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Abstract

This paper investigates the relationship between the involvement of academic

inventors in local innovation dynamics and the patterns of regional technological

diversification. Based on the combination of the evolutionary economic approach

and the theories on regional innovation capabilities, and on the distinctive features

of academic inventors, we hypothesise that knowledge spillovers accruing from the

participation of university scientists to local patenting activity influence the extent of

regional technological diversification. In addition, we posit that the involvement of

academic inventors mitigates the path dependency engendered by the constraining

role of the existing capabilities. The empirical results highlight the key role of

academic institutions for the development of regional technological trajectories while

contributing to the academic and policy debate on regional diversification strategies.
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1 Introduction

Scholars in economic geography have shown rapidly growing interest in the ways regions

activate new development patterns and in the reasons why regions differ in their ability to

do that (Boschma et al., 2017). The bulk of empirical studies have focused on the process

of related diversification and regional branching, showing that existing local capabilities

condition which new activities are more likely to develop in regions.1 These studies con-

clude that relatedness is an important driver of regional diversification and, as a matter of

fact, they find that related diversification is the most dominant pattern in many regions

(Boschma, 2017; Xiao et al., 2018).

While regions display a clear tendency to diversify into related activities, it is argued that

unrelated diversification is important to secure long-term economic development, since

the process of related diversification might eventually come to a halt due to lock-in effects

(Saviotti and Frenken, 2008). The pursue of diversification strategies firmly based on the

entry in related activities can in fact be dangerous in presence of negative sector-wide

performances, due either to structural change or short-term fluctuations. Therefore, the

capacity to enter in new and unrelated activities might prove to be a key asset for regions

willing to activate long-term development patterns. Unrelated diversification is likely to

ensure enduring economic growth and decreasing unemployment (Frenken et al., 2007;

Davies and Tonts, 2010; Neffke et al., 2018). As a consequence, understanding the factors

that help regions to develop the capacity to diversify in loosely related activities becomes

of paramount importance and, it follows, attention for related diversification should go

hand in hand with attention for unrelated diversification.

The few existing investigations stress the role of market institutions, foreign firms, and

specialization in cross-cutting technologies in engendering regional structural change in

mitigating the constraing impact of relatedness (Boschma and Capone, 2015; D’Ambrosio

et al., 2019; Montresor and Quatraro, 2017; Neffke et al., 2018). Yet, other factors may

be relevant in this context. Notably, while the contribution of academic institutions to

local economic development is unquestionable, its role for regional diversification trajec-

tories remains an open issue in the literature (Tanner, 2014). This work intends to shed

lights on this issue and aims at extending the stream of the economic geography literature

dedicated to the study of regions’ diversification strategies in two directions. In the first

place, we investigate whether and to what extent academic knowledge spillovers deriving

from the participation of university-based inventors into local patenting activity influence

regional patterns of technological diversification. Secondly, we assess whether the involve-

1Berge and Weterings (2014); Boschma et al. (2015, 2014, 2013); Colombelli et al. (2014); Essletzbichler
(2015); Feldman et al. (2015); Heimeriks and Balland (2015); Kogler et al. (2013); Neffke et al. (2011);
Rigby (2015); Tanner (2014)
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ment of academic inventors influences the impact of technological relatedness on regional

diversification trajectories.

The theoretical underpinning of our arguments is twofold. On the one hand, our hy-

potheses rest on the theory of regional diversification proposed by Boschma et al. (2017);

Boschma (2017), according to which, when investigating regional patterns of diversifi-

cation, one should also account for processes of unrelated diversification by looking at

enabling and constraining factors at various spatial scales. We extend this framework

so to include the well-known and documented argument on the substantial contribution

of universities to territorial economic development (see e.g. Varga, 2000; Ponds et al.,

2010), this being an issue that has never been tested on regional diversification patterns

(Tanner, 2014). On the other hand, we rely on the conceptualization of novelty cre-

ation as the outcome of the recombination of heterogeneous and dispersed knowledge

components (Weitzman, 1998; Fleming and Sorenson, 2004; Saviotti, 2007) and on the

well-acknowledged assumption that the inputs of such combinatorial activity can hardly

be concentrated in one single individual.Crucially, we rely on the documented empirical

evidence that academic inventors possess peculiar knowledge sets and cognitive abilities

that allow them to be more open toward innovation and to successfully manage the knowl-

edge recombination process across different and unrelated technological domains (see e.g.

March and Simon, 1958; Gagné and Glaser, 1987; Walsh, 1995; Gruber et al., 2013).

We test empirically the effect of knowledge spillovers transmitted by academic inventors

on the entry of regions in new technological domains; specifically, we will consider the

yearly amount of new specialisations entered by regions as our outcome variable. Ad-

ditionally, we hypothesize that the involvement of academic inventors in local patenting

activity mitigates the impact of relatedness on the entry of regions in new technological

specializations, hence limiting the path dependency from local capabilities. The empirical

investigation focuses on the Italian NUTS 3 regions over the period 1998-2008 and relies

on the combination of different data sources, including the OECD RegPat Database, the

Academic Patenting in Europe (APE-INV) dataset, the Cambridge Econometrics Euro-

pean Regional Database and the Italian National Institute for Statistics (Istat). We test

our hypotheses via linear models in a panel data setting. We also develop spatial panel

data regressions to account for spatial effects.

Our results show that academic inventors positively contribute to the extent of regions’

entry in new technological domains, measured with the amount of new specialisations

developed at the local level; and that their participation to patenting activity reduces

the impact of technological relatedness on technological diversification. These findings

contribute to the extant literature, particularly to the economic geography strand of lit-
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erature that considers the role of relatedness and unrelatedness for regional development

patterns. Our findings also yield important implications for regional policies aiming at

promoting smart specialization strategies oriented towards long-term economic develop-

ment.

The remainder of the paper is organised as follows: in section 2 we discuss the literature

on related and unrelated technological diversification along with that concerned with

the role of universities for local economic development; we then develop our empirical

hypotheses on the role of knowledge spillovers and university-based inventors; in section 3

we present the data and the methodology used for the econometric analysis; in section 4 we

provide evidence about the characteristics of inventions developed by academic inventors;

in section 5, we show and describe the results from the econometric analysis, including a

set of robustness checks; finally, we present our concluding remarks and policy implications

in section 5.

2 Literature and hypotheses development

2.1 Related and unrelated regional diversification in regional branching

The study of the dynamics of regional branching has gained momentum in the last decade.

Based on the product space approach elaborated by Hidalgo et al. (2007), evolutionary

economic geographers have proposed that regions’ development trajectories are shaped by

a branching process according to which new specializations in local areas spin out from

the existing ones (Boschma and Frenken, 2011; Frenken and Boschma, 2007).

Former investigations have focused on the dynamics behind industrial diversification,

showing that regions are more likely to diversify their specializations portfolio by entering

into new sectors that are related to the existing ones. The main idea is that workers’

intersectoral mobility is more likely to take place between activities that rely on similar

or related capabilities. Hence relatedness emerges as the main predictor of the direction

of regional diversification patterns (Boschma et al., 2013; Neffke et al., 2018).

On similar grounds, a stream of literature has emerged focusing on the patterns of regional

technological diversification (Colombelli et al., 2014; Rigby, 2015). The theory of regional

technological branching is grounded on the extension of the recombinant knowledge ap-

proach to the regional domain (Fleming, 2001; Fleming and Sorenson, 2004; Weitzman,

1998). Accordingly, the generation of new technological knowledge in local contexts is the

outcome of the combination of a variety of knowledge inputs, so that a region’s knowl-

edge base is understood as a web of connected elements (Quatraro, 2010). The entry

in new technological domains is accordingly the result of the capacity to recombine new
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knowledge inputs. Learning dynamics and the historical process of local accumulation of

capabilities make recombinant dynamics easier to take place in domains in which local

agents have already developed sound experience. Relatedness therefore also emerges as

a driver of regional technological diversification (Colombelli et al., 2014; Montresor and

Quatraro, 2017).

