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Abstract. The aim of this study was to evaluate the impact of image fusion techniques on veg-
etation classification accuracies in a complex wetland system. Fusion of panchromatic (PAN)
and multispectral (MS) Quickbird satellite imagery was undertaken using four image fusion
techniques: Brovey, hue-saturation-value (HSV), principal components (PC), and Gram–
Schmidt (GS) spectral sharpening. These four fusion techniques were compared in terms of
their mapping accuracy to a normal MS image using maximum-likelihood classification
(MLC) and support vector machine (SVM) methods. Gram–Schmidt fusion technique yielded
the highest overall accuracy and kappa value with both MLC (67.5% and 0.63, respectively) and
SVM methods (73.3% and 0.68, respectively). This compared favorably with the accuracies
achieved using the MS image. Overall, improvements of 4.1%, 3.6%, 5.8%, 5.4%, and
7.2% in overall accuracies were obtained in case of SVM over MLC for Brovey, HSV, GS,
PC, and MS images, respectively. Visual and statistical analyses of the fused images showed
that the Gram–Schmidt spectral sharpening technique preserved spectral quality much better
than the principal component, Brovey, and HSV fused images. Other factors, such as the growth
stage of species and the presence of extensive background water in many parts of the study area,
had an impact on classification accuracies. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in
part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.8.083616]
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1 Introduction

Wetlands cover about 9% of the surface of the Earth and contain around 35% of global terrestrial
carbon. They are good sinks for carbon dioxide and other greenhouse gases, especially if their
vegetation is protected and their natural processes are maintained. Wetlands help to improve
water quality by filtering pollutants, trapping sediments, and absorbing nutrients that would oth-
erwise result in poor water quality downstream. They also provide habitats for wildlife as well as
many valuable ecosystem services.1 Coastal wetlands, such as saltmarsh and mangroves, are
likely to have the highest rates of greenhouse gas sequestration, and the drainage of melaleuca
and mangrove forest wetlands in Australia would turn them from carbon sinks into carbon
sources.2 Saltmarsh can bury an average of 1.51 tons of organic carbon per hectare per
year.2,3 This rate is several times higher than the rate of carbon sink calculated for the
Amazonian forests, an important global carbon sink, and highlights the importance of protecting
wetlands to mitigate the impacts of climate change. Coastal saltmarshes are also ecologically
important habitats that link the marine and terrestrial environments and provide habitat for both
marine and terrestrial organisms. They also provide an important buffer between land and reef, as
they filter land runoff and improve the quality of water.4,5

Saltmarshes have been subject to extensive exploitation, modification, and destruction due to
the effects of human activity.6 A significant proportion of the Australian eastern coast has been
developed since European settlement. However, due to a lack of historical data, the actual area of
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mangrove and saltmarsh habitat loss is unknown. Continued research and monitoring are
required to provide up-to-date information on mangrove and saltmarsh habitat boundaries,
and to improve our ability to detect subtle changes in the condition of these communities.
Mapping and modeling in saltmarshes face distinct challenges due to tidal oscillation and vari-
ability, fieldwork logistics, and the inherent dynamic nature of these environments.7

Remote sensing has been applied with increasing success in the monitoring and management
of aquatic ecosystems.8–12 The occurrence of wetlands in diverse geographic areas makes it chal-
lenging to map such ecosystems.13 Improvements in sensor technology, particularly in terms of
enhanced spectral and spatial resolutions, have made remote sensing a useful tool for mapping,
monitoring, and assessing wetland environments.14–18 Spatial resolution defines the degree of
fine detail that can be seen in an image, while spectral resolution can be thought of as the
width of the bandpass, in which the incoming radiance field is measured by the sensor.19

Multispectral (MS) remote sensing systems collect reflected energy from an object or area of
interest in multiple bands (regions) of the electromagnetic spectrum, while panchromatic
(PAN) systems collect reflected energy in one band.20 For recording a similar amount of incom-
ing energy, the spatial resolution of a PAN detector can be smaller than that of an MS detector.
Thus, most sensors of earth resource satellites, such as SPOT, IKONOS, and Quickbird, provide
PAN and MS images at different spatial resolutions.21 While the PAN image provides greater
spatial resolution, the MS image provides greater spectral resolution, hence each image type has
certain advantages over the other. Enhanced image or data fusion provides us with the oppor-
tunity to utilize the advantages of each of the images more effectively, particularly in change
analysis.22

