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Abstract 

Coral reefs are some of the most diverse and complex ecosystems in the world. They are 

known for their ability to support a high diversity of marine life. Unfortunately, coral reefs 

and their associated marine life are under intense anthropogenic pressures; climate change, 

habitat loss and overfishing are some of the main threats. These pressures also have negative 

effects on stingrays inhabiting coral reef areas. Management and conservation of stingrays is 

currently hindered by a lack of knowledge on essential aspects of their ecology. Therefore, 

this thesis aimed to refine the roles juvenile stingrays play in coral reef habitats and 

determine the importance of coral reef habitat to stingray populations in a nursery area in the 

Great Barrier Reef. To do so, this thesis addressed five specific aims: (1) review the current 

knowledge on batoid nursery areas; (2) identify movement patterns and determine habitat use 

of juvenile cowtail stingrays Pastinachus ater; (3) evaluate the accuracy of towed-float GPS 

tags to assess movement patterns and habitat use of stingrays; (4) identify diel movement 

patterns and habitat use of juvenile mangrove whiprays Urogymnus granulatus; and (5) 

investigate the relative trophic relationships of four juvenile elasmobranch species within a 

communal nursery area, with an emphasis on stingrays. 

Nursery areas are crucial for many elasmobranch species, providing advantages such as 

increased access to prey and reduced mortality. To date, batoid nurseries have been poorly 

studied in comparison with shark nurseries. The current decline of batoid populations 

worldwide, resulting in serious extinction threats, highlights the importance of better 

understanding these critical habitats. This dissertation presented a synthesis of the available 

knowledge on batoid nurseries and suggests the use of a combination of well-established 

criteria to standardize batoid nursery definition.  

Two telemetry approaches were used to examine movement patterns and habitat use of two 

stingray species commonly found in coral reef habitats: cowtail stingrays Pastinachus ater 

and mangrove whiprays Urogymnus granulatus. First, active acoustic telemetry was used to 

investigate cowtail stingray movements. Active acoustic telemetry provided fine-scale 

results, but had some limitations (e.g. potential human disturbance and difficulties in 

performing night tracks). Therefore, a new method was developed – towed-float GPS 

telemetry –- to investigate mangrove whipray activity patterns and habitat use. Lastly, stable 
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isotope analysis was used to define the contribution of potential carbon sources in the food 

web and the trophic position and relationship of four juvenile elasmobranch species 

(mangrove whipray, cowtail stingray, blacktip reef shark Carcharhinus melanopterus and 

giant shovelnose ray Glaucostegus typus).  

Active acoustic telemetry results generated a total of 14 active tracks of cowtail stingrays 

ranging from 4.91 to 9 hours. Cowtail stingrays moved at an average speed of 2.44 m.min -1 + 

0.87 SE, with minimum distances travelled ranging from 546 to 1446 meters. Tracking data 

showed that juvenile cowtail stingrays move in response to tidal cycles, moving faster and 

with straighter pathways during incoming and outgoing tides, compared to low and high 

tides. Juvenile cowtail stingrays also showed a strong affinity to sand flat areas and mangrove 

edge areas, but were infrequently detected in mangrove root habitats. These areas provide 

food resources and potential refuges for juvenile rays to avoid potential predators. Reef crest 

habitats were identified as secondary refuge for juveniles during the lowest tides.  

Towed-float GPS tags were tested on juvenile stingrays with active tracking performed 

simultaneously for comparison. Individuals travelled 1332.15 ± 269.58 m SE across Pioneer 

Bay at an average speed of 6.87 m.min-1 and average tracking time of 3.7 hours. Stationary 

tests demonstrated that the quality of the data obtained by towed-float GPS tags could not be 

matched by active, acoustic or ARGOS telemetry – on average reaching 99% of successful 

location recording and <15 meters accuracy. Location Error varied significantly based on the 

number of satellites detected, with error decreasing as satellite number increased.  

Towed-float GPS telemetry showed juvenile mangrove whiprays travelled distances from 394 

to 2189 meters during tracks, moving at a mean rate of movement of 4.51 m.min-1 ± 3.1 SE 

with track durations ranging from 1.5 to 9.0 hours. Juvenile mangrove whipray movements 

were strongly influenced by tidal cycles and rate of movement was significantly different 

between day and night. Individuals moved faster and chose more direct paths during the 

outgoing and incoming tide, and were significantly faster during the day than at night. 

Juvenile mangrove whiprays showed preference for mangrove root habitats during high tides. 

These areas are thought to reduce juvenile stingray predation risk.  
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Stable isotope analysis showed all juvenile elasmobranchs in Pioneer Bay are at a trophic 

level of ~4. Isotopic niche size of blacktip reef sharks was smaller than both stingrays, and 

cowtail stingrays showed the largest niche size. Results showed strong evidence of niche 

partitioning between mangrove whiprays and cowtail stingrays with differences in feeding 

strategy. Nearshore pelagic and benthic prey items (e.g. crabs, annelid worms and small 

baitfishes) contributed most to juvenile elasmobranch diets, while mangrove or offshore prey 

and carbon sources appear to not have significant input.  

Results of telemetry and stable isotope analysis revealed juvenile stingrays were fully 

dependent on the Pioneer Bay system. This dissertation confirms juvenile stingrays play 

important roles as mesopredators and energetic links within the Pioneer Bay nursery area. By 

looking at fine scale movements and trophic relationships, this PhD provides important 

information to better understanding juvenile stingray’s ecology, but also to support 

management and conservation policies.   
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Chapter 1: General Introduction 

Coral reefs are some of the most diverse and complex ecosystems in the world. They are 

known for their ability to support a high diversity of marine life (Hughes et al., 2003). 

Unfortunately, coral reefs and their associated ecosystems have experienced substantial 

declines in abundance, diversity, and habitat structure in recent decades (Chin et al., 2011; 

Hughes et al., 2003). These changes have occurred for numerous reasons, including nutrient 

and sediment pollution (Bellwood et al., 2004; Bruno & Selig, 2007), ocean acidification 

(Burke et al., 2011), rising ocean temperatures (Wilson et al., 2002), diseases, and coral 

bleaching (Knowlton, 2001). Furthermore, the growth of human populations has caused high 

demand for fish as a source of protein, with coral reefs supplying fish to almost one billion 

people in tropical regions. As human populations have grown, the pressure on coral reef fish 

populations has increased resulting in the depletion of fish stocks and degradation of coral 

reef systems (MacNeil et al., 2015). According to Wilkinson (2006), approximately 30% of 

coral reefs worldwide are already badly damaged and an estimated 60% may be totally lost 

by 2030. Even the Great Barrier Reef (GBR), recognized as one of the largest and least 

deteriorated coral reefs in the world, has experienced significant changes in coral cover, coral 

health and fish populations (De’ath et al., 2012; GBRMPA, 2019; Hughes et al., 2018). 

Elasmobranch species (sharks and rays) associated with coral reefs have also been affected by 

anthropogenic pressures (Dulvy et al., 2014; Heupel et al., 2019; Robbins et al., 2006). The 

situation may be similar for stingrays (family Dasyatidae), some of the most common 

representatives of rays on coral reefs, but data are more limited than for sharks. Overall, coral 

reefs support both small and large benthic stingrays . Small benthic stingrays (e.g. juvenile 

rays, maskrays, bluespotted ribbontail rays Taeniura lymma) can be found in sandy or 

mangrove habitats near coral reefs and are often restricted to shallow waters. Large benthic 

batoids (e.g. mangrove whiprays Urogymnus granulatus, cowtail stingray Pastinachus ater, 

porcupine rays Urogymnus asperrimus, pink whiprays Pateobatis fai) also have bottom-

dwelling habits in sandy areas associated with coral reefs, but have the ability to move longer 

distances and explore deeper areas (Last et al., 2016). Despite their different habit use and 

characteristics, all stingray types are negatively affected by anthropogenic stresses in coral 

reef habitats. 
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A recent global analysis identified Dasyatidae as one of the most endangered families of 

elasmobranchs (Dulvy et al., 2014). The major threat to stingray species is unsustainable 

levels of by-catch, although they are also targeted in some fisheries (D’alberto et al., 2019). 

Human population growth (Cohen, 2005) and changes in climate (Chin et al., 2010; 

Rahmstorf et al., 2007) also represent rising threats for stingrays around the world. Due to 

their life history characteristics (e.g. slow growth, large body size, late sexual maturity, low 

fecundity, and high longevity), stingray populations can be rapidly depleted when exposed to 

one or more of these anthropogenic pressures (Fowler & Cavanagh, 2005). Furthermore, 

stingrays have a close relationship between stock size and recruitment, which results in the 

need for long recovery periods after over-exploitation (Stevens et al., 2000). Unfortunately, 

the ability to better understand population declines and effectively manage stingrays is 

hindered by the absence of knowledge on essential aspects of their biology and ecology 

(Cartamil et al., 2003; Cerutti-Pereyra et al., 2014; Last et al., 2016). For example, species-

specific data on stingray scale and timing of movements (Le Port et al., 2012), level of site 

fidelity (Vaudo & Lowe, 2006), location of foraging and nursery grounds (Le Port et al., 

2012) and trophic ecology (Kanno et al., 2019; Shipley et al., 2018) are lacking for most 

species. 

To date, stingrays are thought to perform important ecological roles in coral reef 

environments. Firstly, they are thought to function as key mesopredators. Their dorso-

ventrally flattened shape and ventral mouth permit capture of small prey in benthic habitats 

(Matern et al., 2000), but they are also at risk of being a food source for larger predators 

(Navia et al., 2017). As such, stingrays are thought to occupy an intermediate position in 

marine food chains, providing a connection between higher level predators and lower trophic 

level organisms (Vaudo & Heithaus, 2011). Secondly, stingrays function as bioturbators in 

benthic habitats. Suctorial feeding movements to access infauna and meiofauna (i.e. jetting 

water, moving pectoral fins) suspend soft sediments and form feeding pits (Lynn-Myrick & 

Flessa, 1996; O'shea et al., 2012; Takeuchi & Tamaki, 2014). This process, a form of 

bioturbation, has significant impacts on physical and biological habitat properties, such as 

benthic species abundance, oxygen dissemination into sediments and nitrogen cycling 

(Gilbert et al., 1995; Laverock et al., 2011; O'shea et al., 2012). Thirdly, stingrays serve as 
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energetic links. Limited data indicate rays may remain within restricted home ranges, but also 

have capacity to move long distances between different habitats (Collins et al., 2007). Thus, 

stingray movements can connect widely separated ecosystems at short time scales (diel or 

tidal movements) (Cartamil et al., 2003; Davy et al., 2015; Matern et al., 2000) or over 

longer periods (seasonal or ontogenetic migrations) (Aguiar et al., 2009; Ajemian & Powers, 

2014; Ebert & Cowley, 2003). These patterns demonstrate that stingray movements on coral 

reefs can be important as energetic linkages between reefs, coastal, pelagic, and deep-water 

habitats (Heupel et al., 2015). Despite the ecological significance of stingrays in coral reef 

systems, the extent of influence of these roles is generally poorly understood and almost 

completely unknown for juveniles that use these ecosystems as nursery grounds.  

Nursery areas can be critical for populations with low fecundity and slow growth (Heupel et 

al., 2019; Martins et al., 2018). These areas are known to provide both biotic and abiotic 

resources for the development and survival of juveniles (Castro, 1993; Heupel & 

Simpfendorfer, 2002; Heupel & Simpfendorfer, 2011; Yokota & Lessa, 2006). Survival 

during early life stages is essential for the stability of populations as a whole (Cerutti-Pereyra 

et al., 2014; Heupel & Simpfendorfer, 2002). Several studies to date have focused on the 

importance of nursery areas for shark species (e.g. Conrath & Musick, 2010; Curtis et al., 

2013; Froeschke et al., 2010; Kinney & Simpfendorfer, 2009; Simpfendorfer & Milward, 

1993; Wetherbee et al., 2007), but little attention has been given to rays – with existing 

studies covering only 6% of all described species (Martins et al., 2018). Therefore, better 

understanding the dynamics of newborn and young of the year stingrays within established 

nursery areas is important for developing effective management and conservation practices 

(Dulvy et al., 2014; Fowler & Cavanagh, 2005). 

Given increasing anthropogenic pressure in coastal areas, coral reefs and the biodiversity they 

support need better management and protection (Pandolfi et al., 2003). Understanding 

juvenile stingray ecology and the roles they play in coral reefs is crucial to assessing their 

ecosystem function and connectivity (Espinoza et al., 2015; Munroe et al., 2015), their 

vulnerability to anthropogenic threats and environmental changes (Schlaff et al., 2014), and 

also for the development of efficient management and conservation strategies (Knip et al., 

2012) –- not only to manage stingray species as a fishery resource, but also to manage coral 
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reef ecosystems and ensure that the important and unique roles that stingrays play are 

maintained (Tilley & Strindberg, 2013). Thus, this study aimed to understand the roles 

stingrays play in coral reef habitats and determine the importance of coral reef habitat to 

stingray populations using a protected bay on Orpheus Island in the Great Barrier Reef as a 

case study.  

Orpheus Island is a volcanic island located within the Palm Island Group – central portion of 

the Great Barrier Reef (GBR). The island is known for its numerous marine and estuarine 

habitats that support high biodiversity. Pioneer Bay – the chosen study site – is situated on 

the western side of Orpheus Island. This bay is 400 m wide with approximately 0.8 km2 of 

open water area. Its terrain is mostly flat, which results in robust semi-diurnal (Parnell, 1986) 

and meso-tidal (Hopley et al., 1983) influence (~ 3.5 m). Pioneer Bay is composed of a small 

mangrove area (Red mangrove, Rhizophora mangle; white mangrove, Avicennia marina; and 

myrtle mangrove, Osbornia octodonta), sand flats, an inner reef that includes coral rubble 

and dead micro atolls, a reef crest area with living corals along the seaward edge and, finally, 

the reef slope about 100 m from cemented beach deposits (Hopley et al., 1983; Parnell, 

1986). Here two species of stingrays occur in high abundance – mangrove whiprays and 

cowtail stingrays (Davy et al., 2015; Kanno et al., 2019). Several other ray species also occur 

in the area in lower abundance (e.g. blue-spotted maskray Neotrygon kuhlii, blue-spotted 

ribbontail ray Taeniura lymma, pink whipray Pateobatis fai and reticulate whipray 

Himantura australis), making this an ideal study system.  

In the face of increasing threats to both Dasyatidae rays and coral reef habitats, the major goal 

of this thesis was accomplished by addressing five specific research aims: review the current 

knowledge on oviparous and viviparous batoid nursery areas (chapter 2); identify movement 

patterns and determine habitat use of juvenile Pastinachus ater using active acoustic 

telemetry (chapter 3); evaluate the accuracy of towed-float GPS tags to assess movement 

patterns and habitat use of stingrays (chapter 4); identify diel movement patterns and habitat 

use of juvenile Urogymnus granulatus using GPS telemetry (chapter 5); and investigate the 

relative trophic relationships of four juvenile elasmobranch species, with an emphasis on 

stingrays, using stable isotope analysis (chapter 6). Finally, chapter 7 summarized all data 

collected throughout this PhD and discussed these findings, comparing with studies 
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developed in the same study area and/or across the world, to provide a robust picture of 

juvenile stingray ecological roles in coral reef ecosystems.  
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Chapter 2: Batoid nurseries: definition, use and importance 

2.1 Introduction 

Nursery areas are crucial for the health of many elasmobranch populations (e.g. Heupel et al., 

2007). These areas provide biotic and abiotic features that benefit the development and 

survival of juveniles (Castro, 1993; Heupel & Simpfendorfer, 2011). In the past 30 yr, studies 

of  shark  nursery areas have significantly progressed our understanding of their function and 

importance (e.g. Grubbs & Musick, 2007; Heupel & Simpfendorfer, 2005; Heupel & 

Simpfendorfer, 2011; Keeney et al., 2005; Mccandless et al., 2007; Simpfendorfer & 

Milward, 1993; Stevens & West, 1997). However, the use of nurseries by batoid species 

remains poorly understood. 

Batoids are the most diverse group of cartilaginous fishes (Aschliman et al., 2012). However, 

batoids are the most endangered group of elasmobranchs, with 19.9% of species listed in a 

Threatened category by the IUCN Red List (Dulvy et al., 2014; Last et al., 2016). Batoids are 

increasingly taken by artisanal and industrial fisheries around the world, which has contributed 

to population declines (Cailliet et al., 2005; Cavanagh et al., 2003; Dulvy et al., 2014; Dulvy 

et al., 2003; Stevens, 2000; Stevens et al., 2005; White et al., 2006). Habitat loss (Stevens et 

al., 2005) and changes in climate (Chin et al., 2010; Rahmstorf, 2007) also represent 

increasing threats to many species. Due to their relatively unproductive life history 

characteristics (e.g. slow growth, large body size, late sexual maturity, low fecundity and high 

longevity), batoid populations can rapidly be depleted when exposed to one or more of these 

anthropogenic pressures (Fowler & Cavanagh, 2005; Stevens, 2000). Collapses of populations 

of the common skate Dipturus batis (Brander, 1981; Dulvy & Reynolds, 2002), the purple 

eagle ray Myliobatis hamlyni (White & Kyne, 2010) and all sawfish species (Pristidae) 

(Dulvy et al., 2016), for example, have all been reported as a result of intense human 

pressures. Furthermore, stock size and recruitment are closely related in batoids, resulting in 

long recovery periods after over-exploitation (Holden, 1974; Stevens, 2000). Therefore, 

intensive management and conservation effort is required to sustainably fish these 

populations or aid their recovery (Simpfendorfer & Dulvy, 2017). 
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The ability to effectively manage and conserve batoid populations is affected by a lack of 

knowledge on their biology and ecology (Cerutti-Pereyra et al., 2014; Last et al., 2016). The 

ecology and life history of batoids are poorly understood (256 Data Deficient species on the 

IUCN Red List) and long-term species-specific data are scarce, such as the scale and timing of 

movements (Bonfil, 1999), level of philopatry (Vaudo & Lowe, 2006) and location or 

presence of foraging, mating and nursery areas (Le Port & Lavery, 2012). The identification of 

elasmobranch nurseries is complicated by their different reproductive modes. Many batoids 

exhibit aplacental viviparous reproduction, but skates (4 families: Rajidae, Arhynchobatidae, 

Gurgesiellidae, Anacanthobatidae; 38 genera; at least 288 described species) are a strictly 

oviparous group (Conrath & Musick, 2012). Historically, elasmobranch nursery theories have 

largely been developed based on viviparous species models (e.g. Heupel et al., 2007). Hoff 

(2016) did consider nursery areas for oviparous skates, but there is a need to develop a 

unified definition of nursery areas that are suitable for all elasmobranch reproductive modes. 

Hence, the aim of this review was to provide a synthesis of the current knowledge on 

oviparous and viviparous batoid nursery areas. In  addition, I aimed to contribute to a better 

understanding of ecological roles of batoids within these areas, which is crucial for 

developing effective management strategies for batoids and their nursery habitats worldwide. 

2.2 Elasmobranch nursery area concepts 

Historically, nursery areas were defined as places where mature females give birth and 

juveniles reside until they reach maturity (Bass, 1978; Castro, 1993; Meek, 1916; Springer, 

1967). According to Springer (1967), Bass (1978) and Branstetter (1990), these places should 

offer abundant food resources and lower predation risk for neonates. Thus, most estuarine and 

shallow marine ecosystems were automatically identified as nurseries based on the presence of 

juveniles and assumptions of high productivity and protection against predation (Beck et al., 

2001). This concept was widely accepted and applied, although a clear definition of what 

constituted a nursery was not developed. Lack of a clear definition of nursery habitats 

inhibited conservation efforts because the identification of vast areas as nurseries meant that 

protection was expensive and difficult to implement (Heupel et al., 2007). Thus, the need for a 

refined definition of nursery areas increased over time, with the first step to resolve the 

definition proposed by Beck et al. (2001). 
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Beck et al. (2001) specifically noted that nursery areas for marine animals were not just places 

where juveniles occur, but regions where juveniles occur at higher densities, avoid predation 

more successfully and grow at a faster rate than the average for that species.  Beck et al. 

(2001) also stated that nurseries contribute more individuals per unit area to adult stocks 

than other habitats where juveniles occur. Consequently, not all areas where juveniles are 

found are nurseries. This approach to defining nursery areas was more precise and reduced 

part of the risk of diluting management and conservation efforts. However, the definition 

outlined by Beck et al. (2001) had gaps, especially regarding inter-annual variability in 

nursery use and recognition of the difficulty in defining the contribution of a single area to an 

adult population. While Beck et al. (2001) suggested that some habitats are more likely to be 

nursery areas than others, testable approaches to identify these areas were not proposed. To 

provide practical means to identify nursery areas for elasmobranchs, Heupel et al. (2007) 

proposed a set of criteria specific for the group based on Beck et al. (2001) concept, but 

incorporating aspects such as higher than average abundance and philopatry as metrics. Using 

this approach, an elasmobranch nursery area should be defined based on 3 criteria where 

newborn or young-of-the-year individuals (1) are more commonly encountered in the area 

than in other areas, (2) have a tendency to remain or return for extended periods and (3) 

repeatedly use the area or habitat across years. 

This definition allowed researchers to test the existence of nursery areas for sharks in a 

straightforward manner. Moreover, Heupel et al. (2007) proposed new terms to the literature 

to define areas used by juvenile elasmobranchs that are not nurseries, such as pupping, 

birthing and egg-laying or hatching grounds. Heupel et al. (2007) criteria have been 

successfully applied by elasmobranch researchers (e.g. Espinoza et al., 2011; Francis, 2013; 

Froeschke et al., 2010; Henderson et al., 2010; Hussey et al., 2009), but in general have been 

limited to viviparous species. 

Identifying nursery areas for skates and other oviparous species has proven more challenging 

because of their reproductive mode. Until recently, authors commonly identified skate 

nursery areas as those where high densities of eggs occur (egg density criterion), with little 

consideration of the abundance of neonates and juveniles (Amsler et al., 2015; Hoff, 2008; 

Hunt et al., 2011; Treude et al., 2011). Hoff (2016) emphasized the difficulty in defining 
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nurseries for oviparous batoids and developed a set of criteria to identify their nursery areas. 

He suggested separating the areas used for eggs and juveniles, with the addition of two terms 

to the literature: ‘egg case nursery’ and ‘juvenile nursery’. To be defined as an egg case 

nursery, an area should have high densities of eggs and egg cases in contact with the benthos 

or permanent structures. In addition, the area must be used as an egg-laying area over multiple 

years, and newborns should leave the area promptly after hatching. The egg case nursery 

definition uses criteria similar to those of Heupel et al. (2007), making it easily testable. 

Hoff’s (2016) juvenile nursery was defined as an area that should have a high abundance of 

neonate and juvenile skates, be distinct from the egg case nursery and strongly contribute to 

population recruitment. This definition is also similar to that of Heupel et al. (2007) for shark 

nursery areas, and is functionally equivalent. 

However, some confusing points in the nomenclature and concepts of oviparous batoids have 

been observed, especially regarding the definition of egg-laying and hatching sites as 

nurseries. According to Heupel et al. (2007), egg-laying and hatching sites could be 

nurseries, but only if the post-hatching young remain in the same area, a criterion which 

contradicts Hoff (2016) description. Generally, elasmobranch nursery areas are defined as 

those where many of the young live after birth (Bass, 1978; Beck et al., 2001; Branstetter, 

1990; Springer, 1967), but eggs are a developmental stage that contain unborn individuals. 

The requirements for optimal development of eggs and juveniles may also differ. In other 

words, optimal conditions for egg development are not always advantageous for juvenile 

growth. Hoff (2008, 2010), Love et al. (2008) and Hunt et al. (2011), for example, observed 

no or very few neonates and juvenile skates in areas identified using the egg density criteria, 

reinforcing that newborn skates are likely to leave these areas soon after hatching. Thus, the 

egg case nursery as defined by Hoff (2016) is different than an egg-laying ground since not all 

areas where eggs are found would meet the egg case nursery criteria. Under such usage, almost 

all of the areas previously identified as skate nursery areas are in fact egg case nursery areas 

and not juvenile nurseries. This is not to say that these species do not have juvenile nurseries 

just that the areas identified to date are egg case nurseries and juvenile nursery areas remain 

to be determined. 
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Importantly, for a single species, egg case nursery and juvenile nursery areas could overlap 

and therefore result in a single nursery area serving both functions. Although there are no 

known examples, overlaps in egg case and juvenile nursery grounds might occur in batoid 

species with small home ranges or restricted distributions. Nevertheless, if egg and juvenile 

nurseries overlap in a delineated area, but are not mostly segregated from the adult population, 

this area cannot be a nursery (Knip et al., 2010). This area might provide benefits for a 

population (e.g. food abundance, optimal temperature) but does not provide specific 

advantages for egg development or juvenile growth and survival separate from the needs of 

adults. Difficulty in distinguishing egg case and juvenile nurseries is also an issue for 

oviparous sharks. For example, Cau et al. (2014) and Cau et al. (2017) identified a nursery 

area for the small spotted catshark Scyliorhinus canicula in the central-western Mediterranean 

Sea using the egg density criteria, although several specimens of S. canicula of different life 

stages were also observed in the same area. 

In fact, both egg case nursery and juvenile nursery areas are essential fish habitats, and their 

importance to populations must be recognized. For this reason, these definitions should not 

be aggregated, as has been common in the literature. Confusion and inconsistency in the 

literature highlights the need for understanding and defining these essential habitats for early 

life stage batoids. However, the use of multiple and sometimes confusing terms could impede 

conservation and management efforts by under- or overestimating the importance of specific 

areas, diluting resources and delaying effective protection. I suggest that Hoff’s (2016) 

second term, ‘juvenile nursery area’, be simplified to ‘nursery’, since it is consistent with 

Heupel et al. (2007), which defines nursery areas as associated with the presence and 

occurrence of juveniles. Thus, I recommend the use of the Heupel et al. (2007) criteria for 

nursery areas and the Hoff (2016) criteria for egg case nursery as they provide clear, simple, 

testable and widely applied methods to standardize the definitions for all elasmobranchs. 

Therefore, for the purposes of viviparous and oviparous elasmobranch populations, the criteria 

for an area to be considered a nursery would be (1) new-born or young-of-the-year individuals 

are more commonly encountered there than in other areas, (2) newborn or young-of-the-year 

individuals have a tendency to remain or return for extended periods and (3) newborn or 

young-of-the-year individuals repeatedly use the area or habitat across years. For oviparous 
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species, an egg nursery area can be identified using the following criteria: (1) high densities of 

eggs and egg cases in contact with benthic or stationary materials, (2) adults use the area or 

habitat to lay eggs repeatedly over multiple years and (3) newborn or young-of-the-year 

individuals leave the area promptly after hatching. 

2.3 Prevalence of elasmobranch nursery area use 

Many elasmobranch species use nursery areas (e.g. Castro, 1993; Cerutti-Pereyra et al., 2014; 

Deangelis et al., 2008; Freitas et al., 2009; Heupel et al., 2007; Speed et al., 2010; Yokota & 

Lessa, 2006). These areas can be critical to early life stages of large-bodied species with low 

fecundity and slow growth (Hussey et al., 2017; Yokota & Lessa, 2006). These species 

generally have relatively small litters and longer periods between reproductive events. Hence, 

survival during early life is crucial for population persistence (Cerutti-Pereyra et al., 2014; 

Heupel et al., 2007). For this reason, slow-growing and low-fecundity species are more likely 

to benefit from delineated nursery areas that increase survival rates of the young-of-the-year 

age class (Heupel & Simpfendorfer, 2011).  

Nevertheless, exceptions may occur.  As emphasized by Springer (1967), McElroy et al. 

(2006) and Heupel et al. (2007), some elasmobranch species do not use distinct nursery 

grounds. Small elasmobranch species with productive life history characteristics and fast 

reproductive cycles often lack nurseries (Knip et al., 2010). For those species, the absence of 

a nursery, which could result in high mortality rates, is overcome by their relatively rapid 

growth, early sexual maturity and high reproduction. Knip et al. (2010) also hypothesised that 

the level of protection against predation in a nursery could be small or even irrelevant for 

small-bodied elasmobranch species because some small-bodied sharks are likely to be preyed 

upon throughout their life, even in nursery areas, as juveniles of co-occurring larger species 

could be potential predators. Thus, the use of nurseries is determined by the life history 

components of each species and as such may be traded off for other advantages (Branstetter, 

1990). 
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2.4 Batoid use of nursery areas 

Nursery areas have been reported in a range of batoids, including sawfishes, stingrays, skates, 

guitarfishes and numbfishes (Table 2.1). Here, I examine some of the studies that have 

described batoid nursery areas in a variety of habitats and consider application of nursery 

theory to these species. 

Identification of batoid nursery areas has historically used differing criteria (Table 2.1). Few 

studies occurred prior to 2007, but those that did used the occurrence of neonates and 

pregnant females as indicators (e.g. Yokota & Lessa, 2006). Since 2007, most studies on 

viviparous batoids have used the Heupel et al. (2007) criteria (11 studies), while the egg 

density criterion has been used for the majority of studies on oviparous batoids (8 studies).  

Whether all batoid species rely on nursery areas is unclear due to the limited number of studies 

on these species. Existing studies cover less than 6% of the currently described species — 

only 38 of 663 species and 12 of 26 living families. In addition, the existing studies are 

restricted to a few families — mainly Arhynchobatidae (softnose skates), Dasyatidae 

(whiptail stingrays) and Pristidae (sawfishes). Sawfishes in particular have been increasingly 

studied due to their imminent threat of extinction (Dulvy et al., 2014). The concentration of 

research effort to a select few families shows a strong bias in batoid nursery research. As a 

consequence, knowledge about nurseries of several ecologically and economically important 

batoid species, and/or threatened families remain scarce or  non-existent. 

