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Abstract

Background: Emerging and re-emerging infectious diseases such as Zika, SARS, ncovid19 and Pertussis, pose
a compelling challenge for epidemiologists due to their significant impact on global public health. In this
context, computational models and computer simulations are one of the available research tools that
epidemiologists can exploit to better understand the spreading characteristics of these diseases and to decide
on vaccination policies, human interaction controls, and other social measures to counter, mitigate or simply
delay the spread of the infectious diseases. Nevertheless, the construction of mathematical models for these
diseases and their solutions remain a challenging tasks due to the fact that little effort has been devoted to the
definition of a general framework easily accessible even by researchers without advanced modelling and
mathematical skills.

Results: In this paper we describe a new general modeling framework to study epidemiological systems, whose
novelties and strengths are: (1) the use of a graphical formalism to simplify the model creation phase; (2) the
implementation of an R package providing a friendly interface to access the analysis techniques implemented in
the framework; (3) a high level of portability and reproducibility granted by the containerization of all analysis
techniques implemented in the framework; (4) a well-defined schema and related infrastructure to allow users
to easily integrate their own analysis workflow in the framework. Then, the effectiveness of this framework is
showed through a case of study in which we investigate the pertussis epidemiology in Italy.

Conclusions: We propose a new general modeling framework for the analysis of epidemiological systems,
which exploits Petri Net graphical formalism, R environment, and Docker containerization to derive a tool
easily accessible by any researcher even without advanced mathematical and computational skills. Moreover,
the framework was implemented following the guidelines defined by Reproducible Bioinformatics Project so it
guarantees reproducible analysis and makes simple the developed of new user-defined workflows.
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Background
Although in the last twenty years the human abil-
ity to efficiently treat infectious diseases has greatly
improved, the latest pandemics of SARS and the
Swine Flu outbreak have clearly highlighted how these
diseases can spread faster in today’s interconnected
world. In this context the computational epidemiology,
a new multidisciplinary research field combining tech-
niques from epidemiology, computer science, molecular
biology and applied mathematics, makes extensive use
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of computational models for understanding and con-
trolling spatio-temporal disease spread.

Roughly speaking, the computational models used in
the study of infectious diseases at the population scale
can be classified as deterministic and stochastic. In the
first case, the system population is divided into small
groups namely compartments (or classes) typically rep-
resenting specific epidemic statuses [1–3]. These mod-
els are often formulated in terms of systems of dif-
ferential equations (in continuous time) or difference
equations (in discrete time), and produce an average
description of the disease evolution at the population
scale. Differently, stochastic models are formulated in
terms of stochastic processes defined on families of ran-
dom variables. These models capture in a straightfor-
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ward manner demographic and environment variabili-
ties and are useful in cases where randomness plays an
important role. Typically they are formulated as Dis-
crete Time Markov Chain (DTMC), Continuous Time
Markov Chain (CTMC), and Systems of Stochastic
Differential Equation (SDE) [4]. The choice between a
deterministic model and a stochastic one depends on
the application under study. For instance, determinis-
tic models can be exploited to answer questions such
as: what fraction of individuals would be infected in an
epidemic outbreak?, what conditions should be satisfied
to prevent and control an epidemic?, what happens if
individuals are mixed non-homogeneously? [1], while
the stochastic ones address questions such as: how long
is the disease likely to persist?, what is the probability
of a major outbreak? [4].

The construction of these types of models remains a
challenging task. Indeed, despite of the large number
of results published on this topic, little attention has
been devoted to the definition of a general framework
for modelling and studying infection diseases, which
may be easily used by researchers without advanced
computational skills. To the best of our knowledge, we
believe that the only successful attempt to create a
general framework for for modelling and studying in-
fection diseases was proposed by Vespignani et al in [5].
Indeed all the other the works found in the literature,
the analysis of systems combining population and dis-
ease characteristics, require the installation of many
inter-dependent components to set up complex eval-
uation environments that are difficult to control and
that make questionable the possibility of reproducing
published results. Moreover, these workflows are often
so specific that they can not be directly applied to an-
alyze other models different from those for which they
were originally developed.

To overcome these limitations and difficulties, we
started the development of a general modelling and
analysis framework with the objective of allowing re-
searchers to better concentrate on the essence of these
problems, and relieving them from the burden of set-
ting up the complex environment needed for the solu-
tion of the complex mathematical models used for the
investigation. Our modelling framework for studying
epidemiological systems, shows novelties and strengths
which can be summarized in: (1) the use of a graphical
formalism based on Petri Nets [6–8] to simplify model
construction and to provide an intuitive description
of system behaviour; (2) the implementation of a R
package to provide a user-friendly interface; (3) the
containerization (into Docker images) of all the imple-
mented analysis techniques to improve the framework
portability and to ensure the reproducibility of the
derived results; (4) the specification of a well-defined

schema and related infrastructure to allow users to in-
tegrate their own analysis workflows in the framework.

The architecture of the framework reflects these fea-
tures with the implementation of three modules that
have been done taking into account the guidelines
provided by the Reproducible Bioinformatics Project
(RBP, http://reproducible-bioinformatics.org)
a non-profit and open-source project, whose aim is to
provide biologists and medical scientists with an easy-
to-use and flexible environment for reproducible anal-
ysis.

The effectiveness of our proposal is shown with the
investigation of Pertussis epidemiology in Italy. Specif-
ically, we first point out that this framework can be
easily used to develop an efficient workflow to analyse
this very complex system.

Furthermore, we show that the model generated and
calibrated according to such a workflow is able to re-
produce real data coming from the observation of the
spread of Pertussis in Italy during the period from 1974
to 2016. Moreover, we demonstrate that our framework
can be easily exploited to support a what-if analysis
on the model representing this complex system.

Results
In this section, we first introduce the proposed frame-
work in details, and then we show how it can be suc-
cessfully used to study and analyze pertussis infection
and the relative vaccination cycle in Italy.

Modeling framework: a detailed overview.
The architecture of this framework is composed of
three main modules which cover different aspects of
our proposal(see Fig.1).

The first module consists of a Java Graphic User In-
terface (GUI) based on Java Swing Class which allows
to draw models using the PN formalism. This graphi-
cal editor is part of GreatSPN [9], a software suite
for modelling and analyzing complex systems using
the PN formalism and its extensions. In particular, for
the purposes of the framework presented in this paper,
the GreatSPN GUI has been upgraded to support the
Extended Stochastic Symmetric Net (ESSN), a high
level Petri Net formalism, which enables users to de-
fine a system in a compact and parametric manner
and to specify in a natural manner the rate functions
which may be associated with the model reactions
(The reader can find more details about the ESSN for-
malism in subsection Petri Net and its generalization).

The other two modules, consisting of an R library
and a set of docker images, implement all the frame-
work functionalities needed for the model analysis.
Docker containerization, a lightweight Operation Sys-
tem (OS)-level virtualization, is exploited to simplify
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the distribution, the utilization and the maintenance of
the analysis tools; the R library provides an easier user
interface for which no knowledge on the docker com-
mands is needed. Notice that all these docker images
and R functions were created following the guidelines
specified by RBP project to achieve a framework for
developing reproducible workflow of analysis [10].

We now briefly describe all the functions imple-
mented in the R library and their associated docker
images.

The generation of the stochastic and deterministic
processes underlying an ESSN model is implemented
by the R function model generation(). This func-
tion automatically derives from the ESSN model the
corresponding deterministic and stochastic processes
using the C/C++ program PN2ODE embedded in the
docker image greatspn. The derived processes and the
library used to simulate them are packaged into a bi-
nary file with .solver extension. Currently the follow-
ing solvers are available:

• ODE solvers: (1) Runge-Kutta 5th order integra-
tion, (2) Kutta-Merson integration; (3) Dormand
and Princ method; (4) Backward Differentiation
Formula (BDF) method;

• Stochastic Simulation solvers: (1) Gillespie algo-
rithm; (2) Stochastic Hybrid simulation; (3) τ -
leaping method.