Image fusion is the combination of two or more different images to form a new image by
using various algorithms.23,24 Pan sharpening is an example of image fusion, which involves
merging high-spectral-resolution MS and high-spatial-resolution PAN images.25 More specifi-
cally, a pan-sharpened MS image is a fusion product, in which the MS bands are sharpened
through the higher-resolution PAN image. Image fusion can provide certain advantages in
the mapping and monitoring of wetlands because the different types of vegetation or classes
may be better classified if high-spatial- and spectral-resolution images are used.
Improvements in the classification accuracy of remotely sensed images are achievable through
the selection of suitable band combinations26 and also through image enhancement, such as
image fusion,23 because higher-spatial-resolution data are used to select training sites, interpret
classification results, and describe the spatial distribution and patterns of land cover.27,28

However, the classification accuracy of fused imagery may depend on its spectral quality,
which is largely determined by the fusion algorithm that is utilized. A number of studies
have explored the impacts of different fusion algorithms on classification accuracies and
have observed improvements,29–32 while others found that the classification accuracy of
fused imagery was lower than the original MS image.33

This study investigated the usefulness of image fusion techniques in wetland vegetation map-
ping to ascertain whether image fusion improved the classification accuracy in a complex wet-
land ecosystem. The impact of four fusion techniques, Brovey, hue-saturation-value (HSV),
principal components (PC) spectral sharpening, and Gram–Schmidt (GS) spectral sharpening,
on the classification accuracy for wetland vegetation mapping was examined using two classi-
fication methods.

2 Materials and Methods

2.1 Study Site

The study was carried out at Micalo, situated on the eastern coast of New South Wales, Australia,
between 153° 17′ 50′′ E to 153° 21′ 03′′ E longitude and 29° 24′ 45′′ S to 29° 28′ 25′′ S latitude
(Fig. 1). It covers approximately 950 ha and includes both terrestrial and estuarine habitats. The
main saltmarsh vegetation species at Micalo are salt couch (Sporobolus virginicus), samphire
(Sarcocornia quinqueflora), creeping brookweed (Samolus repens), Austral seablite (Sueda aus-
tralis), and sea rush (Juncus krausii). The main nonsaltmarsh vegetation species are casuarina
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(Casuarina glauca), paperbark (Melaleuca quinquenervia), mangroves (Avicennia marina and
Aegicerus corniculatum), pasture grass, tall reedy grass, and a number of shrub-type weeds. The
vegetation species at the study site were fairly diverse, with a number of species in different
stages of growth and maturity. Stands of S. quinqueflora in two different colors, reddish and
very green, were found to occur short distances apart. Similar phase differences were also
observed for S. virginicus: some were lush and green while others were tall and dry
(Fig. 2). The study site, while located close to the coast, is not significantly impacted by coastal
tides; however, there was a substantial amount of water in many parts. Permanent standing water
constituted between 30% and 80% of the background in many areas, and this complicated veg-
etation categorization and image processing. Figure 2 shows the examples of diverse vegetation
and the extent of water present in the background.

2.2 Methods

High-spatial-resolution data from Quickbird were used in this study. Quickbird images have a
0.61-m pixel resolution in the PAN mode and 2.44-m resolution in the MS mode. The MS mode
consists of four broadbands in the blue (450–520 nm), green (520–600 nm), red (630–690 nm),
and near-infrared (760–900 nm). The Quickbird satellite data were captured on July 12, 2004.

Extensive fieldwork was conducted in the study area on the 20th and 21st of July, 2004. Data
were collected for a total of 224 locations. Each of the sample sites was homogeneous area of at
least 10 × 10 m, so that the georeferencing issues would not have an impact on training sites.
Ground data included main vegetation species, percentage occurrence of each species within the
selected plots, crown cover and density, condition of the wetland, and their GPS locations.
During the fieldwork, 33 ground control points were also collected using a differential GPS
system for image rectification.

