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The dairy sector accounts for a large share of all European agricultural production,

at the same time however, it is one of the most ascribed sector contributors to

the environmental impact of agriculture, particularly for greenhouse gas emissions.

Simultaneously, it is a strategic sector for the economy but generates increasing debate

in the community regarding the social aspects mainly related to the use of resources

and the food-feed competition of livestock involving the reduction of human-edible

crops. In this general framework, this study aims to compare four different dairy farming

scenarios characterized by different use of environmental resources in the Alpine area,

considering as a case study the production of the Toma di Lanzo cheese (a traditional

cheese produced in the mountainous regions of Piedmont—Northwest Italy). The study

envisaged the integrated use of three methodologies: Life Cycle Assessment, Life

Cycle Costing and the assessment of human-edible feed conversion efficiency to jointly

analyze environmental, economic and social aspects. The main results of this research

highlighted how the utilization of local breeds, which maximize the efficiency in the use

of territory resources, such as grasslands in a mountain environment, allowed dairy

production to reduce emissions, when compared to the high-input traditional breeding

systems. Although the mountain livestock systems have several critical issues mainly

linked to social factors such as low generational turnover, work schedules, modest life

quality of families, it is however possible to earn more income than in lowland scenarios.

At the same time, this production system allows the Toma di Lanzo cheese-making

heritage to be preserved. This mountain pasture cheese, to which superior organoleptic

and nutritional characteristics are attributable, when compared to cheeses from the

valley floor, incorporates traditional values, a link to the territory and the transmission of

knowledge.With reference to food-feed competition in livestock involving the reduction of

the use of human-edible crops and feedstuffs in animal diets, we found that grazing and

grass-based feeding systems were one of the most sustainable ways to produce milk.

Keywords: cheese production, dairy farming, human-edible feed conversion efficiency, life cycle assessment, life

cycle costing, mountain environment, sustainability
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INTRODUCTION

The livestock sector, one of the most important parts of the
agrarian economy at European level, is charged as being the
major contributor to the environmental impact of agriculture,
more specifically due to greenhouse gas (GHG) emissions (1–
3). The livestock sector is generally considered responsible for
a significant negative impact on the environment due to the
considerable production of wastewater and effluents with a
high pollution rate (2, 4). Overall, although emissions from the
agricultural sector have decreased over the last 20 years in EU
countries, the dairy production chain alone has considerably
increased methane (CH4) emissions by 22.5%, between 1990
and 2017 (5). Over the last decade, this negative impact on
sustainability has been directly linked to the increase in herd
density and the need to improve the performance of livestock
production, to meet the growing animal-based food demand for
human consumption (6–9).

In Italy, 70% of CH4 emissions from the agricultural sector
derive from the enteric fermentation by animals in intensive
farming and 20% from the management of manure and slurries
(10). In this scenario, Italy is in third place, after France
and Germany, respectively, for the contribution of enteric
fermentation deriving from the cow milk production sector.
These data are probably related to the characteristics of the
modern Italian high-input intensive systems of the milk supply
chain. In fact, over the years, a structural change has been
underway, leading to a reduction in farm numbers tied to a steady
upward trend in animal density. In Italy, at the end of 2019, dairy
cows totaled 2,612,729 heads (11) for an annual milk production
delivered to dairies of 12,112,000 tons, equal to ∼8% of the total
European production (158,257,000 tons in 2019) (12).

These numbers have led to a greater awareness and need to
reduce global greenhouse gas emissions in order to curb climate
change, through the mitigation of environmental impacts and
focusing on a greater economic and environmental sustainability
of human activities (5). However, this sector, characterized by an
extreme intensification of livestock farming, has a considerable
economic impact, with a supply chain worth 58 billion euros
in 2018 (14% of European agricultural production) (13). The
need to increase the sustainability of these productions could
possibly be achieved by optimizing the management of the
farming system, through the exploitation of available marginal
areas (14). This development is already rooted in some areas
of Italy, where dairy farming in marginal areas is not only
a tradition, but also an instrument for the enhancement of
territories, farms and products (15). Of the total number of
dairy cows reared in Italy, 22,085 are raised in 288 farms
following the practice of transhumance (11). Of these, 268
farms (21,130 heads) are located in Piedmont (Northwest
Italy), where extensive dairy cattle rearing and transhumance
has been rediscovered by exploiting the link and proximity
to the Alpine environment. Moreover, the intensification
of Alpine agroecosystems and associated ecosystem services
provides socio-economic positive impacts, in addition to the
development of sustainable production methods (16, 17). The
vertical transhumance of ruminants (cows, in addition to goats,

and sheep) in summer, from permanent farms in the valleys
to temporary farms in Alpine pastures, represents one of
the most distinctive and important traditional activities for
both landscape preservation and the production of typical
local products.

The Italian dairying tradition produces a wide variety of
cheeses strongly related to their place of origin. In addition
to well-known protected designation of origin (PDO) cheeses,
there are also numerous historical and traditional cheeses. These
products fall into the Italian category of Traditional Agricultural
Food Products (PAT, Prodotto Agroalimentare Tradizionale), and
their entire production process follows traditional rules. They
are characterized by being produced from a small number
of manufacturers in a confined region, with a highly variable
production and a limited number of final rounds.

