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Water level in rivers, lakes and reservoirs has great influence on the interactions

between prey and predator populations. Indeed, the capture of prey by predator is hin-

dered (favored) due to increase (decrease) in water volume. In this paper, we consider a
seasonally varying predator-prey model to investigate the influence of water-level varia-

tions on the species of fishes in an artificial lake. A seasonal variation of the water-level is

introduced in the predation rate, and as control upon the over predation, a time depen-
dent harvest term has been also considered. We derive the conditions for persistence and

extinction of the populations. Using continuation theory, we determine the conditions

for which the system has a positive periodic solution. The existence of a unique globally
stable periodic solution is also presented. Moreover, we obtain conditions for existence,

uniqueness and stability of a positive almost periodic solution. We find that if the au-

tonomous system shows stable focus, the corresponding nonautonomous system exhibits
unique stable positive periodic solution. But, if the autonomous system shows limit cycle
oscillations, the corresponding nonautonomous system exhibits chaotic dynamics. The
chaotic behavior of system is confirmed by positive values of maximum Lyapunov expo-
nent. Our findings show that water level plays an important role in the persistence of

prey-predator system.

Keywords: Predator-prey interactions, Water level fluctuations, Continuation theorem,
Periodic solution, Almost periodic solution, Global attractivity.
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1. Introduction

Lakes, ponds and rivers of mountain, temperate and tropical regions show seasonal

natural fluctuations of water level. Hydrological regimes influence primary produc-

tivity 1,2 and fisheries 3,4,5,6,7 due to nutrient input variations from the surrounding

terrestrial ecosystems and internal accumulation/resuspension of nutrient-rich sed-

iments 8,9,10. Human activities such as dam and reservoir construction, water ex-

traction 3,11,12, and in addition climate change 7 enhance amplitude, frequency and

unpredictability of the natural fluctuations between dry and wet conditions, espe-

cially at the littoral zone of lakes and rivers. Changes of water level cause significant

variations on littoral habitat characteristics: on physical-chemical conditions of wa-

ter, on coverage of shoreline vegetation 13 and in general on its complexity 14, then

reducing its suitability as refuge and breeding area for benthic invertebrates and

fish, both preys and predators 15,16.

The impact of water level fluctuations in aquatic ecosystems has been studied

by several researchers 17,18,19,20,21,22,23. Depending on the spatial and temporal ex-

tension, water level fluctuations can influence structure and dynamics of the fish

communities 24,25,26. These features lead to a change in the Lotka-Volterra model
27,28 and water level variation has been included in the system of differential equa-

tions 29,30,31. Chiboub et al. 32 using a two species model showed that the seasonal

variations in water level of a river exert a strong influence on prey-predator interac-

tions between pike and roach species. Moussaoui and collaborators 33,34 investigat-

ing a complex interaction between three species of fish in a lake of Southern France,

showed that only under some appropriate conditions of water level the prey-predator

system is permanent. Gownaris et al. 22 studied the consequences of water fluctu-

ations on ecosystem attributes of 13 African lakes. They found that in most cases

water fluctuation enhanced primary and overall lake production including fisheries

production but with important consequences on species diversity.

In the present paper, we investigate a complex three prey-predator system under

water level fluctuations, in which the prey feeds on invertebrates, by extending the

model studied by Moussaoui and Boughima 34. Our main aim is to investigate rich

dynamics including chaos, which was absent in earlier works. The invertebrates serve

as food for both small fish (prey) and for large fish (predators). The small fish is

predated by large fish. For example, this could be the system of brown trout (Salmo

trutta), juveniles and adults, introduced in a mountain reservoir, and the amphipod

crustacean Gammarus pulex, and other macroinvertebrates eaten by both juveniles

and adults of trout. Another example of interaction potentially influenced by water

level fluctuation is that of the rudd (Scardinius erithophthalmus) predated by the

pike (Esox lucius) in littoral zone of lakes and ponds of temperate climate. We

consider modified Beddington type interaction between invertebrates and small fish
35; the interaction between large fish and invertebrates is assumed to follow ratio-

dependent functional response. Moreover, we consider seasonal harvesting of the

large fish 36. We analyze the system for positive invariance, permanence, existence
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of periodic (almost periodic) solutions, and global attractivity of unique positive

periodic (almost periodic) solution 37,38,39,40.

2. The mathematical model

Water level may influence local community dynamics in water bodies. The in-

crease/decrease in the level of water leads to increase/decrease in the volume of

water, which affects the interactions of fishes and catching capability. We examine

how seasonal variations in water level and harvesting affects the outcome of prey-

predator interactions. Our dynamic model is a continuous time with three states,

the invertebrates, the prey (small fish) and the predator (large fish), where each

species is described by the evolution of its biomass x(t), y(t) and z(t), respectively.

Let the growth rate of invertebrates follows the logistic law with r as intrinsic growth

rate and K as environmental carrying capacity i.e., rx(t)

(
1− x(t)

K

)
. We consider

modified Beddington type interaction between invertebrates, x and small fish, y

i.e.,
Fx(t)y(t)

1 + hFx(t) + wFy(t)
. Further, we assume that the interaction between large

fish and invertebrates follows ratio-dependent functional response i.e.,
F1x(t)z(t)

x(t) + az(t)
.

Moreover, we consider seasonal harvesting of the large fish with E as fishing effort

and q(t) as the catching capability. Let d1 and d2 be the natural death rates of prey

and predator, respectively.

When a predator attacks a prey, it has access to a certain quantity of food

depending on the water level. When water level is low (high), the predator is more

(less) in contact with the prey. Let b(t) be the accessibility function for the prey.

The functions b(t) and q(t) are annual periodic and continuous, that is, b(t) and

q(t) are 1-periodic. The minimum value of b(t) and q(t) is reached in spring, and

the maximum value of b(t) and q(t) is attained during autumn. Denote by γ, the

maximum consumption rate of resource by predator. The predator needs a quantity

γz(t) for his food, but he has access to a quantity
b(t)y(t)z(t)

D + z(t)
. If

b(t)y(t)

D + z(t)
≥ γ, the

predator will be satisfied with the quantity γz(t) for his food. On the other hand,

if
b(t)y(t)

D + z(t)
≤ γ, the predator will content himself with

b(t)y(t)z(t)

D + z(t)
. Consequently,

the quantity of food received by the predator is

min

(
b(t)y(t)

D + z(t)
, γ

)
z(t).

The interplay among invertebrates, small fish and large fish is depicted in Fig. 1.
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Fig. 1. Schematic diagram of the system (2.1).

Accordingly, our model is given by

dx(t)

dt
= rx(t)

(
1− x(t)

K

)
− Fx(t)y(t)

1 + hFx(t) + wFy(t)
− F1x(t)z(t)

x(t) + az(t)
,

dy(t)

dt
=

αFx(t)y(t)

1 + hFx(t) + wFy(t)
−min

(
b(t)y(t)

D + z(t)
, γ

)
z(t)− d1y(t), (2.1)

dz(t)

dt
= βmin

(
b(t)y(t)

D + z(t)
, γ

)
z(t) +

F2x(t)z(t)

x(t) + az(t)
− d2z(t)− q(t)Ez(t).

The biological meaning of the parameters involved in the system (2.1) and their

values used for numerical simulations are given in Table 1.

3. Mathematical analysis and main result

Let x(0) = x0, y(0) = y0, z(0) = z0 be respectively the initial density of the

invertebrates, prey and predator with x0 > 0, y0 > 0 and z0 > 0. Before starting

the mathematical analysis of the model (2.1), we rewrite it in a simpler form.

Proposition 3.1 For t > 0, let ql = min q(t), qu = max q(t), bl = min b(t) and
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Table 1. Biological meanings of parameters involved in the system (2.1) and their values used for

numerical simulations

Parameters Descriptions Values

r Intrinsic growth rate of invertebrates in the absence of fish populations 4.3

K Carrying capacity of the environment for the invertebrates 180

F Consumption rate of invertebrate by prey 0.8

h Handling time of prey 0.1

w Prey interference coefficient 0.1

F1 Capture rate of prey by predator 0.9

a Half-saturation constant 2

α Assimilation fraction of prey 1.8

b Accessibility function of prey 2.15

D Measure of mortality outside predation 0.01

γ Maximum consumption rate by predator —

d1 Death rate of prey 0.5

d2 Death rate of predator 0.45

β Conversion rate of prey into predator 0.3

F2 Growth rate of predator due to invertebrates 0.6

q Catching capability 1

E Fishing effort 0.01

bu = max b(t). If the following conditions hold

d2 + quE < d1, (3.1)

bu < min

{
γ(D + z0)

αx0 + y0
,

4rγD(d2 + quE)

Kα(r + d2 + quE)2

}
, (3.2)

then for all t > 0

buy(t) < γ(D + z(t)). (3.3)

Proof. Let

u(t) = bu(y(t) + αx(t))− γ(D + z(t)), (3.4)

then from condition (3.2), we have u(t) |t=0< 0. We claim that u(t) < 0, ∀ t > 0.

