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Elevated carbon dioxide (CO2) levels can alter ecologically important behaviors in a
range of marine invertebrate taxa; however, a clear mechanistic understanding of these
behavioral changes is lacking. The majority of mechanistic research on the behavioral
effects of elevated CO2 has been done in fish, focusing on disrupted functioning of the
GABAA receptor (a ligand-gated ion channel, LGIC). Yet, elevated CO2 could induce
behavioral alterations through a range of mechanisms that disturb different components
of the neurobiological pathway that produces behavior, including disrupted sensation,
altered behavioral choices and disturbed LGIC-mediated neurotransmission. Here, we
review the potential mechanisms by which elevated CO2 may affect marine invertebrate
behaviors. Marine invertebrate acid–base physiology and pharmacology is discussed in
relation to altered GABAA receptor functioning. Alternative mechanisms for behavioral
change at elevated CO2 are considered and important topics for future research have
been identified. A mechanistic understanding will be important to determine why there
is variability in elevated CO2-induced behavioral alterations across marine invertebrate
taxa, why some, but not other, behaviors are affected within a species and to identify
which marine invertebrates will be most vulnerable to rising CO2 levels.

Keywords: marine invertebrate, behavior, carbon dioxide, ocean acidification, GABA, ligand-gated ion channel,
mechanisms, GABAA receptor

INTRODUCTION

Human activity is resulting in unprecedented amounts of carbon dioxide (CO2) being released into
the atmosphere. Since the Industrial Revolution, atmospheric CO2 levels have increased by over
45%, from approximately 280 ppm (Joos and Spahni, 2008) to over 410 ppm today (Dlugokencky
and Tans, 2019), higher than any time in the past several million years (Masson-Delmotte et al.,
2013). In the worst case scenario, following the business-as-usual representative concentration
pathway (RCP) 8.5, atmospheric CO2 levels will increase to over 900 ppm by the end of this century.
Even if substantial efforts are made to curb global CO2 emissions to keep warming below 2◦C,
atmospheric CO2 levels will still likely exceed 600 ppm by 2100 (Betts and McNeall, 2018). The
ocean has absorbed 20–30% of anthropogenic CO2 emissions since the mid-1980s (Bindoff et al.,
2019), causing a reduction in seawater pH referred to as ocean acidification. Furthermore, CO2 in
the surface ocean is increasing at the same rate as in the atmosphere (Bindoff et al., 2019); therefore,
marine organisms will need to cope with higher CO2 levels as well as declining seawater pH. Finally,
due to a decrease in the ocean’s buffering capacity as CO2 content rises, natural CO2 fluctuations
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in the ocean are projected to amplify dramatically at future
higher CO2 levels (Shaw et al., 2013; McNeil and Sasse, 2016).
Natural diel (Hofmann et al., 2011; Santos et al., 2011; Shaw
et al., 2012) and seasonal CO2 fluctuations (McNeil et al., 2007;
Feely et al., 2008) will be amplified by up to three times in the
future (McNeil and Sasse, 2016; Gallego et al., 2018), meaning
that marine organisms will experience elevated CO2 levels for
certain periods of time (daily or seasonally) much earlier than
predictions based on atmospheric CO2 alone.

Elevated CO2 has been found to affect a range of processes
in marine organisms, including altering calcification (Ries et al.,
2009; Kroeker et al., 2013), growth and survival (Fabry et al.,
2008; Kurihara et al., 2008), and behavior (Briffa et al., 2012;
Clements and Hunt, 2015; Nagelkerken and Munday, 2015).
Projected future CO2 levels were first found to alter animal
behavior in orange clownfish Amphiprion percula larvae reared in
a partial pressure of CO2 (pCO2) of∼1,050 µatm (Munday et al.,
2009). In laboratory experiments, the olfactory discriminatory
abilities of 11-day-old clownfish larvae were tested in a two-
channel flume. Most strikingly, larvae reared in control seawater
(∼390 µatm pCO2) avoided the side of the flume with chemical
cues from pungent tree leaves compared to the seawater control
side. However, larvae reared in elevated CO2 spent nearly all
their time in the side with these odors. Larval clownfish reared
in ∼1,050 µatm CO2 were also unable to discriminate between
the odor of parents and non-parents, whereas control larvae
avoided the odor of their parents (Munday et al., 2009). Elevated
CO2 has since been found to affect a variety of behavioral
traits in a wide spectrum of fishes, including tropical and
temperate reef species, eels, salmon and sharks (Munday et al.,
2019). Behavioral alterations at elevated CO2 have also been
demonstrated in a variety of marine invertebrates, including
cnidaria, polychaetes, echinoderms, arthropods and mollusks,
from a range of environments, including the intertidal zone,
coastal and offshore waters and the deep-sea (Clements and
Hunt, 2015; Nagelkerken and Munday, 2015; Wang and Wang,
2019). Marine invertebrates exhibit alterations in a range of
behaviors at elevated CO2, including activity levels (Rosa and
Seibel, 2008; Ellis et al., 2009; Spady et al., 2014), feeding
rates (Saba et al., 2012; Vargas et al., 2014), settlement and
metamorphosis behaviors (Albright et al., 2010; Doropoulos
et al., 2012; Guo et al., 2015), burrowing behaviors (Green
et al., 2013; Clements and Hunt, 2014), shelter selection (de
la Haye et al., 2011), predatory behaviors (behaviors related
to finding and eating prey) (Kim et al., 2015; Queirós et al.,
2015; Spady et al., 2018) and predator avoidance (Bibby et al.,
2007; Manríquez et al., 2013, 2014a; Spady et al., 2014; Watson
et al., 2014). Behavioral categorization is often ambiguous as one
behavior may actually include multiple behaviors or decision-
making processes. For example, predator avoidance behaviors
include multiple decisions such as mode of avoidance (including
crypticity versus escape), flight-initiation distance and mode of
escape (Lima and Dill, 1990). In this review, we use the behavioral
category that was reported in the corresponding research paper.

Since the review by Clements and Hunt (2015) at least 61
additional papers have assessed the impact of elevated CO2
on marine invertebrate behaviors (Supplementary Table S1).

Research has continued to focus on mollusks, arthropods and
echinoderms, however, cnidarian settlement and metamorphosis
(Foster et al., 2015; Olsen et al., 2015; Viyakarn et al., 2015;
Fabricius et al., 2017; Yuan et al., 2018), the settlement behavior
and swimming activity of a bryozoan (Pecquet et al., 2017), and
settlement of an annelid (Nelson et al., 2020) have also been
studied. In addition to continuing to assess the impact of elevated
CO2 on the range of behaviors previously studied (above), a few
new behaviors have also been investigated. For example, the first
study assessing the effect of elevated CO2 on marine invertebrate
reproductive behavior was recently published (Borges et al.,
2018). Exposure of male amphipods Gammarus locusta to
elevated CO2 (800 µatm pCO2) for two generations disrupted the
chemosensory detection of potential mates (Borges et al., 2018).
A light/dark test on swimming crabs Portunus trituberculatus
exposed to control (485 µatm pCO2) or elevated (750 µatm and
1,500 µatm pCO2) CO2 was the first to assess the impact of
elevated CO2 on anxiety-like behavior in a marine invertebrate.
Crabs exposed to elevated CO2 levels spent significantly more
time in the dark zone (Ren et al., 2018).

There appears to be large variability in behavioral responses
to elevated CO2; across taxonomic groups, the same behavior
can respond differently to elevated CO2, and within a species,
some behaviors but not others can be affected (Nagelkerken and
Munday, 2015) (Supplementary Table S1). As the phylogenetic
variation among invertebrate taxa is enormous, it may account
for a large component of the variability in behavioral responses
across taxonomic groups; some taxa may be more tolerant to
elevated CO2 than others. At the same time, various behaviors are
likely associated with different processes, such as specific circuits
in the nervous system. These processes may be affected differently
by elevated CO2, accounting for the effects of elevated CO2 on
some, but not all, behaviors within a species. It must also be
noted that variability may be due to differences in experimental
techniques and conditions.