The assessment of the environmental impact of mountain
production systems must not only take into account milk
production, but also the different ecosystem services connected
with it. In fact, these systems are characterized by rearing of local
hardy breeds, not suitable for high-input intensive systems, and
have the ability to exploit and optimize the fodder resources and
pastures, unique to these areas. In this regard, animal production
in these areas is also characterized by a reduced (or in some
cases zero) use of human edible resources. This reduced intake
is significant in light of the growing concern regarding human
food supply.

In literature, several researches have focused on the
assessment of the environmental and economic impacts of
the Italian dairy chain by using the Life Cycle Thinking
(LCT) approach. Within the LCT approach, many different
methodologies are useful to evaluate the environmental and
economic impacts of a life cycle, and the commonly used
methodologies are Life Cycle Assessment (LCA) and Life Cycle
Costing (LCC) (18–21).

The LCA tool allows the evaluation of the environmental
impact generated during the life cycle of a product or a
service following the Principles and Frameworks of UNI EN
ISO 14040:2006. According to this ISO standard, throughout
the product lifecycle, LCA allows the input and output
flows of energy and materials to be recorded and evaluated,
in addition to the potential environmental impacts of a
product or a service. This standardized procedure identifies the
environmental consequences of a product life cycle, by assessing
the impacts generated by the entire production chain (22), from
inputs to the final product, as well as simultaneously assessing
different impact categories including greenhouse gas emissions,
acidification, eutrophication, land use and energy consumption
(23). LCA has also been used in previous researches as a tool
to compare the efficiency of alternative management systems
implemented along the livestock supply chains, in order to
reduce the environmental impact, when compared to traditional-
intensive production systems (24).

LCC allows the costs related to each phase of the life cycle to
be analyzed. This methodology is often used in agro-food sector
research, also examining the issue of revenues obtained from the
sale of products, so that the profits generated by the different
examined scenarios can also be identified. Therefore, similar to
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the LCA analysis, the impact assessment phase is replaced by the
computation of profitability.

Regarding the livestock sector, several research articles
published in recent years have evaluated the costs, sometimes in
association with environmental aspects. Among these, we report
those related to the analysis of the cost of production of forage
to feed dairy cattle in Northern Italy (25), and to the definition
of costs to regulate ammonia emissions from livestock farms
in Germany, the Netherlands and Denmark (26). The paper
authored by Cecchini et al. (27) analyzed the environmental
efficiency of carbon dioxide abatement costs in dairy cattle farms
in Italy, associated with efficiency performance measures. In a
similar way another study evaluated the effect of animal nutrition
and grazing onGHG emissions with reference tomilk production
and the related farm income (28).

AIMS

The development of more environmentally sustainable farming
systems—based e.g., on the availability of pasture, or the use
of alpine pastures—facilitating the reduction of greenhouse
gases, also represents an instrument capable of enhancing the
production system, the product, in addition to valorizing the
producer role. Moreover, in response to increased consumer
demand for sustainable products and a return to traditional food
products, animal husbandry is focusing on the reinstatement
of autochthonous breeds, on territories and on eco-sustainable
products (29). In effect, these breeds, territories and products,
by way of their characteristics, can be defined as prototypes of
sustainability in all its dimensions (environmental, economic,
and societal) (30–32). Examining this complex scenario, in
conjunction with the social-economic and environmental impact
of Alpine dairy production systems, this research aims to develop
the following points:

OBJ 1
Given the importance of products and ecosystem production
systems on environmental impact and territorial sustainability,
the LCA tool was used to evaluate the environmental impacts,
from cradle-to-retail, of the Italian PAT Toma di Lanzo cheese. In
literature, several researches have been conducted to evaluate the
environmental impact of Italian cheeses using LCA. However, to
our knowledge there are no works that deal with a product such
as Toma di Lanzo, whose production is strictly dependent on
the resources of the territory in which it is produced, so deriving
from amodel consistent with the Alpine system. The strategies of
innovation and enhancement are not connected to the product,
but to the unique peculiarities of the production system. In this
research, the analysis was performed by comparing the phases
of the production process (rearing, milking, cheese making, and
transport) in four different scenarios, two high-input-lowland
and two low-input-mountain scenarios.

OBJ 2
According to Genovese et al. (33), there is a certain difficulty
in developing system strategies that enhance mountainous
territories and their related products (34). A conducive

enhancing strategy that can assist in setting forward actions
to improve typical productions, is the analysis of economic
sustainability, which can be linked to economic analyses. To
achieve this goal, LCC was carried out to determine the
profitability of the production of Toma di Lanzo, by means of
costs and revenues analysis in the four scenarios examined.

OBJ 3
Minimizing food-feed competition of livestock by reducing
the use of human-edible crops and feedstuffs in animal diets
represents a promising strategy to increase sustainability in
livestock productions (35, 36). From this perspective, a feeding
system based only on grass has a different impact than feeding
a cereal-based diet, in addition to the amount of supplemented
concentrate and the type of feed ingredients (cereal grains vs.
by-products) in cow diets. Therefore, the goal is to assess the
efficiency of the four examined scenarios in terms of human food
production. In the present study, the net contribution of dairy
production to the human food supply have been measured using
two indicators, the human-edible feed conversion efficiency (37),
and the net food production (38).

