
69 

 

 

Automatic Tagging of Formulae in PDF Documents and Assistive 

Technologies for Visually Impaired People: 

The LaTeX Package axessibility 3.0 

Dragan Ahmetovic1, Tiziana Armano2, Cristian Bernareggi1, Anna Capietto2, Sandro Coriasco2, Boris 

Doubrov3, Alexandr Kozlovskiy4, and Nadir Murru2 
1 Universit`a degli Studi di Milano, Department of Computer Science, Italy 
2 Universit`a degli Studi di Torino, Department of Mathematics G. Peano, Italy 
3 Dual Lab, Belgium 
4 Dual Lab Bel, Belarus 

Introduction 

Assistive technologies for visually impaired people (e.g., screen readers, Braille displays, magnifiers) 

work well with digital documents containing structured text. On the other hand, when digital 

documents contain mathematical formulae, there are still many issues concerning the accessibility that 

should be addressed. In the recent years, many improvements have been achieved, but a 

comprehensive solution is still far to be obtained. 

For instance, different multimodal systems to write and read scientific documents through nonvisual 

tools have been developed. One of the most used tools is the LAMBDA editor [2], that allows blind 

people to write and process text and mathematical formulae through Braille display and speech output. 

However, LAMBDA is not a mainstream tool to produce accessible scientific content by sighted people. 

Another way for allowing the reading of digital scientific documents by visually impaired people involves 

the use of MathML in web pages, also through MathJax (see, e.g, [5]). Indeed, MathML, being a markup 

language intended to the writing of formulae, can be interpreted by most common screen readers to 

generate a verbal description of the formula [3, 16]. Moreover, MathPlayer, a web browser plug-in for 

rendering MathML on the screen, through speech output and on Braille devices, enables hierarchical 

navigation of mathematical formulae, including bi-dimensional notations used, e.g., for matrices [14]. 

MathJax can be embedded in web pages to enable adaptable accessibility features for representing and 

navigating formulae (e.g., LaTeX, ASCIIMath or CSS representation; [6, 7]). However, MathML is not 

used for authoring documents but only for displaying. 

The LaTeX language can overcome the above issues, because it is widely used by the academic 

community for writing scientific documents and producing PDF documents. Several works [8-10], [13], 

[15], [18] exploit LaTeX in different ways for improving the accessibility of scientific documents, both 

for the writing and the reading. Unfortunately, since these tools are produced for a small community, 

due to the rapid evolution of technology, they often incur in maintenance and compliance issues. 

Therefore, in general, the PDF documents obtained from LaTeX were not accessible, because a tagged 

structure is missing and the formulae are not readable at all by screen readers. It may be possible to 

add accessibility features to mathematical content as alternate text and to tag manually the structure 

of the obtained PDF documents. It can be specified manually using, for example, a proprietary editor 

such as Adobe Acrobat. Guidelines have been produced to create accessible PDF according to this 

procedure [17] with a focus on mathematical content [11, 12], [4]. However, this approach requires 

the availability of a suitable editor, and it entails additional labor from the document author. 

Furthermore, alternate text most often does not carry the same semantic value as the original 

mathematical content. 

In a previous work [1], we presented a preliminary version of a new LaTeX package that allows to 

produce accessible formulae in the PDF documents by automatically adding a textual replacement 

corresponding to the LaTeX commands that generate the formulae. This prototype provided just a 



70 

 

first, partial solution to the problems illustrated above: only some environments for inserting formulae 

were managed there, and no tagged structure was generated. Moreover, the solution leveraged 

undocumented proprietary features of PDF readers in order to work. In this paper, we present the 

last updated version of this package, now named axessibility.sty, available on the CTAN 

repository and also present in the current TeXLive distributions. The formulae are now marked and 

described using both the /Alt and /ActualText attributes in the PDF document, and many more 

environments are considered. In particular, also multiline structures are now managed. Furthermore, 

we are also able to produce some tagged structures in the PDF document, and developing additional 

functionalities, to be implemented in subsequent versions. 

The LaTeX package axessibility 3.0 

In the first version of the package, our approach required the accsupp.sty package, which was 

used in order to inject PDF /ActualText commands for (inline and displayed) formulae into the 

output file. A subsequent version expanded this functionality to multiline displayed formulae 

environments. In this most recent update we added the option of using instead the tagpdf.sty 

package, through which each inline or displayed formula in the source LaTeX document is wrapped 

into a marked content sequence. In addition, the original formula is added to this marked content 

sequence as /ActualText and /AltText. These properties are read by screen readers and braille 

displays instead of the ASCII representation of the formula, which is often incorrect. Additionally, the 

package adds a tagged PDF structure. This includes, at the moment, the top level document structure 

element, to mark the beginning and the end of the document, and the P (paragraph) tag for each 

formula. 

