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Abstract: Geomatics and satellite remote sensing offer useful analysis tools for several
technical-scientific fields. This work, with reference to a regional case of study, investigates remote
sensing potentialities for describing relationships between environment and diseases affecting wildlife
at landscape level in the light of climate change effects onto vegetation. Specifically, the infectious
keratoconjunctivitis (IKC) of chamois (Rupicapra rupicapra L.) in Aosta Valley (NW Italy) was
investigated at the regional level. IKC (Mycoplasma conjunctivae) is a contagious disease for domestic
and wild ruminants (Caprinae and Ovinae). Two types of analysis were performed: one aimed at
exploring by remotely sensed data phenological metrics (PMs) and evapotranspiration (ET) trends of
vegetation in the area; one investigating the correlation between PMs and ET, versus IKC prevalence.
The analysis was based on TERRA MODIS image time series ranging from 2000 to 2019. Ground data
about IKC were available for a shorter time range: 2009-2019. Consequently, PMs and ET trend
investigations were focused on the whole times range (2000-2019); conversely, correlation analysis
was achieved with reference to the reduced 2009-2019 period. The whole study was based on
freely available data from public archives. MODIS products, namely MOD13Q1 v.6 and MOD16A2,
were used to derive PM and ET trends, respectively. Shuttle Radar Topography Mission (SRTM)
Digital Terrain Model (DTM) was used to describe local topography; CORINE Land Cover map
was adopted to describe land use classes. PMs and ET (as derivable from EO data) proved to
significantly changed their values in the last 20 years, with a continuous progressive trend. As far as
correlation analysis was concerned, ET and some PMs (specifically, End of Season (EOS) and Length
of Season (LOS) proved significantly condition IKC prevalence. According to results, the proposed
methodology can be retained as an effective tool for supporting public health and eco-pathological
sectors. Specifically, it can be intended for a continuous monitoring of effects that climatic dynamics
determine onto wild animals in the Alpine area, included diseases and zoonosis, moving future
environmental management and planning towards the One Health perspective.
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1. Introduction

Geomatics and satellite remote sensing represent a useful analysis tool in several technical-scientific
fields [1]. Nowadays, remote sensing is widely used in many fields like agronomy, forestry, and the
environment, in general. Nevertheless, veterinary and faunistic-related applications are still limited
and, often, characterized by an improper use of Earth Observation (EO) data, that makes a significant
improvement desirable [2].

On the international scene, only few research groups are currently properly exploiting all the
potentialities that geomatics (remote sensing included) and digital geographical data could offer to the
veterinary sector. Most of works concern parasitology and virology for etiological/epidemiological
studies [3], diagnosis, and medical history [4]. In these contexts, satellite remote sensing has assumed a
great interest in the last years [5]; EO data are proficiently used to feed meteorological and climatological
models with the aim of generating predictive scenarios of zoonosis spread and outbreaks [6].

Initially, most of studies in the veterinary and health sectors used remote sensing to describe
environmental conditions; this occurred especially with reference to malaria in Africa and Asia [7,8].
Presently, epidemiologists are adopting remote sensing to investigate a variety of vector-borne diseases.
Associations between remote sensing-derived environmental variables (e.g., temperature, humidity,
land cover, etc.) and vector density are used to map and characterize vector habitats [9]. The basic idea
is that remotely sensed data can contain dynamic predictors of Earth’s processes suitable for describing
niche preferences of some medically important host diseases mechanisms. Moreover, because of their
continuity of acquisition, remotely sensed data provide a synoptic representation of environment at
proper spatial and temporal scales [10].

Meteorological and EO data are often jointly used for diseases analysis. For example, outbreaks of
diarrheal disease and, specifically, cholera were analyzed by a new modeling approach based on
satellite data to produce cholera risk maps in several regions of globe [8], supporting the idea that the
ongoing EO technology transfer is making possible to investigate new patterns in a systemic point of
view [11].

Given the veterinary and public health impact of vector-borne diseases, there is a clear and
immediate need to map and monitor local landscape attitude to encourage emergence and spread of
these diseases. Current approaches for predicting disease risks are mostly neglecting key features of
landscape related to the functional habitat of vectors (or hosts) and, hence, of the pathogen [12].

A global satellite-based monitoring of proper climate variables could help to map occurring
anomalies with the aim of predicting spatial distribution of risk related to emergence and propagation
of disease vectors. Such information could provide sufficient lead-time for outbreak prevention and
potentially reduce burden and spread of ecologically coupled diseases.

Additionally, remote sensing could have an important role in the comprehension of patho-system
dynamic. With reference to the so called “disease triangle” (Figure 1), including host, pathogens/vectors
and environment, remote sensing, and geomatics in general, could support scientists and
decision-makers to better understand the role of environmental patterns and, therefore, explore its
complex relations with the other parts of patho-system [13,14].

A good example is represented by atmospheric pollution that was recognized to increase sensitivity
to pulmonary diseases, as the last pandemic event, coronavirus (SARS-CoV-2), has suggested [15].

GIS studies about endo- and ecto-parasitoses of veterinary interest, with particular reference to
zoonoses agents, represent today the greatest contribution to veterinary and faunistic sectors [16].
For many years, the World Organization for Animal Health located in Paris (OIE) and the World



Remote Sens. 2020, 12, 3542 30f 22

Health Organization (WHO) in Geneva have been underlining the importance of geomatics and remote
sensing applications [17] in the One Health perspective.

Susceptible
Host

Disease

Conductive Pathogen
Environment

Figure 1. The possible role of remote sensing in the patho-system as represented by the so-called
disease triangle.