Research bias is also evident when habitat types for batoid nursery areas are evaluated (Table 

2.1). The majority of Dasyatidae and Pristidae species inhabit shallow, sheltered coastal and 

tropical waters. On the other hand, Arhynchobatidae species tend to be found in cold and 

deep waters, such as the eastern Bering Sea and western Antarctic Peninsula. This tendency 

shows that very little attention has been given to pelagic batoids inhabiting open water/off- 

shore systems. The reason for focusing on particular batoid families and habitats is not clear, 

but might reflect the limited number of researchers dedicating time to better understand 

batoids and current limitations faced by these researchers to meet funding requirements to 

access remote locations. 
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Table 2.1. Identified batoid nursery areas to date  

FAMILY SPECIES LOCATION HABITAT CRITERIA REFERENCES 

AETOBATIDAE Aetobatus narinari Northeastern Brazil Coastal 
sandbanks and 
rocky reef 

Occurrence of 
neonates, small 
juveniles and pregnant 
females 

Yokota & Lessa 
(2006) 

ARHYNCHOBATIDAE Bathyraja aleutica Eastern Bering Sea Flat sandy mud Egg density and 
distribution 

Hoff (2008) 

 Bathyraja 
interrupta 

Eastern Bering Sea Flat sandy mud Egg density and 
distribution 

Hoff (2008) 

 Bathyraja 
parmifera 

Eastern Bering Sea Flat sandy mud Egg density and 
distribution 

Hoff (2008) 

 Raja rhina Southern California 
Bight 

Rocky outcrop 
sitting on the 
edge of a 
submarine 
canyon 

Egg density and 
distribution 

Love et al. (2008) 

 Bathyraja 
parmifera 

Eastern Bering Sea - Egg density and 
distribution 

Hoff (2009) 

 Bathyraja aleutica Eastern Bering Sea Flat sandy to 
muddy bottom 

Egg density and 
distribution 

Hoff (2010) 

 Bathyraja 
interrupta 

Eastern Bering Sea Flat sandy to 
muddy bottom 

Egg density and 
distribution 

Hoff (2010) 
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 Bathyraja 
parmifera 

Eastern Bering Sea Flat sandy to 
muddy bottom 

Egg density and 
distribution 

Hoff (2010) 

 Bathyraja smirnovi Shiribeshi Seamount 

Sea of Japan 

Rocky area Egg density and 
distribution 

Hunt et al. (2011) 

 Bathyraja spp. Eastern 
Mediterranean Sea 

Cold-seep 
carbonates 

Egg density and 
distribution 

Treude et al. (2011) 

 Bathyraja spp. Western Antarctic 
Peninsula 

Sandy and rock 
seabed 

Egg density and 
distribution 

Amsler et al. (2015) 

 Bathyraja aleutica Eastern Bering Sea Flat sandy to 
muddy bottom 

Hoff et al.(2016) Hoff et al.(2016) 

 Bathyraja 
parmifera 

Eastern Bering Sea Flat sandy to 
muddy bottom 

Hoff et al.(2016) Hoff et al.(2016) 

 Bathyraja 
brachyurops 

Southwest Atlantic 

Ocean, northern part 
of the Argentine 
Continental Shelf 

Sands, shells, 
gravels, muds, 
consolidated 
sediments and 
rocks 

Egg density and 
distribution 

Vazquez et al. (2016) 

 Bathyraja 
macloviana 

Southwest Atlantic 

Ocean, northern part 
of the Argentine 
Continental Shelf 

Sands, shells, 
gravels, muds, 
consolidated 
sediments and 
rocks 

Egg density and 
distribution 

Vazquez et al. (2016) 
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 Bathyraja sp. Southwest Atlantic 

Ocean, northern part 
of the Argentine 
Continental Shelf 

Sands, shells, 
gravels, muds, 
consolidated 
sediments and 
rocks 

Egg density and 
distribution 

Vazquez et al. (2016) 

 Bathyraja 
albomaculata 

Southwest Atlantic 

Ocean, northern part 
of the Argentine 
Continental Shelf 

Sands, shells, 
gravels, muds, 
consolidated 
sediments and 
rocks 

Egg density and 
distribution 

Vazquez et al. (2016) 

 Psammobatis 
lentiginosa 

Southwest Atlantic 

Ocean, northern part 
of the Argentine 
Continental Shelf 

Sands, shells, 
gravels, muds, 
consolidated 
sediments and 
rocks 

Egg density and 
distribution 

Vazquez et al. (2016) 

 Psammobatis 
normani 

Southwest Atlantic 

Ocean, northern part 
of the Argentine 
Continental Shelf 

Sands, shells, 
gravels, muds, 
consolidated 
sediments and 
rocks 

Egg density and 
distribution 

Vazquez et al. (2016) 

DASYATIDAE Hypanus 
americanus 

Northeastern Brazil Coastal 
sandbanks and 
rocky reef 

Occurrence of 
neonates, small 
juveniles and pregnant 
females 

Yokota & Lessa 
(2006) 
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 Hypanus guttatus Northeastern Brazil Coastal 
sandbanks and 
rocky reef 

Occurrence of 
neonates, small 
juveniles and pregnant 
females 

Yokota & Lessa 
(2006) 

 Hypanus marianae Northeastern Brazil Coastal 
sandbanks and 
rocky reef 

Occurrence of 
neonates, small 
juveniles and pregnant 
females 

Yokota & Lessa 
(2006) 

 Hypanus 
americanus 

United States Virgin 
Islands 

Shallow seagrass 
flat 

Heupel et al. (2007) DeAngelis et al. 
(2008) 

 Bathytoshia lata Kane‘ohe Bay, 
Hawaii, USA 

Mud habitats Heupel et al. (2007) Dale et al. (2011) 

 Himantura uarnak Ningaloo Reef, 
Western Australia 

Reef lagoon Heupel et al. (2007) Cerutti-Pereyra et al. 
(2014) 

 Pastinachus ater Ningaloo Reef, 
Western Australia 

Reef lagoon Heupel et al. (2007) Cerutti-Pereyra et al. 
(2014) 

 Urogymnus 
asperrimus 

Ningaloo Reef, 
Western Australia 

Reef lagoon Heupel et al. (2007) Cerutti-Pereyra et al. 
(2014) 

 Urogymnus 
granulatus 

Orpheus Island, 
Australia 

Reef flat and 
mangroves 

Heupel et al. (2007) Davy et al. (2015) 

GLAUCOSTEGIDAE Glaucostegus 
cemiculus 

 

The Gulf of Gabes, 
south-eastern 
Tunisian, central 

Sandy bottoms Occurrence of females 
with encapsulated 

Bradai et al. (2005) 



 

17 
 

Mediterranean Sea eggs, neonates and 
juveniles 

 Glaucostegus typus Ningaloo Reef, 
Western Australia 

Reef lagoon Heupel et al. (2007) Cerutti-Pereyra et al. 
(2014) 

 Glaucostegus 
cemiculus 

The Gulf of Gabes, 
south-eastern 
Tunisian, central 

Mediterranean Sea 

Sandy-muddy 
bottoms 

Occurrence of gravid 
females, neonates 
with visible umbilical 
scars and the 
permanence of 
juveniles 

 

Enajjar et al. (2015) 

NARCINIDAE Narcine 
brasiliensis 

Northeastern Brazil Coastal 
sandbanks and 
rocky reef 

Occurrence of 
neonates, small 
juveniles and pregnant 
females 

Yokota & Lessa 
(2006) 

 Narcine 
brasiliensis 

Paraná, Brazil Mangrove 
shorelines and 
sandy-muddy 
bottoms 

 

Heupel et al. (2007) Martins et al. (2009) 

PRISTIDAE Pristis pectinata South Florida, USA Shallow, 
sheltered and 
mangrove 
shorelines 

Heupel et al. (2007) Simpfendorfer et al. 
(2010) 
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 Pristis pectinata South-western 
Florida, USA 

Shoreline habitats 
with overhanging 
vegetation 

Heupel et al. (2007) Poulakis et al. (2011) 

 Pristis pectinata Florida, USA Mangrove 
shorelines and 
shallow 
euryhaline 
habitats 

Heupel et al. (2007) Norton et al. (2012) 

 Pristis zijsron Western Australia Tidal mangrove 
creeks 

Heupel et al. (2007) Morgan et al. (2015) 

RAJIDAE Raja asterias South Ligurian and 
north Tyrrhenian Sea 

Muddy bottoms High abundance of 
juveniles 

Serena & Relini 
(2005) 

 Raja. Clavata Ionian Sea - High abundance of 
juveniles 

Serena and Relini 
(2005) 

 Raja spp. Outer Thames 
estuary, Isle of Wight, 
Bristol Channel and 
Lleyn Peninsula 

- High abundance of 
juveniles 

Ellis et al. (2004) 

 Raja brachyuran Portugal Coast Sandy and rock 
seabed 

Occurrence of 
juveniles and adults 

Serra-Pereira et al. 
(2014) 

 Raja clavata Portugal Coast Sandy and rock 
seabed 

Occurrence of 
juveniles and adults 

Serra-Pereira et al. 
(2014) 



 

19 
 

 Raja montagui Portugal Coast Sandy and rock 
seabed 

Occurrence of 
juveniles and adults 

Serra-Pereira et al. 
(2014) 

 Amblyraja 
doellojuradoi 

Southwest Atlantic 

Ocean, northern part 
of the Argentine 
Continental Shelf 

Sands, shells, 
gravels, muds, 
consolidated 
sediments and 
rocks 

Egg density and 
distribution 

Vazquez et al. (2016) 

 Zearaja chilensis Southwest Atlantic 

Ocean, northern part 
of the Argentine 
Continental Shelf 

Sands, shells, 
gravels, muds, 
consolidated 
sediments and 
rocks 

Egg density and 
distribution 

Vazquez et al. (2016) 

MYLIOBATIDAE Myliobatis goodei Southern Brazil Flat sandy mud Heupel et al. (2007) Araujo et al. (2016) 

 Myliobatis ridens Southern Brazil Flat sandy mud Heupel et al. (2007) Araújo et al. (2016) 

GYMNURIDAE Gymnura micrura Northeastern Brazil Coastal 
sandbanks and 
rocky reef 

Occurrence of 
neonates, small 
juveniles and pregnant 
females 

Yokota & Lessa 
(2006) 

GURGESIELLIDAE Fenestraja 
plutonia 

Cape Lookout Coral banks Occurrence of females 
with encapsulated 
eggs and neonates 

Quattrini et al. (2009) 

RHINOBATIDAE Pseudobatos 
percellens 

Northeastern Brazil Coastal 
sandbanks and 
rocky reef 

Occurrence of 
neonates, small 

Yokota & Lessa 
(2006) 
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 juveniles and pregnant 
females 

 

 Pseudobatos 
productus 

 

Southern California, 
USA 

 

Estuary Heupel et al. (2007) Farrugia et al. (2011) 

 Rhinobatos 
rhinobatos 

 

The Gulf of Gabes, 
south-eastern 
Tunisian, central 

Mediterranean Sea 

Sandy-muddy 
bottoms 

Occurrence of gravid 
females, neonates 
with visible umbilical 
scars and the 
permanence of 
juveniles 

Enajjar et al. (2015) 

RHINOPTERIDAE Rhinoptera 
bonasus 

Northeastern Brazil Coastal 
sandbanks and 
rocky reef 

Occurrence of 
neonates, small 
juveniles and pregnant 
females 

Yokota & Lessa 
(2006) 
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2.5 Key factors affecting batoid use of nurseries 

Batoids that demonstrably use nurseries are attracted to these locations for a combination of 

biotic and abiotic features. Differences in these features can directly affect abundance and 

distribution (Sguotti et al., 2016). Even small variations can lead to spatial and temporal 

variability (Felley & Felley, 1986; Heupel & Hueter, 2002). Shallow coastal ecosystems, for 

example, are some of the most variable in the marine world. Given the common (but not 

exclusive) use of coastal habitats as nurseries by batoids and their variable nature, juveniles 

that rely on these habitats must be able to cope with significant environmental changes over 

relatively short time periods (e.g. Knip et al., 2010; Schlaff et al., 2014). Thus, the features 

determining batoid abundance, residency and fidelity in nursery areas will depend on the 

species and its geographical location. A better understanding of these features will be crucial to 

long-term assessments of batoid spatial ecology and development of site-specific 

management. Here, I discuss some common features affecting batoid use of nurseries. 

2.5.1 Energy partitioning into food acquisition 

Obviously, food is an essential nursery feature. If there is not enough food, survival will be 

too low. However, energy requirements and resulting behaviour may differ greatly between 

species. In theory, abundant food enhances juvenile development and survival. However, in 

practice, this is not always true. Davy et al. (2015) observed that food was not a major driver of 

mangrove whipray Urogymnus granulatus movements within a nursery area. Thus, while the 

availability of food resources is an important feature, it is not the only essential nursery feature 

for some batoids. 

2.5.2 Predator avoidance 

Several authors have hypothesised that, even by delaying maturity and recruitment, the 

permanence of juvenile batoids in an area protected from large predators would be an 

important strategy for population health — a trade-off between survival and maturity 

(Branstetter, 1990; Dale & Holland, 2012; Dale et al., 2013; Dale et al., 2011). However, 

nursery areas are not always predator-free. Heupel et al. (2007) highlighted that nurseries can 

have high levels of predators, but individuals may employ behavioural strategies to avoid 

them. According to Costa et al. (2015), juvenile Brazilian large-eyed stingrays Hypanus 

marianae spend more time in turbid, shallow waters with low prey abundance to minimize 
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predation risk. Hoff (2007) hypothesised that neonate Alaska skate Bathyraja parmifera 

move out of egg case nurseries shortly after emergence to avoid large predators. Davy et al. 

(2015) also cited predator avoidance as a major driver of habitat use patterns of juvenile 

mangrove whiprays U. granulatus that stayed in shallow areas and in mangrove root habitats 

of the nursery to avoid encounters with large blacktip reef Carcharhinus melanopterus and 

lemon Negaprion  acutidens sharks. Even larger batoids could present risks to juveniles. 

Branco Nunes et al. (2016) reported the first evidence of predation between dasyatid species 

remains of H. marianae were found in the stomach contents of larger southern stingray 

Hypanus americanus. Thus, given the small size and limited swimming ability of many 

juvenile batoids (Blake, 2004; Dale et al., 2011), it is likely that predation rates can be high 

even inside nursery grounds. 

The potential for cannibalism or intra-specific predation might be the major difference 

between shark and batoid nurseries. Cannibalism is common among shark groups (Compagno, 

2001) and thus can be an important factor in the need for nursery areas where the juveniles of 

a species are separated from the adults. Morrissey & Gruber (1993) and Guttridge et al. 

(2012), for example, reported intra-specific predator−prey interactions between juvenile, large 

juvenile and adult lemon sharks Negaprion brevirostris. On the other hand, the occurrence of 

cannibalism within batoid taxa has never been reported, and thus there are no known effects 

relative to nursery use. 

2.5.3 Temperature 

Temperature is a factor that affects the distribution and movement of a large number of species 

including elasmobranchs (e.g. Schlaff et al., 2014). Variations in water temperature have been 

shown to influence the biology and ecology of batoids (e.g. Cerutti-Pereyra et al., 2014; 

Fangue & Bennett, 2003; Hopkins & Cech, 2003). For example, Amsler et al. (2015) reported 

that temperature played an important role in the embryonic development and hatching of skate 

eggs off the western Antarctic Peninsula. Le Port et al. (2012) reported temperature was a 

major factor in short-tail stingray Bathytoshia brevicaudata movement patterns, while 

Dabruzzi et al. (2012) observed that ribbontail rays Taeniura lymma could identify optimal 

zones along a thermal gradient with a high level of accuracy. The ability to remain in a 

desired thermal range is important because juvenile ribbontail rays are often exposed to rapid 

and extreme temperature fluctuations in shallow coastal waters. Still, according to Dabruzzi et 

al. (2012), juvenile ribbontail rays must remodel biochemical pathways to improve 
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physiological functions before recruitment and migration to the cooler, more stable habitats 

occupied by adults.  

Batoids may also exploit variations in temperature to enhance oxygen consumption and 

digestive efficiency (Di Santo & Bennett, 2011; Sims et al., 2006). Matern et al. (2000) and 

Wallman & Bennett (2006) observed batoids foraging at high temperatures and moving to 

cooler areas after foraging to optimize digestive processes. In contrast, Tenzing (2014), 

through physiological tests, observed no significant variation between feeding and resting 

temperatures of U. granulatus at Orpheus Island, Australia. According to Tenzing (2014), the 

use of high temperature habitats might provide an ecological advantage for the species, 

accelerating digestive rates and, in the long term, juvenile development. Thus, higher 

temperatures might increase growth rates of juveniles (Jirik & Lowe, 2012; Wearmouth & 

Sims, 2008), increase reproductive success, improve feeding efficiency and increase survival 

through predator avoidance (Wallman & Bennett, 2006). Therefore, the benefits of using 

nurseries with high temperatures may outweigh the potential physiological costs. 

2.5.4 Salinity 

Batoid movements and habitat use can also be influenced by salinity variations (Poulakis et 

al., 2012; Simpfendorfer et al., 2011). Juvenile sawfish seek out specific salinity levels to 

optimize their development or survival (Norton et al., 2012; Simpfendorfer et al., 2011). 

Similarly, Collins et al. (2008) and Heupel and Simpfendorfer (2008) suggested that some 

elasmobranch species actively move to remain within a specific salinity range, minimizing 

energetic costs of osmoregulation and freeing up energy for other processes (e.g. growth, 

sexual maturation). On the other hand, Poulakis et al. (2011) reported that smalltooth sawfish 

Pristis pectinata can remain in a nursery area under a wide range of salinities and continue to 

grow rapidly, suggesting that osmoregulation may have little influence on habitat selection for 

this species. Effects of environmental parameters such as salinity need to be explored in more 

detail to more fully define any relationships with batoid habitat use and selection, and how 

they influence nursery area use. 

2.5.5 Oxygen levels 

Dabruzzi and Bennett (2014) observed that the Atlantic stingray Hypanus sabinus commonly 

used shallow waters with reduced levels of dissolved oxygen. They hypothesised that by 
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spending time in hypoxic areas, H. sabinus excludes direct competition with less hypoxia-

tolerant organisms (Di Santo & Bennett, 2011) and reduces their vulnerability to predators. 

Thus, the ability to tolerate low oxygen concentrations might be an important advantage to 

some species of juvenile batoids and is likely a determining factor for use of some nurseries in 

shallow coastal areas. 

2.6 Ecological and trophic role of batoids in nursery habitats 

The existing information on batoid ecological roles is based on limited research on a small 

number of species and locations, restricting our understanding largely to shallow water areas 

(e.g. Jacobsen & Bennett, 2013). However, due to their high diversity and abundance, batoids 

are thought to play a number of key ecological roles that are integral to the functioning of 

several ecosystems, including nursery habitats (Costa et al., 2015). Here, I discuss three of 

these roles. 

2.6.1 Energetic links 

The limited data available indicate that juvenile batoids often remain within a restricted area 

over the short and medium term (weeks to months) (Davy et al., 2015; Vaudo & Lowe, 2006), 

but some species have the capacity to move longer distances between habitats (Collins et al., 

2007; 2008). These movements may have a variety of ecological effects, such as linking 

trophic webs and enhancing or redirecting nutrient and energy flows (Sheaves, 2009). Thus, 

batoid movements can connect separated ecosystems at short time scales (Cartamil et al., 

2003; Davy et al., 2015; Matern et al., 2000; Silliman & Gruber, 1999) or over long time 

periods if they undertake ontogenetic or long-range migrations (Aguiar et al., 2009; Ajemian 

& Powers, 2014; Ebert & Cowley, 2003). These movements also enhance nursery area 

ecological roles by transporting energy and nutrients through biologically mediated pathways 

(Sheaves, 2009). Based on current knowledge (Table 2.1), these connections would mostly be 

from very shallow coastal and estuarine habitats to deeper habitats. Further studies on deep-

water species are needed to understand their role in linking energy between habitats. 

2.6.2 Bioturbation 

Many batoid species feed on infauna and meiofauna within soft sediments. To access these 

prey resources, batoids employ a number of behaviours (e.g. beating pectoral fins and jetting 

water) that suspend soft sediments and often form  feeding  pits — excavated depressions in 
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the sediment (Lynn-Myrick & Flessa, 1996; O'shea et al., 2012; Takeuchi & Tamaki, 2014). 

This process, known as bioturbation, is very common in shallow coastal and estuarine 

nurseries with soft substrates and has a significant impact on the physical and biological 

habitat properties of intertidal and subtidal areas (O'shea et al., 2012), such as density and 

distribution of benthic fauna (Dabruzzi et al., 2012). At a fine scale, the formation of feeding 

pits facilitates oxygen penetration into sediments, extending the zone of oxygenation (Gilbert 

et al., 1995) and affecting the nitrogen cycle (Kogure & Wada, 2005). Bioturbation may also 

enable other species to benefit from prey items that are disturbed or excavated during 

foraging activities (Heithaus et al., 2010; Vanblaricom, 1982). Kiszka et al. (2014) detected 

the association of southern stingrays Hypanus americanus and bar jacks Caranx ruber, where 

stingray bioturbation allowed C. ruber to access resources otherwise unavailable. Similarly, 

Kajiura et al. (2009) observed double-crested cormorants Phalacrocorax auritus floridanus 

taking advantage of H. americanus bioturbation to feed on teleosts. Thus, batoid bioturbation 

may fulfil a number of roles in soft sediment habitats within and beyond nursery grounds.  

2.6.3 Trophic roles 

Batoids can consume a wide range of prey items and have different feeding mechanisms and 

behaviours. They have highly variable dentition and jaw morphology among species, sex 

and/or life stage (Dean et al., 2007; Pardo et al., 2015). Batoid diets can also be influenced by 

aspects such as location, or predator and prey distribution (Ebert & Cowley, 2003). Feeding 

strategy is another important indicator of batoid trophic relationships. Their  approaches can 

be categorized as continuous feeders, ambush predators or filter feeders (Wetherbee & 

Cortés, 2004).  

On average, batoid trophic levels vary between 3.4 and 3.9, but can reach higher levels, such as 

a 4.2 for rasptail skate Rostroraja velezi (Navia et al., 2017). Navarro-González et al. (2012), 

for example, observed Mediterranean starry rays Raja asterias sharing trophic position with 

sea birds, and large demersal and pelagic fish. Batoids also play a role as food sources for 

larger predators in the food web (Chapman & Gruber, 2002; Dean et al., 2017; Visser, 1999). 

Therefore, most batoids function as mesopredators, providing the connection between top 

predators and lower trophic level organisms (Vaudo & Heithaus, 2011). Navia et al. (2017) 

emphasized that, as a highly diverse group of mesopredators, batoids influence the stability 

and robustness of ecosystems (Dunne et al., 2004). Therefore, batoids likely play numerous 

and crucial roles in the structure and functioning of food webs. Unfortunately, due to the lack 
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of knowledge of batoid ontogenetic changes and life cycles, the specific roles played by 

juvenile batoids in nursery habitats is poorly known. 

2.7 Ontogenetic shifts and partitioning of resources in nurseries 

Ontogenetic shifts can be a major driver of changes in batoid diet composition (Colloca et al., 

2010; Gray et al., 1997; Jacobsen & Bennett, 2012). These shifts could be linked to 

morphological, behavioural and physiological features (Scharf et al., 2000). Dale et al. 

(2011), for example, observed that diet composition of brown stingrays Bathytoshia lata was 

closely related to body size. Juvenile brown stingrays tended to prey on small and abundant 

items due to their limited mouth gape, swimming speed and foraging abilities. On the other 

hand, larger brown stingrays tended to ingest less abundant but more energetically valuable 

items due to their greater foraging capabilities. Heithaus (2007) also emphasized the 

possible difficulty of larger juveniles in capturing small-sized prey. Thus, at some point, large 

juveniles need to switch habitats, moving away from nurseries to attain their specific dietary 

needs and meet their higher energetic demands. This strategy could drastically reduce time 

and energy used during foraging activities (Scharf et al., 2000) and competition for food 

resources with smaller conspecifics, producing a recognized evolutionary benefit (Carrier et 

al., 2012; Dale et al., 2011). 

Partitioning of resources also allows the coexistence of competing or closely related marine 

predators (Mcpeek, 2014). Several examples of partitioning of food resources between batoid 

species have been reported (Bizzarro et al., 2017; Bornatowski et al., 2014; Kemper et al., 

2017; Mabragana & Giberto, 2007; Platell et al., 1998; Treloar et al., 2007). Pardo et al. 

(2015), for example, detected localised dietary partitioning between sympatric batoids in 

Australia, where several species foraged at the same spatiotemporal scale, but each species 

exhibited different prey preferences. Partitioning may also reduce competition for food 

resources among newborn batoids, decreasing mortality rates during early life stages. The 

existence of partitioning suggests that batoids may also use communal nurseries as this is a 

common feature in these areas (Kinney et al., 2011). The use of communal nurseries is known 

to provide benefits in reducing predation for sharks (Simpfendorfer & Milward, 1993) and 

may have had great importance in their life histories. However, limited data have been 

presented suggesting this for batoids. Davy et al. (2015) briefly discussed the coexistence of 

two stingray species in the same bay at Orpheus Island, Australia, and there is evidence that 

communal groupings of batoids provide increased predator protection (Semeniuk & Dill, 
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2006). Vazquez et al. (2016) also indicated the presence of communal egg case nurseries for 

several skate species in the Argentine shelf-break front. However, much more research is 

needed to clarify the use of communal nurseries and their benefits for batoids. 

2.8 Conservation of batoid nursery areas 

The low fecundity and slow growth rates of some batoids suggest that juvenile survivorship is 

one of the most crucial features for sustaining stocks (Cortés, 2002; Frisk, 2010; Goldman et 

al., 2012). Unfortunately, nursery areas, especially those in shallow coastal areas, are 

susceptible to the influence of anthropogenic pressures (Dale et al., 2013; Lotze et al., 2006) 

(Lotze et al. 2006, Dale et al. 2013). For example, coastal nurseries can be directly affected by 

nutrient and sediment pollution due to their close proximity to human communities. Further- 

more, coastal nursery areas support not only batoids, but often other fishery resources of major 

economic significance. As such, juvenile batoids in these areas may be threatened through 

bycatch in coastal fisheries (Heithaus, 2007). The high level of philopatry seen in many of the 

batoid species studied (Braun et al., 2014; Flowers et al., 2016; Hunter et al., 2006; White et 

al., 2013) means that they may not respond well when exposed to high anthropogenic 

pressures. According to Heupel et al. (2007), some elasmobranch species tend to remain in 

their habitats, even when highly altered by human activities. This situation can lead to a 

catastrophic scenario for batoids, resulting in high rates of juvenile mortality and low rates of 

recruitment. 

Thus, understanding the dynamics of batoid populations in nursery areas is crucial to 

improving conservation outcomes for some species (Camhi et al., 2009; Dulvy et al., 2014; 

Fowler & Cavanagh, 2005). However, designating wide swaths of the coastline as protected 

nursery areas is probably not an efficient use of resources, or even politically possible. 

Obtaining better data to specifically target manageable areas for protection is much more 

likely to be successful. Thus, precise identification of areas that support important life stages 

(Le Port et al., 2012; Yokota & Lessa, 2006), and improved understanding of batoid life 

histories are crucial to assessing their ecosystem function and connectivity (Espinoza et al., 

2015; Munroe et al., 2015), their vulnerability to anthropogenic threats and environmental 

changes (Schlaff et al., 2014) and the development of efficient management and conservation 

strategies (Knip et al., 2012) — not only to manage batoid species as a fishery resource, but 

also to manage habitats (Tilley & Strindberg, 2013). 
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2.9 Conclusions 

Knowledge of batoid nursery areas is limited compared to that of sharks, although both groups 

appear to use nurseries in very similar ways. I recommend the use of the Heupel et al. (2007) 

criteria for identifying nurseries as a simple and effective way to define a nursery area for 

juvenile sharks and batoids. I also support the specific concept of egg case nurseries as 

proposed by Hoff (2016) that separates areas important for egg development in oviparous 

species from those important for juvenile and adult life stages. Adopting these definitions 

will promote the use of standardized criteria and terminology, which will assist conservation 

and management efforts while reducing under- or overestimations of nursery importance, 

dividing resources for conservation purposes and hindering effective protection. 

At least in the coastal nurseries that have been studied to date, juvenile batoids play important 

ecological roles in nursery areas, functioning as mesopredators, vectors for energy transfer 

and bioturbators. However, little data are available to enable a full evaluation of batoid 

ecological roles in nursery areas. In addition, the concentration of identified nurseries in 

coastal areas highlights a research bias. A broader approach is required to better evaluate the 

presence of batoid nurseries in deeper and offshore ecosystems. Batoid species are at risk of 

extinction due to increasing anthropogenic threats and environmental changes; identification 

of nursery areas and a better understanding of batoid ecology are important for improving 

management of batoid stocks and sensitive areas, such as nurseries. By compiling what is 

known about the use of nursery areas by batoid species, this review provides a foundation to 

move towards broader and practical approaches to identify and conserve batoid populations.  
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Chapter 3: Activity patterns and habitat use of juvenile Pastinachus ater 

in a coral reef flat environment 

3.1 Introduction 

Stingrays (family Dasyatidae) are a diverse and widespread group of elasmobranchs. They 

can be found in a variety of habitats across the globe (Last et al. 2016), including coral reefs. 

In these ecosystems, stingrays are thought to play important ecological roles, such as 

connecting trophic webs across habitats, enhancing nutrient recycling and energy flows, and 

controlling prey populations via predation and/or physical disturbances of soft-bottom 

microhabitats (Dabruzzi et al., 2012; Martins et al., 2018; O'shea et al., 2012; Sheaves, 2009; 

Thrush, 1991). Stingrays are also an important fishing resource in many parts of the world 

(Dulvy et al., 2008; Dulvy et al., 2014; Jabado et al., 2018), especially in developing 

countries where fish represent an significant portion of local food intake (Dulvy et al., 2017). 

Due to increasing anthropogenic pressures over recent decades, stingray populations are 

facing elevated risks of extinction based on population declines caused by fishing and habitat 

loss (Dulvy et al., 2014).  

Currently, some aspects of stingray biology are reasonably understood, such as reproduction, 

diet, age and growth (Ebert & Cowley, 2008; Hayne et al., 2018; Jacobsen & Bennett, 2012; 

Pierce et al., 2011; Rastgoo et al., 2018; Saadaoui et al., 2015; Veras et al., 2014). 

Nevertheless, little is known about the movement patterns and habitat use of stingrays 

inhabiting coral reefs (Cerutti-Pereyra et al., 2014; Simpfendorfer & Heupel, 2004) – even 

less about juvenile dasyatid rays. This lack of knowledge is a concern because, generally, 

survival during early life stages is essential for the health and persistence of slow growing, 

late-maturing and low fecundity species with a strong relationship between recruitment and 

population size, such as stingrays (Heupel et al., 2007; Kinney & Simpfendorfer, 2009). 

Understanding the range and regularity of juvenile stingray movements and their direct 

relationships with the use of reef ecosystems may be beneficial in determining their 

dependence on reef habitats, their ecological role within these areas (Cartamil et al., 2003), 

and their response to anthropogenic threats (Collins et al., 2007).  

Juvenile stingrays are often found in shallow soft bottom microhabitats associated with coral 

reefs (Cerutti-Pereyra et al., 2014; Vaudo & Heithaus, 2009; Yokota & Lessa, 2007). While 

adults can feed in a wider variety of benthic habitats and move over deeper areas in search for 
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food, juveniles distribution is often limited to these shallow soft bottom microhabitats where 

encounters with larger predators are reduced (Heupel et al., 2018; Kanno et al., 2019) and 

feeding opportunities are increased (Marshall et al., 2008).  

Acoustic telemetry has been shown to be a successful tool to assess the activity patterns of 

both sharks and rays in coral reef habitats (Cartamil et al., 2003; Dewar et al., 2008). 

However, the use of passive acoustic telemetry in areas juvenile stingrays often inhabit — 

shallow and turbid waters, and intertidal zones — is compromised by limitations such as 

shallow depth, habitat complexity, and water flow that affect detection ranges (Davy et al., 

2015; Heupel et al., 2006). Active telemetry is an effective alternative in such situations (in 

some cases the only feasible option) that can provide detailed movement information in 

habitats where physical attributes hinder the use of most telemetry methods (Brownscombe et 

al., 2019; Cartamil et al., 2003). Thus, the broad aim of this work was to use active acoustic 

telemetry to determine fine-scale diel movement patterns and habitat use of juveniles of a 

stingray species known to commonly use coral reef systems – the cowtail stingray, 

Pastinachus ater.  

3.2 Methods and Materials 

3.2.1 Study area 

Pioneer Bay is located on the western side of Orpheus Island, in the Central Region of the 

Great Barrier Reef, Australia (Fig. 3.1). This 400-metre wide bay has a reef flat and live coral 

areas influenced by semi-diurnal tidal variation. Mangrove patches (red mangrove, 

Rhizophora mangle; white mangrove, Avicennia marina; and myrtle mangrove, Osbornia 

octodonta) occur along the cemented beach deposits, especially in the southern flat area. 
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Fig. 3.1. Map of Orpheus Island, Queensland, Australia 

3.2.2 Study species and capture methods 

The cowtail stingray, Pastinachus ater, is a widespread species in the Indo–West Pacific. It 

inhabits intertidal lagoons, reef flats, reef slopes, bays and estuarine habitats. Individuals are 

born at approximately 18 cm disc width (DW) and can reach ~200 cm DW in full maturity 

(Last et al., 2016). Detailed maturity features for P. ater, such as length at 

first maturity (Lm), are unknown. Thus, only an estimate of male maturity can be determined 

by examining the level of calcification of claspers. 

Cowtail stingrays were captured in the shallow waters of Pioneer Bay during outgoing tides 

using seine and dip nets between April and December 2016. Each animal was manually 

immobilized for measurements (sex and disc width) and attachment of individually numbered 

spiracle tags. Individuals were fitted with a Vemco V9 acoustic transmitter (21 mm in length, 

1.6 g in water). Date, time and GPS coordinates of the capture and release sites were also 

recorded. Handling procedures took less than 5 minutes. 
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Each Vemco V9 acoustic transmitter operated at a specific frequency (81, 78 and 75 KHz). 

Due to the short duration of the tracks, transmitters were set to emit one acoustic signal per 

second, resulting in an estimated battery life of five to seven days. Stingrays were released at 

their site of capture and actively tracked on foot both visually and with a hand held 

directional hydrophone (Vemco VH110) connected to an ultrasonic acoustic receiver (Vemco 

VR100). The location of the animal was recorded with a hand-held GPS every 5 minutes. 

Observers maintained a pre-established distance of 10 meters from the tagged animal - 

minimising any potential impact on stingray natural movements yet remaining within the 

location error associated with the hand-held GPS. Depth, habitat type and behaviour of 

tagged stingrays were also recorded for analysis. Each stingray was continually tracked for 

4.91 to 9 hours per day (average 6.83 hours) for two days and always during daylight hours. 

All tracks started at the outgoing tide and were completed during the incoming tide, when the 

water reached the mangrove patches or when natural light was no longer available. After two 

tracks, each animal was recaptured and the acoustic tag quickly removed. 

Tidal stages were define as: High tide – 1 hour before to 1 hour after the highest tide 

height of a tidal cycle; Low tide – 1 hour before to 1 hour after the lowest tide height of a 

tidal cycle; Incoming tide – period of increasing tide height between low and high tides; 

Outgoing tide – period of decreasing tide height between high and low tides. 

3.2.3 Statistical Analysis 

Tracking data were analysed using the adehabitatLT package in R. Initially, rate of 

movement (ROM) – defined as the distance travelled by a specimen within 5 minutes - was 

calculated in m.min-1 for all tracks. To identify the importance of the different habitats within 

Pioneer Bay for juvenile cowtail stingrays, 95% and 50% kernel utilisation distributions 

(KUD) were estimated using the package adehabitatHR. The method of Lavielle (Calenge, 

2015), a function used to estimate the number of segments building a track, was applied to 

fragment each track into intervals of specific movement patterns. Segments were plotted 

against tide heights to graphically show possible variations in movement patterns throughout 

different tidal heights. . Tortuosity of movements – the degree of straightness of each track 

(ranging from 0 to 1, where zero indicates random movement and one indicates linearity) – 

was evaluated through an index of linearity. The index was calculated iteratively for every 5 
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adjacent location points. To understand the effects of tide levels and sex on ROM and 

tortuosity, second order polynomial natural splines were applied using the R package 

glmmTMB (Brooks et al., 2017) with individual as a random factor. ROM values were 

square-root transformed before analysis to achieve normality.  