More details on these solvers are reported in subsec-
tion Implemented model solvers.

The R function sensitivity analysis() implements
the sensitivity analysis starting from the .solver file
generated by the model generation function. This
R function calls the R script sensitivity.mngr.R en-
capsulated into the docker image epimod sensitivity to
compute with the Partial Rank Correlation Coefficient
(PRCC) analysis [11, 12] the monotonic relationships
between model inputs and outputs revealed (see sub-
section Monte Carlo Sampling with PRCC for more
details) .

The model calibration is performed by the R func-
tion model calibration(). This function executes the
R script calibration.mngr.R embedded in the docker
image epimod calibration that calls the right solvers
according to the passed input parameter and produces
as output a textual file in which all the generated pa-
rameter values are ranked according to their ability to
fit the real data (i.e., from the best data fitting to the
worst one). This is obtained solving an optimization
problem in which the input objective function is mini-
mized. More information on this aspect are reported in
subsection Implemented optimization solver to model
calibration.

Once the model is correctly calibrated, the R func-
tion model analysis() solves the model and gen-
erates an output representing the time evolution of

the model. The R script model.mngr.R embedded in
the docker image epimod model is then executed by
model analysis() function. Thus, this script simu-
lates the underlying deterministic or stochastic process
and returns a textual file in which the system solution
is provided.

To ease the user in both experimentation and anal-
ysis of the model, our workflow encompasses a data
visualization function. Specifically, the function dis-
play data() offers a web application developed in
Shiny providing a basic-level interface and an expert-
level interface for data visualization. The basic-level
interface consists of a simple but well-defined visual-
ization environment, so that the user can directly focus
on analyzing the results rather than spend its efforts
setting up the necessary environment. Therefore, the
web application enables the user to visualize the anal-
ysis results as line charts effectively while simplifying
the process of generating plots to the extent that it is
possible to visualize results with just few clicks. On the
other hand, a simple visualization may not be enough
to highlight complex behaviours of the system under
study, and for this reason the function display data()
provides an additional expert-level interface which al-
lows the user to implement its own visualization plots.
In this case, the user is required to provide a function
describing how the output data derived by analysis
phase must be manipulated to be plotted. Hence, this
functionality makes the data visualization very flexi-
ble and with loose restrictions –i.e., being compatible
with ggplot2 [13] R library and does not require any
additional library.

The R function download images() prepares the
docker environment downloading the docker images
needed by the framework.

Framework installation
The installation of the workflow requires the down-
loading of the extended version of the GreatSPN editor
at http://www.di.unito.it/~amparore/mc4cslta/

editor.html, and the R library at https://github.

com/qBioTurin/epimod.

How to integrate a new function in the framework.
The customization of the framework is one of the
strengths of this proposal since it provides the gen-
eralizations needed to use this same framework for
other epidemiological studies different form that dis-
cussed in this paper. To this aim we describe in this
subsection how new solution functionalities can be
easily added in the framework. Practically, a user
must firstly embed the new tool into a docker im-
ages following the tutorial reported at http://www.

reproducible-bioinformatics.org/ in the section
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“How to be part of the Reproducible Bioinformatics
project”. Secondly, he/she must provide an R func-
tion implementing an interface for the created docker
images. To simplify the creation of such controlling
function the R function skeleton.R, reported in the li-
brary, can be exploited as prototype. Then, any new
R function and associated docker image must always
be supported by an explanatory vignette, accessible
online as html document, and by a set of test data
accessible online as well. Finally, this new R func-
tion and associated docker image must be submitted
to the info@reproducible-bioinformatics.org so
that the RBP core team verifies the compliance of the
new functionalities with the RBP guidelines. In our
case, this protocol means that, once the framework has
been certified by the RBP core team, every new addi-
tion or improvement must first be verified by the RBP
organization before integrating it into the framework.
More details on this task can be found in [10].

The case study: an example of application of the
framework

In this subsection we describe how the proposed frame-
work can be exploited to study the Pertussis infection
and its vaccination cycle in Italy. We first introduce
the problem and then we show how a model of this
complex system can be constructed.

The disease.

Pertussis, also known as whooping cough, is a highly
contagious infectious disease caused by the bacterium
Bordetella Pertussis which colonizes the ciliated cells
of the respiratory mucosa. It provokes an uncontrol-
lable coughing which often makes breathing hard and
which can possibly lead to serious complications in-
cluding death. The first vaccine against Pertussis was
developed already in the 1930s by pediatrician Leila
Denmark. Despite this, Pertussis remains a challeng-
ing public health problem because many aspects of its
infection, disease, and immunity are not completely
understood yet.

Although the implementation of Pertussis vaccina-
tion programs in many countries has decreased sub-
stantially its diffusion and mortality, Pertussis has not
been totally eliminated and Pertussis-related hospital
admissions and fatalities are still evident, particularly
in young infants [14].

Moreover, the European Centre for Disease Preven-
tion and Control (ECDC) in its annual 2017 report [15]
highlighted an increasing trend of Pertussis cases in
EU, probably due to the decrease in vaccine effective-
ness over time and pathogen adaptation [14,16,17]

State of the Art.
In this context computational modelling can play an
important role in providing insights on the drivers of
Pertussis epidemiology, in investigating alternative ex-
planations of the observed resurgence and in predicting
potential effects of different vaccination strategies.
To these aims, several models were proposed in the
literature since 1980s; for instance in [18, 19], an age-
structured model is exploited to analyse the possible
effects of adopting different vaccination strategies in
Australia. Other models expressed in terms of systems
of differential equations are used to explain the du-
ration of the Pertussis natural immunity [20], or the
importance of age-structured contacts [21]. Differently
in [22], a set of Partial Differential Equation (PDE)s,
characterized by age and time dependent variables, is
proposed to study the vaccination related changes that
may have occurred for the pertussis epidemic in the
Netherlands from 1996 to 1997. In [23] it is shown that
a stochastic process can be used to better capture Per-
tussis vaccination behaviour, as well as the nature and
degree of protection provided by theacellular Pertus-
sis (aP) vaccine. Similarly, in [24,25] a stochastic pro-
cess modelling Pertussis vaccination is presented for
the analysis of the disease effect in different countries,
respectively Massachusetts (United States) and Thai-
land. However, all of these works address only a sub-
set of the specific peculiarities of the pertussis disease.
In [26] the authors report the necessity of incorporat-
ing into a single model more details of the disease (e.g.,
the population age, the individual immunization level,
. . . ) to better match the real observed dynamics and
to predict the outcome of vaccination measures [26].

A Model of Pertussis disease in Italy.
The many aspects of the Pertussis disease and of
the vaccination strategies can be conveniently repre-
sented by extending the classical Susceptible - Infec-
tious - Recovered - Susceptible ( Susceptible-Infected-
Recovered-Susceptible (SIRS)) model. In particular,
this new model considers a population in which each
individual is described by her/his age (i.e., newborn,
young, or adult), her/his level of immunization (i.e.,
resistance level), her/his vaccination status (i.e., how
many doses were administered) and her/his health
state (i.e., susceptible, infected, and recovered). The
main system events are: the infection of a susceptible
individual due to a contact with an infected one, the
vaccination of an individual involving the administra-
tion of vaccine doses at different time points, and the
recovering of an infected individual.

To keep under control the complexity of this phe-
nomenon, the Extended Stochastic Symmetric Net
(ESSN) formalism [6, 7] is used. In Fig. 2 the ESSN
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model is showed. It consists of eight places and 30 tran-
sitions, and it is organized in four modules highlighted
through colored boxes.

In details, places BirthCount,VacCount, and Infect-
edCount are introduced to count the total number of
births, vaccinations, and infections happened during
the system simulation. Hence, these places have a neu-
tral domain and are introduced to make easier the
computation of the measures of interest (e.g. the num-
ber of infected individuals in each year).