Image fusion was carried out using Quickbird MS and PAN imageries with different spectral
and spatial resolutions to produce an image with enhanced spatial resolution. The four image

Fig. 1 Location of Micalo on the northeast coast of New South Wales, Australia. Image is a false-
color Quickbird of July 12, 2004.
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fusion algorithms employed were Brovey, HSV, PC spectral sharpening, and GS spectral sharp-
ening. Since the Brovey and HSV techniques only allow a limited number of input bands to be
fused, bands containing most of the variance were selected based on the optimum index factor, a
method developed by Chavez et al.34

2.2.1 Brovey transformation

Amathematical combination of the color image and high-spatial-resolution data is utilized in this
sharpening technique, whereby each band in the color image is multiplied by a ratio of the high-
spatial-resolution data divided by the sum of the color bands. A nearest neighbor technique is
then used to resample each of the three color bands to the high-spatial-resolution pixel size.25,35

The method is computationally simple and is generally the fastest method that requires the least
system resources. The intensity component is increased, making this technique good for high-
lighting brighter objects. The method was developed to visually increase contrast in the low and
high ends of an image histogram (i.e., to provide contrast in shadows, water, and high reflectance
areas, such as urban features). However, the resulting merged image does not retain the radi-
ometry of the input multispectral image.31 Furthermore, this technique allows only three bands at
a time to be merged from the input multispectral image.35

2.2.2 HSV

This technique is also called IHS and involves a color space transformation. In such a trans-
formation, an RGB image is converted into color (hue), purity (saturation), and intensity or
brightness (value). The next step in this fusion algorithm involves replacing the value band

Fig. 2 Vegetation species at different stages of growth (a–d) and extent of background water (e, f)
at the study site.
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with the high-spatial-resolution PAN band. The hue and saturation bands are then resampled to
the high-spatial-resolution pixel size using a nearest neighbor technique. Histogram matching
of the PAN image is carried out before substitution, which involves radiometrically transforming
the PAN image by a constant gain and bias in such a way that it exhibits mean and variance that
are the same as the intensity.36 A final transformation of the image back to RGB color space is
carried out.35 Only three of the four bands at a time are merged from the input MS image because
the HSV transform is defined for only three components. The HSV offers a controlled visual
presentation of the data using readily identifiable and quantifiable color attributes that are dis-
tinctly perceived.37 Numerical variations can be uniformly represented in an easily perceived
range of colors. However, in HSV, the hue has to be carefully controlled since it associates mean-
ingful color with well-defined characteristics of the input.37

2.2.3 PC

This method is based on the assumption that the first principal component of high variance is
ideal for replacement with the high spatial details from the PAN image. The MS data are trans-
formed using a principal components transformation. The high-spatial-resolution PAN is scaled
to match the PC band 1 (PC1) to avoid distortion of the spectral information. This step is essen-
tial since the mean and variance of PC1 are generally far greater than those of the PAN. The PC1
band is then replaced with the scaled PAN. Finally, an inverse transformation is performed and
the MS data are resampled to the high-spatial-resolution pixel using the nearest neighbor tech-
nique.35 The PCA is mainly used to reduce dimensionality of the data while retaining useful
information and also for image enhancement. The dimensionality reduction is desired to reduce
data redundancy and processing time in color compositing.38 It also has no limitation on the
number of bands that can be merged at a time. However, with PCA, there is a possibility of
losing important information if an unused image contains more significant information than
used images and there is difficulty in visual interpretation of color composition images due
to fewer numbers of bands.39 Information in spectral bands would not be preserved after imple-
menting PCA, and merged low-resolution MS images are not easy to identify.38

2.2.4 GS

The lower spatial resolution spectral bands are used to simulate a PAN band. This step is fol-
lowed by a GS transformation on the simulated band and the spectral bands, using the simulated
PAN band as the first band. The high-spatial-resolution PAN band is substituted with the first GS
band. The final step involves an inverse GS transform to generate the pan-sharpened spectral
bands.35 GS is typically more accurate because it uses the spectral response function of a given
sensor to estimate what the PAN data look like. Karathanassi et al.40 found local mean and vari-
ance matching, and least-squares fusion methods, the best performance in GS as compared to
other methods; however, they also found that there was not a good comparison in the correlation
coefficient value between the two images.

