range in seabed temperature, MT_SST_SR: seasonal range 
in sea surface temperature, GA_CRBNT: % carbonate sediments, Out- Soft: Outer shelf communities 
characterized by soft corals; Out- Digit: Outer shelf communities characterized by Acropora digitate (among 
others); Out- tab: Outer shelf communities characterized by Acropora tabular (among others); Mid- mixed: mid 
shelf mixed communities; In- Porites: inner shelf communities characterized by Porites (among others); In-MA: 
inner shelf communities characterized by macroalgae (among others). 



Ch. 9. Appendix 

 
 Matthews – December 2019 215 

 

 
Figure S 9.6 Boosted regression trees of initial and maximum coral cover. Top: predicted spatial patterns in initial 
(A) and maximum (B) coral cover. Dots represent observed values for survey reefs used for model calibration. 
The insert shows the relationship between manta observations and BRT predictions for initial (grey) and 
maximum (black) coral cover. The dashed areas indicate lower confidence in model predictions due to 
extrapolation. Bottom: Partial effects for boosted regression trees predicting initial coral cover (C) and maximum 
coral cover (D). The relative importance of each predictor (%) is indicated in brackets. With CYCLONES_8595: 
total duration of destructive waves (>4m) 
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Figure S 9.7 Distribution of disturbance impacts, water quality and coral growth rate on reefs within or outside 
no-take marine protected areas. With PFc: frequency of river plume conditions and rs: coral intrinsic growth rate. 
The white dot indicates the median, the vertical black bar the interquartile range, and plot width represents the 
proportion of all reefs. The red dot indicates the mean, with closed dots showing significantly different means 
between open and closed (i.e. no-take) reef areas (Kruskal-Wallis test, P < 0.001). 
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Figure S 9.8 Model uncertainty. Uncertainty is expressed as the coefficient of variation (CV; %) in model 
predictions among a total of 1,000 simulations. Dots show reefs surveyed by the long-term monitoring program 
used for calibrating the Gompertz model. The dashed areas indicate lower confidence in model predictions due to 
extrapolation. 
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Figure S 9.9 Sensitivity analysis. (A) Boosted regression tree partial effects showing the relationship between 
each model parameter and the extent of predicted coral decline across the Great Barrier Reef. The relative 
importance (%) of each model parameter is indicated in brackets. (B) Scatter plot showing the mean extent of 
predicted coral decline across the Great Barrier Reef (%) as a function of the mean coral growth rate (s

t
). (C) 

Relative influence (%) of each model parameter on predicted coral decline across the Great Barrier Reef. (D) 
Interactive effect of s

t
 and initial coral cover (HCINI) on the extent of predicted coral decline. With cyclones: 

total cyclone severity from 1996 to 2017, COTS: total density of crown-of-thorns starfish (Acanthaster cf. solaris) 
from 1996 to 2017, bleach: total bleaching severity from 1996 to 2017, HCMAX: maximum coral cover from 1996 
to 2017
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Table S 9.8 Environmental and spatial variables considered as candidate predictors and available at a 0.01º spatial resolution for the Great Barrier Reef, Australia. With mean 
= annual mean levels, std dev = standard deviation in monthly mean levels, as a measure of seasonal variability, CARS = CSIRO (Australian Commonwealth Scientific and 
Industrial Research Organisation) Atlas of Regional Seas (1), GA = Geoscience Australia (see Webster & Petkovic (2) for original multibeam bathymetry dataset), MARS = 
MARine Sediment database (3), SeaWiFS = Sea-viewing Wide Field-of-view Sensor (NASA/Goddard Space Flight Center and Orbimage (1)). K490 is the diffuse attenuation 
coefficient at wavelength 490 nm. 

Variable  Source Definition Type Unit Justification 

CRS_NO3_A
V 
_SR 

CARS Nitrate mean  
std dev 

µM Affects coral physiology, growth and calcification rates (4, 5) 

CRS_PO4_A
V 
_SR 

  Phosphate mean 

std dev 

µM Affects coral physiology, growth and calcification rates (4, 5) 

CRS_O2_AV 
_SR 

  Oxygen mean 

std dev 

mL.L-1 Affects coral calcification rates (6); oxygen depletion characteristic of eutrophic 
conditions (4) 

CRS_S_AV 
_SR 

  Salinity mean 

std dev 

PSU Decreases with terrestrial runoff and freshwater input (4), influences coral 
calcification (7) and reproduction (8) 

CRS_T_AV 
_SR 

  Seabed 
temperature 

mean 

std dev 

ºC Influences metabolic rates; determines species distribution through thermal 
tolerance thresholds (9) 