Animal behavior is, to a large extent, the functional
output of the nervous system (Simmons and Young, 1999);
therefore, behavioral changes induced by elevated CO2 are
likely caused by neurobiological mechanisms. In the nervous
system, simplistically, the pathway that produces behavior
involves sensory receptors that detect environmental stimuli (e.g.,
chemical cues, light waves) and internal stimuli (e.g., spatial
orientation of the body). The received information is transduced
into electrical impulses and neurotransmission relays these
electrical impulses between neurons. Neurotransmission must be
rapid to produce timely behavioral responses, and this is achieved
via ligand-gated ion channel (LGIC) mediated neurotransmission
(Dent, 2010). LGICs are transmembrane protein complexes
that, upon binding of a specific neurotransmitter, allow ion
flow which results in excitation or inhibition of neuronal firing
depending on the ion charge and direction of flow (Tovar
and Westbrook, 2012). When the sensory information arrives
at higher centers of the nervous system, this information is
processed and a behavioral output is produced (Blom, 1978;
Kreher et al., 2008) (Figure 1).

Elevated CO2 could induce behavioral alterations through a
range of mechanisms in the nervous system that disturb different
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FIGURE 1 | Simplistic pathway of how the nervous system produces behaviors and potential ways elevated CO2 could alter marine invertebrate behavior. An
external or internal stimulus is detected by sensory receptors located on a sense organ. A physical stimulus binding to a receptor, e.g., a chemical cue binding to the
corresponding receptor (chemoreception), is depicted. However, stimuli and receptors may range from photoreceptors detecting light energy to stretch receptors
detecting body movement or hair cells detecting vibrations. The detected sensory information is then transduced into electrical impulses that are relayed between
neurons to higher centers of the nervous system. Here, the information is processed which includes using external and internal contextual factors to make behavioral
choices. The information is transmitted between neurons to the motor system and a behavioral response is produced. Throughout this process, neurotransmission is
used to relay the electrical impulses from neuron to neuron. Elevated CO2 may alter behavior by interfering at multiple points along this pathway. Sensation may be
disrupted by changes to sensory stimuli at elevated CO2 through structural change of chemical cues, increased sound transmission and altered sensory output from
animals. Sensation may also be disrupted on the receiving end via altered structure of sensory receptors or physical change to sensory organs. Elevated CO2 may
change the context within which decision-making is carried out, thus influencing behavioral choices. The change in ion gradients across neuronal membranes, due
to acid–base regulation at elevated CO2, may disrupt LGIC-mediated neurotransmission, glial-neuronal signaling and the role of Cl− as a signaling effector. Numbers
represent references providing evidence for each mechanism in marine invertebrates, while a * indicates this mechanism is based on theory with no experimental
evidence in marine invertebrates. 1 Roggatz et al. (2016), 2 Maneja et al. (2011), 3 de la Haye et al. (2012), 4 Bibby et al. (2007), 5 Chan et al. (2011), 6 Dissanayake
and Ishimatsu (2011), 7 Li and Gao (2012), 8 Peng et al. (2017), 9 Wang et al. (2018), 10 (Rich et al., 2018), 11 Watson et al. (2014), 12 Charpentier and Cohen
(2016), 13 Moya et al. (2016), 14 Clements et al. (2017), 15 Ren et al. (2018), 16 Zlatkin and Heuer (2019).

components of the pathway that produces behavior [Briffa et al.
(2012), as described in Figure 1]. (1) Sensation may be disrupted
via changes to sensory stimuli at elevated CO2, such as structural
alteration of chemical cues, disturbed transmission of acoustic
cues and altered sensory output from animals experiencing
behavioral changes (Roggatz et al., 2016; Nagelkerken et al.,
2019). (2) Alternatively, elevated CO2 may disrupt sensation
via physical change to sensory organs or structural alteration
of sensory receptors (Maneja et al., 2011; Briffa et al., 2012;
Bignami et al., 2013). (3) Morphological and respiratory changes
at elevated CO2 may alter the context within which decision
making is carried out, influencing behavioral responses (Bibby
et al., 2007; Chan et al., 2011; Peng et al., 2017; Rich et al., 2018).
(4) Elevated CO2 may induce change in ion gradients across
neuronal membranes, due to acid–base regulation to prevent
acidosis at elevated CO2, which may disrupt LGIC-mediated
neurotransmission via the γ-aminobutyric acid (GABA) type A
receptor (GABAA R) (Nilsson et al., 2012). These mechanisms

are not necessarily mutually exclusive and may interact to alter
behavior at elevated CO2.

Despite the growth in literature demonstrating elevated
CO2-induced behavioral alterations in marine invertebrates, the
mechanisms responsible for these behavioral alterations are
still poorly understood. Due to the diversity of invertebrate
nervous and neurobiological systems, it is likely that a suite
of different processes underlie these behavioral changes. Here,
we discuss the potential mechanisms by which elevated CO2
may alter marine invertebrate behavior; (1) disturbed sensation,
(2) altered context within which behavioral choices are made,
and (3) disrupted LGIC-mediated neurotransmission. Since the
prominent hypothesis for altered LGIC-mediated transmission
is the GABA hypothesis proposed in fish by Nilsson et al.
(2012), here we discuss evidence for the GABA hypothesis
in marine invertebrates and propose research to expand our
understanding of the GABA hypothesis in marine invertebrates.
We demonstrate that the effects of altered GABAA receptor
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function are likely to be widespread, including non-behavioral
effects. Finally, we identify other neurobiological mechanisms
that should be affected if the GABA hypothesis is correct, propose
alternative neurobiological mechanisms by which behavior
could be altered by elevated CO2 and suggest techniques
to be utilized for future study of elevated CO2-induced
behavioral alterations.

MECHANISMS FOR ELEVATED
CO2-INDUCED BEHAVIORAL CHANGES

Altered Sensory Stimuli at Elevated CO2
Elevated CO2 may influence behavior by altering an animal’s
ability to sense the environment (Briffa et al., 2012; Draper
and Weissburg, 2019). A range of sensory stimuli may be
disrupted at elevated CO2 via differing mechanisms, thereby
affecting associated behaviors (Figure 1). Structural alteration
of chemical cues at elevated CO2 may affect chemoreception –
the detection of chemical cues by binding to sensory receptors,
e.g., odor molecules binding to olfactory receptors (Tierney and
Atema, 1988). Impaired chemo-responsive behavior was first
shown to be due to structural alteration of the chemical cue
at low pH in a freshwater system (Brown et al., 2002) and
the same mechanism has since been demonstrated in a marine
invertebrate; the shore crab Carcinus maenas. Near-future pH
levels altered the structure and charge of signaling molecules that
mediate egg ventilation behavior in the shore crab C. maenas
and the threshold of signaling molecule concentration required
to induce egg ventilation behavior in this species increased when
tested at pH 7.7 compared to pH 8.1 (Roggatz et al., 2016).
Receptor alteration, such as change in ionization state, could
also conceivably occur at low pH disrupting chemoreception
(Tierney and Atema, 1988), and may be an additional explanation
for behavioral changes observed in the shore crab (Roggatz
et al., 2016). However, to date receptor structure has never been
directly tested at different CO2 levels in conjunction with a
behavioral assay.

