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ABSTRACT: In this paper, we report on the unexplored reaction mechanisms of bimolecular
homolytic substitution (SH2) between GeH3 radicals and the nitrogen atom of NF3. The SH2
reactions are studied both experimentally and theoretically with ab initio and density functional
theory (DFT) calculations. The experimental results of X-ray irradiation of mixtures of GeH4
and NF3 show the formation of GeH3−NF2 and GeH3−F. The trend of product yields as a
function of the increase in GeH4 partial pressure in the irradiated mixtures evidences the
predominant role of GeH3 radicals. Particularly, the SH2 mechanism can be hypothesized for
the reaction between GeH3 radicals and NF3 molecules leading to GeH3−NF2. This mechanism
is further confirmed by the increase in GeH3−NF2 yield observed if O2 is added, as a radical
scavenger, to the reaction mixture. In agreement with the experimental data, from the
calculations performed at the CCSD(T) and G3B3 levels of theory, we observe that the GeH3−
NF2 product actually occurs from a bimolecular homolytic substitution by the GeH3 radical,
which attacks the N atom of NF3, and this reaction is in competition with the fluorine
abstraction reaction leading to GeH3F, even if other mechanisms may be involved in the formation of this product.

■ INTRODUCTION
Bimolecular homolytic substitution (SH2) reactions are
classical reactions of free radicals, following reaction 1

+ − − +R Y R Y R R1 2 1 2 (1)

Over the years, the SH2 reactions (reaction 1) have received
considerable attention both from experimental and theoretical
points of view. In fact, they are elementary steps of many
chemical reactions, are observed with different types of radicals
(R1), and can be useful not only in the development of novel
synthetic methodologies, particularly to generate new radicals,
but also for the formation of carbon−carbon and carbon−
heteroatom bonds (C−S, C−Si, C−Se, C−Sn, and so forth).1

Generally, these reactions occur at the univalent hydrogen or
halogen atoms (Y = H, Cl, Br, I) but mostly proceed at the
main-group heteroatoms (Y = Si, Ge, Sn, P, O, S, and Se, Te).2

It is generally recognized that the SH2 reactions occur with a
backside mechanism, in which the attack of R1 and the
expulsion of R2 (in reaction 1) occur in opposite directions and
involve a collinear (or nearly collinear) transition structure
(TS) or a hypervalent intermediate.3−5 A frontside R1 attack
has also been proposed, and the two mechanisms can be in
competition.
Both of the mentioned mechanisms can occur for the

homolytic substitution of methyl and acetyl radicals at disilane,
digermane, distannane, silylgermane, silylstannane, and ger-
mylstannane.6 Recently, the reaction of phenyl radicals with
silane was studied both experimentally and theoretically to

investigate the chemical dynamics of phenylsilane formation
via bimolecular radical substitution.7 The occurrence of
frontside and backside mechanisms in the homolytic
substitution by silyl, germyl, and stannyl radicals at the
heteroatom in disilane, digermane, distannane, silylgermane,
silylstannane, and germylstannane has also been theoretically
investigated by Schiesser and co-workers.8 Processes like these
were first reported by Cadman et al.,9 and more recently,
Belter10 explored the reactivity of NF3 with aliphatic and
aromatic substrates. However, despite the general interest in
this kind of reaction, there is a lack of information about the
SH2 reaction between radicals and nitrogen-containing
molecules.
In our previous work, we investigated the reactions between

NF3 and the radicals CH3, C2H5, and i-C3H7, generated by X-
ray irradiation of the corresponding iodides R-I, and we
performed ab initio and density functional theory (DFT)
calculations on the observed reactions. The results of our
investigation indicate that R-NF2 is obtained from a SH2
reaction by the alkyl radicals R, which attack the N atom of
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NF3, while the attack of alkyl radicals at the F atom(s) of
NF3