METHODOLOGY

Designation of Scenarios
The study took place in the Lanzo valleys, located in Piedmont,
Northwest Italy. It involved farms specialized in cow milk and
Toma di Lanzo cheese production. The farms were selected
to be a representative sample of dairy farms of that region:
family run dairy farms, medium size farm, transhumance to
mountain pasture in summer, cows diet based on grazing, and
conserved forages plus compound feeds. The system boundaries
encompassed the phases of grazing, milking, cheese-making and
transport in 4 scenarios, determined by themovement of the herd
during the year: Indoor Winter Feeding (IWF), Valley Bottom
Grazing (VBG), Mountain Pasture Grazing (MPG), and Alpine
Pasture Grazing (APG).

The characteristics of the four scenarios are reported in
Table 1. The number of observations per scenario is equal to six
because all the selected farms are involved in the four scenarios.
Two dual-purpose alpine breeds (Aosta Red Pied and Pustertaler-
Sprinzen) are mainly reared in the selected farms; only one
farm raises crossbreds. The cows of the six herds are kept in
tie-stall housing systems and the number of lactating cows is,
from the smallest to the biggest farm, 45, 46, 50, 54, 70, and 85,
respectively. The six farms involved in the study practice vertical
transhumance to mountain pastures during the warmer seasons,
whereas during the winter months, cattle are stabled in lowland
farms. Their diets consist of meadow hay and compound feeds
(i.e., grains, cereal by-products, and occasionally a commercial
concentrate). Farmers schedule calving season in the stabled
period to avoid the presence of gestating cows and parturitions at
mountain pasture. In springtime, cattle are allowed to graze in the
meadows surrounding the farm for a few hours a day. Cows are
indoor fed with hay and, in some cases, supplemented to sustain
milk production. Herds are moved to the mountain pastures
in June, where cows are free to graze all day, moving them to

Frontiers in Veterinary Science | www.frontiersin.org 3 October 2020 | Volume 7 | Article 569167

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Verduna et al. Alpine Dairy Farming Sustainability

TABLE 1 | Characteristics of the four scenarios.

Indoor winter

feeding (IWF)

Valley bottom

grazing (VBG)

Mountain pasture

grazing (MPG)

Alpine pasture

grazing (APG)

Location Farm Lowland pastures Mountain pastures Alpine pastures

Altitude (m a.s.l.) 301–875 301–875 1,200–1,800 1,800–2,200

Season Winter

(Dec to Mar)

Spring & Autumn

(Apr-May & Oct-Nov)

Summer

(Jun & Sep)

Summer

(Jul-Aug)

Duration (days) 100–140 90–130 45– 95 30–60

Pasture (ha) - 35–80 30–110 10–111

Feeding system Winter feeding

(hay + cereals or

concentrates)

Grazing or

Grazing+

supplementation

Grazing or

Grazing+

supplementation

Grazing or

Grazing+

supplementation

Lactation (wks) 1st−15th &

44th−52nd

16th−23rd &

40th−43rd

24th−27th &

36th−39th

28th−35th

different areas according to grass availability. Supplementation,
practiced in half of the farms, consists of 1–2 kg of compound
feed, distributed in the milking parlor. Then, herds are moved
to higher altitude Alpine pastures (∼2,000m a.s.l.) in summer.
At the end of the summer season, herds descend to mountain
pastures to graze the regrowth in the same areas, before moving
back to the lowland farms. The grazing of meadows around the
farm is practiced provided that climate conditions are favorable.

Toma di Lanzo Cheese
To better understand the object of this study, a brief description
of the physical characteristics and production process of Toma di
Lanzo cheese is given.

Toma di Lanzo cheese belongs to the historical cheese making
tradition of the Piedmont region (NW Italy) and is now labeled
PAT (Traditional Agricultural Food product). Toma di Lanzo is
a semi-hard, semi-cooked cheese. The cheeses have a flattened
cylindrical shape, 5–15 cm high, 20–40 cm in diameter, and weigh
3–7 kg. The cheese is produced from bovine milk only. Raw milk
obtained from one or two consecutive milkings is used. The
milk from the evening session is partially skimmed following
overnight creaming and then mixed to the whole milk from
the next morning milking. Rennet is added to the milk at a
temperature of 35–37◦C. The milk is then left to rest for about
1 h, but appropriate clotting time is visually established by the
cheese-maker. After cutting to the dimension of corn/rice grains,
the curd is then heated up to 42◦C. Successively, the curd is
collected and placed in molds or bound in natural cloths. The
cheese is then salted in brine (usually 20%NaCl), but dry salting is
also performed. Finally, the cheese is ripened in cellars or natural
caves at constant temperature and humidity levels (6–10◦C and
85% RH, respectively), lasting 15 days for small cheese rounds
or 60 days for larger sizes. The cheese appears ivory-white to
yellowish with small and sparse eyes. The texture is soft or slightly
compact. The flavor is slightly sweet and milky and becomes
stronger and tastier after longer maturation periods.

Life Cycle Assessment
The environmental impact of Toma di Lanzo cheese was
determined by a cradle-to-retail approach, using the LCAmethod

based on the UNI EN ISO 14040:2006. The six dairy farms were
analyzed and average data were used in the data processing.
This approach involved both milk production at farm level and
cheese-making at the dairy plant.

To assess the supply chain, both raw milk and Toma di Lanzo
cheese were considered. The functional units used were: 1 kg of
FPCM (Fat-Protein Corrected Milk) at farm level and 1 kg of
Toma di Lanzo cheese—with a dry matter fat content of 32% and
a moisture content of 35–45%—at dairy plant level.