To create an accessible PDF document for visually impaired people, the authors just need to include 

the axessibility.sty package into the preamble of their LaTeX project. The supported 

mathematical environments will then automatically produce the /ActualText and /AltText 

contents and include them in the produced PDF file. Formulae will also be automatically tagged, as well 

as the document environment. The tagging of other text tokens (paragraphs, sections, etc.), at the 

moment, has to be inserted manually, under the guidelines of the tagpdf.sty package. 

The environments for writing formulae which are presently supported are \(, \[, equation*, 

equation, and all the environments present in the amsmath.sty package for multiline formulae. 

Hence, any formula inserted using one of these environments is accessible and tagged in the 

corresponding PDF document. The click-copy of the formula LaTeX code from the PDF reader, to be 

pasted elsewhere, works if the screen reader is active. In Figure 1, we report the use of the 

axessibility.sty package in a simple LaTeX document, together with the corresponding source 

code of the PDF output. 

Additional Tools and Features 

In addition to the axessibility.sty package, we developed additional software to address two 

use cases: preprocessing scripts to support the application of the package on existing documents, and 

screen reader dictionaries for natural language reading of formulae made accessible with 

axessibility.sty. Inline and displayed mathematical modes activated by the old syntaxes 

$...$ and $$...$$ are not supported by the axessibility.sty package (as in the previous 

versions). An additional issue lies in the usage of userdefined macros in the LaTeX code. While this is 

a common practice to avoid code repetitions and simplify document authoring, it can limit the 

accessibility of formulae with axessibility.sty. Indeed, axessibility.sty is transparent 

to commands used in math environments, which means that it will include standard LaTeX as well as 

custom macros within the replacement text. 



71 

 

 

 

Fig.1: A short LaTeX document, employing the package axessibility; below, the source of the typeset PDF document, where it 

is highlighted the hexadecimal code corresponding to the LaTeX command \frac{1 + \sqrt{5}}{2}, automatically 

generated by the package. 

However, custom commands used by an author may bear no meaning for other readers. To (partially) 

overcome these issues, we developed Axesscleaner, an external script written in Python and Perl, 

through which it is possible to substitute unsupported environments with suitable replacements. It also 

replaces user defined macros with their content, in order to only contain standard LaTeX code within 

the replacement text. An alternative approach requires the typesetting with LuaLaTeX (see the package 

documentation). 

Mathematical formulae included as replacement text using axessibility.sty are easy to read 

by LaTeX proficient users, using either a screen reader or a braille display. However, for novice users, 

the LaTeX code read by a screen reader may be difficult to comprehend. To address this problem, we 

also provide dictionaries for NVDA and JAWS screen readers, which convert LaTeX commands 

contained within the replacement text created by axessibility.sty into their natural language 

counterparts (e.g., ‘\frac{1}{2}’ becomes “one half”). 

All the above tools, including axessibility.sty, are available at our github repository 

https://github.com/integr-abile 



72 

 

Finally, we highlight that our package can be used for uploading accessible papers on arXiv. In particular, 

it is sufficient to add our package, selecting the accsupp option, and the auxiliary file 00README.XX 

just containing the text nostamp (this allows to avoid errors in the production of the corresponding 

PDF file). 

Future Work 

We are currently working on a new update of the package, in order to 

1. provide the automatic tagging of all paragraphs, section headers, etc. 

2. convert the LaTeX code into MathML and embed it in the PDF document 

3. automatically manage the environments that are not currently supported 

Moreover, we are currently developing additional scripts for NVDA, using sophisticated natural 

language processing techniques, to personalize formula reading considering their complexity and 

context. In addition, these scripts will enable an interactive navigation of formulae, allowing to move 

between elements of the formula with hotkeys. The scripts will be developed for the NVDA based on 

Python 2.X, and will be updated for the NVDA version based on Python 3.X, when the latter will be 

more stable. 

References 

1. Armano T., Capietto A., Coriasco S., Murru N., Ruighi A., Taranto E. (2018) An Automatized 

Method Based on LaTeX for the Realization of Accessible PDF Documents Containing 

Formulae. In: Miesenberger K., Kouroupetroglou G. (eds) Computers Helping People with 

Special Needs. ICCHP 2018. Lecture Notes in Computer Science, vol 10896. Springer, Cham. 

https://doi.org/10.1007/978-3-319-94277-3_91 

2. Bernareggi C. (2010) Non-sequential Mathematical Notations in the LAMBDA System. In: 

Miesenberger K., Klaus J., Zagler W., Karshmer A. (eds) Computers Helping People with 

Special Needs. ICCHP 2010. Lecture Notes in Computer Science, vol 6180. Springer, Berlin, 

Heidelberg. https://doi.org/10.1007/978-3-642-14100-3_58. 

