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Abstract
Changes in vegetation productivity based on normalized difference vegetation index (NDVI) have
been reported from Arctic regions. Most studies use very coarse spatial resolution remote sensing
data that cannot isolate landscape level factors. For example, on Yamal Peninsula in West Siberia
enhanced willow growth has been linked to widespread landslide activity, but the effect of
landslides on regional NDVI dynamics is unknown. Here we apply a novel satellite-based NDVI
analysis to investigate the vegetation regeneration patterns of active-layer detachments following a
major landslide event in 1989. We analyzed time series data of Landsat and very high-resolution
(VHR) imagery from QuickBird-2 and WorldView-2 and 3 characterizing a study area of ca.
35 km2. Landsat revealed that natural regeneration of low Arctic tundra progressed rapidly during
the first two decades after the landslide event. However, during the past decade, the difference
between landslide shear surfaces and surrounding areas remained relatively unchanged despite the
advance of vegetation succession. Time series also revealed that NDVI generally declined since
2013 within the study area. The VHR imagery allowed detection of NDVI change ‘hot-spots’ that
included temporary degradation of vegetation cover, as well as new and expanding thaw slumps,
which were too small to be detected from Landsat satellite data. Our study demonstrates that
landslides can have pronounced and long-lasting impacts on tundra vegetation. Thermokarst
landslides and associated impacts on vegetation will likely become increasingly common in NW
Siberia and other Arctic regions with continued warming.

1. Introduction

Rapid change in Arctic vegetation productivity
since the 1980’s—generally referred to as ‘Arctic
greening’—has been linked to climate warming and
to changes in sea ice extent (Bhatt et al 2010, Dutrieux
et al 2012, Myers-Smith et al 2020, Berner et al 2020).
The strongest responses observed have been increases
in shrub cover and height, especially within the Low
Arctic tundra zone, where vegetation is highly sens-
itive to air and soil temperature during the growing
season (Epstein et al 2004, Macias-Fauria et al 2012).
Increased shrub cover lowers albedo of the land sur-
face, which may trigger a positive climatic feedback
(Blok et al 2011) as more warmth is absorbed by
the darker surface. However, the magnitude and

direction of vegetation response to changing cli-
mate is highly variable across space and time (Epstein
et al 2013, Berner et al 2020). Decreasing vegetation
greenness—so called ‘browning’—has been linked,
for example, to increasing surface water and tundra
wetness in some regions (Lara et al 2018) as well as to
earlier snowmelt (Gamon et al 2013).

Most remote sensing assessments of Arctic ‘green-
ing’ or ‘browning’ have been based on changes in
the normalized difference vegetation index (NDVI)
derived from satellite sensors such as the Advanced
Very-High Resolution Radiometer (AVHRR, 1981—
present) (Walker et al 2009, Bhatt et al 2010, Forbes
et al 2010) or theModerate Resolution Imaging Spec-
troradiometer (MODIS, 2000—present) (Dutrieux
et al 2012, Miles and Esau 2016). The coarse spatial
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resolution of these sensors (250 m to ∼12.5 km)
does not allow distinguishing different landscape-
level drivers of NDVI change (Myers-Smith et al
2020). For instance, Walker et al (2009) found little
change in AVHRRGIMMSgNDVI from 1982 to 2007
on Yamal Peninsula, West Siberia, Russia (figure 1),
but while in the field observed many local factors
affecting vegetation, such as thermal erosion gullies,
landslides, reindeer herding and infrastructure. Sim-
ilarly, Bhatt et al (2010) found that GIMMSg NDVI
was relatively stable on Yamal from 1982 to 2008,
which they connected to the lack of positive trend
in summer warmth index (sum of positive monthly
mean temperatures) and/or to widespread reindeer
herding.

Long-term moderate and high-resolution satel-
lite image datasets, such as Landsat (1972—present),
are needed to address the issue of spatiotemporal
heterogeneity in vegetation productivity. Evaluation
of Landsat NDVI trends 1999–2014 across the Arc-
tic Coastal Plain of northern Alaska showed that the
dominant factors controlling greenness were geomor-
phology and regional climate change (Lara et al 2018).
Trend analysis of Landsat imagery shows strong
potential for detecting landscape change and attrib-
uting changes to specific factors such as shrub expan-
sion (Fraser et al 2012, Brooker et al 2014). How-
ever, the short growing season, persistent cloud cover
and data loss from the scan line corrector failure on
Landsat ETM+ (Enhanced Thematic Mapper Plus)
(USGS 2019a) limit the amount of usable imagery
and may result in too sparse time series for robust
trend analysis in many Arctic regions. In addition,
the differences in designated spectral band widths of
Landsat TM (Thematic Mapper) and ETM+ and ,
even more so between band widths of Landsat OLI
(Operational Land Imager) in comparison to previ-
ous Landsat sensors (table 1), present further chal-
lenges to assessing multi-decadal trends in Landsat
NDVI (Flood 2014).