Recent literature has started enquiring into the desirability of relatedness-driven dynam-

ics of industrial diversification. Indeed, the path-dependent dynamics engendered by

relatedness might cause lock-in of local development trajectories, due to the associated

limited capacity to activate diversification strategies able to cope with critical economic

events. Based on these arguments, evolutionary scholars have stressed the importance

of unrelated diversification for long-term development strategies (Saviotti, 1996; Saviotti

and Frenken, 2008).

Despite the established results about the role relatedness in regional diversification, recent

studies have focused on the local conditions that can enable entry in industrial activities

that do not match the existing capabilities, hence mitigating the role of relatedness. These

former research efforts have looked at the role of external, or non-local actors, like multi-

national corporations and non-local entrepreneurs (Boschma et al., 2017; Neffke et al.,

2018; Elekes et al., 2018; Colombelli et al., 2016; Trippl et al., 2018).

The combination of loosely related knowledge inputs is crucial also for technological diver-

sification, as it enables to open up radically new technological trajectories and introduce

valuable innovations (Nightingale, 1998). Diversifying by entry in new technological do-

mains that are loosely related to the existing set of local capabilities can therefore be

important to restore the conditions for innovation-based long-term regional growth and

competitiveness. Local dynamic capabilities, i.e. the capacity to reconfigure the local set

of capabilities, should allow innovation agents to explore a wide array of different techno-

logical domains (Quatraro, 2009).

The role of university research in general, and academic inventors in particular, has been

much neglected in this context. Yet, they represent an important resource for the de-

velopment of local innovation capabilities (Varga, 2000; Ponds et al., 2010). In the next

Sections we articulate a discussion on their role both in the process of regional techno-

logical branching, and in the emergence of technological specialization that are loosely

related to the existing activities.
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2.2 Universities and regional branching

While studies on regional branching often overemphasize the role of industrial actors and

the linkages between industries, the literature has paid very little attention to the role of

non-economic actors such as universities (Boschma, 2017; Tanner, 2014). Yet, academic

knowledge has been extensively shown to play a key role at the regional level, particu-

larly in the case of complex, knowledge intensive emerging industries (Zucker et al., 1998;

Audretsch, 2001). Therefore, the role of knowledge-producing actors like universities and

research institutes in the process of regional technological diversification should be criti-

cally considered (Tanner, 2014).

The conceptualization of the role of universities in innovation dynamics has evolved over

time (Gunasekara, 2006). Former contributions highlighted the role of universities as

providers of the scientific knowledge base underpinning industrial innovation (Hart, 1998).

The literature on regional innovation systems stresses the importance of localized interac-

tions amongst a variety of institutional actors for the development of regional technological

trajectories (Autio, 1998; Braczyk et al., 1998; Cooke, 2001; Asheim and Isaksen, 2002;

Asheim et al., 2011; Archibugi et al., 1999; Evangelista et al., 2002). A number factors

and actors play crucial roles in favouring the generation and diffusion of technological

knowledge at the local level, including inter-organisation networks, technical agencies

and research infrastructures, education and training systems, financial and legal institu-

tions (e.g. intellectual property rights), governance structures, and innovation policies

(Iammarino, 2005). This literature emphasizes the importance of universities for many

reasons. On the one hand, they are deemed to be crucial to interactive innovation dynam-

ics, contributing the local dynamics of creation, diffusion and adoption of technological

knowledge. On the other hand, they are considered to foster regional agglomeration by

means of knowledge spillovers from research and educational activities.

In the Triple Helix (TH) approach the core argument is that universities play a key role for

innovation processes, especially in increasingly knowledge-based economies (Leydesdorff

and Etzkowitz, 1996, 1998; Etkowitz and Leydesdorff, 1997; Etzkowitz and Leydesdorff,

2000). According to the TH model, the entrepreneurial university is at the centre of a

triadic relationship with industry and government, hence acting pro-actively to generate

and diffuse new knowledge (Etzkowitz and Leydesdorff, 2000).2

2The concept of the entrepreneurial university has been put forward by Etzkowitz (1983), who noted
that in that period of increasing costs and static government funds, American universities began to
consider the opportunity to source additional funding from patenting the discoveries made by academic
scientists, from the sale of results of research carried out under contracts with companies, and from
engaging into partnership with businesses.The importance of academic research to industry and to society
as a whole has gained novel appreciation since then. Similar trends were taking place in Europe as well,
as illustrated by Clark (1998) in his study of five European universities: in fact, among the ingredients
of success in each institution he noted an integrated entrepreneurial culture.
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In sum, the argument that universities can contribute to the development of local tech-

nological trajectories rests upon two key assumptions: firstly, universities increase the

production of knowledge by supplying new skilled workforce (university first mission)

and the results of scientific research (university second mission); secondly, the presence of

universities leads to the transfer and exchange of knowledge among organisations, notably

universities and companies (university third mission) (Veugelers and Del Rey, 2014). Aca-

demic institutions are assumed to be important sources of localized knowledge spillovers

because of their explicit focus on the generation and diffusion of knowledge (Ponds et al.,

2010; Audretsch et al., 2005; Del Barrio-Castro and García-Quevedo, 2005; Fritsch and

Slavtchev, 2007).3 According to scholars in this literature, spillovers occur through var-

ious channels, including spin-off companies - through which academic knowledge gets

commercialised; graduates and researchers moving outside academia; university-industry

interactions (Scandura, 2016, 2019) and, importantly, formal as well as informal personal

networks of academic and industrial researchers - through which the latest academic

knowledge is disseminated (Varga, 2000).

From the previous discussion it follows that knowledge stemming from academic research

is likely to play an important role in local innovation processes underling regional tech-

nological diversification. In view of these arguments, we can spell out our first hypothesis

as follows:

Hp1: Academic inventors positively contribute to the entry of regions into new technolog-

ical domains.

2.3 Academic inventors and unrelated diversification

While related diversification results from innovations that incrementally build on related

technologies, unrelated diversification is expected to stem from breakthroughs that emerge

from recombining previously unconnected technologies into a new configuration (Castaldi

et al., 2015; Fleming, 2001). This occurs when a region develops new activities that

require very different capabilities with respect to existing local activities. Therefore, un-

related diversification tends to be driven by agents who possess special capabilities and

a special knowledge set that allow them to successfully combine new and loosely related

technological domains. In some cases, such agents built up their capabilities elsewhere:

this is the case of migrant workers and migrant entrepreneurs, as well as of multinationals

(Colombelli et al., 2016). In some other cases, these agents were specifically supported by

3Localised knowledge spillovers are defined as flows of ideas between agents at less than the original
cost (Griliches, 1992).
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public policies (Dawley et al., 2015; Neffke et al., 2018). Alternatively, unrelated diver-

sification may stem from within the region based on the exploitation of local innovation

capabilities that hence represent enabling conditions.

Various scholars work on the topic of unrelated diversification using both case studies

(Binz et al., 2016; Dawley et al., 2015) and statistical approaches (see e.g. Boschma and

Capone, 2015; Neffke et al., 2018; Colombelli et al., 2016; Montresor and Quatraro, 2017).

Within this growing field of enquiry, a number of contributions focus on the enabling

conditions for unrelated diversification. Scholars explored the role of national institutions

on related versus unrelated diversification. For instance, Boschma and Capone (2015)

found that liberal market institutions as compared with coordinated market institutions

favour more unrelated diversification at the country level; Cortinovis et al. (2017) did

not find any effect of regional formal and informal institutions on the tendency of regions

to diversify in related or unrelated activities. Specifically focusing on innovation capa-

bilities, Xiao et al. (2018) showed that knowledge-intensive European regions are more

likely to move into unrelated activities, as compared with knowledge-extensive regions

in the European periphery, hence showing that innovation capabilities act as substitute

for relatedness. Similarly, Montresor and Quatraro (2017) stressed the role of regional

specialisation in Key Enabling Technologies (KETs) in engendering regional structural

change. In particular, regions with a strong presence of such enabling technologies tend

to diversify in unrelated activities (Montresor and Quatraro, 2017).

