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Abstract: The convenient model Arabidopsis thaliana has allowed tremendous advances in plant
genetics and physiology, in spite of only being a weed. It has also unveiled the main molecular
networks governing, among others, abiotic stress responses. Through the use of the latest genomic
tools, Arabidopsis research is nowadays being translated to agronomically interesting crop models
such as tomato, but at a lagging pace. Knowledge transfer has been hindered by invariable differences
in plant architecture and behaviour, as well as the divergent direct objectives of research in Arabidopsis
vs. crops compromise transferability. In this sense, phenotype translation is still a very complex
matter. Here, we point out the challenges of “translational phenotyping” in the case study of drought
stress phenotyping in Arabidopsis and tomato. After briefly defining and describing drought stress
and survival strategies, we compare drought stress protocols and phenotyping techniques most
commonly used in the two species, and discuss their potential to gain insights, which are truly
transferable between species. This review is intended to be a starting point for discussion about
translational phenotyping approaches among plant scientists, and provides a useful compendium of
methods and techniques used in modern phenotyping for this specific plant pair as a case study.

Keywords: Arabidopsis; tomato; phenotyping; drought stress; translational phenotyping; osmotic
stress; Dehydration; Arabidopsis thaliana; Solanum lycopersicum; Lycopersicon esculentum

1. Introduction

The quest for drought resistant genotypes has been, for a long time now, one of the principal
challenges in plant sciences: Drought stress can seriously hamper crop development leading to a
decrease in yield, with serious socio-economic consequences [1]. Historically, a decrease in crop yield
has always resulted in social disorders, for example, in Egypt when the Nile flooded under emperor
Claudius govern [2]; in Ireland, during the potato blight famine [3], and now seen in the effects of
climate change on agriculture, including drought have been recognized, among other interconnected
social, political and economic factors, as a concurring cause of the current African migration [4].

Climate change influence on temperature and rainfall occurrence and intensity is rapidly mutating
the water balance of ecosystems, resulting, amidst other extreme climatic phenomena, in unusually
extended drought periods in temperate countries [5]. Consequently, unless serious countermeasures
are adopted, these countries may face a tremendous water shortage affecting both water and food
security. According to a recent Food and Agriculture Organization (FAO) report [6], agriculture
accounts nowadays for 70 per cent of water usage worldwide. It is clear that reducing its consumption
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in this sector could be very proficient. Such a complex task must be addressed through the combination
of several integrated solutions among which the development of water-use efficient crops may hold a
position of high relevance.

In the beginning, new drought resilient plants were obtained by conventional breeding among
promising genotypes, exploiting the genetic pools offered by natural variation [7]. Following the
advances of genetics, new methods were developed to overcome the limits of traditional breeding,
attaining the possibility of gene editing at single-base definition [8].

No matter the techniques used, modified plants need to be phenotyped. Following the classical
equation, where “phenotype = genotype× environment”, the mutation of a single gene can have various
effects on plant phenotype [9]. Arabidopsis thaliana (Arabidopsis) has been for decades the most important
model for genetics and molecular biology of angiosperms due to numerous characteristics that made it
very convenient for research [10]. A short life cycle, compact dimensions, high number of seeds and
a very small, sequenced and well-annotated genome. All these advantages, however, do not really
overcome the fact that there is no commercial use for this weed. Consequently, Arabidopsis research
is only a first step towards the characterization of a gene that can be useful for crop improvement.
The results must be translated into more economically interesting models, such as a tomato. Solanum
lycopersicum L. is a convenient crop model; popular for its taste and nutritional value of its fruits, it is
one of the most economically important crops around the globe [11] and a high quality sequence of its
genome is available [12]. Tomato is a good model for molecular, physiological and agronomical studies,
and a perfect endpoint for translational biology. As an example, many tomato genes that strongly
influence yield, a trait that is often overlooked in Arabidopsis research, are homologs of Arabidopsis
genes involved in flowering, seed production or other reproductive processes [13]. In general,
translational biology is currently undertaking the quest for adapting Arabidopsis molecular models
to more agronomically interesting crop models, especially through the use of “omic” techniques
and data mining [14]. While, possibilities and issues of Arabidopsis-to-crop genomic translation
have been discussed elsewhere [14–17], the problematics of translating phenotyping studies have
not been addressed until now. Despite both being widely used models in physiology, the different
nature of Arabidopsis and crops prohibits an absolute equalizing of phenotyping methods and leads to
different endpoints. Additionally, certain physiological variables and fruit-related traits are easier to
quantify in tomato. This leads to the paradox that physiological phenotypes, described in model crops,
would profit from the molecular underpinnings being investigated in Arabidopsis. While, meaningful
physiological phenotyping of the latter plant, which is needed to correctly identify mutants in a forward
genetic approach, can be a bottleneck. We believe that a careful assessment of available techniques
in either plant species may help the homogenization of phenotyping methods and protocols where
possible, and ease the tricky task of comparing them meaningfully. This review is a first attempt
to describe the difficulties of translational phenotyping. Such a complex topic is too broad to be
dissected in a single paper. Here, we will focus on translating drought stress studies from Arabidopsis
to tomato as a case study. Drought is one of the most detrimental stressors in crop production and, as a
consequence, resistance is one of the most studied traits in crop science. However, there is not a unique
definition of drought and different ways to impose drought are used in experimental procedures.
When comparing Arabidopsis and tomato studies, it is therefore important to understand the nature of
drought. For instance, the drought stress that occurs during a field study in tomato differs dramatically
from an osmotic stress often imposed in vitro in Arabidopsis.
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2. The Multiple Facets of Drought

Drought is generally defined as a prolonged period of water shortage, resulting in an insufficient
supply for the environment. However, drought stress and its precise definition, heavily rely on a
number of environmental variables, as previously discussed [18], including the severity and duration
of water deprivation, seasonal variations as well as the dynamics of drought occurrence, such as
slightly reduced, merely suboptimal water availability or a more serious and persistent water shortage
that may reveal lethal.