Changes in ocean chemistry associated with rising CO2 levels
will directly affect acoustic cues, potentially altering auditory
driven behaviors. Sound absorption, in the low frequency range
of ∼0.01–10 kHz, is reduced by decreasing pH due to shifts
in the chemical reactions of sound absorbing compounds (e.g.,
magnesium sulfate, boric acid and carbonate ions) in seawater
(Hester et al., 2008). Sound absorption (decibels per kilometer)
is predicted to decrease by over 20% and almost 40% with a
pH drop from 8.1 to 7.95 and 7.8, respectively (Hester et al.,
2008). Thus, as CO2 levels rise, transmission of low-frequency
sounds will increase and ecologically relevant acoustic cues,
within this affected frequency range, will be transmitted further
at elevated CO2 levels. For example, compared to off reef-
locations, oyster reefs have higher acoustic energy levels within
the frequency range of 1.5–20 kHz. This acoustic signature
of reefs is used as a settlement cue by larval oysters (Lillis
et al., 2013). As CO2 levels rise, oyster larvae may thus be
able to detect appropriate settlement habitats from greater
distances, however, it remains unknown whether the magnitude

of change is sufficient to be of biological relevance. Elevated CO2
will also increase the transmission of abiotic sounds produced
naturally (e.g., waves, raindrops) and by human activity (e.g.,
shipping, sonar and construction) (Ilyina et al., 2010). This
will create a noisier environment in which it is harder for
marine invertebrates to detect ecologically relevant sounds,
such as those used for communication (Popper et al., 2001;
Buscaino et al., 2011) as well as navigation and habitat selection
for settlement (Jeffs et al., 2003; Stanley et al., 2009; Vermeij
et al., 2010; Lillis et al., 2013). In a coral reef fish, predatory
behavior decreased when exposed to boat noise or elevated CO2
(925 µatm pCO2), however, there was no additive effect when
these stressors co-occurred (McCormick et al., 2018). Studies in
marine invertebrates to determine how increased transmission
of biologically relevant cues and background noise will interact
as CO2 levels rise, and if this will be biologically relevant
will be important.

Behavioral changes induced by elevated CO2 may alter the
sensory output of an animal, affecting whether and how this
animal is sensed by other animals (Draper and Weissburg,
2019). For example, increased activity of a prey animal
could enhance how much or how often sound, visual and
mechanosensory cues are produced, strengthening predatory
sensory detection of the prey and increasing the chance of
predation (Draper and Weissburg, 2019). Elevated CO2 reduced
the intensity and frequency of snaps produced by snapping
shrimp (Rossi et al., 2016). As these snaps are commonly
present in the soundscapes used by marine invertebrate larvae
as settlement cues (Stanley et al., 2009; Vermeij et al., 2010;
Lillis et al., 2013), altered snapping behavior of snapping
shrimp at elevated CO2 may in turn alter marine invertebrate
settlement behavior.

Physical Change of Sensory Organs
Sensation may also be disrupted by physical change of sensory
organs at elevated CO2. Due to lower saturation states of seawater
with respect to calcium carbonate at elevated CO2, animals
can have difficulty maintaining calcium carbonate structures
(Orr et al., 2005) which may damage sensory organ structures
(Briffa et al., 2012). Alternatively, active acid–base regulation
to maintain a steady internal pH may alter the concentrations
of ions that are fundamental for the formation of calcified
sensory organs (Grosell, 2019). For example, many marine
invertebrates use statocysts, which contain mineralized statoliths,
to detect gravity to maintain orientation (Cohen, 1960; Clarke,
1978; Spangenberg, 1986), as well as vibrational stimuli for
hearing in cephalopods (Mooney et al., 2010). Statocysts are
also involved in motor programs that underlie hunting behavior
in mollusks (Levi et al., 2004). Statolith size was reduced and
morphology altered in cephalopods exposed to ∼1,300 µatm
(Zakroff et al., 2019), 2,200 µatm (Kaplan et al., 2013), and
4,000 µatm (Maneja et al., 2011) pCO2. Abalone exposed
to ∼700 and ∼1,000 µatm pCO2 also exhibited decreased
statolith size compared to control conditions (Manríquez et al.,
2014b). Conversely, statolith size was increased, and chemical
composition altered, in squid exposed to 850 and 1,500 µatm
pCO2 (Lacoue-Labarthe et al., 2011). Cuttlefish exposed to
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4,000 µatm pCO2 exhibited reduced statolith calcification,
altered statolith microstructure and decreased prey capture
efficiency compared to squid in control conditions (700 µatm
pCO2) (Maneja et al., 2011). Furthermore, computer modeling
showed that an increased statolith mass, similar to that seen
in the otoliths of fish exposed to 2,500 µatm pCO2, would
alter cephalopod hearing below 10 Hz (Zhang et al., 2015).
However, squid exposed to ∼1,300 µatm pCO2 had smaller
statoliths with an altered morphology (Zakroff et al., 2019)
but no impairment in swimming orientation (Zakroff et al.,
2018). Therefore, elevated CO2-induced alteration of statoliths
may disturb hearing but not gravity detection in cephalopods,
impacting auditory-driven behavioral outputs but not the ability
to maintain orientation. Decapod crustaceans possess calcified
antennules, housing chemoreceptors, which are used for long
range chemoreception. Rapid antennule flicking is used to gather
chemical cue information, much in the way sniffing increases
our ability to determine smells (Schmitt and Ache, 1979; Koehl,
2005). Hermit crabs with disrupted chemo-sensory responses
at extremely high levels of CO2 (c. >12,000+ µatm pCO2)
showed no damage to their antennules (de la Haye et al., 2012),
suggesting that other mechanisms must be responsible for the
observed response.

Altered Behavioral Choices
The physiological and ecological context, including external
factors (e.g., presence of predators or temperature) and
internal factors (e.g., hunger or reproductive state) can
influence behavioral choices (Palmer and Kristan, 2011). Elevated
CO2 may alter both external and internal factors, changing
contextual modulation of behavioral choice and resulting
in altered behavioral output. Physical changes induced by
elevated CO2 may alter an animal’s behavioral choice. For
example, predator-induced shell thickening observed in control
periwinkles Littorina littorea did not occur in periwinkles
exposed to extremely high levels of CO2 (c. >12,000+ µatm).
However, predator avoidance behavior increased at elevated
CO2 conditions, compared to control, which suggests behavioral
compensation for the lack of morphological defense at extremely
high levels of CO2 (Bibby et al., 2007). In another example,
the swimming performance of larval sand dollars Dendraster
excentricus was maintained at elevated CO2 (∼1,000 µatm pCO2)
despite impaired arm and body morphology, likely due to a
behavioral change in ciliary beat patterns (Chan et al., 2011).
By contrast, both predator cue-induced byssal thread production
and protective clustering behavior was decreased in mussels
exposed to elevated CO2 (1,100 µatm pCO2) (Kong et al.,
2019), indicating no behavioral compensation for the lack of
morphological defense at elevated CO2.

The influence of elevated CO2 on respiration, energy turnover
and mode of metabolism (Pörtner et al., 2004) may also
alter behavioral choice. Depressed metabolism at elevated CO2
levels may reduce energy production, reducing the energy
available to meet other demands and constraining performance
of some behaviors. For example, metabolic scope and swimming
ability were reduced in shrimp exposed to ∼1,000 µatm pCO2
(Dissanayake and Ishimatsu, 2011) and oxygen consumption

rate and digging depth were decreased in razor clams exposed
to 1,900 and 3,000 µatm pCO2 (Peng et al., 2017). Increased
metabolism can indicate an increased energy demand at elevated
CO2 and may decrease the energy available for other costly
processes. For example, crabs exposed to 1,200 and 2,300 µatm
pCO2 exhibited an increased metabolic rate but a decreased
feeding rate (Wang et al., 2018). Alternatively, organisms may
alter behaviors to meet the high energy demand. For example,
respiration and feeding rate were increased in a copepod exposed
to 1,000 µatm pCO2 (Li and Gao, 2012) and a sea urchin exposed
to 1,300 µatm pCO2 (Rich et al., 2018). However, other studies
show a change in metabolism with no associated behavioral
change at 750 and 1,200 µatm pCO2 in an echinoderm (Carey
et al., 2016) and at 1,500 µatm pCO2 in a mollusk (Benítez
et al., 2018), or no metabolic change but altered behavior at
960 µatm pCO2 in a mollusk (Watson et al., 2014) and at 1,000,
2,000, and 3,000 µatm pCO2 in a crustacean (Menu-Courey
et al., 2018). Therefore, it seems that altered metabolism in
elevated CO2 may be responsible for some instances of altered
behaviors, but not others.

