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Abstract – The intrinsic complexity of the coating 

systems on historical bowed string musical instruments 

complicates the characterization of the different 

materials that have been subsequently spread on the 

wood. Even more challenging is the identification of 

their spatial distribution in the sequence of the 

finishing layers. To face both issues, in this study we 

combined Synchrotron radiation micro - FTIR in 

reflection geometry and Chemometrics for the 

investigation of five micro-samples mounted in cross-

sections, removed from musical instruments made by 

Antonio Stradivari, Francesco Ruggeri and Lorenzo 

Storioni. A classification model based on Partial Least 

Squares – Discriminant Analysis aimed at 

discriminating the organic materials through infrared 

signals was developed. High model specificity (> 0.9) 

was reached in prediction, doing the groundwork for 

the application of a fast and rigorous methodological 

approach. 

 

I.    INTRODUCTION 

The number of historical bowed string musical instruments 

investigated by the methods of the chemical and physical 

sciences dramatically rose in the last decade, and the 

scientific research has increased its role in detecting 

materials and methods that were employed in the past to 

obtain extraordinary masterpieces of craftsmanship. The 

research mainly focused on the nature of the fine 

Cremonese varnish [1][2] and on the other materials 

involved in the finishing treatments [3]. In most cases, the 

raw wood was in fact treated with proteinaceous materials 

- such as animal glue or casein - and an oil-resinous 

varnish. The result is a multiple-layered complex system, 

which may also contain mineral fillers and colourants of 

organic and inorganic nature. 

The scientific investigation of the finishing layers is 

normally very challenging because of the intrinsic 

complexity of the coating system, where a large variety of 

unknown materials can be present, made even more 

complex due to modification caused by use and 

maintenance of the musical instrument. Due to the high 

value of the historical musical instruments, sampling is 

seldom allowed. In the rare cases when a (micro)-sample 

can be obtained, this is normally mounted in cross-section 

after inclusion in epoxy resin and it represents the 

(available) record of the material history of the musical 

instrument. Researchers shall extract from it the maximum 

information, and then it shall be kept for further analyses 

to be developed in the future. A number of techniques, 

both micro-invasive and non-invasive, have been used to 

variously characterize the materials in historical bowed 

string instruments. A spectroscopic approach [4] can be 

supported and integrated by imaging and tomographic 

techniques [5] while chromatographic techniques may lead 

– destructively - to the accurate identification of the 

organic constituents [1]. In the present study we 

considered five cross-sections obtained from samples 

detached from four bowed string instruments produced by 

three ancient masters of violin-making art, that have been 

analysed by Synchrotron Radiation Fourier Transform 

Infrared (FRIR) microspectroscopy at Elettra Sincrotrone 

Trieste (beamline SISSI) in reflection geometry. The 

constraint imposed by the sampling geometry on cross-

sections produced complex spectra. It was clear from the 



 

 

get-go that this analytical approach – albeit promising for 

achieving the characterization of the coating system - 

would need a huge effort to obtain a reliable picture of the 

composition of each layer. In order to support the 

processing steps, in view of extending the use of this 

analytical technique to a larger number of samples, and in 

order to extract the maximum information from the 

analyses, the spectra have been processed with a 

chemometric approach. Chemometric approaches are in 

fact needed to solve data with multivariate nature in order 

to unravel relevant information hidden in spectroscopic 

signals [6], such as FTIR data. In particular, through an 

unsupervised exploratory procedure, namely Principal 

Component Analysis (PCA), it is possible to understand 

the relationship between all the FTIR variables and to 

stand out the sample patterns according to variables’ 

weight in the new reduced space defined by the PC 

components. 

Moreover, supervised classification methods (such as 

Linear Discriminant Analysis, Partial Least Squares-

Discriminant Analysis, Support Vector Machines, 

Artificial Neural Network) permit to define rules to 

distinguish objects in classes, such as different materials, 

allowing fast and rigorous materials identification 

skipping visual inspection of large number of spectra. 

Even if the above mentioned chemometric techniques 

have been widely used in the cultural heritage field [7], 

their implementation to musical instrument materials [8] 

gained relevance in the last years. In this scenario, the 

present work aims at developing a methodological 

approach useful to manage and interpret large datasets 

obtained by SR-FTIR in reflection geometry through PCA 

and PLS-DA. 