This work, with reference to a regional case study, investigates remote sensing potentialities
for describing relationships between environment and diseases affecting wildlife at landscape level.
Moreover, it is intended to describe the effects of climate change onto the vegetation component,
with special concern about pastures. The study area corresponds to the entire Aosta Valley Region
located in the Italian Western Alps. In particular, a new analysis approach is presented to operate
at landscape level to analyze if and how environmental factors could condition the occurrence of
infectious keratoconjunctivitis (IKC, Mycoplasma conjunctivae) in chamois. IKC is a contagious disease
for domestic and wild ruminants (Caprinae and Ovinae) [18]. In chamois, the disease can be serious [19]
and, as in other wild ruminants, blindness can occur [20], with consequent death of the animal from
trauma (e.g., fall from cliffs or starvation) [21]. The period of mountain pasture is risky for the potential
contact between domestic and wild infected animals; over the years, several outbreaks have been
reported in wild ungulates in the Alps [22] and this is the reason that makes monitoring/surveillance
plans still active. IKC caused by Mycoplasma conjunctivae is a complex disease of domestic and wild
Caprinae, with great variations in the clinic-pathological and epidemiological picture. In wildlife, IKC is
sometimes associated with high mortality [23,24]. It has been suggested that the pathogenesis of
IKC is influenced by host predispositions, virulence of M. conjunctivae strains, secondary infections,
and environmental factors [25]. Sex and age imbalance in affected populations were observed in
severe outbreaks [26], indicating that age and social behavior, including sexual segregation, may be
important risk factors. Differently, differences in virulence between different strains do not seem
to play a major role; mycoplasmal load is obviously associated to the presence and severity of
signs. However, the driver of mycoplasmal multiplication in the host is unknown. Environmental
factors might have a role, regarding both the expression of the disease in individual cases and the
onset of an outbreak in a population [24]. The underlying hypothesis of this work is that remote
sensing could support comprehension of the role of environmental patterns in conditioning IKC
patho-system, and related pathologies, as for other diseases. Altitude, air quality, and UV light have
been discussed as possible predisposing factors for IKC in wild ungulates along with overcrowding [27].
Multiple outbreaks of IKC in Alpine ibex and Alpine chamois populations have been described in
literature [28]. Different outbreaks of infectious keratoconjunctivitis (IKC) affecting alpine chamois and
ibex in the western and central Swiss Alps and Aosta Valley were recorded in the period 2001-2019 [29].
Between the years 2001 and 2003, in Switzerland, Mycoplasma conjunctivae was identified from
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conjunctival swabs by means of a nested PCR in 27 of the 28 chamois tested. The outbreaks occurred
in an area covering 1590 km?. Deep valleys acted as a barrier to the spread of the disease. Many of
the affected animals were juveniles, and more females than males died of IKC. The disease was
more common during the summer and autumn. In some outbreaks, mortality can reach 30 percent,
as, for example, in chamois in Italy, France, and Switzerland, and hundreds of chamois may die.
Major outbreaks were recorded in 2001-2003 [30] and 2016-2018 [20]. With these premises, in this work,
two types of analysis were performed: one aimed at exploring, by remotely sensed data, phenological
metrics (PMs) and evapotranspiration (ET) trends of vegetation; one investigating correlation between
PMs and ET versus IKC prevalence. PMs/ET analysis was based on TERRA MODIS image time series
ranging from 2000 to 2019. Ground data about IKC were available for a shorter time range: 2009-2019.
Consequently, PMs and ET trends investigation were done for the whole times range (2000-2019);
conversely, correlation analysis was achieved with reference to the 2009-2019 period.

2. Materials and Methods

2.1. Study Area

The study area corresponds to the entire Aosta Valley, an administrative region located in the
Northern West Alps of Italy, close to the border with France and Switzerland. It is an alpine region
that hosts the highest peaks in Europe (Figure 2). It sizes about 3263 km? and has a population of
about 126,000 people [31]; it is the smallest, least populous, and least densely populated region of Italy.
Despite of this, it is one of the most abundant areas in terms of fauna and flora, and biodiversity in
general, hosting many protected areas such like Gran Paradiso National Park, Mont Avic Regional
Park, and Mont Mars reserve. For this reason, it is an open-cell laboratory especially for environmental
and biological sciences. Consequently, wildlife diseases and zoonosis can be proficiently studied in
this area. In Figure 3, boundaries of regional protected areas are reported.

30000 340000 350000 360000 370000 380000 390000 400000 410000

@9 - : -+ + + + + + + +

ooo(r-os 000?509 000?‘]09 0000£0S OOO?QOS m0?605

o

Datum: EDS0
Projection: ED50 / UTM 32 N
] R Representation scale:
“g * o 3~ * 1 A)1 : 550.000
B) 1: 7.000.000

Nominal scale:
B A)1:100

B) 1:10.000

& Title: Aosta Valley and Italy
_g + + + + 4

500000 750000 -~ 1000000 1250000
N 1 1 1

Figure 2. The study area corresponds to the entire Aosta Valley that is located in the Northern West
Alps of Italy, close to the border with France and Switzerland.
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Figure 3. Protected areas in Aosta Valley including parks (green) and reserves (orange).

Altitude ranges between 340 m (bottom of the valley, Pont Saint Martin municipality) up
to 4810 m a.s.l. (Mont Blanc). Average altitude is about 2100 m; the 60% of the territory is above
2000 m a.s.l. Aosta Valley is completely bordered by mountains, often exceeding 4000 m a.s.1.: the Mont
Blanc massif in the west, the Monte Rosa and Matterhorn (Cervino) massifs in the north-east, the Gran
Paradiso massif in the south, and the Grand Combin (in Switzerland) in the north. Table 1 reports
altitude ranges and their spatial distribution, respectively.

Table 1. Aosta Valley altitude ranges and correspondent areas.

Altitude Ranges Area (km?) Area (%)

(m a.s.l.)

