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Abstract 

Natural gradients in altitude, depth or latitude capture systematic variation in 

environmental variables that can be exploited to test hypotheses on the role of various 

processes in generating and maintaining patterns of biodiversity. The depth zonation 

of reef-building corals is one such pattern, where species rich assemblages vary across 

a small spatial scale that includes rapid and predictable changes in key environmental 

variables, such as light. These attributes allow a strong test of general hypotheses 

predicting biodiversity patterns, free from many of the confounding factors found in 

terrestrial habitats. Here, I first develop a novel method of data collection, referred to 

as the modified Point-Count Transect method, which is derived from avian survey 

methods. This approach avoids many of the pitfalls of previous sampling approaches, 

such as inconsistent sampling effort, poor detection of rare species, and limited 

sampling coverage of the gradient. I then utilise this methodology to assemble a 

dataset of 9,576 coral colonies representing over 300 corals species, on six reefs in 

three positions within Kimbe Bay, PNG to 1) test the validity of the Species Energy 

theory and the Mid-Domain Effect; two preeminent predictive theories of species 

richness gradients 2) identify the reef-scale community assembly processes which 

maintain the depth-diversity pattern and 3) quantify how individual species 

abundances vary over depth. I found that species richness is not consistent with the 

predictions of either theory, and instead shows a left-skewed hump consistent with 

results from terrestrial habitats. Examination of species turnover suggested that the 

hump-shaped pattern is maintained by large-scale processes acting on the regional 

species pool, rather than differential levels of reef-scale processes, such as 

competition and environmental filtering. These results demonstrate that the hump-

shaped pattern is not an artefact of scale or sampling design. Finally, species-specific 



	viii	

abundance distributions across depth revealed species’ depth use to be far more 

specialized than previously thought, demonstrating how commonly used metrics such 

as depth range, are very poor descriptions of how species use this domain. In 

conclusion, many of the preconceptions on the patterns and processes behind the 

depth zonation of corals on reefs are demonstrably flawed, and should be re-examined 

using suitable data and analysis. Although there remains no generally applicable 

explanation for how the hump-shaped pattern is created and maintained, this thesis 

provides new ways to overcome obstacles to continued research and move the field 

forwards. 
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Chapter 1: General Introduction 

 

 

	

	
“Nowhere else in the seas is there such a bewildering array of living things, and 

perhaps nowhere else is the pattern so uniform, characteristic, and widespread as in 

the coral reefs” 

Wells, 1957  
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1.1: Natural Patterns Of Biodiversity In Space 
Describing patterns of diversity in space and explaining how these patterns are 

generated and maintained is the core focus of modern ecology (Lomolino 2001). One 

of the more prominent observations is that more species are present in areas of low 

latitudes, low altitudes and shallow depths (Von Humboldt 1849; Wallace 1876; 

Stehli and Wells 1971; Gaston 2000; Lomolino 2001; Willig et al. 2003). These 

natural environmental gradients capture systematic variation in environmental 

variables, and therefore provide a window through which the causes of these patterns 

can be explored (Rosenzweig 1992).  

 

While the historical focus has been on terrestrial gradients of latitude and altitude 

(Wright 1983; Colwell and Lees 2000; Hawkins et al. 2003; Willig et al. 2003; 

Whittaker et al. 2007), prominent diversity patterns are also present in the marine 

realm over longitude, latitude and depth (Stehli and Wells 1971; Connolly et al. 2003; 

Irigoien et al. 2004; Woolley et al. 2016). Intriguingly, these diversity gradients share 

many similarities, such as a decrease in species richness at high altitudes, latitudes 

and deeper depths (Huston 1985; Rahbek 1995; Lomolino 2001; Willig et al. 2003; 

Kraft et al. 2011). Consequently, the search to develop a predictive theory capable of 

explaining the  distribution of biodiversity over different gradients remains a key 

challenge in ecology (Rosenzweig 1995).  

 

Over two centuries of science have resulted in numerous ideas to explain diversity 

gradients in species richness. Carl Linneaus (Von Linnaeus 1743), originally 

hypothesized that gradients in species richness were caused by differences in the 

trajectory of each species’ journey out from the biblical center of origin - the landing 
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site of Noah’s ark. A more recent theory, Hubbell’s (2001) neutrality theory, which 

seeks to explain patterns of biodiversity by stochastic events acting on species 

abundances, regardless of the ecological attributes of a specific species (Hubbell 

2001; Volkov et al. 2007), has proved equally implausible (Dornelas et al. 2006; 

Connolly et al. 2017). Despite the high diversity of predictive theories, there remains 

little consensus on the underlying causes of biodiversity gradients. Additionally, 

many of these theories are clearly unsuitable for many habitats. For instance, the 

water-energy hypothesis (Hawkins et al. 2003) uses the balance of temperature and 

water availability to explain the distribution of biodiversity. However, this 

explanation is only applicable to terrestrial gradients (the focus of the study). As a 

result, it can offer no explanation for the 70% of the planet’s surface occupied by 

marine taxa, where there is no variation in water availability, but diversity gradients 

persist. Marine habitats should not be ignored when considering the universality of a 

predictive theory of biodiversity, and are a vital test of any universal explanatory 

theories.  

 

Fortunately, many predictive hypotheses are applicable to both marine and terrestrial 

habitats. For instance, the species energy theory (Wright 1983) seeks to link changes 

in species richness (the most fundamental measure of diversity) to the level of a 

‘limiting energetic resource’, which can be represented by taxon specific factors (i.e., 

light, water, temperature). In this way, the common predictive element - energy - can 

change with the habitat in question (unlike in the water-energy hypothesis). Another 

approach is to avoid using environmental factors as predictive variables, instead 

examining the influence of attributes shared by all natural gradients, such as hard 

boundaries (e.g., sea level, polar limits of latitude). An example is the mid-domain 



	 4	

effect, which specifically seeks to capture the underlying diversity pattern over a 

gradient in the absence of any environmental factors (Colwell and Lees 2000). This is 

achieved by recoding the overlap in species ranges (and therefore species richness) 

when the possible locations of empirical species ranges within the bounded domain 

are randomized. Inevitably, the geometric constraints of the hard boundaries create a 

species richness pattern peaking at the mid-point of the domain (Colwell and Lees 

2000; Colwell et al. 2004). While the species energy theory and the mid-domain 

effect both seek to explain universal species richness gradients, empirical tests of their 

predictions are often unclear (Colwell et al. 2005; Beck et al. 2016; Peters et al. 

2016). The mid-domain effect predicts a unimodal pattern, peaking at the mid-point 

of the domain. However, the use of range extents to calculate species richness, and the 

assumptions of hard domain boundaries require a test case to feature a gradient where 

the full domain is sampled, without variation in the detectability of species, or 

sampling effort across the domain (Grytnes and Vetaas 2002; Colwell et al. 2004; 

Gotelli and Colwell 2011). Likewise, the species energy theory relies on a clear 

identification of the ‘limiting energetic resource’ (Wright 1983). In the majority of 

natural gradients, the identification of a single measurable factor that meets this 

requirement is not possible, leading to the use of multiple different factors, roughly 

categorized as thermal energy (e.g., temperature), radiation energy (e.g, light), and 

chemical energy (e.g, particulate organic carbon) (Fraser and Currie 1996; Hawkins et 

al. 2003; Evans et al. 2005; McGill 2010; Peters et al. 2016; Woolley et al. 2016; 

Laiolo et al. 2018). These factors often show a consistent monotonic change (where 

the trajectory of the function does not deviate over its range) across a gradient (such 

as the reduction in temperature with increasing altitude and latitude), and 

correspondingly predict a monotonic pattern of species richness. However, the 
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predictions of the theory are reliant solely on the correct identification and accurate 

measurement of the energetic resource over the gradient, an objective that is rarely, if 

ever, sufficiently met. Further adding to the confusion, simply quantifying the 

empirical pattern in species richness remains a difficult task, due to the way data used 

to measure diversity (in the form of species richness) is gathered. 

 

1.2: Sampling Artifacts in Estimates of Diversity 
Species richness is the most fundamental measure of diversity, but it is only 

confirmed by sampling a community to exhaustion (Magurran 2004; Chao et al. 2009; 

Gotelli and Colwell 2011). This is a practical impossibility when considering natural 

communities and especially so for highly diverse ecosystems, such as coral reefs 

(Lawton et al. 1998). Consequently, species richness is often calculated using species 

accumulation curves (Colwell et al. 2012). This process forms the basis for 

projections (e.g., rarefaction) and estimates of total species richness as if the 

community were sampled to exhaustion (Chao et al. 2004; Chao et al. 2006). Where 

suitable empirical data is not available, species richness measures are calculated using 

the overlap of species range extents, derived from historical data such as museum 

records. Crucially, both rarefaction and estimates of range overlap rely heavily on 

extensive, high quality data sets, and are highly vulnerable to statistical artifacts. For 

instance, species accumulation analysis requires each sample to be a true 

representation of the larger assemblage, without variation in sampling effort, sample 

size or bias (Gotelli and Colwell 2001). Meanwhile, compilation of range extent data 

is strongly reliant on sampling effort over the full domain to identify the range limits 

of a species, a requirement that is rarely achievable (e.g., pole to pole, sea level to 

mountain top). Both methods also assume no variation in sampling (such as changes 

in effort, or observer bias) throughout the sampling domain. Failure to meet these 
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assumptions produces values more informative of the sampling methodology than the 

desired species richness pattern, severely weakening subsequent tests of ecological 

theory (Gotelli and Colwell 2001; McCoy 2002; Rahbek 2004; Nogués-Bravo et al. 

2008).  

 

1.3: A Diversity of Diversities 

Despite the identification of species richness as the fundamental measure of diversity 

(being a measure of the number of species within a specified region), the term 

‘diversity’ has be used to describe many different things (Gotelli and Colwell 2001; 

Magurran 2004). A review of the existing literature detailing one specific diversity 

gradient, the diversity of reef-building corals over depth, returns measures of species 

density (Sheppard 1980), species richness (Goreau and Wells 1967; Kühlmann 1983), 

and species evenness (Loya 1972) all used as measures of ‘diversity’ (Fig. 1.1). This 

is an insidious issue which pervades all fields of research into biodiversity (Gotelli 

and Colwell 2001; Magurran 2004). Species density is often unknowingly 

misrepresented as a measure species richness (Sheppard 1980). This is highly 

misleading due to the fact that species density is calculated by dividing the number of 

species recorded by the sampling effort expended, assuming that species richness will 

increase linearly with increasing sampling effort. However, species do not occur in 

equal abundances and therefore accumulate in an asymptotic fashion, making species 

density a measure of sampling effort rather than species richness (Gotelli and Colwell 

2001; Colwell et al. 2012). The extent to which species abundance distributions are 

uneven is the focus of species evenness. This measure, or a variation of it, is often 

reported using diversity indices, which weight species abundance distributions against 

species richness per sample, and the number of individuals per sample (Spellerberg 



	7	

and Fedor 2003). While each of these measures is descriptive of a specific aspect of 

diversity, they are inherently different, and cannot be directly compared. 

 

 

 

 

Figure 1.1: Coral diversity over depth.  

For Khulmann (1983) and Goreau & Wells (1967) diversity is measured by species 

richness; Sheppard (1980), measured species density; Loya (1972) measured species 

evenness   
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1.4: A Question of Scale 
Much of the confusion arising from tests of theories of diversity is the result of scale 

(Willig et al. 2003; Chase 2010; McGill 2010; Kraft et al. 2011; Laiolo et al. 2018). 

Predictive hypotheses such as the species energy theory and mid-domain effect seek 

to predict large-scale patterns, but the ecological and evolutionary processes which 

influence these patterns operate over multiple temporal and spatial scales (Caley and 

Schluter 1997; Lomolino 2001; Willig et al. 2003). To adequately explain the way 

biodiversity patterns are maintained over all scales, the influence of local scale 

ecological processes must be also considered (Caley and Schluter 1997; Chase and 

Leibold 2002). Biodiversity patterns often change as the spatial scale changes from 

large (global) to small (local) (Waide et al. 1999; Chase and Leibold 2002; Rahbek 

2004). Most studies are done at small spatial scales and often show either a hump-

shaped or monotonic pattern (Rosenzweig 1995). Large-scale patterns are harder to 

establish, but are most often reported to be monotonic (Gaston 2000). For example, a 

hump-shaped species richness pattern is often reported over a monotonic energetic 

gradient (e.g. elevation or depth), where the peak of the hump is skewed towards the 

high energy end of the gradient (Rahbek 1995; Gross et al. 2000; Lomolino 2001). 

The skewed-hump is thought to be a modification of the large-scale (monotonic) 

pattern by smaller-scale assembly processes such as competition and environmental 

filtering (Huston 1999; Chase 2007; Nogués-Bravo et al. 2008; Laiolo et al. 2018). 

Since effective biodiversity sampling is largely restricted to small geographic ranges, 

community assembly processes are expected to be more influential for the 

biodiversity pattern (Cornell and Karlson 1996; Chase 2007; Field et al. 2009; Kraft 

et al. 2011). For instance, high energetic availability might encourage rapid growth 

resulting in increased competition within an assemblage, reducing species richness 
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(Chase 2007). Alternately, some energetic resources (such as light) can be become 

challenging at high levels, filtering out species unable to cope physiologically (Baird 

et al. 2009b). Both processes (competition and environmental filtering) are most 

influential in the high-energy region of a gradient and are proposed to cause the 

corresponding drop in species richness (Huston 1985; Huston 1999; Colwell and Lees 

2000). As the spatial scale increases, the influence of local-scale processes becomes 

inconsistent and the true regional pattern (often derived from predictions of the 

species energy theory) should then emerge (Chase and Leibold 2002; Chase 2010). 

However, little conclusive evidence exists to support the modification of large-scale 

patterns by local-scale processes outside of controlled experiments (Chase 2010; 

Kraft et al. 2011). 

 

1.5: Species Abundance Response Curves 
Individuals of a species are not evenly distributed throughout its range (Austin 1999; 

Dallas et al. 2017). The way in which a species occupies space over a gradient can be 

measured by an abundance response curve, which is hypothesized to reveal how the 

species responds to environmental factors and ecological processes that change over 

the gradient (Brown et al. 1995; Gravel et al. 2006; Dallas et al. 2017). For example, a 

species that occurs over a broad latitudinal range can presumably tolerate a greater 

range of temperatures than a species with a narrow range and therefore, range size is 

often used as a proxy for environmental tolerance. Likewise, the shape of the species 

abundance response curve within a given range can vary widely, reflecting the 

ecological preference of a species towards a specific subset of its range (Brown 1984; 

Brown et al. 1995; Oksanen and Minchin 2002; Austin 2007; Jansen and Oksanen 

2013). The acuity of the curve, and location of the peak can be used to infer the 
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ecological specialization (more acute curves indicate a more specialist species) and 

preference (location of the optimum response) of a species over a gradient (Austin et 

al. 1994; Brown et al. 1995; Jansen and Oksanen 2013).  

	
1.6: Testing Biodiversity Theory 
In terrestrial habitats, issues of area (Rahbek 1997), dispersal boundaries (Willig et al. 

2003; Fukami 2015), anthropogenic impacts (Nogués-Bravo et al. 2008) and unclear 

definition of energetic gradients (Rosenzweig 1995; Hawkins et al. 2003; Evans et al. 

2005) all serve to confuse research conclusions. The specific attributes of each 

biological community and the natural gradient it occurs over can overcome many of 

these obstacles. For instance, geographically short gradients (particularly in the 

marine habitat) ameliorate the effects of dispersal boundaries and allow the full 

gradient to be sampled. Likewise, communities featuring a clearly identifiable 

limiting energetic factor allow a clear test of the species energy theory. By assembling 

species level data in an empirically sound and spatially hierarchical fashion, the 

predictions of competing theories can be explicitly tested without the influence of 

confounding factors. Coral reefs provide such a system. 

 

1.7: Coral Diversity Over Depth 
Photo-symbiotic reef-building corals are colonial cnidarians of the subclass 

Hexacorallia, within the class Anthozoa and form the foundation of tropical shallow 

water coral reefs; one of the most biodiverse ecosystems on Earth (Veron 2000). 

Hermatypic (reef-building) corals of the order Scleractinia build calcium carbonate 

skeletal structures, and form a symbiotic relationship with dinoflagellate species of 

the genus Symbiodinium (Wells 1957; Veron 2000). This relationship is central to the 

ability of the host coral to accrete its skeletal structure maintain a positive energy 
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budget (Yonge 1931; Chalker and Taylor 1975; Al-Horani et al. 2003). The symbiotic 

association between the coral host and the symbiont makes the availability of light a 

key environmental factor influencing coral physiology and a clearly identifiable 

limiting energetic resource (Verwey 1931; Anthony and Connolly 2004). As depth 

increases, light level declines exponentially, limiting the dominance of reef-building 

corals beyond ~60 m depth. Local environmental conditions dictate the maximum 

depth of light penetration, and in some cases allows corals to persist beyond 150 m  

(Brokovich et al. 2008; Kahng et al. 2010; Bridge et al. 2013). These characteristics 

are ideally suited to a clear test of the species energy theory, allowing sampling 

coverage of the physically short natural gradient of a clearly identified limiting 

energetic resource.  

