
Introduction
	 Acute Myeloid Leukemia (AML) is a genetically, epigeneti-
cally and clinically heterogeneous clonal disorder characterized by 
abnormal proliferation of undifferentiated myeloid progenitors, im-
paired hematopoiesis and aggressive clinical course [1]. AML has the  
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highest mortality rate among leukemias, and its incidence increases 
with age, with a slight prevalence in male (54.97%) [2-4]. Despite 
advances in understanding the biology and genetics of AML, the 
standard of care for patients has only changed minimally over the 
past 40 years. Intensive induction chemotherapy with cytarabine plus 
anthracycline, also known as “3+7” regimen, followed by consolida-
tion chemotherapy or allogeneic hematopoietic stem cell transplanta-
tion, in eligible patients, still remains the mainstay of treatment [5]. 
Despite recent advances in treatment options, the outcome of AML 
patients remains poor with five-year overall survival rates of approx-
imately 24% for older patients, due to their diminished tolerance for 
intensive chemotherapy with increased risk of treatment-related tox-
icity. The dismal prognosis of AML is largely due to the acquisition of 
resistance to chemotherapy and leukemia relapse [2]. Hence, there is 
an urgent need to understand the mechanisms of resistance to conven-
tional chemotherapy in order to develop new therapeutic approaches 
leading to improved outcome of AML patients.

	 In recent years, the advances in the understanding of the patho-
genesis of AML revealed a highly heterogeneous genomic landscape 
and underlined the complex and dynamic architecture of the disease, 
eventually leading to the identification of novel diagnostic and prog-
nostic markers and potential therapeutic target [4]. 

	 In this review we describe the expression of CD157 in the leu-
kemic cells and in the Bone Marrow (BM) microenvironment, its 
emerging functional role in the biology of the disease and its potential 
clinical utility as target for the design of novel therapeutic strategies.

CD157 in Acute Myeloid Leukemia 
	 CD157 is a 45kDa Glycosylphosphatidylinositol (GPI)-anchored 
glycoprotein first described in 1985 as Mo5 myelomonocytic differ-
entiation antigen [6], and a decade later identified on the membrane 
of human Bone Marrow Stromal Cells (BMSCs) and hereafter named 
Bone Marrow Stromal antigen 1 (BST-1) [7]. In the VI Human White 
Cell Differentiation Antigen workshop BST-1 and Mo5 were grouped 
together in the Cluster of Differentiation 157 (CD157) [8]. CD157 
exists both as membrane-anchored as well as soluble protein [9,10]. 
Along with its paralogous gene CD38, with which CD157 gene 
clusters in a head-to-tail manner on human chromosome 4, CD157 
constitutes the NAD glycohydrolase (NADase)/ADP ribosyl cyclase 
mammalian gene family. These two genes share similarities in terms 
of sequence and structure and encode two proteins with similar func-
tions [11,12]. CD157 and CD38 proteins exert both receptor as well 
as ectoenzymatic functions; however, CD157 is a much less efficient 
ADP-ribosyl cyclase than CD38, furthermore, CD157 enzymatic 
functions are pH-dependent and requires the presence of metal ions 
like Zn2+ and Mn2+[13].

	 Besides its functions as an ectoenzyme, CD157 is able of trans-
ducing intracellular signals although it lacks a cytoplasmatic domain. 
To behave as a receptor, CD157 establishes functional and structural 
crosstalk with β1 (CD29) and β2 (CD18) integrins [14]. Binding of  
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Abstract
	 Acute Myeloid Leukemia (AML) is a heterogeneous disease 
characterized by the accumulation of immature myeloid blasts in the 
bone marrow and peripheral blood. Despite recent clinical advances, 
the outcome for most patients remains poor.Fewer than one-third of 
adult AML patients enjoy durable remission, indicating a need for 
different therapeutic approaches. Immunotherapy carries a promise 
to eradicate chemoresistant clone(s) and provide long-term disease 
control; however, suitable targets for AML immunotherapy are cur-
rently limited, so discovery of new targets would be highly beneficial 
to patients. Here we provide an overview of CD157 glycoprotein, an 
adhesion molecule that has recently attracted attention due to its 
unique expression on both leukemic cells and the local microenvi-
ronment and its implication in the biology of AML. Finally, we discuss 
strengths and weaknesses of CD157 as a potential therapeutic tar-
get.
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CD157 by its ligand fibronectin or by means of specific monoclo-
nal antibodies (mAbs) mimicking the natural ligand, induces tyrosine 
phosphorylation of Focal Adhesion Kinase (FAK) in human AML cell 
lines [15], regulates neutrophil polarization and calcium homeostasis 
[16], and mediates the activation of SRC, MAPK and AKT signalling 
pathways in neutrophils and monocytes [17]. Moreover, CD157 plays 
a crucial role in leukocyte adhesion to Extracellular Matrix (ECM) 
proteins and diapedesis across the vascular endothelium [16]. In se-
lected epithelial tumors, such as epithelial ovarian cancer and malig-
nant pleural mesothelioma, CD157 promotes metastatic diffusion and 
epithelial-mesenchymal transition [18,19]. 