11 leads to R-F products.
In this work, following our interest in the gas-phase reactions

between the fluorinated compounds and hydrides of C, Si, and
Ge,12 we decided to further investigate the SH2 reactions at the
nitrogen atom using NF3 as a substrate. In particular, taking
into account that the homolytic bimolecular substitution
mechanism that occurs at the nitrogen atom by means of the
germyl radical is still not explored, we studied the reactions
between GeH3 radicals generated by X-ray irradiation and NF3.
For this purpose, we used a combined approach involving
long-time static X-ray radiolysis, gas chromatography−mass
spectrometry analysis at very low temperatures, and high-level
theoretical calculations. We irradiated mixtures of GeH4/NF3
at several partial pressures of reagents, with different irradiation
doses. Moreover, we also used an effective Ge and GeH2
radical scavenger to highlight the reactions of the GeH3
radicals. Three different levels of theory (CASSCF, CCST(T),
and G3B3) have been used to verify the expected reaction
mechanisms between the GeH3 radicals and the NF3
molecules.

■ RESULTS AND DISCUSSION
Radiolysis of GeH4/NF3 Mixtures. X-ray irradiation of

GeH4/NF3 mixtures can produce both ionic and radical species
that lead to the formation of new gaseous species and to the
deposition of solid products.
The relative contribution of radicals and ions to the formed

products can be evaluated considering the average energy
absorbed to form the ion pair,W (i.e., the energy related to the
process: M →M+ + e−; M = GeH4 or NF3), and the ionization
energy, I.13,14 The difference between W and I is always
positive, and the W − I excess energy is available to form
excited molecules and/or radicals.
During the radiolysis of pure NF3, the following radicals are

produced, according to the dissociation reaction:

→ +NF NF F3 2 (2)

The primary radicals formed during the radiolysis of pure
GeH4 are germyl (GeH3) and germylene (GeH2) radicals; it
has been proposed15 that their formation occurs by
decomposition of excited molecules according to eqs 3 and 4

→ +GeH GeH H4 3 (3)

→ +GeH GeH H4 2 2 (4)

The activation energy required for the formation of GeH3 and
GeH2 radicals is 355.6 and 221.8 kJ mol−1, respectively; thus,
the reaction forming GeH2 radicals is favored.

16 Moreover, it
was also observed that GeH2 is further decomposed to give Ge
and GeH and the corresponding reactions compete with each
other in the ratio 9:1.15

The W and I values of NF3 and GeH4 are listed in Table 1,
together with the energy values related to reactions 2−4.16
From these data, it is possible to evaluate the radicals formed

for each ion: about seven from NF3 and about four or six from
GeH4 if reactions 3 and 4 are considered, respectively.
Therefore, the observed products obtained from radiolysis
can be considered to be mainly due to radical reactions.
Moreover, the total energy absorbed by the mixture is

related to the irradiation dose (Gy = J Kg−1), and it is shared
between GeH4 and NF3 on the basis of their mass. Therefore,
even if it is not possible to calculate the actual yields of the
GeH3 and GeH2 primary radicals, it is reasonable to suppose
that the total energy absorbed by germane is split in reactions 3
and 4 with the same ratio in all mixtures, and hence, the
GeH3/GeH2 radical ratio is constant.
All radicals formed participate in the reactions leading to

solid and gaseous products, but the results of our previous
works obtained from theoretical calculations, mass spectrom-
etry, and radiolysis on mixtures containing germane with and
without oxygen indicate that the radicals involved in the
deposition of the solid product are different from the radical
precursors of primary gaseous species detected after radiolysis
experiments.15,17 In particular, the hydrogen-poor species from
germane (GeH2 and Ge radicals and ions) are involved in the
polymerization processes leading to solid products but not in
those leading to primary gaseous products. In fact, if O2 is
added as a radical scavenger (which reacts with GeH2 but not
with GeH3), an oxygenated solid product is obtained, whereas
no variation in gaseous product yields is observed.15,17 This
fact also indicates that the GeH3 (radicals and ions) can be
considered to be related to the formation of the observed
primary gaseous species.15,17 On the other hand, in a previous
work on ion−molecule reactions occurring in the GeH4/
NF3gaseous mixture investigated by ion trap mass spectrom-
etry and ab initio calculations,12b we observed that the GeH3

+

ion does not react with NF3 and no ionic products with Ge−N
connectivity12b,c were evidenced. Therefore, it is reasonable to
suppose that the primary gaseous species observed after
radiolysis are attributable to reactions involving GeH3 radicals.