Slope processes including landslides and sub-
sequent enhancement of erect willow growth are
important factors affecting NDVI on Yamal (Walker
et al 2009). Cryogenic landslides, such as active layer
detachments (ALD) and (retrogressive) thaw slumps,
expose marine sediments (Ukraintseva and Leibman
2007) which leads to slightly higher groundwater
salinity relative to background values (Khitun et al
2015). This provides colonizing plants with nutri-
ents, thus enhancing revegetation and re-formation
of soils. Furthermore, this fosters expansion of wil-
lows (Salix sp.), which also benefit from deeper act-
ive layer (seasonally thawing and freezing layer above
the permafrost) and thicker snow cover in depres-
sions formed by landslides (Leibman et al 2015).
When landslides remove the surface layer they expose
permafrost and, in the process, alter soil temper-
ature (Loranty et al 2018), hydrology (Kokelj and
Lewkowicz 1998) and nutrient content (Ukraintseva

and Leibman 2007). The exposed permafrost can
then thaw and release previously frozen soil organic
matter for decomposition (Abbott and Jones 2015,
Olefeldt et al 2016). Changed soil conditions may
stimulate both photosynthesis and respiration, thus
impacting the carbon balance within the affected area
(Abbott and Jones 2015). As landslides—especially
thaw slumps—often occur next to water bodies
(Abbott et al 2015), and due to the multitude of lakes,
ponds and rivers on central Yamal Peninsula, the sed-
iments and organicmatter are likely to be transported
further away from the actual landslide.

The last massive landslide event on Yamal took
place during the end of summer 1989 when thou-
sands of landslides, mostly ALDs, occurred in the
north-west part of the peninsula. These landslides
are believed to have resulted from high pore pres-
sure caused by large winter and summer precipita-
tion events combinedwith rather warm summer tem-
peratures (Leibman and Egorov 1996). In addition to
natural triggers, landslides on Yamal may result from
anthropogenic activities, such as infrastructure con-
struction and off-road vehicle traffic. Russia’s largest
natural gas deposits have been found on the Yamal
Peninsula, and exploitation of this resource rapidly
expanded during the past several decades (Kumpula
et al 2010, 2012). Cryogenic landslides also create a
potential threat to hydrocarbon extraction infrastruc-
ture. The peninsula is also home for about 1000 fully
nomadicNenets households with ca. 330 000 reindeer
in total (Administration of Municipal Education of
Yamalskii district 2017). Reindeer are the main large
herbivore in the area and are attracted to wide, wind-
exposed bare surface areas during periods of high
insect harassment (Skarin et al 2010, 2020). These
animals can impede regeneration of vegetation after
the disturbance via grazing and trampling (Kumpula
et al 2010), yet the magnitude and degree of reindeer
impact on landslide evolution is unknown.

Khitun et al (2015) studied vegetation regenera-
tion on ALDs in Central Yamal in situ. Their focus
was on botanical surveys and phytosociological stud-
ies on landslides that occurred in 1989, themid 1970’s
and the 1950’s, and ca. 1000-year old ancient land-
slides, as well as their surroundings. According to
their observations, the first vegetation was domin-
ated by graminoids that occur on shear surfaces dur-
ing the first 10–15 years. The first willows appear
approximately 15 years after the surface failure and
the transition to sedge-willow vegetation cover occurs
after another 35–40 years. Cannone et al (2010) fol-
lowed vegetation colonization of active layer detach-
ments on Ellesmere Island in Canadian High Arc-
tic. There it required over 50 years to develop flor-
istic composition similar to surrounding communit-
ies, but the time elapsed was not yet sufficient enough
to resemble the original vegetation cover. In Canada,
Tasseled Cap Trend Analysis from Landsat image
stackwas also used byBrooker et al (2014) to study the
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Figure 1. Location of Mordy-Yakha study area on Central Yamal Peninsula. (a) and (b): Landsat TM false colour images before
and after the 1989 landslide event, (c) and (d): landslide slope depicted from air (drone) and ground level (marked by white oval
in figure 1(b)). Climate data used in this study was from the Marre-Sale meteorological station. Photos: Pasi Korpelainen.

Table 1. Bandwidths (µm) of Landsat and VHR data used in this study in visible and near infrared (NIR) spectrum. (TM= Thematic
Mapper, ETM+= Enhanced Thematic Mapper Plus, OLI= Operational Land Imager, QB= QuickBird, WV=WorldView).