2.3 Image Classification

2.3.1 Maximum-likelihood classification

Saltmarsh landcover classification was carried out on the original Quickbird image bands (B1-4)
and on the entire bands of the fused images. Maximum-likelihood classification (MLC) was used
for image classification through (1) identification of features and selection of training areas based
on field data, (2) evaluation and analysis of training signature statistics and spectral patterns, and
(3) classification of the images. MLC works on two assumptions: (1) that the image data are
normally distributed, and (2) that the training samples’ statistical parameters (e.g., mean vector
and covariance matrix) truly represent the corresponding landcover class. However, the image
derived parameters are not always normally distributed, especially in complex landscapes.
Differential GPS-based reference samples collected during the field visit of the sites were
first superimposed on standard false-color composites using 4 3 2 band combination and
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checked for class homogeneity around the sample points. Given the diverse nature of the veg-
etation and the large differences in the amount of water in the background, the landcover types
were initially categorized into 20 groups. A key issue in deciding on landcover classes was how
to handle the issue of background water. It was decided that where a particular vegetation species
covered more than 80% of the sample area, it would be placed in the “pure” category, such as “S.
quinqueflora pure”; where there was a mix of the vegetation and water, with water accounting for
more than 20% but less than 50% of the area, the class was listed as the vegetation species being
dominant, such as “S. quinqueflora dominant”; and where there was an even mix of vegetation
species and water this class was listed as a mixed class.

A total of 224 sample points were collected for the 20 saltmarsh landcover classes, which
were later grouped into nine classes by merging nearby classes into one, as there was a signifi-
cant crossover between some classes due to high water cover. These sample points were used to
make sample polygons of 3 × 3 pixels. Given the fact that the positional accuracy of locations
extracted from high-resolution images can be degraded by off-nadir acquisition and image dis-
tortion,41 the 3 × 3 pixels accounted for any existing positional error. To avoid any class mixing,
the 3 × 3 sample pixels were further refined with respect to class homogeneity by retaining only
pure pixels in a given polygon and discarding pixels falling on class boundaries or neighboring
class (Fig. 3). After refinement, a total of 1189 sample pixels were left for training and accuracy
assessment processes. From the total sample pixels, 416 training pixels were randomly selected
for signature generation and image classification, while the remaining samples were used for
classification accuracy evaluations. Table 1 shows the number of samples per class used for
training and accuracy assessment processes. Signatures were further refined using Jeffries–
Matusita (JM) distance and transformed divergence (TD)34 separability measures. Class homo-
geneity around the sample points was examined, and if required, a point was slightly moved to
the adjacent pixel to accommodate more similar pixels in the surroundings. Finally, both the
original and the fused images (resulting from various fusion techniques) were classified into
nine saltmarsh landcover categories.

2.3.2 Support vector machines classification

SVM is a supervised classification method derived from statistical learning theory42 and found
suitable for complex and noisy data classification. It separates the classes with a decision surface,
often called the optimal hyperplane, which maximizes the margin between the classes. The data
points closest to the hyperplane are called support vectors, critical elements of the training set. As
a consequence, they generalize well and often outperform other algorithms in terms of

Fig. 3 Refinement of sample pixels by retaining only pure pixels in a given polygon by discarding
pixels falling on class boundaries or neighboring class.
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classification accuracies. In addition, the misclassification error is minimized by maximizing the
margin between the data points and the decision boundary. While SVM is a binary classifier in its
simplest form involving separation of only two classes, it can function as a multiclass classifier
by combining several binary SVM classifiers (creating a binary classifier for each possible pair
of classes). The SVM-based classification involves separating data into training and testing sets.
Each instance in the training set contains one “target value” (i.e., the class labels) and several
“attributes” (i.e., the features or observed variables). The goal of SVM is to produce a model
(based on the training data), which predicts the target values of the test data given only the test
data attributes.

Given a training set as ðxi; yiÞ, i ¼ 1; : : : l; where xi ∈ Rn and yi ∈ f1;−1g1, the training set
can be separated linearly by a hyperplane, if a vector w and a scalar b satisfy two conditions:
w � xi þ b ≥ þ1 for all y ¼ þ1; and w � xi þ b ≤ þ1 for all y ¼ −1. The two conditions can be
combined as yiðw � xi þ bÞ − 1 ≥ 0 to represent a constraint that must be satisfied to achieve a
hyperplane that completely separates the two classes.43 The SVM finds the optimal separating
hyperplane using Lagrange multiplier and quadratic programming methods.44 For cases where
the two classes are not linearly separable, a mapping function “Φ” is used as ΦðxÞ, which is the
conversion of input vector x in feature space into a constructed space of n dimensions. With
increasing n, this is computationally expensive and hence a kernel function, Kðx; yÞ ¼
ΦðxÞ �ΦðyÞ, is chosen. The most commonly used kernels to build SVM for classification
are the radial-based function (RBF) and polynomial-based function. The choice of kernel
used and the parameters selected can have an effect on speed and accuracy of classification.45

In principal, SVMs can only solve binary classification problems. One commonly used tech-
nique that allows for multiclass classification is the one-against-one method. This method
fits a total of kðk − 1Þ∕2 binary subclassifiers and finds the correct class by a voting mechanism.
The one-against-all method is an alternative approach, in which k SVM models are con-
structed.46 The i’th SVM is trained with all members of i having positive labels, and all remain-
ing members having negative labels.