 

The pattern of coral species richness over depth is generally reported as either a 

monotonic decline with depth (Wells 1957; Goreau 1959; Porter 1976; Huston 1985), 

or a left-skewed hump peaking between 10 and 30 m depth (Sheppard 1980; 

Kühlmann 1983; Cornell and Karlson 2000). The monotonic pattern is considered a 

regional scale pattern resulting from the reduction in light availability as depth 

increases (Cornell and Karlson 2000), as predicted by the species energy theory 

(Wright 1983). Consequently, the left-skewed hump is thought to be a local scale 

pattern resulting from local processes modifying the regional scale (monotonic) 

pattern (Wright 1983; Huston 1985; Chase 2010). This conforms with existing results 

from other natural gradients, although there is no empirical confirmation of this 

assertion (Cornell and Karlson 2000). The local scale assembly processes identified to 

cause the drop in species richness at the shallowest depths are environmental filtering 

(e.g., through hydrodynamic disturbance) and competitive exclusion (driven by faster 
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growth rates in shallow, high light depths) (Goreau and Wells 1967; Sheppard 1980; 

Done 1982; Huston 1985; Huston 1999; Cornell and Karlson 2000). As is the case 

with light, the frequency and intensity of hydrodynamic disturbance events also 

decreases with depth, because wind driven wave energy declines as the inverse square 

of depth (Monismith 2007). This also allows the processes of environmental filtering 

and competitive exclusion to change in intensity over the gradient and produce the 

left-skewed hump pattern (Cornell and Karlson 1996; Cornell and Karlson 2000). 

Unsurprisingly, these two factors (light and hydrodynamic exposure) are often used to 

explain the strong patterns in coral zonation over depth (Done 1982,1983; Cornell and 

Karlson 2000; Roberts et al. 2015). However, evidence quantifying the influence of 

each of these factors on the assembly of coral communities over depth remains scarce. 

 The Depth Generalist Paradox 

When basic range extent metrics are used to describe species depth distributions, an 

apparent paradox emerges, whereby the majority of species have wide (‘generalist’) 

depth ranges, yet empirical observations on reefs show strong patterns of zonation 

over depth, whereby particular species dominate at specific depths, often over very 

large geographical scale (Loya 1972; Done 1982; Kühlmann 1983; Bridge et al. 

2013). The paradox arises because depth distributions of coral species have largely 

been classified as ‘specialists’ or ‘generalists’ based on their depth range (i.e. the 

maximum depth minus the minimum depth of occurrence), based on the assumption 

that species are distributed normally over their depth range (Goreau 1959; Goreau and 

Wells 1967; Loya 1972; Kühlmann 1983; Muir et al. 2015). The depth generalist 

paradox has been exacerbated by recent interest in mesophotic reefs, which are 

loosely defined as coral reef communities occurring between ~30-150 m depth 

(Hinderstein et al. 2010; Kahng et al. 2010). An increase in sampling effort at depth 
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has resulted in an extension of many species’ lower depth limits, with a consequent 

increase in the number of depth generalists. However, because range extent metrics 

are often determined on the basis of single colony at the edge of the range, the 

ecological relevance of such measures is doubtful. 

 

One way to reconcile the depth generalist paradox is to examine the abundance 

distribution response curve of corals species over depth, which can be used to 

describe a species ecological niche over depth (Brown et al. 1995; Gravel et al. 2006; 

Dallas et al. 2017). Abundance response curves are not bound by a pre-defined 

distribution (i.e., normal distribution assumed using depth range alone) and can 

potentially reveal how species with the same depth range can preferentially occupy 

distinct subsets of the depth domain. Occasionally, depth distributions are defined 

from estimates of abundance, such as numerical dominance in a particular reef zone 

(Sheppard 1980) or changes in density with depth (Baird et al. 2003, Pandolfi & Budd 

2008). However, abundance response curves over depth have been produced for very 

few species. Effective statistical techniques to model abundance response curves have 

been developed (Oksanen and Minchin 2002; Jansen and Oksanen 2013), but these 

are dependent on extensive species level datasets, with limited sampling bias, 

balanced sampling effort and good coverage of the gradient in question. Without 

access to suitable abundance data, depth distributions continue to be assessed using 

range extent data and the depth generalist paradox remains (e.g., (Laverick et al. 

2018)). 

 Life history traits and depth niches 

Life history traits define the many different strategies employed by corals to survive 

in different habitats. Light levels and physical disturbance, two of the main influences 
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on coral survival, vary markedly over depth, therefore traits should also vary 

predictable with depth (Cooper et al. 2011; Darling et al. 2012; Madin et al. 2016b). 

For instance, the gross morphology of a coral colony represents a trade-off between 

light capture and physical resistance to disturbance (Chalker et al. 1983; Anthony and 

Connolly 2004; Madin et al. 2014). Species in shallow waters can exploit the 

abundance of light, but must also cope with frequent hydrodynamic disturbance. This 

can take the form of resisting damage by using a robust morphology, or selecting a 

morphology which can grow rapidly to re-colonise following a disturbance (Williams 

1975). Meanwhile, a species that specializes at the deeper end of the gradient must 

prioritise light acquisition in its morphological shape, but does not experience 

disturbances of the same intensity or frequency (Done 1983; Roberts et al. 2015; 

Englebert et al. 2017). However, the variability in the morphological structure of a 

coral colony can vary widely between individuals of the same species, and even 

within a single colony, often responding to their local environmental conditions 

(Veron 2000; Todd 2008; Ow and Todd 2010). While this morphological plasticity 

might allow a species to occur across a wider depth range (Hoogenboom et al. 2008), 

it raises the prospect that intraspecific trait variability might also be more important 

than mean trait values for determining a species’ ecological niche(Jung et al. 2010). 

Fortunately, recent advances in trait based ecology in terrestrial and marine 

ecosystems have led to rapid advances in the availability of coral species trait data, 

namely via the CoralTraits database (Madin et al. 2016a).  

 Methodological consistency 

The myriad of sampling methodologies used to study coral depth diversity patterns 

acts to further complicate the situation. For example, methods used in studies 

reporting species richness over depth include line intercept transects (Loya 1972), un-
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constrained species counts (Goreau 1959; Kühlmann 1983), and vertical belt transects 

(Porter 1976; Sheppard 1980) (Fig. 1.1). Each method has a distinct and often 

uncontrolled, and unquantifiable, level of bias towards certain taxa. In particular, the 

continued use of largely qualitative sampling methods to provide data to describe 

macro-ecological patterns of species richness is a very large problem (Muir and 

Wallace 2016; Muir et al. 2017). Unfortunately, rare and incidental taxa contribute the 

majority of the species in a coral assemblage (Dornelas and Connolly 2008) and are 

therefore likely to be underrepresented in most studies. This issue is accentuated by 

low replication, and small sample sizes, which is, unfortunately, highly characteristic 

of data from coral reef habitats, in particular at depth. 

 Restricted access 

Despite the myriad of quality-associated data issues for studies of coral depth-

diversity patterns, the greatest single limitation is the absence of data from deeper 

regions, due to the logistical difficulties associated with data collection at depth. 

Physiological stresses placed on the human body when using open circuit SCUBA 

equipment increase exponentially as depth increases, resulting in correspondingly 

reduced time limits for data collection. These limitations become prohibitive beyond 

~45 m depth, and are restrictive for sampling effort beyond ~20 m, although modern 

closed circuit rebreather technology is now able to alleviate many of these 

restrictions. However, with the rise of increasingly risk-averse legal policies at 

research institutions, little primary data of a suitable nature has been gathered over a 

depth gradient since the mid 1990s (Goreau 1959; Loya 1972; Sheppard 1980; Done 

1983; Kühlmann 1983; Huston 1985; Cornell and Karlson 2000). To overcome this 

restriction, most studies use depth-diversity information derived from historical 

records. The advantage of this approach is that it can access all available records to 
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fill data deficiencies. One of the most widely used and comprehensive datasets of this 

nature was compiled in 2008 (Carpenter et al. 2008). The data set consists of global 

estimates of species depth range limits using available records and expert opinion. 

This dataset has been central to multiple studies, where a species predicted ability to 

cross biogeographic boundaries (Keith et al. 2013), or risk of extinction with coming 

climate change (Carpenter et al. 2008) was strongly associated with its depth range. 

However, when reported depth ranges are compared to empirical records collected in 

the course of this PhD (Roberts 2018), it is abundantly clear that depth ranges of the 

majority of species are inaccurate (Fig. 1.2). 
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Figure 1.2: Depth ranges for 263 species from this publication (Roberts 2018).  

Species are arranged by increasing range mid-depth according to Carpenter et al 2008 

(Carpenter et al. 2008). Vertical black bars representing the depth range of each 

species from Carpenter et al 2008; red bars are from this publication (Roberts 2018).  
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Implications of taxonomic change 

Finally, coral taxonomy has undergone significant changes over the last decade 

(Huang et al. 2014; Kitahara et al. 2016) making previous data (largely compiled prior 

to 1990) difficult to interpret (Knowlton and Jackson 1994). For instance, the 

previous tendency to lump closely-related species into a single ‘species complex’ is 

problematic. One example of this is the Montastraea annularis (Ellis and Solander, 

1786) species complex, consisting of what is now recognised to be three distinct 

species in two different genera (Weil and Knowton 1994; Lopez and Knowlton 1997). 

While simple changes in a species accepted name could be accounted for, splitting of 

species complexes is not possible. 

 

1.8: Thesis Outline 
Natural gradients of diversity have formed a core focus of ecology for over 200 years 

and although predictive hypotheses have multiplied over that time, the effects of 

multiple confounding factors have conspired to confuse and obscure clear tests of the 

theory. In the natural diversity gradient of reef-building corals over depth an 

opportunity exists to overcome the chronic limitations of previous tests of the 

ecological theory, as the short physical gradient of light (the key limiting energetic 

resource) occurs in an ecosystem without biogeographic dispersal boundaries. By 

exploiting these characteristics, the processes that create and maintain diversity 

gradients over the regional, local, and species scales can be examined. 

 

The most significant research gap is the lack of suitable data, particularly from 

habitats below 25 – 30 m depth. Where advancements in data collection and statistical 

methodology have brought new life to the study of diversity gradients in terrestrial 

ecosystems, marine habitats and coral reefs in particular, have lagged behind. 
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Furthermore, as the growing threat of anthropogenically induced changes casts an 

increasingly heavy shadow over the future health of coral ecosystems (Hughes et al. 

2017), the quest to understand how corals utilise bathymetric space becomes ever 

more important. For instance, the theorised refuge provided by increasing depth 

(Bongaerts et al. 2010; Slattery et al. 2011) to a multitude of disturbances (Glynn 

1993; Riegl and Piller 2003) relies on a firm understanding of how depth influences 

the ecological niche of a species, and the structure of coral populations (Bongaerts et 

al. 2015; Bongaerts et al. 2017).  

 Thesis aims 

This aim of this thesis is to investigate the ecological determinants of diversity 

gradients, by examining the depth diversity gradient in corals. I will do this by 

applying current statistical techniques and ecological theory to interpreting novel data 

detailing the distribution of coral species over depth. Although coral reefs have been a 

productive research field for ecological theory (Darwin 1859; Connell 1978; Dornelas 

et al. 2006; Volkov et al. 2007; Connolly et al. 2017), significant knowledge gaps 

persist. Specifically, in this thesis I will  (1) overcome the lack of useable data by 

establishing a new sampling methodology for examining natural patterns of diversity 

in habitats with logistical challenges; I will then use this methodology to gather an 

extensive data set to (2) test general hypotheses of biodiversity patterns (the mid-

domain effect, and the species-energy theory) which operate on species richness at 

regional scales; (3) quantifying the influence of local-scale ecological processes 

(environmental filtering, competition) on the depth diversity gradient; and (4) model 

species-specific abundance response curves over depth to capture the depth 

occupancy of a species and the capacity of life history traits to describe the depth 

niche of a species. 
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 Chapter 2 

In Chapter 2, I develop and test a new field sampling methodology specifically 

designed for use in logistically challenging habitats (such as deep waters) and to 

address diversity related research questions. By adapting a methodology well 

established in avian ecology, a new methodology was developed (the Point-Count 

Transect method, or PCT). The PCT provides data with standardized sampling effort, 

strong detection of rare and incidental species, and reliable completion within 5 

minutes. When tested against the established standard in the field for biodiversity data 

(the Line Intercept Transect, or LIT), the PCT and was not only far more time 

efficient, but revealed serious detectability issues in the LIT method. These results 

confirmed the PCT method to be capable of providing data suitable for biodiversity 

studies, as well as meeting the logistical time constraints of depths below 30 m. 

 Chapter 3 

In Chapter 3, I tested the capacity of the two most commonly invoked general 

predictive hypotheses of species richness gradients (the Mid-Domain Effect, and the 

Species-Energy Theory) to capture the species richness pattern of corals over depth. 

Both models predict differing species richness patterns, but empirical support for both 

can be found in the literature. To provide a clear test of the theory predictions, I used 

a dataset of 9,576 coral colonies collected over a 45-m depth gradient, using the PCT 

method (Chapter 2). This approach freed the analysis from many confounding factors 

found in terrestrial studies, as well as previous coral reef studies, and revealed that 

neither model adequately captured the empirical pattern of a left-skewed hump. 

However, ongoing support for both models in the literature could be explained by the 

powerful influence of veil effects, which distort the model fit by hiding portions of the 

gradient. 
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 Chapter 4 

Chapter 4 drew on the same dataset gathered for Chapter 3, and addressed the 

question of how local-scale ecological processes influence the species richness 

gradient over depth. Specifically, I tested whether the skewed hump-shaped pattern 

found in Chapter 3 could be explained as a product of environmental filtering or 

competitive interactions. Empirical patterns in beta diversity were compared to null 

expectations at two spatial scales where environmental filtering (between reefs) and 

competitive interactions (sites within reefs) are most influential. While a strong 

influence of environmental filtering was evident, there was little evidence of 

competitive interactions significantly influencing community assembly. Crucially, 

there was no evidence that local scale processes created and maintained the hump-

shaped species richness pattern. In fact, evidence of regional enrichment throughout 

the depth gradient suggested that regional-scale processes control the pattern, and 

rather than being a local scale artefact, the hump-shaped pattern is likely the true 

regional shape. 

 Chapter 5 

Finally, Chapter 5 focused on the way individual species distributed over the depth 

gradient, and tested the capacity of four life history traits linked to depth distribution 

to predict the depth niche of a species. By using hierarchical logistical modelling 

methods on the PCT dataset collected for Chapter 3, I moved beyond simple metrics 

(such as range extent and range mid-point) to successfully describe species depth 

distributions for 170 species. This approach captures the myriad of ways that species 

utilise bathymetric space, and produced two model parameters capable of describing 

the depth preference (optimum depth), and depth specialization (niche breadth) of a 

species. When used in combination as replacements for the equivalent metrics derived 
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from range extent values (range mid-point, and total depth range), the model derived 

metrics resolved the depth generalist paradox. Finally, species with laminar and 

encrusting gross morphologies were more likely to have deeper optimum depths, 

while species with submassive morphologies had larger niche breadths than expected. 

The life history traits of larval development mode, morphological plasticity, and mean 

corallite size showed no correlation with the optimum depth, or niche breadth of a 

species. Limited availability of trait data, especially from deeper waters, intraspecific 

trait variability, and the use of mean trait values are likely to be at least partially 

responsible for this result. Nonetheless, there is no indication that corals inhabiting 

deeper (>30 m) habitats have a specific suite of life history traits that prevent them 

colonizing shallow waters following disturbance.  
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Chapter 2: The point count transect method for estimates of 

biodiversity on coral reefs: improving the sampling of rare 

species 

 

 

 

 

 

“…as we know, there are known knowns; there are things we know we know. We also 

know there are known unknowns; that is to say we know there are some things we do 

not know. But there are also unknown unknowns – the ones we don't know we don't 

know.” 

Donald Rumsfeld, 2002 
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2.1: Abstract 
Understanding patterns in species richness and diversity over environmental gradients 

(such as altitude and depth) is an enduring component of ecology. As most biological 

communities feature few common and many rare species, quantifying the presence 

and abundance of rare species is a crucial requirement for analysis of these patterns. 

Coral reefs present specific challenges for data collection, with limitations on time 

and site accessibility making efficiency crucial. Many commonly used methods, such 

as line intercept transects (LIT), are poorly suited to questions requiring the detection 

of rare events or species. Here, an alternative method for surveying reef-building 

corals is presented; the point count transect (PCT). The PCT consists of a count of 

coral colonies at a series of sample stations, located at regular intervals along a 

transect. In contrast the LIT records the proportion of each species occurring under a 

transect tape of a given length. The same site was surveyed using PCT and LIT to 

compare species richness estimates between the methods. The total number of species 

increased faster per individual sampled and unit of time invested using PCT. 

Furthermore, 41 of the 44 additional species recorded by the PCT occurred ≤ 3 times, 

demonstrating the increased capacity of PCT to detect rare species. PCT provides a 

more accurate estimate of local-scale species richness than the LIT, and is an efficient 

alternative method for surveying reef corals to address questions associated with 

alpha-diversity, and rare or incidental events.  
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2.2: Introduction 
Coral reefs are one of the most diverse ecosystems on Earth (Wells 1957; Stehli and 

Wells 1971; Caley et al. 2014) containing both high species richness and 

heterogeneity of habitats at all spatial scales (Bellwood and Hughes 2001). For 

several decades, coral reefs have provided ecologists with important insights into 

processes that generate and maintain biodiversity, such as species richness gradients 

and species coexistence mechanisms (e.g. (Connell 1978; Dornelas et al. 2006)). A 

common feature of ecological assemblages is a species abundance distribution 

featuring a small number of common species, and many rare taxa (Fisher et al. 1943; 

Preston 1948; Magurran 2004). These rare taxa often form the bulk of biodiversity in 

an assemblage, but are the most time consuming to adequately record. A high number 

of rare species therefore requires a large sampling effort to effectively characterize a 

site. This presents a significant logistical issue in high-diversity ecosystems such as 

coral reefs and tropical rainforests, where the number of rare and incidental taxa is 

very high (Dornelas and Connolly 2008). Coral reefs in particular present additional 

challenges for data collection, as many reefs are remote and some habitats, such as at 

depth, are difficult to access. 

 

Ecological studies of coral reefs were greatly enhanced by the advent of SCUBA 

diving in the 1950s, but the capacity to study reefs at depths >30 m is still limited 

(Bridge et al. 2013). Consequently, important questions surrounding the spatial 

extent, biodiversity and ecological significance of deeper reef habitats remain 

unresolved (Slattery et al. 2011). Overcoming this knowledge gap requires the 

development of new methods that enable more rapid collection of ecological data 
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from deeper habitats. Ideally, such methods would also be broadly applicable across a 

range of depths and sampling regions. 

