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Università di Roma ”La Sapienza”
P.le Aldo Moro 5 – 00185 Roma, Italy

Abstract. We study the asymptotic and qualitative properties of least energy radial sign-

changing solutions to fractional semilinear elliptic problems of the form{
(−∆)su = |u|2∗s−2−εu in BR,

u = 0 in Rn \BR,

where s ∈ (0, 1), (−∆)s is the s-Laplacian, BR is a ball of Rn, 2∗s := 2n
n−2s

is the critical

Sobolev exponent and ε > 0 is a small parameter. We prove that such solutions have the limit
profile of a “tower of bubbles”, as ε→ 0+, i.e. the positive and negative parts concentrate at

the same point with different concentration speeds. Moreover, we provide information about

the nodal set of these solutions.

1. Introduction

Let s ∈ (0, 1), let n ∈ N be such that n > 2s and let Ω ⊂ Rn be a bounded smooth domain.
Consider the following non-local elliptic problem{

(−∆)su = f(u) in Ω,

u = 0 in Rn \ Ω,
(1.1)

where (−∆)s is the s-Laplacian, f(u) = |u|2∗s−2−εu or f(u) = εu+ |u|2∗s−2u for n > 6s, ε > 0 is
a small parameter and 2∗s := 2n

n−2s is the critical exponent for the fractional Sobolev embedding.

In the recent paper [7] the authors studied the asymptotic properties of least energy positive

solutions to Problem (1.1), i.e. positive solutions uε such that ‖uε‖2s → S
n
2s
s , as ε → 0+, where

‖ · ‖s is the standard seminorm in Hs(Rn) and Ss is the best fractional Sobolev constant. They
proved, in the case of the spectral fractional Laplacian, that such solutions concentrate and
blow-up at some point x0 ∈ Ω, providing also information about the blow-up speed with respect
to ε. Their result is hence the fractional counterpart of the classical results of Han and Rey (see
[12, 23]) for the Laplacian.
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Motivated by that, it is natural to ask whether is possible or not to extend to the fractional
framework analogous results about the asymptotic behavior of least energy sign-changing solu-
tions to almost critical and critical semilinear elliptic problems for the Laplacian (see [2, 3, 14,
15, 16, 22]).

At first glance the answer seems to be positive, but differently from the case of constant-
sign solutions, several difficulties arise when studying the qualitative properties of sign-changing
solutions. Indeed, in view of the non-local interactions between the nodal components, we cannot
take benefit from the fractional moving plane method (see [5]), and the strong maximum principle
does not work properly (see [8, Sect. 1]). Moreover, when considering least energy sign-changing

solutions, i.e. sign-changing solutions uε to (1.1) such that ‖uε‖2s → 2S
n
2s
s , as ε→ 0+, we cannot

establish by mere energetic arguments, neither by a Morse-index approach, the number of nodal
components. In the local case it is well known that they possess exactly two nodal regions, since

each nodal component carries the energy S
n
2

1 (see [2, 3]). In the fractional case we can only say

that both the positive and the negative part globally carry the same energy S
n
2s
s , when ε→ 0+,

but this does not hold true in general for each individual nodal component and causes many
troubles when performing the asymptotic analysis.

In our contribution [8] we tackled the case of least energy radial sign-changing solutions to
Problem (1.1) in a ball, when f(u) = εu + |u|2∗s−2u is the critical nonlinearity and n > 6s.
In the spirit of the pioneering papers [10, 11], we showed that these solutions change sign at
most twice and exactly once when s is close to 1. Moreover, when s > 1

2 , we proved that they
behave like a tower of two bubbles as ε→ 0+, namely, the positive and the negative part blow-
up and concentrate at the same point (which is the center of the ball) with different speeds.
Nevertheless, we needed to assume that these solutions change sign exactly once to determine
which one between the positive and the negative part blew-up faster (see [8, Sect.1]).

We point out that for 2s < n ≤ 6s, according to a classical result of Atkinson, Brezis, and
Peletier (see [1]), radial sign-changing solutions in a ball may not exist when ε > 0 is close to
zero, while they do exist for n > 6s (see [8, Theorem 3.7]).

In this paper we consider slightly subcritical nonlinearities f(u) = |u|2∗s−2−εu, and we extend
the results of [8] to all s ∈ (0, 1) without any extra assumption. The same proofs work also in
the case of critical nonlinearities with minor modifications. The main result of our paper is the
following:

Theorem 1.1. Let s ∈ (0, 1) and let n > 2s. Let (uε)ε be a family of least energy radial
sign-changing solutions to {

(−∆)su = |u|2∗s−2−εu in BR,

u = 0 in Rn \BR,
(1.2)

where BR is the euclidean ball of radius R > 0 centered at the origin. Assume without loss of
generality that uε(0) > 0 and set M±ε := |u±ε |∞. Then, as ε→ 0+ it holds that:

(i) M±ε → +∞,

(ii)
M+
ε

M−ε
→ +∞,

(iii) |xε| → 0, where xε ∈ BR is any point such that uε(xε) = M+
ε ,

(iv) the rescaled function

ũε(x) :=
1

M+
ε
uε

(
x

(M+
ε )

2
n−2s−

ε
2s

)
, x ∈ Rn,
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converges in C0,α
loc (Rn), for some α ∈ (0, 1), to the fractional standard bubble U0,µ in Rn

centered at the origin and such that U0,µ(0) = 1,
(v) if s ∈ ( 1

2 , 1) then |yε| → 0, where yε ∈ BR is any point such that |uε(yε)| = M−ε .

Theorem 1.1 establishes the first existence result of sign-changing bubble-tower solutions for
non-local semilinear elliptic problems driven by the s-Laplacian, when s > 1

2 . For s ∈ (0, 1
2 ]

we still get that the positive and the negative part blow-up with different speeds, but for the
negative part we cannot provide any information about its concentration point. From a technical
point of view (see the proof of Lemma 4.3) this is due to the fractional Strauss inequality for
radial functions, namely

sup
x∈Rn\{0}

|x|
n−2s

2 |u(x)| ≤ Kn,s‖u‖2s, (1.3)

where Kn,s is an explicit positive constant depending only on n, s. Indeed, as pointed out in [6,
Remark 2, Remark 4], (1.3) does not hold when s ∈ (0, 1

2 ]. We also stress that in view of the
non-local nature of our problem the positive and negative parts are are not, in general, sub or
super solutions to Problem (1.1) in their domain of definition, so it seems quite hard to overcome
this difficulty by applying scaling arguments to u+

ε , u
−
ε separately.

On the other hand, as proved in [3] for the Laplacian, if the blow-up speeds of u+
ε , u

−
ε are

comparable then they must concentrate at two separate points. Therefore, in view of (ii), we
believe that also for s ∈ (0, 1

2 ] the negative part concentrates at the center of the ball. We plan
to investigate this question in separate paper. In addition, we think that, as done in [22] for the
Laplacian, by using a Lyapunov–Schmidt reduction method it should be possible to construct
sign-changing bubble-tower solutions in general bounded domains, for all s ∈ (0, 1).

We point out that, thanks to (ii) and (iii), any global maximum point is close to the origin,
when ε > 0 is sufficiently small. Moreover, in Lemma 4.6 we specify that any such a point belongs
to the nodal component containing the origin and blows-up faster than any other extremal value
achieved in the other nodal components, independently on the number of sign-changes. In the
local case, by using ODE techniques, it is well known that the global maximum point is the
origin and the absolute values of the extrema are ordered in a radially decreasing way. Our
result allows to recover these properties, at least asymptotically, via PDE-only arguments.

In the second part of this work we study the nodal set of least energy radial sign-changing
solutions to (1.2). We remark that, if uε is a nodal solution to (1.2) and uε ≥ 0 in a subdomain
D ⊂ BR, the fractional strong maximum principle does not ensure, in general, that uε > 0 in D
(see [4, Remark 4.2] and [8, Sect. 1]). In addition [19, Theorem 1.4] only grants that uε does
not vanish in a set of positive measure. Nevertheless, combining the results of [8] with a new
argument based on energy and regularity estimates, we show that for any s ∈ (0, 1) least energy
radial sign-changing solutions to (1.2) vanish only where a change of sign occurs (see Lemma
4.5, Lemma 5.2).