3.3 Results 

Seven cowtail stingrays (4 males and 3 females) were manually tracked between April and 

December 2016 (Table 3.1). Disc width of individuals varied from 29 cm to 50 cm, with a 

mean of 39.5 cm. All male specimens were sexually immature. Due to the lack of external 

features to assess maturity levels, females were also considered sexually immature based on 

their similar DW to the males and the known use of Pioneer Bay as a nursery ground (Davy 

et al., 2015). Each individual was tracked over 2 days, generating a total of 14 active tracks 

ranging from 4.91 to 9 hours. Specimens moved at an average speed of 2.44 m.min-1 + 0.87 

SE, with minimum distances travelled ranging from 546 to 1446 meters (Fig. 3.2). 

Table 3.1. Details of manual tracking events for juvenile cowtail stingrays at Orpheus Island. 

DW, disc width. 

Stingray Sex DW Track Date Duration 
of track (h) 

Min. dist. 
Travelled (m) 

Speed 
(m.min-1) 

1 M 37 
1 1/04/2016 8 903.57 1.94 

2 2/04/2016 9 1147.53 2.17 

2 F 42 
1 2/04/2016 7.83 1174.69 2.55 

2 4/04/2016 5.33 585.20 1.77 

3 F 33 
1 5/04/2016 4.91 602.21 2.40 

2 6/04/2016 6.91 1013.25 3.44 

4 M 50 
1 9/04/2016 5.58 546.28 1.65 

2 10/04/2016 6.75 594.90 1.65 

5 M 34 
1 11/04/2016 8 672.27 1.49 

2 12/04/2016 8.16 788.02 1.65 

6 M 50 
1 9/12/2016 5.75 1423.08 4.24 

2 11/12/2016 5.08 884.64 2.90 
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7 F 29 
1 13/12/2016 5.75 834.15 2.41 

2 14/12/2016 7 1446.35 3.85 

 

 

 

Fig. 3.2. Tracks of juvenile cowtail stingrays and habitat types in Pioneer Bay. Each map 

represents two tracks of the same individual. Different styles of movement: (1) across the 

bay; (3) returning to the same area; (4) direct movements towards the reef flat; (6) use of 

northwest portion of the bay by one individual. 

All tracked individuals remained in Pioneer Bay during their tracks – suggesting that 

juveniles do not, or only on rare occasion, leave the bay. In fact, in four tracks, individuals 



 

35 
 

returned to within less than 100 meters of their capture point on the next incoming tide. 

Despite the range of tidal heights in which tracks took place (57 – 363 cm), none of the 

individuals were observed in depths > 1 meter. Both tortuosity (p < 0.0001) and ROM (p < 

0.0001) were found to be influenced by tidal height (Fig. 3.3).  

 

 

 

 

 

 

 

 

Fig. 3.3. Effects of tide height on (a) linearity and (b) ROM of juvenile cowtail stingrays. 

Points represent individual locations and 95% confidence intervals are represented by the 

grey area. 

During outgoing tides, when water levels drop and most of the reef flat becomes exposed, 

individuals moved toward the reef crest or outer crest margin. During this period, rays 

exhibited more direct and active movements (ROM = 3.27 m.min-1 + 2.44 SE; Tortuosity = 

0.725 + 0.06 SE) and were often observed in intense searching mode and/or feeding in 

shallow sand flat areas (11 searching and 23 feeding events recorded). Searching mode was 

characterized by fast and circular movements, whereas foraging mode included attempts to 

capture preys on the sandy bottom – with suspension of sediments and formation of feeding 

pits.  During incoming tides, rays used shallow areas, cruising at the limit of the water line 

and moving into areas as soon as there was sufficient water depth (tide height > 160 cm). 

During these incoming tides, stingrays interspersed resting behaviour (waiting for more areas 

to be made available by the rising water level) with more directed movements toward the 

shoreline (ROM = 2.61 m.min-1 + 2.12 SE; Linearity = 0.689 + 0.10 SE). Occasional 

searching behaviours were observed during the incoming tide. However, individuals were not 

observed feeding either at the high or low tides during tracks. 
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Juvenile cowtail stingrays moved in less linear paths and showed lower rates of movements 

during the highest (ROM = 0.678 m.min-1 + 0.28 SE; linearity = 0.339 + 0.13 SE) and lowest 

parts of the tides (ROM = 1.49 m.min-1 + 0.96 SE; linearity = 0.527 + 0.14 SE). At the lowest 

tidal phase, individuals were observed using sand patches on the edge/within the reef flat as 

resting points. Individuals covered themselves with sand and remained immobile until the 

tide started to move back in (Fig. 3.4). The average depth in these areas was approximately 

20 cm. At the peak of the high tide, cowtail stingrays were more commonly encountered in a 

resting mode at mangrove patch edges and sand flats. They were rarely observed penetrating 

deep into mangrove habitats. Both ROM and tortuosity values did not differ significantly 

between sexes (p = 0.09; p = 0.65). 

 

Fig. 3.4. Immobile juvenile cowtail stingray at the edge of the reef flat at the lowest tide. The 

yellow ring is the individually numbered spiracle tag where the Vemco V9 acoustic 

transmitter was attached to and the pink tape was used to facilitate visual monitoring. 

The observed movement patterns of juvenile cowtail stingrays described above were 

reinforced by the Lavielle method. The number of segments of each track varied from three 

to 11. The results suggest that long periods of reduced activity (approximately 2 – 3 hours) 

were interspersed by short sections of variable behaviour (< 60 minutes). Long segments in 

most tracks occurred during low and high tides, while short periods of variable behaviours 
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mostly occurred during incoming or outgoing tides (Fig. 3.5). The maximum distance from 

shore recorded for each individual directly related to the height of the tide (p < 0.0001; Fig. 

3.6). A wider tide variation throughout the day required individuals to move further toward 

the reef flat to remain in shallow water. KUD results showed shallow sand flat areas located 

in the southeast portion of Pioneer Bay were intensively used by juvenile cowtail stingrays, 

constituting their primary habitat (Fig. 3.7). Mangroves in the southern part of the bay when 

water depth was not greater than one meter, with both feeding and resting behaviours were 

observed in these areas in three instances (Fig. 3.8). Rocky bottom areas of the western 

portion of the bay and outer reef were rarely utilized. 

 

Fig. 3.5. Lavielle method segmentation for two juvenile cowtail stingray active tracks in 

different tide heights. Black lines represent dist (distance between successive relocations), red 

lines indicate the boundaries of segments and the blue lines show the tide level. 
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Fig. 3.6. Relationship between the maximum recorded distance from shore and tide height at 

low tide. 95% confidence intervals are represented by the grey area. 
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Fig. 3.7. 95% and 50% kernel utilisation distributions (KUD).  
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Fig. 3.8. Location of (a) resting and (b) feeding/searching areas used by juvenile cowtail 

stingrays at Pioneer Bay. 

3.4 Discussion  

The use of active acoustic telemetry showed that juvenile cowtail stingrays move in response 

to tide cycles on an inter-tidal reef flat. Our results suggest that juveniles use shallow waters 

and/or camouflage techniques to avoid potential predators, and to access food resources on 

sand flats. Juvenile cowtail stingrays spent the entire monitoring period within Pioneer Bay, 

with individuals not leaving the reef flat or reef crest for deeper waters. Although considered 

a major driver of stingray movement and habitat use, tide variation did not appear to be as 

influential to juvenile cowtail stingray habitat use as they were for mangrove whiprays 

(Urogymnus granulatus) which were also tracked in Pioneer Bay (Davy et al 2015). 

According to Davy et al. (2015), mangrove whiprays appear to reduce risk of predation by 

entering into mangrove habitats when the tide allows, residing within the complexity 

structures of mangrove roots for as long as these structures were available. Juvenile 

mangrove whiprays only used sand flats when transiting to the fringing reef area – a 

secondary refuge during the lowest tides. In contrast, this study showed that juvenile cowtail 

stingrays were observed using mangrove habitats much less frequently even at higher tides, 

showing a stronger affinity to sand flat areas. This result is supported by video monitoring of 

mangrove areas by Kanno et al. (2019).  
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Dasyatid species are known to commonly use sandy-bottom intertidal areas (Pardo et al., 

2015; Pierce et al., 2011; Takeuchi & Tamaki, 2014). These areas can offer higher prey 

availability or easiest access to food resources (Ebert & Cowley, 2003; Elston et al., 2017; 

O'shea et al., 2013). In addition, juvenile cowtail stingray preference for shallow and soft 

sediment areas could reduce exposure to predators that cannot access these shallow waters 

(Cartamil et al., 2003; Collins et al., 2007), and facilitate anti-predator behaviours, such as 

camouflage by burying and reduced movement rates (Aguiar et al., 2009). Vaudo and 

Heithaus (2009) also demonstrated that the activity space of four batoid species 

(Glaucostegus typus, Himantura australis, Pateobatis fai and Pastinachus ater) was limited 

to nearshore and shallow waters of Shark Bay (Australia) likely as a result of predator 

avoidance.  

Furthermore, as demonstrated by Papastamatiou et al. (2009) and Espinoza et al. (2015) for 

reef sharks, larger individuals often require a broad activity space in order to fulfil their 

energetic requirements. Stingray activity space in early life stages therefore might also be 

limited by low energy intake requirements. Thus, the limited movement and habitat use of 

juvenile cowtail stingrays within Pioneer Bay could be a trade-off between foraging 

opportunities, low energetic requirements and predator avoidance - while also reducing the 

direct competition for resources with co-occurring mangrove whiprays (see Chapter 6). Other 

strategies to avoid predation, such as aggregation behaviour, were not observed during the 

study period, but have been reported in other areas for cowtail stingrays (Semeniuk & Dill, 

2004). 

ROM and Linearity were higher during the incoming and outgoing tides, with juvenile 

cowtail stingrays moving at faster rates and choosing more direct paths toward the reef flats 

or mangrove edge areas.  Similar results were found by (George et al., 2019) for blacktip reef 

sharks at Pioneer Bay suggesting this may be a common strategy for small, potentially 

vulnerable elasmobranchs in this area. Results suggest that, during tide changes, juvenile 

cowtail stingrays moved with a purpose and often changed their behaviour. By moving faster 

and using the shortest pathways, juvenile cowtail stingrays might reduce both their time in 

open/exposed areas during incoming tides and also the chance of getting trapped in shallow 

pools during outgoing tides. On the other hand, juvenile cowtail stingrays moved at a slower 

pace and chose random paths during high and low tides. During these tide phases, long 

periods of inactivity were observed, with individuals often adopting camouflage as a predator 

avoidance strategy.  
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Although variations between sexes have been documented in shark and ray movement pattern 

studies (Schlaff et al., 2014), both ROM and tortuosity values did not differ significantly 

between sexes in this study. Similar results have been found by Dale et al. (2011) and 

Cerutti-Pereyra et al. (2013), indicating that differences in movement patterns and habitat use 

between sexes do not occur for some batoid species at early life stages. The restricted activity 

space could also be a factor hindering sexual segregation or sex-specific behaviours. These 

differences may develop once individuals become sexually mature and have larger areas of 

available habitat. However, this study only involved a small number of individuals, so further 

studies are required to fully understand the potential for ontogenetic shifts in cowtail stingray 

behaviour. 

Different from the results found by Davy et al. (2015) for mangrove whiprays, juvenile 

cowtail stingrays were observed feeding more often during the outgoing tide. In addition, 

juvenile cowtail stingrays were not detected feeding either at highest or lowest tides. 

Results also showed individual feeding activities were mostly restricted to the soft-

bottom area located on the southeast portion of Pioneer Bay. According to Ajemian et al. 

(2012), the use of specific patches for foraging purposes is often related to the 

availability of resources. Unfortunately, information on cowtail stingray diet and prey 

availability in Pioneer Bay are not available. However, several studies on bottom 

dwelling batoid species have shown their preferences for benthic invertebrates, such as 

annelids, crustaceans, molluscs, bivalves and gastropods (Elston et al., 2017; O'shea et 

al., 2013) – all of which are commonly found across the sand flats of Pioneer Bay (A 

Martins pers. obs.). Furthermore, longer-term studies and larger sample sizes would be 

needed to confidently proclaim that juvenile cowtail stingrays are permanent residents of 

Pioneer Bay and that observed movement patterns and habitat use are consistent over 

time. 

3.5 Conclusion 

In this study, the use of active acoustic telemetry has helped to provide the first detailed 

examination of the spatial ecology of cowtail stingrays in a coral reef flat environment and 

the first to focus on juvenile movements. Results have shown juvenile cowtail stingray 

preferences for sand flat and mangrove edge habitats within Pioneer Bay. These areas provide 

food resources and the ability to more successfully avoid potential predators. Coral reef flats 

were identified as secondary refuge for juvenile cowtail stingrays during the lowest tides. In 
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addition, juvenile cowtail stingray movements were shown to be strongly guided by tidal 

cycles. These findings highlight the need to better comprehend the movement patterns and 

habitat use of juvenile cowtail stingrays at different spatial and temporal scales. Future 

research is necessary to fully unveil the major drivers involved in juvenile cowtail stingray 

seasonal and ontogenetic movement patterns and habitat use within coral reef flat 

environments. This information is important to establish a full understanding of juvenile 

cowtail stingray ecology, but also could support management and conservation policies.    
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Chapter 4: Towed-float GPS telemetry: a tool to assess movement 

patterns and habitat use of juvenile stingrays  

4.1 Introduction 

Biotelemetry devices have become increasingly useful in assessing behaviour, energetics, 

physiology and ecological aspects of free-swimming marine animals (Cerutti-Pereyra et al., 

2014; Ogburn et al., 2017). Recent improvements to tracking devices and systems have 

supported studies over broader spatial and temporal scales (Braun et al., 2014; Bullock et al., 

2015; Heupel et al., 2015).Modern devices have also been developed to go beyond simple 

animal movement, collecting data such as acceleration, magnetic fields, pH, water depth, 

temperature and salinity (Browning et al., 2018; Cooke et al., 2004; Hart & Hyrenbach, 

2009). Telemetry capabilities are rapidly improving, and size and price of this technology are 

reducing, hence, diversifying ecological research. Advances in telemetry not only improve 

our understanding of the biology of species, but can also help improve management (Hussey 

et al., 2015).  

A variety of biotelemetry methods have been used to track marine animals (Ajemian & 

Powers, 2014). These include acoustic telemetry, where information is transmitted to moored 

or mobile receivers (Heupel et al., 2006), satellite telemetry where locations of tags are 

estimated by satellite-based systems, and logger-based telemetry where data are stored for 

post-recapture processing (Hussey et al., 2015). Some telemetry approaches combine more 

than one of these methods, especially to overcome the need to recapture animals to obtain 

stored data (Cooke et al., 2016). The choice of telemetry approach for a particular study 

requires consideration of the aims, species, location and budget (Riding et al., 2009). Species 

that occur in environments that challenge conventional telemetry equipment make study more 

difficult and may require innovative approaches. For example, species that occur in shallow 

structurally complex habitats make acoustic approaches difficult because of limited signal-

transmission distances (Costa et al., 2015; Royer & Lutcavage, 2008), or those that live in the 

deep sea where tagging animals is difficult and the extreme pressures can damage equipment 

(Cooke, 2013).  

GPS telemetry is a biotelemetry approach that has been broadly and successfully employed to 

assess movement patterns of terrestrial and aerial animals (Sims et al., 2009). This 

technology has reduced many of the bias and precision issues often reported in other 
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telemetry methods, such as acoustic and ARGOS-based satellite telemetry (Hebblewhite & 

Haydon, 2010). However, GPS-telemetry devices for marine animals have historically been 

large and heavy, drastically reducing their use. In addition, tracking marine animals with GPS 

loggers has proved challenging, because of irregular-surfacing behaviour or bottom-dwelling 

habits that limit data acquisition (Schofield et al., 2007). Recently, terrestrial ecologists 

developed very small data-logging GPS tags for use on birds and small mammals (Ryan et 

al., 2004). This advancement also supported the use of GPS telemetry for smaller marine 

species because of sophisticated systems that allow prompt recording of GPS locations when 

individuals surface or move close to the surface (Sims et al., 2009). Despite significant 

improvements in size, weight, accuracy and precision, the need to recover GPS loggers to 

obtain data remains an issue. The need to recover loggers has meant that this technology has 

not been widely adopted to assess movements of organisms with low recapture rates, such as 

stingrays.  

A recent global analysis identified stingrays (superorder Batoidea, order Myliobatiformes) as 

one of the most endangered families of elasmobranch (Dulvy et al., 2014). Unsustainable by-

catch, habitat destruction and changes in climate are rising threats for stingrays around the 

world (Chin et al., 2010). Worryingly, stingrays are highly susceptible to these human 

pressures mainly because of their life-history features, such as low fecundity, late sexual 

maturity and slow growth (Stevens, 2000). Therefore, a better understanding of stingrays’ 

activity patterns through the use of non-lethal biotelemetry techniques is essential for 

effective management and conservation of the group (Papastamatiou & Lowe, 2012).  

Stingray anatomy and behaviour are a consideration in decisions about which telemetry 

techniques to use. This is particularly true for juveniles. In some species, their small size and 

dorso-ventrally flattened body (Last et al., 2016) hamper the attachment of large loggers or 

telemetry devices (Grusha & Patterson, 2005). In addition, juvenile stingrays often inhabit 

shallow and muddy waters, which hinders the use of acoustic telemetry (Heupel et al., 2015). 

Blaylock (1990), Le Port et al. (2008), Riding et al. (2009), Ajemian and Powers (2014) and 

Branco Nunes et al. (2016), for example, used satellite telemetry to assess movement patterns 

of batoids. However, these studies used large stingray (short-tailed stingray, Bathytoshia 

brevicaudata; southern stingray, Dasyatis americana) and pelagic myliobatid ray (cownose 

ray, Rhinoptera bonusus; New Zealand eagle ray, Myliobatis tenuicaudatus; spotted eagle 

ray, Aetobatus narinari) species that were capable of carrying large telemetry packages. Such 

an approach is not appropriate for juvenile stingrays. Nevertheless, the occurrence of juvenile 
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stingrays in shallow water, and the shrinking size of GPS logger tags, means that they may be 

able to tow a small tag in a float to provide position estimates; much like eagle rays did in the 

study of Riding et al. (2009).  

No study has attempted to use GPS logger telemetry for juvenile stingrays. If suitable, this 

methodology would enable longer tracks, collect greater amounts of high-accuracy location 

data, reduce labour costs and reduce observer-induced behavioural biases. In some situations, 

it may also allow data collection beyond the ability of human observers, such as, in difficult-

to-access areas, limiting weather conditions, and over long distances. Thus, the present study 

aimed to evaluate the performance of GPS loggers attached to floats (towed-float GPS tags) 

as an effective, accurate, minimally invasive and less labour-intensive tool to assess fine-

scale movement patterns and habitat use of juvenile mangrove whiprays Urogymnus 

granulatus 

4.2 Methods and materials  

4.2.1 Study area 

Orpheus Island is located in the central region of the Great Barrier Reef, within the Palm 

Island Group. The island stretches for 12 km and comprises 1368 ha. Pioneer Bay is one of 

several bays on the western side of Orpheus Island. This bay has an open water area strongly 

influenced by tidal variation. Tides in Pioneer Bay are semi-diurnal (Parnell, 1986) and 

mesotidal, reaching a maximum of 3.5 m at high tides. The 400-m-wide Pioneer Bay (0.8 

km2 of open water area) is composed of a reef flat (Parnell, 1986) and living corals along the 

seaward edge (Hopley, 1983). The inner reef flat consists of sand, coral rubble and abundant 

dead micro atolls. Living corals can be observed on the outer reef, ~100 m from cemented 

beach deposits. A small area of mangrove (red mangrove Rhizophora mangle; white 

mangrove Avicennia marina; and myrtle mangrove Osbornia octodonta) is located in the 

southern inner reef flat. 

4.2.2 Study species and catching methods 

The mangrove whipray, Urogymnus granulatus (family Dasyatidae), is a large-bodied 

stingray (up to 141-cm disc width) widely distributed in the tropical waters of the Indo-West 

Pacific region. Juveniles are found in shallow, turbid coastal waters, especially in mangroves 



 

47 
 

and estuaries. Unfortunately, there is little information in the scientific literature pertaining to 

its life history, spatial ecology and population dynamics. 

Juvenile mangrove whiprays are common benthic inhabitants of sandy and mangrove habitats 

of Pioneer Bay (Davy et al., 2015). Individuals were captured under mangrove roots or on 

shallow sandy and reef flat areas of Pioneer Bay by using seine or dip nets, between 25 and 

27 April 2016. Once captured, stingrays were measured (disc width, DW), sexed and tagged 

with a uniquely numbered spiracle tag (Fig. 4.1a). Date, location, and time of capture and 

release were recorded. None of the procedures took longer than 5 min. 

 

Fig. 4.1. GPS logger tagging of juvenile stingrays. (a) Tagged juvenile mangrove whipray. 

(b) Lotek Wireless PinPoint Beacon 120 GPS logger tag. 

4.2.3 GPS device 

GPS logger tags (Lotek, Wireless PinPoint Beacon 120) were used for this research. Loggers 

were customised to suit the project goals, i.e. they were waterproofed, weighed 20g (5% of 

estimated juvenile stingray of 400 g) and measured 40 X 16 X 10 mm (L X W X H). A 

lightweight and flexible antenna was attached to each tag to allow detection of GPS satellite 

signals (Fig. 4.1b). Tags could record up to 1500 location attempts and their rechargeable 

nature allows their long-term re-use when recaptured. Each tag had a programmable schedule 

that defined the interval of location recording. An embedded Lotek radio beacon enabled tag 

relocation after a programmed period. Recorded data were downloaded from recovered tags 

by using Lotek Wireless PinPoint Host software.  

(a
) 

(b
) 
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4.2.4 Accuracy and precision of the GPS device 

Stationary trials were performed to test the accuracy and precision of tags in determining 

locations across Pioneer Bay. Several locations were chosen as test areas and divided into the 

following three categories: (1) fixed points above water with a clear view of the sky 

(Uncovered), (2) fixed points in mangrove trees to simulate when stingrays moved into or 

adjacent to mangrove habitats (Covered) and (3) on tethered float-mounted GPS device to 

simulate animal tracks (Float). It is important to point out that, during Float tests, the 

accuracy was expected to be less certain than for fixed-station tests, because tethered floats 

could move 1–2 m from a central point of attachment, depending on the tide and wind. 

Devices were set to record one location every 5 min and left in place for 12 h, i.e. one full 

GPS satellite constellation cycle. The true location of each fixed station was taken with a 

hand-held GPS Garmin GPSMAP78sc (accuracy to <10 m from the true location). 

To determine the performance of each device at each location, the following factors of 

positional accuracy and precision were measured: (1) the fix success rate (FSR), i.e. attempts 

that successfully acquired a location (proportion of the total amount of fixes, n = 145); and 

(2) location error (LE), i.e. the linear distance between fix position recorded by the loggers 

and the true location. Each of these metrics depends on the number of satellites and their 

geometric configuration at the time of computing a GPS point. A minimum of four satellites 

was needed to record a three-dimensional (3-D) fix and the adoption of dilution of precision 

(DOP) filters, which is a metric that expresses the precision of a successful location fix, was 

necessary for an indication of good satellite geometry. In this study, locations were validated 

if they were based on at least four satellites (Sea Mammal Research Unit SMRU, 

http://smub.st-and.ac.uk, accessed 25 November 2018; Schofield et al., 2007) and had DOP 

values of <10 (Adrados et al., 2002). To assess the impact of these factors on the FSR and 

LE, data were assessed in both raw and filtered form (detailed below). By quantifying the 

FSR and LE in stationary trials, a baseline reference was established to determine the relative 

accuracy of the towed-float GPS tags. 

4.2.5 Accuracy of float-mounted GPS devices 

Stability, buoyancy, relative hydrodynamic drag and ability to avoid entanglement of 

different-shaped floats were tested in a salt-water tank before design finalisation. Small cone-

shaped foam floats with a short lead keel showed the best results in these trials. The size and 
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weight of the float were also considered to achieve minimum drag levels (~10 cm long and 

40 g, 10% of the average body mass in air). The towed-float GPS device was attached to the 

spiracle tag of mangrove whiprays with 2-kg test monofilament fishing line, ~1.5 m in length. 

Once attached, each device was towed by the stingray throughout shallow reef flat habitats 

(Fig. 4.2). Previous research by Davy et al. (2015) demonstrated that juvenile mangrove 

whiprays rarely entered water >0.5 m deep; so, they were not expected to pull the float below 

the surface. Tags were set to record locations once every 5 min. Tags were fitted during the 

falling tide and retrieved at high tide. Devices were recovered by cutting the fishing line 

when tracks were terminated. The ability of mangrove whiprays to remove the tag by 

themselves in the case of entanglement was tested during the second track, by letting the 

individual move into mangrove roots where they take refuge at high tides (A. P. B. Martins, 

unpubl. data). Active acoustic telemetry was performed simultaneously to the towed-float 

GPS telemetry for comparison purposes.  

Vemco V9 acoustic transmitters, measuring 21 mm in length, weighing 1.6 g in water and 

emitting signals every second at the frequency of 81 KHz, were also attached to the spiracle 

tags of each individual. A Vemco VR100 acoustic receiver connected to a directional 

hydrophone was placed in a recreational kayak and towed by foot by an observer. The 

movements of each tagged individual were recorded by the observer every 5 min by using a 

hand-held GPS. The distance between the observer and the tagged animal was only a few 

metres and, so, smaller than was the error associated with the hand-held GPS. 

 

Fig. 4.2. Towed-float GPS device attached to a juvenile mangrove whipray.  
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4.2.6 Data processing, screening and analysis 

Date, time, latitude and longitude were recorded every 5 min with the GPS logger. Raw data 

from the GPS tags provided a time-series of successful and unsuccessful fix attempts, while 

additionally reporting the number of satellites used in computation and the corresponding 

DOP values. Only fixes taken at the same time by active and GPS tracking tags were 

included in the analysis, reducing uncertainty in the distance between the real and estimated 

points. To estimate the LE, latitude and longitude values were projected onto UTM 

coordinates (Zone 55). Data points were screened to remove significant outliers (i.e. LE > 

250 m, n = 1). Furthermore, positional fixes were analysed in both a raw (unfiltered) and 

filtered (number of satellites of ≥4 and DOP of <10) form to explore the effects of satellite 

number and constellation geometry on the performance of the tags. 

Stationary tests: The effects of applying filters to the data were tested by calculating 

differences in the mean LE for each treatment by using a Welch’s t-test to account for the 

unevenness of sample sizes. A one-way ANOVA was performed to look at the differences in 

LE among treatments. Values of LE were log transformed to meet assumptions of normality. 

To evaluate differences in the number of satellites among treatments and how LE varied with 

the number of satellites, Kruskal–Wallis non-parametric tests were utilised because of 

violations in the assumptions of normality. A Tukey’s honest significant difference (HSD) 

test was also utilised to provide multiple pairwise comparisons among the means of the 

treatments. 

Tracks: The distance and speed of each individual were calculated by, first, estimating the 

linear distance between each positional fix and then dividing by the time interval between 

each fix (5 min). Location errors between hand-held GPS units and GPS tags were estimated 

to assess the accuracy and precision of float mounted GPS devices. Each successful position 

fix was also categorised into two different habitat types (mangrove and reef flat) by 

overlaying each GPS track with a satellite image of Pioneer Bay; successful fixes were 

considered to be in mangroves only if they were contained within mangrove areas. Welch’s t-

tests for unequal variances were performed to evaluate differences in the mean LE among 

habitat types.  

This study was conducted under Great Barrier Reef Marine Park Authority Permit 

G15/37987.1 and James Cook University Animal Ethics Permit A2310.  
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4.3 Results 

4.3.1 Accuracy and precision of the GPS loggers 

Unfiltered v. filtered datasets: In total, 24 stationary tests were performed between 25 and 27 

April 2016 (Uncovered = 10, Covered = 11, Float = 3). Accuracy and precision of GPS 

loggers varied significantly between unfiltered and filtered datasets (Table 4.1). For example, 

LE and DOP values decreased by 22 and 125% respectively, from unfiltered to filtered 

datasets. The FSR also decreased from unfiltered to filtered datasets. The average number of 

connected satellites increased by 16% when filters were applied. However, when the different 

treatments were considered, only Covered tests showed significant differences between 

unfiltered and filtered datasets. This result suggests an advantage of applying filters when 

tracking animals through covered habitats, such as mangroves. Thus, all further analysis was 

completed using the filtered dataset. 

Table 4.1. Summary of fix success rate (FSR), mean location error (LE) both with and 

without dilution of precision (DOP) filter for each treatment. t-values are significant at *, 

P < 0.001. s.e., standard error. 

Treatment N FSR ± SE (%) LE (m; mean ± SE) t 

  
Filtered Unfiltered Filtered Unfiltered 

 
Uncovered 10 90.4 ± 0. 03 99.5 ± 0. 002 12.23 ± 14.66 12.18 ± 14.85 0.078 

Covered 11 66.2 ± 0.04 86.5 ± 0.02 13.43 ± 16.70 21.12 ± 47.84 -5.5512* 

Float 3 81.5 ± 0.06 99.5 ± 0.001 7.75 ± 8.28 9.18 ± 23.29 -1.1921 

Stationary GPS logger tests: The FSR of GPS loggers followed expected trends across all 

treatment locations. Open areas, such as Uncovered and Float treatments, had a 13% increase 

in successful fix rates when compared with the Covered treatment (Float v. Covered and 

Covered v. Uncovered, Tukey’s HSD, P < 0.001) (Table 4.1). The number of satellites used 

ranged from four, the minimum necessary for computation, to 11, which is the maximum 

acquired throughout this study. The average number of satellites varied significantly among 

treatment locations (Kruskal– Wallis: x2 = 86.94, d.f. = 2, P < 0.001; Fig. 4.3a). Both 

Uncovered and Float tests had significantly higher FSRs than did the Covered treatment.  
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Fig. 4.3. Performance of GPS tags during stationary tests (using a dilution of precision (DOP) 

filter) among different location types (covered, uncovered and float). Mean (a) number of 

connected satellites, (b) DOP values and (c) location error (m). Error bars show ± standard 

error. 

Values of DOP ranged from 0.6 to 9.4 (with 10 being the allowed maximum value) and, 

similar to previous trends, both Uncovered and Float tests recorded lower average DOP 

values (Float v. Covered and Covered v. Uncovered, Tukey’s HSD, P < 0.001; Fig. 4.3b). 

Although LE varied significantly among Covered, Uncovered and Float tests (ANOVA: F = 

35.49, d.f. = 2, P < 0.001), the Float treatment recorded the lowest average LEs (7.75 ± 0.4 

m) when compared with both Uncovered (12.2 ± 0.4 m) and Covered (13.4 ± 0.5 m) 

treatments (Float v. Covered and Float v. Uncovered, Tukey’s HSD, P< 0.001; Fig. 4.3c). 

Thus, both open locations (Uncovered and Float) had the highest accuracy and precision from 

the GPS tags. 
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The LE also varied significantly on the basis of the number of satellites, generally decreasing 

as the satellite number increased, except at the highest numbers of satellites (Kruskal–Wallis, 

x2 = 206.87, d.f. = 7, P < 0.001, Fig. 4.4). Location error decreased by 78% when fix 

locations decreased from nine to four satellites. In contrast, LE tended to increase when fix 

locations were acquired from more than nine satellites, most likely owing to the low number 

of recorded values (10–11 satellites: n = 2). 

 

Fig. 4.4. Location error (mean ± s.d. and maximum, m) of GPS fixes grouped by number of 

acquired satellites fixes. 

4.3.2 Accuracy of float-mounted GPS device during stingray tracks 

Four juvenile mangrove whiprays (2 female and 2 males; average 32.2 cm DW) were 

equipped with towed-float GPS devices and tracked between 25 and 27 April 2016. All tracks 

were performed during the day. On average, each individual travelled 1332.15 ± 269.58 m 

(mean ± s.e.) across reef flat and mangrove habitats at an average speed of 6.87 m.min-1. The 

average duration of each track was 223.9 ± 36.4 min (mean ± s.e.; Table 4.2).  
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Table 4.2. General information of each track.  

Track Sex DW Date of track Duration of track (h) Distance of track (m) Speed (m.min-1) 

A F 32 25/04/2016 5:41 1817.7 6.99 

B M 35 26/04/2016 4:03 1783.9 8.49 

C F 30 26/04/2016 2:50 486.88 3.04 

D M 32 27/04/2016 2:30 1240.1 8.85 

During tracks, the number of recorded satellites ranged from three to eight, with mean values 

for each track just over four satellites (Fig. 4.5a). As seen in stationary testing, LE tended to 

decrease with an increasing number of satellites. Mean DOP values differed among tracks, 

but were always low (Fig. 4.5b). Location error was significantly different among tracks (Fig. 