TM ETM+ OLI QB-2 WV-2 and 3

Blue 0.45–0.52 0.45–0.52 0.45–0.51 0.45–0.52 0.45–0.51
Green 0.52–0.60 0.52–0.60 0.53–0.59 0.52–0.60 0.51–0.58
Red 0.63–0.69 0.63–0.69 0.64–0.67 0.63–0.69 0.63–0.69
NIR 0.76–0.90 0.77–0.90 0.85–0.88 0.76–0.90 0.77–0.895

activity and evolution of retrogressive thaw slumps
in the Northwest Territories. They identified stabil-
ization of landslides based on an increase in Tasseled
Cap greenness values. Other examples of remote sens-
ing approaches to evaluate revegetation after sur-
face disturbance by landslides are from mountain-
ous and tropical environments (Lin et al 2005, Yang
et al 2018). For example, Lin et al (2005) used a
vegetation recovery rate index calculated frommulti-
temporal NDVI images to assess the changes on land-
slide surfaces after a large-scale landslide event in
1999 in the Jou-Jou Mountain area, Taiwan. They

used satellite imagery from two successive years dur-
ing which the vegetation recovery rate reached almost
60%. The rate of revegetation in the Arctic is signi-
ficantly slower, however, and thus much longer time
series are required.

Commercial very high-resolution (VHR; 1 to
5 m) optical satellite imagery for example from
IKONOS, QuickBird and WorldView satellites can
provide more detailed insight into landscape dynam-
ics; however, it has been used to a lesser extent due
to the high costs. VHR imagery has been used widely
to assess revegetation after forest fires (Mitchell and
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Yuan 2010, Mitri and Gitas 2013, Chu et al 2016,
Fang et al 2019), but regarding slope disturbances the
applications are mainly in the detection andmapping
of landslides (Lu et al 2011, Rudy et al 2013, Murillo-
García et al 2015, Amatya et al 2019) rather than reve-
getation analyses. To the best of our knowledge, no
landscape-scale remote sensing techniques have been
used to connect revegetation dynamics on landslides
to local and regional NDVI-patterns.

The aim of this research was to assess vegetation
regeneration using NDVI from moderate- and very
high spatial resolution satellites in an area affected by
a large number of landslides. We evaluate the applic-
ability of Landsat satellite image time series for assess-
ing revegetation of landslide shear surfaces over a 30-
year period. We used Google Earth Engine (Gorel-
ick et al 2017) in combination with novel approach
for cross calibration of data from different sensors
(Berner et al 2020) to create robust NDVI time series.
We also used three VHR satellite images for more
detailed analysis of NDVI change within our study
area in Central Yamal. In particular, we looked at
(1) how vegetation regeneration on landslides affects
landscape level NDVI dynamics in low Arctic tun-
dra; and (2) how spatial resolution affects the utility
of optical multispectral satellite data in detection of
landscape level factors affecting regional NDVI.

2. Materials andmethods

2.1. Study area
The Yamal Peninsula, West Siberia (figure 1) is about
700 km long and 150 kmwide with continuous, often
ice-rich, permafrost. The prevailing landscape topo-
graphy is rather flat with elevations only up to ca.
80 m above sea level (a.s.l.), and is dominated by
sandy ridges, mires and wetlands, ponds, lakes, rivers
and river valleys. Figure 1 shows the Mordy-Yakha
study area (70◦10′N, 68◦31′E) of ca. 35 km2 that was
chosen for detailed investigation. Our team has con-
ducted extensive field work and interviews with local
Nenets reindeer herders in this region over the past
couple decades (Forbes et al 2009, Kumpula et al 2012,
Skarin et al 2020) thus providing valuable insight that
complements our current remote sensing analysis.

The shape of the study area was determined by
the extent of two ridge/landslide complexes deemed
representative of Central Yamal (Leibman and Egorov
1996). The area consists of one large, ca. 9 km long
north-south ridge, and one smaller, 3 km long ridge.
The maximum altitude is ca. 60 m a.s.l. The deposits
are fine-grained, sandy to clayey, marine and alluvial-
marine deposits. The landslides occur: (1) on slopes
adjacent to sandy ridge tops where the clay above
the permafrost is overlain by sand, which comprises
most of the active layer; and (2) on slopes adjacent to
clayey ridge tops with a more clayey composition of
the entire active layer (Leibman and Egorov 1996).

The study area belongs to bioclimatic subzone
D of the Raster Circumpolar Arctic Vegetation Map,
while G3 (non-tussock sedge, dwarf-shrub,moss tun-
dra) and S1 (erect dwarf-shrub tundra) are the main
map units within the study area (Raynolds et al
2019). Dwarf shrub-moss-lichen vegetation occupies
the well-drained sandy ridge tops and slopes that are
not affected by landslides. Clayey parts of the ridge
tops are mostly covered with sedge and sphagnum
mires and flat-topped polygonal peatlands. Almost
30 years after the initial landslide event, the vegetation
on affected slopes is dominated by grasses and low
willow shrubs about 10 cmhigh. Valleys and old land-
slide cirques, where snow accumulates during winter,
are typically dominated by tall willows up to 150 cm
high.