Places S, V, Ip, Is, and R encode the possible health
states in which a population member may be (i.e., Sus-
ceptible, Under vaccination, Infected due to primary
infection, Infected due to repeated infection, and Re-
covered respectively).

It is worth noting that the Infected state is modeled
with two places to distinguish between individuals that
are experiencing a primary infection (Ip) and those
experiencing a repeated infection (Is). This distinction
is important because primary and repeated infections
have different characteristics [20].

The number of tokens in these places denotes the
number of population members that are Susceptible,
Infected, Under vaccination, and Recovered at any
point in time, during the evolution of the system rep-
resented by the model. Moreover, each token in these
places is labelled with the age, the level of immuniza-
tion, and the vaccination status to better characterise
each individual in the system. This is carried out defin-
ing the following three color classes:

• The class A = {a1, a2, a3} records the age of a
population member. It is divided in three static
subclasses: N = {a1} representing Newborn indi-
viduals (from 0 ∼ 11 months), Y = {a2} rep-
resenting Young individuals (11 months ∼ 18
years:), and O = {a3} representing all the oth-
ers (18 ∼ 99+ years).

• The class V = {v0, v1, . . . , v5} represents how
many vaccination doses were currently received.
Since the Italian vaccination policy establishes
three doses within the first 11 months of life fol-
lowed by two additional boosters between 12 and
18 years of age, then we accordingly split this class
in six static subclasses (i.e., NV = {v0} no vacci-
nation, V 1 = {v1} first vaccination, . . .V 5 = {v5}
fifth vaccination).

• The class L = {l0, . . . , l3} represents the abil-
ity of a individual to limit pathogen burden. It
is divided into four static subclasses (i.e., L0 =
{l0}, . . . , L3 = {l3}) encoding an increasing level
of resistance.

The color domain associated with these places is de-
fined by the Cartesian product A×V×L. Moreover the
transitions GrowthS, GrowthIp, GrowthIs, GrowthR,

GrowthV, RecRecall, RecoveryIp, LevDecreasingR and
LevDecreasingV are standard transitions (i.e following
Mass Action (MA) law) while all the others are gen-
eral transitions (i.e. whose rates are defined as general
functions).

Observe that all the constants, the numerical values
and the generic functions associated with these tran-
sitions are deeply described in the Additional file 1.

The four modules corresponding to the four health
states of an individual are now described.

1) Supsceptible module. It describes the behaviour of
susceptible individuals. Transition Birth models the
birth of a new person adding a new token in places
BirthCount and S. Since a newborn enters into the
system with the lowest level of resistance and with-
out vaccination then the token added in place S is
〈a1, v0, l0〉. Differently, the age growth and the death
of a susceptible individual are modeled by transitions
GrowthS and DeathS respectively. Observe that the
successor operator (i.e., s++) in the arc function la-
beling the output arc connecting GrowthS to S is used
to represent the increasing of the age, while the guard
[a 6∈ O] associated with GrowthS guarantees that this
transition is disabled when the maximum level of age
(i.e., O) is reached.

2) Infected module. It models the behaviour of in-
fected individuals. In particular, two types of infec-
tions, primary and repeated infections are considered
and represented by places Ip and Is, respectively. Sim-
ilarly to what done in the Supsceptible module, the age
growth of an individual with primary (resp. repeated)
infection is modeled by the transition GrowthIp (resp.
GrowthIs), while the individual death is represented
by the transition DeathIp (resp. DeathIs).
Transition ContactS IpToIp (resp. ContactS IsToIp)
models the infection of a susceptible member due to
a contact with one individual with primary (resp. re-
peated) infection. Thus its firing removes one token
from S and adds it into Ip.

Finally, the recovery from a primary (resp. repeated)
infection is modeled by transition RecoveryIp (resp.
RecoveryIs), which removes one token from the place
Ip (resp. Is) and adds it to the place R. In particu-
lar, the guards associated with these transitions (i.e.,
RecoveryIp and RecoveryIs) guarantee that the recov-
ered patient has the highest level of immunity (i.e.,
[l ∈ L3]).

3) Recovered module. It describes the behaviour of
recovered individuals. Transition ContactRi IpToRii
(resp. ContactRi IsToRii) models the natural booster
that increases to l3 the resistance level of a recovered
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with resistance level l1 or l2 after a contact with a
individual with a primary (resp. repeated) infection.

These transitions (i.e. ContactRi IpToRii and Con-
tactRi IsToRii) can fire only if l belongs to L1 or L2,
guaranteed by the guard [l ∈ L1 || l ∈ L2]. Tran-
sition ContactR IpToIs (resp. ContactR IsToIs) de-
scribes the relapse of a recovered individual with the
lowest resistance level (see guard [l ∈ L0]) due to the
contact with a population member affected by a pri-
mary (resp. secondary) infection.

Transition RecRecall models the two vaccine recalls
between 12 and 18 years old, which are possible only
if all the previous three doses were successfully admin-
istrated during the first year of life. This is ensured by
the guard [(v ∈ V3 || v ∈ V4) & m ∈ L3 & a ∈ Y ],
which enables the transition only if a individual is
in the second age class (i.e a ∈ Y ) with three (i.e
v ∈ V3) or four (i.e v ∈ V4) vaccine doses already ad-
ministrated. Thus, each administration increases the
patient resistance level to its maximum (i.e. the tran-
sition guard m ∈ L3). Moreover, each time transition
RecRecall fires, one token is added to the place Vac-
Count for counting the number of vaccine doses whic
have been administrated.

Transition LevDecreasingR represents the reduction
of the resistance level. Observe that the immunization
is totally lost after about 14 years [27] from the last
infection. In particular, when the resistance level of an
individual reaches the minimum value, i.e. [l ∈ L0], a
recovered patient becomes again susceptible for infec-
tion. Her/his relapse is modeled by transitions Con-
tactR IpToIs and ContactR IsToIs respectively.
Finally, the age growth and the death of a recov-
ered patient are encoded by transitions GrowthR and
DeathR.

4) Under vaccination module. It implements the
vaccination policy. Similarly to the recovered mod-
ule, transitions ContactV IpToIs and ContactV IsToIs
model the infection process, while transitions Con-
tactVi IpToRii and ContactVi IsToRii the natural
booster, GrowthV the aging and DeathV the death.
Differently from the recovered module, the reduction
of the resistance level obtained by the vaccine is lost
after about 7 years [27]. This process is modeled by the
LevDecreasingV transition. The starting of the vacci-
nation process is represented by transition FirstVac-
cination, whose guard guarantees that vaccination is
administrated only to a susceptible child. To complete
the vaccination coverage, the administrations of two
further doses are modeled by the Vaccination transi-
tion. Its guard, defined as [(v ∈ V1 || v ∈ V2) & ((l ∈
L3 & m ∈ L3)||(l 6∈ L3 & m = l++)) & a ∈ N ],

guarantees that, under the condition to be in the first
age class, (i.e. a ∈ N , only if the first or second vac-
cination is administrated) it is possible to move into
the successive vaccination class, i.e. if v ∈ V1||v ∈ V2
then the output arc instance is characterized by v++.
Indeed, the resistance level increases, due to the new
dose administration, only if the level is not already at
the maximum value, i.e. (l ∈ L3 & m ∈ L3) || (l 6∈
L3 & m = l++).
Finally, every time that transitions FirstVaccination,
Vaccination, and VaccRecall fire, a new token is added
to the place VaccCount.

A workflow for studying the Pertussis in Italy.
We now describe how the framework functions can
be combined to obtain an analysis workflow for such
model. This schema is summarized in Fig. 3 in which
the light grey rectangles correspond to the four phases
(i.e., Model generation, Sensitivity Analysis, Model
Calibration and Model Analysis) implementing the
analysis of our Pertussis model, while the dark grey
boxes inside rectangles point out the main R frame-
work functions exploited in each step of the analysis.
The output of each task is instead highlighted by a
blue circle.