	 CD157 glycoprotein is expressed at variable levels by leukemia 
blasts in 97% of AML patients, with no variation of expression at di-
agnosis or relapse [20,21]. Though at lower extent than in bulk AML 
blasts, CD157 was also found in CD34+CD38− leukemia-initiating 
cells, characterized by long-term repopulating potential, ability to 
propagate and maintain the AML phenotype, and are supposed to be 
critical for AML relapse [21,22]. A correlation has been reported be-
tween high CD157 expression levels and the adverse prognosis group 
of patients according to the European Leukemia Net (ELN) classi-
fication-2017 [23], while no correlation was found between NPM1 
and FLT3-ITD mutational status and CD157 expression in a small 
AML patient cohort analysed [21]. Moreover, CD157 shows highest 
expression in myelomonocytic and monoblastic leukemia, then in the 
other AML subtypes [20,21]. 

CD157 in the Bone Marrow Microenvironment 
	 Over the last few years, several studies have recognised a key role 
of the BM microenvironment in the pathogenesis of AML [24]. First 
described by Schofield in 1987 [25], the BM microenvironment, also 
called BM niche, is a dynamic and multifaceted environment com-
posed of the endosteal niche (which includes osteoblasts, osteoclasts, 
adipocytes and mesenchymal stromal cells) and the vascular niche 
(which includes endothelial cells, CXCR12-abundant reticular cells 
and megakaryocytes), as well as the surrounding supportive stromal 
cells and ECM proteins [24,26,27]. The two niches are closely relat-
ed, both anatomically and functionally, and regulate survival, self-re-
newal, quiescence, differentiation, proliferation and migration of He-
matopoietic Stem Cell (HSC) thought direct cell-cell contact and a 
variety of soluble factors [26,28]. In addition to regulating the normal 
hematopoiesis, the BM niche also hosts the leukemia initiating cells, 
which are responsible for disease initiation and progression, and are 
believed to be the main cause of relapse and resistance to chemother-
apy in AML [22]. AML cells alter the microenvironment to facilitate 
their own growth and progression by interacting with both cellular 
and extracellular BM components [29]. Indeed, many leukemic blasts 
features are not only cell-intrinsic, but also environment-regulated 
and supported [30].

	 Cell–cell and cell–matrix interactions within the BM microenvi-
ronment contribute significantly to chemotherapy resistance and pro-
gression of AML. At the cellular level, this highly mutual interaction 
is granted by Cell Adhesion Molecules (CAMs) integrating differen-
tiation, proliferation, and pro-survival signals from the surrounding 
microenvironment inside the cell, giving rise to the so-called cell ad-
hesion-mediated drug resistance (CAM-DR) [31]. CAM-DR is me-
diated by soluble factors released by cells into the microenvironment 

and by adhesion molecules expressed on the surface of both AML  
blasts and stromal cells, like VLA-4 (α4β1 integrin) expressed by 
AML cells and its ligands expressed by BMSCs, including fibronectin 
and Vascular-Cell Adhesion Molecule (VCAM)-1 [29,32]. Decipher-
ing the complex interactions between leukemic cells and BM niche 
may reveal new targets to improve AML therapy and prevent relapse 
[33]. Besides leukemia cells, CD157 is expressed by multiple cell 
populations in the BM niche, implicated in leukemia maintenance and 
progression (Figure 1).

	 CD157 binds with high affinity to the heparin-binding domain 1 
and 2 composing fibronectin and other selected ECM proteins [34]. 
The CD157-ECM interaction promotes the concomitant localization 
of CD157 with β1 and β2 integrins in lipid rafts, thus favouring the 
organisation of a multimolecular complex that strengthens leukemia 
cell adhesion through the activation of the MAPK/ERK1/2 and PI3K/
Akt signaling pathways [17,34]. Indeed, experimental evidence in-
dicated that genetic loss of CD157 reduced THP1 and U937 AML  