2.2. Climatic conditions
The nearest weather station with available data was
Marre-Sale (figure 1), which is located on the coast
of the Kara Sea about 80 kilometres south-west
from our study area. The data were first accessed
through the National Climatic Data Center’s Daily
Summaries from (NOAA 2018). Some of the gaps
in the precipitation data were filled with data
for the same station that is available from rp5.ru
(https://rp5.ru/Weather_archive_in_Marresale). Fig-
ure 2 shows the mean annual air temperature
(MAAT), which increased 0.06 ◦C yr−1 between 1960
and 2017 (P < 0.001, r2 = 0.29), rising from an aver-
age of−8.4 ◦C (1961–1990) to−6.2 ◦C (1988–2017).
The average annual precipitation for the same period
was 312 ± 54 mm yr−1 (±1 SD), of which approx-
imately half fell as snow and half as rain (Leibman
et al 2015). Linear regression shows that annual pre-
cipitation increased by 1.1mmyr−1 or approximately
11 mm per decade (P = 0.011, r2 = 0.124), though
varied notably between years (figure 2).

2.3. Landslide delineation
To delineate the landslide events of 1989, we searched
the U.S. Geological Survey Earth Explorer Server
(https://earthexplorer.usgs.gov/) for contemporan-
eous Landsat scenes that were free of clouds, shad-
ows and artefacts. We used two high-quality images
from around the time of peak vegetation greenness
(Landsat 4 TM from July 1988 and 5 TM from July
1990 (table 2)) and downloaded these as Level-1
products (USGS 2019b). The pixel values of all images
were converted from radiance to Top-of-Atmosphere
(TOA) reflectance. ArcMap version 10.5 (ESRI, Inc.
USA) and ERDAS IMAGINE 2016 (Hexagon Geo-
spatial, USA) software were used in satellite data pro-
cessing.

We delineated the extent of the 1989 landslides
based on changes in NDVI between the Landsat TM
images from 1988 and 1990. The NDVI is a widely
used index of vegetation greenness (Pettorelli et al
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Figure 2.Mean annual air temperature (MAAT) and annual precipitation measured at Marre-Sale weather station from
1960–2017. Note there were years when temperature data and/or precipitation data were not available. Dotted lines depict linear
trends.

Table 2. Optical satellite image data set used in this study, excluding data analysed in Google Earth Engine. (TM= Thematic Mapper,
ETM+= Enhanced Thematic Mapper Plus, SPOT= Satellite Pour l’Observation de la Terre).

Sensor Acquisition date Landsat scene ID Multispec. res. (m)

Landsat TM 8.7.1988 LT41670101988220XXX04 30
Landsat TM 20.7.1990 LT51670101990201KIS00 30
Landsat TM 15.7.1994 LT51670101994196KIS00 30
Landsat ETM+ 10.8.2003 LE71660112003222ASN01 30
Landsat ETM+ 15.7.2017 LE71660112017196NPA00 30
SPOT 29.7.1993 20
QuickBird-2 15.7.2004 2.44
WorldView-2 21.7.2013 1.85
WorldView-3 21.7.2017 1.24

2005, Guay et al 2014) that correlates with tun-
dra plant productivity (Boelman et al 2003, Street
et al 2007) and aboveground biomass (Jia et al 2003,
Berner et al 2018). The index is calculated by dividing
the difference of near infrared and red reflectance by
their sum (Rouse et al 1974, Laidler and Treitz 2003).
Pixels with change of 0—(−0.35) were converted
to vector polygons, from which visually-determined
undisturbed (non-landslide) pixels were deleted and
remaining polygons adjusted based on a 1993 Satel-
lite Pour l’Observation de la Terre (SPOT) image,
which had higher spatial resolution than Landsat TM
(table 2). These polygons were used in the subsequent
analysis of NDVI change on the shear surfaces and
surrounding unaffected areas.

2.4. Landsat NDVI time series
We assessed landslide impacts and subsequent reve-
getation using time series of Landsat NDVI from
both disturbed and adjoining undisturbed tundra.
This first involved generating 500 random sample
sites split evenly between disturbed and nearby

undisturbed areas as identified with the landslide
polygons. To avoid generating sample sites that
straddled the border between these areas, we conver-
ted the landslide polygons to polylines, buffered the
polylines by 30 m in each direction, and then erased
the buffered areas from the broader area of interest.
We generated the sample sites using the spatialEco
package (Evans 2019) in the statistical software R (R
Core Team 2018), and then uploaded as a shapefile
to Google Earth Engine (GEE), a cloud-computing
platform for planetary-scale remote sensing analyses
(Gorelick et al 2017).