Finally, in Theorem 5.8 we prove that for any s0 ∈ (0, 1), if there exists a L2(BR)-continuous
family A = {uε,s}s∈[s0,1) of least energy nodal radial solutions to (1.2), then every element of
the family changes sign exactly once, provided that ε > 0 is small enough. The key ingredients
of the proof are the estimates contained in [24, Theorem 1.2], and the continuity of the map
s 7→ CMr(BR)(s, ε), where CMr(BR)(s, ε) is the infimum of the energy over the nodal Nehari set,
which is a new result of its own interest (see Proposition 5.6).

The outline of the paper is the following: in Section 2 we fix the notation and we recall some
known results about the existence of sign-changing solutions to (1.2), in Section 3 we study the
asymptotic behavior, as ε → 0+, of the energy levels CM(Ω)(s, ε) in generic bounded domains.
In Section 4 we prove Theorem 1.1. Finally in Section 5 we analyze the nodal set of least energy
radial sign-changing solutions to (1.2) and we prove Theorem 5.8.
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2. Notation and preliminary results

In this section we recall some definitions and known facts that will be used in this work.

2.1. Functional setting, standard bubbles. In this paper (−∆)s stands for the (restricted)
s-Laplacian operator, which is formally defined as

(−∆)su(x) := Cn,sP.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy = Cn,s lim

ε→0+

∫
Rn\Bε(x)

u(x)− u(y)

|x− y|n+2s
dy,

where the constant Cn,s is given by

Cn,s :=
22sΓ

(
n
2 + s

)
π
n
2 |Γ(−s)|

.

Let s ∈ (0, 1) and let n > 2s. For a given smooth bounded domain Ω ⊂ Rn, we consider as a
working functional space the Sobolev space

Xs
0(Ω) := {u ∈ Hs(Rn) ; u = 0 a.e. in Rn \ Ω},

endowed with the norm

‖u‖2s :=
Cn,s

2

∫
R2n

|u(x)− u(y)|2

|x− y|n+2s
dx dy,

and whose associated scalar product is

(u, v)s :=
Cn,s

2

∫
R2n

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dx dy.

The Sobolev space Ds(Rn) is defined as the completion of C∞0 (Rn) with respect to the above
norm. By the fractional Sobolev embedding theorem it holds that Ds(Rn) ↪→ L2∗s (Rn) and
Xs

0(Ω) ↪→ Lp(Ω) for all p ∈ [1, 2∗s], where 2∗s = 2n
n−2s . The previous embeddings are continuous,

and the second one is compact when p ∈ [1, 2∗s). The best Sobolev constant is characterized as

Ss := inf
v∈Ds(Rn)\{0}

‖v‖2s
|v|22∗s

,

where | · |p denotes the usual Lp-norm, for p ∈ [1,∞]. To simplify the notation we will not specify
the domain of integration in | · |p, but it will be always clear from the context that it is either
Rn, or a fixed bounded domain Ω, or a family of bounded domains when considering rescaled
functions. The value of Ss is explicitly known (see [9]), it depends continuously on s ∈ [0, 1], and
it is achieved exactly by the family

Uµ,x0,k(x) := k

(
µ

µ2 + |x− x0|2

)n−2s
2

, µ > 0, x0 ∈ Rn, k ∈ R.

If we choose k = bn,s, where

bn,s := 2
n−2s

2

(
Γ
(
n+2s

2

)
Γ
(
n−2s

2

))n−2s
4s

, (2.1)

then the functions

Ux0,µ(x) := bn,s

(
µ

µ2 + |x− x0|2

)n−2s
2

, (2.2)

also known as “standard fractional bubbles”, satisfy

(−∆)sUx0,µ = U
2∗s−1
x0,µ in Rn (2.3)
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for all µ > 0, x0 ∈ Rn and

‖Ux0,µ‖2s = |Ux0,µ|
2∗s
2∗s
.

2.2. Existence of constant-sign and sign-changing solutions. Let Ω ⊂ Rn be a smooth
bounded domain and consider the problem{

(−∆)su = |u|2∗s−2−εu in Ω,

u = 0 in Rn \ Ω,
(2.4)

where ε ∈ (0, 2∗s − 2). Weak solutions to (2.4) correspond to critical points of the functional

Is,ε(u) :=
1

2
‖u‖2s −

1

2∗s − ε
|u|2

∗
s−ε

2∗s−ε.

The Nehari manifold and the nodal Nehari set are, respectively, defined by

Ns,ε(Ω) := {u ∈ Xs
0(Ω) ; I ′s,ε(u)[u] = 0, u 6≡ 0},

Ms,ε(Ω) := {u ∈ Xs
0(Ω) ; I ′s,ε(u)[u±] = 0, u± 6≡ 0}.

Since we deal with subcritical nonlinearities, by standard variational methods we know that there
exists a minimizer uε ∈ Ns,ε(Ω) of Is,ε, and we set

CN (Ω)(s, ε) := inf
v∈Ns,ε(Ω)

Is,ε(v).

Moreover, the minimizer is a weak solution to (2.4) and it is of constant sign. We also remark
that, equivalently, constant-sign weak solutions to (2.4) can be found as minimizers to

Ss,ε := inf
v∈Xs0 (Ω)\{0}

‖v‖2s
|v|22∗s−ε

,

and the following relation holds

CN (Ω)(s, ε) =
2∗s − 2− ε
2(2∗s − ε)

S
2∗s−ε

2∗s−2−ε
s,ε . (2.5)

In the case of sign-changing solutions, as proved in [28], there exists a minimizer of the energy
over the nodal Nehari set, and it is a weak solution to (2.4). We refer to such solutions as least
energy sign-changing (or nodal) solutions and we set

CM(Ω)(s, ε) := inf
v∈Ms,ε(Ω)

Is,ε(v).

Let us now turn our attention to the radial case. Taking Ω = BR, where BR = BR(0) denotes
the ball in Rn of radius R > 0 centered at the origin, we set

N r
s,ε(BR) := {u ∈ Xs

0(BR) ; u ∈ Ns,ε(BR) and u is radially symmetric},
Mr

s,ε(BR) := {u ∈ Xs
0(BR) ; u ∈Ms,ε(BR) and u is radially symmetric}.

As a consequence of the fractional moving plane method (see [5]), positive solutions of (2.4) in
BR are radially symmetric and radially decreasing. In particular, it holds that

CN (BR)(s, ε) = CN r(BR)(s, ε) := inf
v∈N rs,ε(BR)

Is,ε(v).

Concerning the case of nodal solutions, arguing as in [28] we obtain least energy radial sign-
changing solutions as minimizers of the energy over the radial nodal Nehari set, and as before
we denote

CMr(BR)(s, ε) := inf
v∈Mr

s,ε(BR)
Is,ε(v).
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We point out that it is not known whether or not CMr(BR)(s, ε) coincide with CM(BR)(s, ε), but

they have the same limit when ε→ 0+ (see Lemma 3.3).

3. Asymptotic analysis of the energy levels as ε→ 0+

In this section we study the asymptotic behavior as ε → 0+ of the energy levels CN (Ω)(s, ε),
CM(Ω)(s, ε) defined in Sect. 2. We begin with the following technical result.

Lemma 3.1. Let s ∈ (0, 1) and n > 2s. Let Ω ⊂ Rn be a domain, let x0 ∈ Ω and ρ > 0 be such
that B4ρ(x0) ⊂ Ω. Let ϕ ∈ C∞c (Ω) be such that supp(ϕ) ⊂ B2ρ(x0), 0 ≤ ϕ ≤ 1 in B2ρ(x0) and
ϕ ≡ 1 in Bρ(x0). There exists τ0 > 0 such that for every τ ∈ (0, τ0), setting

usτ (x) := ϕ(x)τ−(n−2s
2 )Ux0,µ

(
x− x0

τ
+ x0

)
, (3.1)

where Ux0,µ is defined by (2.2), then the following estimates hold:

‖usτ‖2s ≤ S
n
2s
s + Cτn−2s,

0 < S
n
2s
s − Cτn ≤ |usτ |

2∗s
2∗s
≤ S

n
2s
s ,

0 ≤ |usτ |1 ≤ Cτ
n−2s

2 ,

(3.2)

where the constants C are positive and depend only on n, s, x0, µ and ρ. Moreover, for any

0 < ε < 2s
n−2s , taking µ = b

2
n−2s
n,s , where bn,s is given by (2.1), we have

0 < τ(n−2s
2 )ε

[
S
n
2s
s − Cτn

]
≤ |usτ |

2∗s−ε
2∗s−ε ≤ Cτ

(n−2s
2 )ε,

0 < τ(n−2s
2 )(1+ε)

[
S
n
2s
s − Cτn

]
≤ |usτ |

2∗s−1−ε
2∗s−1−ε ≤ Cτ(n−2s

2 )(1+ε),
(3.3)

where the appearing constants are positive and depend only on n, s, x0 and ρ. Let 0 < s0 < s1 ≤ 1

and let n > 2s1. Then, if s ∈ [s0, s1) and ε ∈
(

0, 2s0
n−2s0

)
, both τ0 and the above constants C can

be taken in such a way that they depend on n, µ, ρ, s0, s1, but not on s, τ and ε.