Altered Functioning of the GABAA
Receptor
Elevated CO2 has been found to alter a range of behaviors across
different sensory modalities, as well as behaviors that involve
higher order processing, such as decision making (de la Haye
et al., 2011) and anxiety-like behaviors (Ren et al., 2018). This
suggests that not only sensory detection, but also other neuronal
processes are altered by elevated CO2. Neurotransmission is
crucial to all components of the pathway producing behavior,
from relaying electrical signals from sensory receptors to (and
between) higher-order neurons for information processing, to
motor neurons for the production of a behavioral response.
Therefore, altered neurotransmission at elevated CO2 may
underlie a variety of behavioral disturbances.

The prominent hypothesis for altered neurotransmission at
elevated CO2 is the GABA hypothesis, proposed to occur in
fish (Nilsson et al., 2012; Heuer and Grosell, 2014) and also
suggested to apply to marine invertebrates (Watson et al.,
2014). In vertebrates, GABA acts on the GABA type A receptor
(GABAA R), a LGIC permeable to chloride (Cl−) and bicarbonate
(HCO3

−) ions, as the main inhibitory neurotransmitter in the
central nervous system (DeFeudis, 1975; Bormann et al., 1987).
Under normal conditions, binding of GABA opens the GABAA
R channel allowing a net influx of negative charge resulting in
hyperpolarization and inhibition of neuronal firing. Nilsson et al.
(2012) proposed that the change in HCO3

− and Cl− gradients
across the neuronal membrane, due to acid–base regulation
at increased CO2 levels, results in a net efflux of negative
charge from the GABAA R upon GABA binding (Figure 2A).
This could cause depolarization and excitation of neurons,
thereby altering behavioral responses. Pharmacological studies
administering GABAA R antagonists and agonists (Nilsson et al.,
2012; Hamilton et al., 2013; Chivers et al., 2014; Chung et al.,
2014), and measurements of brain ion gradients (Heuer et al.,
2016) have supported this hypothesis in fish.
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FIGURE 2 | Potential reversal in function of varying LGICs at elevated CO2 in marine invertebrates. (A) A change in HCO3
− and Cl− gradients across the neuronal

membrane, due to acid–base regulation at elevated CO2, was proposed to reverse the net flow of negative charge through the GABAA R (Nilsson et al., 2012) and
likely applies to the marine invertebrate iGABA R. Under normal conditions the net influx of negative charge is primarily carried by Cl−, while at elevated CO2 the net
efflux of negative charge may be primarily carried by HCO3

− (see Heuer et al., 2019 for a detailed explanation). (B) A range of invertebrates also possess glutamate,
acetylcholine, histamine and serotonin-gated chloride channels. The flow of Cl− through these channels may be similarly altered at elevated levels of CO2. Research
is needed to determine whether these receptors are also permeable to HCO3

− which could also contribute to the reversal of the net movement of negative charge.
A net influx of negative charge will result in hyperpolarization and inhibition of neuronal firing, while a net efflux of negative charge will cause depolarization and
excitation. Glu, glutamate; ACh, acetylcholine; 5-HT, serotonin.

THE GABA HYPOTHESIS IN MARINE
INVERTEBRATES

GABA is the main inhibitory neurotransmitter in the invertebrate
peripheral and central nervous systems (Lummis, 1990; Lunt,
1991), acting on the ionotropic GABA receptor (iGABA R),
which is also permeable to Cl− and HCO3

− ions (Kaila and
Voipio, 1987). Thus, the GABA hypothesis likely applies to
marine invertebrates. The GABA hypothesis has been tested in
marine arthropods and mollusks using pharmacological studies
(Watson et al., 2014; Charpentier and Cohen, 2016; Clements
et al., 2017), measurement of ion concentrations (de la Haye
et al., 2012; Charpentier and Cohen, 2016) and molecular studies
(Moya et al., 2016; Ren et al., 2018) (Table 1).

One method of assessing the GABA hypothesis involves
administering the GABAA R antagonist gabazine (SR-95531)
(Heaulme et al., 1986). If GABAA R functioning is altered at
elevated CO2, gabazine administration should reverse elevated
CO2-induced behavioral alterations by inhibiting channel
opening and thus blocking the altered ion flow (Nilsson et al.,
2012). Indeed, impaired escape behavior caused by exposure
to 961 µatm pCO2 was restored to control levels by gabazine
in the jumping conch snail Gibberulus gibbosus (Watson et al.,
2014). In the soft shell clam Mya arenaria, burrowing behaviors
altered by CO2 sediment levels representing present day variation
were restored by gabazine (Clements et al., 2017). By contrast,

in Asian shore crab larvae Hemigrapsus sanguineus, the loss of
chemical cue-induced photosensitive behavior at elevated CO2
conditions (1,380 µatm pCO2) was not restored by gabazine
(Charpentier and Cohen, 2016). These contrasting results initially
appear to suggest that the GABA hypothesis applies to some,
but not other, marine invertebrate taxa. However, crustacean
iGABA Rs are commonly insensitive to gabazine (El Manira and
Clarac, 1991; Jackel et al., 1994; Pearstein et al., 1996; Barry, 2002),
meaning that gabazine may be inadequate for testing the GABA
hypothesis in crustaceans.

It is interesting to note that the action of gabazine differed
across control animals; gabazine significantly altered the behavior
of control crab larvae (Charpentier and Cohen, 2016), had a
non-significant trend of altering the behavior of control snails
(Watson et al., 2014), and did not alter control clam burrowing
behavior (Clements et al., 2017). As gabazine also blocks ion flow
under normal conditions, preventing inhibition, over-excitation
and behavioral alterations should occur in control animals.
As gabazine does not appear to affect crustacean iGABA Rs,
the behavioral change observed in crabs held at control CO2
levels may be through the action of gabazine on a different
pathway, such as a different receptor type. Characterizing the
pharmacology of gabazine in the studied species and using
a range of GABAA R drugs will be important to confirm
the GABA hypothesis is actually being tested (see the section
“Pharmacological Considerations”).
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TABLE 1 | Summary of publications that have mechanistically tested whether LGIC-mediated neurotransmission is altered in marine invertebrates at elevated CO2.

Species and life stage pCO2 (µatm) and exposure time CO2 behavioral effect Mechanistic test Outcome of mechanistic test References

Pharmacological studies

Hemigrapsus sanguineus
Asian shore crab

(Third stage larvae)

Control: 461
Treatment: 1,380

12 h

Lost predator chemical-cue
induced photosensitive behavior

Gabazine
(0.1, 1, and 10 µM for 1–3 h)

Control: 1 and 10 µM gabazine loss of chemical
cue-induced photosensitive behavior. 0.1 µM gabazine
no effect.
CO2 treatment: 10 µM gabazine no effect

Charpentier and Cohen
(2016)

Gibberulus gibberulus
gibbosus
Jumping conch snail

(Adult)

Control: 405
Treatment: 961

5–7 days

Reduced jumping response to a
predator

Gabazine
(4 mg/L for 30 min)

Control: Gabazine had a non-significant trend of
decreasing number of jumps
CO2 treatment: Gabazine restored number of jumps to
control levels

Watson et al. (2014)

Mya arenaria
Soft shell clam

(Juvenile)

Control: 1,480
Treatment: 9,532 (in sediment
porewater)

Clams placed on sediment surface
and allowed to burrow for 20 min.