Insights from the emerging literature on regional unrelated diversification have remained

fragmented at best. In particular, while underling that local innovation capacity allows

regions to break from their past and to develop new specializations, extant literature is

only weakly informative about which innovation capabilities matter. Xiao et al. (2018)

rely on the categorization of regions developed by Marsan and Maguire (2011), which is

based on innovation as well as socio-demographic and economic variables. While provid-

ing a comprehensive assessment of multiple dimensions of regional characteristics, this

measure does not allow to disentangle the role of each of them, particularly with respect

to the innovation capabilities. Given the increasing importance of science, technology and

innovation policies tailored on the needs of localities, it is of key importance to consider

the role of individual local enabling conditions for regional diversification.

Comparing advantages and disadvantages of academic and private sector research, Aghion

et al. (2008) reason that academic research can be indispensable for early stages of the

innovation process. This is because academia allows scientists to freely pursue their own

research interests, hence leaving creating control in the hands of scientists. Accordingly,

academic research is more likely to result in new research lines, due to the possibility of
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scientists to wander off in their preferred research directions (Aghion et al., 2008). More-

over, academic institutions play a major role in supporting the creation of networks of

learning and recombinations thanks to their well connected international research net-

works (Boschma and Gianelle, 2014). Therefore, innovations resulting from academic

knowledge will be more often breakthroughs that build on the latest knowledge available

inside universities and that span the existing technological boundaries, hence allowing

regions to diversify in new technological domains.

However, highly complex knowledge such as academic knowledge is hardly transferable

outside academia, if not through people. This is primarily due to its characteristics of

stickiness and tacitness (Breschi and Lissoni, 2001a, 2003, 2009; Foray, 2004). Such knowl-

edge is in fact highly contextual and difficult to codify, therefore more easily transmitted

through face-to-face contacts and personal relationships. As a consequence, mobility of

human capital is a crucial mechanism for the local diffusion of knowledge via the mobility

of scientists and technologists (Breschi and Lissoni, 2001b). As a matter of fact, previous

research shows that the involvement of academic inventors is crucial for firms’ innovative

performance (see e.g. Allen, 1977; Cockburn and Henderson, 1998; Zucker et al., 2002;

Gittelman and Kogut, 2003; Fabrizio, 2009; Cassiman et al., 2018). In particular, when

undertaking co-patenting under the umbrella of university-industry joint research activity,

academic inventors play an important role in translating tacit and complex early-stage

research into valuable technologies (Peeters et al., 2018).

Academic inventors are able to command recombination dynamics across different and

loosely related domains, thanks to their peculiar knowledge sets and skills deriving from

their distinct educational endowment. This latter has been found to be crucial in team-

work knowledge production, especially as far as inventors trained in science and engi-

neering are concerned (Allen, 1977). In this direction, inventors with higher educational

attained, particularly academic inventors, are likely to show better problem solving ca-

pacities and the ability to conduct boundary-spanning research, due to their cognitive

abilities and attitude towards innovation (March and Simon, 1958; Hambrick and Mason,

1984; Gagné and Glaser, 1987; Walsh, 1995; Pelled, 1996; Hargadon, 2006). Morevoer,

recent literature has found that patents spanning technological boundaries are more likely

to be introduced by scientist than engineers, supporting the idea that inventors in sci-

entific institutions possess the necessary capabilities to cope with the recombination of

knwoledge inputs drom different, and not necessarily related, technological domains (Gru-

ber et al., 2013).

Following such line of reasoning, we postulate that academic inventors contribute to re-

gions’ technological diversification because they act as boundary-spanning carriers of uni-

9



versity knowledge, hence allowing the generation of innovations that are new and unrelated

to existing ones.

Hp2: Academic inventors limit the impact of relatedness on regions’ entry into new tech-

nological domains

3 Data and methods

3.1 Data sources

We carry out the econometric analysis on a panel dataset of 103 Italian NUTS 3 regions

over a ten year period (1998-2008). Our data sources are the Organisation for Economic

Cooperation and Development (OECD) RegPat database, the Academic Patenting in

Europe (APE-INV)4 database, along with regional data from Cambridge Econometrics

European Regional Database and from the Italian National Institute of Statistics (Istat).

3.2 Variables

3.2.1 Dependent variable

Our dependent variable is the five-year moving average of the yearly count of new techno-

logical specialisations in each region, hence measuring the extent of technological diver-

sification inside regions. Following extant literature on the emergence of new economic

activities in regional contexts, we define technological specialisations on the basis of the

index of Revealed Technological Advantage of region i in technology s at time t (RTAist)

(see e.g. Boschma et al., 2013; Colombelli et al., 2014; Montresor and Quatraro, 2017).

Such index is calculated with a Balassa indicator of trade specialisation, redefined in terms

of count of patents filed in the corresponding IPC class (Soete, 1987), in each region i at

time t.

RTAist =
PATist/

∑n

i=1
PATist∑m

s=1
PATist/

∑n

i=1

∑m

s=1
PATist

A region is defined as technologically specialised when RTAist > 1 and 0 < RTAist−k < 1,

that is, when it enters a new specialisation at time t, which did not have at time t − k.

We hence build a binary indicator called New_RTAist equalling 1 when region i acquires

a new technological specialisation s at time t.

Once identified the cases of regions entering new specialisations, we simply count them

across time and space. Given our interest in academic knowledge spillovers at regional

4APE-INV is a project on academic patenting in Europe that has been funded by the European
Science Foundation. See Lissoni (2013) and project website for full details (http://archives.
esf.org/coordinating-research/research-networking-programmes/social-sciences-soc/

current-research-networking-programmes/academic-patenting-in-europe-ape-inv.html).
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level, we based our analysis on a variable aggregated at technology level, entryit, which

counts the number of new technological specializations of region i at time t, as follows:5

entryit =
∑

s

New_RTAist

This variable may suffer from the inherent volatility of patent data, because the emergence

of a new RTA in a given year may be artificially due to a small number of patent appli-

cations in that specific technological domain in the previous year. In order to attenuate

this bias, we use the five-year moving average in the construction of the dependent vari-

able (ma_entryit), following previous literature (Montresor and Quatraro, 2017).6 The

five-year moving average of newly acquired specialisations ranges between 0.4 and 87.4,

while its mean value is 23.3 (see Table 2).

3.2.2 Independent variables

In this paper we are interested in the effect of spillovers from academic knowledge on

regions’ technological specialisations. To measure academic knowledge spillovers we use

the participation of academic inventors in local patenting activity. As underlined in the

literature section, inventive activity is very often a collective activity. Moreover, the for-

mation of researchers’ teams involving university scientists is an effective mean to transmit

university knowledge to the society, hence generating knowledge spillovers (see e.g. Varga,

2000)

We measure academic inventors’ involvement via three variables, which we use separately

in the regression analysis and which allow us to test our first hypothesis. These are

constructed with data from the APE-INV database. This database allows the identifica-

tion of academic inventors and their home address within the list of patent applications

at the European Patent Office. In the first place, we use a yes/no dummy indicating

whether at least one university-based inventor is involved into patenting activity at year

t in NUTS 3 region i (acad_patit). This variable is constructed by tagging patent ap-

plications with at least one academic inventor among the list of inventors, and allows to

clearly distinguish regions where there are academic inventors from those where there are

not. However, it does not capture the extent of inventors’ participation into local patent-

ing activity. For this reason, we also work out the decimal count of patents that involve

at least one academic inventor at year t in region i (n_acadpatst). With respect to the

5For comparison with the extant literature, the estimates carried out at the region-technology level
are also reported as a robustness check.