3. C. Bernareggi and D. Archambault. Mathematics on the web: emerging opportunities for 

visually impaired people. In Conference on Web accessibility. ACM, 2007. 

4. M. Borsero, N. Murru, and A. Ruighi. Il LaTeX come soluzione al problema dell’accesso a testi 

con formule da parte di disabili visivi. ArsTeXnica, 2016. 

5. D. Cervone. Math jax: A platform for mathematics on the web. Notices of the American 

Mathematical Society, (59):312–316, 2012. 

6. D. Cervone, P. Krautzberger, and V. Sorge. Towards Universal Rendering in MathJax. In 

Proceedings of the 13th Web for All Conference, W4A ’16, pages 4:1–4:4, New York, NY, 

USA, 2016. ACM. 

7. D. Cervone and V. Sorge. Adaptable Accessibility Features for Mathematics on the Web. In 

Proceedings of the 16th Web For All 2019 Personalization - Personalizing the Web, W4A ’19, 

pages 17:1–17:4, New York, NY, USA, 2019. ACM. 

8. A. Manzoor, S. Arooj, S. Zulfiqar, M. Parvez, S. Shahid, and A. Karim. ALAP: Accessible LaTeX 

Based Mathematical Document Authoring and Presentation. In Proceedings of the 2019 CHI 

Conference on Human Factors in Computing Systems, CHI ’19, pages 504:1–504:12, New 

York, NY, USA, 2019. ACM. 

9. A. Manzoor, M. Parvez, S. Shahid, and A. Karim. Assistive Debugging to Support Accessible 

LaTeX Based Document Authoring. In Proceedings of the 20th International ACM SIGACCESS 

Conference on Computers and Accessibility, ASSETS ’18, pages 432–434, New York, NY, 

USA, 2018. ACM. 



73 

 

 

10. Melfi G., Schwarz T., Stiefelhagen R. (2018) An Inclusive and Accessible LaTeX Editor. In: 

Miesenberger K., Kouroupetroglou G. (eds) Computers Helping People with Special Needs. 

ICCHP 2018. Lecture Notes in Computer Science, vol 10896. Springer, Cham. 

https://doi.org/10.1007/978-3-319-94277-3_90 

11. R. Moore. Ongoing efforts to generate tagged PDF using pdfTEX. TUGboat, Vol.30, No 2, 

2009. 

12. R. Moore. PDF/A-3u as an Archival Format for Accessible Mathematics. In Watt. CICM, 2014. 

13. Pepino A., Freda C., Ferraro F., Pagliara S., Zanfardino F. (2006) “BlindMath” a New Scientific 

Editor for Blind Students. In: Miesenberger K., Klaus J., Zagler W.L., Karshmer A.I. (eds) 

Computers Helping People with Special Needs. ICCHP 2006. Lecture Notes in Computer 

Science, vol 4061. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11788713_169 

14. N. Soiffer. Mathplayer: web-based math accessibility. In Conference on Computers and 

Accessibility. ACM, 2018. 

15. V. Sorge. Supporting Visual Impaired Learners in Editing Mathematics. In Proceedings of the 

18th International ACM SIGACCESS Conference on Computers and Accessibility, ASSETS ’16, 

pages 323–324, New York, NY, USA, 2016. ACM. Title Suppressed Due to Excessive Length 

7 

16. V. Sorge, C. Chen, T. V. Raman, and D. Tseng. Towards Making Mathematics a First Class 

Citizen in General Screen Readers. In Proceedings of the 11th Web for All Conference, W4A 

’14, pages 40:1–40:10, New York, NY, USA, 2014. ACM. 

17. Uebelbacher A., Bianchetti R., Riesch M. (2014) PDF Accessibility Checker (PAC 2): The First 

Tool to Test PDF Documents for PDF/UA Compliance. In: Miesenberger K., Fels D., 

Archambault D., Peňáz P., Zagler W. (eds) Computers Helping People with Special Needs. 

ICCHP 2014. Lecture Notes in Computer Science, vol 8547. Springer, Cham. 

https://doi.org/10.1007/978-3-319-08596-8_31 

18. Yamaguchi K., Komada T., Kawane F., Suzuki M. (2008) New Features in Math Accessibility 

with Infty Software. In: Miesenberger K., Klaus J., Zagler W., Karshmer A. (eds) Computers 

Helping People with Special Needs. ICCHP 2008. Lecture Notes in Computer Science, vol 

5105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70540-6_134 