Model Generation. The starting point of this work-
flow is the Model Generation phase, which derives
from the Pertussis model the corresponding underlying
stochastic and deterministic processes. This task can
be achieved applying the R function model generation()
on the Pertussis ESSN model (see the Additional file
1 for more details on the used command line). Then
the derived deterministic process is represented by a
system of 179 Ordinary Differential Equation (ODE)s,
while the derived stochastic process is characterized by
1965 possible events. The total execution time needed
to derive the two processes and to create the .solver file
requires less than one minute on Intel Core I7 2.60Ghz.

After this initial step, Sensitivity Analysis and Model
Calibration are two pivotal steps to make our model
consistent with real observed data.

Sensitivity Analysis. It allows to identify among the
input parameters which are the sensitive ones (i.e.,
those that have a great effect on the model behaviour).
This may simplify the calibration step reducing (1)
the number of variables to be estimated and (2) the
search space associated with each estimated parame-
ter. In our case study, we identified 15 input parame-
ters characterized by a high uncertainty due to their
difficulty of being empirically measured. Specifically,
three of them represent the probabilities of having (i)
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the susceptible infection success, i.e., the infection of a
susceptible individual due to a contact with an infected
individual, namely prob infectionS, (ii) the resistant
infection success, i.e., the infection of a vaccinated or
recovered individual with the minimum resistance level
due to a contact with an infected individual, namely
prob infectionR l1, and finally (iii) the natural boosts,
i.e., the restoring of the resistance level to the maxi-
mum when a person with resistance level different from
the minimum level comes into contact with an infected
individual, namely prob boost.
The others 12 parameters define the proportion of sus-
ceptible and recovered individuals for each pair of age
class and resistance level in the initial marking. Given
the partial information that we have on the spread-
ing of the infection over the Italian population at the
beginning of our study (estimated from ISTAT web-
site [28] at the beginning of 1974 decreased by the av-
erage number of infected individuals during the same
year) such proportion is used to define an initial de-
tailed situation adequate for our modelling study and
compatible with the available data[1]

Furthermore, to provide a measure of the sensitivity
of these parameters the function sensitivity analysis()
was applied on the deterministic process previously
generated and considering the period from 1974 to
1994, when the type of vaccine was the whole-cell Per-
tussis (wP) vaccine. The choice of this time interval for
this analysis allows us to simplify our model disabling
the vaccination process, since the wP vaccine era is
widely considered as a good surrogate for pre-vaccine
era [20].
Moreover, this model was run 64’000 times on this time
interval: in every run a new input variable sample com-
bination is generated according to the uniform distri-
butions reported in Table 1, column two. Finally Par-
tial Rank Correlation Coefficient (PRCC) between the
generated input variables and the obtained model out-
puts (using Backward Differentiation Formula method
for the numerical solution of ODE system) are eval-
uated. A complete description of the used command
line is reported in the Additional file 1. The execu-
tion time for this analysis is ∼ 4h. on Intel Xeon pro-
cessor @ 2GHz, exploiting a parallel execution on 40
cores. The computed results are reported in Fig. 4 in
which the PRCCs values calculated for each parame-
ter with respect to the number of infection cases over
the entire time period are showed. From this plot it
is straightforward to derive that the prob infectionS
is the most important parameter affecting the infects
behaviour, followed by prob infectionR l1. Differently
the prob boost probability and the initial number of

[1]Observe that a detailed description of the data
sources is reported in subsection Data information

susceptible and recovered individuals in each age class
are less relevant on the infection behaviour.

In Fig. 5, the squared error between the real and
simulated infection cases from 1974 to 1994 are plot-
ted varying the prob infectionS parameter (on the
x-axis) and prob infectionR l1 parameter (on the y-
axis). Each point is then colored according to a linear
gradient function starting from color dark blue (i.e.,
lower value) and moving to color light blue (i.e., higher
values). From this plot we can observe that higher
squared errors are obtained when prob infectionS as-
sumes values greater than 0.0025 and prob infection l1
values greater than 0.005, see the light blue points
within the region identified by values of prob infectionS
∈ [0.0025, 0.005] and prob infection l1 ∈ [0.005, 0.01].
Therefore, according to this we shrunk the search space
associated with the two parameters in order to focus
on the identified area.

Model Calibration. The aim of this phase is to ad-
just the model input parameters (e.g., prob infectionS,
prob infectionR l1, . . . ) to have the best fit of sim-
ulated behaviours to the real data. As described
in Sec. Modeling framework: a detailed overview.
our framework implements the calibration procedure
through an optimization problem which minimises a
user-defined object function. Since this optimization
task is computationally expensive when a stochastic
process is considered, we describe now a two-steps ap-
proach to speed-up this task that can be implemented
easily using our R function. The idea behind this ap-
proach is to exploit the calibration of the determinis-
tic process, typically faster, to reduce the parameter
search space in the calibration of the stochastic pro-
cess.

Then, in the first step the function model calibration()
is applied on the generated deterministic process to fit
its behaviour to the real Italian infection data (from
1974 to 1994) using squared error estimator via tra-
jectory matching, and then GenSA tool is executed to
identify the best parameter set and Backward Differ-
entiation Formula (BDF) method to solve the ODE
system. Note that the information derived by the sen-
sitivity analysis is exploited to reduce the number of
parameters to be estimated and/or their search space.

Fig. 6 shows a subset of all the trajectories gener-
ated by GenSA characterized by 15’000 trajectories
extracted from a set of ∼ 90’000 trajectories obtained
in ∼ 48h on an Intel Xeon processor @ 2GHz on a
single core. The trajectories are colored depending on
their distance (in terms of squared error) with respect
to the Pertussis surveillance data (the red line). In de-
tails, the yellow color is associated with a low squared
error, the purple color with a high squared error, while
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the optimal trajectory is showed in black. Moreover,
the beam of trajectories (colored in yellow), closed to
the optimal one, provides an indication on the ranges
of parameter values that should be considered in the
second steps of our calibration approach.

In the second step, the function model calibration()
is applied on the generated stochastic process to fit
its behaviour to the real infection data using Akaike
Information Criterion (Akaike Information Criterion
(AIC)) via trajectory matching. The parameter search
space of this second optimization step is then com-
puted from the result obtained from the previous step,
reported in the last column of the Tab.1.

Fig. 7 shows trajectories (grey lines) for the fifteen
best parameter configurations discovered, whose range
values are reported in the Tab.2. The blue area con-
tains the average trajectories derived for the first ten
best parameters configuration, while the two green
lines provides the associated confidence interval. We
can observe that a good approximation of the surveil-
lance data (red line) from the 1974 to 1994 is ob-
tained. This second step required about 48 hours on
Intel Xeon processor @ 2GHz, exploiting a parallel ex-
ecution on 40 cores. The trajectories are generated us-
ing the τ -leaping algorithm (see section Implemented
model solvers for more details on this algorithm).

Finally, more details on the command lines used in
these two phases are reported in the Additional file 1.

Model Analysis. In this last phase of our workflow
the user can analyse the calibrated model to answer
specific questions and to derive new insights. In our
case study we show a simple what-if analysis that can
be implemented tacking advantage of the R function
model analysis(). In particular we investigate the im-
pact of different vaccination failure probabilities with
respect to the number of infection cases. The simulated
time period is from 1974 to 2016, and the pertussis vac-
cination program is started in 1995, with an average
vaccination coverage starts from 50% and transitions
linearly to 95% in 8 years, [29,30]. The results are de-
rived using the τ -leaping algorithm for generating 1024
trajectories for each case. The simulation of each case
has required 4 hours on Intel Xeon processor @ 2GHz,
exploiting a parallel execution on 40 cores.