4.5c), possibly being related to differences in DOP values. Overall, the LE of individual 

locations ranged from 1 to 87 m during tracks (Fig. 4.6), yet, on average, remained consistent 

and did not vary significantly between mangrove and reef-flat habitats (t = 0.416, P = 0.678; 

Fig. 4.7). 
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Fig. 4.5. Performance of GPS tags during tracking of juvenile mangrove whiprays (Tracks A, 

B, C, D). Mean (a) number of connected satellites, (b) dilution of precision (DOP) values and 

(c) location error (m). Error bars show ± standard error. 
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Fig. 4.6. Towed-float GPS-logger tracks from four individual juvenile mangrove whiprays 

across the reef flat and mangrove habitats in Pioneer Bay, Orpheus Island. Circles indicate 

size of location error at each positional fix taken every 5 min and are sized relative to map 

scale. 

 

Fig. 4.7. Mean location errors of towed-float GPS loggers between different habitats: 

mangrove (covered) and reef flat (uncovered). Error bars show ± standard error. 
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4.4 Discussion 

The results of the study have demonstrated that towed-float GPS tagging is a useful tool in 

studying the movements of juvenile stingrays, such as mangrove whiprays, that live in 

shallow water. Float-mounted devices allowed GPS tags to maintain the connection to 

satellites during the entire period of tracking and reached 99% of successful fixes, which is 

higher than the 90.5% recorded by Riding et al. (2009) for tracks of eagle rays. When 

compared with active acoustic telemetry, GPS tags provided very similar location estimates. 

The average difference in location per fix was < 15 m, fitting well within the average of 

modern GPS loggers (10–28 m; Hansen & Riggs, 2008).  

Stationary tests helped evaluate the performance of GPS tags before attachment to the study 

species (Frair et al., 2010). Tests showed that reef-flat areas generally acquired a higher 

number of satellites and more successful fixes, and were, therefore, the areas that were likely 

to produce the highest accuracy and precision for the GPS tags in Pioneer Bay. Negative 

effects of mangrove canopy cover on the GPS-logger performances, such as reduced location 

precision and fix rates, were observed. Frair et al. (2010), Webb et al. (2013) and Forin-Wiart 

et al. (2015) found similar decreases in location data quality because of the interference of 

thick canopy cover over GPS devices. To minimise this aspect during tracks, mangrove 

whiprays were tagged during the falling tide, when they move out of mangrove habitats, and 

retrieved at high tide, when they return to mangrove patches and tags tangled on mangrove 

roots. In addition, results showed that the application of filters had no significant influence on 

data recording for loggers located in the reef flat; however, these filters were essential to 

ensure accurate results for areas with canopy cover. Thus, filters were demonstrated to be 

effective tools to improve location accuracy and essential when assessing movement patterns 

of species such as mangrove whiprays that use covered habitats. 

During tracks with filters applied, LE values were consistent and did not vary significantly 

between reef-flat and mangrove habitats. Although canopy cover influenced accuracy and 

precision of data recorded during the stationary tests, during tracks, the largest LEs were 

surprisingly found in open areas. The number of satellites per recorded fix turned out to be 

the major negative factor in data recording. Additional research is required to fully 

understand this aspect.  

The developed float device showed adequate stability, buoyancy and retention of the GPS 

logger. The chosen length of the monofilament, first adopted by Sims et al. (2009), facilitated 
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continuous communication between GPS loggers and satellites, and reduced the drag forces 

on the attachment point that could possibly have affected mangrove whipray movements. 

Thus, the attachment of a towed-float device proved effective for slow-moving mangrove 

whiprays in Pioneer Bay, corroborating results found by Riding et al. (2009) and Sims et al. 

(2009), who also obtained high-quality results for low-speed fish species. Our results 

reinforced those of previous studies because data showed that juvenile mangrove whiprays 

usually swim at a low speed unless disturbed.  

The use of towed-float GPS tags on mangrove whiprays has three potential disadvantages. 

The first disadvantage is the stress in response to the attachment of tags (Weimerskirch et al., 

2002). The towed-float GPS device was developed to cause minimal damage and stress. 

Individuals showed a short-term reaction to capture and tagging procedures, with some 

moving away from the capture point and others resting immobile at the site of release (A. P. 

B. Martins, unpubl. data). However, all tagged individuals maintained speeds (mean 6.7 

m.min-1) similar to those observed by Davy et al. (2015; mean 5–6 m.min-1, depending on 

tide), suggesting that the towed float had little effect on their regular movement. So, it 

appears that tagging stress was minimal and did not have lasting effects. The second 

disadvantage is the possibility of entanglement on mangrove roots, rocks and coral reefs 

(Gifford et al., 2007). This problem was solved through the use of a 2-kg monofilament as 

the tether connecting the towed-float device to the stingrays. In case of entanglement, the line 

broke easily, causing minimal damage to the animal and reducing the stress of recapture for 

tag removal. However, this also meant that movements could not be fully investigated by this 

methodology at high tide (e.g. how far do they move on high tides). A combination of 

methodologies is needed to address this issue. Finally, the method may not provide 

sufficiently accurate results to answer research questions. Estimation of LEs is essential for 

evaluation of any telemetry method (Royer & Lutcavage, 2008). In the present study, the 

average distance between the true and predicted locations was 12.1 ± 0.28 m, which is within 

the average precision of modern GPS loggers (10–28 m) established by Hansen and Riggs 

(2008). This result provided a sufficient level of precision to estimate fine-scale habitat-use 

patterns and swimming speeds of tagged juvenile mangrove whiprays. 

Despite the above-cited potential issues, the quality of the spatial data obtained with GPS tags 

in Pioneer Bay could not have been replicated with such accuracy by other conventional 

telemetry methods. Human resources and bias, tidal cycles and night periods, for example, 

limit active tracking. Meso-scale tides and the shallow and sandy characteristics of Pioneer 
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Bay hamper the use of passive acoustic telemetry. This was confirmed by Davy et al. (2015), 

who used passive acoustic telemetry to track mangrove whiprays at Orpheus Island and 

obtained low spatial accuracy because of environmental conditions, and Welsh et al. (2012), 

who identified the detection range for 9-mm transmitters as being low within Pioneer Bay, 

namely, 60 m, which is only a fraction of the reported range in deeper, less complex habitats. 

Mangrove whipray benthic habits could negatively affect the capability of ARGOS-based 

systems in recording high-accuracy data (tens of metres) and could never achieve similar 

temporal resolution because of the limited number of satellite overpasses in the tropics 

(Riding et al., 2009). Archival geolocation tags and pop-up satellite archival tags (PSAT) 

would not be useful to assess movement of stingrays in small areas because of the large size 

of loggers and positional errors up to hundreds of metres for light-based geolocation (Elston 

et al., 2015; Hazel, 2009; Svedäng et al., 2007). Thus, towed-float GPS tags provide an 

excellent option for tracking the movements of small, limited-range animals in very shallow 

water for short periods. 

Despite the small number of tracked animals, towed-float GPS tags showed potential to 

provide insight into juvenile mangrove whipray movements, which could be applied to 

similar species in other locations. In addition to the quality of the data obtained, this method 

was advantageous by allowing deployment of multiple towed-float GPS tags simultaneously, 

because no further monitoring is required after tag deployment (Riding et al., 2009). When 

well employed, the use of GPS loggers will enable the description of poorly known 

movement patterns, ontogenetic shifts, habitat preferences and essential habitats. As a result, 

the finer-scale data that GPS loggers provide in open habitats could have important 

application in studies that inform fisheries management and conservation, helping address 

interdisciplinary ecological issues and aid management decisions for essential habitats and 

threatened species  (Hart & Hyrenbach, 2009; Schofield et al., 2007). 

4.5 Conclusions 

This study has demonstrated the potential of towed-float GPS telemetry for assessing 

geographical extent, movement patterns, site fidelity, spatial dynamics, habitat preferences 

and behaviour data of juvenile stingrays over short periods. Use of this methodology must be 

carefully designed according to the study species, its life stages and study areas. If well 

applied, GPS loggers can provide more accurate data on juvenile stingray locations and 

movements than do other telemetry methods, especially when used in inter-tidal habitats. Our 
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study was the first to use of towed-float GPS telemetry to document fine-scale movements of 

mangrove whiprays. Broad-scale use of this technique could enhance our understanding of 

habitat use and conservation, movement patterns and ecology of juvenile stingray populations 

and their essential habitats.  
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Chapter 5: Tidal-diel patterns of movement, activity and habitat use by 

juvenile mangrove whiprays using towed-float GPS telemetry 

5.1 Introduction 

Understanding movement and habitat use is an essential step to reveal species interactions 

and their relationship with ecosystem dynamics (Morales et al. 2010). Animal tracking has 

been widely used for understanding these processes in marine animals (e.g. Brinton & 

Curran, 2017; Mendonca et al., 2018). Detailed information on how and why a species 

accesses particular sites also makes it possible to develop more effective conservation 

strategies (e.g. Buchholz, 2007; Shipley et al., 2017) and, as a result, reduce ecological 

consequences of anthropogenic disturbances (Van Cleave et al., 2018). 

Stingrays (Dasyatidae) are particularly susceptible to anthropogenic disturbances due to their 

life history characteristics (Dulvy et al., 2014) and use of heavily fished coastal habitats. 

Habitat destruction, intense coastal development and especially overfishing are the main 

causes of declines in stingray populations (Jabado et al., 2018). Stingrays are often caught as 

bycatch, but are also important food resources, particularly in developing countries, and so 

retained when captured (Dulvy et al., 2017). Unfortunately, effective management and 

conservation of stingray population is hindered by limited data on their movement patterns 

and habitat use (Cartamil et al., 2003; Collins et al., 2007) – specifically their fine-scale 

spatial use.  

Tag and recapture techniques (Lewis, 1983; Schmid, 1988), acoustic telemetry (Cerutti-

Pereyra et al., 2013; Collins et al., 2007; Speed et al., 2013), satellite telemetry (Le Port et 

al., 2008) and accelerometer packages (Otaki et al., 2015; Ward et al., 2019) have provided 

some insights into stingray movement over the past few decades. Recent research has also 

demonstrated that GPS logger tags can be used with juvenile stingrays when they occur in 

shallow water (Martins et al., 2019). However, very few studies have looked at fine-scale 

movements of stingrays, even less have looked at juvenile fine-scale movements within 

nursery areas (e.g. Dale et al., 2011; Davy et al., 2015; Elston, 2016).  

Thus, key space-use patterns for juvenile stingrays, such as how activity varies with diel 

period and tidal cycles, remain poorly understood. This study therefore aimed to examine 

diel movement patterns in a common stingray, the mangrove whipray (Urogymnus 

granulatus), that occurs within a reef flat habitat of the Great Barrier Reef using a novel 
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tracking method – towed-float GPS telemetry (Martins et al., 2019). More specifically I: (1) 

recorded fine-scale movements, (2) examined possible influences of tidal height, time of day 

and sex on movements, and (3) analysed habitat use, identifying important microhabitats for 

juvenile mangrove whiprays.  

5.2 Methods and Materials 

5.2.1 Study area and species 

Mangrove whiprays (Urogymnus granulatus) are common inhabitants of Indo-West Pacific 

coastal areas (Last et al., 2016). Juveniles are typically found in proximity to mangrove and 

estuarine habitats, using predominantly shallow and turbid areas. Due to the increasing 

pressure on coastal environments, especially overfishing and habitat loss, mangrove whipray 

populations in much of their range are in decline (Last et al., 2016). Currently, the mangrove 

whipray is assessed by the International Union for Conservation of Nature (IUCN) Red List 

as Vulnerable globally (Manjaji Matsumoto et al., 2016), but in Australia faces less threat 

and is assessed as Least Concern (Simpfendorfer et al., 2019) (Shark Report Card 

https://www.sharkreportcard.org/).  

This study was conducted in Pioneer Bay, one of the west-facing bays of Orpheus Island in 

the central region of the Great Barrier Reef, Australia (Fig. 3.1). Pioneer Bay is known for 

sheltering juvenile mangrove whiprays all year around, but with varying abundance between 

seasons (Davy et al., 2015; Kanno et al., 2019). For this study, individuals were captured 

with seine and dip nets in shallow waters, mainly under mangrove roots. Individuals were 

captured throughout both wet and dry seasons, from April 2016 to August 2017. Specimens 

captured during the outgoing tide were measured (disc width – DW), fitted with a spiracle tag 

for identification, and released at the same location as capture. Spiracle tags had a unique 

number ID for animal identification and were also used as attachment point for towed-float 

GPS tags. GPS tags were attached to the spiracle tags with 2-kg test monofilament fishing 

line, approximately 1.5 m in length, as described in (Martins et al., 2019). Date, time of 

capture and GPS location were recorded. Individuals captured during low, incoming or high 

tide were transferred to the Orpheus Island Research Station and kept in circular tanks (2-m 

diameter) until the next outgoing tide. Individuals were then taken back to the location of 

capture for measurements, tag attachment and release. As demonstrated in Chapter 4, 

individuals exhibited normal behaviour soon after capture and handling. Towed-float GPS 
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tags were equipped with Lotek Wireless PinPoint Beacon 120 transmitters (25 x 14 x 10 mm) 

set to record a GPS position every 5 minutes to describe short-term movements of juvenile 

mangrove whiprays throughout the bay. Tags were expected to become entangled in 

mangrove roots once the stingray entered mangrove areas during high tides and, as a result, 

detach from the animal as the monofilament line breaks. An integrated Lotek radio beacon 

facilitated tag recovery in mangrove patches after the programmed period of one tidal cycle. 

GPS loggers had rechargeable batteries and were reused.  

5.2.2 Data analysis 

Data were downloaded from recovered tags using Lotek Wireless PinPoint Host software. 

Following Martins et al. (2019), a Dilution of Precision (DOP) filter was applied to the data 

to improve geolocation quality – removing GPS points recorded with poor satellite geometry. 

The first five GPS points of each track were removed to reduce the effects of capture and 

handling on animal behaviour. Analyses of filtered tracking data were carried out with R (R 

Core Team, 2017) using the adehabitatLT package (Calenge et al. 2015). Rate of movement 

(ROM), the distance travelled by a specimen per minute (m.min-1), was calculated per 5-min 

interval and for the whole track for all tracks. ROM was calculated separately for four tidal 

stages (low – one hour on either side of low tide; high – one hour on either side of high tide; 

outgoing – decreasing tide between high and low, and incoming tide – increasing tide 

between low and high), day and night, and between sexes. Hourly tide heights were extracted 

from records from the Bureau of Meteorology website (http://www.bom.gov.au/, 

22/04/2019). Tides were classified as either “spring” (3 days either side of the full or new 

moon) or “neap” (all others) to examine differences in movements based on tidal extent. A 

Linearity Index (L) – the Euclidian distance between the beginning and ending point of a 

track divided by total track length – was calculated for every group of five consecutive GPS 

positions (5 point linearity) to identify how straight stingray movements were during tracks 

(Batschelet, 1981). Linearity Index values range from 0 to 1, with values close to zero 

showing non-linear movement and values close to one demonstrating direct movement.  

Second order polynomial natural splines with individual as a random factor were applied 

using the R package glmmTMB to determine the effects of tide level, sex and time of the day 

on ROM and Linearity. In addition, general linear mixed models were performed to evaluate 

possible relationships between ROM and Linearity and tide types (spring and neap), and also 
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between activity space and duration of the tracks. ROM values were log transformed before 

analysis to normalise the data.  

Finally, using the R package adehabitatHR (Calenge et al. 2015), Kernel utilisation 

distributions (KUD) were used to estimate space utilization during day and night periods. To 

do so, detections were pooled into day (between 0600 and 1759 hours) or night (between 

1800 and 0559 hours). Both KUD and tracks were then overlaid on a photo-mosaic image of 

Pioneer Bay using ArcMap software to provide a full overview of juvenile mangrove whipray 

habitat utilisation in Pioneer Bay.  

5.3 Results 

A total of 11 young-of-the-year and juvenile (4 males and 7 females) mangrove whiprays 

were tracked in Pioneer Bay using towed-float GPS telemetry. One individual was recaptured 

and tracked twice, first in March and then in August 2017. One individual did not enter the 

mangrove area during high tide, therefore its tag was removed only during the second tidal 

cycle, resulting in one long track separated into two (day and night) for further analysis. 

Thus, 13 tracks were analysed, six during the day and seven at night. Specimens varied in 

DW from 28 to 54 cm and track length ranged from 1.5 to 9.0 hours. Juvenile mangrove 

whiprays did not leave Pioneer Bay during tracking and travelled distances from 394 to 2189 

meters, with an overall mean ROM of 4.51 m.min-1 ± 3.1 SE and L of 0.69 ± 0.16 (Table 5.1; 

Fig. 5.1).
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Table 5.1. Details of juvenile mangrove whiprays tracked at Orpheus Island using towed-float GPS telemetry. 

Tracks Sex 
DW 
(cm) 

Time of 
the day Date 

Duration of track 
(hr) 

Min. dist. travelled 
(m) 

Activity space 
(km2) 

ROM 
(m.min-1) L 

1 M 28 Day 27/04/2016 1.58 1064 1.1 11.20 0.69 

2 F 38 Day 10/11/2016 3.50 2189 4.7 10.68 0.91 

3 F 54 Day 13/11/2016 5.25 1983 3.9 6.84 0.61 

4 F 34 night 20/08/2017 7.25 1132 1.2 2.60 0.73 

5 M 35 Day 16/08/2017 6.50 1525 2.3 3.91 0.63 

6 M 31 night 20/08/2017 5.0 692 0.4 2.30 0.66 

7 M 30 Day 2/03/2017 1.58 394 0.1 4.14 0.31 

8 M 31 night 21/08/2017 5.66 846 0.7 2.49 0.50 

9 F 42 night 14/08/2017 4.83 789 0.6 2.72 0.48 

10 F 30 night 25/08/2017 3.66 836 0.6 3.80 0.48 

11 F 30 Day 26/08/2017 9.0 1626 2.6 3.53 0.61 

12 F 32 night 17/08/2017 3.0 425 0.1 2.36 0.31 

13 F 30 night 25/08/2017 5.0 697 0.4 2.32 0.60 
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Fig. 5.1. Tracks of juvenile mangrove whiprays using towed-float GPS telemetry and habitat 

types in Pioneer Bay. Day tracks: 1, 2, 3, 5, 7 and 11; Night tracks: 4, 6, 8, 9, 10, 12 and 13.  

Both ROM and Linearity varied significantly at different tide phase (ROM p < 0.001; L p < 

0.001) (Fig. 5.2).
 
Individuals moved faster and with straighter paths during outgoing (ROM 

of 6.10 m.min-1 ± 3.2 SE and L of 0.68 ± 0.1 SE) and incoming (ROM of 5.26 m.min-1 ± 7.46 

SE and L of 0.68 + 0.2 SE) tides. During low tides, individuals moved slower, using more 

random paths (ROM of 3.08 m.min-1 ± 1.6 SE and L of 0.46 ± 0.18 SE) (Fig. 5.2). Data 

collected during high tide was too limited for a full evaluation as tags became entangled in 

prop roots and detached from stingrays. Differences in ROM and Linearity between spring 

and neap tides were not significant (p = 0.793 and p = 0.349, respectively). Differences in 

ROM and Linearity between sexes were not observed (p = 0.987 and p = 0.689, respectively). 

Second order polynomial natural splines showed a significant difference in ROM between 

day and night (p < 0.001) (Fig. 5.2a). Juvenile mangrove whiprays had a mean ROM of 6.67 

m.min-1 ± 3.5 SE during the day and 2.49 m.min-1 ± 0.5 SE at night. Linearity values were 

0.63 ± 0.19 SE for daytime tracks and 0.54 ± 0.13 SE for night tracks. Thus, juvenile 

mangrove whiprays were found to move faster during the day, while moving short distances 

at a slower pace at night. Results of second order polynomial natural splines did not detected 

significant differences in Linearity between day and night periods (p = 0.177) (Fig. 5.2b). 



 

67 
 

 

Fig. 5.2. Effects of tide and diel changes on juvenile mangrove whiprays (a) Rate of 

Movement (ROM) and (b) Linearity. Blue points represent individual locations at night and 

pink points represent individual locations during the day. 95% confidence intervals are 

represented for day and night in their respective colours. 

Kernel utilisation distributions (KUD) revealed juvenile mangrove whiprays primarily use 

reef flat areas in Pioneer Bay (Fig. 5.3). Most individuals were captured under or in close 

proximity to mangrove patches and remained within these areas for as long as water levels 

permitted. Once the water receded, mangrove whiprays were forced to move, often moving 

toward sand patches within the reef flat and crest. This habitat functioned as their refuge 

during low tides. Transitions between mangrove and sand patches within the reef were 

exclusively made through shallow and soft bottom areas. Stingrays were not observed using 

rocky habitat located in the southern region of the bay. Individual activity space had no 

relationship with the duration of the tracks (p = 0.311). 



 

68 
 

 

Fig. 5.3. Kernel utilisation distributions (KUD) of juvenile mangrove whiprays. 
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5.4 Discussion 

The use of towed-float GPS telemetry employed in this study allowed for examination of 

aspects of stingray spatial ecology that have not previously been possible. This includes the 

first insights into juvenile mangrove whipray diel activity patterns and the lack of differences 

in movement activity between sexes. These results add to movement information provided by 

Davy et al. (2015) using manual acoustic telemetry, expanding our understanding of 

mangrove whipray movements and reinforcing the influence of tidal stages on its habitat use.  

Juvenile mangrove whiprays showed strong site affinity to Pioneer Bay – not leaving the area 

over the study period. Based on general linear models, there was no significant effect of sex 

on juvenile mangrove whipray ROM and Linearity. As suggested by Dale et al. (2011), 

sexual segregation might be absent in juvenile stingrays until they reach sexual maturity. 

Therefore, changes in movement may become apparent as individuals increase in size and 

age, which were not evident here. Activity space of individuals varied from 0.1 to 4.7 km² 

and showed no significant influence of track duration. Similar results were demonstrated by 

Elston (2016) for juvenile porcupine rays (Urogymnus asperriumus), with individuals 

showing activity space areas smaller than 3 km² over one year of acoustic tracking, and by 

Cartamil et al. (2003) for Bathytoshia lata, with manual tracked individuals showing 95% 

KUD between 0.6 and 2.77 km² during the ~ 74 hour tracks. Freshwater whiprays 

(Urogymnus dalyensis) tracked in Cape York Peninsula (Australia) also showed movement 

patterns restricted to a small segment of river, less than 8 km in length (Campbell et al., 

2012). Even more mobile batoids, such as the cownose rays (Rhinoptera bonosus) often used 

relatively small areas (mean = 17.9 km²) during 16 months of tracking (Collins et al., 2007). 

Thus, use of restricted areas by juvenile mangrove whiprays is consistent with information 

for other ray species. These small areas must offer sufficient food resources and favourable 

conditions for survival. Therefore, locations such as Pioneer Bay must provide ample food 

for juvenile mangrove whiprays – allowing them to restrict their movements to shallow and 

protected areas and avoid encounters with predators that occur in deeper waters (Heupel et 

al., 2007).   

Tide type (spring and neap) were found to have no effect on ROM and Linearity, but juvenile 

mangrove whipray movements were strongly influenced by the tide, with all tracks following 

tidal current direction. The same pattern was found by Brinton & Curran (2017) for the 

Atlantic stingray (Hypanus sabina). This behaviour of moving with the tidal flow is likely to 
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provide energetic benefits by reducing the energy costs of swimming and allowing the use of 

shallow waters, except during high tides. Tide height also influenced juvenile mangrove 

whipray ROM and Linearity. The ROM of individuals was significantly higher in tidal 

heights during outgoing and incoming tidal stages. These are the times when tidal movement 

are the fastest, so it is likely that juvenile mangrove whiprays needed to move faster and in a 

more directed manner to remain in shallow water and also avoid becoming stranded as water 

receded. Similar patterns were found by Davy et al. (2015) and George et al. (2019) for 

juvenile mangrove whiprays and blacktip reef sharks, respectively. In both cases, results 

suggest that juveniles could be more exposed to predation or stranding during these tides, 

thus the observed movement patterns would reduce these risks.  

Predation risk is likely to play a major role in juvenile stingray activity patterns and habitat 

use (Cerutti-Pereyra et al., 2013; Davy et al., 2015; Kanno et al., 2019). The presence of 

small-bodied stingrays is often associated with habitats that provide soft-bottom for burying 

or physical barriers for protection, such as mangrove root systems (Stump et al., 2017). This 

type of habitat use pattern has been observed for juvenile southern stingrays (Hypanus 

americanus) (Tilley, 2011) and juvenile porcupine rays (Urogymnus asperriumus) (Elston, 

2016). In Pioneer Bay, deeper waters are often visited by blacktip reef (Carcharhinus 

melanopterus) and lemon sharks (Negaprion acutidens) (Kanno et al., 2019; Schlaff et al., 

2017) which could serve as predators for juvenile stingrays. Juvenile mangrove whiprays 

were observed to avoid these deeper water areas most of the time, therefore reducing their 

risk of encountering potential predators. However, juvenile stingrays could not always avoid 

deeper waters, especially during the high tide. Unfortunately, performing telemetry within 

complex mangrove habitats during high tides is not an easy task, so it is difficult to determine 

what methods stingrays employ to reduce predation risk. Recently, Kanno et al. (2019) used 

stationary video monitoring to better understand the use of mangrove habitats by juvenile 

stingrays in Pioneer Bay. This study showed mangrove areas of Pioneer Bay primarily serve 

as a refuge from predation, highlighting the high use of the mangrove root structure by 

stingrays during high tide and lack of predatory sharks in these areas. Our tracking results 

reinforce these findings with individuals moving into mangrove areas during high tide 

periods prior to entangling and loss of GPS tags. In addition, Kanno et al. (2019) also 

identified mangrove patches as potential feeding grounds for juvenile mangrove whiprays 

suggesting this habitat may serve multiple purposes. Juvenile mangrove whiprays were also 

occasionally seen in groups, but these appeared to be random events not linked to any 
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specific conditions. Thus, further research is needed to evaluate the use of grouping as a 

strategy to avoid predation in juvenile mangrove whiprays by increasing their ability to detect 

predators as demonstrated by Semeniuk and Dill (2004). 

In contrast to what has been found for other stingray species (Brinton & Curran, 2017; 

Cartamil et al., 2003; Corcoran et al., 2013), juvenile mangrove whiprays were more active 

during the day. The reasons for this behaviour are unknown, and more research is required to 

fully understand these patterns. Hypotheses involving higher abundance of predators or prey 

at night time were discarded since increased predator avoidance or feeding activities at night 

would likely lead to significant changes in linearity – which was not observed. However, a 

few hypotheses still can be considered. First, predators could be less common at night, so 

stingrays would be more relaxed and possibly reduce ROM. Second, Higgins (2018) 

demonstrated that juvenile mangrove whiprays preferred to use areas with water temperatures 

ranging from 30 ℃ to 36 ℃, avoiding temperatures below 25 ℃. Drops in water temperature 

at night to close to or below 25 ℃ could reduce juvenile stingray body temperature and 

consequently reduce their movements. Moreover, further research for predicting longer-term 

behaviour of juvenile mangrove whiprays in Pioneer Bay are needed for a better 

understanding of the species movement patterns and habitat use over time. 

5.5 Conclusions 

In this study, I extend our understanding of juvenile mangrove whipray diel-tidal activity 

patterns. Juvenile mangrove whipray activity patterns and space use were strongly influenced 

by tidal stage and diel period. Individuals moved faster and chose more direct paths during 

outgoing and incoming tides. Activity space was significantly larger during the day than at 

night time, but more research is needed to reveal the causes of this behavior. Mangrove areas 

were identified as primary habitat for the species, followed by sand patches within reef flats. 

These areas are thought to provide physical protection against predators during the high and 

low tides. Only soft-bottom areas were used during the transition between mangroves and 

reef flat. These areas can also provide refuge, by allowing burying behavior, and also access 

to food resources. Data presented in this study demonstrate fine-scale details of how juvenile 

mangrove whiprays use reef flat environments. Additional research is needed to fully 

understand the year-round abundance and movement patterns and ontogenetic shifts of 

mangrove whiprays. The results of this research, however, provide useful information to 
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examine the implications of anthropogenic impacts (e.g. mangrove loss) on this species and 

other juvenile species that inhabit similar complex habitats.  
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Chapter 6: Trophic ecology of sympatric juvenile elasmobranchs within 

a nursery area 

6.1 Introduction 

Communal nurseries are known to have great importance to the life histories of many 

elasmobranchs (Martins et al., 2018). Overlapping distributions of juvenile elasmobranch 

species within a relatively small area can provide benefits such as more successful predator 

avoidance (Simpfendorfer & Milward, 1993). However, overlapping distributions can also 

require species to develop strategies to reduce competition for resources (Pianka 1974, 2011). 

To reduce competition and allow coexistence, similar sympatric species often partition or 

exploit different food resources (Albo-Puigserver et al., 2015; Schoener, 1983; White et al., 

2004), which results in distinct ecological niches and/or trophic positions (Munroe et al., 

2014). Understanding how sympatric species exploit resources can provide important 

information on their ecological role in the community as well as on ecosystem dynamics 

(Matley et al., 2017; Navia et al., 2007; Yick et al., 2011). Unfortunately, only a limited 

number of studies have focused on understanding juvenile elasmobranch trophic ecology and 

resource partitioning within communal nursery environments (Bethea et al., 2004; Kinney et 

al., 2011). 

Stable isotope analysis (SIA) has been successfully applied to explore elasmobranch trophic 

ecology in marine ecosystems (Espinoza et al., 2015; Estrada et al., 2003; Fisk et al., 2002; 

Kinney et al., 2011; Macneil et al., 2005; Mcmeans et al., 2013). This technique uses δ13C 

and δ15N as biological tracers of an animal’s diet and habitat use since the concentration of 

these isotopes increases consistently from primary producers to top predators within food 

webs (Caut et al., 2009). Values of δ15N increase from prey to predator in a predictable 

amount, providing relative trophic positions. Values of δ13C increase in smaller amounts 

than δ15N, but differ between primary producers (e.g., pelagic vs benthic) and provide an 

estimate of habitat use (Hussey et al., 2012). Taken together, δ13C and δ15N in an organism 

can provide important insights into its habitat use and movements, diet, and trophic position 

(Hussey et al., 2014).  

Thus, SIA can also provide insights into carbon sources of individuals within food webs and 

ecosystems (France & Peters, 1997; Post, 2002). For example, mangroves are commonly 

recognized as highly productive habitats, playing an important role as a primary source and 
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store of carbon in coastal and estuarine areas (Alongi, 2014; Kristensen et al., 2008). These 

highly productive habitats can therefore provide resources to marine and estuarine organisms 

(Kathiresan, 2012), from microbial to large elasmobranch populations. The importance of 

mangroves for juvenile teleosts has been well explored over time (Lee et al., 2014; Whitfield, 

2017), however it has not been fully explored for juvenile elasmobranchs. In fact, some 

juvenile elasmobranchs are known to use mangroves as nursery areas (Heupel et al., 2019; 

Martins et al., 2018), but their dependence on mangrove derived resources is unknown. Thus, 

understanding carbon flow in these areas could provide previously unknown information on 

the relationship between juvenile elasmobranchs and mangroves.  

Turnover of isotopes vary between tissues, and can provide a temporal assessment of diet in 

organisms (Hussey et al., 2012). Active tissues, such as plasma, incorporate dietary markers 

much faster than low-turn over tissues, such as muscle, which reflect feeding events over 

longer periods (Buchheister & Latour, 2010). The comparisons between tissues with different 

turnover rates can reveal whether an animal’s foraging habitats have shifted over time (Eberts 

et al., 2015) and provide insights into temporal variations in diet (Matley et al., 2017).  

Comparing isotope values between species can provide insights into differential resource use 

or partitioning of resources due to, for example, competition. However, using mean values 

for isotopes can mask differences in the feeding ecology of species, in part because they do 

not account for individual variation. As δ13C and δ15N represent different aspects of an 

animal’s diet, the area or space occupied by isotopic values provides an estimate of the 

dietary niche of a population (Newsome et al., 2007), which is referred to as an isotopic 

niche. Isotopic niche has become a useful metric for assessing resource partitioning in co-

occurring species or populations. 