Decreased proportion of clams
burrowing

Gabazine
(5 mg/L for 30 min)

Control: No effect
CO2 treatment: Gabazine increased proportion of
clams burrowing to control levels

Clements et al. (2017)

Studies measuring ion concentration

Hemigrapsus sanguineus
Asian shore crab

(Third stage larvae for [Cl−],
stage 1 larvae for
osmolality)

Control: 461
Treatment: 1,380

12 h

Lost predator chemical
cue-induced photosensitive
behavior

Extracellular [Cl−]
Extracellular osmolality

No difference between control and treatment
Increased at treatment compared to control

Charpentier and Cohen
(2016)

Pagurus bernhardus
Hermit crab

(Life stage not stated)

Control: 373
Treatment: 12,061

5 days

Decreased antennular flicking
rates, longer to locate odor and
less time in contact with odor

Hemolymph [Cl−] Increased at treatment compared to control de la Haye et al. (2012)

Aplysia californica
California sea hare

(Adult)

Control: 400
Treatment: 1,200 and 3,000

4–11 days

No effect on self-righting
behavior, decreased time of tail
withdrawal reflex

Hemolymph [HCO3
−] Increased in both treatments compared to control Zlatkin and Heuer (2019)

Molecular studies

Heliconoides inflatus
Mediterranean pteropod

(Life stage not stated)

Control: 382 and 410
Treatment: 617 and 720

3 days

Not tested Whole body transcriptomic
analysis

Upregulated transcripts at elevated CO2:
- 1 GABAA R subunit
- 1 glycine R subunit
- 14 transcripts of acetylcholine R subunits (1 specified
as nicotinic)
- 1 glutamate R subunit
- 1 glutamate transporter
- 1 voltage-gated potassium channel
Downregulated transcripts at elevated CO2:
- 1 voltage-dependent calcium channel subunit

Moya et al. (2016)

Portunus trituberculatus
Swimming crab

(Phase I juvenile)

Control: 485
Treatment: 750 and 1,500

0, 3, 6, 12, 24, 48, and 72 h

Shoal average speed significantly
higher compared to control:
- 3 and 6 h (750 µatm pCO2)
- 6 and 12 h (1,500 µatm pCO2)

Real-time PCR of the gene
encoding the GABAA R
associated-protein from
whole crabs

mRNA levels upregulated compared to control:
- 6 h (750 µatm pCO2)
- 3 h (1,500 µatm pCO2)

Ren et al. (2018)

Frontiers
in

M
arine

S
cience

|w
w

w
.frontiersin.org

7
M

ay
2020

|Volum
e

7
|A

rticle
345

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00345 May 27, 2020 Time: 19:53 # 8

Thomas et al. Invertebrate Behavior at Elevated CO2

Mechanistic support for the GABA hypothesis in marine
invertebrates also comes from recent studies indicating changes
in ion concentration and altered behavior in the same species
at elevated CO2 (Table 1). Hermit crabs Pagurus bernhardus
exhibited impaired chemosensory responses to a food odor and
increased hemolymph Cl− concentration ([Cl−]) at extremely
high (12,061 µatm pCO2) compared to control (373 µatm
pCO2) conditions (de la Haye et al., 2012). Asian shore crab
larvae had altered chemical cue-induced photosensitive behavior
and increased extracellular osmolality, but similar extracellular
[Cl−] at elevated CO2 (1,380 µatm pCO2) compared to controls
(461 µatm pCO2) (Charpentier and Cohen, 2016). However, the
[Cl−] measurements were very close to the limit of detection,
which may be why no difference was observed. The increased
extracellular osmolality was suggested to be due to an increase
in HCO3

− concentration ([HCO3
−]), however, [HCO3

−] was
not directly measured. In a more recent study, sea hares Aplysia
californica exposed to elevated CO2 (1,200 and 3,000 µatm
pCO2) showed a reduced antipredator response and increased
hemolymph [HCO3

−] compared to control (400 µatm pCO2)
(Zlatkin and Heuer, 2019). Together, these studies support the
hypothesis of altered [HCO3

−] and [Cl−] underlying altered
iGABA R function and behavioral change at elevated CO2.

Molecular studies also provide support for the GABA
hypothesis in marine invertebrates (Table 1). Transcriptomic
analysis of the Mediterranean pteropod Heliconoides inflatus
exposed to elevated CO2 (617–720 µatm pCO2) for 3 days
showed upregulation of the transcript encoding a GABAA R
subunit (Moya et al., 2016). However, RNA was extracted from
the whole animal, potentially masking differential expression
within the nervous system, and behavioral assays were not
carried out. Ren et al. (2018) isolated the gene encoding the
GABAA R associated-protein (GABARAP) in the crab Portunus
trituberculatus. Real-time PCR found that GABARAP mRNA
levels were significantly upregulated by 4.34-fold after 6 h at
750 µatm pCO2 and by 2.89-fold after 3 h at 1,500 µatm pCO2,
compared to control (485 µatm pCO2). Showing a similar trend,
average speed of the crab shoal’s movement was significantly
higher after 3 and 6 h at 750 µatm pCO2, and six and 12 h
at 1,500 µatm pCO2, compared to control. The increase in
the GABARAP gene was suggested to assist more GABAA Rs
to cluster on neuronal membranes, which may exaggerate the
impaired function of GABAA Rs at elevated CO2 and lead to the
altered behavior (Ren et al., 2018).

iGABA R Subtypes and Variability in
Elevated CO2-Induced Behavioral
Alterations
Inter- and intra-species variation in the behavioral effects of
elevated CO2 may be due to the presence and variability of
iGABA R subtypes in invertebrates. The ion permeable pore
of iGABA Rs is made up of five subunits (Olsen and Sieghart,
2008). There is large variation in gene structure and the number
of genes encoding iGABA R subunits between invertebrate
species. For example, 5 GABA R-like genes have been found in
the sea-squirt Ciona intestinalis, 12 in the fruit fly Drosophila

melanogaster and 39 in the roundworm Caenorhabditis elegans
(Tsang et al., 2006). Differing subunit composition forms iGABA
R subtypes (Olsen and Sieghart, 2008) which vary in a range of
functional properties including GABA binding affinity, and Cl−
and HCO3

− permeability (Lee and Maguire, 2014). Differences in
iGABA R subunits may account for the variability in behavioral
alterations at elevated CO2 observed between invertebrate
species. Furthermore, subunit composition can vary between
regions in the nervous system and cell types (Lee and Maguire,
2014). As different behaviors are driven by different nervous
system regions, this may explain why some behaviors, but not
others, are disrupted by elevated CO2 within a species.

Pharmacological Considerations
Studies using gabazine have provided a useful starting
point to understand the mechanisms underlying behavioral
alterations at elevated CO2 in marine invertebrates. However, the
pharmacological profile of invertebrate iGABA Rs differs from
that of vertebrate GABAA Rs (Rauh et al., 1990), and have not
been characterized as extensively as in vertebrates. The majority
of invertebrate research has been in non-marine invertebrates,
with invertebrate iGABA R pharmacology being best studied in
insects due to their potential target for insecticides (Hosie et al.,
1995; Bloomquist, 2003). Gabazine inhibits a cloned planthopper
iGABA R subunit expressed in a cell line (Narusuye et al., 2007)
and two cloned fruit fly iGABA R subunits expressed in Xenopus
laevis oocytes (Hosie and Sattelle, 1996). Gabazine also inhibits
iGABA Rs in native neurons of locusts (Janssen et al., 2010) and
moths (Satoh et al., 2005), but not in cockroaches (Aydar and
Beadle, 1999). The few studies in other diverse invertebrates
are conflicting; gabazine inhibits iGABA Rs in a freshwater
hydrozoan (Concas et al., 1998), only weakly antagonizes GABA
responses in a terrestrial nematode (Duittoz and Martin, 1991)
and has no effect on crustaceans, including a freshwater crayfish
(El Manira and Clarac, 1991; Pearstein et al., 1996) and a marine
lobster (Jackel et al., 1994). These non-marine examples are
more taxonomically relevant to marine invertebrates than
comparisons with evolutionarily divergent marine vertebrate
taxa. They indicate the wide variability in invertebrate iGABA
R responses to gabazine. As iGABA R pharmacology can differ
by subunit composition (Lee and Maguire, 2014; Sieghart,
2015) and there is large variation in subunit genes between
invertebrates (Tsang et al., 2006) it will be useful to characterize
the pharmacology of gabazine on iGABA Rs in the studied
marine invertebrate species.