In plant physiology more specifically, drought is a form of stress, i.e., an external factor that seriously
affects plant growth, productivity, reproductive capacity or survival [19]. As a consequence of stress,
plants acclimate through a complex set of physiological, molecular, biochemical and developmental
mechanisms to create a new homeostatic equilibrium. Therefore, drought can be described as water
deficiency imposed (in various forms e.g., pulsed or persistent drought periods) to induce, identify and
understand morphological, physiological and molecular mechanisms of acclimation [20]. Similarly,
in agronomical sciences, drought is also defined in function of the studied trait. However, due to the
different nature of agronomy itself, other socio-economic and environmental factors are taken into
account as well. Indeed, the points of view of researchers in different scientific disciplines interested in
the topic often differ noticeably. While, a molecular scientist may design a very controlled osmotic
stress, in vitro, to follow the precise expression kinetic of a gene set, an agronomist may be more
interested in running a field experiment to quantify whole crop stands’ yield of two genotypes, in order
to identify the more tolerant one. Phenotyping performed by the two researchers will, thus, address
very different traits. The type and intensity of drought stress imposed cannot be the same in both trials.
Actually, the nature of the experiments the two scientists are designing and conducting will differ
greatly, but plant science as a whole should still seek for ways to integrate results of both trials.

A crucial step towards understanding drought impacts across species and environments is to
understand adaptation and acclimation mechanisms, and to incorporate them into experimental design.

3. How Do Plants Cope with Drought? A Trait-Oriented Perspective

When a drought spell occurs, plants react to raise their survival chances. There is no unique
response for all plants, even when limiting the case study to Arabidopsis spp., responses may change
dramatically among ecotypes [21]. Therefore, comparing drought stress coping strategies among
different species is a complex, but a necessary task. In fact, drought acclimation strategies should be
the main drivers of drought stress experiments [22].

The classical definition divides survival mechanisms in three broad categories: Drought escape,
avoidance and tolerance [20,23]. In case of water scarcity, escaping plants will try to complete their life
cycle before stress becomes too severe to manage (i.e., by early flowering or early maturity). In contrast,
avoiding drought involves the ability of plants to maintain a stable water status despite a water shortage
in soil. This is usually achieved through root architecture and water use optimization. Finally, tolerant
plants will acclimate to the new environmental equilibrium and spend resources to; (a) maintain
turgor in unfriendly conditions through osmotic adjustments; and (b) produce antioxidants to avoid
oxidative damage caused by the generation of reactive oxygen species (ROS) as a consequence of
stress. However, no plant applies only one of the three strategies. In fact, each species adopts its own
combination of some drought avoidance, tolerance and escape mechanisms. This is a critical concept
when comparing two different species like tomato and Arabidopsis.
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Recently, Gilbert and Medina [22] proposed a new set of four terms linking increasing drought
severity to distinct physiological mechanisms underlying the acclimation: Soil water deficit avoidance
(e.g., by better soil exploration, water conservation), stress avoidance (e.g., by osmotic adjustments,
optimization root-soil interactions), damage avoidance (e.g., by optimised leaf orientation, increased
evaporative cooling, more favourable root-to-shoot ratio) and damage tolerance (e.g., by night-time
recovery, or molecular protection conferred by heat shock proteins). Since these definitions point to the
combination of specific traits and stress severity levels, they can be monitored by precise molecular and
morpho-physiological markers and thus make it easier to design experiments to study preferred traits.

While tomato and Arabidopsis do not react in the exact same way to the same stress, they share
molecular and physiological responses that are activated in response to stresses. As a consequence,
we propose that in order to generate comparable datasets across species under drought, ensuring that
a specific reaction of interest—be it molecular or morpho-physiological—is present at a similar level in
the two species under even dissimilar environments may be more useful operationally than struggling
to precisely impose the same stress to the two species. For example, in order to build a deficit irrigation
protocol for tomato and potato, Jensen and colleagues [24] decided to use ABA xylem concentration
to observe and synchronize stress among different species. In this way, they developed two slightly
divergent watering regimes that yielded similar responses in the two Solanaceae. In this sense, drought
stress protocols are in function of the studied traits, rather than the opposite: A similar approach is
advisable when translating from Arabidopsis to crop and vice versa.

4. Drought Stress Protocols

When trying to study a drought response, scientists have to design a stress protocol suitable
to follow that specific response or trait. Gilbert and Medina [22] previously discussed general
experimental procedures to study different categories of responses. Instead of repeating their excellent
work, we will describe which stress application methods are commonly used in both, or either plant
species, discussing advantages, pitfalls and suitability for cross-species phenotyping. These protocols
are often the result of a compromise between field and experimental conditions and range from very
artificial in vitro setups, commonly used for molecular studies because of the absence of contamination
and ease of standardisation, to open-field trials suitable for applied agricultural research (summarised
in Table 1). As a general rule, the more a protocol is close to field conditions, the less its results are
predictable and reproducible. When precise kinetics are to be followed (e.g., ABA accumulation in
tissues, metabolite or protein accumulation, gene expression), artificial setups under very controlled
conditions are more convenient.
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Table 1. Drought stress protocols commonly used in Arabidopsis and/or tomato. The table discriminates protocols based on the stress application method; for each
protocol, growth substrates, advantages and disadvantages, phenotyping suitabilities are listed. When possible, an example for both plants is given.

Stress Application
Method Growth Substrate Advantages (+)/Disadvantages (−) Phenotyping Suitability Arabidopsis Tomato

Water withholding Soil (open or
protected field)

(+) realistic drought conditions

All traits can be phenotyped,
but root phenotyping can be
unfeasible

NA Landi et al., 2017 [25]

(+) best method for market-oriented
phenotyping
(−) other stresses such as salinity and heat can
co-occur
(−) not used/useful for Arabidopsis
(−) strongly affected by weather conditions

Soil (pot)

(+) quite close to commercial conditions All phenotyping methods here
described can be used, but root
phenotyping needs appropriate
apparatus (e.g., rhizotrons, x-ray
tomography)

Vello et al., 2015 [26]

Visentin et al., 2016 [27]
Halperin et al., 2017 [28]

Galdon-Armero et al.,
2018 [29]

(+) suitable for every growth stage
(−) influenced by environmental conditions
(−) can be laborious
(−) stress can be slow to occur