If not, then there exists t0 > 0 such that u(t0) = 0 and
du

dt

∣∣∣
t0
≥ 0.

u(t0) = 0 ⇒ bu(y(t0) + αx(t0))− γ(D + z(t0)) = 0 ⇒ z(t0) =
bu(y(t0) + αx(t0))

γ
−D.
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From equation (3.4), we have

du

dt

∣∣∣
t0

= bu
(

αFx0y0
1 + hFx0 + wFy0

− b(t0)y0z0
D + z0

− d1y0 + αrx0

(
1− x0

K

)
− αFx0y0

1 + hFx0 + wFy0
− αF1x0z0
x0 + az0

)
−γ
(
β
b(t0)y0z0
D + z0

+
F2x0z0
x0 + az0

− d2z0 − q(t0)Ez0

)
≤ bu

(
αrx0 −

αrx20
K
− d1y0

)
+ γ(d2z0 + q(t0)Ez0)

≤ bu
(
αrx0 − αr

x20
K
− d1y0

)
+ γ(d2 + quE)

(
bu(y0 + αx0)

γ
−D

)
≤ −buαrx

2
0

K
+ {buαr + buα(d2 + quE)}x0 + bu(d2 + quE − d1)y0 − γD(d2 + quE)

≤ −b
uαrx20
K

+ bu{r + (d2 + quE)}αx0 − γD(d2 + quE).

Right side of above inequality is quadratic polynomial whose discriminant is

∆ = bu2α2(r + d2 + quE)2 − 4γDb2αr(d2 + quE)

K
.

From condition (3.2), it follows that
du

dt
< 0, which is a contradiction. So, u(t) <

0, ∀ t > 0.

Consequently system (2.1) is reduced to the following simple form,

dx(t)

dt
= rx(t)

(
1− x(t)

K

)
− Fx(t)y(t)

1 + hFx(t) + wFy(t)
− F1x(t)z(t)

x(t) + az(t)
,

dy(t)

dt
=

αFx(t)y(t)

1 + hFx(t) + wFy(t)
− b(t)y(t)z(t)

D + z(t)
− d1y(t), (3.5)

dz(t)

dt
=
βb(t)y(t)z(t)

D + z(t)
+

F2x(t)z(t)

x(t) + az(t)
− d2z(t)− q(t)Ez(t).

Remark 3.1 Condition (3.2) corresponds to the scenario where interactions be-

tween predators and prey are not sufficiently strong, and thus, the accessibility func-

tion is below a threshold value given by (3.2). This situation is possible in the lake

if the level of water is above a suitable value.

4. The model with general coefficients

First, we introduce some basic definitions and facts, which will be used throughout

this paper. Let R3
+ = {(x, y, z) ∈ R3| x ≥ 0, y ≥ 0, z ≥ 0}. Denote by (x, y, z), the

solution of system (3.5) with initial condition (x0, y0, z0). For biological reasons,

throughout this paper, we only consider the solutions (x(t), y(t), z(t)) with positive

initial values, that is, (x0, y0, z0) ∈ R3
+. Let g(t) be a continuous function. If g(t) is

bounded on R, we denote

g =

∫ 1

0

g(t)dt.
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We have the following lemma.

Lemma 4.1 Both the nonnegative and positive cones of R3
+ are positively invariant

for system (3.5).

Proof. The solution (x(t), y(t), z(t)) of system (3.5) with initial values (x0, y0, z0)

satisfies,

x(t) = x0 exp

{∫ t

0

[
r

(
1− x(s)

K

)
− Fy(s)

1 + hFx(s) + wFy(s)
− F1z(s)

x(s) + az(s)

]
ds

}
,

y(t) = y0 exp

{∫ t

0

[
αFx(s)

1 + hFx(s) + wFy(s)
− b(s)z(s)

D + z(s)
− d1

]
ds

}
,

z(t) = z0 exp

{∫ t

0

[
βb(s)y(s)

D + z(s)
+

F2x(s)

x(s) + az(s)
− d2 − q(s)E

]
ds

}
.

The conclusion follows immediately for all t ∈ [0,∞).

Definition 4.1 System (3.5) is said to be permanent if there exist some δi > 0

(i = 1, 2) with 0 < δ1 < δ2 such that

min

{
lim

t→+∞
inf x(t), lim

t→+∞
inf y(t), lim

t→+∞
inf z(t)

}
≥ δ1,

max

{
lim

t→+∞
supx(t), lim

t→+∞
sup y(t), lim

t→+∞
sup z(t)

}
≤ δ2

for all solutions of system (3.5) with positive initial values. System (3.5) is said to

be nonpersistent if there is a positive solution (x(t), y(t), z(t)) of (3.5) satisfying the

following condition:

min

{
lim

t→+∞
inf x(t), lim

t→+∞
inf y(t), lim

t→+∞
inf z(t))

}
= 0.

Let ε ≥ 0 be sufficiently small. Put

M ε
1 = K + ε, mε

1 = K

[
1−

(
1

w
+
F1

a

)]
− ε,

M ε
2 =

αFM ε
1 − d1(1 + hFM ε

1)

d1wF
=
M ε

1(α− d1h)

d1w
− 1

wF
, mε

2 =
αFmε

1 − (bu + d1)(1 + hFmε
1)

wF (bu + d1)
,

M ε
3 =

βbuM ε
2 + F2D −D(d2 + qlE)

d2 + qlE − F2
=

M ε
2βb

u

d2 + qlE − F2
−D, mε

3 =
βblmε

2

d2 + quE
−D,

then M ε
i > mε

i (i = 1, 2, 3). We show that max{mε
1, 0}, max{mε

2, 0} and max{mε
3, 0}

are the lower bounds for the limiting bounds of species x(t), y(t) and z(t), respec-

tively as t → ∞, which is obvious when mε
i ≤ 0. Thus, we assume that mε

i > 0,

(i = 1, 2, 3).

Lemma 4.2 Suppose

m0
i > 0, i = 1, 2, 3, (4.1)
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then for any sufficiently small ε ≥ 0 such that mε
i > 0 (i = 1, 2, 3), the region Γε

defined by

Γε = {(x, y, z) ∈ R3| mε
1 ≤ x(t) ≤M ε

1 , m
ε
2 ≤ y(t) ≤M ε

2 , m
ε
3 ≤ z(t) ≤M ε

3}(4.2)

is positively invariant with respect to the system (3.5).

Geometrically, uniform permanence means the existence of a region in the phase

plane at a non-zero distance from the boundary in which species enter and must lie

ultimately that ensures the long time survival of species in biological sense.

Theorem 4.1 The system (3.5) is permanent provided the conditions in (3.1),

(3.2) and (4.1) are satisfied.

Proof. Throughout this proof, we use the fact that solution to the equation

X ′(t) = A(t,X)X(t)[B −X(t)], (B 6= 0)

is given by

X(t) =
BX0 exp

{∫ t
0
BA(s,X(s))ds

}
X0
[
exp

{∫ t
0
BA(s,X(s))ds

}
− 1
]

+B
, X0 = X(0).

Consider the solution of system (2.1) with an initial value (x0, y0, z0) ∈ Γε. From

Lemma 4.1 and from the first equation of system (3.5), we have

ẋ(t) ≤ rx(t)

(
1− x(t)

K

)
=

r

K
x(t)(K − x(t)) ≤ r

K
x(t){M0

1 − x(t)}.

Using comparison test, we have

x(t) ≤ M0
1x0 exp(rt)

x0[exp(rt)− 1] +M0
1

≤ M ε
1x0 exp(rt)

x0[exp(rt)− 1] +M ε
1

≤M ε
1 , t ≥ 0.

From the second equation of system (3.5), we have

ẏ(t) ≤ −d1y(t) +
αFx(t)y(t)

1 + hFx(t) + wFy(t)

≤ −d1y(t) +
αFM ε

1y(t)

1 + wFy(t) + hFM ε
1

= y(t)

[
−d1 +

αFM ε
1

1 + hFM ε
1 + wFy(t)

]
≤ d1wFy(t)

1 + hFM ε
1 + wFy(t)

[M ε
2 − y(t)].

Let c2(t) =
d1wF

1 + hFM ε
1 + wFy(t)

. Using comparison test, we have

y(t) ≤
M ε

2y0 exp
{
M ε

2

∫ t
0
c2(s)ds

}
y0

[
exp

{
M ε

2

∫ t
0
c2(s)ds

}
− 1
]

+M ε
2

≤M ε
2 , t ≥ 0.
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From the third equation of system (3.5), we have

ż(t) ≤ βbuM ε
2

D + z(t)
z(t) + F2z(t)− d2z(t)− qlEz(t)

= z(t)

{
βbuM ε

2

D + z(t)
+ F2 − (d2 + qlE)

}
=

z(t)

D + z(t)

[
{βbuM ε

2 + F2D −D(d2 + qlE)} − {(d2 + qlE)− F2}z(t)
]

≤ z(t){(d2 + qlE)− F2}
D + z(t)

[M ε
3 − z(t)].

Let c3(t) =
(d2 + qlE)− F2

D + z(t)
. Using comparison test, we have

z(t) ≤
M ε

3z0 exp
{
M ε

3

∫ t
0
c3(s)ds

}
z0

[
exp

{
M ε

3

∫ t
0
c3(s)ds

}
− 1
]

+M ε
3

≤M ε
3 , ∀ t ≥ 0.

Again, from the first equation of system (3.5), we have

ẋ(t) ≥ rx(t)

(
1− x(t)

K

)
− 1

w
x(t)− F1

a
x(t)

= rx(t)

[(
1− 1

w
− F1

a

)
− x(t)

K

]
≥ r

K
x(t)[m0

1 − x(t)].