Landsat surface reflectance data were acquired for
each sampling site and then used to assess how sum-
mer NDVI varied through time in landslide and non-
landslide affected areas. Specifically, we downloaded
all May through September (1985–2018) Landsat 5,
7, and 8 Collection 1 (Tier 1) surface reflectance
data (Masek et al 2006, Vermote et al 2016) for
each sampling site using the GEE Python API. We
then excluded observations affected by snow, water,
clouds, and cloud shadows using the CFmask quality
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Figure 3. Landsat time series: false colour (top row) and NDVI (bottom row). Landslides of 1989 are still well visible in 1994, but
gradually fade so that they are hardly distinguishable from 2017 false colour Landsat image.

flags (Zhu et al 2015), with additional pixel-level
water masking based on a global Landsat-derived
surface water data set (Pekel et al 2016). We fur-
ther excluded observations from scenes with high
cloud cover (>80%) or that were acquired under
high solar zenith angle (>60◦). Next, we computed
NDVI for each remaining clear-sky observation and
then cross-calibrated NDVI from Landsat 5 and 8
with Landsat 7 using a machine learning random
forest algorithm (Breiman 2001) previously trained
with Landsat measurements from tundra ecosystems
around the Arctic (Berner et al 2020). We observed
that NDVI at these sites typically peaked each sum-
mer in early July and was then stable through August
before declining in autumn. We therefore computed
yearly summerNDVI for each site by averagingNDVI
of observations that were acquired during July and
August.

2.5. Very high-resolution satellite data
The VHR-dataset included QuickBird-2 (2004),
WorldView-2 (2013) and WorldView-3 (2017)
imagery, hereafter referred as QB-2, WV-2 and WV-
3. These data were received as Ortho Ready Standard
Imagery 2A products (DigitalGlobe Inc. of Long-
mont, CO, USA). All VHR images were orthorectified
based on TanDEM-X (German Aerospace Center,
DLR) 12 m Digital Elevation Model. The georefer-
encing of QB-2 was corrected to align with more

geometrically accurate WV images (RMSE 1.46 m).
After the geometric corrections, the pixel values of all
three images were converted from radiance to TOA
reflectance. The acquisition dates and spatial resol-
utions are shown in table 2. The NDVI layers from
QB-2, WV-2 and WV-3 were divided into 20 classes
using natural breaks to determine values represent-
ing bare or semi-bare land surface within 1989 land-
slide polygons. Such NDVI values were 0.01–0.25,
0.04–0.29 and 0.03–0.22 for 2004, 2013 and 2017,
respectively. The values differ slightly between years
due to differences in sensors (table 2), and possibly
also due to varying temperature and moisture condi-
tions between years. The NDVI changes 2004–2013,
2013–2017 and 2004–2017 were also calculated. New
landslides, mainly thaw slumps along the shores of
small lakes and ponds, were manually digitised from
all VHR images by visual interpretation.

3. Results

3.1. Landslide delineation and impacts assessed
with landsat
Approximately 65 new landslides appearedwithin our
study area in 1989, which triggered a pronounced
decline in tundra greenness (NDVI) (figures 3 and 4).
These landslides varied in extent from ca. 0.2 ha up to
ca. 16 ha, with most (80%) being
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Figure 4. The landslide event in 1989 caused a pronounced decline in tundra greenness (NDVI) which then gradually increased
over subsequent decades, though it remained lower than non-landslide affected areas in 2018. Solid lines depict the annual
average of mean summer NDVI for random sample sites (n= 250) located in either landslide or non-landslide affected areas,
with shaded bands encompassing one standard deviation in NDVI among sampling sites each year. Years with observations from
fewer than 80% of sample sites were excluded.

smaller than five hectares. In total, the surface dis-
turbance affected ca. 300 hectares within the study
area. Landsat mean summer NDVI time series for
the 500 sample sites shows the decrease in NDVI
within landslide polygons after 1989 and regener-
ation of vegetation during the following decades
(figure 4). Sites that subsequently experienced land-
slides had slightly lower mean NDVI from 1985 to
1988 (0.572 ± 0.034 NDVI) than undisturbed sites
(0.597 ± 0.033 NDVI) (t-test; t = 8.05, P < 0.001).
Following the landslides, the difference in mean
NDVI between affected and unaffected areas was
0.338 ± 0.009 in 1990, with the difference gradually
narrowing to 0.065 ± 0.003 by 2018. Mean NDVI in
disturbed areas increased at a rate of 0.009NDVI yr−1

from 1990 to 2013 (P < 0.001, r2 = 0.77), though
declined slightly, albeit not significantly, from 2013 to
2018 (P= 0.23, r2 = 0.16). Undisturbed areas showed
no trend inmeanNDVI from1985 to 2018 (P= 0.58),
thoughNDVI declined at a rate of−0.008NDVI yr−1

from 2013 to 2018 (P= 0.025, r2 = 0.78).