Soil (pellet)
(+) as for pot protocols, but the limited size of
pellets speeds up drought stress occurrence All phenotyping methods

described here can be used
Vello et al., 2015 [26] NA

(−) not used for tomato

Inert substrate e.g.,
sand, vermiculite
(pot)

(+) stress is reached faster than in soil-based
protocols

All phenotyping techniques
described here can be carried out

Santaniello et al.,
2017 [30]

Takayama et al.,
2011 [31]

(+) easier to uproot plants
(−) nutrient stress occurs together with water
withholding, as plants are fertigated
(−) more artificial than soil-based protocols

Transfer to stressing
substrate

Agar with low
osmotic potential

(+) very reproducible

Phenotyping, especially for tomato,
is limited to the first stages of plant
growth (seedling stage). Very
convenient for early screenings

Frolov et al., 2017 [32] Aazami et al., 2010 [33]

(+) a wide range of stress intensities can be
achieved
(+) fast
(+) sterile
(−) far from naturally occurring conditions
(−) depending on osmolyte nature, off-target
effects can be a concern
(−) suitable only for small/young plants
(−) stomata dynamics hard to assess in very
young plants
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Table 1. Cont.

Stress Application
Method Growth Substrate Advantages (+)/Disadvantages (−) Phenotyping Suitability Arabidopsis Tomato

Hydroponics-
Osmotic stress

(+) very reproducible

All phenotyping techniques
described here can be carried out.
Very suitable for the description of
precise kinetics. Absence of soil
makes root phenotyping not
always feasible

Nieves-Cordones et al.,
2012 [34]

Ali et al., 2019 [35]
Amitai-Ziegerson et al.,

1995 [36]

(+) fast
(+) a wide range of stress intensities can be
achieved by gradually increasing osmolyte
concentration
(−) artificial
(−) depending on solute nature, off-target effects
can be a concern
(−) root growth is altered
(−) need for a hydroponic apparatus

Inert
substrates-Osmotic
stress

(+) reproducible

All phenotyping techniques
described here can be carried out.
Very good if precise kinetics
are analyzed.

NA Jin et al., 2000 [37]

(+) fast
(+) a wide range of stress intensities can be
achieved by gradually increasing osmolyte
concentration
(+) cost-effective
(−) artificial
(−) depending on solute nature, off-target effects
can be a concern

Transfer to dry
substrate

Inert substrate

(+) very fast
Due to very fast stress, only early
responses can be studied. Root
phenotyping is not convenient

NA Visentin et al., 2020 [38]
(+) reproducible
(−) very artificial
(−) severe stress only
(−) only early responses can be analyzed

Uproot and let
dehydrate

Inert substrate to
no substrate

(+) very fast
Due to very fast stress, only early
responses can be studied. Root
phenotyping is not convenient

Virlouvet et al.,
2014 [39] NA

(+) reproducible
(−) very artificial
(−) severe stress only
(−) only early responses can be analyzed
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Soil-based protocols, ranging from pot-grown plants in growth chambers or greenhouses [28] to
field studies [25], are the most used when phenotyping drought stress in tomato. Their similarity to
real conditions makes them perfect for applied research. Similarly, Arabidopsis is often grown in soil in
small pots or pellets [40], while usually there is no point in studying it in the field. Drought occurs
from water withdrawal in test plants, while controls are watered regularly to prevent stress responses.
In general, the most obvious procedure to monitor and control stress levels is to weigh pots daily
and to add different water volumes to each pot, in order to reach the same soil water content for all
replicates [41]. Nonetheless, with a large experimental population such apparently trivial steps can
become very time- and labour-consuming, unless a complex (and costly) automated irrigation system
is available. As a consequence, do-it-yourself devices based on open source technologies, such as
Arduino chipsets and/or single-board computers, are gaining interest thanks to their high versatility
and cost effectiveness [31,42].

Almost all phenotyping methods discussed in this review can fit in soil-based protocols,
but sometimes soil is not the recommended substrate. For example, soil dehydration is achieved
through water evaporation and plant transpiration, two factors only partially controlled by the
operators. Soil dehydration rates can be different among genetically identical biological replicates
under identical environmental conditions, thus, reproducibility and predictability of these experiments
are not always guaranteed [43]. The fact that synchronizing stress among individuals can be tricky
adds complexity to this picture, especially when comparing mutants featuring differences in biomass,
leaf area and/or stomatal density/width. A common, elegant solution used to minimize the latter
problem is to grow mutants and wild type Arabidopsis plants in the same wide pot, to expose different
genotypes to the same environment, better synchronizing stress appearance across individuals [44].
However, this approach may fail in comparing individuals with very different developmental features
(e.g., very different root length/structure, growth rate or exudates production) and is possible only on
small plants. For bigger plants phenotyping, an easy and cheap method was adopted by Marchin and
colleagues [45] through a very simple hydraulic setup. The authors were able to equalise soil moisture
among individuals of different species. Another concern relates to stress duration, and depending
on environmental conditions, it may be controlled, only in part. Soil drying rates can be either too
fast or too slow to phenotype a specific trait optimally. For example, a stress occurring too quickly
can be an issue when studying late responses, such as the accumulation of osmolytes or cell wall
hardening [46], or when very detailed time-courses of stress responses are to be compared between
genotypes with subtle phenotypic differences. A solution can be too air-tight and cover the soil surface
to lower evaporation rates. By contrast, a stress too slow to occur be concerning when very fast stress
is needed to highlight differences in genotype performances, or (for example) when repeated stress
is under study. In these cases, fast stress can be achieved by limiting the size of pots. In Arabidopsis
studies, the use of peat pellets allows to achieve faster soil dehydration than in soil-filled pots, with very
comparable results [26,40,47]. Surely, this is not always possible in plants, such as tomato. In this case,
inert materials, such as perlite, vermiculite or rockwool are worth considering as growth substrates.
These protocols are based on hydroponic-like systems where plants are grown in an inert substrate
and a nutrient solution is supplied periodically [30,38]. Stress can be imposed by water withdrawal
faster than soil based protocols and, if a very fast stress is needed, plants can be easily uprooted and
dehydrated in air or transferred to a dry substrate [37,38]. However, care should be taken when
designing fast, severe stress quickly followed by rewatering, since late responses may not have the
time to be activated. Moreover, these artificial substrates lack nutrients and, consequently, nutrient
stress could occur coupled with dehydration.