Since x0 > m0
1, by comparison test, we have

x(t) ≥
m0

1 exp
{
r
(
1− a+wF1

aw

)
t
}

x0
[
exp

{
r
(
1− a+wF1

aw

)}
− 1
] ≥ mε

1, ∀ t ≥ 0.

From the second equation of system (3.5), we have

ẏ(t) ≥ y(t)

[
αFmε

1

1 + hFmε
1 + wFy(t)

− bu − d1
]
≥ (bu + d1)wFy(t)

1 + hFmε
1 + wFy(t)

[mε
2 − y(t)].

Let cu(t) =
(bu + d1)wF

1 + hFmε
1 + wFy(t)

. Using comparison test, we have

y(t) ≥
mε

2y0 exp
{
mε

2

∫ t
0
c4(s)ds

}
y0

[
exp

{
mε

2

∫ t
0
c4(s)ds

}
− 1
]

+mε
2

≥ mε
2, ∀ t ≥ 0.

From the last equation of system (3.5), we have

ż(t) ≥ z(t)
[
βblmε

2

D + z(t)
− d2 − quE

]
≥ z(t)(d2 + quE)

D + z(t)
[mε

3 − z(t)].

Since z0 ≥ mε
3, therefore z(t) ≥ mε

3, ∀ t ≥ 0. Hence, the region Γε is positively

invariant and consequently the system (3.5) is permanent.
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Remark 4.1 We established existence which leads to a criterion of species survival.

It is based on the values of b which is linked with the level of water in the lake. The

result given by Theorem 4.1 has an interesting ecological interpretation, since it

illustrates that suitable water levels can be an advantage in terms of species survival.

Theorem 4.2 If M0
2 > 0 and M0

3 < 0, then lim
t→∞

z(t) = 0 i.e., the predator popu-

lation goes to extinction.

Proof. Since ż(t) ≤ z(t){(d2 + qlE)− F2}
D + z(t)

[M ε
3 − z(t)] < 0 (since M0

3 < 0 ⇒

M ε
3 < 0 with sufficiently small ε). Thus, there exists c ≥ 0 such that lim

t→∞
z(t) = c

and c ≤ z(t) < z0, ∀ t ≥ 0. If c > 0, then there exists µ > 0 such that z′(t) < −µ,

∀ t ≥ 0. Therefore, z(t) < −µt+ z0 and lim
t→∞

z(t) = −∞, which contradicts the fact

that z(t) > 0, ∀ t ≥ 0. Hence, lim
t→∞

z(t) = 0.

Remark 4.2 The increased level of water induces zones inundation on the banks of

the lake, which permits to have more invertebrates. Since invertebrates already exists

in bush at the bank of reservoir, the invertebrates float on the surface of water due

to increased water level. This promotes to have more prey, mathematically can be

justified by M0
2 > 0. These zones become an obstacle for the predator species because

they are not deep and are protected from big predators; this hinders the capture of

the prey by the predator. These areas are the privileged places for development of

the prey. Consequently, if the level of water is high, which is directly associated with

M0
3 < 0, the predation could decrease significantly.

Theorem 4.3 If M0
2 ≤ 0 and d2 + qlE > F2, then lim

t→∞
y(t) = 0 and lim

t→∞
z(t) = 0,

that is, the prey and the predator goes to extinction.

Proof. It follows that M0
2 ≤ 0 and M0

3 ≤ 0. Thus, lim
t→∞

z(t) = 0. Proof follows

from the previous theorem.

Theorem 4.4 If the following conditions hold,

M0
2 ≤ 0, d2 + qlE > F2, 0 <

x0
y0

<
1

h

[
1

r + bu + d1
−
(
w +

1

FM0
2

)]
= δ,

then lim
t→∞

(x(t), y(t), z(t)) = (0, 0, 0).

Proof. From the previous theorem, we have lim
t→∞

y(t) = 0 and lim
t→∞

z(t) = 0. First

we assume that the condition holds and claim that
x(t)

y(t)
< δ, ∀ t ≥ 0. If not, then

there exists a first time t1 such that
x(t1)

y(t1)
= δ and

x(t)

y(t)
< δ, ∀ t ∈ [0, t1]. Then, for
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any t ∈ [0, t1], we have

ẋ(t) ≤ x(t)

[
r − Fy(t)

1 + hFx(t) + wFy(t)

]
= x(t)

[
r − F

1/y(t) + hFx(t)/y(t) + wF

]
≤ x(t)[−bu − d1].

Thus, x(t) ≤ x0 exp {−t(bu + d1)}.
Again, from system (3.5), we have ẏ(t) ≥ y(t)[−bu − d1]. Thus, y(t) ≥

y0 exp {−(bu + d1)t}. Hence,
x(t)

y(t)
≤ x0
y0

< δ, ∀ t ∈ [0, t1], which is contradiction to

the existence of t1. So, our claim is true. Since x(t) ≤ x0 exp {−(bu + d1)t} → 0 as

t→∞. Hence, lim
t→∞

(x(t), y(t), z(t)) = (0, 0, 0).

5. Existence of positive periodic solutions

In this section, we investigate the existence of positive periodic solutions of the

system (3.5). Such a solution describes an equilibrium situation consistent with

the variability of environmental conditions and such that populations survive. The

trajectories in the phase plane of these solutions of the non-autonomous system

take the place of the equilibrium points of the autonomous system.

To prove the existence of positive periodic solutions of system (3.5) with strictly

positive components, we will employ the continuation theorem in coincidence degree

theory, which has been successfully used to establish criteria for the existence of

positive periodic solutions of some mathematical models 41,42,43. To this end, we

shall summarize in the following a few concepts and results from 37 that will be

basic for this section.

Let X and Z be two real Banach spaces and L : DomL ⊂ X → Z a linear

mapping, and N : X → Z a continuous mapping. The mapping L is called a

Fredholm mapping of index zero if dimKerL = codimImL < +∞, and ImL is closed

in Z. If L is a Fredholm mapping of index zero, there exist continuous projections

P : X → X and Q : Z → Z such that ImP = KerL, ImL = KerQ = Im(I −Q). It

follows that L|DomL∩KerP : (I − P )X → ImL has an inverse which will be denoted

by KP . If Ω is an open and bounded subset of X, the mapping N will be called

L-compact on Ω if QN(Ω) is bounded and KP (I −Q)N : Ω→ X is compact. Since

ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ→ KerL.

In the proof of our main theorem, we will use the following result from Gaines

and Mawhin 37.

Theorem 5.1 [Continuation Theorem] Let Ω ⊂ X be an open bounded set. Let L

be a Fredholm mapping of index zero and N be L-compact on Ω. Suppose that

(1) For each λ ∈ (0, 1), u ∈ ∂Ω ∩DomL, Lu 6= λNu;

(2) For each u ∈ ∂Ω ∩KerL, QNu 6= 0;
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(3) The Brouwer degree, deg{JQN, Ω ∩KerL, 0} 6= 0.

Then the equation Lu = Nu has at least one solution in Ω ∩DomL.

Theorem 5.2 System (3.5) has atleast one positive periodic solutions if the follow-

ing conditions are satisfied,

K

[
1− 1

r

(
1

w
+
F1

a

)]
> 0,

αFeρ2 − (1 + hFeρ2)(d1 + b2) > 0, (5.1)

βb1e
ρ4

d2 + qME
−D > 0.

Proof.

System (3.5) has atleast one positive periodic solution as solution of the system

remains positive for t ≥ 0. Let

U(t) = log x(t), V (t) = log y(t), W (t) = log z(t),

then we have

U̇(t) = r − reU(t)

K
− FeV (t)

1 + hFeU(t) + wFeV (t)
− F1e

W (t)

eU(t) + aeW (t)
,

V̇ (t) =
αFeU(t)

1 + hFeU(t) + wFeV (t)
− b(t)eW (t)

D + eW (t)
− d1, (5.2)

Ẇ (t) =
βb(t)eV (t)

D + eW (t)
+

F2e
U(t)

eU(t) + aeW (t)
− d2 − q(t)E.

In order to use Continuation Theorem on system (5.2), we take

X = Z = {S ∈ (U, V,W )T ∈ C(R,R3), S(t+ 1) = S(t)}

and use the norm

||S|| = max
t∈[0,1]

|U(t)|+ max
t∈[0,1]

|V (t)|+ max
t∈[0,1]

|W (t)|, S ∈ X(or Z).

Then, X and Z are the Banach spaces when they are endowed with the above norm

||.||.
Let

N

 UV
W

 =

N1(t)

N2(t)

N3(t)

 =


r − reU(t)

K
− FeV (t)

1 + hFeU(t) + wFeV (t)
− F1e

W (t)

eU(t) + aeW (t)

αFeU(t)

1 + hFeU(t) + wFeV (t)
− b(t)eW (t)

D + eW (t)
− d1

βb(t)eV (t)

D + eW (t)
+

F2e
U(t)

eU(t) + aeW (t)
− q(t)E − d2





January 30, 2020 14:30

Chaos in a nonautonomous model for the interactions of prey and predator with effect of water level fluctuation 13

and

L

 U

V

W

 =

 U̇

V̇

Ẇ

 , P

 U

V

W

 = Q

 U

V

W

 =



∫ 1

0

U(t)dt∫ 1

0

V (t)dt∫ 1

0

W (t)dt

 .

Here, P and Q are continuous projections, and U

V

W

 ∈ X such that ImP = KerL, KerQ = ImL = Im(I −Q).