In this study, the one-against-one method was used, as it has been shown that it performs
better than the one-against-all method.47 ENVI (ITT Visual Information Solution, US) was used
for SVM classification based on the pairwise classification strategy for multiclass classification.
SVM classification output is the decision value of each pixel for each class, which is used for
probability estimates. The probability values were stored in ENVI as rule images, representing
“true” probability in the sense that each probability falls in the range of 0–1, and the sum of these
values for each pixel equals 1. The classification was performed by selecting the highest prob-
ability using the RBF kernel with γ ¼ 0.2 as the inverse of the number of bands in the input

Table 1 Class-wise sample points used for training and accuracy assessment for saltmarsh land-
cover classifications in the study region.

Sample Class
Training
points

Accuracy
assessment

points

1 Casuarina + Mangrove + Melaleuca (CMM) 88 148

2 Grass 54 68

3 J. krausii + S. virginus dominant + S. virginus pure 98 196

4 Others (mixed S. repens, S. australis, and weeds, etc.) 13 14

5 Pasture 30 60

6 S. quinqueflora dominant 22 42

7 S. quinqueflora pure 30 59

8 Water 32 103

9 Settlements 49 83
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image with a penalty parameter of 100 (default). The penalty parameter permits a certain degree
of misclassification, which is particularly important for nonseparable training sets. Finally, a
pixel-based SVM classification was undertaken by separating classes based on optimally defined
hyperplane between class boundaries. Identical sets of training and validation samples were used
for MLC and SVM classifications for all the fused images and also for the MS image to minimize
evaluation bias.

2.4 Accuracy Assessment

Accuracy of classifications was carried out to verify the fitness of classification products and to
compare the performances of different image fusion techniques. The remaining 773 sample
points were used for classification accuracy assessment bearing in mind the general guidelines
for the minimum number of samples required for each landcover category.41 The evaluation was
undertaken by comparing the location and class of each ground-truthed pixel with the corre-
sponding location and class on the classified images. An error matrix was constructed expressing
the accuracies in terms of producer’s accuracy (PA), user’s accuracy (UA), and overall accuracy
(OA).41,48 This provided a means of expressing the accuracies of each individual class and their
contribution to overall accuracy. Kappa coefficient (κ)49,50 was also used to quantify how much
better a particular classification was compared to a random classification and to calculate a con-
fidence interval to statistically compare two or more classifications. One of the most widely used
methods to compare accuracies is through the comparison of two independent kappa values. The
statistical significance of the difference between the two values can be evaluated through the
calculation of a Z value.41 However, there are many issues related to the reliability of the inter-
pretation of the kappa.50 Therefore, it is preferable to express accuracies as the proportion of
correctly allocated pixels (i.e., overall accuracy), as explained in Foody.50 In this study, the same
set of reference samples was used for all the classifications. Therefore, each set of reference
samples can be treated as dependent samples for all the techniques that were applied. In
such a situation, the significance of the difference between the two proportions (overall accuracy)
has been evaluated using McNemar’s test51

Z ¼ f12 − f21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f12 þ f21
p ;

where fij is the frequency of the validation data at row i, column j; f12 and f21 are the number of
pixels that one method correctly classified as compared to the number of pixels the other method
incorrectly classified.51 The test bases its evaluation on the χ2 distribution, in which the square of
Z follows a χ2 distribution with one degree of freedom50,51 as

χ2 ¼ ðf12 − f21Þ2
f12 þ f21

:

3 Results

3.1 Maximum-Likelihood-Based Classification Results

The main plant species that dominated the Micalo saltmarsh of the eastern coast of Australia
were S. quinqueflora and S. virginicus. Saltmarsh landcover classifications from MLC technique
produced different accuracies from the original MS image and the four fused images. An overall
classification accuracy of 59% and kappa value of 0.55 were obtained from the original MS
image involving all spectral bands. In general, the main confusion was observed between
pure S. quinqueflora and dominant S. quinqueflora classes along with mixed wet vegetation
types. Another class that could not be separated well was the category “others” of mixed veg-
etation types and was found to be similar in spectral response to J. krausii-dominated vegetation
type. Table 2 summarizes the UA, PA, OA, and kappa values obtained for the nine landcover
classes from different images used in MLC classification. With 13 and 16 different band combi-
nations used in Brovey and HSV image fusion techniques, respectively, the classification
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accuracies from fused images with no infrared bands (e.g., RGB: 123) produced lower accu-
racies as compared to images with infrared bands (e.g., RGB: 432). For the Brovey method, the
highest overall accuracies were 54% (kappa value 0.47) for noninfrared band images and 57.6%
(kappa value 0.52) for images containing infrared as one of the bands in image fusion. With the
same combinations in HSV technique, these values were 46.3% (kappa value 0.37) and 61.5%
(kappa value 0.55), respectively. A similar pattern of class intermixing was observed between the
fused images that yielded the highest accuracies and the classified original MS image.
Nevertheless, the fused images showed an improvement of approximately 2% in overall accu-
racy and of 0.01 in kappa value over the original MS image. The Brovey technique resulted in a
reduction in overall accuracy and kappa value by about 3% and 0.03, respectively, compared to
the original MS image. Thus, this fusion technique does not look promising in terms of improv-
ing the classification accuracies in saltmarsh landcover classification.

The landcover classification results from GS sharpened images were the best among all the
MLC classifications, as it produced the highest overall accuracy of 67.5% and kappa value of
0.63, an improvement of approximately 8.5% in overall accuracy and 0.08 in kappa value, as
compared to the original MS image classification. Confusion between classes such as pure S.
quinqueflora, dominant S. quinqueflora, mixed wet vegetation, and “others” of mixed vegetation
types was reduced, leading to higher producer and overall accuracies. For PC sharpened image,
the overall accuracy was 61% (kappa value 0.56), an improvement of about 2% in overall accu-
racy and of 0.01 in kappa value over the original image classification. Overall, water and set-
tlement were classified accurately by all the fused images, while among the vegetation types,
CMM, grass, and pastures were separable in most cases. Figure 4 shows three areas in the study
site comparing the classification results of the MS and four fused images.

3.2 Support Vector Machines–Based Classification Results

The SVM method resulted in higher accuracies for all the image types compared to the MLC
method. Table 3 summarizes the UA, PA, OA, and kappa values obtained for the nine landcover
classes from different images used in SVM classification. Overall, the improvements of 4.1%,

Table 2 Comparison of landcover classification accuracies using different images from maxi-
mum-likelihood classification (MLC).

Class

Brovey
(432) HSV (432) GS PC MS

PA UA PA UA PA UA PA UA PA UA

Casuarina+Mangrove+Melaleuca
(CMM)

76.1 75.2 79.0 85.2 87.4 89.6 86.3 78.7 86.3 74.8

Grass 52.7 54.7 71.0 64.8 50.0 60.7 68.7 57.0 57.6 56.3

J. krausii + S. virginicus dominant +
S. virginicus pure

20.4 67.2 30.0 67.5 38.8 73.0 17.6 58.0 22.0 74.5

Others (mixed S. repens,
S. australis, weeds, etc.)

13.6 2.2 6.7 1.5 21.4 4.1 6.7 1.8 13.6 2.3

Pasture 84.2 61.2 90.2 63.8 91.7 83.3 87.0 83.5 75.4 69.1

S. quinqueflora dominant 25.0 15.8 27.5 23.9 19.0 18.6 45.0 39.1 27.5 18.1

S. quinqueflora pure 53.5 36.4 73.3 36.6 67.8 42.5 70.0 29.8 54.0 35.7

Water 99.6 100.0 83.8 100.0 100.0 100.0 89.9 100.0 100.0 100.0

Settlements 88.2 84.6 100.0 81.1 92.7 92.7 91.3 80.7 87.8 84.9

Overall accuracy 57.6 61.5 67.5 61.0 59.1

Kappa value 0.52 0.56 0.63 0.56 0.55
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3.6%, 5.8%, 5.4%, and 7.2% in overall accuracies were obtained in case of SVM over MLC for
Brovey, HSV, GS, PC, and MS images, respectively.