Sometimes, the need for a fast, precise and reproducible stress pushes researchers away from
field-like conditions. While sacrificing stress authenticity, an induced physiological drought represents
a good proxy of drought stress effects and allows fast and easy screening procedures; of course, it must
be noted that osmotic stress slightly differs from drought stress both, at the molecular and physiological
level, so care should be taken when interpreting results. Osmotic stress can be obtained supplementing
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growth media with osmolytes causing a decrease in the water potential of the substrate, to the point
that water absorption by the plant is impaired [35,43,46,48]. While, in the past a wide range of solutes
has been used, it turned out that most of them are able to penetrate plant cells resulting in a range of
off-target effects dependent on the solute nature [49,50]. Therefore, the use of high molecular weight,
bio-inactive compounds, such as PEG-8000 is now the standard for these experiments. Stress can be
imposed to a severe degree immediately, or by gradually increasing the supplemented osmolytes and
better mimicking, this way, real-world drought occurrence [43].

Systems based on PEG-infused agar are very interesting for Arabidopsis drought stress screenings;
practically, plants can be germinated directly in PEG-infused agar or transferred at a later stage.
The main reason to adopt such methods relies on their simplicity. With few manipulations, it is possible
to achieve a wide range of water potentials avoiding most of the problems related to the lack of full
control on environmental conditions or soil drying rates [48]. However, the same simplicity sets these
models far apart from field experiments and, while it is possible, though uncommon, to adapt protocols
to every stage of Arabidopsis growth [32], the same cannot be said of bigger plants [46]. Indeed, this
approach is rarely reported on tomato, with very few examples [33]. In contrast, hydroponic systems
can be easily applied to both Arabidopsis and tomato [34–36], but with potential pitfalls, for example,
PEG solutions are highly viscous and can hamper aeration of the root apparatus [43]. If side effects
are not a concern, other solutes, such as sorbitol or mannitol can be used. Alternatively, osmotic
stress protocols can be applied to plants grown in inert substrates, obtaining a hydroponic-like system
without the need for a complex apparatus [37].

When obtaining field-like conditions is not necessary, and a very fast, cost-effective and easy
to handle stress is needed, dehydration can be achieved through air drying. Uprooted plants can
quickly reach a severe level of stress (usually in 60–120 min), maintaining easiness of handling and
independence from environmental conditions; if plants must recover from drought, it is sufficient
to immerse roots in water or nutrient solution [51–53]. However, there are clear drawbacks: these
protocols are far from field conditions and make many relevant physiological measurements difficult
to carry out. Still, they can be very interesting if correctly used, as done by Fromm and colleagues
when studying stomatal responses to recurring drought spells [39,54,55]. These experiments were
translated to corn and rice using the same air-drying protocol [55,56], but never in tomato.

5. Drought Stress Phenotyping

Plant phenotyping is an incredibly broad and fast evolving research field in the plant sciences
(for a recent systematic review on past development and upcoming trends in the research area, see [57]).
Many excellent reviews address certain areas of plant phenotyping, ranging from the phenotyping of
submicroscopic features in specific plant organs by electron microscopy, to whole plant or field of plants
in agronomic contexts by UAVs (unmanned aerial vehicles) [58] and satellites. Phenotyping is often
performed in specific phenotyping platforms that allow the analysis of multiple plant features at once [59]
(e.g., hyperspectral reflectance, thermal signature and chlorophyll fluorescence). These platforms are
particularly useful in drought stress phenotyping, as the plant environment can be precisely monitored and
potentially manipulated [60]. The large costs involved in building and maintaining such platforms [61] is
one limitation, along with the need for specialized personnel.

To address the challenges in translational phenotyping, we present a selection of standard drought
stress phenotyping approaches in Arabidopsis and tomato, summarized in Table 2, and highlight
similarities and differences between those approaches when applied to either species. As there are
no studies directly comparing the phenotypes of Arabidopsis and tomato lines, there is no literature
available to directly compare threshold values for single traits/quantifiable variables. Some parameters
like plant height are inevitably different across species, but this does not necessarily apply to properties
of the photosynthetic apparatus, or stomatal regulation. The absence of universal drought stress and
phenotyping protocols, to date, still limits easy comparisons of obtained phenotypic results across
species. Some examples for specific phenotyping techniques are given in the respective paragraphs.
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Table 2. An overview of common phenotyping targets in Arabidopsis and tomato under drought. Referenced publications contain detailed information on the
methods applied.

Physiological Reaction
Monitored Accessible Traits Arabidopsis Tomato

Leaf turgor drop

- Direct assessment
(high-precision pressure probe) Direct assessment: Direct assessment: Lee et al., 2012 [62]

- Wilting (RGB-imaging) Ache et al., 2010 [63]

- Drop in projected leaf area Plant architecture (Light Detection and
Ranging—LiDAR):

- Lower specific leaf area Wilting (RGB-imaging): Bouzid et al.,
2019 [21] Rose et al., 2015 [64]

- Relative water content Projected leaf area:
de Ollas et al., 2019 [47]

Osmolarity increase

- proline quantification Proline: Proline: Aghaie et al., 2018 [65]
- osmolarity quantification Li et al., 2019 [66] Osmolarity:

Zhang et al., 2013 [67] Rodríguez-Ortega et al., 2019 [68]
Osmolarity:
Frolov et al., 2017 [32]
Versluis & Bray, 2004 [69]

Stomata closure

- Leaf temperature (by infrared thermography) Infrared thermography: Infrared
- Direct stomata aperture measurements
(by microscopy; destructive) Li et al., 2017 [44] thermography:

- Stomatal conductance (by porometer) Merlot et al., 2002 [70] Leinonen & Jones, 2004 [71]
Kuromori et al., 2011 [72] Porometer:
Microscopy: Visentin et al., 2020 [38]
Virlouvet & Fromm, 2014 [55] Caird et al., 2007 [73]

Microscopy:
Galdon-Armero et al., 2018 [29]

Lower carbon fixation - Leaf gas exchange Harb et al., 2010 [40] Galdon-Armero et al., 2018 [29]
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Table 2. Cont.