Proof. Inequalities (3.2) are proved in [26], [27] and hold true for all sufficiently small τ > 0
with constants C independent on τ . Concerning the dependence of the constants C on the other
parameters we refer to [8, Remark 2.2]. Let us focus on the proof of (3.3). Taking if necessary
a smaller τ0 > 0 so that τ0 < min{1, 2ρ}, we find that, when q = 2∗s − ε or q = 2∗s − 1− ε,∫

Rn
|usτ |q dx ≤ Cτn−(n−2s

2 )q

(
C +

∫ 2ρ
τ

1

rn−(n−2s)q−1 dr

)
,

where the constants C > 0 depend on n, s, µ, but not on τ nor on ε. Furthermore, since
0 < ε < 2s

n−2s we have ∫ 2ρ
τ

1

rn−(n−2s)q−1 dr ≤ C,

for some constant C > 0 independent on τ and ε. Recalling the definition of bn,s, one can see
that all the previous constants can be taken in a uniform way with respect to s ∈ [s0, s1) when

n > 2s1 and ε ∈
(

0, 2s0
n−2s0

)
. Hence the right-hand side inequalities in (3.3) are proved.

In order to prove the the left-hand side inequalities it suffice to notice that, thanks to our

choice of µ = b
2

n−2s
n,s , it follows that |Usµ,x0

|∞ = 1 and thus |Usµ,x0
|q ≥ |Usµ,x0

|2∗s for every x ∈ Rn,
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where q = 2∗s − ε or q = 2∗s − 1− ε. Then, using also (3.2), we find that∫
Ω

|usτ |q dx ≥ τn−(n−2s
2 )q

∫
Bρ/τ

|Usµ,x0
|q dx

≥ τn−(n−2s
2 )q

[
S
n
2s
s −

∫
Rn\Bρ/τ

|Usµ,x0
|2
∗
s dx

]
≥ τn−(n−2s

2 )q
[
S
n
2s
s − Cτn

]
,

for some constant C > 0 which depends only on n, s and ρ, but not on τ , ε, and which is uniform
with respect to s ∈ [s0, s1). The proof is complete. �

As a consequence we obtain the following uniform asymptotic result on CN (Ω)(s, ε).

Lemma 3.2. Let s ∈ (0, 1), n > 2s and let Ω be a smooth bounded domain of Rn. Then, as
ε→ 0+, it holds

CN (Ω)(s, ε)→
s

n
S
n
2s
s . (3.4)

Moreover, if 0 < s0 < s1 ≤ 1 and n > 2s1, for every ε ∈
(

0,min
{
τ0,

2s0
n−2s0

, 1
})

, where τ0 is

given by Lemma 3.1, we have

sup
s∈(s0,s1)

∣∣∣CN (Ω)(s, ε)−
s

n
S
n
2s
s

∣∣∣ ≤ g1(ε), (3.5)

where g1 does not depend on s and g1(ε)→ 0+ as ε→ 0+.

Proof. Let s ∈ (0, 1) and n > 2s. In order to prove (3.4), in view of (2.5) it is sufficient to show

that Ss,ε → Ss, as ε→ 0+, where Ss,ε := infu∈Xs0 (Ω)\{0}
‖u‖2s
|u|2

2∗s−ε
. To this end we observe that, by

Hölder’s inequality, for every u ∈ Xs
0(Ω) and any sufficiently small ε > 0 we have

|u|2∗s−ε ≤ |u|
2ε

(2∗s−ε)(2
∗
s−2)

2 |u|
2∗s (2

∗
s−2−ε)

(2∗s−ε)(2
∗
s−2)

2∗s
.

Then, thanks to the fractional Sobolev embedding and the variational characterization of the
eigenvalues, we infer that

|u|22∗s−ε ≤ λ1,s(Ω)
− 2ε

(2∗s−ε)(2
∗
s−2)S

− 2∗s (2
∗
s−2−ε)

(2∗s−ε)(2
∗
s−2)

s ‖u‖2s,
which implies, when u 6≡ 0, that

λ1,s(Ω)
2ε

(2∗s−ε)(2
∗
s−2)S

2∗s (2
∗
s−2−ε)

(2∗s−ε)(2
∗
s−2)

s ≤ ‖u‖2s
|u|22∗s−ε

.

Taking the infimum as u ∈ Xs
0(Ω) \ {0} we get that

λ1,s(Ω)
2ε

(2∗s−ε)(2
∗
s−2)S

2∗s (2
∗
s−2−ε)

(2∗s−ε)(2
∗
s−2)

s ≤ Ss,ε, (3.6)

and thus it follows that
Ss ≤ lim inf

ε→0+
Ss,ε. (3.7)

Now, let us fix x0 ∈ Ω, ρ > 0, ϕ as in the statement of Lemma 3.1 and take µ = b
2

n−2s
n,s . Let usτ be

the function defined in (3.1). Then, using both (3.2) and (3.3), for any τ ∈ (0, τ0), ε ∈ (0, 2s
n−2s )

we infer that

Ss,ε ≤
‖usτ‖2s
|usτ |22∗s−ε

≤ S
n
2s
s + Cτn−2s

τ

(
n−2s
2∗s−ε

)
ε
[
S
n
2s
s − Cτn

] 2
2∗s−ε

. (3.8)
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Hence, for ε ∈ (0,min{τ0, 2s
n−2s}), taking τ = ε in (3.8) we get by elementary computations that

lim sup
ε→0+

Ss,ε ≤ Ss,

which, together with (3.7), implies (3.4). The first part of the Lemma is thus proved.
For the second part, recalling [8, (2.5), (2.8)] we have that, fixing 0 < s0 < 1, there exist two

positive constants λ, λ such that

λ ≤ λ1,s(Ω) ≤ λ ∀s ∈ [s0, 1). (3.9)

Hence, from (3.6), (3.9) we deduce that there exists C > 0 depending only on n, Ω and s0 such
that for all s ∈ [s0, 1)

Ss,ε ≥ SsCε. (3.10)

On the other hand, let us fix s1 such that 0 < s0 < s1 ≤ 1 and let s ∈ (s0, s1), n > 2s1,

ε ∈
(

0,min
{
τ0,

2s0
n−2s0

, 1
})

, where τ0 is given by Lemma 3.1. Then from (3.8), (3.9), choosing

τ = ε and taking into account that 1
2 < εε ≤ 1 for any ε ∈ (0, 1), we infer that

Ss,ε ≤ Ss
(

Cε

(εε)α[1− Cεn]β

)
+ Cεn−2s, (3.11)

for some constants C,α, β > 0 which depend only on n, s0 and s1, but not on s and ε. Therefore,
from (2.5), (3.10) and (3.11) we obtain

Cε
s

n
S
n
2s
s ≤ CN (Ω)(s, ε) ≤

s

n
S
n
2s
s g(ε),

where g and C > 0 do not depend on s, and g is such that g(ε)→ 1 as ε→ 0+. Hence, setting
g1(ε) := max{|Cε − 1|, |g(ε)− 1|} we get (3.5). The proof is then complete. �

In the next result we describe the asymptotic behavior of CM(Ω)(s, ε), as ε→ 0+. Differently
from the case of critical nonlinearities (see [8, Lemma 3.6]), there are some difficulties in proving
uniform energy estimates from above which are directly related to CN (Ω)(s, ε). To overcome

these difficulties we provide a uniform upper bound in terms of 2s
n S

n
2s
s instead, which is obtained

by using as competitors for the energy superpositions of standard bubbles centered at the same
point and with different concentration speeds.