 

Standardized methods in empirical data collection for benthic communities in marine 

ecosystems were developed in the 1970s primarily in conjunction with the increased 

use of SCUBA (e.g. (Loya 1972)). The line intercept transect (LIT), adapted from 

terrestrial vegetation studies, has been widely used for coral reef studies (e.g. (Hill 

and Wilkinson 2004)). In this method, a transect line of a set length is placed along a 

reef, and the identification of each species under the line is recorded along with the 

distance it occupies. The LIT provides a precise estimate of abundance (i.e. coral 

cover and density), making it well suited to examination of temporal or spatial trends 

in the abundances of species. LITs, however, are not appropriate for all ecological 

questions or locations. For example, the length of time taken to complete a suitable 

number of replicate 10 m transects (typically ≥5) makes LITs impractical in depths 

>15 m, below which safe bottom times for divers become severely limiting factors for 

SCUBA based surveys. Furthermore, because of the time required to conduct 10 m 

LITs, the amount of replication achieved may result in under-sampling of rare and 

incidental species or events. Consequently, LITs are limited in their application 

according to habitat and ill equipped to address questions that require the detection of 

rare events or species. 

 

A fundamental tenet of ecology is that the distribution of species is not random in 

time or space (Willig et al. 2003), and understanding how these non-random patterns 

are created and maintained is a major ecological goal (Lomolino 2001). The 

mechanisms generating patterns, such as species richness gradients, are now 
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investigated using increasingly complex statistical analyses (Colwell et al. 2012; 

Presley et al. 2012), which require extensive and precise data (Gotelli and Colwell 

2001). Computationally demanding analyses, such as sample-based rarefaction, 

enable estimates of species richness at standardized levels of sampling effort; 

however, data for such analysis requires large sample sizes, consistent sampling 

methodology and data independence (Gotelli and Colwell 2001; Chao et al. 2009; 

Gotelli and Colwell 2011). The logistical restrictions imposed by LITs make them 

ineffective for addressing these questions in most situations. Consequently, little 

suitable data exists, or is being collected, to investigate fundamental ecological 

phenomena on coral reefs using these statistical techniques. 

 

Here, we present a novel sampling technique more suitable than LITs for estimating 

species richness (Alpha diversity) and abundance on coral reefs: the point count 

transect (PCT). The method is derived from a well-established technique in avian 

ecology, the point count distance transect (Marsden 1999; Perry et al. 2012). Point 

sampling techniques are popular for monitoring songbirds, primarily for examining 

species richness and diversity (Buckland 2006). The detectability and mobility of 

different bird species is highly variable, resulting in continued refinement and 

calibration of this method (e.g. (Marsden 1999)). We adapted the point transect 

framework to the marine environment by conducting point counts of a constrained 

number of individuals at stations located along a transect. Rather than timed counts 

(as per the point count distance transect), we utilized point counts of a pre-determined 

number of colonies at each station. Although taxonomically complex, surveying 

corals presents fewer detectability problems (i.e. audible detection, mobility, cryptic 

behavior) than surveying birds, substantially reducing the main source of 
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methodological error (Lee and Marsden 2008). Moreover, standardizing the number 

of colonies sampled in each count controls for effort, ensuring a repeatable and 

efficient sampling unit. We compared the effectiveness and time efficiency of the 

PCT method to traditional LIT surveys for estimating species richness at the same 

reef site at Lizard Island, Australia. We compared 1) total species richness estimated 

from a standardized sample size, 2) species accumulation rate per unit effort (per 

additional individual, and per minute), and 3) species abundance distributions, to 

reveal detectability bias towards rare and incidental species. 

 

2.3: Methods 
Point Count Transect Survey Method 

A linear transect of a specified length (in this case 50 m) is randomly deployed within 

the study site, with count stations located at regular intervals (in this case every 10 m) 

along the transect line (Fig. 2.1a). The transect length, and the spacing of count 

stations are highly flexible, depending on the research objective. For example, a study 

of species richness over depth could use a up-slope transect up a reef slope, with 

count stations at bathymetric, rather than distance intervals. In that case the transect 

length would be variable depending on the reef profile, as would the linear distance 

between count stations, but the survey principle remains the same. An initial coral 

colony situated on a consolidated section of reef substrate suitable for coral habitation 

is chosen and identified at each sampling station. The nearest neighboring colony to 

the initial colony is then chosen as the next in the survey (Fig. 2.1b). Successive 

colonies are identified such that the sampling area expands outwards in an 

approximately counterclockwise spiral shape from the initial colony (Fig. 2.1b). The 

directionality of the expanding spiral should remain consistent, but either 

counterclockwise or clockwise can be chosen. As this method details reef-building 
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coral occurrence patterns, areas known to be unsuitable for habitation, or which 

exclude the vast majority of species (eg. sand dunes, unconsolidated rubble banks) are 

not targeted. This is in contrast to existing area-based methods (eg. LIT) which often 

invest significant resources sampling areas of unsuitable habitat, which yields little 

relevant data. Additionally, the stipulation to survey suitable habitat, even when 

colonies are rare or absent, is an important measure of sampling effort, and represents 

a record of range limits, environmental filters, or other environmental factors 

influencing species range distributions. The requirement for types of habitat suitable 

for surveys can be expanded or restricted based on the research question. For a study 

focusing on species richness of Acropora spp. for example, areas of sand can be 

avoided, while a study focusing on Fungia spp. may only target sand areas. Colonies 

< 5 cm diameter were not recorded in this study due to difficulties consistently 

identifying juvenile corals to species level (Richards 2012). However, the minimum 

size of recorded colonies will be dictated by the taxonomic expertise of the surveyor. 

For instance, if fragments are collected for genetic analysis, or if the locally extant 

species are easily differentiated, this size limit may be significantly lower. After a pre-

determined number of colonies is recorded at each station (in this case 12), the 

surveyor moves to the next sampling station (in this case located 10 m along the 

transect). Twelve colonies were selected at each sampling station for this study as 

experience suggested that this was the maximum number reliably recorded by the 

observer in ~5 minutes. This value should be determined prior to the start of the 

survey, and be suited to the question asked. The currency in this survey method is the 

individual colony, grouped into count stations, which allows for the number of 

individuals to be chosen to suit the research question and location of the study. For 

instance, the research question in this case focused on time efficiency at each site, in a 
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species rich region, so a short test revealed the maximum number of individuals 

reliable recorded in the chosen time limit (12 colonies in 5 minutes). In regions where 

coral density and/or richness is lower (such as the Caribbean, or East Pacific) a 

smaller number may be more suitable. Conversely, where time restrictions are not so 

severe, a larger number of colonies can be recorded at each sampling station. For this 

study, average colony densities allowed this number to be successfully recorded at 

each site, but to account for regions where colony densities are low, only colonies 

with at least part of the colony occurring within a two metre radius of the initial start 

colony are recorded. Colonies are countable as long as part of the colony occurs 

within the two metre radius. Where individual colonies extend beyond the sampling 

area, the size is recorded, but this is not deducted from the sampling area. If the pre-

determined number of colonies cannot be found, the sampling will stop when the area 

is exhausted. For each colony, the species, water depth (to the nearest 0.1 m, corrected 

to lowest astronomical tide), maximum diameter and its perpendicular width (to the 

nearest 5 cm) are recorded. Species are identified in situ where possible, or with 

reference to a high-resolution image. 
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Figure 2.1: PCT Sampling Scheme.  

A) overview of transect with count stations, b) one count sample (12 colonies). 

Shaded shapes represent recorded colonies, with numbers representing the 

progressive sampling order. Directionality of the count progression (in this case 

counterclockwise) is flexible, but should be decided prior to the study. 
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Comparing the Methods 

Comparative surveys were conducted along the upper reef slope of ‘Big Vickies’ reef, 

Lizard Island, Australia (145.44o E, 14.683o S). No permit was required from the 

Great Barrier Reef Marine Park Authority (GBRMPA) due to the limited impact 

(non-extractive) nature of the research, conducted under the accreditation of James 

Cook University. Only visual surveys were conducted, and no endangered or 

protected species were collected or manipulated. Transects to be used for both 

methods were laid end to end along the reef slope where there was contiguous hard 

substrata between 2 and 4 m depth. Nineteen replicate 10 m LITs surveys were 

conducted, covering the same linear reef area as the PCT while representing a 

sampling intensity significantly greater than the three to five transect recorded in most 

studies. In addition to species identity, we recorded the time taken to complete each 

transect. We then conducted 4 PCTs of 50 m in length (containing 6 count stations per 

transect at 10 m intervals) as described above overlying the same reef area. The time 

taken to complete each survey was recorded. 

 

The efficiency of the two methods was compared through the rate at which new 

species were observed against both time invested and the number of colonies 

surveyed. Species accumulation curves (Colwell et al. 2012) were used to compare 

estimates of alpha diversity from each method. Differences in sampling effort were 

accounted for using species accumulation curves extrapolated to a sample size of 50 

samples (~600 individuals) through rarefaction using the program EstimateS (Colwell 

2013). Curves were used to compare the rate of increase (indicating the rate of 

observing new species) and the number of species recorded at a common sample size 

(468 individuals). The average time taken to increase the sample size by one 
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individual was used to compare the time efficiency of each method. Species 

abundance distributions (SADs) were calculated to detect and display sampling bias 

towards or against rare species. Results are presented as mean ± 95% CI, unless 

otherwise stated. 

 

2.4: Results and Discussion 
Species Accumulation and Abundance 

A total of 234 colonies were recorded on the LITs, compared to 288 colonies during 

the PCTs. A mean of 12.3 colonies were recorded for each 10 m LIT, compared to the 

12 colonies sampled for each station of the PCT. PCTs recorded 85 species in 120 

minutes, compared to the 41 in 171 minutes for the LIT. The rate of species detection 

was faster for the PCT and mean estimated species richness higher for any given 

sample size (Fig. 2.2). This difference was even greater when comparing species 

richness for any given sampling time (Fig. 2.3). Importantly, estimates of total site 

species richness did not converge with the PCT species accumulation curve when 

extrapolated using rarefaction (Fig. 2.2). At a comparable sample size (468 

individuals), the estimated species number was substantially lower for the LIT (52.83, 

95% CI: 41.13 – 64.53) than the PCT (100.99, 95% CI: 88.5 – 113.49). This disparity 

was even greater when time invested was accounted for (LIT: 42.85 95% CI: 35.44 – 

50.27, PCT: 100.3 95% CI: 88.08 – 112.51 for 189 minutes) (Fig. 2.3). The number of 

species recorded by PCT after sampling 288 colonies (83 species) was also 

substantially higher than the estimated total species richness after sampling 600 

colonies using LIT (56 species). Although both methods showed an asymptotic 

accumulation curve, the projected estimates of total species richness between the 
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methods were substantially different. Even with increased effort LITs are likely to 

underestimate the number of species present far more than comparable PCTs.  

 

 

 

Figure 2.2: Species Accumulation Curves For PCT And LIT (by individuals 

added).  

Species richness (y axis) by number of individual colonies sampled (x axis). Solid 

lines represent observed species richness, dashed lines show projected species 

richness rarefied to ~600 individuals, with corresponding 95% CI intervals (shaded 

area). 
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Figure 2.3: Species Accumulation Curves For PCT And LIT (by time invested). 

Species richness (y axis) by number of minutes invested in sampling (x axis). Solid 

lines represent observed species richness, dashed lines show projected species 

richness rarefied to ~600 individuals, with corresponding 95% CI intervals (shaded 

area). 
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The SADs revealed that 41 of the 44 species recorded in PCTs but not in LITs were 

rare (observed ≤ 3 times; Fig. 2.4). This indicates that the cause of the disparity 

between richness estimates was the failure of LITs to detect rare species (Fig. 2.4). 

Both methods indicated similar abundances among common species, but LITs 

consistently failed to detect rare species even though the number of replicate transects 

used at Big Vickies reef (n = 19) was considerably higher than the usual number of 

replicates used to characterize coral assemblages at any particular site (e.g. (Hughes et 

al. 1999,2012)).  The cause of this chronic lack of detection of rare species by the LIT 

is likely due to the practical limitations of the method. Coral reef habitats are complex 

environments, with many microhabitats within a small region. The LIT method can 

only detect species that can be covered by a stationary line from above, and the 

application of the transect line is almost always unable to follow the reef contours 

precisely, missing most of the complex habitat. In theory, the LIT should not under-

represent rare species, but the practical limitations of deploying the method in coral 

reefs causes errors. The real-world limitations of sampling methodologies are an 

important consideration, but are often overlooked in favour of theoretical 

justifications. Given the importance of detecting rare species for many ecological 

studies, we suggest that PCTs can be a more effective method of surveying coral 

assemblages than LITs. 
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Figure 2.4: Species Abundance Distribution (SAD) Of PCT (red) and LIT (blue). 

Frequency bins as per Gray et al. (Gray et al. 2006) (1, 2-3, 4-7, 8-15…). 
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The PCT was developed to assess patterns of species richness and meta-community 

structure along steep environmental gradients (e.g. depth) on coral reefs. These types 

of research questions do not require metrics of absolute abundance such as coral 

cover, which can be effectively obtained using LITs. As a result, the PCT represents a 

complementary data collection technique, rather than a replacement. The sensitivity 

of the PCT to rare and incidental species allows insight into the poor detection by the 

LIT, but emphasizes rapid capture of richness at the expense of absolute abundance 

measures. Using the PCT without considering its own strengths and weaknesses to a 

specific research question will likely result in an equally erroneous result as misuse of 

the LIT. Where detection of rare species is important, we propose the PCT as a robust 

and time-efficient method of collecting ecological data on coral reefs. This method 

will be particularly effective for examining questions such depth-diversity gradients, 

where the amount of survey time is greatly restricted. While this protocol was tested 

in a highly species rich habitat, with high coral abundance, it is applicable to any 

environment. The flexibility of the methodological framework allows for adjustment 

to specific systems, and questions.  

 

Our results also highlight the importance of collecting field data using methods 

appropriate for the question being asked to avoid error in interpreting findings. For 

example, estimating species richness of a particular site using species accumulation 

curves requires samples to have no detectability bias towards or against any given 

species (Gotelli and Colwell 2001). Bias against rare species may confound results, 

and can be difficult to quantify unless the extent of the bias is known. The sensitivity 

of such analysis to sampling error and bias is well established (e.g. (Dornelas and 
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Connolly 2008)), yet basic errors continue to occur (Gotelli and Colwell 2001; 

Magurran 2004).  

 

Coral reef ecologists should continue to develop new and improved methodologies to 

overcome logistical constraints, and improve the precision and scope of available 

data. Establishing the real-world strengths and weaknesses of various methodologies 

enables more researchers to make a more informed decision when collecting data. 

Methods such as the PCT can complement existing techniques, enabling researchers 

to better match data collection to suit the desired analysis. 
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Chapter 3: Energy limitation does not explain species 

richness gradients over depth in reef-building corals 
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3.1: Abstract 
Natural environmental gradients capture systematic variation in abiotic factors that 

influence the distributions of species, and can be exploited to test general hypotheses 

proposed to explain patterns of biodiversity. The Species-Energy hypothesis and the 

Mid-Domain Effect are the two theoretical models most commonly invoked to predict 

species richness gradients, featuring fundamentally different assumptions and 

predictions over an energetic gradient. Most tests of diversity hypotheses utilise 

terrestrial systems, and are often confounded by multiple factors. We overcome these 

obstacles by using observations of 9,576 colonies of photo-symbiotic corals over 

depth, (representing light; the key limiting energetic resource). Here, we show that 

neither model described the observed left-skewed hump, arguing against the assertion 

that the monotonic pattern is a “universal ecological law”. Further, we demonstrate 

how veil effects, caused by truncated sampling of the gradient, materially distort these 

model fits, and can explain pervasive support for both models in the literature. 

	 	



	 44	

3.2: Introduction 
Despite decades of research and over one hundred proposed explanations (Rahbek 

1995; Gotelli et al. 2009), the underlying processes that generate and maintain species 

richness gradients remain poorly resolved (Rahbek 1995; Colwell and Lees 2000; 

Willig et al. 2003; Rahbek 2004). An important contributor to this lack of clarity is 

the limited availability of species abundance data with sufficient coverage and 

resolution to identify underlying patterns or distinguish between competing possible 

causes (Colwell and Lees 2000; Willig et al. 2003; Beck et al. 2016). In addition, the 

presence of ecosystem-specific differences in interspecific responses to environmental 

factors limits our ability to separate general ecological processes from local 

idiosyncratic effects (Field et al. 2009). Differences in dispersal boundaries (Karlson 

et al. 2004), area effects (Rahbek 1997,2004), sampling bias (Rahbek 1995; Gotelli 

and Colwell 2001), and the proportion of gradients sampled (Willig et al. 2003) have 

all contributed to a lack of consensus regarding the processes that generate and 

maintain species richness gradients.  

	
The Species Energy hypothesis (SE) proposes that species richness gradients can be 

explained by energy availability, and predicts a monotonic decline of richness with 

declining energy (Wright 1983). However, despite many empirical field studies, there 

is still no consensus on the importance of SE in structuring ecological communities 

outside of controlled experiments (Chase 2010). A prominent alternative to the SE is 

the Mid-Domain Effect (MDE), which predicts a hump-shaped species richness 

distribution arising from geometric constraints of species ranges within a bounded 

domain in the absence of climatic or historical forces (Colwell and Lees 2000; 

Colwell et al. 2004). MDE models therefore predict peak species richness in the 

middle of a gradient within a bounded domain, irrespective of any underlying effect 
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of energy. These two models offer contrasting predictions, but both remain plausible 

and are much discussed explanations of the shape of species richness patterns along 

environmental gradients in natural ecosystems. 