3.2. Landslide activity and vegetation recovery
mapped with VHR data
Landslide shear surfaces were still readily detectable
from QuickBird-2 and even from WorldView-2 and
WorldView-3 images despite the amount of time that
had passed since the surface disturbance occurred
(15, 24 and 28 years, respectively). Yet, it was diffi-
cult to evaluate revegetation from VHR optical satel-
lite data by means of visual interpretation, as the
relative difference in spatial resolution was consid-
erable (table 2). Ten new landslides, mostly slope
failures adjacent to lakes and ponds, were identified

from 2004 QB-2 imagery, while 44 new landslides
were identified from 2013 WV-2 imagery and nine
from 2017WV-3 imagery (figure 5). These landslides
were considerably smaller than the 1989 ALDs; ca.
65% of landslides were smaller than 0.1 ha, while
the largest was about 1.6 ha. They affected around
0.05%, 0.23% and 0.22% of the land area within
the study region in 2004, 2013 and 2017, respect-
ively. Nine of the new landslides evident in 2004 had
visually increased in area by 2013 (median = 87.3%,
min= 2%,max= 644.8%), but only four of themalso
increased between 2013 and 2017. Twenty-four of the
44 new landslides from 2013 increased in area by 2017
(median = 50.7%, min = 8.3%, max = 714.4%). Of
those landslides that occurred between 2004 and 2013
on shore of a small lake, pond or stream, 87% had
increased in surface area by 2017, while only 20% of
those that occurred ‘inland’ had increased during the
same period.

Based on the classification of VHR NDVI data,
landslides within the study area had little or no veget-
ation cover across 1.03 km2 in 2004, 0.58 km2 in
2013 and 0.48 km2 in 2017 (the areas within the
landslide polygons with NDVI 0.01–0.25, 0.04–0.29
and 0.03–0.22, respectively). Based on these values,
vegetation regeneration had advanced 0.45 km2 dur-
ing the nine-year period 2004–2013 (0.05 km2 yr−1)
between the QB-2 and WV-2 images, and 0.1 km2

(0.025 km2 yr−1) between WV-2 and WV-3 images.
The revegetation of landslide shear surfaces clearly
stands out in the NDVI-change between 2004 QB-
2 and 2013 WV-2 (figure 6), despite the differences
in spectral and spatial resolution between the two
respective sensors (tables 1 and 2). In 2017, the
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Figure 5. New landslides, mostly small thaw slumps, detected by visual interpretation from 2004 QB-2, 2013 WV-2 and 2017
WV-3 images. (a) Typical thaw slumps on small lakeside, 2004 fresh slumps have overgrown by 2013/17. (b) Another thaw slump
at the bottom end of the slope. Here 2004 slump retrogressed over 50 metres by 2013, and was mostly revegetated by 2017. (c)
This thaw slump has occurred between 2004 and 2013; the landslide has reshaped the pond and was partly revegetated by 2017. A
Gas Emission Crater (GEC), indicated by a red star, appeared in the southern part of our study area in autumn 2012 (see GEC-2
in Kizyakov et al (2020) for more information).

NDVI-values within the study area were generally
lower than in 2013, especially in thermoerosion gul-
lies and small channels on the slopes affected by the
1989 landslides. The greatest increase of NDVI val-
ues between 2013 and 2017 occurred within the same
or adjacent areas to those that displayed the most
pronounced decrease during the period 2004–2013.
Some of these places were apparently reindeer her-
ders’ campsites, indicated by a small, heavily trampled
area and the presence of herders’ dwellings and
reindeer corralling sites (figure 7). This heavy tramp-
ling affected around 0.22% in 2013 and 0.25% in
2017 of total land area within our study region. The
meteorological records for these three years (table 3)
show that precipitation prior to the acquisition of
WV-2 imagery was almost double the amount of that
prior to the QB-4 and WV-3 images, while 2017 had
the lowest precipitation and highest number of thaw
degree days (sum of positive temperatures) prior to
the acquisition of the image.