Lemma 3.3. Let s ∈ (0, 1), n > 2s and let Ω ⊂ Rn be a smooth bounded domain. We have

lim
ε→0+

CM(Ω)(s, ε) =
2s

n
S
n
2s
s . (3.12)

Moreover, let 0 < s0 < s1 ≤ 1 and n > 2s1. Then there exists ε̂ = ε̂(s0, s1) ∈ (0, 2∗s0 − 2) such
that for every ε ∈ (0, ε̂)

sup
s∈(s0,s1)

∣∣∣∣CM(Ω)(s, ε)−
2s

n
S
n
2s
s

∣∣∣∣ ≤ g2(ε), (3.13)

where the function g2 does not depend on s and g2(ε)→ 0 as ε→ 0+. The same result holds for
Mr

s,ε(BR).

Proof. Let us fix s ∈ (0, 1), n > 2s and let Ω ⊂ Rn be a smooth bounded domain. We claim that

2CN (Ω)(s, ε) ≤ CM(Ω)(s, ε). (3.14)

As an immediate consequence, from Lemma 3.2 we get that

2s

n
S
n
2s
s ≤ lim inf

ε→0
CM(Ω)(s, ε). (3.15)
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To prove (3.14) it suffices to notice that, given u ∈Ms,ε(Ω), then for every α, β > 0 it holds

Is,ε(αu
+) + Is,ε(βu

−) ≤ Is,ε(u).

This follows from the explicit computation of Is,ε(αu
+−βu−), taking into account that (u+, u−)s <

0 and that supt≥0

(
t2

2 −
t2
∗
s−ε

2∗s−ε

)
≤
(

1
2 −

1
2∗s−ε

)
. Hence, choosing u ∈Ms,ε(Ω) such that Is,ε(u) =

CM(Ω)(s, ε) and α, β in such a way that αu+, βu− ∈ Ns,ε(Ω) (which is always possible), we
obtain the desired result.

To conclude the proof of (3.12) we need to prove the lim sup inequality. To this end, we
consider usτ ′ and usτ ′′ of the form (3.1), sharing all the parameters µ, ϕ, ρ, x0, apart from
τ . To simplify the notation, we assume without loss of generality that 0 ∈ Ω and we take
x0 = 0. Moreover, we choose ρ and µ as in Lemma 3.1 so that (3.2),(3.3) hold true whenever ε is

small enough. Finally, for the concentration parameters, we take τ ′, τ ′′ of the form τ ′ = ε
2δ

n−2s ,

τ ′′ = ε
2

n−2s , where δ > 0 is such that

δ > max

{
1,

(2∗s − ε)(2∗s − 1− ε)
2∗s − 2ε

, 2∗s − 1

}
.

Notice that δ = 2∗s − 1 when ε is small enough, and that it can be taken in a uniform way with
respect to s when s ∈ [s0, s1).

Arguing as in [8, Theorem 3.5, Step 2], we infer that

CM(Ω)(s, ε) ≤ sup
α,β≥0

Is,ε(αu
s
τ ′ − βusτ ′′). (3.16)

To conclude we need to estimate the right-hand side of (3.16). The first crucial fact is that, in
(3.16), it is sufficient to consider only linear combinations αusτ ′ − βusτ ′′ with α, β in a compact

subset of R+ ∪ {0}. More precisely, we prove that there exists C̃ > 0 independent on ε (and

depending only on s0, s1 when s ∈ [s0, s1)) such that, for any α, β ≥ 0 satisfying α + β ≥ C̃, it
holds

Is,ε(αu
s
τ ′ − βusτ ′′) ≤ 0. (3.17)

Indeed, by a straightforward computation and using Lemma 3.1 we have

‖αusτ ′ − βusτ ′′‖2s ≤ C(α+ β)2, (3.18)

for some constant C independent on both ε, τ ′, τ ′′ and s, when s ∈ [s0, s1). On the other hand,
arguing exactly as in [8, Lemma 3.6] and using again Lemma 3.1, we infer that for any θ ∈ (0, 1)

|αusτ ′ − βusτ ′′ |
2∗s−ε
2∗s−ε

≥ Cα2∗s−ε(τ ′)(
n−2s

2 )ε

C − (τ ′)(
n−2s

2 )(2∗s−2ε)

θ2∗s−1−ε − (τ ′)(
n−2s

2 )
2∗s

2∗s−ε−1

θ
1

2∗s−1−ε


+ β2∗s−ε(|usτ ′′ |

2∗s−ε
2∗s−ε − θ|u

s
τ ′′ |

2∗s−ε∞ ).

(3.19)

Now, thanks to our choice of µ we have

|usτ ′′ |∞ = usτ ′′(0) = (τ ′′)−
n−2s

2 .

Hence, recalling that τ ′′ = ε
2

n−2s and taking θ = C ′ε2∗s−ε, where C ′ will be chosen later, from
Lemma 3.1 we obtain that

|usτ ′′ |
2∗s−ε
2∗s−ε − θ|u

s
τ ′′ |

2∗s−ε∞ ≥ C − C ′,
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for any ε > 0 small enough, where C does not depend on ε, nor on s when s ∈ [s0, s1). Therefore,
taking C ′ = 1

2C we get that

|usτ ′′ |
2∗s−ε
2∗s−ε − θ|u

s
τ ′′ |

2∗s−ε∞ ≥ 1

2
C > 0. (3.20)

Thus, recalling that τ ′ = ε
2δ

n−2s , from (3.19), (3.20) we obtain

|αusτ ′ − βusτ ′′ |
2∗s−ε
2∗s−ε

≥ (εε)δCα2∗s−ε
(
C − εδ(2

∗
s−2ε)−(2∗s−ε)(2

∗
s−1−ε) − ε

2∗s (δ−1)+ε

2∗s−1−ε

)
+

1

2
Cβ2∗s−ε.

Then, exploiting the properties of the function t 7→ tt, thanks to the definition of δ, we find that
there exists C > 0 such that for all sufficiently small ε > 0

|αusτ ′ − βusτ ′′ |
2∗s−ε
2∗s−ε ≥ C(α2∗s−ε + β2∗s−ε) ≥ C(α+ β)2∗s−ε. (3.21)

Finally, thanks to (3.18) and (3.21) we infer that

Is,ε(αu
s
τ ′ − βusτ ′′) ≤ C(α+ β)2(1− C(α+ β)2∗s−2−ε),

which implies that there exists C̃ > 0, not depending on ε, such that if (α + β) ≥ C̃ then

Is,ε(αu
s
τ ′ − βusτ ′′) ≤ 0, as claimed. We observe that C̃ can be taken in a uniform way with

respect to s, when s ∈ [s0, s1).

It remains to treat the case α+ β ≤ C̃. To this end we begin with a preliminary estimate on
the scalar product between two bubbles. A careful analysis of the argument carried out in [27,
Proposition 21] shows that

|(usτ ′ , usτ ′′)s| ≤ (τ ′)−
n−2s

2 (τ ′′)−
n−2s

2

∣∣∣(Us0,µ ( xτ ′) , Us0,µ ( xτ ′′))s
∣∣∣+ C(τ ′)

n−2s
2 (τ ′′)

n−2s
2 ,

where the constant C does not depend on τ ′ nor on τ ′′, and it is uniformly bounded with respect
to s ∈ [s0, s1). Performing a change of variables, and recalling that Us0,µ solves problem (2.3),
we infer that∣∣∣(Us0,µ ( xτ ′) , Us0,µ ( xτ ′′))s

∣∣∣ =

∣∣∣∣(τ ′)n−2s

(
Us0,µ, U

s
0,µ

(
τ ′

τ ′′
x

))
s

∣∣∣∣
≤ (τ ′)n−2s

∫
Rn
|Us0,µ|2

∗
s−1

∣∣∣∣Us0,µ( τ ′τ ′′x
)∣∣∣∣ dx

≤ C(τ ′)n−2s

∫
Rn

(µ2 + |x|2)−
n+2s

2 dx ≤ C(τ ′)n−2s,

where we used the fact that thanks to our choice of µ it holds |Us0,µ|∞ = 1, and where the
constant C > 0 does not depend on τ ′ nor on τ ′′ and it is uniformly bounded with respect to
s ∈ [s0, s1). Summing up, and recalling the definition of τ ′ and τ ′′, we infer that

|(usτ ′ , usτ ′′)s| ≤ C(εδ−1 + εδ+1) ≤ Cεδ−1. (3.22)
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Let us finally consider the case of α+β ≤ C̃. Arguing again as in [8, Lemma 3.6] and applying
Lemma 3.1 and (3.22), we obtain