343-500 6.6 0.2
500-1000 236.4 7.2
1000-1500 372.7 114
1500-2000 669.9 20.5
2000-2500 994.6 30.5
2500-3000 768.3 23.6
3000-3500 176.6 5.4
3500-4810 35.5 1.1

Aosta Valley climate is strongly influenced by topography. High mountains that surround the
region prevent the access of humid air masses of Mediterranean or Atlantic origin. This makes the local
climate characterized by a high degree of aridity in the central area (center of the main bottom valley),
with rainfalls lower than 500 mm-y~!; border areas, in particular south-eastern ones and north-western
valleys, differently, show an average rainfall above 1400 mm-y~! [32].

In winter, precipitations are mainly snowy. In summer, convective rainfalls are quite common,
determining frequent thunderstorms; spring and autumn are characterized by stratified rainfalls,
possibly lasting for several days, with a consequent increase of flood risk.

In force of its highly variegated climatic situation, Aosta Valley land cover is heterogenous. In the
present study, particular attention was paid to low natural vegetation where IKC diffusion is highly
possible due to the interaction and competition for grasses among animals, in particular wildlife
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ruminants and breed animals [33-36]. In Aosta Valley, where breeding activities and ungulates wildlife
are very abundant, animal competitive interaction generally occurs in mesotrophic and eutrophic
pastures or areas with good pastoral values [37-39]. Under this hypothesis, supported only by empirical
evidence, an attempt was made to analyze whether a “favorable” type of land cover could play as
hotspot for diseases spreading. From an ecological point of view, a greater competitive interaction
among animals for the same resource was expected in these areas. Under this scenario, environmental
analysis could drive to a better comprehension of the epidemiological relationships linking disease
and hosts.

2.2. Veterinary Ground Samples

The most of chamois samples were collected at the hunting wildlife control centers of RFD (Regional
Forestry Districts) managed by Corpo Forestale della Valle d’Aosta (Forest Guards). Samples were
obtained from chamois that were shot by hunters and analyzed by veterinary officers of CeRMAS
(National Reference Center for Wildlife Diseases). Map coordinates of locations where animals
were collected were not available. Consequently, data from all the analyses were achieved at the
regional level.

As far as chamois analysis is concerned, swabs were collected under the third eyelid from both
eyes, transported and stored refrigerated until analyzed. Ocular clinical signs of conjunctivitis and
keratitis (ocular damage, inflammation or discharged) or signs of blindness as indicated by abnormal
behavior such as stumbling, circling, uncertain gait or inability to climb were recorded at sampling.
Age, sex, and body condition were also recorded. Some samples came from chamois that were found
dead at the ground showing signs of conjunctivitis or keratitis. The sampling period ranges between
2009 and 2019, when several severe outbreaks of chamois IKC occurred in the Alps [24,40].

At the laboratory, eye swabs were placed into sterile tubes with 0.45 mL of lysis buffer (1 M
Tris-HCI, pH 8.5, 0.5% Tween 20, 0.24 mg/mL proteinase K) and mixed for 30 s. Cells were lysed for
60min at 60 °C and, successively, heated up to 95 °C for 15 min in order to inactivate proteinase K.
Obtained lysates were tested with a specific real time PCR to assess the presence of M. conjunctivae;
according to Vilei et al. 2007 [41] TagMan real time PCR reactions were performed by using
2.5 uL of test sample, 900 nM of IppS forward primer (5'-CAGCTGGTGTAGCACTTTTTGC-3")
and lppS reverse primer (5-TTAACACCTATGCTCTCGTCTTTGA-3"), 300 nM of lppS probe
(5’-TGCTTCGACTACCAAATATGATGGTGATCCTCT-3" with 6FAM reporter dye and TAMRA
quencher affixed on the 5 and 3’ ends, respectively), and TagMan Universal PCR Master Mix
in a 25 pL volume. An exogenous Internal Positive Control was introduced for all reactions to check for
the presence of eventual PCR inhibitors. PCR reactions were run by StepOne Plus instrument (Thermo
Fisher) using the following cycling parameters: one step at 50 °C for 2 min and at 95 °C for 10 min,
40 cycles of denaturation at 95 °C for 15 s, and extension at 60 °C for 1 min were performed. Real-time
fluorescence measurements were taken for each sample by using the StepOne™ Software v2.3 (Thermo
Fisher Scientific: https://www.thermofisher.com/order/catalog/product/4376357#/4376357) and the PCR
cycle number at which the fluorescent signal crossed the cycle threshold (set manually) was recorded
as CT value. The fluorescence emission baseline was set manually two cycles before the cycle with a
significant fluorescence signal. The specificity of the TagMan assay was evaluated by testing genomic
DNA of mycoplasmas other than M. conjunctivae and of other ocular pathogens [41,42].

Prevalence data were finally computed by Equation (1) with reference to the entire regional
territory for all the monitored years (2009-2019).

C
Pr= 5 x100 1)

where Pr = disease prevalence (%), C = number of positive disease cases detected by PCR and optical
analysis from samples, P = number of examined chamois.
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2.3. EO and Geographical Digital Data

MOD13Q1 v.6 [43] product from the NASA TERRA Moderate Resolution Imaging
Spectroradiometer (MODIS) mission was used to map the Normalized Difference Vegetation Index
(NDVI) over the area in the period 18 February 2000-31 December 2019. Four hundred-fifty two
MOD13Q1 images were obtained for free by Google Earth Engine [44]. They were stacked into a
NDVI time series (NTS) and filtered according to the Pixel Reliability layer, supplied together with the
product, to map reliability of each scene pixel. Stacking and filtering (Savitzky-Golay, [45,46]) were
operated by a self-developed IDL 8.1 routine [47]. Vegetation Indices from MOD13Q1 v.6 product are a
composite one, having a time step of 16 days and a spatial resolution of 250 m. The MOD13Q1 v.6
product provides a Vegetation Index (VI) value at a per pixel basis. It is referred to as a continuity
index to the existing one from the National Oceanic and Atmospheric Administration-Advanced Very
High Resolution Radiometer (NOAA-AVHRR) data. Composition algorithm selects the best available
pixel value from all the acquisitions within the considered 16 days period. Selection criteria are the
following: no clouds, low viewing angle, highest NDVI value adopting the classic formula as follow:
Equation (2).