This study aimed to evaluate the relative trophic relationships of four juvenile elasmobranch 

species within a previously established nursery area using SIA from multiple tissues (red 

blood cells, plasma and muscle). In addition, the study aimed to: (1) identify possible 

influences of size, season or sex on relative trophic position, (2) better understand dietary 

resource partitioning of four juvenile elasmobranchs using isotopic niches, and (3) identify 

the main source of primary carbon (mangrove/terrestrial, benthic or pelagic) used by 

elasmobranchs within the communal nursery. Results presented in this study bring new 

insights to the feeding ecology of four sympatric elasmobranch species and their ecological 

roles within a communal nursery area. 
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6.2 Methods and Materials 

6.2.1 Study area and data collection 

Pioneer Bay, located on the western side of Orpheus Island, central region of the Great 

Barrier Reef, Australia, is a well-established nursery area for sharks and rays. Tidal reef flats 

and mangrove habitats are dominant in nearshore areas, providing protection and foraging 

opportunities for juvenile elasmobranch development (Davy et al., 2015; George et al., 

2019). Four main species are known to inhabit the area year-round: Mangrove whipray 

Urogymnus granulatus, cowtail stingray Pastinachus ater, blacktip reef shark Carcharhinus 

melanopterus and giant shovelnose ray Glaucostegus typus. However, many elasmobranch 

species have been reported in the 400-m wide reef flat of Pioneer Bay including lemon shark 

Negaprion acutidens, blue-spotted maskray Neotrygon kuhlii, blue-spotted ribbontail ray 

Taeniura lymma, eagle ray Aetobatus ocellatus, reef manta ray Mobula alfredi, great 

hammerhead Sphyrna mokarran, pink whipray Himantura fai and reticulate whipray 

Himantura australis. Here I have focused on the most commonly encountered species since 

their use of and reliance on this habitat is likely to be high. 

Mangrove whipray, cowtail stingray and giant shovelnose specimens were captured in 

shallow waters (<1m) of Pioneer Bay using seine and dip nets. Blacktip reef sharks were 

similarly caught nearshore with seine and gill nets, or with rod and reel from the shore. All 

animals were caught between April 2016 and March 2018; and all were juveniles. Upon 

capture individuals were sexed and measured (disc width (DW) for stingrays; stretch total 

length (STL) for sharks and shovelnose). To ensure that the same animal was not sampled 

multiple times, all individuals were tagged with a uniquely numbered spiracle tag (spiracle of 

stingrays) or Dalton Rototag (first dorsal fin of sharks and shovelnose rays). Approximately 1 

g of white muscle was removed via a 4-mm biopsy punch and 1.5 ml of blood was taken 

from the caudal vein of individuals and stored in sterile vials. Sample collection depended on 

animal’s response to capture and handling, therefore not all individuals were sampled for all 

tissue types. Samples were immediately taken to Orpheus Island Research Station for further 

processing. Specifically, muscle samples were transferred to a −20°C freezer; whole blood 

samples were centrifuged for 5 minutes (Imbros PC100 Micro Centrifuge), then plasma 

solutes were separated from red blood cells (RBC) and transferred to another vial, and finally 

stored in a −20°C freezer.  
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Tissue samples from a variety of organisms in Pioneer Bay were also collected to explore 

possible sources of carbon and prey in the diet of juvenile elasmobranchs. Organisms that 

incorporated major habitat or feeding types within the bay were selected including: mangrove 

root (collected by hand), mangrove leaf (collected by hand), algae (collected by hand 

nearshore – various species pooled (e.g. green, red and brown algae)) plankton (collected 

offshore with 63 µg net – phytoplankton and zooplankton pooled), annelid worm (collected 

in sand using shovel and sieve), snail (collected by hand on mangrove), crab (collected by 

hand in elasmobranch nets) and baitfish (collected nearshore using dip net – family 

Gerreidae). All samples were collected between April 2016 and March 2018, and frozen 

(−20°C) until further processing.  

6.2.2 Stable isotope analysis 

Prior to stable isotope analysis, all tissue samples were frozen at −80°C for 24 hrs, freeze-

dried, then ground into a fine powder with mortar and pestle. All tools were sterilized with 

ethanol between samples. Samples were not lipid-treated because C:N values were <3; 

therefore, the low lipid content was not expected to bias isotope values (Post et al., 2007). 

Between 400 and 1500 μg of the crushed tissue were weighed and placed into tin or silver 

capsules. Isotope ratios 13C:12C and 15N:14N were then quantified from these samples at 

the Great Lakes Institute of Environmental Research, University of Windsor, using a 

continuous flow isotope ratio mass spectrometer (Finnigan MAT Deltaplus, Thermo - 

Finnigan) equipped with a Costech Elemental Analyzer (Costech Analytical Technologies). 

Isotope ratios were expressed as δ13C and δ15N following: δ13C or δ15N = (Rsample/ Rstandard 

− 1) × 1000 (‰), where Rsample is the ratio of heavy to light isotope in the sample, and Rstandard 

is the ratio of heavy to light isotope in the reference standard. As per laboratory protocol, the 

12th sample was run in triplicate to assess precision – standard deviation (SD) of δ13C and 

δ15N was generally <0.2 and <0.1‰, respectively. Additionally, laboratory and National 

Institute of Standards and Technology (NIST; Gaithersburg, MD) standards were analysed 

every 12 samples to assess analytical precision for NIST standard 8414 (bovine liver, n = 

130) and an internal laboratory standard (tilapia muscle, n = 130) – SD of δ13C was 0.05 and 

0.07‰, respectively, and 0.16 and 0.13‰ for δ15N, respectively. Accuracy was validated 

using certified urea (n = 120) and was within 0.16 and 0.05‰ of mean calculated values for 

δ13C and δ15N, respectively.   
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6.2.3 Data analysis 

Analytical approaches aimed to determine the effect of several biological parameters on 

multi-tissue isotope values, characterise isotopic niche across elasmobranchs and tissues, and 

estimate sources of dietary contribution. All analyses were completed in R (R Development 

Core Team 2019). Preliminary investigations revealed a broad range of elasmobranch δ13C 

and δ15N values within sampling periods that were equivalent to the isotopic ranges across 

periods. Consequently, independent of possible differences, sampling periods were pooled for 

isotopic niche investigations, as well as when estimating sources of dietary contribution. This 

was also done because sample sizes of elasmobranchs and baseline sources/prey were not 

sufficient to comprehensively address potential seasonal differences (i.e., calculate baseline-

derived trophic position each season). The giant shovelnose ray was not included in the 

analyses listed below because only two individuals were caught. 

First, general linear models (GLMs) were used to test whether sampling period, 

elasmobranch size, and sex influenced δ13C and δ15N values. To facilitate more 

representative comparisons with other studies, the trophic position (TP) metric was used to 

represent trophic level instead of δ15N. Trophic position for each individual/tissue was 

calculated following the scaled approach described by Hussey et al. (2014). Small crabs were 

selected as the baseline organism in TP calculations because they had one of smallest isotopic 

niche sizes of all prey reflecting minimal variation in isotope values from detrital feeding 

(trophic level of 2 was designated). Separate models were used for each elasmobranch 

species because analysis of variance (ANOVA) revealed significant species differences in 

δ13C and δ15N values across tissues (see Results). Plasma, RBC, and muscle tissues were 

also analysed independently because they represent dietary assimilation during different 

periods and could result in unique patterns. Diagnostic plots confirmed data normality and 

heterogeneity, and results were considered significant when p<0.05. When significant, 

within-variable differences were explored using Tukey’s HSD. 

Next, several tissue-specific isotopic niche metrics were determined as a proxy for feeding 

patterns over different time periods. Niche size (or breadth) was initially calculated based on 

the corrected standard ellipse area (i.e., ~40% of data points incorporated; SEAC) and convex 

hull area (i.e., the polygon enclosing all data points; TA). The SEAC and TA commonly 

represent the ‘core’ niche and niche ‘extent’ of consumers, respectively (Jackson et al., 

2011). Niche size comparisons were made between elasmobranchs (from the same tissue) 
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based on 104 posterior draws of SEAC, yielding Bayesian estimates from the posterior 

distribution of the covariance matrix for each species/tissue. If ≥95% of these estimates for 

one species were smaller (or larger) than estimates for another species, niche size differences 

were deemed significant. Typically, a larger niche size indicates a broader resource pool 

contributing to the diet of consumers directly through prey or indirectly through species 

lower in the food chain (Layman et al., 2012). 

Niche overlap between species (from the same tissue) was calculated to quantify the degree 

in which similar resources were shared. Two approaches were used to quantify niche overlap: 

overlap between SEAC and overlap between Bayesian posterior distributions. The former was 

calculated directly from each species’ ellipse and quantified as the proportion of overlapping 

area between two ellipses relative to the non-overlapping area (SEAC-Overlap = SEAC-

Shared overlap / (SEAC-Species1 + SEAC-Species2 - SEAC-Shared overlap). The Bayesian 

approach utilized the first 1000 posterior draws of SEAC for each species, however 95% 

prediction ellipses were used as opposed to 40%, and following the same equation as above 

produced 1000 overlap values which were summarized in a histogram. The R package SIBER 

(Jackson et al., 2011) was used to calculate niche metrics described above and rjags 

(Plummer, 2013) was implemented for Bayesian approaches. Isotopic niche ellipses (40%) of 

two meso-predatory fishes (leopard coral grouper Plectropomus leopardus and bar-cheek 

coral trout P. maculatus) and one pelagic planktivore (fusilier Caesio teres) sampled within 

and adjacent to Pioneer Bay (Matley et al., 2017) were included in plots for comparative 

purposes. 

Finally, potential prey or prey sources were investigated for each elasmobranch species (and 

tissue). Initially, stable isotope mixing models were applied, however diagnostics showed that 

prey isotopes were not sufficiently different to discriminate between sources. Also, diagnostic 

plots suggested that at least one important prey item was not incorporated in our samples 

based on expected δ15N values relative to consumer δ15N values (and diet-tissue 

discrimination factors; DTDFs). Consequently, a more simplified (and conservative) 

approach exploring possible sources of δ13C in consumer tissues was implemented. 

Specifically, tissue-specific DTDFs were subtracted from consumer δ13C values resulting in 

adjusted consumer δ13C values that were equivalent to potential prey. An idealized ‘δ13C-

prey range’ was created for each individual consumer by incorporating a measure of 

uncertainty associated with the adjusted consumer δ13C values. A relatively high level of 

uncertainty was incorporated (±1‰) because of the possibility of seasonal variation, as well 
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as inherent uncertainty with DTDF estimates. For each individual, the proportion of each 

prey within this ‘δ13C-prey range’ was calculated. Distributions of prey proportions for all 

individuals were summarised with a histogram to quantify the prey δ13C values that are 

consistent with contributing to the diet of elasmobranchs. Only a subset of prey were 

incorporated in this analysis representing distinct feeding types/habitats in Pioneer Bay; these 

included snail (mangrove/terrestrial), plankton (offshore pelagic), baitfish (nearshore 

pelagic), crab (nearshore benthic), and worm (nearshore benthic). Because δ13C values 

increase successively at each trophic level, ‘δ13C-prey range’ for each consumer-prey pairing 

was corrected for the difference in trophic levels. For example, the trophic level of plankton 

was assumed to be 2 and that of blacktip reef sharks was 4. Therefore, the adjusted consumer 

δ13C values reflected a change of two trophic levels (i.e., 2*DTDFs). Based on exploratory 

plots and known feeding ecology, the trophic level of elasmobranchs was chosen to be 3, 

baitfish were set to 3, and the remaining prey (snail, plankton, crab, and worm) were 

considered to be at trophic level 2. Given the relatively low δ15N values of cowtail stingrays, 

baitfish were not included in their ‘δ13C-prey range’ estimates. Also, because mangrove 

whiprays had a large range of  δ15N values, iterations of this approach were done with and 

without baitfish included, since baitfish had higher δ15N values for some individuals. Tissue-

specific DTDFs were selected from (Matley et al., 2016), despite being based on adult reef 

fish, because estimates for all three tissues were available and species were from similar 

geographic locations. 

6.3 Results 

A total of 60 juvenile elasmobranchs (36 mangrove whiprays, 17 cowtail stingrays, 5 blacktip 

reef sharks and 2 giant shovelnoses) and potential prey items were sampled in Pioneer Bay 

from 2016 to 2018 (Table 6.1). Sampled stingrays ranged from 25 to 65 cm DW, while giant 

shovelnose rays and blacktip reef sharks ranged from 40 to 64 cm STL. All three tissues 

(plasma, RBC, and muscle) had considerable variation in δ13C (e.g., between -16‰ and -8‰) 

and δ15N (e.g., between 3‰ and 13‰) values across species, particularly for mangrove 

whiprays and cowtail stingrays (Fig. 6.1). All juvenile elasmobranchs exhibit trophic position 

~3. Potential prey and baseline organisms also demonstrated a wide range of δ13C values 

(e.g., between -30‰ and -1‰), although δ15N values were mostly between 0‰ and 5‰ 

(except baitfish: ~6 – 9‰; Fig. 6.2). The ANOVA testing for elasmobranch species 

differences in δ13C and δ15N values showed that all species had different δ15N values for all 
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tissues (p<0.001), while δ13C values were also different, except in plasma and RBC where 

mangrove whiprays and cowtail stingrays had similar values (p>0.05).  

Table 6.1. Stable isotope (δ13C and δ15N) values of elasmobranch, prey and environmental 

samples collected from Pioneer Bay and their respective mean ± SE. Tissue types: Muscle 

(M), Red blood cells (RBC) and Plasma (P). 

ID 
N 

(animals) 

N 

(tissue) 
Mean ± SE δ13C ‰  

Mean ± SE 

δ15N ‰  

Mangrove whipray 36 

M = 16 -12.13 ± 2.38 9.14 ± 1.94 

P = 30 -11.69 ± 1.96 8.37 ± 2.39 

RBC = 34 -12.30 ± 1.69 8.27 ± 2.02 

Cowtail stingray 17 

M = 13 -10.16 ± 1.46 6.37 ± 1.82 

P = 15 -10.71 ± 1.17 4.20 ± 1.93 

RBC = 15 -11.64 ± 1.02 4.28 ± 1.59 

Blacktip reef sharks 5 
P = 5 -13.14 ± 0.97 10.05 ± 0.34 

RBC = 5 -12.16 ± 0.93 10.40 ± 0.24 

Giant shovelnose 2 
P = 2 -9.36 ± 0.31 5.89 ± 0.05 

RBC = 2 -9.92 ± 0.54 6.60 ± 0.10 

Bar-cheek coral trout 11 

M = 10 -14.08 ± 1.08 10.85 ± 0.38 

P = 4 -14.14 ± 1.52 10.60 ± 0.51 

RBC = 4 -14.60 ± 1.71 9.97 ± 0.72 

Leopard coral grouper 11 

M = 11 -14.24 ± 1.54 10.74 ± 0.42 

P = 3 -11.56 ± 1.09 10.28 ± 0.61 

RBC = 3 -13.36 ± 0.60 9.18 ± 0.55 

Fusilier 10 M = 10 -17.54 ± 0.12 9.79 ± 0.18 

Baitfish 40 M = 40 -13.79 ± 2.53 8.00 ± 0.83 

Crab 12  -13.07 ± 3.42 3.91 ± 0.74 

Mangrove leaf 17  -27.54 ± 0.89 1.44 ± 1.97 

Mangrove root 4  -23.94 ± 6.34 1.42 ± 1.75 

Soft coral 20  -13.45 ± 3.74 2.83 ± 0.85 

Hard coral 10  -5.25 ± 1.86 4.35 ± 0.53 
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Algae (inshore) 44  -8.37 ± 3.68 2.22 ± 1.10 

Algae (offshore) 3  -22.36 ± 0.36 2.66 ± 0.36 

Annelid worm 12  -8.34 ± 2.26 2.79 ± 1.19 

Snail 18  -22.33 ± 3.98 2.16 ± 2.13 

Prawn 2  -9.21 ± 0.73 4.26 ± 0.08 

Plankton 8  -19.87 ± 0.89 4.55 ± 1.21 

 

 

Fig. 6.1. Muscle, red blood cells (RBC) and plasma stable isotope niche breadth (δ13C and 

δ15N) of sympatric elasmobranch and teleost predators sampled from in Pioneer Bay. Ellipses 

represent niche breadth of each species.  

 

Fig. 6.2. Stable isotope niche breadth (δ13C and δ15N) of juvenile elasmobranchs’ potential 

prey item and primary producer organisms in Pioneer Bay.  
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6.3.1 Biological influences on δ13C and trophic position 

General linear models showed no significant trends between δ13C and TP values and 

elasmobranch size (p>0.05), sex (p>0.05) or season (p>0.05) for all three tissues. 

6.3.2 Isotopic niche metrics 

Isotopic niche size of blacktip reef sharks was smaller than both cowtail stingrays (plasma: 

p=0.002 (or 99.8% of posterior draws); RBC: p<0.001) and mangrove whiprays (plasma: 

p=0.003; RBC: p<0.001) in two of the sampled tissues (Table 6.2; Fig. 6.3). Bayesian 

iterations comparing SEAC of cowtail stingrays and mangrove whiprays typically resulted in 

mangrove whiprays having the larger niche size (plasma: 90.8%, RBC: 95.9%, and muscle: 

70.1% of posterior draws; Table 6.2).  

Table 6.2. Isotopic niche metrics of juvenile elasmobranch species. SEA: standard ellipse 

area, SEAc: corrected standard ellipse area and TA: convex hull area. 

 Plasma Red blood cell Muscle 

Species SEA SEAc TA SEA SEAc TA SEA SEAc TA 

Blacktip reef shark 0.98 1.31 1.03 0.67 0.84 0.88 - - - 

Cowtail stingray 6.58 7.04 11.00 5.10 5.46 14.80 7.20 7.85 15.50 

Mangrove whipray 9.91 10.29 34.07 8.85 9.09 36.73 7.91 8.48 18.48 
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Fig. 6.3. Standard ellipse size (SEA) estimates of juvenile elasmobranchs based on numerous 

iterations for each tissue types. Red ‘x’ represents the corrected standard ellipse area (SEAc) 

estimate. 

Table 6.3. Percent (%) overlap and the probability of size differences between Bayesian 

standard ellipses derived from δ15N and δ13C values of juvenile elasmobranchs. Niche size 

differences were considered significant when ≥95% of estimates for one species were smaller 

or larger than estimates for another species. Blacktip reef sharks (BTS), Cowtail stingrays 

(CWT) and Mangrove whiprays (MWR). 

 Plasma Red blood cell Muscle 
Ellipse size 
difference 

BTS CWT MWR BTS CWT MWR BTS CWT MWR 

BTS  0.998 0.999  1 1    
CWT   0.908   0.958   0.700 

Ellipse overlap 
(area) 

         

BTS  0 1.030  <0.001 <0.001    
CWT   <0.001   <0.001   1.464 

Ellipse overlap (% 
standardized) 

         

BTS  0 0.097  <0.001 <0.001    
CWT   <0.001   <0.001   0.098 

95% predictions 
overlap (area) 

         

BTS  <0.001 7.842  <0.001 4.745    
CWT   23.240   17.714   29.719 

95% predictions 
overlap (% 

standardized) 

         

BTS  <0.001 0.127  <0.001 0.086    
CWT   0.288   0.255   0.436 

   

Cowtail  
stingray Mangrove 

whipray 
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Niche overlap calculated using SEAC  (with 40% prediction ellipses) resulted in negligible  

overlap for all species pairings except for plasma and muscle where the niche space of 

blacktip reef sharks and mangrove whiprays overlapped ~10% (Table 6.3; Fig 6.1). Niche 

overlap calculated using 1000 Bayesian posterior distributions (with 95% prediction ellipses) 

resulted in distributions with higher overlap between cowtail stingrays and mangrove 

whiprays across all tissues (~20-50%; Fig. 6.4); blacktip reef sharks and mangrove whiprays 

had overlap ~0-30% (Fig. 6.4), while blacktip reef sharks and cowtail stingrays rarely 

overlapped (<10%; Fig. 6.4). The difference in overlap between the two methods above is 

primarily driven by greater variation in cowtail stingray and mangrove whipray isotopes 

leading to larger values in posterior distributions, especially with the larger prediction ellipses 

used (i.e., 95% vs 40%). Visual comparisons of elasmobranch and Plectropomous spp. 

isotopic niche space showed that the latter species often had higher δ13C values, however 

δ15N values of the reef fishes were similar to blacktip reef sharks.  
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Fig. 6.4. Niche overlap calculated using 1000 Bayesian posterior distributions. 

6.3.3 Sources of δ13C in ecosystem 

Based on prey distributions of corrected ‘δ13C-prey ranges’ the organisms reflecting the 

nearshore pelagic (baitfish) and benthic (crab and worm) habitats were dominant among 

groups sampled (Fig. 6.5). Approximately 10–40% of all baitfish and crab sampled were 

present in the ‘δ13C-prey ranges’ of the blacktip reef sharks in plasma and RBC tissues. 

Worm also appeared to contribute (10% of samples) in RBC. The contribution of prey for 

cowtail stingrays were relatively similar for all tissues, with worm being incorporated in most 

individuals with ~10-30% of worm samples being within ‘δ13C-prey ranges’. A similar 

distribution existed for crab contribution to cowtail stingray δ13C values, however it was 
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more common than worm. Crab was also generally more contributory to mangrove whipray 

δ13C values, however worm was still present for at least half of individuals. When baitfish 

was included as a possible prey item in mangrove whipray diet, two distinct groups were 

formed. In the first group, baitfish was present in the majority of individuals and had similar 

proportions within ‘δ13C-prey ranges’ as crab (which contributed to all mangrove whipray 

individuals). The second group of mangrove whiprays did not appear to have baitfish as a 

prey item. Snail (representing mangrove/terrestrial carbon input) and plankton (representing 

offshore pelagic sources) contributed very little or nothing at all to the diet of elasmobranchs 

(Fig. 6.5) due to δ13C values smaller than estimated ‘δ13C-prey ranges’. Therefore, our results 

suggest that δ13C source for juvenile elasmobranchs in Pioneer Bay has little direct input 

from mangroves or offshore sources. 

 

Fig. 6.5. The contribution of prey items for all elasmobranch species. Values were calculated 

by subtracting diet-tissue discrimination factors (DTDFs) from consumer δ13C, resulting in 

adjusted consumer δ13C values equivalent to potential prey. Baitfish was included in the 
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analysis for Whipray (type 1) and not included for Whipray (type 2). Incorporated level of 

uncertainty was ±1‰. 

6.4 Discussion 

The results of this study have provided a unique insight into the trophic ecology of 

elasmobranchs that directly utilise mangrove habitats. Recent studies have shown that a suite 

of species not only occur in habitats adjacent to mangrove habitats, but in fact utilise 

mangrove roots as a means of reducing predation directly (Davy et al., 2015; George et al., 

2019; Kanno et al., 2019; Martins et al., 2019). Newman et al. (2010) and Hussey et al. 

(2017) also found a strong relationship between juvenile lemon shark Negaprion brevirostris 

diet and mangrove-associated prey fauna. However, whether other elasmobranch species also 

use prey that are supported by the food webs derived from mangrove primary productivity 

remains uncertain. The results presented here clearly demonstrate that the carbon isotope 

values of all four elasmobranch species examined had little or no evidence of mangrove 

derived carbon. This demonstrates that the food webs from which they feed are supported by 

other sources of primary productivity. This is despite at least one of these species (mangrove 

whipray) being shown to feed while within the mangrove root habitat (Kanno et al., 2019).  

To date, only a limited number of studies have focused on understanding juvenile 

elasmobranch trophic ecology (Bethea et al., 2004; Kinney et al., 2011; Yick et al., 2011). 

Results presented here provide strong evidence of isotopic niche distinction between 

elasmobranchs within a communal nursery. Mangrove whiprays showed the largest SEAc for 

all tissues, followed by cowtail stingrays and blacktip reef sharks. Therefore, mangrove 

whiprays in Pioneer Bay had more variability in individual feeding behaviour compared to 

other elasmobranch species. It is important to point out that the sample size for blacktip reef 

sharks was small and more samples could increase its ellipse area. Cowtail stingray niche did 

not overlap with any other species, whereas mangrove whipray and blacktip reef shark niches 

overlapped at different levels between tissues, and also overlapped with the isotopic niche 

space of the bentho-pelagic fishes (Plectropomus spp.) used in this study for comparison. 

Some studies have shown significant dietary overlap between sympatric elasmobranch 

species (e.g. Navarro-González et al., 2012; Treloar et al., 2007). For example, Kinney et al. 

(2011) showed evidence for both partitioning and niche overlap of juvenile elasmobranchs in 

a communal nursery, but in a much larger system that allowed for spatial partitioning (Heupel 

et al., 2019).  
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Niche partitioning between species was shown in this study, but it does not seem to lead to a 

complete spatial partitioning. In fact, juvenile mangrove whiprays and blacktip reef sharks 

have been reported feeding inside mangrove patch areas and on the sand flats in Pioneer Bay, 

whereas juvenile cowtail stingrays were only recorded feeding on sand flats (George et al., 

2019; Kanno et al., 2019). Despite the differences in feeding strategy, Chapters 3 and 5 

demonstrated mangrove whiprays and cowtail stingrays still share sand and reef flat areas for 

most of the day – except during high tides when mangrove whiprays seek protection within 

mangrove patches and cowtails prefer to rest in areas adjacent to mangroves (Kanno et al., 

2019, Chapters 3 and 5)  

Nearshore pelagic (baitfish) and benthic (crab and worm) items were isotopically consistent 

with being prey for juvenile elasmobranchs. Some previously published studies also 

showworms and crustaceans as dominant food sources for stingray species. For example, 

Yick et al. (2011) reported that two coexisting species, the banded stingaree Urolophus 

cruciatus and Tasmanian numbfish Narcine tasmaniensis, had distinct dietary patterns – the 

first preferably preying on crustaceans and the second on polychaetes. Likewise, O'shea et al. 

(2013) found cowtail stingray diet was largely composed of polychaetes. Interestingly, 

mangrove whiprays from Pioneer Bay divided into two groups with distinct feeding habits – 

both groups preying upon crabs and annelid worms. However, the cause for this intra-specific 

differentiation is yet to be explored. Results for blacktip reef shark dietary patterns were also 

supported by previous studies.  

Blacktip reef sharks have been reported driving schools of baitfish into shallow waters in 

Pioneer Bay (George et al., 2019), reinforcing their reliance on small pelagic prey sources 

(Papastamatiou et al., 2010). Crustaceans have previously be found to constitute a large part 

of giant shovelnose diet (Vaudo, 2011; White et al., 2004), but unfortunately the small 

sample size in this study does not allow further conclusions about their diet. Further diet data 

would be necessary to draw a thorough picture of species dietary range. Ultimately, none of 

the juvenile elasmobranch species examined here appear to prey upon snails – an abundant 

prey source in the mangrove areas of Pioneer Bay. This could be related to their small jaws 

and that are not yet powerful enough to break open the hard shells of these gastropods. 

In general, batoids exhibit trophic position between 3.4 and 4 (Bornatowski et al. 2014, Navia 

et al., 2017). In this study, the trophic position of elasmobranchs was ~3. In fact, juvenile 

elasmobranch species in Pioneer Bay consume prey types from a range of trophic levels. In 
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addition, juveniles play important roles as potential prey for larger elasmobranchs that often 

visit the area. Although larger predators have not been sampled for comparison of trophic 

levels, the role of juvenile elasmobranchs as mesopredators has been demonstrated in the 

literature (Barría et al., 2015; Ebert, 2002) and was confirmed in this study site through 

observation of predation attempts during data collection (A Martins personal observation). 

Influences of size, sex or seasonality on relative trophic position were not observed. Studies 

have found trends in δ15N and δ13C between body size for elasmobranchs (Borrell et al., 

2011) – with an increase in TP for larger individuals and species. However, these trends 

appear to have less influence for immature individuals. This might be due to the small jaw 

size of juveniles reducing their ability to prey upon larger, higher trophic level items 

(Amariles et al., 2017). Although sampling for elasmobranch species accounted for different 

seasons, sampling for prey and environment did not. In this way, variations in prey 

availability, distribution and composition may not reflect the distinctions that could possibly 

occur seasonally. More information is required for a complete picture of prey abundance and 

diversity year-round in Pioneer Bay to fully address seasonality effects on juvenile 

elasmobranchs trophic ecology.  

Dietary patterns of the studied species are likely to change as juveniles grow. Growth rates 

are known to play an important role in determining tissue-specific isotope turnover, 

especially for juveniles (Hussey et al., 2014). Macneil et al. (2006) reported that 65%–75% 

of muscle δ15N turnover in Potamotrygon motoro was accounted for by growth. It is 

important to point out that, depending on growth rates, the necessary time to achieve a near 

steady-state isotope value can vary drastically (Macneil et al., 2006). Using baseline turnover 

rates calculated by Macneil et al. (2006) and Logan and Lutcavage (2010) for relatively small 

and growing batoids and sharks, respectively, shifts in juvenile elasmobranch diets are 

expected to be reflected in plasma and red blood cells samples within two or three months, 

while muscle samples would reveal a longer term, likely annual, isotopic signature. 

Considering all individuals sampled in this study were newborn or young of the year, it is 

likely that juvenile elasmobranchs δ15N values at Pioneer Bay may reflect at least some 

parental influence – especially in muscle samples (Olin et al., 2011).  

New born and young of the year isotopic values are affected by the mothers isotopic 

signature through gestation (when matrotrophy is present), postparturition maternal reserves 

and/or placental connectivity (Jenkins et al., 2001; Mcmeans et al., 2009). Maternal isotopic 
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signature can influence neonate and young of the year isotope signatures, and hence 

inferences about their diet, resulting in a complex combination of δ15N and δ13C values 

(Ann Pilgrim, 2007; Olin et al., 2011). For a real picture of juvenile elasmobranch trophic 

ecology, the possibility of mixing signatures must be addressed through the analysis of 

multiple tissues with different turnover rates. In this study, δ15N and δ13C were similar 

between tissues, with small variation in ellipse size. However, accounting for maternal 

influence by carefully analysing multiple tissues was important to provide an accurate 

representation of juvenile elasmobranch dietary patterns over a broader time-period in 

Pioneer Bay. The lack of change in relative niches and niche overlap between tissues suggest 

juvenile elasmobranch diet do not vary temporally or only varied slightly.  

6.5 Conclusion 

This study highlighted the relative trophic relationships of juvenile elasmobranch species and 

their trophic position in Pioneer Bay, a communal nursery area. The results showed evidence 

of niche partitioning between species with differences in feeding strategy. Despite using 

mangrove habitats extensively, juvenile elasmobranchs did not rely on mangrove derived 

food webs, instead consuming prey that derive carbon from benthic algae or plankton. 

Nearshore pelagic and benthic items – such as crabs, annelid worms and small baitfishes –

were isotopically consistent with being prey, although it is possible that additional prey were 

not sampled for isotopes. The influences of size, sex or seasonality on relative trophic 

position and carbon isotope values were not observed. The use of multiple tissues was 

essential to accurately reveal dietary patterns and trophic positions of juvenile elasmobranchs 

and account for any maternal influence on their isotopic signatures. Thus, results presented 

here could help better determine trophic structure and ecological connections in coastal 

communal nursery areas. 
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Chapter 7: General Discussion 

Given the increasing threats to Dasyatid rays and the limited information available that 

hinders conservation efforts, this PhD thesis aimed to extend our understanding of juvenile 

stingray movement patterns and trophic relationships in coral reef habitats. Our telemetry 

results revealed stingray activity patterns and space use are strongly influenced by tidal stage 

and diel period. Both studied stingray species showed preference for sand flats and sand 

patches within the reef flats, and mangrove whiprays appear to more commonly use these 

areas during the day. These areas are thought to favor camouflage by allowing burying and 

also offer food resources. The trophic ecology results corroborate the findings by providing 

evidence of nearshore pelagic and benthic prey items – such as crabs, annelid worms and 

small baitfishes – as the main part of juvenile elasmobranch diets within the Pioneer Bay 

nursery. However, these preys are part of food webs that derive their carbon from algae and 

plankton rather than mangroves.  

7.1 Movement Patterns and habitat use of juvenile stingrays 

The complementary use of active acoustic and towed-float GPS telemetry allowed a deeper 

evaluation than previous studies on aspects of juvenile stingray spatial ecology that are 

generally poorly understood. Active acoustic telemetry has well known limitations regarding, 

for example, duration of tracks and influence from human presence (Chapter 3). However, its 

employment in Pioneer Bay was essential to better understand juvenile stingrays’ behaviour – 

identifying feeding and resting areas, predator avoidance strategies and their relationship with 

tidal cycles. Towed-float GPS telemetry allowed the collection of accurate spatial data, and 

reduced human influence and enabling night tracks. However, information acquired from 

active acoustic telemetry was indispensable for interpretation of data collected with float tags. 

Thus, the combination of methods was a key aspect to expand our knowledge on mangrove 

whipray movements and describe, for the first time, cowtail stingrays’ activity patterns in 

Pioneer Bay.  

Both species remained in Pioneer Bay during tracking periods, with no recorded movements 

of individuals leaving the area (Chapter 3, 4 and 5). In fact, other studies have shown that 

batoid populations often restrict their distribution to relatively small areas (less than 5 km²) 

for long periods (Campbell et al., 2012; Cartamil et al., 2003; Elston, 2016). Based on our 

results and continued monitoring of tagged stingrays (numbered spiracle ID), juvenile 
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stingrays appear to remain exclusively in Pioneer Bay for a minimum period of six months, 

and possibly much longer. This finding indicates that Pioneer Bay must therefore provide 

ample food throughout the year and between seasons, allowing juvenile stingrays to restrict 

their movements to the protected shallow areas, which provides advantages through reducing 

the risk of predation (Davy et al., 2015). However, quantifying the longer-term patterns of 

movement and site fidelity would be necessary to fully understand juvenile stingray species 

use of this nursery ground.  