6Although arbitrary to a certain extent, a five-year period of time can be reasonably thought long
enough to smooth the erratic trend of the flow of patents. Si puo’ legare questa spiegazione con la
letteratura patent, in cui per esempio le forward citations si prendono sempre a 5 anni?
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dummy acad_patst, this variable provides a measure of the amount of academic knowl-

edge spilling out through patenting in a given region at a given point in time. Finally,

we construct a binary indicators for the top quartile of the distribution of the previously

described count variable (top_acadpatit). We attach value 1 to all regions where there

was the highest count of patents involving university scientists for their inventions (top

25% of n_acadpatit). This dummy identifies regions characterised by a relatively high in-

volvement of academic inventors, thus mirroring high contribution of academic knowledge

to local patenting activity. As shown in Table 2, almost half of the yearly observed re-

gions display academic patenting (mean of acad_patit = 0.48); the mean count of patents

involving academic scientists per region per year is 1.12 in the full sample, while it is 2.31

in the sample of regions where there is some academic patenting activity (that is, where

acad_pat = 1); finally, 23% of regions display intense involvement of university scientists

(mean of top_acadpat = 0.23).

To test the second hypothesis of this work we interact a given measure of academic inven-

tors’ participation to local patenting activity with an index of relatedness. Relatedness

measures the extent of regions’ reliance on related technological domains, since it measures

the proximity of newly acquired specialisations, as measured by entryit, to pre-existing

ones. Following extant research (see e.g. Montresor and Quatraro, 2017), we rely on the

relatedness index proposed by Hidalgo et al. (2007), who measure proximity between

product pairs at country level. We adapted their measure to our framework by looking

at the technology pairs at region level. We exploit patent technological classes to proxy

for technologies. Firstly, we measure proximity between a given new technology s at time

t and the technologies in which the region was specialised at time t − k. Proximity is

defined as the minimum of the pairwise conditional probability of a region having RTA

in a technology s, given that it has RTA in another technology z:

proxs,z,t = min {P (RTAs,t|RTAz,t), P (RTAz,t|RTAs,t)}

Secondly, all of the proximity linkages found for each technology in which the region was

specialised at time t − k are grouped together through a density index (one for each

technology), as follows:

densizt−1 =

∑
s 6=z proxszt−1New_RTAist∑

s 6=z proxszt−1

An average density is then calculated with respect to all new technologies in region i:

relatednessit =
∑

s 6=z

densizt−1 ×
New_RTAizt∑
z 6=s New_RTAizt

Such average density is a proxy for the extent to which the new technological advan-
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tages (RTA) that a region gains at time t are, on average, close to those in which it had

gained an advantage previously (at t − k). In other words, it is a proxy for relatedness.

Similarly to the dependent variable, we work out the five year moving average of relat-

edness (ma_relatednessit) in order to tackle the intrinsic volatility of patent applications.

3.2.3 Control variables

We construct a vector of control variables to better isolate the role of academic inven-

tors as carriers of knowledge spillovers for regional diversification patterns. In the first

place, we control for other channels throughout which universities contribute to the local

economy. As pointed out in the literature section, besides fostering knowledge transfer

and exchange, academic institutions contribute to the local production of knowledge by

supplying skilled human capital to the labour market along with the results of scientific

research (Veugelers and Del Rey, 2014). In order to account comprehensively for the role

of universities in the local economy, we hence control for the percentage of science and

technology graduates (ST_gradit) per thousand inhabitants aged 20-29, and for the level

of R&D expenditure of universities (R&D_univit). Both variables are constructed using

data from ISTAT.

Secondly, we control for new firm formation to account for a potentially important source

of technological diversification, namely new firms entering the local economy. To mea-

sure firm formation we work out the share of new firms at time t over registered firms

at t − 1 (new_firmsit), using data gathered from the Union of the Chambers of Com-

merce (Unioncamere) through the Movimprese dataset. These statistics exclude those

types of entrepreneurial activities that are not subject to compulsory registration with

the Chamber of Commerce.7 Finally, we include region-level gross domestic product and

employment, to account for local level determinants related to the size and economic per-

formance of localities. Data for these variables are collected from Cambridge Econometrics

European Regional Statistics. All variables are listed and their sources are reported in

Table 1, while their descriptive statistics and correlation matrix are presented in Tables

2 and 3, respectively.

Given the skewness of some of the continuous variables, we transform them so to smooth

their trend. We apply the inverse hyperbolic sine transformation that allows not to lose

any zero in the variables.8 For consistency and to ease interpretation of the results, we

7We may also include the region total R&D expenditure as a driver of diversification, but this infor-
mation is not fully and systematically available at NUTS3 level. In addition, the total R&D expenditure
is expected to be partly captured by (and highly correlated to) university R&D as well as by the last set
of control variables, namely gdp and employment.

8This is an alternative to the Box-Cox transformations, defined by the following formula: inverse
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transform all continuous variables using the same method.

TABLES 1, 2, 3 ABOUT HERE

3.3 Methodology

To test our hypotheses we estimate the following equations:

ma_entryi,t = β0 + β1acad_involvi,t + β2ma_relatednessi,t + γXi,t + ǫ (1)

ma_entryi,t = β0 + β1acad_involvi,t + β2ma_relatednessi,t

+β3acadinvol ∗ relatedi,t + γXi,t + ǫ
(2)

Where acad_involvi,t indicates the use of one of the three variables that measure academic

inventors’ involvement into local patenting activity (acad_patit, n_acadpatit, top_acadpatit),

and Xit is the vector of control variables.

We employ various panel data regression techniques. Specifically, we estimate a fixed

effects model followed by a mixed effects model and a spatial regression model. The fixed

effects model is the first preferred method because of the NUTS 3 region-level unobserv-

able factors that can not be measured. A mixed-effects model is used to account for the

hierarchical structure of our data, which is due to the administrative structure of Italian

regions. In fact, 103 NUTS 3 regions are nested within a higher-level structure, this being

made up of 21 NUTS 2 regions (19 regions and 2 autonomous provinces). To account

for NUTS2 as well as NUTS3 variation, we estimate a multi-level mixed effects panel

model. A multi-level, sometimes also called a hierarchical, random coefficient or mixed-

effect model, is defined as a model that relates a dependent variable to predictor variables

at more than one level (Luke, 2004). Finally, we implement a spatial regression model to

measure the effect of academic knowledge spillovers when their spatial lags are accounted

for. In particular, we use the spatial Durbin auto-regressive model where we control for

the spatially lagged independent variables measuring academic inventors’ involvement in

local patenting activity.

Additionally, we implement two sets of regressions to check the robustness of our results.

First, we replicate the fixed and mixed effects panel regressions to estimate equations (1)

and (2), but we employ a different measure of academic inventors’ involvement into local

patenting activity. To account for the precise amount of university-based scientists in

y = log[yi + (y2i + 1)1/2]. Except for very small values of y, the inverse sine can be interpreted as a
standard logarithmic variable. However, unlike a logarithmic variable, the inverse hyperbolic sine is
defined at zero (Johnson, 1949; Burbidge et al., 1988; MacKinnon and Magee, 1990).
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patenting, we work out the share of academic inventors per each patent. We sum up the

shares so calculated at region-year level so to end up with the exact fractional count of

academic inventors per region-year (acad_invit). Secondly, we implement a population-

averaged probit model at the technology-region level that allows comparability with the

usual regression framework in the economic geography literature on regional technolog-

ical specialisations, where the analysis is carried out at technology-region level (see e.g.

Boschma et al., 2014, 2013; Colombelli et al., 2014). In so doing, we estimate the deter-

minants of the entry into new regional technological specialisations, where the latter is

measured by a dichotomous indicator equalling 1 each time regions enter a new speciali-

sations (entryit).

4 Academic inventors and recombinant capabilities: descriptive

evidence

In this work, we argue that university-based inventors contribute to the technological

diversification of the regions where they are located because they are able to successfully

manage the recombination process, not just among similar and related technological do-

mains, but also across different and not necessarily related domains (see e.g. Gruber et al.,

2013). Hence, we postulate that academic knowledge spillovers transmitted by individual

scientists are conducive of unrelated specialisation within regions. Academic scientists are

endowed with a special set of knowledge and skills that allow them to successfully engage

in the recombinatorial activity that is necessary to produce new knowledge and innova-

tion (Gagné and Glaser, 1987; Hargadon, 2006). As a matter of fact, it has been shown

that academics’ involvement in industrial inventive activity lead to patents that have

stronger scientific links (higher citations to non-patent literauture), higher complexity

(larger technological patent scope), higher technological impact and higher probability

of being novel, with respect to non-academic patents (Ljungberg and McKelvey, 2012;

Lerner, 1994; Callaert et al., 2006).