 

II.    MATERIALS AND METHODS 

 

A.    Materials 

The experimental plan encompasses the analysis of 5 sub-

millimetric samples collected from 4 different bowed 

string instruments (Table 1): a fragment of a cello made by 

Francesco Ruggeri during the 17th Century (FR_c), the 

“Toscano” violin made by Antonio Stradivari in 1690 

(AS_v), the Bracco small-violin (LS_sv1, LS_sv2 and 

LS_sv3) and a private property violin (LS_sv2), both made 

by Lorenzo Storioni respectively in 1793 and 1790. The 

samples were collected under high magnification 

employing a disposable blade scalpel in selected areas of 

the instruments. After the sampling, they were embedded 

in epoxy resin (Epofix Struers and Epofix Hardener, 15:2), 

and then cut as cross-sections. The surface was then dry-

polished with silicon carbide fine sandpaper (500-8000 

mesh), obtaining a flat surface. At least two layers (up to 5 

µm thick) of organic binders were observed in the coating 

systems of the five selected samples. Moreover, some 

heterogeneous sub-micrometric inclusions embedded in 

the binders were identified. 

 

Table 1. List of the samples involved in the project. 

Violin 

Maker 
Instrument 

Inventory 

Name 

Referred 

Name 

F. Ruggeri Cello c17th Rug_3A FR_c 

A. Stradivari 
“Toscano” 

violin 1690 
Stra_1B AS_v 

L. Storioni 

Private  

violin 1790 
Sto_2B LS_v 

“Bracco” 

small violin 

1793 

Sto_1B_1 LS_sv1 

Sto_1B_2 LS_sv2 

Sto_1E LS_sv3 

 

B.    SR-FTIR Microspectroscopy 

Samples were measured at the SISSI beamline – Chemical 

and Life Sciences branch at Elettra – Sincrotrone, Trieste 

(Italy) [9]. Measurements were performed on polished 

samples in reflection geometry exploiting Infrared 

Synchrotron Radiation (IRSR) using the Bruker Vertex 

70v interferometer coupled with the Hyperion 3000 

microscope (Bruker Optik GmbH) and a single point MCT 

(mercury-cadmium-telluride) detector. 512 scans have 

been averaged in the acquisition spectral range 4000 – 750 

cm-1, with a spectral resolution of 4 cm-1,at 120 KHz 

scanner speed. The size of the acquisition points was set at 

10 x 30 µm by closing the knife-edge apertures of the Vis-

IR microscope accordingly with the sample stratigraphy. 

The acquisition was carried out in linear map mode with a 

vertical step size of 10 µm. For each sample, the 

background was acquired with the same acquisition 

parameters on a gold substrate. For the interpretation of the 

bands produced by organic materials, reflection infrared 

spectra were transformed to absorbance spectra by 

applying the Kramers-Kronig (KK) algorithm and 

smoothed (Savitzky-Golay, 20 wavelengths gap size). 

Data managing and first spectral transformation were 

performed by Opus 7.5 software. 

 

C.    Chemometrics  

The spectra were reduced in the range 2000-1400 cm-1 and 

transformed by smoothing (Savitzky-Golay, 11 

wavelengths gap size) followed by first derivative 

(Savitzky-Golay, 11 wavelengths gap size and 2nd order 

polynomial) and mean centre. PCA was performed to 

identify sample grouping to be raised to classes to develop 

classification models based on PLS-DA algorithm. Indeed, 

PCA is an unsupervised exploratory procedure with 

effective graphical outputs to visualise the relationships 

between objects (scores plot) and the loads of the variables 

(loadings plot) in a new defined space representing the 

directions of maximum variation of the original data [9]. 

For classification purposes, the spectra dataset was divided 

into a calibration and a test set containing 71 (around 80%) 



 

 

and 26 (20%) spectra, respectively. The calibration set 

contained spectra referred to samples AS_v, FR_c, 

LS_sv1, and LS_sv3; whereas the spectra collected for 

LS_sv2 and LS_v were used as test set. Moreover, the 

models were cross-validated by venetian blind with eight 

splits. 

The classification by PLS-DA applies the bases of PLS 

regression to a Y dummy and it completes a rotation of the 

projection to latent variables searching for the maximum 

separation among classes [10]. 

All the data analyses were performed in Matlab 

environment (v. 2016a, Mathworks, Inc., Natick, MA, 

USA) and using the PLS toolbox (ver. 8.5, Eigenvector 

Research, Inc., 130 USA) software package. 

 

III. RESULTS AND DISCUSSION 

 

A.    SR-FTIR Microspectroscopy 

In order to focus the attention on the organic components, 

the spectral region between 2000-1400 cm-1 was selected 

for identification purposes. Diagnostic bands of each 

organic chemical class were identified as reported in Table 

2. 

 

Table 2. Reflection infrared wavenumber values (cm
−1

), 

and their assignment, of the diagnostic bands of the 

studied organic chemical classes. 