	
A strong test of the SE hypothesis can be achieved by examining a diverse biological 

community where all individuals occur along a geographically short but clearly 

defined energy gradient. In such a case, any effects of area and dispersal boundaries 

should be minimal, the limiting resource is clear, and the full gradient can be sampled. 

Coral reefs provide such a system because light provides photo-symbiotic reef-

building corals with the vast majority of their energy requirements via photosynthesis 

(Anthony and Connolly 2004; Bongaerts et al. 2015), and the influence of energy 

availability on coral community composition is well understood (Connolly et al. 

2005; Volkov et al. 2007). Although corals are mixotrophic, and can supplement their 

energetic budget with heterotrophic feeding (Williams et al. 2018), light availability is 

closely linked to the physiological process of calcification (Gattuso et al. 1999; 

Schneider et al. 2009), and heterotrophy supplements, rather than replaces, 

photosynthetic acquisition of energy. Importantly, photo-symbiotic reef corals occur 

over a relatively short energy gradient, as light energy declines exponentially and 

predictably from the surface to ~1% of surface irradiance at 60 m depth. 

Consequently, coral reefs allow sampling of virtually the entire gradient, thereby 

minimizing any potential effects of sampling a truncated energy distribution (Nogués-

Bravo et al. 2008). Light irradiance, combined with competitive dynamics, has been 

invoked to explain the species richness gradient over depth (Connell 1978; Huston 

1985; Cornell and Karlson 2000), although empirical support remains scarce 

primarily due to the logistical difficulty of obtaining data at depth.  

	



	 46	

Here, we quantified the abundance of photo-symbiotic reef-building corals over a 

depth range of 0 to 45 m, encompassing 98% of the light gradient, to assess whether 

species richness declined monotonically with decreasing energy availability or 

exhibited a hump-shaped distribution (Rahbek 2004). Specifically, we tested the 

competing predictions of a monotonic decline predicted by the SE, and a humped 

shaped distribution predicted by the MDE. We also test the potential influence of veil 

effects, by intentionally hiding portions of the gradient. 

 

3.3: Results and Discussion 
Model predictions for the SE and MDE models were monotonic and unimodal 

respectively, as expected (Fig. 3.1a). In contrast, the observed mean species richness 

showed a left-skewed hump, peaking at 12.5 metres depth (Fig. 3.1b). Over the full 

gradient, the MDE model offered greater explanatory power than the SE model 

(MDE: r2 = 0.31, SE: r2 = 0.07) due to its prediction of a unimodal hump-shaped 

distribution (Fig. 3.2). In contrast, there was little support for the monotonic decline 

predicted by the SE model. Importantly, both models are unable to predict species 

richness in the shallow high-energy section of the domain, with the MDE model 

predicting too few species and the SE model too many (Fig. 3.2b). 
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Figure 3.1: Mid-Domain Effect model and Species Energy Model predictions vs 

observed data.  

a) Species Energy Model prediction using log light (red line) and Mid Domain Effect 

Model prediction (blue line). b) empirical species richness over depth, estimated 

using species accumulation. Grey dots are 999 values at each depth of species 

richness at a common sample size of 840 individuals. Black line represents mean 

values at each depth. 

	
	
	

 
 
Figure 3.2: Mid-Domain Effect model and Species Energy Model model fits (a) 

and residuals (b).  

Observed data (black dashed line) Species Energy Model prediction (red line, r2 = 

0.17), and Mid Domain Effect Model prediction (blue line, r2 = 0.37).  
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While neither captures the observed pattern, only the null model MDE explicitly 

allows for further information from environmental factors, and captures the basic 

unimodal pattern (Colwell et al. 2016). The single factor SE can only conform to the 

empirical data by the addition of unspecified local factors, which must distort the 

proposed monotonic pattern by depressing species richness at the highest energy sites. 

 

Similar declines in richness at the higher energy section of a domain has been 

observed in many terrestrial systems (Rosenzweig 1992; Rahbek 1995; Colwell et al. 

2004; Beck et al. 2016; Bertuzzo et al. 2016), although the suggestion that the pattern 

is universal remains controversial (Rosenzweig 1995). The conflicting support for the 

MDE (Colwell et al. 2004) and SE (Evans et al. 2005) models as candidate 

explanations of species richness gradients can be explained to some extent by veil 

effects derived from truncated sampling of the energy gradient (McCoy 2002). 

Incomplete sampling is problematic in studies of species richness patterns along 

altitudinal gradients in terrestrial ecosystems (Nogués-Bravo et al. 2008). Here, the 

extent to which truncated sampling can influence the fit of either model is clearly 

demonstrated by veiling our data artificially (Fig. 3.3). Removing data from either the 

deepest (Fig. 3.3a) or the shallowest (Fig. 3b) thirds of the depth range produces an 

excellent fit for the MDE or the SE model respectively. These results confirm 

previous findings that incomplete sampling can obscure ecological patterns (McCoy 

2002; Rahbek 2004; Nogués-Bravo et al. 2008), and emphasizes the need to collect 

data along the full gradient. 
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Figure 3.3: Mid-Domain Effect model and Species Energy Model model fits to 

truncated data.  

Veiling of the low energy third (a) creates a very good fit for the MDE model (r2 = 

0.81), while veiling of the shallow third (b) provides a correspondingly excellent fit 

for the SE model (r2 = 0.95). 
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The challenge of explaining the widespread pattern of species richness decline at the 

highest energy portions of a gradient (i.e., shallow depths, low altitudes) was first 

presented in the early 1990s (Rosenzweig 1992; Rosenzweig 1995). The pattern was 

thought to result from the effects of multiple energetic factors (Hawkins et al. 2003), 

scale effects (Chase and Leibold 2002), and local disturbance regimes (Connell 1978), 

but there remains no widely accepted explanation for the pervasiveness of this pattern. 

More recently, the challenge to explain the left-skewed hump has retreated into the 

background, often explained via post-hoc modification of model predictions based on 

local factors. Using observations free of commonly-occurring confounding factors 

such as area, definition of limiting energetic resource, sampling effort, and dispersal 

barriers, we show that the left-skewed hump remains. Monotonic patterns of 

increasing species richness with increasing energy are not a “universal ecological 

law” (Evans et al. 2005), rather they are more likely an artefact of idiosyncratic taxon-

specific responses to environmental or ecological factors, or incomplete sampling of 

gradients of abiotic determinants. While there remains no satisfactory explanation for 

the degree of this left-skewed hump shaped pattern in species richness, identifying 

mechanisms and hypotheses that can better predict their occurrence and location 

would provide greater insight into the processes generating species richness gradients.  

 

3.4: Methods 
Field Surveys 

Coral surveys were conducted within Kimbe Bay, Papua New Guinea. Kimbe Bay 

was chosen as it lies within the Indo-Australasian Archipelago (IAA) center of coral 

diversity, and hosts one of the largest regional coral species pools (Bellwood and 

Hughes 2001). Coral colonies were surveyed on six reefs, evenly distributed among 
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three locations (inner, mid, and outer bay), between April 2015 and November 2016. 

Inner bay reefs were defined as > 1.5 km from shore. Mid bay reefs were located 

between 8 km and 14 km from land, and outer bay reefs were located on the outer 

perimeter of Kimbe Bay, exposed to oceanic conditions. Corals were censused using 

up-slope point count transects to maximize species detection, especially rare species, 

and to standardize sampling effort (Roberts et al. 2016). At each reef, twelve replicate 

up-slope point count transect surveys were conducted, with a minimum of one count 

station completed in each depth bin. The nine separate depth bins were defined at five 

metre intervals from the surface (i.e. 0-5 m) to 45 metres (40-45 m). At least 144 

colonies (mean = 177) were recorded and identified to species in each of 9 depth bins, 

at each of the six reefs (total n = 9,576 colonies, and > 864 colonies/depth bin). For 

each transect, the surveyor descended to the maximum depth bin, along a substrate of 

consolidated reef, with a maximum relief of at least 70o. Once within the first depth 

bin, the surveyor selected the nearest live colony, on a consolidated substrate suitable 

for coral growth, and began the survey. Twelve colonies were recorded at each PCT 

site, ranging outwards from the central colony via the nearest neighbor. Only 

zooxanthellate reef-building scleractinia were recorded. For each individual, the 

genus, species, and depth (to 0.1m) were recorded. Where in-water species 

identification was uncertain, a high-resolution image of the colony was taken for later 

identification. Images were taken with a Nikon D300s DSLR and Tokina 10-17 lens 

in a Nauticam housing, with Inon strobes. Colonies were identified to species 

following current taxonomic guides (Veron 2000; Benzoni et al. 2007; Huang et al. 

2014; Arrigoni et al. 2016), and species identified following Veron (2000) were 

updated to the currently accepted species names following Hoeksema and Cairns 

(accessed November 2016)(Hoeksema and Cairns 2018). Due to recent taxonomic 
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changes and uncertainties, colonies unable to be confidently attributed to an existing 

species were given working titles (e.g., Acropora 1) for the purpose of this study. To 

minimize variation in taxonomic identifications all observations were made by the 

same individual (TER). A voucher collection of 60 colonies representing uncertain 

species was collected and examined at the Museum of Tropical Queensland. 

Collected specimens were examined using morphological features in the skeletal 

microstructure, to verify field IDs. 

	

Species Richness Analysis 

Species Richness Values: To correct for any sampling effort discrepancies (Gotelli 

and Colwell 2001), species richness estimates for each depth bin were generated using 

species accumulation curves, and compared at a common sample size (840 individual 

colonies). Count data were pooled by depth bin, and species accumulation curves 

were generated, using the function ‘specaccum’ within the package ‘Vegan’ in R 

(Oksanen et al. 2007; R Core Team 2016). Curves for each depth bin were assembled 

by compiling counts randomly, and with replacement. Each curve was re-assembled 

999 times to capture the variation in species richness, and was then subsampled at a 

sample size of 70 counts (representing 840 individual colonies). This sample size was 

chosen as it allowed species estimates to be compared at a size that did not require 

extrapolation of the accumulation curves beyond the reach of the empirical data at any 

depth. The resulting 8,991 data points were retained, and the mean of each depth 

taken to represent the empirical species richness. 

 

Mid Domain Effect Null Model: A site-by-species matrix including all recorded 

species (n = 347), and all depth bins (n = 9) was used to generate MDE null model 
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predictions. Species ranges were retained, and the location on the empirical domain 

was randomized 999 times, using the function “rangemod1d” in the statistical R 

package “rangemodelR”. Results were reported as mean expected species richness for 

each depth bin (Fig. 3.1a).  

 

Species Energy Model: At each sample reef, a measure of light intensity was recorded 

at 5 metre intervals along the sampling gradient. Levels were recorded during 

November 2015, at a standardized time of day, using an Odyssey submersible 

photosynthetic irradiance recording system logger (Long et al. 2012). Each estimate 

was the mean of at least 3 estimates of irradiance recorded a minimum of 30 seconds 

apart. Light intensity values at each depth were calculated as a percentage of the light 

available at the surface. These values were used to estimate a standard light 

attenuation curve over depth for the study location. The Species Energy model 

prediction was then represented in analysis as the log of the percentage of surface 

irradiation available at each depth (Fig. 3.1a). The log was chosen, as the most 

suitable representative of the exponential decline in light, and best reflected the 

decline in energetic availability for the coral community. 

	

SE and MDE Model Fit Analysis 

General linear models: Model predictions were normalised to between 0 and 1. 

Empirical estimates were ranked by finding the proportion of the observed species 

pool captured by the species accumulation estimate at the highest sampling region (0 

to 5 metres). This revealed that 81.77% of the observed species pool was captured at 

the sample size of 840 individuals, and the rest of the estimated values were taken to 

represent 81.78% of the total available species pool (347 species). The MDE range 
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overlap model was re-ranked as a proportion of the total observed species pool (347 

sp). The SE model was represented by the log of the percentage of surface light 

available over depth. 1 was equal to 100% of surface light, 0.5 equal to 10% of 

surface light, and 0 represented 0% surface light. Both the MDE and SE were tested in 

single factor general linear models over the full gradient. Variance partitioning was 

calculated using the function varpart in the package vegan (Oksanen et al. 2007; R 

Core Team 2016). 

 

Truncated Sampling 

To simulate the effects of truncated sampling, MDE range re-sampling models were 

run using only the top two thirds of the empirical data (0 to 30 m) and the bottom two 

thirds (15 to 45 m). The relevant portion of the light gradient (representing the SE 

model) and observed richness were then retained, and general linear models 

performed as per the prior analysis. 
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Chapter 4: Depth Diversity Patterns On Coral Reefs Are 

Maintained by Regional Processes 
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4.1: Abstract 
Processes that create and maintain patterns of diversity across environmental 

gradients operate at specific spatial scales. Therefore, identifying differences in 

species turnover at different scales can reveal the processes influencing community 

assembly. Hump-shaped diversity patterns at local scales (e.g., reef-building corals 

over depth) are often explained as a modification of a monotonic regional-scale 

pattern of decreasing diversity with depth by local-scale processes. Here, we test this 

hypothesis by comparing observations with null expectations to assess changes with 

depth in the species turnover among assemblages of reef-building corals at reef, and 

sites-within-reef scales. At the reef scale, coral assemblages were more heterogeneous 

than expected at all depths, consistent with an effect of environmental filtering. 

Conversely, site scale assemblages were only marginally more heterogeneous than 

expected at all depths, suggesting processes operating at this scale (i.e., competition) 

were not influential. Crucially, observations at neither scale provided evidence of 

processes influencing local species richness patterns. Instead, the regional species 

pool size was correlated with both reef- and site-scale richness within depths, 

indicating that regional factors were more important than local ecological processes in 

structuring depth diversity patterns in corals, and that the regional species richness 

pattern is not monotonic, but rather unimodal. 
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4.2: Introduction  
Ecologists seek to understand the formation and maintenance of species richness 

patterns (Rosenzweig 1995; Lawton 1999). Well known species richness patterns 

include those observed over gradients of latitude, altitude, and depth (Rosenzweig 

1992; Willig et al. 2003). Potential mechanisms maintaining these gradients are 

numerous, operating simultaneously at multiple spatial scales, making it difficult to 

discern their separate effects (Huston 1999; Rahbek 2004). However, the many 

processes that operate at specific spatial scales can be studied using multi-scale 

analyses, whereby the scale of operation of a process can be used to help estimate 

how it affects community assembly (Kraft et al. 2011; Myers et al. 2013; Lessard et 

al. 2016). For example, competition occurs among individuals within sites, whereas 

environmental factors such as exposure to wind and waves vary at larger scales. At 

regional scales, processes such as speciation, extinction and large-scale dispersal 

control the size and membership of the pool from which local assemblages are drawn 

(Ricklefs 1987; Caley 1997; Caley and Schluter 1997). 

 

One way to reveal the processes structuring communities is to examine species 

turnover between sites (beta diversity) at multiple scales. Using a null model approach 

(Kraft et al. 2011),the expected level of beta diversity between sites based on the size 

of the regional species pool alone can be determined, and compared to empirical 

observations. Subsequently, deviations from the null expectation can be seen as 

informative of community assembly processes operating at the site scale (Myers et al. 

2013; Segre et al. 2014). Since different ecological processes influencing community 

assembly operate at different scales, the relative scale of ‘regional’ and ‘site’ can be 

progressively stepped down, to examine processes operating at specific scales. 
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Applying this approach across a natural gradient can then be used to identify 

processes responsible for generating the observed patterns of species richness. This 

approach, however, requires assumptions to be made regarding the scale at which a 

specified process operates. 

 

Reef-scale species richness gradients over depth in reef-building corals tend to be left-

skewed and humped (Huston 1985; Cornell and Karlson 2000). The shape of this 

gradient at the regional scale, however, is unclear due to data deficiency, but is 

thought to decline monotonically as light, and therefore energy available to 

photosymbiotic corals, becomes increasingly limited with depth (Wells 1957; Cornell 

and Karlson 2000). The incongruence between local-scale empirical observations and 

the hypothesized regional-scale pattern is generally attributed to local-scale processes 

reducing coral species richness in shallow waters, thereby modifying the underlying 

monotonic species richness pattern across depth that may otherwise form (Fig. 4.1) 

(Huston 1985; Cornell and Karlson 2000). Environmental filtering, by virtue of 

increased disturbance frequency in shallower depths, and intensive competitive 

interactions in shallow, high-light habitats have both been suggested as possible 

modifying processes (Wells 1957; Connell 1978; Done 1982; Kühlmann 1983; 

Huston 1985; Cornell and Karlson 2000). However, there is little empirical evidence 

as to how these processes change over depth, nor their importance in creating and 

maintaining species richness patterns (Cornell and Karlson 2000). 
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Figure 4.1: Theoretical modification of a species richness pattern by local 

processes.   

a) The regional species richness pattern (solid line) can be distorted by local processes 

(red gradient), which change in intensity over the gradient (in this case depth) to 

produce a hump-shaped pattern (dashed line). b) This process will be reflected in 

levels of site similarity (beta diversity) over the gradient. Empirical levels of site 

similarity (dashed line) will show a corresponding deviation away from null 

expectations of beta diversity (black line, grey polygon), where local processes are 

more influential. 
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Coral communities are strongly influenced by numerous abiotic environmental 

factors, notably hydrodynamic exposure (Done 1982; Madin et al. 2014; Roberts et al. 

2015), light (Anthony and Connolly 2004), and temperature (Baird et al. 2009b). 

These factors vary locally, and can potentially modify the hypothetical regional-scale 

pattern of monotonic decline in species richness with depth. Hydrodynamic energy, 

for example, dissipates rapidly with depth (Monismith 2007), producing a gradient of 

disturbance which might decrease local richness in shallow areas more frequently 

exposed to hydrodynamic disturbances  (Connell 1978; Done 1982; Cornell and 

Karlson 2000; Madin et al. 2014). Similarly, high light levels in the shallows may 

facilitate rapid growth, leading to competitive exclusion of inferior competitors, and 

reduced species richness at local scales. Meanwhile, coral communities at greater 

depths generally feature a dwindling number of species, attributed to the smaller 

available regional species pool at depth (Cornell and Karlson 2000). However, there 

is little to no empirical evidence supporting the role of local-scale assembly processes 

in creating and maintaining the local-scale hump-shaped pattern of species richness 

over depth in corals. Here, we use empirical observations of beta diversity calculated 

using an extensive data set of 5,832 coral colonies incorporating three hierarchical 

spatial scales, and a null-model approach to examine the influence of local-scale 

community assembly processes on the species richness gradient of corals over depth. 