Table 1. Mean Energy Absorbed to Form an Ion PairW (J molecule−1), Ionization Potential I (J molecule−1), and Energy (ΔE)
Values Related to Reactions 2−4a,b

W I W − I ΔE radicals per ion

5.18 × 10−18 2,16 × 10−18 3.02 × 10−18 4.03 × 10−19 7.5
4.03 × 10−18 1.68 × 10−18 2.35 × 10−18 5.96 × 10−19 3.9
4.03 × 10−18 1.68 × 10−18 2.35 × 10−18 3.68 × 10−19 6.4

aThe calculated number of radicals for each formed ion is also shown. bThe experimental values of W for NF3 and GeH4 are not available, but it is
known that for gaseous molecules the ratio W/I ranges from 2.2 to 2.6.23 Thus, W was obtained from the average value of W/I and the ionization
potential of NF3

16 and GeH4.
24

Table 2. Average Empirical Formula and Hydrogenation Degree (H/(Ge + N) Atomic Ratio) of the Solids Obtained by X-ray
Irradiation, with 100 kGy, of the GeH4/NF3 Mixtures with Different Compositions

NF3 percentage 30% 50% 70%

empirical formula Ge4.35N1F1.676H7.47 Ge 3.77N1F1.45H6.31 Ge 3.29N1F1.57H5.06

H/(Ge + N) atomic ratio 1.40 1.32 1.18
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The characterization of solids obtained from irradiation of
the GeH4/NF3 mixtures indicates that they are networked
polymers of Ge and N, with dangling bonds saturated with F
and H atoms. The average empirical formula (obtained by
elemental and X-ray photoelectron spectroscopy (XPS)
analysis) and hydrogenation degree (H/(Ge + N) atomic
ratio) of the solids obtained by X-ray irradiation (100 kGy) of
the GeH4/NF3 mixtures with different compositions are
reported in Table 2.
The low values of the hydrogenation degree of solids,

varying between 1.40 and 1.18 when GeH4 ranges from 70 to
30%, suggest that even in the GeH4/NF3 mixtures the
hydrogen-poor active species (principally radicals) of germane
play a predominant role in the reaction pattern, leading to the
condensed phase and confirming the above-reported hypoth-
esis.
The gas chromatography−mass spectrometry (GC−MS)

analysis of the gas phase after irradiation of GeH4/NF3
mixtures shows that GeH3F forms in an appreciable quantity
and GeH3NF2 in smaller quantities. Other products are also
observed: a fair amount of digermane and a small amount of
HNF2. The product yields detected from experiments
performed with two different irradiation doses (100 and 200
kGy) and with different GeH4/NF3 relative pressures are
shown in Table 3.
From Table 3, it is observed that the yields of GeH3F and

GeH3NF2 in the gas phase increase if the GeH4 relative
pressure in the irradiated mixture is increased, suggesting that
even for GeH4/NF3 mixtures the reactions leading to gaseous
products happen through mechanisms that involve germyl
radicals and NF3 molecules. This process contributes only in
part to the GeH3F product, and other processes must be
considered; for example, the substitution reaction of F radicals
that replace the hydrogen of GeH4. In fact, the ratio between
the GeH3F and GeH3NF2 product yields decreases if the NF3
percentage in the mixture is increased, suggesting that the F
radicals produced by X-ray fragmentation of NF3 contribute to
the formation of the GeH3F product. Nevertheless, the finding
that the GeH3F yield decreases significantly even if NF3
increases from 30 to 70% (and hence F radicals are increased
by a factor of 2.3) indicates that the F radicals contribute to the
total GeH3F amount only to a minor extent.
Table 4 reports the results of GC−MS analysis of the gas