Material class 
Wavenumber 

(cm
−1

) 
Assignment 

Epoxy resin 

(E) 
1510 vC-C 

Varnishes (V) 1720 - 1700 vC=O 

Proteins (P) 1665 - 1645 vC=O (Amide I) 

Wood (W) - - 

 

Proteins (P in Fig. 1) were discriminated by the amide I 

band (vC=O) with maximum falling in the region 1665 - 

1645 cm-1, while varnishes (V in Fig. 1) through the vC=O 

band produced by the ester and acid contributes of oils and 

resins from approximately 1720 cm-1 to about 1700 cm-1 

[11][12]. The amide II proteinaceous band at around 1550 

cm-1, due to the combination of vC-N and δN-H vibrations, 

as well as the δCH signal at about 1460 cm-1 were not 

considered as markers because, in the first case, the 

spectral feature did not regularly occur in the data set 

whereas, in the second case, the CH band is common to 

most of organic compounds used in the musical instrument 

field. The presence of the epoxy resin (E in Fig. 1) was 

clearly highlighted by the intense and sharp band at 1510 

cm-1; compared to this signal, in fact, the primary amine 

band at 1610 and the δCH band at 1460 cm-1 are relatively 

weak and they contribute only limited information [13]. As 

the epoxy resin was employed to embed the samples, its 

occurrence in the spectra can be associated to  

 
Fig. 1. KK corrected reflection SR-FTIR spectra 

collected on the LS_sv_2 (E and V), FR_c (P and U) and 

LS_v (W). Diagnostic bands of epoxy resin (●), varnishes 

(*) and proteins (▲) are highlighted. 

 

the acquisition area falling close to the upper or lower 

boundaries of the stratigraphy or to the contamination 

possibly arising by polishing. The wood (W in Fig. 1), 

above which the binders were laid to form sequential 

stratigraphic layers with different functions, resulted to 

provide very noisy spectra, with no discriminant features 

in the considered spectral range. However, some 

characteristic frequencies of the wood (i.e. un-conjugated 

vC=O, conjugated vC-O, v(aromatic ring) and δOH) 

[14][15] fall in the region 1750 to 1550 cm-1, and appear 

very broad in the collected spectra. In addition to spectra 

clearly referring to one single organic chemical class, also 

spectra with signals produced by multiple classes (e.g. 

varnish + proteins + epoxy resin, (U in Fig. 1) occurred. 

These expected “mixed” profiles originated from 

acquisition areas at the interface between layers with 

different composition. 

 

B.    PCA 

In Fig. 2 are reported the results obtained by PCA. Fig. 2a 

shows the scores plot of PC1 vs PC2 accounting for the 

54% of total variance. Each object (corresponding to a 

single spectrum) is coloured according to the most 

probable material identified through the collected signal. 

In particular, objects were assigned to a specific group in 

accordance to the position of the analytical spot in the 

cross-sections, therefore their assignment mainly reflects 

the stratigraphy of the sample. It is possible to notice that 

objects associated to varnish (V) spectral profiles are 

mostly grouped in the bottom left quarter of the PC1 vs 

PC2 plot, as these objects have both negative PC1 and PC2 

scores. Most of the spectra identified as epoxy resin (E) 

correspond to the objects grouped in the bottom right 

quarter resulting from positive PC1 combined with 

negative PC2 values. Objects corresponding to spectra 

characterized by proteinaceous materials (P) do not form a 

sharp cluster in the PC1 vs PC2 scores plot, however all 



 

 

these objects are characterized by positive PC2 scores and 

most of them are well separated from the other layers. 

Wood (W) groups around the origin of PC1 and PC2 axes 

close to not identified layers (U, undefined), i.e. layers for 

which it was not possible to discriminate a predominant 

component among the identified macro-categories of 

binding media (varnish and proteinaceous material). 

Anyway, the U samples seems to be similar to each other 

in most cases as they cluster in a group with slightly 

positive PC2 scores and slightly negative PC1 scores, with 

just few exceptions. In addition, the third PC (accounting 

for the 11% of the variance) was investigated. 

Unfortunately, this component does not provide further 

relevant information. 

From Fig. 2b interpretation, the groups previously 

identified are confirmed, even though some of them are 

more scattered or form sub-groups, which can be ascribed 

to the combination of different materials in the same layer, 

as expected. 