In order to empirically support the superior recombinant capabilities of academic inven-

tors, we provide descriptive evidence about the difference between patents generated by

inventor teams involving academic scientists and patents not involving any university-

based inventor. Table 4 shows the figures for a set of OECD quality indicators (Squiccia-

rini et al., 2013), for the whole sample of Italian patents in years 1998-2008 as well as for

the sub-samples of academic and non-academic ones.9 We perform t-tests to assess the

9We used nearly all the indicators provided by the OECD. We excluded those available for few ob-
servations only, with the exception of generality, which we kept because both samples have the same
percentage of non-missing values (37%).

15



significance of the difference in means across the two sub-samples.

Patents involving academic inventors display, on average, larger means than those not

generated by academics, in all indicators but two, namely the count of forward citations

received in a 5 and 7 year time window (fwd_cits5 and fwd_cits7 ). Yet, the count of

the most important forward citations (fwd_cits5_xy and fwd_cits7_xy) are significantly

higher, thus showing the higher technological impacts of patents involving academic sci-

entists. In addition, patents invented by mixed teams of inventors display a significantly

lower mean count of backward citations (bwd_cits). This is in line with our argument as it

shows that those inventions rely less on extant patents, hence arguably less on pre-existing

knowledge stocks. In fact, large numbers of backward citations may signal the innovation

to be more incremental in nature (Lanjouw and Schankerman, 2001). Relatedly, we also

find that these patents rely more on non-patent literature (npl_cits), supporting the hy-

pothesis that academic inventors have stronger scientific links.

All other indicators show that patents invented by teams involving academic scientists

have higher complexity (larger patent_scope and claims), higher relevance for subsequent

inventions (higher generality), higher breadth of the technology fields on which patents

rely (larger originality),10 and higher novelty with respect to the predecessors they rely

upon (higher radicalness).

The descriptive evidence here presented is in line with extant research (see e.g. Ljungberg

and McKelvey, 2012; Lerner, 1994; Callaert et al., 2006) and strengthens the arguments

that we bring forward in this work. In particular, it provides substantial support to

the argument that patents generated by teams involving academic inventors may repre-

sent boundary spanning inventions through which regions enter into new and less related

technological domains.

TABLE 4 ABOUT HERE

5 Results

5.1 Main results

Table 5 displays the results of the fixed effects estimation of equations (1) and (2). Relat-

edness to pre-existing specialisations significantly explains the extent of regions’ entry into

new technological domains, as can be noted from the positive and significant coefficients

10The patent originality measure was first proposed by Trajtenberg et al. (1997), who operationalise
the concept of knowledge diversification and its importance for innovation: inventions relying on a large
number of diverse knowledge sources are supposed to lead to original results (i.e. on patents belonging
to a wide array of technology fields) (Squicciarini et al., 2013).
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of ma_relatednessit across all estimates. This result is expected and fully in line with

extant research.

Let us now turn to the hypothesised positive contribution of academic inventors to regional

diversification and their moderating role on relatedness. Our arguments are supported by

columns (3), (5) and (7), where both hypotheses are tested. Regions displaying academic

knowledge spillovers vehiculated by university inventors show a higher count of new spe-

cialisations. In particular, regions where academic inventors are involved (acad_patit = 1)

have a 5% higher count of new specialisations with respect to regions where there is no

involvement of university scientists. Similarly, a 1% increase in the count of patents

involving academic inventors (n_acadpatit) generates a 5% increase in the new special-

isations. Finally, the highest involvement of academic scientists (top_acadpatit = 1) is

associated to a 6.7% higher count of new specialisations.

The significantly negative interaction terms between academic knowledge spillovers and

relatedness show that university scientists moderate the role of relatedness, particu-

larly when the precise amount of patents involving academics is used (coefficient of

n_acadpatit ∗ ma_relatednessit significant at 1% level). Therefore, university based

scientists reduce the tight reliance of regions upon pre-existing technological domains.

Figures 1, 2 and 3 show the interaction effects. It can be noted that the slope of the

relatedness effect is lower when academic inventors are involved, with respect to the case

of no involvement, thus mirroring a smaller effect of relatedness on the dependent variable

(Figure 1). A similar pattern is traced when the dummy indicator top_acadpatit is in-

teracted with relatedness (Figure 3). Figure 2 shows that the larger the count of patents

involving academic inventors, the smaller the effect of proximity to existing specialisations

on the extent of regions’ entry into new technological areas.

As for the control variables, university graduates in science and technology are found to

positively influence the entry of regions into new specialisations. on the contrary, the

coefficient of new firms’ formation is only weakly significant, and just in a few regressions.

The results of the mixed effects regressions, presented in Table 6, are in line with what has

just been discussed. In particular, a 8% larger amount of new specialisations is associated

to regions where academic inventors participate to local patenting activities, as well as

to a 1% increase in patents involving them; similarly, a +10% in specialisations is linked

to regions where the largest amount of university scientists take part to local patenting

dynamics.

TABLES 5, 6 ABOUT HERE

FIGURES 1, 2, 3 ABOUT HERE

17



5.2 Robustness checks

The first set of regressions carried out in order to check the robustness of the main results

is presented in Table 7. The coefficients of acad_invit, measuring the fractional count

of academic inventors per region-year, is positive and significant across all estimations.

Therefore, the larger the amount of university-based scientists involved in local patenting

activity, the higher the amount of new specialisations entered by regions. In addition,

the interaction term between acad_invit and relatedness is negative and significant in ev-

ery model, hence allowing once again not to reject the hypothesis about the moderating

role of university knowledge spillovers. Therefore, whether we measure the importance

of university knowledge spillovers by considering inventions (as in the main estimates)

or inventors (as in the robustness checks), we obtain comparable results that sustain our

hypotheses.

The second set of regressions is meant to control for possible spatial dependence in our

data. Following Montresor and Quatraro (2017), geographical spillovers might be at stake

when investigating regional technological diversification. The spatial regressions in Table

8 also provide support to our findings (see columns 1, 5 and 9), although the magnitude

of the effects is larger than those of the previous estimates. As for the coefficients of the

spatially lagged variables, we find that spatial dynamics seems to be at stake to some

extent only as far as ma_entryi,t is concened, while academic involment is significant

only in one out of three estimations.

Since exclusive reference to coefficients may not be reliable in ascertaining the existence of

spatial spillovers (LeSage and Pace, 2009) , following Elhorst (2014) in the other columns

of Table 8 we look at the effects that a change in our explanatory variables in a particular

region has on the dependent variable in both that region (direct effect) and on closer

regions (indirect effect), as well as on their sum (total effect).

Interestingly, these results show no significant spatial effects of academic inventors’ par-

ticipation to patenting activity, since the spatial lags of academic involvement is never

significant. This result is in line with the well-known argument that knowledge spillovers

are most often spatially bounded (see e.g. Breschi and Lissoni, 2001a).

The last set of regressions allows to test the sensitivity of our results by comparing them to

the most common regression framework in the economic geography literature on regional

technological specialisations, where the analysis is carried out at technology-region level

(see e.g. Boschma et al., 2014, 2013; Colombelli et al., 2014). In line with our previous

estimations, Table 9 shows that the probability of a region to enter a new technological
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specialisation is positively associated with relatedness as well as with academic knowl-

edge spillovers. In addition, the coefficients of the interaction term provide grounds to

the argument that academic inventors lessen the role of proximity to pre-existing speciali-

sations. Our arguments are therefore robust also when implementing a technology-region

level framework.

TABLES 7, 8, 9 ABOUT HERE

6 Discussion and conclusion

This work has investigated the relationship between university knowledge - transmitted by

academic inventors - and regional technological specialisations, motivated by the increas-

ing academic and policy interest in the determinants of sustainable regional technological

trajectories (see e.g. Boschma et al., 2017; Boschma, 2017). We have shown that the

involvement of academic inventors into local patenting dynamics is positively related to

the amount of new technological specialisations entered by a region. This result is ro-

bust to the employment of several measures of academic inventors’ involvement, including

the count of patents invented by mixed teams of academic and non-academic inventors

and the exact count of university inventors inside regions. Crucially, we also show that

academic inventors mitigate the reliance of localities upon pre-existing specialisations.

