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Abstract

Outbreaks of the Pacific crown-of-thorns starfish (COTS; Acanthaster cf. solaris) have
contributed greatly to sustained declines in coral cover on the Great Barrier Reef (GBR)
throughout the last 50 years. With the intensity and frequency of bleaching and cyclonic
disturbances predicted to increase, effectively managing these outbreaks may give reefs an
opportunity to partially recover from these cumulative impacts. Major limitations in
contemporary control programs of COTS revolve around understanding of the spatial and
temporal patterns of COTS outbreaks. This research addresses these limitations by constructing
a spatially explicit COTS-Coral metacommunity model for the GBR between 1996-2017, and
building several key modelling tools towards this goal. Firstly, the disturbance history (1985-
2017) and abiotic regime were collated for the GBR at a 1x1km resolution as a standardized
platform to develop regional scale models for the GBR. To synthesise the extensive and
disparate streams of COTS observational data, an interactive visualisation and analytical
platform, The COTS Dashboard was developed. This tool, currently being used by the Great
Barrier Reef Marine Park Authority, allows researchers and managers to assess the severity
and extent of COTS outbreaks and monitor progress towards stated management goals. Using
the data collated by the two previous tools, a habitat suitability model for COTS was
constructed. This model provides the first validated estimates of COTS outbreak probability
across the GBR, identifying the importance of a variety of water quality, larval connectivity
and abiotic variables in predicting COTS spatial distribution. Finally, a COTS-Coral
metacommunity model was built to recreate the trajectories of coral cover and COTS density
for the last 23 years accounting for major disturbances, water quality and larval connectivity
variability. This model provides a framework within which future management scenarios for
COTS outbreaks can be tested. Overall this research aims to provide modelling and data tools
for researchers and managers to develop the most effective and efficient management of COTS

outbreaks.
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Ch. 1. General Introduction

1 General Introduction

1.1 Cumulative disturbances on coral reefs

Coral reefs globally are subject to extensive and sustained degradation (Hughes et al. 2003,
Pandolfi et al. 2003, Hoegh-Guldberg et al. 2007, Jackson et al. 2012). Reef degradation began
centuries ago with extensive coastal modification and over-exploitation of large and vulnerable
species, but has accelerated in recent decades with increasing anthropogenic disturbances and
compounding effects of environmental change (Pandolfi et al. 2003, De’ath et al. 2012, Jackson
et al. 2012). Moreover, the condition of reef ecosystems is predicted to worsen in coming
decades with increasing frequency and severity of dominant stressors (Hoegh-Guldberg 1999,
Knutson et al. 2010, Rummukainen 2012, Hoegh-Guldberg et al. 2014, Hughes et al. 2017b).
These stressors not only contribute to elevated mortality of habitat-forming organisms (mainly,
corals), but undermine the resilience of reef communities. Resilience is defined herein as the
capacity of ecological systems to absorb the impact of a disturbance without drastically or
permanently deviating from the its initial pre-disturbance state (Hughes et al. 2003, 2010, Folke
et al. 2004). Resilience of coral assemblages is eroded by chronic stressors such as ocean
warming and acidification, pollution, sedimentation and over-harvesting. Within the context of
these chronic stressors, discrete periods of coral loss are most commonly attributed to acute
disturbances such as severe tropical cyclones (Wolff et al. 2016), mass coral bleaching (Hughes
et al. 2017b), outbreaks of coral disease (Miller et al. 2009b, Bourne et al. 2009) and predation
from outbreaks of coral predators such as crown-of-thorns starfish (COTS) Acanthaster spp
(De’ath et al. 2012, Baird et al. 2013). These disturbances can act independently, but commonly

occur in concert with complex interactive effects (Ban et al. 2014, Vercelloni et al. 2017,
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MacNeil et al. 2019). For example, on Australia’s Great Barrier Reef (GBR) poor water quality
increases susceptibility to coral diseases and bleaching (Vega Thurber et al. 2014) and is also
hypothesised to contribute to the proliferation of outbreaks of COTS (Fabricius et al. 2010,
Brodie et al. 2017). Therefore, it is of vital importance for the future of coral reefs that we
better understand the interacting effects of multiple disturbances. Herein, the term “cumulative
disturbance” is used to encompass both additive (cumulative) and interactive (synergistic)

effects of disturbance on coral reefs.

Given the critical and urgent need for effective and innovative coral reef management (Hughes
et al. 2017a, Bellwood et al. 2019), there has been increased focus on understanding the
cumulative effect of disturbances and providing modelling frameworks that can adequately
simulate their effect on coral cover trajectories (Burke and Reytar 2011, Ortiz et al. 2018,
Mellin et al. 2019a). There has been significant development in these fields, such as cumulative
impact mapping and assessment (Halpern and Fujita 2013), and the development of
frameworks for resilience based management (McCook et al. 2010b, Anthony et al. 2015).
However, the modelling frameworks used to determine the effects of multiple disturbances and
identify the most resilient reefs are often simply mapping disturbance exposure for reef
locations and only account for linear responses of ecosystems to stressors (Hughes et al.
2017a). While these approaches can be useful, temporally explicit modelling frameworks that
account for non-linear interactions of multiple stressors are essential. Fundamental to this
approach is the collation and standardization of disturbance and environmental data to promote
the development of complex regional scale models. Developing such models provides the
opportunity to identify important disturbances that may be mitigated and simulate the potential

gains (or reduced losses) that may be achievable through a variety of proposed interventions.

Although there are many threats to the future of coral reefs, there are few interventions

available for direct action at a local or regional scale that may stall the decline of reefs to allow
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reefs to recover from multiple disturbances (Bellwood et al. 2019). Recently, significant effort
has been directed towards identifying emerging technologies to promote coral reef restoration,
which are aimed to be combined with existing management strategies such as pest and pollution
control and no-take areas (van Oppen et al. 2017, Anthony et al. 2017). However, these
technologies are in their infancy, while scaling and cost remain significant hurdles. As such,
increasing the efficiency of currently available interventions is a key management goal
(GBRMPA 2017). Since no management intervention can protect from cyclones, and given
that mitigating the impact of climate change requires global coordination, most interventions
on the GBR have been directed towards improving water quality (Kroon et al. 2016), creating
marine reserves (McCook et al. 2010a) or the manual removal of the dominant coral predator,
COTS (Westcott et al. 2016, Pratchett and Cumming 2019). The remainder of this introduction
will focus upon the causes, consequences and management of COTS in the broader context of
cumulative disturbances to coral reefs. Importantly the following sections will highlight key
areas in which modelling tools can contribute to the improved management of COTS outbreaks

with the ultimate goal of enhancing the condition and resilience of coral-dominated habitats.

1.2 Outbreaks of crown-of-thorns starfish (COTYS)

Outbreaks of the coral-eating crown-of-thorns starfish (COTS, Acanthaster spp.) represent one
of the most significant causes of coral loss throughout the Indo-Pacific (De’ath et al. 2012,
Baird et al. 2013). During outbreaks, densities of COTS may reach 151,650 starfish km
(Kayal et al. 2012). The combined feeding activity of high densities of large COTS cause
extensive and widespread coral loss (Chesher 1969, Kayal et al. 2012). Given that corals are
essential for maintaining productivity and biodiversity in reef ecosystems (Holbrook et al.
2000, Jones et al. 2004, Wilson et al. 2006, Pratchett et al. 2008), COTS outbreaks directly
contribute to the degradation of coral reef ecosystems, jeopardising ecosystem function and

fisheries production. On Australia’s Great Barrier Reef (GBR), there have been four
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documented outbreaks of the Pacific species of COTS (Acanthaster cf. solaris) since the
1960’s, contributing to significant and sustained declines in coral cover (Pratchett et al. 2014).
Since 1982, the average coral cover at reefs monitored by the Long Term Monitoring Program
(LTMP) of the Australian Institute of Marine Science has declined by 50% and nearly half of
this loss was attributed to successive outbreaks of COTS (De’ath et al. 2012). Unlike other
causes of coral loss (e.g., tropical cyclones, coral bleaching and disease), outbreaks of COTS
may be amenable to direct action (Pratchett et al. 2014). Consequently, management strategies
such as increasing the efficiency of direct control (Rivera-Posada et al. 2014, Fletcher and
Westcott 2016, Doyle et al. 2017), developing biological controls (Endean 1969, Hall et al.
2017a), or addressing the anthropogenic disturbances that may initiate or exacerbate outbreaks
(Kenchington and Kelleher 1992, Brodie and Waterhouse 2012) are the most promising direct
approaches to halt or reverse declining coral cover on the GBR (Pratchett et al. 2014). However,
in order to predict and subsequently prevent the spread of future outbreaks and thus protect the
remaining live coral on the GBR, it is essential to understand the mechanisms driving these

outbreaks.

Outbreaks of COTS are generally defined as starfish > 1,500 individuals km2 (15 individuals
ha! or 0.22 per 2 min manta-tow), which was estimated as the maximum sustainable density
of starfish for a reef with average coral cover (Moran and De’ath 1992, Pratchett et al. 2014).
More recent calibration however, has adjusted these thresholds due to lower than previously
assumed detectability of manta tow to be >4,900 individuals km (49 individuals ha* or 0.22
per 2 min manta-tow) (De’ath 2003). One major school of thought suggests that outbreaks are
initiated as a result of gradual accumulation of individuals from successive recruitment events,
known as “primary outbreaks” (Endean 1974, Johnson 1992, Stump 1996, Pratchett 2005a).
Once these primary outbreaks have established, the increased density of adult starfish

overcome Allee thresholds and fertilisation is dramatically increased (Rogers et al. 2017). With
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the combination of increased fertilisation rates and the immense fecundity of the species
(Conand, 1984; Kettle & Lucas, 1987) it is almost inevitable that the dramatic increase in
offspring production from a primary outbreak give rise to a wave of “secondary outbreaks”
that propagate southwards along the GBR (Endean 1974, Reichelt et al. 1990a). Secondary
outbreaks are a logical consequence of large established breeding populations (Pratchett et al.
2014), and are expected to propagate across the GBR in accordance with predominant

hydrodynamic flows (Dight et al. 1990a, 1990b, Hock et al. 2014, Thomas et al. 2014).

Hypotheses accounting for the initiation of outbreaks have largely been concerned with factors
affecting larval survival (e.g. ‘terrestrial-runoff hypothesis’ (Birkeland 1982)), or post-
settlement survival (e.g. ‘predator removal hypothesis’ (Endean 1969); ‘prey-threshold
hypothesis’ (Antonelli and Kazarinoff 1984)). However, single factor hypotheses oversimplify
the complex dynamics of COTS outbreaks (Babcock et al. 2016a) and overlook the
predisposition of this organism to major fluctuations in abundance due to their immense
fecundity (Conand 1984, Kettle and Lucas 1987), combined with the capacity for synchronous
spawning and fertilisation over large distances (Babcock and Mundy 1992, Benzie 1992).
Moreover, increased eutrophication (from terrestrial runoff) may promote increased larval
survival, allowing the high reproductive capacity of COTS (Babcock et al. 2016b) to be
translated to recruitment success. The terrestrial run-off hypothesis (first proposed by
Birkeland 1982) has been further supported by experimental studies showing that increased
phytoplankton concentrations (using chlorophyll-a as a proxy) lead to significant increases in
rates of larval development and survivorship (Fabricius et al. 2010, Wolfe et al. 2015, 2017,
Pratchett et al. 2017b). Periods of optimal Chl-a concentrations for larval survival (1 ug chl-a
L) are natural background conditions for some inner shelf reefs and represent peak eutrophic
conditions following storms and floods in the mid and outer-shelf reefs (Wolfe et al. 2015).

Woolridge and Brodie (2015) suggested that primary outbreaks are initiated by the
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combination of increased Chl-a concentrations and increased larval retention as a result of
neutral ENSO conditions in the north-Central GBR (Cairns-Lizard Island), an area referred to
as the “initiation box”. This claim is supported by recent larval connectivity models which
highlight the formation of isolated clusters at small dispersal distances (<27km) (Kininmonth
et al. 2010) and also elevated short and long-range connectivity within the “initiation” box

(Hock et al. 2017).

The focus of much COTS research on the “terrestrial run-off hypothesis” and extensions
thereof, whilst providing significant advances to understanding larval survival, has diminished
the emphasis on developing a more holistic explanation of COTS outbreaks (Pratchett and
Cumming 2019). The causes of COTS outbreaks are complex and synergistic, requiring the
alignment of environmental, hydrodynamic and demographic conditions and this complexity
should be reflected by research priorities. There also remains a significant lack of empirical
data on some key-life history demographics (e.g. fecundity, fertilisation success, spawning,
and settlement cues). For our understanding to advance, it is therefore imperative to synthesise
the extensive time-series field observations of COTS outbreaks with the increasingly accurate
estimates of environmental thresholds (e.g., Chl-a and temperature), hydrodynamic modelling
and increasingly available information regarding environmental conditions across the GBR.
Synthesising these currently disparate aspects of COTS research into a single modelling
framework may allow for the forecasting and early detection of COTS outbreaks, and

ultimately the development of more effective mitigation strategies.

1.3 Modelling COTS Outbreaks

Increasingly, complex ecological models are being developed to understand species invasions
and outbreaks of pest species (Elith et al. 2010, De Rivera et al. 2011, Véclavik and

Meentemeyer 2012, Cockrell and Sorte 2013, Mellin et al. 2016b). Below | outline four key,
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generally independent modelling procedures of increasing complexity used to model range
expanding species and show how each can act as a building block for a fifth; metapopulation
modelling framework that will both generate predictions for management of the COTS problem

and provide a novel template for modelling range-expanding marine species modelling.

1.3.1 Species Distribution Modelling (SDM)

Species distribution models (i.e. SDM; a.k.a. ecological niche or habitat suitability models)
describe or predict the probability of presence of a species, or patterns of its abundance, across
environmental gradients or in a specific geographical area (Pearman et al. 2008, Peterson et al.
2011). SDM is essentially a correlative technique that fits a statistical relationship between
observations and predictor variables (usually environmental conditions). Such models can be
useful as a first step towards identifying newly suitable habitats. For example, in response to
warming temperatures, invasive species could expand once dispersal barriers are breached (De
Rivera et al. 2011, Aradjo and Peterson 2012, Jones et al. 2013). SDM only require
geographically referenced presence/absence/abundance observations and associated
environmental data to derive predicted distributions. These models are constrained by the
underlying assumption that species occurrences accurately portray the range of suitable
environments that the species is at equilibrium with (Thuiller 2005, Elith et al. 2010, Vaclavik
and Meentemeyer 2012). This assumption, however, is often violated for range-expanding
species as their range changes over time (Elith et al. 2010). Additionally, many SDMs rely
solely on presence data as true absence data are missing and thus an assumed pseudo-absence
matrix must be generated (Graham et al. 2004, Ferrier and Guisan 2006). For COTS however,
these limitations are somewhat alleviated by the fact that outbreaks occur within their native
range and that both presence and absence data are available. Although substantial
observational and environmental data exists, there has not yet been an attempt to model COTS

spatial distribution and determine its drivers.
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1.3.2 Biophysical/Mechanistic Modelling

Mechanistic models (a.k.a. biophysical models) rely on species physiological tolerance limits
and, in doing so, enable the modelling of species distributions across environmental gradients
without using species distributions per se (Kearney and Porter 2009). Biophysical models tend
to yield more robust predictions than SDM because they explicitly account for the relationships
between environmental conditions and organismal performance, irrespective of a species’
current distribution that can sometimes misrepresent its potential range due to e.g. depletion
from harvesting (Buckley et al. 2010). Therefore, biophysical models are particularly useful
when a species’ distribution is not at equilibrium, or determined by a particular physiological
response (Buckley et al. 2010). Such biophysical models are increasingly used to model range
dynamics in response to climate change (Kearney et al. 2010, Cheung et al. 2011) or seasonal
temperature gradients (Monahan 2009), and the use of such models is particularly promising
when data are sufficient to couple them with SDMs to improve predictions (Elith et al. 2010,
Fordham et al. 2013). As mentioned previously, the extensive work done on COTS larval
development and survivorship offers the opportunity to create a coupled mechanistic-SDM that

could overcome some of the difficulties associated with modelling outbreaking species.

1.3.3 Larval Connectivity Modelling

Larval dispersal/connectivity models are built upon underlying hydrodynamic
models/empirical data for a given area, and can be interrogated to determine probabilities of
larval dispersal between nodes of a network (Condie et al. 2012, Thomas et al. 2014, Hock et
al. 2017). The advantage of this approach is that it explicitly deals with the potential for external
sources and sinks, and they are particularly useful for modelling invertebrate species where
populations are easily surveyed and migration is largely limited to a pelagic larval stage
(Robinson et al. 2011). Larval connectivity models were first developed for COTS on the GBR

in the late 1980s (Dight et al. 1990a, 1990b), however, recent advances in high resolution
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hydrodynamic modelling in the GBR (Herzfeld & Waring, 2006; Condie et al., 2012; Thomas
et al., 2014) has increased the feasibility of accurately modelling dispersal events within this
complex system. Indeed, some network analyses have already confirmed the importance of the
“initiation box” as a source of larvae for downstream outbreaks, and have been used to predict
the likelihood of outbreaks (Hock et al. 2014, 2017). These efforts, however, do not take into
account habitat suitability for COTS, and are built solely upon the maximum potential larval
connectivity between reefs. An important extension of these models is to incorporate the
extensive COTS observation and environmental data to predict reefs most likely to experience

COTS outbreaks and to validate these predictions

1.3.4 Demographic Population Modelling

Demographic models that explicitly account for species vital rates (e.g. births, mortality,
fecundity) and stage-specific growth rates are being increasingly used to model invasive or
outbreaking species (Fordham et al. 2013). Demographic models overcome some limitations
of SDM as they can incorporate dispersal as well as vital rates that can vary over space and
time (Mellin et al. 2016b). Demographic models can be either population-based, accounting
for population-level parameters such as survival and fertility rates and dispersal kernels, or
individual-based, accounting for individual parameters such as body size, sex, behaviour
(Mellin etal. 2016). For COTS some studies have developed age-structured population models,
however they generally estimate vital rates from the model (Mccallum 1990, Morello et al.
2014), even though there are data available on growth rates of juvenile and adult COTS (Lucas
1984, Caballes and Pratchett 2014, Wilmes et al. 2016), as well as size-dependent fecundity
(Kettle and Lucas 1987, Babcock et al. 2016b). These studies provide a solid foundation for
further developing stage based demographic models, with a number of independent (and
calibrated) datasets (MacNeil et al. 2016) available for use in the validation process. Most

importantly however, recent advances in the development and usage of statistical software
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(such as R) allow the synthesis of other important factors for invasive species such as landscape
dynamics, habitat suitability and dispersal/connectivity into a spatially explicit metapopulation

framework (Lurgi et al. 2015).

1.3.5 Metapopulation and Metacommunity Modelling

A metapopulation is a “population of populations” (Levins 1969), a set of individual
populations linked by source-sink dynamics (as estimated through larval connectivity
modelling) and separated by unsuitable habitat (species distribution modelling). A
metacommunity model, however represents a set of set of local communities that are linked by
dispersal (Holyoak et al. 2005). A metacommunity model for COTS therefore, coalesces the
outputs of the aforementioned modelling techniques with spatially explicit coral growth and
disturbance to provide predictions representing a more comprehensive explanation of the
complex ecological relationships than is possible using other methodologies. Metapopulation
models have already been developed for COTS (Mccallum 1990, Scandol 1999), but do not
account for spatially explicit coral growth, disturbance and recovery as in a metacommunity
framework and were built using low-resolution hydrodynamic models that cannot accurately
recreate near-shore processes. Condie et al. (2018) advanced these approaches by
incorporating coral growth and recovery from cumulative disturbances and management
simulations, however this approach is currently not spatially explicit. Recent advances in both
larval connectivity modelling on the GBR (Condie et al. 2012, Hock et al. 2014) as well as the
development of disturbance datasets (Matthews et al. 2019) and coral growth models (MacNeil
et al. 2019, Mellin et al. 2019a), allow for a more accurate spatially explicit metacommunity

model to be developed for COTS on the GBR.
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1.3.6 Crown-of-thorns modelling

Previous modelling studies have tackled the COTS problem with varying levels of detail,
drawing from a vast range of empirical and simulated data. However, there has not yet been
any attempt to combine all of the best available data into a modelling framework that takes
advantage of the computational and statistical advances of the last decade. Metapopulation
models created in the 1990’s (Scandol and James 1992, Scandol 1999) were underpinned by
the hydrodynamic models of Dight et al. (1990a), which have now been surpassed in spatial
resolution (~10km vs ~0.25-4km) (Herzfeld and Waring 2006, Condie et al. 2012, Thomas et
al. 2014). Furthermore, due to computational limitations, a number of important biological
processes (namely coral growth and recovery after an outbreak) were oversimplified within
these models. Morello et al. (2014) developed a model which incorporated trophic interactions
as a mechanism for controlling COTS populations, focusing on the empirical data from Lizard
Island. Aside from its limited spatial extent, this model only successfully recreated historical
outbreaks when recruitment rates were artificially manipulated. The initiation of outbreaks
within the “initiation box” was modelled mechanistically by Wooldridge and Brodie (2015)
who combined simulated nutrient loads and hydrodynamic connectivity with empirical
historical records of COTS outbreaks to highlight the coincidence of outbreaks following peak
nutrient loading on strong local clustering of reefs during neutral ENSO conditions. This
mechanistic approach, whilst explaining convincingly the initiation mechanism does not
provide a framework to simulate COTS outbreak probabilities under a variety of scenarios or
determine best management practices to control these outbreaks. There is a need to develop a
metacommunity model framework that will combine the most up to date empirical and
simulated data, building upon knowledge gained from recent mechanistic (Wooldridge and
Brodie 2015), connectivity (Hock et al. 2014) demographic (Morello et al. 2014) and
metacommunity models using simulated reef locations (Condie et al. 2018). This framework

should extend the temporal and spatial scope of recent models whilst incorporating relevant
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biological processes with finer spatial resolution to provide the most accurate information to

managers of COTS outbreaks.

1.4 Management of COTS on the Great Barrier Reef

Widespread support for management intervention followed the first global reports of COTS
outbreaks (Westcott et al. 2016) such as in the Ryukyu Archipelago in Japan in 1957
(‘Yamaguchi 1986), in Guam (1967) and Palau (1969) and on the GBR near Green Island in
1962 (Endean 1969, 1982). Although the question of whether COTS outbreaks represent a
natural phenomenon remains largely unresolved (Dana and Wolfson 1970, Vine 1973, Uthicke
et al. 2009, Pratchett et al. 2017a), the priority for managers has transformed into whether the
threat to corals and in particular the GBR are sufficient to elicit direct intervention (Westcott
et al. 2016). Indeed, most research throughout the 1980°s and 1990’s focused on the organism
itself, and the processes underpinning outbreaks. While the efficacy of control efforts and best
practices remain in doubt (Pratchett et al. 2017a, Pratchett and Cumming 2019), recent
understanding of the interactions between COTS and other disturbances to coral reefs
(Vercelloni et al. 2017, Ortiz et al. 2018, MacNeil et al. 2019, Mellin et al. 2019a), have
highlighted the urgency of action. While tropical cyclones, bleaching events, outbreaks of
COTS, and poor water quality act cumulatively to reduce coral cover, it is outbreaks of COTS

that are most amenable to direct management actions at the reef scale (Pratchett et al. 2014).

Control programs of COTS began as early as 1962 on the GBR, in an immediate response to
the first documented outbreak at Green Island. Despite the initial success observed, control
programs were soon overwhelmed, presumably from increasing propagule pressure from
outbreaks on surrounding yet unmonitored reefs (Kenchington 1978). Initial failures and
ineffective time intensive control methodologies (cut up in situ, removed and buried onshore)
led to the widespread belief that COTS control was best focused on small sites with tourism
value (Walsh et al. 1971, Westcott et al. 2016). However in recent years the development of
single-shot lethal injections using bile salts (Rivera-Posada et al. 2011, 2014) and more recently

household vinegar (Bostrom-Einarsson and Rivera-Posada 2016), has dramatically improved
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the effectiveness of manual control (Pratchett et al. 2018), increasing the potential for an

effective control program.

Following the development of the lethal injection there has been a concerted effort to improve
the strategic allocation of COTS control resources (Fletcher and Westcott 2016, Westcott et al.
2016). The Great Barrier Reef Marine Park Authority (GBRMPA) began funding a dedicated
COTS Control Program from 2012, operating 1-2 vessels and focused mostly on reefs with
high tourism value between Lizard Island and Cairns (GBRMPA 2018a). However, the
development of an integrated pest management approach to COTS control has aimed to
increase the strategic allocation of current and increasing effort for the benefit of the entire reef
ecosystem (Fletcher and Westcott 2016). With increased funding from 2018 to support five
vessels across a greater extent of the GBR, a greater impetus has been put on identifying reefs
where COTS control may have the greatest regional impact (Fletcher and Westcott 2016,
GBRMPA 2017). Larval connectivity models developed for both COTS and corals have aimed
to identify reefs that are disproportionately responsible for the spread of secondary outbreaks,
and those which may effectively spread coral larvae and promote recovery and resilience at a
regional scale (Hock et al. 2014, 2016, 2017). The combination of improved manual control
technologies, combined with the development and implementation of reef-level and regional-
level strategic planning has reinvigorated the research and management communities to attempt

broad scale COTS control in a bid to buy more time for coral reefs on the GBR.

Alongside improvements to the contemporary control techniques for COTS, a number of
emerging technologies may prove pivotal in the early detection and increased efficiency of
control in the next wave of outbreaks. Foremost of these advances has been the development
of eDNA larval detection methods to identify the presence of COTS larvae in seawater samples
(Doyle et al. 2017). While initial trials were restricted to indicating simply a presence or
absence, there is scope that this technology may be able provide a relative estimate of larval
abundance (Uthicke et al. 2018). Clearly, methods such as these provide a realistic opportunity
to identify the build-up of COTS preceding a primary outbreak and thus trigger the ramping up

of manual control activities, to attempt to suppress or limit the spread of secondary outbreaks.
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Additionally, larval monitoring could be conducted on reefs identified as important source reefs
to allow the COTS control program to divert control resources in an effort to quickly suppress
secondary outbreaks on disproportionately important reefs within the network. Furthermore,
automated underwater vehicles (Dayoub et al. 2015, Llewellyn and Bainbridge 2015) may be
used to provide more extensive monitoring for COTS (and potentially larvae) augmenting the
capabilities of the control program fleet. Another potentially important development is the
identification of COTS pheromones involved in both predator response cues and aggregatory
behaviour (Beach et al. 1975, Miller 1989, Hall et al. 2017a, 2017b). In the context of COTS
control, predator alarm cues could potentially be spread across a reef to disrupt spawning and
feeding behaviour, while aggregation cues could be used to essentially create a ‘trap’ for
COTS, further increasing the efficiency of manual control, particularly for the more cryptic

sub-adult life stages of COTS.

Although significant progress has been made in understanding and managing COTS outbreaks,
especially on the GBR (Pratchett et al. 2017a), there is room for improvement, particularly with
regards to the analysis and simulation of COTS populations over space and time. Primarily
there is a need for the development of datasets that collate existing disturbance history and
environmental variables, to provide a platform to model COTS outbreaks within the broader
context of cumulative disturbances on the GBR. Secondly, extensive ecological data have been
collected by the COTS control program and various organisations, and there is a need for tools
that synthesises and help visualize these data. Such tools could provide managers with more
timely feedback on the severity and extent of COTS outbreaks across the GBR and provide
essential information on the progress towards stated management goals and the implementation
of the integrated pest management process. Thirdly, while there have been many hypotheses
put forward to explain the initiation and spread of COTS outbreaks, there has yet to be a study
that compares the relative support of these hypotheses using empirical data and provide
predictions of unmonitored reefs most likely to experience COTS outbreaks. Finally, with the
focus of COTS control shifting towards the next major outbreak, and the emergence of new

technologies to help control efforts, modelling frameworks that can simulate the initiation and
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spread of COTS populations are needed to prioritise control efforts for the next wave of COTS

outbreaks.

1.5 Thesis Outline

The overarching aim of this thesis is to develop effective modelling and management tools to
aid in the efforts to control (or contain) COTS populations, and thereby improve the resilience
of coral populations on the GBR. Research is developing rapidly with regards to both the
understanding of COTS biology and behaviour, but also methods with which to more
accurately model populations of COTS. While numerous studies have attempted to explain the
causes and consequences of COTS outbreaks on the GBR, there still has yet to be developed a
modelling approach that incorporates many of the contributing factors in a temporally and
spatially explicit manner and places it within the context of cumulative disturbances. This
thesis aims to build the modelling platform in which to achieve these goals through creation of
a COTS-Coral metapopulation model for the GBR and documents the independent tools

created along the way to aid in the effective management of COTS on the GBR.

Chapter 2 collates existing datasets to create a near complete disturbance history and abiotic
characterization for reef locations across the GBR. The reasoning behind this chapter is to
provide a standardized framework upon which more complex regional scale models can be
developed to limit the recreation of similar datasets by different groups of scientists. Most
importantly, Chapter two promotes the building of models that account for cumulative
disturbances across time and space, whilst being placed in the broader context of a reef’s abiotic
environment. This data collection provides annual estimates between 1985-2017 for exposure
to damaging cyclonic waves (Puotinen et al. 2016), exposure to thermal stress (Degree Heating
Weeks,  https://coralreefwatch.noaa.gov/satellite/bleachingSkm/index.php),  interpolated
estimates of COTS density (Sweatman et al. 2008) and bleaching severity from three major
bleaching events on the GBR (1998, 2002, 2016) (Berkelmans et al. 2004, Hughes et al. 2018b).
Additionally, the dataset includes a mean and seasonal range estimates for environmental

variables (Huang et al. 2013) as well as satellite derived relative exposure to flood plumes as a
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useful proxy indicators of water quality (Devlin et al. 2012a, Alvarez-Romero et al. 2013). This
chapter provides the foundation for modelling described in Chapters 4-6 and provides reef
researchers with a standardised approach to building regional scale models for the GBR, which
has already been implemented by recent modelling of coral growth disturbance and resilience

on the GBR (MacNeil et al. 2019, Mellin et al. 2019).

Chapter 3 develops a data synthesis and visualisation platform, essential to the expanding
COTS control and monitoring activities. This data tool is built within the rapidly developing
Business Intelligence (Bl) software Power Bl, and aims to leverage the advances of business
software for conservation purposes. Specifically, The COTS Dashboard provides reef
managers with up-to-date information regarding the severity and extent of COTS outbreaks
across the GBR, progress towards reaching management goals on reefs prioritised for action
and information on how integrated pest management practices are being implemented. As the
COTS Control program has expanded 3-fold since 2018, synthesis tools such as this are integral
for the COTS control program to embed data-driven decision making into each stage of the
process. More broadly, the COTS Dashboard provides an example of the utility of applying
powerful Bl software to synthesise complex spatial and temporal data. This approach has the
potential to be applied in much broader conservation contexts, as part of a well-developed

adaptive management strategy.

Chapter 4 aims to create a species distribution model for COTS in order to both evaluate the
relative support given to competing hypotheses for the spatial distribution of COTS and create
the first validated reef level predictions for outbreak probability. This Chapter uses the
disturbance and environmental dataset developed in Chapter 2 as candidate predictor variables
and the COTS observation data synthesised in Chapter 3 as response variables. Models of
species distribution are built using both boosted regression trees (De’ath 2007, Elith et al. 2008)
and generalised additive models (Fisher et al. 2018) to identify the most influential predictors
of COTS distributions. Importantly, a number of variables are derived from larval connectivity
networks, and used to account for spatial autocorrelation, making predictions more closely

linked to the oceanographic processes that drive COTS spatial distribution (Hock et al. 2014).
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Predictions are validated against independent data collected by the Australian Institute of
Marine Science’s Long Term Monitoring Program (AIMS LTMP) (Sweatman et al. 2008),
providing the first GBR predictions of COTS spatial distribution. Importantly, these models
are a useful platform for COTS management that could be automated to leverage the extensive
observation data being collected by the COTS Control Program and provide up-to-date
predictions of COTS distributions for additional locations that have not been explicitly
surveyed. This approach could help refine prioritisation procedures by filling in gaps regarding

the current distribution of COTS across the GBR.

Chapter 5 investigates the spatial resilience of coral populations across the GBR by developing
a spatially explicit model of coral growth and disturbance, built upon the same 1x1km grid
used in Chapter 2. This chapter builds upon MacNeil et al’s (2019) Gompertz based model of
coral growth and disturbance that was derived for 47 reefs across the GBR monitored by the
AIMS LTMP. This model estimates growth rates for each of these reefs and the effect size of
each disturbance (cyclones, bleaching, disease, COTS). This chapter uses multivariate
regression trees to characterise the benthic community type for each of the sampled locations
using the abiotic component of the data collated in Chapter 2 and then predicts out to unsampled
locations. Similarly, the initial (1996) and maximal coral cover for each surveyed reef is
modelled using a boosted regression tree approach to define the environmental drivers of these
two variables, before predicting out to the rest of the GBR. A yearly coral growth model was
then calibrated to AIMS LTMP data using the disturbance history collated in Chapter 2 to
recreate the trajectory of coral cover across the GBR between 1996-2017 at a 1x1km resolution.
This model identifies both the major causes of coral decline and regions of the reef that have
to date been the most resilient to disturbance. Importantly this model provides a foundation
upon which to build a COTS-Coral metapopulation model to simulate the initiation and spread

of COTS populations in order to simulate a range of potential interventions.

Chapter 6 builds upon the knowledge and modelling frameworks developed in the preceding
chapters to develop a spatially explicit metacommunity model for COTS-Coral across the

GBR. This model aims to incorporate the extensive research that has gone into understanding
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COTS outbreaks (Pratchett et al. 2014, 2017a). This stage-based model explicitly models larval
survival rates based on nutrient conditions estimated across the GBR (CSIRO 2019), larval
dispersal via estimated connectivity networks (Hock et al. 2017) and fertilisation by density
and Allee effects (Rogers et al. 2017). Importantly ratio-dependent mortality and fecundity
responses are used to incorporate important biotic interactions between COTS and their coral
prey (Mellin et al. 2016b). This model was validated against the extensive AIMS LTMP
dataset, and provides independent estimates of uncertainty for each reef sector and cross shelf
location. Importantly, once calibrated, this model provides a platform for simulating a variety
of COTS control strategies proposed for the next outbreak cycle and investigating their
potential effects. This model will prove a useful tool for COTS management to help allocate

the strategic deployment of limited resources in both the current outbreak and future outbreaks.

Chapter 7 is a general discussion, providing an overview of the major finding of the thesis.
This chapter evaluates the significance and management implications of this research and
highlights key further research to be undertaken to further improve the understanding of COTS

outbreaks and refine best management practices.

Finally, three publications are attached as appendices to this thesis. These publications
represent additional research related to COTS outbreaks and coral growth modelling in which
I was involved during the course of my PhD. Appendix 1 focuses on modelling growth rates
of COTS juveniles, for which I helped develop and analyse the models and reviewing drafts of
the paper. Appendix 2 focuses on the theoretical importance of including biotic interactions
when modelling species distributions using COTS-Coral as the case study. For this article, |
helped synthesise literature for the framing of the research as well as reviewing drafts for
submission. Finally, Appendix 3 developed the coral growth model which was used to further
develop the Coral-COTS metacommunity model of Chapters 5 and 6. My contribution to this
research was to collate the disturbance data and environmental data necessary to estimate effect

sizes of different disturbances and to review drafts of the publication.
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2 High-resolution characterization of the
abiotic environment and disturbance regimes
on the Great Barrier Reef, 1985-2017

2.1 Abstract

This data compilation synthesizes 36 static environmental and spatial variables, and temporally
explicit modelled estimates of three major disturbances to coral cover on the Great Barrier Reef
(GBR): (i) coral bleaching, (ii) tropical cyclones, and (iii) outbreaks of the coral-eating crown-
of-thorns starfish, Acanthaster cf. solaris. Data are provided on a standardized grid (0.01° x
0.01° ~ 1km x 1km) for reef locations along the GBR, containing 15,928 pixels and excluding
the northernmost sections (< 12°S) where empirical data were sparse. This compilation
provides a consistent and high-resolution characterisation of the abiotic environment and
disturbance regimes for GBR reef locations at a fine spatial scale to be used in the development
of complex ecosystem models. Static estimates of environmental variables (e.g. depth, bed
shear stress, average temperature, temperature variation) originally developed by the
Commonwealth of Australia’s Environment Research Facility (CERF) Marine Biodiversity
Hub (http://www.marinehub.org/) were provided by Geoscience Australia (Huang et al. 2010).
Annual (1985-2017) disturbance estimates were either interpolated from empirical data (A. cf.
solaris), predicted from proxy indicators (e.g. Degree Heating Weeks (DHW) as a proxy for
bleaching severity), or explicitly modelled (e.g. wave height model for each cyclone). This
dataset synthesizes some of the most recent advances in remote sensing and modelling of
environmental conditions on the GBR; yet it is not exhaustive and we highlight areas that
should be expanded through future research. The characterization of abiotic and disturbance

regimes presented here represent an essential tool for the development of complex regional
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scale models of the GBR; preventing redundancy between working groups and promoting

collaboration, innovation and consistency.

2.2 Introduction

Over the past three decades, coral cover on the GBR has been steadily declining (Sweatman et
al. 2011, De’ath et al. 2012) and there is a need to understand (i) when and where reefs have
been affected by disturbance; (ii) the magnitude of these disturbances; and (iii) how reefs are
likely to respond to future disturbance. Although there has been extensive long-term
monitoring of the GBR since 1983 (Sweatman et al. 2008), the sheer scale of the GBR, with
~3,000 individual reefs stretching ~2,300km (GBRMPA 2018b), renders comprehensive reef
monitoring impossible. It is therefore imperative that researchers develop data tools and models
to fill in the gaps to augment our understanding of the system, by incorporating large datasets
into complex yet realistic models. There have been significant developments of regional-scale
models for the GBR, especially in terms of hydrodynamic modelling providing estimates of
larval connectivity (Condie et al. 2012, Hock et al. 2014) and a vast array of bio-geophysical
parameters (Chen et al. 2011, CSIRO 2019). There have also been a number of studies
characterizing disturbance regimes on the GBR (De’ath et al. 2012, Maynard et al. 2016), yet
these are yet to be consolidated into a dataset and made accessible to reef researchers in a truly
transparent manner, promoting consistency among the multiple ecosystem models developed
at a regional scale. The lack of such data repository currently represents a significant obstacle
for the advancement of ecological modelling and innovative conservation planning, which are
of increasing importance due to the predicted impacts of climate change on the GBR (Van

Hooidonk et al. 2016, Wolff et al. 2018).

Here, we provide a compilation of static environmental and spatial variables as well as annual
disturbance layers on the same 0.01°-resolution grid across the GBR. These variables have
been used successfully to predict fish diversity (Mellin et al. 2010a) and spatial turnover
(Mellin et al. 2014), and other inter-reef species richness and abundance on the GBR (Sutcliffe

etal. 2014). These data were also used to assess the potential for model transferability to predict
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species richness in data-poor locations (Sequeira et al. 2016). These studies highlight the utility
of these types of environmental and relative spatial variables as proxy indicators for complex,
and difficult to estimate, environmental processes. Such datasets allow researchers to
extrapolate diversity patterns and thereby gain statistical and ecological insight into complex
and large-scale ecological systems that until recently could only be analysed theoretically or

through comprehensive sampling.

In addition to static environmental and spatial variables, this dataset provides annual layers of
disturbance severity for three major sources of disturbance on the GBR, namely (i) coral
bleaching, (ii) tropical cyclones, and (iii) outbreaks of the coral-eating A. cf. solaris. The
disturbance layers are presented on the same 0.01°-resolution grid and summarise the annual
exposure to each type of disturbance. Heat stress exposure, linked to coral bleaching, is
modelled from satellite data using the established Degree Heating Week metric (DHW) (Eakin
etal. 2010, Liu etal. 2014, 2017), and complemented with interpolated values from previously-
published aerial bleaching surveys (Berkelmans et al. 2004). Whilst exposure to cyclone
activity is to some extent captured by the static variable as cyclone induced bed sheer stress
(Table S 9.2; GMCS_STRESS), explicit annual estimates of cyclone exposure are also
included in this dataset. Annual cyclone exposure is modelled as cumulative hours exposed to
potentially damaging waves (>4m) generated by tropical cyclones (Puotinen et al. 2016).
Finally, densities of A. cf. solaris, originally recorded as number of individuals per sampling
unit (manta tow) are drawn from the extensive Long Term Monitoring Program (LTMP) of the
Australian Institute of Marine Science (AIMS) (Sweatman et al. 2008). These temporally and
spatially explicit disturbance data are designed to be used either alone or in conjunction with
the environmental and spatial variables, to understand complex ecological problems such as
distribution patterns, benthic community assemblages, bioregional classification and predicting

growth and recovery rates of coral communities.

While the main objective of this dataset is for environmental, spatial and disturbance data to
be more readily available and user-friendly for marine ecologists and managers, it is also useful

to highlight knowledge gaps, such as our limited understanding of A. cf. solaris population
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densities in time and space (MacNeil et al. 2016). This will guide future research and encourage
contributions to the expansion and/or improvement of this dataset. Furthermore, it provides a
temporal benchmark against which future progress or alternative models of disturbance
estimates can be compared and improved upon. The release of this dataset aims to motivate
further and more standardised implementation of regional-scale models of complex ecological

processes on the GBR.

2.3 Data Collation Methods

Environmental and disturbance data were compiled for all inshore, mid-shelf and outer reefs
along much of the length of the GBR, excluding the northernmost sections (< 12°S) where
empirical data were sparse. The GBR was split into a total of 15,928 grid cells of 0.01°
resolution (Figure S2) that contained reef habitats. The bioregion classification made by the
Great Barrier Reef Marine Park Authority (GBRMPA), the cross-shelf location (inner, middle
or outer shelf), and latitudinal sector defined by the Australian Institute of Marine Science’s
(AIMS) Long Term Monitoring Program (LTMP) were identified for each grid cell (Figure
2.1).