(pNIR — pRED)
(pNIR + pRED)

where pNIR and pRED are the at-the-ground reflectance of the near-infrared (MODIS band 2) and red
(MODIS band 1) bands, respectively.

Evapotranspiration (ET) maps were retrieved from the MOD16A2 v.6 collection [48] by Google
Earth Engine for the period 1 January 2000-31 December 2019 for a total of 868 images.

MOD16A2 v.6 Evapotranspiration/Latent Heat Flux product is an 8-day composite product with
a geometric resolution of 500 m. The algorithm adopted for the MOD16A2 data product collection
refers to the Penman-Monteith equation [49], which includes inputs of daily meteorological reanalysis
data such as albedo, land cover, vegetation property dynamics, and Land Surface Temperature (LST)
that in some studies were adopted to evaluate ET [50] or heat fluxes [51]. Pixel values for the Net
Evapotranspiration (ET) is the sum of all 8 days within the composite period expressed in kg m~2
8 d~!. MOD16A2 v.6 ET layers were stacked into an ET time series (ETS); no filtering was applied.
Stacking was operated by a self-developed IDL 8.1 routine.

The Shuttle Radar Topography Mission (SRTM) digital elevation model was used for this
work [52,53]. SRTM v3 product (SRTM Plus) is provided by NASA JPL with a grid size of 1 arc-second
(approximately 30 m). Native SRTM was resampled at 30 m (SRTM30) to make pixel squared.

All data were converted from native geographical reference systems into the ED50 UTM 32N one.

MOD13Q1 v.6 and MOD16A2 v.6 layers were geometrically oversampled up to 30 m to refine
area zonation.

NDVI =

2

2.4. Land Cover Data

To properly describe land cover at the regional level, the Corine Land Cover 2018 dataset
(hereinafter called CLC2018) was used; CORINE (Coordination of Information on the Environment)
Land Cover inventory was initiated in 1985 to standardize data collection on land in Europe to support
environmental policy development. The project is coordinated by the European Environment Agency
(EEA) in the frame of the EU Copernicus program and implemented by national teams. The number
of participating countries has increased over time currently including 33 member countries and six
cooperating countries with a total area of over 5.8 million km?. CLC2018 specifically, is one of the
available datasets produced within the general CORINE frame and refers about land cover/land
use status in 2018. The reference year of the first CLC inventory was 1990 and the first update was
achieved in 2000. The current update cycle is 6 years. Satellite imagery provides the geometrical
and thematic basis of maps; it is integrated with in-situ data as essential ancillary information.
CLC Level 3 dataset consider 44 classes with a minimum mapping unit (MMU) of 25 hectares (100 m
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minimum mapping width). CLC2018 Level 3 of Aosta Valley was obtained from the collection
COPERNICUS/CORINE/V20/100m by Google Earth Engine in grid format (100 m grid size) [54-56].
CLC2018 Level 3 classes and correspondent statistics are reported, for the whole Aosta Valley, in Table 2.

Table 2. Corine Land Cover (CLC) 2018 Level 3 classes and correspondent areas in Aosta Valley.
In black, classes that were considered favorable to host wild animals and, consequently, used to test
their correlation with infectious keratoconjunctivitis (IKC) prevalence.

CLC2018 Descrintion Area Area CLC2018 Description Area Area
Class Code P (km?) (%) Class Code P (km?) (%)
111 Continuous urban fabric 1.56 0.05 311 Broad-leaved forest 58.12 1.78
112 Discontinuous urban fabric 35.27 1.08 312 Coniferous forest 577.98 17.71
121 Industrial or commercial units 8.72 0.27 313 Mixed forest 104.41 3.20
122 Road and réll networks and 0.25 0.01 2 Natural grasslands
associated land
124 Airports 0.42 0.01 Moors and heathland
131 Mineral extraction sites 0.66 0.02 324 Transitional woodland-shrub 424.84 13.02
132 Dump sites 0.27 0.01 332 Bare rocks 652.61 20.00
212 Permanently irrigated land 0.27 0.01 333 Sparsely vegetated areas 804.78 24.67
221 Vineyards 3.57 0.11 335 Glaciers and permanent snow  129.56 3.97
222 Fruit trees and berry 217 007 a1 Inland marshes 054 002
plantations
Pastures 94.06 511 River 0.17 0.01
242 Complex cultivation patterns 18.61 0.57 512 Lakes 3.24 0.10
Land principally occupied by
243 agriculture, with significant 148.42 4.55

areas of natural vegetation

LC classes were considered with reference to altitude ranges, in order to give a more comprehensive
description on the ongoing processes affecting vegetation and its relationship with IKC prevalence.

As indicated in Table 2, this study only considered the following CORINE land cover types:
pastures, natural grassland, moors, and heathlands. These classes were selected since majorly favoring
the interaction between breed animals and ungulates. In Aosta Valley, where breeding activities and
ungulates wildlife are very abundant, this competitive interaction generally occurs in mesotrophic
and eutrophic pastures or areas with good pastoral values. Under this hypothesis, supported only by
empirical evidence, an attempt was made to analyze whether a favorable type of land cover could play
as a hotspot for diseases spreading. From an ecological point of view, a greater competitive interaction
among animals for the same resource was expected in these areas. Under this scenario, environmental
analysis could drive to a better comprehension of the epidemiological relationships linking disease
and hosts.

CLC2018 and SRTM30 were used as descriptors of environmental conditions possibly conditioning
occurrences of IKC. Consequently, IKC was preliminarily tested against favorable land cover type
extent with respect to 3 different altitude classes (Table 3).

Table 3. Aosta Valley altitude ranges considered for this work to test IKC prevalence against land
cover classes.