It is also important to note that antagonists are commonly
not completely specific. For example, in insects gabazine partially
and bicuculline (a GABAA R antagonist) fully inhibits locust
nicotinic acetylcholine receptors (Jackson et al., 2002), and the
GABAA R antagonist bicuculline inhibits and the GABAA R
agonist muscimol activates a model of insect GABA-gated cation
channels (Gisselmann et al., 2004). Less research has studied
the off-target effects of GABA drugs in marine invertebrates,
though bicuculline and picrotoxin both inhibit acetylcholine-
gated chloride channels in the sea hare Aplysia californica
(Yarowsky and Carpenter, 1978). To ensure the low affinity,
alternative effects of drugs do not occur, careful consideration
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of concentration administered must be made. Using a range of
GABAA R drugs with differing side effects will provide further
evidence for or against the role of iGABA Rs in behavioral
alterations at elevated CO2.

Marine Invertebrate Acid–Base
Regulatory Mechanisms and the GABA
Hypothesis
Acid–base regulatory mechanisms in marine invertebrates
indicate that extra- and intra-cellular [HCO3

−] and [Cl−] will
alter at elevated CO2, providing theoretical support for the
GABA hypothesis. Such mechanisms have best been studied
in crustaceans [see reviews by Henry and Wheatly (1992) and
Wheatly and Henry (1992)]. The primary mechanism to maintain
extracellular pH (pHe) is via ion exchange with the external
water environment (Cameron, 1985; Wheatly and Henry, 1992;
Pörtner et al., 1998), including HCO3

− influx in exchange
for Cl− efflux (Truchot, 1983; Wheatly and Henry, 1992).
Indeed, in all marine invertebrates studied so far, [HCO3−]e
in the blood/hemolymph increases upon exposure to elevated
seawater CO2. Exposure to pCO2 of 15 and 30 mm Hg (∼2,000
and 4,000 µatm pCO2) increased hemolymph [HCO3

−] and
decreased hemolymph [Cl−] compared to control conditions
in the blue crab Callinectes sapidus (Cameron and Iwama,
1987). At a pCO2 of 45 mm Hg (∼6,000 µatm pCO2) in the
same species, hemolymph [HCO3

−] also increased, however,
hemolymph [Cl−] increased (Cameron and Iwama, 1987), and
12,061 µatm pCO2 increased hemolymph [Cl−] compared
to control (373 µatm pCO2) in the hermit crab Pagurus
bernhardus (de la Haye et al., 2012). In palemonid shrimps
exposure to 0.3 kPa CO2 (∼3,000 µatm pCO2) decreased
hemolymph [Cl−] in the high shore Palaemonidae elegans,
but increased hemolymph [Cl−] in the subtidal Palaemonidae
serratus (Dissanayake et al., 2010). Thus, changes in both
[HCO3

−]e and [Cl−]e at elevated CO2 support the role of
compensatory acid–base regulation as a key part of the GABA
hypothesis, although studies at CO2 levels more relevant to future
scenarios, such as∼1,000 µatm CO2, would be valuable.

Intracellular pH (pHi) is also regulated via ion exchange
(Walsh and Milligan, 1989), including Na+ dependent
Cl−/HCO3

− exchange (Roos and Boron, 1981), as seen in
muscle fibers of the sipunculid worm (Pörtner et al., 2000),
crayfish (Galler and Moser, 1986) and barnacle (Boron, 1977;
Boron et al., 1981), as well as in crayfish neurons (Moody, 1981)
and the squid giant axon (Russell and Boron, 1976; Boron and
Russell, 1983). This suggests that [HCO3

−]i increases and [Cl−]i
decreases in order to maintain pHi. To date, neural [HCO3

−]i
has not been measured in a marine invertebrate exposed to
elevated CO2. However, in the sipunculid worm Sipunculus
nudus muscle [HCO3

−]i significantly increased over 96 h in 1%
CO2 (∼10,000 µatm pCO2) in air (Pörtner et al., 1998). A net
efflux of Cl− is observed from the squid giant axon at a pHi
of 6.5 reached by intracellular acid administration (Boron and
Russell, 1983), and in crayfish isolated abdominal ganglia the
resting [Cl−]i (35 mM) decreased by 3–5 mM when exposed
to Ringer’s solution equilibrated with 5% CO2 (∼10,000 µatm

pCO2) (Moody, 1981). Therefore, changes in [HCO3
−]i and

[Cl−]i occur in marine invertebrates exposed to extremely high
levels of CO2. Again, studies using CO2 levels more relevant
to future scenarios will be important to understand the theory
underlying the GABA hypothesis.

It is unknown whether the above changes in [Cl−]i/e and
[HCO3

−]i/e are sufficient to alter iGABA R functioning. For
elevated CO2 to disrupt GABA functioning, it is not simply
altered [HCO3

−] and [Cl−], but a difference in ion gradients
across neuronal membranes that will alter ion flow through the
iGABA R, i.e., [Cl−]i and [HCO3

−]i within neurons must change
by a different amount to [Cl−]e and [HCO3

−]e present in the
fluid bathing the neurons (Nilsson and Lefevre, 2016). A useful
way to determine whether the changes in [HCO3

−] and [Cl−] can
alter ion flow through the iGABA R is by determining the GABA
reversal potential (EGABA) and comparing it to the neuronal
resting membrane potential (see Tresguerres and Hamilton
(2017) and Heuer et al. (2019) for a detailed explanation).
This approach has previously been employed to demonstrate
that altered [Cl−] and [HCO3

−] at elevated CO2 could change
GABAA R function in the spiny damselfish Acanthochromis
polyacanthus (Heuer et al., 2016).

Calculating EGABA requires knowledge of the HCO3
−/Cl−

permeability ratio of the iGABA R, and [HCO3−]i, [Cl−]i,
[HCO3

−]e and [Cl−]e at both control and elevated CO2
conditions. The HCO3

−/Cl− permeability ratio is estimated
to be between 0.2 and 0.6 in crayfish muscle fibers (Kaila
and Voipio, 1987; Kaila et al., 1989; Farrant and Kaila,
2007), indicating that the iGABA R is more permeable
to Cl− than it is to HCO3

−. However, this permeability
ratio is unknown for other invertebrates. It is important
to ensure ion concentration measurements are taken in the
correct fluids. In most marine invertebrates no blood brain
barrier is present (Cserr and Bundgaard, 1984) and measuring
extracellular ion concentration in the hemolymph may be
adequate. However, structural organization of nervous tissue
may provide some regulation of the neuronal microenvironment
(Cserr and Bundgaard, 1984). Cephalopods have a blood
brain barrier separating the blood from the brain (Cserr
and Bundgaard, 1984) and extracellular measurements should
be made in the brain interstitial fluid that bathes the
neurons. It is also vital intracellular measurements are done
on neuronal cytoplasm, as pHi regulatory mechanisms can
differ between different cell types (Wheatly and Henry, 1992).
Studies measuring these parameters and calculating EGABA in
a marine invertebrate exposed to elevated CO2 will be useful
to understand if altered [Cl−] and [HCO3

−] could change
iGABA R function.