System Boundaries and Data Collection
A detailed analysis was conducted, through a field investigation
with a questionnaire submitted to the farmers. Each step was
characterized by material requirements using data collected
at farm and dairy plant level. Concerning the grazing phase,
we focused on farm management (herd composition, housing
system variation through the scenarios, manure management,
ration composition) and data on the input and output mass flows
(forage, concentrate, energy, water, milk). For the milking and
cheese-making phases, the survey included measurements and
information on resources (materials, energy, water) and waste
(the whey is also fed to dairy cows). For the transport phase, we
collected data about the distance and vehicle.

Production data of milk and cheese were provided both by
dairy farms and by the production traceability system of the
Toma di Lanzo Consortium.

Inventory Analysis
Figure 1 summarizes the flows and input of grazing, milking,
cheese-making and transport of the four scenarios examined.
The Life Cycle Analysis included the production of raw milk,
farming of fodder, transport and production of raw materials
(animal feed, cleaning products, bedding material), consumption
of water, energy and fossil fuels, and management of manure,
slurry, and wastewater. In the IWF setting, cows were housed in a
permanent stall and fed with concentrate, hay, barley grain, maize
grain and wheat bran, while in the VBG scenario, they were also
left to graze on grass and therefore the amount of concentrate is
lower; in MPG and in APG settings, the cows were conducted
to mountain pastures and fed with grassland and small amounts
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FIGURE 1 | Inventory input from cradle-to-retail and system boundaries. Dotted lines represent the scenarios and black squares the phases.

of concentrate. In the LCA inventory, only purchased foodstuffs
have been included, since the impact of feed production in farms
had already been taken into account (land occupation and diesel
consumption for farming), in accordance with Laca et al. (39).

Some inputs are common to all scenarios, whereas other
inputs are specific. More precisely, in the APG and MPG
scenarios, the water used in the grazing phase is spring water,
while in the VBG and IWF scenarios it is supplied by a well.
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The transport of animals to the Alpine pasture only refers to
the APG andMPG scenarios. The quantity and type of externally
sourced feedstuffs is different in the four scenarios examined.

The electricity used for milking and cheese-making, is
provided by the electric grid for the MPG, VBG and IWF
scenarios, while a diesel-electric generating set with diesel
consumptionwas used in the APG scenario, where the dairy plant
was not connected to the electric grid.

In the cheese making phase, heat is produced by using
electricity in the VBG and IWF scenarios, while a wood-fired
boiler is used in the APG and MPG scenarios.

Calculation of Emissions to Air, Soil, and Water
Calculation of CH4 from enteric fermentation was based both on
dry matter intake and the live weight of cows, using the following
equation developed by Yan et al. (40):

CH4 (L day−1) = 0.34 x LW (kg) + 19.7 x DMI (kg die−1)
+ 12

where: LW= Live Weight; DMI= Dry Matter Intake
Emission factors proposed by Husted (41), Amon et al. (42)

and Kinsman et al. (43), which calculate, respectively 15.5 kg CH4

LU−1, 0.609 kg N2O LU−1, and 381 L CO2 LU−1 were used to
assess the direct emissions from liquid and solid manure. Manure
management is conducted through solid and liquid systems.
Therefore, Tier 2 (44) was applied to estimate direct and indirect
N2O emissions at field level and from leaching and runoff (45).
The emission factors used for direct N2Owere 0.02 (solid storage)
and 0.001 (liquid storage) (45); indirect N2O emissions at field
level were determined applying the emission factor of 0.01 N2O-
N kg−1 of volatilized N (46), 0.0075 N2O-N kg−1 of N is lost
through leaching and runoff (44) with a fraction of total N of
0.26 (47). Phosphorus loss in the form of phosphate (PO3−

4 ) was
estimated as proposed by Nemecek and Kagi (48).

The quantity of P excreted in manure was estimated by the
equation developed by Hollman et al. (49):

Pe =MY (kg d−1)× 0.781+ 50.4
where: MY, Milk Yield
NH3 emissions for excreted manure in the meadows were

estimated at 5.7 g LU−1 day−1 (42), while the estimations for
manure management were: 552 g ton−1 for slurry and 205 g
ton−1 for solid manure in summer and 249 g ton−1 for slurry and
201 g ton−1 for solid manure in winter.

Regarding eutrophication effects, N leaching at field level was
calculated by estimating the amount of N excreted by livestock:
this quantity is function of the protein level of the ration, which
is determined as the sum of urinary and fecal nitrogen.

Urinary N was estimated following the equation developed by
Burgos et al. (50):

UN (g die−1 UBA−1)=−37.33+ 16.01×MUN (mg dL−1)
where the average value of MUN (Milk Urea Nitrogen)

considered for 1 kg of milk is 15.76 md dL−1 (50.51). With
reference to fecal N, this is determined using the following
equation by Jonker et al. (51) and Bianchi et al. (52):

Fecal N= Ingested N—(Urinary N+Milk N)
where: Ingested N is∼16% of crude protein andMilk N is 28%

of Ingested N (52).

TABLE 2 | Impact categories considered in LCA analysis.

Impact category Unit

Climate change kg CO2 eq

Freshwater eutrophication kg P eq

Marine eutrophication kg N eq

Natural land transformation m2

Water depletion m3

Fossil depletion kg oil eq

The water consumption (WC) of cows for each scenario was
calculated with the equation presented in Meyer et al. (53):

WC (kg die−1)=−26.12+ (1.516×AET)+ [1.299×milk kg
(kg LU−1 die−1)]+ (0.058× LW)+ (0.406×Na (g LU−1 day−1)

where: AET, Average Environmental Temperature; LW, Live
Weight; Na, quantity of sodium ingested daily by cows, estimated
in 66.2 g day−1 (54).