Class Code Altitude Range (m)
FAV1 <1000
FAV2 1000-2000
FAV3 2000-3000

2.5. Methodology

To investigate possible relationships of IKC prevalence with vegetation-related factors,
two analyses were performed. One (hereinafter called Analysis 1) was aimed at testing if any
significant climatic trend could be recognized affecting phenological metrics (PMs, see forward on)
and ET (as measured by NTS and ETS, respectively), in the period 2000-2019.
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A second investigation (hereinafter called Analysis 2) was, conversely, addressed at verifying if
any significant correlation could be recognized between IKC prevalence and some of PMs that showed
significant trends in the previous analysis.

On the basis of the IKC disease dataset, prevalence was calculated by Equation (1). IKC yearly
prevalence computation relied on the entire chamois population inventory as reported by the local
faunistic centers: Corpo Forestale della Valle d’Aosta and hunter committees. Veterinary analyses were
performed by 1ZS PLV SC Aosta and CeRMAS. Faunistic season was assumed to start in September
and terminate at the end of the next year August.

Since interaction between breed animals and ungulates is more likely in good quality grass areas,
rangelands could represent hotspots for the spreading of the disease.

CLC2018 classes 231 = pastures, 321 = natural grasslands, 322 = moors and heathland were a-priori
assumed as favorable land cover classes to test IKC prevalence against to (see Figure 4). They were
aggregated into a single macro-class, hereinafter called “FAV” (see Figure 5).

FAV was then disaggregated into 3 sub-classes (FAV1, FAV2, FAV3) according to the altitude
ranges of Table 3. Altitude classes (Table 3) were obtained by SRTM reclassification operated by simple
table method [57,58] available in SAGA GIS v.7.00 tool [59].

Analysis 1: testing PM and ET trends from NTS and ETS

To investigate if and how IKC prevalence could be also related to ongoing changes affecting
vegetation activity in consequence of climate change, some metrics were extracted from the
abovementioned time series (NTS and ETS). Phenological metrics (PMs) are synthetic descriptors
of vegetation activity along its annual growing season. Climate change proved to condition such
activity shifting and reshaping past “ordinary” behavior of plants along the year. The following PMs
were considered: the start of the growing season (SOS) representing the day of the year (DOY) when
phenology is admitted to boost; the end of the season representing the day of the year (DOY) when
phenology is admitted to stop; the length of the growing season (LOS) representing the time range
(in number of days) separating EOS from SOS; the maximum of NDVI (MAXVI) representing the
highest value reached by NDVI during the growing season and proved to be a good predictor of
climate change effects on vegetation.

PMs were estimated by TIMESAT 3.3 with STL software [60-62] that was specifically developed
to enable the monitoring of land surface processes by remotely sensed data. TIMESAT 3.3 with
STL [63-65] iteratively fits and smooths by mathematical functions the yearly NDVI time-series,
finding the best smoothed approximation of the NDVI along the year at pixel level. Once raw data
have been approximated by the selected fitting function, PMs can be extracted in correspondence of
singular points having a phenological meaning (e.g., EOS, SOS, LOS, MAXV], etc.) along the local
temporal profile.

With reference to ETS and separately for FAV1, FAV2, FAV3, class yearly average ET value was
computed and analyzed along the years in the period 2000-2019 at the regional level, to explore
eventual trends in ET values, as well.

Since analysis is performed at single pixel and year level, PM estimates are saved as raster layers
showing PM spatial distribution at the considered year.

Analysis 2: IKC prevalence vs. PMs/ET

After demonstrating that significant trends could be recognized affecting PMs and ET values
from MOD13Q and MOD16A2 datasets, respectively, we tested their potential correlation with IKC
Pr at the regional level. As far as IKC/ET comparison was concerned, the yearly cumulative ET was
calculated. The a priori hypothesis was that a change in environmental conditions could drive to a
change in IKC occurrences (Pr value). It is worth to remind that Pr data were supplied aggregated
at the regional level, while PMs and ET measures were mapped at the pixel level over the whole
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area. Consequently, all deductions refer to general trends that could be possibly improved if more
distributed and geolocated data of IKC Pr were available.

IKC Pr was tested against all the computed metrics and modeled by a 2nd order
polynomial regression.

Datum: ED50
Projection: ED50 / UTM 32 N
Representation scale: 1 : 350.000
Nominal scale: 1 : 100

Title: Land use analyzed
T . L , Legend
7.5 0 7.5 15 225 30 km Land Cover Analyzed
N Pastures

I Natural grasslands
Il Moors and heathland

507?000

3 75|000 400]000

Figure 4. Map showing spatial distribution of land cover classes (from CORINE land cover map) that
were considered for the study: pastures, natural grasslands, and moors/heathland.

Datum: EDS0
Projection: EDS0 / UTM 32 N
Representation scale: 1 : 350.000
Nominal scale: 1:100
Title: Aosta Valley altitude classes considered in this work

7.5 0 7.5 15 225 30 km Legend

5080000

5060000

_|_

5040000

380000 400000
| 1

Figure 5. Aosta Valley altitude ranges: FAV1, FAV2, FAV3.
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3. Results

IKC Pr was computed according to the available ground dataset, by Equation (1). Values are
reported in Table 4.

Table 4. IKC prevalence in the Aosta Valley autonomous region (whole region). Data were available
for the years 2009-2019.

Year ! Year Analyzed2  IKC Disease Prevalence (%)  Number of Samples Analyzed Positive to IKC
2009-2010 2010 2.0 302 6
2010-2011 2011 4.7 191 9
2011-2012 2012 2.0 150 3
2012-2013 2013 5.1 158 8
2013-2014 2014 1.1 190 2
2014-2015 2015 2.6 152 4
2015-2016 2016 16.4 159 26
2016-2017 2017 6.1 114 7
2017-2018 2018 7.4 108 8
2018-2019 2019 0.0 100 0

12 Faunistic season is intended from September (previous year) to August (next year); consequently, IKC disease
prevalence values were re-assigned at year level assuming the period January—December as reference time to
perform analysis 2. It is worth to remind that positive IKC column refers to chamois that have been detected positive
to the IKC considering the overall number of samples analyzed per each year reported in the fourth column after
performing a PCR analysis (please see Veterinary Ground Samples Section).