Figure 1: Schematic representation of the AML bone marrow endosteal 
and vascular niches. AML cells are surrounded by a complex microenvi-
ronment composed of extracellular matrix (ECM) proteins and several dif-
ferent cell types, including bone marrow stromal cells (BMSCs), endotheli-
al cells, mesenchymal stromal cells (MSCs), dendritic cells, macrophages, 
and immune cells. The cell-cell and cell-ECM interactions taking place in 
the BM microenvironment activate signaling pathways protecting tumor 
cells from chemotherapy-mediated toxicity (CAM-DR).The expression of 
CD157 on different cell types is indicated.
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cell adhesion to fibronectin, collagen type I, and fibrinogen, which 
are CD157 ligands [34], and increased AML cell sensitivity to cy-
tarabine (AraC). Moreover, fibronectin-mediated CAM-DR against 
AraC treatment proved to be stronger in CD157-positive U937 cells 
than in U937 cells devoid of CD157 [20]. Collectively, these data 
suggest that CD157 has an important role in facilitating leukemia cell 
interactions with selected ECM proteins and modulates the sensitivity 
of AML cells to chemotherapy. Preliminary experimental evidence 
inferred from in vitro models indicated an active role of CD157 ex-
pressed by BMSCs in the retention of AML blasts within the BM 
niche and in their protection against AraC toxicity [35]. The molec-
ular mechanism through which CD157, expressed both by stromal 
cells and AML blasts, exerts its protective effects against chemother-
apy deserves further investigation. 

	 Endothelial Cells (ECs), together with CXCR12-abundant reticu-
lar cells, are critical components of BM vascular niche located within 
the sinusoidal vessels [24,36]. Their main function is to support the 
proliferation and differentiation of HSCs and lineage-committed pro-
genitors, in addition to the maintenance of HSCs quiescence [37,38]. 
Normal HSCs are found near sinusoidal endothelium within the BM, 
and similar intercellular relationship is supposed to exist in leuke-
mia [39]. An increasing number of studies suggested that there is a 
functional interaction between AML blasts and vascular endothelium 
[39,40]. 

	 CD157 is constitutively expressed on the surface of ECs, mostly at 
the inter-endothelial junctions where it controls leukocyte diapedesis 
in inflammatory conditions [41]. Moreover, it has recently been de-
scribed as a marker of the tissue-resident vascular endothelial stem 
cells population, located in different parts of the adult mouse blood 
vascular system and capable of clonal expansion and blood vessel 
generation [42]. Our studies demonstrated that CD157 ligation on 
Human Umbilical Vein Endothelial Cells (HUVEC) induced a rapid 
release of cytosolic Ca2+ and promoted reorganisation of the cytoskel-
eton with rearrangement of actin filaments and formation of stress 
fibres in cytokine activated HUVEC cells [41], which is instrumental 
to the formation of inter-endothelial gap favoring leukocyte transmi-
gration and homing [43]. 

	 Mesenchymal Stem Cells (MSCs) are non-hematopoietic stro-
mal cells that provide support to both HSCs [44] and leukemic cells 
[24], and retain the ability to differentiate into mesenchymal lineages 
such as osteoblasts, osteoclasts, chondrocytes and adipocytes [45]. 
MSCs support primary AML blasts proliferation and survival in vitro 
through the release of specific soluble mediators [46]. In addition, 
MSCs exert a unique immune-modulatory effect by upregulating 
indoleamine 2,3-dioxygenases (IDO1) enzyme that is implicated in 
immune suppression and tumor progression [47]. CD157 is strongly 
expressed on the surface of undifferentiated MSCs [7], but its expres-
sion decreases during osteoblasts differentiation [48], suggesting its 
role in the undifferentiated stage. Moreover, CD157 has been found 
to regulate self-renewal, stimulate migration and osteogenic differ-
entiation potential of human MSCs through the interaction with the 
Scrapie-responsive gene 1 (SCRG1) during tissue and bone regen-
eration [49,50]. However, functional implication of CD157/SCRG1 
complex in MSCs on the physiopathogenesis of leukemia remains so 
far unexplored.

CD157 as a Target for Therapy in AML
	 In recent years, monoclonal antibodies-mediated immunothera-
py has achieved considerable success for patients with solid tumors 
and hematological malignances, including AML [51]. However, 
AML represents a challenging malignancy to treat, indeed, besides 
its biological heterogeneity, the complexity of its clonal composition 
and propensity to change with disease progression further compli-
cates the identification of an optimal target [52]. Indeed, integrated 
transcriptomic and proteomic analysis of AML surfaceome failed to 
identify a single surface antigen that meets the requirementsof a good 
therapeutic target [53]. Moreover, antigens expressed by AML cells 
are usually shared by normal myeloid progenitors and differentiat-
ed myeloid cells; hence, their utility as immunotherapeutic targets is 
mostly counteracted by on-target toxicity. Nevertheless, several AML 
tumor-associated antigens are at the forefront of targeted therapy de-
velopment, which include CD33, CD123, CD13, CLL-1 and CD38 
that may be present on both AML blasts and leukemic stem cells [54]. 
Ongoing clinical studies are investigating the suitability of CD157 as 
AML target candidate [28].