Environmental data were obtained from the Commonwealth of Australia’s Environment
Research Facility (CERF) Marine Biodiversity Hub (http://www.marinehub.org/). Disturbance
data were sampled from satellite data and aerial surveys (Bleaching), modelled from storm
wave models (Cyclones) or interpolated from empirical observations (A. cf. solaris).
Environmental variables are given as a single static estimate (i.e. long-term average), whilst
yearly estimates of disturbance exposure (1985-2017) are presented for the three sources of

disturbances.
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Figure 2.1 Marine Bioregions (colours) classifications defined by the Great Barrier Reef Marine Park Authority
(GBRMPA), GBRMPA management areas (large latitudinal boundaries, e.g. Southern) and latitudinal sectors
(smaller latitudinal boundaries, e.g. Swains (SW)) of the GBR surveyed as part of AIMS Long Term Monitoring
Program.
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2.3.1 Environmental and spatial data

The set of 30 environmental variables were collated nationally at a scale of 0.01° resolution
(15,928 grid cells across GBR reef locations) by the Commonwealth of Australia’s
Environment Research Facility (CERF) Marine Biodiversity Hub
(http://www.marinehub.org/). Environmental variables include long term average (1960-2006)
and seasonal ranges of temperature and salinity as well as nitrate, oxygen, phosphate, and
silicate concentrations. Averages (1997-2009) and seasonal variation are also provided for
indices of ocean productivity (e.g., chlorophyll-a concentration); light attenuation (K490);
benthic irradiance; and the strength and frequency of the combined wave—current bed shear
stress. Bathymetric estimates (depth, aspect and slope) are single estimates derived from a
0.00025° grid developed by combining ship-track, swath and satellite data from 1963-2009.
Sediment composition (mud, gravel, sand and carbonates) are interpolated from samples
collected between 1960-2009. The variables provided were collated due to their importance as
drivers of coral reef community structure (Pitcher et al. 2007) (see Table S 9.2 and data
limitations for further details). In addition, spatial variables including the shortest distances to
the coast and to the barrier reef were calculated for each grid cell of the GBR (using great-
circle distance, i.e., the shortest distance between two points on the surface of the earth).
Furthermore, we define the relative frequency of exposure to primary, secondary and tertiary
flood plumes, representing turbid, sediment dominated plumes, chlorophyll dominated plumes,
and the outer extent of plumes (as delineated by salinity less than 34ppt), respectively. These
plume data were collated from remote sensing observations between 2007-2013 and are
provided as a single estimate per grid cell. These data have been used as useful indicators of
water quality including turbidity, productivity and plume extent (Devlin et al. 2012, Alvarez-
Romero et al. 2013). Within this 0.01° resolution grid, reefs (as polygons) were categorised
using the marine bioregion classification from the Great Barrier Marine Park Authority

(GBRMPA) (Fig. S6), excluding any non-reef locations (e.g. cays, islands, mangroves).
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2.3.2 Disturbance data

Spatial layers of disturbance exposure for each year during the study period (1985-2017) were
compiled at a 0.01° resolution for coral bleaching, cyclones and A. cf. solaris outbreaks,
representing the current state of knowledge regarding disturbance extent and severity on the

GBR (Figure 2.2).

Heat stress exposure, which has been linked to coral bleaching, is presented as the annual
maximum Degree Heating Weeks (DHW) (Figure 2.3). Satellite sea-surface temperature data
from the National Oceanic and Atmospheric Administration (NOAA) CoralTemp dataset
(https:/coralreefwatch.noaa.gov/satellite/coraltemp.php) at 0.05° (~5 km) resolution were used
to calculate DHW values for 1985-2017. DHW values were determined using the standard
Coral Reef Watch methodology (Liu et al. 2014, 2017). Data at 0.05° resolution were
resampled using the nearest neighbour approach (assigning values from the nearest pixel)
(Burrough 1986) to the nominal 0.01° grid. While there remains variation in bleaching response
and subsequent mortality across reef sites of different composition and other environmental
conditions, the use of the DHW algorithm in general has been successfully validated against
empirical observation of bleaching events (Eakin et al. 2010, Heron et al. 2016, Hughes et al.
2017b). Additionally, this most recent version of the NOAA Coral Reef Watch DHW metric
(Version 3, https://coralreefwatch.noaa.gov/satellite/bleachingSkm/index.php) has been used
to explain spatial patterns of mortality along the GBR following the 2016 bleaching event
(Hughes et al. 2018a). Complementing these annual remote sensing data, extensive aerial
surveys from the 1998, 2002 and 2016 bleaching events (Berkelmans et al. 2004, Hughes et al.
2018b) were interpolated (inverse distance weighted) to provide regional scale estimates of
bleaching impact for these three extreme events. Categories used were as follows: 0 (<1%

bleached), 1 (1-10% bleached), 2 (10-30% bleached), 3 (30-60% bleached), and 4 (>60%
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bleached). Code and data to reproduce interpolation can be found at

https://github.com/sammatthews990/GBRdata.

Cyclone exposure is presented as exposure to potentially damaging cyclonic seas (in hours per
grid cell), where the highest one-third of waves were on average 4m or higher (4AMW). The
4MW model developed by Puotinen et al. (2016) reconstructs the spatial distribution of cyclone
winds of a range of speeds every hour for each of the 46 tropical cyclones that crossed the GBR
during 1985-2016 at a spatial resolution of 0.04°. From this, the model calculates the duration
of winds of various speeds for each cyclone, and together with estimates of fetch approximates
the number of hours each location was potentially exposed to the a priori defined ‘damaging’
sea state. Testing with field data from seven cyclones on the GBR showed that the 4AMW index
outperformed previous methods for predicting a spatial zone beyond which severe cyclone
damage does not occur even though damage within the zone is patchy (Puotinen et al. 2016).
Data at 0.04° resolution were resampled using the nearest neighbour approach to the nominal
0.01° grid. Exposure to damaging seas from each of 46 cyclones were summed across the 0.01°
to give a total yearly exposure to damaging waves. Data from cyclone Debbie, which crossed
the GBR in 2017, is still being compiled and will be added to the dataset once the data becomes

available.
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Figure 2.2 Maps of annual disturbance severity for tropical cyclones, outbreaks of the crown-of-thorns starfish (COTS) and coral bleaching, and predicted coral cover across
the Great Barrier Reef. Shown are the number of hours of destructive waves generated by tropical cyclones (row 1); COTS mean density, with densities above 1 corresponding
to active outbreaks (row 2), the percent coral cover bleached based on aerial surveys (row 3) and resulting predictions of coral cover generated by the model (row 4).
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DHW 2016

Figure 2.3 Annual maximum heat stress exposure measured as Degree Heating Weeks (DHW) for 2016,
exemplifying the spatial resolution and extent of the dataset.

Annual estimates of mean A. cf. solaris densities were also generated by inverse distance

weighting (maximum distance = 1°; minimum observations = 3) from the manta tow data
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collected by the AIMS LTMP for every year between 1985 and 2017 (Miller and Mdller 1999,
Miller et al. 2009a). The LTMP surveys estimate A. cf. solaris densities for between 50-239
reefs annually (mean = 96 reefs). These empirical data consist of two-minute manta-tow
observations (mean = 48 tows per reef), where observers are towed around the perimeter of
each reef to search for A. cf. solaris individuals. The thresholds defining “incipient” and
“active” outbreaks are defined as > 0.22 and > 1.0 individuals per two-minute tow respectively
(Moran 1992, Sweatman et al. 2008, Pratchett et al. 2014). Interpolated values therefore
represent the mean A. cf. solaris densities per manta tow as a guide to estimating coral loss.
Code and data to reproduce interpolation can be found at

https://github.com/sammatthews990/GBRdata.

2.4 Data Limitations

2.4.1 Environmental Data

There are a number of key limitations regarding the environmental data compiled in this
dataset, namely the coarser resolution of original data (MARS, GEOMACS, CARS, MODIS,
SeaWiFS) and the summarisation of temporal variability into static estimates rather than time
series data. The variables were initially collected at the national level at a 0.01° resolution by
the CERF Marine Biodiversity Hub (http://www.marinehub.org/) but are now maintained and
made publicly available by Geoscience Australia. Full details of data collection for the
compilation and further references can be found in Huang et al (2010). As environmental data
in this compilation reflect a static estimate, temporal variation is addressed by the inclusion of
the seasonal range variable, in addition to the mean over the entire times series where

appropriate.

Bathymetry and Geomorphology (GA Variables)

National data was collated from surveys collected between 1963 and 2009, compiling
approximately 1400 survey records combining ship-track, swath and satellite altimetry. The

grid incorporates data from surveys acquired since 1963. Modern surveys that used GPS have
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a positional accuracy of 5 - 30 m depending on several factors, while earlier surveys which
used dead reckoning and Transit satellite fixes had positions accurate to 50-2000 m depending
upon the water depth and strength of currents. These surveys overlap in an irregular
distribution. As a number of approaches were used to process data and availability of data was
variable, the resolution was reduced from ~0.0025° to 0.01° using inverse distance weighted
interpolation to match the resolution of the satellite imagery used to infill areas without ship-
track or swath data (Whiteway 2009, Huang et al. 2010). All temporal data were combined to
produce a bathymetry layer with ~0.0025° resolution from which aspect and slope were
derived. For all GA variables, spatial resolution was interpolated to 0.01° using inverse distance

weighted interpolation.

Sediment Parameters (MARS Variables)

It is important to note that these variables were interpolated using the inverse distance squared
weighted algorithm to achieve the 0.01° resolution from the National Marine Sediments

Database (MARS - http://www.ga.gov.au/oracle/mars/), containing over 200,000 samples

within the GBR region spanning 1960-2009. Importantly, the positional accuracy of the some
of the older source data unknown but assumed to be within 5km. Users are urged to be cautious
when drawing conclusions using these variables and to consult the MARS database or Huang
et al. (2010) to assess regional uncertainty. For all MARS variables, spatial resolution was
interpolated to 0.01° and all temporal data were combined to produce a single mean % sediment
composition for each variable.

Geological and Oceanographic Model of Australia’s Continental Shelf (GEOMACS
Variables)

The GEOMACS model is a purely mathematical model with no direct field observations and

does not include wave breaking or refraction. This model is thus not considered useful in depths
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<10m (Huang et al. 2010) and users are urged to implement caution when using this variable
in shallow water environments. For all GEOMACS variables, spatial resolution was
interpolated to 0.01° using inverse distance weighting ((Huang et al. 2010). The temporal
domain includes 11 years and therefore contains limited information on events with long return
intervals at specific locations, e.g. tropical cyclones. GEOMACS variables are provided as two
static estimates of mean and interquartile range estimated over the 11 years of data. The
interquartile range is calculated as the difference between the Q25 and Q75 quartiles. The
trimmed mean is the standard arithmetic mean calculated excluding the highest and lowest 25
percent of the GEOMACS model observations. The interquartile range and trimmed mean are
not guided by ecological theory or observations but are generic statistical observations (Huang

et al. 2010).

CSIRO Atlas of Regional Seas (CARS Variables)

The CARS2006 database was compiled from all historical subsurface ocean property
measurements (Ridgway et al. 2002) derived primarily from research vessels and autonomous
profiling buoys. Data was collected over approximately 50 years (~1960-2006) to create an
estimate and seasonal range for temperature (deg. C), salinity (PSU), oxygen (ml/litre), nitrate
(micromole/litre), silicate (micromole/litre), phosphate (micromole/litre). While some regions
of the CARS database has insufficient data (e.g. southern NSW) this was not the case on the
GBR (Huang et al. 2010). For all CARS variables, spatial resolution was interpolated from 0.5°
to 0.01° using inverse distance weighting to match the resolution of this compilation. The
temporal domain spans ~50 years and therefore these variables are to be used as long-term

averages and indicators of seasonal variability and should not be used to analyse acute events.
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Satellite Data (MODIS and SeaWiFS Variables)

The main consideration for the satellite-derived variables in this dataset is to appreciate that
native resolution for the satellites (0.04°) was interpolated to 0.01°. Moreover, it is important
to note that estimates for these variables are based on the monthly composites. Thus, seasonal
ranges reflect the range of monthly means and mean estimates are the mean of monthly means.
Whilst these estimates can be useful for understanding baseline conditions and variation, they
should not be used where fine-scale temporal fluctuations are important, as these patterns are
smoothed out in this dataset. Finally, these data were collected for the years 1999-2008 and
1997-2008 for MODIS and SeaWiFS respectively, and whilst representing a good estimate of
the mean and variability of environmental conditions, they cannot be viewed as entirely
representative of current or past conditions. These satellite derived variables are proxy
indicators and thus their performance must be considered. Importantly, whilst general spatial
patterns of Chlorphyll a and Kd490 (SeaWiFS) were captured, validation with in situ
measurements in tropical north eastern Australia waters had poor accuracy if the inherent
optical properties of the region were not considered (Qin et al. 2007). Moreover, SeaWiFS
variables are not suitable for coastal waters, and therefore inferences must be cautious with
regard to inshore GBR reefs (Devlin et al. 2012b). For all MODIS and SeaWiFS variables,
spatial resolution was re-gridded from 0.04° to 0.01° by the authors of the original dataset
(Huang et al. 2010) and temporal variation was captured as a seasonal range variable reflecting

the range of monthly means across the times series. Where no data is available in a pixel due
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to clouds or other interference, the previous 8-day average is carried forward in that pixel in

this data set.

2.4.2 Disturbance Data

In contrast to the environmental data, disturbance data is provided for each year between 1985-

2017 for COTS, Cyclones and DHW and for 1998, 2002, and 2016 for aerial bleaching surveys.

Crown-of-thorns starfish

A lack of empirical observations makes it difficult to validate predicted COTS abundances;
further research into COTS population dynamics is under way to address this issue (Matthews
et al., in prep). As there are significant spatial gaps in the AIMS LTMP data used to create
spatial layers of COTS abundance, individual data points were interpolated to 0.01° resolution.
In order for a value to be estimated, a minimum of 3 observations had to be found within a 1
degree radius for interpolation. This also means that there are many blank values as sampling
for COTS is patchy and thus care must be taken to understand the temporal patterns before
using these data. This makes the assumption that COTS will be present at all neighbouring
reefs and does not take into account the array of environmental factors which make reefs
suitable for COTS (Chapter 4) and thus should only be used as a starting point for regional
scale models (Chapter 5-6) and not as a definitive estimate of COTS density at fine spatial

scales.

Cyclones

The cyclone data presented were resampled from a native grid of 0.04° to the nominal 0.01°
grid and represents every cyclone passing the GBR between 1985-2017. However, data were
aggregated for each calendar year for consistency with other disturbance variables, so some
years may contain the footprint of two or more cyclones (1986, 1990, 1993, 1996, 2000, 2009,

2011, 2015). Furthermore, these data represent exposure to potentially damaging waves, which
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does not always result in coral mortality and does not take into account the potential shielding

effect that may occur on the leeward side of reefs.

Bleaching Aerial Observations

Bleaching observations were interpolated from reef-level estimates of bleaching severity to the
0.01° grid for the 3 years for which surveys were provided (sensu Hughes et al. 2017). For
1998, 2002 and 2016 bleaching events 638, 631 and 1156 reefs were surveyed respectively
across the length of the GBR, representing a substantial portion of the GBR (~3800 reefs)
(Berkelmans et al .2004, Hughes et al. 2018).

Degree Heating Weeks (DHW)

Regarding heat stress, although the relationship between DHW and coral mortality has been
established (Hughes et al. 2018a), fine scale patterns of bleaching are often patchy and thus
hard to resolve from the relatively broad-scale satellite-derived products. Additionally, the
DHW product used here assumes that an anomaly at the surface of the ocean can be accurately
related to anomalies at greater depths. However, due to local hydrodynamics, this assumption
is not always valid, limiting the ability to infer bleaching in deeper locations on the reef
(Skirving et al. 2006). DHW products presented here were aggregated for the calendar year.
These data were resampled from a native grid of 0.05° to the nominal 0.01° grid and thus should

be considered carefully when investigating sub-reef processes.

It is important to stress that the DHW and Cyclone data have been resampled to the nominal
0.01° grid from more coarsely scaled products (DHW: 0.05°, Cyclones: 0.04°), while COTS
data from manta tow surveys have been scaled up from fine-resolution reef observations onto

the grid. This compromise of spatial scale is often a necessity in ecosystem modelling as the
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spatial scales for biological data and environmental data vary greatly, but it is integral that users

understand these compromises before using the product.

2.5 Conclusion

The disturbance history and abiotic context of the Great Barrier Reef is of central importance
to any attempt to create accurate regional scale models. This initial data compilation acts as the
platform upon which the modelling in the later chapters of this thesis will build upon, and
importantly, as a template for regional scale modelling of the GBR in the broader research
community. Whilst updates to the dataset will be required and improvements can be made to
some variables, the compilation provides the first attempt to catalogue the abiotic environment
and disturbance regimes for GBR reef locations with necessary resolution to facilitate regional-

scale models.
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3 Conservation intelligence: Integrated
visualisation and reporting tools in support of
adaptive pest management and ecological

monitoring

3.1 Abstract

Adaptive management has become a dominant paradigm in natural resource management and
conservation. Embedding adaptive management into conservation interventions is essential to
continually improve management outcomes, but necessitates the ongoing assessment of the
extent of the problem, the current knowledge, the associated uncertainty, available intervention
strategies, monitoring techniques and evaluation of outcomes. These tasks are not trivial, and
there is an ongoing need for improved data tools to facilitate and enhance the uptake of adaptive
management approaches to conservation. Here we demonstrate the utility of adapting
established Business Intelligence (BI) software to provide near real-time analytics and decision
frameworks for effective adaptive management of conservation interventions and ecological
monitoring. These tools, which we define as Conservation Intelligence (ClI) tools, synthesise
complex spatial and temporal data streams to provide managers with an interactive and easy-
to-use interface to assess the extent of the problem, and to evaluate the progress of
interventions. The utility of CI tools is demonstrated using crown-of-thorns starfish (COTS;
Acanthaster cf. solaris) on Australia’s Great Barrier Reef (GBR). On the GBR, outbreaks of
these corallivorous pests have caused widespread decline in coral cover and are the target of
one of the largest (geographically and economically) coral reef pest control programs in the
world, coordinated and delivered by the Great Barrier Reef Marine Park Authority

(GBRMPA). Our understanding of the extent and severity of these outbreaks and the
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effectiveness of control actions to mitigate their impacts is integral to the adaptive management
of this system. To this end a visualisation and reporting tool, The COTS Dashboard, was
developed to visualise the severity and extent of outbreaks and evaluate the progress of the
intervention against stated goals. The dashboard was developed in close partnership with
GBRMPA, meaning the needs of the management agency were explicitly incorporated into
each stage of the development process. The Cl approach attempts to improve the effectiveness
of the adaptive management cycle and to develop informative and flexible platforms embedded
within the management agency, to assess and visualise progress towards conservation goals.
Such initiatives provide managers with the interactive and user-friendly tools required to make
adaptive data-driven decisions, ensuring the greatest strategic impact of conservation

interventions.

3.2 Introduction

In a rapidly changing environment, there is increasing pressure to develop conservation
interventions and governance arrangements that can respond to changes in the system and adapt
to intensifying stressors (Folke et al. 2002, Olsson and Folke 2004, Hughes et al. 2005, Heller
and Zavaleta 2008, Stein et al. 2013). The adaptive management framework (Holling 1978,
Walters 1986)(Figure 3.1) has been adopted as an effective management tool to address such
problems characterized by high levels of uncertainty (Gunderson and Holling 2002, Gregory
et al. 2006, Anthony et al. 2015). However, there has been a lack of clarity regarding its
appropriateness or feasibility due to the indiscriminate application of adaptive management
where the burden of continual evaluation, stakeholder engagement and re-assessment has
hindered or halted conservation outcomes (Gregory et al. 2006, Rist et al. 2013). One of the
major issues with adaptive management lies in the reactive nature of the to acquire the
necessary monitoring information, as funding cycles often lag behind conservation problems
(Downs 1972, Hoey et al. 2016). Moreover, when funding is adequately provided and data are
routinely collected, there are still lags in the retrieval of insight from this data due to the

significant additional resources and ongoing commitment required to summarise, manage and
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analyse data to inform decision making and to effectively communicate with stakeholders
(Williams and Brown 2014). In large, spatially and temporally complex systems, managers are
required to assess the extent of the problem, collate existing knowledge and identify areas of
uncertainty while simultaneously tracking the progress of specific management targets. To
successfully achieve conservation goals within the adaptive management framework, managers
need to be equipped with tools to efficiently evaluate the effectiveness of interventions and to

engage stakeholders at various stages of the process.

Newly developed Business Intelligence (BI) software provides an extremely flexible platform
to synthesise and visualise complex ecological data from disparate data streams which can be
used to effectively inform the adaptive management process. Interactive and informative data
visualisations have been shown to be useful to this process by creating active engagement and
knowledge generation amongst stakeholder groups (Keller and Tergan 2005, Evanko 2010)
and by providing a vehicle for knowledge transfer between science, management and policy
(Mclnerny et al. 2014). Despite the rapid increase in advanced data visualisation software,

particularly in business and finance (Murugesan and Karthikeyan 2016, Ul-Ain et al. 2019),
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there has been a slower up-take of interactive data visualisations within the fields of

environmental management, science-for-policy, conservation and research.

Adaptive management process

1. Assessing and bounding the management
1 problem, including setting of management

o objectives
Rreblem 2. Synthesising existing understanding
through system models that include
6 2 assumptions and predictions as a
Evaluate Synthesise basis for future learning
knowledge
3. Identifying uncertainty and
alternate hypotheses based on
evidence and experience
4. Implementation of actions/
policies to allow continued
5 3 ) resource management
] Identify while learning
Monitor uncertainty
5. Monitoring of the effect of new
4 policies
Implement

6. Evaluation of, and learning from result
outcomes. Comparison with original
expectations to revise managment actions

Figure 3.1 The adaptive management process (based on Walters (1986) and Holling (1978)) outlining the 6 major
stages involved and the central role of stakeholder engagement in effective adaptive management; figure adapted
from Rist et al. (2013).

In environmental management and conservation, task-specific decision support tools are
commonly used in the adaptive decision-making process. For example, software such as
Marxan (Ball et al. 2009), has been developed with the explicit purpose of designing marine
reserves, and have been instrumental in the planning of many marine reserves globally, such
as the rezoning if the Great Barrier Reef Marine Park (GBRMPA 2004, Ball et al. 2009). Such
tools, despite being a powerful and necessary component of a strong conservation initiative,
by design, are limited in their scope and can suffer from long term stability issues whilst often
requiring software development or programming expertise (Pinarbasi et al. 2017). Following
low-frequency usage, many decision support tools are not maintained and become unavailable,

causing issues for the agencies relying on them (Curtice et al. 2012, Pinarbasl et al. 2017).

While decision support tools are essential for early stages of a conservation initiative, there is

a need to improve the development and utilisation of tools for the evaluation of management
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actions, monitoring, and the refinement of goals. There is a strong case for adapting freely
available, easy to implement and maintain Bl software to aide in these underrepresented stages
of the adaptive management cycle. These software are already deeply entrenched in the
business sphere and will only increase in functionality and technical support (Murugesan and
Karthikeyan 2016), providing a stable platform from which to build visualisation and reporting
tools that are adaptable to managers needs and evolution of the given management program.
Adapting Bl tools towards conservation goals (hereafter referred to as Conservation
Intelligence (CI)), can provide user friendly, interactive platforms for managers and researchers
to explore and communicate complex patterns in their data, evaluate and monitor management

actions thus supporting adaptive decision making in conservation interventions.

The Great Barrier Reef Marine Park is widely considered as one of the leading examples of
best-practice adaptive management in marine ecoystems, with extensive zoning regulation
(Day 2002, GBRMPA 2004) , mature adaptive management frameworks (Hughes et al. 200743,
McCook et al. 2010b, Dobbs et al. 2011), protective federal legislation and extensive ecological
monitoring (Hedge et al. 2017). However, despite best-practice adoption of management
principles, the Great Barrier Reef (GBR) is still vulnerable to disturbances that threaten its
resilience and ecosystem function. For example, coral cover on the GBR has declined by
approximately 50% over the last 30 years (De’ath et al. 2012) and the increasing frequency and
intensity of disturbances, exemplified by the recent mass bleaching events (Hughes et al.
2017b) and recurring outbreaks of the coral-eating crown-of-thorns starfish (COTS) (Pratchett
et al. 2017a), suggests this pattern is likely to worsen (Pratchett et al. 2019). These declining
trends in coral cover underpin an urgent need for effective and efficient management
interventions to minimise coral loss on the GBR. Currently, on the GBR the largest
conservation intervention aimed at directly minimising coral loss is the Crown-of-thorns
Starfish Control Program (COTS Control Program). Outbreaks of COTS have been responsible
for 40% of the decline in coral cover on the GBR over the last 30 years (De’ath et al. 2012)

and culling adult or sub-adult individuals (using lethal injection (Rivera-Posada et al. 2014))
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currently represents the most effective direct action to minimise coral loss from COTS

outbreaks on the GBR (Westcott and Fletcher 2018).

Since 2012, the Australian Government has funded a COTS Control Program delivered through
the GBRMPA, in order to reduce the impact of this marine pest. The COTS Control Program
uses dedicated vessels and trained crews that perform targeted culling of COTS at strategically
selected reefs of high ecological and economic value (Hoey et al. 2016). The methods utilised
to achieve the management goals of the COTS Control Program have evolved over the last 5-
6 years through an adaptive management process informed by collaboration between the
GBRMPA, Commonwealth Scientific and Industrial Research Organisation (CSIRO), industry
stakeholders, and leading COTS researchers, in order to deliver an increasingly integrated pest
management approach to COTS Control (Fletcher and Westcott 2016, Westcott et al. 2016).
The program collects extensive ecological data, which is essential for monitoring the status and
condition of high value reefs prioritised for control, for developing and validating ecological
models of COTS outbreaks and spread the GBR, and for tracking progress of the individual
vessels and the intervention program as a whole. In the context of recent mass bleaching and
mortality of many corals on the GBR (Hughes et al. 2017b, 2018a) there has been an increased
commitment to preserving coral cover and recognition that COTS control is a feasible on-
ground action to minimise coral loss and enhance the resilience of the GBR (GBRMPA 2017).
Consequently, in 2018, the COTS Control Program underwent a three-fold increase in its
operational fleet. The expansion of this program now enables the collection of unprecedented
temporal and spatial resolution ecological data for the GBR. Within the context of COTS
control, and also in the broader context of the monitoring needs of the GBR, there is an
increasing need for data tools to efficiently synthesise, analyse and report on the state of the
reef and the progress towards the stated goals of conservation interventions (GBRMPA and

Queensland Government 2015, Hedge et al. 2017).

Herein we present The COTS Dashboard as an example of a CI tool for data visualisation,
reporting and assessment of the COTS Control Program on the GBR. The COTS Dashboard is

designed to address four key components of the Control Program; 1) Provide an ecological
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overview of the system; 2) Assess progress of the Program on designated priority reefs; 3)
Assess the performance of the vessel providers contracted to deliver the program and 4)
Provide a user-friendly interface for creating customisable summaries to share with program
stakeholders and research partners. We highlight how developing these CI tools provide
managers with the interactive and user-friendly information required to make adaptive, data-
driven decisions and foster efficient stakeholder engagement, ensuring the greatest strategic
impact of conservation interventions. More broadly, we demonstrate the usefulness of these
tools as a flexible and stable complement to bespoke decision support systems for pest

management, ecological monitoring and conservation initiatives in general.

3.3 Methods

3.3.1 Data collection

For the COTS Control Program, each of the control vessels collects three types of observational
data. Manta Tow observations, in which an observer is towed around the perimeter of a reef
(Miller et al. 2009a) are conducted to generate a broad-scale understanding of the coral cover
and COTS abundances at a given reef. In the context of integrated pest management, these
surveys are also used to determine whether culling action is required at the reef and site
(Fletcher et al. in prep). Culling action is triggered by either the observation of an adult COTS
or COTS scars. Once culling action has begun at a reef, the number of COTS culled is recorded
in four size classes; 0-15 cm, 15-25cm, 25-40 cm; >40 cm alongside the number of diver
minutes undertaken during cull activity. Each reef is split into equal sized (8-10Ha) culling
sites, which are “opened” following the observation of adult COTS or presence of COTS scars.
All sites across the reef with these signs of COTS activity are culled repeatedly, and then
“closed” once culling activity has reduced catch-per-unit-effort (COTS culled per dive minute)
below ecologically sustainable thresholds (CPUE = 0.04 COTS per minute) (Fletcher et al. in
prep., Babcock et al. 2014). Subsequent Manta Tow observation are conducted every ~3-6
months to determine whether the population is controlled, and sites are re-opened if COTS or

scars are observed again. Reef Health Impact Surveys (RHIS) (Beeden et al. 2014)
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(observations within a 5m radius of reef location) are also conducted at sites where pest
management action is undertaken in order to monitor coral health.. The joint Field Management
Program (FMP) and the Queensland Parks and Wildlife Service (QPWS) also collect extensive
Manta Tow and RHIS surveillance data which is integral to informing prioritisation of control
efforts. In total, the COTS Dashboard synthesises data collected from >30,000 RHIS surveys,
>52,000 Manta Tows and > 10,000 culling dives across >900 reefs, averaging >10,000 surveys

per annum.

3.3.2 Data extraction, transformation and loading (ETL)

One of the most important features of ClI tools, such as the COTS Dashboard, is the capability
for flexible data extraction, transformation and loading (ETL). The COTS Dashboard was built
in Microsoft Power BI, which (like other Bl software) includes powerful data connectivity and
preparation capabilities (using PowerQuery) that allow users to integrate hundreds of different
data sources and reshape and transform them to suit their needs, without requiring coding skills.
For the COTS Control Program, data is predominantly entered via android apps in the field and
stored in the GBRMPA'’s Eye on the Reef Database (Beeden et al. 2014). However, some
legacy datasets and spatial data are stored and maintained internally as spreadsheets which are
integrated with other sources within the COTS Dashboard back-end. Importantly, data
cleaning, and merging is easily handled within the Power BI platform, allowing these different

data sources to be quality-checked before being analysed and reported on.

3.3.3 Data relationships

In order for CI tools to provide interactive filtering and aggregating of data, the relationships
between the data tables must be described, creating a relational database upon which more
complex analytics can be carried out. While Bl software will auto-generate relationships
between data tables containing similar identifiers (i.e ID columns and dates) they are best
described explicitly. In the COTS Dashboard, observational data (Manta Tow, Culling and
RHIS) are linked to a table holding spatial data for every one of the 3863 reefs in the GBRMP,

to allow all forms of observational data to be filtered simultaneously by spatial identifiers (i.e
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Reef Name, Marine Park Zone, Management Sector) (Figure 3.2). Similarly, the data for each

observation is linked to a separate table containing generic temporal data, allowing all

observational data to be filtered and analysed over a common time scale (Figure 3.2).

SpatialData

ReeflD int
Latitude numeric
Longitude numeric
ManagementZone varchar
ManagementSector varchar

TemporalData

ObsDate date
Year year

FinancialYear varchar

Quarter integer
Month integer
Day integer

ObsData_Culling

ReeflD int
SiteName int
ObsDate date
BottomTime varchar
COTSCulled numeric

Obsdata_RHIS

ReeflD int
SiteName int
ObsDate date
COTSSeen integer
CoralCover numeric

Obsdata_MantaTow

ReeflD int
SiteName int
ObsDate date
COTSSeen integer
CoralCover numeric

Figure 3.2 Simplified representation of the relational database structure constructed within the COTS Dashboard.
Variables highlighted in bold represent the primary keys used to link tables together.

3.3.4 Design process

Addressing the needs of managers to make adaptive decisions is fundamental to the successful

development, integration and utilization of data tools in conservation. As these needs often

change or shift focus, throughout the implementation of a conservation initiative, it is
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imperative to have consistent direct feedback from end users. The COTS Dashboard was thus
developed on-site at the GBRMPA ensuring the explicit needs of Marine Park managers were
incorporated throughout the design process, and allowing end users to gain familiarity with the
platform’s capabilities. Importantly, explicit targets and thresholds of the COTS Control
Program are central to the COTS Dashboard, with visualisations and summaries being designed

to highlight progress towards these goals.

3.4 Results

The major applications of CI tools in general, and the COTS Dashboard in particular, involve
the ability of these tools to address specific stages in the adaptive management cycle (Figure

3.1). Here we present four key applications of the COTS Dashboard:

1) Provide conservation managers at the GBRMPA with the most up-to-date information
on the current (and historical) extent of COTS outbreaks in a spatially and temporally
explicit manner (Stage 1), whilst incorporating contemporary theoretical knowledge of
the system (Stage 2) and estimating uncertainty (Stage 3).

2) Provide a platform to track the implementation of COTS management interventions by
vessel providers (Stage 4);

3) Monitor the progress of these implemented management actions in achieving the
ecological goals of the Control Program (Stage 5) and evaluate whether the
management action had the desired outcome (Stage 6);

4) Produce engaging visualisations alongside easily obtained and flexible data summaries

as tools for stakeholder engagement throughout the adaptive management process.

3.4.1 Synthesise current understanding: Assessing COTS outbreak status

One of the key requirements for managers of the COTS Control Program is efficiently
synthesise data coming from multiple monitoring and control vessels to generate up-to-date
estimates of the distribution of COTS across the GBR. To serve this purpose, the first page of
the COTS Dashboard (Figure 3.3) portrays the “Outbreak Status” of each reef with available
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data, alongside a summary table, providing further insight into the data and uncertainty of the
attributed “status”. Internally, the Dashboard is compiling several datasets to produce reef level
estimates. This overview of the current state of the system can also be filtered interactively by
the user, by adjusting a time “slicer” to inspect historical patterns, or by selecting zoning
regulation, management sector or outbreak status itself to inspect spatial patterns in COTS
outbreaks. Providing the historical and current context of the severity and extent of COTS
outbreaks gives spatial and temporal bounds to the ecological problem to help set objectives
(Stage 1). The incorporation of ecological thresholds to determine outbreak status reflects the
ability to build in assumptions of the current understanding of COTS outbreaks (Stage 2).
Finally, uncertainty in estimates are included in summary tables (as standard error) or revealed
when hovering over a reef location (Stage 3). Temporal uncertainty can also be investigated by

moving the time slicer.

COTS Qutbreaks Outbreak Status COTS Outbreak Status Legend 3
s nne rrita Average COTS Average COTS

per Manta Tow per RHIS
: - Severe Outbreak -
> 022 Established >0.05
>011 Potential >0.024
G—O_TI No Outbreak @

Number of Outbreaks

. ]

Data Information s

Reef level summary statistics
Outbreak status
Mean COTS density
Mean coral cover
Number of observations

Explanation of data usage
and aggregation

Figure 3.3 Outbreaks status page of the COTS Dashboard. The page contains 1) An input panel of “slicers” for
filtering data by reef name, date, region and zoning regulation; 2) map of current outbreak status (relative to Date
slicer); 3) Legend for 2) highlighting established thresholds for COTS outbreak status; 4) Filterable donut charts
the proportion of reefs within each outbreaks category and the proportion of reefs across the Marine Park for
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which we have current data; 5) Summary table of latest estimates of COTS densities, coral cover and number of
surveys; 6) Information box explaining the temporal aggregation of data and usage of survey methodologies.

3.4.2 Implement management actions: Integrated pest management process
The ability to monitor how management actions are being implemented in the field is integral
to managing the COTS Control Program. Specifically, the COTS control program requires
vessels to undertake initial surveillance of a reef to determine where culling activities should
begin, as part of an integrated pest management approach (Fletcher et al. in prep, Fletcher and
Westcott 2016, Westcott et al. 2016). Culling “sites” are then opened and culled on subsequent
voyages until COTS densities are restricted below established ecological thresholds. Reef wide
surveillance is also conducted every 2-3 months to monitor the COTS densities and coral cover.
The COTS Dashboard provides a page dedicated to tracking the implementation of this pest
management process (Figure 3.4), allowing users to select a reef of interest, view initial (or any
subsequent) surveillance data and the ensuing culling operations. These types of visualisations
provides users with an interactive platform for tracking the implementation of management
actions, ensuring the integrated pest management process was followed in the deployment of
culling resources (Stage 4).

Integrated Pest
Management Proce

This page is for ensuring

JOH_18-075_27
-

JOH_18-075_25 joH 18-075 26
JOH_18-075_24 - =
JOH_18-075_23
JOH_18-075_22
JOH_18-075_21

JOH_18-075_30
JOH_18-075_20

Figure 3.4 Integrated pest management page of the COTS Dashboard. The page contains 1) An input panel of
“slicers” for filtering data by reef name, date, voyage and zoning regulation; 2) map of current outbreak status
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(relative to Date slicer) with “tooltip” of summary data; 3) Map of culling activity at sites for the selected
reef/voyage 4) Map indicating the presence of COTS (green = absent; red = present) for the selected surveillance
voyage; 5) Map indicating the presence of COTS feeding scars (blue = absent; white = present (1-10); grey =
common (>10) for the selected surveillance voyage.

3.4.3 Monitor the effect of actions: Progress towards management goals

The COTS control program aims to reduce COTS densities to specific thresholds on reefs that
are prioritised by culling. Visualisations within the COTS Dashboard allow managers to
quickly assess progress towards achieving this goal at a site, reef or regional level. Specifically,
the COTS Dashboard has a page dedicated to synthesising culling data (Figure 3.5). By
selecting a reef from a list or from the map, managers can view the catch per unit effort (CPUE)
of COTS over time and monitor the progress toward reaching the ecological threshold (Stage
5). Furthermore, each culling site within the reef can then be selected in order to compare site
and reef level trends and investigate the spatial variability in catch-per-unit-effort. Importantly,
time series data can be aggregated at the Year, Quarter, Month or VVoyage level allowing users
to increase or decrease the temporal resolution of their analysis. Additionally, as reefs are
closed for culling, this page provides the opportunity to evaluate the outcomes against the initial

expectations (Stage 6). For example, the assessing the number of hours and repeated culling
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trips required to achieve the goals allows management to refine the expectations and modify

the approach for various outbreak densities of COTS.

Catch Per Unit 1
Effort Trends

Bramble Reef

This page displays (18-029)

CPUE trends

all

fime a

and site |

Reef Name
Bramble Reet (18-029)

V_065 327 BRA_18-029_33 0.01 16/06/2019 327
1970172009 20772015 |

All

culling by Voyage 0.8 4

All

Management Area

Unit Effort

All

Catch per

Figure 3.5 Catch per unit effort (CPUE) trends page of the COTS Dashboard. The page contains 1) An input panel
of “slicers” for filtering data by reef name, date, voyage and zoning regulation; 2) Map of most recent culling
activity at sites for the selected reef/voyage with “tooltip” of summary data (green = below cull threshold 0.04;
red = above cull threshold; 3) Summary table providing reef and site level summaries 4); CPUE trends (colours
represent different size classes of COTS: green=0-15cm; grey=15-25cm; red=25-40cm; yellow=40+cm) at the
selected reef level, highlighting progress towards ecologically sustainable thresholds 5) CPUE trends at the site
level (selected by 2) or 3)) to compare the progress of individual sites within a reef to the broader reef level trends.

3.4.4 Stakeholder engagement: Data summaries and visualisations

As the COTS Dashboard are simply visualisations built upon a relational database, it is a simple
process to create ad-hoc summaries or visualisations for special purposes. For example, the
GBRMPA has many research partners involved with the development of the control program
and in COTS research more broadly and thus receives many requests for data. These requests
vary greatly in their temporal and spatial scope as well as the level of aggregation required (i.e.
site/reef/region or voyage/month/year). Having a tool such as the COTS Dashboard allows
these requests to be addressed promptly while reducing the potential for error associated with

manually creating summaries in a spreadsheet. Additionally, the diverse array of visualisation
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options (Microsoft Power Bl 2019) provides a useful tool for creating summary graphics for a
variety of stakeholder audiences, or for communicating Program outcomes to higher level

managers and policy makers.

3.5 Discussion

The COTS Dashboard provides a user-friendly interface, to understand and assess the severity
and extent of COTS outbreaks, track the implementation of management actions and monitor
progress towards stated goals. Importantly, such CI tools are completely customisable and
require limited technical proficiency, making them an ideal, but as yet under-utilised platforms
for adaptive management and ecological monitoring. COTS outbreaks evolve in complex
temporal and spatial patterns (Vanhatalo et al. 2017), occurring in patchy aggregations at the
sub-reef level (Ormond and Campbell 1974) and displaying cryptic behaviour (Pratchett et al.
2014) making the control and monitoring of their outbreaks an intrinsically difficult task.
Managers of the Great Barrier Reef have the difficult task of tracking and responding to
emerging or established outbreaks over time, across a Marine Park that spans 344,400 km? and
encompasses 3864 reefs. Ensuring that these complex spatial and temporal patterns of
outbreaks across the GBR are understood by managers, policy makers, contractors and
researchers, is integral to implementing an effective COTS Control Program. As the Control
Program relies on many stakeholders spanning socio-political boundaries it is also vitally
important to develop efficient platforms for stakeholder engagement. The COTS Dashboard,
and CI tools more broadly, can facilitate knowledge exchange of complicated ecological
problems among a diverse array of stakeholders. While access to the Dashboard is currently
unavailable outside of the GBRMPA, advances are being made to allow wider access as part
of the broader Reef 2050 Integrated Monitoring and Reporting Program (RIMReP) (Dobbs et
al. 2011, Hedge et al. 2017).

Specifically, the Dashboard helps reef managers address the stages of the adaptive management
cycle (to varying degrees) whilst fostering stakeholder engagement from a single platform.

From the main page, managers can stay up-to date with the incoming data from the control
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program allowing them to assess the current (and historical) extent of COTS outbreaks (Stage
1). The dashboard also synthesises the available contemporary knowledge (Stage 2) of COTS
outbreaks by comparing COTS densities and catch per unit effort trends to important modelled
thresholds for outbreak densities (De’ath 2003, Babcock et al. 2014). Additionally, it provides
a platform to identify uncertainty (Stage 3) within the control program by providing
information on the number, standard error of estimates and spatial coverage of surveys used to
estimate COTS abundances and coral cover. It also provides a platform to track the
implementation of COTS management interventions by vessel providers (Stage 4); The
dashboard collates the data necessary to monitor and evaluate the effectiveness of the program
(Stages 5 and 6) by tracking the progress towards goals (reducing COTS to sustainable levels,
reducing coral cover loss). Additionally, while not the explicit purpose of the Dashboard, it can
be used as means to identify errors within the databases, to identify outliers or spatially
mismatched observations. Most importantly however, is the flexibility of the platform,
whereby any changes to management goals (e.g. altered thresholds or changing prioritisation

of reefs) can be amended without requiring a software developer or extensive IT experience.

On the GBR, there has been a concerted effort in recent times to develop reporting and
integrated monitoring frameworks to inform the adaptive management of the GBRMP (Dobbs
et al. 2011, Hedge et al. 2017). In particular, the GBRMPA is pursuing the development of
interactive reporting tools (e.g. Power Bl) because they were identified by the majority of
survey participants ( > 75%) as the ideal type of platform to deliver the Reef 2050 Integrated
Monitoring and Reporting Program (GBRMPA and Queensland Government 2018). CI tools
such as the COTS Dashboard provide an important template and proof-of-concept for the
successful delivery of an integrated monitoring and reporting program at the GBR scale. More
broadly, developing CI tools is an important step forward for the global conservation
movement. Over the last few decades there has been a vast increase in the number of
monitoring programs and conservation initiatives, and whilst effective design is key to success
(Legg and Nagy 2006, Guerra et al. 2019), the efficient management, analysis and

communication of insights from the data are integral steps in generating knowledge from an
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integrated monitoring framework (GBRMPA and Queensland Government 2018). As
conservation initiatives mature, Cl tools will play an increasingly important role in

disseminating insight from programs and aiding in their adaptive management.

Interactive data visualisations are becoming recognised as increasingly important to engage
and educate relevant audiences, particularly in the context of science for policy and stakeholder
engagement (Mclnerny et al. 2014). By providing an interactive platform to interrogate
complex spatial and temporal data, Cl tools aim to improve data literacy and knowledge
transfer of the system for researchers, managers, stakeholders and policy-makers alike.
However, understanding the realised impact of decision support (and CIl) systems and
stakeholder engagement on conservation outcomes remains somewhat elusive. Although there
is some disagreement regarding the effectiveness of stakeholder engagement (Reed 2008,
Young et al. 2013), increased levels can have important flow on effects, increasing trust and
the perceived likelihood of a successful outcome (Young et al. 2013). Additionally, in the
business world, effective Bl systems are generally accepted to increase productivity, improve
decision-making performance, and enrich knowledge (Trieu 2017). The increased adoption of
these BI tools in the conservation sphere could reap similar benefits. Despite the uncertainty
regarding the concrete measurable outcomes of such tools, the development of effective
visualisations, such as the COTS Dashboard, is regarded as one of the most pressing concerns
for scientists and science policy (Mclnerny et al. 2014). Importantly, with respect to the COTS
Control Program, the GBRMPA are obliged to engage stakeholders, particularly in sharing data
collected through the program, and thus the development of CI tools is a necessary step in

maturing a large publicly funded conservation program.