In Figs. 8, 9, 10 we show how the number of in-
fection cases is affected by increasing the vaccination
failure probabilities from 0 to 0.5. We observed that
only probabilities greater than 0.3 have an effect on
the number of infection cases. For a matter of space,
we only report results for failure probability of 0 (the
reference), 0.1 and 0.4.

Moreover, considering the same time period we fur-
ther investigated the effects of varying the vaccination

coverage of newborns in the period from 2006 to 2016.
Figure 11 and Figure 12 show results for vaccination
coverage of 90% and 80% respectively. The simulation
of each case comprises of 1024 stochastic traces and
has required 4 hours on Intel Xeon processor @ 2GHz,
exploiting a parallel execution on 40 cores.

In details Figure 11 a) and 12 a) shows how the in-
fects distribution shifts upward when the fraction of
vaccinated newborns decreases.

Looking at the initial vaccination years (i.e. from
2001 to 2006) of these figures it is possible to notice
that the distribution of infects look quite alike, as in-
deed they are the realizations of the same stochastic
process. On the other end, starting from 2006 the two
distributions begin to differ reflecting the changes in
the vaccinated population.

Moreover, to better understand the effects on the
distribution of infects in the population, Figures 11
b) and 12 b) show the Empirical Cumulative Distri-
bution Function (ECDF) of infects in 2016 for both
the reference data series and the one with the per-
centage of vaccinated newborns reduced to 90% and
to 80%. Comparing the two ECDFs it is clear that re-
ducing the vaccination coverage the probability mass
is shifted toward higher number of infects in the pop-
ulation. Indeed, the slope of the ECDF in Figure 11
b) is much more steeper in the initial stage (i.e. in
the range between 1000 and 1250) than that in Fig-
ure 12 b), meaning that a lower vaccination coverage
remarkably increases the probability of having infec-
tion outbreak.

Discussion
The health burden of well known infectious diseases
was recently believed to become progressively negligi-
ble due to the fact that, among other factors, hygiene,
improved nutrition, new drugs, and vaccination poli-
cies favoured a steady decline in overall mortality [31].

Quite the opposite, it is nowadays apparent that
emerging and re-emerging infectious diseases such as
Zika, Ebola, or Corona virus, pose a compelling chal-
lenge for epidemiologists; indeed human mortality at-
tributed to infection is projected to remain at current
levels of 13 to 15 million deaths annually until at least
2030, [31]. In this context, computational models and
computer simulations are one of the available research
tools that epidemiologists use to better understand the
spreading characteristics of these diseases and to de-
cide on vaccination policies, human interaction con-
trols, and other social measures (including drastic) to
counter, mitigate or simply delay the spread of the
infectious disease. The construction of mathematical
models of these diseases and their solutions remain
however challenging tasks due to the fact that little
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effort has been devoted to the definition of a gen-
eral framework easily accessible even by researchers
without advanced modelling and mathematical skills.
Despites of these needs and of the many studies re-
ported in the literature to address these problems, to
the best of our knowledge, we believe that the only
successful attempt in this direction was GLEaM [5],
a computational framework that exploits a stochas-
tic model on a global population scale to simulate the
large-scale spreading of influenza-like illnesses. Moti-
vated by these considerations, we propose in this pa-
per a new general modelling framework for the analysis
of infectious diseases that does not require advanced
mathematical computational skills for its utilization,
and not even long and complex training phase for be-
ing used. The key issue underlying the development
of our framework was to allow a domain expert (epi-
demiologist with limited knowledge of mathematical
details) to use a simple, intuitive, but at the same
time powerful tool to perform analysis and forecast
on the spread of the disease, on the effect of vacci-
nation campaigns, and/or on measures to contain the
spread of the infection. Indeed, the use of a graphical
formalism allows epidemiologists to conceive a model
using a tool that is easier to handle than writing large
sets of inter-related equations: Petri Net models are
quite similar to the transmission flow diagrams widely
used in epidemiology to describe the disease progres-
sions. Then, the corresponding underlying determinis-
tic and stochastic processes can be automatically gen-
erated and solved by our framework starting from the
PN model. Indeed the framework provides a set of
efficient and specific analysis techniques already in-
tegrated and ready-to-use. Differently a user should
spend time to integrate existing solution methods or
developed new ones. The novelties and strengths of
the proposed framework with respect to GLEaM can
be summarized as follows: (1) the use of a graphical
formalism for the model creation; (2) a user-friendly
interface based on R language; (3) framework portabil-
ity and reproducibility of the results; (4) the possibil-
ity to integrate user-defined workflows. The effective-
ness of this new framework was tested with a study of
the pertussis epidemiology in Italy. The choice of this
case study is due to the intrinsic complexity of the
epidemiology and vaccination of this disease and to
the need of comprehensive studies capable of address-
ing the many facets of this problem. Indeed, despite
the fact that many models have been proposed since
1980s [18–23] with the aim of providing insights on
vaccination strategies, duration of immunity, and epi-
demic episodes, all of them share the characteristics
of addressing only a subset of the specific peculiar-
ities of the pertussis disease, and none of them faces

the necessity of incorporating into a single model more
details of the disease (e.g., the population age, the in-
dividual immunization level, . . . ) to better match the
real observed dynamics and to predict the outcome of
vaccination measures [26]. In subsection A workflow
for studying the Pertussis in Italy we show that our
framework can be easily exploited to construct and to
analyse such a complex and comprehensive model (i.e.,
its underlying deterministic process is described by 179
ODEs and its underlying stochastic one is character-
ized by more than 1900 events). The development of
such a model would be clearly unfeasible without the
use of the graphical formalism; similarly, the analysis
of such a representation would be difficult and error
prone without the use of the suite of powerful solu-
tion tools integrated in the framework. As described
in subsection A workflow for studying the Pertussis in
Italy, the above model was calibrated in order to repro-
duce the observed Italian pertussis spread from 1974 to
2016. Figs. 7a) and 7b) show that the model provides a
good approximation of the real data giving confidence
on the possibility of using it to answer specific biolog-
ical questions such as the impact of different vaccine
failure probability and/or different vaccination cover-
age on the probability to have a pertussis outbreak.
This shows that focusing on the analysis of specific bi-
ological questions, a model of this type can be used to
perform a what-if analysis to assess the sensitivity of
the model to variations of certain input parameters.
The high level of parametrization and the flexibility
provided by the graphical formalism gives the possi-
bility of re-using the model and its analysis workflows
for many other cases beyond the one studied in this
paper and represents one of the strengths of the pro-
posed approach. With new contact matrices and new
set of observed data, it would become possible to study
other diseases or to model one disease with increasing
levels of complexity/realistic ingredients. For instance
we are adapting this model to investigate the effect of
undetected infected individuals on the COVID-19 out-
break in Piedmont region. Although there are different
patterns in the transmission and progression between
the two diseases, there exist several building blocks in
common between the two models and that helped us
to develop, calibrate and analyze the new model in a
matter of few weeks. For all these reasons we believe
that this work can this proposed framework represents
a substantial advance in the field of computational epi-
demiology and will be beneficial for the entire epidemi-
ological community.

Conclusion
In this paper we present a new general modeling frame-
work for the analysis of epidemiological systems which
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exploits Petri Net graphical formalism, R environment,
and Docker containerization to make easy its utiliza-
tion even by researchers without advanced mathemati-
cal and computational skills. Moreover, the framework
was implemented following the guidelines defined by
Reproducible Bioinformatics Project, so that it pro-
vides reproducible analysis and makes simple the in-
tegration of new user-defined workflows. The effective-
ness of this framework was then shown through a case
of study in which we investigated the pertussis epi-
demiology in Italy.

Methods
This section provides first a brief description of the
sources of data utilized in our model, and of the Ex-
tended Stochastic Symmetric Net (ESSN) [6] formal-
ism. Subsequently, we recall all the techniques imple-
mented in our framework to perform the sensitivity
analysis, the model calibration, and to evaluate the
system behaviours.