Is,ε(αu
s
τ ′ − βusτ ′′) ≤

α2

2
‖usτ ′‖2s +

β2

2
‖usτ ′′‖2s −

α2∗s−ε

2∗s − ε
|usτ ′ |

2∗s−ε
2∗s−ε −

β2∗s−ε

2∗s − ε
|usτ ′′ |

2∗s−ε
2∗s−ε

+ C

∫
Rn
|usτ ′ |2

∗
s−1−ε|usτ ′′ |dx+ C

∫
Rn
|usτ ′′ |2

∗
s−1−ε|usτ ′ |dx+ Cεδ−1

≤ α2

2
S
n
2s
s +

β2

2
S
n
2s
s −

α2∗s−ε

2∗s − ε
(εε)δ(S

n
2s
s − Cε2∗sδ)

− β2∗s−ε

2∗s − ε
(εε)(S

n
2s
s − Cε2∗s ) + Cε−1εδ(1+ε) + Cε−(2∗s−1−ε)εδ

+ Cε2δ + Cε2 + Cεδ−1,

where we used that |usτ ′′ |∞ = ε−1. Even in this case all the appearing constants are independent
on ε, and they are uniformly bounded with respect to s when s ∈ [s0, s1). Using again that

supt≥0

(
t2

2 −
t2
∗
s−ε

2∗s−ε

)
≤
(

1
2 −

1
2∗s−ε

)
, we get that

Is,ε(αu
s
τ ′ − βusτ ′′) ≤

2∗s − 2− ε
2∗s − ε

S
n
2s
s + C(1− (εε)δ) + C(1− εε) + Cε2∗sδ + Cε2∗s

+ Cεδ−1+δε + Cεδ−(2∗s−1−ε) + Cε2δ + Cε2 + Cεδ−1

=:
2s

n
S
n
2s
s + g(ε),

(3.23)

where all the constants C > 0, and thus g, do not depend on s, when s ∈ [s0, s1). In particular,
g satisfies g(ε)→ 0 as ε→ 0+.

At the end, putting together (3.16), (3.23), taking into account (3.17), we obtain

CM(Ω)(s, ε) ≤
2s

n
S
n
2s
s + g(ε), (3.24)

and thus we get that

lim sup
ε→0+

CM(Ω)(s, ε) ≤
2s

n
S
n
2s
s ,

which, together with (3.15) gives (3.12).

For the proof of the second part, fixing 0 < s0 < s1 ≤ 1, thanks to Lemma 3.2 and the
definition of g, we deduce that inequalities (3.14) and (3.24) are uniform with respect to s
when s ∈ [s0, s1). At the end, arguing as in Lemma 3.2 we obtain (3.13), for some function g2

independent on s and such that g2(ε)→ 0, as ε→ 0+.
In the radial case the proof is identical. Indeed, since in the construction we take standard

bubbles centered at the same point, then the functions αusτ ′−βusτ ′′ are radial and thus admissible
competitors. The proof is then complete. �

4. Asymptotic analysis of least energy radial sign-changing solutions

In this section we study the asymptotic behavior of least energy radial nodal solutions to (1.2),
as ε→ 0+. Theorem 1.1 will be a consequence of the results contained in this section. We begin
by a couple of preliminary known results.

Lemma 4.1. Let s ∈ (0, 1), let n > 2s and let Ω ⊂ Rn be a smooth bounded domain. Let
(us,ε) ⊂ Ms,ε(Ω) be a family of solutions of Problem (2.4) such that Is,ε(us,ε) = CM(Ω)(s, ε)

and set Ms,ε,± := |u±s,ε|∞. As ε→ 0+ we have:
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(i) ‖u±s,ε‖2s → S
n
2s
s ;

(ii) |u±s,ε|
2∗s−ε
2∗s−ε → S

n
2s
s ;

(iii) (u+
s,ε, u

−
s,ε)s → 0;

(iv) us,ε ⇀ 0 in Xs
0(Ω);

(v) Ms,ε,± → +∞.

The same results hold for a family (us,ε) ⊂ Mr
s,ε(BR) of radial solutions to Problem (1.2) such

that Is,ε(us,ε) = CMr(BR)(s, ε). Moreover, for every 0 < s0 < s1 ≤ 1 and n > 2s1, the limits
(i)− (iii) are uniform with respect to s ∈ [s0, s1).

Proof. It suffices to argue as in [8, Lemma 4.3], with some minor modifications. �

The following estimate will play a central role in this paper.

Proposition 4.2. Let 0 < s0 < s1 ≤ 1 and let s ∈ [s0, s1), n > 2s1. Let 0 < R0 ≤ R,
g ∈ L∞(BR) and v be a weak solution of{

(−∆)sv = g in BR,

v = 0 in Rn \BR,

Then v ∈ C0,s(Rn) and
‖v‖C0,s(Rn) ≤ C|g|L∞(BR)

where the constant C > 0 depends only on n, s0, s1 and R0, but neither on s nor on R.

Proof. The estimate is a consequence of results contained in [24]. Concerning the dependence
on the parameters s0, s1, it can be deduced from a careful analysis of the proof in [24] (see also
[8, Proposition 2.3]). As for the dependence of the constant C on the domain, it turns out that
C depends only on the radii coming from the outer and inner ball conditions for BR. Hence, it
is clear that C can be chosen in a uniform way with respect to R if we assume that R ≥ R0, for
some R0 > 0. �

From now on us,ε ∈Mr
s,ε(BR) will denote a least energy radial solution to Problem (1.2), i.e.

Is,ε(us,ε) = CMr(BR)(s, ε). Moreover, we set Ms,ε := |us,ε|∞. In the next result we characterize
the asymptotic behavior of the points where the blow-up occurs.

Lemma 4.3. Let s ∈ (0, 1), n > 2s. Let xε ∈ BR be such that |us,ε(xε)| = O(Ms,ε) as ε→ 0+.
Then

Mβs,ε
s,ε |xε| 6→ +∞,

where βs,ε := 2
n+2s −

ε
2s . In particular, we infer that |xε| → 0.

Proof. If s ∈
(

1
2 , 1
)

this is a consequence of the fractional Strauss inequality (1.3) (see [6, Propo-
sition 1]). Indeed, suppose that eventually xε 6= 0, otherwise there is nothing to prove. Then

(Mβs,ε
s,ε |xε|)

n−2s
2 = M

1− ε
2∗s−2

s,ε |xε|
n−2s

2

≤Ms,ε|xε|
n−2s

2 ≤ C|us,ε(xε)||xε|
n−2s

2 ≤ CKn,s‖us,ε‖2s ≤ C,
where we used that eventually Ms,ε ≥ 1, thanks to Lemma 4.1,(v). Unfortunately, as pointed
out in Sect. 1, the fractional Strauss inequality does not hold in general when s ∈

(
0, 1

2

]
. To

overcome this difficulty we use the following argument, which is valid for any s ∈ (0, 1).
Assume by contradiction that there exists a subsequence (still denoted by ε for simplicity),

such that M
βs,ε
s,ε |xε| → +∞ as ε→ 0+. Let us define the rescaled functions

ũs,ε(x) =
1

Ms,ε
us,ε

(
x

M
βs,ε
s,ε

)
, x ∈ Rn. (4.1)
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It is immediate to see that the functions ũs,ε satisfy{
(−∆)sũs,ε = |ũs,ε|2

∗
s−2−εũs,ε, in B

M
βs,ε
s,ε R

,

ũs,ε = 0 in Rn \B
M
βs,ε
s,ε R

.
(4.2)

Since by construction |ũs,ε|∞ ≤ 1 and M
βs,ε
s,ε |xε| → +∞, then from Proposition 4.2 we deduce

that

‖ũs,ε‖C0,s(Rn) ≤ C, (4.3)

for some C > 0 independent on ε.
Now we observe that, by definition of xε, there exists C1 ∈ (0, 1] such that for all sufficiently

small ε > 0 it holds

|ũs,ε(Mβs,ε
s,ε xε)| =

|us,ε(xε)|
Ms,ε

≥ C1 + o(ε). (4.4)

Using (4.3), (4.4) and the triangle inequality, for every τ > 0 and ξ ∈ Rn such that |ξ| ≤ 1, we
infer that

C1 − |ũλ(M
βs,ε
s,ε xε + τξ)|+ o(ε)

|τξ|s
≤ |ũs,ε(M

βs,ε
s,ε xε)− ũs,ε(M

βs,ε
s,ε xε + τξ)|

|τξ|s
≤ C.