The COTS Dashboard was developed alongside the major end user (GBRMPA), thereby
avoiding some of the major challenges associated with bespoke decision support tools
(Pinarbasl et al. 2017). More specifically, extensive understanding of the data needs of the end
users from the outset increased engagement and greatly reduced development costs (Mclntosh
et al. 2011). We also intentionally used established software, which is thoroughly documented

and supported, which importantly, can be created and modified independent of expert
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developers. However, the use of commercial software does have some drawbacks, especially
the inability to edit source code and uncertainty about long-tern access and availability to the
product. More broadly, CI tools are applicable to any ecosystem and can be applied to any
conservation initiative or monitoring project where interactive visualisations/summaries may
be useful to understand complex patterns. There are multiple platforms upon which they can
be built (Microsoft Power BI, Tableau, QlikView), and while these platforms are generally
built to serve the business analytics industry, their capabilities go far beyond these applications.
Importantly, the low cost (free in some cases) and relatively lower level of technical ability
required to design such a tool makes CI tools readily available to small scale conservation
initiatives, NGO’s, government departments or researchers without requiring a significant
software development budget. Moreover, CI tools can also be adapted towards a research
orientated focus, particularly for sharing complex model outputs among collaborators and lay-
people, allowing uncertainty and parameter sensitivity to be viewed interactively. CI tools
incorporate interactive visualisations, simple GIS capabilities, extensive options for data
integration, easy to share reports and web apps (paid subscriptions), making them ideal

platforms for pest management, marine spatial planning and ecological monitoring initiatives.

3.6 Conclusion

The construction of a specific and dedicated CI interface (the COTS Dashboard) has provided
a number of benefits and efficiency gains for the COTS Control Program. The COTS
Dashboard has greatly reduced time spent on the repetitive, non-reproducible and error-prone
production of graphs and summary statistics within the Program. Cl tools are extremely flexible
and can be easily expanded to include new streams of modelled or empirical data as new
research and management actions are implemented. More broadly, CI tools enable the effective
implementation of adaptive management, particularly by increasing the user’s ability to assess
the state of the problem, identify uncertainty, and monitor and evaluate the progress of

conservation interventions, whilst providing a platform for stakeholder engagement. This
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project highlights that currently available and accessible software can effectively address some

of the foremost challenges to adaptive management in data-rich and complex systems.
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4 Connectivity and water quality explain
distribution and abundance of Crown-of-

thorns Starfish across the Great Barrier Reef

4.1 Abstract

Outbreaks of the coral eating crown-of-thorns starfish (COTS; Acanthaster cf. solaris) occur
in cyclical waves along the Great Barrier Reef (GBR), contributing significantly to the decline
in hard coral cover over the past 30 years. One main difficulty faced by scientists and managers
alike, is understanding the relative importance of contributing factors to COTS outbreaks such
as increased nutrients and water quality, larval connectivity, fishing pressure, and abiotic
conditions. We analysed COTS abundances from the most recent outbreak (2010-2018) using
both boosted regression trees and generalized additive models to identify key predictors of
COTS outbreaks. We used this approach to predict the suitability of each reef on the GBR for
COTS outbreaks at three different levels: (1) reefs with COTS present intermittently
(Presence); (2) reefs with COTS widespread and present in most samples and (Prevalence) (3)
reefs experiencing outbreak levels of COTS (Outbreak). We also compared the utility of two
auto-covariates accounting for spatial autocorrelation amongst observations, built using
weighted inverse distance and weighted larval connectivity to reefs supporting COTS
populations, respectively. Boosted regression trees and generalized additive mixed models
were combined in an ensemble model to reduce the effect of model uncertainty on predictions
of COTS presence, prevalence and outbreaks. Our results indicate that larval connectivity
potential is the best predictor of COTS outbreaks (relative importance = 22.7%) while flood
plume exposure (Presence=18.5%, Prevalence = 15.6%), chlorophyll concentration
(Presence=15.3%, Prevalence = 20.5%) and temperature variables (Presence=23.1%,

Prevalence = 7.5%) were among the most important predictors of COTS presence and
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pervasiveness on a reef. Interestingly, whether the reef was open or closed to fishing had no
significant effect on COTS presence or outbreaks. We identified major hotspots of COTS
activity primarily on the mid shelf central GBR and on the southern Swains reefs. This study
provides the first empirical comparison of the major hypotheses of COTS outbreaks and the
first validated predictions of COTS outbreak potential at the GBR scale incorporating
connectivity, nutrients, biophysical and spatial variables, providing a useful aid to management

of this pest species on the GBR.

4.2 Introduction

Outbreaks of the corallivorous crown-of-thorns starfish (Acanthaster cf. solaris) occur on the
Great Barrier Reef (GBR) approximately every 15 years (Kenchington 1977, Reichelt et al.
1990b, James and Scandol 1992, Lane 1996, Seymour and Bradbury 1999) and have been
responsible for up to 40% of the loss of hard coral cover on the GBR over the last 30 years
(De’ath et al. 2012). Long term data suggest that outbreaks originate in the northern GBR
within Cairns-Lizard Island region, known as the “initiation zone” (Wooldridge and Brodie
2015, Vanhatalo et al. 2017). These are known as primary outbreaks, and are characterised by
the build-up of COTS densities through local recruitment during repeated successful spawning
seasons (Endean 1974, Johnson et al. 1992, Stump 1996, Pratchett et al. 2014). Inevitably,
larger population sizes of adult COTS in the “initiation zone” overcome Allee thresholds
(Rogers et al. 2017), enhancing fertilisation and increasing propagule pressure, seeding
downstream secondary outbreaks (Endean 1974, Pratchett et al. 2014). As the outbreak
progresses, aided by the prevailing south-easterly flow of the East Australian Current, these
secondary outbreaks spread southward down the GBR in *“waves” (Kenchington 1977,
Pratchett et al. 2014). Although the spatial patterns in the progression of an outbreak are

somewhat consistent, predicting which reefs will be affected by an outbreak remains elusive.

While oceanographic patterns of larval dispersal (Scandol and James 1992, Hock et al. 2014,
Uthicke et al. 2015a), and the anthropogenic erosion of natural population regulation

(“terrestrial run-off hypothesis’ (Birkeland 1982) and ‘predator removal hypothesis’(Endean
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1969)) are commonly used to explain the initiation of primary COTS outbreaks, the majority
of reefs affected by COTS on the GBR are subject to the waves of secondary outbreaks.
Understanding the spatial patterns of these secondary outbreaks and the role of their
environmental drivers remains a key research and management knowledge gap (Pratchett et al.
2017a). While recent research has used estimated larval connectivity networks to explain which
reefs might be sources or sinks of COTS larvae across the GBR (Hock et al. 2014), it did not
account for other important environmental drivers of COTS outbreaks (e.g. chlorophyll-a
(Fabricius et al. 2010)), nor did it allow for the distinction between primary and secondary

outbreaks.

The density of COTS can vary greatly both within and among reefs over short time scales
(Birkeland and Lucas 1990, Pratchett et al. 2014). This spatial and temporal variability of
COTS populations indicates that there may be important differences between the drivers of
COTS presence on a reef, and the drivers of COTS outbreaks (>0.22 individuals per manta tow
(De’ath 2003, Sweatman et al. 2008)). Additionally, at a reef level, COTS are often found in
patchy aggregations presumably linked to coral prey availability (Chesher 1969, Pratchett et
al. 2017a) and to enhance fertilisation potential in spawning aggregations (Babcock et al. 1994,
Rogers et al. 2017). Such patchiness suggests that the prevalence (herein referred to as the
proportion of tows in which COTS are observed) of a COTS outbreak on a reef may again be
linked to subtly different environmental and ecological drivers than COTS presence or

outbreaks.

Although several major hypothesis have been put forward to explain COTS population
fluctuations, they generally fall into three major categories 1) Larval-nutrient supply
hypotheses 2) Predatory release hypotheses and 3) Larval connectivity hypotheses, all
underpinned by the immense fecundity and fast maturation of COTS individuals, making them
naturally predisposed to large population fluctuations (Vine 1973, Antonelli and Kazarinoff
1984, Uthicke et al. 2009, Babcock et al. 2016b, Mellin et al. 2016b). Enhanced nutrient levels
since European settlement have been shown across multiple laboratory studies to have positive

effects on COTS larval survival (Fabricius et al. 2010, Uthicke et al. 2015b, Wolfe et al. 2015,
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2017, Pratchett et al. 2017b), while others have highlighted the confluence between elevated
nutrient supply major and COTS outbreaks (Fabricius et al. 2010, Wooldridge and Brodie
2015, Brodie et al. 2017). Some support for predatory release hypotheses has been provided by
the reduced likelihood and intensity of COTS outbreaks on reefs with “no-take” zones closed
to fishing (Sweatman 2008, Vanhatalo et al. 2017). These studies indicate that increased fishing
pressure on large predatory fish, diminishes their ability to regulate COTS populations, thereby
increasing of the risk of outbreaks, but these studies did not account for any other influential
covariates other than latitudinal and cross-shelf location. While some progress has been made
to identify potential predators of adult and juvenile COTS (Cowan et al. 2017a), it is still
unclear how much changes to fish populations may affect the initiation and spread of COTS
outbreaks. Finally, the recently developed hydrodynamic models for the GBR have been used
to identify important source and sink reefs across the GBR network (Hock et al. 2014) and to
help design decision frameworks to increase the effectiveness of COTS control on the GBR
(Hock et al. 2016). These predictions are based entirely upon the potential larval connectivity
estimates and assume all reefs have the same suitability for populations of COTS. An important
extension of these models, is to explicitly incorporate known (and potential) drivers of COTS
outbreaks and spatial patterns in COTS observation data. Most importantly these predictions
should be validated against the available observation data to understand the associated

uncertainty.

Although COTS dynamics on the GBR are clearly influenced by a combination of factors, there
has yet to be an attempt to empirically assess the importance of each of these competing
hypotheses in a single study. Babcock et al. (2016a) provided the first qualitative assessment
of competing hypotheses, focusing on the role of nutrients and predation in mediating COTS
population dynamics. While being a useful theoretical framework to understand COTS
population dynamics, their model was not validated against empirical data and did not
explicitly include larval connectivity. During the current outbreak cycle (2010-2019) there has
been a vast expansion in the COTS control program, providing unprecedented monitoring data

on COTS populations across a large extent of the GBR (Figure 4.1). This increased spatial and
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temporal resolution of observation data and the availability of GBR-wide estimates of
environmental variables and connectivity estimates provides a unique opportunity to compare
competing hypotheses in a spatially explicit manner. Importantly, they also provide an
opportunity to investigate how these variables drive the presence, outbreaks and prevalence of

COTS populations.

Species distribution modelling (SDM) is a powerful tool for predicting the spatial distribution
of a species and identifying the relative importance of their environmental drivers across
landscapes (Guisan and Thuiller 2005, Leathwick 2009, Franklin 2010, Robinson et al. 2011).
The nature of many ecological relationships are often non-linear and recently machine learning
approaches such as boosted regression trees (BRT) have been increasingly used to predict
species ranges and identify important predictor variables (De’ath 2007, Elith et al. 2008,
Sutcliffe et al. 2014). These approaches are often conducted in an ensemble model with
generalized additive models (GAM) that can also account for non-linear trends by applying a
smoother, providing useful flexibility for fitting ecologically realistic relationships in SDM
(Leathwick 2009). Importantly, for species with dynamic ranges such as COTS it is important
to include covariates pertaining to important biotic interactions and dispersal pathways in an
SDM approach (Elith et al. 2010, Mellin et al. 2016b). SDM provides empirical and validated
predictions of reefs most likely to experience COTS outbreaks while also modelling the relative

importance of each of the competing hypotheses and their relationship to COTS.

More specifically, this study will:

(1) Identify key environmental, spatial and hydrodynamic drivers that may explain
spatial patterns of COTS presence, outbreaks and prevalence across the extent
of the GBR:

(2) Construct an ensemble model to compare the relative influence and
relationships between candidate predictors and COTS populations;

(3) Compare the utility of contemporary COTS larval connectivity estimates over

simple distance estimates of connectivity for accounting for spatial
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autocorrelation and
(4) Derive predictive maps of COTS presence, outbreaks and prevalence to help

identify potentially important reefs for COTS control operations.

4.3 Methods

4.3.1 Crown-of-thorns Starfish Observation Data

Two independent sets of COTS observation data were gathered: 1) manta tow data from the
Australian Institute of Marine Science Long Term Monitoring Program (AIMS LTMP), and 2)
combined manta tow observations collected by the Great Barrier Reef Marine Park Authority’s
(GBRMPA) COTS control program and the Joint Field Management Program’s COTS
Response Program (collected by the Queensland Parks and Wildlife Services) (Figure 4.1). The
data used here represent the most recent, spatially and temporally extensive observational data
for COTS. The AIMS dataset spans from 1983 to 2019, whereas the other datasets were
collected between 2012-2019 and thus the temporal extent of this study has been limited to the
most recent outbreaks of COTS (2012-2019). Due to the substantial culling activity and tourism
in the Northern management area, sampling intensity is greatest in these regions, however
substantial data has been collected in the Central and Southern GBR (Figure 4.1). Manta tow
data from the FMP and the Control program was collated to calibrate the models, and the AIMS
LTMP data was used to independently validate model predictions. However, using data from
only the most recent outbreak (since 2009/09) may reduce the model’s performance in
predicting the historical spatial distribution as this can vary between outbreak cycles (Figure
2.2). This is addressed partially by validating model predictions against the 30 year AIMS
LTMP dataset to test performance against historical trends. At least two complete manta-tows
during the 2012-2019 period were required for a reef to be included in the analysis. In total 335

reefs were included for model fitting with observations for 113 reefs used for model validation.
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GBRMPA
AIMS
Both

Figure 4.1 Reefs with available COTS observation data collected between 2012-2018, surveyed by either
GBRMPA (Orange: COTS Control Program and the joint Field Management/Queensland Parks and Wildlife
Services COTS Response Program) or Australian Institute of Marine Science Long Term Monitoring Program
(Green) across the management areas of the GBRMP (FN=Far Northern, N= Northern, C=Central, S=Southern.
Reefs surveyed by both institutions are shown in blue.
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4.3.2 Response Variables

Survey data were collated at the reef level and presence of COTS was defined as any
observation of COTS during manta tow observations of that reef (0-1; Present/Absent).
Outbreaks at a reef were defined as per AIMS guidelines (De’ath 2003, Sweatman et al. 2008)
for manta tow data (>0.22 COTS/manta tow) (0-1; whether or not COTS had reached outbreak
levels) and fitted using a binomial distribution. Prevalence of COTS at a reef was defined in
this study as the proportion of tows where COTS were observed during a set of manta tow
observations (a survey: observer towed around the perimeter of a reef (Miller et al. 2009a)). As
reefs are towed multiple times throughout the study period, the maximum recorded prevalence
was used as the response variable to reflect the upper limits of COTS prevalence per reef
(Figure S 9.3). Using the maximum prevalence is biased towards high density observations of
COTS. This is by design as the aim is to identify predictors of reefs that are susceptible to
populations of COTS that are distributed widely across the focal reef. This approach does make
the model susceptible to sampling intensity which was partially accounted for by using only
reefs that had been surveyed at least twice over the study period. The prevalence proportion
was logit transformed prior to model fitting using a gaussian distribution (Warton and Hui
2011). For COTS prevalence a two-step modelling approach was used to accommodate for the
zero-inflated nature of the proportion data (Cragg 2006, Potts and Elith 2006). Also called the
hurdle model, this approach uses the results from the COTS presence model to define suitable

reefs and then models the prevalence on suitable reefs only (e.g. (Mellin et al. 2012). The

62 Matthews - December 2019



Ch. 4. Connectivity and water quality explain distribution and abundance of Crown-of-thorns Starfish across the
Great Barrier Reef

dataset was thus restricted to contain only reefs that have been observed to host COTS at least

once before modelling the major predictors of COTS prevalence.

4.3.3 Candidate Predictor Variables

All predictor variables used within this analysis were originally compiled on a 0.01° (~ 1km)
grid across the GBR (Matthews et al. 2019) over various time scales (Table 4.1). These data

were then averaged at the reef level to match the spatial scale of the observation data.

4.3.3.1 Water Quality Variables

Estimates of water quality were included as potential predictors for COTS distribution patterns
due to the suggested effect of water quality on COTS larval development, survival and
outbreaks. Water quality was considered in the study using satellite derived estimates of flood
plume exposure (Devlin et al. 2012a, Matthews et al. 2019) and annual model estimates of
mean and standard deviation of chlorophyll-a concentration (CSIRO 2019). The average
frequency of exposure to primary (turbid, sediment dominated plumes) and secondary
(chlorophyll dominated plumes) flood plumes was calculated across the GBR as the proportion
of weeks within the Australian wet season where exposure to the plume type occurred between
2000-2014 (Devlin et al. 2012a). Daily estimates of chlorophyll concentrations were obtained
from the eReefs 4km biogeochemical model (CSIRO 2019) 2013-2018 (all available data), and

then annual mean and standard deviation were computed for each reef.

4.3.3.2 Disturbance Variables

GBR-wide estimates of mean annual exposure to potentially damaging waves generated by
tropical cyclones and Degree Heating weeks (as an index of bleaching risk) (1986-2012)
alongside exposure to the 1998 and 2002 bleaching events (Matthews et al. 2019). COTS
typically prefer fast growing Acropora spp. corals (Pratchett et al. 2014), which despite being
particularly susceptible to acute disturbances (e.g Hughes et al. 2018), recruit abundantly and
often recover rapidly following disturbances (Linares et al. 2011, Osborne et al. 2011, Sato et

al. 2018). COTS populations are thus presumably mediated by the disturbance history of a reef,
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which are broadly captured by our indices of historical exposure to cyclonic waves, thermal

stress and bleaching.

4.3.3.3 Environmental Variables

Static estimates of environmental variables, originally collated from the Commonwealth of
Australia’s Environment Research Facility (CERF) Marine Biodiversity Hub (Huang et al.
2013), were obtained from Matthews et al. (2019) over varying time scales (Table 4.1). These
environmental variables include: annual mean estimates of nitrate, oxygen, phosphate, silicate,
temperature and salinity, bathymetry, percentage cover of sediment components, multiple
indices of the strength and frequency of the combined wave—current bed shear stress and spatial
variables of minimum distances to the coast and the ocean at the edge of the GBR lagoon (Table
4.1). These variables have been successfully used to predict benthic community composition
(Mellin et al. 2019a), fish assemblages (Mellin et al. 2010a) and other inter-reef species
richness and abundance on the GBR (Sutcliffe et al. 2014). Moreover the dataset includes
estimates of a number of variables shown to be important in affecting different life history

stages of COTS such as salinity, oxygen and water temperature (Table 4.1).

4.3.3.4 Coral Variables

Estimated maximum coral cover and benthic community were obtained from Mellin et al.
(2019a). Benthic communities were identified using multivariate regression trees (De’ath
2002), modelling the relationship between spatial and environmental covariates (Matthews et
al. 2019) and the relative cover of benthic groups and coral taxa. Clusters of reefs were then
defined by the multivariate regression tree corresponding to distinct taxonomic assemblages,
characterized by its indicator taxa. The six benthic communities identified were: (i) outer reef
— soft coral dominated; (ii) outer reef — digitate coral dominated,; (iii) outer reef — tabulate coral
dominated; (iv) mid shelf reef — mixed assemblage; (v) inner shelf reef — Porites dominated;

(vi) Inner shelf reef — macroalgae dominated (Figure S 9.1).

Maximum coral cover, an index of the amount of substrate available or reef carrying capacity,

was estimated from a 22-year time series at the 46 long term monitoring sites on the GBR based
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on a Gompertz model of coral growth (MacNeil et al. 2019, Mellin et al. 2019a). This model
assumes that in the absence of disturbance, coral cover increases from its initial value (HCini,
in 1996 in this case) to its asymptote (HCmax, determined by the reef carrying capacity or

amount of available substrate).

4.3.3.5 Spatial Variables

Outbreaks of COTS are spatially patchy yet are more common within the mid-shelf reefs on
the GBR and with some evidence suggesting higher outbreak probabilities at reefs open to
fishing (Sweatman 2008, Vanhatalo et al. 2017). To account for latitudinal and longitudinal
patterns we included the cross-shelf location (inner, middle, outer) and four latitudinal sectors
(Southern, Central, Central-Northern, Far Northern). Additionally, the effect of zoning on
COTS populations was included as a categorical indicating whether a reef was open or closed

for fishing (i.e. no-take area).

4.3.3.6 Larval Connectivity Variables

On the GBR the development of advanced hydrodynamic and larval connectivity models
(Condie et al. 2012, CSIRO 2019) has facilitated the development of larval connectivity
networks for COTS (Hock et al. 2014). These networks are constructed from 4 years of
hydrodynamic modelled data and estimate the potential connectivity between all reefs on the
GBR (2009-2013). Potential connectivity is a simplification of real-world processes which
essentially represents maximal physically possible advective transport among reefs as implied
by the model and expressed as a proportion of simulated larvae reaching destination reefs
(Hock et al. 2014). As our COTS observational dataset spans 9 years, and our goal is to
highlight the most important factors promoting COTS outbreaks, we used an averaged
connectivity network that identifies the most consistent between-reef larval connections across
years. From this network we computed the weighted in-strength for every reef, defined at the
reef level as the sum of the potential connectivity from every other reef on the GBR. A reef

with high in-strength will be characterised by high potential connectivity from many source
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reefs, thus potentially representing an important sink for COTS larvae. The in-strength s of a

reef i is defined as

S; = ZWU
]

e where wijis the potential connectivity from reef i to reef j (Barrat et al. 2004).

4.3.4 Spatial Autocorrelation

Outbreaks of COTS on individual reefs are not independent of one another, as an outbreak at

one reef will likely seed an outbreak at a neighbouring reef if there is sufficient larval supply

via ocean currents (hereafter connectivity). Connectivity between reefs and spatial correlation
of environmental drivers means there will be spatial autocorrelation within our response
variables. To account for this autocorrelation we adopted the autologistic model (Dormann et
al. 2007) where a distance-weighted term (the auto-covariate) is added to the predictor set, to

represent the influence of neighbouring observations.

The auto-covariate A at any site i is calculated as:

A = z Uiy
JEK;

where y; is the response value of y at site j among site i's set of ki neighbours; and vi; is the
weight given to site j's influence over site i (Augustin et al. 1996, Gumpertz et al. 1997). We
calculated two competing auto-covariates: (i) a distance auto-covariate, whereby observations
at site j were weighted by their inverse geographical distance to site i, and (ii) a connectivity
auto-covariate, whereby observations were weighted by the estimated larval connectivity from
site j to site i. Including the spatial auto-covariates allows the model to account for
autocorrelation, but also allows the comparison of estimates of larval connectivity for COTS
(Hock et al. 2014) to estimates based solely on distance. Additionally the connectivity auto-

covariate models the larval connectivity to reefs that have experienced outbreaks, compared to

66 Matthews - December 2019



Ch. 4. Connectivity and water quality explain distribution and abundance of Crown-of-thorns Starfish across the

Great Barrier Reef

the in-strength variable which measures how well connected the focal reefs is to all others

within the network, regardless of the outbreak status of those reefs.

Table 4.1 Predictor variable definitions, units, code used in SDM analyses: Env = envrionmental; WQ = water
quality; Spat = Spatial; Cor = coral; Dist = disturbance; Conn = connectivity; = AutoCov = auto-covariate.
References are provided for the source of the data and how these variables relate to COTS populations. *Indicates
references that relate to the effect of the variable on COTS' coral prey and not COTS directly.

Type Code Description Units Years Source COTS
Reference*
Env 02 SR  Seasonal range oxygen mL.L* 1960-2006 (Huang et al. (Lamare et al.
2010, Matthews 2014, Hardy
et al. 2019) et al. 2014)
Env NO3_A Average nitrate uM 1960-2006 (Birkeland
\Y 1982)
Env S AV  Average salinity PSU 1960-2006 (Lucas 1973,
Allen et al.
2017,
Caballes et al.
2017b)
Env S SR Seasonal range salinity PSU 1960-2006
Env BATH  Seafloor depth m 1963-2009 (Johnson
Y 1992)
Env STRES  Percentage of time for % 2010 (Moran 1986)
S which the bed shear
stress was > 0.4 Pa
(Wave exposure
proxy)
Env SST M Minimum sea surface  °C 1999-2008 (Kamya et al.
IN temperature 2014, Lamare
et al. 2014)
Env MUD percentage of a seabed % 1960-2009 (Wolanski et
sediment sample that is al. 2003)*
smaller than 63 um in
diameter
WQ WQ 1  Primary (representing  Relative 2000-2014 (Devlin et al. (Fabricius et
turbid , sediment frequency 20124, al. 2010,
dominated plume) (0-1) Matthews et al.  Wolfe et al.
flood plume frequency 2019) 2015,
(weeks occurred/total Wooldridge
weeks) during wet and Brodie
season (max = 26). 2015,
Pratchett et al.
2017b, Brodie
et al. 2017)
WQ WQ 2  Secondary chlorophyll  Relative 2000-2014
dominated plume frequency
(0-1)
WQ WQ 3  Further extent of Relative 2000-2014
plume, as delineated frequency
by salinity less than (0-1)
34ppt
WQ CHL_A Wet season mean mg m* 2012-2018 (CSIRO 2019)
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\ chlorophyll
WQ CHL_S  Wet season standard mg m 2012-2018 (CSIRO 2019)
D deviation chlorophyll
Spat SHELF Cross shelf location Factor - (AIMS 2019) (Moran 1986)
(Inner, Middle, Outer) (3 Levels)
Spat SECTO Marine Park Factor - (GBRMPA (Moran 1986,
R Latitudinal Sector (4 Levels) 2014a) Fabricius et
(Southern, Central, al. 2010)
Northern, Far
Northern)
Spat ZONE  Open or closed to Factor - (GBRMPA (Sweatman
fishing (2 Levels) 2014b) 2008,
Vanhatalo et
al. 2017)
Cor BENT_  Benthic coral Factor Estimated  (Mellin et al. (Lucas 1984,
CL community type (6 Levels) 2018 2019a) Pratchett
2007,
Caballes et al.
2017a)
Cor HC_M  Predicted maximum 0-100% Estimated (Lucas 1984,
AX hard coral cover 2018 Caballes et al.
2017a)
Dist DHW_  Mean exposure to Num 1985-2012 (Heron et al. (Kamya et al.
EXP degree heating weeks 2016, Matthews 2014, Lamare
1985-2012 et al. 2019) et al. 2014)
Dist CYC_E Mean exposure to Num 1985-2012 (Puotinenetal.  (Osborne et
XP cyclonic waves (>4m) 2016, Matthews al. 2011, Sato
1985-2012 et al. 2019) et al. 2018)*
Dist BL_EX Mean exposure to 1-5 1998,2002 (Berkelmanset  (Hughes et al.
P 1998 and 2002 al. 2004, 2018a)*
bleaching events Matthews et al.
2019)
Conn IN. ST  Weighted sum of Num 2009-2013 (Hock et al. (Hock et al.
R strength of incoming 2017) 2014, 2017,
connections Wooldridge
and Brodie
2015)
Conn LAR_R Estimated proportion % 2009-2013
ET of larval retention
Auto AC_DI  Auto-covariate Num - (Dormann et al.
Cov ST weighted by distance 2007)
to reefs with COTS
present
Auto AC_CO Auto-covariate Num - (Dormann et al.
Cov NN weighted by estimated 2007, Hock et

larval connectivity to
reefs with COTS
present

al. 2017)
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4.3.5 Model Fitting

Boosted regression trees (BRT) were used to fit our candidate predictors set to COTS
observation data. BRT is a machine learning algorithm that uses many simple decision trees to
iteratively boost the predictive performance of the final models (Elith, Leathwick, & Hastie,
2008). Model settings include the learning rate (Ir) that controls the contribution of each tree
to the final model and tree complexity (tc) that determines the extent to which interactions were
fitted. The number of trees that achieved minimal predictive deviance (i.e., the loss in
predictive performance due to a suboptimal model) was determined using cross-validation
(Elith et al., 2008) (function gbm.step with t¢ = 3, Ir = 0.001, bag fraction = 0.5).
Multicollinearity was assessed between candidate variables, however none were omitted with
Pearson’s correlation values <0.7 (Figure S 9.2). To investigate the effect of spatial
autocorrelation and the utility of connectivity- and distance-based auto-covariates, each BRT
was fitted to our three response variables (Presence, Prevalence and Outbreak) 3 times: 1) with
no auto-covariate; 2) with the spatial auto-covariate ; 3) with the connectivity auto-covariate,
to give a total of 9 BRT models. One of the useful outputs of BRT is the relative influence
(variable importance, in %) each predictor had in the classification process, allowing each
predictor to be ranked in terms of their utility in predicting presence, prevalence or outbreaks

of COTS.

Generalised additive models (GAM) were also fit using the same candidate predictor set to
potentially identify more parsimonious models. GAM provide a flexible middle ground
between traditional generalized linear model models and machine learning approaches. All
potential combinations of variables were fitted in a full subsets theoretic approach (Burnham
and Anderson 2002) restricting the GAM to include a maximum of 6 variables and maximum
5 knots per variable (n models = 40,815). Full subset models were fitted to each of our three
responses in the same categories as the BRT: 1) with no auto-covariate; 2) with the spatial auto-
covariate; 3) with the connectivity auto-covariate, for a total of 9 GAM model categories. Each
of the variables were then assigned a relative importance indicating the frequency of their

inclusion in best-fit models (Fisher et al. 2018) . From the full subset of models for each of the
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9 model categories the single best performing model was chosen via Bayesian Information
Criterion (BIC). Partial dependency plots (which reveal the effect of a variable on the response
after accounting for the average effects of all other variables (Elith et al. 2008)) were produced
for the top four most influential predictors for both BRT and GAM models, to investigate the
effects of predictors independently. BRT and GAM models were fitted and validated in R 3.5.3
(R Development Core Team 2017) using the “gbm” and “FSSgam” packages respectively.

4.3.6 Model Validation
Each of the 9 BRT and 9 GAM models were subsequently validated against the independent
test data and using 10-fold cross validation to estimate prediction accuracy. Validation statistics

were combined to produce a single validation metric V,,,, calculated for the m™ model as:

DE,, + (CV.ACC,,) + (IND.ACC,,)
V, =
3
where DE is the proportion of deviance explained; CV.ACC is the 10-fold cross-validation
accuracy and IND.ACC is accuracy when validated against the AIMS Long Term Monitoring
Program dataset. For binary response variables (presence, outbreak), accuracy refers to the
proportion of validation observations that were correctly classified, assuming a 0.5 threshold,
for gaussian responses (prevalence), accuracy refers to the mean prediction accuracy (1 — mean

prediction error).
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4.3.7 Ensemble Prediction

The boosted regression tree and generalized additive models for each response were then
combined to form weighted ensemble predictions based on the method below (Marmion et al.

2009):

Sm(Vin X PRED,)

WA,
‘ Zom Vi

Where WA; is the weighted ensemble prediction for the ith location, PRED,,, is the ith

prediction for model m, and V,,, is the validation statistic for model m (eqn. 2).

A second ensemble approach was also made by “stacking” the predictions from all boosted
regression tree and GAMs into a final boosted regression tree model (Wolpert 1992, Ting and
Witten 1999). This is a machine learning approach to ensembles, allowing the boosted
regression tree algorithm to choose which model predictions are the most useful in explaining
the response variable. The weighted and “stacked” ensemble were then validated against an
independent dataset (AIMS Long Term Monitoring Program) to test the generalisability of the
two approaches. Final predictions were then made across all reef locations on the GBR using
the best performing ensemble model to indicate the reefs most suitable to COTS presence,

prevalence and outbreaks.

4.4 Results

4.4.1 Presence Model

Presence of COTS individuals on a reef was best explained by the model containing no auto-
covariate model for both BRT and GAM approaches according to both model fit (68.5 and
61.8% deviance explained respectively) and validation against independent data (78.8% and
71.7% accuracy respectively) (Table 4.2). For the best fitting BRT, mean annual exposure to
degree heating weeks (DHW_EXP = 13.1% relative influence); exposure to chlorophyll-rich
secondary plumes (Secondary = 13.0 %) and minimum sea surface temperature (SST_MIN =

10.8%) were the most influential predictors (Figure 4.2a). Partial dependency plots indicated
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a strong negative threshold response at ~1.1 DHW/year and minimum sea surface temperature
of ~24°C. Conversely, increasing variability in chlorophyll concentration (CHL_SD) had a
relatively linear positive effect of COTS presence, while the frequency of exposure to
secondary plumes variables and COTS presence indicated a positive threshold type response
at low levels, highlighting the importance of availability of larval nutrition for the

establishment of COTS populations.

For GAM models, exposure to cyclonic waves (included in 96.0% of top performing models),
primary flood plume exposure (WQ_1 = 92.8%), variation in chlorophyll concentration
(CHL_SD = 87.9%) were the most important predictors, followed by average nitrate
concentration (NO3_AV = 20.4%) and minimum temperature (SST_MIN = 11.4%). Marginal
effects plots of the top performing model reveal a strong positive relationship of both
chlorophyll variability (CHL_SD) and in-strength (IN_STR) on the probability of COTS
presence (Figure 4.3b). Exposure to primary flood plumes (WQ 1) indicated high probabilities
of COTS presence in the absence of primary plumes and a severe dip at low levels before
dramatically dropping off again at high exposure to these turbid flood plumes. This finding
was relatively consistent for reefs either open or closed to fishing, although sample size was
low at the upper extremes of primary flood plumes. Interestingly, cyclonic wave exposure
(CYC_EXP) had a generally positive relationship with COTS presence, with a major dip

apparent in closed fishing sites, however the confidence limits overlap substantially.
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Table 4.2 Validation metrics for each model and ensemble for each of the three response variables; Presence,
Outbreaks and Prevalence. Models presented in bold represent the best performing model for each response and
model framework. * Accuracy for prevalence is calculated as 1-mean prediction error.

Response | Framework Model DE CV.ACC* IND.ACC* vm
PA 0.68 0.87 0.79 0.78
BRT PAAc.Dist 0.68 0.87 0.75 0.77
PAAc.comn 0.66 0.85 0.74 0.75
PA 0.62 0.84 0.72 0.73
Presence
GAM PAAc.Dist 0.58 0.83 0.73 0.71
PAAc.comn 0.62 0.84 0.72 0.73
Weighted NA 0.93 0.72 -
ENSEMBLE
Stacked 0.86 0.96 0.73 -
PREV 0.85 0.85 0.87 0.86
BRT PREVacpist 0.80 0.85 0.89 0.84
PREVacconn 0.88 0.85 0.88 0.87
PREV 0.59 0.84 0.85 0.75
Prevalence
GAM PREVacpist 0.67 0.85 0.87 0.79
PREVaccomn 0.57 0.83 0.85 0.75
Weighted NA 0.89 0.87 -
ENSEMBLE
Stacked 0.9192 0.94 0.86 -
ouT 0.75 0.85 0.77 0.79
BRT OUT ac.pist 0.74 0.87 0.77 0.79
OUTacconn 0.77 0.86 0.78 0.80
ouT 0.61 0.81 0.71 0.70
Outbreak
GAM OUT ac.pist 0.65 0.82 0.75 0.76
OUTacconn 0.61 0.82 0.71 0.71
Weighted NA 0.94 0.77 -
ENSEMBLE
Stacked 0.87 0.97 0.80 -
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4.4.2 Outbreak Model

The outbreak potential of a reef was best explained by the connectivity based auto-covariate
model according to both model fit (76.6% deviance explained) and validation with independent
data (78.0% accuracy) for BRT. Importantly, the connectivity derived auto-covariate was by
far the most influential predictor (AC_CONN = 22.7% variable importance) exhibiting a strong
positive effect outbreak potential (Figure 4.2c). Cyclonic wave exposure (8.0% - Negative
relationship), minimum sea surface temperature (8.0% - negative relationship), secondary
(7.4% - threshold positive relationship) and primary flood plume exposure (6.8% - positive

relationship) were also relatively useful predictors of COTS outbreak potential.

GAM models performed best when including the distance based auto-covariate (64.9%
deviance explained; 75.6% independent validation accuracy). The distance based auto-
covariate (AC_DIST = included in 98.7% of top performing models), bed-sheer stress (wave
exposure proxy) (STRESS = 95.9%), exposure to cyclonic waves (CYC_EXP = 94.7%) were
the most reliable variables, with exposure to secondary flood plumes (WQ_2 = 53.5%) and
estimated maximum coral cover (HC_MAX = 30.9%) also included in a large portion of top
performing models (Figure 4.3c). Although models containing the distance based auto
covariate outperformed the larval connectivity auto-covariate, the in-strength of a reef was
included in a large portion of top performing models (IN_STR =51.3%). Similarly, marginal
effects plots for the top performing model reveal a strong positive relationship for the distance
auto-covariate, however the sharper increase suggests that reaching outbreak densities is easier
than establishing a truly pervasive population. Outbreaks appear to occur most frequently at
reefs that have experienced lower levels of cyclone exposure, however there is another increase
in outbreak probability at the maximum levels of exposure. COTS outbreaks also occur at low
to moderate exposure to primary flood plumes. Interestingly, there is a sharp increase in the

probability of outbreak at relatively low levels of in-strength (i.e. potential larval supply) for
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reefs closed to fishing, whereas reefs open to fishing have high chances of having COTS

outbreaks regardless of their larval supply.

4.4.3 Prevalence Model

In contrast to COTS presence, the prevalence of COTS populations on a reef was best explained
by the connectivity-based auto-covariate model according to both model fit (89.8 % deviance
explained) and 10 fold cross validation (14.9 % mean prediction error) for BRT models (Table
4.2). Predictions for COTS prevalence were dominated by water quality variables (CHL_SD
=12.6%; WQ_2 =8.2%; CHL_AV = 8.0%, WQ_1 = 7.4%) as well as the connectivity auto-
covariate (AC_CONN = 7.4%) and exposure to bleaching events (BL_EXP = 6.5%).
Inspection of the partial dependency plots indicates generally positive relationships for each of
the nutrient related variables (Figure 4.2d). Again, benthic community type (BENT_CL =
0.55%), latitudinal sector (SECTOR = 0.21%) and zoning (ZONE = 0.42%) were poor

predictors of COTS prevalence across a reef.

For GAM models using the distance based auto-covariate yielded the best results for model fit
(66.7% deviance explained) and validation against independent data (86.6% accuracy). The
distance based auto-covariate (AC_DIST included in 98.4% of top performing models), bed
sheer stress (wave exposure proxy) (STRESS = 98.0%), exposure to cyclonic waves
(CYC_EXP = 49.6%) were the most reliable variables, followed by zoning (ZONE = 26.5%),
exposure to secondary (WQ_2 = 25.9%) and primary (WQ_2 = 11.8%) flood plumes. As for
outbreaks, although models containing the distance based auto covariate outperformed the
larval connectivity auto-covariate, 88.1% of top-performing models included the in-strength
(IN_STR) of a reef. Marginal effects plots of the top performing GAM model reveal strong
positive effects of both the distance-based auto-covariate and the in-strength of a reef with a
negative effect of bed sheer stress and a parabolic relationship with cyclone exposure, with

prevalence increasing at higher levels of exposure (Figure 4.3d).
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influential variables (Right hand side) for best fit boosted regression tree models of COTS Presence (b), Outbreak
(c) and Prevalence (d). Best fit models (Table 4.2) are presented for each COTS response variable.
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side) for best fit Generalized Additive models of COTS Presence (b), Outbreak (c), and Prevalence (d) . Variables
with no coloration were not used in any of the best fit models as per the FSSgam procedure. For models including
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fishing. NB The partial dependencies shows the single best fit model. The single best fit model does not
necessarily include the all the top predictors.

4.4.4 Ensemble Predictions

Ensemble predictions were made for each of the three response variables by combining
predictions from all six models (three GAM, three BRT) into both a validation-weighted and a
stacked ensemble (Figure 4.4). While dramatically improving model fit and accuracy with the
training data, the stacked ensemble method did not improve the accuracy of predictions made
by the either best fit model alone or the weighted ensemble approach for the validation dataset
(Table 4.2). For binary outcomes validated classification was more prone to Type Il errors
(Presence: false negative rate = 0.31; Outbreak: false negative rate = 0.30) than Type | errors

(Presence: false positive rate = 0.21; Outbreak: false positive rate = 0.15).

Whilst the upper limits of each of the response variables are generally located in the Swains
reefs of the Southern GBR and mid-shelf reef of the Central GBR, distinct spatial patterns are
observable for each response. Interestingly, relatively high probabilities (>0.5) of COTS
presence were predicted offshore of the Whitsundays and Mackay Regions, where little
empirical data exists (Figure 4.4a). While COTS may be present along inshore reefs (Figure
4.4), our results highlight that these regions are not suitable for COTS outbreaks or pervasive

populations. Interestingly, although a number of reefs in the central northern region of the GBR
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are predicted to be suitable for COTS outbreaks, few in this region are predicted to have high

levels of prevalence.
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Figure 4.4 Stacked ensemble predictions and cross-validation for COTS presence (a), outbreaks (b) and prevalence
(c) across the management areas of the GBRMP (FN=Far Northern, N= Northern, C=Central, S=Southern.
Validation statistics are presented as a confusion matrix for presence and outbreaks (0.5 classification threshold)

and as linear regression for prevalence.

Ensemble predictions estimate that at the GBR scale, 32% of reefs are suitable for COTS

(>50% probability), whilst 12% are susceptible to outbreaks of COTS (>0.22 COTS/Manta

Tow) and only 7% are likely to exhibit widespread pervasive population (> 50% tows

observing a COTS). There is significant variation among cross-shelf locations and latitudinal
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sectors (Figure 4.4), with COTS outbreaks and pervasive populations primarily on mid-shelf

reefs in the Southern and Central Northern regions of the GBR (Figure 4.5).
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Figure 4.5 Percentage and number of reefs predicted to have COTS presence (b), outbreaks (b) or pervasive COTS
populations (c), separated by management sector and cross-shelf location. Predictions use a 0.5 classification
threshold to classify whether a reef is subject to COTS presence, outbreaks and pervasive populations
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4.5 Discussion

COTS presence, outbreaks and prevalence were explained, to varying degrees, by larval
connectivity, water quality, and wave exposure (cyclonic and bed shear stress). For both
modelling frameworks, predicting COTS presence on a reef was best achieved by models that
did not include the spatial or connectivity based auto-covariate. Importantly however, for
COTS to establish secondary outbreaks and/or pervasive populations, our results indicate that
there needs to be a substantial larval input from connected reefs, as exemplified by the
importance of the connectivity based auto-covariate variables for these responses.
Respectively, the connectivity and distance-based auto-covariates act as modelled estimates
and proxy indicators of COTS larval supply to a reef, and indeed both have been shown to be
equally useful predictors in predicting the probability of an outbreak at a reef (Hock et al.
2014). Together these results indicate that reliable connectivity pathways with COTS source
reefs may not necessarily be a prerequisite for COTS presence, as intermittent larval supply
may be sufficient to establish low-density COTS populations. However, the establishment of
pervasive and/or outbreaking COTS populations are seemingly limited by larval supply from
COTS source reefs, with continued propagule pressure promoting COTS outbreak populations
above ecologically sustainable levels (Black and Moran 1991, Hock et al. 2014, Pratchett et al.
2017a). These findings add empirical support for larval supply hypotheses and use of

connectivity models to predict patterns of COTS secondary outbreaks.