phase after irradiation of the GeH4/NF3 mixtures with
different partial pressures of GeH4 (600 and 400 Torr) and
a constant partial pressure of NF3 (400 Torr). Table 4 also
reports the results obtained by adding O2 as a radical
scavenger.
The results of Table 4 show a sharp decrease in both GeH3F

and GeH3NF2 products with decreasing GeH4 partial pressure
but a constant partial pressure of NF3 (400 Torr) and, hence,

with the expected same amount of F radicals. This fact
evidences the predominant role of GeH3, confirming the above
hypothesis.
Table 3 also shows the variations of GeH3F and GeH3NF2

yields with different irradiation doses. To explain these results,
it must be considered that the new products formed by
irradiation modify the mixture composition and can participate
in the reaction as both molecular and radical/ionic species.
Thus, the observed yields are a result of the competition
between formation and decomposition reactions, and they can
vary with doses in a not easily predictable way. Nevertheless,
from Table 3, some qualitative considerations can be made: (i)
the GeH3F and GeH3NF2 yields increase with dose for all
mixtures (except for GeH3NF2 in the 50% mixture), indicating
that the formation reaction always prevails over the
decomposition one and suggesting the high stability of these
species even under the radiolysis condition; (ii) the sharp
increase in GeH3F with dose indicates the rather high reactivity
of GeH3 radicals toward NF3; (iii) the yield increment of the
gaseous products is higher if the NF3 percentage in the mixture
increases: variations from 47 to 160% and from 14 to 46% for
GeH3F and GeH3NF2 are observed, respectively, if the NF3
pressure is varied from 30 to 70%. This confirms the above-
reported hypothesis that the GeH2 radicals play a predominant
role in the polymerization process, leading to solid deposition,
while the GeH3 radicals are involved in the reaction
mechanisms of the gaseous product formation.
In fact, even the products of radiolysis, such as GeH3F and

GeH3NF2, can react with GeH2 radicals in the radical
polymerization reactions leading to solid products; for example

+ → +

= =

x

y

GeH NF GeH Ge NF H H or F (

1, 2; 4, 5)

x y3 2 2 2

(5)

+ → +

= =

x

y

GeH F GeH Ge NF H H or F (

1, 0; 4, 5)

x y3 2 2

(6)

Table 3. μ-Moles of GeH3NF2 and GeH3F Obtained from X-ray Irradiation of GeH4/NF3 Mixtures for Different GeH4/NF3
Partial Pressures and for Different Irradiation Dosesa

GeH4/NF3

mixture (Torr) 490/210 350/350 210/490

dose (kGy) 100 200 100 200 100 200

GeH3F 97.0 143.0 62.0 105.0 34.0 88.0
GeH3NF2 20.2 23.0 18.0 18.0 13.0 19.0
GeH3F/GeH3NF2 4.8 6.22 3.44 5.83 2.62 4.63

aμ-mole determinations are affected by errors of about ±15%; 1.0 Torr = 1.91 × 10−2 mmol.

Table 4. μ-Moles of GeH3NF2 and GeH3F Obtained from X-
ray Irradiation of GeH4/NF3 Mixtures with a NF3 Pressure
of 400 Torr and Different GeH4 Partial Pressures, with an
Irradiation Dose of 10 kGya,b

GeH4/NF3 GeH4/NF3 + O2

mixture (Torr) 600/400 400/400 600/400/100

GeH3F 11.9 6.25 40
GeH3NF2 5.52 3.52 25
GeH3F/GeH3NF2 2.2 1.8 1.6

aThe results obtained by adding O2 as a radical scavenger are also
shown. bμ-mole determinations are affected by errors of about ±15%;
1.0 Torr = 1.91 × 10−2 mmol.
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The lower amount of GeH2 radicals in the higher NF3
percentage mixture makes reactions 5 and 6 less probable,
favoring the increase in the yields of GeH3F and GeH3NF2.
The same effect is obtained if O2 is used as a radical

scavenger (Table 4). In fact, oxygen effectively scavenges the
GeH2 radicals but not the GeH3 radicals,15,17 leading to
oxygenated solid products, thus decreasing the extent of
reactions 5 and 6 and increasing the GeH3F and GeH3NF2
yields.