In particular, we can find ε0 > 0, τ0 > 0 and C2 > 0 such that, for every ε ∈ (0, ε0), it holds

0 < C2 ≤ C1 − Cτs0 + o(ε) ≤ |ũs,ε(Mβs,ε
s,ε xε + τ0ξ)|, ∀|ξ| ≤ 1.

Therefore, since ũs,ε is radial and ξ is arbitrary we obtain that

0 < C2 ≤ |ũs,ε(x)|, ∀x ∈ B
M
βs,ε
s,ε |xε|+τ0

\B
M
βs,ε
s,ε |xε|−τ0

.

Now, since we are assuming by contradiction that M
βs,ε
s,ε |xε| → +∞ and since Ms,ε → +∞ we

get that

|us,ε|
2∗s−ε
2∗s−ε ≥M

−ε(n−2s
2s )

s,ε |us,ε|
2∗s−ε
2∗s−ε = |ũs,ε|

2∗s−ε
2∗s−ε

≥ C2[(Mβs,ε
s,ε |xε|+ τ0)n − (Mβs,ε

s,ε |xε| − τ0)n]

= 2nC2τ0(Mβs,ε
s,ε |xε|)n−1 + ψ(ε),

where ψ(ε) is such that ψ(ε)

(M
βs,ε
s,ε |xε|)n−1

→ 0, as ε→ 0+. From this we get that |us,ε|
2∗s−ε
2∗s−ε → +∞,

as ε→ 0+, which contradicts Lemma 4.1, (ii). The proof is complete. �

In the next result we study the asymptotic behavior of the rescaled solutions defined in (4.1).

Lemma 4.4. Let s ∈ (0, 1), n > 2s and let (ũs,ε)ε be the sequence of rescaled functions associated

to (us,ε)ε, defined in (4.1). Then we have that, up to a subsequence, ũs,ε → ũs in C0,α
loc (Rn) for

some α ∈ (0, s), as ε→ 0+, where ũs ∈ Ds(Rn) is a nontrivial weak solution to{
(−∆)sũs = |ũs|2

∗
s−2ũs in Rn,

ũs > 0.
(4.5)

Moreover, ũs is radial and |ũs|∞ = |ũs(0)|.

Proof. As seen in the proof of Lemma 4.3, the functions ũs,ε weakly satisfy (4.2) and by con-

struction it holds that |ũs,ε|∞ ≤ 1. Then, since M
βs,ε
s,ε R → +∞, thanks to Proposition 4.2 and

a standard argument, up to a subsequence, we have

ũs,ε → ũs in C0,α
loc (Rn),
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for some ũs ∈ C0,α
loc (Rn), α ∈ (0, s). We point out that ũs 6≡ 0. Indeed, let xε ∈ BR be such

that |us,ε(xε)| = Ms,ε. By construction we have |ũs,ε(M
βs,ε
s,ε xε)| = 1, and thanks to Lemma 4.3

we infer that the point M
βs,ε
s,ε xε stays in a compact subset of Rn. Therefore, from the C0,α

loc -
convergence of ũs,ε in Rn, we get that ũs is non trivial.

Now we show that ũs ∈ Ds(Rn). In fact, by Lemma 4.1,(i) and since Ms,ε → +∞, we infer
that

‖ũs,ε‖2s = M
−ε(n−2s

2s )
s,ε ‖us,ε‖2s ≤ ‖us,ε‖2s → 2S

n
2s
s , as ε→ 0+,

and in particular, up to a subsequence, ũs,ε ⇀ v for some v ∈ Ds(Rn). Then, since ũs,ε → ũs
in C0,α

loc (Rn), we get that v = ũs and we are done. In addition, applying Fatou’s Lemma we also
deduce that

‖ũs‖2s ≤ lim inf
ε→0+

‖ũs,ε‖2s ≤ 2S
n
2s
s . (4.6)

Let us prove now that ũs is a weak solution to (4.5). Indeed, for every ϕ ∈ C∞c (Rn), since
ũs,ε is a weak solution to (4.2) we have

(ũs,ε, ϕ)s =

∫
B
M
βs,ε
s,ε R

|ũs,ε|2
∗
s−2−εũs,εϕdx, (4.7)

where ε is small enough so that supp ϕ ⊂ B
M
βs,ε
s,ε R

. Since ũs,ε → ũs for a.e. x ∈ Rn, using the

well known relations (see e.g. [8])

(u, ϕ)s =

∫
Rn
u(−∆)sϕdx, ∀u ∈ Ds(Rn), ∀ϕ ∈ C∞c (Rn), (4.8)

and

|(−∆)sϕ(x)| ≤ C(ϕ)
1

(1 + |x|)n+2s
, ∀x ∈ Rn, ∀ϕ ∈ C∞c (Rn),

and thanks to Lebesgue’s dominated convergence theorem, passing to the limit as ε → 0+ in
(4.7) we infer that ∫

Rn
ũs(−∆)sϕdx =

∫
Rn
|ũs|2

∗
s−2ũsϕdx.

Now, since ũs ∈ Ds(Rn) we are allowed to use again (4.8), obtaining that ũs weakly satisfies

(−∆)sũs = |ũs|2
∗
s−2ũs in Rn. (4.9)

We prove now that ũs is of constant sign. To this end, assume by contradiction that ũs is sign-
changing. Then, using ũ±s ∈ Ds(Rn) as test functions in (4.9) and recalling that (ũ+

s , ũ
−
s )s < 0,

we get that

‖ũ±s ‖2s = (ũ+
s , ũ

−
s )s + |ũ±s |

2∗s
2∗s
< |ũ±s |

2∗s
2∗s
.

Hence, by the Sobolev inequality we infer that

Ss ≤
‖ũ±s ‖2s
|ũ±s |22∗s

< |ũ±s |
2∗s−2
2∗s

,

and thus 2S
n
2s
s < |ũ+

s |
2∗s
2∗s

+ |ũ−s |
2∗s
2∗s

= |ũs|
2∗s
2∗s

. Finally, using ũs as a test function in (4.9) we have

‖ũs‖2s = |ũs|
2∗s
2∗s

, and we obtain that 2S
n
2s
s < ‖ũs‖2s, which contradicts (4.6).

At the end we notice that, since ũs is a pointwise limit of radial functions, it is radial too.
Moreover, since ũs is of constant sign, assuming without loss of generality that ũs ≥ 0, we easily
deduce, by the fractional strong maximum principle and the fractional moving plane method (see
[5]), that ũs is also decreasing along the radii and thus ũs achieves its maximum at the origin.
The proof is complete. �
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A consequence of the above result is that least energy radial sign-changing solutions to (1.2)
cannot vanish at the origin.

Lemma 4.5. Let s ∈ (0, 1) and n > 2s. There exist ε > 0 and C > 0 such that for every
ε ∈ (0, ε) it holds

|us,ε(0)| ≥ C. (4.10)

Moreover, for every 0 < s0 < s1 ≤ 1, n > 2s1 estimate (4.10) holds with ε > 0, C > 0
independent on s ∈ [s0, s1).

Proof. We prove directly the second part of the Lemma. Assume by contradiction that there
exist 0 < s0 < s1 ≤ 1, three sequences εk → 0+, Ck → 0+, (sk)k ∈ [s0, s1), and a sequence of
nodal radial least energy solutions uk := usk,εk such that |uk(0)| < Ck. Up to a subsequence, we
can always assume that sk → σ, with σ ∈ [s0, s1].

Now, only two possibilities can occur: setting Mk := |uk|∞, either (Mk)k is a bounded
sequence or there exists a subsequence such that Mk → +∞.

Assume that (Mk)k is bounded. We first observe that (Mk)k is bounded away from zero,
otherwise we could find a subsequence such that Mk → 0, but this would contradict Lemma
4.1. Therefore, up to a subsequence we can assume that Mk → l, for some real number l > 0.
Adapting the arguments of Lemma 4.4 and using Lemma 3.3 we readily infer that, up to a
subsequence, uk ⇀ u in Xs0

0 (BR) and uk → u in C0,α(Rn), for some α ∈ (0, s0). Furthermore
we have u 6≡ 0 and it holds that∫

Rn
u(−∆)σϕdx =

∫
Rn
|u|2

∗
σ−2uϕdx ∀ϕ ∈ C∞c (BR).