Proxy indicators of water quality (relative flood plume exposure frequency) and larval nutrient
supply (annual maximum chlorophyll concentration) had strong positive effects on COTS
presence, prevalence and COTS outbreaks. These findings are consistent with larval nutrient
supply hypotheses and numerous recent studies highlighting increased larval survival at
elevated food concentrations (Uthicke et al. 2015b, Wolfe et al. 2015, 2017, Pratchett et al.
2017b) and correlations between outbreak cycles and chlorophyll-a peaks (Wooldridge and
Brodie 2015, Brodie et al. 2017). Particularly important were the results from the BRT models

that indicate sharp threshold-type responses at low levels of chlorophyll dominated secondary
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plume exposure for all three COTS response variables and a spike in COTS prevalence at ~0.25
and 0.6pg chl-a.Lt (Figure 2c). These results provide some support to the contentious threshold
responses to chlorophyll concentrations identified by Fabricius et al (2010), which occur
between 0.25 and 1pg chla-a.L . Influential positive relationships were also observed for mean
and standard deviation of chlorophyll concentration, indicating that both baseline nutrient
concentrations (Fabricius et al. 2010, Wolfe et al. 2015, Pratchett et al. 2017b) and exposure to
nutrient pulses are indeed important predictors of COTS outbreak dynamics (Wooldridge and
Brodie 2015, Brodie et al. 2017). Low levels of exposure to the more turbid primary plumes
was an important predictor, particularly for COTS outbreaks and prevalence, yet high levels of
exposure appear to be deleterious to COTS populations, presumably due to decreased salinity.
Reduced salinity (30% of ambient conditions) has been shown to increase larval survival
(Lucas 1973), yet Caballes et al. (Caballes et al. 2017b) observed a sharp decline in fertilization,
gastrulation and cleavage rates below 30%, indicating the importance of moderate exposure to
plume conditions. These relationships are in accordance with Pratchett et al’s (2014) assertion
that the spread of outbreaks is conditional on years of high larval survivorship, which is
facilitated by major flood events (i.e. infrequent exposure to primary and secondary plumes)
that enhance food availability, and promote larval survival. Indeed, our results suggest that
regulating water quality on the GBR remains one of the most important management actions

for early intervention to reduce or mitigate damage caused by COTS outbreaks.

Most importantly, our results highlight the importance of moving beyond simple (single or dual
variable) approaches to modelling COTS distribution patterns. Whilst there is merit in creating
easy-to-interpret and parsimonious models, there is an inherent trade-off with model accuracy.
For COTS, prediction accuracy is key to determining the allocation of limited resources for
COTS control. For example our full model predictions (~95% Accuracy) were far more
effective than using solely the potential supply of COTS larvae to a reef (in-strength) (61.1%),
exposure to flood plumes (68.1%) or combining both (68.1%). Previous research has used
solely simulated connectivity networks to estimate the most important reefs for spreading

waves of COTS outbreaks (Hock et al. 2014), planning optimized control procedures (Hock et
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al. 2016) and identifying important coral source reefs which could help replenish depleted
broodstock (Hock et al. 2017). These estimates of COTS and coral larval dispersal are also
used by the GBRMPA to prioritise reefs for COTS control. Our findings do not undermine the
utility of these connectivity estimates, but combining them with ecological and environmental
parameters can improve predictions of COTS distribution patterns. Moreover, improvements
to the underlying assumptions of the connectivity models, particularly the detail of maps
(Roelfsema et al. 2018) used to determine reef habitats, and calibration with finer scale
hydrodynamic models (Thomas et al. 2014, Bode et al. 2018, Mumby et al. 2018) will further
improve modelling estimates and decision-making regarding the allocation of COTS control

resources.

One of the most persistent hypotheses to explain the differential occurrence of COTS outbreaks
at individual reefs is the ‘predator removal hypothesis’. Most studies, however, do not focus
on specifically on the abundance of the COTS high profile natural predator (the giant triton,
Charonia tritonis) due to its scarcity on the GBR, and instead use fishing pressure (i.e. zoning
regulation) as a proxy indicator for predator abundance (Sweatman 2008, Vanhatalo et al.
2017). Our study found that zoning regulation was the lowest ranked predictor within the BRT
framework, however a few interesting patterns were identified in the GAM models (Figure
4.3b,c). Most significantly was the apparent interaction between potential larval supply
(IN_STR) and zoning. The best-fit GAM model indicated low outbreak probability at low
levels of larval supply for reefs closed to fishing, but outbreak probabilities remained high at
all levels of potential larval supply for reefs open to fishing (Figure 4.3c). This suggests that
reefs with lower larval supply may still be able to reach outbreak densities if predation pressure
has been reduced. Therefore, our results provide some tentative support for predator-removal
hypotheses, however it must be noted that when compared to the importance of other predictors
(namely connectivity and water quality) the effect of zoning was small. Furthermore, it must
be kept in mind that our analysis, like most other studies, does not account for the effect of the
giant triton, as even at pre-harvest densities it is uncertain that they would have been effective

at controlling COTS outbreaks (Pearson and Endean 1969, Pratchett et al. 2014). Contemporary
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research is aimed at rearing giant tritons and synthesising their predator cues (Hall et al. 2017a,
2017h, Bose et al. 2017) in an attempt to control COTS populations and thus future scenario

modelling should aim to identify the potential utility of such approaches.

Understanding and managing for the cumulative impact of disturbance on the GBR, and coral
reefs globally, has been a key research objective in recent years (Burke et al. 2011, Hughes et
al. 2017a, Mellin et al. 2019a) and our study highlights complex links between disturbance
regimes (namely thermal stress and tropical cyclones) and COTS outbreaks. Interestingly,
cyclone exposure was an influential predictor for all three responses across both modelling
frameworks (Figures 2,3). GAM models revealed interesting marginal effects with a reduction
of outbreak, prevalence and presence potential as exposure increased, before an increase at the
highest levels of exposure. This can be partially explained by COTS feeding preference for fast
growing corals (e.g. Acroporids, Pocilloporids) (Pratchett 2007) which are both the most
acutely affected by and first to recolonise from severe disturbance events (Mellin et al. 2019b).
In this way, recent exposure to damaging cyclonic waves may eliminate COTS preferred food
source, yet after some years of recovery, these reefs may become ideal locations for COTS
outbreaks. There was a clearer negative trend for wave exposure (i.e. non-cyclonic), indicating
COTS preference for more protected mid-shelf reefs, where they are less likely to be disrupted

from feeding via oceanic wave action.

In our study, the impact of bleaching and thermal stress was less clear cut, likely because
enhanced COTS larval survival in higher temperatures (Uthicke et al. 2015b) competes with
the reduction of coral food supply for adults following severe thermal stress events. This means
that temperature and thermal stress, whilst being important to COTS life history and prey
availability, become difficult to interpret with regards to their effect upon COTS spatial
distribution. Exemplifying this, although we found Degree Heating Week exposure and
minimum sea surface temperature to be useful predictors of COTS presence (Figure 4.2,3),
these more likely represent the latitudinal gradient that exists due to numerous severe outbreaks
observed in the southern tip of the GBR and none observed in the warmer, most northern

sections. Additionally, there is limited data in the northern region where the greatest impact of
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the 2016-2017 mass bleaching events was recorded, making it difficult to draw solid
conclusions about the effect of thermal stress and bleaching on COTS. It can be postulated
however, that the impact of severe bleaching episodes may be similar to that of tropical
cyclones, during which COTS preferred food sources (Acropora sp.) experience the most
severe mortality (Hughes et al. 2018a), but are also the first to recolonise (Mellin et al. 2019b)
given sufficient broodstock remains. Although reefs severely affected by bleaching may not be
prone to COTS outbreaks in the short term, it is assumed that if they recover, they will once
again become vulnerable to COTS outbreaks. It is important to note that as the incidence of
severe bleaching events increases (Hughes et al. 2017b, King et al. 2017), coral cover may
decline to a point where no self-sustaining COTS populations can be supported, altering the

system entirely.

A few important caveats need to be considered when interpreting our results. Primarily, it is
important to note that sampling density plays an influential role in the predictability of COTS
distribution patterns. Given that the major predictors of COTS presence, prevalence and
outbreaks are were the auto-covariates which relate either the distance or connectivity to reefs
with outbreaks, scarce empirical data result in uncertain predictions. For example, high
probabilities (>0.5) of COTS presence (Figure 3a) were predicted offshore of the Whitsundays
and Mackay (Central-Southern) yet outbreaks or pervasive populations were not predicted in
this region. Due to the lack of empirical data in this region, it is unclear if these predictions
indicate connectivity between high density outbreak reefs in the Central GBR to the Southern
region. It is more likely that our model underestimates the probability of outbreaks and
pervasive populations in this region due to the high relative influence of the auto-covariates for
these responses. However, as the COTS control program has expanded, there will be
unprecedented levels of observational data for the GBR, particularly in the traditionally data
poor regions of the far North and Central regions (Figure 4.1). We suggest that as the data
from the expanded COTS control program continues to be collected, filling in spatial and

temporal gaps, such modelling exercises should be updated to include all available data, or
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potentially automated as part of the GBRMPA’s planned Reef Integrated Monitoring and

Reporting program to keep predictions up to date and continually improving.

Our study is the first to compare the relative influence of these variables alongside a host of
other potentially influential factors (i.e. salinity, temperature, wave exposure) on the presence
of COTS individuals, the probability of COTS populations reaching outbreak densities and the
prevalence of these populations. This highlights the importance of incorporating all available
data (namely connectivity and environmental variables) for both the assessment of
contemporary theory and also for embedding data into the decision making process. In a time
where extensive observational and modelled environmental estimates exist for the entire extent
of the GBR and reefs worldwide, it is imperative to build our predictions from all available
data and using modelling frameworks that can accommodate them. Given that 30 years of
research have not provided a satisfactory simple model to explain spatial patterns of COTS
outbreaks (Babcock et al. 2016a, Pratchett et al. 2017a), it is vital to include as much relevant
information as possible in our estimates. This study successfully integrates data from multiple
disparate sources into a cohesive framework, comparing the relative influence of competing
hypotheses for COTS population dynamics whilst also allowing for the nature of individual
relationships to be interrogated. Continuing to build data-driven platforms for decision making
and embracing emerging technologies for detection will prove crucial to the effective control

of COTS on the GBR and globally.
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5 Spatial resilience of the Great Barrier Reef

under cumulative disturbance impacts

5.1 Abstract

In the face of increasing cumulative effects from human and natural disturbances, sustaining
coral reefs will require a deeper understanding of the drivers of coral resilience in space and
time. Here we develop a high-resolution, spatially explicit model of coral dynamics on
Australia’s Great Barrier Reef (GBR). Our model accounts for biological, ecological and
environmental processes, as well as spatial variation in water quality and the cumulative effects
of coral diseases, bleaching, outbreaks of crown-of-thorns starfish (Acanthaster cf. solaris),
and tropical cyclones. Our projections reconstruct coral cover trajectories between 1996 and
2017 over a total reef area of 14,780 km?, predicting a mean annual coral loss of -0.67% y*
mostly due to the impact of cyclones, followed by starfish outbreaks and coral bleaching. Coral
growth rate was the highest for outer shelf coral communities characterized by digitate and
tabulate Acropora spp. and exposed to low seasonal variations in salinity and sea surface
temperature, and the lowest for inner-shelf communities exposed to reduced water quality. We
show that coral resilience (defined as the net effect of resistance and recovery following
disturbance) was negatively related to the frequency of river plume conditions, and to reef
accessibility to a lesser extent. Surprisingly, reef resilience was substantially lower within no-
take marine protected areas, however this difference was mostly driven by the effect of water
quality. Our model provides a new validated, spatially explicit platform for identifying the reefs
that face the greatest risk of biodiversity loss, and those that have the highest chances to persist

under increasing disturbance regimes.
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5.2 Introduction

Natural ecosystems are facing unprecedented and accelerating degradation (Ceballos et al.
2015), as exemplified by increasing rates of losses of coral reef biodiversity in the 21st century
due to anthropogenic and natural stresses and their interactions (Knowlton 2001, Hughes et al.
2017Db). Coral reefs are among the most species rich ecosystems globally (Caley et al. 2014),
hosting hundreds of thousands of species (Fisher et al. 2015) and providing important
ecosystem services (Costanza et al. 2014). Consequently, the potential impacts of

anthropogenic stresses are especially high for coral reef ecosystems.

The resilience of an ecosystem can be defined as its capacity to absorb the impact of a
disturbance and return to its initial state (Hughes et al. 2003, 2010, Folke et al. 2004), thereby
conferring upon it low vulnerability (Mumby et al. 2014). In this framework, temporal trends
in coral cover is the most common indicator of coral reef resilience (Mumby and Anthony
2015), reflecting both its resistance (capacity to withstand disturbance) and recovery (the rate
at which coral cover returns to its pre-disturbance level). Threats that undermine coral reef
resilience can be broadly grouped into chronic stressors (such as ocean warming, pollution,
sedimentation, and over-harvesting) and acute stressors or disturbances (such as coral predation
by crown-of-thorns starfish (COTS) Acanthaster cf. solaris, coral bleaching, coral disease, and
tropical cyclones) that interact in complex ways (Vercelloni et al. 2017). For example, nutrient
enhancement from terrestrial runoff can increase coral susceptibility to disease and bleaching
(Vega Thurber et al. 2014), and potentially initiate outbreaks of COTS (Fabricius et al. 2010).
Herein, ‘cumulative disturbance’ is used to reflect both the additive and synergistic effects of
these acute and chronic stressors. Previous studies have begun to unravel the factors that make
a reef more resilient to cumulative disturbance, including herbivory (Hughes et al. 2007b),
connectivity (Hughes et al. 2005), and protection from fishing (Mellin et al. 2016a). However,
the small percentage of locations where there is regular and detailed data collection represents
a bottleneck for understanding resilience at scales relevant to regional conservation and

management. Spatial resilience (sensu Cumming et al. (2017)), a subset of the resilience theory,
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focuses on processes influencing a system’s ability to maintain its integrity and functions that
operate across multiple locations and spatial scales, from local (e.g. environmental conditions,
habitat characteristics) to regional or global (e.g., management regimes or the impact of
regional disturbances exacerbated by global change). Yet there is currently no framework
available for predicting which reefs are the most resilient based on spatial variation in
underlying environmental, biological, and ecological processes at multiple spatiotemporal
scales. Consequently, management plans are routinely designed and implemented with little
capacity to quantify their effectiveness in supporting reef resilience, and to improve such plans

adaptively.

Australia’s Great Barrier Reef (GBR) offers a unique opportunity to disentangle the effects of
acute disturbances from the impacts of fishing, which has remained low and well regulated
compared to most reefs worldwide. Previous statistical assessments of historical trends for the
GBR found a 50% decline in coral cover over the last three decades, mostly due to the effect
of cyclones and COTS outbreaks (De’ath et al. 2012). However, those results were based on a
subset of 214 reefs, representing 7% of the total reef area of the GBR with few inner-shelf
reefs. Furthermore, this assessment did not account for coral recovery following disturbance —
a critical requirement for accurately reconstructing coral trajectories and identifying key drivers
of reef resilience. Recent advances have helped quantify the effect of cumulative stress on coral
recovery potential (Ortiz et al. 2018); however they were based on even fewer samples
collected prior to 2010, and consequently, do not include the latest and most severe bleaching
events (Hughes et al. 2017b) and recent major cyclone impacts (Puotinen et al. 2016). Only
few studies thus far have attempted to identify the environmental drivers of coral growth rate
(e.g. Madin et al. 2012, Pratchett et al. 2015, MacNeil et al. 2019) and none has derived high-

resolution predictions of coral cover over the entire time series of available data.

Here we develop a high-resolution dynamic model of coral cover for reefs of the GBR that
directly incorporates the cumulative effects of disturbances such as coral bleaching, disease,
COTS outbreaks, and tropical cyclones. By accounting for key ecological processes (coral

growth and recovery potential), environmental drivers of coral cover, and observed disturbance
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history, we reconstruct coral cover trajectories for >1,500 reefs at a 0.01° (~1 km) resolution
over the last 22 years (1996-2017). Importantly, for the first time our model includes a spatially
explicit index of water quality for the frequency of river plume-like conditions (Petus et al.
2014), which can negatively affect corals (Fabricius 2005, Wolff et al. 2018). We
independently validate our model predictions and provide quantitative estimates of model
uncertainty — a critical requirement for informing decision-making and risk analyses (Mumby
et al. 2011). We use this model to map the resilience of corals to anthropogenic and natural

stressors across the GBR and show that resilience was negatively related to plume conditions.

5.3 Methods

5.3.1 Experimental design

Model development followed two main steps (Figure 5.1): (i) estimate the Gompertz-based
model parameters from long-term surveys and predict them in every 0.01° grid cell across the
Great Barrier Reef (GBR), and (ii) couple these spatially-explicit estimates of coral cover with
spatial layers of disturbance history and water quality to reconstruct coral cover trajectories

between 1996 and 2017 across the GBR.

Step (i) involved predicting benthic communities (i.e. ecological communities composed of
hard corals and other benthic organisms or abiotic substrate) based on environmental and
spatial correlates using multivariate regression trees. This was done using surveys of average
benthic cover for a subset of reefs on the GBR. We then developed a Gompertz-based Bayesian
hierarchical model that estimated intrinsic coral growth rate (r;), as well as the effect of various
disturbances on coral cover, for individual transects nested within survey reefs and benthic
communities. From these estimates, we predicted intrinsic coral growth rate across the GBR
using boosted regression trees (BRT) based on environmental and spatial predictors. We also
used our BRT model to predict the coral cover observed in 1996 (HC;,;) and maximum

(HC,,q5) coral cover in every 0.01° grid cell based on observations at surveyed reefs.
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Figure 5.1 Flow chart of the successive steps involved in model development. (1) Benthic communities were
predicted across the Great Barrier Reef based on average benthic covers recorded at the survey reefs and
environmental covariates using multivariate regression trees (MRT). Initial (HCini), maximal coral cover
(HCmax) and coral growth rate (rs) determined from the Gompertz-based model were predicted using boosted
regression trees (BRT). In both cases, environmental predictors from Matthews et al (2019) (see
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Table S 9.2), in addition to past disturbance history for HCini and HCmax. Survey reefs and sample size used in
each step are described in Table S 9.9. (2) The resulting layers were combined with disturbance history recorded
for outbreaks of the crown-of-thorns starfish, coral bleaching and tropical cyclones, as well as an index of water
quality (i.e. frequency of river plume-like conditions) in the Gompertz-based model of coral growth predicting
hard coral cover between 1996-2017, further aggregated over years (coral cover mean annual change). The latter
was compared to a cumulative disturbance index to define reef resilience based on a principal component analysis
(PCA).

Step (ii) involved predicting coral cover in each year of the time series by combining BRT
predictions of HC;,;, HC,,,, and r; with the impact (severity x effect size) of the various
disturbance agents including coral bleaching, disease, COTS outbreaks, tropical cyclones, and
unknown disturbance. This allowed us to predict coral cover in every grid cell and in every
year between 1996 and 2017. We validated model predictions using an out-of-sample,
independent set of survey reefs, mapped model uncertainty and identified its main sources
based on a sensitivity analysis. Last, we compared predictions of mean annual change in coral
cover with an index of cumulative disturbance to quantify reef resilience, defined as the net

effect of resistance and recovery following disturbance.

5.3.1.1 Survey reefs

Australia’s Great Barrier Reef (GBR) consists of more than 3,000 individual reefs extending
over 2,300 km between 9 and 24°S latitude. Reef communities of the GBR have been
monitored yearly between 1993 and 2005, and then biennially thereafter, by the AIMS LTMP
(Sweatman et al. 2008). As part of the AIMS LTMP, a total of 46 reefs were monitored for
transect-based benthic cover between 1996 and 2017 in six latitudinal sectors (and management
areas) (Cooktown-Lizard Island (Far Northern/Northern), Cairns (Northern), Townsville
(Central), Whitsunday (Central/Southern, Swain and Capricorn-Bunker (Southern), see Figure
2.1) spanning 150,000 km? of the GBR. In each sector (with the exception of the Swain and
Capricorn-Bunker sectors) at least two reefs were sampled in each of three shelf positions (i.e.,
inner, mid- and outer). An additional 45 reefs were surveyed using the same methodology as
part of the Representative Areas Program (RAP)(Sweatman et al. 2008), and 17 reefs as part

of the Marine Monitoring Program (MMP) (Thompson et al. 2017). Finally, reef-level
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information on hard coral cover was collected by manta-tow for 97 reefs surveyed in 1996 and

thereafter (44 of those being also surveyed for transect-based benthic cover).

We used information from the 46 AIMS LTMP reefs in every step of model development, in
addition to those from other monitoring programs where possible, depending on the number of
survey years and whether associated disturbance data were available (Figure 2.2). We validated
coral cover trajectories based on 10 manta-tow reefs that were not used for model calibration,

and for which disturbance history as well as >10 years of data post-1996 were available.

5.3.1.2 Survey methods and data collection

For AIMS LTMP and RAP, transect-based photograph data on benthic assemblages (broad
categories including subcategories: abiotic, hard coral, soft coral, coralline algae, macroalgae,
turf algae, sponge, other, indeterminate) were collected at three sites separated by > 50 m within
a single habitat on the reef slope (the first stretch of continuous reef on the northeast flank of
the reef, excluding vertical drop-offs) (Jonker et al. 2008). Within each site, five permanently
marked 50-m long transects (photographs taken at 1m intervals) were deployed parallel to the
reef crest, each separated by 10 m along the 6-9 m depth contour. Percent cover of benthic
categories were estimated for each transect using point sampling of a randomly selected
sequence of 40 (out of 50) images (Jonker et al. 2008). The benthic organisms under five points
arranged in a quincunx pattern in each image were identified to the finest taxonomic resolution
possible (n = 200 points per transect) and the data were converted to percent cover. For MMP,
the smaller size of inshore reefs dictated a reduced design that included two sites at each reef
within which five 20-m long transects with n = 160 points per transect were used for estimation
of percent cover. In this study, we considered the combined cover of all hard corals, hereafter

referred to as hard coral cover (HC; %).

Manta-tow surveys were conducted around the perimeter of entire reefs to estimate hard coral
cover and densities of COTS (Miller and Miller 1999). Manta-tow surveys involved a
snorkeler with a ‘manta board’ (hydrofoil) being towed slowly behind a small boat around the

entire perimeter of each survey reef close to the reef crest so that the observer surveyed a 10-
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m-wide swathe of the shallow reef slope (Bass and Miller 1996). The boat stopped every 2 min
to allow the observer to record the mean coral cover into one of 10 categories (Bass and Miller
1996), giving one cover estimate per tow (~200 m of reef edge) with the number of tows per

reef varying from 3 to 325 depending on reef size.

5.3.1.3 Environmental and spatial covariates

A set of 31 environmental variables were collated across the GBR at a 0.01° resolution (12,670
grid cells, spanning a total area of 14,778 km2) (Matthews et al. 2019). From these variables,
we selected those with a reported effect on coral ecophysiology as our candidate model
predictors (Table S 9.8). These environmental variables include long term annual averages and
seasonal variation of temperature, salinity, chlorophyll a and nutrient concentrations (nitrate,
phosphorus), oxygen levels and light availability, as well as sediment covers and bathymetry,
which are all important predictors of coral reef and seabed biodiversity on the GBR (Mellin et
al. 2010a, Sutcliffe et al. 2014) (Table S 9.8). In addition, spatial variables including the
shortest distances to the coast and to the barrier reef were calculated for each grid cell of the
GBR using great-circle distance (i.e., the shortest distance between two points on the surface
of the Earth). Within this 0.01° resolution grid, reefs (polygons) were identified using the
marine bioregion classification from the Great Barrier Marine Park Authority (GBRMPA),
excluding any non-reef locations (e.g. cays, islands, mangroves) and restricting coverage to
depths <30m. The grid was truncated by removing all cells with a latitude of <12°S due to data

scarcity in northernmost locations.

5.3.1.4 Water quality

We used the average frequency of exposure to river plume-like conditions (PFc) as a proxy for
exposure to dissolved nutrients and fine sediments delivered during the wet season (MacNeil
et al. 2019). Based on satellite observations during the 2005-2013 wet seasons, the frequency
(i.e. number of weeks per year) of exposure to primary, secondary and tertiary river plumes
were estimated at a 1-km resolution (Petus et al. 2014). Primary water consists of the turbid,

sediment dominated parts of the plume, secondary water consists of the chlorophyll-dominated
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parts of the plume, and tertiary water consists of the furthest extent of the relatively clearer
parts of the plume. Here we pooled these three water types to estimate the frequency of

inundation of any plume water, expressed as a proportion of total wet season weeks.

5.3.1.5 Disturbance data

The disturbance data included two components (i) point-based records of coral damage
collected concurrently with the benthic surveys (e.g., Mellin et al. 2016a) and (ii) spatial layers
of disturbance history and associated severity across the GBR available in Matthews et al.

(2019).

(1) In point-based records of coral damage, disturbances were classified into five categories
(i.e. coral bleaching, COTS outbreaks, coral disease, cyclones or unknown) following Osborne
et al. (2011) based on visual assessment by experienced divers during reef-scale manta tow and
intensive SCUBA surveys. A disturbance was recorded when the total coral cover decreased
by more than 5% from its pre-disturbance value between two consecutive periods. Each
disturbance was identified by distinctive and identifiable effects on corals, such as the presence
of COTS individuals or feeding scars, or dislodged and broken coral indicative of cyclone
damage (Osborne et al. 2011). An additional category labelled ‘unknown’ was used to classify
unidentified disturbances. This dataset thus resulted in a series of five binary variables coding
the presence (1) or absence (0) of each type of disturbance in each year and at each reef where

transect-based surveys of benthic assemblages were conducted.

(i1) Spatial layers of disturbance severity during the study period were available at a 0.01°
resolution for coral bleaching, COTS outbreaks and cyclones (Matthews et al. 2019). In this
dataset, per cent coral cover bleached was interpolated using inverse distance weighting
(maximum distance = 1°; minimum observations = 3) from extensive aerial surveys at 641
reefs for the 1998, 2002 and 2016 mass bleaching events on the GBR (Berkelmans et al. 2004,
Hughes et al. 2017b) Interpolated maps of COTS densities were also generated by inverse
distance weighting (maximum distance = 1°; minimum observations = 3) from the manta tow

data collected by the Australian Institute of Marine Science in every year from 1996 to 2017
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(Miller and Muller 1999). The potential for cyclone damage was estimated based on 4-km
resolution reconstructed sea state as per Puotinen et al. (2016). This model predicts the
incidence of seas rough enough to severely damage corals (top one-third of wave heights >4m)
caused by cyclones for every cyclone between 1996-2016. We then used these spatial layers to
associate the binary occurrence of each disturbance resulting in coral cover loss (as per [i])
with its severity. Note that, at the time of writing, aerial surveys following the 2017 bleaching
event as well as the impact of the 2017 tropical cyclone Debbie (based on the methodology
developed by Puotinen et al. (2016)]) were unavailable. Due to the unavailability of spatially
continuous information on the occurrence and severity of coral disease and unidentified
disturbance (which both had a low influence on coral cover compared to cyclones or COTS
outbreaks), we randomly generated spatial layers for these disturbances in every year and every
model simulation (N = 1,000) matching their observed frequency as per the AIMS LTMP

historical records.

Disturbance impacts are typically patchy at sub-reef scales, because some sections of the reef
might not be exposed to cyclone-generated waves and/or be structurally vulnerable (Puotinen
et al. 2016), or because of local COTS aggregation patterns (Pratchett et al., 2014). The
consequence is a discrepancy between the expected effect of disturbance from our layers and
the actual coral loss recorded at each transect during AIMS LTMP surveys. To explicitly
account for such sub-reef scale effects, we resampled the disturbance data in every model
simulation (N = 1,000) to match the actual disturbance frequencies observed during field
surveys. In other words, we ‘turned off’ some disturbances assuming they would not result in
a noticeable coral loss at the reef scale, with the frequency of these false positives (6.4% for
coral bleaching; 6.9% for COTS outbreaks and 9.6% for tropical cyclones) being determined

from the AIMS LTMP disturbance history and field-based records of coral loss. We further
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assess model sensitivity to the adjusted disturbance data (among other sources of model

uncertainty; see Model uncertainty and sensitivity analysis).

5.3.2 Modelling

5.3.2.1 Predicting benthic communities across the GBR

We identified benthic communities using multivariate regression trees (De’ath 2002) (MRT),
which allowed us to model the relationship between spatial and environmental covariates, and
the relative cover of the different benthic groups and coral taxa. MRT forms clusters of sites
by repeated splitting of the data, with each split determined by habitat characteristics (De’ath
2002) and corresponding to a distinct species assemblage. Tree fit is defined by the relative
error (RE; total impurity of the final tree divided by the impurity of the original data). RE is an
over-optimistic estimate of tree accuracy, which is better estimated from the cross-validated
relative error (CVRE). We determined the best tree size (i.e. number of leaves or clusters
formed by the tree) as that which minimized CVRE, which varies from zero for a perfect
predictor to nearly one for a poor predictor (De’ath 2002). We then examined the splits and
quantified the variance that each of them explained, based on the entire dataset and for each
individual functional group. We used the resulting MRT to predict community membership for
every 0.01° grid cell on the GBR based on the spatial layers available for our covariates. MRT

were fit in the R package ‘mvpart’.

We subsequently characterized each cluster by its indicator taxa based on the Dufréne-
Legendre index, which is based on the relative abundance and frequency of each benthic
category within a given cluster (Dufréne and Legendre 1997). The index varies between 0, no
occurrences of a species within a cluster, to 100, if a species occurs at all sites within the cluster
and in no other cluster. The index is associated with the probability of resulting from a random

pattern, based on 250 reallocations of sites among clusters (Dufréne and Legendre 1997).

5.3.2.2 Gompertz model of coral growth

We reconstructed coral cover trajectories over the last 22 years (1996-2017) for every 0.01°

grid cell based on the parameters estimated from a Gompertz-based Bayesian hierarchical
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model of coral growth previously fitted to the AIMS LTMP reefs (MacNeil et al. 2019). This
growth model is an adaptation of the Gompertz-based model of benthic cover developed by
Fukaya et al. (2010) that quantifies the intrinsic growth rate (r;) and strength of density
dependence () for sessile species, expressed as coverage of a defined sampling area. In our
case, this was the percentage of visual points that contained hard coral within the AIMS LTMP
data per transect (HC;). Using a Binomial (BIN) observation model of proportion of hard coral
cover (p), we assumed a hierarchy where transect level observations (i) at time (t), were nested

within reef (r), nested within each benthic community (c):
HCcrt,i ~BIN(1OO: pc,r,t,i)
with mean model:

log (pc,r,t,i X 100)

=Tser T (1 - ac,r)log (HCc,r,t—l,i)

+ z p; Disturb; ;
i

+ Z,Bi_CA Disturb;, x CA, + Z,Bi_PFC Disturb;, X PF,,
i i

[Eq. 1]
and where
Acr~N(ac, Ogc)
Tser~N(Tsc + koCAy + k1 PFey, 0pc)
Q¢ Tscr Koo kq, Bi~N(0,100)
Oacr 0re~U(0,100)

Where 15 is the intrinsic growth rate, a is the strength of density dependence, g; is the effect

size of the i disturbance occurring in year t (Disturb;,; i.e. bleaching, COTS outbreak,
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disease, cyclone or unknown), CA is a binary indicating which reefs are located in a closed (i.e.
no-take) area, PF, is the water quality proxy for river plume-like conditions (Petus et al. 2014)
and Spp,. its effect size, and S; -4, and B; pr. are the effect size relating to interactions between
disturbances and CA and PF, respectively. Our model was thus built at a yearly resolution,
assuming that any reduction in coral cover measured during a survey (i.e. above the 5%
threshold) reflected the impact of a disturbance occurring between that survey and the previous
one. We did not include interactions among disturbances because only <1% of all grid cells
were affected by two disturbances within the same year, with insufficient instances of AIMS
LTMP reefs being exposed to co-occurring disturbances during the study period. Note that in

this formulation, each benthic community had their own global mean at the top of the hierarchy.

In the absence of disturbance, coral cover increases from its initial value (HC;,;, in 1996 in our
case) to its asymptote (HC,,,,, determined by the reef carrying capacity or amount of available

substrate in grid cell i) where

llm HCt = glm HCt—l = HCmax [Eq. 2]

t—oo

which, once combined with Eq. 1, gives

a=— [Eq. 3]

H Cmax

Because the strength of density dependence (a) depends on the intrinsic growth rate (ry)
(Fukaya et al. 2010), for which we needed separate predictions in each grid cell, we elected to
predict HC,,,, (rather than «) in each grid cell using the same modelling technique to avoid

circularity, and calculated a based on Eg. 3.

Those models were run in a Bayesian framework, using the PyMC3 package in Python
(Salvatier et al. 2016), with inferences made from 5,000 samples of the default No U-Turn
Sampler (NUTS) algorithm. Parallel chains were run, from starting values initialized
automatically by an Automatic Differentiation Variational Inference (ADVI) algorithm, to look

for convergence of posterior parameter estimates using the Gelman-Rubin convergence
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statistic (R-hat); posterior traces and predictive intervals were also examined for evidence of

convergence and model fit.

5.3.2.3 Predicting coral growth rate (ry), initial (HC;,;) and maximal (HC,,,,) cover
across the GBR

We predicted r,, HC;,,; and HC,,,,. in each 0.01° grid cell from observed values at the survey
reefs and as a function of spatial, environmental and disturbance-based correlates using boosted
regression trees (BRT). BRT is a machine learning algorithm that uses many simple decision
trees to iteratively boost the predictive performance of the final models (Elith et al. 2008).
Model settings include the learning rate (Ir) that controls the contribution of each tree to the
final model and tree complexity (tc) that determines the extent to which interactions were fitted.
The number of trees (nt) that achieved minimal predictive deviance (i.e., the loss in predictive
performance due to a suboptimal model) was determined using cross-validation (Elith et al.

2008) (function gbm.step with tc = 2, Ir = 0.001, bag fraction = 0.5).

We assumed a Gaussian error distribution in all three BRT, after a logit-transformation of HC,,,;
and HC,,,,to achieve normality (no transformation was required for ;). In addition to spatial
and environmental predictors, we used past disturbance history over a 10-year period based on
evidence that some disturbance impacts can have temporally-lagged and lasting effects on coral
communities over this timeframe (Mellin et al. 2016a). We thus included the mean cyclone
severity and the mean COTS density between 1985-1995 to predict the coral cover observed
in 1996 (HC;,,;); and the mean cyclone severity, COTS density during 1996-2016 in addition
to the per cent coral bleached in 1998, 2002 and 2016 to predict the maximum coral cover
observed between 1996-2017 (HC,,,, ). Because r; estimates already accounted for the
influence of past disturbance (filtered out by disturbance parameters in the Bayesian
hierarchical model), we only accounted for spatial and environmental variables in this BRT to

avoid circularity.

The relative contribution of the predictors to the final models of HC,,;, HC,,,.and r; was

determined based on the variable importance score (%). For each response variable, the mean
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prediction error was assessed using a 10-fold cross-validation (Davison and Hinkley 1997).
This bootstrap resampling procedure estimates a mean prediction error for 10 % of observations
that were randomly omitted from the calibration dataset; this procedure was iterated 1,000
times. We also verified that model residuals were not spatially autocorrelated using Moran’s |
and a Bonferroni correction (P > 0.05) (Diggle et al. 1998). Finally, we generated a set of 100
model predictions across the GBR and calculated mean estimates of HC;,,;, HC,,,,, and r, and
their standard deviation in each cell. BRT were fitin R 3.2.2 (R Development Core Team 2017)

using the ‘gbm’ package, along with the tutorial and functions provided in Elith et al. (2008).

5.3.2.4 Correction of systematic bias in manta-tow estimates

To improve model predictive power and spatial representation, we used data from the manta
tow surveys (in addition to the transect-based AIMS LTMP data) for calibrating BRT of HC,,,;
and HC,, 4, (Table S 9.9). However, due to a moderate yet systematic bias of manta-tow coral
cover estimates being lower than transect-based ones (largely resulting from non-coral habitats
such as sandy back-reef lagoons being included in the manta tow; Osborne et al., 2011), we
first had to derive a corrected manta-tow estimate of coral cover accounting for this bias. We
thus fitted a linear regression predicting transect-based coral cover (averaged to the reef level)
as a function of manta tow-based coral cover, using data from the 44 reefs that were sampled
both by manta-tow and along transects. We then used this regression to predict a corrected
estimate of observed coral cover for all reefs surveyed by manta-tow, which we could then
compare to transect-based coral cover estimates. For both datasets, we defined initial coral
cover at each reef (HC;,;) as the mean coral cover observed in 1996 across all transects, and
the maximum coral cover (HC,,4,) as the highest mean coral cover observed at that reef

between 1996 and 2017.

5.3.2.5 Model validation, uncertainty and sensitivity analysis

We validated predicted coral cover trajectories by comparing them with corrected manta-tow
estimates of coral cover for reefs that were not used for model calibration, and for which at

least 10 yearly samples were available from 1995 along with the associated disturbance history
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(N =10). Based on these 10 time series, we calculated the mean prediction error (PredErr, %)
and the coefficient of determination based on the regression of predictions against observations

(R2, %).

We identified areas where model predictions were interpolated (thus resulting in high
confidence in model predictions (Leathwick 2009, Yates et al. 2018) and those where
predictions were extrapolated (lower confidence). We used a common procedure to identify
the environmental envelope used for model calibration based on a principal component analysis
(PCA) (e.g., Broennimann et al. 2007, Medley 2010) with environmental and spatial predictors
at the survey reefs as input variables, and the 12,670 grid cells as individuals. Based on the
PCA individual factorial plan, we outlined the modelled environmental envelope as the convex
hull containing all survey reefs. Grid cells falling within this environmental envelope were
defined as interpolated locations; conversely, those outside this envelope were considered part

of the extrapolation areas.

To account for model uncertainty, we ran a total of 1,000 model simulations in which we
resampled every parameter from their predicted distribution. We used Latin hypercube
sampling (Norton 2015) (R package ‘lIhs’) to determine a total of 1000 combinations of
percentiles, evenly spread out in the new parameter space, which we used to draw a single
value forry, HC;,,;, HC,,,4, and the disturbance effect sizes (from their posterior distributions)
in each simulation. The resulting predictions of coral cover in every grid cell (rows), year
(columns) and model simulation were stored as 3D arrays and further aggregated across the
third dimension to derive coral cover statistics across model simulations (mean, median,
interquartile range and 95% confidence interval). We mapped model uncertainty as the
coefficient of variation (%) in predicted mean annual change in coral cover across all

simulations.

Finally, we ran a sensitivity analysis to identify, among all model parameters, the main sources
of model uncertainty and any possible interactions among them (Pearson et al. 2014). In this

analysis, we used the mean annual change in coral cover predicted in each simulation as the
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response variable, and the (resampled) parameter estimates used in each simulation as the
predictors of a boosted regression tree. This analysis allowed us to quantify the proportion of
model uncertainty that is attributable to variation in parameter estimates (i.e., percent deviance
explained by the BRT), the respective contribution of each model parameter (i.e., relative

importance of each predictor, %) and possible interactions among them (Norton 2015).

5.3.2.6 Mapping coral resilience

We mapped coral resilience (i.e. the net effect of resistance and recovery following
disturbance) based on the relationship between predicted mean annual decline in coral cover
and cumulative impacts of mean annual disturbance at each reef. To do this, we calculated the
cumulative disturbance index in each grid cell as the sum of all cyclones, bleaching and COTS
outbreak severities weighted by their respective effect sizes from the Bayesian HLM. We
defined categories of low/high decline, and low/high disturbance, based on the median of each

index.

We defined resilience as the second axis of a PCA based on predicted decline in coral cover
and cumulative disturbance for all reefs (PC2; 21% variation explained). Reefs with relatively
low decline following high disturbance (i.e., high resilience reefs) scored positively on PC2,
while reefs with high decline following low disturbance (i.e., low resilience reefs) scored
negatively. For this analysis, we excluded reefs located in extrapolated areas, for which we had

lower confidence in model predictions.

We investigated the relationship between coral resilience and potential anthropogenic
covariates that included our water quality index (PFc), an index of reef accessibility based on
potential travel time from nearest human settlement (Maire et al. 2016), and whether a reef was
designated as a no-take marine protected area based on the 2004 zoning plan by the Great
Barrier Reef Marine Park Authority. We fitted a generalized additive model (Hastie and
Tibshirani 1990) to model the relationship between coral resilience and PF¢, and that between
resilience and reef accessibility, using a Gaussian error distribution and a cubic spline

smoothing function (k=3). We tested whether coral resilience differed among no-take reefs and

Matthews — December 2019 103



Modelling tools to support the management of crown-of-thorns starfish (Acanthaster cf. solaris) on Australia’s
Great Barrier Reef

those open to fishing using a non-parametric Kruskal-Wallis test. All code was written in R
(except for the Gompertz model in Python; see corresponding section) and is provided in

Supplementary Information.

5.4 Results

5.4.1 Regional impacts of disturbance on the GBR

The impact of tropical cyclones, COTS outbreaks, and coral bleaching on coral cover varied
greatly in space and time across the GBR (Figure 5.2). Based on the 46 reefs regularly surveyed
by the AIMS LTMP, our Bayesian hierarchical model showed that tropical cyclones had the
strongest, most consistent negative effect on coral cover, followed by COTS outbreaks and
coral bleaching (Figure S 9.4). By combining these effect sizes with high-resolution maps of
annual disturbance severity, we were able to predict the impacts of each disturbance on coral
cover across the GBR from 1996 to 2017 (Figure 5.2a-c) and show regional differences in how

these disturbances likely impacted individual reefs.

Cyclone impact was greatest between Townsville and Mackay (Figure 5.2a), where tropical
cyclones Hamish (2009) and Dylan (2014) generated some of the longest-lasting destructive
waves (Figure 2.2). COTS outbreaks propagated in a southerly direction from reefs north of
Cairns (Figure 2.2), and formed a second localised concentration further south. The highest
COTS densities on average (and thus the largest COTS impact on coral cover) were recorded
off Townsville and on offshore reefs between Mackay and Rockhampton (Figure 5.2b). The
impact of coral bleaching, based on aerial surveys following the three mass coral bleaching
events (1998, 2002, and 2016), was greatest on the northern half of the GBR (Figure 5.2¢), a

pattern that was mostly driven by the latest and most severe bleaching event (Figure 2.2).
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Figure 5.2 Regional impact of major disturbances on the Great Barrier Reef and resulting trends in coral cover.
Average 1996-2017 impact of (A) tropical cyclones, (B) outbreaks of the crown-of-thorns starfish (COTS), and
(C) coral bleaching (note that only the three mass bleaching events were considered). (D) Mean predicted annual
rate of change in coral cover (% y-1) during the same period, with greyed out areas indicating lower confidence
in model predictions due to extrapolation. (E) Relative impact of each disturbance in each year. (F) Mean
predictions of coral cover averaged across the entire Great Barrier Reef; envelopes indicate the 95% confidence
interval across a total of 1000 simulations (light hue), the interquartile range (medium hue) and the mean trajectory
(dark continuous line).