Physiological Reaction
Monitored Accessible Traits Arabidopsis Tomato

Enhanced chlorophyll fluorescence

- Hand-held devices to assess
chlorophyll fluorescence Hand-held device: Imaging system (within crop stand):

- Fluorescence imaging (e.g., PAM imaging) Jung, 2004 [74] Takayama et al., 2011 [75]
PAM imaging: Imaging system:
Yao et al., 2018 [76] (FluorCamFC1000-H)

Mishra et al., 2012 [77]

Higher concentrations of Reactive
Oxygen Species (ROS) in the leaf

- Chemical staining and imaging: destructive or
non destructive

Non-destructive chemical imaging: Destructive chemical imaging:
Fichman et al., 2019 [78] Ijaz et al., 2017 [79]
Destructive chemical imaging:
Lee et al., 2012 [80]

Higher concentrations of
ROS-scavenging secondary
metabolites (e.g., flavonoids,
anthocyanins, carotenoids)

- Hand-held devices for accessing specific leaf
compounds (e.g., Dualex, Multiplex, FieldSpec) Hyperspectral imaging: Hyperspectral imaging: Susič et al.,

2018 [81]
- Hyperspectral imaging Mishra et al., 2019 [82] Metabolomics: Ali et al., 2018 [35]
- Full metabolic profiling (destructive) Matsuda et al., 2012 [83]

Metabolomics:
Nakabayashi et al., 2014 [84]

Changes in vegetative growth

- RGB-Imaging: lower projected leaf area,
compact habitus RGB-Imaging: LiDAR: Hosoi et al., 2011 [85]

- Lower fresh and dry mass Ollas et al., 2019 [47] 3D point clouds: Paulus et al., 2014 [86]

- Lower specific leaf area Senescence: Jin et al., 2018 [87] Trichomes: Galdon-Armero et al.,
2018‘[29]

- Slowed longitudinal growth of
individual leaves
- Senescence
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Table 2. Cont.

Physiological Reaction
Monitored Accessible Traits Arabidopsis Tomato

Changes in root growth - 2D features Xu et al., 2013 [88] Alaguero-Cordovilla et al., 2018 [89]
- 3D features Mathieu et al., 2015 [90] Mairhofer et al., 2012 [91]

Changes in generative growth

- Earlier fruit set
Seed mass and yield: Jofuku et al.,
2005 [92]

Flowering and yield: Sivakumar et al.,
2016 [93]

- Lower fruit weight
- Higher number of non-marketable fruits
- Lower overall yield

Molecular markers

- 9-Cis-Epoxycarotenoid Deoxygenase AtNCED3: SlNCED1, SlNCED2:

NCED Hao et al., 2009 [94] Yu et al., 2019 [95]
Sussmilch, 2017 Muoz-Espinoza et al., 2015 [96]
[97]

SlRD29:
- Responsive to dehydration 29 AtRD29B: Gao et al., 2020 [98]
RD29 Ma et al., 2019 [99] Iovieno et al., 2016 [100]

Virlouvet et al., 2014 [39]
NA

- Homeobox protein 6 HB6:
HB6 Ding et al., 2013 [101]

Harb et al., 2010 [40]
- Solyc02g084850 (Unpublished data)

NA
- Dehydration-responsive Element- Binding protein 2 SlDREB2:
DREB2 AtDREB2A: Gao et al., 2020 [98]

Ma et al., 2019 [99] Hichri et al., 2016 [102]
Harb et al., 2010 [40]
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5.1. Leaf Turgor Drop

Reduced leaf turgor pressure and subsequent wilting are among the first signs of drought stress,
and therefore, assessed in numerous studies in both, Arabidopsis and tomato. In Arabidopsis, wilting is
often not assessed as a quantitative but rather as a qualitative trait, and scientists categorize a plant
as either wilted or not wilted based on visual assessment (e.g., [21]). In crops, Red Green Blue (RGB)
cameras are often used to quantify projected leaf areas (reviewed e.g., in [103]), and the ratio of projected
leaf area and actual leaf area can be used as an indicator of wilting. In tomato, a portable Light Detection
and Ranging (LiDAR) system has been used to detect leaf angles, among other parameters [85]. Such a
system, combined with powerful algorithms, can be a more useful tool than RGB images only, as more
traits that are relevant for plant breeding (e.g., the dynamics of light harvesting as a function of plant
architecture and daily growth rates) can be extracted from the generated point-clouds [86]. In theory,
the same phenotypic methods could be used to analyze both Arabidopsis and tomato, as the systems
are precise enough to detect changes in relatively small Arabidopsis leaves [104].

Whether the more detailed and more complicated phenotyping approach, described above, will
replace the common practice of visual binary categorisation of Arabidopsis in “wilted” and “non-wilted”
plants is hard to tell.

Leaf turgor can also be used to monitor plant recovery from drought stress, since during this
phase, leaf water potential rises to pre-stress levels; this parameter, measured with the Scholander
pressure bomb, was successfully used to monitor stress in tomato plants [38]. In Arabidopsis studies,
the Scholander pressure bomb is rarely, used mostly due to the small dimension of the leaves,
and therefore, the destructive measure of leaf Relative Water Content (%RWC) is used instead.
This procedure can also monitor recovery in Arabidopsis, since recovered leaves have similar %RWC
levels compared to pre-stress values [55,101]. Another approach to address leaf turgor is via
high-precision pressure probes [62]. These systems are capable of non-destructively monitoring
leaf turgor, and thereby allow insights in its temporal development under drought and during recovery.
The system was, e.g., used in Arabidopsis, to study leaf turgor responses to several abiotic stressors,
in wild-type and different mutants [63], and can replace destructive methods involving the Scholander
pressure bomb.