Data information
Pertussis notification data were collected from the Ital-
ian Ministry of Health [28, 32] and Surveillance Atlas
of Infectious Disease [33]. Such data report the number
of Italian Pertussis cases per year from the beginning
of 1974 until the end of 2016.

From the Italian Ministry of Health [34] we obtained
the Italian population size, annual numbers of live
births and deaths from 1974 to 2016. According to
this we defined the birth and death rates as the aver-
age number of births and deaths, respectively, per day
in each age class during the reference period.

The vaccine coverage data were extracted from [29]
and [30]. Since the vaccine policy in Italy prescribes
that three doses must be administrated within 11
months of age, the coverage at each year is defined
as the proportion of children born that year who re-
ceived three doses of the combined diphtheria, tetanus
and aP vaccine (DTP) within 24 months of age.

The contact matrix depending on the three age
ranges (N, Y and O) was estimated from that provided
by [35], in which the Italian contact rates are reported
assuming the population divided into 15 age ranges.

Petri Net and its generalization
Petri Net (PN) [36] and their extensions are widely rec-
ognized to be a powerful tool for modeling and study-
ing biological systems thanks to their ability of repre-
senting systems in a natural graphical manner and of
allowing the computation of qualitative and quantita-
tive information about the behavior of these systems.

In details, PNs are bipartite directed graphs with
two types of nodes, namely places and transitions. The

former ones correspond to state variables of the sys-
tem and are graphically represented as circles. The
latter ones correspond to the events that can gener-
ate a state change and are graphically represented as
boxes. Nodes of different types are connected by arcs,
which express the relation between states and event
occurrences. A specific cardinality (multiplicity) is as-
sociated with each arc, and it describes the number of
tokens removed from (or added to) the corresponding
place upon the firing of the transition the arc is con-
nected to. Graphically, it is written beside the arc, but
the default value of one is omitted. Finally, places can
contains tokens drawn as black dots. Then, the num-
ber of tokens in each place defines the state of a PN,
called marking.

An example of a simple PN is given in Fig. 13(a) rep-
resenting the classical Susceptible-Infected-Recovered
(SIR) model. The places S, I, and R represent the
three types of individuals that characterize the sys-
tem, i.e. respectively susceptible, infected, and recov-
ered. Then, the events that might occur are (i) the
infection of a susceptible after the contact with an in-
fected one, modeled by the transition Infection, and
(ii) the recovery from the disease, represented by the
transition Recovery. In Fig. 13(a) all the arcs have car-
dinality one, except the arc connecting the transition
Infection to place I which has cardinality 2. The initial
marking in Fig. 13(a) is defined as S〈5〉+ I〈3〉+ R〈1〉,
meaning that the system is characterized by five sus-
ceptible individuals, three infected individuals and one
recovered individual.

A transition is defined as enabled if and only if each
input place contains a number of tokens greater or
equal than a given threshold defined by the cardinal-
ity of the corresponding input arcs. Thus, the firing of
an enabled transition removes a fixed number of to-
kens from its input places and adds a fixed number of
tokens into its output places, according to the cardi-
nality of its input/output arcs. In the Fig. 13(a) all
the transitions are enabled in the initial marking. The
system evolution is obtained from the firing of enabled
transitions.

Among the PN generalisations proposed in litera-
ture, Stochastic Petri Net (SPN) represents a simple
formalism that is relevant for the extensions used to
specify the models considered in this paper. In SPNs
delays are associated with transitions that, once en-
abled, take time to fire. Delays are specified as Nega-
tive Exponential random variables characterized by a
rate parameter. The dynamic behavior of a SPN can
be interpretded as a simple Stochastic Process which
can be recognized as a CTMC.

ESSN [6, 7] extends the SPN formalism allowing
the users to easily define complex rate functions and
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providing a more compact, parametric, and readable
representation of the system, due to the possibility of
associating specific information (i.e. colors as in the
Stochastic Symmetric Net (SSN) [8]) with each token.
In the ESSNs, the set of transitions T is split in two
sub-sets Tma and Tg, so that the former contains all
transitions which fire with a rate following a MA law;
the latter includes instead all the transitions whose
random firing times have rates that are defined as gen-
eral real functions. Transitions in Tg are graphically
represented with black bar.

In details, each place p in the ESSN formalism has
an associated color domain (i.e. a data type) denoted
cd(p) and each token in a given place has a value de-
fined by cd(p). Color domains are defined by the Carte-
sian product of elementary types called color classes,
C = {C1, . . . , Cn}, which are finite and disjoint sets.
They can be ordered (in this case a successor function
++ is defined on the class, inducing a circular order
among the elements in the class), and can be parti-
tioned into (static) subclasses.

For instance, the ESSN model in Fig. 13(b) extends
the previous SIR model introducing the age of each
population member through the color class Age di-
vided into three subclasses Newborn, Young, and Old.
Then, the color domain of all the places is cd(S) =
cd(I) = cd(R) = Age

Each ESSN arc is labeled with an expression de-
fined by the function I[p, t] : cd(t) → Bag[cd(p)], if
the arc connects a place p to a transition t, while the
opposite direction is defined by the function O[p, t] :
cd(t) → Bag[cd(p)]. Where Bag[A] is the set of mul-
tisets built on set A, and if b ∈ Bag[A] ∧ a ∈ A, tyen
b[a] denotes the multiplicity of a in the multiset b. In
particular, the evaluation of I[p, t] (resp. O[p, t]), given
a legal binding of t, provides the multiset of colored
tokens that will be withdrawn from - input arc (resp.
will be added to - output arc) the place connected to
that arc by the firing of such transition instance.

Color domain are associated with transitions too.
Considering a specific transition, its color domain is
defined as a set of typed variables, where the variables
are those appearing in the functions labeling the tran-
sition arcs and the variable types are the color classes.
For instance, the color domain of transition Infection
is cd(Infection) = Age × Age and the variables char-
acterizing its input arc are x, y ∈ Age

An instance of a given transition t is an assignment
of the transition variables to a specific color of a proper
type. Hence, we use the notation 〈t, c〉 to denote an in-
stance, where c is an assignment, also called binding.
Moreover, a guard can be used to define restrictions
on the allowed instances of a transition. A guard is a

logical expression defined on the color domain of the
transition, and its terms, called basic predicates, allow
users (i) to compare colors assigned to variables of the
same type (x = y, x 6= y); (ii) to test whether a color
element belongs to a given static subclass (x ∈ Ci,j);
(iii) to compare the static sub-classes of the colors as-
signed to two variables (d(x) = d(y), d(x) 6= d(y)).

The marking of an ESSN is defined by the num-
ber of colored tokens in each place. For instance, a
possible marking of the system of Fig. 13(b)can be:
S(5〈Newborn〉) + I(4〈Old〉) representing a state with
five supsceptible newborns and four infected old indi-
viduals.

Moreover, we denote with •t the set of input places
of the transition t and with t• the set of output places
of t, i.e. •t := {p ∈ P | ∃ c ∈ cd(p) s.t. I[p, t](c′)[c] > 0}
and t• := {p ∈ P | ∃ c ∈ cd(p) s.t. O[p, t](c′)[c] > 0}.
We use the notation E(t,m) to denote the set of all
instances of t enabled in marking m. Where, in the
case of the ESSN formalism, a transition instance
〈t, c〉 is enabled and can fire in an marking m, if: (1)
its guard evaluated on c is true; (2) for each place
p we have that I[p, t](c) ≤ m(p), where ≤ is the
comparison operator among multisets. The firing of
the enabled transition instance 〈t, c〉 in m produces a
new marking m′ such that, for each place p, we have
m′(p) = m(p) +O[p, t](c)− I[p, t](c).