Only images with infrared bands were included in the SVM classification since they had
yielded higher accuracies in the MLC classification compared to the images with no infrared
bands. The Brovey and HSV fusion techniques with 432 band combination yielded overall accu-
racies of 61.7% and 65% and kappa values of 0.56 and 0.59, respectively. A substantial

Fig. 4 Three sample sites in the study area where the classification results vary between the multi-
spectral (MS) and different fused images using maximum-likelihood classification (MLC) method.

Table 3 Comparison of landcover classification accuracies using different images from a support
vector machine (SVM).

Class

Brovey
(432) HSV (432) GS PC MS

PA UA PA UA PA UA PA UA PA UA

Casuarina + Mangrove + Melaleuca
(CMM)

82.4 79.8 84.2 87.4 95.1 92.3 88.7 83.3 90.9 84.3

Grass 57.6 59.9 74.8 68.8 72.3 68.8 71.9 66.0 69.6 65.3

J. krausii + S. virginicus dominant +
S. virginicus pure

28.6 71.8 38.3 71.6 48.1 73.5 36.6 71.0 34.0 68.5

Others (mixed S. repens, S. australis,
weeds, etc.)

23.1 36.3 18.7 15.5 38.8 21.1 13.7 7.8 18.8 5.3

Pasture 88.4 67.5 93.2 66.8 96.7 88.3 91.0 95.5 86.6 87.1

S. quinqueflora dominant 33.3 24.3 34.5 26.3 34.8 31.6 41.8 36.5 33.3 31.1

S. quinqueflora pure 56.5 41.4 75.1 37.5 71.6 44.4 78.0 41.8 72.8 38.3

Water 99.8 100.0 88.2 100.0 100.0 100.0 89.1 100.0 100.0 100.0

Settlements 93.2 84.6 100.0 87.7 96.7 94.1 98.8 86.5 95.8 87.9

Overall accuracy 61.7 65.1 73.3 66.4 66.3

Kappa value 0.56 0.59 0.68 0.61 0.61
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improvement in accuracy was observed with the SVM classification of the original MS image
and the PC fused image (approximately 66%) compared to the MLC classification. The GS
sharpened image provided the best result among all the SVM classifications, with an overall
accuracy of 73.3% and a kappa value of 0.68. This was an improvement of approximately
6% in overall accuracy and 0.05 in kappa value, as compared to the GS-MLC classification.
Even though both MLC and SVM classification methods had difficulty in distinguishing
between pure S. quinqueflora, dominant S. quinqueflora, and mixed wet vegetation types,
this confusion was reduced in the case of the SVM methodology, resulting in higher classifi-
cation accuracies. Figure 5 shows three areas in the study site comparing the SVM classification
results of the MS and four fused images. Figure 6 shows the classified image using the GS
sharpening technique for the entire study area.

Fig. 5 Three sample sites in the study area where the classification results vary between the MS
and different fused images using support vector machine (SVM) method.

Fig. 6 MLC- and SVM-based classified images for the whole study area as obtained using the
Gram–Schmidt (GS) sharpening technique.
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Table 4 shows McNemar’s test results with the number of pixels correctly or incorrectly
classified in each image type using MLC and SVM techniques and taking GS image as a refer-
ence since this image provided the highest accuracy. The χ2 values indicate that the GS overall
accuracy was significantly higher than MS and other classifications in terms of overall accuracy
and kappa at 95% confidence level in both MLC and SVM techniques.

4 Discussion and Conclusion

The current study used field and high-resolution remote sensing data to generate landcover clas-
sification maps of a complex wetland area on the eastern coast of Australia. As part of image
preprocessing, a range of image fusion techniques were compared using original Quickbird
bands to fully exploit the image’s spatial and spectral characteristics. Pan-sharpened images
with enhanced spatial and spectral characteristics were produced with the aim of distinguishing
saltmarsh vegetation communities and identifying brackish water marshes. The classification
results indicated the usefulness of infrared bands in saltmarsh vegetation discrimination as
fused images that included the infrared band consistently produced higher accuracies as com-
pared to images containing noninfrared bands. The results produced from GS sharpened images
provided, in general, more contrast between the landcover features, resulting in the highest over-
all accuracy and kappa statistic.