The Effects of Altered iGABA Receptor
Functioning
Altered iGABA R functioning is likely to disrupt behaviors due to
the role of iGABA R-mediated neurotransmission in invertebrate
sensation and a range of behavioral outputs. In mollusks,
GABA is present in the olfactory, chemoreceptive (Nezlin and
Voronezhskaya, 1997; Ito et al., 2001; Kobayashi et al., 2008),
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nociceptive (Kavaliers et al., 1999), visual and vestibular (Yamoah
and Kuzirian, 1994) systems. iGABA R signaling mediates
molluskan nociception (Kavaliers et al., 1999) and visual–
vestibular interaction (Alkon et al., 1993), while mollusk
photoreceptors respond to iGABA R signaling (Yamoah and
Kuzirian, 1994). iGABA R-mediated signaling is important for
feeding and prey-capture behaviors in mollusks (Arshavsky et al.,
1993; Norekian and Satterlie, 1993; Romanova et al., 1996; Jing
et al., 2003; Norekian and Malyshev, 2005) and a cnidarian
(Pierobon et al., 1995, 2004; Concas et al., 1998), and GABAergic
neurons are associated with effectors of feeding in a sea
urchin (Bisgrove and Burke, 1987). iGABA R signaling mediates
swimming of larval sea urchins (Katow et al., 2013), the righting
response in a sea urchin (Shelley et al., 2019) and locomotion
of a mollusk (Romanova et al., 1996). GABA mediates settling
and metamorphosis, including associated behavioral changes in
a range of mollusks (Morse et al., 1979; Morse et al., 1980;
García-Lavandeira et al., 2005; Stewart et al., 2011; Biscocho
et al., 2018), an echinoderm (Pearce and Scheibling, 1990)
and a urochordate (Danqing et al., 2006). GABA is thought
to mimic ligands from the environment (Morse et al., 1979)
which may be detected by the iGABA R (Stewart et al.,
2011) to initiate settlement and metamorphosis. Internal iGABA
R mediated neurotransmission is also suggested to regulate
metamorphosis (Biscocho et al., 2018). Thus altered iGABA R
function will likely affect a variety of behaviors in a range of
marine invertebrates.

Neural processes other than behavior may also be affected
by altered iGABA R functioning. In vertebrates, GABA can
act as a trophic factor (a molecule supporting cell survival)
through the GABAA R, influencing cell proliferation, migration
and differentiation (Owens and Kriegstein, 2002; Sernagor
et al., 2010). In a fish, the three-spined stickleback Gasterosteus
aculeatus, genes involved in neurogenesis and neuroplasticity
were upregulated after exposure to∼1,000 µatm pCO2 compared
to control (∼330 µatm pCO2) (Lai et al., 2017). Similarly, GABA
induces cellular differentiation and proliferation in abalone larvae
(Morse et al., 1980). Thus, elevated CO2 may alter neurogenesis
in marine invertebrates.

GABA can also have effects in non-neural tissue, playing an
important role in the vertebrate immune system (Barragan et al.,
2015; Wu et al., 2017). Invertebrate GABA also appears to play
an immunomodulatory role. The iGABA R associated protein is
implicated in the immune response of the abalone (Bai et al.,
2012), GABA in the immune response of an oyster (Li et al.,
2016a) and mussel (Nguyen et al., 2018), and a homolog of the
glutamic acid decarboxylase (a rate limiting enzyme in GABA
production) in immune regulation of an oyster (Li et al., 2016b).
Thus, altered iGABA R functioning at elevated CO2 may have
widespread effects.

Cross-talk between neurotransmitter receptors may also result
in widespread effects of altered iGABA R functioning. Different
types of neurotransmitters can be co-released from the same
nerve terminal, resulting in simultaneous activation of their
specific receptors, co-localized at the same post-synaptic site.
This simultaneous activation can result in cross-talk between
the receptors, modulating signal transmission. For example,

negative cross-talk occurs when two different neurotransmitters
simultaneously bind to their specific receptors, resulting in a
current smaller than the sum of the currents of these two
neurotransmitters acting separately (Li et al., 2003). Cross-
talk involving GABAA Rs is well documented in mammals.
For example, GABAA R activation suppresses the function of
a dopamine receptor (de la Mora et al., 1997) and negative
cross-talk occurs in both directions between GABAA Rs and
glycine Rs (Trombley et al., 1999; Li et al., 2003) and
GABAA Rs and the adenosine-triphosphate R P2X (Karanjia
et al., 2006; Toulmé et al., 2007). Neurotransmitter cross-
talk is yet to be studied in an invertebrate, but co-release of
neurotransmitters occurs in the marine invertebrate nervous
system, such as proctolin and GABA in crabs (Blitz et al., 1999),
and dopamine and GABA in the sea hare Aplysia californica
(Díaz-Ríos et al., 2002; Díaz-Ríos and Miller, 2005; Svensson
et al., 2014). Furthermore, GABA has been found to post-
synaptically increase dopamine currents in the sea hare Aplysia
californica (Svensson et al., 2014). If cross-talk is present between
invertebrate iGABA Rs and other neurotransmitter Rs, altered
functioning of the iGABA R at elevated CO2 may alter cross-
talk mechanisms. Thus, altered iGABA R function at elevated
CO2 would not only alter the GABAergic pathway, but other
pathways as well.

ALTERNATIVE MECHANISMS FOR
BEHAVIORAL CHANGE AT ELEVATED
CO2

If elevated CO2 does alter HCO3
− and Cl− gradients across

neuronal membranes, it is likely that functioning of LGICs other
than the iGABA/GABAA R, that are also permeable to these ions,
will also be disrupted (Figure 2). In vertebrates, altered glycine
receptor functioning at elevated CO2 has been suggested due to
its similarity to the GABAA R (Tresguerres and Hamilton, 2017).
Many invertebrates lack glycine receptors (Tsang et al., 2006);
however, invertebrates possess a larger variety of LGICs than
vertebrates (Dent, 2010). Glutamate-gated chloride channels have
been found in mollusks (Kehoe and Vulfius, 2000; Kehoe et al.,
2009) and crustaceans (Marder and Paupardin-Tritsch, 1978),
and are suggested to be the invertebrate equivalent of vertebrate
glycine Rs (Vassilatis et al., 1997; Kehoe and Vulfius, 2000).
There is also evidence for acetylcholine-gated chloride channels
in mollusks (Kehoe, 1972). Moya et al. (2016) found a range
of nervous system transcripts differentially expressed at elevated
CO2 in the pteropod Heliconoides inflatus, including genes
encoding for the LGICs (and associated proteins) of cholinergic,
GABAergic, glutamatergic and glycinergic-like synapses (Moya
et al., 2016) (Table 1). Thus, altered [Cl−] can conceivably disrupt
functioning of a range of LGICs (Figure 2). Furthermore, taxa
specific differences in the presence of specific LGICs (Dent, 2010)
may explain the variability of the effects of elevated CO2 on
marine invertebrate behavior.

Elevated CO2 may not only disrupt neurotransmission,
but also neuronal-glial and glial-glial signaling. Glia are non-
neuronal cells present in the vertebrate and invertebrate nervous
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system (Pentreath, 1989; Laming et al., 2000). Initially thought
to be restricted to supporting neurons, the role of glia is
now understood to include active participation in nervous
system functioning, thus contributing to behavior (Laming
et al., 2000; Jackson and Haydon, 2008). Like many other
cell types, glial cells regulate pHi via ion exchange, including
HCO3

−/Cl− exchange (Deitmer and Rose, 1996). GABAA Rs
are present in vertebrate glial cells (Butt and Jennings, 1994;
Fraser et al., 1994). Less research has been carried out on
invertebrate glia, with no research on the presence of iGABA
Rs on marine invertebrate glial cells. However, leech glial cells
reportedly respond to GABA [unpublished work reported in
Deitmer and Rose (1996)]. If marine invertebrates are found to
express iGABA Rs, elevated CO2 may also affect information
processing through glial cells. Furthermore, fluxes in H+
ions have been found to contribute to neuron-glia signaling
(Deitmer and Rose, 1996; Laming et al., 2000), which may
be disrupted by exposure to elevated CO2 (and the resultant
increase in H+ ions).