Then,

KerL =
{

(U, V,W ) ∈ X : (U, V,W ) = (h1, h2, h3) ∈ R3
}

= R3,

ImL =

{
(U, V,W ) ∈ Z :

∫ 1

0

U(t)dt = 0,

∫ 1

0

V (t)dt = 0,

∫ 1

0

W (t)dt = 0

}
.

Here, dimKerL = 3 = CodimImL. Since ImL is closed, hence L is a Fredholm

mapping zero. So, we define inverse of L as

Kp : ImL→ DomL ∩KerP

given by

Kp

 U

V

W

 =



∫ t

0

U(s)ds−
∫ 1

0

∫ t

0

U(s)dsdt∫ t

0

V (s)ds−
∫ 1

0

∫ t

0

V (s)dsdt∫ t

0

W (s)ds−
∫ 1

0

∫ t

0

W (s)dsdt

 .

Accordingly, QN : X → Z and Kp(I −Q)N : X → X lead to

QNx =



∫ 1

0

{
r − reU(t)

K
− FeV (t)

1 + hFeU(t) + wFeV (t)
− F1e

W (t)

eU(t) + aeW (t)

}
dt∫ 1

0

{
αFeU(t)

1 + hFeU(t) + wFeV (t)
− b(t)eW (t)

D + eW (t)
− d1

}
dt∫ 1

0

{
βb(t)eV (t)

D + eW (t)
+

F2e
U(t)

eU(t) + aeW (t)
− q(t)E − d2

}
dt

 ,

Kp(I −Q)N

 U

V

W

 =



∫ t

0

N1(s)ds−
∫ 1

0

∫ t

0

N1(s)dsdt−
(
t− 1

2

)∫ 1

0

N1(s)ds∫ t

0

N2(s)ds−
∫ 1

0

∫ t

0

N2(s)dsdt−
(
t− 1

2

)∫ 1

0

N2(s)ds∫ t

0

N3(s)ds−
∫ 1

0

∫ t

0

N3(s)dsdt−
(
t− 1

2

)∫ 1

0

N3(s)ds

 .
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Using Arzela-Ascoli theorem QN(Ω) and Kp(I − Q)N(Ω) are relatively compact

for any bounded open set Ω ⊂ X. Thus, N is L-compact on any open bounded set

X.

In order to apply Continuation Theorem, we need a suitable open bounded

subset Ω corresponding to the operator equation Lx = λNx, λ ∈ (0, 1). We have

U̇(t) = λ

[
r − reU(t)

K
− FeV (t)

1 + hFeU(t) + wFeV (t)
− F1e

W (t)

eU(t) + aeW (t)

]
,

V̇ (t) = λ

[
αFeU(t)

1 + hFeU(t) + wFeV (t)
− b(t)eW (t)

D + eW (t)
− d1

]
, (5.3)

Ẇ (t) = λ

[
βb(t)eV (t)

D + eW (t)
+

F2e
U(t)

eU(t) + aeW (t)
− q(t)E − d2

]
.

Assume that (U, V,W )T ∈ X is an arbitrary solution of system (5.3) for certain

λ ∈ (0, 1). Integrating both sides of equations in system (5.3) over [0, 1], we get

r =
r

K

∫ 1

0

eU(t)dt+ F

∫ 1

0

eV (t)

1 + hFeU(t) + wFeV (t)
dt+ F1

∫ 1

0

eW (t)

eU(t) + aeW (t)
dt,

d1 = αF

∫ 1

0

eU(t)

1 + hFeU(t) + wFeV (t)
dt−

∫ 1

0

b(t)eW (t)

D + eW (t)
dt, (5.4)

d2 = β

∫ 1

0

b(t)eV (t)

D + eW (t)
dt+ F2

∫ 1

0

eU(t)dt

eU(t) + aeW (t)
dt− E

∫ 1

0

q(t)dt.

From (5.3) and (5.4), we have∫ 1

0

|U̇(t)| = λ

∫ 1

0

∣∣∣ r − reU(t)

K
− FeV (t)

1 + hFeU(t) + wFeV (t)

− F1e
W (t)

eU(t) + aeW (t)

∣∣∣ dt ≤ 2r, (5.5)∫ 1

0

|V̇ (t)| = λ

∫ 1

0

∣∣∣ αFeU(t)

1 + hFeU(t) + wFeV (t)
− b(t)eW (t)

D + eW (t)
− d1

∣∣∣ dt ≤ 2d1,(5.6)∫ 1

0

|Ẇ (t)| = λ

∫ 1

0

∣∣∣ βb(t)eV (t)

D + eW (t)
+

F2e
U(t)

eU(t) + aeW (t)
− q(t)E − d2

∣∣∣ dt ≤ 2d2.(5.7)

So, there exist ξi, ηi ∈ [0, 1] such that for t ∈ [0, 1], we have

U(ξ1) = minU(t), U(η1) = maxU(t), V (ξ2) = minV (t), V (η2) = maxV (t),

W (ξ3) = minW (t), W (η3) = maxW (t). (5.8)

From (5.4) and (5.8), we have

r >
r

K

∫ 1

0

U(t)dt >
r

K
exp {U(ξ1)} ⇒ K > exp {U(ξ1)} ⇒ U(ξ1) ≤ log(K), ∀ t ≥ 0.

Hence, U(t) < U(ξ1) +

∫ 1

0

|U̇(t)| ≤ log(K) + 2r = ρ1 ≥ 0.
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Again, from (5.3) and (5.8), we have

r ≤ r

K

∫ 1

0

eU(t)dt+ F

∫ 1

0

eV (t)

wFeV (t)
dt+ F1

∫ 1

0

eW (t)

aeW (t)
≤ r

K
eη1 +

(
1

w
+
F1

a

)
.

This implies,

eU(η1) ≥ K

r

[
r −

(
1

w
+
F1

a

)]
⇒ U(η1) ≥ log

[
K

{
1− 1

r

(
1

w
+
F1

a

)}]
.

Thus, U(t) ≥ U(η1) −
∫ 1

0

|U̇(t)|dt ≥ log

[
K

{
1− 1

r

(
1

w
+
F1

a

)}]
− 2r = ρ2 ≥ 0.

Now take max |U(t)| ≤ max{ρ1, ρ2} = B1.

Again, from (5.4) and (5.8), we have

d1 ≤ αF
∫ 1

0

eU(t)

1 + hFeU(t) + wFeV (t)
dt ≤ αF eρ1

1 + hFeρ1 + wFeV (ξ2)
.

This implies,

eV (ξ2) ≤
(
αFeρ1

d1
− hFeρ1 − 1

)
⇒ V (ξ2) ≤ log

[
αFeρ1 − d1(hFeρ1 + 1)

d1

]
.

It follows that

V (t) ≤ V (ξ2) +

∫ 1

0

|V̇ (t)|dt ≤ log

[
αFeρ1 − d1(hFeρ1 + 1)

d1

]
+ 2d1 = ρ3, ∀ t ≥ 0.

Again from (5.4) and (5.8), we have

d1 ≥
αFeρ2

1 + hFeρ2 + wFeV (η2)
− bu.

Thus,

(d1 + bu)(1 + hFeρ2 + wFeV (η2)) ≥ αFeρ2 ⇒ V (η2) ≥ log

[
αFeρ2 − (1 + hFeρ2)(d1 + bu)

(d1 + bu)wF

]
.

So,

V (t) ≥ V (η2)−
∫ 1

0

|V̇ (t)|dt ≥ log

(
αFeρ2 − (1 + hFeρ2)(d1 + bu)

(d1 + bu)wF

)
− 2d1 = ρ4, ∀ t ≥ 0.

Now take max
t∈[0,1]

|V (t)| ≤ max{|ρ3|, |ρ4|} = B2.

Again from (5.4) and (5.8), we have

d2 ≤
βbueρ3

D + eW (ξ3)
+ (F2 − qlE)

⇒ eW (ξ3) ≤
(

βbueρ3

d2 + qlE − F2
−D

)
⇒W (ξ3) ≤ log

(
βbueρ3

d2 + qlE − F2
−D

)
.

Hence,

W (t) ≤W (ξ3) +

∫ 1

0

|Ẇ (t)|dt ≤ log

(
βb2e

ρ3

d2 + qmE − F2
−D

)
+ 2d2 = ρ5.
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Again, we have

d2 ≥
βbleρ4

D + eW (η3)
− quE

⇒ D + eW (η3) ≥ βbleρ4

d2 + quE
⇒W (η3) ≥ log

[
βbleρ4

d2 + quE
−D

]
.

Hence,

W (t) ≥W (η3)−
∫ 1

0

|Ẇ (t)|dt = log

(
βbleρ4

d2 + quE
−D

)
− 2d2 = ρ6.

Therefore, max
t∈[0,1]

|W (t)| ≤ max{|ρ5|, |ρ6|} = B3.

Let B = B1 + B2 + B3 + ε, where ε is chosen sufficiently large such that each

solution (U∗, V ∗,W ∗)T of system of algebraic equations

[
f =

∫ 1

0

f(t)

]
,

r − reU

K
− FeV

1 + hFeU + wFeV
− F1e

W

eU + aeW
= 0,

αF

1 + hFeU + wFeV
− beW

D + eW
− d1 = 0, (5.9)

βbeV

D + eW
+

F2e
U

eU + aeW
− qE − d2 = 0

satisfies ||(U∗, V ∗,W ∗)T || < B provided the system (5.9) has one or a number of

solutions.