Saltmarshes are complex ecosystems that are not well mapped and understood. Knowledge
of the spatial distribution of saltmarsh species will allow for the delineation of healthy marshes
from unhealthy areas, and thus aid in understanding population distributions and facilitate the
process of monitoring marsh recovery from disturbance.52,53 Our results show that the mapping
accuracy of saltmarsh vegetation can be improved by combining the higher spatial resolution of
PAN images and higher spectral resolution of multispectral images through image fusion.
However, not all fusion techniques resulted in improved accuracies as compared to the multi-
spectral image. The GS technique produced the highest overall accuracy (67.5%) and kappa
value (0.63). There were a number of reasons why the classification accuracy was not higher.
The background water made classification and class determination quite problematic. Even areas
that had a pure stand of a particular species, such as S. quinqueflora, may have different per-
centages of water covering the background and pixels may be classified into different categories
depending on the water coverage. S. quinqueflora was generally the most common species in the
waterlogged areas, leading to lower user and producer accuracies for this class of landcover.
Conversely, nonwaterlogged species, such as pasture, CMM, and S. virginicus, had higher accu-
racies. The accuracies obtained for individual classes and the overall accuracies would have been
higher if there was less background water. Mapping was also affected by the heterogeneous
nature of the vegetation. For example, in this study, areas with casuarinas also had S. virginicus
in the background, while mangrove areas had either S. quinqueflora or S. virginicus in the back-
ground. This heterogeneity may have contributed to the lower classification accuracies. Most of
these canopies were fairly open, hence the background vegetation contributed significantly to the
spectral signature. Other studies that utilized remote sensing in wetland studies also found that
the heterogeneous nature of these ecosystems made it difficult to distinguish plant species.54

Mapping accuracies were also impacted by different stages of growth of some of the species,
mainly S. quinqueflora and S. virginicus. S. virginicus that was in a dry stage [Fig. 2(b)] was

Table 4 McNemar’s test for comparison between GS classifications versus other image classi-
fications using both MLC and SVM techniques.

GS versus
Brovey (432)

GS versus
HSV(432) GS versus PC GS versus MS

MLC 14.54 9.29 8.62 11.16

SVM 16.32 12.13 10.34 14.67

χ2- value ≥ 3.413 significant at 95% level
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generally mixed with tall reedy grass, while the greener component of this species was classified
as a different category [Fig. 2(a)]. The same effect was seen with S. quinqueflora that was in the
green and red stages, although the impact was not as profound as S. virginicus.

To improve classification accuracies and class separability, the timing of satellite image
acquisition would be important in such environments. The confusion between dry S. virginicus
and the tall reedy grass can be avoided if imagery is acquired when this species is still in its green
stage. Hyperspectral images could potentially also help, especially if such images are acquired
from aircraft platforms, so that the spatial resolution is similar to images such as Quickbird. Due
to seasonal effects, it may also be useful to have dual-date or multitemporal images, so that it is
easier to distinguish between vegetation classes.55,56

The current study sought to evaluate the impact of image fusion techniques on landcover
classification accuracies in a complex wetland system. The analysis was based on pixel-
based classifications using MLC and SVM techniques. The results showed that the fused images
containing infrared bands and GS fusion technique provided higher overall accuracies. This
suggests that the image fusion techniques can improve contrast and thus enhance the accuracy
with which salt marsh vegetation can be classified. However, recent studies have shown that the
object-level classification may provide better results than the pixel-level classification (e.g.,
Refs. 57 and 58). The conventional pixel-based supervised methods, such as MLC, only examine
the spectral information of the image, and hence was found not very effective in high-spatial-
resolution data, such as Quickbird imagery.59 The increase in spatial resolution actually increases
the complexity in the image since with smaller sized pixels more information actually resides in
surrounding pixels—so-called contextual information.59 Therefore, spatial information such as
texture and context must be exploited to produce accurate classification maps.60 Object-based
classification techniques consider not only the spectral properties of pixels but also the shape,
texture, and context information during the classification process, thereby providing much
improved results.61 The task of evaluating how contextual information enhances spectral sepa-
rability between landcover classes at object level as opposed to pixel level merits further study
beyond the scope of our current research. Since the aim of the current study was to examine
whether there was any improvement in classification accuracy as a result of different image
fusion techniques, the pixel-based MLC and SVM were found appropriate for image classifi-
cations. However, in future, both contextual and spectral information can be used for obtaining
better results.

Mapping exercises such as the one described here are useful for a number of reasons. First of
all, they describe a methodology for more effectively utilizing MS and PAN imageries that users
may purchase as a package to enhance mapping accuracies. Second, the maps that result from
such studies are useful for natural resource and conservation planning exercises, such as water
use planning, water quality assessment, monitoring activities, and change detection.
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