Specifically, we find that the role of technological relatedness for regional specialisation

is smaller in regions where university scientists are involved in patenting, with respect to

regions where these are not (or less) involved. The empirical analysis relies upon panel

data regression techniques implemented on a panel of Italian NUTS 3 regions with data

available over years 1998-2009.

Our results offer new insights on the factors influencing regional diversification strategies,

hence contributing to the flourishing stream of economic geography literature investi-

gating such issues. In particular, the results of this work contribute to the academic

debate around related and unrelated technological diversification of a territory (see e.g.

Frenken et al., 2007; Boschma and Capone, 2015; Cortinovis et al., 2017). While extant

research shows that regions tends to diversify into technologically related economic activ-

ities, recent studies contends that enduring economic growth is likely to be generated by

unrelated diversification. Yet, the empirical evidence on the driving factors of unrelated

diversification is still scant and, as a consequence, not conclusive. Our work brings an

important novelty within this framework, underscoring the key role of local innovation

capacity (Xiao et al., 2018), focusing specifically on the role of local academic institutions

and academic inventors. With this regard, we share the view of Tanner (2014), whose

study contends that the process of regional diversification relies also on knowledge gen-

erated by non-industrial actors such as universities and research institutes. The author
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claims that the role of universities and research centres in the process of regional diver-

sification should not be neglected, as it has been done so far in the literature (Tanner,

2014). Similarly, Boschma (2017) underlines that a micro-perspective on regional diversi-

fication should not be limited to purely economic actors, since public agencies, including

universities, can play a major role in developing new industries unrelated to the existing

development paths. We took on board these suggestions with the aim of exploring the

proposed research venues about the role of academic institutions for regional diversifi-

cation. Our work hence tries to bridge the economic geography literature on regional

specialisation with the economics of innovation literature studying the role of academic

institutions for economic development. To the best of the authors’ knowledge, this is the

first attempt to do so.

We show that academic knowledge has a pivotal role for unrelated diversification, since

it allows the entry of regions into a larger number of new, unexplored and only loosely

related technological domains. Our argument rests on the assumption that knowledge

spillovers transmitted by academic scientists involved into local patenting activity lead to

inventions that spans the existing technological boundaries. In fact, by comparing patents

involving academic scientists with the rest of the inventions on a number of key character-

istics, we show that inventions generated by teams involving academic and non-academic

scientists tend to be less related to the existing stock of technological knowledge; that is

to say, they are technologically unrelated to previous domains. In our regression analysis,

regions that feature higher involvement of academic inventors, as well as higher count of

patents generated by mixed teams of inventors, display a larger count of new technologi-

cally unrelated specialisations with respect to other regions. This provides support to the

hypothesised positive influence of academic inventors on regional diversification.

Secondly, this study provides substantial empirical evidence on the substitution effect be-

tween technological relatedness and academic inventors. This result goes in the direction

outlined by Boschma (2017), who argue that there is a need to increase the understanding

of the conditioning factors facilitating more related or more unrelated diversification in

regions (Boschma and Capone, 2015; Montresor and Quatraro, 2017). The argument that

we bring forward, confirmed by the data, is that relatedness to pre-existing technological

domains is less relevant for the amount of new specialisations entered by a region, when

university scientists are involved in patenting activities. This happens because academic

scientists, who are endowed with a special set of skills and expertise that allow them

to cope with knowledge recombination across unrelated technological domains (Gruber

et al., 2013), are less reliant on the existing stocks of knowledge. Besides a direct role

of academic inventors for the entry of regions into new technological domains, we hence

document an indirect effect of scientists’ involvement into local patenting dynamics: by
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generating inventions that span across technological boundaries and by contributing to

their diffusion outside academia, academic inventors limit the reliance of a territory upon

related technologies, thus representing a conditioning factor facilitating unrelated diversifi-

cation. Such indirect effect is highly important as it helps avoiding potential lock-in effects

deriving from related diversification (Saviotti and Frenken, 2008). Negative sector-wide

performances may in fact be dangerous particularly in regions pursuing diversification

strategies based on related diversification. Therefore, long-term sustainable development

trajectories should rely less on related diversification in order to ensure economic growth

together with decreasing unemployment (Frenken et al., 2007; Davies and Tonts, 2010;

Neffke et al., 2018).

As with any study, this work has a few caveats, including the well-known limitations in the

use of patent statistics as indicators of technological activity and the measure of academic

knowledge spillovers by means of academic inventors’ participation into local patenting

activity. With respect to the first issue, prior research proves that patent data represent

a reliable measure of innovation (Acs and Audretsch, 1989; Archibugi and Planta, 1996);

in addition, patents are particularly useful in the context of regional innovation patterns

(see e.g. Acs et al., 2002). As for the measure of knowledge spillovers, we exploit infor-

mation on academic inventors to create a reliable indicator of knowledge flowing outside

academia on the ground of the well-known consideration that knowledge diffuses primarily

through people (Breschi and Lissoni, 2001b). This is particularly true for highly complex

knowledge, such as academic knowledge, characterised by being sticky and tacit (see e.g.

Breschi and Lissoni, 2001a; Foray, 2004). Extant research also shows that academic in-

ventors have a key role for companies’ as well as regions’ innovation perfomance (Meyer

et al., 2003; Lissoni, 2010). Yet, in the empirical analysis we add two measures of other

relevant channels through which academic knowledge diffuses in the society - the percent-

age of science and technology graduates and the level of R&D expenditure of universities

- (Veugelers and Del Rey, 2014), with the aim of properly isolating the influence of aca-

demic inventors on regional diversification.

Nonetheless its limitations, this study offers interesting insights both for the academic

literature and for the policy discourse around regional specialisation, and more generally,

regional development. As underlined in the previous paragraphs of this section, this study

contributes to the literature by empirically showing that academic knowledge has a major

role in regional diversification trajectories and that it also acts as a moderating factor

of technological relatedness. Importantly, we highlight that academic scientists have a

key role in the knowledge dynamics behind unrelated diversification, as they allow the

generation of knowledge that spans across technological boundaries. Therefore, we believe

that this work sheds new light on the process of regional technological diversification and,
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hopefully, paves the way for future research aimed at uncovering other key determinants

of successful and sustainable technological development.

From the policy standpoint, the findings of this work contribute to the long-lasting debate

on local development strategies by offering new hints on the factors upon which regions

should leverage in order to activate sustainable development trajectories. While the re-

gional diversification thesis offers new possibilities to policy makers to be more strategic

in designing regional innovation policies (Tanner, 2014), our study underscores that it is

of key importance to include non-economic actors like universities in order to successfully

promote the development of new emerging industries. Academic institutions have a major

role in the generation of new knowledge and, consequently, in technological development.

Therefore, supporting the interaction between those who are primarily involved in the

knowledge generation process inside universities, such as researchers and scientists, and

the society, is of paramount importance. In particular, our findings highlight that the

interaction between academic scientists and inventors inside companies is beneficial to

the generation of inventions that opens up new and unrelated technological trajectories.

Policy measures supporting academia-business interactions specifically aimed at the gen-

eration of new research discoveries and, eventually, their protection through patenting,

are likely to help achieve regional unrelated diversification. Such measures will also allow

to overcome the different and often diverging priorities of the university research system

and companies (see e.g. Aghion et al., 2008; Dasgupta and David, 1994): on the one hand,

research activity aimed at the creation of new knowledge certainly represents an incen-

tive for academic scientists, who are often highly interested in conducting pure research;

on the other hand, patent protection may incentivize companies to engage in that type

of research, as it allows them to appropriate the economic benefits of their inventions.