Software and Impact Categories
The estimation of emissions occurring throughout the phases of
the Toma di Lanzo cheese cycle production for the 4 scenarios,
was carried out with the assistance of SimaPro 8.5 software
and the Ecoinvent database (45, 55). The ReCiPe Midpoint
method (European Hierarchist version 1.13) was used for the
LCA analysis and the impact categories considered are shown
in Table 2.

Economic Analysis
The goal of the economic analyses was to assess the costs and
profitability of each scenario. For the cost analysis, the so-called
conventional LCC scheme was adopted as it is well-suited for
this purpose, as also acknowledged by other authors (56). This
tool makes it possible to perform an in-depth analysis of the
costs incurred throughout all phases of a product life cycle. In
the case examined, all the costs of the rearing, milking, cheese-
making and transport phases were analyzed with reference to 1 kg
of Toma di Lanzo cheese for the four scenarios.

The data used were collected by directly interviewing the
entrepreneurs and an average cost value for each input was used
in the analysis. For all cost items, we refer to the purchase price
of the inputs except for the labor factor. In this case, the family
labor is in practice paid at opportunity cost.

Figure 2 shows the main cost items divided by phase
and referring to each scenario. In addition, costs have been
calculated in relation to the type of cost (i.e., livestock
feed, manure management, cleaning, etc.). The inputs
necessary for the production of Toma di Lanzo cheese
generate variable and fixed costs. Variable costs are partly
common to the different scenarios and partly specific to
each scenario.

Fixed costs refer to a set of items: quotas on capital
invested in machinery and infrastructure, taxes, land and
pasture rents, interest and overheads. With regard to interest,
this item includes the assets owned by the entrepreneurs
and employed in agricultural activities and have been
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FIGURE 2 | Cost items and price of inputs.

remunerated at opportunity cost considering an interest
rate of 1.0% for land use, 3.0% for capital goods, in agreement
with Blanc et al. (57). The overheads item includes labor

charges and contributions, the annual membership fee of the
consortium for the protection of the Toma di Lanzo cheese and
administrative costs.
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For the profitability analysis, the sales price of Toma di Lanzo
cheese in 2019 was considered as the reference price, equal
to 9.00 e kg−1.

Allocation Methods
In accordance with other authors (45, 58), an economic allocation
method was chosen for the environmental and economic
analyses. The allocation factor was considered to be the ratio
between the economic value of the cheese sold and the total
values of the outputs. The outputs considered are cheese (9.00 e
kg−1), obtained from milk processing, calves (3.80 e kg−1) and
cows (1.15 e kg−1). These values were multiplied by the volumes
sold and an allocation factor of 0.87 for the cheese and 0.13 for
the other outputs was obtained.

Calculation of Feed Efficiency Indicators
The human-edible feed conversion efficiency for gross energy
(GE) and crude protein (CP) was calculated as the ratio between
the human-edible content in the produced milk (output) and
the potential human-edible content of the consumed feedstuffs
(input) (37). Net food production (MJ of GE/d and g of CP/d)
was defined as human-edible output (MJ of GE and g of CP
in the milk) minus human-edible input (38). The two indexes
were calculated using the proportion of potential human edibles
in feedstuffs proposed by Wilkinson (59). Data on GE content
of feedstuffs were retrieved from the INRA (60) database. To
calculate the energy content of the milk, the formula described
by Herdt (61), including fat, protein, and lactose content of the
milk, was used with the factor 4.184 for the conversion of calories
to joules.

RESULTS

Life Cycle Assessment Results
Figure 3 shows the LCA results for each scenario, by making
a distinction between the four life cycle phases and taking into
account the six environmental impact categories considered in
this study.

The IWF scenario reveals the highest level of impacts in all the
considered categories. More specifically, it has the highest values
in the grazing and transport phases. The VBG scenario impacts
vary from 40 to 82% of IWF values. The mountain scenarios
(APG and MPG), when compared to lowland scenarios (VBG
and IWF), have a lower environmental impact: their incidence is
never higher than 50% of IWF values. That is particularly evident
for freshwater eutrophication, marine eutrophication and water
depletion. Thus, it appears that, in those scenarios, there is a
more sustainable use of the “water” resource. The environmental
impact of APG and MPG scenarios is quite similar for all
categories, except for natural land transformation (APG>MPG)
and fossil depletion (APG < MPG).

The grazing phase causes the greatest environmental impact
when compared to the other three phases. The incidence of
this phase increases progressively from mountain scenarios
(APG and MPG) to lowland scenarios (VBG and IWF) for
all environmental impact categories. However, it is necessary
to make some distinctions: APG is always higher than MPG,

meanwhile IWF is always greater than VBG. Cattle nutrition
plays an important role: essentially, in the APG scenario, farmers
offer a higher amount of concentrate to lactating cows than in
the MPG setting, due to the lower nutritional value of those
grasslands and in connection to lactation. In the IWF scenario,
feeding is based on dried fodder, cereal grains and concentrated
feed whose use causes a higher environmental impact than
grassland use.