Analysis 1: testing PM and ET trends from NTS and ETS

In this work, phenological metrics (SOS, EOS, LOS, MAXVI) were estimated at pixel level by
TIMESAT 3.3 processing the whole NTS. A Seasonal Trend decomposition by Loess (STL) was adopted
to de-trend NTS pixel profile and removing noise. Seasonal component was refined by Savitzky—Golay
filtering to reduce, but not removing, remaining local strong variations. The yearly growing season
was recognized with the whole multi annual time series using the sinusoidal harmonics approach.

With reference to de-trended/filtered NTS profiles PMs were extracted using the simple
thresholding approach. An arbitrary value of 0.5 was set as reference NDVI value to refer SOS
and EOS to. Consequently, SOS was assumed as the DOY when NDVI reached the 0.5 threshold value
along the ascending part of the phenological yearly bell; EOS was assumed as the DOY when NDVI
reached the 0.5 threshold value along the descending part of the phenological yearly bell. LOS map
was computed by grid differencing from EOS and SOS maps. MAXVI was found looking for the
highest NDVI value between SOS and EOS.

PMs were mapped over the area as raster layers and spatially averaged with respect to FAV1,
FAV2, and FAV3 classes (Table 3).

Graphs of Figure 6a—c show that average PM values of FAV1, FAV2, FAV3 significantly changed
their values in the last 20 years, with a continuous progressive trend observable for all of them. Firstorder
polynomials used to model trends where calibrated excluding those PMs and ET estimates/measures
whose residuals (computed with respect to a 1st order polynomial) showed a value higher than
mean + 2 times the standard deviation. Interpretation of results is given in the Discussions section of
this paper. In terms of strength of changes, with reference to gain values of the estimated 1st order
polynomial models (Table 5), it can be observed that: EOS is averagely delaying of about 2.6 d/y and
no significant difference can be observed concerning altitude classes.

Differently, SOS appears to averagely anticipate about 2 d/y up to 2000 m a.s.l. (FAV 1 and FAV2)
and about 3 d/y at higher altitudes (FAV 3). Consequently, LOS showed to enlarge about 4.7 d/y
at lower altitudes (FAV1 and FAV2) and about 6.5 d/y at higher altitudes (FAV3). According to
Borgogno et al. [66], potential accuracy of NDVI measurements is about +0.02; consequently,
estimated yearly variations of MAXVI cannot be considered singularly significant. Nevertheless,
the cumulated effects along the entire explored period (2000-2019) showed that MAXVI significantly
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changed, since the accuracy reference value of +0.02 was largely overcome. MAXVI variations between
2000 and 2019 appear to be positively higher at lower altitudes (about +0.09) while almost stable as
altitude increases. These results find strong evidence in different studies in literature [67-76].

Table 5. Yearly average and cumulated (2000-2019) variations of PMs and ET along the years as
estimated by 1st order polynomial regression (Figure 6). In Table 5, DOY refers to the day along the
considered year and ranging between 0 and 365. Positive values indicate a delay or lengthening of
season, negative values an advance of season according to the observed trends reported in Figure 6.
The first part of the table indicates the yearly gain while the second part (cumulated) represent the
overall changes in the observed period analyzed for each PMs from the starting year 2000 till arriving

to the end in the 2019.
SOS EOS LOS ET
Yearly (DOY) (DOY) (n. of Days) MAXVE gm=28d-1)
FAV1 -2.04 2.64 4.70 0.005 0.06
FAV2 -2.09 2.59 4.81 0.004 0.04
FAV3 -3.11 2.59 6.40 0.003 0.06
Cumulated SOS EOS LOS MAXVI ET
2000-2019 (DOY) (DOY) (n. of Days) (Kgm™2)
FAV1 —38.76 50.16 89.34 0.089 1.14
FAV2 -39.77 49.29 91.41 0.072 0.78
FAV3 -59.17 49.26 121.69 0.057 1.11
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Figure 6. (a—c) Class average values of phenological metrics (PMs) (SOS, EOS, LOS, MAXVI) as
estimated by TIMESAT 3.3 with Seasonal Trend decomposition by Loess (STL) for classes FAV1, FAV2,
and FAV3. (d) Evapotranspiration (ET) average class values computed from ETS for classes FAV1,
FAV2 and FAV3. Reported values correspond to the yearly mean value of the 8 days aggregated data
from MOD16A2 product (for acronyms explanation, see Abbreviations). In all the graphs, the red-orange
points represent outliers.

With reference to ET graphs of Figure 6d, a significant increasing trend can be observed for
all FAV classes. According to the values of Table 5, it can be noted that all FAV classes behave
similarly; water requirement in a period of 8 days appears to averagely increase of about 0.05 kg-m~2
(about 0.5%) every year. This determined that, in the period 2000-2019 cumulated increment of ET
(every 8 days) is around 1 kg'm~2 corresponding to a percentage difference in water requirement of
about 8%. This could be possibly explained with reference to the previously demonstrated increasing
of both biomass production (MAXVI) and enlargement of the growing season, that, consequently make
vegetation needing more water yearly.

Analysis 2: IKC prevalence vs. PMs/ET

After demonstrating that some PMs and ET values are currently changing with a significant
linear trend, authors tested their correlation with IKC Pr. A 2nd order polynomial was found to well
approximate the most of tested relationships. Model calibration was achieved after removing outliers
from data. This was obtained excluding all those data that, with respect to the 2nd order polynomial
model, showed a percent residual Equation (3) ¢ > +£100%. After outlier removal, a new calibration
was run for the model. Results are reported in Table 6.

lestimated — observed)|
= -100 3
¢ observed ©)

As shown in Table 6 and Figure 7, good correlations were found between IKC Pr and LOS, EOS,
and ET. A 2nd order polynomial proved to well fit the relationship. Differently, SOS showed a weaker
correlation for all the tested situations.
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Table 6. Coefficient of determination (R?) and p-value resulting after modeling relationships between
PMS/ET and IKC Pr at altitude class level. A 2nd order polynomial was used for modeling. (*) indicates
statistically significant cases (* p < 0.05).