By doing so, patents create the basis for emerging industries because they secure the

exploitation of inventions for the years to come.
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7 Tables

Table 1: Variable list and description

Variables Description Data source

Dep. var. 1 ma_entry
5y moving average of the count of new
technological specialisations

OECD RegPat

Indep. var. 2 ma_relatedness
5y moving average of proximity between new
and pre-existing technological specialisations

OECD RegPat

3 acad_pat
0/1 dummy for at least one academic inventor
in patent

APE-INV

4 n_acadpat
Count of patents with at least one academic
inventor in patent

APE-INV

5 top_acadpat 0/1 dummy for top 25% of n_acadpat APE-INV

Contr. var. 6 share_new_firms
New registered firms at time t / registered
firms at t-1

??

7 S&Tgrad
Science and technology graduates per 000s
inhabitants aged 20-29 (%)

Istat

8 R&Duniv R&D expenditure of universities Istat
9 gdp Gross domestic product (000s euros) Cambr. Econom. ERD
10 empl Employment (000s) Cambr. Econom. ERD

Table 2: Descriptive statistics

Variable Obs Mean Std Dev Min Max

ma_entry 1,030 23.37961 18.58636 0.4 87.4
ma_relatedness 1,030 0.012044 0.015082 2.86E-05 0.086413
acad_pat 1,030 0.485437 0.500031 0 1
n_acadpat 1,030 1.121391 2.761948 0 29.75
top_acadpat 1,030 0.238835 0.426579 0 1
share_new_firms 1,030 0.069071 0.00933 0.036698 0.109761
S&Tgrad 1,030 8.526005 4.276594 0.075171 18.0087
R&Duniv 1,030 48482.72 64217.69 0 595992.4
gdp 1,030 13.76505 19.21432 1.646 148.935
empl 1,030 234.5869 297.1919 31.909 2164.37
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Table 3: Correlation matrix

1 2 3 4 5 6 7 8 9 10

1 ma_entry 1
2 ma_relatedness 0.9550* 1
3 acad_pat 0.4793* 0.4139* 1
4 n_acadpat 0.5460* 0.6396* 0.4182* 1
5 top_acadpat 0.4709* 0.4493* 0.5767* 0.6202* 1
6 share_new_firms 0.1283* 0.1223* 0.1240* 0.0867* 0.0902* 1
7 S&Tgrad 0.4742* 0.4638* 0.3394* 0.5591* 0.4532* -0.0566 1
8 R&Duniv 0.5260* 0.5653* 0.3525* 0.7269* 0.4803* 0.0752* 0.7366* 1
9 gdp 0.6482* 0.7321* 0.3344* 0.8273* 0.4388* 0.0868* 0.6454* 0.9028* 1
10 empl 0.6408* 0.7174* 0.3504* 0.8130* 0.4563* 0.0811* 0.6660* 0.9258* 0.9942* 1

* p<0.1

Table 4: OECD Quality Indicators: mean comparison test

Full sample
N=50831

Academic
N=2490

Non-academic
N=48341

T-test

obs mean obs mean obs mean diff in mean signif

patent_scope 50827 1.658134 2490 2.127711 48337 1.633945 0.493766 ***
family_size 50831 5.302119 2490 6.295582 48341 5.250946 1.044636 ***
bwd_cits 50831 5.016624 2490 3.918876 48341 5.073168 -1.154292 ***
npl_cits 50831 1.196022 2490 3.828112 48341 1.060446 2.767666 ***
claims 50831 13.42616 2490 16.24096 48341 13.28117 2.95979 ***
claims_bwd 48663 3.800767 2291 6.463937 46372 3.669193 2.794744 ***
fwd_cits5 50831 0.861207 2490 0.798795 48341 0.864422 -0.0656263
fwd_cits5_xy 50831 0.367138 2490 0.395582 48341 0.365673 0.0299093 **
fwd_cits7 50831 1.144853 2490 1.173494 48341 1.143377 0.030117
fwd_cits7_xy 50831 0.480534 2490 0.530121 48341 0.477979 0.0521411 **
generality 18384 0.303785 920 0.418433 17464 0.297746 0.1206867 ***
originality 49575 0.641131 2294 0.70887 47281 0.637845 0.0710254 ***
radicalness 49588 0.300473 2295 0.352633 47293 0.297942 0.0546914 ***

*** p<0.01, ** p<0.05
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Table 5: Regression results - Fixed effects regressions (1 year lagged regressors)

DV: ma_entry
MODEL: fixed effects

1 2 3 4 5 6 7

ma_relatedness 5.795*** 7.470*** 5.746*** 8.452*** 5.801*** 7.109***
(1.322) (1.608) (1.325) (1.616) (1.322) (1.480)

acad_pat 0.0245 0.0498**
(0.0165) (0.0215)

acad_pat*ma_relatedness -2.251*
(1.234)

n_acadpat 0.0166 0.0520***
(0.0146) (0.0190)

n_acadpat*ma_relatedness -2.060***
(0.710)

top_acadpat 0.0254 0.0671**
(0.0207) (0.0297)

top_acadpat*ma_relatedness -2.690*
(1.374)

share_newfirms -1.866* -1.856* -1.754 -1.908* -1.886* -1.952* -1.997*
(1.111) (1.099) (1.099) (1.100) (1.095) (1.101) (1.099)

S&Tgrad 0.126** 0.113** 0.111** 0.108** 0.108** 0.109** 0.111**
(0.0525) (0.0520) (0.0520) (0.0522) (0.0520) (0.0522) (0.0521)

R&Duniv -0.00424 -0.00470 -0.00506 -0.00463 -0.00493 -0.00463 -0.00465
(0.00805) (0.00797) (0.00796) (0.00797) (0.00794) (0.00797) (0.00796)

gdp -0.263 -0.258 -0.244 -0.268 -0.289 -0.267 -0.256
(0.272) (0.269) (0.269) (0.269) (0.268) (0.269) (0.269)

empl -0.145 -0.163 -0.176 -0.145 -0.138 -0.146 -0.158
(0.267) (0.264) (0.264) (0.264) (0.263) (0.264) (0.264)

Constant 4.918*** 4.945*** 4.966*** 4.878*** 4.879*** 4.885*** 4.911***
(1.157) (1.145) (1.143) (1.146) (1.142) (1.146) (1.144)

Observations 1,030 1,030 1,030 1,030 1,030 1,030 1,030
Number of NUTS3 103 103 103 103 103 103 103
Year FE Yes Yes Yes Yes Yes Yes Yes
R-squared 0.276 0.293 0.296 0.292 0.299 0.293 0.295
F 24.87 23.60 22.47 23.52 22.82 23.54 22.45
Adj-R2 0.184 0.202 0.204 0.201 0.207 0.201 0.203
p 0 0 0 0 0 0 0
log likelihood 385.1 397.3 399.1 396.7 401.5 396.9 399.0

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 6: Regression results - Mixed effects regressions (1 year lagged regressors)

DV: ma_entry
MODEL: mixed effects

1 2 3 4 5 6 7

ma_relatedness 12.80*** 16.49*** 12.60*** 19.50*** 12.55*** 16.46***
(2.586) (2.823) (2.615) (2.911) (2.611) (2.829)

acad_pat 0.0339** 0.0826***
(0.0165) (0.0219)

acad_pat*ma_relatedness -4.541***
(1.366)

n_acadpat 0.0124 0.0855***
(0.0145) (0.0197)

n_acadpat*ma_relatedness -4.389***
(0.800)

top_acadpat 0.0198 0.102***
(0.0207) (0.0305)

top_acadpat*ma_relatedness -5.653***
(1.551)

share_newfirms -1.564 -1.862* -1.697 -1.914* -1.997* -1.943* -2.120*
(1.101) (1.086) (1.083) (1.087) (1.081) (1.088) (1.086)

S&Tgrad 0.120** 0.100** 0.0970* 0.0977* 0.0916* 0.0980* 0.100**
(0.0513) (0.0507) (0.0505) (0.0509) (0.0506) (0.0509) (0.0507)