We test for trends in beta diversity over depth, and for deviations from the null 

expectation at scales relevant to environmental filtering (reef scale) and biological 

interactions (sites within a reef). 
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4.3: Methods 
Field Surveys 

Study sites were located in Kimbe Bay, in the West New Britain Province of Papua 

New Guinea. Surveys were conducted between April 2015 and November 2016. Six 

reefs were surveyed, with two reefs in each of three areas within Kimbe Bay (Inner, 

Mid, Outer)(Fig. 4.2). Inner bay reefs were defined as < 1.5 km from shore. Mid bay 

reefs were located between 8 km and 14 km from land, and outer bay reefs were 

located on the outer perimeter of Kimbe Bay > 14 km from land. At each of the six 

reef locations, nine up-slope point count transects (Roberts et al. 2016) were 

conducted, with sampling sites located within nine depth bins. The nine depth bins 

were defined at five metre intervals from the surface (i.e. 1-5 m) to a maximum depth 

of 45 m (40-45 m). A total of nine sampling sites were recorded at each depth bin (n = 

9), at each reef (n = 6), with a total of 486 sites surveyed. 
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Figure 4.2: Hierarchical sampling design.  

a) The regional scale included six reefs within Kimbe Bay, Papua New Guinea: Outer 

(red), mid (blue), and inner reefs (green). b) Reef scale sampling consisted of nine 

replicate sites, at each of the nine depth bins; and c) within reef sampling consisted on 

the twelve coral colonies within each site. 
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Sample sites were located on reef substrata with a maximum relief of at least 70o to 

minimize the potential effect of shading on coral occurrences. For each sample site, 

TER selected the nearest living zooxanthellate reef-building scleractinian colony of at 

least 5 cm diameter to begin the point-count survey. Each site sample consisted of the 

twelve nearest neighbor colonies radiating outwards from the initial colony. Species 

identity and depth of occurrence (to 0.1m) of each colony was recorded. Where in-

water species identification was uncertain, a high-resolution image or small sample 

was taken for subsequent identification. Colonies were identified to species following 

current taxonomic guides (Veron 2000; Benzoni et al. 2007; Huang et al. 2014; 

Arrigoni et al. 2016), and species identified following Veron (2000) were updated to 

the currently accepted species names following Hoeksema and Cairns (accessed 

November 2016) (Hoeksema and Cairns 2018). Due to recent taxonomic changes and 

uncertainties, colonies unable to be confidently attributed to a valid species were 

given working titles (e.g., Acropora 1). To minimize misidentifications all 

observations were made by the same individual (TER). A voucher collection of 60 

colonies representing uncertain species was collected and examined at the Museum of 

Tropical Queensland. Collected specimens were examined using morphological 

features in the skeletal microstructure, to verify field IDs. The sampling methodology 

was developed specifically to minimize detectability bias away from rare species, a 

common and insidious issue when comparing taxonomic communities (Beck et al. 

2013). 

Null Model Analysis 

By using a null model to generate expected values of beta diversity for a given level 

of gamma diversity, differences in the magnitudes of observed beta diversity and/or 

the directions of these changes over an environmental gradient can be isolated and 
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understood within the context of community assembly. Expected values of beta 

diversity were generated following Kraft et al. (2011)(Kraft et al. 2011) across three 

spatial scales: bay, reef and site (Fig. 4.2): Bay included all data within the study 

region (Kimbe Bay). Reef included all data at each of the six survey reefs. Sites 

included the twelve colonies within each count survey, and represented the smallest 

spatial scale examined. For the purpose if this study, each depth bin (n = 9) is 

considered to be a distinct metacommunity. Beta diversity was calculated as pairwise 

comparisons of the relevant alpha (reef or site) using Sørensen’s index (Sorensen 

1948), using equation (1):  

                                                              "#
"#$%$&

     (1) 

 

where A is the species common to both samples, B represents species restricted to the 

first sample, and C represents species found only in the second sample. Sørensen’s 

index was chosen as the measure of beta diversity because it is sensitive to the 

turnover of rare taxa, and focuses on taxonomic differences between samples. While 

the index is compromised by unbalanced sample sizes and detectability of taxa (Chao 

et al. 2004), our data were fully balanced, and the sampling methodology specifically 

addressed detection bias between rare and common taxa. 

 Reef Scale (Environmental Processes) 

For each of the nine depth bins, a species pool was assembled consisting of all species 

recorded within a bin, and the relative abundance of each species. Null assemblages 

were generated at each depth by selecting 108 individuals from the available species 

pool, with the species abundance distribution mimicking the empirical data. A sample 

of 108 individuals was used as this was the largest sample size available in the 

empirical data at every reef/depth combination. At each depth, six assemblages were 
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assembled using random draws from the sampling universe with replacement to 

represent the six reefs sampled. Pairwise analysis of taxonomic similarity between the 

six assemblages was then conducted using Sørensen’s index, and the mean similarity 

value was recorded. This process was repeated 1000 times for each of the nine depths, 

and the values used to generate a grand mean expectation with 95% confidence 

intervals. At each depth, the full empirical species pool was available each time a new 

set of assemblages was drawn from the sampling universe. A corresponding empirical 

value was generated for each expected similarity measure generated by the null 

model. At each of the six reefs, the empirical reef assemblages of 108 individuals 

were compared using pairwise analysis of Sørensen’s index, and the mean value 

recorded. This was repeated at each of the nine depths, which are considered to be 

distinct metacommunities. To examine the relationship between null expectations and 

empirical values, the empirical values were subtracted from the null grand mean, and 

the deviance plotted over depth (e.g., Fig. 4.1b). A linear model was fitted to the 

deviance of the empirical values from the null expectation to test for directional 

change over depth. 

 Sites Within Reefs Scale (Biotic Processes) 

At the site scale, null communities were generated for each depth as per the 

methodology outlined above. In this case, species pools for null assemblies were 

constructed using the species sampled at each depth, within each reef. Nine 

assemblages of twelve individuals were then drawn from the sampling universe, 

replicating the empirical sampling. In this analysis, the processes mediating a species 

presence, and relative abundance at a reef and depth are accounted for, isolating the 

processes influencing the assembly of individuals into a site assemblage. As for the 

reef scale analysis, the nine assemblages at each depth were compared using pairwise 
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analysis of Sørensen’s index, and the mean value recorded. This was repeated 1000 

times, and the grand mean with 95% confidence intervals generated. The process was 

repeated for each of the six reefs, and corresponding empirical values were generated 

for each reef and depth. To assess the deviance of the empirical values from the null 

estimates, the empirical value of mean site similarity for each depth/reef combination 

was subtracted from the corresponding mean null estimate. As with the reef scale 

analysis, a linear regression was fitted to the empirical deviations from the null 

expectation to test for directional change over the depth gradient. 

Regional Enrichment Analysis 

All available data were compiled to generate a value for species richness at each of 

the nine depths, and tested for correlation with species richness values at both the reef 

and site within reef scales over depth. Reef scale values were empirical values of 

species richness at each reef/depth combination, and site scale values were 

represented by mean richness per site at each depth bin. Linear regressions were 

performed for both combinations to identify significant correlations indicative of 

regional enrichment across depth.  

 
4.4: Results  
At the reef scale, coral assemblages were less similar than expected at all sampling 

depths (Fig. 4.3a) with no detectable change in beta diversity over depth (Fig. 4.3b). 

In contrast at the site scale assemblages were only slightly less similar than expected 

at all depths (Fig. 4.4a). However, we did detect an increase in beta diversity (lower 

similarity) with depth, attributable to dissimilarity among assemblage at sites below 

35 m (Fig. 4.4b). Neither the reef nor the within-reef scales showed evidence of 

processes changing in influence over depth in a way that could depress species 

richness in the shallows to produce the hump-shaped species richness pattern (Fig. 
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4.1b, Fig. 4.3b, Fig. 4.4b). However, richness at the regional scale (whole study area 

of Kimbe Bay) at each depth was positively associated with richness at both smaller 

scales (Fig. 4.5). It should be noted that the species pools at each spatial scale are not 

independently determined, requiring a degree of caution in interpreting the results.  
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Figure 4.3: Reef scale relationships between Sørensen’s beta diversity and depth. 

a) expected values in black and empirical in red. b) deviations of empirical beta 

values from expected values (black line, grey polygon represents 95% CI of the 

mean), showing linear model fit of response over depth (red line). 
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Figure 4.4: Site scale relationship between Sørensen’s beta diversity and depth. 

a) expected values (black) and empirical (red), b) deviations of empirical beta values 

from expected values (black line, grey polygon represents 95% CI of the mean), 

showing linear model fit of response over depth (red line). 
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Figure 4.5: Relationship between regional and local species richness.   

a) Species richness at each reef (black points), is positively associated with the size of 

the regional species pool (red line). b) Mean species richness at the site within reef 

scale also shows a positive association with the regional species pool. 
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4.5: Discussion  
Coral assemblages were consistently less similar among reefs than expected by 

chance at all depths, indicating that environmental filtering strongly influences 

community assembly throughout the depth gradient. Conversely, assemblages at site 

scales (sites-within-reefs) were largely indistinguishable from null expectations (with 

the exception of sites below 35 m), suggesting that competition plays a negligible role 

in structuring coral communities. Neither scale showed evidence of decreasing 

similarity at shallow depths, which would be expected if local-scale processes were 

responsible for modifying a regional monotonic species richness pattern into a 

unimodal skewed hump (Fig. 4.1b). Finally, coral assemblages exhibited regional 

enrichment at both local scales throughout the depth range (Fig. 4.5), further 

suggesting that processes operating at larger spatial scales are predominantly 

responsible for the local-scale species richness patterns on coral reefs. Although the 

inevitable non-independence of the species pools at each spatial scale requires caution 

in interpreting these results, the findings suggest that it is possible that the unimodal 

skewed-hump pattern, rather than the hypothesized monotonic decline, is the 

regional-scale pattern of species richness over depth.  

 

The reefs of Kimbe Bay are affected by a heterogeneous mix of environmental factors 

commonly observed to influence coral community assembly, including hydrodynamic 

exposure, turbidity, nutrient regimes and disturbance histories (Wells 1957; Done 

1982; Madin et al. 2014; Roberts et al. 2015). These factors provide the opportunity 

for environmental filtering, where species composition is determined by prevailing 

local environmental conditions. Differences in the effects of dominant environmental 

factors between reefs (notably hydrodynamic disturbance) diminish quickly with 
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increasing depth (Monismith 2007) making environmental conditions increasingly 

homogeneous. This diminution potentially allows the increased effect of 

environmental filtering in the shallows to disproportionately depress local species 

richness at shallow depths (Huston 1985; Cornell and Karlson 2000). While higher 

than expected beta diversity between reefs suggests a strong role for environmental 

filtering, there was no evidence of a decrease in significance at greater depths. As 

such, our results indicate that reef scale processes are unlikely to be solely responsible 

for the decline in species richness at the shallowest depths. 

 

In contrast, patterns of similarity between sites within reefs were largely 

indistinguishable from the null (Fig. 4.4a), but were increasingly dissimilar at depths 

below 35 m (Fig. 4.4b). At this scale, the environmental conditions between sites 

(within a given reef) become more consistent, making competitive interactions the 

likely cause of the changing beta diversity patterns observed. Our results show that no 

significant competitive effects were evident in the upper 35m, suggesting these 

processes are ecologically unimportant for community assembly at this scale. This 

finding is consistent with previous results questioning the influence of competitive 

interactions on both coral community assembly (Cornell and Karlson 1996; Cornell 

and Karlson 2000), and physiological processes such as growth (Álvarez‐Noriega et 

al. 2018). One potential explanation for the decrease in similarity below 35m is that 

priority effects are maintained competitively over small scales, with the identity of the 

dominant colonizer inconsistent between sites (Fukami 2015). This would result in a 

greater than expected clustering of conspecifics in count samples, but low consistency 

in the identity of the dominant species in each count. Lower rates of recruitment 

(Turner et al. 2018) and extinction (Huston 1985) at greater depths would promote 
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priority effects, and this might contribute to consistently high rates of beta diversity at 

the reef scale at greater depths. Some degree of self-recruitment might also reinforce 

this pattern at a reef-scale, causing higher reef-scale beta diversity (Gleason and 

Hofmann 2011). However, the smaller sample size, and inherent non-independence of 

the reef scale and within-reef scale species pools requires a degree of caution when 

interpreting these results. It is also important to note that the attribution of community 

assembly processes to specific spatial scales requires a number of assumptions to be 

made, which allow for uncertainty in the results. 

 

Results from our multi-scale dataset confirm a strong influence of reef-scale 

environmental factors in shaping coral assemblages across depths. In addition, we 

show that processes operating at smaller scales, such as competition, may have little 

influence on community assembly. Crucially, we found no clear evidence that local 

processes at either scale show changes in intensity consistent with modifying a 

theorized monotonic regional-scale species richness pattern over depth into the 

empirically demonstrated left-skewed hump local pattern. Instead, even at the 

smallest spatial scale, it appears that regional enrichment contributes substantially 

more to the species richness-depth gradients than local-scale processes. The 

importance of regional-scale processes in determining species richness gradients 

reported here is consistent with prior studies examining species richness across the 

Indo-Pacific (Cornell and Karlson 1996; Karlson et al. 2004; Cornell et al. 2007). 

This result indicates that rather than differential local scale processes, the hump-

shaped species richness pattern over depth in corals is possibly formed by regional 

scale processes (e.g.; speciation, extinction, large-scale dispersal, endemism), which 

control the species pool from which local scale communities are assembled (Caley 
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and Schluter 1997; Cornell et al. 2007). Consequently, it is possible that the regional 

species richness pattern over depth is not monotonic, as assumed, but unimodal. 

Although hump-shaped species richness patterns are consistently reported along 

altitudinal gradients in terrestrial systems at regional scales, there remains little 

consensus regarding the processes that create and maintain them (Rosenzweig 1992; 

Rahbek 1995; Lomolino 2001; Nogués-Bravo et al. 2008). By showing that the hump-

shaped pattern in species richness over depth is likely to be an empirical reality, we 

hope to precipitate the development of predictive hypotheses to understand how it is 

created and maintained.  
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Chapter 5: Modeling Depth Niches of Reef-Building Corals 
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5.1: Abstract 
Understanding the distribution of species in space and time is a fundamental 

component of ecological research. While species abundance response curves 

(abundance over a bounded range) can vary widely, bounded abundance distributions 

are often represented by simple, highly correlated metrics, such as the mid- point, or 

the total extent of a species’ geographic, altitudinal, or bathymetric range. Patterns of 

depth zonation are prominent in coral reef assemblages, yet most species have a broad 

depth range; a paradox that is unresolvable if distributions are represented by these 

simple metrics. Here, we use a unique dataset of 9,567 coral colonies representing 

170 species over a 45 m depth range to model species depth abundance distributions, 

and generate two descriptive parameters: the optimum depth (i.e. the depth at which 

the species is most abundant) and the depth niche breadth (i.e. the depth range where 

species abundance are over 60% of the maximum value). We then compare the model 

parameters to equivalent metrics derived from range extent data, and test the capacity 

of four life history traits (gross morphology, morphological plasticity, mean corallite 

size, and larval development mode) to predict the optimum depth and niche breadth. 

Species with encrusting and laminar growth forms were more likely to have an 

optimum depth at the deeper end of the domain, while species with submassive 

growth forms were associated with a wider niche breadth. Niche breadth was 

unrelated to total range size, and the majority (67%) of species preferentially occupy 

less than half of their depth range. Optimum depth values were distributed throughout 

species’ ranges, irrespective of mid-depth, and over half of all species had their 

optimum depth at the range limit (0 or 45 m). Together, these results reconcile the 

depth generalist paradox by invalidating the assumption that species abundance is 
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normally distributed over a species range, and demonstrating how coral species 

preferentially occupy a subset of their depth range. 
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5.2: Introduction 
Variation in the abundances of species across space is a ubiquitous feature of the 

natural world (MacArthur 1972; Gaston 2000), and explaining this variation is a 

primary goal of ecology (Guisan and Zimmermann 2000). Measures of species 

abundance distributions in space (e.g., range size or area) are fundamental to many 

community ecology theories, notably niche theory (Hutchinson 1957; MacArthur and 

Levins 1967; McGill et al. 2006). Species abundance distributions are also widely 

used in fields such as conservation planning (Corsi et al. 1999; Carpenter et al. 2008; 

Rodríguez‐Soto et al. 2011), and for predicting the effects of environmental change 

(Araújo et al. 2005; Austin and Van Niel 2011). 

 

Changes in the abundance of a species in space, for example along an environmental 

gradient, are often characterized using an abundance response curve. Where sufficient 

empirical abundance data is unavailable, the abundance response curve of a species is 

often extrapolated from its range limits, which can be obtained from sources such as 

museum records and historical references (Raxworthy et al. 2003; Elith and 

Leathwick 2007). For any given species, the shape of this curve is often assumed to 

follow a normal distribution, with abundance in the center of the range (Hutchinson 

1957; Brown 1984; Gaston 2003). The range center is assumed to constitute a species 

optimal habitat, and consequently supports the greatest abundance. As distance from 

the center grows, the habitat suitability decreases, producing a decline in abundance 

until the physiological limits of a species are reached at the range boundary. In reality, 

however, the abundances of most species are poorly characterized by the normal 

distribution (Austin 2002; Ehrlén and Morris 2015; Dallas et al. 2017). Indeed, 

response curves can have an infinite variety of different shapes (Austin et al. 1994; 
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Austin 1999). Thus, range limits are not sufficient to accurately predict the abundance 

distribution of a species (Brown 1984; Austin et al. 1994; Brown et al. 1995; Austin 

1999). Issues arise with more complex approaches as well. For instance, 

unconstrained generalized additive models (GAM) can produce excellent fits to 

empirical data but are difficult to interpret ecologically (McCune et al. 2002).  