Using that uk → u in L2(BR), thanks to the fractional Sobolev embedding and Fatou’s Lemma
we find

‖u‖2σ =

∫
Rn
|ξ|2σ|û(ξ)|2 dx ≤ lim inf

k→+∞

∫
Rn
|ξ|2sk |ûk(ξ)|2 dx = lim inf

k→+∞
‖u‖2s ≤

2σ

n
S

n
2σ
σ , (4.11)

where the last inequality is a consequence of the second part of Lemma 3.3, while the equalities
are due to the interpretation via the Fourier transform of the fractional Laplacian (see e.g. [13]).
From this discussion it follows that u is a non trivial weak solution of{

(−∆)σu = |u|2∗σ−2u in BR,

u = 0 in Rn \BR.
(4.12)

This readily contradicts the Pohozaev identity when σ = 1. If σ < 1, the fractional Pohozaev
identity only implies the nonexistence of constant-sign solutions to (4.12) (see [25]). In order to
obtain a contradiction we show that u is of constant sign. Indeed, arguing as in the proof of

Lemma 4.4, we have that any sign-changing solution u to (4.12) must satisfy ‖u‖2σ > 2σ
n S

n
2σ
σ .

Hence, thanks to (4.11) it follows that u is of constant sign and we get the desired contradiction.

Let us analyze the second case. Assume that Mk → +∞ and consider the rescaled functions

ũk(x) =
1

Mk
uk

(
x

Mβk
k

)
, x ∈ Rn,

where βk = 2
n−2sk

− εk
2sk

. Arguing as in Lemma 4.4, and taking into account Lemma 3.3, we

obtain that ũk → ũ in C0,α
loc (Rn), as k → +∞, for some α ∈ (0, s0), where the function ũ belongs
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to Dσ(Rn) ∩ C0,α
loc (Rn) \ {0}, it is radial, verifies |ũ|∞ = |ũ(0)| and weakly satisfies{

(−∆)σũ = |ũ|2∗σ−2ũ in Rn,
ũ > 0.

The only delicate point is when σ = 1. Indeed, in this case we cannot simply argue via Fatou’s
Lemma to show that ũ ∈ D1(Rn). Nevertheless, since

|ũ|2
∗
1

2∗1
≤ lim inf

k→+∞
|ũk|

2∗sk
2∗sk
≤ lim inf

k→+∞
S
−

2∗sk
2

sk ‖ũk‖
2∗sk
2

sk ≤ C,

we have that ũ ∈ L2∗1 (Rn). Therefore we can apply [18, Theorem 2, Corollary 3], obtaining that

ũ ∈ D1(Rn) and ‖ũ‖21 = |ũ|2
∗
1

2∗1
.

To conclude notice that, since we are assuming |ũk(0)| = 1
Mk
|uk(0)| → 0 and since we have

ũk → ũ in C0,α
loc (Rn), then it follows that |ũ(0)| = 0, which contradicts the non triviality of ũ.

The proof is then complete. �

In the next lemma we show, independently on the number of sign-changes, that Ms,ε is
achieved in the nodal component containing the origin and blows up faster than every other
extremal value achieved in the other components. Before stating the result we introduce some
notation. Assuming without loss of generality that us,ε(0) > 0, thanks to Lemma 4.5, for all
sufficiently small ε > 0 the following quantities are well defined:

r1
ε := min{r ∈ (0, R] ; us,ε(x) = 0, |x| = r},
M+
s,ε := max{us,ε(x) ; 0 ≤ |x| ≤ r1

ε},

M̂s,ε := max{|us,ε(x)| ; r1
ε ≤ |x| ≤ R}.

In other words, r1
ε is the first nodal radius, M+

s,ε is the maximum of the solution in the first nodal

component, while M̂s,ε is the absolute maximum achieved in the other nodal components.

Lemma 4.6. Let s ∈ (0, 1) and n > 2s. There exists ε′ > 0 such that for every ε ∈ (0, ε′) it
holds

Ms,ε = M+
s,ε.

Moreover, up to a subsequence, as ε→ 0+

(i) (M+
s,ε)

βs,εr1
ε → +∞, (ii)

M+
s,ε

M̂s,ε

→ +∞.

Proof. We begin by proving that eventually Ms,ε = M+
s,ε. Suppose by contradiction that there

exists a sequence ε → 0+ such that Ms,ε = M̂s,ε. By Lemma 4.3 we get that M
βs,ε
s,ε |xε| 6→ ∞,

where xε is any point such that |us,ε(xε)| = Ms,ε. Notice that by construction we have |xε| ≥ r1
ε

and thus M
βs,ε
s,ε r1

ε 6→ +∞ too.

As a consequence, up to a subsequence, M
βs,ε
s,ε r1

ε → l for some real number l ≥ 0. Let ũs,ε
be the rescaling defined in (4.1). Then, by Lemma 4.4 we infer that ũs,ε → ũs in C0,α

loc (Rn) for

some α ∈ (0, s), ũs ∈ C0,α
loc (Rn). On the other hand, let (yε) ⊂ Rn be such that |yε| = r1

ε . Up to

a further subsequence, M
βs,ε
s,ε yε → ŷ as ε → 0+, where |ŷ| = l. Then, thanks to Proposition 4.2

and since ũs,ε(M
βs,ε
s,ε yε) = 0, ũs,ε → ũs a.e., we get that

|ũs(ŷ)| ≤ |ũs,ε(ŷ)− ũs,ε(Mβs,ε
s,ε yε)|+ |ũs,ε(ŷ)− ũs(ŷ)| ≤ C|ŷ −Mβs,ε

s,ε yε|α + o(1) = o(1).

From this we deduce that ũ(ŷ) = 0, which is a contradiction, since by Lemma 4.4 it holds that
ũs > 0.
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The proof of (i) is identical and we omit it. Let us prove (ii). Let xε ∈ Rn be such that

|us,ε(xε)| = M̂s,ε. We claim that ũs,ε(M
βs,ε
s,ε xε)→ 0.

Indeed, if it is not the case, up to a subsequence, we find c ∈ (0, 1] such that ũs,ε(M
βs,ε
s,ε xε)→ c.

Thanks to Proposition 4.2 and arguing as in the proof of Lemma 4.3 we obtain that there exists
a positive constant C1 and a small positive number τ0, both independent on ε, such that for all
sufficiently small ε > 0

|ũs,ε| ≥ C1 > 0, ∀x ∈ B
M
βs,ε
s,ε |xε|+τ0

\B
M
βs,ε
s,ε |xε|−τ0

.

Since M
βs,ε
s,ε |xε| > M

βs,ε
s,ε r1

ε → +∞, because of (i), we obtain that |ũs,ε|
2∗s−ε
2∗s−ε → +∞, which

contradicts Lemma 4.1, (ii). The claim is thus proved.
Now, in order to conclude the proof of (ii), we notice that

1 =
|us,ε(xε)|
M̂s,ε

=
|ũs,ε(M

βs,ε
s,ε xε)|Ms,ε

M̂s,ε

,

and thanks to the previous claim we obtain the desired result.
�

An immediate consequence of the previous result is the following

Lemma 4.7. Let s ∈ (0, 1) and n > 2s. The function ũs given by Lemma 4.4 is a standard
bubble centered at the origin, i.e. ũs is of the form (2.2) with x0 = 0.

Proof. Since ũs is radial and satisfies (4.5), in order to prove the desired result we only need to
show that ũs realizes the infimum in the fractional Sobolev inequality, that is,

Ss =
‖ũs‖2s
|ũs|22∗s

.

Now, since ‖ũs‖2s = |ũs|
2∗s
2∗s

, by the Sobolev inequality, we readily infer that

Ss ≤
‖ũs‖2s
|ũs|22∗s

≤ |ũs|
2∗s−2
2∗s

,

and to conclude it suffices to show that |ũs|
2∗s
2∗s
≤ S

n
2s
s . To this end, we set

u1
s,ε(x) :=

{
us,ε(x) |x| ≤ r1

ε ,

0 otherwise,

and define

ũ1
ε(x) :=

1

M+
s,ε
u1
s,ε

(
x

(M+
s,ε)βs,ε

)
, x ∈ Rn.