Mangrove whiprays and cowtail stingrays mostly used sand flat areas. These areas provided 

access to food resources and soft-bottom for burying. The reef crest was used by both species 

as refuges during low tides. This habitat provided sand patches for burying and resting 

physically protected by the surrounding reef and stands of macroalgae. On a few occasions, 

cowtail stingrays also fed in the reef crest. Mangroves, when available during incoming and 

high tides, were mostly used by mangrove whiprays. Juveniles were often seen resting under 

the complex mangrove root system. Unfortunately, juvenile stingray behaviour within 

mangrove areas could not be fully addressed by telemetry methods because towed floats 

tangled in mangrove roots and acoustic signals were obstructed. Telemetry results were 

therefore combined with stable isotope analysis and available literature to provide a fuller 

understanding of behaviour at this tidal stage. Thus, mangrove whiprays mostly use 

mangroves for protection (Chapter 6) due to the exclusion of large predators, and have been 

recorded feeding in in these areas (Kanno et al., 2019) 

The dynamics of juvenile stingrays in Pioneer Bay was strongly driven by the tidal cycle 

(Chapter 3 and 5). Stingray movements were guided by both tidal current direction and height 

variations. Moving in the direction of tidal flow, as both species of stingrays studied did, is a 

common strategy for small-bodied elasmobranchs (e.g. Brinton & Curran, 2017), reducing 

swimming energy costs and allowing the use of shallow waters. Juvenile stingrays showed 

different rates of movement, with mangrove whiprays generally moving at a faster pace than 

cowtail stingrays, but with similar movement patterns. Both species moved further and used 

straighter paths during outgoing and incoming tides, whereas they adopted random and 

slower movements at low and high tide. This pattern corroborates Davy et al. (2015) and 

George et al. (2019) findings for juvenile mangrove whiprays and blacktip reef sharks, 

respectively, in the same area. Juvenile elasmobranchs are thought to adopt this movement 

strategy to keep themselves in shallow water, reducing exposure to predation while also avoid 

stranding, especially during falling tides. Differences in ROM and linearity between sexes 
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were not observed for any of the study species. As observed by Dale et al. (2011), sexual 

segregation might be absent in juveniles stingrays. Finally, contrary to many studies that 

show elasmobranch species have higher activity during night periods (e.g. Brinton & Curran, 

2017; Cartamil et al., 2003; Corcoran et al., 2013; Garrone Neto & Uieda, 2012), my results 

highlight mangrove whiprays’ higher movement rates during diurnal periods. The reasons for 

this are still to be fully understood, but this species’ optimal temperature range is 30 ℃ to 36 

℃ (Higgins, 2018), therefore drops in temperature overnight could hinder juvenile mangrove 

whiprays ability to move at the same rate as during the day. 

7.2 Trophic ecology of juvenile elasmobranchs in a communal nursery 

Body size and sex had no influence on δ15N and δ13C values from the stable isotope 

analysis. Isotopic values are known to increase with size in elasmobranchs (Hussey et al., 

2011), however the increase is often related to changes in dietary patterns (Amariles et al., 

2017). In fact, juvenile elasmobranchs in Pioneer Bay varied in body size (25 cm to 65 cm 

DW or STL), however it is likely that mouth gape and manoeuvrability of individuals within 

the sampled size range changed relatively small amounts and so did not allow selection of 

prey items across a broad range of trophic levels. The addition of samples from adults of 

these species would have likely provided evidence of changing isotope patterns and hence 

trophic ecology (Papastamatiou et al., 2010). In addition, juvenile elasmobranchs restricted 

their movements to within Pioneer Bay, possibly to avoid higher predation risk in open and 

deeper areas, which did not allow broader search for higher energetic value prey items 

(Chapters 3 and 5). Sexually immature individuals, with similar movement patterns as shown 

in Chapter 3 and 5, were also expected to show similar isotopic signatures. Unfortunately, 

prey availability, distribution and composition year-round in Pioneer Bay were not examined 

in this study. Therefore, a broad picture of the influence of seasonality on this juvenile 

elasmobranch communal nursery requires further investigation.  

Mangrove whiprays and cowtail stingrays displayed distinct isotopic niches (Chapter 6). 

Thus, although they are similar in size and morphology and generally occur within the same 

habitats, the stable isotope data indicated that they have very different diets. This may have 

occurred because cowtail stingrays feed exclusively in sand flats, whereas mangrove 

whiprays were recorded feeding both on sand flats and within mangroves (Kanno et al., 

2019) – likely resulting in higher variability in individual feeding and therefore niche 

differentiation. Blacktip reef sharks also feed in both of these habitats (George et al., 2019), 
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but the small sample size possibly restricted its ellipse area, and hence comparison to the 

stingrays. Despite niche distinction between stingrays shown by SIA, complete spatial 

partitioning was not observed. All elasmobranch species appear to be able to use similar areas 

for most of the day, as shown in Chapters 3 and 5. Considering the small area of Pioneer Bay, 

more feeding niche overlap was expected. The results thus demonstrated niche overlap 

between sympatric elasmobranch species at very fine spatial scale, while previous research 

has shown that it occurs even in systems much larger than Pioneer Bay (Kinney et al., 2011; 

Navarro-González et al., 2012; Treloar et al., 2007).  

The SIA data from Pioneer Bay suggests that juvenile stingrays have a preference for  annelid 

worms and crustaceans, corroborating results from Bornatowski et al. (2014), Elston et al. 

(2017); O'shea et al. (2013); and Yick et al. (2011).These results are also supported by 

telemetry data that shows the common use of sand flats areas for both stingray species 

(Chapters 3 and 5) – where annelid worms and small crustaceans can be easily found.. 

Blacktip reef shark’s dependence on small pelagic prey sources, such as baitfish, was 

reinforced in this study (George et al., 2019; Papastamatiou et al., 2010). All elasmobranchs 

selected prey items that were part of food webs that derived carbon from algal and planktonic 

sources, with no or little influence from mangroves or offshore sources. b 

7.3 Ecological roles played by juvenile stingrays in coral reef habitats 

Results from telemetry (Chapter 3, 4 and 5) and Stable Isotope Analysis (Chapter 6) of 

juvenile stingrays within the Pioneer Bay nursery highlight the roles they play in coral reef 

habitats and boosts our understanding on the importance of coral reefs to stingray 

populations. Juvenile stingrays rely on the Pioneer Bay system and are likely to have 

substantial impacts in shallow sand and reef flat, and mangrove, habitats – their primary and 

secondary areas of use. As previously identified, stingrays are thought to play three major 

ecological roles in aquatic ecosystems (Martins et al., 2018, Chapter 2). This PhD confirmed 

at least two of these roles within the Pioneer Bay nursery area.  

First, animal movement is a well-known source of habitat connectivity, linking trophic webs 

and transporting nutrients and energy (Sheaves, 2005, 2009). Acoustic and GPS telemetry 

results showed juvenile stingrays use most areas of Pioneer Bay – swimming across different 

habitats on a daily basis (Chapter 3, 4 and 5). Sand flats were consistently used for feeding, 

while the reef flats and mangroves were often visited during low and high tides, respectively, 

to avoid encounters with larger predators. Although in lower frequency, stingrays were 
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visually recorded feeding in reef flats (Chapter 4) and mangroves (Kanno et al., 2019). Other 

studies have shown batoid’s short term movements across different habitat types and a diel 

basis (Adkins et al., 2016; Cartamil et al., 2003; Davy et al., 2015; Matern et al., 2000; 

Silliman & Gruber, 1999). In this study, juvenile stingrays’ diel migrations are thought to 

biologically link adjacent habitat types in Pioneer Bay - helping to connect mangrove, sand 

flat, and inner and outer reef habitats.  

Second, SIA results showed juvenile stingrays occupy had a trophic position of ~3) in the 

Pioneer Bay communal nursery – potentially applying top down control over invertebrate 

populations through predation. As shown in Chapter 6, crabs and annelid worms are likely to 

have populations regulated by mangrove whiprays and cowtail stingrays. In addition, the 

frequent presence of large sharks in the bay and the predation attempts recorded during the 

study period, also reinforce juvenile stingrays’ role as potential prey items. Thus, similar to 

finding of other studies (e.g. Navia et al., 2007), juvenile stingrays in Pioneer Bay help to 

connect high level predators and lower trophic level organisms in the food web, playing an 

important role as mesopredators in this coral reef system. The absence of stingrays from this 

system could significantly affect the structure and function of the food web, forcing the 

remaining components of the web to readjust and adapt to a new state of organisation (Britten 

et al., 2014; Navia et al., 2017). Such reorganisation would potential have negative 

consequences for both their prey (lack of bioturbation and hence changes in sediment 

oxygenation) and their predators that might result in a reduction in populations.  

Lastly, stingrays were frequently spotted suspending sediments and forming feeding pits 

across the sand flats. Given the abundance of stingrays and the small area of Pioneer Bay (0.8 

km2), juvenile stingrays feeding activities could in fact influence benthic prey communities 

and nutrient recycling. However, in this study, the physical and biological impact of 

stingrays’ bioturbation were not fully investigated due to the lack of data on infauna and 

meiofauna abundance and distribution.  

7.4 Future work and conservation 

This PhD study has provided a unique insight into the spatial and trophic ecology of juvenile 

elasmobranchs in a coral reef flat environment. A better understanding of these topics is 

important to comprehend species relationships with ecosystem dynamics and develop 

effective strategies of management and conservation. Therefore, results presented here 

provide useful information to enhance our limited knowledge of movement patterns and 
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habitat use of juvenile stingray populations, better determine juvenile elasmobranch trophic 

structure and ecological connections in communal nurseries, and support estimates of 

anthropogenic impacts upon the juvenile stingray species and their essential habitats.   

Healthy sand and reef flat areas are essential to support juvenile stingrays in Pioneer Bay 

(and likely many other places) – providing sufficient prey items and soft substrates for 

burying and/or hiding. Mangrove areas did not provide the source of primary production to 

the elasmobranchs in this communal nursery as initially suspected, however these areas were 

clearly important as physical barriers against large predator for juvenile mangrove whiprays 

and also for blacktip reef sharks, as demonstrated by George et al. (2019). The removal or 

significant degradation of these habitats could cause severe disturbances on the communal 

nursery structure (Adkins et al., 2016) and lead to increases in juvenile mortality – directly 

affecting recruitment rates and therefore elasmobranch populations.  

In light of the increasing threat faced by stingrays, especially in nursery areas, future research 

could focus on a number of aspects of juvenile stingray biology and ecology: 

(1) Life history. Basic biological features of the study stingray species remain poorly 

understood, such as size at maturity, and age and growth. Growth rates, for example, 

could help unveil juvenile stingray energy intake requirements and consumption rates. 

Basic biological data could also help to predict how long juvenile stingray may need 

to stay in nursery areas. Thus, understanding life history strategies of these species is 

an important step to fully comprehend their habitat requirements. 

 

(2) Abiotic drivers of movement and habitat selection. Aspects such as temperature, 

salinity, and oxygen levels can influence juvenile stingray movement patterns. Further 

investigation of these factors could help to predict juvenile stingray ecological 

responses to anthropogenic pressures, such as habitat degradation and climate change. 

In addition, experimental work could be applied to look at juvenile stingrays 

physiological responses to these stressors.  

 

(3) Biotic drivers of movement and ecological effects. Predation risk was discussed in 

this study, but not fully investigated. Other biotic aspects, such as intra and inter-

specific competition, and prey abundance and distribution could be further 

investigated to better understand juvenile stingray movement patterns and trophic 
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ecology. Furthermore, information on prey availability and composition at the 

location of feeding pits, and feeding pit size and persistence could help to extend our 

limited knowledge about how juvenile stingray bioturbation effects coastal habitats, 

and their effects on prey populations.  

 

(4) Seasonal and ontogenetic shifts. Movement patterns and feeding habitats of stingrays 

are known to change over time. Juvenile stingrays certainly leave Pioneer Bay, but 

where they go and if they return at some point is unknown. Looking at seasonal 

migrations and ontogenetic shifts could help to better understand stingray ecology in 

different life stages.  

 

(5) Population genetics. Studies could be applied to unveil genetic variation in juvenile 

elasmobranch populations within Pioneer Bay and its surroundings. These results 

could help to establish stingray site fidelity and/or natal philopatry to Pioneer Bay.   



 

98 
 

References 

Adkins, M. E., Simpfendorfer, C. A., & Tobin, A. J. (2016). Large tropical fishes and their 

use of the nearshore littoral, intertidal and subtidal habitat mosaic. Marine and Freshwater 

Research, 67(10), 1534–1545.  

Adrados, C., Girard, I., Gendnerc, J. P., & Janeaua, G. (2002). Global Positioning System 

(GPS) location accuracy improvement due to Selective Availability removal. Comptes 

Rendus Biologies, 325, 165–170.  

Aguiar, A. A., Valentin, J. L., & Rosa, R. S. (2009). Habitat use by Dasyatis americana in a 

south-western Atlantic oceanic island. Journal of the Marine Biological Association of the 

United Kingdom, 89(6), 1147-1152. doi:10.1017/s0025315409000058 

Ajemian, M. J., & Powers, S. P. (2014). Towed-float satellite telemetry tracks large-scale 

movement and habitat connectivity of myliobatid stingrays. Environmental Biology of Fishes, 

97(9), 1067-1081.  

Ajemian, M. J., Powers, S. P., & Murdoch, T. J. (2012). Estimating the potential impacts of 

large mesopredators on benthic resources: integrative assessment of spotted eagle ray 

foraging ecology in Bermuda. PLoS One, 7(7), e40227. doi:10.1371/journal.pone.0040227 

Albo-Puigserver, M., Navarro, J., Coll, M., Aguzzi, J., Cardona, L., & Sáez-Liante, R. 

(2015). Feeding ecology and trophic position of three sympatric demersal chondrichthyans in 

the northwestern Mediterranean. Marine Ecology Progress Series, 524, 255-268. 

doi:10.3354/meps11188 

Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual Review of 

Marine Science, 6, 195-219.  

Amariles, D. F., Navia, A. F., & Giraldo, A. (2017). Food resource partitioning of the 

Mustelus lunulatus and Mustelus henlei (Elasmobranchii: Carcharhiniformes). Environmental 

Biology of Fishes, 100(6), 717-732.  

Amsler, M. O., Smith, K. E., McClintock, J. B., Singh, H., Thatje, S., Vos, S. C., Brothers, C. 

J., Brown, A., Ellis, D., Anderson, J., & Aronson, R. B. (2015). In situ observations of a 

possible skate nursery off the western Antarctic Peninsula. Journal of Fish Biology, 86(6), 

1867-1872. doi:10.1111/jfb.12679 



 

99 
 

Ann Pilgrim, M. (2007). Expression of maternal isotopes in offspring: implications for 

interpreting ontogenetic shifts in isotopic composition of consumer tissues. Isotopes in 

Environmental and Health Studies, 43(2), 155-163.  

Araujo, P. R., Oddone, M. C., & Velasco, G. (2016). Reproductive biology of the stingrays, 

Myliobatis goodei and Myliobatis ridens (Chondrichthyes: Myliobatidae), in southern Brazil. 

Journal of Fish Biology, 89(1), 1043-1067. doi:10.1111/jfb.13015 

Aschliman, N. C., Claeson, K. M., & McEachran, J. D. (2012). Phylogeny of batoidea. In: J. 

C. Carrier, J. A. Musick & M. R. Heithaus (Eds.), Biology of Sharks and Their Relatives (pp. 

79-113). Boca Raton: CRC Press. 

Barría, C., Coll, M., & Navarro, J. (2015). Unravelling the ecological role and trophic 

relationships of uncommon and threatened elasmobranchs in the western Mediterranean Sea. 

Marine Ecology Progress Series, 539, 225-240.  

Bass, A. (1978). Problems in studies of sharks in the southwest Indian Ocean. Sensory 

Biology of Sharks, Skates and Rays, 545-594.  

Batschelet, E. (1981). Circular statistics in biology Academic Press. New York, USA.  

Beck, M. W., Heck, K. L., Able, K. W., Childers, D. L., Eggleston, D. B., Gillanders, B. M., 

Halpern, B., Hays, C. G., Hoshino, K., Minello, T. J., Orth, R. J., Sheridan, P. F., & 

Weinstein, M. P. (2001). The identification, conservation, and management of estuarine and 

marine nurseries for fish and invertebrates. BioScience, 51(8). doi:10.1641/0006-

3568(2001)051[0633:Ticamo]2.0.Co;2 

Bellwood, D. R., Hughes, T. P., Folke, C., & Nyström, M. (2004). Confronting the coral reef 

crisis. Nature, 429(6994), 827-833.  

Bethea, D. M., Buckel, J. A., & Carlson, J. K. (2004). Foraging ecology of the early life 

stages of four sympatric shark species. Marine Ecology Progress Series, 268, 245-264.  

Bizzarro, J. J., Yoklavich, M. M., & Wakefield, W. W. (2017). Diet composit ion and 

foraging ecology of US Pacific Coast groundfishes with applications for fisheries 

management. Environmental Biology of Fishes, 100(4), 375-393.  

Blake, R. (2004). Fish functional design and swimming performance. Journal of Fish 

Biology, 65(5), 1193-1222.  



 

100 
 

Blaylock, R. A. (1990). Effects of external biotelemetry transmitters on behavior of the 

cownose ray Journal of Experimental Marine Biology and Ecology, 141, 213-220.  

Bonfil, R. (1999). Marine protected areas as shark fisheries management tool. In: B. Seret, & 

J. Y. Sire (Eds.), Proceedings of the 5th Indo-Pacific Fish Conference (pp. 217– 230). Paris, 

France: Societe Francaise d’Ichtyologie and Istitut de Recherche pour le Developpement.  

Bornatowski, H., Wosnick, N., do Carmo, W. P. D., Corrêa, M. F. M., & Abilhoa, V. (2014). 

Feeding comparisons of four batoids (Elasmobranchii) in coastal waters of southern Brazil. 

Journal of the Marine Biological Association of the United Kingdom, 94(7), 1491-1499. 

doi:10.1017/s0025315414000472 

Borrell, A., Aguilar, A., Gazo, M., Kumarran, R., & Cardona, L. (2011). Stable isotope 

profiles in whale shark (Rhincodon typus) suggest segregation and dissimilarities in the diet 

depending on sex and size. Environmental Biology of Fishes, 92(4), 559-567.  

Bradai, M., Saidi, B., Enajjar, S., & Bouain, A. (2005). The Gulf of Gabès: a spot for the 

Mediterranean elasmobranchs. In: N. Başusta, Ç. Keskin, F. Serena, & B. Seret (Eds.), 

Proceedings of the International Workshop on MediterraneanCcartilaginous Fish with 

Emphasis on South Eastern Mediterranean (pp. 107-117). Istanbul, Turkey: Turkish Marine 

Research Foundation.  

Branco Nunes, I., Veras, D., Oliveira, P., & Hazin, F. (2016). Vertical movements of the 

southern stingray, Dasyatis americana (Hildebrand and Schroeder, 1928) in the Biological 

Reserve of the Rocas Atoll, Brazil. Latin American Journal of Aquatic Research, 44(2), 216-

227. doi:10.3856/vol44-issue2-fulltext-3 

Brander, K. (1981). Disappearance of common skate, Raia batis, from the Irish Sea. Nature, 

290, 48-49.  

Branstetter, S. (1990). Early life-history implications of selected carcharhinoid and lamnoid 

sharks of the northwest Atlantic. In: H. L. Pratt Jr., S. H. Gruber, & T. Taniuchi (Eds.), 

Elasmobranchs as Living Resources: Advances in the Biology, Ecology, Systematics, and the 

Status of the Fisheries (pp. 17-28). US Department of Commerce, National Marine Fisheries 

Service, NOAA. 



 

101 
 

Braun, C. D., Skomal, G. B., Thorrold, S. R., & Berumen, M. L. (2014). Diving behavior of 

the reef manta ray links coral reefs with adjacent deep pelagic habitats. PLoS One, 9(2), 

e88170. doi:10.1371/journal.pone.0088170 

Brinton, C. P., & Curran, M. C. (2017). Tidal and diel movement patterns of the Atlantic 

stingray (Dasyatis sabina) along a stream-order gradient. Marine and Freshwater Research, 

68(9), 1716-1725. doi:10.1071/mf16073 

Britten, G. L., Dowd, M., Minto, C., Ferretti, F., Boero, F., & Lotze, H. K. (2014). Predator 

decline leads to decreased stability in a coastal fish community. Ecology Letters, 17(12), 

1518-1525.  

Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., 

Skaug, H. J., Maechler, M., Bolker, B. M. (2017). glmmTMB Balances Speed and Flexibility 

Among Packages for Zero-inflated Generalized Linear Mixed Modeling. The R Journal,  

9(2):378-400. 

Browning, E., Bolton, M., Owen, E., Shoji, A., Guilford, T., Freeman, R., & McPherson, J. 

(2018). Predicting animal behaviour using deep learning: GPS data alone accurately predict 

diving in seabirds. Methods in Ecology and Evolution, 9(3), 681-692. doi:10.1111/2041-

210x.12926 

Brownscombe, J. W., Lédée, E. J. I., Raby, G. D., Struthers, D. P., Gutowsky, L. F. G., 

Nguyen, V. M., Young, N., Stokesbury, M. J. W., Holbrook, C. M., Brenden, T. O., 

Vandergoot, C. S., Murchie, K. J., Whoriskey, K., Mills Flemming, J., Kessel, S. T., Krueger, 

C. C., & Cooke, S. J. (2019). Conducting and interpreting fish telemetry studies: 

considerations for researchers and resource managers. Reviews in Fish Biology and Fisheries. 

doi:10.1007/s11160-019-09560-4 

Bruno, J. F., & Selig, E. R. (2007). Regional decline of coral cover in the Indo-Pacific: 

timing, extent, and subregional comparisons. PLoS one, 2(8), e711.  

Buchheister, A., & Latour, R. J. (2010). Turnover and fractionation of carbon and nitrogen 

stable isotopes in tissues of a migratory coastal predator, summer flounder (Paralichthys 

dentatus). Canadian Journal of Fisheries and Aquatic Sciences, 67(3), 445-461.  

Buchholz, R. (2007). Behavioural biology: an effective and relevant conservation tool. 

Trends in Ecology & Evolution, 22(8), 401-407.  



 

102 
 

Bullock, R. W., Guttridge, T. L., Cowx, I. G., Elliott, M., & Gruber, S. H. (2015). The 

behaviour and recovery of juvenile lemon sharks Negaprion brevirostris in response to 

external accelerometer tag attachment. Journal of Fish Biology, 87(6), 1342-1354. 

doi:10.1111/jfb.12808 

Burke, L., Reytar, K., Spalding, M., & Perry, A. (2011). Reefs at risk revisited. Washington, 

DC: World Resources Institute. 

Cailliet, G. M., Musick, J. A., Simpfendorfer, C. A., & Stevens, J. D. (2005). Ecology and 

life history characteristics of chondrichthyan fish. In: S. L. Fowler, & R. D. Cavanagh (Eds.), 

Sharks, rays and chimaeras: the status of the chondrichthyan fishes. Switzerland and 

Cambridge, UK: IUCN SSC Shark Specialist Group.  

Calenge, C. (2015). Analysis of animal movements in R: the adehabitatLT Package. 2015. R 

Package version n 0.3, 20.  

Camhi, M. D., Valenti, S., Fordham, S., Fowler, S., & Gibson, C. (2009). The conservation 

status of pelagic sharks and rays. Report of the IUCN shark specialist group pelagic shark 

red list workshop. Newbury, UK: IUCN SSC Shark Specialist Group. 

Campbell, H. A., Hewitt, M., Watts, M. E., Peverell, S., & Franklin, C. E. (2012). Short- and 

long-term movement patterns in the freshwater whipray (Himantura dalyensis) determined by 

the signal processing of passive acoustic telemetry data. Marine and Freshwater Research, 

63(4). doi:10.1071/mf11229 

Carrier, J. C., Musick, J. A., & Heithaus, M. R. (2012). Biology of Sharks and Their 

Relatives. Boca Raton: CRC Press. 

Cartamil, D. P., Vaudo, J. J., Lowe, C. G., Wetherbee, B. M., & Holland, K. N. (2003). Diel 

movement patterns of the Hawaiian stingray, Dasyatis lata: implications for ecological 

interactions between sympatric elasmobranch species. Marine Biology, 142(5), 841-847. 

doi:10.1007/s00227-003-1014-y 

Castro, J. I. (1993). The shark nursery of Bulls Bay, South Carolina, with a review of the 

shark nurseries of the southeastern coast of the United States. Environmental Biology of 

Fishes, 38(1-3), 37-48.  

Cau, A., Follesa, M. C., Bo, M., Canese, S., Bellodi, A., Cannas, R., & Cau, A. (2014). 

Leiopathes glaberrima forest from South West Sardinia: a thousand years old nursery area 



 

103 
 

for the small spotted catshark Scyliorinus canicula. Rapport Commission International 

Mediterranee. Marseilles, France. 

Cau, A., Follesa, M. C., Moccia, D., Bellodi, A., Mulas, A., Marzia, B., Canese, S., 

Angiolillo, M., & Cannas, R. (2017). Leiopathes glaberrima millennial forest from SW 

Sardinia as nursery ground for the small spotted catshark Scyliorhinus canicula. Aquatic 

Conservation 27(3), 731-735. 

Caut, S., Angulo, E., & Courchamp, F. (2009). Variation in discrimination factors (Δ15N and 

Δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of 

Applied Ecology, 46(2), 443-453.  

Cavanagh, R., Kyne, P., Fowler, S., Musick, J., & Bennett, M. (2003). The conservation 

status of Australian chondrichthyans. Report of the IUCN Shark Specialist Group Australia 

and Oceania and Oceania Regional Red List Workshop. Brisbane, Australia: The University 

of Queensland, School of Biomedical Sciences.  

Cerutti-Pereyra, F., Thums, M., Austin, C. M., Bradshaw, C. J. A., Stevens, J. D., Babcock, 

R. C., Pillans, R. D., & Meekan, M. G. (2014). Restricted movements of juvenile rays in the 

lagoon of Ningaloo Reef, Western Australia–evidence for the existence of a nursery. 

Environmental Biology of Fishes, 97(4), 371-383. doi:10.1007/s10641-013-0158-y 

Chapman, D. D., & Gruber, S. H. (2002). A further observation of the prey-handling behavior 

of the great hammerhead shark, Sphyrna mokarran: Predation upon the spotted eagle ray, 

Aetobatus narinari. Bulletin of Marine Science, 70(3), 947-952.  

Chin, A., Kyne, P. M., Walker, T. I., & McAULEY, R. B. (2010). An integrated risk 

assessment for climate change: analysing the vulnerability of sharks and rays on Australia's 

Great Barrier Reef. Global Change Biology, 16(7), 1936-1953.  

Chin, A., Lison de Loma, T., Reytar, K., Planes, S., Gerhardt, K., Clua, E., Burke, L., & 

Wilkinson, C. (2011). Status of coral reefs of the Pacific and outlook. Global Coral Reef 

Monitoring Network. 

Cohen, J. E. (2005). Human population grows up. Scientific American, 293(3), 48-55.  

Collins, A., Heupel, M., & Motta, P. (2007). Residence and movement patterns of cownose 

rays Rhinoptera bonasus within a south‐west Florida estuary. Journal of Fish Biology, 71(4), 

1159-1178.  



 

104 
 

Collins, A. B., Heupel, M. R., & Motta, P. J. (2007). Residence and movement patterns of 

cownose rays Rhinoptera bonasus within a south-west Florida estuary. Journal of Fish 

Biology, 71(4), 1159-1178. doi:10.1111/j.1095-8649.2007.01590.x 

Collins, A. B., Heupel, M. R., & Simpfendorfer, C. A. (2008). Spatial Distribution and Long-

term Movement Patterns of Cownose Rays Rhinoptera bonasus Within an Estuarine River. 

Estuaries and Coasts, 31(6), 1174-1183. doi:10.1007/s12237-008-9100-5 

Colloca, F., Carpentieri, P., Balestri, E., & Ardizzone, G. (2010). Food resource partitioning 

in a Mediterranean demersal fish assemblage: the effect of body size and niche width. Marine 

Biology, 157(3), 565-574.  

Compagno, L. J. (2001). Sharks of the world: Bullhead, mackerel and carpet sharks 

(Heterodontiformes, Lamniformes and Orectolobiformes). FAO species catalogue for fishery 

purposes.  

Conrath, C., & Musick, J. (2010). Residency, space use and movement patterns of juvenile 

sandbar sharks (Carcharhinus plumbeus) within a Virginia summer nursery area. Marine and 

Freshwater Research, 61(2), 223-235.  

Conrath, C. L., & Musick, J. A. (2012). Reproductive biology of elasmobranchs. In: J. C. 

Carrier, J. A. Musick & M. R. Heithaus (Eds.), Biology of Sharks and Their Relatives (pp. 

291-312). Boca Raton: CRC Press. 

Cooke, S. J., Brownscombe, J. W., Raby, G. D., Broell, F., Hinch, S. G., Clark, T. D., & 

Semmens, J. M. (2016). Remote bioenergetics measurements in wild fish: Opportunities and 

challenges.  Comparative Biochemistry and Physiology Part A: Molecular & Integrative 

Physiology, 202, 23-37. doi:10.1016/j.cbpa.2016.03.022 

Cooke, S. J., Hinch, S. G., Wikelski, M., Andrews, R. D., Kuchel, L. J., Wolcott, T. G., & 

Butler, P. J. (2004). Biotelemetry: a mechanistic approach to ecology. Trends in Ecology & 

Evolution, 19(6), 334-343. doi:10.1016/j.tree.2004.04.003 

Cooke, S. J., Midwood, J. D., Thiem, J. D., Klimley, P., Lucas, M. C., Thorstad, E. B., ... & 

Ebner, B. C. (2013). Tracking animals in freshwater with electronic tags: past, present and 

future. Animal Biotelemetry, 1(1), 1-5.  

Corcoran, M. J., Wetherbee, B. M., Shivji, M. S., Potenski, M. D., Chapman, D. D., & 

Harvey, G. M. (2013). Supplemental feeding for ecotourism reverses diel activity and alters 



 

105 
 

movement patterns and spatial distribution of the southern stingray, Dasyatis americana. 

PLoS One, 8(3), e59235.  

Cortés, E. (2002). Incorporating uncertainty into demographic modeling: application to shark 

populations and their conservation. Conservation Biology, 16(4), 1048-1062.  

Costa, T. L. A., Thayer, J. A., & Mendes, L. F. (2015). Population characteristics, habitat and 

diet of a recently discovered stingray Dasyatis marianae: implications for conservation. 

Journal of Fish Biology, 86(2), 527-543. doi:10.1111/jfb.12572 

Curtis, T. H., Parkyn, D. C., & Burgess, G. H. (2013). Use of human-altered habitats by bull 

sharks in a Florida nursery area. Marine and Coastal Fisheries, 5(1), 28-38.  

D’Alberto, B. M., White, W. T., Chin, A., & Simpfendorfer, C. A. (2019). Untangling the 

Indonesian tangle net fishery: describing a data-poor fishery targeting large threatened rays 

(Order Batoidea). bioRxiv, 608935.  

Dabruzzi, T. F., & Bennett, W. A. (2014). Hypoxia effects on gill surface area and blood 

oxygen-carrying capacity of the Atlantic stingray, Dasyatis sabina. Fish Physiology and 

Biochemistry, 40(4), 1011-1020.  

Dabruzzi, T. F., Bennett, W. A., Rummer, J. L., & Fangue, N. A. (2012). Juvenile Ribbontail 

Stingray, Taeniura lymma (Forsskål, 1775) (Chondrichthyes, Dasyatidae), demonstrate a 

unique suite of physiological adaptations to survive hyperthermic nursery conditions. 

Hydrobiologia, 701(1), 37-49. doi:10.1007/s10750-012-1249-z 

Dale, J., & Holland, K. (2012). Age, growth and maturity of the brown stingray (Dasyatis 

lata) around Oahu, Hawaii. Marine and Freshwater Research, 63(6), 475-484.  

Dale, J. J., Drazen, J. C., & Holland, K. N. (2013). Stingray life history trade-offs associated 

with nursery habitat use inferred from a bioenergetics model. Marine Biology, 160(12), 3181-

3192.  

Dale, J. J., Wallsgrove, N. J., Popp, B. N., & Holland, K. N. (2011). Nursery habitat use and 

foraging ecology of the brown stingray Dasyatis lata determined from stomach contents, bulk 

and amino acid stable isotopes. Marine Ecology Progress Series, 433, 221-236.  

Davy, L. E., Simpfendorfer, C. A., & Heupel, M. R. (2015). Movement patterns and habitat 

use of juvenile mangrove whiprays (Himantura granulata). Marine and Freshwater 

Research, 66(6), 481-492. doi:10.1071/mf14028 



 

106 
 

De’ath, G., Fabricius, K. E., Sweatman, H., & Puotinen, M. (2012). The 27–year decline of 

coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of 

Sciences, 109(44), 17995-17999.  