Our coral cover predictions closely followed spatiotemporal trends in disturbance impacts, with
the greatest decline in coral cover predicted for central reefs mostly impacted by cyclones and,
to a lesser extent, northern reefs impacted by both cyclones and bleaching (Figure 5.2d).
Between 1996 and 2017, we predicted an increase in coral cover for approximately 10.2% of

the total reef area, mostly for southernmost reefs that were less impacted by cyclones and
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bleaching (note this calculation excludes reefs for which predictions were extrapolated as this

results in low confidence — these areas are enclosed within grey outlines on Figure 5.2d).

Between 1996 and 2017 and across the breadth of the GBR, coral cover declined at a mean
annual rate of -0.67% y-1 (Figure 5.2f). This decline was steepest towards the end of the time
period (2009-2016; -1.92 % y-1), reflecting a response of hard corals to multiple severe and
widespread cyclones (including Hamish in 2009, Yasi in 2011, and Dylan in 2014) and to the
2016 mass coral bleaching event (Figure 5.2e). Coral cover also markedly declined between
1996-2002 (—0.75% y-1), which encompassed mass bleaching events in 1988 and 2002 and a
major COTS outbreak (Figure 2.2). In between those time periods, mean coral cover increased

by +0.73% y-1 on average (2003-2009).

5.4.2 GBR-wide recovery

Coral recovery potential varied among the different coral communities, which we identified
from the survey data and predicted across the GBR using MRT. Among candidate MRT
predictors, the distance to the outer barrier reef edge, as well as seasonal variation in sea surface
temperature and seabed oxygen concentration (strongly correlated to the latter: Spearman’s rho
=0.61, P <0.001) were the main predictors of benthic community composition (Figure S 9.5).
Using this model, we were able to define 6 benthic community types across the GBR, which
consisted of major functional groups of corals as well as other benthic organisms or abiotic
substrate. Outer-shelf communities were characterized by the fast-growing tabular or digitate
Acropora spp., as opposed to inner-shelf communities that were characterized by Porites or

macroalgae (Figure 5.3).

Our Gompertz-based Bayesian hierarchical model revealed that the frequency of river plume
conditions (PF¢) had a strong negative effect on coral intrinsic growth rate (ry), which was
higher for outer-shelf communities characterized by tabular or digitate Acropora spp. (Supp

Fig. S2). Accordingly, high-resolution predictions of r; derived from the BRT across the GBR
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increased from inner- to outer-shelf reefs, with 76% of deviance in r, posterior estimates

explained by the BRT (Figure 5.3a) and a mean cross-validated prediction error of 21 %.

The distance to the reef edge (strongly correlated to PF¢; Spearman’s p = 0.63, p <0.001) was
the main predictor of coral growth rate (20% relative importance), followed by the benthic
community (10%), and seasonal variation in salinity and sea surface temperature (9% each)
(Figure 5.3b). Predicted coral growth rate was the highest for outer-shelf communities
characterized by tabulate and digitate Acropora spp., and the lowest for inner-shelf

communities with relatively high macroalgal cover (Figure 5.3c). The fastest-growing
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communities characterized by tabulate and digitate Acropora spp. were concentrated in 2.1%

of the study area overlapping the outer edge of the GBR (Figure 5.3a).
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Figure 5.3 GBR-wide predictions of benthic communities and coral intrinsic growth rate. (A) Benthic
communities (left) and coral growth rate (right) were predicted based on major environmental covariates using
multivariate (MRT) and boosted (BRT) regression trees, respectively. The insert shows the relationship between
posterior estimates of coral growth rate from the Gompertz model for the AIMS LTMP reefs, used as observations
in the BRT, and BRT predictions. (B) Marginal plots showing the partial effect of major environmental drivers
on coral growth rate (with SST = sea surface temperature, sdev = standard deviation). The relative importance of
each BRT predictor (%) is indicated in brackets. (C) Distribution of coral growth rate predicted by BRT among
benthic communities. The thick line indicates the median, hinges the interquartile range, whiskers the 90%
confidence interval and dots the outliers.

Our spatially-explicit predictions of other Gompertz parameters, namely initial (i.e. HC,;, in
1996) and maximum (HC,,,,,) coral cover at each reef, showed that BRT explained 78% and
80% of the deviance in HC;,,; and HC,,,,, atsurvey reefs, respectively (Figure S 9.6). The mean

cyclone severity between 1985-1995 had the strongest negative effect on HC;,,;, followed by
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mean seabed temperature. Seasonal variation in salinity was a major driver of HC,,,, at a
regional scale, followed by longitude (reflecting cross-shelf environmental gradients in
multiple environmental variables that increased or decreased with longitude). Mean cross-
validated prediction error was 5% and 11% for initial and maximum cover respectively, with
high confidence in predictions within interpolated locations (64% of the study area) (Figure S

9.6).

5.4.3 Mapping coral resilience across the GBR

Based on our cumulative disturbance index that represented the combined impacts of tropical
cyclones, COTS outbreaks, and bleaching, most reefs experiencing low disturbance were
predicted to show low decline in coral cover, and vice versa (Figure 5.4a). However, 15% of
all reefs experienced strong decline following low disturbance, indicating they were low-
resilience reefs. Conversely, 17 % of all reefs exhibited low decline following high disturbance,
thus representing high-resilience reefs. The latter were mostly located in the southernmost (and
northernmost to a lesser extent) sections of the GBR, with a few clusters in the central GBR

(dark green on Figure 5.4a).

Reef resilience was strongly and negatively related to the frequency of river plume-like
conditions (general additive model; 14.7% deviance explained; Figure 5.4b), and to reef
accessibility to a lesser extent (3% deviance explained; Figure 5.4c). When all reefs were
considered, reef resilience was substantially lower on closed reefs (i.e. within no-take marine
protected areas) compared to open reefs (Kruskal Wallis test; p < 0.001) (Figure 5.4d). Most
closed reefs were associated with less frequent plume-like conditions (lower median PF¢) than
open reefs; however the distribution of PF; was skewed and resulted in greater mean PF within
closed reefs (Figure S 9.7). When reefs with greater exposure to plume-like conditions were

removed from the analysis, resilience did not differ between closed and open reefs (Figure
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5.4d; PF: < 0.5; p = 0.412) although r, remained substantially higher within closed reefs
(Figure S 9.7; PF. < 0.5; p < 0.001).
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Figure 5.4 Map and correlates of coral resilience on the Great Barrier Reef. (A) Mean annual decline in coral
cover vs. mean annual disturbance impact (i.e. the combined severity of all coral bleaching events, COTS
outbreaks, and cyclones recorded over the study period, and weighted by their effect size). Low and high
categories corresponded to values below and above the median, respectively. High-resilience reefs are
characterized by low decline in coral cover following high disturbance, as shown by the resilience gradient (R
arrow) used to assign a resilience value to each reef (see Methods). The intensity of the grey shading is
proportional to the frequency of river plume-like conditions (PFc). (B) Relationship between coral resilience and
PFc. The regression line was fitted using a general additive model (GAM), with the envelope showing the 95%
confidence interval. (C) Relationship between coral resilience and reef accessibility (measured as potential travel
time from major coastal cities) and GAM fit. (D) Distribution of coral resilience between open and closed (i.e.
no-take) reefs, either considering all reefs (left) or only those with less frequent exposure to plume-like conditions
(right; PFc < 0.5). The white dot indicates the median, the vertical black bar the interquartile range, and plot width
represents the proportion of all reefs.

5.4.4 Model validation, uncertainty and sensitivity analysis

Projected coral trajectories closely matched historical records for 10 reefs surveyed using

manta-tow that were not used for model calibration (Figure 5.5). For this independent dataset,
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our model accurately captured the impact of multiple disturbances and subsequent coral
recovery (mean prediction error = 6.7%; R? = 0.57). When considering all reefs with at least
10 years of coral cover data available (N = 54), the mean prediction error was 5.8% and the
goodness-of-fit (R?) was 0.64. Uncertainty in model predictions tended to be higher in the case
of rare yet severe disturbances (e.g. Ben Reef; Figure 5.5) compared to multiple, less severe
ones (e.g. Credlin or Feather Reefs; Figure 5.5). We mapped the coefficient of variation in
predicted annual change in coral cover across all simulations and found that average model
uncertainty was 33.6% (ranging 0.7-84.4%). The lowest uncertainty occurred at survey reefs

and the highest in central sections of the GBR distant from them (Figure S 9.8).
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Figure 5.5 Model validation. Predicted trajectories of coral cover (blue envelopes) compared with independent
observations (black dots) for manta-tow reefs. Light blue envelopes indicate the 95% confidence interval across
1,000 simulations; medium blue envelopes show the interquartile range (25th and 75th percentiles), and the dark
blue line shows the median. Vertical lines indicate disturbances with blue = coral bleaching, orange = crown-of-
thorns starfish outbreak, red = tropical cyclone, grey = coral disease.

Our sensitivity analysis revealed that predicted coral decline was the most sensitive to variation

in r; (BRT relative importance = 75%) followed by HC;,,; (8.9%) and tropical cyclone impact
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(4.9%) (Figure S 9.9). We found a weak interactive effect of r, and HC;,,; on overall patterns
of predicted coral decline, with this effect being greatest at low r, combined with high HC;,,;

(Figure S 9.9).

5.5 Discussion

By reconstructing coral cover trajectories at a fine spatial resolution across Australia’s Great
Barrier Reef (GBR) over the last 22 years, we provide the most comprehensive, spatially
explicit estimate of long-term coral cover trajectories for any marine system, and disentangle
the relative impact of multiple agents of disturbance on coral growth at local-to-regional scales.
We show that coral cover is likely to have declined on 90% of all reefs. Historically, this decline
has primarily been attributed to tropical cyclones and COTS outbreaks (De’ath et al. 2012),
and in more recent years to coral bleaching (Hughes et al. 2017b). High water quality correlates
strongly with coral resilience, with low reef accessibility (remoteness) also having a positive,
albeit weaker, association. Surprisingly, reef resilience was substantially lower within no-take
marine protected areas; however, this difference was driven by the effect of water quality and
was not evident among reefs with less frequent exposure to plume-like conditions. We have
high confidence in these results because model predictions closely matched independent
observation records. By incorporating the main environmental drivers of coral cover and its
growth rate into a disturbance-based model of coral decline and recovery, we offer a new and
robust framework for similar applications to other reef regions around the world — a critical

requirement for sustainable reef management over the coming decades (Hughes et al. 2017b).

Tropical cyclones were the strongest driver of coral cover on the GBR over the last 22 years,
which stems from a combination of greater effect size and frequency compared to COTS
outbreaks or bleaching. Only a broad-scale and high-resolution approach such as ours that
explicitly maps spatial variation across individual reefs could reveal these spatiotemporal
patterns, because most of the cyclone impacts occurred within unmonitored reef sections (e.g.
Figure 2.2) that were not considered in previous studies (De’ath et al. 2012, Osborne et al.

2017). The stronger effect size of cyclones likely reflects that cyclones typically alter habitat
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structural complexity immediately, unlike other disturbances that can leave coral skeletons
intact (Osborne et al. 2017). This loss of habitat complexity affects a range of coral-associated
organisms such as herbivorous fishes and invertebrates that otherwise facilitate coral
recruitment and recovery through grazing (Cheal et al. 2017, Osborne et al. 2017). In contrast,
coral cover generally recovers faster following COTS outbreaks because the coral skeletons
that remain in place provide suitable habitat for coral recruits and can sometimes shelter

remnants of healthy living coral (Osborne et al. 2017).

In our study, the relatively smaller effect of bleaching is partly due to the most severe bleaching
event (2016) being only recent (compared to 14 years of cyclone impacts out of a total of 22
years considered), as well as the possibility that some corals might have regained theirs
symbionts and recovered by the time AIMS LTMP surveys were conducted. Furthermore,
sampling bias might have reduced our estimates of bleaching impacts as we excluded the
northernmost reefs (where bleaching impacts were the most severe) due to data paucity, and
calibrated our model using observations from the 6-9m depth zone. Corals at these depths might
have escaped the most damaging effects of bleaching, which were typically observed on
shallow reef flats and crests where low water mixing allowed little cooling from deeper waters
(Hughes et al. 2017b). However, such spatial patterns of coral bleaching on shallow reefs are
typically patchy (up to a 10-100m scale; S. Heron, unpublished data) and are currently difficult
to resolve at the scale of the GBR. Given that coral bleaching is predicted to increase both in
frequency and severity over the next decades (Van Hooidonk et al. 2016, Wolff et al. 2018),
its impact on coral cover will also likely increase and potentially surpass that of tropical

cyclones in the future.

Lower coral resilience coincided with a greater exposure to river plume-like conditions,
suggesting that water quality could play an important role in exacerbating the effect of
cumulative disturbances and synergies among them. Indeed, chronic stress related to land run-
off and poor water quality can affect the functional diversity of benthic communities and result
in a loss of resilience (Wolff et al., 2018), potentially aggravating the impact of subsequent

acute disturbances (Osborne et al., 2017, Ortiz et al., 2018). Although many indicators of water
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quality exist, our results indicate that nutrient and suspended sediment concentrations (as
predicted by plume-like water body characterization; Petus et al., 2014) are likely to have a
strong negative effect on coral cover and, therefore represent a key management priority
(Brodie and Pearson 2016). Conversely, high coral resilience characterized reefs that were
previously identified as small and isolated (Mellin et al. 2010b), and thus less prone to
deleterious, collateral effects from disturbances at neighbouring reefs. For example, isolated
reefs are typically exposed to reduced levels of colonization by COTS larvae (Hock et al.,
2014), representing important spatial refugia from outbreaks that tend to propagate along
prevailing currents (Pratchett et al. 2014). Identifying the exact drivers of coral resilience
warrants further investigation, yet the clear spatial pattern in their distribution suggests that the
relative importance of terrestrial influence, cross-shelf location, and spatial connectivity could

play a key role in determining coral resilience to multiple disturbances.

Importantly, our study defined resilience as both resistance to and recovery from cumulative
disturbance (Hughes et al. 2003, 2010, Folke et al. 2004). While this framework does provide
a broader understanding of resilience (as opposed to simply faster growing corals), it does not
provide a delineation between the two processes. An important justification of this approach is
the time step of the AIMS LTMP surveys used to calibrate and validate the model (1-2 years).
In two years, some reefs would have had the time to decline and start recovering, and the
absence of surveys in-between means it is impossible to accurately distinguish the resistance
from the recovery component. Furthermore, it is important to incorporate resistance as a sub-
component of resilience, because greater resistance (i.e. lower impact given similar exposure
to disturbance) can sometimes be the main driver of resilience when recovery time are
comparable across reef systems (Mellin et al. 2016a). In our study recovery rates (rs) were
characterised amongst benthic community groups and was highest on outer shelf reefs
dominated by Acropora species. All benthic communities however, were predicted to return to
near their estimated maximum (HCmax) after ~10 years if unimpeded by disturbance (Figure
S 9.4) (MacNeil et al. 2019), suggesting relatively consistent recovery potential among reefs

(in terms of return to previous maxima, not annual coral growth rate). While the model predicts
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consistent recovery potential and performed well against calibrations and validation datasets,
the spatial patchiness of survey data and disturbance impacts mean that predictions are
unreliable in some parts of the GBR and uncertainty varies substantially among regions (Figure
S 9.8). These limitations highlight that it is important to understand the spatial uncertainty of
predictions and also consider the differences between resistance and recovery potential when

attempting to predict spatial resilience.

Assessing spatial resilience is an important step toward prioritizing areas for future reef
management and conservation, whether the objective is to rescue the weakest or protect the
healthiest reefs first (Game et al. 2008). Yet the effect of no-take marine protected areas on
reef resilience was strongly determined by water quality, with lower resilience within no-take
areas when all reefs were considered. In contrast, when reefs frequently exposed to plume-like
conditions were excluded from the analysis, resilience did not differ between no-take or open
areas and ry, our proxy for recovery potential in the absence of disturbance, was higher within
no-take areas. This corroborates earlier results suggesting that marine protected areas have the
potential to promote reef resistance and recovery following disturbance (Mellin et al. 2016a).
The survey design of this earlier study was essentially paired within and outside no-take marine
protected areas, with inshore reefs being underrepresented. Another study of inshore reefs
found that coral cover was lower within no-take areas than on reefs open to fishing, especially
after major flooding events, indicating that repeated exposure to reduced water quality impairs
reef recovery following disturbance, regardless of their protection status (Wenger et al. 2016).
Together, these results indicate that while no-take marine protected areas have the potential to
promote reef resilience due to increased intrinsic growth rate of corals, this potential might not
suffice to counteract the deleterious effect of frequent plume-like conditions on reef resilience,
suggesting that the location and environmental context of marine protected areas strongly

determine their net benefit in terms of resilience.

Assessing the spatial resilience of the GBR has so far remained elusive and understandably
ignored in the design of protective zoning. The southern region of the GBR, where we

identified most high-resilience reefs, was previously predicted to act as a spatial refuge that
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will experience warming later than other coral reefs of the GBR and beyond (Van Hooidonk et
al. 2013). Such delayed warming in the southern GBR could contribute both to reduced
bleaching-induced mortality, and reduced sub-lethal effects of thermal stress that can lead to
lower coral growth rates (Osborne et al. 2017), fecundity, and resistance to disease over many
years. Furthermore, more gradual warming may allow a shift to more resistant algal symbionts
(Day et al. 2008), thus facilitating the selective emergence of more heat tolerant communities
(Hughes et al. 2017b). Our finding of greater resilience in some areas of the southern GBR
corroborates the potential for opportunities to intervene and enhance coral resilience through
the integration of assisted evolution into coral reef restoration elsewhere on the GBR (van
Oppen et al. 2017). However, future forecasts predict that even this ‘protective’ thermal
tolerance induced by sub-lethal bleaching events might soon be lost under current climate
change (Ainsworth et al. 2016) if the increased frequency of temperature anomalies outpaces
the capacity of reefs to acclimatize and adapt to novel climatic conditions. This means that,
ultimately, reducing carbon emissions and mitigating global warming represent the only ways

to secure reef persistence in the long term (Hughes et al. 2017b).

Environmental gradients accounted for 76% of variation in coral growth rate (the most
influential parameter in our coral cover model), indicating that regional scale assessments
based on comprehensive environmental data are key to capturing both the drivers and spatial
patterns of coral cover decline and recovery. Low seasonal variation in salinity, temperature
and oxygen levels were associated with the fastest growing coral communities, characterized
by tabulate and digitate Acropora corals among others. This result seems intuitive, given that
these taxa are characterized by a ‘competitive’ life history that can dominate communities in
suitable environments, but are also very sensitive to environmental changes such as
temperature anomalies (Darling et al. 2012) Temperature gradients are among the main natural
drivers of species distributions, affecting somatic growth and body size (Lurgi et al. 2012), and
directly reflecting the physiological influence that temperature exerts on individual species
(Mellin 2015). Furthermore, the importance of seasonal variation in oxygen levels as a

determinant of benthic communities indicates that different taxa respond differently to oxygen
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depletion (Pitcher et al. 2012), which can reduce coral calcification rates (Colombo-Pallotta et
al. 2010) and appeared strongly temperature dependent in our data. However, modelling coral
growth rate across the breadth of the GBR was also greatly improved by including spatial
variables (such as the distance to the reef edge) that can provide a proxy for environmental

gradients either not considered or poorly estimated (Mellin 2015).

Based on 20 years of data, our model provides a platform for projecting coral cover trajectories
under past and future scenarios of climate change, which has and will continue to affect the
frequency and severity of coral bleaching (\Van Hooidonk et al. 2016), tropical cyclones (Walsh
et al. 2016) and COTS outbreaks (Uthicke et al. 2015b). The critical question remains whether
and when the capacity of reefs to absorb and recover from disturbances might be outpaced by
future changes in these disturbance patterns. Our modelling approach is broadly applicable
across reef ecosystems, especially given that relevant environmental and spatial layers are now
increasingly available through the routine use of remotely sensed products (Mellin et al. 2009).
Our framework thus provides the advance needed to forecast which reefs will remain as
important refugia for sustaining coral reef ecosystems under increasing pressures from global

change.
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6 COTSMod: A spatially explicit
metacommunity model for the management
of Crown-of-thorns starfish and coral

recovery

6.1 Abstract

Outbreaks of the Pacific crown-of-thorns starfish (COTS; Acanthaster cf. solaris) have been
responsible for 40% of the decline in coral cover on the GBR over the last 35 years. With the
intensity and frequency of bleaching and cyclonic disturbances predicted to increase,
effectively managing these outbreaks may allow reefs an opportunity to recover from these
cumulative impacts. Despite significant research surrounding COTS outbreaks, there is
currently no framework available to simulate the effect of COTS management action at
regional scales. We developed a stage-based metapopulation model for COTS at a 1x1km
resolution using long-term time series and modelled estimates of COTS larval connectivity,
nutrient concentrations and important vital rates estimated from the literature. We coupled this
metapopulation model to an existing spatially explicit model of coral cover growth, disturbance
and recovery across the GBR from 1996-2017 to create a metacommunity model. Our results
were validated against a spatially and temporally extensive dataset of COTS and coral cover
across the GBR, predicting an average coral decline of 1.3% p.a. across the GBR, and
accurately recreating coral cover trajectories (mean prediction error = 7.1%) and COTS
outbreak classification (accuracy = 80%). Sensitivity analyses revealed that overall model
accuracy was most sensitive to larval predation (boosted regression tree; relative importance =
46.7%) and two parameters defining juvenile density dependent mortality (21.5 and 17.5%).

The COTS model underestimated peak COTS densities particularly in the Swains and
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Townsville sectors of the reef, whilst overestimating COTS density during non-outbreak years.
A better understanding of inter-annual variability in larval connectivity, and regionally variable
density dependence for adult COTS life stages may improve model fit during these extreme
outbreak events. Our model provides a platform upon which the effects of implementing
varying combinations of COTS interventions can be simulated, providing guidance for
management and researchers as to the most effective management strategies and technologies
respectively. These advancements may allow the quantification of the potential gains in coral
cover that could be expected under each strategy/technology and provide a vital tool for

effectively managing COTS outbreaks and coral recovery at a regional scale.

6.2 Introduction

Crown of thorns starfish (COTS; Acanthaster spp.) are a prominent coral predator among coral
reefs in the Indo-Pacific. COTS are characterized by an immense fecundity (Kettle and Lucas
1987, Babcock et al. 2016b), combined with synchronous spawning and consequently high
fertilization rates (Babcock and Mundy 1992, Babcock et al. 1994), making them predisposed
to rapid increases in density, or outbreaks (reaching up to >1,000 individuals ha)(Chesher
1969, De’ath 2003, Kayal et al. 2012). These factors combined with increased nutrient
availability for larval COTS (Brodie et al. 2005), reduced predation on both juvenile and adult
life stages (Endean 1969, Sweatman 2008), and favorable hydrodynamic conditions (Hock et
al. 2014, Wooldridge and Brodie 2015) are hypothesized to be responsible for the initiation
and spread of COTS outbreaks. On the Great Barrier Reef, outbreaks of the COTS are a major
cause of coral loss, responsible for ~40% of the coral declines over the last 30 years (De’ath et
al. 2012, Mellin et al. 2019a). Also, among the major causes of coral loss (e.g cyclones and
bleaching), COTS outbreaks are the only disturbance that may be readily amenable to direct
interventions (De’ath et al. 2012). Although outbreaks of COTS has been a key research and
management focus (Pratchett et al. 2014, 2017a, Westcott et al. 2016, GBRMPA 2017), there
remains considerable uncertainty regarding the exact mechanisms by which COTS outbreaks

initiate, spread and halt (Pratchett et al. 2017a) as well as the efficacy of COTS management
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more broadly. Creating predictive modelling frameworks that account for such uncertainties
are fundamental in improving management of COTS and the desired outcome of protecting

coral.

Four major outbreak events have previously been documented on the GBR, beginning in 1969,
1979, 1993 and 2010 (Pratchett et al. 2014). Primary outbreaks are typically initiated on reefs
in the northern GBR (Endean 1974, Johnson 1992, Stump 1996, Vanhatalo et al. 2017) and
followed by secondary outbreaks that propagate on downstream reefs through the transport of
larvae via ocean currents (Endean 1974). Successive outbreak events have occurred roughly
10-17 years apart, with COTS observed at outbreak densities (>0.22 COTS per 2 min manta
tow) on individual reefs for 2-5 years depending on the amount of available coral prey and the
rate of depletion (Pratchett et al. 2014). Primary outbreaks build up over a number of years
within the Northern management region (Figure 6.1: Cairns and Cooktown/Lizard Island
sectors) initiated in part by elevated nutrient conditions resulting from riverine input during the
wet season, which is hypothesized to dramatically increase the survival of COTS larvae (Brodie
et al. 2005, Fabricius et al. 2010, Wolfe et al. 2017). However, elevated nutrient conditions
occur quite frequently (3-5 years) in this region and do not always result in primary outbreaks
(Wooldridge and Brodie 2015). Wooldridge and Brodie (2015) highlighted how the initiation
of primary outbreak occurred when elevated nutrients coincided with increased larval
connectivity between reefs during neutral El Nifio Southern Oscillation (ENSO) phases. Due
to the preference of COTS for fast growing corals (Pratchett et al. 2014), and the relationship
between maternal nutrition and fertilization success (Caballes et al. 2016), the time lag between
outbreak cycles is also likely linked to the recovery period required for fast growing corals

following a COTS outbreak.

Once initiated, secondary outbreaks are generally observed on the mid shelf reefs south of the
“initiation box” and are exemplified by large larval influx and more dramatic increases in
COTS densities, aided by near-annual nutrient enrichment (Brodie et al. 2017). Primary
outbreaks that occur in the southern Swain sector of the GBR were suggested to be somewhat

independent from and concurrent with the northern outbreaks (Brodie et al. 2017)(Figure 6.1).
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Following an outbreak, COTS populations decline dramatically, often completely absent in
surveys the following year (Pratchett 2005b, Sweatman et al. 2008, Vanhatalo et al. 2017).
These declines are presumably due to density dependent mortality processes such as starvation
or disease (Pratchett 1999), although this process is poorly resolved and has not been well
documented in the field or recreated in laboratory conditions (Pratchett et al. 2017a). After
populations at a reef collapse, COTS are usually not observed again in significant densities for
around 10 years, often allowing coral to recover (pending no other disturbance) before the next

outbreak cycle begins (Figure 6.1).
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Figure 6.1 a) Representation of initiation zones for primary outbreaks (red boxes) and the subsequent propagation
of secondary outbreaks at downstream reefs.b) Empirical estimates of COTS densities aggregated for six major
sectors of the GBR from the AIMS Long Term Monitoring Program (AIMS LTMP). Also presented are the four
management areas of the GBR.

As outbreaks of COTS represent the only major disturbance amenable to direct action, the
Great Barrier Reef Marine Park Authority (GBRMPA) has deployed significant resources into
the tactical (short term) and strategic control of COTS on the GBR (Fletcher and Westcott
2016, Westcott et al. 2016). Following the initiation of the current outbreak cycle in 2010-11,

the COTS control program operated two vessels primarily in the initiation zone, with resources
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being moved further south following the spread of secondary outbreaks. These vessels targeted
reefs of high tourism and ecological value experiencing COTS outbreaks, to protect coral assets
at a local scale (Westcott et al. 2016). In recent years there has been improvement and
expansion of the COTS control program (5 vessels from November 2018) for example using
hydrodynamic modelling estimates of COTS and coral larval transport to identify reefs which
may be important reefs to protect from a network perspective, to promote recovery (Hock et
al. 2014, 2017). Additionally, there have been significant developments in technology for the
early detection of COTS outbreaks (Doyle et al. 2017, Uthicke et al. 2018) and some progress
in identifying pathways to aggregate or disperse COTS populations for control purposes (Hall
etal. 20173, 2017b). Despite these technological and strategic advancements, there is currently
no spatially and temporally explicit modelling framework upon which we can simulate the
effect of these emerging management scenarios to understand the potential benefits of
alternative COTS management options. Furthermore, there is no consensus on the spatial scales
at which COTS control can be effective (Pratchett and Cumming 2019) and under what
conditions control may inadvertently promote chronic infestations of COTS by disrupting the
boom-bust cycle (Nakamura et al. 2014). Building simulation models at an ecosystem level is
therefore a vital step in understanding the positive and negative consequences of interventions

of this scale.

COTS rapid expansion in range and boom-bust dynamics during outbreak cycles (Uthicke et
al. 2009) mean significant care must be taken when modelling their population dynamics
(Mellin et al. 2016b). Density dependent or resource dependent vital rates (e.g. mortality,
fecundity) are key parameters for simulating boom and bust dynamics in a demographic
population model (Caswell 2006). For COTS, Lokta-Volterra predator prey dynamics (Lotka
1910, Volterra 1928) have traditionally been used to model outbreak cycles (McCallum 1993,
Morello et al. 2014, Mellin et al. 2016b), focusing primarily on coral prey availability in
determining COTS mortality rates. However, for COTS, it is not apparent that all “bust” phases
of the outbreaks are necessarily linked to comprehensive depletion of coral resources (Pratchett

2010), and density-dependent pathogenesis is also hypothesized to play an important role in
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COTS population collapse (Zann et al. 1987, Birkeland and Lucas 1990, Pratchett 1999). Ratio-
dependent processes, where vital rates are linked to the ratio between available prey and
predator abundance (Arditi and Ginzburg 1989, Abrams and Ginzburg 2000, Haque 2009), are
an alternative approach to Lotka-Volterra type dynamics, aiming to represent both density and
resource dependent processes. Incorporating both predator and prey dependent processes may
offer a solution to simulating boom-bust dynamics for COTS, particularly to capture a “bust”

mechanism that does not require total resource depletion.

Recent advances in hydrodynamic, COTS population and coral growth modelling were
important precursors to the development of a modelling framework for a COTS-Coral
metacommunity model at the GBR scale. MacNeil et al. (2019) developed a Gompertz-based
coral growth model for reefs monitored by the Australian Institute of Marine Sciences Long
Term Monitoring Program (AIMS LTMP). This model was extended by Mellin et al (2019a),
who recreated the trajectories of coral cover across the entire GBR at a 1x1km resolution using
a dataset defining the disturbance history and environmental characteristics of reef locations
(Matthews et al. 2019). Furthermore, significant advances in larval connectivity modelling
(Condie et al. 2012, Hock et al. 2014) have allowed connectivity networks for COTS to be
derived over four spawning seasons (2012-2016) (Hock et al. 2017), whilst the development
of the eReefs biogeochemical model allows estimates of important environmental conditions
such as chlorophyll-a concentration to be estimated across the GBR for recent years (Johnson
1992, Chen et al. 2011, CSIRO 2019). Additionally, recent studies have developed population
models for COTS at small scales, highlighting the importance of trophic interactions in COTS
population dynamics (Morello et al. 2014, Mellin et al. 2016b) and identifying important
ecologically relevant thresholds for COTS control above which coral cover is reduced
(Babcock et al. 2014) and fertilization rates (Rogers et al. 2017). Combined with the extensive
literature surrounding COTS biology outbreaks (reviewed by Caballes and Pratchett 2014,
Pratchett et al. 2014, 2017) these advances provide the platform necessary to build a COTS-
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Coral metacommunity model that will allow researchers and managers to investigate the likely

effect of management actions.

This study builds upon an existing model of coral growth and disturbance across the GBR
(Matthews et al. 2019, MacNeil et al. 2019, Mellin et al. 2019a) by incorporating a COTS
population model at each reef, linked by larval connectivity estimates (Hock et al. 2014, 2017)
to create a COTS-Coral metacommunity model for the GBR at a 1x1km resolution. This study
aims to: (1) use the best available data to recreate and validate the trajectories of COTS and
coral populations across the entire GBR; (2) investigate which parameters are most important
for recreating COTS outbreak patterns, to identify improvements required in our understanding
to refine predictions and identify potential strategies that could be targeted by management and
(3) provide a platform for future development to compare COTS management strategies. The
results of these simulations and the metacommunity platform itself will provide managers a

useful tool to direct the allocation of resources for the next outbreak cycle.

6.3 Methods

A COTS-Coral metacommunity model (https://github.com/sammatthews990/COTS_Model)
was constructed at a 1x1km resolution to recreate the trajectories of coral and COTS across the
GBR between 1996-2017. The metacommunity model framework can be summarized
according to four subcomponents: (i) the coral dynamics model governing coral growth and
impacts from other disturbances (cyclones, bleaching, disease); (ii) COTS population model
recreating the life history and density dependent processes for each 1x1km grid cell; (iii) a
larval survival model which controls the proportion of larvae surviving from each spawning
event based upon the nutrient conditions, and (iv) the larval connectivity model which
disperses COTS larvae among reefs, linking individual reef population into a metapopulation
model. COTS populations are initiated in the model using GBR-wide estimates of COTS
density in 1996, derived from the AIMS LTMP (Matthews et al. 2019). Model simulations are
then run to recreate trajectories between 1996-2017. The model is calibrated to fit manta tow

observations for coral cover and COTS for 46 reefs that were surveyed at least 10 times
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providing reef-wide estimates of coral cover and COTS densities. Validation statistics were

calculated on a further 91 reefs that were surveyed between 5-10 times between 1996-2017.

6.3.1 Coral Dynamics Model

Coral growth was parametrized across a standardized 1x1km grid for reef locations, as defined
by a Gompertz-based growth curve (Table 6.1). Previous research defined the growth curves
and disturbance coefficients for 47 AIMS LTMP reefs (MacNeil et al. 2019). These growth
parameters were then modelled for all reef locations across the GBR based on the predicted
coral community composition (Mellin et al. 2019a). At each yearly time step, coral cover was
affected by disturbance (cyclones, bleaching, disease) and then recovered as per the spatially
explicit estimates for coral growth (Figure 6.2). Annual disturbance exposure for the model
was provided from a dataset compiling the disturbance history for the GBR (1986-2017) on the
standardized 1x1km grid (Matthews et al. 2019). Although this coral model was originally
calibrated to include disturbance from COTS outbreaks as predicted from the AIMS LTMP, in
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our framework this portion of the coral dynamics model was replaced in the present study by

a stage-based COTS population model.
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Figure 6.2 Results from the spatially explicit model of coral growth, disturbance and recovery from (Mellin et al.
2019a), depicting the average impact from A) Cyclones, B) COTS, C) Bleaching, and D) the mean percent change
in coral between 1996-2017, E) yearly estimates of disturbance impact and F) median coral cover (+/- 50%, 90%
confidence intervals). This model provides the framework upon which the COTS-Coral metacommunity model is
constructed

6.3.2 COTS Population Model

To represent COTS demography, we developed a stage-based metapopulation model with a
larval, two juvenile and an adult stage (Figure 6.3). Basic life history parameters include rates
of density dependent mortality across age cohorts, density-dependent fertilization and feeding
rates on corals. Stage-specific mortality rates and fertilization rates were modeled as a function
of conspecific densities and resource availability within each 1x1km grid cell. Initial values for

these parameters were based on estimates from the literature where possible, and otherwise
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from expert opinion (Pratchett, unpublished data) (Table 6.1). Stage-specific COTS
consumption rates, also drawn from the literature, enable the COTS population model to link
with the coral growth model as an additional disturbance factor. Importantly all the initial
parameters estimates discussed here are allowed to vary within the model framework to test

the sensitivity of model predictions to changes in estimates used.

Table 6.1 Equations and sources for the population dynamics of COTS and Coral populations and vital rates for
the demographic components of the COTS model where COTS abundances and coral cover are defined for the ith
grid cell at the rth reef in year y. There are 4 COTS life stages in the model (A=Adults, J2 = Subadult; J1=
Juveniles, L= Larval), which are defined by: Pred. = larval predation rate; Surv. = Larval survival as predicted by
the logit chlorophyll model derived from Fabricius et al (2012); CONN = average connectivity potential between
reefs on the GBR; Mort;, = logistic density dependent mortality juvenile COTS; Mort;, = logistic density
dependent mortality sub-adult (J2) COTS. Mort,= Ratio dependent mortality for adult COTS (A); FvD = Von
Bertnanffly growth curve for fertilisation by density; Fec = Ratio-dependent per capita fecundity for female
COTS; Fecq, Per capita fecundity without resource limitation; CCRatio, = ratio dependent thresholds onset of
ratio-dependent fecundity and adult mortality; CCRatio, threshold below which COTS populations collapse;
Hard Coral Cover: HC = Hard coral cover; rs = intrinsic coral growth rate; a = strength of density dependence
for sessile species; f; Disturb; ,, = Effect size and Estimate for jth disturbance (bleaching, cylones, disease, other);
PF = combined exposure to flood plumes.

Name Equation Source
Stage Transition Rates
COTSL | Ny, = Ny, X Fec X FvD X (1 — Pred,) X Survy,
T
COTSJ1 | Nyyyjr, = (Z Ny, X CONNy; ) X (1 — Mort;y)
i NA
COTSJ2 | Nyt1y2; = Nyj1, X (1= Mort,)
COTSA Ny+1,Ai = v,J2i X (1 - MOT'tA)
Coral Growth
l0g(HCys1) = ros + (1 @) log(HC,) + )y Disturby, (MacNeil et al.
Coral J 2019, Mellin et
+ Z ﬂ] Disturbj,y X PFL al. 20193_)
J
Vital Rates
(Babcock et al.
FvD Lo (1 — e XWya)): [ =0.8K = 0.0007 1994, Rogers et
al. 2017)
Pred;, | N(up,0p); N(0.98,0.01) (Scandol 1999)
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(Fabricius et al.

Surv,, logit(Survy) = By + B1log,([ChL]) ; By = [-0.4,10], B, = 2.02 2010, Wolfe et
al. 2017)
L
MOT‘tIl 1 _|_ e—k(le—xo) ’ NA
=1; k~N(-2e7, 0.5e”);xo~N(1le 7,0.2¢e77)
L
MOT‘tJZ 1 _|_ e—k(le—xo) ’ NA
=1; k~N(=7e* 2e*);x,~N(2.5e7°0.5e7>)
(cors;)
U COTS,
L forsors, < CCRatio, (Scandol 1999,
Mort, He 4 Sweatman et al.
=<b X CoTS, +1, for CCRatio, < COTS, < CCRatio, 2008)
\ 0.1, for CoTS, = CCRatioq
HC
U (COTSA)
(Babcock et al.
Fec FeCpax for 0TS > CCRatio, 2016b, Caballes
= 4 et al. 2016)
(b X CoTs, + 0.1) Fecmax » for CoTS, < CCRatioq
, 7 4 7 (Babcock et al.
Fecmax N(l'l'Fr O-F) ’ N(Ze ) 16 ) 2016b)
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Figure 6.3. Conceptual diagram of the main factors involved in COTS outbreaks on the GBR and their relationship
to various stages of the COTS life cycle. The white area represents the interactions currently included in the
COTS-Coral metacommunity model, the shaded portion of the diagram represents potential management
scenarios that could be incorporated into the modelling framework for projections. Coloured circles represent
COTS food source for that life stage (green = phytoplankton/chlorophyll; pink = crustose coralline algae; coral =
scleractinian corals). Solid lines represent a positive effect and dashed lines indicate a negative effect. Symbols
are courtesy of the Integration and Application Network, University of Maryland Centre for Environmental
Science (ian.umces.edu/symbols/).

Adult mortality and fecundity rates are assumed to be linearly dependent on the ratio of
available coral prey for each adult COTS (Figure 6.4c,d). Coral cover-COTS ratio (CCRatio)
was defined as % Hard Coral Cover /COTS per manta tow. Two thresholds were defined
with respect to CCRatio, CCRatio; aims to capture the ratio at which coral cover is expected
to decline as a result of consumption of COTS (20-40 % Hard Coral Cover/COTS per manta
tow, depending on coral cover levels (Babcock et al. 2014)). At this threshold it is assumed
that coral prey resources become scarce - increasing mortality, decreasing maternal nutrition
and therefore reducing fecundity (Caballes et al. 2016). In the model, fecundity (mortality) is
highest (lowest) at large values of CCRatio and decreases (increases) linearly towards its
minimum (maximum)(Figure 6.4). The maximum and minimum fecundity also use starting

estimates from the literature (Babcock et al. 2016b). A second threshold CCRatio, was defined
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to capture the recurring dramatic collapse of COTS populations observed in the AIMS LTMP
data (Figure 6.1b), below which the mortality rate was set to 100% (Table 6.1). This threshold
was determined using empirical observation data from the AIMS LTMP (Figure 6.4a,b). We
used two approaches to identify initial values CCRatio, and CCRatio,. Firstly, we fit a
generalized additive mixed model (GAMM) to the proportional change in COTS populations
(-1 to 1) in the year following a recorded COTS outbreak (> 0.22 individuals Manta Tow™) as
a function of CCRatio, using cross shelf location as random factor (Figure 6.4a). Whilst this
model did not explain a significant amount of variation (GAMM: R?=0.03, p=0.11), it suggests
a threshold for CCRatio between 5-12 where COTS populations beginning to decline
drastically. The second approach was to model change in COTS population size (in the
following year) for populations exceeding severe outbreak threshold (> 1 individuals Manta
Tow) as a binary outcome in a generalized linear mixed model framework (increase in COTS
density = 1; >50% decrease in COTS density = 0) to identify the CCRatio at which increased
mortality is triggered (Figure 6.4). Despite a high level of dispersion in the data, results
declining CCRatio is significantly related to COTS population crashes (GLMM; R?= 0.11,
p<0.01). Importantly, there is no recorded case of COTS population increase below a Coral-
COTS ratio, CCRatio of 4.6 (Figure 6.4b). From these results and the work of Babcock et al.

(2014) we chose initial values of 5 for CCRatio, (threshold below which COTS populations
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collapse) and 25 for CCRatio, (threshold below which COTS mortality and fecundity are

negatively affected).
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Figure 6.4 A) GAMM model for proportional COTS population declines following extreme COTS outbreak
densities ; B) Binomial Relationship between Coral Cover-COTS ratio and the change to COTS population in the
following survey year from AIMS LTMP data to provide initial estimates for ratio dependent thresholds used in
the metacommunity model. C) Schematic of potential initial values for ratio-dependent thresholds for COTS
mortality and D) Fecundity in relation to coral cover-COTS ratios.

We modeled juvenile and sub-adult COTS mortality as a function of COTS density (we chose

not to use a ratio-dependent model for these life stages as juveniles feed on crustose coralline

algae, while there is no data on sub-adult densities to estimate ratio-dependent thresholds)
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within each 1km grid cell according to a standard logistic growth model. We initially
parameterized these relationships on the basis of estimates of COTS densities at critical
outbreak thresholds (De’ath 2003)(Table 6.2). Using these thresholds we estimated the number
of juveniles and subadults present via an approximate estimate of COTS stable stage
distribution generated using the R package ‘popbio’(Stubben and Milligan 2007) and vital rates
from Table 6.1.