R&Duniv -0.00619 -0.00665 -0.00744 -0.00653 -0.00750 -0.00653 -0.00675
(0.00813) (0.00798) (0.00797) (0.00799) (0.00798) (0.00799) (0.00797)

gdp 0.415* 0.306 0.341 0.299 0.368 0.302 0.356
(0.238) (0.236) (0.235) (0.237) (0.234) (0.236) (0.236)

empl 0.231 0.171 0.137 0.184 0.126 0.185 0.122
(0.242) (0.239) (0.238) (0.240) (0.237) (0.240) (0.239)

Constant 0.726 1.297* 1.368* 1.258* 1.360* 1.248* 1.438*
(0.751) (0.748) (0.743) (0.750) (0.736) (0.750) (0.746)

Observations 1,030 1,030 1,030 1,030 1,030 1,030 1,030
Number of groups 21 21 21 21 21 21 21
Year FE Yes Yes Yes Yes Yes Yes Yes
chi2 593.5 606.4 636.4 596.9 694.7 598.6 634.9
p 0 0 0 0 0 0 0
log likelihood 77.50 89.85 96.50 87.98 102.2 88.42 96.25

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 7: Robustness check - Fixed effects and mixed effects regressions (1 year lagged regressors)

DV: ma_entry
Fixed effects Mixed effects
1 2 3 4

ma_relatedness 5.563*** 10.40*** 12.11*** 23.32***
(1.325) (1.728) (2.606) (3.008)

acad_inv 0.0233** 0.0533*** 0.0229** 0.0796***
(0.0101) (0.0122) (0.0101) (0.0126)

acad_inv*ma_relatedness -2.284*** -4.421***
(0.531) (0.605)

share_newfirms -1.891* -1.816* -1.895* -1.899*
(1.097) (1.087) (1.085) (1.068)

S&Tgrad 0.0988* 0.101* 0.0874* 0.0854*
(0.0523) (0.0518) (0.0510) (0.0502)

R&Duniv -0.00491 -0.00577 -0.00681 -0.00890
(0.00795) (0.00788) (0.00797) (0.00790)

gdp -0.264 -0.295 0.302 0.378
(0.268) (0.266) (0.236) (0.231)

empl -0.160 -0.162 0.178 0.115
(0.263) (0.261) (0.239) (0.234)

Constant 4.952*** 5.014*** 1.283* 1.376*
(1.143) (1.132) (0.748) (0.726)

Observations 1,030 1,030 1,030 1,030
Adj-R2 0.204 0.219
Number of code_province 103 103
Number of groups 21 21
Year FE Yes Yes Yes Yes

F 23.88 23.99
ll 399.0 409.4 89.83 114.4
chi2 605.8 757.6
p 0 0 0 0

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 8: Regression results - Spatial Durbin regressions (1 year lagged regressors)

DV: ma_entry 1 2 3 4 5 6 7 8 9 10 11 12
Model: Spatial Durbin Main Direct effects Indirect effects Total effects Main Direct effects Indirect effects Total effects Main Direct effects Indirect effects Total effects

ma_relatedness 38.89*** 39.38*** 27.01 66.39 29.91*** 30.50*** 40.00 70.50 27.00*** 27.42*** 19.31 46.72
(7.617) (7.852) (87.18) (88.33) (6.256) (6.565) (148.4) (149.9) (7.083) (7.357) (63.83) (65.65)

acad_pat 0.592*** 0.603*** 1.878 2.481
(0.0870) (0.0883) (3.061) (3.091)

ma_relatedness*acad_pat -37.08*** -37.02*** -25.04 -62.06
(7.652) (7.686) (73.98) (74.97)

n_acadpat 0.264*** 0.265*** 0.377 0.642
(0.0512) (0.0510) (1.154) (1.167)

ma_relatedness*n_acadpat -13.57*** -13.65*** -18.69 -32.34
(1.676) (1.847) (80.64) (81.46)

top_acadpat 0.570*** 0.581*** 1.878 2.458
(0.116) (0.119) (3.312) (3.356)

ma_relatedness*top_acadpat -32.48*** -32.38*** -22.32 -54.70
(6.537) (6.619) (91.72) (93.26)

S&Tgrad 0.0235 0.0231 -0.000398 0.0227 0.0854 0.0860 0.120 0.206 0.0727 0.0717 0.0395 0.111
(0.0739) (0.0715) (0.232) (0.261) (0.0735) (0.0720) (0.702) (0.721) (0.0770) (0.0739) (0.306) (0.329)

R&Duniv 0.0461* 0.0460** 0.0307 0.0767 0.0713** 0.0723** 0.0988 0.171 0.0693** 0.0696** 0.0445 0.114
(0.0240) (0.0229) (0.105) (0.110) (0.0321) (0.0312) (0.472) (0.479) (0.0302) (0.0291) (0.229) (0.235)

New firms -0.592*** -0.582*** -0.403 -0.985 -0.535*** -0.530** -0.746 -1.276 -0.580*** -0.570*** -0.370 -0.940
(0.201) (0.203) (1.539) (1.579) (0.207) (0.211) (3.815) (3.873) (0.216) (0.217) (2.050) (2.096)

gdp 2.994*** 2.991*** 1.956 4.948 3.092*** 3.113*** 4.083 7.196 3.108*** 3.107*** 2.054 5.162
(0.485) (0.464) (5.736) (5.752) (0.526) (0.526) (17.20) (17.35) (0.546) (0.535) (8.587) (8.687)

empl -1.907*** -1.920*** -1.201 -3.120 -2.053*** -2.080*** -2.621 -4.701 -2.016*** -2.031*** -1.340 -3.371
(0.504) (0.475) (2.978) (3.005) (0.550) (0.528) (9.799) (9.892) (0.567) (0.541) (4.785) (4.880)

rho 0.305 0.457** 0.372*
(0.198) (0.186) (0.209)

sigma2_e 0.184*** 0.179*** 0.195***
(0.0180) (0.0188) (0.0194)

Wx academic involvement 0.891** 0.0316 0.888
(0.420) (0.341) (0.683)

Observations 1,030 1,030 1,030
R-squared 0.810 0.816 0.798
Number of NUTS3 103 103 103
Year FE Yes Yes Yes
ll -591.3 -576.3 -620.4

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

36



Table 9: Robustness check - Probit regressions at technology-region level (1 year lagged
regressors)

DV: entry (0/1)
MODEL: probit

1 2 3 4

relatedness 0.628*** 0.634*** 0.423*** 0.880***
(0.0477) (0.0356) (0.0350) (0.0406)

acad_pat 0.164***
(0.00783)

acad_pat*relatedness -0.895***
(0.0512)

n_acadpat 0.0571***
(0.00584)

n_acadpat*relatedness -0.523***
(0.0175)

top_acadpat 0.128***
(0.00918)

top_acadpat*relatedness -0.960***
(0.0433)

acad_inv 0.0589***
(0.00416)

acad_inv*relatedness -0.441***
(0.0140)

share_newfirm 0.912** 1.048*** 0.985** 1.037***
(0.390) (0.385) (0.383) (0.388)

S&Tgrad -0.0103 0.00642 -0.00273 0.00180
(0.00807) (0.00822) (0.00828) (0.00819)

R&Duniv -0.0134*** -0.00944*** -0.00959*** -0.0121***
(0.00348) (0.00363) (0.00354) (0.00356)

gdp 1.628*** 1.624*** 1.626*** 1.610***
(0.0394) (0.0401) (0.0393) (0.0399)

empl -1.341*** -1.322*** -1.330*** -1.320***
(0.0409) (0.0411) (0.0407) (0.0410)

Constant 1.171*** 1.025*** 1.096*** 1.055***
(0.123) (0.123) (0.123) (0.124)

Observations 640,660 640,660 640,660 640,660
Number of tech-year 64,066 64,066 64,066 64,066
Year FE Yes Yes Yes Yes
chi2 10188 9742 10111 9611
p 0 0 0 0

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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8 Figures

Figure 1: Interaction acadpatit ∗ma_relatednessit

Figure 2: Interaction n_acadpatit ∗ma_relatednessit
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Figure 3: Interaction top_acadpatit ∗ma_relatednessit
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