Dean, M. N., Bizzarro, J. J., Clark, B., Underwood, C. J., & Johanson, Z. (2017). Large 

batoid fishes frequently consume stingrays despite skeletal damage. Royal Society Open 

Science, 4(9), 170674.  

Dean, M. N., Bizzarro, J. J., & Summers, A. P. (2007). The evolution of cranial design, diet, 

and feeding mechanisms in batoid fishes. Integrative and Comparative Biology, 47(1), 70-81.  

DeAngelis, B. M., McCandless, C. T., Kohler, N. E., Recksiek, C. W., & Skomal, G. B. 

(2008). First characterization of shark nursery habitat in the United States Virgin Islands: 

evidence of habitat partitioning by two shark species. Marine Ecology Progress Series, 358, 

257-271. doi:10.3354/meps07308 

Dewar, H., Mous, P., Domeier, M., Muljadi, A., Pet, J., & Whitty, J. (2008). Movements and 

site fidelity of the giant manta ray, Manta birostris, in the Komodo Marine Park, Indonesia. 

Marine Biology, 155(2), 121-133. doi:10.1007/s00227-008-0988-x 

Di Santo, V., & Bennett, W. (2011). Is post‐feeding thermotaxis advantageous in 

elasmobranch fishes? Journal of Fish Biology, 78(1), 195-207.  

Di Santo, V., & Bennett, W. A. (2011). Effect of rapid temperature change on resting routine 

metabolic rates of two benthic elasmobranchs. Fish Physiology and Biochemistry, 37(4), 929-

934. doi:10.1007/s10695-011-9490-3 

Dulvy, N. K., Baum, J. K., Clarke, S., Compagno, L. J. V., Cortés, E., Domingo, A., 

Fordham, S., Fowler, S., Francis, M. P., Gibson, C., Martínez, J., Musick, J. A., Soldo, A., 

Stevens, J. D., & Valenti, S. (2008). You can swim but you can't hide: the global status and 

conservation of oceanic pelagic sharks and rays. Aquatic Conservation: Marine and 

Freshwater Ecosystems, 18(5), 459-482. doi:10.1002/aqc.975 

Dulvy, N. K., Davidson, L. N. K., Kyne, P. M., Simpfendorfer, C. A., Harrison, L. R., 

Carlson, J. K., & Fordham, S. V. (2016). Ghosts of the coast: global extinction risk and 

conservation of sawfishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 26(1), 

134-153. doi:10.1002/aqc.2525 



 

107 
 

Dulvy, N. K., Fowler, S. L., Musick, J. A., Cavanagh, R. D., Kyne, P. M., Harrison, L. R., 

Carlson, J. K., Davidson, L. N., Fordham, S. V., & Francis, M. P. (2014). Extinction risk and 

conservation of the world’s sharks and rays. elife, 3, e00590.  

Dulvy, N. K., Fowler, S. L., Musick, J. A., Cavanagh, R. D., Kyne, P. M., Harrison, L. R., 

Carlson, J. K., Davidson, L. N., Fordham, S. V., Francis, M. P., Pollock, C. M., 

Simpfendorfer, C. A., Burgess, G. H., Carpenter, K. E., Compagno, L. J., Ebert, D. A., 

Gibson, C., Heupel, M. R., Livingstone, S. R., Sanciangco, J. C., Stevens, J. D., Valenti, S., 

& White, W. T. (2014). Extinction risk and conservation of the world's sharks and rays. Elife, 

3, e00590. doi:10.7554/eLife.00590 

Dulvy, N. K., & Reynolds, J. D. (2002). Predicting extinction vulnerability in skates. 

Conservation Biology, 16(2), 440-450.  

Dulvy, N. K., Sadovy, Y., & Reynolds, J. D. (2003). Extinction vulnerability in marine 

populations. Fish and fisheries, 4(1), 25-64.  

Dulvy, N. K., Simpfendorfer, C. A., Davidson, L. N., Fordham, S. V., Bräutigam, A., Sant, 

G., & Welch, D. J. (2017). Challenges and priorities in shark and ray conservation. Current 

Biology, 27(11), R565-R572.  

Dunne, J. A., Williams, R. J., & Martinez, N. D. (2004). Network structure and robustness of 

marine food webs. Marine Ecology Progress Series, 273, 291-302.  

Ebert, D. A. (2002). Ontogenetic changes in the diet of the sevengill shark (Notorynchus 

cepedianus). Marine and Freshwater Research, 53(2), 517-523.  

Ebert, D. A., & Cowley, P. D. (2003). Diet, feeding behaviour and habitat utilisation of the 

blue stingray Dasyatis chrysonota (Smith, 1828) in South African waters. Marine and 

Freshwater Research, 54(8), 957-965.  

Ebert, D. A., & Cowley, P. D. (2003). Diet, feeding behaviour and habitat utilisation of the 

blue stingray Dasyatis chrysonota (Smith, 1828) in South African waters. Marine and 

Freshwater Research, 54(8), 957-965.  

Ebert, D. A., & Cowley, P. D. (2008). Reproduction and embryonic development of the blue 

stingray, Dasyatis chrysonota, in southern African waters. Journal of the Marine Biological 

Association of the United Kingdom, 89(04), 809. doi:10.1017/s0025315408002907 



 

108 
 

Eberts, R. L., Wissel, B., Manzon, R. G., Wilson, J. Y., Boreham, D. R., & Somers, C. M. 

(2015). Consistent differential resource use by sympatric lake (Coregonus clupeaformis) and 

round (Prosopium cylindraceum) whitefish in Lake Huron: a multi-time scale isotopic niche 

analysis. Canadian Journal of Fisheries and Aquatic Sciences, 73(7), 1072-1080.  

Ellis, J. R., Cruz-Martínez, A., Rackham, B. D., & Rogers, S. I. (2004). The distribution of 

chondrichthyan fishes around the British Isles and implications for conservation. Journal of 

Northwest Atlantic Fishery Science, 35, 195-213. doi:10.2960/J.v35.m485 

Elston, C. (2016). The trophic and spatial ecology of juvenile porcupine rays Urogymnus 

asperriumus at the remote St. Joseph Atoll. (Master of Science), Rhodes University.  

Elston, C., von Brandis, R. G., & Cowley, P. D. (2015). Gastric lavage as a non-lethal 

method for stingray (Myliobatiformes) diet sampling. African Journal of Marine Science, 

37(3), 415-419. doi:10.2989/1814232x.2015.1076519 

Elston, C., von Brandis, R. G., & Cowley, P. D. (2017). Dietary composition and prey 

selectivity of juvenile porcupine rays Urogymnus asperrimus. Journal of Fish Biology, 91(2), 

429-442. doi:10.1111/jfb.13334 

Enajjar, S., Saidi, B., & Bradai, M. N. (2015). The Gulf of Gabes (Central Mediterranean 

Sea): a nursery area for sharks and batoids (Chondrichthyes: Elasmobranchii). Cahiers de 

Biologie Marine, 56(2), 143-150.  

Espinoza, M., Farrugia, T. J., & Lowe, C. G. (2011). Habitat use, movements and site fidelity 

of the gray smooth-hound shark (Mustelus californicus Gill 1863) in a newly restored 

southern California estuary. Journal of Experimental Marine Biology and Ecology, 401(1-2), 

63-74.  

Espinoza, M., Heupel, M. R., Tobin, A. J., & Simpfendorfer, C. A. (2015). Movement 

patterns of silvertip sharks (Carcharhinus albimarginatus) on coral reefs. Coral Reefs, 34(3), 

807-821.  

Espinoza, M., Munroe, S. E., Clarke, T. M., Fisk, A. T., & Wehrtmann, I. S. (2015). Feeding 

ecology of common demersal elasmobranch species in the Pacific coast of Costa Rica 

inferred from stable isotope and stomach content analyses. Journal of Experimental Marine 

Biology and Ecology, 470, 12-25.  



 

109 
 

Estrada, J. A., Rice, A. N., Lutcavage, M. E., & Skomal, G. B. (2003). Predicting trophic 

position in sharks of the north-west Atlantic Ocean using stable isotope analysis. Journal of 

the Marine Biological Association of the United Kingdom, 83(6), 1347-1350.  

Fangue, N. A., & Bennett, W. A. (2003). Thermal tolerance responses of laboratory-

acclimated and seasonally acclimatized Atlantic stingray, Dasyatis sabina. Copeia, 2003(2), 

315-325.  

Farrugia, T. J., Espinoza, M., & Lowe, C. G. (2011). Abundance, habitat use and movement 

patterns of the shovelnose guitarfish (Rhinobatos productus) in a restored southern California 

estuary. Marine and Freshwater Research, 62(6), 648-657.  

Felley, J. D., & Felley, S. M. (1986). Habitat partitioning of fishes in an urban, estuarine 

bayou. Estuaries, 9(3), 208-218.  

Fisk, A. T., Tittlemier, S. A., Pranschke, J. L., & Norstrom, R. J. (2002). Using 

anthropogenic contaminants and stable isotopes to assess the feeding ecology of Greenland 

sharks. Ecology, 83(8), 2162-2172.  

Flowers, K. I., Ajemian, M. J., Bassos-Hull, K., Feldheim, K. A., Hueter, R. E., 

Papastamatiou, Y. P., & Chapman, D. D. (2016). A review of batoid philopatry, with 

implications for future research and population management. Marine Ecology Progress 

Series, 562, 251-261. doi:10.3354/meps11963 

Forin-Wiart, M. A., Hubert, P., Sirguey, P., & Poulle, M. L. (2015). Performance and 

accuracy of lightweight and low-cost GPS data loggers according to antenna positions, fix 

intervals, habitats and animal movements. PLoS One, 10(6), e0129271. 

doi:10.1371/journal.pone.0129271 

Fowler, S. L., & Cavanagh, R. D. (2005). Sharks, rays and chimaeras: the status of the 

Chondrichthyan fishes: status survey (Vol. 63): IUCN. 

Frair, J. L., Fieberg, J., Hebblewhite, M., Cagnacci, F., DeCesare, N. J., & Pedrotti, L. 

(2010). Resolving issues of imprecise and habitat-biased locations in ecological analyses 

using GPS telemetry data. Philosophical Transactions of the Royal Society B: Biological 

Sciences, 365(1550), 2187-2200. doi:10.1098/rstb.2010.0084 

France, R., & Peters, R. (1997). Ecosystem differences in the trophic enrichment of 13C in 

aquatic food webs. Canadian Journal of Fisheries and Aquatic Sciences, 54(6), 1255-1258.  



 

110 
 

Francis, M. P. (2013). Temporal and spatial patterns of habitat use by juveniles of a small 

coastal shark (Mustelus lenticulatus) in an estuarine nursery. PLoS One, 8(2), e57021.  

Freitas, R. H. A. d., Rosa, R. S., Wetherbee, B. M., & Gruber, S. H. (2009). Population size 

and survivorship for juvenile lemon sharks (Negaprion brevirostris) on their nursery grounds 

at a marine protected area in Brazil. Neotropical Ichthyology, 7(2), 205-212.  

Frisk, M. G. (2010). Life history strategies of batoids. In Sharks and Their Relatives II (pp. 

299-332): CRC Press. 

Froeschke, J. T., Stunz, G. W., Sterba-Boatwright, B., & Wildhaber, M. L. (2010). An 

empirical test of the ‘shark nursery area concept’ in Texas bays using a long-term fisheries-

independent data set. Aquatic Biology, 11(1), 65-76. doi:10.3354/ab00290 

Garrone Neto, D., & Uieda, V. S. (2012). Activity and habitat use of two species of stingrays 

(Myliobatiformes: Potamotrygonidae) in the upper Paraná River basin, Southeastern Brazil. 

Neotropical Ichthyology, 10(1), 81-88.  

GBRMPA. (2019). Great Barrier Reef Outlook Report. Retrieved from 

http://elibrary.gbrmpa.gov.au/jspui/handle/11017/3474 

George, L. W., Martins, A. P. B., Heupel, M. R., & Simpfendorfer, C. A. (2019). Fine-scale 

movements of juvenile blacktip reef sharks Carcharhinus melanopterus in a shallow 

nearshore nursery. Marine Ecology Progress Series, 623, 85-97. doi:10.3354/meps13010 

Gifford, A., Compagno, L. J. V., Levine, M., & Antoniou, A. (2007). Satellite tracking of 

whale sharks using tethered tags. Fisheries Research, 84(1), 17-24. 

doi:10.1016/j.fishres.2006.11.011 

Gilbert, F., Bonin, P., & Stora, G. (1995). Effect of bioturbation on denitrification in a marine 

sediment from the West Mediterranean littoral. Hydrobiologia, 304(1), 49-58.  

Goldman, K. J., Cailliet, G. M., Andrews, A. H., & Natanson, L. J. (2012). Assessing the age 

and growth of chondrichthyan fishes. In: J. C. Carrier, J. A. Musick & M. R. Heithaus (Eds.), 

Biology of Sharks and Their Relatives (pp. 423-451). Boca Raton: CRC Press. 

Gray, A. E., Mulligan, T. J., & Hannah, R. W. (1997). Food habits, occurrence, and 

population structure of the bat ray, Myliobatis californica, in Humboldt Bay, California. 

Environmental Biology of Fishes, 49(2), 227-238.  



 

111 
 

Grubbs, R. D., & Musick, J. A. (2007). Spatial delineation of summer nursery areas for 

juvenile sandbar sharks in Chesapeake Bay, Virginia. Paper presented at the American 

Fisheries Society Symposium. 

Grusha, D. S., & Patterson, M. R. (2005). Quantification of drag and lift imposed by pop-up 

satellite archival tags and estimation of the metabolic cost to cownose rays (Rhinoptera 

bonasus). Fishery Bulletin, 103(1), 63-70.  

Guttridge, T. L., Gruber, S. H., Franks, B. R., Kessel, S. T., Gledhill, K. S., Uphill, J., 

Krause, J., & Sims, D. W. (2012). Deep danger: intra-specific predation risk influences 

habitat use and aggregation formation of juvenile lemon sharks Negaprion brevirostris. 

Marine Ecology Progress Series, 445, 279-291.  

Hansen, M. C., & Riggs, R. A. (2008). Accuracy, precision, and observation rates of global 

positioning system telemetry collars. Journal of Wildlife Management, 72(2), 518-526. 

doi:10.2193/2006-493 

Hart, K. M., & Hyrenbach, K. D. (2009). Satellite telemetry of marine megavertebrates: the 

coming of age of an experimental science. Endangered Species Research, 10, 9-20. 

doi:10.3354/esr00238 

Hayne, A. H. P., Poulakis, G. R., Seitz, J. C., & Sulikowski, J. A. (2018). Preliminary Age 

Estimates for Female Southern Stingrays (Hypanus americanus) from Southwestern Florida, 

USA. Gulf and Caribbean Research, SC1-SC4. doi:10.18785/gcr.2901.03 

Hazel, J. (2009). Evaluation of fast-acquisition GPS in stationary tests and fine-scale tracking 

of green turtles. Journal of Experimental Marine Biology and Ecology, 374(1), 58-68. 

doi:10.1016/j.jembe.2009.04.009 

Hebblewhite, M., & Haydon, D. T. (2010). Distinguishing technology from biology: a critical 

review of the use of GPS telemetry data in ecology. Philos Trans R Soc Lond B Biol Sci, 

365(1550), 2303-2312. doi:10.1098/rstb.2010.0087 

Heithaus, M. R. (2007). Nursery areas as essential shark habitats: a theoretical perspective. 

Paper presented at the American Fisheries Society Symposium. 

Heithaus, M. R., Frid, A., Vaudo, J. J., Worm, B., & Wirsing, A. J. (2010). Unraveling the 

ecological importance of elasmobranchs. In Sharks and their Relatives II (pp. 627-654): CRC 

Press. 



 

112 
 

Henderson, A. C., McClellan, K., & Calosso, M. (2010). Preliminary assessment of a 

possible lemon shark nursery in the Turks & Caicos Islands, British West Indies. Caribbean 

Journal of Science, 46(1), 29-39.  

Heupel, M., Papastamatiou, Y. P., Espinoza, M., Green, M. E., & Simpfendorfer, C. A. 

(2019). Reef shark science–key questions and future directions. Frontiers in Marine Science, 

6, 12.  

Heupel, M., Semmens, J. M., & Hobday, A. (2006). Automated acoustic tracking of aquatic 

animals: scales, design and deployment of listening station arrays. Marine and Freshwater 

Research, 57(1), 1-13.  

Heupel, M., & Simpfendorfer, C. (2002). Estimation of mortality of juvenile blacktip sharks, 

Carcharhinus limbatus, within a nursery area using telemetry data. Canadian Journal of 

Fisheries and Aquatic Sciences, 59(4), 624-632.  

Heupel, M., & Simpfendorfer, C. (2005). Using acoustic monitoring to evaluate MPAs for 

shark nursery areas: the importance of long-term data. Marine Technology Society Journal, 

39(1), 10-18.  

Heupel, M. R., Carlson, J. K., & Simpfendorfer, C. A. (2007). Shark nursery areas: concepts, 

definition, characterization and assumptions. Marine Ecology Progress Series, 337, 287-297.   

Heupel, M. R., & Hueter, R. E. (2002). Importance of prey density in relation to the 

movement patterns of juvenile blacktip sharks (Carcharhinus limbatus) within a coastal 

nursery area. Marine and Freshwater Research, 53(2), 543-550.  

Heupel, M. R., Kanno, S., Martins, A. P., & Simpfendorfer, C. A. (2019). Advances in 

understanding the roles and benefits of nursery areas for elasmobranch populations. Marine 

and Freshwater Research, 70(7), 897-907. doi:10.1071/mf18081 

Heupel, M. R., Munroe, S. E., Lédée, E. J., Chin, A., & Simpfendorfer, C. A. (2019). 

Interspecific interactions, movement patterns and habitat use in a diverse coastal shark 

assemblage. Marine Biology, 166(6), 68.  

Heupel, M. R., Semmens, J. M., & Hobday, A. J. (2006). Automated acoustic tracking of 

aquatic animals: scales, design and deployment of listening station arrays. Marine and 

Freshwater Research, 57(1), 1-13.  



 

113 
 

Heupel, M. R., & Simpfendorfer, C. A. (2008). Movement and distribution of young bull 

sharks Carcharhinus leucas in a variable estuarine environment. Aquatic Biology, 1(3), 277-

289.  

Heupel, M. R., & Simpfendorfer, C. A. (2011). Estuarine nursery areas provide a low-

mortality environment for young bull sharks Carcharhinus leucas. Marine Ecology Progress 

Series, 433, 237-244.  

Heupel, M. R., Simpfendorfer, C. A., Espinoza, M., Smoothey, A. F., Tobin, A., & 

Peddemors, V. (2015). Conservation challenges of sharks with continental scale migrations. 

Frontiers in Marine Science, 2, 12. doi:10.3389/fmars.2015.00012 

Higgins. (2018). How hot is too hot? The effects of elevated temperatures upon two species of 

juvenile stingrays. (Bachelor of Science with Honours), James Cook University, Townsville, 

Australia.  

Hoff, G. R. (2007). Reproductive biology of the Alaska skate, Bathyraja Parmifera, with 

regard to nursery sites, embryo development, and predation. University of Washington,  

Hoff, G. R. (2008). A nursery site of the Alaska skate (Bathyraja parmifera) in the eastern 

Bering Sea. Fishery Bulletin, 106(3), 233-244.  

Hoff, G. R. (2010). Identification of skate nursery habitat in the eastern Bering Sea. Marine 

Ecology Progress Series, 403, 243-254. doi:10.3354/meps08424 

Hoff, G. R. (2016). Identification of multiple nursery habitats of skates in the eastern Bering 

Sea. Journal of Fish Biology, 88(5), 1746-1757. doi:10.1111/jfb.12939 

Holden, M. (1974). Problems in the rational exploitation of elasmobranch populations and 

some suggested solutions. Sea Fisheries Research, 117-137.  

Hopkins, T. E., & Cech, J. J. (2003). The influence of environmental variables on the 

distribution and abundance of three elasmobranchs in Tomales Bay, California. 

Environmental Biology of Fishes, 66(3), 279-291.  

Hopley, D., Slocombe, A., Muir, F., & Grant, C. (1983). Nearshore fringing reefs in North 

Queensland. Coral Reefs, 1(3), 151-160.  

Hopley, D., Slocombe, A. M., Muir, F., & Grant, C. (1983). Nearshore Fringing Reefs in 

North Queensland. Coral Reefs, 1(3), 151-160.  



 

114 
 

Hughes, T. P., Anderson, K. D., Connolly, S. R., Heron, S. F., Kerry, J. T., Lough, J. M., 

Baird, A. H., Baum, J. K., Berumen, M. L., & Bridge, T. C. (2018). Spatial and temporal 

patterns of mass bleaching of corals in the Anthropocene. Science, 359(6371), 80-83.  

Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, 

R., Hoegh-Guldberg, O., Jackson, J. B., & Kleypas, J. (2003). Climate change, human 

impacts, and the resilience of coral reefs. Science, 301(5635), 929-933.  

Hunt, J. C., Lindsay, D. J., & Shahalemi, R. R. (2011). A nursery site of the golden skate 

(Rajiformes: Rajidae: Bathyraja smirnovi) on the Shiribeshi Seamount, Sea of Japan. Marine 

Biodiversity Records, 4. doi:10.1017/s1755267211000728 

Hunter, E., Berry, F., Buckley, A. A., Stewart, C., & Metcalfe, J. D. (2006). Seasonal 

migration of thornback rays and implications for closure management. Journal of Applied 

Ecology, 43(4), 710-720.  

Hussey, N. E., DiBattista, J. D., Moore, J. W., Ward, E. J., Fisk, A. T., Kessel, S., Guttridge, 

T. L., Feldheim, K. A., Franks, B. R., & Gruber, S. H. (2017). Risky business for a juvenile 

marine predator? Testing the influence of foraging strategies on size and growth rate under 

natural conditions. Proceedings of the Royal Society B: Biological Sciences, 284(1852), 

20170166.  

Hussey, N. E., Dudley, S. F. J., McCarthy, Ian D., Cliff, G., & Fisk, Aaron T. (2011). Stable 

isotope profiles of large marine predators: viable indicators of trophic position, diet, and 

movement in sharks? Canadian Journal of Fisheries and Aquatic Sciences, 68(12), 2029-

2045. doi:10.1139/f2011-115 

Hussey, N. E., Kessel, S. T., Aarestrup, K., Cooke, S. J., Cowley, P. D., Fisk, A. T., Harcourt, 

R. G., Holland, K. N., Iverson, S. J., Kocik, J. F., Mills Flemming, J. E., & Whoriskey, F. G. 

(2015). Aquatic animal telemetry: A panoramic window into the underwater world. Science, 

348(6240), 1255642. doi:10.1126/science.1255642 

Hussey, N. E., MacNeil, M. A., McMeans, B. C., Olin, J. A., Dudley, S. F., Cliff, G., 

Wintner, S. P., Fennessy, S. T., & Fisk, A. T. (2014). Rescaling the trophic structure of 

marine food webs. Ecology Letters, 17(2), 239-250.  

Hussey, N. E., MacNeil, M. A., Olin, J. A., McMeans, B. C., Kinney, M. J., Chapman, D. D., 

& Fisk, A. T. (2012). Stable isotopes and elasmobranchs: tissue types, methods, applications 



 

115 
 

and assumptions. Journal of Fish Biology, 80(5), 1449-1484. doi:10.1111/j.1095-

8649.2012.03251.x 

Hussey, N. E., McCarthy, I. D., Dudley, S. F., & Mann, B. Q. (2009). Nursery grounds, 

movement patterns and growth rates of dusky sharks, Carcharhinus obscurus: a long-term 

tag and release study in South African waters. Marine and Freshwater Research, 60(6), 571-

583.  

Jabado, R. W., Kyne, P. M., Pollom, R. A., Ebert, D. A., Simpfendorfer, C. A., Ralph, G. M., 

Al Dhaheri, S. S., Akhilesh, K. V., Ali, K., Ali, M. H., Al Mamari, T. M. S., Bineesh, K. K., 

El Hassan, I. S., Fernando, D., Grandcourt, E. M., Khan, M. M., Moore, A. B. M., Owfi, F., 

Robinson, D. P., Romanov, E., Soares, A.-L., Spaet, J. L. Y., Tesfamichael, D., Valinassab, 

T., & Dulvy, N. K. (2018). Troubled waters: Threats and extinction risk of the sharks, rays 

and chimaeras of the Arabian Sea and adjacent waters. Fish and Fisheries, 19(6), 1043-1062. 

doi:10.1111/faf.12311 

Jackson, A. L., Inger, R., Parnell, A. C., & Bearhop, S. (2011). Comparing isotopic niche 

widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. 

Journal of Animal Ecology, 80(3), 595-602.  

Jacobsen, I. P., & Bennett, M. B. (2012). Feeding ecology and dietary comparisons among 

three sympatric Neotrygon (Myliobatoidei: Dasyatidae) species. Journal of Fish Biology, 

80(5), 1580-1594. doi:10.1111/j.1095-8649.2011.03169.x 

Jacobsen, I. P., & Bennett, M. B. (2013). A comparative analysis of feeding and trophic level 

ecology in stingrays (Rajiformes; Myliobatoidei) and electric rays (Rajiformes: 

Torpedinoidei). PLoS One, 8(8), e71348.  

Jenkins, S. G., Partridge, S. T., Stephenson, T. R., Farley, S. D., & Robbins, C. T. (2001). 

Nitrogen and carbon isotope fractionation between mothers, neonates, and nursing offspring. 

Oecologia, 129(3), 336-341.  

Jirik, K., & Lowe, C. (2012). An elasmobranch maternity ward: female round stingrays 

Urobatis halleri use warm, restored estuarine habitat during gestation. Journal of Fish 

Biology, 80(5), 1227-1245.  



 

116 
 

Kajiura, S. M., Macesic, L. J., Meredith, T. L., Cocks, K. L., & Dirk, L. J. (2009). 

Commensal foraging between Double-crested Cormorants and a Southern stingray. The 

Wilson Journal of Ornithology, 646-648.  

Kanno, S., Schlaff, A. M., Heupel, M. R., & Simpfendorfer, C. A. (2019). Stationary video 

monitoring reveals habitat use of stingrays in mangroves. Marine Ecology Progress Series, 

621, 155-168.  

Kathiresan, K. (2012). Importance of mangrove ecosystem. International Journal of Marine 

Science, 2(10), 70-89.  

Keeney, D., Heupel, M., Hueter, R., & Heist, E. (2005). Microsatellite and mitochondrial 

DNA analyses of the genetic structure of blacktip shark (Carcharhinus limbatus) nurseries in 

the northwestern Atlantic, Gulf of Mexico, and Caribbean Sea. Molecular Ecology, 14(7), 

1911-1923.  

Kemper, J. M., Bizzarro, J. J., & Ebert, D. A. (2017). Dietary variability in two common 

Alaskan skates (Bathyraja interrupta and Raja rhina). Marine Biology, 164(3), 52.  

Kinney, M. J., Hussey, N. E., Fisk, A. T., Tobin, A. J., & Simpfendorfer, C. A. (2011). 

Communal or competitive? Stable isotope analysis provides evidence of resource partitioning 

within a communal shark nursery. Marine Ecology Progress Series, 439, 263-276. 

doi:10.3354/meps09327 

Kinney, M. J., & Simpfendorfer, C. A. (2009). Reassessing the value of nursery areas to 

shark conservation and management. Conservation Letters, 2(2), 53-60.  

Kiszka, J. J., Heithaus, M. R., & Quod, J.-P. (2014). Stingrays as possible facilitators for 

foraging trevallies in a nearshore sandflat. Marine Biodiversity. doi:10.1007/s12526-014-

0304-6 

Knip, D. M., Heupel, M. R., & Simpfendorfer, C. A. (2010). Sharks in nearshore 

environments: models, importance, and consequences. Marine Ecology Progress Series, 402, 

1-11. doi:10.3354/meps08498 

Knip, D. M., Heupel, M. R., & Simpfendorfer, C. A. (2012). Evaluating marine protected 

areas for the conservation of tropical coastal sharks. Biological Conservation, 148(1), 200-

209.  



 

117 
 

Knowlton, N. (2001). The future of coral reefs. Proceedings of the National Academy of 

Sciences, 98(10), 5419-5425.  

Kogure, K., & Wada, M. (2005). Impacts of macrobenthic bioturbation in marine sediment 

on bacterial metabolic activity. Microbes and Environments, 20(4), 191-199.  

Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics 

in mangrove ecosystems: a review. Aquatic Botany, 89(2), 201-219.  

Last, P., Naylor, G., Séret, B., White, W., de Carvalho, M., & Stehmann, M. (2016). Rays of 

the World: CSIRO publishing. 

Last, P. R., Naylor, G. J., & Manjaji-Matsumoto, B. M. (2016). A revised classification of the 

family Dasyatidae (Chondrichthyes: Myliobatiformes) based on new morphological and 

molecular insights. Zootaxa, 4139(3), 345-368. doi:10.11646/zootaxa.4139.3.2 

Laverock, B., Gilbert, J. A., Tait, K., Osborn, A. M., & Widdicombe, S. (2011). Bioturbation: 

impact on the marine nitrogen cycle. Biochemical Society Transactions, 39, 315–320. 

Layman, C. A., Araujo, M. S., Boucek, R., Hammerschlag‐Peyer, C. M., Harrison, E., Jud, Z. 

R., Matich, P., Rosenblatt, A. E., Vaudo, J. J., & Yeager, L. A. (2012). Applying stable 

isotopes to examine food‐web structure: an overview of analytical tools. Biological Reviews, 

87(3), 545-562.  

Le Port, A., & Lavery, S. (2012). Population structure and phylogeography of the short-tailed 

stingray, Dasyatis brevicaudata (Hutton 1875), in the Southern Hemisphere. Journal of 

Heredity, 103(2), 174-185. doi:10.1093/jhered/esr131 

Le Port, A., Lavery, S., & Montgomery, J. (2012). Conservation of coastal stingrays: seasonal 

abundance and population structure of the short-tailed stingray Dasyatis brevicaudata at a 

Marine Protected Area. ICES Journal of Marine Science, 69(8), 1427-1435. 

doi:10.1093/icesjms/fss120 

Le Port, A., Sippel, T., & Montgomery, J. C. (2008). Observations of mesoscale movements 

in the short-tailed stingray, Dasyatis brevicaudata from New Zealand using a novel PSAT tag 

attachment method. Journal of Experimental Marine Biology and Ecology, 359(2), 110-117. 

doi:10.1016/j.jembe.2008.02.024 

Lee, S. Y., Primavera, J. H., Dahdouh‐Guebas, F., McKee, K., Bosire, J. O., Cannicci, S., 

Diele, K., Fromard, F., Koedam, N., & Marchand, C. (2014). Ecological role and services of 



 

118 
 

tropical mangrove ecosystems: a reassessment. Global Ecology and Biogeography, 23(7), 

726-743.  

Lewis, T. C. (1983). The reproductive anatomy, seasonal cycles, and development of the 

Atlantic stingray, Dasyatis sabina (Pisces, Dasyatidae) from the Northeastern Gulf of 

Mexico. (Ph.D. Dissertation). Florida State University, Tallahassee, FL. 

Logan, J. M., & Lutcavage, M. E. (2010). Stable isotope dynamics in elasmobranch fishes. 

Hydrobiologia, 644(1), 231-244.  

Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., 

Kidwell, S. M., Kirby, M. X., Peterson, C. H., & Jackson, J. B. (2006). Depletion, 

degradation, and recovery potential of estuaries and coastal seas. Science, 312(5781), 1806-

1809.  

Love, M. S., Schroeder, D. M., Snook, L., York, A., & Cochrane, G. (2008). All their eggs in 

one basket: a rocky reef nursery for the longnose skate (Raja rhina Jordan & Gilbert, 1880) 

in the southern California Bight. Fishery Bulletin, 106(4), 471-475.  

Lynn-Myrick, J., & Flessa, K. (1996). Bioturbation rates in Bahía la Choya, Sonora, Mexico. 

Ciencias Marinas, 22(1), 23-46.  

Mabragana, E., & Giberto, D. A. (2007). Feeding ecology and abundance of two sympatric 

skates, the shortfin sand skate Psammobatis normani McEachran, and the smallthorn sand 

skate P. rudis Günther (Chondrichthyes, Rajidae), in the southwest Atlantic. ICES Journal of 

Marine Science, 64(5), 1017-1027.  

MacNeil, M. A., Drouillard, K. G., & Fisk, A. T. (2006). Variable uptake and elimination of 

stable nitrogen isotopes between tissues in fish. Canadian Journal of Fisheries and Aquatic 

Sciences, 63(2), 345-353.  

MacNeil, M. A., Graham, N. A., Cinner, J. E., Wilson, S. K., Williams, I. D., Maina, J., 

Newman, S., Friedlander, A. M., Jupiter, S., & Polunin, N. V. (2015). Recovery potential of 

the world's coral reef fishes. Nature, 520(7547), 341.  

MacNeil, M. A., Skomal, G. B., & Fisk, A. T. (2005). Stable isotopes from multiple tissues 

reveal diet switching in sharks. Marine Ecology Progress Series, 302, 199-206.  