Table 6.2 Estimated densities of different life stages of COTS at varying levels of Outbreaks to provide initial
estimates for density dependent mortality curves. Adult densities are estimated using the calibration of De’ath
(2003), *whilst earlier life stages are estimated from an approximate stable stage distribution.

Approx  Adult | *SubAdult *Juvenile
Outbreak
COTS/Manta Tow Density (Adult | Density (J2 ind | Density (J1 ind
Status
ind km-2) km-2) km-2)
0.01 No Outbreak | 1000 6900 390000
0.1 Potential 3500 23600 1354000
0.22 Established 5100 33500 1923000
1 Severe 11100 71900 4122000

6.3.3 Larval Survival Model

To incorporate the well-established positive effects of prey availability on COTS larval
survival (Fabricius et al. 2010, Uthicke et al. 2015b, Wolfe et al. 2015, Pratchett et al. 2017b),
a logistic model of larval survival in relation to chlorophyll concentrations ([chl-a]) was
developed based on the results from Fabricius et al. (2010). Other research has shown COTS
ability to survive in oligotrophic conditions to be much higher than those estimated by this
model (Wolfe et al. 2015, Pratchett et al. 2017b) and thus the intercept and slope term of this

relationship were included as a model parameter for tuning. This provides the opportunity to
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test the sensitivity of model predictions to this crucial relationship, within empirically

supported bounds.

In order to model larval survival, [chl-a] was estimated for the period 1996-2017 using the
4x4km eReefs biogeochemical model for the GBR (CSIRO 2019). This model has produced
[chl-a] estimates between 2010-2017 that we used to determine the reef-level relationship
between [chl-a] and ENSO cycles. On the GBR, ENSO is commonly linked to rainfall, with
strong La Nifa events increasing rainfall and thus nutrient enrichment (Devlin et al. 2001,
Lough 2001) and larval survival. Additionally, La Nifia phases of the ENSO cycle are broadly
linked to upwelling and phytoplankton blooms (Steinberg 2007) and thus using ENSO for
hindcasting offers an opportunity to incorporate variation in [chl-a] from both rainfall and
upwelling events. For each reef, a GAM was fit to determine the relationship between ENSO
(using the September-November Nino 3.4 index (Rayner et al. 2003)) and [chl-a], and thus
hindcast to 1996 using historical Nifio 3.4 data (Table S 9.10)(Figure 6.5a,b). For each year of
available eReefs data a matern variogram model (Matérn 1960, Rossi et al. 1992) was fit to
determine the spatial autocorrelation in the model residuals, and a mean psill and range were
calculated to determine the variogram model for La Nifia, EI Nifio and neutral years. A total of

100 spatially correlated random replicate sets of chlorophyll predictions were then generated
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for each year based on the ENSO estimate to provide sub-reef (1x1km grid cell) level

variability and incorporate uncertainty in model estimates.

(A) Chlorophyll GAM Models (B) Predicted Chlorophyll Time Series
Arlington Reef (16-064) Arlington Reef (16-064) | — (Chi]

0.4 —Nino3.4

21 0.4
0.3

14 r0.2
— 0- L0.0
0.1 -1 F-0.2

N Emperor Reef (21-538) Emperor Reef (21-538) i
L . 9 3
Z o051 B = o4 3
S 1 =
=] x

@ > 11 F02 O
]

g 041 2 S
8 - ®
Q <

S o 0- r0.o 2
© 03 2 S
= = =2
§ =11 r-02
= (@] e
8 1027 & =,
o ik

Ribbon No 5 Reef (15-038)

0.06 A

0.04 1

0.02 4

A 0 1 2 1990 2000 2010
SON Nino 3.4 Index (ENSO) Year

Figure 6.5 (A) GAM models fitting ENSO Nino 3.4 index to eReefs predicted chlorophyll concentrations for 3
reefs with variable background concentrations and (B) the predicted chlorophyll concentrations for the period
1990-2018 (Green) overlaying the Nino 3.4 index (black line).

6.3.4 Larval Connectivity Model

Estimates for larval connectivity between reefs on the GBR were obtained from Hock et al.
(2017). These connectivity networks are constructed from 4 years of hydrodynamic modelled
data and estimate the mean potential connectivity between all reefs on the GBR. Potential

connectivity (expressed as a proportion) is a simplification of real-world processes which
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essentially represents maximal physically possible advective transport among reefs as implied
by the model (Hock et al. 2014). During the dispersal phase of our model, surviving larvae
from each source reef were pooled at the reef level and then distributed among connected reefs
using the strength of each connection averaged from the 4 years of modelled estimates. Larvae
are then evenly distributed among the grid cells at the sink reef, and thus did not take into

account the potential for larvae to be attracted to either prey or conspecific aggregations.

6.3.5 Model Validation and Sensitivity Analysis

Model predictions were calibrated using AIMS LTMP manta tow to generate a base case model
that provided the best fit to the data. Reefs chosen for validation were surveyed at least 10 times
providing reef wide estimates of coral cover and COTS densities (N=46). Predictions were then
validated against reefs within the AIMS LTMP dataset that were not included in the 46 reefs
used for calibration, yet included over 5 years of data (N=91). Using the initial parameter
variables (Table 6.1), we used Latin Hypercube Sampling (McKay et al. 1978, Carnell 2009)
to sample evenly across the parameter space, were starting values were varied by +/- 20%. For
each parameter combination 100 simulated model runs were conducted to provide an estimate
of the uncertainty of the stochastic (disturbance, chlorophyll concentrations and larval
connectivity estimates), density and ratio-dependent elements of the model. Mean prediction
error (MPE) for both COTS and Coral were estimated at each reef. Additionally for COTS,
model accuracy (ACC) and kappa (KAP) statistics (Cohen 1960, Hossin and Sulaiman 2015)
for predicting presence or absence of COTS outbreaks (OUT) (>0.22 COTS/Manta Tow) were
calculated. ACC and KAP were also used to classify COTS across the four outbreak categories
(Table 6.2).The parameter set which reduced prediction error and maximized prediction ACC

an KAP (after ACC an KAP standardization to a 0,1 range) across all reefs was thus identified
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as the base-case model (Egn 1). For the base-case model, mean prediction error was aggregated

for each latitudinal sector to give a spatial and overview of model performance.

, _ (= MPE.HC,,) + (OUT. ACC,,) + (OUT.KAP,,) + (CL. ACCy) + (CL. KARy)
I =
4

Where MPE.HC,, is the mean prediction error for hard coral estimates; OUT.ACC,, and
OUT.KAP,, are the model accuracy and kappa statistic for the binomial classification of COTS
outbreaks and CL.ACC,, and CL.KAP,, are the model accuracy and kappa statistic for
multilevel classification of the four outbreak categories (Table 6.2). Additionally mean
outbreak density was calculated for each latitudinal sector (Figure 6.1) as the mean COTS
density (COTS/Manta Tow) for model estimates that exceeded the COTS outbreak threshold.
This was compared to the values calculated for our validation reefs from the AIMS LTMP to

investigate spatial variability in model performance in predicting COTS outbreak densities.

To identify the sensitivity of predictions to parameter estimates, 200 latin hypercube samples
were drawn with each parameter varying within +/- 15% of the bounds identified by the base
case model. These parameter values were then scaled and used as explanatory variables for our
validation metric Vi (EQ. 1) using boosted regression trees (BRT) (Elith et al. 2008) to
determine the most influential parameters and interactions between them for determining
model accuracy (Norton 2015). Additionally, these scaled variables were also used to predict
annual coral loss and COTS accuracy in multilevel classification (No COTS, No Outbreak =
<0.11, Potential Outbreak = <0.22, Established Outbreak = <1, Severe Outbreak >1
COTS/Manta Tow) to investigate the variables most influential for driving COTS densities

and coral loss in our model. All models were constructed using R v3.4.1 (R Development Core
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Team 2017), with tools for sensitivity analyses provided by the ‘lhs’ (Carnell 2009) and
‘dismo’ (Hijmans et al. 2017) packages.

6.4 Results

The base-case model calibrated against the long-term training dataset (1995-2017) had a mean
prediction error (MPE) of 7.19% for coral cover across the entire time series, and a MPE of
0.01 COTS/Manta Tow and mean prediction accuracy of 80.6% for COTS Outbreaks (V},,=
0.83). There was substantial spatial variation to the accuracy of model predictions (Table 6.3)
most notably for COTS outbreaks. COTS densities were overestimated in both the Capricorn
Bunker (CB) and Whitsunday (WH) sectors, with peak densities, particularly in the Townsville

(TO) and Swains (SW) sectors, being underestimated.

6.4.1 Spatial Patterns in COTS Outbreaks

Outbreaks were initiated in 1996 in the “initiation box”, peaking between 1997-1998.
Outbreaks in northern regions of the GBR peaked at slightly lower densities than those
predicted for secondary outbreaks in the Innisfail, Townsville and Swain regions, however
these peak densities were much lower than observed in the monitoring data (Table 6.3).
Patterns for individual calibration reefs generally followed peaks and troughs in COTS
densities, although the model tended to overestimate COTS abundance during the ~10-15 year
break between outbreak cycles (Figure 6.6). Importantly, the second outbreak cycle beginning
around 2010 was accurately predicted by the model. In southern regions however, the model

produced a multiple boom-and-bust dynamic, where COTS densities collapsed and increased
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again multiple times throughout the period, which was not supported by the empirical

observations.
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Figure 6.6 A) Predicted mean COTS abundance for each GBR reef with coloured diamonds matching reefs in B
classified into outbreak categories in terms of COTS/Manta Tow; No COTS (NC) = 0; No Outbreak (NO) <0.11;
Potential Outbreak (PO) <0.22; Established Outbreak (EO) < 1; Severe Outbreak (SO) > 1. B) Predicted mean
(+/- 50% CI’s) COTS/Manta Tow (Coloured ribbon) plotted against observation data (black dotted line) for six
calibration reefs across the GBR. C) Predicted mean (+/- SE) COTS/Manta Tow, aggregated at the GBR level.

6.4.2 Spatial Patterns in Coral Cover

As coral cover was predominantly predicted from a previously calibrated model, the
trajectories more closely match the empirical data (Figure 6.7b). Overall reefs in the Southern-
Central (Pompeys and Whitsunday sectors) region of the GBR had the highest rates of coral

decline, with the Northern region (Cairns and Cooktown/Lizard Island sectors) also
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experiencing annual declines around 1% per year. However, some pockets of the GBR were
predicted to experience annual increases in coral cover, particularly in the Capricorn Bunker

and inner shelf Pompey sectors. Overall coral cover was predicted to decline 1.3% p.a. across

the 22 years of the study.
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Figure 6.7 A) Predicted mean annual percent coral loss for each GBR reef with coloured diamonds matching reefs
in B) Predicted mean (+/- 50% CI’s) percent coral cover (Coloured ribbon) plotted against observation data (black
dotted line) for six calibration reefs (colour coded diamonds). Predicted mean (+/- 50% and 95% CI’s) percent
coral cover, aggregated at the GBR level.

6.4.3 Model Validation
Predictions were validated against reefs within the AIMS LTMP dataset that were not included
in the 46 reefs used for calibration, yet included over 5 years of data (N=91). For this

independent dataset, our model captured the impact of multiple disturbances and subsequent
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coral recovery (mean prediction error = 7.9%; R? = 0.14) performing similarly as for the
calibration data (7.4% R2=0.1). For COTS, whilst our model was able to recreate the general
trajectories of COTS outbreaks (Figure 6.6), the accuracy of the model for predicting the
presence or absence of an outbreak of COTS was insignificant for both calibration (Accuracy
= 80.0%, Kappa = 0.193, p > 0.05) and validation (78.9%, Kappa = 0.014, p > 0.05) datasets
(Table 6.3). Similarly, when classifying for the four outbreak levels model accuracy as
insignificant for both calibration (Accuracy = 61.0%, Kappa = 0.176, p > 0.05) and validation
(52%, Kappa = 0.04, p > 0.05) datasets. Additionally, for these models, the mean COTS
outbreak density was overestimated in the Whitsundays and Capricorn Bunker sectors whilst
underestimated for Swain, Townsville, Pompeys and Innisfail sectors, indicating a tradeoff
between presence/absence accuracy and matching peaks in COTS outbreak densities within the
model. Importantly, accuracy for predicting presence/absence of COTS was only marginally
better than chance alone, indicating a general tendency to estimate low levels of COTS when

none were observed in the data.
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Table 6.3 Validation statistics for best-fit model parameters across latitudinal sectors of the GBR(Figure 6.1a PC
= Prince Charlotte Bay; CL = Cooktown/Lizard Island; CA = Cairns; IN = Innisfail; TO = Townsville; CU = Cape
Upstart; WH = Whitsundays; PO = Pompeys; SW = Swains; CB = Capricorn Bunker) where MPE = mean
prediction error, ACC = model accuracy, KAP = Kappa and Outbreak Density = model predicted mean
COTS/Manta tow when density exceeds 0.22 COTS/Manta Tow and A Outbreak Density is the % difference
between model predicted outbreak density and AIMS LTMP Manta Tow observation.

Sector MPE Hard | MPE COTS | Acc COTS | Acc COTS | Kap COTS Outbl."eak A Oujcbreak
Coral (%) | (COTS/MT) | Presence | Outbreak | Outbreak | Density Density
PC 2.81 0 0.36 0.82 0 NA -100%
CL 7.60 0.066 0.69 091 0.51 0.50 2%
CA 2.52 0.010 0.80 0.98 0 0.46 35%
IN 4.29 0.057 0.29 0.85 0.17 0.53 -80%
TO 3.94 0.19 0.61 0.58 -0.074 0.65 -80%
CU 4.79 0.061 0.43 0.78 -0.12 0.67 46%
WH 6.94 0.049 0.78 0.92 -0.04 0.81 113%
PO 7.64 0.068 0.32 0.82 -0.10 0.67 -78%
SW 4.81 0.16 0.55 0.55 0.21 0.70 -92%
CB 7.29 0.15 0.82 0.76 0.18 0.64 94%
Overall | 7.20 0.01 0.627 0.806 0.219 0.63 -81%

6.4.4 Sensitivity Analysis

Our sensitivity analysis (Figure 6.8) using boosted regression trees (BRT) revealed that overall
model performance was most sensitive to variation in the constant for larval predation rate
(BRT relative importance; Prediarv = 46.7%), followed by the two parameters controlling the
strength of density-dependent mortality for COTS J1 life stage (MortJlx = 21.5%,
MortJ1ko=17.5%). The coral cover-COTS ratio below which COTS populations crashed was
less influential in overall prediction accuracy (CCRatioz = 3.0%), alongside the maximum rate
of fertilization of COTS larvae (FertLinr=2.0%) and maximum per capita fecundity fecundity
(Fecmax=1.6%). Coral cover prediction error was most sensitive to larval predation rate (Predcar

= 32.7%) and maximum coral consumption rate (Consmax = 22.6%). COTS multilevel
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classification accuracy was most sensitive to early life stage parameters (MortJ1x = 44.8%;

MortJlxo = 34.6%; Prediary = 16.3%).
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Figure 6.8 Relative importance and partial dependency of COTS population model parameters in improving
overall accuracy based on the combined Vm validation metric where PredLar = larval predation rate; Mort = density
dependent mortality parameters (A=Adults, J2 = Subadult; J1= Juveniles), CCRatio = ratio dependent thresholds
for (1) onset of effect and (2) collapse of COTS populations; FertLins = max fertilisations rate; Fertx = rate parameter
for fertilisation; Fecmaxmaximum fecundity per female COTS; Fecsqs = standard deviation for fecundity; Chlintercept
= intercept term for the chlorophyll model, used to adjust larval survival; SelfSeed = Scaling parameter to alter
the proportion of COTS larvae settling at home reef.

6.5 Discussion

Destructive outbreaks of COTS have been responsible for a significant portion of the loss of
coral cover of the last 35 years and have thus been the focus of much research and management

action (De’ath et al. 2012, Pratchett et al. 2017a, Mellin et al. 2019a). This research often
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focuses on the hypothesized causes of outbreaks (Brodie et al. 2005, Wooldridge and Brodie
2015), control technologies (Rivera-Posada et al. 2014, Uthicke et al. 2018) or spatial patterns
in outbreaks (Vanhatalo et al. 2017, Mathews et al, in prep). Moreover, previous modelling
studies have generated small scale population models (Morello et al. 2014, Chen et al. 2017),
larval connectivity networks (Hock et al. 2014), simulated hypothetical reef networks (Condie
et al. 2018) or aimed to refine our knowledge of COTS life history characteristics (Rogers et
al. 2017). Our work builds on this vast foundation of knowledge to provide a framework for
spatially and temporally explicit predictions of Coral Cover and COTS abundances and fit them
to the extensive observational data that exists for the GBR (Sweatman et al. 2008), whilst also

accounting for the increasing cumulative disturbance in this region (Matthews et al. 2019).

Model predictions were generally able to match the timing of peaks in outbreak densities and
provided reasonable predictions of the presence or absence of COTS outbreaks. Importantly,
following the initiation of COTS populations in 1996, the model was able to produce peak
densities between 1996-1998 for northern reefs in the Cooktown/Lizard Island and Cairns
sectors (Figure 6.6) whilst those further south in the Innisfail and Townsville sectors were
predicted to experience peak densities between 1999-2001, similar to patterns in the
observational data (Figure 6.1, Figure 6.7). This shows that, whilst COTS densities during an
outbreak are difficult to predict accurately, our model captured the spatio-temporal patterns of
outbreaks as described by other modelling studies (Vanhatalo et al. 2017). In our model, these
spatio-temporal patterns are driven primarily by the spatial and temporal variation in
chlorophyll concentrations, larval connectivity and prey availability estimates. Our results
indicate the utility of these modelled estimates and provide further evidence in support of larval
nutrition (Birkeland 1982, Brodie et al. 2005) and larval connectivity (Hock et al. 2014,

Wooldridge and Brodie 2015) , at least for explaining secondary outbreaks.

Some limitations on model performance surround the ability to recreate the extreme increases
in COTS densities, most notably recorded in reefs in the Townsville and southern Swain
regions. Using our best-fit model parameters, predictions of mean outbreak density in these

regions were underestimated by 80% and 92% respectively (Table 6.3). Whilst higher densities
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were predicted by some model configurations (results not shown), this generally led to
overestimating densities in other regions and reducing overall model fit. Additionally, multiple
boom-bust cycles were predicted on some Southern reefs that were not supported by empirical
data. This is partly to ratio dependent thresholds in COTS density that promote population
declines. This could be countered by forcing the model to only take into account prey-
availability but would limit the model’s ability to capture population decline when coral
resources remain. Previous modelling attempts for COTS have run into similar issues in
recreating peak densities, requiring for example larval input to be artificially introduced into
the model to create the second wave of COTS outbreaks beginning 2010-2012 (Morello et al.
2014). We estimated a time series for chlorophyll-a using the consistent link between ENSO
and chlorophyll-a to drive COTS outbreaks and our model was able to reproduce these peaks
without any artificial data manipulation. This is a novel and useful approach to predicting for
missing years in chlorophyll-a data however more development is required to accurately

capture dramatic peaks in COTS densities.

A number of alterations to the model structure could potentially improve model fit with regards
to spatial variability in peak COTS outbreak densities. For example, allowing the threshold that
triggers outbreak collapse to vary for each latitudinal sector and cross shelf location
combination as estimated by the empirical data, could provide a mechanism for promoting
these more severe densities in specific areas. This approach, whilst not allowing these regional
differences to emerge intrinsically from the model, may significantly improve model fit.
Allowing these regional differences in mean COTS outbreak density would act as a proxy for
calculating spatially explicit carrying capacities that could account for some variation not
captured by our current approach. Primarily, as COTS exhibit significant feeding preference
for fast growing corals, especially table and branching Acropora spp.(Pratchett 2007), reefs
with naturally higher proportions of these species should exhibit higher outbreak densities and
thus higher carrying capacities. Increased COTS densities can be explained by both increased
food supply supporting more adult COTS and increased maternal nutrition leading to

significantly higher rates of larval success (Caballes et al. 2016, 2017a). There is also potential
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to incorporate estimates of coral benthic community type (Mellin et al. 2019a) to help define
peak outbreak densities, by allowing reefs predicted to be Acropora dominated to reach higher
thresholds. Additionally, incorporating a “no settlement” or limited settlement period following
a collapse, to simulate the attraction of larvae to other nearby reefs with dense adult populations
(Cowan et al. 2016) may help capture periods of low density populations. This would lower
the influence of parameters that control rapid expansion of COTS and promote more dramatic

peaks, without overestimating COTS abundance during the non-outbreak cycle.

Whilst our model incorporates contemporary GBR-wide estimates of COTS larval
connectivity, better integration of inter-annual variability in connectivity pathways provides an
opportunity to improve model estimates. Larval connectivity pathways are hypothesized to be
pivotal in determining COTS spatial distribution during waves of secondary outbreaks (Hock
et al. 2014) and, together with primary productivity, inter-annual variability in connectivity has
been linked to the initiation of primary outbreaks (Wooldridge and Brodie 2015). Incorporating
more interannual variability in connectivity estimates will likely increase the model
performance in capturing peak densities at outbreaking reefs since, due to COTS immense
fecundity (Babcock et al. 2016b), any fractional increases in the proportion of larvae arriving
at a reef may dramatically increase adult densities. The distribution of arriving larvae in this
study was uniform across a reef and did not allow for the attraction of larvae to either coral
prey or conspecifics. This would potentially tend to underestimate population establishment
through fertilization success and local recruitment and may help to explain the lack of peak
densities predicted for some reefs/sectors. Importantly, the connectivity estimates used in this
study have received warranted scrutiny in their ability to accurately predict connectivity
pathways primarily due to the relatively coarse spatial resolution (4km) (Bode et al. 2018,
Mumby et al. 2018). Further development of the hydrodynamic models of the GBR to
incorporate unstructured meshes and finer resolutions (Thomas et al. 2014) should increase the
accuracy of these estimates and ultimately the predictions of regional scale ecosystem models.
Additionally, recent important advances in satellite imaging have rapidly developed the

understanding of potential coral habitat along the GBR (Roelfsema et al. 2018), and
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incorporating these underlying habitat maps are essential for the refinement of both

connectivity models and metacommunity models for the GBR.

Our model makes use of a machine learning approach to sensitivity analyses to identify
important parameters when optimizing overall model accuracy, coral cover estimates or COTS
outbreak classification (Norton 2015). This approach highlighted that predictions were
particularly sensitive to parameters controlling early life stages such as larval predation rate
and density dependent juvenile mortality. Due to the demographic traits of the species
(Babcock et al. 2016b), such sensitivity was anticipated, and indeed predatory and density
related mortality rates of early life stages represent bottlenecks in COTS population dynamics
yet have remained key gaps in the understanding of COTS outbreaks (Pratchett et al. 2017a).
Whilst some recent work has highlighted potential predators of COTS larvae (Cowan et al.
2016, 2017b, 2017a) and investigated juvenile predation rates (Wilmes et al. 2019), generating
spatially and temporally explicit predictions of predator abundance or a suitable proxy seems
beyond the scope of contemporary research. Potentially incorporating the effects of marine
park zoning could account for some predatory effect on COTS larvae, however most identified
predators of larvae and juveniles are not targeted by fishing activities (Cowan et al. 2017a)
although they could indirectly impacted by fishing (e.g. habitat loss due to anchor damage).
Moreover, given the links between outbreak probability and zoning are poorly understood
(Sweatman 2008, Vanhatalo et al. 2017), a zoning parameter seems unlikely to drastically
improve model performance. Alongside zoning, incorporating minor spatial and temporal
stochasticity to the early life stage parameters provides clear improvements to the current

framework.

Our model provides the first framework for predicting coral cover and COTS densities in a
spatially and temporally explicit manner, for reef locations across the GBR. Whilst
improvements are required to fine-tune parameters, this framework provides a solid basis for
further development, with scope to incorporate proposed management interventions and
projections towards the next outbreak cycle. During the course of the most recent outbreak on

the GBR there have been vast improvements to both control technologies and strategies
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(Westcott et al. 2016), with a number of emerging technologies being investigated to help with
the early detection of outbreaks (Doyle et al. 2017, Uthicke et al. 2018), use of pheromones for
COTS aggregation and/or dispersion (Hall et al. 2017a, 2017b) and remote autonomous
surveillance (Llewellyn and Bainbridge 2015). If deployed effectively (in time and space),
some combination of these technologies may prove to be pivotal to reducing the impact of the
next wave of COTS outbreaks. Incorporating a range of intervention strategies into our
modelling framework would provide an avenue to empirically assess the probability of
curtailing the next outbreak cycle and/or protecting high priority areas of the GBR to bolster
the resilience GBR (GBRMPA 2017, Hock et al. 2017). Additionally, developing probabilistic
models for disturbance events based on disturbance history could provide an avenue for
running these models into the future to determine the effect of COTS outbreaks as disturbance
severity and frequency are predicted to increase (Hughes et al. 2018a, Great Barrier Reef
Marine Park Authority 2019). To achieve this goal, future projections of chlorophyll
concentrations and connectivity patterns could be projected forward based on historical data,

climate change projections, ENSO cycles and a variety of water quality management scenarios.

This study aimed to provide the first spatially and temporally explicit COTS-Coral
metacommunity model for the GBR, at a 1x1km resolution. Whilst successfully recreating the
trajectories of coral cover and COTS outbreaks, it is currently not able to capture some of the
spatial variability with regards to peak outbreak densities. It is important to note that fine-scale
models such as these have low generality and thus forecasting skill, and are thus designed to
simulate current conditions and management strategies and limited to near future forecasting
(i.e. the next COTS outbreak cycle). Furthermore, in its current configuration, the model tends
towards overestimating COTS abundances during low density years and does not differentiate
between fast and slow growing corals. This study highlights critical knowledge gaps to set
priorities for ongoing biological research (e.g. predation rates, natural mortality rates) and also
key areas for improvement to this model framework, in order to better capture the spatial and
temporal variability in COTS densities. The major improvements required include improving

estimates of inter-annual variability in larval connectivity estimates and incorporating sector-
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and shelf-level variation in the density dependent thresholds used to promote crashes of COTS
populations in the model. Whilst improvements need to be made, this modelling framework is
the first of its kind for the GBR and provides a platform upon which a variety of COTS
management scenarios could be simulated. Further developing this framework will provide
important guidance for the prioritization of reefs for COTS control as well as the combination
of management strategies most likely to help protect coral cover in the next wave of COTS

outbreaks.

148 Matthews - December 2019



Ch. 7. General Discussion

7 General Discussion

7.1 Cumulative disturbances and abiotic characterization of the
GBR

The Great Barrier Reef (GBR) has been subject to protracted and intensifying chronic and acute
disturbances for several decades, resulting in sustained declines in coral cover (De’ath et al.
2012, Mellin et al. 2019a - Chapter 5). Despite a long history of proactive, expansive and
adaptive management (GBRMPA 2004, McCook et al. 2010b), the GBR faces an uncertain
future in the context of intensifying and cumulative disturbances (Knutson et al. 2010, Maynard
et al. 2015, Uthicke et al. 2016, Hughes et al. 2017b). In recent years, researchers have begun
to focus on quantifying the impact and interactions between multiple disturbances in order to
try to address this uncertainty (Osborne et al. 2011, Ortiz et al. 2018, MacNeil et al. 2019). For
example MacNeil et al (2019 — Appendix 9.7) determined the negative effect size of individual
disturbances (cyclones, bleaching, COTS, disease) on coral growth and disturbance recovery
and how these interacted with poor water quality. This research showed that while poor water
quality may offer some resistance to bleaching, it reduces the recovery rate and makes reefs
more prone to oubtreaks of COTS and coral disease. Recovery rates on the GBR have also been
reduced as a result of the cumulative effect of chronic stressors (warming, water quality) and
acute disturbance events (Ortiz et al, 2018). These studies are however limited in their spatial
scope, focusing on reefs for which extensive time series ecological data exists (Sweatman et
al. 2008). In order to understand the effects of multiple disturbances on the GBR, datasets that

catalogue the disturbance history and abiotic context for every reef (Matthews et al. 2019 -
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Chapter 2) are required as a platform for regional scale simulation modelling to both recreate

the history (Mellin et al. 2019a - Chapters 5,6) and predict the uncertain futures for the GBR.

On the GBR, there are extensive data repositories for observational and modelled ecological,

biogeochemical and hydrodynamic data (e.g eAtlas: https://eatlas.org.au/, eReefs:

https://research.csiro.au/ereefs/, Eye on the Reef: http://www.gbrmpa.gov.au/eye-on-the-reef/,

Coral Reef  Watch: https://coralreefwatch.noaa.gov/satellite/product overview.php).

Groundbreaking studies and monitoring programs have provided large scale estimates for the
most common disturbances to the GBR such as cyclones (Puotinen et al. 2016) thermal stress
(Heron et al. 2016, Liu et al. 2017), bleaching (Berkelmans et al. 2004, Hughes et al. 2018b)
and outbreaks of COTS (Sweatman et al. 2008), as well as characterizing environmental
conditions (Huang et al. 2013). These data however have remained siloed and have yet to be
compiled and distributed on a standardized grid. Chapter 2 of this thesis collated these data as
a platform for regional-scale modelling of the GBR (Chapters 4-6). The aim of this endeavour
was not only to collate the data necessary for the modelling of later chapters, but for the use of
the wider research community to promote collaboration and reduce the duplication of effort of
working groups working on related goals. The dataset has been used as the disturbance history
and abiotic context in studies determining the coral growth and recovery rates for GBR reefs
(MacNeil et al. 2019), the spatial resilience of the GBR (Mellin et al. 2019a - Chapter 5),
proposing adaptive monitoring networks for the GBR (Thilan et al. 2019), and also as elements
of the Reef 2050 Integrated Monitoring and Reporting Program (GBRMPA and Queensland

Government 2015).

Management on the GBR has become increasingly focused upon developing monitoring,
reporting and modelling tools that that make use of the extensive empirical and modelled data
that exists for the GBR (GBRMPA 2017, GBMRPA and Queensland Government 2018). It is
important to ensure that these data do not become divided among research institutes and
management agencies, but are easily transferred and integrated into spatial and analytical
databases available to management agencies and researchers alike. Chapter 2 works towards

this goal by collating data from multiple researchers, government agencies and existing
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databases and providing data on a standard grid. However, in order to realize the goals of
integrated monitoring and reporting programs, the production of these datasets should be
partially automated to ensure estimates are up to date and does not rely on individual
researchers processing data and providing it to a central organisation. For example, production
of the COTS disturbance layers and Degree Heating Week data of Chapter 2 could be easily
integrated into a larger reporting program as they rely on readily available data (Sweatman et
al. 2008, Liu et al. 2017) and relatively simple R scripts for processing. While generating
cyclonic wave estimates (Puotinen et al. 2016) and bleaching severity indices (Berkelmans et
al. 2004, Hughes et al. 2017b) require more intensive modelling and field work respectively, it
Is important that these datasets are made widely available and incorporated into automated
systems where possible. The production of standardized, centralized and freely available
datasets is integral to reducing the duplication of effort, enhancing the productivity of, and
collaboration between the research and management communities, and ensuring that research
is conducted in a reproducible and consistent manner. Working towards these goals should be

a key focus for management and researchers on the GBR in the coming years.

7.2 Adaptive management tools for data synthesis, analysis and

visualisation

Of the major causes of coral loss on the GBR, outbreaks of COTS are the most amenable to
direct intervention (De’ath et al. 2012, Westcott and Fletcher 2018) and have thus, been the
focus of one the most extensive control programs in marine ecosystems (GBRMPA 2018a,
Pratchett et al. 2018). The Great Barrier Reef Marine Park Authority (GBRMPA) coordinates
the COTS Control Program which has been operating teams of divers on two vessels since
2012, with that effort increasing threefold as of November 2018. Aside from culling adult
COTS, this program contributes extensive data from extensive manta tow surveys, Reef Health
Impact Surveys (RHIS) and culling data across the GBR (GBRMPA 2018a). The Great Barrier
Reef Marine Park Authority (GBRMPA) collects COTS and coral data through the joint Field
Management Program (FMP) - Queensland Parks and Wildlife Services (QPWS) COTS
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Response Program which has collected extensive manta tow (Bass and Miller 1996) and RHIS
data (Beeden et al. 2014) since 2011, and the Eye on the Reef (E0oTR) program which collects
RHIS data through numerous tourism and local stakeholder groups. Overall GBRMPA collects
data from over 10,000 individual surveys annually across the different programs (Chapter 3).
While systems exist for the storage and maintenance of such data, there has yet been an attempt
to synthesise all the available COTS observation data to provide a visualisation and analytical
platform to aid in the adaptive management of COTS on the GBR. Importantly, the
development of such analytical tools have been identified by GBRMPA as key priorities in the
development of the planned Reef 2050 Integrated Monitoring and Reporting Program (Hedge
et al. 2017, GBMRPA and Queensland Government 2018)

Advances in newly emerging Bl software (e.g Microsoft Power BI) (Larson and Chang 2016)
provide an opportunity for conservation interventions to leverage this innovation and aid in the
implementation of adaptive management strategies. Chapter 3 of this thesis utilised the
extensive ecological data collected by the GBRMPA and its partners to build an interactive
visualisation and analytics platform for COTS, as the agency moves towards developing
integrated monitoring and reporting tools (GBMRPA and Queensland Government 2018). The
COTS Dashboard specifically aimed to address key elements of the adaptive management
cycle by providing visualisations to (1) assess the extent and severity of outbreaks across the
GBR; (2) track the implementation of management actions; (3) monitor and evaluate the
progress made towards achieving ecological goals of the program and (4) provide engaging
visualisation and flexible data summaries as tools for stakeholder engagement. Importantly, the
Power BI platform is highly flexible, meaning that desired changes to the interface design,
analysis or visual representation can be made rapidly, promoting the adaptive management
ethos (Schreiber et al. 2004, Dobbs et al. 2011). Furthermore as the Dashboard was developed
using Microsoft’s Power Bl, it does not require expert computer programming skills for further
development and there is reduced risk that the software will stop being supported, which are
common concerns with many decision support tools (Pinarbasli et al. 2017). Indeed, tools such

as the COTS Dashboard, characterized here as Conservation Intelligence (Cl) tools should be
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considered as important components to conservation interventions, particularly in date rich

environments such as the GBR.

In the specific context of COTS outbreaks on the GBR, the COTS Dashboard is the first tool
to synthesise the available observation data for COTS allowing these multiple disparate streams
of data to be interrogated simultaneously. This is an important first step in understanding the
complex spatial and temporal patterns of COTS data. Importantly, the flexible nature of the
platform and interoperability with more advanced statistical platforms such as R and Python
provides scope to incorporate more complex modelling and prediction into the platform (see
Chapters 4-6). Moreover, this research provides an important proof-of-concept of the utility of
such tools as the GBRMPA and conservation organisations more broadly look toward
developing integrated monitoring and reporting platforms for data driven adaptive management
(Stephenson et al. 2015, Weatherdon et al. 2017, GBMRPA and Queensland Government
2018).

7.3 Competing causes of crown-of-thorns starfish outbreaks on
the GBR

COTS have been one of the most studied coral reef organisms, and there is a long history of
research aiming to identify the underlying causes of, and contributors to, COTS outbreaks, yet
several key knowledge gaps persist (Endean 1969, Birkeland 1982, Pratchett et al. 2017a). This
research has focused on four primary areas: (1) identifying the life history characteristics of
COTS that make them susceptible to boom-bust outbreak dynamics (Vine 1973, Uthicke et al.
2009, Babcock et al. 2016b); (2) the anthropogenic influence of the removal of predatory
regulation of COTS populations via over-harvesting of natural predators (Endean 1969,
Sweatman 2008, Cowan et al. 2017a); (3) the enhanced larval survival as a result of terrestrial
runoff and elevated nutrient levels into the GBR lagoon (Birkeland 1982, Brodie et al. 2005);
and (4) the role of hydrodynamics in retention versus dispersal of COTS larvae at the scale of
individual reefs (Dight et al. 1990a, 1990b, Hock et al. 2014). While research has been

relatively thorough for each of these lines of enquiry (Pratchett et al. 2017a), it has become
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increasingly apparent that these factors act interactively (Wooldridge and Brodie 2015,
Babcock et al. 2016a), and that single-factor hypotheses cannot explain the complex spatial

and temporal patterns of COTS outbreaks.

While some recent research has compared these complementary hypotheses from a theoretical
perspective (Babcock et al. 2016a), there has yet been an attempt to use the extensive
observation data available (Sweatman et al. 2008, Chapter 3) to identify the most important
variables for predicting COTS spatial distribution. Chapter 4 of this thesis created a species
distribution model (SDM) for COTS presence, prevalence and outbreaks using an extensive
dataset of environmental variables (Matthews et al. 2019 - Chapter 2) and COTS observation
data (Chapter 3) in an ensemble framework comprising boosted regression trees (BRT) and
generalized additive mixed models (GAMM). This model confirmed the importance of water
quality indicators (e.g. chlorophyll concentrations, flood plume exposure) as well as suggesting
the importance of temperature gradients in predicting patterns of COTS presence (Lamare et
al. 2014, Hardy et al. 2014, Uthicke et al. 2015b). In contrast, our results suggested that
sustained larval supply from reefs with COTS was required to establish more severe and/or
prevalent outbreaks. Interestingly, these results showed no strong influence of no-take fishing
zones in predicting COTS spatial distribution, yet was slightly more influential for predicting
outbreaks. While this finding is contrary to some contemporary thinking (Sweatman 2008,
Vanhatalo et al. 2017), these other studies looked primarily at the influence of zoning and did
not account for other factors. Importantly these results also provide the first validated estimated
of COTS presence, prevalence and outbreak potential across the GBR and provide a useful tool

for managers to refine the selection process for prioritizing reefs for COTS control.

As the COTS control program expands and there is increasing spatial and temporal coverage
in COTS observation data (see Chapter 3), there is scope to use this modelling framework to
provide temporally explicit estimates of the distribution and abundance of COTS. Additionally,
this approach may be used to identify the different drivers of primary and secondary outbreaks
of COTS. This could provide a way to identify the reefs most likely to experience the gradual

build-up of COTS that will initiate the next outbreak cycles. Developing such predictive
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frameworks, and integrating them into analytical platforms such as those presented in Chapter
3 is an important step in improving the adaptive management of COTS on the GBR and

protecting the remaining coral cover.

7.4 Spatially and temporally explicit simulation modelling for
COTS and coral on the GBR

On the GBR there has been increased awareness of the importance of cumulative disturbance
on coral reefs (Ortiz et al. 2018, Mellin et al. 2019 - Chapter 5), combined with improved
modelling and the collation of the disturbance history of the GBR (Matthews et al. 2019). With
this increase in the availability of the necessary data alongside increase of computing power,
there has also been a resurgence in the generation of regional scale ecological models for the
GBR (Hock et al. 2017, Condie et al. 2018, Mellin et al. 2019a). These models have generally
aimed to address three interwoven questions; (1) can we determine the recovery rate of coral
reefs and the effects of interacting disturbances (Ortiz et al. 2018, MacNeil et al. 2019); (2) can
we use hydrodynamic modelling to identify which reefs are the most influential in terms of
spreading COTS outbreaks and/or replenishing degraded reefs through the provision of coral
larvae (Hock et al. 2014, 2017); (3) can we recreate the historical trends in coral cover and
COTS outbreaks for the GBR (Condie et al. 2018, Mellin et al. 2019 - Chapter 5, Chapter 6).
It is important that these lines of research are consolidated into cohesive modelling frameworks

that can be applied across the GBR.

Chapter 5 of this thesis uses the predictions of coral growth rate, disturbance response and
recovery rate of MacNeil et al. (2015) to predict the growth, disturbance and spatial resilience
of GBR reefs in a spatially and temporally explicit fashion. This research recreates the
trajectories of coral cover and disturbance which are extrapolated to all reefs on the GBR,
providing the first validated estimates of spatial resilience, and importantly the first GBR-wide
model for coral growth, disturbance and recovery at a 1km resolution. This research confirms
the role that reduced water quality plays in undermining the resilience of coral reefs (Wenger

et al. 2016, MacNeil et al. 2019), and provides the first high resolution spatial predictions of
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resilience. Most importantly, this research provides a simulation modelling framework that
accounts for the spatially explicit disturbance history, abiotic conditions, water quality, coral
community composition and coral growth predictions. This framework could be extended to
incorporate larval connectivity estimates creating a coupled COTS-Coral metacommunity

model for the GBR (Chapter 6).

Within the context of declining coral cover on the GBR, and the urgent need for effective
interventions, there has been renewed interest in increasing efficiency of the COTS control
program (Fletcher et al. in prep., Westcott et al. 2016, GBRMPA 2017). However, one of the
major limitations is the lack of a validated simulation model that can make predictions about
the spatial distribution and abundance of COTS. During the last wave of COTS outbreaks,
significant advances were made in developing population models for COTS, modelling larval
connectivity (Dight et al. 1990a, 1990b) and developing the first metapopulation models for
the GBR (Mccallum 1990, Scandol and James 1992, Scandol 1999). However, limited
computing power meant that a limited number of reefs (<300) and coarse spatial resolutions
(>10km) were necessary. With rapid advances in the hydrodynamic modelling of the GBR
(Hock et al. 2014, Thomas et al. 2014, CSIRO 2019) and computing power available to run
simulation models, there has been renewed interest in developing simulation models for COTS
outbreaks on the GBR. Chapter 6 of this thesis combines the coral growth and recovery model
of chapter 5 with contemporary understanding of COTS demography (Pratchett et al. 2014),
larval survival (Fabricius et al. 2010, Wolfe et al. 2017, Pratchett et al. 2017b) and larval
connectivity estimates (Hock et al. 2014, 2017) to produce a metacommunity model framework
for COTS-Coral on the GBR for 1996-2017. This model estimates a time series of chlorophyll
concentrations using the relationship ENSO cycles to help drive outbreak patterns in COTS.
Importantly, this novel approach is able to recreate general trajectories and timings of COTS

outbreaks and the associated loss of coral cover. However, the model was not able to reproduce
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the extreme densities of some secondary outbreaks, particularly in the Swains/Townsville

regions.

Improvements to the model structure could be made to improve predictions such as
incorporating regional estimates of carrying capacity or using available estimates of coral
community composition (Mellin et al. 2019 — Chapter 5) to redefine thresholds at which COTS
populations collapse. This approach would accommodate the role of preferred prey availability
for COTS (Acropora spp.) (Pratchett 2007) in promoting severe COTS outbreaks, primarily
due to the increased fecundity of adults (Caballes et al. 2016) and viability of larvae (Caballes
et al. 2017a). Improved estimates of inter-annual variability of COTS larval connectivity may
also help to improve the model fit to empirical time series data, as they have been suggested to
be crucially important to the initiation of COTS outbreaks. Additionally, laboratory and
modelling research has indicated the importance of temperature gradients in survival of COTS
larvae (Lamare et al. 2014, Uthicke et al. 2015b) and the spatial distribution of outbreaks
respectively (Chapter 4) and thus, incorporating a temperature component to this model could
improve predictions. Importantly, this modelling framework is the first high resolution
temporally and spatially explicit simulation model for COTS outbreaks across the GBR, and
provides a platform for simulating the effect of a range of proposed management strategies and

emerging technologies for COTS control on the GBR.