Transport is the second most impacting phase in Toma di
Lanzo production system for all impact categories. Moreover,
VBG and IWF scenarios have a higher incidence than APG and
MPG scenarios, due to the greater distance from the retail stores.
The two environmental impact categories most affected by this
phase are climate change and fossil depletion.

The cheese-making phase shows a relatively high
environmental impact in fossil depletion. As in the previous
phases, the incidence of environmental impact is higher in
VBG and IWF scenarios than in APG and MPG settings. The
difference between the scenarios mostly depends on how the
cheese curd is heated. In APG and MPG settings, cheesemakers
use firewood as heating energy, while in VBG and IWF they use
propane. Thus, in the mountain settings, there is a greater use of
natural and renewable resources than in the lowlands.

The milking phase ranks lowest in terms of environmental
impact, with the exception of water depletion, due to a greater
use of water in cleaning activities.

Economic Results
Table 3 shows the profitability for the four scenarios examined,
highlighting the costs for each phase.

The mountain pasture scenarios (MPG and APG) allow better
economic results to be achieved than the two valley bottom
scenarios (IWF and VBG).

In the IWF and VBG scenarios, the costs with the greatest
impact in the grazing phase are those related to feeding lactating
cows and the management of livestock manure. In the MPG
and APG scenarios, the costs for transporting the herd to
the mountain pastures and for guarding the herd have a
strong impact.

The differences in feeding costs can be explained by
considering the different use of concentrate in the daily ration in
the scenarios considered. This practice is necessary in the APG
scenario to support nutritional requirements during lactation,
which is in a declining phase in summer. On the other hand,
the MPG scenario determines the lowest costs as the herds are
present in two periods:

i) in spring, when the grass is more nutritious and the pastures
are more productive; the supplementation with concentrate
is minimal but necessary to support high milk production;

ii) in autumn, when the cows are close to calving and are fed
only grass and hay. The high costs of the IWF and VBG
scenarios are linked to the fact that the enterprises need to
source external inputs, incurring higher costs than in the case
of self-production of forage or free grazing.

With reference to the milking phase, the APG scenario has
high labor costs, as milking is performed manually. Conversely,
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FIGURE 3 | Environmental results.

the VBG and IWF scenarios have energy costs for milk
cooling, which are not present in the mountain pasture
scenarios, as cooling takes place by immersion of the tanks in
spring water.

In the cheese-making phase, the higher costs in the VBG and
IWF scenarios depend on the use of propane for curd heating,
whereas in the other two scenarios a wood-fired boiler is used.

The costs of transporting the cheese to the point of sale depend
on the average distance the cheesemaker has to travel, which is

greater in the VBG and IWF scenarios than in the APG and
MPG scenarios.

The fixed costs are higher in the two mountain pasture
scenarios (APG andMPG) because the pasture rental has a strong
impact on the farm costs. In contrast, in the two valley scenarios,
the higher costs are determined by the interest on the capital
invested by the entrepreneur in the business.

The comparison between the four scenarios examined shows
that the MPG scenario determines the best economic results.
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TABLE 3 | Economic results [e kg−1].

Scenarios

Phase Type of cost Indoor winter

feeding (IWF)

Valley bottom

grazing (VBG)

Mountain

pasture grazing

(MPG)

Alpine pasture

grazing (APG)

Variable costs

Grazing 5.94 4.60 2.81 3.97

Feeding 3.49 1.45 1.07 2.10

Bedding material 0.49 0.63 - -

Manure management 1.67 1.86 0.11 0.14

Veterinary treatment 0.29 0.29 0.29 0.43

Cattle transport to the

mountain pasture

- - 0.75 0.71

Herd surveillance - 0.38 0.58 0.59

Milking 0.14 0.14 0.12 0.15

Milking 0.03 0.03 0.03 0.06

Chilling milk 0.02 0.02 - -

Cleaning 0.09 0.09 0.09 0.09

Cheese-making 0.48 0.48 0.43 0.43

Heating milk in boiler 0.12 0.12 0.08 0.08

Cheese making 0.12 0.12 0.12 0.12

Curd heating 0.07 0.07 0.06 0.06

Cleaning 0.17 0.17 0.17 0.17

Transport 0.10 0.10 0.07 0.08

Fixed costs

Other expenses 2.08 2.30 2.35 2.49

General expenses 0.32 0.32 0.32 0.32

Quotas 0.96 0.96 0.96 0.96

Taxes 0.05 0.05 0.05 0.05

Loans 0.23 0.34 0.69 0.81

Interests 0.52 0.62 0.33 0.34

Total costs 8.75 7.63 5.77 7.11

Revenues 9.00 9.00 9.00 9.00

Profit 0.25 1.37 3.23 1.89

The bold values indicate the total costs for each phase.

In fact, the costs have a 64% incidence on revenues. This value
increases in the APG scenario to 79% and in the VBG scenario
to 85%. The IWF scenario, on the other hand, shows costs
equal to 97% of revenues, highlighting the inefficiency of this
production system.

From the overall examination of the results, it can be deduced
that the APG scenario could improve its competitiveness, above
all by reducing the use of human labor in livestock surveillance.

In the valley scenarios, the cost reduction could pass through
an efficient management of livestock manure, maybe by adopting
highlymechanized techniques, and through a reduction of energy
costs in the cheese-making phase. Additionally, in this case it
could be more profitable to switch from the use of non-renewable
to renewable sources to heat milk and curd.