In ESSNs each transition is associated with a specific
rate, representing the parameter of the exponential
distribution that characterises its firing time. Defin-
ing with m̂(ν) = m(ν)|•t the subset of the marking
m(ν) concerning only the input places to transition
t, the parameter associated with an enabled transition
instance 〈t, c〉 is given by the function

F (m̂(ν), t, c, ν) :=

{
ϕ(m̂(ν), t, c), t ∈ Tma,
f〈t,c〉(m̂(ν), ν), t ∈ Tg,

(1)

f〈t,c〉 ∈ Ω(t, c)

where Ω = {f〈t,c〉}t∈T∧c∈cd(t) is the set grouping all
the real functions characterizing the transition speeds
∀t ∈ T , with f〈t,c〉 = ϕ(·, t, c) when t ∈ Tma. Moreover
ϕ(m(ν), t, c) is defined according to MA law as follows:

ϕ(m(ν), t, c) =
ω(t, c)

I[p, t](c′)[c]!

∏
〈p,c′〉| p∈•t ∧ c′∈cd(p)

mpj ,c′(ν)I[p,t](c
′)[c]

with ω(t, c) representing the rate of the enabled tran-
sition instance 〈t, c〉. Observe that ϕ(m̂(ν), t, c) and
f〈t,c〉(m̂(ν), ν) can depend only on the time ν and the
marking of the input places of transition t at time ν.
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As for the SPNs, also in the ESSNs the stochastic fir-
ing delays, sampled from negative exponential distri-
butions, allow to automatically derive the underlying
CTMC that can be studied to quantitatively evalu-
ate the system behaviour [36]. In details, the CTMC
state space, S, corresponds to the reachability set of
the corresponding ESSN, i.e. all the possible markings
that can be reached from the initial marking. Thus,
the Chapman-Kolmogorov equations (also called Mas-
ter Equation) for the CTMC are defined as follow:

dπ(mi, ν)

dν
=

∑
mk

π(mk, ν)qmk,mi mi,mk ∈ S (2)

where π(mi, ν) represents the probability to be in
marking mi at time ν, and qmk,mi

the velocity to reach
the marking mi from mk, defined as

qmk,mi
=

∑
t∈T∧

T 〈t,c′〉∈E(t,mk)|mi

F (mk, t, c
′, ν)(L[p, t](c′)[c]).

where E(t,mk)|mi
is the set of all instances of t en-

abled in marking mk whose firing brings to the mark-
ing mk, and L[p, t](c′)[c] = O[p, t](c′)[c]−I[p, t](c′)[c].

In complex systems, the System of differential equa-
tions represented by the Master Equation (2) is often
mathematically intractable (i.e it requires an equation
for each system state), thus Monte Carlo simulation
can be exploited to study the system behaviour. Let
us underline that each trajectory obtained by Monte
Carlo simulation represents one sample of the proba-
bility mass function that solves the Master Equation.

In case of very complex models, when the system
stochasticity is negligible, then it is possible to ex-
ploit the so-called deterministic approach [37] which
approximates the system behaviours through a deter-
ministic process. This deterministic process is then de-
scribed through a system of ODEs having one equation
for each possible colored tuple c in each place domain
(i.e. ∀p ∈ P,∀c ∈ cd(p)). Let us highlight that the de-
terministic process derived in this manner is able to
well approximate the stochastic behavior of an ESSN
model, if the CTMC underlying the model is a den-
sity dependent process, i.e., if all the transition rates
belonging to Ω are represented by density dependent
functions (see [38] for more details)

Let xp,c(ν) ∈ R+ be the continuous approximation
of the number of tokens in place p and colors c so that
the vector x(ν) ∈ Rn , is the continuous approximation
of an ESSN marking at time ν.

Let also define x̂(ν) = x(ν)|•t as the subset of the
marking x(ν) concerning only the input places to the

transition t, then the eq. (1) becomes

F (x̂(ν), t, c, ν) :=

{
ϕ(x̂(ν), t, c), t ∈ Tma,
f〈t,c〉(x̂(ν), ν), t ∈ Tg,

(3)

f〈t,c〉 ∈ Ω(t, c).

Finally the ODE characterizing the p and color tuple
c ∈ cd(p) is defined as:

dxp,c(ν)

dν
=

∑
t∈T∧

T 〈t,c′〉∈E(t,mk)|mi

F (x̂(ν), t, c′, ν)(L[p, t](c′)[c])

=
∑

t∈Tma ∧
〈t,c′〉∈E(t,x(ν))

ϕ(x̂(ν), t, c′)(L[p, t](c′)[c])

+
∑

t∈Tg∧
〈t,c′〉∈E(t,x(ν))

f〈t,c′〉(x̂(ν), ν)(L[p, t](c′)[c])

(4)

where x̂(ν) = x(ν)|•t.

Monte Carlo Sampling with PRCC
Sensitivity analysis is a well-known approach exploited
in computational modeling to investigate which pa-
rameters affect mostly the variability of the outcomes
generated by the model. In the literature several
approaches are proposed to achieve this task, such
as Pearson correlation coefficient (CC) method (for
linear relationships), Partial Rank Correlation Coef-
ficient (PRCC) method (for non-linear and mono-
tonic relationships), and Fourier Amplitude Sensitiv-
ity Test (FAST) method (for any non-linear relation-
ships) [11, 12]. In this framework we implemented a
sampling-based method which combines Monte Car-
loSampling (MCS) with PRCC index.

In details MCS is exploited to generate the samples
of the model input variables. Then the model is run
N times on a fixed temporal interval: one for each
generated input variable sample combination. Finally,
PRCC between the generated input variables and the
obtained model outputs are evaluated on the same cho-
sen interval. In this way the PRCC analysis and corre-
sponding significance tests (i.e significant p-value) are
utilized to identify key model parameters and to select
time points which need an additional in-depth investi-
gation. Specifically, PRCC values close to 1 (resp. -1)
identify positive (resp. negative) monotone relation-
ships between inputs and outputs; while the signifi-
cance tests allow to discover those correlations that
are important, despite having relatively small PRCC
values.
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Implemented model solvers

In the literature many algorithms are proposed for
the numerical solution of ODEs systems and for nu-
merically generating time trajectories of a stochastic
process. Obviously, each method has its strengths and
weaknesses, and for these reasons we decided to in-
tegrate more than one algorithm in our framework.
In detail, for the numerical solution of ODEs systems
we implemented three explicit methods (i.e., Runge-
Kutta 5th order integration, Dormand-Prince method,
and Kutta-Merson method) which can be efficiently
used for systems without stiffness (i.e., the system
solution is numerically stable) [39]. Instead for sys-
tems with stiffness we provided a Backward Differ-
entiation Formula (Backward Differentiation Formula
(BDF)) method [39] that we implemented using the
C++ LSODA library (https://en.smath.com/view/
lsoda)

For the simulation of the stochastic process, we
implemented the Gillespie algorithm, called Stochas-
tic Simulation Algorithm Stochastic Simulation Al-
gorithm (SSA) [40], the τ -leaping method [41] and
Stochastic Hybrid simulation Stochastic Hybrid Simu-
lation (SHS). The SSA is an exact stochastic method
widely used to simulate chemical systems whose be-
haviour can be described by the Master equations,
Eq.s 2. In case of very large systems (i.e., systems with
a large numbers of interacting elements) SSA could
be computationally too slow, and then approximation
methods must be used. Among these approaches the
τ -leaping algorithm provides a good compromise be-
tween the solution execution time and its quality. In-
deed, this method speeds up the stochastic simula-
tion of system by approximating the number of sys-
tem events during a chosen time increment (i.e., τ)
as a Poisson random variable. Another approxima-
tion method implemented in our framework is the
Stochastic Hybrid Simulation (SHS), based on the co-
simulation of discrete and continuous events [42]. This
approach provides a speed-up under the assumption
that all the faster events are modeled as continuous.
Currently the user has to statically provide the split-
ting between discrete and continuous events associat-
ing with them a specific label that can be represented
in the model using the GreatSPN GUI.