Now, we set Ω = {(U, V,W )T ∈ X| ||(U, V,W )T || < B}. It is easy to see

that the first condition of Continuation Theorem is satisfied. Then, (U, V,W )T ∈
∂Ω∩KerL = ∂Ω∩R3, (U, V,W )T is content vector in R3 with |U |+ |V |+ |W | = B.

If the system (5.9) has atleast one solution, we have

QN

 U

V

W

 =


r − reU

K
− FeV

1 + hFeU + wFeV
− F1e

W

eU + aeW

αF

1 + hFeU + wFeV
− beW

D + eW
− d1

βbeV

D + eW
+

F2e
U

eU + aeW
− qE − d2

 6=
0

0

0

 .

If the system (5.9) does not have any solution, we have

QN

 U

V

W

 6=
0

0

0

 .

Hence, the second condition of Continuation Theorem is satisfied.

In order to prove the third condition of Continuation Theorem, we define a ho-

momorphism mapping J : ImQ→ KerL by (U, V,W )T → (U, V,W )T . A standard
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and straight forward calculation shows that

deg(JQN(U, V,W )T ,Ω ∩KerL, (0, 0, 0)T ) =
∑

Z∗
i ∈QN−1(0)

sgnJQN(Z∗i )

=
∑

(U∗
i ,V

∗
i ,W

∗
i )∈QN−1(0)

detG(U∗, V ∗,W ∗)

n∏
i=1

U∗i

n∏
i=1

V ∗i

n∏
i=1

W ∗i 6= 0,

where G(U, V,W ) is a 3 × 3 matrix G whose components are obtained from the

system of algebraic equations (5.9) and given as,

G11 = −re
U

K
+

hF 2eU+V

(1 + hFeU + wFeV )2
+

F1e
U+W

(eU + aeW )2
, G12 = − FeV (1 + hFeU )

(1 + hFeU + wFeV )2
,

G13 = − F1e
U+W

(eU + aeW )2
, G21 =

αFeU (1 + wFeV )

(1 + hFeU + wFeV )2
, G22 = − αwF 2eU+V

(1 + hFeU + wFeV )2
,

G23 =
DbeW

(D + eW )2
, G31 =

aF2e
U+W

(eU + aeW )2
, G32 =

βbeV (D + eW )

(D + eW )2
,

G33 = − βbeV+W

(D + eW )2
− aF2e

U+W

(eU + aeW )2
.

Hence, the third condition of Continuation Theorem is satisfied. Therefore, the

system (5.2) has atleast one positive periodic solution. Hence, the system (3.5) has

atleast one positive periodic solution.

Lemma 5.1 Let κ be a real number and f be a nonnegative function defined

on [κ,+∞) such that f is integrable on [κ,+∞) and is uniformly continuous on

[κ,+∞), then lim
t→+∞

f(t) = 0.

Definition 5.1 If x̃(t) is a ω-periodic solution of the system (2.1), and x(t) is any

solution of the system (2.1) satisfying lim
t→∞

|x̃(t)− x(t)| = 0, then the ω-periodic

solution x̃(t) is said to be globally attractive.

6. Global attractivity of positive periodic solution

Theorem 6.1 If the system (3.5) has atleast one positive periodic solution and

0 < x0, y0, z0 < ∞, then the system (3.5) has unique positive periodic solution
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which is globally attractive provided the following conditions are satisfied:

µ1r

K
+

µ1hF
2eρ4

(1 + hFeρ1 + wFeρ3)2
>

µ1F1e
ρ5

(eρ2 + aeρ6)2
+

µ2αF (1 + Fweρ3)

(1 + hFeρ2 + wFeρ4)2

+
µ3F2e

ρ5

(eρ2 + aeρ6)2
, (6.1)

F 2eρ2(µ2αw + µ1h)

(1 + hFeρ1 + wFeρ3)2
>

µ1F

(1 + hFeρ2 + wFeρ4)2
+

µ3βb
ueρ5

(D + eρ6)2

+
µ3βb

u

D + eρ6
, (6.2)

µ3F2e
ρ2

(eρ2 + aeρ6)2
>

µ1F1e
ρ1

(eρ1 + aeρ5)2
+

µ2b
ueρ5

(D + eρ6)2
+

µ2b
u

D + eρ6
+

µ3βb2e
ρ3

(D + eρ6)2
. (6.3)

Proof.

The system (3.5) has atleast one positive periodic solution (x̃(t), ỹ(t), z̃(t)) and

also we have

eρ2 ≤ x̃(t) ≤ eρ1 , eρ4 ≤ ỹ(t) ≤ eρ3 , eρ6 ≤ z̃(t) ≤ eρ5 .

Suppose (x(t), y(t), z(t)) be any positive periodic solution. Let

V (t) = µ1| lnx(t)− ln x̃(t)|+ µ2| ln y(t)− ln ỹ(t)|+ µ3| ln z(t)− ln z̃(t)|.

By calculating Dini’s derivative, we get

D+V (t) = µ1sgn(x(t)− x̃(t))

(
ẋ(t)

x(t)
−

˙̃x(t)

x̃(t)

)
+ µ2sgn(y(t)− ỹ(t))

(
ẏ(t)

y(t)
−

˙̃y(t)

ỹ(t)

)

+µ3sgn(z(t)− z̃(t))

(
ż(t)

z(t)
−

˙̃z(t)

z̃(t)

)
.
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We have,

µ1sgn(x(t)− x̃(t))

(
ẋ(t)

x(t)
−

˙̃x(t)

x̃(t)

)
≤ µ1

[{
F1z(t)

(x(t) + az(t))(x̃(t) + az̃(t))
− r

K

− hF 2y(t)

(1 + hFx(t) + wFy(t))(1 + hF x̃(t) + wF ỹ(t))

}
|x(t)− x̃(t)|

+
F (1− hFx(t))

(1 + hFx(t) + wFy(t))(1 + hF x̃(t) + wF ỹ(t))
|y(t)− ỹ(t)|

+
F1x(t)

(x(t) + az(t))(x̃(t) + az̃(t))
|z(t)− z̃(t)|

]
,

µ2sgn(y(t)− ỹ(t))

(
ẏ(t)

y(t)
−

˙̃y(t)

ỹ(t)

)
≤ µ2

[
αF (1 + wFy(t))

(1 + hFx(t) + wFy(t))(1 + hF x̃(t) + wF ỹ(t))
|x(t)− x̃(t)|

− αwF 2x(t)

(1 + hFx(t) + wFy(t))(1 + hF x̃(t) + wF ỹ(t))
|y(t)− ỹ(t)|

+
b(t)(D + 2z(t))

(D + z(t))(D + z̃(t))
|z(t)− z̃(t)|

]
,

µ3sgn(z(t)− z̃(t))

(
ż(t)

z(t)
−

˙̃z(t)

z̃(t)

)
≤ µ3

[
F2z(t)

(x(t) + az(t))(x̃(t) + az̃(t))
|x(t)− x̃(t)|

+
βb(t)(D + 2z(t))

(D + z(t))(D + z̃(t))
|y(t)− ỹ(t)|

+

{
βb(t)y(t)

(D + z(t))(D + z̃(t))
− F2x(t)

(x(t) + az(t))(x̃(t) + az̃(t))

}
|z(t)− z̃(t)|

]
.

Thus, we have

D+V (t) ≤ −
[
µ1

{
r

K
+

hF 2y(t)

(1 + hFx(t) + wFy(t))(1 + hF x̃(t) + wF ỹ(t))
− F1z(t)

(x(t) + az(t))(x̃(t) + az̃(t))

}
−µ2

αF (1 + wFy(t))

(1 + hFx(t) + wFy(t))(1 + hF x̃(t) + wF ỹ(t))

−µ3
F2z(t)

(x(t) + az(t))(x̃(t) + az̃(t))

]
|x(t)− x̃(t)|

−
[
µ1

F (hFx(t)− 1)

(1 + hFx(t) + wFy(t))(1 + hF x̃(t) + wF ỹ(t))

+µ2
αwF 2x(t)

(1 + hFx(t) + wFy(t))(1 + hF x̃(t) + wF ỹ(t))

−µ3
βb(t)(D + 2z(t))

(D + z(t))(D + z̃(t))

]
|y(t)− ỹ(t)|

−
[
−µ1

F1x(t)

(x(t) + az(t))(x̃(t) + az̃(t))
− µ2

b(t)(D + 2z(t))

(D + z(t))(D + z̃(t))

+µ3

{
F2x(t)

(x(t) + az(t))(x̃(t) + az̃(t))
− βb(t)y(t)

(D + z(t))(D + z̃(t))

}]
|z(t)− z̃(t)|.
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Therefore,

D+V (t) ≤ −δ1|x(t)− x̃(t)| − δ2|y(t)− ỹ(t)| − δ3|z(t)− z̃(t)|, (6.4)

where

δ1 =
µ1r

K
+

µ1hF
2eρ4

(1 + hFeρ1 + wFeρ3)2
− µ1F1e

ρ5

(eρ2 + aeρ6)2
− µ2αF (1 + wFeρ3)

(1 + hFeρ2 + wFeρ4)2
− µ3F2e

ρ5

(eρ2 + aeρ6)2
,

δ2 =
F 2eρ2(µ2αw + µ1h)

(1 + hFeρ1 + wFeρ3)2
− µ1F

(1 + hFeρ2 + wFeρ4)2
− µ3βb

ueρ5

(D + eρ6)2
− µ3βb

u

D + eρ6
,

δ3 =
µ3F2e

ρ2

(eρ2 + aeρ6)2
− µ1F1e

ρ1

(eρ1 + aeρ5)2
− µ2b

ueρ5

(D + eρ6)2
− µ2b

u

D + eρ6
− µ3βb

ueρ3

(D + eρ6)2
.