4. Discussion

Our analysis revealed that massive landslides in 1989
caused a pronounced decline in local vegetation cover
and that these areas gradually regained vegetation
but did not fully regenerate to pre-disturbance levels
during the following three decades. The study by

Khitun et al (2015) revealed that during the first
10–15 years, the shear surfaces of landslides in Cent-
ral Yamal become populated by pioneer vegetation
dominated by halophytic graminoids, bryophytes
and herbs. The first willow seedlings appeared after
15–17 years, and sedge–willow vegetation began to
dominate ca. 50–55 years after a landslide event.
Our study demonstrates that extensive active-layer
detachment slides remained clearly visible in Land-
sat imagery for approximately a decade, though after
20 years the landslide shear surfaces were rendered
nearly indistinguishable from the surrounding land-
scape (figure 3), especially if the interpreter has no
ground-level knowledge. This means that even the
pioneer vegetation and young willows are enough
to make the landslides barely detectable by visual
analysis of Landsat data. However, the NDVI was
still ∼10% lower than the background values almost
30 years after the initial disturbance, which allows us
to distinguish between areas affected and not affected
by the 1989 landslides. As of 2018, the mean NDVI
on ALD shear surfaces was 0.533 ± 0.048, compared
to 0.589 ± 0.035 in undisturbed areas. The differ-
ence in NDVI between shear and undisturbed sur-
faces did not change much during the final decade of
our time series. However, vegetation regeneration has
progressed enough to support low-erect willows, as
observed in the field. The Landsat time series revealed
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Table 3. Thaw degree days (sum of positive air temperatures) and precipitation at the time of acquisition of QB-2 (2004), WV-2 (2013)
and WV-3 (2017). Maximum values in bold. Precipitation was calculated from the first day with temperature above 0 ◦C in 2013 (DOY
131, May 11th).

15.7.2004 21.7.2013 21.7.2017

Thaw degree days (◦C) 281.6 265.1 327.4
Cumulative precipitation from DOY 131 (mm) 20.9 44.7 15.7

Figure 6. NDVI change between the respective acquisition periods of very high-resolution imagery covering the years 2004–2013,
2013–2017, and 2004–2017.

no trend in NDVI in the surrounding area from 1985
to 2018; however, NDVI declined on both landslide
surfaces and surrounding areas between 2013 and
2018. The larger inter-annual variability in NDVI on
landslide surfaces could be due difference in surface
temperature and hydrology.

The VHR imagery portrayed the revegetation of
landslide surfaces in much greater detail than Land-
sat and allowed us to not only identify small land-
slides, but also to quantify gradual vegetation succes-
sion from bare and semi-bare soil surfaces to more
closed vegetation cover. However, one must be care-
ful when investigating the NDVI dynamics from only
a few images with very high spatial resolution, as the
potential effect of annual climatic variations is higher
than in more temporally dense time series. Based on
the NDVI-values of VHR data, bare and semi-bare
landslide surfaces within the key study area decreased
by 44% (0.45 km2) within nine years between 2004
and 2013. July of 2017 was much drier than in 2013,
and the NDVI values dropped between 2013 and
2017 especially where they had increased 2004–2013.
Walker et al (2009) noted that the NDVI dynamics
in Yamal are affected by interactions among ecolo-
gical and societal factors. In our study area, some of
the NDVI-change ‘hot-spots’ were reindeer herders’
campsites, where hundreds of reindeer gathered in a

small area and heavily trampled the vegetation, on
which graminoid cover regenerated during the fol-
lowing year(s).

TheVHR imagery revealed abundant green veget-
ation in 2013 relative to 2004 and 2017. Further-
more, NDVI during summer of 2017 was generally
lower than in 2013 both in the WV and Landsat
imagery. Yamal Peninsula experienced a record long,
warm and dry period in July of 2016, and a similar
warm, dry period preceded the acquisition of WV-3
and Landsat images in July 2017. The heat wave and
drought likely led to particularly dry conditions on
the clayey shear surfaces and contributed to drainage
channels displaying a stronger decrease in NDVI in
comparison to the surrounding tundra. This suggests
that the extreme intra-seasonal and inter-annual cli-
matic fluctuations may facilitate or delay vegetation
growth.Hot and dry conditions have also contributed
to declining shrub growth in Greenland (Gamm et al
2018) and to episodes of low tree growth along the
forest-tundra ecotone in northeastern Siberia (Berner
et al 2013). The importance of soil moisture for shrub
growth has also been highlighted by Myers-Smith
et al (2015). If summer heat waves and droughts
become more common, then the likely result is that
the shear surfaces, and regional tundra vegetation
in general, could become less productive. Further
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Figure 7. Localised, short-term disturbance of vegetation cover by reindeer herds visible in very high-resolution false-colour
satellite imagery. (a) In 2013 image Nenets reindeer herders had a summer camp with 3 dwellings, or ‘chums’ (teepee style, 6 m
diameter) on the ridge. Light green indicates the most heavily trampled area. By 2017 the signs of trampling are no longer visible
in the image. (b) A different site similar to (a) reveals a trampled area with greenish colour (2013 image), though the herders had
changed the camp location by the time of image acquisition. The trampling-related disturbance of vegetation cover had
disappeared by 2017. (c) In 2017 image there are 4 dwellings and a clear browning signature related to locally intensive trampling
(i.e. bare ground, cf (Rees et al 2003)). Also, a clustered reindeer herd is clearly visible.

research including remote sensing, field studies and
local (indigenous) knowledge is required to determ-
ine if the decline in NDVI observed in our study area
is a signal of tundra ‘browning’ as has been observed
in, for example, northernAlaska (Lara et al 2018), and
whether this shift will have consequences for regional
carbon uptake and reindeer forage.