From the loadings plot (Fig. 2c) the signals corresponding 

to the bands used to detect epoxy resin (●), varnishes (*) 

and proteins (▲) appear the ones mostly influencing the 

spectra distribution in groups according to the different 

materials constituting the layers. It should be kept in mind 

that the spectra were transformed by first derivative, thus 

the maximum of diagnostic peaks are lost, but they 

actually correspond to the inflection points of the loading 

profiles.As loadings can assume values from -1 to +1, 

variables approaching extreme values in Fig. 2c are the 

ones with higher influence in constituting the PCs and, 

thus, they are responsible for spectra distribution in the 

scores plots (Fig. 2a and b). 

 
Fig. 2. PCA results: a) scores plot of PC1 vs PC2; b) 

scores plot of PC1 vs PC3; c) loadings plot of PC1, PC2 

and PC3. 

 

 



 

 

PC1 well discriminates varnish (V) from epoxy (E) spectra 

mainly thanks to the signal corresponding to ~1720 cm-1 

and ~1510 cm-1. PC2 allows the discrimination of layers 

rich in proteinaceous material (P) due to the signal related 

to vC=O of amide I (1665-1645 cm-1). 

PCA confirmed the material assignation determined by 

inspecting the layer position in the cross-sections by 

highlighting clear samples grouping for varnish (V), epoxy 

(E), wood (W) and proteinaceous material (P). Moreover, 

the explorative analysis confirmed that the spectra 

positioned in the interfaces between different layers 

actually show signals produced by different materials 

(varnish + proteins + epoxy resin). 

 

C.    PLS-DA 

The materials identified by layers inspections and 

confirmed by PCA were used as classes (U, E, P, V and 

W), thus, constituting the a-priori information (Y) to build 

the PLS-DA classification model (Table 3), able to predict 

layers predominant material based on the spectral data 

collected (X).  

 

Table 3. Figure of merit of the PLS-DA model referred to 

calibration (Cal), cross-validation (CV) and prediction 

(Pred) steps. Sens=sensitivity; Spec=specificity. 

 U E P V W 

Ncal 18 17 12 20 4 

Npred 2 7 2 10 5 

Sens 

(Cal) 
0.94 1.00 0.83 0.90 1.00 

Spec 

(Cal) 
0.91 0.98 0.98 1.00 0.97 

Sens 

(CV) 
0.94 1.00 0.75 0.90 0.75 

Spec 

(CV) 
0.85 0.98 0.98 1.00 0.97 

Sens 

(Pred) 
1.00 1.00 0.50 1.00 0.60 

Spec 

(Pred) 
1.00 0.78 1.00 0.91 1.00 

 

The PLS-DA model was firstly calibrated, i.e. a 

classification rule (equation) was established based on a 

representative set of samples. Then the model was 

internally validated by iterative exclusion of part of the 

calibration set, i.e. one out of the eight groups of samples 

(selected by venetian blind procedure) served as a internal 

test set, whereas the remaining data were used for 

calibration; the results of the eight tests were averaged and 

the constituent strategy achieving the highest accuracy was 

selected. The prediction ability of the optimized model 

was then tested by an external test set. 

The three steps of model development (calibration, cross-

validation and prediction) were evaluated for sensitivity 

and specificity. Sensitivity expresses the model capability 

to correctly recognize samples belonging to the considered 

class; whereas specificity describes the model capability to 

correctly reject samples belonging to all the other classes. 

The internal validation (cross-validation) of the model 

well performed for most of the considered classes reaching 

sensitivity above 0.90 and specificity higher than 0.85. 

However, the P class reached 0.75 of sensitivity as 4 out 

of 12 samples were misclassified as A (3) and W (1). The 

misclassification was expected as the a-priori assigned 

classes referred to the most present component in the layer, 

however it is unrealistic to assume each single layer, thus 

each spectrum, as a pure substance. The model prediction 

abilities resulted optimal for E and V classes with 

sensitivity of 1.00 and specificity above 0.78. Even though 

the specificity of P and W classes reached the maximum 

level (1.00), their sensitivity was poor. One out of two 

samples defined as protein was classified as undefined; 

whereas LS_v.25 and LS_v.26 defined as wood were 

assigned to epoxy class. It is clear that the low performance 

of the prediction phase is largely related here to the low 

number of spectra constituting some of the classes, mainly 

U and P. Indeed, the misclassification of only one 

spectrum resulted in 0.50 of specificity of class P. 

However, the prediction phase is the highest strength of 

the developed model as in most heritage classification 

cases this phase is missing for difficulties in collecting data 

from different samples. 

 

IV.    CONCLUSIONS 

The constructed model reveals the feasibility of the 

proposed methodological approach aimed at 

discriminating the constituting materials of bowed string 

instruments in a fast and rigorous way skipping visual 

inspection of large number of spectra. 
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