 

Another way to describe species abundance curves is to constrain the possible curves 

to a pre-defined set of shapes. The hierarchical set of logistic regression models 

proposed by (Huisman et al. 1993), and refined by (Jansen and Oksanen 2013), 

provide such an approach. While allowing for the infinite amount of variation 

possible in the way a species utilizes space within the domain, the Huismann-Olff-

Fresco (HOF) models restrain the curve to one of seven basic shapes (Fig. 5.1) each 

of which can be readily interpreted ecologically. For example, model IV can be linked 

to the normal distribution of a species, where the gradient examined captures a 

consistent change in the dominant factors influencing a species’ distribution. In cases 

where the key factor does not change consistently over the gradient (for instance, 

substrate type over depth) multimodal models, such as models VI and VII, may best 

capture the abundance distribution. This approach strikes a balance between the need 

to use multiple parameters to capture the potentially complex shape of a species 

abundance curve, and the inherent limitations of empirical data. In addition, this 

approach can yield informative model parameters, such as the optimum (point of 

highest response), and the breadth of the inner and outer niches (region of the curve 

featuring at least 0.6 of the maximum value, and 0.135 of the maximum value 

respectively, Fig. 5.2) (Huisman et al. 1993; Heegaard 2002; Jansen and Oksanen 

2013). 
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Figure 5.1: Seven types of models described by Huismann-Olff-Fresco analysis.  

Possible response shapes include monotonic (models I to III), unimodal (models IV 

and V) and bimodal (models VI and VII) patterns. 
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Figure 5.2: Species abundance response model over depth for Acropora 

granulosa.  

Model response (blue lines) shows the predicted probability of the species (y axis) 

over the depth gradient (x axis), using the chosen model type (IV). Black dotted lines 

represent the unconstrained GAM model with 95% confidence intervals, to ascertain 

goodness of fit. Box plots show the presence (top) and absence (bottom) of the 

species in each of the 798 count stations. Grey bars represent the outer (light grey) 

and inner (dark grey) niche boundaries. 
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Reef-building corals inhabit the world’s tropical oceans to a depth of 60 m or more 

(Veron 2000; Kahng et al. 2010). Strong and consistent patterns of zonation occur 

over the depth gradient, reflecting the influence of environmental factors, which 

change over depth (such as light, temperature, and hydrodynamic stress) on species 

depth distributions (Sheppard 1980; Done 1982; Kühlmann 1983). The width of a 

species depth range, and location on the domain are often used to characterize a 

species specialization and depth preference respectively, with wider depth ranges 

reflecting a more depth generalist species (e.g., Muir et al. 2015). However, the 

majority of species exhibit wide depth ranges (Loya 1972; Kühlmann 1983; Bridge et 

al. 2013) leading to a paradoxical situation, whereby a majority of depth generalist 

species produce strong patterns of depth zonation. Additionally, there has been a 

recent research focus on ‘mesophotic’ coral ecosystems (coral communities existing 

at the lower end of the photic zone) (Kahng et al. 2010; Bridge et al. 2013). 

Correspondingly, the maximum depth records for many species are being extended as 

data acquisition improves (e.g., (Englebert et al. 2017)), further exacerbating the 

depth generalist paradox. Moving beyond the one-dimensional metric of range extent 

by using species abundance response curves to describe how species occupy space 

within their range may resolve this situation. 

 

Here, we test the capacity of HOF models to capture the depth response curves of 170 

reef-building coral species over a depth gradient of 0-45 m, and compare the use of 

the two model parameters, optimum depth and niche breadth, to equivalent range 

derived metrics (depth range, and range mid-point) used to describe depth distribution 

in these species. Finally, we test the capacity of four life history traits linked to the 

depth distribution of a species, to predict the optimum depth and niche breadth. 



	85	

5.3: Methods 
Coral Surveys 

We surveyed 9,576 reef-building corals over a 45 m depth gradient between April 

2015 and November 2016 on six reefs in Kimbe Bay, West New Britain Province, 

Papua New Guinea. We chose Kimbe Bay because of the high species richness of the 

coral fauna (Veron 1995; Keith et al. 2013). Corals were surveyed using the ‘point 

count transect’ method (Roberts et al. 2016). At each of the six reefs, a minimum of 

10 point count stations were recorded, at each of nine depth bins, progressing from 45 

m depth to the surface in five metre intervals (i.e., 0-5m, 5-10m, 10-15m…). In each 

case, reefs were sampled along a consolidated reef slope extending beyond 45 m 

depth, and habitats likely to support a small specific subset of coral species (i.e., 

caves, sand) were avoided.  

	
Count stations consisted of twelve reef-building coral colonies of >5 cm diameter. 

After the random selection of an initial colony, the nearest neighbor colonies were 

progressively chosen until a total of twelve colonies were recorded (see Roberts et al. 

(2016) for further details on sampling design). The depth (to the nearest 0.1 m) and 

species identity of each colony were recorded. Where in-water identification was 

uncertain, a high-resolution image or small sample was taken for later identification. 

Images were taken with a Nikon D300s DSLR and Tokina 10-17mm lens in a 

Nauticam housing, with two Inon Z240 strobes. Colonies were identified following 

(Veron 2000; Benzoni et al. 2007; Schmidt-Roach et al. 2013; Huang et al. 2014; 

Arrigoni et al. 2016). Species identified following Veron (2000) were updated to the 

currently accepted species names following Hoeksema and Cairns (accessed 

November 2016) (Hoeksema and Cairns 2018). Colonies unable to be identified as 

existing species were given working titles (e.g., Acropora 1). All observations were 
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made by TER. A voucher collection of 60 colonies representing uncertain species was 

collected and examined at the Museum of Tropical Queensland. Collected specimens 

were examined using morphological features in the skeletal microstructure, to verify 

field IDs. 

Model Application 

HOF models were applied following the methods of (Jansen and Oksanen 2013). To 

provide a more stable representation of species depth use, data were analyzed using 

presence/absence only. Each station was taken as a sampling unit, and the presence or 

absence of a species within the station was recorded. This was feasible due to the high 

number of replicate count stations in the dataset (n = 798). To minimize the influence 

of low sample frequency on the model fits, only species present in a minimum of 10 

stations were included in the analysis (170 of the 347 species recorded) The depth of 

each count station was considered as the mean depth of all the corals recorded in that 

station. Models were run using the package eHOF (Jansen et al. 2017) in R (R Core 

Team 2016). The model type (I to VII, Fig. 5.1) which best reflected the abundance 

distribution of a species was chosen using Akaike Information Criteria (AIC). The 

analysis was re-run 100 times, and the most commonly chosen model type was 

regarded as the best-fit model. Model parameters for the model fit for each species 

were then exported from the analysis (Table. S5.1). General additive model fits were 

also generated for each species, as an unconstrained measure of model fit, as per 

Jansen and Oksanen (2013).  

Model Parameters 

Two parameters derived from the eHOF model outputs; optimum depth (representing 

depth preference), and niche breadth (representing depth specialization), were 

extracted for each species. To ensure an acceptable level of model fit, only species 
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occurring in a minimum of 20 stations (n = 110) were used for this analysis (Table. 

S5.2). Optimum depth was defined as the location on the domain (depth) where the 

response of the model was highest (Fig. 5.2). Niche-breadth was defined as the inner 

niche width, representing the range of the domain where the model response measures 

at least 60% of the highest response value recorded (Fig. 5.2) (Heegaard 2002). As 

such, a wider inner niche width reflects a more gradual curve shape (and more 

generalist response), while a narrower width is indicative of an acute response shape 

(and a more specialized response). For species fitted to model III, the mean of the 

depth range covered by the optimum was calculated and used in further analysis. 

Similarly, for species returning models VI and VII, the optimum, and corresponding 

inner niche for each of the two modes was recorded as SpX.a, and SpX.b. All analysis 

was conducted in R (R Core Team 2016).  

Trait Analysis 

Life history traits for all species occurring in at least 20 of the 798 count stations (n = 

110) were extracted from the online database coraltraits.org (Madin et al. 2016a) 

(Table. S5.2). Gross morphological trait data was attributed to one of ten categories; 

massive, submassive, encrusting, encrusting with uprights, laminar, tabular and 

plates, corymbose, digitate, hispidose, branching open. Morphological plasticity was 

coded as the number of differing morphologies recorded for each species (1 to 5). 

Mean corallite size was kept as a raw measure in millimeters of the mean corallite 

diameter (0 to 285). Larval development mode was coded as: 1 = spawner, 2 = 

brooder. Missing data was in-filled using museum records from the Museum of 

Tropical Queensland, and personal observations from the collected data. For each 

trait, two linear models were run, using the trait values as predictor variable against 
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the two parameters derived from the eHOF model outputs (optimum depth and niche 

breadth. 

	
Results 
Model Fits 

The depth response curves of the 170 species included examples of all of the seven 

possible shapes (Fig. S5.1, Table. S5.1). Forty six (46) species response curves were 

best described by model II, and 37 by model III, therefore the optimum depth of half 

of all species occurred at the limits of the domain. Of these species, 36 (21% out of 

all) had the optimum depth located at the lower limit of the domain (i.e. at 45 m) As 

the depth limit was not imposed by a hard boundary (such as the water surface), it is 

likely that these species have optimum depths below 45 m. The depth response curve 

was unimodal in 59 species (model IV = 39, model V = 20), and bi-modal in 9 (model 

VI = 5, model VII = 4). Seven species were fitted to model I, but all seven occurred in 

16 sites or less, and were not included in subsequent analysis due to the uncertainty of 

model fits in species occurring in less than 20 sites. 

Model Derived vs Range Derived Metrics 

There was no correlation between the extracted model parameters of optimum depth 

and niche-breadth F(1,120) = 2.36, P = 0.127) (Fig. 5.3a), in strong contrast to species 

depth range and depth mid-point (F(1,120) = 17.94, P < 0.001) (Fig. 5.3b). Species with 

niche breadth values covering less than half of the total domain (more specialized 

species) represented 81% of all species (Fig. 5.4a), but only 15% of species met the 

same criteria when replacing niche breadth with depth range (Fig. 5.4b). Similarly, 

61% of species showed optimum depth in the shallow half of the domain (<22.5 m) 

(Fig. 5.4a), while the same proportion (61%) had mid-depth values in the deeper half 

(>22.5 m) (Fig. 5.4b). Species niche breadth was not consistent with range size (Fig. 
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5.5a), and species optimum depth was not consistent with depth range mid-point (Fig. 

5.5b). 

Traits Analysis 

Species possessing laminar and encrusting morphologies were more likely to have an 

optimum depth in deeper waters, while colonies with submassive morphologies were 

more likely to have wider niche breadths (Fig. 5.6). No other morphologies were 

associated with optimum depth or niche breadth (Table. 5.1, Fig. S5.2). Similarly, 

neither larval development mode, morphological plasticity nor corallite size were 

correlated with optimum depth or niche breadth (Table 5.1, Fig. S5.2).  
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Figure 5.3: Relationship between measures of species depth preference and 

depth specialization.  

a) the relationship between species optimum depth (depth preference, x axis) and 

niche-breadth (specialization, y axis) for each of the 110 species modeled. b) the 

relationship of between species depth mid- point (depth preference, x axis) to total 

depth range (specialization, y axis). Dotted lines display the boundaries of possible 

values derived from simple depth range information. 
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Figure 5.4: Classification of coral species as deep or shallow specialists or 

generalists.  

a) using species modeled inner niche width as a measure of specialization, and depth 

of optimum model response as a measure of depth preference. b) using species range 

extents as specialization, and species’ mid points of their depth range as depth 

preference. Intersection of the grid lines marks mid depth, or a species with a 

specialization measure covering 50% of the gradient, and a preference score occurring 

at 50% of the gradient. Percentage values represent the proportion of the species 

assessed occurring within each quadrant.  

	
	
	
	 	



	 92	

 

Figure 5.5: Comparative performance of range derived and model derived 

metrics.  

a) deviation of niche breadth (inner niche width, y axis) from the total depth range (x 

axis) for each of the 110 species modeled. b) deviation of depth optimum (y axis) 

from range mid-depth (x axis) for the same species. Negative values represent smaller 

than expected values of a) niche breadth for the range size of a species, or b) depth 

optimum for the mid-depth of a species. 
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 Depth Preference  

(depth optimum) 

Depth Specialisation  

(inner niche width) 

 
Traits 

 
F 

 
P 

 
F 

 
P 
 

 
Morphological Plasticity 

 
0.269 

 
0.605 

 
0.366 

 
0.546 

 
 

Gross Morphology 
 

3.125 
 

0.001 
 

2.035 
 

0.036 
 

 
Laminar 

 
- 

 
< 0.001 

 
- 

 
- 

 
Encrusting 

 
- 

 
0.001 

 
- 

 
- 

 
Submassive 

 
- 

 
- 

 
- 

 
0.002 

 
Mean Corallite Size 

 
1.951 

 
0.165 

 
0.085 

 
0.771 

 
 

Larval Development Mode 

 
1.928 

 

 
0.168 

 
0.335 

 
0.564 

     

 

Table 5.1: Linear model results for four coral life history traits predicting a 

species depth preference or specialization.  

Significant results are shown in bold. Gross morphological characters with significant 

results are listed individually underneath the overall result. 
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Figure 5.6: Distribution of coral morphologies significantly associated with niche 

breadth and depth optimum.  

Blue dots represent species with submassive morphologies, associated with niche 

breadth. Red and green dots represent species with laminar, and encrusting 

morphologies respectively, associated with depth optimum. Grey dots represent all 

other species. 
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5.4: Discussion 
Coral species display a wide array of abundance response shapes over their depth 

range, which are unrelated to the basic depth range measure. Instead of species 

abundance distributions being normally distributed over their depth range, we show 

the majority of species to occupy a smaller subset of their possible range, which is 

rarely located in the mid-depth. By moving beyond assumed abundance distributions, 

the predominance of generalist species identified using range metrics (Fig. 5.4b, 85% 

‘generalist’) was reversed (Fig. 5.4a, 81% ‘specialist’), reconciling the depth 

generalist paradox. Coral species with laminar and encrusting morphologies were 

more likely to prefer deeper waters, likely indicative of the limited light availability at 

depth, while species with submassive morphologies were more likely to have broader 

niche breadths. No other life history traits were associated with niche breath or 

optimum depth. As is the case with describing abundance distributions, the 

availability of suitable data, quantifying stable and informative traits, remains a key 

limitation.  

 

The 170 coral species modeled using the eHOF approach demonstrated that different 

corals species utilize the depth gradient in different ways, irrespective of their depth 

ranges. All seven model fits were represented, and only species occurring in less than 

20 count stations (2.5% of all stations) showed unacceptable model fits (Fig. S5.1). 

Slightly over half of all species analyzed (86) returned abundance response curves 

where the optimum depth occurred at the range limit, a phenomenon that clearly 

invalidates the normal distribution assumption. Applications of HOF models are not 

limited to depth ranges, and can capture response over any domain (Oksanen and 

Minchin 2002; Jansen and Oksanen 2013). For instance, the environmental factors 
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that enforce physiological distribution limits, such as light or temperature (Anthony 

and Connolly 2004; Hoogenboom and Connolly 2009), can replace the grouping 

variable of depth. This approach can quantify the response of a species to specific 

target factors, either environmental (such as temperature) or biological (such as the 

abundance of a competitor species) (McGill et al. 2006). 

 

The depth generalist paradox arises from the assumption that a species is normally 

distributed over its habitable range. This assumption then infers that species with 

wider ranges are more generalized, and species will be most abundant at the center of 

their range, making the range metrics of range extent and mid-depth strongly co-

correlated (Fig. 5.3b). HOF model analysis removes any assumption of abundance 

response shape, and as a result the metrics of niche breadth and optimum depth show 

no such correlation (Fig. 5.3a). Although many species possess wide depth ranges, 

variations in abundance throughout their range results in most species showing strong 

preferences for narrower depths (Fig. 5.3a, Fig. 5.4a, Fig. 5.5a). In fact, 67% of 

species had niche breadths occupying less that half of the species total range. 

Similarly, the optimum depths of species were not associated with the mid-depth (Fig. 

5.3a, Fig. 5.4b, Fig. 5.5b). Instead, a quarter of all species had their optimum depth at 

the range edge, and the mid-depth was over 5 metres distant from the optimum depth 

in three quarters (76%) of species. By removing the normal distribution assumption, 

the prevalence of depth generalist species (i.e., species with depth ranges or niche 

breadths covering at least half of the domain) identified using range extent metrics 

(85% of all species, Fig. 5.3b) is reversed when using HOF model derived metrics 

(19% of all species, Fig. 5.3a), eliminating the perceived paradox.  
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Despite the demonstrable issues associated with simple range extent metrics, depth 

range remains one of the most commonly incorporated predictor variables in coral 

reef ecology, and is often a highly influential factor. For example, depth range was 

determined to be one of two key factors defining the extinction risk of reef corals 

(Carpenter et al. 2008). Depth range is also correlated with geographical range size in 

corals, in particular, the capacity of a species to cross biogeographic boundaries 

(Keith et al. 2013). However, our results indicate that depth range alone is of limited 

ecological relevance when quantifying a species’ depth use, and should not be used to 

infer abundance distributions. Ultimately, the continued use of depth range as a 

descriptor of depth use is due to the lack of viable alternatives, largely due to the 

extensive species level abundance data required for methods such as HOF models. 