SOS EOS LOS MAXVI Yearly Cumulative ET
Classes 2 2 2 2 2
R p-Value R p-Value R p-Value R p-Value R p-Value
FAV1 0.06 0.83 0.85 0.003*  0.26 0.41 0.06 0.90 0.89 0.004 *
FAV2 0.51 0.11 0.13 0.65 0.76 0.01* 0.16 0.68 0.80 0.005 *
FAV3 0.46 0.16 0.28 0.35 0.71 0.02 * 0.31 0.32 0.65 0.003 *
18 18
FAV 1 FAV 1
. - - 2 _ L]
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Figure 7. Graphs (a—c) show the most significant relationships that were recognized between IKC
prevalence and PMs. (a) IKC Pr vs. EOS at FAV1; (b) IKC Pr vs. LOS at FAV2; (c¢) IKC Pr vs. LOS
at FAV3. Graphs (d—f) show the most significant relationships that were recognized between IKC
prevalence and ET (Cumulative yearly ET) values for FAV1, FAV2, and FAV3, respectively. In all the
graphs, the red-orange points represent outliers (see Equation (3)).

In particular: ET proved to be a good IKC Pr proxy that appeared to be quite independent from
altitude; differently, EOS prediction capability was highly more significant for lower altitudes (FAV1);
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differently, LOS appeared to represent the main factor conditioning IKC spread at medium-high
altitudes (FAV2 and FAV3).

As far as ET is concerned, it is well known that it relates to local micro-climatic conditions. In fact,
it is directly impacted by micro-local temperature and humidity that favor vegetation growth and
limit soil drought. This occurs mainly at lower altitude (FAV1 and FAV2), determining a higher
attractiveness for chamois. At higher altitudes (FAV3), the relationship still persists, but it becomes
weaker, probably due to a lower availability of biomass and a shorter phenological season.

It is worth to remind that these results were obtained at the regional level, using highly aggregated
data. It is the authors’ intent to investigate further to make their deductions more robust and test the
capability of generalization of the proposed prediction models in different areas. Moreover, it would
be desirable to assess relationships between other diseases and environmental factors to better face
future risks possibly related to zoonosis [77-80] and its dependence on climate change [61] and loss of
biodiversity [81].

4. Discussions

The functional roles of domestic and wild host populations in infectious keratoconjunctivitis (IKC)
epidemiology have been extensively discussed claiming a domestic reservoir for the more susceptible
wild hosts; in the most of cases all deductions were based on limited data.

With the aim to better assess IKC epidemiology in complex host—pathogen alpine systems,
the long-term infectious dynamics and molecular epidemiology of Mycoplasma conjunctivae has been
investigated in all host populations from different areas in the Pyrenees and Occidental Alps.

Between the years 2000 and 2019, it was consistently detected in Pyrenean and Alpine chamois
(Rupicapra p. pyrenaica) populations, as well as in sheep flocks, and occasionally in mouflon
(Ovis aries musimon) from the Pyrenees; statistically associated with ocular clinical signs only in chamois.
Chamois populations showed different infection dynamics with low but steady prevalence (4.9%)
and significant yearly fluctuations (0.0%—-40.0%) between the period 2008-2015 [27,28]. Persistence of
specific M. conjunctivae strain clusters in wild host populations is demonstrated for six and nine
years. Cross-species transmission between chamois and sheep and chamois and mouflon were also
sporadically evidenced. In Switzerland, the chamois affected by IKC was found at altitudes between
550 and 3200 m. The estimated overall mortality was less than 5 per cent, but more than 20 per cent
have probably died locally [29]. Host population characteristics and M. conjunctivae strains resulted
in different epidemiological scenarios in chamois, ranging from the fading out of the mycoplasma
to the epidemic and endemic long-term persistence. These findings highlight the capacity of M.
conjunctivae to establish diverse interactions and persist in host populations, also with different
transmission conditions. Overall, independent M. conjunctivae sylvatic and domestic cycles occurred at
the wildlife-livestock interface in the alpine ecosystems with sheep and chamois as the key host species
for each cycle, and mouflon as a spill-over host. Although outbreaks of IKC have been described
in Austria, France, Italy, Slovenia, and Switzerland, descriptive studies of the role of environmental
patterns and to model the outbreaks on a large scale have often been incomplete, owing to the difficulty
of detecting fundamental patterns that can affect IKC spread in chamois that live in remote, inaccessible
mountain regions. Under this scenario, the remote sensing techniques and EO data can give certainly a
huge hand in the understanding and development of possible forecasting models, as we have tried to
do in the present work. With these premises, the present study was intended to explore and propose a
method based on free accessible EO data to partially close the above-mentioned knowledge gap.

In Aosta Valley (NW Italy), PMs and ET (as measured from the above mentioned EO data) proved
to significantly change their values in the last 20 years, with a continuous progressive trend observable
for all of them. In terms of strength of changes, an average delay of EOS was observed by about
2.6 days, independently from the altitude class. SOS proved to averagely anticipate about 2 and
3 days per year at lower (<2000 m) and higher (>2000 m) altitudes, respectively. Consequently, LOS is
enlarging by about 4.7 and 6.5 days per year at lower (<2000 m) and higher (>2000 m) altitudes,
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respectively. While looking at the entire period (2000-2019) MAXVI proved to be significantly changing,
showing a positive variation (about +0.09) at lower altitude and no variations at higher one. This can
be explained admitting that at lower altitudes, in Aosta Valley, grasslands and pastures are often
irrigated. Consequently, farmers can vary water release regimes to face climate change effects (higher
temperatures, in particular) with the result of moving forage yields (that NDVI is a predictor of) to
higher values.