7.5 Future directions and management implications

The overall objective of this thesis was to provide a range of modelling, visualization and
predictive tools for the management of COTS outbreaks within the cumulative disturbance
context of the GBR. The development of the COTS Dashboard (Chapter 3) and the CI approach
to adaptive management are promising, but could benefit from further improvements. For
example the tool, still relies upon some manual upload of data, which could be automated.
Furthermore, one of the main objectives of adaptive management is to foster stakeholder
engagement which could be further promoted by providing external access to the COTS

Dashboard. Developments of GBRMPA’s Reef 2050 Integrated Monitoring and Reporting
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Program (GBRMPA and Queensland Government 2018) will provide the infrastructure
required to both fully automate the Dashboard and provide access to stakeholder groups.
Moreover, future development of the modelling frameworks presented in Chapters 4-6 could
be integrated into interactive visualisation and analytical tools such as the COTS Dashboard.
Such integration could provide enhanced capabilities to make adaptive data driven decisions
in terms of prioritizing reefs for culling action or perhaps identifying resilient reefs for
enhanced protection. Additionally, integrating these more complex modelling frameworks with
easy-to-use interfaces would promote a deeper understanding of the modelling process and

appreciation of the associated uncertainty.

Importantly, the modelling frameworks developed in Chapters 4-6 here should continue to be
improved by increasing the spatiotemporal resolution of estimates of and understanding of
important drivers of COTS distribution. Chapter 6 developed a novel approach to generating
time series data for Chlorophyll-a, but this approach could be expanded to predict time series
for other variables identified in Chapter 4 as important predictors of COTS outbreaks, namely
larval connectivity and temperature. Importantly, continued improvements to hydrodynamic
and biogeochemical models to create longer time-series at finer resolutions (1km) are essential
to improve the accuracy of regional-scale models such as those presented in Chapters 4-6.
There also remains a significant gap in understanding surrounding larval predation rates and
early life stage mortality of COTS (Pratchett et al. 2017a), to which our model was most
sensitive. Future research in this field is essential to reduce model uncertainties and to

understand outbreak dynamics.

Results from this thesis highlighted that both water quality and larval connectivity were integral
in predicting the spatio-temporal patterns of COTS outbreaks. Importantly, this supports
previous hypotheses (Birkeland 1982, Hock et al. 2014, Wooldridge and Brodie 2015) and
presents a number of potential management avenues. While ambitious targets for water quality
improvements have been set out by the federal and state government (Queensland Government
2018) there is mounting evidence that these goals are unlikely to be met with current measures

(Waterhouse et al. 2017) and thus more action is required to improve water quality and reduce
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the impact of COTS outbreaks. While larval connectivity cannot be reduced via interventions,
the hydrodynamic conditions can be monitored. Ideally existing outputs from hydrodynamic
and biogeochemical models coupled with metacommunity (Chapter 6) or distribution models
(Chapter 4) could be used to identify the reefs immediately at risk of outbreaks, define
prioritization schedules for culling and develop a dedicated early warning system for the
development of primary outbreaks. Development of these systems should draw upon important
emerging technologies such as early detection of outbreaks via eDNA (Uthicke et al. 2018) or
pheromones for aggregation (to make control easier) or dispersion (to decrease fertilisation
success) of populations (Hall et al. 2017a). Simulating the effect of management interventions
will allow us to identify which (if any) combination of management interventions may be able
to stall or diminish the next cycle of COTS outbreaks. In particular, there is a need to be more
strategic in the spatial and temporal allocation of management effort, especially given limited
resources (Pratchett and Cumming 2019). This thesis builds upon foundational research in this
field and provides the necessary tools for improved COTS management and a platform for

future development of integrated analytical and simulation tools for the GBR.
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9 Appendix

9.1 Chapter 2 Supplementary Information

Table S 9.1 Identification variables for each of the 15,928 pixels, produced either through GIS software or from
definitions given by AIMS (Miller et al. 2009a) or GBRMPA (Great Barrier Reef Marine Park Authority 2001)
Reefs are defined by cross shelf location as “inner”, “middle”, or “outer” as well as they latitudinal sector (Fig
S3) Coordinates are defined by the WGS84 Coordinate reference system (EPSG:4326) in decimal degrees.

Column Name Source

Variable Definition

Unit

PIXEL_ID GIS

Unique Grid Cell ID

N/A

X Latitude Decimal Degrees
Y Longitude Decimal Degrees
REEF_ID GBRMPA Reef Level ID Character
REEF_NAME GBRMPA Common Reef Name Character

SECTOR AIMS

Latitudinal Sector
(See Fig S1)

Cape Grenville “CG”; Prince
Charlotte Bay “PC”;
Cooktown/Lizard Island “CL”;
Cairns “CA”; Innisfail “IN”;
Townsville “TO”; Cape Upstart
“CU”;  Whitsundays “WH?”;
Pompeys “PO”; Swains “SW”;
Capricorn Bunker “CB”

SHELF AIMS

Cross-shelf location

Inner “I”; Middle “M”; Outer
“O”
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Table S 9.2 Environmental and spatial variables available at a 0.01° spatial resolution for the Great Barrier Reef,
comprising the Australia with mean = annual mean levels at the seabed (CARS/GA/ MTSRF/MARS/GEOMACS
varaibales) or at the surface (SW/MT variables), seasonal range = a measure of seasonal variability, CARS =
CSIRO (Australian Commonwealth Scientific and Industrial Research Organisation) Atlas of Regional Seas
(Condie & Dunn, 2006), GA = Geoscience Australia (see Webster & Petkovic, 2005 for original bathymetry
dataset), MTSRF = Marine and Tropical Sciences Research Facility (Beaman 2010), MARS = MARine Sediment
database (Mathews et al. 2007), GEOMACS = GEological and Oceanographic Model of Australia’s Continental
Shelf (Hemer, 2006), SeaWiFS = Sea-viewing Wide Field-of-view Sensor (NASA/Goddard Space Flight Center
and Orbimage; e.g., Condie & Dunn, 2006), MT = Modis Terra (NASA). K490 is the diffuse attenuation
coefficient at wavelength 490nm. Benthic Irradiance (BIR) is estimated from monthly surface photosynthetically

active radiation (PAR; Modis) and K490 (SeaWiFS): PAR*exp(-K490*depth) (Kirk 1996).

Column Name Source Ref.Code Variable Type Unit
Definition

CRS_NO3_AV CARS 1-4 Nitrate mean uM
CRS_NO3_SR seasonal

range
CRS_02_ AV Oxygen mean mL.L*?
CRS 02 SR seasonal

range
CRS PO4_AV Phosphate mean uM
CRS PO4_SR seasonal

range
CRS S AV Salinity mean PSU
CRS S SR seasonal

range
CRS_SI_AV Silicate mean uM
CRS_SI_SR seasonal

range
CRS_T_AV Temperature mean °C
CRS T SR seasonal

range
GA_BATHY GA 1,5-6 Depth mean m
GA_SLOPE Slope Degree of ©

slope of

seabed
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GA_ASPECT Aspect Degree °
aspect  of
slope

GBR_BATHY MTSRF 7 Depth mean m

GA _CBRNT GA/MAR 1, 8-9 Carbonate mean %

S sediments
GA_GRAVEL Gravel (@ > 2 mean %
mm)
GA_SAND Sand (63 um<@ mean %
<2 mm)

GA_MUD Mud (@ < 63 mean %

pum)

GMCS_STRESS GA/GEO 1,10 Bed shear stress  Trimmed Pa

_TMN MACS mean

GMCS_STRESS Interquartile Pa

_IQR range

SW_CHLA_AV SeaWiFS 1,11-12 Chlorophyll a mean mg.m3

SW_CHLA SR seasonal
range

SW_K490_AV 1,13-14 K490 mean m?

(Turbidity)

SW_K490 SR seasonal
range

SW_BIR_AV SeaWiFS 1,25 Benthic mean Einsteins

Irradiance m2.day!

SW_BIR_SR seasonal
range

MT_SST_AV Modis 1,15 Sea surface mean °C

Terra temperature
(NASA)

MT_SST_SR seasonal
range

MT_SST_MIN min
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mindistbar ArcGIS 16 Distance to the Minimum °
coast
mindistcoa Distance to the Minimum °
barrier reef
Primary (Devlinet 17,18 Primary  flood Frequency 0-1
(representing al. 2012a, plume frequency
turbid , sediment Alvarez- (weeks
dominated Romero occurred/total
plume) et al. weeks)  during
2013) wet season (max
= 26)
Secondary Secondary flood Frequency  0-1
(representing plume
chlorophyll
dominated
plume)
Tertiary Tertiary  flood Frequency  0-1
(representing plume
further extent of
plume, as
delineated by
salinity less than
34ppt)
Matthews — December 2019 205



Modelling tools to support the management of crown-of-thorns starfish (Acanthaster cf. solaris) on Australia’s

Great Barrier Reef

Table S 9.3 Reference guide for Table S 9.2

Ref.No

Citation

Huang, Z., Brooke, B., Whitta, N., Potter, A., Fuller, M., Dunn, J., and Pitcher,
C. Roland (2010). Australian marine physical environmental data—descriptions
and metadata. Geoscience Australia Record 2010/32. Geoscience Australia,
Canberra, 141pp

Ridgway, K. R., J. R. Dunn, and J. L. Wilkin. 2002. Ocean interpolation by four-
dimensional weighted least squares - Application to the waters around
Australasia. Journal of Atmospheric and Oceanic Technology 19:1357-1375.

Condie, S. A., and J. R. Dunn. 2006. Seasonal characteristics of the surface mixed
layer in the Australasian region: Implications for primary production regimes and
biogeography. Marine and Freshwater Research 57:569-590.

Dunn, J. R. 2009. CSIRO Atlas of Regional Seas (CARS) Database.
http://www.marine.csiro.au/~dunn/cars2009/.

Whiteway, T. 2009. Australian bathymetry and topography grid.
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_67703.

Whiteway, T. 2009. Australian bathymetry and topography grid. Geoscience
Australia Record 2009/21.

Beaman, R. 2010. 3DGBR: A high-resolution depth model for the Great Barrier
Reef and Coral Sea. Marine and Tropical Sciences Facility (MTSRF) Project.

Mathews, E., A. Heap, and M. Woods. 2007. Inter-reefal seabed sediments and
geomorphology of the Great Barrier Reef: A spatial analysis. Geoscience
Australia Record 2007/09:140pp.

MARS (MARIine Sediment) Database. 2011.
http://www.ga.gov.au/oracle/mars/index.jsp.

10

Hemer, M. A. 2006. The magnitude and frequency of combined flow bed shear
stress as a measure of exposure on the Australian continental shelf. Continental
Shelf Research 26:1258-1280.

11

O’Reilly, J. E., S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A.
Garver, M. Kahru, and C. McClain. 1998. Ocean color chlorophyll algorithms for
SeaWiIFS. Journal of Geophysical Research: Oceans 103:24937-24953.

12

Huang, Z. 2013. MODIS derived Chlorophyll a  datasets.
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_77004.

13

Werdell, P. J. 2005. OceanColor K490 algorithm evaluation.
https://oceancolor.gsfc.nasa.gov/reprocessing/r2005.1/seawifs/k490 update/.
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14

Huang, Z. 2013. MODIS derived K490 datasets. http://www.ga.gov.au/metadata-
gateway/metadata/record/gcat_77007.

15

Huang, Z. 2013. MODIS derived Sea Surface Temperature (SST) datasets.
http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_77009.

16

Mellin, C., C. J. a Bradshaw, M. G. Meekan, and M. J. Caley. 2010.
Environmental and spatial predictors of species richness and abundance in coral
reef fishes. Global Ecology and Biogeography 19:212-222.

17

Devlin, M. J., L. W. McKinna, J. G. Alvarez-Romero, C. Petus, B. Abott, P.
Harkness, and J. Brodie. 2012. Mapping the pollutants in surface riverine flood
plume waters in the Great Barrier Reef, Australia. Marine Pollution Bulletin
65:224-235.

18

Alvarez-romero, J. G., M. Devlin, E. Teixeira, C. Petus, N. C. Ban, R. L. Pressey,
J. Kool, J. J. Roberts, S. Cerdeira-estrada, A. S. Wenger, and J. Brodie. 2013. A
novel approach to model exposure of coastal-marine ecosystems to riverine fl ood
plumes based on remote sensing techniques. Journal of Environmental
Management 119:194-207.

19

https://coralreefwatch.noaa.gov/satellite/coraltemp.php

20

Berkelmans, R., G. De’ath, S. Kininmonth, and W. J. Skirving. 2004. A
comparison of the 1998 and 2002 coral bleaching events on the Great Barrier
Reef: spatial correlation, patterns, and predictions. Coral Reefs 23:74-83.

21

Hughes, T. P.,J. T. Kerry, and T. Simpson. 2018. Large-scale bleaching of corals
on the Great Barrier Reef. Ecology 99:501-501.

22

Puotinen, M., J. A. Maynard, R. Beeden, B. Radford, and G. J. Williams. 2016.
A robust operational model for predicting where tropical cyclone waves damage
coral reefs. Scientific Reports 6:26009.

23

Miller, I. R., M. Jonker, and G. Coleman. 2009. Crown-of-thorns starfish and
coral surveys using the manta tow and SCUBA search techniques. Long-term
Monitoring of the Great Barrier Reef Standard Operation Procedure Number 9
Edition 3. Page Standard Operation Procedure, AIMS.

24

Sequeira, A. M. M., C. Mellin, H. M. Lozano-Montes, M. A. Vanderklift, R. C.
Babcock, M. D. E. Haywood, J. J. Meeuwig, and M. J. Caley. 2016.
Transferability of predictive models of coral reef fish species richness. Journal of
Applied Ecology 53:64-72.
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Table S 9.4 Column properties for DegreeHeatingWeek_data: Annual maximum Degree Heating Weeks (DHW)

Column name Ref.Code Variable definition Units
PIXEL_ID Unique Grid Cell ID N/A

lon Longitude °

lat Latitude °
REEF_ID Reef Level ID N/A
annMaxDHW _1985 19 Thermal stress exposure °C-week
annMaxDHW _1986 19 Thermal stress exposure °C-week
annMaxDHW _2017 19 Thermal stress exposure °C-week

Table S 9.5 Column properties for Bleaching_data_98_02_16.csv: Interpolated values of aerial bleaching scores,
0 (<1% bleached), 1 (1-10% bleached), 2 (10-30% bleached), 3 (30-60% bleached), and 4 (>60% bleached).

Column name  Ref.Code Variable definition Units
PIXEL_ID Unique Grid Cell ID N/A
lon Longitude °

lat Latitude °
REEF_ID Reef Level ID N/A
bleach 1998 20 Aerial survey score 1-4
bleach_2002 20 Aerial survey score 1-4
bleach_2016 21 Aerial survey score 1-4
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Table S 9.6 Column properties for Cyclones_data.csv: Number of hours exposed to waves >4m height/year
(4MW)

Column name  Ref.Code Variable definition Units
PIXEL_ID Unique Grid Cell ID N/A
lon Longitude °

lat Latitude °
REEF_ID Reef Level ID N/A
HsdMW _1985 22 wave exposure Hours
Hs4AMW 1986 22 wave exposure Hours
HsaMW 2017 22 wave exposure Hours

Table S 9.7 Column properties for COTS_data.csv: Interpolated A. cf. solaris density per manta tow (A. cf.
solaris.manta tow-1)

Column name  Ref.Code Variable definition Units

PIXEL_ID Unique Grid Cell ID N/A

lon Longitude °

lat Latitude °

REEF_ID Reef Level ID N/A

COTS_1985 23 Interpolated COTS COTS.manta tow
density

COTS_1986 23 Interpolated COTS COTS.manta tow
density

COTS_2017 23 Interpolated COTS COTS.manta tow
density
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9.2 Chapter 4 Supplementary Information
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Figure S 9.1 Coral community estimates derived from Mellin et al. (2019). Coral communities represent (1) Outer
shelf, soft coral dominated; (2) Outer shelf, digitate coral dominated; (3) Outer shelf, tabulate coral dominated;
(4) Middle shelf, mixed community; (5) Inner shelf, Porites dominated and (6) Inner shelf, macroalgae dominated

210 Matthews - December 2019



Ch. 9. Appendix

(
(
(

o
oo - 3] 0 ¢ 2
25 a8 g8 ¢ee°g5 3.
> O o © © o o o ©o o @
3]
% X X 8 B N § 2 %
o = o o O o o o §
9
.1 : I
= 8 m O o
© M N ¥ N n 3
ok = e - c ¢ NN
m
0]
. \,
N o N N 9
(3} ™ m < 3]
<Q @ © G .
5 b
o § ) o 5 ‘ A
Q ® N ™ l%‘
o < o o 2
s oz NN
() A
- _— - (-D
T S
2 - 5
|
o A -
> \| \
[s0] N o ]
3 < n ™ g =
Q Q@ 9 o 3
- » N
o N\ N\ \
= 5
© = E
= ‘-l' E.
o A
= ¢ N
) Y
ul
= K k
z ! L
o o o $
v © v ¢
. @
’ S /

\

~n
23

0.38

7

(/.
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positive.

L/

-0.58
edHCmaxme:

2

0.26

0

RS_NO3_A\V

Matthews — December 2019 211



Modelling tools to support the management of crown-of-thorns starfish (Acanthaster cf. solaris) on Australia’s
Great Barrier Reef

40
2
S 301
©
c
Q
a
e) 20 1
“—
o
—
[0
Q0
€ 10+
=
>

0-

0.00 025 0.50 0.75 1.00
Prevalence

Figure S 9.3 Histogram of prevalence values (maximum proportion of manta tows in which COTS were observed)
across all calibration data, excluding zero value.
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Figure S 9.4 Bayesian parameter estimates from a Gompertz-based mechanistic model

of coral cover growth among AIMS long-term monitoring program (AIMS LTMP) reefs (n=46) on the Great
Barrier Reef (GBR). A) Posterior distribution of intrinsic rate of increase (r) among benthic communities; B)
median predicted recovery trajectories from 10% initial cover for GBR benthic communities, in the absence of
coral loss from disturbance; C) scatterplot of joint posterior samples for model r (intrinsic rate of increase) and a
(density dependence) Gompertz-based coral model parameters, where axis labels in A) and D) apply; D) posterior
distribution of a among benthic communities; and E) posterior effect size plot for Gompertz-based coral model
covariate parameters, including posterior medians (circle), 50% uncertainty intervals (thick line), and 95%
uncertainty intervals (thin line), with grey dots indicating parameters where the 95% Ul overlaps zero, and black
dots where they do not. Benthic communities are coded as 1 (Out- Soft): Outer shelf communities characterized
by soft corals; 2 (Out- Digit): Outer shelf communities characterized by Acropora digitate (among others); 3 (Out-
tab): Outer shelf communities characterized by Acropora tabular (among others); 4 (Mid- mixed): mid shelf mixed
communities; 5 (In- Porites): inner shelf communities characterized by Porites (among others); 6 (In-MA): inner
shelf communities characterized by macroalgae (among others).
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Figure S 9.5 Multivariate regression tree of benthic communities. Left: six benthic communities were defined by
splitting all survey reefs (N = 110) based on environmental predictors. Numbers represent the proportion of each
community on the GBR (%) and corresponding indicator taxa. Right: Map of survey reefs and corresponding
benthic communities. With mindistbar: minimum distance to the barrier reef edge, CRS_0O2_SR: seasonal range
in seabed oxygen concentration, CRS_T_SR: seasonal range in seabed temperature, MT_SST_SR: seasonal range
in sea surface temperature, GA_CRBNT: % carbonate sediments, Out- Soft: Outer shelf communities
characterized by soft corals; Out- Digit: Outer shelf communities characterized by Acropora digitate (among
others); Out- tab: Outer shelf communities characterized by Acropora tabular (among others); Mid- mixed: mid
shelf mixed communities; In- Porites: inner shelf communities characterized by Porites (among others); In-MA:
inner shelf communities characterized by macroalgae (among others).
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Figure S 9.6 Boosted regression trees of initial and maximum coral cover. Top: predicted spatial patterns in initial
(A) and maximum (B) coral cover. Dots represent observed values for survey reefs used for model calibration.
The insert shows the relationship between manta observations and BRT predictions for initial (grey) and
maximum (black) coral cover. The dashed areas indicate lower confidence in model predictions due to
extrapolation. Bottom: Partial effects for boosted regression trees predicting initial coral cover (C) and maximum
coral cover (D). The relative importance of each predictor (%) is indicated in brackets. With CYCLONES_8595:
total duration of destructive waves (>4m)
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Figure S 9.7 Distribution of disturbance impacts, water quality and coral growth rate on reefs within or outside
no-take marine protected areas. With PFc: frequency of river plume conditions and rs: coral intrinsic growth rate.
The white dot indicates the median, the vertical black bar the interquartile range, and plot width represents the
proportion of all reefs. The red dot indicates the mean, with closed dots showing significantly different means
between open and closed (i.e. no-take) reef areas (Kruskal-Wallis test, P < 0.001).
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Figure S 9.8 Model uncertainty. Uncertainty is expressed as the coefficient of variation (CV; %) in model
predictions among a total of 1,000 simulations. Dots show reefs surveyed by the long-term monitoring program
used for calibrating the Gompertz model. The dashed areas indicate lower confidence in model predictions due to

extrapolation.
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Figure S 9.9 Sensitivity analysis. (A) Boosted regression tree partial effects showing the relationship between
each model parameter and the extent of predicted coral decline across the Great Barrier Reef. The relative
importance (%) of each model parameter is indicated in brackets. (B) Scatter plot showing the mean extent of
predicted coral decline across the Great Barrier Reef (%) as a function of the mean coral growth rate (). (C)
Relative influence (%) of each model parameter on predicted coral decline across the Great Barrier Reef. (D)
Interactive effect of rg and initial coral cover (HCINI) on the extent of predicted coral decline. With cyclones:
total cyclone severity from 1996 to 2017, COTS: total density of crown-of-thorns starfish (Acanthaster cf. solaris)
from 1996 to 2017, bleach: total bleaching severity from 1996 to 2017, HCMAX: maximum coral cover from 1996
to 2017
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Table S 9.8 Environmental and spatial variables considered as candidate predictors and available at a 0.01° spatial resolution for the Great Barrier Reef, Australia. With mean
= annual mean levels, std dev = standard deviation in monthly mean levels, as a measure of seasonal variability, CARS = CSIRO (Australian Commonwealth Scientific and
Industrial Research Organisation) Atlas of Regional Seas (1), GA = Geoscience Australia (see Webster & Petkovic (2) for original multibeam bathymetry dataset), MARS =
MARine Sediment database (3), SeaWiFS = Sea-viewing Wide Field-of-view Sensor (NASA/Goddard Space Flight Center and Orbimage (1)). K490 is the diffuse attenuation
coefficient at wavelength 490 nm.

Variable Source Definition Type Unit Justification

CRS_NO3_ A CARS Nitrate mean uM Affects coral physiology, growth and calcification rates (4, 5)

v std dev

SR

CRS_PO4 A Phosphate mean uM Affects coral physiology, growth and calcification rates (4, 5)

v std dev

SR

CRS_02_AV Oxygen mean mL.Lt | Affects coral calcification rates (6); oxygen depletion characteristic of eutrophic
SR std dev conditions (4)

CRS_S_AV Salinity mean PSU Decreases with terrestrial runoff and freshwater input (4), influences coral
SR std dev calcification (7) and reproduction (8)

CRS T AV Seabed mean °C Influences metabolic rates; determines species distribution through thermal

SR temperature std dev tolerance thresholds (9)

MT_SST_AV | Modis Sea  surface mean °C Influences metabolic rates; determines species distribution through thermal

Terra temperature tolerance thresholds (9)
_SR (NASA) std dev
SW_CHL_AV SeaWIFS | Chlorophylla | mean mg.m=3  Quantifies primary productivity and eutrophic conditions affecting coral

ecophysiology (4)
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SR std dev
SW_K490_A K490 mean m Reflects light availability in support of photosynthesis (4)
\ (Turbidity) std dev
SR
GBR_BATH | MTSRF Depth mean m Determines light availability and co-varies with other variables (e.g. temperature,
Y salinity, nutrient availability) (10)
GA_CBRNT | GA/MAR | Carbonate mean % Increases available substrate and carrying capacity (10, 11)
S sediments
GA_SAND Sand (63 um < | mean % Decreases available substrate and carrying capacity (10, 11)
@ <2 mm)
mindistbar ArcGIS Distance to the ' Minimum  ° Provides a proxy for cross-shelf gradient shared among multiple environmental
barrier reef covariates (9, 10)
edge
mindistcoa Distance to the ' Minimum  ° Provides a proxy for cross-shelf gradient shared among multiple environmental
coast covariates (9, 10)
PFc Modis Flood plume | Frequency @ 0-1 Influences coral growth rate (12)
frequency
during wet
season
1. Condie SA & Dunn JR (2006) Seasonal characteristics of the surface mixed layer in the Australasian region: implications for primary

production regimes and biogeography. Marine and Freshwater research 57(6):569-590.
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2. Webster MA & Petkovic P (2005) Australian bathymetry and topography grAN, June 2005. Geoscience Australia Record, 2005/12, 12pp.
3. Mathews E, Heap A, & Woods M (2007) Inter-reefal seabed sediments and geomorphology of the Great Barrier Reef, a spatial analysis.
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Table S 9.9 Survey reefs and sample size used at each model development step. With MRT: multivariate regression trees; HLM: hierarchical linear model; BRT: boosted
regression trees; rs: intrinsic coral growth rate; HCini: initial coral cover; HCmax: maximum coral cover; AIMS LTMP: Long-term monitoring program; MMP: marine monitoring
program; RAP: representative areas program (see Methods for details).

Step

MRT (Benthic communities)
Bayesian HLM (rs)

BRT (rs)

BRT (HCini)

BRT (HCmax)

Out-of-sample validation of

predicted coral cover
trajectories

222

AIMS
LTMP

46
46
46
46

46

Manta | MMP | RAP | Rationale

62

62

10

17

Matthews - December 2019

45

Increase spatial coverage and representation of inshore reefs
Coral cover available at the transect level

Estimates from Bayesian HLM

Increase spatiotemporal coverage and sample size

Increase spatiotemporal coverage and sample size

Reefs not used for model calibration with available disturbance history
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Table S 9.10 Nino 3.4 Index used to predict chlorophyll concentrations between 1996-2017. The September
October-November (SON) values (Rayner et al. 2003) were used to model this relationship. Values coloured in

blue represent La Nifia periods and those in red represent El Nifio events

Year | DJF | JFM | FMA MA AM] [ M]] |JJA JAS | ASO | SON | OND | NDJ
1996 | -09 |-08 |-06 |-04 |-03 |(-03 |-03 |-03 |-04 |-04 |-04 |-05
1997 | -05 |-04 |-0.1 |03 0.8 1.2 1.6 1.9 2.1 2.3 2.4 2.4
1998 | 2.2 1.9 1.4 1 0.5 -01 (-08 |-11 |-13 |-14 |-15 |-1.6
1999 | -15 |-1.3 |-11 |-1 -1 -1 1.1 |-11 | -12 |-13 |-1.5 |-1.7
2000 |-1.7 |-14 |-11 |-08 |-0.7 |-06 |-06 |-0.5 |-05 |-06 |-0.7 |-0.7
2001 (-0.7 |-05 |-04 |-03 |-03 |-01 |-0.1 |(-01 |-0.2 |-03 |-03 |-03
2002 [ -01 | O 0.1 0.2 0.4 0.7 0.8 0.9 1 1.2 1.3 1.1
2003 | 0.9 0.6 0.4 0 -03 |-02 |01 0.2 0.3 0.3 0.4 0.4
2004 | 0.4 0.3 0.2 0.2 0.2 0.3 0.5 0.6 0.7 0.7 0.7 0.7
2005 | 0.6 0.6 0.4 0.4 0.3 0.1 -0.1 |-01 |-01 |-03 |-06 |-0.8
2006 | -08 |-0.7 |-05 |-03 |0 0 0.1 0.3 0.5 0.7 0.9 0.9
2007 | 0.7 0.3 0 -02 |-03 |-04 |-05 |-08 |-11 |-14 |-15 |-1.6
2008 | -16 |-14 |-1.2 |-09 |-08 |-05 |-04 |-03 |-03 |-04 |-0.6 |-0.7
2009 | -08 |-0.7 |-05 |-0.2 |01 0.4 0.5 0.5 0.7 1 1.3 1.6
2010 | 1.5 1.3 0.9 0.4 -0.1 |-06 |-1 -14 |-16 |-1.7 |-1.7 |-1.6
2011 |-14 |-11 |-08 |-06 |-05 |-04 |-05 |-0.7 |-09 |-11 |-11 |-1

2012 |-08 |-06 |-05 |-04 |-0.2 |O0.1 0.3 0.3 0.3 0.2 0 -0.2
2013 |-04 |-03 |-02 |-02 |-03 |-03 |-04 |-04 |-03 |-02 |-0.2 |-03
2014 | -04 |-04 |-0.2 |01 0.3 0.2 0.1 0 0.2 0.4 0.6 0.7
2015 | 0.6 0.6 0.6 0.8 1 1.2 1.5 1.8 2.1 2.4 2.5 2.6
2016 | 2.5 2.2 1.7 1 0.5 0 -03 |-06 |-0.7 |-0.7 |-0.7 |-0.6
2017 | -0.3 |-0.1 | 0.1 0.3 0.4 0.4 0.2 -0.1 (-04 |-0.7 |-09 |-1

2018 | -09 |-08 |-06 |-04 |-0.1 |O.1 0.1 0.2 0.4 0.7 0.9 0.8
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Abstract: The corallivorous crown-of-thorns starfish (Acanthaster spp.) is a major cause of coral
mortality on Indo-Pacific reefs. Despite considerable research into the biology of crown-of-thorns
starfish, our understanding of the early post-settlement life stage has been hindered by the small
size and cryptic nature of recently settled individuals. Most growth rates are derived from either
laboratory studies or field studies conducted in Fiji and Japan. The Great Barrier Reef (GBR) is
currently experiencing its fourth recorded outbreak and population models to inform the progression
of outbreaks lack critical growth rates of early life history stages. High numbers of 0+ year juveniles
(n = 3532) were measured during extensive surveys of 64 reefs on the northern GBR between May
and December 2015. An exponential growth model was fitted to the size measurement data to
estimate monthly ranges of growth rates for 0+ year juveniles. Estimated growth rates varied
considerably and increased with age (e.g., 0.028-0.041 mm-day~! for one-month-old juveniles versus
0.108-0.216 mm-day ! for twelve-month-old juveniles). This pioneering study of 0+ year juveniles
on the GBR will inform population models and form the basis for more rigorous ongoing research to
understand the fate of newly settled Acanthaster spp.

Keywords: juvenile crown-of-thorns starfish; growth rates; growth curve analysis

1. Introduction

Crown-of-thorns starfish (Acanthaster spp.) are among the most intensively studied of all coral
reef organisms [1]. This starfish species is renowned for its extreme temporal and spatial variation
in abundance, which can result in extensive destruction of coral reef habitats if starfish occur at
high densities (during outbreaks). Outbreaks of crown-of-thorns starfish are considered to be one
of the foremost causes of significant and sustained declines in live hard coral cover on Indo-Pacific
reefs [2-5]. On Australia’s Great Barrier Reef (GBR), there have been four distinct episodes of outbreaks
since the early 1960’s, with the latest outbreak first apparent in 2010 [6,7]. Over a period of 27 years
(1985 to 2012), the GBR has lost approximately half of its initial coral cover, with 42% of this loss
attributable to recurrent outbreaks of crown-of-thorns starfish [2].

Qutbreaks of crown-of-thorns starfish are fundamentally caused by changes in key demographic
rates and population dynamics [8], resulting in either progressive accumulation of starfish over
several successive cohorts [9] or the rapid onset of outbreaks following a single mass-recruitment
event [10]. However, the extent to which these demographic changes are caused by anthropogenic
degradation of reef ecosystems (e.g., overfishing and/or eutrophication) versus inherent environmental
changes and stochasticity (e.g., cycles of food availability for larvae, juveniles, and/or adult starfish)
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is largely unknown and widely debated [6,11]. Our understanding of the proximal and ultimate
causes of outbreaks has been hampered at least in part by difficulties in studying the early life stages
of crown-of-thorns starfish in natural environments [6,11]). Current models [7,12,13] that aim to
understand and predict outbreak dynamics lack enitical demographic rates, such as estimates of
growth rates and survival for early life history stages in the field.

Field-based studies of early life stages of crown-of-thorns starfish have largely been constrained by
the small size, cryptic nature, and largely nocturnal habits of recently settled individuals [10], making
them difficult to detect and sample [14-16]. Attempts fo locate 0+ year old juveniles on the GBR have
remained largely unsuccessful [14-16]. However, studies conducted in Fiji and Japan that followed
individual cohorts of crown-of-thoms starfish through time on single 1sland reefs effectively sampled
newly settled individuals (0+ vear old) [10,17], Resulting estimates of growth rates for coralline algace
feeding juveniles (2-3 mm/month) [10,17] were consistent with early post-settlement growth estimates
for laboratory reared juveniles [18,19].

As early stages of newly settled juveniles (i.e,, 1-3 months-old starfish after settlement, size = 0,3-5 mm)
have rarely been detected in the field [17], demographic rates for these early stages are largely derived
from aquarium-based studies [18,19]. Crown-of-thorns starfish have been reared in captivity since
1973, providing important insights into their early development and hife history [18-21], Once fully
developed competent larvae (i.e., at the late brachiolaria stage) find a suitable settlement substrate
(i.e., coralline algae), they metamorphose within two days into five-armed juvenile starfish that measure
between 0.3 and 0.8 mm in diameter [18,19,22,23]. Yamaguchi (1973) [18] found that laboratory-reared
juveniles grew 0.076 mm-day ' in the 20 weeks following settlement, while Lucas (1974) [19]
estimated that 3-month-old juveniles grew 0.048 mm-day ' in the laboratory. Field-based estimates
of juvenile growth rates averaged 0.10-0.15 mm-day ! in the coralline algae feeding phase and
0.40-0.84 mm-day ! in the coral feeding phase [10,17]. So far, existing growth data has been fitted with
logistic or Gompertz growth equations to describe the sigmoidal growth pattern of crown-of-thorns
starfish [10,17,20,21,24]. However, these equations have been acknowledged to be limited in accurately
describing growth during distinct life stages [21], and so altermative equations have been suggested
for distinct stages, such as for coralline algae feeding juveniles [25] and coral-cating 1+ year old
juveniles [21,26].

The purpose of this study was to reconstruct growth curves for juvenile (04 year old)
crown-of-thorns starfish on the northern GBR, based on intensive (near monthly) field sampling
of newly settled individuals. The exact ages of juvenile starfish cannot be verified, but may be inferred
for 0+ year old starfish by assuming that settlement occurs within a relatively narrow period [10,17].
Here we provide, for the first time, monthly ranges of growth rates for 0+ year juveniles to inform
crown-of-thorns starfish population models. In addition, we compare these results to previous field
studies and present ranges of predicted mean sizes for different age classes that can be used to inform
the planning of future juvenile monitoring studies on the GBR.

2. Materials and Methods

2.1, Field Collection

All field sampling was conducted in conjunction with the Association of Marine Park Tourism
Operators’ (AMPTO) crown-of-thorns starfish control vessels during the fourth recorded outbreak
of Acanthaster cf. solaris [27] on Australia’s GBR. One hundred and eleven sites on 64 reefs within
six geographic locations (or reef complexes) located between 14.72° S and 17.67° S were sampled
between 7 May and 15 December 2015 (Figure 1). At each site, 1-2 SCUBA divers searched coralline
algae encrusted pieces of dead coral and live coral colonies for juvenile crown-of-thorns starfish and
their feeding marks. Individual pieces of live and dead coral were thoroughly inspected for juvenile
starfish if feeding marks were sighted on exposed surfaces. Each diver was able to cover up to 250 m?
during a typical 40 min dive. However, if juvenile abundances were high (e.g., 40 individuals collected
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during a 40 min dive), search effort was restricted to a much smaller area (=50 m?2). All starfish
(target size < 50 mm) were collected and placed in sampling jars underwater. This size threshold
was selected, as previous growth models [17,21,24] predict that the mean size of starfish from the
previous year's cohort would be >50 mm at the time of our first sampling (May 2015). The size of
individuals was not measured in situ, and as such, two of the 3532 juveniles were slightly larger than
50 mm (525 mm and 64 mm). These larger individuals were collected in November /December 20115,
and were retained in the analysis, as they were likely to have come from the same cohort. After cach
sampling dive, juvenile starfish were kept alive in containers filled with seawater, and their maximum
diameter was measured to the nearest half millimetre with a stainless steel ruler. Once starfish were
measured, all individuals were preserved in 95% ethanol for future analyses,

Latitude

147

Figure L Map of the nosth Queensland coast showing the sampling locations (= 111) and designated
reef complexes (» = 6) for the collection of 0+ year crown-of-thorns starfish.

2.2. Growth Curve Analysis

On the GBR, spawning has been reported to occur throughout summer months, but is concentrated
in December and January [6]. In the year of sampling, Uthicke et al. (2015) | 28] reported that spawning
occurred between 10 and 21 of December 2014 in the area of the northern GBR relevant to our
study (e, 1 to 7 days prior to sampling), and that there was no subseqquent spawning throughout
December or January. Assuming a planktonic larval duration of 10 to 40 days [22,23,29-32], settlement
is likely to have occurred predominantly—if not exclusively—in early January 2015, As age of sampled
individuals cannot be verified, age of sampled juveniles for the model was based on the assumption that
all juveniles settled on 1 January 2015 (i.e., 10-21 days after the reported spawning, which incorporates
the 17-22 peak settlement window determined by Pratchett et al,, in review [33]). Ultimately, all
growth estimates are presented as monthly growth rates, and so even if crown-of-thomns starfish settled
over several days to weeks, it would have limited influence on our results.
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All exploratory and growth curve analyses were conducted using R [34]. A series of preliminary
models (e.g., logistic growth model and exponential growth model) were fitted to the 2015-juvenile
size data to determine which type of model was most suitable to describe the relationship between
size and age. Visual inspection and exploratory analysis of the fitted growth curves (based on least
residual sum of squares) identified an exponential growth model (as suggested by Okaji (1996) [25]) in
the following form as the most accurate in describing the shape of the size measurement data:

SLu'Aw=ﬁoxe""'3'+ﬁ1 (m1)

where Size is the diameter of starfish in mm, Age is number of days since 1 January, and fip, £, and
[y are parameters to be estimated. As size measurements were missing for the initial four months of
development (i.e,, sampling period: January to April 2015), the v-intercept (i.e., Size0-0) was fixed
to a biologically meaningful size (see below), representative of the range of predicted mean sizes for
newly metamorphosed juvenile starfish in the laboratory {[23]; see Appendix A, Table Al). The growth
model may therefore be represented as:

Sizeage = By % ¢ A 4 (Sizeage-0 — Po) (m2)

Three estimates of size after metamorphosis (i.e., Siz¢4g-q = 0.30 mm, 0.56 mm, and 0.82 mm)
from Fabricius et al. (2010} [23] were used to generate three different m2 models (12550 0 Age1=0.30.
25520 o1 Apelt=056s M25550 ¢ Apdi-0n2). Best-it parameter estimates for m? (y, k, and f;) and m2 (B, k)
models were obtained with associated 95% confidence intervals using the nlstouls package [35].
Residuals from the preliminary models were found to display a distinct wedge pattern, indicating that
variance was related to age of juveniles, and thus multiple variance functions (Age®, Age®, Age') were
trialled to optimize best-fit parameter estimates for each model (m1, m2g;.. o Ape0=030s M2 5120 5t Ag0=056
M 2500 ot Agen=n52). Best-fit parameter estimates for all 12 models were then used to perform linear mixed
effect analysis of the relationship between 5ize and Age using the nlie package [36]. Reef complex and
survey sites were included in the linear mixed effect models as nested random factors to account for
variation at the site and reef complex scale, and variance structures (Age?, Agr, Age®) were included
to account for the variation in size with age. Best-fit models were selected based on lowest Akaike
Information Criterion (AIC). No evidence of spatial autocorrelation was found after both visual
(variograms and bubble plots) and statistical inspection (incorporating spatial correlation structures
into mixed effects models).

A selection of best-fit models and corresponding 95% confidence intervals was then plotted using
the ggplot2 package [37]. The best-fit madel of m2g:, o 4ev-056 Was plotted with the upper bound of
the 95% confidence interval of 125, o Age0=052 and the lower bound of the 95% confidence interval of
M 252 o Age1=0.30, forming a so-called “combined 95% confidence interval”. Growth rates (ie., growth
increment per unit time) were calculated for different time spans (i.e., 30-day intervals) for the upper
bound of the 95% confidence interval of m2g:, »» 450.082, and the lower bound of the 95% confidence
interval of m25:.. ot Ag-0=03 to provide ranges of modelled growth rates,

3. Resulls

Size ranges of juvenile starfish increased as sampling progressed through the year (Figure 2a).
Juveniles sampled in May measured between 3 and 15.5 mm in size (size range = 12.5 mm), while
those sampled in December ranged from 8.5 to 52.5 mm (size range = 44 mm) (Figure 2a), representing
a 3.5-fold increase in size range within this time period.

For 1 models (variable intercept), growth was indeed exponentially related to age (t3gzn = 59.79,
p < 0.0001), while including sife (o = 0.0007) and regf compiex (o = 0.0003) as random factors. Best model
performance was achieved with a variance structure of Age’ (AIC = 18,057), indicating that variance
increased cubically with age. However, the best-fit m1 model predicted mean size after metamorphosis
(Size pge=n) to be 542 mm. This appears to be erroneous, as it is in stark contrast with the range of
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expected mean sizes for newly settled juveniles (ie, 0.30-0.82 mm), Consequently, the 12 models
seemed to describe growth mone accurately because their intercept was fixed to a biologically relovant
size after metamorphosis. Again, for m2 models (fixed intercept), growth was indeed exponentially
related to age (M2 o Agd0s2, tazo = 5955, p < 0.0001), and a variance structure of Age* gave the
best model performance (m24z, 4« 4p0-082, AIC = 18,071), Although overall model performance was
slightly reduced using the fixed intercept models (based on a higher AIC), tixing the intercept to
a biologically meaningful size provides a better characterisation of the growth curves for juvenile
crown-of-thorns starfish,

The growth curve analysis highlights increasing variation in size among older individuals.
As shown by the distribution of size-frequency data for different sampling periods (Figure 2a)
and the gradual widening of the combined 95% confidence interval (Figure 2b), variance increased
considerably as juveniles grew older. The increased variation in size with age was further reflected
by the increase of monthly ranges of modelled growth rates (Table 1). Ranges of modelled growth
rates increased from 0.028-0.041 mm-day ! for one-month-old juveniles to 0.108-0.216 mm-day ' for
twelve-month-old juveniles,
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Figure 2. (a) Monthly size-frequency distributions of juvenile coown-of-thoms starfish sampled
during May-December 2015; (b) Fitted growth curve {m2e. s 4z 5. black line) and combined
95'% confidence interval (light blue) for the O+ year crown-of-thorns starfish cohort sampled in the
noethern Great Barrder Reef (GBR). The combined 95% confidence interval ks formed by the lower and
upper bounds of the 95% confidence lnterval of m2 growth models with size at age 0 set to 0.30 mm
and 0,82 mm, respectively. Individual staefish of the 2015 cohort are depicted as points, and the colours
ndicate the reof complex (see Figuee 11 Each boxplot (by sampling ssoath) is characterised by o mean
size (horizontal middle line), Lone standard deviation (rectangle), and aubaimun and maximum size
{vertical line), The vertical lines of the grid indicate 30-day intervals
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Table 1. Range of medelied mean sizes and growth rates for estimated age (in months after metamorpheosis)
and different time spans (30-day intervals).