5.2. Osmolarity

A key plant strategy to avoid physiological drought is to increase osmolarity within cells, leading
to a more negative water potential, and therefore, an influx of water from the surrounding substrate
into the plant. A standard method of destructive phenotyping is to measure the overall osmolarity of
cell sap with osmometers, as done in Arabidopsis [32,69] and tomato [68].

Among the several classes of osmolytes (i.e., osmoprotective compounds, including sugars
and amino acids), proline is the metabolite that is most commonly quantified in drought stress
studies [65,66,105,106]. A recent study in tomato has suggested that the ratio of proline content in
stressed and non-stressed plants can serve as an indicator for drought stress tolerance in a given
genotype, with a high ratio (e.g., 1.86-fold increase in stress compared to the control) associated with
the most tolerant [65]. An earlier study suggested the opposite [106], a cultivar labelled as drought
stress tolerant showed no differences in leaf proline content between “stressed” and non-stressed plants.
However, the reported leaf relative water content of this cultivar did not differ between treatments,
suggesting that no physiological drought stress had occurred after all for otherwise undefined reasons.
In Arabidopsis, a study highlights that proline plays a key role in the ROS scavenging system of the
plant, and at the same time, acts as an osmolyte [107].

Polyamines also play a protective role against drought stress consequences, as shown in several
studies in Arabidopsis [108,109] and tomato [110,111], at least partially by reducing ROS in the
plant tissues.

The published methods to quantify leaf proline and polyamine contents are similar for Arabidopsis
and tomato, and in theory, the same (destructive) protocols could be used. If similar drought stress
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protocols are applied, it may be feasible to transfer knowledge on drought resistance from Arabidopsis
to tomato, based on osmolyte accumulation patterns as a readout.

5.3. Water Loss at the Leaf Level

Both direct and indirect analyses of stomatal dynamics can be conducted in Arabidopsis and tomato
in similar ways. For the rather direct analysis via (microscopic) images of the leaves, a fixation of the
tissue is performed, which can be done by creating a die with nail polish [112] or by fixating leaves
using the chemical glutaraldehyde [55]. Stomata can subsequently be counted and measured under an
optical or confocal microscope. For more sophisticated analyses, variable pressure scanning electron
microscopes are used to address stomata features [29]. Using this method, a fixation of leaf material is
not necessary and damage through fixation can be avoided. Recent advancements in automated image
analysis will probably pave the way to an automated analysis of relevant stomatal features like density,
length, width and guard cell size from microscopic images [113].

The analysis of trichomes in drought studies is common, as these specialized epidermal
cells manipulate the microclimate of the thin air layer surrounding the leaf, and can thereby,
prevent unproductive water losses. Enhanced trichome density in drought tolerant genotypes is
found in tomato [29] and Arabidopsis [114], and can be assessed via light microscopy or scanning
electron microscopy.

A common, non-invasive, although indirect, method in addressing transpiration is thermal imaging.
This technique has been used to identify Arabidopsis mutants defective in stomatal regulation already in
2002 [70]. The combination of thermal and visible images was later used to remotely access drought
stress in crops under greenhouse and field conditions. Sunlit and shaded leaves were separated using
RGB-image data and the corrected thermal information correlated fairly well with measured stomatal
conductance [71].

Stomatal conductance—and thereby transpiration through stomata—can also be assessed using a
Porometer, as previously described in Arabidopsis [72] and tomato [38,73]. Devices measuring carbon
assimilation can also provide information on leaf transpiration, with more precision than the latter
instrument but with longer measurement times.

Whole-plant transpiration dynamics are observed with gravimetric systems. In short, potted
plants are placed on wages and the growth substrate is covered by water-impermeable materials to
avoid evaporation. This also allows for a calculation of water use efficiency (WUE) in its agronomic
sense as either biomass or yield produced per unit of transpired water. Efforts are being made to
combine 3D imaging systems (capable of estimating biomass) with gravimetric transpiration control,
allowing dynamic phenotyping over time [115]. A commercially available gravimetric system has
been used in tomato already, addressing drought stress tolerance of an introgression population [28].

Stomatal water loss is also used to analyze recovery when a plant is re-watered after stress, stomata
start reopening and gas exchange rates reach values very close to pre-stress ones. However, it is
important to note that stomatal conductance does not fully recover immediately after stress, as it does
not depend only on hydraulic signals. Therefore, even when leaf water potential or %RWC are back
to the levels of irrigated plants, stomatal conductance will lag behind (hysteresis of stomata closure).
This phenomenon, often called “after effect” of drought, is well documented both in Arabidopsis
and tomato [38,55,116] and it is by all means a reflection of drought stress memory at the stomatal
level [116].

5.4. Gas Exchange

Gas exchange and carbon assimilation measurements are straightforward ways to assess the
photosynthetic efficiency of a plant in a given environment. A drop in gas exchange can be a sign of
a range of different plant stresses, including drought. In Arabidopsis, LI-COR gas exchange systems
were used in several studies to assess leaf gas exchange under drought [117,118]. In tomato, carbon
assimilation under drought stress is studied across different scales and levels of environmental
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control, from chambers with artificially elevated CO2 [100] to greenhouse and field [25,26]. As carbon
assimilation is highly influenced by irradiation and temperature, studies in greenhouses and in the
field should be conducted in reproducible weather conditions, ideally during sunny days and virtually
at the same time. For studies in the field, hand-held devices are the most practical choice. Good care
has to be taken when comparing leaf gas exchange values across studies: a study on tomato [26] reports
0.15–0.25 µmol H2O m−2 s−1, with slight differences between control and drought, while a study on
Arabidopsis [99] reports a more than four-fold increase during drought stress, but still lower absolute
values of stomatal conductance than any tested tomato (0.02–0.09 µmol H2O m−2 s−1). As drought
stress protocols, instrument settings (e.g., photon flux density) and growth systems are inconsistent
across studies, the comparison of absolute carbon assimilation rates across studies (and species)
is inappropriate.

Carbon fluxes inside the plant can be studied in even more detail by using 13CO2 and mass
spectrometry [98].