Feed Efficiency Indicators
The calculated human-edible feed conversion efficiency (heFCE)
for the four scenarios are shown in Figures 4A,B for protein
and energy, respectively. The dotted horizontal line in the graphs

indicates a heFCE of 1. For farms that did not offer additional feed
supplement to grazing cows, human-edible inputs were zero, thus
the heFCE could not be calculated (division by zero). Average
heFCE for protein ranged from 0.69 for IWF up to 5.65 for
VBG, with MPG and APG values equal to 3.80 and 3.65 points,
respectively. Similarly, IWF showed the lowest average heFCE
for energy (0.36), followed by MPG and APG (3.51 and 3.33,
respectively), while VBG had the highest index (5.14). All the
calculated heFCE indexes, both for energy and protein in VBG,
MPG and APG scenarios, were largely higher than 1. Conversely,
IWF had an heFCE value below 1, both for protein and energy.

The results of net food production (NFP) for the four
scenarios are shown in Figures 4C,D for protein and energy,
respectively. The differences between the four scenarios had also
strong effect on the NFP. The calculations for the considered
scenarios revealed positive NFP in VBG, MPG, and APG
scenarios, both in terms of protein (315.08, 289.68, and 282.67 g
d−1, respectively) and energy (29.08, 26.84, and 25.99 MJ
d−1, respectively). Conversely, the NFP for IWF was negative,
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FIGURE 4 | Human-edible feed conversion efficiency - heFCE (A,B) and net food production - NFP (C,D) for crude protein (CP) and gross energy (GE) comparing the

four scenarios (IWF, Indoor Winter Feeding; VBG, Valley Bottom Grazing; MPG, Mountain Pasture Grazing; APG, Alpine Pasture Grazing); the dashed line in (A) and

(B) set at 1.0 indicates the efficiency threshold.

both for protein and energy (−311.19 g d−1 and −63.36 MJ
d−1, respectively).

DISCUSSION

Environmental Implications
The environmental impact assessment shows that the two
mountain scenarios (APG and MPG) for the Toma di Lanzo
cheese production achieve more sustainable environmental
performances when compared to the lowland contexts examined
(IWF and VBG).

In all scenarios, the greatest impact is determined by
the grazing phase for all environmental impact categories,
with the exclusion of fossil depletion. Climate change
is one of the most evaluated environmental impact
indicators both in the agricultural and dairy sector
(62–64), and the grazing phase determines the largest

contribution in the four scenarios, especially in the VBG and
IWF scenarios.

However, these values are below the average emissions
recorded in other works (65, 66), given the high self-sufficiency
and the low dependence on purchased feed in the Toma di
Lanzo production process. Our results could also be justified
by considering previous research of Guerci et al. (23). In that
study, a comparison between the different dairy farms showed
that a high efficiency of food conversion by animals was more
effective in terms of environmental impact and, above all, in the
production of greenhouse gases and the use of non-renewable
energy. Therefore, aspects such as animal welfare, for example in
extensive livestock management (more space available, access to
pasture, quantity and quality of fresh forage, air quality) (67, 68),
could indirectly affect the environmental impact by operating
on animal efficiency. At the same time, fresh forage may lead
to a greater food conversion index and food efficiency (69),

Frontiers in Veterinary Science | www.frontiersin.org 11 October 2020 | Volume 7 | Article 569167

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Verduna et al. Alpine Dairy Farming Sustainability

providing a positive impact on greenhouse gas emissions and on
the environmental influence of livestock farming (70). Therefore,
the environmental efficiency of the mountain systems studied
is provided by a good quality of the pasture, as also argued by
other authors (71, 72), and by an excellent efficiency in the use
of the feed by the animal which, incidentally, is influenced by an
intrinsic vocation of the breed.

The results of the LCA define a higher environmental
sustainability profile of both low-input scenarios, especially when
considering water pollution and use (freshwater eutrophication,
marine eutrophication and water depletion), in comparison
to the high-input scenarios. Relating to water use and
pollution, grazing appears to be the most impactful phase,
with the exception of water depletion, for which the milking
phase is the most unsustainable. Canellada et al. (73) found
similar results in their study, evidencing that milk production
in small-scale cheese factories affects marine eutrophication,
freshwater and marine ecotoxicity. Furthermore, Nemecek and
Alig (71) described the environmental efficacy of low-input
mountain production scenarios, producing results comparable
to ours in terms of acidification, eutrophication potentials and
resource consumption.

Likewise, Penati et al. (74), demonstrated how farms with
a low stocking rate with high feed self-sufficiency, similar to
the mountain scenarios we studied, showed good performances
in terms of acidification and eutrophication, supporting the
results of our research. In addition to the environmental
significance related to water use, APG and MPG contribute to
the maintenance of water resources by reducing competitiveness
with humans.

Natural land transformation is one of the most impactful
categories for the two mountain systems, confirmed by another
research in which the environmental impacts, deriving from low-
input cheese making systems, mainly originated from natural
land transformation (73). However, in the studied context, land
use by animals and the transformation of pastures take on
important positive meanings in the Alpine context, with positive
effects on biodiversity, landscape quality and soil conservation
(74, 75). These considerations enable to affirm how the survival
of production systems such as Toma di Lanzo cheese is strictly
dependent on the territory and the animal breeds associated
with it.