■ COMPUTATIONAL RESULTS
The experimental results suggest that both products GeH3−
NF2 and GeH3−F can be obtained by competitive reactions of
the GeH3 radicals with NF3. The GeH3−NF2 product can arise
from the bimolecular homolytic substitution (reaction 7),
occurring at the nitrogen atom of NF3, while the GeH3−F
product can be considered to be mainly due to the F-atom
abstraction reaction (reaction 8) through the attack of GeH3
on the F atom(s) of NF3, even if other reaction mechanisms
can contribute to this product yield.

+ → − +GeH NF GeH NF F3 3 3 2 (7)

+ → − +GeH NF GeH F NF3 3 3 2 (8)

To confirm the experimental results and the predicted reaction
mechanisms, a theoretical study of the potential energy surface
related to the reactions of GeH3 with NF3 was carried out.
The geometries of intermediates and TSS (Figures 1 and 2)

were optimized with three different theoretical models: a
multideterminantal CASSCF model in conjunction with the 6-
31G(d) basis set, perturbative MP2(full) and DFT/B3LYP

methods, which include the electron correlation with the 6-
311G(d,p) basis set.
The corresponding potential enthalpy diagram obtained at

the CCSD(T,full)/6-311++G(2d,2p)//CASSCF(9,6)/6-
31G(d) level of theory is reported in Figure 3. The energy
(ΔE), enthalpy (ΔH), and free energy (ΔG) differences of the
various species, computed at the CCSD(T,full)/6-311++G-
(2d,2p)//CASSCF(9,6)/6-31G(d), CCSD(T,full)/6-311+
+G(2d,2p)//MP2(full)//6-311G(d,p), and G3B3 levels of
theory, are listed in Table 5.

Figure 1. CASSCF(9,6)/6-31G(d) (italics), MP2(full)/6-311G(d,p)
(bold), and B3LYP/6-311G(d,p) optimized geometries (angstrom
and degree) of the species involved in the SH2 reaction between GeH3
and NF3.

Figure 2. CASSCF(9,6)/6-31G(d) (italics), MP2(full)/6-311G(d,p)
(bold), and B3LYP/6-311G(d,p) optimized geometries (angstrom
and degree) of the species involved in the F extraction reaction
between GeH3 and NF3.

Figure 3. CCSD(T,full)/6-311++G(2d,2p)//CASSCF(9,6)/6-
31G(d) relative enthalpies at 298.15 K (kcal mol−1) of the species
involved in the reactions between GeH3 and NF3.
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Several previously published studies18−22 show that NF3 acts
as a Lewis base that interacts with electrophilic species through
the N and F atoms. Therefore, we explored the attack of GeH3
on both atoms, and located the energy minima 1 and 2 and the
transition states TS_1 and TS_2 shown in Figures 1 and 2.
These minima and TSs are connected as shown in Figure 3. An
intermediate 1′ is also formed before reaching the transition
states TS_1 and TS_2, but it is thermochemically and
thermodynamically unstable at all levels of calculation (see
Figure S1 and Table S4).
The interaction between the GeH3 radical and the N atom

of NF3 leads to transition state TS_1 and takes place through
the homolytic substitution of GeH3 at the N atom of NF3 with
elimination of an F atom. TS_1 shows a rather long Ge−N
bond, as typically occurs in this mechanism, corresponding to
2.453, 2.532, and 2.249 Å at the CASSCF, B3LYP, and
MP2(full) levels, respectively. The N−F bond is 1.738, 1.590,
and 1.511 Å at the CASSCF, B3LYP, and MP2(full) levels of
theory, respectively. The Ge−N−F angle is 151.6° at the
CASSCF level, compared to 146.3 and 147.6° calculated at the
B3LYP and MP2(full) levels of theory, respectively.
The intrinsic reaction coordinate (IRC) calculations show