If the conditions of Theorem 6.1 hold, then V (t) is monotonic decreasing on [0,∞).

Now, integrating inequality (6.4) from 0 to t, we have

V (t) + δ1

∫ t

0

|x(t)− x̃(t)|dt+ δ2

∫ t

0

|y(t)− ỹ(t)|dt+ δ3

∫ t

0

|z(t)− z̃(t)|dt ≤ V (0) <∞, ∀ t ≥ 0.

Hence, by Lemma 5.1, we have

lim
t→∞

|x(t)− x̃(t)| = 0, lim
t→∞

|y(t)− ỹ(t)| = 0, lim
t→∞

|z(t)− z̃(t)| = 0.

Therefore, the positive periodic solution (x̃(t), ỹ(t), z̃(t)) is globally attractive.

To prove that the globally attractive periodic solution (x̃(t), ỹ(t), z̃(t)) is unique,

we assume that (x̃1(t), ỹ1(t), z̃1(t)) is another globally attractive periodic solu-

tion of system (3.5) with period 1. If this solution is different from the solution

(x̃(t), ỹ(t), z̃(t)), then there exists atleast one ξ ∈ [0, 1] such that x̃(ξ) 6= x̃1(ξ),

which means |x̃(ξ)− x̃1(ξ)| = ε11 > 0. Thus,

ε11 = lim
n→∞

|x̃(ξ + n)− x̃1(ξ + n)|

= lim
t→∞

|x̃(t)− x̃1(t)| > 0,

which contradicts the fact that the periodic solution (x̃(t), ỹ(t), z̃(t)) is globally

attractive. Therefore, x̃(t) = x̃1(t), ∀ t ∈ [0, 1]. Similar arguments can be used for

other components ỹ(t) and z̃(t) also. Hence, the system (3.5) has unique positive

1-periodic solution, which is globally attractive.

7. Existence of almost positive periodic solutions

In a more general case, when we consider the effects of environmental factors, almost

periodicity is sometimes more realistic and more general than periodicity because

there is no priori reason to expect the existence of periodic solutions. We assume

here that the predation and harvesting rates are almost periodic functions. We

obtain sufficient conditions for the existence of a unique globally attractive positive

almost periodic solution of system (3.5).

Consider almost periodic system

x′ = f(t, x), (7.1)
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where f(t, x) ∈ C(R × Γ,Rn), Γ = {x : |x| < B} and f(t, x) is almost periodic

in t uniformly for x ∈ Γ. By using Lyapunov function, we discuss the existence of

an almost periodic solution which is uniformly asymptotically stable in the whole

region. For this, we consider the following system corresponding to system (7.1)

x′ = f(t, x), y′ = f(t, y). (7.2)

Lemma 7.1 Suppose that there exists a Lyapunov function V (t, x, y) defined on

0 ≤ t <∞, |x| < B, |y| < B, which satisfies the following conditions:

(1) a(|x−y|) ≤ V (t, x, y) ≤ b(|x−y|), where a(r) and b(r) are continuous, increas-

ing and positive definite.

(2) |V (t, x1, y1)−V (t, x2, y2)| ≤ k{|x1−x2|+ |y1−y2|}, where k > 0 is a constant.

(3) V̇ (t, x, y) ≤ −αV (t, x, y), where α > 0 is a constant.

Then in the region R × Γ, there exists a unique uniformly asymptotically stable

almost periodic solution of system (7.1), which is bounded by B.

Let us denote mε
i = mi and M ε

i = Mi for i = 1, 2, 3 in the region Γε. Assume that

the conditions of Lemma 4.2 are satisfied, then system (5.2) is positively invariant

and ultimately bounded in the region

Γ∗ = {(x, y, z) ∈ R3| ln{m1} ≤ U(t) ≤ ln{M1}, ln{m2} ≤ V (t) ≤ ln{M2},
ln{m3} ≤W (t) ≤ ln{M3}}.

Let S be the set of all solutions (x(t), y(t), z(t)) of system (3.5) satisfying m1 ≤
x(t) ≤M1, m2 ≤ y(t) ≤M2, m3 ≤ z(t) ≤M3, ∀ t ∈ [0,∞).

Lemma 7.2 The set S is non empty.

Proof. Since m1 ≤ x0 ≤ M1, m2 ≤ y0 ≤ M2, m3 ≤ z0 ≤ M3, then using Lemma

4.2, system (3.5) has solution (x(t), y(t), z(t)) satisfying m1 ≤ x(t) ≤ M1, m2 ≤
y(t) ≤ M2, m3 ≤ z(t) ≤ M3, ∀ t ∈ [0,∞). Since q(t) and b(t) are almost periodic,

there exists a sequence {tn}, tn → ∞ as n → ∞ such that b(t + tn) → b(t) and

q(t+ tn)→ q(t) as n→∞ uniformly on [0,∞).

Now, we claim that {x(t+tn)}, {y(t+tn)} and {z(t+tn)} are uniformly bounded

and equicontinuous on any bounded interval in [0,∞). Let [α1, β1] ⊂ [0,∞) be a

bounded interval and α1 + tn > t0, then t+ tn > t0 for any t0 ∈ R+ and t ∈ [α1, β1].

So, m1 ≤ x(t+tn) ≤M1, m2 ≤ y(t+tn) ≤M2, m3 ≤ z(t+tn) ≤M3, ∀ t ∈ [α1, β1].

Hence, {x(t+ tn)}, {y(t+ tn)} and {z(t+ tn)} are uniformly bounded.
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Now, using mean value theorem of differential calculus, we have

|x(t1 + tn)− x(t2 + tn)| ≤
[
rM1

(
1 +

M1

K

)
+

FM1M2

1 + hFm1 + wFm2

+
F1M1M3

m1 + am3

]
|t1 − t2|, (7.3)

|y(t1 + tn)− y(t2 + tn)| ≤
[

αFM1M2

1 + hFm1 + wFm2
+
buM2M3

D +m3

+d1M2] |t1 − t2|, (7.4)

|z(t1 + tn)− z(t2 + tn)| ≤
[
βbuM2M3

D +m3
+

F2M1M3

m1 + am2
+ d2M3

+quM3E] |t1 − t2|. (7.5)

In these inequalities, we see that {x(t+tn)}, {y(t+tn)} and {z(t+tn)} are equicon-

tinuous on [α1, β1]. Here, [α1, β1] is arbitrary. So, by Ascoli-Arzela theorem, there

exists a subsequence of {tnk
} such that x(t+ tnk

) → p1(t), y(t+ tnk
) → p2(t) and

z(t + tnk
) → p3(t) as nk → ∞ uniformly in t on any bounded interval in [0,∞).

Furthermore,

dx(t+ tnk
)

dt
= rx(t+ tnk

)

(
1− x(t+ tnk

)

K

)
− Fx(t+ tnk

)y(t+ tnk
)

1 + hFx(t+ tnk
) + wFy(t+ tnk

)

− F1x(t+ tnk
)z(t+ tnk

)

x(t+ tnk
) + az(t+ tnk

)
,

dy(t+ tnk
)

dt
=

αFx(t+ tnk
)y(t+ tnk

)

1 + hFx(t+ tnk
) + wFy(t+ tnk

)
− b(t+ tnk

)y(t+ tnk
)z(t+ tnk

)

D + z(t+ tnk
)

−d1y(t+ tnk
),

dz(t+ tnk
)

dt
=
βb(t+ tnk

)y(t+ tnk
)z(t+ tnk

)

D + z(t+ tnk
)

+
F2x(t+ tnk

)z(t+ tnk
)

x(t+ tnk
) + az(t+ tnk

)
− d2z(t+ tnk

)

−q(t+ tnk
)Ez(t+ tnk

).

Let nk →∞, then

dp1(t)

dt
= rp1(t)

(
1− p1(t)

K

)
− Fp1(t)p2(t)

1 + hFp1(t) + wFp2(t)
− F1p1(t)p3(t)

p1(t) + ap3(t)
,

dp2(t)

dt
=

αFp1(t)p2(t)

1 + hFp1(t) + wFp2(t)
− b(t)p2(t)p3(t)

D + p3(t)
− d1p2(t),

dp3(t)

dt
=
βb(t)p2(t)p3(t)

D + p3(t)
+

F2p1(t)p3(t)

p1(t) + ap3(t)
− d2p3(t)− q(t)Ep3(t).

It is clear that (p1(t), p2(t), p3(t)) is a solution of the system (3.5) and m1 ≤ p1(t) ≤
M1, m2 ≤ p2(t) ≤ M2 and m3 ≤ p3(t) ≤ M3, ∀ t ∈ [0,∞). Hence, the proof is

complete.

Theorem 7.1 Assume that the conditions of Lemma 4.2 are satisfied, then system

(5.2) has a unique uniformly asymptotically stable almost periodic solution in Γ∗
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provided the following conditions are satisfied:

r

K
− F{α+ FM2(αw − h)}

(1 + hFm1 + wFm2)2
− M3(aF2 − F1)

(m1 + am3)2
> 0, (7.6)

inf
t∈R

{
F{m1(αw − h)− 1}

(1 + hFM1 + wFM2)2
− βb(t)(D +M3)

(D +M3)2

}
> 0, (7.7)

inf
t∈R

{
m1(aF2 − F1)

(M1 + aM3)2
+
b(t)(βm2 −D)

(D +M3)2

}
> 0. (7.8)

Proof. To prove that system (3.5) has unique uniformly asymptotically stable al-

most periodic solution in Γ∗, it suffices to show that the system (5.2) has unique

uniformly asymptotically stable almost periodic solution in Γ∗.