Therefore, Toma di Lanzo represents an example of a
sustainable production system, where our results could be further
improved by orienting production toward ecosystems and the
use of mountain resources. In this case, the use of local, low-
yielding breeds, which maximize the resource efficiency of the
territory, belies the theories in which the use of pastoral dairy
production systems on grassy pastures reduces emissions by
manipulating the diet of livestock or controlling emissions from
agricultural waste treatment plants (76). In the production of
Toma di Lanzo the unique relationship between animals and
the environment improves production sustainability. The use of
hardy breeds makes it possible to maximize the feed conversion
index and exploit the grazing resources. The existence and
survival of farming systems for mountain livestock depends
on these breeds, which, indiscriminately, have a positive

impact on sustainability aspects such as the conservation
of biodiversity.

Economic Implications
The economic analysis shows significant differences between the
four considered scenarios both in terms of costs and profits in the
Toma di Lanzo cheese life cycle. Our results confirm—as stated
by other authors (77–79)—that feeding is the most significant
cost item among the variable costs. That is evident in the IWF and
VBG scenarios, confirming, on the contrary, how the exploitation
of pasture resources contributes to a concrete reduction of farm
costs. In fact, in the high-input livestock systems, feeding costs
normally account for ∼60% of total costs, as has been evidenced
in other geographical settings (80, 81). In the two low-input
scenarios, this item represents a lower cost in relation to the
overall production costs (82). This result is in line with other
literature, that highlight the association between pasture use and
costs of production, underlining a linear profit decline when
including externally purchased feeds (82, 83).

Another aspect to be taken into consideration, is the
heavy dependence of intensive livestock farming on purchased
feedstuffs, which closely interrelate farm costs and market
trends (79, 83). On the contrary, the Toma di Lanzo cheese
production model, in the MPG and APG scenarios, manages
to overcome the raw material price fluctuations, which affect
the economic efficiency of high input systems (such as the
IWF and VPG scenarios) (78, 82, 84). Therefore, scenarios like
APG and MPG are mostly self-sufficient, with the possibility
to maintain sustainable production costs and higher long-term
economic efficiency.

Therefore, we highlight the importance of the development of
breeding systems with a low level of extra farm input, offering the
prospect of developing other productions systems, similar to the
one we studied. Moreover, the Toma di Lanzo cheese—strongly
dependent on the resources provided by the Alpine ecosystem—
has a positive impact on the survival of these areas, as well as
the maintenance of production traditions, evidently providing
relevant eco-system services (81). This symbiotic relationship
between product-animal-environment, in addition to the positive
impact on environmental and social sustainability, proves to play
an important role in economic aspects for farm survival (82, 85).

In general, mountain livestock systems have several critical
issues mainly linked to social factors such as low generational
turnover, workloads, modest life quality of families (86–88).
A desirable improvement of the farmers’ quality of life and
concurrently of the competitiveness of these enterprises, in
our opinion, can be implemented through better manpower
management. A possible solution could be the reduction in
family-based farming activities (by replacement with salaried
workers) and, at the same time, an increase in off-farm activities
for household members (87, 89), with the transition to a form of
direct sale of the cheese, at farmers markets or through solidarity-
based purchasing groups. This business direction could allow
a higher remuneration of the product to be obtained, driving
a greater appreciation of this cheese obtained from grazing in
mountain and Alpine environments. In fact, Toma di Lanzo
cheese is currently sold at points of sale at an agreed price, while
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the changeover to direct sale would make it possible to obtain a
premium price linked to the mountain production added value
(as occurs for other typical Italian mountain products, PDO,
PAT) (90).

Feed Efficiency Implications
Livestock is considered a major contributor to global
environmental issues (91). However, the livestock sector
has already achieved some significant improvements in reducing
its environmental impacts over the last decades (92, 93).
Sustainability is a complex concept that includes various
dimensions, which in turn involve several aspects. One of the
sustainability themes that has recently seen an increasing interest
is the food-feed competition (i.e., the use of potential human
food in livestock feeding), especially in ruminant nutrition
(94). The feed efficiency indicators (heFCE and NFP) allow the
assessment of the potential human-edible content in animal
diets, providing an index of sustainability.

The results obtained in the present study are consistent with
previous studies about increased efficiency (from a human-edible
production point of view) when dairy cows are fed forage and
by-products. Ertl et al. (37) first showed a positive correlation
between heFCE and the grassland area in Austrian dairy farms.
Laisse et al. (95) estimated that cows fed grass and small amounts
of concentrate can produce 2.5 times more human-edible protein
than they consume. Comparing different dairy systems, Dentler
et al. (96) detected significantly higher heFCE values for low-
input grass-based farms compared to high-input confinement-
based farms, both in terms of crude protein (3.30 vs. 0.76,
respectively) and energy (2.95 vs. 0.69, respectively).

Although cows in IWF settings consumed relevant
amounts of conserved forages, representing significant
human-inedible portion of the diets, that scenario showed
the lowest indexes when compared to the other scenarios.
As suggested by previous studies (38, 97), not only the
amount of concentrate in the diet, but also its composition
strongly affects heFCE and NFP. The inclusion of by-products
constitutes an effective way to reduce the human-edible
portion in cow diets during the wintertime, when the
climatic conditions in mountain regions do not allow
grazing activity.

In conclusion, human-edible indicators confirm
that grazing and grass-based feeding systems are one
of the most sustainable ways to produce milk (98).
Replacing cereal grains and pulses in the diet with by-
products reduces food-feed competition and thus further
improves the sustainability of traditional dairy systems in
Alpine regions.
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