that TS_1 connects the reactants with the weakly bound
molecular complex 1 (see Figure 1). In intermediate 1, an F
atom is rather distant from the N atom of GeH3NF2 and the
N−F bond length and the Ge−N−F bond angle depend on
the computational level. In particular, it progressively reduces
from the CASSCF (2.952 Å, 89.3°) to the B3LYP (1.976 Å,
84.7°) and the MP2(full) (1.948 Å, 70.0°) levels.
The analysis of the occupation of the active space orbitals of

intermediate 1 shows the presence of a doubly occupied σNF
bond orbital and a singly occupied σ*NF antibonding orbital.
This electronic configuration together with the long bond
distance and the low dissociation energy allows us to classify
this as a 2c−3e bond.
The interaction between the GeH3 radical and the F atoms

of NF3 leads to transition state TS_2, which adopts an almost
linear arrangement of the GeH3 radical and NF2 at any
computational level, in agreement with the previously studied
reactions of alkyl radicals with NF3.

11 The Ge−F bond
distance increases, according to the calculation level used, from
2.241 to 2.435 and to 2.610 Å at the MP2(full), CASSCF, and
B3LYP levels of theory, respectively. At the MP2(full) and
B3LYP levels of theory, the N−F bond lengths are comparable
and amount to 1.515 and 1.525 Å, respectively. Instead, the
CASSCF level furnishes a greater bond distance of 1.671 Å.
The intrinsic reaction coordinate (IRC) calculations show that
TS_2 does not connect the reactants to the products, but to

the weakly bound complex 2 (see Figure 2). Complex 2 results
from the interaction of the F atom of GeH3F with the N atom
of NF2, as shown by the long N−F bond distance which is
2.923, 2.979, and 3.009 Å, at the CASSCF, MP2(full), and
B3LYP levels of theory, respectively. The analysis of the
occupation of the active space orbitals of intermediate 2 does
not allow classifying the interaction between the two fragments
as a 2c−3e bond.
The T1 diagnostics of TS_1 (0.028) and TS_2 (0.025) are

slightly higher than the accepted threshold of 0.020, for a
monodeterminantal wave function. However, the CI coef-
ficients of the ground-state CASSCF wave function are 0.94
and 0.95 for TS_1 and TS_2, respectively. This indicates that
the greatest weight is given by the ground-state configuration
and also suggests the prevailing role of dynamic correlation,
allowing the use of a monodeterminant theoretical model such
as the G3B3.
The SH2 reaction 7, passing through TS_1, shows an

enthalpy barrier of 14.8 kcal mol−1 at the CCSD(T)//
CASSCF and 18.7 kcal mol−1 at the CCSD(T)//MP2(full)
level, and the F-atom abstraction (reaction 8), passing through
TS_2, shows an enthalpy barrier of 7.1 kcal mol−1 at the
CCSD(T)//CASSCF and 11.0 kcal mol−1 at the CCSD(T)//
MP2(full) level. The two enthalpy barriers of reactions 7 and
8, at the G3B3 level, correspond to 14.8 and 7.1 kcal mol−1 and
coincide surprisingly with the results obtained at the
CCSD(T)//CAS level of theory (Table 5). The small enthalpy
difference between the two barriers allows a competition
between the reactions.
The dissociation of complex 1 into the products needs to

overcome an enthalpy barrier of nearly 2 kcal mol−1 at the
CCSD(T)//CAS level of theory, which becomes slightly
higher at the CCSD(T)//MP2(full) (7.7 kcal mol−1) and
G3B3 levels of theory (6.8 kcal mol−1). Complex 2 dissociates
into fragments GeH3F and NF2 through a barrier of 1.2 kcal
mol−1 at all computational levels.
The already known reaction 7 of fluorine atom abstraction

by germyl radicals is exothermic by 66.9 kcal mol−1, from
experimental data.16,23 This result is consistent with our
theoretical calculations, which provide for reaction 7 an
exothermicity of 70.8, 69.7, and 67.9 kcal mol−1 at the
CCSD(T)//CAS, CCSD(T)//MP2(full), and G3B3 levels of
theory, respectively.