Differently, where more natural (not managed) systems are located (higher altitudes), the increase
of yearly MAXVI can be only related to glacier melting that could compensate the increase of water
requirement (as confirmed by the ET analysis) by vegetation. Glaciers are, in fact, dramatically reducing
in Aosta Valley. Moreover, another compensating action could come from the surrounding forest areas
that have been proved to tolerate summer heatwaves.

With reference to ET, a significant increasing trend was observed, independently from altitude.
Eight day water requirement from vegetation appears to averagely increase by about 0.05 kg- m~2
(about 0.5%) every year for a total increase of about 1 kg:-m~2 in 20 years (2000-2019), corresponding to
a percentage difference in water requirement from vegetation of about 8%. This could be possibly
explained by the increasing of biomass production (well represented by MAXVI) and by the enlargement
of the growing season, that, consequently make vegetation need more water yearly.

As far as PMs/ET and IKC Pr correlation is concerned, some interesting findings came out.

A 2nd order polynomial model was found to well approximate the most of relationships,
making possible to support scenarios generation of IKC spreading for forecasting issues.

ET proved to be a good predictor of IKC Pr, with no significant conditioning by altitude. EOS seems
to operate good predictions of Pr at lower altitudes, while LOS at medium-high ones. This probably
depends on wildlife dynamics, that in autumn and at the beginning of winter, looks for grassland (food)
especially at lower altitudes where, in that period, grass is not covered by snow and is wetter. In the
case of SOS, a possible interpretation can rely on the fact that, if vegetative season lasting increases,
animals descent from mountain to valley can be postponed, thus inducing a higher probability of
interaction between potential guests and sick animals at higher altitudes. This certainly can increase
also the probability of exposure of animals to disease.

With reference to ET it is mainly related to Pr at lower altitudes where micro-local temperature
and humidity favor vegetation growth and limit soil drought, determining a higher attractiveness for
chamois. At higher altitudes, ET capability of predicting Pr becomes weaker probably due to a lower
availability of biomass and a shorter phenological season.

Authors are conscious that this work just introduces a new way to manage wildlife health problems
and cannot be retained conclusive. In the nearer future, more disaggregated investigations should
be done, and other areas possibly considered. Nevertheless, the proposed approach is sufficiently
innovative in the context of wildlife veterinary and, we hope, could open a new interesting trend to
map wildlife diseases and related zoonosis risk associated with the interaction between wild animals
and domestic ones. A radical change is expected also by technicians and institutional subjects in
their ordinary procedures for recording and managing ground data. In fact, the greatest limit to
expand and more focus this research relied on the format of ground data that could be obtained only
aggregated at the regional level with no information concerning the specific place where each analyzed
animal was found. We invite all involved players to carefully consider the possibility of georeferencing
every ground observation that comes to their laboratories. Georeferencing of ground data is at the
basis of an effective and reliable spatial based approach like the one here proposed, where EO data
(especially if available over a long-time span) play a crucial role. Anyway, this work proved that
spatially based forecasting models can be reasonably calibrated for generating maps of risk concerning
wildlife diseases and zoonosis spreading in a certain area. Moreover, it showed that relationships
between IKC and PMs/ET are probably chancing in terms of strength; in fact, we demonstrated that all
the considered predictors are suffering from a significant change possibly related to the ongoing climate
change. Consequently, we expect that future approaches should more properly rely on contemporary
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data spatially distributed in place of aggregated data temporally distributed like the one we processed
for this work.

5. Conclusions

A methodological approach, where geomatics and remote sensing data play a crucial role,
can certainly represent a useful “addressing” tool in epidemiology and veterinarian eco-pathology
fields of application, especially when studying vector-borne diseases and animal diseases and zoonosis
which can affect human beings as well. A major technology transfer, thanks to remote sensing, can still
be done in the health sector. A better knowledge of the patho-system dynamics, in particular the
relationship between environmental component and disease presence/spreading at a landscape level,
can certainly help to aim new studies and think a holistic management of how integrate adaptation,
mitigation and prevention. When operative, such approaches could support decision-makers dealing
with wildlife and domestic animals management and planning (both at the hunting and pastoral
level) and with public health (in the perspective of One Health). The availability of free and global
remote data is certainly a valid “systemic” tool for risk analysis that can support ordinary diagnostic
techniques, allowing continuous monitoring of the effects that climatic and anthropogenic changes in
the Alpine and, in general, mountain and wilderness environments, can cause to animals, biodiversity,
and the ecosystems.
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Abbreviations

Acronyms Description

ASL Local Sanitary Enterprise (translated)

CeRMAS National Reference Center for Wildlife Diseases (Italy)
DISAFA Department of Agricultural, Forest and Food Sciences
DOY Day of Year

DTM Digital Terrain Model

EO Data Earth Observation Data

EOS End of Season

ET Evapotranspiration

ETS Evapotranspiration Time Series

FAV Altimetry band-class

GEE Google Earth Engine

IKC Infectious keratoconjunctivitis

1ZS PLV Istituto Zooprofilattico Sperimentale Piemonte Liguria e Valle d’Aosta
JPL Jet Propulsion Laboratory

LOS Length of Season
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Acronyms Description

LST Land Surface Temperature

MAXVI Maximum of NDVI

NASA National Aeronautics and Space Administration

NDVI Normalized Difference Vegetation Index

NTS NDVI Time Series

PCR Polymerase Chain Reaction

PMs Phenological metrics

Pr Prevalence (of a disease)

RFD Regional Forestry Districts

SOS Start of Season

SRTM Shuttle Radar Topography Mission

Unito University of Turin

VDA Aosta Valley
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