Changes in [Cl−] due to acid–base regulatory mechanisms
at elevated CO2 may affect LGIC-mediated neurotransmission
through a different mechanism, as well as having alternative
effects on the nervous system. Cl− has a role as a signaling
effector, with changes in [Cl−]i affecting a range of processes
including gene expression, protein activity and cell proliferation
(Valdivieso and Santa-Coloma, 2019). Mammalian work has
supported the role of Cl− as a signaling effector in the
nervous system, including [Cl−]i regulation of GABAA R
expression (Succol et al., 2012) and growth of neuronal
processes (Nakajima and Marunaka, 2016). The role of Cl−
as a signaling anion has also been observed in bacterial
cells, suggesting a conserved function (Valdivieso and Santa-
Coloma, 2019). Thus, invertebrate Cl− is also likely to act
as a signaling effector. If altered [Cl−]i has similar effects in
marine invertebrates, elevated CO2 may impact nervous system
functioning not only by altered iGABA R function but also
changes in iGABA R expression, as well as altered growth
of neuronal projections. Thus, altered [Cl−]i at elevated CO2
may have effects additional to altered LGIC function, having
widespread consequences.

DIRECTIONS FOR FUTURE RESEARCH

Mechanistic studies have used targeted approaches to assess the
GABA hypotheses in marine invertebrates. These approaches
will also be useful to assess potential alternative mechanisms
by which elevated CO2 may alter marine invertebrate behavior
(Figure 3). The GABA hypothesis has been pharmacologically
assessed by administering the GABAA R antagonist gabazine
to marine invertebrates (Watson et al., 2014; Clements et al.,
2017). Likewise, the administration of pharmacological agents
targeting different LGICs will be useful to assess whether
altered functioning of alternative LGICs may underlie behavioral
changes at elevated CO2 conditions. Due to the diversity
of invertebrates and the potential for off-target effects, it
will be important to use a range of pharmacological agents,

particularly those shown to work in the invertebrate taxa
being studied. Furthermore, pilot studies to determine the
optimal drug concentration to use will be important. For
example, Charpentier and Cohen (2016) tested three gabazine
concentrations. Measurement of ion concentrations at control
and elevated levels of CO2 in conjunction with behavioral
tests has been carried out in crabs (de la Haye et al., 2012;
Charpentier and Cohen, 2016) and a mollusk (Zlatkin and
Heuer, 2019). Future studies in other invertebrate taxa, with
measurements made within the correct intra- and extra-cellular
fluids, as well as determining the HCO3

−/Cl− permeability
ratio will be important to calculate EGABA at elevated CO2
to theoretically assess the GABA hypothesis. Real-time PCR,
measuring the expression level of a specific gene, has been
employed to assess the GABA hypothesis in a crab (Ren
et al., 2018) and will also be useful to assess alternative
mechanisms, e.g., measuring the expression of genes encoding
for alternative LGIC subunits, and genes involved in neuronal
growth and proliferation.

These targeted approaches, however, may leave potentially
relevant information unexplored. Omic technologies, such
as transcriptomics and proteomics, provide a non-targeted
approach in which a priori hypotheses are not required
(Figure 3). Thus, data from omic approaches could unveil
patterns leading to the development of novel hypotheses. For
example, transcriptomics and proteomics have already been
employed in fish nervous tissue, providing support for the GABA
hypothesis as well as new avenues to pursue (Schunter et al., 2016,
2018; Porteus et al., 2018; Williams et al., 2019).

In marine invertebrates exposed to control and elevated CO2
levels, transcriptomic studies so far have analyzed the whole
animal and have focused on pteropods (Koh et al., 2015; Maas
et al., 2015; Moya et al., 2016; Thabet et al., 2017) and sea urchins
(Todgham and Hofmann, 2008; Evans et al., 2013; Padilla-
Gamiño et al., 2013; Clark et al., 2019). Likewise, proteomic
studies have analyzed the whole body of tubeworm larvae
(Mukherjee et al., 2013), oyster larvae (Dineshram et al., 2012;
Dineshram et al., 2013), barnacle larvae (Wong et al., 2011),
sea snail larvae (Di et al., 2019) and clam larvae (Timmins-
Schiffman et al., 2019), and a metabolomics study analyzed the
whole body of a crab (Trigg et al., 2019) exposed to control or
elevated CO2. To understand the neurobiological mechanisms
underlying behavioral changes, rather than the general molecular
response to elevated CO2, it will be important to carry out
omic techniques on the nervous tissue, as measurements at
the whole body level may mask differential expression in
the nervous system due to the heterogeneity and complexity
of gene/protein expression. This is exemplified by Liu et al.
(2019) who found region-specific regulation of neuropeptides
in the nervous tissue of crabs Callinectes sapidus exposed to
elevated CO2.

Omic technologies will provide a powerful, holistic approach
to explore neurobiological mechanisms underlying behavioral
change, potentially leading to the development of novel
hypotheses. However, omic approaches can only determine
correlational, and not causative, links between expression and
behavior. Gene knockdown, in which the expression of a specific
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FIGURE 3 | Conceptual diagram illustrating the techniques that will be useful for future research to assess the neurobiological mechanisms underlying behavioral
change at elevated CO2 in marine invertebrates. Targeted approaches will test specific hypotheses and include pharmacological research administering drugs that
target a specific receptor, measuring the expression of specific genes, measuring the concentration of HCO3

− and Cl− ions in the relevant intra- and extra-cellular
fluids, and knocking down the expression of specific genes. Omic techniques such as transcriptomics, proteomics and epigenomics will provide a non-targeted
approach which does not require a priori hypotheses and will likely lead to the development of new hypotheses. Squid image taken by the author, JT.

gene is reduced, will be a promising avenue for future research
to determine a causative link between gene expression and
behavioral change at elevated CO2. Gene knockdown is yet to
be used in elevated CO2 behavioral research, however, gene
knockdown of a heat shock protein assessed the stress tolerance
of the white leg shrimp Litopenaeus vannamei to high CO2
(Aishi et al., 2019).

CONCLUSION

There is large variability in the effects of elevated CO2
on marine invertebrate behavior, which is likely due to the
incredible diversity of marine invertebrates. Elevated CO2 likely
alters behavior via a range of mechanisms that disrupt the
nervous system pathway producing behavior; from sensory input
to behavioral output. These mechanisms are not necessarily
mutually exclusive, and interactions between mechanisms
may account for the diversity in responses. Many of these
mechanisms are based on theory and lack solid experimental
evidence. Mechanistic research addressing these gaps will be
important, for example linking altered sensation at elevated
CO2 to behavioral change. Mechanistic fish research has
focused on altered neurotransmission via disrupted GABAA
R functioning at elevated CO2. The GABA hypothesis, as

well as altered functioning of other LGICs, likely applies to
marine invertebrates. Further research into the ionic properties
of the iGABA R and other LGICs, including whether they
are also permeable to HCO3

−, and measuring intra- and
extra-cellular ion levels in the relevant fluids at near-future
CO2 levels will be beneficial for advancing our understanding
of this mechanism. The diversity of LGIC subtypes between
invertebrate species, and even between nervous system regions,
may explain the variability in behavioral responses. Investigating
the presence of LGICs on invertebrate glial cells, other modes
of neuronal-glial and glial-glial transmission, and the role
of Cl− as a signaling effector in invertebrates will help us
understand the wider impact elevated CO2 may have on nervous
system functioning.

The interconnectivity of the nervous system, such as receptor
cross-talk, suggests that even disruption of one component
or pathway will have widespread effects. This will make
understanding the neurobiological mechanisms underlying
elevated CO2-induced behavioral change extremely complex.
Omics approaches will be useful in providing an untargeted,
holistic approach to understand the response of the nervous
system to elevated CO2, provide support or opposition for
proposed mechanisms, and likely provide new avenues to
explore. Exploring the mechanisms underlying behavioral change
at elevated CO2 will help us to understand the variability in
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behavioral responses to elevated CO2 and predict which marine
invertebrates are likely to be the most vulnerable to rising
CO2 levels.
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