Consider the product systems

U̇1(t) = r − reU1(t)

K
− FeV1(t)

1 + hFeU1(t) + wFeV1(t)
− F1e

W1(t)

eU1(t) + aeW1(t)
,

V̇1(t) =
αFeU1(t)

1 + hFeU1(t) + wFeV1(t)
− b(t)eW1(t)

D + eW1(t)
− d1, (7.9)

Ẇ1(t) =
βb(t)eV1(t)

D + eW1(t)
+

F2e
U1(t)

eU1(t) + aeW1(t)
− d2 − q(t)E;

U̇2(t) = r − reU2(t)

K
− FeV2(t)

1 + hFeU2(t) + wFeV2(t)
− F1e

W2(t)

eU2(t) + aeW2(t)
,

V̇2(t) =
αFeU2(t)

1 + hFeU2(t) + wFeV2(t)
− b(t)eW2(t)

D + eW2(t)
− d1, (7.10)

Ẇ2(t) =
βb(t)eV2(t)

D + eW2(t)
+

F2e
U2(t)

eU2(t) + aeW2(t)
− d2 − q(t)E

and the Lyapunov function,

V (t, U1, V1,W1, U2, V2,W2) = |U1(t)− U2(t)|+ |V1(t)− V2(t)|+ |W1(t)−W2(t)|.

Then, the condition 1 of Lemma 7.1 is satisfied when a(r) = b(r) = r, r ≥ 0.

In addition,

|V (t, U1, V1,W1, U2, V2,W2)− V (t, U3, V3,W3, U4, V4,W4)|
= (|U1(t)− U2(t)|+ |V1(t)− V2(t)|+ |W1(t)−W2(t)|)
−(|U3(t)− U4(t)|+ |V3(t)− V4(t)|+ |W3(t)−W4(t)|)

≤ (|U1(t)− U3(t)|+ |V1(t)− V3(t)|+ |W1(t)−W3(t)|)
+(|U2(t)− U4(t)|+ |V2(t)− V4(t)|+ |W2(t)−W4(t)|)

≤ ||(U1(t), V1(t),W1(t))− (U3(t), V3(t),W3(t))||
+||(U2(t), V2(t),W2(t))− (U4(t), V4(t),W4(t))||,

which satisfies condition 2 of Lemma 7.1.
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Let (Ui, Vi,Wi)
T , i = 1, 2 be any two solutions of system (5.2). Now, calculating

the upper right derivative of V (t) along the solutions of system (5.2), we get

D+V (t) = sgn(U1(t)− U2(t))
[
− r

K
(eU1(t) − eU2(t))

−
(

FeV1(t)

1 + hFeU1(t) + wFeV1(t)
− FeV2(t)

1 + hFeU2(t) + wFeV2(t)

)
−
(

F1e
W1(t)

eU1(t) + aeW1(t)
− F1e

W2(t)

eU2(t) + aeW2(t)

)]
+sgn(V1(t)− V2(t))

[(
αFeU1(t)

1 + hFeU1(t) + wFeV1(t)
− αFeU2(t)

1 + hFeU2(t) + wFeV2(t)

)
−
(
b(t)eW1(t)

D + eW1(t)
− b(t)eW2(t)

D + eW2(t)

)]
+sgn(W1(t)−W2(t))

[(
βb(t)eV1(t)

D + eW1(t)
− βb(t)eV2(t)

D + eW2(t)

)
+

(
F2e

U1(t)

eU1(t)+aeW1(t)
− F2e

U2(t)

eU2(t)+aeW2(t)

)]
.

After rearranging the terms, we have

D+V (t) ≤ − r

K
|eU1(t) − eU2(t)|+ F |eV1(t) − eV2(t)|

(1 + hFeU1(t) + wFeV1(t))(1 + hFeU2(t) + wFeV2(t))

+
hF 2eU2(t)|eV1(t) − eV2(t)| − hF 2eV2(t)|eU1(t) − eU2(t)|
(1 + hFeU1(t) + wFeV1(t))(1 + hFeU2(t) + wFeV2(t))

+
F1e

U2(t)|eW1(t) − eW2(t)| − F1e
W2(t)|eU1(t) − eU2(t)|

(eU1(t) + aeW1(t))(eU2(t) + aeW2(t))

+
αF |eU1(t) − eU2(t)|

(1 + hFeU1(t) + wFeV1(t))(1 + hFeU2(t) + wFeV2(t))

+
αwF 2eV2(t)|eU1(t) − eU2(t)| − αwF 2eU2(t)|eV1(t) − eV2(t)|

(1 + hFeU1(t) + wFeV1(t))(1 + hFeU2(t) + wFeV2(t))
+

b(t)D|eW1(t) − eW2(t)|
(D + eW1(t))(D + eW2(t))

+
βb(t)D|eV1(t) − eV2(t)|

(D + eW1(t))(D + eW2(t))
+
βb(t)eW2(t)|eV1(t) − eV2(t)| − βb(t)eV2(t)|eW1(t) − eW2(t)|

(D + eW1(t))(D + eW2(t))

+
aF2e

W2(t)|eU1(t) − eU2(t)| − aF2e
U2(t)|eW1(t) − eW2(t)|

(eU1(t) + aeW1(t))(eU2(t) + aeW2(t))
.

We have,

D+V (t) ≤ −|eU1(t) − eU2(t)|
{
r

K
− αF + F 2M2(αw − h)

(1 + hFm1 + wFm2)2
− M3(aF2 − F1)

(m1 + am3)2

}
−|eV1(t) − eV2(t)|

{
F{m1F (αw − h)− 1}
(1 + hFM1 + wFM2)2

− βb(t)(D +M3)

(D +m3)2

}
−|eW1(t) − eW2(t)|

{
m1(aF2 − F1)

(M1 + aM3)2
+
b(t)(βm2 −D)

(D +M3)2

}
.

Note that Ui, Vi and Wi are continuous functions on the bounded region Γ∗.
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Using mean value theorem, we have

|eU1(t) − eU2(t)| = eθ1(t)|U1(t)− U2(t)|,
|eV1(t) − eV2(t)| = eθ2(t)|V1(t)− V2(t)|,
|eW1(t) − eW2(t)| = eθ3(t)|W1(t)−W2(t)|,

where

U1(t) ≤ θ1(t) ≤ U2(t), V1(t) ≤ θ2(t) ≤ V2(t), W1(t) ≤ θ3(t) ≤W2(t).

Thus, we have

D+V (t) ≤ −m1|U1(t)− U2(t)|
(
r

K
− αF + F 2M2(αw − h)

(1 + hFm1 + wFm2)2
− M3(aF2 − F1)

(m1 + am3)2

)
−m2|V1(t)− V2(t)|

(
F{Fm1(αw − h)− 1}
(1 + hFM1 + wFM2)2

− βb(t)(D +M3)

(D +m3)2

)
−m3|W1(t)−W2(t)|

(
b(t)(βm2 −D)

(D +M3)2
+
m1(aF2 − F1)

(M1 + aM3)2

)
≤ −µ(|U1(t)− U2(t)|+ |V1(t)− V2(t)|+ |W1(t)−W2(t)|)
≤ −µ||(U1(t), V1(t),W1(t))− (U2(t), V2(t),W2(t))||,

where

µ = min

{
m1

(
r

K
− αF + F 2M2(αw − h)

(1 + hFm1 + wFm2)2
− M3(aF2 − F1)

(m1 + am3)2

)
,

inf
t∈R

m2

(
F{Fm1(αw − h)− 1}
(1 + hFM1 + wFM2)2

− βb(t)(D +M3)

(D +m3)2

)
,

lim
t∈R

m3

(
b(t)(βm2 −D)

(D +M3)2
+
m1(aF2 − F1)

(M1 + aM3)2

)}
> 0.

Thus, the condition 3 of Lemma 7.1 is verified. So, we conclude that the system

(5.2) has unique uniformly asymptotically stable almost periodic solution in Γ∗.

Hence, the system (3.5) has almost periodic solution. The proof is now complete.

8. Numerical simulations

Here, we perform the numerical simulations to investigate the dynamical behaviors

of system (3.5) using the set of parameter values given in Table 1. Unless it is

mentioned, the set of parameter values are the same as in Table 1. We compare the

dynamics of the nonautonomous system with the autonomous counterpart. Our aim

is to explore different dynamical behaviors, including chaos. For the nonautonomous

system (3.5), we consider that the rate parameters b and q are time dependent. More

precisely, we consider that these biological parameters depends on water level. It

is to be noted that the daily water level changes periodically throughout the year.