	 MEN1112/OBT357 is a first humanized, de-fucosylated IgG1 
mAb targeting CD157 with high affinity, designed to optimize the 
interaction with the FcγRIIIa receptor (CD16) on the NK cells caus-
ing antibody-dependent cell-mediated cytotoxicity (ADCC) against 
AML blasts [20]. Despite the large use of mice animal models for 
the study of human AML cells in vivo, and for the pre-clinical evalu-
ation of efficacy and safety of novel anti-cancer agents, to date none 
of the currently available models faithfully reproduce the clonal het-
erogeneity, initiation and progression of human AML, therefore, they 
are not considered informative [55]. Consequently, the ex vivo and in 
vitro experiments were preferred to evaluate the pre-clinical efficacy 
of MEN1112/OBS357. In an ex vivo experimental setting, MEN1112/
OBT357 demonstrated a potent ADCC activity on AML cell lines and 
primary AML cells in an allogenic system, and to a lesser extent using 
autologous NK cells from AML patients. As CD157 is expressed on 
CD34+ BM progenitor cells, as well as on monocytes, the cytotoxic 
effects of MEN1112/OBT357 were evaluated on these cell popula-
tions. Treatment of healthy human Peripheral Blood Mononuclear 
Cells (PBMCs) with MEN1112/OBT357 resulted in a dose-depen-
dent depletion of monocytes, however, a direct comparison of ADCC 
on AML cells, monocytes and CD34+ BM progenitor cells showed a 
slightly higher cytotoxicity against leukemic cells [21]. In addition, 
AML blast depletion was independent by FcγRIIIa polymorphism 
[56]. Moreover, safety and pharmacokinetics studies of MEN1112/
OBT357 performed in non-human primates, considered the most rel-
evant toxicology species for the in vivo investigations, established a 
half-life of approximately two weeks and an acceptable toxicological 
profile [57].

	 Altogether, the pre-clinical studies supported the rational for 
further clinical development of MEN1112/OBT357. The ARMY-1 
open-label Phase I clinical trial is currently ongoing (NCT02353143) 
for relapsed/refractory Acute Myeloid Leukemia and has recently 
completed the dose escalation step [57].

Conclusion and Perspectives
	 AML remains a difficult disease to treat despite substantial im-
provements in understanding its pathophysiology and the emergence 
of novel therapies. A number of hurdles halt the successful implemen-
tation of targeted therapy approaches in AML. Unlike B-ALL, where  
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CD19 and CD20 antigens are relatively restricted to B lymphoblasts 
[58], AML antigens are nonexclusive, causing a high risk of undesired 
on-target side effects due to their expression on normal hematopoietic 
tissues. 

	 In this review, we summarized the current knowledge of the 
emerging biological role of CD157 in AML by addressing our atten-
tion on its unique pattern of expression in both leukemia and BM 
stromal cells and its emerging functional implication in leukemia 
maintenance and drug sensitivity. These findings prompt us to believe 
that CD157 can be a promising candidate to develop therapies that 
co-target several signalling pathways simultaneously. Anyhow, a note 
of caution is required, indeed, like other targets for immunotherapy in 
AML, CD157 expression is not restricted to leukemic cells, hinting 
that optimization of the clinical use of CD157-specific therapies could 
be challenging. 

	 The results of MEN1112/OBT357 Phase I clinical trial expected 
with great interest will shed light on side effects of therapy. Based 
on lessons learned from other antibodies, it is tempting to predict 
that the use of low doses of MEN1112/OBT357 in combination with 
chemotherapy may have an acceptable toxicity profile. Moreover, as 
personalized therapeutic approaches based on molecular characteri-
zation of disease become routine, CD157-directed therapies may play 
a more prominent role in the treatment of defined subpopulations of 
AML patients. Gemtuzumab ozogamicin, the best studied anti-CD33 
therapeutic antibody in AML [59], has been tested, examined, and 
modified numerous times in an attempt to maximize its safety and 
efficacy, and has provided first evidence that monoclonal antibodies 
could find a niche in the AML treatment armamentarium and should 
have a role in the clinical care of AML. 
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