■ CONCLUSIONS
In this work, we report on the unexplored homolytic
bimolecular substitution mechanism that occurs at the nitrogen
atom by means of a germyl radical. In fact, the experimental

Table 5. Relative Energies ΔE at 0 K [kcal mol−1], Relative Enthalpies ΔH at 298.15 K [kcal mol−1], and Relative Free
Energies ΔG at 298.15 K [kcal mol−1] of the Species Involved in the Reactions between GeH3 and NF3

CCSD(T,full)/6-311++G(2d,2p)a CCSD(T,full)/6-311++G(d,p)b G3B3c

species ΔE ΔH ΔG ΔE ΔH ΔG ΔE ΔH ΔG

GeH3 + NF3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TS_1 14.7 14.8 24.1 18.8 18.7 29.4 14.7 14.8 24.1
TS_2 7.1 7.1 14.3 11.1 11.0 21.1 7.2 7.1 21.8
1 0.0 0.2 8.5 −6.2 −6.3 3.7 −0.8 −0.1 5.4
2 −72.0 −72.0 −64.8 −71.7 −70.9 −63.8 −69.7 −69.1 −62.7
GeH3NF2 + F 1.8 2.0 15.7 1.8 1.4 15.0 6.4 6.7 9.3
GeH3F + NF2 −70.8 −70.8 −71.0 −69.9 −69.7 −69.2 −67.8 −67.9 −68.1

aAt the CASSCF/6-31G(d) optimized geometries. bAt the MP2(full)/6-311G(d,p) optimized geometries. cAt the B3LYP/6-311G(d,p) optimized
geometries.
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and computational results indicate that the SH2 mechanism
effectively occurs, leading to GeH3NF2, and it is in competition
with the fluorine abstraction reaction, leading to GeH3F.
The computational results have shown that the energy

barriers of the SH2 reaction 7 (about 15−19 kcal mol−1) and of
the fluorine abstraction (8) (about 7−9 kcal mol−1) are slightly
different, taking into account that the energies, obtained at
different levels of calculation, are affected by an uncertainty of
about ±2−4 kcal mol−1. The enthalpy of these two processes is
instead very different. Reaction 8 is strongly exothermic by
68−71 kcal mol−1, and this result is in excellent agreement
with the experimental result of about 67 kcal mol−1 in the
literature. Instead, reaction 7 is slightly endothermic at all
levels of calculation. Both the energy barriers and the enthalpy
of reactions are in good agreement with the yield of the
products obtained from the experiments. In fact, we have
observed the formation of an appreciable amount of GeH3F
from the strongly exothermic reaction 8, with a lower energy
barrier, and a minor amount of GeH3NF2 from the slightly
endothermic reaction 7, with a higher energy barrier.
Furthermore, the finding that the yields of the two reactions
increase as a function of both the partial pressure of GeH4 and
the irradiation dose and that the same result is obtained after
adding O2 as a radical scavenger, which effectively reacts with
Ge and GeH2 but not with GeH3, confirms the predominant
role of the germyl radicals in the formation of both products.

■ EXPERIMENTAL METHODS
Materials. Caution: The preparation and manipulation of

gaseous NF3 and GeH4 and their mixtures require precaution
because explosive products can be formed.
NF3 at 99.99% stated purity and GeH4 and pure O2 were

supplied by Praxair. GeH4 was purified by bulb-to-bulb
distillation under vacuum and dried with sodium sulfate
before use. The GeH4/NF3 mixtures were prepared in 350 mL
Pyrex vessels. Standard vacuum techniques were used to
handle reactants and gaseous products.
X-ray Radiolysis. Mixtures of GeH4 + NF3 with different

compositions at a total pressure of 700 Torr were irradiated at
absorbed irradiation doses of 100 and 200 kGy. GeH4/NF3
mixtures with an NF3 pressure of 400 Torr and different GeH4
partial pressures [600 and 400 Torr] and with O2 as a radical
scavenger were also irradiated with an irradiation dose of 10
kGy.
A CPXT-320 tube (GILARDONI) with a maximum output

of 320 keV was used as the X-ray source for irradiation at 100
and 200 kGy doses. An Eresco 160 MF4-R with a maximum
output of 160 keV was used for irradiation at 10 kGy.
Gas Chromatography−Mass Spectrometry Analysis.