Therefore, in the present investigation, we consider these parameters to be sinusoidal

functions,

b(t) = b+ b11 sin(ωt), q(t) = q + q11 sin(ωt),
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Fig. 2. System (3.5) shows extinction of x population (first column), y population (second column)
and z population (third column). Parameter values are the same as in Table 1 except r = 3.9,

a = 0.2, α = 0.59, F2 = 0.2, b11 = 2.1, q11 = 0.9.
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Fig. 3. System (3.5) shows extinction of y population (second column) and z population (third

column). Parameter values are the same as in Table 1 except r = 3.9, a = 0.2, α = 0.055, F2 = 0.2,

b11 = 2.1, q11 = 0.9.

with period of 365 days. We have also considered these parameters in such a way

that they are positive, continuous and bounded. Note that autonomous version of

the system (3.5) can be obtained by assigning the seasonal forcing terms to be zero

i.e., b11 = q11 = 0.

We observe that the system (3.5) settles to population-free steady state at

r = 3.9, a = 0.2, α = 0.59, F2 = 0.2, b11 = 2.1, q11 = 0.9 (see Fig. 2) but on de-

creasing the value of α to 0.055, the equilibrium with x population only is achieved

(see Fig. 3). Further, the system shows extinction of z population at β = 0.001,

F2 = 0.05, E = 0.7, b11 = 0.1, q11 = 0 (see Fig. 4). Now, we plot the solution

trajectories of the system (3.5) in the absence of seasonality, Fig. 5a. It is observed

that the system is stable focus for the parameter values in Table 1. Next, we incor-

porate the effect of seasonality and see that there exists a positive periodic solution

at b11 = 1 and q11 = 0 (see Fig. 5b). Therefore, the statement of Theorem 5.2

is verified. Next, we set α = 0.55, where the autonomous version of the system

(3.5) shows limit cycle oscillation (see Fig. 6(a)). We see that by setting b11 = 2.1
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Fig. 4. System (3.5) shows extinction of z population (third column). Parameter values are the
same as in Table 1 except β = 0.001, F2 = 0.05, E = 0.7, b11 = 0.1, q11 = 0.
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Fig. 5. System (3.5) exhibits (a) stable focus at b11 = q11 = 0, and (b) periodic solution at b11 = 1

and q11 = 0. Rest of the parameters are at the same values as in Table 1.

and q11 = 0, the nonautonomous system (3.5) exhibits chaotic dynamics (see Fig.

6(b)). The occurrence of chaotic oscillation may be explained through incommen-

surate limit cycles 44,45. Thus, for the same set of the parameter values the nonau-

tonomous system (3.5) exhibits positive periodic solution while the corresponding

autonomous system shows stable focus. Further, the nonautonomous system (3.5)

shows chaotic behavior if the corresponding autonomous system exhibits limit cycle

oscillations. Further, we show global stability of the positive periodic solution of the

nonautonomous system (3.5). We fix b11 = 1 and q11 = 0, and plot the solution
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Fig. 6. System (3.5) exhibits (a) limit cycle oscillations at α = 0.55, b11 = 0, q11 = 0, and (b)

chaotic dynamics at α = 0.55, b11 = 2.1, q11 = 0. Rest of the parameters are at the same values

as in Table 1.
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Fig. 7. Global stability of positive periodic solution for the system (3.5) at b11 = 1, q11 = 0, when
other parameter values are same as in Table 1. Figure shows that solution trajectories starting

from three different initial points (2.65, 4.2, 1.6), (4.5, 8, 4) and (2.7, 6, 8) ultimately converge to a

unique positive periodic solution.

trajectories initiated from three different initial values, Fig. 7. It is apparent from

the figure that all the periodic solutions initiating from three different initial values

(2.65, 4.2, 1.6), (4.5, 8, 4) and (2.7, 6, 8) converge to a single periodic solution i.e.,

the positive periodic solution is globally asymptotically stable. Therefore, Theorem

6.1 for the global asymptotic stability of the positive periodic solution of the nonau-

tonomous system (3.5) is verified. Now we set r = 3.9, w = 0.067, α = 2, b11 = 2.1,
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Fig. 8. System (3.5) exhibits almost periodic solution for r = 3.9, w = 0.067, α = 2, b11 = 2.1,
q11 = 0.9. Rest of the parameters are at the same values as in Table 1.

Fig. 9. Bifurcation diagram of system (3.5) with respect to α in the absence of seasonality i.e.,

b11 = q11 = 0. Rest of the parameters are at the same values as in Table 1. Here, the maximum

and minimum values of the oscillations are plotted in blue and red colors, respectively.

Fig. 10. Bifurcation diagram of system (3.5) with respect to b11 for α = 0.55 and q11 = 0. Rest of

the parameters are at the same values as in Table 1. Here, the maximum and minimum values of

the oscillations are plotted in blue and red colors, respectively.

q11 = 0.9, and see that the system (3.5) exhibits almost periodic solution, Fig. 8.

Thus, the statement of Theorem 7.1 is also verified.
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Fig. 11. Bifurcation diagram of system (3.5) with respect to α for b11 = 2.1 and q11 = 0. Rest of
the parameters are at the same values as in Table 1. Here, the maximum and minimum values of

the oscillations are plotted in blue and red colors, respectively.
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Fig. 12. Figure shows the maximum Lyapunov exponent of the system (3.5) for α = 0.55, b11 = 2.1,

q11 = 0. Rest of the parameters are at the same values as in Table 1. In the figure, positive values

of the maximum Lyapunov exponent confirms the occurrence of chaotic oscillation.

Next, we draw the bifurcation diagram of autonomous version of the system

(3.5) by varying the parameter α, Fig. 9. We see that the system is stable for very

low and very high values of α, and undergoes first supercritical and then subcritical

Hopf bifurcations on increasing the values of α. Now, we fix the value of α at 0.55,

where the autonomous version of the system (3.5) shows limit cycle oscillations. To

visualize the effect of the parameter b11, we draw bifurcation diagram of the system

(3.5) by varying b11, Fig. 10. It is apparent from the figure that the nonautonomous

system undergoes chaotic regime through quasi-periodic oscillations. However, the

chaotic dynamics can be controlled and the system (3.5) returns to periodic oscilla-
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tions on increasing the values of α, Fig. 11. Using the algorithm of 46,47, we draw the

maximum Lyapunov exponent of the system (3.5) to confirm its chaotic behavior

reported in Fig. 10. The maximum Lyapunov exponent has proved to be the most

useful dynamical diagnostic for chaotic systems, which is the average exponential

rate of divergence or convergence of nearby orbits in phase space. The general idea

of calculating the maximum Lyapunov exponent is to follow two nearby orbits and

to calculate their average logarithmic rate of separation. Whenever they get too far

apart, one of the orbits has to be moved back to the vicinity of the other along

the line of separation. For a chaotic attractor, the maximum Lyapunov exponent

is positive; for a bifurcation point, the maximum Lyapunov exponent is zero; if the

maximum Lyapunov exponent is negative, this is corresponding to a fixed point or

a periodic attractor. The maximum Lyapunov exponent corresponding to Fig. 10

have been computed and plotted in Fig. 12. We see that at b11 = 2.1, the maximum

Lyapunov exponent is positive, which denote that the system is chaotic.

9. Conclusion

Aquatic ecosystem is often altered by human activities. Water-level fluctuations are

among the major driving forces for shallow lake ecosystem. This study provides

results of the evolution of the ecosystem based on water management of the lake.

We considered three species system, namely invertebrates, prey (small fish) and

predator (large fish) in intention to study the impact of water level on persistence

of fish populations. We also considered a time dependent harvesting of large fish

to maintain ecological balance. It is to be noted that the level of water depends

on temperature and rainfall. Therefore, such parameter is time dependent and its

value follow the periodic (sinusoidal) function with lower bound greater than zero
48. A lot of studies showed the occurrence of limit cycle oscillations through a Hopf-

bifurcation by varying the water level fluctuation 33,34,49,50. However, none of the

previous studies conducted for the effect of water level fluctuation showed chaotic

dynamics. In the present investigation, our aim is to extensively study the effect

of water level fluctuation and explore how the system produces chaotic behavior

due to presence of seasonality. Our analytical findings show that according to the

values of the parameters, one can make suitable predictions about the asymptotic

behavior of the overall three species system including permanence, and extinction

of the species. The existence of periodic solutions has been explored, which should

be viewed as a condition allowing for the survival of the species under consideration.

The conditions for global stability of the unique positive periodic solution are also

derived. Moreover, we obtained conditions for existence, uniqueness and stability of

a positive almost periodic solution.

The analytical findings are well supported by numerical simulations. We consider

periodic function (sinusoidal function) with a period of one year to incorporate the

seasonal patterns of water level and harvesting rate of large fish. We have also stud-

ied the dynamical behavior of the system (3.5) by assuming these rate parameters
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to be independent of time. In the absence of seasonality, system (3.5) shows stable

focus, whereas the nonautonomous system (3.5) shows a unique positive periodic

solution with a period of one year. Further, we seen that if the autonomous system

undergoes a Hopf-bifurcation, the corresponding nonautonomous system showed

chaotic dynamics. We have observed that the assimilation fraction of prey and sea-

sonal forcing have the synergism effect for producing chaotic oscillations. We also

showed that for a range of the water level fluctuation, the positive periodic solution

is globally asymptotically stable. Our nonautonomous system produces almost pe-

riodic solution for a particular set of parameter values. Moreover, the assimilation

fraction of prey has capability to control chaos in the system. Our results evoke that

the water level has an important effect on persistence of the species. Ecologically,

if the water-levels are between critical values, then the two species can coexist and

tend to fluctuate with the same period as the environment. On the contrary, at high

levels of water, there are weak interactions between species and then the predator

species goes to extinction. It is concluded that using water volume as control, it is

possible to keep the levels of the populations at a required state.
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