Implemented optimization solver to model calibration

In Computer Science, Mathematics, and Operations
Research, optimization or mathematical programming
consists of minimizing (or maximizing) a function by
consistently selecting the values of its variables from
a set of feasible possibilities utilizing analytical or nu-
merical methods. Formally an Optimization Problem

(OP) with inequality constrains can be defined as fol-
lows:

minimize
x

Fopt(x)

subject to Gi(x) ≥ bi, 1 ≤ i ≤ l
Li(x) ≤ cj , 1 ≤ j ≤ m

where the vector x = (y1, . . . , yn) is the variable vector,
the function Fopt : Rn → R is the objective function,
the functions Gi(x) : Rn → R and Li(x) : Rn → R
are inequality constraint functions, and the constants
b1, . . . , bl, c1, . . . , cm are the bounds for the constraints.
A vector x•, called optimal, is the solution of the OP
if, among all vectors that satisfy the constraints, it is
that which yields the smallest (largest) value of the
optimization function: ∀z s.t. G1(z) ≥ b1, . . . ,L1(z) ≤
cm we have that Fopt(z) ≥ Fopt(x•).

OP is termed a linear program if the objective and
constraint functions are linear and non-linear other-
wise. In our framework, the focus is on non-linear pro-
grams in which constraints can be non-linear as well.
To solve this type of OPs, several algorithms have been
proposed in the literature, an overview on these meth-
ods is reported in [43]. Among the available algorithms,
the one integrated in our framework is the General-
ized Simulated Annealing for Global Optimization im-
plemented in the R package GenSA [44], since it was
designed to solve complicated nonlinear objective func-
tions with a large number of local minima. Moreover,
we are currently evaluating the integration of new opti-
mization algorithm based on deep learning and Neural
network.

Docker containerisation in a nutshell
Container technology, a lightweight Operation System
(OS)-level virtualization, was recently proposed in the
area of Bioinformatics as an efficient solution to sim-
plify the distribution, the usage and the maintenance
of bioinformatics software [45]. Indeed, the users ex-
ploiting containerization have not to deal with depen-
dency or compilation problems; since an applications
and their dependencies are already packaged and in-
stalled together into the container image. Obviously,
this simplifies considerably the installation and the us-
age of the applications encapsulated into a container
image. Among the container platforms proposed in lit-
erature, Docker (http://www.docker.com) is getting
actually the standard environment to quickly build,
deploy, scale and manage containerized applications
under Linux. In summary docker strengths are its high
level of portability, which allows users to easily regis-
ter and share containers over different hosts, and to
achieve a more effective resource use and a faster de-
ployment compared with other similar software.
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Figure 5: Scatter Plot showing the squared error
between the real and simulated infection cases
varying prob infectionS and prob infectionR l1.
The dark blue points represent the parameters
configuration with minimum error w.r.t. the
real data.
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Figure 6: Model Calibration considering the
deterministic model. Here a subset of the
trajectories obtained from GenSA considering the
parameter ranges stored in the fourth column of
Tab.1. The color of each trajectory depends on the
squared error w.r.t. the Pertussis surveillance
trend (red line). The black line is the optimal trend
obtained by minimizing the squared error.
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Figure 7: Stochastic simulations.a) 4096
trajectories (grey) over the whole time interval
are reported. b) Boxplots over the time period
considering the best configuration.
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Figure 8: Stochastic simulations. Probability of vac-
cine failure settled to zero. a) 1024 trajectories (grey)
considering the stochastic model over the whole time
interval. The blue dashed line represents the mean
trend. Finally, the red line represents the Pertussis
surveillance trend. b) Boxplots over the time period.
c) Zoom considering the last 21 years.
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Figure 9: Stochastic simulations. Probability of vac-
cine failure settled to 10%. a) 1024 trajectories (grey)
considering the stochastic model over the whole time
interval. The blue dashed line represents the mean
trend. Finally, the red line represents the Pertussis
surveillance trend. b) Boxplots over the time period.
c) Zoom considering the last 21 years.
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Figure 10: Stochastic simulations. Probability of
vaccine failure settled to 40%. a) 1024 trajectories
(grey) considering the stochastic model over the whole
time interval. The blue dashed line represents the mean
trend. Finally, the red line represents the Pertussis
surveillance trend. b) Boxplots over the time period.
c) Zoom considering the last 21 years.
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Figure 11: Stochastic simulations. Comparison be-
tween 1024 stochastic traces following the reference
data and a scenario where the population vaccinated
is reduced to the 90% starting from 2006. a) Shows
the violin plot comparing the distribution of infected
patients in the two scenarios. b) Comparing Infects
ECDF after 10 years of reduced vaccination rate.
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Figure 12: Stochastic simulations. Comparison be-
tween 1024 stochastic traces following the reference
data and a scenario where the population vaccinated
is reduced to the 80% starting from 2006. a) Shows
the violin plot comparing the distribution of infected
patients in the two scenarios. b) Comparing Infects
ECDF after 10 years of reduced vaccination rate.

S I R

Infection

Recovery

2

S I R

Infection

Recovery

Class Age =

: Age : Age

Domain Age Var x,y : Age

(a)

(b)

Aging
2[ x Old ]

<x>
<x++>

<x>
<x++>

<x>

Aging

<x>

<y>

<x>+<y>

: Age

circular {a1} is Newborn + {a2} is Young + {a3} is Old

2[ x Old ]

Figure 13: PN Examples of the simple SIR model.
(a) PN formalism; (b) ESSN formalism.
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Tables

Parameter name PRCC ranges GENSA Init. GENSA ranges GENSA Output

prob boost [0, 0.010] 0.0025 [0.0, 0.0025] 0.002474758
prob infectionS [0, 0.005] 0.0031 [0.0025, 0.0100] 0.002537443

prob infectionR l1 [0, 0.010] 0.0023 [0.0, 0.0025] 0.002458887
init S a1 [0, 866703] 866703 [0, 866703] 866696
init S a2 [0, 15685693 15685693 [0, 15685693 15685680
init S a3 [0, 37837299] 37837299 [0, 37837299] 37628100

init R a1 nv l4 [0, 866703] 0 [0, 866703] 7
init R a2 nv l1 [0, 15685693] 0 [0, 15685693] 4
init R a2 nv l2 [0, 15685693] 0 [0, 15685693] 2
init R a2 nv l3 [0, 15685693] 0 [0, 15685693] 2
init R a2 nv l4 [0, 15685693] 0 [0, 15685693] 2
init R a3 nv l1 [0, 37837299] 0 [0, 37837299] 209184
init R a3 nv l2 [0, 37837299] 0 [0, 37837299] 4
init R a3 nv l3 [0, 37837299] 0 [0, 37837299] 4
init R a3 nv l4 [0, 37837299] 0 [0, 37837299] 4

Table 1: Parameters variability range used during sen-
sitivity and calibration analysis. In details, in the first
column are listed the parameter names, then in the sec-
ond and fourth columns the variability ranges used for
the sensitivity and calibration analyses, respectively.
The third column reports the initial parameters con-
figuration.Finally, the fifth column is the optimal con-
figuration discovered in the calibration analysis such
that the quadratic error w.r.t. the real data is mini-
mized.

Parameter name Final range

prob boost 0.002523008 ∼ 0.002531240
prob infectionS 0.002528196 ∼ 0.002529264

prob infectionR l1 0.002458931 ∼ 0.002474028
init S a1 866696
init S a2 15685680
init S a3 37628100

init R a1 nv l4 7
init R a2 nv l1 4
init R a2 nv l2 2
init R a2 nv l3 2
init R a2 nv l4 2
init R a3 nv l1 209184
init R a3 nv l2 4
init R a3 nv l3 4
init R a3 nv l4 4

Table 2: Final parameters variability range used during
the calibration of the model by solving the stochastic
process τ -leaping algorithm.