After irradiation, a small amount of the gaseous phase was
collected for qualitative and quantitative analyses of volatile
compounds by GC−MS. A Varian 3400/ Finnigan ITD
instrument was employed, equipped with an Alltech AT-1
capillary column (polydimethylsiloxane, 30 m long, 0.25 mm
internal diameter, 1.0 mm film thickness). Before injection, the
GC oven was cooled at 193 K by introducing liquid nitrogen;
afterward, the column was heated up to 433 K with the
following temperature program: isothermal starting step at 193
K for 4 minutes; heating step up to 373 K (20 K min−1);
isothermal step at 373 K for 10 minutes; heating step up to 433
K (30 K min−1); isothermal step at 433 K for 3 minutes;
cooling step to room temperature. A split of about 16 mL
min−1 was applied during injection; helium was used as the

carrier gas at a flow rate of 0.8 mL min−1. Electron ionization
was performed at 70 eV, and the spectra were collected in the
15−500 u mass range.

Computational Methods. The calculations were per-
formed with the GAUSSIAN0925 program. The geometries of
the reagents, intermediates, products, and transition states
(TSs) involved in the reactions between the GeH3 radicals and
NF3 were fully optimized at the complete active space
multiconfiguration self-consistent field level of theory26−28

[CASSCF] in conjunction with the 6-31G(d) basis set.29 The
CASSCF wave function, labeled (9,6), was built up by
distributing nine electrons in the six orbitals, which are most
reasonably involved in the reaction mechanisms. With
reference to the reactants, we included, in particular, the
singly occupied sp hybrid orbitals of the Ge atom of the GeH3
radicals and five orbitals of NF3, namely, a pair of bonding and
antibonding N−F sigma orbitals (σN−F and σ*N−F), two p
orbitals of F, and the n orbital of N.
The geometries were also optimized with two different

methods containing the electron correlation, the Møller−
Plesset theory30 with inclusion of inner electrons [MP2(full)],
and the B3LYP31 hybrid functional [B3LYP] with the 6-
311G(d,p) basis set,29 by gradient-based techniques32−35 and
with no symmetry constraints.
Any located critical point was unambiguously characterized

as an energy minimum or a TS by calculating its analytical
vibrational frequencies at all levels of theory. Any TS was also
related to its interconnected energy minima by intrinsic
reaction coordinate (IRC) calculations.36 The unscaled
frequencies were also used to calculate the zero-point
vibrational energies (ZPE) and the vibrational contribution
to the thermal correction (TC), obtained at 298.15 K by
standard statistical mechanics formulas.37 The overall TC term
was finally obtained by adding the translational (3/2 RT) and
rotational (RT or 3/2 RT) contributions at this temperature.
Total entropies were also obtained by unscaled frequencies and
moments of inertia. The absolute energies were refined by
performing, at the CASSCF and MP(full) optimized geo-
metries, single-point calculations with the CCSD(T,full)38,39

method, using the 6-311++G(2d,2p) basis set.29 The T1
diagnostics40 were calculated at the same level of theory.
Absolute energies were also calculated using the G3B341

composite methods on the B3LYP/ 6-311G(d,p) optimized
geometries.

■ ASSOCIATED CONTENT
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Cartesian coordinates of all optimized geometries at the
CASSCF/6-31G(d) level and the corresponding total
energies at the CCSD(T,full)/6-311++G(2d,2p) level of
theory (Table S1); cartesian coordinates of all optimized
geometries at the B3LYP/6-311G(d,p) level and the
corresponding total energies at the G3B3 level of
calculation (Table S2); cartesian coordinates of all
optimized geometries at the MP2(full)/6-311G(d,p)
level and the corresponding total energies at the
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