5.5. Enhanced Chlorophyll Fluorescence

As drought stress impairs photosynthetic activity and enhanced chlorophyll fluorescence is a
direct result of this impairment [119], the quantification of chlorophyll fluorescence is a standard
procedure in stress phenotyping both in Arabidopsis and horticultural crops [119,120]. In general,
a plant that maintains high photochemical quenching, and therefore relatively low non-photochemical
quenching and associated variable chlorophyll fluorescence under stress conditions, is described as
tolerant against this stressor. In tomato, imaging systems are mainly used in molecular studies on plants
in early growth stages and in artificial environments like growth chambers (e.g., [77]), while at later
growth stages, and/or in less artificial environments like greenhouses, leaf clip-based systems are more
commonly used (e.g., [121]). However, it is possible to apply fluorescence imaging in commercial-like
greenhouses [75]. Many chlorophyll fluorescence measurement systems require a dark adaptation of
measured leaves; a prerequisite that may be hard to fulfil, depending on the growth system.

5.6. ROS and Leaf Secondary Metabolite Contents

The formation of ROS is a hallmark of cellular stress also upon drought; it can be observed
in vivo, based on the oxidation of fluorescence probes like H2DCFDA, as shown in Arabidopsis [78].
In the presence of ROS, this chemical starts to emit fluorescence signals that can be observed with
hyperspectral cameras. While destructive assessment of ROS is carried out in tomato (e.g., [79,122]),
the recently introduced method of non-destructive, whole-plant ROS imaging is to our knowledge
not yet applied in tomato, despite the potential for knowledge transfer on ROS production and
scavenging mechanisms.

A common measure to address persistent stress is the quantification of secondary metabolites (SM)
with the capability to reflect or absorb excessive amounts of sunlight, thus, mitigating the risk of excessive
ROS production, and also to scavenge ROS directly [123,124]. SMs such as flavonoids or anthocyanins can
be quantified destructively, as done in Arabidopsis [125] and tomato [126]. Identification and quantification
of SMs can be achieved photometrically (e.g., [127]), via High Performance Liquid Chromatography
(HPLC) (e.g., [128]) or via Gas Chromatography-Mass spectrometry (GC-MS) (e.g., [117]). The latter
allows a more precise analysis of chemical subgroups of metabolites, potentially offering detailed insights
in their metabolism (“metabolomics”). When the researcher is interested in the spatial or temporal
development of SM contents, the use of either imaging [81,83] or non-imaging [111,112] remote sensors
should be considered to avoid destructive measurements. Several non-imaging sensors rely on leaf
clipping, and therefore, require a minimum leaf size, which can be a limiting factor especially in Arabidopsis.
For reviews on available devices, see [104,113]. Many hyperspectral imaging systems can be used not
only under lab conditions, but are also extensively used in the field, as they are, either hand-held [114] or
can be mounted on UAVs for rapid phenotyping of large numbers of plants [58]. Factors like leaf age
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and morphology may have a large impact on SMs estimation based on non-destructive methods [115],
and therefore must be taken into account.

5.7. Root Structure

Roots can either be phenotyped two-dimensionally, by using a normal camera and plants grown
either hydroponically or in agar (e.g., [88,90]); or three-dimensionally for plants grown in systems
closer to actual crop production systems (e.g., [91]). While the former are quick, easy and cheap,
the latter allows more sophisticated analyses of complex traits like three-dimensional (3D) root system
architecture (RSA).

RSA phenotyping allows dynamic interactions between roots and their surrounding substrate
to be understood by evaluating, e.g., fine root diameters, specific root length, root angles and root
length density (reviewed by [129]). Understanding genotypic differences in RSA responses to abiotic
stressors, like drought has the potential to improve the breeding of resilient cultivars [130,131]. In order
to analyze dynamic rhizosphere interactions and spatial alterations, recommended detection methods
do not interfere with the ‘natural’ habitat of roots [132]. Particular approaches mostly refer to plants
grown artificially in hydroponics, paper pouches, gel and in appropriate soil types, inter alia in
soil-filled rhizotrons (up to a volume of ~18 L), which limits phenotyping to young or small plants [131].
Growth media limitations do also apply for 3D methods, like magnetic resonance imaging [130]
and X-ray [133], visualizing the ‘natural’ growth and architecture, as well as the impacts of biotic
and abiotic stresses. In order to bridge the gap between phenotype and genotype, recent studies
revealed insight into intertwined genetic factors of root and shoot development, in both, Arabidopsis
and Solanum [89,134]. However, plants are often analyzed during their early growth and transferability
to mature plants may be limited [135].

5.8. Changes in Vegetative Growth

Leaf area densities and related source-sink relationships are known to be important for final
yield in horticultural crops [127] and grains. These traits are therefore studied extensively in crops,
but the Arabidopsis model is due to its compact habitus unsuitable for translation of most information
in this respect. The differences in growth habitus between Arabidopsis and tomato indeed complicate
a homogenization of phenotyping methods regarding vegetative growth. While the rosette-like
structure of Arabidopsis allows relatively straightforward analyses, the three-dimensional structure of
tomato is more difficult to parametrize. For tomato indeed, not only leaf area index (LAI), but also
leaf area density (LAD) in several horizontal layers within a high-wire-system tomato canopy have
been analyzed with the LiDAR-based system described above [60]. In Arabidopsis instead, 3D plant
architecture analyses are not common, as its rosette-like structure is rather plain. So, the additional
information on the third dimension does not seem to justify the effort needed to capture it, and stress
effects can be detected as projected leaf area observed non-destructively via RGB cameras located
above the plants [59].

5.9. Changes in Generative Growth

Early fruit set is also part of the drought escape strategy and therefore a symptom of drought
stress both in Arabidopsis [136] and tomato [100]. Many genes that apparently control yield in tomato,
especially through the regulation of auxin contents, are homologs of genes found in Arabidopsis [13].
However, there are major differences in generative growth of the two model plants. Tomato is a
plant insensitive to daylength, e.g., the fruit set is not influenced by season [137], whereas Arabidopsis
flowers earlier under long-day conditions [138]. Thus, researchers interested in drought-induced early
flowering in Arabidopsis and tomato have to take day length (in-) sensitivity of the respective plant into
account, either through appropriate experimental design and/or through statistical models.