MT_SST_AV 
_SR 

Modis 
Terra 
(NASA) 

Sea surface 
temperature 

mean 

std dev 

ºC Influences metabolic rates; determines species distribution through thermal 
tolerance thresholds (9) 

SW_CHL_AV SeaWIFS Chlorophyll a mean mg.m-3 Quantifies primary productivity and eutrophic conditions affecting coral 
ecophysiology (4) 
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_SR std dev 

SW_K490_A
V 
_SR 

 
K490 
(Turbidity) 

mean 

std dev 

m-1 Reflects light availability in support of photosynthesis (4) 

GBR_BATH
Y 

MTSRF Depth mean m Determines light availability and co-varies with other variables (e.g. temperature, 
salinity, nutrient availability) (10) 

GA_CBRNT GA/MAR
S 

Carbonate 
sediments 

mean % Increases available substrate and carrying capacity (10, 11) 

GA_SAND   Sand (63 µm < 
∅ < 2 mm)  

mean % Decreases available substrate and carrying capacity (10, 11) 

mindistbar ArcGIS Distance to the 
barrier reef 
edge  

Minimum ° Provides a proxy for cross-shelf gradient shared among multiple environmental 
covariates (9, 10) 

mindistcoa   Distance to the 
coast 

Minimum ° Provides a proxy for cross-shelf gradient shared among multiple environmental 
covariates (9, 10) 

PFc Modis Flood plume 
frequency 
during wet 
season 

Frequency  0-1 Influences coral growth rate (12) 

 

1. Condie SA & Dunn JR (2006) Seasonal characteristics of the surface mixed layer in the Australasian region: implications for primary 
production regimes and biogeography. Marine and Freshwater research 57(6):569-590. 
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2. Webster MA & Petkovic P (2005) Australian bathymetry and topography grAN, June 2005. Geoscience Australia Record, 2005/12, 12pp. 
3. Mathews E, Heap A, & Woods M (2007) Inter-reefal seabed sediments and geomorphology of the Great Barrier Reef, a spatial analysis. 
Geoscience Australia Record, 2007/09, 140pp. 
4. Fabricius K (2011) Factors determining the resilience of coral reefs to eutrophication: a review and conceptual model. Coral reefs: an 
ecosystem in transition, ed N DZaS (Springer, Berlin), pp 493-505. 
5. D’Angelo C & Wiedenmann J (2014) Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal 
management and reef survival. Current Opinion in Environmental Sustainability 7:82-93. 
6. Colombo-Pallotta MF, Rodriguez-Roman A, & Iglesias-Prieto R (2010) Calcification in bleached and unbleached Montastraea faveolata: 
evaluating the role of oxygen and glycerol. Coral Reefs 29(4):899-907. 
7. De'ath G, Lough JM, & Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323(5910):116-119. 
8. Humphrey C, Weber M, Lott C, Cooper T, & Fabricius K (2008) Effects of suspended sediments, dissolved inorganic nutrients and 
salinity on fertilisation and embryo development in the coral Acropora millepora (Ehrenberg, 1834). Coral Reefs 27(4):837-850. 
9. Mellin C (2015) Abiotic surrogates in support of marine biodiversity conservation. Indicators and surrogates of biodiversity and 
environmental change, eds Lindenmayer DB, Barton P, & Pierson J (CSIRO Publishing, Melbourne, Australia). 
10. McArthur MA, et al. (2010) On the use of abiotic surrogates to describe marine benthic biodiversity. Estuarine, coastal and shelf science 
88(1):21-32. 
11. Pitcher CR, et al. (2012) Exploring the role of environmental variables in shaping patterns of seabed biodiversity composition in regional-
scale ecosystems. Journal of Applied Ecology 49(3):670-679. 

12. MacNeil MA, et al. (in press) Water quality mediated resilience on the Great Barrier Reef. Nature Ecology and Evolution. 
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Table S 9.9 Survey reefs and sample size used at each model development step. With MRT: multivariate regression trees; HLM: hierarchical linear model; BRT: boosted 
regression trees; rs: intrinsic coral growth rate; HCini: initial coral cover; HCmax: maximum coral cover; AIMS LTMP: Long-term monitoring program; MMP: marine monitoring 
program; RAP: representative areas program (see Methods for details). 