For example, tests of the feasibility of larval re-supply of damaged shallow reef 

habitats by mesophotic coral communities (>30 m depth) largely center around 

whether species are represented in both shallow and mesophotic assemblages, often 

using only depth ranges (Bongaerts et al. 2010; Kahng et al. 2010). While some 

studies acknowledge the limitations of depth range descriptions (e.g., (Bongaerts et al. 

2017), many do not (e.g., (Muir et al. 2015; Laverick et al. 2018). Consequently, the 

significance or relevance of ecological interpretations based on range extent alone is 

limited. 

 

Life history traits are often associated with how coral species utilise depth (Done 

1982; Darling et al. 2012; Madin et al. 2016b). Key amongst these traits is the gross 

morphology of a species, which dictates its vulnerability to hydrodynamic stress 

(Madin et al. 2014), as well as its capacity to capture light (Stambler and Dubinsky 

2004). Consequently, flattened growth forms (such as laminar or plating) are often 
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characteristic of communities occurring at 30 m and deeper, due to the rapid 

attenuation of light over depth (Done 1982; Kühlmann 1983; Roberts et al. 2015). 

This is supported in our results, where species with laminar growth forms are 

associated with deeper optimum depths (Fig. 5.6, Table. 5.1). However, species 

featuring the laminar growth form were not precluded from having an optimum depth 

in the shallow regions, suggesting that although this growth form is well suited to 

deeper waters, it is not excluded from the shallows. Likewise, the encrusting growth 

form was also associated with deeper optimum depth, but possesses no clear 

advantage for light acquisition over other forms, such as massives. As with laminar 

forms, encrusting species were not excluded from having shallow optimum depths, 

suggesting that they possess an advantage in deep habitats.  

 

Species with submassive growth forms showed predominantly large niche breadths 

(Fig. 5.6), but this growth form was represented by only four species (Galaxea 

astreata, Goniastrea pectinata, Hydnophora exesa, and Psammocora profundacella). 

There is no clear explanation as to why this would be the case, but it is likely due, at 

least in part, to the way gross morphology is characterized. A single morphological 

category is given to a species, which represents the most common morphological 

state. However, intraspecific and even within-colony morphology is notoriously 

plastic, with many species displaying the capacity to radically alter their morphology 

based on the specific conditions in which they occur (Veron 2000; Todd 2008; Ow 

and Todd 2010). This makes the single character of morphology for a species 

unrepresentative of the way a species uses its morphological forms, and unlikely to 

produce meaningful results. One way to address this issue is to examine a species’ 

capacity to utilise different morphologies, represented by morphological plasticity. 
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Theoretically, the range of morphological shapes available to a species would 

dictating the extent of a species niche breadth, as species with a wider array of ability 

differing forms gain an advantage at the extremes of their range (Hoogenboom et al. 

2008), but this was not supported in the results. Regardless, this trait characteristic is 

likely to be more informative than simple gross morphology, and deserves further 

investigation. 

 

The issue of intraspecific variability is also relevant to the two other traits tested. 

Larval development mode has strong implications for the dispersal capacity of a 

species, as planulae produced by brooders are both rapidly competent and neutrally 

buoyant. Conversely, larvae from spawners develop at the surface for days to weeks 

before recruiting (Baird et al. 2009a). Symbiont transmission from parent colonies to 

planulae is strongly influenced by larval development mode, and is proposed to affect 

the symbiont zonation, and consequent depth zonation of coral species (Bongaerts et 

al. 2015). While the results of this study do not support these conclusions, 

intraspecific trait variability is likely to influence or obscure clear results. Larval 

development mode is noted to vary within a species over its geographic range, while 

some species (i.e., Pocillopora damicornis) are recorded to both spawn and brood 

(Baird et al. 2009a).  

Finally, the mean corallite size of a species is regarded as a measure of heterotrophic 

capacity, with larger corallites allowing a species greater capacity to supplement its 

energetic needs through heterotrophy regardless of the light conditions (Porter 1976). 

In this case, the level of intraspecific variability may be of less concern than the 

within colony variation. Corallites are not consistent in size throughout a colony, and 

the trait values for a species may be strongly influenced by subjective bias on the part 



	 100	

of the observer who records the trait values. Ultimately, trait analysis, as with depth 

abundance distributions, is reliant on the availability of accurate data from stable and 

representative traits (see (Jung et al. 2010; Madin et al. 2016b)). Significant progress 

to improve the availability and quality of coral trait data is currently being made, 

through resources such as the coral traits database (Madin et al. 2016a). Meanwhile, 

the data collection methods and HOF model analysis demonstrated in this study 

provides a clear path for progress to be made in describing the depth use of coral 

species. 
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Chapter 6: General Discussion 
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6.1: Key Findings 
In this thesis, I have brought together new methods of data collection and analysis to 

examine the ecological determinants of depth zonation in reef-building corals. The 

thesis findings support the use of  a new method for the collection of biodiversity data 

(Chapter 2), question the significance of two popular theories of biodiversity 

gradients (Chapters 3 and 4), and reconcile the depth generalist paradox (Chapter 5).  

 

In Chapter 2, I outlined a novel sampling methodology, the modified point count 

transect (PCT), to be used for questions relating to biodiversity. The PCT was 

developed from a widely used method in terrestrial ecology (Perry et al. 2012), and 

specifically designed for time constrained habitats (such as deeper waters). Field 

testing of the PCT demonstrated its practicality at gathering species level data while 

keeping within a short time frame (5 minutes). When tested against the established 

standard in the field i.e. 10 m line intercept transects (LIT), the PCT captured species 

at a faster rate, both per individual counted, and per minute invested. Importantly, the 

PCT captured far more rare species than the LIT (Roberts et al. 2016). The 

development of this method represented an essential foundation for the research 

component of this thesis, allowing for clear tests of ecological theory, free from the 

pervasive obstacle of data quality. PCT was then used to assemble a species level 

dataset of reef-building corals along a 45 m depth gradient in Kimbe Bay, Papua New 

Guinea, which formed the basis for Chapters 3, 4, and 5. This dataset is 

unprecedented in its taxonomic resolution (347 species), depth range (0 – 45 m), and 

size (9,576 colonies). 
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In Chapter 3, I tested the two most commonly invoked predictive hypotheses to 

explain species richness patterns over natural gradients: the species energy theory 

(SE) and the mid-domain effect (MDE). In the absence of numerous factors that 

confounded previous research, species richness of corals over depth follows a left-

skewed hump, in keeping with previous results from terrestrial communities over 

altitudinal gradients (Rahbek 1995; Lomolino 2001; Nogués-Bravo et al. 2008; Beck 

et al. 2016). However, neither the SE nor the MDE adequately predict this pattern. 

Rather, both rely on idiosyncratic additional factors to explain the hump (Evans et al. 

2005; Beck et al. 2016; Colwell et al. 2016). I then show that by veiling either the 

lower or the upper third of the sampled depth domain (i.e., the top or bottom 15 m), 

strong support can be found for the mid-domain effect and species energy theory 

respectively. This result demonstrates the key importance of capturing a sufficient 

extent of the depth domain and explains continued support for both theories in the 

literature. While there remains no predictive hypothesis capable of explaining the left-

skewed hump, null model approaches such as the mid-domain effect are a more 

promising research avenue than single factor hypotheses such as the species energy 

theory (Colwell et al. 2004,2005). 

 

In Chapter 4, the same dataset was used to test whether or not local scale assembly 

processes, such as competition, are responsible for the left-skewed hump of species 

richness with depth. Instead of supporting the hypothesis, the analysis suggested that 

the left-skewed hump is maintained by regional scale processes (e.g.; speciation, 

extinction, large-scale dispersal, endemism) that control the species pool from which 

local scale communities are assembled (Caley and Schluter 1997; Cornell et al. 2007). 

While a strong influence of processes acting at the reef scale (e.g., environmental 
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filtering through hydrodynamic disturbance) was found over the full depth gradient, 

there was no clear evidence that these processes influenced patterns of species 

richness over depth. The same was true for processes acting at the smaller within-reef 

scale (i.e., competitive interactions). However, an increase in the effect of within-reef 

scale processes was detected below 35 m, consistent with small-scale priority effects. 

Instead of supporting the hypothesis of local assembly processes creating the species 

richness pattern, there was evidence of regional enrichment over the full depth 

gradient, at even the smallest scale. However, the strength of conclusions that can be 

reached from this study must be tempered by the inherent interdependence of species 

pools at different spatial scales, and the assumptions made surrounding the scale at 

which assembly processes operate. Even so, these results suggests that it is entirely 

possible that the true regional pattern is the left-skewed hump pattern revealed in 

Chapter 3. 

 

Finally, in Chapter 5, I examined how each species occupied the depth domain, and 

resolved the depth generalist paradox (where the majority of species are depth 

generalists, yet produce strong patterns of depth zonation) by showing it to be an 

artefact of range extent based analysis. Hierarchical logistic model analysis (HOF) 

was used to move beyond the simple range extent descriptions of depth use, and was 

applied to the abundance of 170 coral species over depth. A wide variety of depth 

response curves were revealed, invalidating the assumption that species abundances 

are normally distributed over their range. Two model parameters, representing the 

depth preference (optimum depth) and depth specialization (niche breadth) of each 

species, were compared to the corresponding range derived metrics of depth range 

mid-point and total depth range. Using these model parameters, the proportion of 
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species described as ‘depth generalist’ was completely reversed; in fact 81% of 

species are depth specialists. Four key life history traits proposed as predictive of 

species depth niche (gross morphology, morphological plasticity, larval development 

mode, mean corallite size) were tested against the model parameters, but only gross 

morphology returned a significant result. Species with laminar and encrusting 

morphologies were likely to have optimum depths in deeper waters (>25 m), likely 

due to the light gathering capacities of those structures and fragility to hydrodynamic 

disturbance that are greater in shallow water. Meanwhile, species with sub-massive 

morphologies had larger niche breadths than expected, but there is no clear 

explanation for this pattern. Incomplete trait data, the use of trait averages (such as 

mean corallite size) and the influence of intraspecific trait variation (as seen in gross 

morphology and larval development mode) make any trait analysis difficult. 

However, this analysis does not support the hypothesis that corals occupying deeper 

waters have a specific suite of life history traits that prevent them colonizing shallow 

waters following a disturbance event. 

	
6.2: Future Directions 
The presence of a left-skewed hump shaped species richness pattern within many 

spatial domains remains a key question in ecology. In 1992, Mike Rosenzweig wrote 

of the hump “The regional pattern is unimodal. As productivity rises within a region, 

first diversity rises and then it falls. This pattern exists in mammals, birds, marine 

vertebrates and invertebrates, and some flora. We do not understand it.” (Rosenzweig 

1992). Over a quarter of a century later we still do not properly understand it, and the 

results of Chapter 3 and Chapter 4 only serve to disprove several possible 

explanations. While Chapter 4 suggests that the hump-shaped pattern is present at 

regional scales, empirical proof that the left-skewed hump persists at larger spatial 
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scales is still unavailable. To test this assertion, additional data from different 

geographic locations should be assembled. By virtue of the PCT data structure, the 

species richness pattern can then be compared at a stable sample size over a range of 

spatial scales, from the scale of a reef, to a biogeographic region, and ultimately to a 

global scale. This will allow a conclusive test of whether the pattern changes with 

scale, which is relevant to all ecological systems (Cornell and Karlson 2000; Chase 

2010; Kraft et al. 2011). Once the nature of the pattern over scale is confirmed, 

progress can be made to develop and test explanatory theories. One possible avenue 

of research is to investigate a combination of the SE and MDE theories. Using the 

MDE as the foundation, the energetic resource of light could be used to inform the 

skew of the species richness pattern towards the shallows, using the suggestions of 

Colwell and collaborators (Colwell et al. 2016). Conversely, light might have both 

negative and positive influences on richness. In the shallows, high light levels, in 

particular high levels of UV radiation, are detrimental to corals (Salih et al. 2000; 

Baird et al. 2009b), and might consequently reduce species richness. This could be 

thought of along the lines of the paradox of enrichment, where high levels of an 

energetic resource has a negative, instead of positive effect (Rosenzweig 1971). 

 

One of the more intriguing results of this thesis is the indication that small-scale 

priority effects become increasingly prevalent below 35 m depth (Chapter 4). Coupled 

with hypothesized low rates of recruitment and extinction at deeper depths (Turner et 

al. 2018), it follows that deeper coral assemblages might follow similar ecological 

rules to assemblages on islands (MacArthur and Wilson 1967; Pinheiro et al. 2017). If 

this is the case, common ecological principles can be established, and the 

understanding of ecological processes operating on deeper coral reef ecosystems 
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could be greatly improved through the application of island biogeography theory. The 

consistency of community assembly processes over latitudinal scales also remains 

highly contentious (Chase 2010; Kraft et al. 2011; Bracewell et al. 2017), and 

expanding the current research approach to encompass a full depth gradient (60+ m) 

as well as geographic gradients (latitude and longitude) will add significantly to the 

current understanding of patterns of species richness in all three cases.  

 

The use of HOF models to capture species abundance response curves is a promising 

research avenue. While species are examined over depth in this thesis, the use of 

depth as a grouping variable to represent key environmental factors (e.g., light, 

temperature, hydrodynamic stress) obscures clear insight into any one of the factors in 

isolation. To evaluate how each species responds to a specific factor, values can be 

recorded at the sampling sites, and values of the factors in question used as the 

gradient over which species abundance response is measured (Oksanen and Minchin 

2002). This approach is a powerful way to examine the niche of a species, and the 

gradient in question can consist of not just environmental values, but also ecological 

variables such as the presence of competitors or conspecifics.  

 

The key to continued research in this field is the availability of suitable data, covering 

the full extent of the depth gradient. The PCT method provides a way to gather data in 

time-restricted habitats and has been successfully deployed at depths of up to 140 m 

in collaboration with colleagues at the University of Hawaii. Together with the advent 

of closed circuit rebreather technology (CCR), the logistical limitations responsible 

for the data drought can now be overcome. It is my intention to continue this research, 

and apply the PCT over a depth gradient of at least 60 m. The need to adequately 
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cover the full depth gradient is clear throughout this thesis, most notably from the veil 

effects noted in Chapter 3. As all data collected with the PCT are comparable, this 

resource will continue to expand, and form a foundation from which research into 

depth zonation of corals can continue to grow. 

 

6.3: Thesis Conclusions 
The paucity of suitable data relating to corals over depth is the basis of the confusion 

surrounding the species richness gradient over depth (Chapter 3, Chapter 4). More 

insidiously, the quality of existing data is becoming increasingly questionable as 

chronic sampling artefacts are revealed (Chapter 1, Chapter 2, Chapter 5), while little 

new data is being generated due to the inherent logistical challenges (Chapter 2). The 

implications of misusing incomplete or inappropriate data to answer ecological 

questions are severe (Chapter 2, Chapter 5). The contribution of this thesis is to 

clarify the assumptions and misconceptions that surround the depth zonation of 

corals, and demonstrate the methodological and analytical techniques, which will 

move the field forwards. The use of the PCT sampling method to gather primary data, 

the species accumulation models to calculate species richness, HOF models to capture 

species abundance response curves, and null models of beta diversity to evaluate the 

influence of community assembly processes form a new approach to address some of 

the oldest questions in ecology, such as the ecological processes responsible for 

species richness gradients. Ultimately, this thesis does not stand alone. Instead it 

marks a step forwards in understanding the ecology of reef building corals and clears 

a path for continued research. This path should not go neglected, nor the questions 

raised go unanswered. 
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Appendix 1: Electronic Supplementary Material 

	
Chapter 2: 

 
Table S2.1: 10 m LIT data. 

Raw data detailing the number of times (column Frequency) each species (column 

Species) was recorded in each transect conducted (column Transect #). Data is located 

on the page “10m_LIT “ in the datafile “PCT_Data.xlsx”. 

	
Table S2.2: PCT data. 

Raw data detailing the number of times (column Frequency) each species (column 

Species) was recorded in each of the point count stations conducted (column Count 

#). Data is located on the page “PCT“ in the datafile “PCT_Data.xlsx”. 

	
Table S2.3: LIT diversity analysis results. 

Statistical output from the program EstimateS (Colwell 2013), for the 10 m LIT 

dataset. Data is located on the page “LIT_Results“ in the datafile “PCT_Data.xlsx”. 

	
Table S2.4: PCT diversity analysis results. 

Statistical output from the program EstimaeS (Colwell 2013), for the PCT dataset. 

Data is located on the page “PCT_Results“ in the datafile “PCT_Data.xlsx”. 

	
 

 

 

 

 

 



	 130	

Chapter 3: 

 
Table S3.1: Source data for species richness analysis. 

Raw data detailing the species identity (column ID) and depth of occurrence (column 

Depth) of each of the 12 coral colonies (column Coral #) within each of the PCT 

count stations recorded (column Count #). Data is located on the page 

“Species_Richness_Data “ in the datafile “Coral_Data.xlsx”. 

	
Chapter 4: 

 
Table S4.1: Source data for beta diversity analysis. 

Site by species matrix detailing the number of times each species was recorded in 

each of the 486 PCT count stations used in this study. Columns Depth, Site, and 

Count record the mean depth of colonies within each count, the reef site which each 

count occurred at, and the count number respectively. Data is located in the datafile 

““Beta_Diversity_Data.xlsx”. 

 

Chapter 5: 

 
Table S5.1: eHOF model fits for all species analysed. 

Model type fitted (column Model) to each of the 170 species analysed (column 

Species). Column Frequency records the number of count stations each species was 

present in. Data is located on the page “Supp_Table_1 “ in the datafile 

““eHOF_Model_Analysis.xlsx”. 
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Table S5.2: Species depth range descriptive parameters 

Range derived, and eHOF model derived parameters for all 110 species deemed to 

have acceptable model fit. Life history trait values used in the analysis are listed for 

each species. Data is located on the page “Supp_Table_2 “ in the datafile 

““eHOF_Model_Analysis.xlsx”. 
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Appendix 2: Supplementary Figures 

 

Chapter 5: 
 

Figure S5.1: eHOF model fits. 