Fruit yield is a highly integrative phenotypic trait, and genetically controlled by at least 28 QTLs
in tomato [139]. Operationally, the temporal development of generative growth can be assessed quite
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easily, as flowers and fruit setting are directly visible in both Arabidopsis [140] and tomato. Direct yield
quantification in tomato is common, although quite labor intensive, as fruits must be harvested once a
week over a period of several weeks to obtain robust results. Also, to obtain meaningful results, plants
must be grown in commercial-like systems, an often challenging task for molecular biology groups.

Another important difference in reproductive physiology of Arabidopsis and tomato that has to be
considered is that the short life cycle in the former ends with fruit production, whereas constant fruit
production over months and theoretically over years is possible with indeterminate tomato varieties.

5.10. Observing Stress through Marker Genes

After sensing drought, plants start activating a complex network of gene-expression changes
affecting plant behaviour. While some of these may vary among plant species, others are pretty
well-conserved, thus, representing a signature of drought stress. Transcripts of such marker genes are
often quantified in physiological studies and can be used to monitor stress response intensities.

Describing the specific intricacies of molecular responses during drought stress, a complex and
still partially elusive network, is far from the purposes of this review; among the impressive body
of literature on the topic, the reader is referred to two up to date and influential reviews [141,142].
Here, we will quickly suggest some useful stress marker genes that are shared (or not) between the
two species.

Some of the most prominent molecular responses to drought stress are governed by the stress
hormone ABA (abscisic acid). Firstly, ABA biosynthesis is augmented during stress through the
transcriptional induction of the genes encoding its biosynthetic enzymes. Among these, the NCED
(9-Cis-Epoxycarotenoid Deoxygenase) genes, which catalyze one of the last steps of ABA biosynthesis,
can be used to monitor plant sensing of drought stress in tomato and Arabidopsis. AtNCED3 is expressed
quickly during drought stress [94] as soon as Arabidopsis leaves lose turgor [97]. In tomato, the two
genes SlNCED1 and SlNCED2 seem to play similar roles [95,96]. ABA-responsive genes can be used as
stress markers, too: the transcript of the dehydrin-encoding gene AtRD29B (Responsive to Dehydration
29 B) is typically profiled in drought stress experiments [39,99] and possesses a similarly behaving
orthologue in tomato: SlRD29 [100].

Another commonly used drought stress marker gene in Arabidopsis is Homeobox Protein 6 (HB6),
an ABA-activated gene in drought stress that encodes a transcription factor governing several
stress responses [40,101]; however, no obvious tomato homologue has been characterized until now.
Similarly, the tomato ABA-dependent, dehydrin-encoding Solyc02g084850 is a good drought marker
(our unpublished data) still uncharacterized in Arabidopsis.

In some cases, such as the study of genotypes with disturbed ABA sensing/biosynthesis, the use of
ABA-dependent stress markers may not be appropriate. In this case, ABA-independent, drought-activated
genes can be used instead; one of these is DREB2 (Dehydration-responsive Element-Binding protein 2).
Both AtDREB2A and SlDREB2 expression is induced in either plant species by drought stress [40,98,99,102],
and they encode for ABA-independent transcription factors, involved in drought stress responses;
signalling genes downstream of DREB2 are, consequently, good putative stress markers as well.

6. Conclusions

Nowadays, more than 200 angiosperm species have been sequenced, and this number is predicted
to increase rapidly [143]. Together with the levels reached by our understanding of genetics, this is
raising consistently the possibility of developing new marketable crop genotypes suitable for future
agricultural challenges. However, until these new genotypes are characterized, they remain just a
possibility: the need for precise phenotyping is stronger than ever. In spite of the difficulties outlined
in the introduction, some efforts in adjusting drought stress and phenotyping protocols across species
have already been made, and technological advances in plant phenotyping offer further potential for
translational phenotyping. Therefore, we hope that future research efforts will account for the need of
comparable phenotyping in Arabidopsis and crops.
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As technology evolves, phenotyping facilities addressing multiple traits simultaneously are
becoming the new standard in plant phenotyping [120,144]. The combination of several of the
techniques mentioned above allows integrated phenotyping to a detail level never matched before,
and that could never be reached by single-sensor approaches. As the often mentioned phenotyping
bottleneck [145] is gradually being overcome, the scientific focus will have to shift towards developing
universal phenotyping approaches which integrate results of phenotypic observations across scales,
environments, and even across species. In this sense, the advent of phenomics [146] coupled with the
newest bioinformatic approaches such as machine learning [147] will probably play a major role in this
transition. Still, more traditional phenotyping approaches will always be necessary to some extent.

The knowledge gathered on the Arabidopsis model is more valuable than ever, especially if
the scientific community manages to translate it to crop models from which we can obtain a real
advantage, including in food, fodder or fibre. We are convinced that knowledge can be better translated
between species in relation to mechanisms involved in tolerance against abiotic stresses like drought,
as well as on many other plant traits, such as fruit development, light response, or resistance against
pests and diseases. At present, the transferability of knowledge is still limited, as stress protocols,
as well as phenotyping protocols (if at all existent) are often incoherent among different species.
Researchers interested in translating the vast knowledge gained on Arabidopsis to crops and vice versa
must carefully design their studies and ideally build interdisciplinary teams to gather knowledge on
genetic background, expected and desired phenotypes and on the agricultural production systems the
crops are grown in.

While the idea of modelling the performance of plants with virtual allele combinations under a
range of environments is not new [148], it seems that its potential has still not been realized, to date.
Some of the existing molecular and physiological plant models of water status and drought stress in
tomato (e.g., [149,150]) and Arabidopsis (e.g., [151]) may be connected to improve our understanding
of drought and plant responses to it. Moreover, new modelling approaches, including the causal
inference approaches by Pearl and colleagues, which provide mathematical tools to describe causal
relations, rather than correlation, and explicitly include the scientist’s causal knowledge in the design
of a statistical model. These methods, until now widely overlooked in the plant sciences, have the
potential to allow insights in systems hardly comparable by classic statistical approaches [152], and may
thereby help to lift translational phenotyping to the next level.
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