 

119 
 

Manjaji Matsumoto, B. M., White, W. T., Fahmi, I., H., & Morgan, D. L. (2016). Urogymnus 

granulatus. The IUCN Red List of Threatened Species. Retrieved from 

https://www.iucnredlist.org/species/161431/104280437 

Marshall, A., Kyne, P., & Bennett, M. (2008). Comparing the diet of two sympatric urolophid 

elasmobranchs (Trygonoptera testacea Müller & Henle and Urolophus kapalensis Yearsley 

& Last): evidence of ontogenetic shifts and possible resource partitioning. Journal of Fish 

Biology, 72(4), 883-898.  

Martins, A. P. B., Heupel, M. R., Chin, A., & Simpfendorfer, C. A. (2018). Batoid nurseries: 

definition, use and importance. Marine Ecology Progress Series, 595, 253-267. 

doi:10.3354/meps12545 

Martins, A. P. B., Heupel, M. R., Oakley-Cogan, A., Chin, A., & Simpfendorfer, C. A. 

(2019). Towed-float GPS telemetry: a tool to assess movement patterns and habitat use of 

juvenile stingrays. Marine and Freshwater Research. doi:10.1071/mf19048 

Martins, R. R., Assuncao, R., & Schwingel, P. R. (2009). Distribuição e abundância de 

Narcine brasiliensis (Olfers, 1931) (Elasmobranchii, Narcinidae) no litoral norte do Estado 

de Santa Catarina, Brasil. Pan-American Journal of Aquatic Sciences, 4(4), 423-435.  

Matern, S. A., Cech, J. J., & Hopkins, T. E. (2000). Diel movements of bat rays, Myliobatis 

californica, in Tomales Bay, California: evidence for behavioral thermoregulation? 

Environmental Biology of Fishes, 58(2), 173-182.  

Matley, J., Fisk, A. T., Tobin, A. J., Heupel, M. R., & Simpfendorfer, C. A. (2016). Diet‐

tissue discrimination factors and turnover of carbon and nitrogen stable isotopes in tissues of 

an adult predatory coral reef fish, Plectropomus leopardus. Rapid Communications in Mass 

Spectrometry, 30(1), 29-44.  

Matley, J., Heupel, M., Fisk, A., Simpfendorfer, C., & Tobin, A. (2017). Measuring niche 

overlap between co-occurring Plectropomus spp. using acoustic telemetry and stable isotopes. 

Marine and Freshwater Research, 68(8), 1468-1478.  

Matley, J., Tobin, A., Simpfendorfer, C., Fisk, A., & Heupel, M. (2017). Trophic niche and 

spatio-temporal changes in the feeding ecology of two sympatric species of coral trout 

(Plectropomus leopardus and P. laevis). Marine Ecology Progress Series, 563, 197-210.  



 

120 
 

McCandless, C. T., Kohler, N. E., & Pratt, H. L. (2007). Shark nursery grounds of the Gulf of 

Mexico and the east coast waters of the United States: American Fisheries Society. 

McElroy, W. D., Wetherbee, B. M., Mostello, C. S., Lowe, C. G., Crow, G. L., & Wass, R. 

C. (2006). Food habits and ontogenetic changes in the diet of the sandbar shark, 

Carcharhinus plumbeus, in Hawaii. Environmental Biology of Fishes, 76(1), 81-92.  

McMeans, B., Olin, J., & Benz, G. (2009). Stable‐isotope comparisons between embryos and 

mothers of a placentatrophic shark species. Journal of Fish Biology, 75(10), 2464-2474.  

McMeans, B. C., Arts, M. T., Lydersen, C., Kovacs, K. M., Hop, H., Falk-Petersen, S., & 

Fisk, A. T. (2013). The role of Greenland sharks (Somniosus microcephalus) in an Arctic 

ecosystem: assessed via stable isotopes and fatty acids. Marine Biology, 160(5), 1223-1238. 

doi:10.1007/s00227-013-2174-z 

McPeek, M. A. (2014). Limiting factors, competitive exclusion, and a more expansive view 

of species coexistence. The American Naturalist, 183(3), iii-iv.  

Meek, A. (1916). The migrations of fish. London, UK: Edward Arnold. 

Mendonca, S. A., Macena, B. C. L., Afonso, A. S., & Hazin, F. H. V. (2018). Seasonal 

aggregation and diel activity by the sicklefin devil ray Mobula tarapacana off a small, 

equatorial outcrop of the Mid-Atlantic Ridge. Journal of Fish Biology, 93(6), 1121-1129. 

doi:10.1111/jfb.13829 

Morales, J. M., Moorcroft, P. R., Matthiopoulos, J., Frair, J. L., Kie, J. G., Powell, R. A., 

Merrill, E. H., & Haydon, D. T. (2010). Building the bridge between animal movement and 

population dynamics. Philosophical Transactions of the Royal Society B: Biological 

Sciences, 365(1550), 2289-2301.  

Morgan, D. L., Allen, M. G., Ebner, B. C., Whitty, J. M., & Beatty, S. J. (2015). Discovery of 

a pupping site and nursery for critically endangered green sawfish Pristis zijsron. Journal of 

Fish Biology, 86(5), 1658-1663. doi:10.1111/jfb.12668 

Morrissey, J. F., & Gruber, S. H. (1993). Habitat selection by juvenile lemon sharks, 

Negaprion brevirostris. Environmental Biology of Fishes, 38(4), 311-319.  

Munroe, S., Simpfendorfer, C., & Heupel, M. (2014). Defining shark ecological 

specialisation: concepts, context, and examples. Reviews in Fish Biology and Fisheries, 

24(1), 317-331.  



 

121 
 

Munroe, S. E., Heupel, M. R., Fisk, A. T., Logan, M., & Simpfendorfer, C. A. (2015). 

Regional movement patterns of a small-bodied shark revealed by stable-isotope analysis. 

Journal of Fish Biology, 86(5), 1567-1586. doi:10.1111/jfb.12660 

Navarro-González, J., Bohórquez-Herrera, J., Navia, A., & Cruz-Escalona, V. (2012). Diet 

composition of batoids on the continental shelf off Nayarit and Sinaloa, Mexico. Ciencias 

Marinas, 38(2), 347-362.  

Navia, A. F., Mejía-Falla, P. A., & Giraldo, A. (2007). Feeding ecology of elasmobranch 

fishes in coastal waters of the Colombian Eastern Tropical Pacific. BMC Ecology, 7(1), 8.  

Navia, A. F., Mejía-Falla, P. A., López-García, J., Giraldo, A., & Cruz-Escalona, V. H. 

(2017). How many trophic roles can elasmobranchs play in a marine tropical network? 

Marine and Freshwater Research, 68(7), 1342-1353. doi:10.1071/mf16161 

Newman, S. P., Handy, R. D., & Gruber, S. H. (2010). Diet and prey preference of juvenile 

lemon sharks Negaprion brevirostris. Marine Ecology Progress Series, 398, 221-234.  

Newsome, S. D., Martinez del Rio, C., Bearhop, S., & Phillips, D. L. (2007). A niche for 

isotopic ecology. Frontiers in Ecology and the Environment, 5(8), 429-436.  

Norton, S. L., Wiley, T. R., Carlson, J. K., Frick, A. L., Poulakis, G. R., & Simpfendorfer, C. 

A. (2012). Designating Critical Habitat for Juvenile Endangered Smalltooth Sawfish in the 

United States. Marine and Coastal Fisheries, 4(1), 473-480. 

doi:10.1080/19425120.2012.676606 

O'Shea, O. R., Thums, M., van Keulen, M., Kempster, R. M., & Meekan, M. G. (2013). 

Dietary partitioning by five sympatric species of stingray (Dasyatidae) on coral reefs. Journal 

of Fish Biology, 82(6), 1805-1820. doi:10.1111/jfb.12104 

O'Shea, O. R., Thums, M., van Keulen, M., & Meekan, M. (2012). Bioturbation by stingrays 

at Ningaloo Reef, Western Australia. Marine and Freshwater Research, 63(3), 189-197.  

Ogburn, M. B., Harrison, A.-L., Whoriskey, F. G., Cooke, S. J., Mills Flemming, J. E., & 

Torres, L. G. (2017). Addressing Challenges in the Application of Animal Movement 

Ecology to Aquatic Conservation and Management. Frontiers in Marine Science, 4. 

doi:10.3389/fmars.2017.00070 

Olin, J. A., Hussey, N. E., Fritts, M., Heupel, M. R., Simpfendorfer, C. A., Poulakis, G. R., & 

Fisk, A. T. (2011). Maternal meddling in neonatal sharks: implications for interpreting stable 



 

122 
 

isotopes in young animals. Rapid Communications in Mass Spectrometry, 25(8), 1008-1016. 

doi:10.1002/rcm.4946 

Otaki, T., Hamana, M., Tanoe, H., Miyazaki, N., Shibuno, T., & Komatsu, T. (2015). Three-

dimensional mapping of red stingray (Dasyatis akajei) movement with reference to bottom 

topography. Ocean Science Journal, 50(2), 327-334.  

Pandolfi, J. M., Bradbury, R. H., Sala, E., Hughes, T. P., Bjorndal, K. A., Cooke, R. G., 

McArdle, D., McClenachan, L., Newman, M. J., & Paredes, G. (2003). Global trajectories of 

the long-term decline of coral reef ecosystems. Science, 301(5635), 955-958.  

Papastamatiou, Y. P., Friedlander, A. M., Caselle, J. E., & Lowe, C. G. (2010). Long-term 

movement patterns and trophic ecology of blacktip reef sharks (Carcharhinus melanopterus) 

at Palmyra Atoll. Journal of Experimental Marine Biology and Ecology, 386(1-2), 94-102.  

Papastamatiou, Y. P., & Lowe, C. G. (2012). An analytical and hypothesis-driven approach 

to elasmobranch movement studies. Journal of Fish Biology, 80(5), 1342-1360. 

doi:10.1111/j.1095-8649.2012.03232.x 

Papastamatiou, Y. P., Lowe, C. G., Caselle, J. E., & & Friedlander, A. M. (2009). Scale‐

dependent effects of habitat on movements and path structure of reef sharks at a predator‐

dominated atoll. Ecology, 90(4), 996-1008.  

Pardo, S. A., Burgess, K. B., Teixeira, D., & Bennett, M. B. (2015). Local-scale resource 

partitioning by stingrays on an intertidal flat. Marine Ecology Progress Series, 533, 205-218. 

doi:10.3354/meps11358 

Parnell, K. (1986). Water movement within a fringing reef flat, Orpheus Island, North 

Queensland, Australia. Coral Reefs, 5(1), 1-6.  

Pianka, E. (2011). Evolutionary Ecology. Retrieved from 

https://books.google.com.au/books?hl=en&lr=&id=giFL5bonGhQC&oi=fnd&pg=PA1&dq=

Evolutionary+Ecology&ots=NBa_wmAQMu&sig=8V1JsVOMWXUs1vrRYLqaRtfvswU#v

=onepage&q=Evolutionary%20Ecology&f=false  

Pianka, E. R. (1974). Niche overlap and diffuse competition. Proceedings of the National 

Academy of Sciences, 71(5), 2141-2145.  



 

123 
 

Pierce, S. J., Scott-Holland, T. B., & Bennett, M. B. (2011). Community Composition of 

Elasmobranch Fishes Utilizing Intertidal Sand Flats in Moreton Bay, Queensland, Australia. 

Pacific Science, 65(2), 235-247. doi:10.2984/65.2.235 

Platell, M., Potter, I., & Clarke, K. (1998). Resource partitioning by four species of 

elasmobranchs (Batoidea: Urolophidae) in coastal waters of temperate Australia. Marine 

Biology, 131(4), 719-734.  

Plummer, M. (2013). rjags: Bayesian graphical models using MCMC. R package version, 

3(10).  

Post, D. M. (2002). Using stable isotopes to estimate trophic position: models, methods, and 

assumptions. Ecology, 83(3), 703-718.  

Post, D. M., Layman, C. A., Arrington, D. A., Takimoto, G., Quattrochi, J., & Montana, C. 

G. (2007). Getting to the fat of the matter: models, methods and assumptions for dealing with 

lipids in stable isotope analyses. Oecologia, 152(1), 179-189.  

Poulakis, G. R., Stevens, P. W., Timmers, A. A., Stafford, C. J., & Simpfendorfer, C. A. 

(2012). Movements of juvenile endangered smalltooth sawfish, Pristis pectinata, in an 

estuarine river system: use of non-main-stem river habitats and lagged responses to 

freshwater inflow-related changes. Environmental Biology of Fishes, 96(6), 763-778. 

doi:10.1007/s10641-012-0070-x 

Poulakis, G. R., Stevens, P. W., Timmers, A. A., Wiley, T. R., & Simpfendorfer, C. A. 

(2011). Abiotic affinities and spatiotemporal distribution of the endangered smalltooth 

sawfish, Pristis pectinata, in a south-western Florida nursery. Marine and Freshwater 

Research, 62(10), 1165. doi:10.1071/mf11008 

Quattrini, A. M., Partyka, M. L., & Ross, S. W. (2009). Aspects of the Reproductive Biology 

of the Skate Fenestraja plutonia (Garman) off North Carolina. Southeastern Naturalist, 8(1), 

55-70. doi:10.1656/058.008.0106 

R Core Team. (2017). R: A Language and Environment for Statistical Computing. Vienna, 

Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/ 

Rahmstorf, S. (2007). A semi-empirical approach to projecting future sea-level rise. Science, 

315(5810), 368-370.  



 

124 
 

Rahmstorf, S., Cazenave, A., Church, J. A., Hansen, J. E., Keeling, R. F., Parker, D. E., & 

Somerville, R. C. (2007). Recent climate observations compared to projections. Science, 

316(5825), 709-709.  

Rastgoo, A. R., Navarro, J., & Valinassab, T. (2018). Comparative diets of sympatric batoid 

elasmobranchs in the Gulf of Oman. Aquatic Biology, 27, 35-41. doi:10.3354/ab00694 

Riding, T. A. C., Dennis, T. E., Stewart, C. L., Walker, M. M., & Montgomery, J. C. (2009). 

Tracking fish using ‘buoy-based’ GPS telemetry. Marine Ecology Progress Series, 377, 255-

262. doi:10.3354/meps07809 

Robbins, W. D., Hisano, M., Connolly, S. R., & Choat, J. H. (2006). Ongoing collapse of 

coral-reef shark populations. Current Biology, 16(23), 2314-2319.  

Royer, F., & Lutcavage, M. (2008). Filtering and interpreting location errors in satellite 

telemetry of marine animals. Journal of Experimental Marine Biology and Ecology, 359(1), 

1-10. doi:10.1016/j.jembe.2008.01.026 

Ryan, P. G., Petersen, S. L., Peters, G., & Gremillet, D. (2004). GPS tracking a marine 

predator: the effects of precision, resolution and sampling rate on foraging tracks of African 

Penguins. Marine Biology, 145(2). doi:10.1007/s00227-004-1328-4 

Saadaoui, A., Saidi, B., Enajjar, S., & Bradai, M. N. (2015). Reproductive biology of the 

common stingray Dasyatis pastinaca (Linnaeus, 1758) off the Gulf of Gabès (Central 

Mediterranean Sea). Cahiers de Biologie Marine, 56, 389-396.  

Scharf, F. S., Juanes, F., & Rountree, R. A. (2000). Predator size-prey size relationships of 

marine fish predators: interspecific variation and effects of ontogeny and body size on 

trophic-niche breadth. Marine Ecology Progress Series, 208, 229-248.  

Schlaff, A. M., Heupel, M. R., & Simpfendorfer, C. A. (2014). Influence of environmental 

factors on shark and ray movement, behaviour and habitat use: a review. Reviews in Fish 

Biology and Fisheries, 24(4), 1089-1103. doi:10.1007/s11160-014-9364-8 

Schlaff, A. M., Heupel, M. R., Udyawer, V., & Simpfendorfer, C. A. (2017). Biological and 

environmental effects on activity space of a common reef shark on an inshore reef. Marine 

Ecology Progress Series, 571, 169-181.  



 

125 
 

Schmid, T. (1988). Age, growth, and movement patterns of the Atlantic stingray, Dasyatis 

sabina, in a Florida coastal lagoon. (MS Thesis). University of Central Florida, Orlando, 

Florida.  

Schoener, T. W. (1983). Field experiments on interspecific competition. The American 

Naturalist, 122(2), 240-285.  

Schofield, G., Bishop, C. M., MacLean, G., Brown, P., Baker, M., Katselidis, K. A., 

Dimopoulos, P., Pantis, J. D., & Hays, G. C. (2007). Novel GPS tracking of sea turtles as a 

tool for conservation management. Journal of Experimental Marine Biology and Ecology, 

347(1-2), 58-68. doi:10.1016/j.jembe.2007.03.009 

Semeniuk, C. A., & Dill, L. M. (2004). Cost/benefit analysis of group and solitary resting in 

the cowtail stingray, Pastinachus sephen. Behavioral Ecology, 16(2), 417-426.  

Semeniuk, C. A., & Dill, L. M. (2006). Anti‐predator benefits of mixed‐species groups of 

cowtail stingrays (Pastinachus sephen) and whiprays (Himantura uarnak) at rest. Ethology, 

112(1), 33-43.  

Serena, F., & Relini, G. (2005). Use of scientific campaigns (trawl surveys) for the 

knowledge of the sensitive habitats: A review of the medits, grund and aphia data with 

special attention to the Italian seas. In: N. Başusta, Ç. Keskin, F. Serena & B. Seret (Eds.), 

The Proceedings of the International Workshop on Mediterranean Cartilaginous Fish with 

Emphasis on Southern and Eastern Mediterranean (pp. 135–148). Istanbul, Turkey: Turkish 

Marine Research Foundation. 

Serra-Pereira, B., Erzini, K., Maia, C., & Figueiredo, I. (2014). Identification of potential 

essential fish habitats for skates based on fishers' knowledge. Environmental Management, 

53(5), 985-998. doi:10.1007/s00267-014-0257-3 

Sguotti, C., Lynam, C. P., García‐Carreras, B., Ellis, J. R., & Engelhard, G. H. (2016). 

Distribution of skates and sharks in the North Sea: 112 years of change. Global change 

biology, 22(8), 2729-2743.  

Sheaves, M. (2005). Nature and consequences of biological connectivity in mangrove 

systems. Marine Ecology Progress Series, 302, 293-305.  

Sheaves, M. (2009). Consequences of ecological connectivity: the coastal ecosystem mosaic. 

Marine Ecology Progress Series, 391, 107-115.  



 

126 
 

Shipley, O. N., Brownscombe, J. W., Danylchuk, A. J., Cooke, S. J., O’Shea, O. R., & 

Brooks, E. J. (2017). Fine-scale movement and activity patterns of Caribbean reef sharks 

(Carcharhinus perezi) in the Bahamas. Environmental Biology of Fishes, 101(7), 1097-1104. 

doi:10.1007/s10641-017-0656-4 

Shipley, O. N., Murchie, K. J., Frisk, M. G., O’Shea, O. R., Winchester, M. M., Brooks, E. J., 

Pearson, J., & Power, M. (2018). Trophic niche dynamics of three nearshore benthic 

predators in The Bahamas. Hydrobiologia, 813(1), 177-188.  

Silliman, W., & Gruber, S. H. (1999). Behavioral biology of the spotted eagle ray, Aetobatus 

narinari. Bahamas Journal of Science, 7, 13-20.  

Simpfendorfer, C., Chin, A., Rigby, C., Sherman, S., & White, W. (2019). Shark futures: a 

report card for Australia’s sharks and rays. Retrieved from 

https://www.frdc.com.au/Archived-Reports/FRDC%20Projects/2013-009-DLD.pdf 

Simpfendorfer, C. A., & Dulvy, N. K. (2017). Bright spots of sustainable shark fishing. 

Current Biology, 27(3), R97-R98. doi:10.1016/j.cub.2016.12.017 

Simpfendorfer, C. A., & Heupel, M. R. (2004). Assessing habitat use and movement. In: J. C. 

Carrier, J. A. Musick & M. R. Heithaus (Eds.), Biology of Sharks and Their Relatives (pp. 

553-572). Boca Raton: CRC Press. 

In: Musick, J.A., Heithaus, M.R. (Eds.), Biology of Sharksand their Relatives. CRC Press, Boca Raton, 

Simpfendorfer, C. A., & Milward, N. E. (1993). Utilisation of a tropical bay as a nursery area 

by sharks of the families Carcharhinidae and Sphyrnidae. Environmental Biology of Fishes, 

37(4), 337-345.  

Simpfendorfer, C. A., Wiley, T. R., & Yeiser, B. G. (2010). Improving conservation planning 

for an endangered sawfish using data from acoustic telemetry. Biological Conservation, 

143(6), 1460-1469.  

Simpfendorfer, C. A., Yeiser, B. G., Wiley, T. R., Poulakis, G. R., Stevens, P. W., & Heupel, 

M. R. (2011). Environmental influences on the spatial ecology of juvenile smalltooth sawfish 

(Pristis pectinata): results from acoustic monitoring. PLoS One, 6(2), e16918.  

Sims, D. W., Queiroz, N., Humphries, N. E., Lima, F. P., & Hays, G. C. (2009). Long-term 

GPS tracking of ocean sunfish Mola mola offers a new direction in fish monitoring. PLoS 

One, 4(10), e7351. doi:10.1371/journal.pone.0007351 



 

127 
 

Sims, D. W., Witt, M. J., Richardson, A. J., Southall, E. J., & Metcalfe, J. D. (2006). 

Encounter success of free-ranging marine predator movements across a dynamic prey 

landscape. Proceedings of the Royal Society B: Biological Sciences, 273(1591), 1195-1201. 

doi:10.1098/rspb.2005.3444 

Speed, C. W., Field, I. C., Meekan, M. G., & Bradshaw, C. J. A. (2010). Complexities of 

coastal shark movements and their implications for management. Marine Ecology Progress 

Series, 408, 275-293. doi:10.3354/meps08581 

Speed, C. W., O’Shea, O. R., & Meekan, M. G. (2013). Transmitter attachment and release 

methods for short-term shark and stingray tracking on coral reefs. Marine Biology, 160(4), 

1041-1050.  

Springer, S. (1967). Social organization of shark population. In: P. W. Gilbert, R. W. 

Mathewson, & D. P. Rall (Eds.), Sharks, skate and rays (pp. 149-174). Baltimore: John 

Hopkins Press 

Stevens, J. (2000). The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), 

and the implications for marine ecosystems. ICES Journal of Marine Science, 57(3), 476-494. 

doi:10.1006/jmsc.2000.0724 

Stevens, J. D., Walker, T. I., Cook, S. F., & Fordham, S. V. (2005). Threats faced by 

chondrichthyan fish. In: S. L. Fowler, R. Cavanagh, M. Camhi, G. H. Burgess, G. M. Caillet, 

S. Fordham, C. A. Simpfendorfer & J. A. Musick (Eds.), Sharks, rays and chimaeras: the 

status of the Chondrichthyan fishes (pp. 48–57). Gland, Switzerland and Cambridge, UK: 

IUCN Species Survival Commission Shark Specialist Group.  

Stevens, J. D., & West, G. J. (1997). Investigation of school and gummy shark nursery areas 

in southeastern Australia: CSIRO Marine Research Hobart, Australia. 

Stump, K., Crooks, C., Fitchett, M., Gruber, S., & Guttridge, T. (2017). Hunted hunters: an 

experimental test of the effects of predation risk on juvenile lemon shark habitat use. Marine 

Ecology Progress Series, 574, 85-95.  

Svedäng, H., Righton, D., & Jonsson, P. (2007). Migratory behaviour of Atlantic cod Gadus 

morhua: natal homing is the prime stock-separating mechanism. Marine Ecology Progress 

Series, 345, 1-12. doi:10.3354/meps07140 



 

128 
 

Takeuchi, S., & Tamaki, A. (2014). Assessment of benthic disturbance associated with 

stingray foraging for ghost shrimp by aerial survey over an intertidal sandflat. Continental 

Shelf Research, 84, 139-157.  

Tenzing, P. (2014). The eco-physiology of two species of tropical stingrays in an era of 

climate change. (PhD dissertation). James Cook University, Townsville, Australia. 

Thrush, S. F., Pridmore, R. D., Hewitt, J. E., & Cummings, V. J. (1991). Impact of ray 

feeding disturbances on sandflat macrobenthos: Do communities dominated by polychaetes 

or shellfish respond differently? Marine Ecology Progress Series, 69(3), 245-252.  

Tilley, A. (2011). Functional ecology of the southern stingray, Dasyatis americana. (PhD 

dissertation). Bangor University, UK. 

Tilley, A., & Strindberg, S. (2013). Population density estimation of southern stingrays 

Dasyatis americana on a Caribbean atoll using distance sampling. Aquatic Conservation: 

Marine and Freshwater Ecosystems, 23(2), 202-209.  

Treloar, M. A., Laurenson, L. J., & Stevens, J. D. (2007). Dietary comparisons of six skate 

species (Rajidae) in south-eastern Australian waters. Environmental Biology of Fishes, 80, 

181–196. 

Treude, T., Kiel, S., Linke, P., Peckmann, J., & Goedert, J. L. (2011). Elasmobranch egg 

capsules associated with modern and ancient cold seeps: a nursery for marine deep-water 

predators. Marine Ecology Progress Series, 437, 175-181. doi:10.3354/meps09305 

Van Cleave, E. K., Bidner, L. R., Ford, A. T., Caillaud, D., Wilmers, C. C., & Isbell, L. A. 

(2018). Diel patterns of movement activity and habitat use by leopards (Panthera pardus 

pardus) living in a human-dominated landscape in central Kenya. Biological Conservation, 

226, 224-237.  

VanBlaricom, G. R. (1982). Experimental analyses of structural regulation in a marine sand 

community exposed to oceanic swell. Ecological Monographs, 52(3), 283-305.  

Vaudo, J. (2011). Habitat use and foraging ecology of a batoid community in Shark Bay, 

Western Australia. (Ph.D. thesis). Florida International University, Miami, FL. 

Vaudo, J. J., & Heithaus, M. R. (2009). Spatiotemporal variability in a sandflat elasmobranch 

fauna in Shark Bay, Australia. Marine Biology, 156(12), 2579-2590.  



 

129 
 

Vaudo, J. J., & Heithaus, M. R. (2011). Dietary niche overlap in a nearshore elasmobranch 

mesopredator community. Marine Ecology Progress Series, 425, 247-260. 

doi:10.3354/meps08988 

Vaudo, J. J., & Lowe, C. G. (2006). Movement patterns of the round stingray Urobatis 

halleri (Cooper) near a thermal outfall. Journal of Fish Biology, 68(6), 1756-1766. 

doi:10.1111/j.1095-8649.2006.01054.x,availableonlineathttp://www.blackwell-synergy.com 

Vazquez, D. M., Mabragaña, E., Gabbanelli, V., & Díaz de Astarloa, J. M. (2016). Exploring 

nursery sites for oviparous chondrichthyans in the Southwest Atlantic (36° S–41° S). Marine 

Biology Research, 12(7), 715-725.  

Veras, D. P., Hazin, F. H. V., Branco, I. S. L., Tolotti, M. T., & Burgess, G. H. (2014). 

Reproductive biology of the pelagic stingray, Pteroplatytrygon violacea (Bonaparte, 1832), 

in the equatorial and south-western Atlantic Ocean. Marine and Freshwater Research, 

65(11), 1035. doi:10.1071/mf13008 

Visser, I. (1999). Benthic foraging on stingrays by killer whales (Orcinus orca) in New 

Zealand waters. Marine Mammal Science, 15(1), 220-227.  

Wallman, H. L., & Bennett, W. A. (2006). Effects of parturition and feeding on thermal 

preference of Atlantic stingray, Dasyatis sabina (Lesueur). Environmental Biology of Fishes, 

75(3), 259-267.  

Ward, C. R. E., Bouyoucos, I. A., Brooks, E. J., & O’Shea, O. R. (2019). Novel attachment 

methods for assessing activity patterns using triaxial accelerometers on stingrays in the 

Bahamas. Marine Biology, 166(53), 1-8. doi:10.1007/s00227-019-3499-z 

Wearmouth, V. J., & Sims, D. W. (2008). Sexual segregation in marine fish, reptiles, birds 

and mammals: behaviour patterns, mechanisms and conservation implications. Advances in 

Marine Biology, 54, 107-170.  

Webb, S. L., Dzialak, M. R., Mudd, J. P., & Winstead, J. B. (2013). Developing spatially-

explicit weighting factors to account for bias associated with missed GPS fixes in resource 

selection studies. Wildlife Biology, 19(3), 257-273. doi:10.2981/12-038 

Weimerskirch, H., Bonadonna, F., Bailleul, F., Mabille, G., Dell'Omo, G., & Lipp, H. P. 

(2002). GPS tracking of foraging albatrosses. Science, 295(5558), 1259. 

doi:10.1126/science.1068034 



 

130 
 

Welsh, J. Q., Fox, R. J., Webber, D. M., & Bellwood, D. R. (2012). Performance of remote 

acoustic receivers within a coral reef habitat: implications for array design. Coral Reefs, 

31(3), 693-702. doi:10.1007/s00338-012-0892-1 

Wetherbee, B. M., & Cortés, E. (2004). Food consumption and feeding habits. In: J. C. 

Carrier, J. A. Musick & M. R. Heithaus (Eds.), Biology of Sharks and Their Relatives (pp. 

232-253). Boca Raton: CRC Press. 

Wetherbee, B. M., Gruber, S. H., & Rosa, R. S. (2007). Movement patterns of juvenile lemon 

sharks Negaprion brevirostris within Atol das Rocas, Brazil: a nursery characterized by tidal 

extremes. Marine Ecology Progress Series, 343, 283-293.  

White, J., Simpfendorfer, C. A., Tobin, A. J., & Heupel, M. R. (2013). Spatial ecology of 

shark-like batoids in a large coastal embayment. Environmental Biology of Fishes, 97(7), 

773-786. doi:10.1007/s10641-013-0178-7 

White, W., & Kyne, P. (2010). The status of chondrichthyan conservation in the Indo‐

Australasian region. Journal of Fish Biology, 76(9), 2090-2117.  

White, W., Platell, M., & Potter, I. (2004). Comparisons between the diets of four abundant 

species of elasmobranchs in a subtropical embayment: implications for resource partitioning. 

Marine Biology, 144(3), 439-448.  

White, W. T., Last, P. R., Stevens, J. D., & Yearsly, G. (2006). Economically important 

sharks and rays of Indonesia. Canberra, Australia: Australian Centre for International 

Agricultural Research.  

White, W. T., Platell, M. E., & Potter, I. C. (2004). Comparisons between the diets of four 

abundant species of elasmobranchs in a subtropical embayment: implications for resource 

partitioning. Marine Biology, 144(3), 439-448. doi:10.1007/s00227-003-1218-1 

Whitfield, A. K. (2017). The role of seagrass meadows, mangrove forests, salt marshes and 

reed beds as nursery areas and food sources for fishes in estuaries. Reviews in Fish Biology 

and Fisheries, 27(1), 75-110.  

Wilkinson, C. (2006). Status of coral reefs of the world: summary of threats and remedial 

action. Coral reef conservation, 13, 3-39.  



 

131 
 

Wilson, S., Fatemi, S. M. R., Shokri, M. R., & Claereboudt, M. (2002). Status of coral reefs 

of the Persian/Arabian Gulf and Arabian Sea region. Status of coral reefs of the world, 2002, 

53-62.  

Yick, J., Tracey, S., & White, R. (2011). Niche overlap and trophic resource partitioning of 

two sympatric batoids co‐inhabiting an estuarine system in southeast Australia. Journal of 

Applied Ichthyology, 27(5), 1272-1277.  

Yokota, L., & Lessa, R. P. (2006). A nursery Area for Sharks and Rays in Northeastern 

Brazil. Environmental Biology of Fishes, 75(3), 349-360. doi:10.1007/s10641-006-0038-9 

Yokota, L., & Lessa, R. P. (2007). Reproductive biology of three ray species: Gymnura 

micrura (Bloch & Schneider, 1801), Dasyatis guttata (Bloch & Schneider, 1801) and 

Dasyatis marianae Gomes, Rosa & Gadig, 2000, caught by artisanal fisheries in Northeastern 

Brazil. Cahiers de Biologie Marine, 48(3), 249.  


	Front Pages
	Title Page
	Statement of the Contribution of Others
	Acknowledgments
	List of Publications from this Research
	Conference and Meeting Presentations
	Abstract
	Table of Contents
	List of Tables
	List of Figures

	Chapter 1: General introduction
	Chapter 2: Batoid nurseries: definition, use and importance
	Chapter 3: Activity patterns and habitat use of juvenile Pastinachus ater in a coral reef flat environment
	Chapter 4: Towed-float GPS telemetry: a tool to assess movement patterns and habitat use of juvenile stingrays
	Chapter 5: Tidal-diel patterns of movement, activity and habitat use by juvenile mangrove whiprays using towed-float GPS telemetry
	Chapter 6: Trophic ecology of sympatric juvenile elasmobranchs within a nursery area
	Chapter 7: General discussion
	References