While no new large-scale ALDs were observed
within our study area since 1989, many new thaw
slumps occurred especially between 2004 and 2013,
while between 2013 and 2017 fewer new slides
occurred. However, the extent of most pre-existing
thaw slumps, especially along the shores of small
lakes, ponds and streams, increased as the thawing of
ground ice continued. This is consistent with obser-
vations by Khomutov et al (2017). They noted that
the number and area of thaw slumps have increased
in Central Yamal since 2012, while the prevailingmet-
eorological conditions have most likely prevented the
occurrence of additional ALDs. Detachment of the
active layer usually requires an icy transient layer to
develop at the base of the active layer. Warming con-
ditions have contributed to deeper thaw, which has
thawed ground ice within the transient layer, thus
preventing the ALDs from occurring (Khomutov et al
2017). The relatively warm summers of 2012 and
2013 likely resulted in seasonal thaw reaching the top
layers of tabular ground ice, causing an increase in
the number of thaw slumps, which we were able to
observe from the WV-2 image. Regular monitoring

of landslide activity is important not only for under-
standing ongoing changes in the Arctic environment,
but also to minimize potential impacts on infrastruc-
ture (Nelson et al 2001), which can have large-scale
negative (socio-)ecological implications in this sens-
itive tundra environment (Forbes et al 2014). The
region has experienced rapid expansion of hydrocar-
bon extraction activities and related infrastructure
since 1988 (Kumpula et al 2012). For example, giant
gas field Bovanenkovo is located only about 20 km
north from our study area.

The processes analyzed here are not unique to
Northern Russia. For example, widespread ALDs
have been reported from Ellermere Island, Canada
(Lewkowicz 1990). Other studies have found increas-
ing degradation of ice-rich permafrost (thermokarst)
in parts of northern Canada (Lantz and Kokelj 2008,
Lantuit and Pollard 2008, Kokelj et al 2017, Lewkow-
icz and Way 2019) and Alaska (Jorgenson et al 2006)
during last half century. In North-America, perma-
frost degradation, especially in a form of retrogress-
ive thaw slumping, has been related to widespread
buried glacial ice (Segal et al 2016) and massive
ice wedges (Jorgenson et al 2006), which have been
affected by warming air temperatures since 1980’s.
Widespread ice wedge degradation across the Arctic
was also reported by Liljedahl et al (2016). Continu-
ing warming of the Arctic (Post et al 2019) will likely
lead to an increasing number and volume of thaw
slumps. Altered micro-climate and soil conditions
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coupled with warming climate may enhance vegeta-
tion growth in areas affected by thaw slumps (Lantz
et al 2009), as has similarly been observed for ALDs
in Central Yamal (Khitun et al 2015). The extent
to which permafrost degradation influences satellite
observations of greening and browning across the
Arctic remains an important unanswered question.

5. Conclusions

The aim of this study was to assess vegetation recov-
ery on landslide slopes in the Low Arctic tundra zone
of Yamal, West Siberia, where active layer detach-
ments and retrogressive thaw slumps are widespread.
The analysis of Landsat time series revealed that the
regeneration of vegetation on shear surfaces rapidly
progressed during the first two decades after the last
major landslide event in 1989; however, NDVI was
still lower in the landslide affected areas as of 2018,
which indicates that vegetation has not fully regener-
ated after ∼30 years. Regeneration to original levels
of composition, cover and productivity may require
severalmore decades. The Landsat time series analysis
also revealed that NDVI declined from 2013–2018 on
both landslide and unaffected areas, possibly due to
high summer temperatures and drought stress. These
recent declines in NDVI warrant further investiga-
tion.

The very high-resolution imagery used here rep-
resentsmeteorologically contrasting growing seasons,
which makes it challenging to separate the general
NDVI trend from inter-annual variability. The use of
such highly detailed imagery, however, allowed the
detection of NDVI change ‘hot-spots’ indicating tem-
porary decreases in vegetation productivity, as well as
detection of new and expanding thaw slumps, which
are too small to be detected frommoderate-resolution
satellite data like Landsat. Thaw slumps are expec-
ted to become more common as ice rich permafrost
degrades while Arctic climate continues to warm,
but they are less likely to substantially affect regional
NDVI due to their relatively small size in comparison
to more extensive, often massive, active layer detach-
ments. Cryogenic landslides are widespread in per-
mafrost regions and have pronounced effects on local
vegetation that could contribute to the satellite obser-
vations of both greening and browning in the Arctic.
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