Species ranked by frequency of occurrence, with the most frequently encountered 

species appearing first. 
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Figure S5.2: Capacity of life history traits to predict species depth preference 

(blue points) or depth specialization (black points).  

Blue dots represent models featuring depth preference as the response variable, and 

black dots represent models with depth specialization as the response variable. Red 

lines show linear model fits. 
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The Point Count Transect Method for
Estimates of Biodiversity on Coral Reefs:
Improving the Sampling of Rare Species
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Abstract
Understanding patterns in species richness and diversity over environmental gradients
(such as altitude and depth) is an enduring component of ecology. As most biological com-
munities feature few common and many rare species, quantifying the presence and abun-
dance of rare species is a crucial requirement for analysis of these patterns. Coral reefs
present specific challenges for data collection, with limitations on time and site accessibility
making efficiency crucial. Many commonly used methods, such as line intercept transects
(LIT), are poorly suited to questions requiring the detection of rare events or species. Here,
an alternative method for surveying reef-building corals is presented; the point count tran-
sect (PCT). The PCT consists of a count of coral colonies at a series of sample stations,
located at regular intervals along a transect. In contrast the LIT records the proportion of
each species occurring under a transect tape of a given length. The same site was surveyed
using PCT and LIT to compare species richness estimates between the methods. The total
number of species increased faster per individual sampled and unit of time invested using
PCT. Furthermore, 41 of the 44 additional species recorded by the PCT occurred! 3 times,
demonstrating the increased capacity of PCT to detect rare species. PCT provides a more
accurate estimate of local-scale species richness than the LIT, and is an efficient alternative
method for surveying reef corals to address questions associated with alpha-diversity, and
rare or incidental events.

Introduction
Coral reefs are one of the most diverse ecosystems on Earth [1] containing both high species
richness and heterogeneity of habitats at all spatial scales [2]. For several decades, coral reefs
have provided ecologists with important insights into processes that generate and maintain
biodiversity, such as species richness gradients and species coexistence mechanisms (e.g. [3,
4]). A common feature of ecological assemblages is a species abundance distribution featuring
a small number of common species, and many rare taxa [5–7]. These rare taxa often form the

PLOSONE | DOI:10.1371/journal.pone.0152335 March 24, 2016 1 / 10

OPEN ACCESS

Citation: Roberts TE, Bridge TC, Caley MJ, Baird AH
(2016) The Point Count Transect Method for
Estimates of Biodiversity on Coral Reefs: Improving
the Sampling of Rare Species. PLoS ONE 11(3):
e0152335. doi:10.1371/journal.pone.0152335

Editor: Covadonga Orejas, Instituto Español de
Oceanografía, SPAIN

Received: September 3, 2015

Accepted: March 11, 2016

Published: March 24, 2016

Copyright: © 2016 Roberts et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was funded by the Australian
Research Council Centre of Excellence in Coral Reef
Studies (CE140100020). The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



	145	

	 	

bulk of biodiversity in an assemblage, but are the most time consuming to adequately record. A
high number of rare species therefore requires a large sampling effort to effectively characterize
a site. This presents a significant logistical issue in high-diversity ecosystems such as coral reefs
and tropical rainforests, where the number of rare and incidental taxa is very high [8]. Coral
reefs in particular present additional challenges for data collection, as many reefs are remote
and some habitats, such as at depth, are difficult to access.

Ecological studies of coral reefs were greatly enhanced by the advent of SCUBA diving in
the 1950s, but the capacity to study reefs at depths>30 m is still limited [9]. Consequently,
important questions surrounding the spatial extent, biodiversity and ecological significance of
deeper reef habitats remain unresolved [10]. Overcoming this knowledge gap requires the
development of new methods that enable more rapid collection of ecological data from deeper
habitats. Ideally, such methods would also be broadly applicable across a range of depths and
sampling regions.

Standardized methods in empirical data collection for benthic communities in marine eco-
systems were developed in the 1970s primarily in conjunction with the increased use of
SCUBA (e.g. [11]). The line intercept transect (LIT), adapted from terrestrial vegetation stud-
ies, has been widely used for coral reef studies (e.g. [12]). In this method, a transect line of a set
length is placed along a reef, and the identification of each species under the line is recorded
along with the distance it occupies. The LIT provides a precise estimate of abundance (i.e. coral
cover and density), making it well suited to examination of temporal or spatial trends in the
abundances of species. LITs, however, are not appropriate for all ecological questions or loca-
tions. For example, the length of time taken to complete a suitable number of replicate 10 m
transects (typically!5) makes LITs impractical in depths>15 m, below which safe bottom
times for divers become severely limiting factors for SCUBA based surveys. Furthermore,
because of the time required to conduct 10 m LITs, the amount of replication achieved may
result in under-sampling of rare and incidental species or events. Consequently, LITs are lim-
ited in their application according to habitat and ill equipped to address questions that require
the detection of rare events or species.

A fundamental tenet of ecology is that the distribution of species is not random in time or
space [13], and understanding how these non-random patterns are created and maintained is a
major ecological goal [14]. The mechanisms generating patterns, such as species richness gradi-
ents, are now investigated using increasingly complex statistical analyses [15, 16], which
require extensive and precise data [17]. Computationally demanding analyses, such as sample-
based rarefaction, enable estimates of species richness at standardized levels of sampling effort;
however, data for such analysis requires large sample sizes, consistent sampling methodology
and data independence [17–19]. The logistical restrictions imposed by LITs make them ineffec-
tive for addressing these questions in most situations. Consequently, little suitable data exists,
or is being collected, to investigate fundamental ecological phenomena on coral reefs using
these statistical techniques.

Here, we present a novel sampling technique more suitable than LITs for estimating species
richness (Alpha diversity) and abundance on coral reefs: the point count transect (PCT). The
method is derived from a well-established technique in avian ecology, the point count distance
transect [20, 21]. Point sampling techniques are popular for monitoring songbirds, primarily
for examining species richness and diversity [22]. The detectability and mobility of different
bird species is highly variable, resulting in continued refinement and calibration of this method
(e.g. [20]). We adapted the point transect framework to the marine environment by conducting
point counts of a constrained number of individuals at stations located along a transect. Rather
than timed counts (as per the point count distance transect), we utilized point counts of a pre-
determined number of colonies at each station. Although taxonomically complex, surveying
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corals presents fewer detectability problems (i.e. audible detection, mobility, cryptic behavior)
than surveying birds, substantially reducing the main source of methodological error [23].
Moreover, standardizing the number of colonies sampled in each count controls for effort,
ensuring a repeatable and efficient sampling unit. We compared the effectiveness and time effi-
ciency of the PCT method to traditional LIT surveys for estimating species richness at the same
reef site at Lizard Island, Australia. We compared 1) total species richness estimated from a
standardized sample size, 2) species accumulation rate per unit effort (per additional individ-
ual, and per minute), and 3) species abundance distributions, to reveal detectability bias
towards rare and incidental species.

Methods
Point Count Transect Survey Method
A linear transect of a specified length (in this case 50 m) is randomly deployed within the study
site, with count stations located at regular intervals (in this case every 10 m) along the transect
line (Fig 1A). The transect length, and the spacing of count stations is highly flexible, depend-
ing on the research objective. For example, a study of species richness over depth could use a
vertical transect up a reef slope, with count stations at bathymetric, rather than distance inter-
vals. In that case the transect length would be variable depending on the reef profile, as would
the linear distance between count stations, but the survey principle remains the same. An initial

Fig 1. PCT Sampling Scheme. a) overview of transect with count stations, b) one count sample (12 colonies). Shaded shapes represent recorded colonies,
with numbers representing the progressive sampling order. Directionality of the count progression (in this case counterclockwise) is flexible, but should be
decided prior to the study.

doi:10.1371/journal.pone.0152335.g001

A Novel Diversity Focused Sampling Method for Reef-Building Corals

PLOS ONE | DOI:10.1371/journal.pone.0152335 March 24, 2016 3 / 10



	147	

	 	

coral colony situated on a consolidated section of reef substrate suitable for coral habitation is
chosen and identified at each sampling station. The nearest neighboring colony to the initial
colony is then chosen as the next in the survey (Fig 1B). Successive colonies are identified such
that the sampling area expands outwards in an approximately counterclockwise spiral shape
from the initial colony (Fig 1B). The directionality of the expanding spiral should remain con-
sistent, but either counterclockwise or clockwise can be chosen. As this method details reef-
building coral occurrence patterns, areas known to be unsuitable for habitation, or which
exclude the vast majority of species (eg. sand dunes, unconsolidated rubble banks) are not tar-
geted. This is in contrast to existing area-based methods (eg. LIT) which often invest significant
resources sampling areas of unsuitable habitat, which yields little relevant data. Additionally,
the stipulation to survey suitable habitat, even when colonies are rare or absent, is an important
measure of sampling effort, and represents a record of range limits, environmental filters, or
other environmental factors influencing species range distributions. The requirement for types
of habitat suitable for surveys can be expanded or restricted based on the research question.
For a study focusing on species richness of Acropora spp. for example, areas of sand can be
avoided, while a study focusing on Fungia spp. may only target sand areas. Colonies< 5 cm
diameter were not recorded in this study due to difficulties consistently identifying juvenile
corals to species level [24].However, the minimum size of recorded colonies will be dictated by
the taxonomic expertise of the surveyor. For instance, if fragments are collected for genetic
analysis, or if the locally extant species are easily differentiated, this size limit may be signifi-
cantly lower. After a pre-determined number of colonies is recorded at each station (in this
case 12), the surveyor moves to the next sampling station (in this case located 10 m along the
transect). Twelve colonies were selected at each sampling station for this study as experience
suggested that this was the maximum number reliably recorded by the observer in ~5 minutes.
This value should be determined prior to the start of the survey, and be suited to the question
asked. The currency in this survey method is the individual colony, grouped into count sta-
tions, which allows for the number of individuals to be chosen to suit the research question
and location of the study. For instance, the research question in this case focused on time effi-
ciency at each site, in a species rich region, so a short test revealed the maximum number of
individuals reliable recorded in the chosen time limit (12 colonies in 5 minutes). In regions
where coral density and/or richness is lower (such as the Caribbean, or East Pacific) a smaller
number may be more suitable. Conversely, where time restrictions are not so severe, a larger
number of colonies can be recorded at each sampling station. For this study, average colony
densities allowed this number to be successfully recorded at each site, but to account for regions
where colony densities are low, only colonies with at least part of the colony occurring within a
two metre radius of the initial start colony are recorded. Colonies are countable as long as part
of the colony occurs within the two metre radius. Where individual colonies extend beyond the
sampling area, the size is recorded, but this is not deducted from the sampling area. If the pre-
determined number of colonies cannot be found, the sampling will stop when the area is
exhausted. For each colony, the species, water depth (to the nearest 0.1 m, corrected to lowest
astronomical tide), maximum diameter and its perpendicular width (to the nearest 5 cm) are
recorded. Species are identified in situ where possible, or with reference to a high-resolution
image.

Comparing the Methods
Comparative surveys were conducted along the upper reef slope of ‘Big Vickies’ reef, Lizard
Island, Australia (145.44° E, 14.683° S). No permit was required from the Great Barrier Reef
Marine Park Authority (GBRMPA) due to the limited impact (non-extractive) nature of the
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research, conducted under the accreditation of James Cook University. Only visual surveys
were conducted, and no endangered or protected species were collected or manipulated. Tran-
sects to be used for both methods were laid end to end along the reef slope where there was
contiguous hard substrata between 2 and 4 m depth. Nineteen replicate 10 m LITs surveys
were conducted, covering the same linear reef area as the PCT while representing a sampling
intensity significantly greater than the three to five transect recorded in most studies. In addi-
tion to species identity, we recorded the time taken to complete each transect. We then con-
ducted 4 PCTs of 50 m in length (containing 6 count stations per transect at 10 m intervals) as
described above overlying the same reef area. The time taken to complete each survey was
recorded.

The efficiency of the two methods was compared through the rate at which new species
were observed against both time invested and the number of colonies surveyed. Species accu-
mulation curves [15] were used to compare estimates of alpha diversity from each method. Dif-
ferences in sampling effort were accounted for using species accumulation curves extrapolated
to a sample size of 50 samples (~600 individuals) through rarefaction using the program Esti-
mateS [25]. Curves were used to compare the rate of increase (indicating the rate of observing
new species) and the number of species recorded at a common sample size (468 individuals).
The average time taken to increase the sample size by one individual was used to compare the
time efficiency of each method. Species abundance distributions (SADs) were calculated to
detect and display sampling bias towards or against rare species. Results are presented as
mean ± 95% CI, unless otherwise stated.

Results and Discussion
Species Accumulation and Abundance
A total of 234 colonies were recorded on the LITs, compared to 288 colonies during the PCTs.
A mean of 12.3 colonies were recorded for each 10 m LIT, compared to the 12 colonies sampled
for each station of the PCT. PCTs recorded 85 species in 120 minutes, compared to the 41 in
171 minutes for the LIT. The rate of species detection was faster for the PCT and mean esti-
mated species richness higher for any given sample size (Fig 2). This difference was even
greater when comparing species richness for any given sampling time (Fig 3). Importantly, esti-
mates of total site species richness did not converge with the PCT species accumulation curve
when extrapolated using rarefaction (Fig 2). At a comparable sample size (468 individuals), the
estimated species number was substantially lower for the LIT (52.83, 95% CI: 41.13–64.53)
than the PCT (100.99, 95% CI: 88.5–113.49). This disparity was even greater when time
invested was accounted for (LIT: 42.85 95% CI: 35.44–50.27, PCT: 100.3 95% CI: 88.08–112.51
for 189 minutes) (Fig 3). The number of species recorded by PCT after sampling 288 colonies
(83 species) was also substantially higher than the estimated total species richness after sam-
pling 600 colonies using LIT (56 species). Although both methods showed an asymptotic accu-
mulation curve, the projected estimates of total species richness between the methods were
substantially different. Even with increased effort LITs are likely to underestimate the number
of species present far more than comparable PCTs.

The SADs revealed that 41 of the 44 species recorded in PCTs but not in LITs were rare
(observed! 3 times; Fig 4). This indicates that the cause of the disparity between richness esti-
mates was the failure of LITs to detect rare species (Fig 4). Both methods indicated similar
abundances among common species, but LITs consistently failed to detect rare species even
though the number of replicate transects used at Big Vickies reef (n = 19) was considerably
higher than the usual number of replicates used to characterize coral assemblages at any partic-
ular site (e.g. [26, 27]). The cause of this chronic lack of detection of rare species by the LIT is
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likely due to the practical limitations of the method. Coral reef habitats are complex environ-
ments, with many microhabitats within a small region. The LIT method can only detect species
that can be covered by a stationary line from above, and the application of the transect line is
almost always unable to follow the reef contours precisely, missing most of the complex habitat.
In theory, the LIT should not under-represent rare species, but the practical limitations of
deploying the method in coral reefs causes errors. The real-world limitations of sampling
methodologies are an important consideration, but are often overlooked in favour of theoreti-
cal justifications. Given the importance of detecting rare species for many ecological studies,
we suggest that PCTs can be a more effective method of surveying coral assemblages than LITs.

The PCT was developed to assess patterns of species richness and meta-community struc-
ture along steep environmental gradients (e.g. depth) on coral reefs. These types of research
questions do not require metrics of absolute abundance such as coral cover, which can be

Fig 2. Species Accumulation Curves For PCT And LIT (by individuals added). Species richness (y axis) by number of individual colonies sampled (x
axis). Solid lines represent observed species richness, dashed lines show projected species richness rarefied to ~600 individuals, with corresponding 95%
CI intervals (shaded area).

doi:10.1371/journal.pone.0152335.g002
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effectively obtained using LITs. As a result, the PCT represents a complementary data collec-
tion technique, rather than a replacement. The sensitivity of the PCT to rare and incidental
species allows insight into the poor detection by the LIT, but emphasizes rapid capture of
richness at the expense of absolute abundance measures. Using the PCT without considering
its own strengths and weaknesses to a specific research question will likely result in an
equally erroneous result as misuse of the LIT. Where detection of rare species is important,
we propose the PCT as a robust and time-efficient method of collecting ecological data on
coral reefs. This method will be particularly effective for examining questions such depth-
diversity gradients, where the amount of survey time is greatly restricted. While this protocol
was tested in a highly species rich habitat, with high coral abundance, it is applicable to any
environment. The flexibility of the methodological framework allows for adjustment to spe-
cific systems, and questions.

Fig 3. Species Accumulation Curves For PCT And LIT (by time invested). Species richness (y axis) by number of minutes invested in sampling (x axis).
Solid lines represent observed species richness, dashed lines show projected species richness rarefied to ~600 individuals, with corresponding 95% CI
intervals (shaded area).

doi:10.1371/journal.pone.0152335.g003
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Our results also highlight the importance of collecting field data using methods appropriate
for the question being asked to avoid error in interpreting findings. For example, estimating
species richness of a particular site using species accumulation curves requires samples to have
no detectability bias towards or against any given species [17]. Bias against rare species may
confound results, and can be difficult to quantify unless the extent of the bias is known. The
sensitivity of such analysis to sampling error and bias is well established (e.g. [8]), yet basic
errors continue to occur [6, 17].

Coral reef ecologists should continue to develop new and improved methodologies to over-
come logistical constraints, and improve the precision and scope of available data. Establishing
the real-world strengths and weaknesses of various methodologies enables more researchers to
make a more informed decision when collecting data. Methods such as the PCT can comple-
ment existing techniques, enabling researchers to better match data collection to suit the
desired analysis.

Fig 4. Species Abundance Distribution (SAD) Of PCT (red) and LIT (blue). Frequency bins as per Gray et al. [28] (1, 2–3, 4–7, 8–15. . .).

doi:10.1371/journal.pone.0152335.g004
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Supporting Information
S1 File. Sampling data for LIT and PCT, with EstimateS analysis outputs.
(XLSX)
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