Estimated Age after Time Span Range of Modelled Range of Modelled Growth
Metamorphosis (Months) (30-Day Interval) Mean Sizes (mm) Rates (mm-Day ™)
1 -3 0.20-204 00250441
2 20-&01 105346 0032401147
3 - 211512 003640055
b S0-120 3.19-704 0.041-0.064
5 120150 441928 0460075
6 150-180 579-1159 0.052-0.087
7 180-210 735-1493 0.059-0.101
8 210-240 901-1847 00660118
4 40-270 TR-22.58 00750137
10 20N 133327537 [LECCESUR )
11 00-330 1587-32.04 0.095-0.186
12 030 IRTI-4A 070841216
4. Discussion

This study provides the first estimates of monthly growth rates for O+ year crown-of-thoms
starfish on the GBR based on intensive field sampling of newly settled juvenile starfish. Juvenile
crown-of-thorns starfish exhibited exponential growth over the first year on the reef and reached a
size of up to 52,5 mm by mid-December. Size ranges of juveniles increased by a factor of 3.5 from May
to December. The marked increase in size range was also reflected in the results of the growth curve
analysis, which showed that the variation in size increased cubically with age in the best-fit models.
Similarly, ranges of modelled growth rates increase with age; while one month old juveniles grow
0.028-0.041 mm-day !, twelve-month-old juveniles grow 0.108-0.216 mm-day L.

The increasing variation in size among older individuals may be attributed to variation in the
availability of suitable coral prey within specific study sites and microhabitats. Although laboratory
studies have shown that same-aged newly settled crown-of-thorns starfish vary in size from
the beginning of their post-metamorphic life [23], marked variations m growth rates of juvenile
starfish are generally attributed to the availability of suitable coral prey [20,38]. At settlement,
crown-of-thorns starfish feed on coralline algae, and it is thought that they preferentially settle in
locations (and microhabitats) where coralline algae are ubiquitous [18,39], After an obligatory period
of feeding on coralline algae (4.5—Yamaguchi 1973 [18]), juvenile starfish may or may not transition
to feeding on Scleractinian corals, depending upon the local availability of suitable coral prey [10].
The fastest growth rates recorded in both field and laboratory settings are for individuals that make
rapid transitions to coral feeding, resulting in accelerated growth and are reported to be significantly
larger than siblings that continue to feed on algae [21]. Individual crown-of-thorns starfish that
continue to feed on coralline algae after 4-5 months are thought to be more vulnerable to predation
by epibenthic fauna [18], whereas fast-growing juveniles that make a rapid transition to feeding on
coral—and thereby escape this predation pressure—are more likely to survive [40]. As sampling
was conducted on 64 reefs across 111 sites, the availability of suitable coralline algae and coral prey
would have differed considerably among microhabitats within and between sampling sites. Individual
sampled starfish are likely to have been exposed to different environmental pressures (e.g., predation
and food availability) in each of these microhabitats, which would have shaped their growth in the
first year of development differently. Consequently, the gradual widening of the 95% confidence
interval likely reflects differential growth rates between individuals that have transitioned to feeding
on live coral versus those continuing, to feed on coralline algae. This appears to be driven by a varying
availability of suitable coral prey within microhabitats,

Ranges of modelled growth rates were broadly comparable to both Taboratory-reared individuals
released into the field [25] and the growth of juvenile cohorts in Japan and Fiji [10,17]. Observed mean
sizes, standard deviations, and size ranges of juveniles sampled in these studies [10,17,25] were plotted
to the fitted growth curve for comparison (Figure 3). Given the uncertainties related to the approach
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taken to estimate age in Zann et al. (1987) [10] and Habe et al. (1989) [17], and the discrepancies
related to ages being estimated in months instead of days, estimated ages were not standardised across
different studies. Care should therefore be taken when interpreting the results of this comparison.
While Zann et al. {1987) [10] and Habe et al. {1989) [17] followed distinct cohorts of juvenile starfish
in the field, Okaji (1996) [25] deployed four groups of laboratory-reared juveniles of different ages
(Le., 2 x 0-, 2-, and 3-month old juveniles) for varying periods of time (i.e., 49,37, 57, and 92 days,
respectively). For each of these groups, he calculated an initial and final mean size before and after
deployment in the field (Figure 3).
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Figure 3. Fitted growth curve (black line} and combined 95% confidence interval for the 2015
crown-of-thoms starfish cohort (GBR). Individual observations of the 2015 cohort are depicted as points,
while boxplots represent the results of previous field studies (Zann et al, 1987 [10], n = 651; Habe et al,,
1989 [17], nisas = 683 and nyggz = 125; Okaji, 1996 [25], nyia = 1137 and ngq, = 138). Each boxplot
is characterised by a mean sive (horizontal middle line), ‘bone standard deviation (rectangle), and
minimum and maximum size {vertical line). Note that the estimated age in Zann et al. (1987) [10] and
Habe et al. {1989) [17] likely représents the age after fertilisation without taking into account potentially

Jong planktonic larval durations (PLDs); ages are theretore likely to be und imated. In < st,
the estimated age in Okaji (1996) [25] and the p t study rep ts the age after metamorphosis
(i.., after settlement).

Ten-day old juveniles set out in the field on the GBR for 3749 days grew on average
0.045-0.016 mm-day ™!, mostly within the range of the modelled growth rates for the same
time span (ie, 0.030-0.045 mm-day ') [25]. Similarly, growth rates for 2-month-old starfish
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(deployment time = 57 days) averaged (.053 mm-day ' compared to 0.038-0.059 mm-day ’;
while 3-month-old starfish {deployment time = 92 days) grew at a rate of 0.074 mm-day~* compared
to 0.046-0.076 mm-day~! [25]. Growth rates derived from the findings of field studies conducted in
Fiji [10] and Japan [17] are also broadly comparable to the range of modelled growth rates of this
study. In Fiji, growth rates averaged 0.087 mm-day ~ for juveniles between 7 and 12 months, largely
falling within the modelled range of 0.073-0.135 mm-day . Similarly, field studies conducted in Japan
showed that juveniles {between 4 and & months old) from the 1986-cohort and 1987-cohort grew at
0.121 mm-day ' and 0.139 mm-day ' respectively, also within the modelled range of growth rates
(i.e., 0.083-0.158 mm-day~!) for the same time span. These results show that growth rates of juvenile
Acanthaster spp. in the field appear to be remarkably consistent over large geographic scales. However,
mean sizes of juveniles of the 1984-cohaort (Fiji) and the 1986-cohort (Japan) deviate considerably from
the modelled mean sizes (Figure 3). In both studies, age was estimated based on the date of spawning
without taking into account of potentially long planktonic larval durations (i.e., up to 43 days [33]).
For instance, juveniles that were sampled in Fiji in July were estimated to be seven months old, based
on the assumption of a January spawning [10]. Similarly in Japan, newly settled starfish sampled
in July were assumed to be one month old, based on the assumption of a mid-June spawning [17].
Assuming a mid-June spawning and a pelagic larval duration of two weeks, settlement would have
occurred at the beginning of July at the earliest. However, juveniles that were collected in July and
August were already 2 and 4.30 mm, respectively [17]. These sizes seem considerably large, as we
know from laboratory studies that juveniles measure between (0.3 and 0.82 mm after settlement and
that it takes approximately 40-45 days to grow to 2 mm, and 80-90 days to grow to 43 mm [18]. Asa
result, ages in Zann et al. (1987) {10] and Habe et al, (1989) [17] are likely to be underestimated by
0.5-1.5 months, resulting in overestimates of growth rates.

An implicit assumption of this study was that spmwning occurred within a relatively limited
period (in December 2014) across the entire study area. This assumption appears valid, given that
the estimated growth rates for field-deployed juveniles of known age are broadly comparable to the
range of modelled growth rates. The assumption of a single spawning event or narrow spawning
window iy also supported by the fact that smaller juveniles became rare as sampling progressed
through the year (see Figure 2), indicating that settlement and so spawning did not occur throughout
the entire year. Furthermore, spawning occurred in the study area between the 10 and 21 of
December 2014 (temperature recorded at Lizard Island at 0.6 m between 12 and 30 December 2014:
28,58 °(C-29.29 °C [41]) according to Uthicke et al. (2015) [28]. Assuming a planktonic larval phase of
10 to 40 days [22,23,29-31,33], settlement would have occurred between the 20 of December 2014 and
30 of January 2015. However, new research is suggesting that peak settlement likely occurs within
22 days after spawning and fertilization [33], and few larvae persist bevond 30 days post-fertilization,
Accordingly, Uthicke et al. (2015) [28] failed to detect larvae in plankton samples from 13 of January
onwards. If so, estimated ages (in days) of juveniles {measured from settlement) would have an
accuracy of 12 days,

Low ocean current velocities linked to El Nino-Southern Oscillation (ENSO) hydradynamics
that cause larval retention around reefs or within reef groups are thought to increase survival of
crown-of-thoms starfish larvac when they co-occur with enhanced phytoplankton concentrations [42].
According to Wooldridge and Brodie (2015) [42], the 2009 spawning event—which led to the onset
of the current outbreak in 2010/2011—coincided with nutrient-enriched stagnant shelf currents.
Larvae of the studied cohort would have been present in the water column between 10 December
2014 and 13 January 2015 (temperature range recorded at Lizard Island weather station between
12 December 2014 and 15 January 2015; 27.9 °C-29.5 °C [41]). Mean phytoplankton concentrations
{i.e., chlorophyll 7) during this period averaged in the Wet Tropics 0.55 pg-L ! (range: 0-7.35 ug-1.7 1)
for coastal areas, 0.31 pgL-" (range: 0.01-12.42 pg-L~') for midshelf areas, and 0.16 pg-L~!
(range: 0-8.09 pg:L ") for offshore areas [43]. In comparison, mean chlorophyll a4 concentrations
in December 2009 averaged in the Wet Tropics 0.67 ug-L~! (range: 0-11.61 pg-L.7%) for coastal areas,
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0.31 pg-L " (range: 0.01-13.82 ug-L '} for midshelf areas, and 0.19 pg-L ' {range: 0-2.90 pug-L ")
for offshore areas [43]. While the Southern Oscillation Index (SO1)—which provides an indication of
ocean current velocity (neutral SOI = surrogate for low shelf currents)—was —5.5 in December 2014
{compared to 7 in December 2009) and - 7.8 in January 2015 (compared to — 10.1 in January 2010) [43].
Subsequent SOI values continued to decrease in 2015 to a —20.2 low in October, indicating an El Nifia
evenl. Moderate increases in chlorophyll concentrations (up to 1.0-4.0 pg-L 7) that significantly
increase rates of larval development, survival, and settlement [23,32,33] would have occurred on
multiple occasions in the study area during the pelagic larval phase of the studied cohort. Consequently,
larval development, survival, and settlement may have been enhanced in the study area during this
time peniod, leading to high settlement rates and the development of this seemingly conspicuous
cohort in 2015.

5. Conclusions

Demographic rates are fundamental to understanding population dynamics and creating
meaningful population models. However, attempts to estimate these rates for 0+ year juvenile
crown-of-thomns starfish have been hindered by the ability to detect them in the field [14-16].
The present study not only demonstrates that 0+ year juveniles can be sampled in high numbers
(1 = 3532), it also provides ranges of monthly growth rates to inform population models. Here, we also
provide evidence that supports the assumption that spawning and subsequent settlement occurred in
2014-2015 during a relatively narrow period of time across a vast geographic area (i.e., 350 km) on the
GBR. In addition, the predicted ranges of mean sizes for different sampling periods deliver valuable
information to research and management bodies for the planning of juvenile monitoring studies.
Rigorous ongoing monitoring should be conducted in the future on a number of selected sites to collect
field-based data on demographic rates (e.g., growth, recruitment, mortality, and reproductive output
rates) that can be related to variables such as food availability and adult population densities in order
to inform population models and improve our understanding of population and outbreak dynamics.
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Appendix A

Table Al. Mean sizes for newly-metamorphosed starfish reared in the laboratory under naturally
occurving chlorophyll @ concentrations [23],

Chlorophyll a (ug:L. ") Mean Size (mm)  Standard Error (SE) 9&3’3‘:‘;‘;‘)’
0.28 0.44 0.07 0.30-0.58
290 0.66 0.05 0.56-0.76
5.20 0.64 0.00 0.46-0.82
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ABSTRACT

Hiological invasions are ane of the mast significant threats to marine biodiversity, and can be facilitased and am
plified by climate change. Among al aspects of imvasion eology, biotic interactions between invaders an native
speciesare of partular | mpoctance. They strongly mfluence the levasion velocity as well 35 speckes responses to
clamate anduced stressors. Yet the effects of biotic interactions and other impartant demegraphic processes re
main overdooked among most studies of cimate- mediated invasions. We ciitically assessed current modeiliog
techniques far forecasting marine lovasions under cimate change, with a particular focus on their aility to ac-
count for important bictic interactions and demographic processes, We show that coupled range dynamics
maodels currently rep the most comp and % approach for medelling and managing ma
rine invasions under dimate change. We show, using the crown-of-thorms seastar (Aoanthaster plarmci], wiy
model architectures that account for batic ingeractions and demographic and spatial processes (and their Infer-
acticn) are recaired to provide ecologacally realistx predactions of the distribution and dbundance of mvader spe
cies, both under present-day conditions and into the future, We sugpest potential solutions 1o inform data-poor
situations, such as Bayeshan parameter estimagion and meta-analysis, and slentify strategc and targeted gaps in

marine invasion researdy

1. Introduction

Manine invasive species are a major threat to biodiversity worldwide
and can have profound ecological and economic impacts on marine eco-
systems (Bax et al, 2003). Although the criteria that categorise a species
as invasive remain somewhat controversial, invaders are commonly
characterised as species that undergo rapid increases in abundance
and,or spatial occupancy with adverse effects on recipient ecsystens
(Valery et al., 2008 ). This definition includes the case of ‘native invaders'
that can spread within their historical range by exploiting niche oppor-
unities resulting from human activities and /or loss of ather species: by
attaining extreme abundances and exerting severe per-capita effects on
lecal communities, native invaders can indeed cause ecodogical impacts
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that rival these of non-native invaders (Valery et al, 2000; Carey et al.
2012}, Whether native or not, invaders can impact recipient commani-
ties directly through competition, predation, and hybeidization, and in-
directly by modifying habitats and potentially disrupting their
sustability. Over 1500 species have invaded locations throughout the
world’s oceans, and more are discovered every year (European
Environment Agency, 2012). The potential economic costs incurred by
even a single marine invasive spedes can reach USS250 million yr !
(Williams & Grosholz, 2008) and eradication seems passible only in
highly constrained situations ( Bax et al, 2002), Future climate change
is predicted to increase the introduction and speead of invasive species,
accelerating marine invastons and resulting in widespread biodiversity
loss (Garcia Molinos et al. 2016),

The ecological traits that commonly characterize marine invasive
species are disproportionately favoured under dlimate change, poten-
tially exacerbating future impacts of marine invasions {Poloczanska et
al, 2013). This is because marine invaders often tend to be generalist
and/or apportunists with redatively plastic Jife histories (Clavel et al,
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2011), making them able to better adapt to rapidly changing environ-
mental conditions and fare better in warming waters than native spe.
cles (Sorte et al. 2013: Bates et al, 2013). By relaxing some of the
physiological constraints on temperature-dependent growth and sur-
vival wiale also altering connectivity, human-induced climate change
has already enabled some non-native invasive species to expand into
regions where they previoudy could not survive and reproduce, as ex-
emplified by the green ‘killer” Algae Calerpa taxifolie in the Mediterra-
nean (Walther et al., 2009). Additional climate-related factors that
might enhance a species’ invasive ability include: extensions of
spawning periods and ncreases in per capita reproductive cutpat
(Walther et al, 2009): altered tdming of recruitment and faster growth
in warmer years (Stachowicz et al, 2002); faster developmental rates
(Walther et al., 2009); and modified local dispersal pattems doe to al-
tered hydrodynamic conditions (Diez et al, 2012). In the case of pative
invaders, climate-driven environmental changes at local scales {e.g eu-
trophication, altered connectivity due to changes in ocean currents) can
favour the dominance of invaders in parts of their historical range
where they previously could not survive or reproduce {Carey et al,
2012)

Despite these established physiological and demographic responses
to dimate change, there have been few attempts to forecast the poten-
tial impact of invasive species under cimate change and testthe efficacy
of alternative management actions (Sorte, 2014). Most existing knowi-
edge is based an local field chservations or mesocosm expenments (eg.,
Cockrell & Sorte, 2013) that are often conducted at small scales and,/or
do not necessanly represent realistic environmental condikions. More

Geiatinous
plaokton =

(A) Present

integratex] approaches that combine emparical dataon local and region-
Al ecological processes with simulation models are urgently needed n
marine invasion biology to improve our knowledge of impending inva-
sions and to manage existing and future invasive spacies (Fordham,
215

A commonly overlooked consequence of climate change affecting
manne invasions is the way dimate change alters ecological interac-
tions in native commanities ( Sorte et al,, 2010), Climate-driven changes
inimvasive abilicy affect the way native communites are organised, fa-
cilitating the formation of novel ecological comemunities characterised
by new arrangements and ecological interactions [Lurgi et al, 2012).
Such new configurations can create ecological vacuums that facilitate
future invasions, espedally if top predators are depleted { as frequently
reparted m response to global change: Cheung et al, 2015), Other an-
thropegenic stressors such as fisheries exploitation, terrestrial runoff,
and eutrophication can act in synergy with climate change to facilitate
not only mvasions by alken species but also state-shifts of species dom-
inance, as for example, in the case of invasive jellyfish (gelatinous plank-
ton; Fig. 1) (Licandro et al., 2010; Lynam et al. 2011}. These interactions
can be complex. with climate change and other anthropogenic stressors
having both direct and indirect effects on the strength of biotic mterac-
tions (e.g. competition, predation ). Consequently, not only is the domi-
nance of nvasve species likely to change owing to synergies between
anthropogenic stressors, but also the number and strength of their biot-
ic interactions between mvasive and other species, with potentially
multiplying effects brought about by trophic cascades {Lynam et al.,
2011).

2 N
Gelatinoud
Jplankton =

T+

(B) Future

Fig. 1. One conceprual mods of metually reinfooong efocts of climate ¢ harge and ofer anthio pogenic SIessorns on nathe iovasive jelylih (gelarmous e bron], with botic inmer a o
{Le, predatorprey redrionsvps ! represenoed by the amows (A} Increasing tesrestrial renof! and mutriests kods contrbue to hicacion, leading to unussaly high phyioplankeon
{phmitan) comoontrations assocated with low oxygen comcestrations | Mdler & Craham, 2012 ), These conditons promote the growth of pdly$sh pepulat sitaned by plink
resources ussaly cormemed by fish stocks and feh larvae (nokton). Tish stocks are subsequently impacted by this reduced avaldazdity of plonkioe resources, as well as by contnuousty
wcroasing fuhiog efort (eg. Panly et all 2000 ). The reduoced size of fish stecks roaslts in 4 reduced uptake of plinktons sesosrces, thus made available to satam further jellyfish
Bloomes (Ucandeo er al, 2010 Lynam et al, 2011 ). (B) Qimave chasge Qvours geiatinous plankzon species thar are able to adapt o new envisonmental conditions and ncrease in
abundance rapedly (Lynam et al, 2011 ), The comgp of nekion ses and fh stocks Is akered nee only as increasing fAshing eforts remove fish predavors (Pady et o
J002) bat ates as surface loerperatuee increases leading 1o the dominance of (v trapical spacies (Cheung et al, 2005) Bocause thee subtropcal sprcies are udikely In peey on the
same phakion speckes & their temperate peers, pRokionk rewr e net cossumed by fish are more readily avalabke 10 susain increasiogly Siequent and extendve eliydsd bloams
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Anticipating and managing future theeats [rom invasive species 1o

ine biodiversty thus requires accurate forecasts of marine mvasions
that account for beotic interactions between native and mvasive spedes,
and how they are likely to change in response to multiple anthropogen-
ic stressors. Here we apprase the quantitative metheds that have been
applied to forecast marine invasions, focusing on their strengths and
shortcomings. and on whether they can expliatly account for blotic in-
teractions. We then implement a spatially explicit simulation model as a
proof-of-concept of how biotic interactions, demographic processes and
their climate-induced variation can and should be integrated into fore-
casts of marine invasions under climate change, Owr model organism is
Acanthaster planct, the crown-of-thorns seastar, which is a major threat
to the Great Barrier Reef, and the only threatening process of contempo-
rary global change that is amenable to direct management actions
(De'Ath et al, 2012} Raped outbreaks of A. pland currently pase one of
the most senous management problems for the Great Barrier Reef, lead-
Ing to conservation implications {e.g. extirpation of foundation species
and destruction of essential fish habitats) that are similar to those of any
noa-native invasie species.

2 Recent developments for forecasting marine invasions under
climate change

2.1, Species distribution madels

Correlative species distribution models {SDMs; Le. ecological niche,
bioclimatic envelope, or habitat suitability models ) describe or predict
the probability of presence or spatial abundance of a species across en-
vironmental gradsents o in a specific geographical area based on habi-
tat suitability (Pearman et al. 2008). SDMs have very simple data
requirements, needing only paint location data and associated erviron-
mental variables (Table 1). However, predictions are often constrained
by impoctant limiting assumptions (Elich et al,, 2010 Robinsen et al,,
2011). Indeed, SOMs typically assume that species occurrences repre-
sent the range of erviroamental ceaditions in whech an organism can
persist {Schurr et al. 2012} and rarely account for demographic process-
es such as dispersal in an ecologically realistic way (Travis et al. 2013).
These assumptions are particudarly concerning in the case of recently in-
troduced invasive species because their ranges are by definition
expanding (eg. Keamney et ai, 2008}, thus representing a non-equilib-
rum distribution (Thuiller et al, 2005), As a result, models calibrated
in the native range often underperform in the exotic range {and vice
versa) (Fitzpatrick et al, 2007), an issue that can be partially addressed
by considering the species” global range (Mainali et al, 2015).

The failure of SDMs to account explicitly for biotic interactions (as
well as demographic processes) has been identified & a major limita-
tion of these models, affecting predictions of distributional shifts
under changing cimatic conditions (Arawo & Luoto, 2007 ), While biotic
interactions can keep a speces in chedk in dimatically suitable condi-
tions, they can ako fail to restrict invasions in new temitories where &
predator or competitor is absent or in low abundance (Fig, 1) (Mamnali
etal, 2015). Insuch a sitvation, SOMs unrealstically consider the invad-
ed range as cimactically broader than the native range (e.g. Fitzpatrick
et al. 2007 ). Recognition of these imitations has prompted the develop-
ment of new methods for incorporating biotic interactions into SDMs
(Kisslingetal. 2012 ). These methods indude: (() adding the occurrence
of an interacting species as an additional covariate in the SDMs (Araupo
& Luoto, 2007): (i) developmg a separate SDM for the interacting spe-
ces and using it to constrain the distriution of the focal species, mini-
mizing the Issues of false absences and collinearity where both species
are related to the same environmental predictors [Schweiger et al,,
2008); or (i#) calibrating an interaction matrix among spucies to define
the errar matrix foe mutivaniate logistic regression madels (Kissling et
al, 2012).

Existing methods for incorporating biotic interactions into SOMs re-
main problematic for at Jeast two reasons: blotic Interactions can

Tabke 1
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change over time {even mare 5o in the context of an invasive species
under climate change; Fig 1) and it is difficult to include more than
ane interaction at a time. Therefore, biotic interactions rermain absent
from most SDMs under the assumption that, at least at blogeographic
scales (as opposed to local; Wisz et al, 2013}, biotic interactions are
not a determinant of invasive species digributions (Mainali e al,,
2015), which seems unrealistic in most situations [Araujo & Luoto,
2007). Recent studies using SDMS to forecast marine invasions have fo-
cused primanly on the susceptibility of environments to invasions for
management purpases (de Rivera et al, 201 1; Jones et al., 2013), Biotic
interactions have, however, been consistently ignored in these marine
SDAvEs (Rabinson et al, 201 1)

22, Bophysical models

Biophysical models (Le. process-based models) rely on species phys-
iobogucal tolerance limits and, in doing so, enable species distributions
be modelled across environmental gradients without using occurrence
data (Kearney et al, 2008 (Table 1), Biophysical models shaould, in the.
ory. yeeld more robust forecasts of climate-driven distributional shifts
because they explicitly account for relationships between climate con-
ditions and organismal performance. In doing so, biophysical models
overcome problems associated with non-equilbrium situations, since
they do not rely on occurrence data that could misrepresent the species’
potential range due to biotic interactions (see above) or human-driven
impacts such as depletion from harvesting (Buckley et al. 2010), Bio-
physical models are increasingly used to model range dynamics n re-
sponse to climate change (Kearney el al, 2008; Cheung ef al, 2011) or
environmental gradients {Monahan, 2009), and can be coupled with
SDMs to constrain their predictions (Elith et al., 2010: Buckley et al.,
2011; Fordham et al, 2013b). For example, biophysical madels have
been used to show that invasion of the Indo Pacific lionfish ( Paerois
volitans ) into the Mediterranean is untikely to accur due to low connec-
tivity between suitable sites (Johnston & Purlas, 2014), Biophysical
maodels subseqquently aflowed to recreate the sucaessfailure of inva-
swons of introduced fish in the Hawatlan Islands, providing insight into
the demographic properties that predispose fish species to successiul
invasion (Johrston & Purkis, 2016). Biotic interactions cannot currently
be impkmented in biophysical models in their original form but would
represent an mmportant and desirable extension to this class of modek
{Buckey et al, 2010; but see Tingley et al, 2014).

2.3, Spatinfly explicit demographic models

Spatially explicit demographic models, which dwrectly account for
species vital rates in moedel predictions, are used with increasing fre-
quency to model the effects of climate change on the range dynamics
and persistence of species, including those in the marine realm (e.g.,
Fordham et al, 2013b). Whele mcorporating important information on
habitat sutabitity (e.g. Mellin et al, 2012), such models relax some of
the limiting assumptions constraining SDMs since they explicitly ac-
count for dispersal and source-sink dynamics, enabling demographic
rates (such as growth or fertility ) to vary in space and time (Dunstan
& Bax, 2007). Models can be either population-based (i.e. they account
for population-level parameters such as survival and fertdity rates, dis-
persal kernels) or individual-based (e.g. incorporating individual het-
erogeneity in parameters such as body size, movement and feeding
behaviour, phenotype). For bath population- and Indwvidual-based de-
megraphic models, user-friendly and fully customisable modelling plat-
forms are now broadly available (Lurgs et al, 2015) {Table 1), Most
recently, some of these frameworks have been adapted to explicitly ac-
count for simple { one-way ) biotic interactions in predictions of how cli-
mate change 5 likely to affect species range dynamics (e.g, Fordham et
al, 201%a),

In spite of readily available modelling platforms, and available de-
mographic data for some species, marine applications of spatially

explicit demographic models for invasive species remain scarce. Demo-
graphic (stage-structured) models have for example been used to pre-
dict the future population growth of i ive species using Laboratory
MEsSoCesins to estimate survival, growth, and fecundity rates within
epibenthic communities under present-day conditions and with ocean
warming [Cockrell & Sorte, 2013), This approach is infoemative in situ-
ations where the population dynamics of local communities are ex-
plained mainly by intrinsic demographic properties of the constituent
species. Demographic models have also been used to understand how
range dynamics can be affected by environmental changes and to fore-
cast potential effects on abundance and geagraphic distributicas. For
example, commercial fisheries researchers now use hybeid demograph-
ic models {named Dynamic Biockimate Envelope Mode!), which explic-
itly account for demographic and range dynamics (Cheung et al, 2009:
Cheung et Al 2011), o incorporate competition for resources into pee-
dictions of species distributional shifts { Fernandes et al., 2013). Ferecast
latgudinal shifts decreased by 20% when species interactions were con-
sidered, further highlighting the importance of béotic interactions in
forecasting distributional shifts and marine invasions,

In aggregate, if we are to better forecast marine biological Lnvasions
and understand their effects on recipient communities, there needs to
be a much stronger focus on developing quantitative approaches that
account for key ecological processes (demography and biotic interac-
tons) in simulation models of marine imvasions. Coupled range dynam-
ics models, accounting for metapopulation processes and simulating the
mutually reinforang effects of dimate change and biotic interactions
(Fig. 1), provile appropriate modelling frameworks that have not yet
been used to simulate marine invasions This is despite the necessary
tools being widely accessible, and similar methodologies having been
developad for medelling species range dynamics under climate change
in terrestrial ecosystens (both aspects reviewed by Lurgi et al, 2015)
inchiding invasive terrestrial species (Fordham et al, 2012} and har-
vested mane species (Fordham et al., 2013b). The demenstrated utility
of this appraach indicates the immediate noed for an assessment of its
transferability to the case of marine invasicns.

3. Incorporating biotic interactions into forecasts of marine
Invasions

Todemonstrate the feasibility of cospling demagraphic models with
SOMs (Le. coupled range dynamics models) in order to forecast spatially
explicit changes in the range and abundanoe of manine mvasive species,
we developed a population-based celiular automaton ( Durrett & Levin,
1994, We use this conpled range dynanscs moded to shonw (7} how b
oticinteractions can be incorporated into forecasts of invasion dynamics
under climate change and (i7) the extent to which doing so influences
madel outcomes and potential management applications (Box 1; see
Supplementary material SM1 for a full description of the framework),
\We chose the coral-eating crown-of-thorns seastar (A planci) as a
model organism. Owbreaks of A planci have been a major contributor
to the loss of half of the coral cover on Australia’s Great Barrer Reef
since 1985 (De'Ath et al, 2012), It was suggested that the frequency of
such outbreaks has increased over the last century, partly a5 a result of
increasing tesrestrial runoff and pnmary productivity that promoges lar-
val survival (Fabricius et al, 2010), Since A planci can become sporadi-
cally hyperabundant in its native range, thrextening the regional
pessistence of many rals and causing as much ecological damage as
any non-pative invasive species, it makes an interesting ‘proof-of-con-
cept’ case study for modelling (and managing) marine invasions
under climate change.

\We considered two diterent model-based scenarios: a trophic inter-
action between A. planet and its coral prey { Scenario I vs. no éotic inter-
actions (Scenario If). We then developed three artificial seascapes
reflecting increasing leveds of habitat dustening (from evenly distribut-
ed to highly aggregated suitable habitat) to gauge the pecential effect of
patch structure {and corresponding connectivity) on the population
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Box 1
Simulation madel.

Modification of
abundance Management | scenarios environmental
structured In space and suitabllity (eg.
time (e.g. manual removsl  Increase of age- or gender-based mortality connectivity;
binlogical control) {e.g. lanaljwenile pools; sub-adults/adis) water quakty]

Canceptusl san of the population model. Habitat suitability across the ssascaps llayers) ranges from low |green) to high Ipink). Whits
cells are unsuitable and ied cells are sh n black.

We constructed 8 population-based callular sutomaton (Durrett & Levin, 1954) model for the crown-of-thoms seastar (Acanraster planci) that
simulated papulation and range dynamics undar chmate change according to two scanarls: dsparsal + population growth + beotic interac-
vans [Scenavio } and dspersal + population growth | Scenaio /). Essantial aspacts of the model can be ised as foll {=ee Suppl
mentary materal for full moddl description and implemantation datads):

* Mabitat suitability: defined based an 2D simulated h rised by variable levels of o g fi.c. sggregation) fr
small patches (cluster 1) to a few large patches (custer 3). Tha distribution of habitat suitsbility values across grid cells was kept constant
among clustenng Bvels, The raulting maps carry information on habitat suzability, which in turn detamnings tha carmpng capacty,

* Sinulating the effects of climate change: This was achieved by dtering dynamically the potential cimate sutsbility of esch local unit of the
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£P0NSE 10 anvinonmentsl vanabivly (see befow)

mata-populaton (grd cefl) a1 each iteration of the model, and combining it with the ongmal habitat suitabiity layer. The temporal changs in
habitat surtability across the seascaps reflectad 8 scutherly range shift commonly observed in conjunction with Istitudinal range dynasmics
(Parmesan, 2006), with northarnmest habitats becoming prograssively unsultable and scuthernmost hatitats bacoening maore so.

* Demographic traits: \We modelled fertdity, survival, dspersal and population growth. Survival and fecundity varned spatiatemporally in ra-

* Local tivity via di: f pr We

L

d propagules {i.e. pelagic larvae) of the invasve species and its

interacting prey speces | Scanans / onlyl 1o disp across the

kermel and individual-level probabifties of dispersal. Adults were consdered sessie.

b 1AL planci and a generic coral prey species were simuated using Lotika-Volterra

We defined dispersal from local populstions based on a dasperssl

die and density ratums 10 non-outhreaking leves,

ACrass sY interms of ab and wyof the s

* Envin tal stochasticity accounted for stochastic variation in popuation growth rates.
* Bliotic i ctions: Pred pray i 2

|peedator-prayl equations |Scevano / only),
+ Density ek wiere modelled by allowing populats

dansity toir

We ran 100 semwlations of 120 1ime steps each, discarding the first 20, which were usad as tha bum-in paricd, We summansad the outputs

up to the carrying capacity, after which ndwiduals

and its coral peey (Scenano fonly). We ran a sensitivity analysis

with the man moded paras

sl trees tod the most

vargng b v+ 20% over g total of 2?” models as detarmined by Latin hypercube samplng. and then used
paramaters (Supplemantary matanal),

dynamics and distribution of A planci. Climate change was simulated
based on a latitudinal change in potential climate suitability, with the
southernmost habitats becoming more suitable and northernmost hab-
itats becoming less so over the 100-year time period considered
(Lamare et al, 2014). Finally, we accounted for demographic traits and
processes including fertility, dispersal, population growth, and densi-
ty-dependent survival (e g. accounting for the fact that individuals die
and populations are reduced to non-outbreaking sizes once they reach
acritical density threshold; Pratchett, 2005) (Box 1 and Supplementary
material),

Ecologically realistic fluctuations in total population sze mirrored
the outbreaking dynamics observed on the Great Barrier Reef
(Fabricius et al. 2010) only when biotic interactions were explicitly
maodelled (Scenario I; Fig. 2A). Occupancy patterns were characterised
by temporal fluctuations that reflected lagged changes in the spatial dis-
tribution of prey abundance (Fig. 2A bottom panel). In contrast, in the
scenario without biotic interactions (Scenarie If), we show a steady de-
cline in the total occupied range area and total population abundance of
the invasive species over time (Fig. 28). The effects of habitat dlustering
were more pronounced when no biotic interactions were <considered
[differences among rows in Fig. 2B), More clustered aggregations of
suitable habitat generated smoother changes in population dynamscs
as habitat suitability shifted in response to climate change. The mecha-
nism behind this is a greater connectivity among local populations
within highly clustered habitats. which facilitates synchronisation
among populations, homogenising the response to cimate change. In
Scenario L this greater level of connectivity in highly clustered habitats
also caused higher cutbreak population sizes of A planci, Moreover, ¢&-
mate change only affected occupancy patterns in Scenario L with the av-
erage spatial extent an outbreak (i.e. number of occupied cells at each
peak) decreasing over the 100 year period (Fig. 2A bottom panel ), Con-
versely, there was no evidence of decrease in the size of the outbreaking
population over time (Fig 2A top panel ).

4. Forecasting and managing marine invasions under climate
change

Previows research has started to unravel the importance of xcount-
Ing for population dynamics when trying to forecast range shifts and
changes in abundance (Keith et al, 2008; Fordham et al, 2013b). A
more recent, critical consideration is how to incorporate intra- and
inter-specific bsotic mteractions into forecasts of future trends in abun-
dance and geographical range lamits under climate change (Fig 1). Such
biotic interactions can strongly influence the effect of climate change
on marine Invasions, sometames even reversing the direction of

species-specific responses to a particular stressor (when a species is
affected by a stressor ealy in the presence or absence of another species)
(e.g. Teng & Apperson, 2000, If we are to fully understand and better
forecast marine invasions, we need coupled range dynamics models
that are able to incorporate the most relevant aspects of s pecies-level bi-
ology and ecology, along with their major interactions. Our coupled
range dynamics moded for A, plandt buikls upon recent and flexdble plat-
forms for madelling single-species invasions (eg., Savage & Renton,
2014), proviling a proof-of<concept that, for this simple system, direct
hiotic interacons can be integrated into forecasts of marine invasions
under climate change with relative ease. Notably, our “proof-of-con-
cept” modelling exercise demonstrates that accounting for simple
prey-predator interactions strongly influences forecasts of range move-
ment and popudation abundance; and that real-world population trends
(l.e., those observed on the Great Barrier Reef) can only be reproduced
using simulations that account explicitly for biotic Interactions. Our
findings highlight the importance of identifying the most important
sources of environmental and biotic interactions and then integrating
them with an appropriately scaled spatially explicit demographic
model to forecast invasions under climate change,

Our modelling framework provides a generi tool that can readily be
applied to any other marine pest (see Python cede in Supplementary
material) where data is available for model parameterisation. Its flexi-
bility allows to incorporate vasable biotic interactions under climate
change, as well as the impact of thermal or other stress on demographic
rates (eg., decreased fertikty: Foedham et al, 2013b). Nonetheless, we
suggest that only the most pertinent biotic interactions should be in-
cluded, based on expert knowledge, published | e, meta-analysis
or experimentation. This is bacause not all aspects of ecosystems can of
shaukd be acounted for in model projections smce doing so will result
in over-parametrized models that are computationally unwicldy and
difficult to validate or duplicate (Grienm et al, 2005; Fulton et al,
2015), Finally, it is worth poting that the specificities and constraints
particular to the model we developed for A planc can be easily relaxed
to capture different processes and mechanisms affecting corals, such as
bleaching and cyclones. Induding recent data-driven observaions of
coral impact and recovery following disturbance (Mellin et al, 2016)
in the model 5 a key next step forward.

Arguably, tight integration of the ecological processes considered
above into a comprehensive modelling frammework for manine invasions
can be dauntingly complex and prohibitively challenging, partly be-
cause of the difficulties in collecting the data needed to parameterse
such models. However, there are solutions. Plausible parameter
estimation ¢an be achieved using approximate Bayesian computation
(Beaurnont, 2010} or the elicitatlon of expert knowledge (Martin e
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al., 2005). Model parameters can then be calibrated by comparing
model predictions with independent observations (Wells et al_ 2015).
Indeed, not all model parameters will have a significant effect
on model outcomes, and sensitivity analysis (McCarthy et al,, 1995)
can help determine where future research efforts should be focused to
improve mode] parameters and subsequent predictions. In the case of
A planci for example, our sensitivity analysis showed that natural mor-
tality rate was the most important determinant of popudation size and
cccupancy {Suppplementary material). Since natural moetality is typi-
cally difficult to guantify (Pratchett et al, 2014), estimates are some-
what uncertain and future research efforts should therefore focus on
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Improving such estimates of moctality. Second, whee it s arucial to cea-
sider stressors other than temperature and the potential interactions
among them, there remain significant gaps in our understanding of re-
sponses to such stressors, as well as how species-specific responses
will propagate at the community level (Sorte, 2014}, This is where
meta-analyses can provide invaluable sources of information on
how an organism might respond to a given stressor based on the
taxon, life stage, habitat, and potential interactions with other stressors
(eg., Przeslawski et al., 2015). Meta-analyses can also help define the
strength and direction of interactions among stressors in an mtegrative
maodel, irrespective of divergences in defining the type of interactions
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considered (e, synergistic, antagonistic, and additive effects) (Piggott
etal., 2015).
Twe critical post-hoc steps will determine the successful uptake of

Appendix A. Supplementary data

model outcomes by stakeholders, namely (1) model validation and
{#) quantification of uncertainty through cach step of the model, Demo-
graphic models are typically validated by hindcasting abundance over
the period for which independent obsesvations are available, and com-
paring model predictions with observations (Wells etal, 2015). Ideally,
in the most data-richsituations, validation canalso be done wsing genet-
ic estimates of population relatedness and source-sink dynamis
{Fordham et al.,, 2014). Uncertainty on the other hand. Is a neglected
issue that can be complex to address. Attempts have been made
to quantify data-related {observational or aleatory) vs. model-based
{epistemac) uncertainty (Fordham et al, 2013c). and software devel-
aped to allow uncertainty in model parameters {and their interactions)
to propagate through to model outputs and influence decision-making
{Fordham et al. 2016).

The framework described here can and should be used to examine
andd rank the efficacy of alternative control strategies (in space
and time) including: actively removing the invader; altering habitat
suitability (c.g. through predator protection i no-take arcas); and
managing key dispersal corridoes for the invasive spedes or its preda-
tors. The approach can also be used address whether management ef-
fort should focus o contralling the centre {source) of a population or
the spreading penphery (Williams & Grosholz, 2008} under climate
change, Due to epistemic uncertainty, forecasts of any invasion should
be considered with caution. and it will often be more desirable to
focus on differences among scenarias rather than on specific forecasts
per se. In this way, the benefit of a particudar management action should
be measured against its counterfactual, i.e. what would happen if re-
sources were spent on an alternative control option (Wikon et al,,
2006), to provide a more sound basis for decision making than individ-
ual forecasting.

5. Conclusion

During recent decades, mvaluable knowledge has been gamned about
the mechanisms and consequences of biokgical invasions in warming
aceans, and there is now a need to shift attention froen the properties
of invading organisms to forecasting invasions in a changing world.
Our methedology begins this task by building on previous modelling ef-
forts to incorporate range dynamics, demography. and beotic interac-
vons Impoectantly, methodologies exist to tackle data limitation issues
{e.g Bayesian parameter estimation, meta-analysis, expert ebdtaion),
making demographic model development tractable as part of an adap-
tive learning process. We suggest that strategic pathways should be de-
veloped to inform maodel inputs, interactions among stressors and their
inherent uncertainty- the successful integration of which will deter-
mine model uptake and benefits in terms of conservation. Finally we
emphasize the importance of validating model predictions and
interpreting model results in a way that reduces the effects of epistemic
uncertainty.
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Threats from climate change and other human pressures have led to widespread concern for the future of Australia’s Great
Barrier Reef (GBR). Resilience of GBR reefs will be determined by their ability to resist disturbances and to recover from coral
loss, generating intense interest in management actions that can moderate these processes. Here we quantify the effect of
environmental and human drivers on the resilience of southern and central GBR reefs over the past two decades, Using a com-
posite water quality index, we find that while reefs exposed to poor water quality are more resistant to coral bleaching, they
recover from disturbance more slowly and are more susceptible to outbreaks of crown-of-thorns starfish and coral disease—
with a net negative impact on recovery and long-term hard coral cover. Given these conditions, we find that 6-17% improvement
in water quality will be necessary to bring recovery rates in line with projected increases in coral bleaching among contemporary
inshore and mid-shelf reefs. However, such reductions are unlikely to buffer projected bleaching effects among outer-shelf GBR
reefs dominated by fast-growing, thermally sensitive corals, demonstrating practical limits to local management of the GBR
against the effects of global warming.
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