Step AIMS 
LTMP 

Manta MMP RAP Rationale 

MRT (Benthic communities) 46  17 45 Increase spatial coverage and representation of inshore reefs 

Bayesian HLM (rs) 46    Coral cover available at the transect level 

BRT (rs) 46    Estimates from Bayesian HLM 

BRT (HCini) 46 62   Increase spatiotemporal coverage and sample size 

BRT (HCmax) 46 62   Increase spatiotemporal coverage and sample size 

Out-of-sample validation of 
predicted coral cover 
trajectories 

 10   Reefs not used for model calibration with available disturbance history 
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9.4 Chapter 6 Supplementary Information 

Table S 9.10 Nino 3.4 Index used to predict chlorophyll concentrations between 1996-2017. The September 
October-November (SON) values (Rayner et al. 2003) were used to model this relationship. Values coloured in 
blue represent La Niña periods and those in red represent El Niño events 

Year	 DJF	 JFM	 FMA	 MA
M	 AMJ	 MJJ	 JJA	 JAS	 ASO	 SON	 OND	 NDJ	

1996	 -0.9	 -0.8	 -0.6	 -0.4	 -0.3	 -0.3	 -0.3	 -0.3	 -0.4	 -0.4	 -0.4	 -0.5	
1997	 -0.5	 -0.4	 -0.1	 0.3	 0.8	 1.2	 1.6	 1.9	 2.1	 2.3	 2.4	 2.4	
1998	 2.2	 1.9	 1.4	 1	 0.5	 -0.1	 -0.8	 -1.1	 -1.3	 -1.4	 -1.5	 -1.6	
1999	 -1.5	 -1.3	 -1.1	 -1	 -1	 -1	 -1.1	 -1.1	 -1.2	 -1.3	 -1.5	 -1.7	
2000	 -1.7	 -1.4	 -1.1	 -0.8	 -0.7	 -0.6	 -0.6	 -0.5	 -0.5	 -0.6	 -0.7	 -0.7	
2001	 -0.7	 -0.5	 -0.4	 -0.3	 -0.3	 -0.1	 -0.1	 -0.1	 -0.2	 -0.3	 -0.3	 -0.3	
2002	 -0.1	 0	 0.1	 0.2	 0.4	 0.7	 0.8	 0.9	 1	 1.2	 1.3	 1.1	
2003	 0.9	 0.6	 0.4	 0	 -0.3	 -0.2	 0.1	 0.2	 0.3	 0.3	 0.4	 0.4	
2004	 0.4	 0.3	 0.2	 0.2	 0.2	 0.3	 0.5	 0.6	 0.7	 0.7	 0.7	 0.7	
2005	 0.6	 0.6	 0.4	 0.4	 0.3	 0.1	 -0.1	 -0.1	 -0.1	 -0.3	 -0.6	 -0.8	
2006	 -0.8	 -0.7	 -0.5	 -0.3	 0	 0	 0.1	 0.3	 0.5	 0.7	 0.9	 0.9	
2007	 0.7	 0.3	 0	 -0.2	 -0.3	 -0.4	 -0.5	 -0.8	 -1.1	 -1.4	 -1.5	 -1.6	
2008	 -1.6	 -1.4	 -1.2	 -0.9	 -0.8	 -0.5	 -0.4	 -0.3	 -0.3	 -0.4	 -0.6	 -0.7	
2009	 -0.8	 -0.7	 -0.5	 -0.2	 0.1	 0.4	 0.5	 0.5	 0.7	 1	 1.3	 1.6	
2010	 1.5	 1.3	 0.9	 0.4	 -0.1	 -0.6	 -1	 -1.4	 -1.6	 -1.7	 -1.7	 -1.6	
2011	 -1.4	 -1.1	 -0.8	 -0.6	 -0.5	 -0.4	 -0.5	 -0.7	 -0.9	 -1.1	 -1.1	 -1	
2012	 -0.8	 -0.6	 -0.5	 -0.4	 -0.2	 0.1	 0.3	 0.3	 0.3	 0.2	 0	 -0.2	
2013	 -0.4	 -0.3	 -0.2	 -0.2	 -0.3	 -0.3	 -0.4	 -0.4	 -0.3	 -0.2	 -0.2	 -0.3	
2014	 -0.4	 -0.4	 -0.2	 0.1	 0.3	 0.2	 0.1	 0	 0.2	 0.4	 0.6	 0.7	
2015	 0.6	 0.6	 0.6	 0.8	 1	 1.2	 1.5	 1.8	 2.1	 2.4	 2.5	 2.6	
2016	 2.5	 2.2	 1.7	 1	 0.5	 0	 -0.3	 -0.6	 -0.7	 -0.7	 -0.7	 -0.6	
2017	 -0.3	 -0.1	 0.1	 0.3	 0.4	 0.4	 0.2	 -0.1	 -0.4	 -0.7	 -0.9	 -1	
2018	 -0.9	 -0.8	 -0.6	 -0.4	 -0.1	 0.1	 0.1	 0.2	 0.4	 0.7	 0.9	 0.8	
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