Thanks to Lemma 4.6, for all sufficiently small ε > 0 we have Ms,ε = M+
s,ε. Then we readily

infer that |ũs,ε − ũ1
s,ε|∞ ≤

M̂s,ε

Ms,ε
which, again by Lemma 4.6, implies that ũs,ε − ũ1

s,ε → 0

uniformly in Rn, as ε → 0+. Then, by Fatou’s Lemma, taking into account that |ũ1
s,ε|

2∗s−ε
2∗s−ε =(

M+
s,ε

)−ε(n−2s
2s ) |u1

s,ε|
2∗s−ε
2∗s−ε, that eventually M+

s,ε ≥ 1, and Lemma 4.1, we get that

|ũs|
2∗s
2∗s
≤ lim inf

ε→0+
|ũ1
s,ε|

2∗s−ε
2∗s−ε ≤ lim inf

ε→0+
|u1
s,ε|

2∗s−ε
2∗s−ε ≤ lim inf

ε→0+
|u+
s,ε|

2∗s−ε
2∗s−ε = S

n
2s
s .

The proof is then complete.
�
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5. Characterization of the nodal set

In this section we study the nodal set of least energy radial sign-changing solutions to Problem
(1.2). We begin with a couple of known preliminary results, which provide, respectively, an upper
bound on the number of sign changes and a characterization of the nodal set.

Lemma 5.1. Let n > 2s, s ∈ (0, 1). Let us,ε be a least energy radial sign-changing solution to
Problem (1.2). There exists ε̃s ∈ (0, 2∗s − 2) such that, if ε ∈ (0, ε̃s), then us,ε = us,ε(r) changes
sign at most twice.

Let 0 < s0 < s1 ≤ 1 and n > 2s1. Then there exists ε̃ > 0, independent on s, such that the
same result holds for every s ∈ [s0, s1) and ε ∈ (0, ε̃).

Proof. It suffices to argue as in [8, Theorem 5.1] first, and then as in [8, Theorem 5.2], taking
into account Lemma 3.3 and Lemma 4.1. In particular ε̂ > 0 is given by Lemma 3.3. �

Lemma 5.2. Let s ∈ (0, 1) and n > 2s. There exists ε̌s > 0 such that for all ε ∈ (0, ε̌s) any
least energy radial sign-changing solution us,ε to (1.2) vanishes only at the nodes.

Moreover, let 0 < s0 < s1 ≤ 1, n > 2s1. Then the above result hold true for every s ∈ [s0, s1)
and ε ∈ (0, ε̌), for some ε̌ > 0 independent on s.

Proof. It suffices to take ε̌s := min{εs, ε̃s}, where εs, ε̃s are given by Lemma 4.5 and Lemma 5.1,
respectively. Then, the results follows immediately by adapting the arguments of [8, Theorem
1.2]. �

In the next Lemma we prove the upper semi-continuity of the map s→ CMr(BR)(s, ε).

Lemma 5.3. Let 0 < s0 < s1 ≤ 1, n > 2s1 and ε ∈ (0, ε̌), where ε̌ is given by in Lemma 5.2.
Then for every σ ∈ [s0, s1] we have

lim sup
s→σ

CMr(BR)(s, ε) ≤ CMr(BR)(σ, ε).

Proof. Let us fix s0, s1, n and ε as in the statement. Let (sk)k ⊂ [s0, s1) be a sequence such
that sk → σ ∈ [s0, s1], and consider a radial solution uσ,ε of (1.2) which realizes CMr(BR)(σ, ε).
Assume that σ < 1. We aim to construct a sequence of almost minimizers of CMr (sk, ε). We
proceed in three different steps. We point out that when σ = 1 the proof is identical, taking
into account the conventions (−∆)1u = −∆u, ‖u‖21 = |∇u|22, and that (u+, u−)1 ≡ 0 for all
u ∈ H1

0 (BR).

Step 1. There exists a sequence (ϕj)j ⊂ C∞c (BR) ∩Mr
σ,ε(BR) such that

(1) supp(ϕ±j ) ⊂ supp (u±σ,ε),

(2) ϕj → uσ,ε in Xσ
0 (BR), as j → +∞,

(3) Iσ,ε(ϕj)→ Iσ,ε(uσ,ε), as j → +∞.

We first observe that, thanks to Lemma 5.2, the boundaries of supp (u±σ,ε) consist in a finite
union of spheres. Therefore, adapting known density results (see e.g. [20]) we find two sequences
of radial functions (ϕ̃±j )j ⊂ C∞c (BR) such that ϕ̃±j ≥ 0, supp(ϕ̃±j ) ⊂ supp (u±σ,ε) for all j,

and ϕ̃±j → u±σ,ε in Xσ
0 (BR). Observe that, from the continuity of the scalar product, we have

(ϕ̃+
j , ϕ̃

−
j )σ → (u+

σ,ε, u
−
σ,ε)σ.
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Now we recall that it is always possible to find αj > 0, βj > 0 such that αjϕ̃
+
j − βjϕ̃

−
j ∈

Mr
σ,ε(BR) (see e.g. [8, Remark 3.4]), which is equivalent to solve the following

α
2∗σ−2−ε
j |ϕ̃+

j |
2∗σ−ε
2∗σ−ε +

βj
αj

(ϕ̃+
j , ϕ̃

−
j )σ = ‖ϕ̃+

j ‖
2
σ,

β
2∗σ−2−ε
j |ϕ̃−j |

2∗σ−ε
2∗σ−ε +

αj
βj

(ϕ̃+
j , ϕ̃

−
j )σ = ‖ϕ̃−j ‖

2
σ.

(5.1)

We claim that, eventually, 0 < α < αj < α and 0 < β < βj < β for some positive constants

α, α, β, β. Indeed, since ϕ̃±j → u±σ,ε, and u±σ,ε are non trivial, then the quantities |ϕ̃±j |
2∗σ−ε
2∗σ−ε, ‖ϕ̃

±
j ‖2σ,

(ϕ̃+
j , ϕ̃

−
j )σ are uniformly bounded and uniformly away from zero. Moreover, by the definition of

the scalar product we always have (ϕ̃+
j , ϕ̃

−
j )σ < 0. Then, treating (5.1) as an algebraic system

in αj , βj having as coefficients |ϕ̃±j |
2∗σ−ε
2∗σ−ε, ‖ϕ̃

±
j ‖2σ, (ϕ̃+

j , ϕ̃
−
j )σ, it is easy to verify that it cannot

happen that, up to a sequence, αj → +∞ or αj → 0+, and the same holds for βj . The claim is
thus proved.

Let us consider the sequence defined by ϕj := αjϕ̃
+
j −βjϕ̃

−
j . By construction (ϕj)j ⊂ C∞c (BR),

and in view of (5.1) we have (ϕj)j ⊂Mr
σ,ε(BR). We claim that ϕj → uσ,ε in Xσ

0 (BR).
Indeed, observe that, since uσ,ε ∈Mr

σ,ε(BR), then

‖u±σ,ε‖2σ = |u±σ,ε|
2∗σ−ε
2∗σ−ε + (u+

σ,ε, u
−
σ,ε)σ,

then, up to a sequence, setting α := limj→+∞ αj , β := limj→+∞ βj and passing to the limit in
(5.1) we infer that

α(α2∗σ−2−ε − 1)|u+
σ,ε|

2∗σ−ε
2∗σ−ε = −(β − α)(u+

σ,ε, u
−
σ,ε)σ,

β(β2∗σ−2−ε − 1)|u−σ,ε|
2∗σ−ε
2∗σ−ε = −α(α2∗σ−2−ε − 1)|u+

σ,ε|
2∗σ−ε
2∗σ−ε.

Recalling that (u+
σ,ε, u

−
σ,ε)σ < 0 it is immediate to see that both 0 < α < 1 and α > 1 lead to a

contradiction. Hence α = 1, and as a consequence we obtain that β = 1. Finally, from this and
since

‖uσ,ε − ϕj‖σ ≤ |αj − 1|‖ϕ̃+
j ‖σ + |βj − 1|‖ϕ̃−j ‖σ + ‖ϕ̃+

j − u
+
σ,ε‖σ + ‖ϕ̃−j − u

−
σ,ε‖σ,

we obtain that ϕj → uσ,ε in Xσ
0 (BR), as j → +∞. At the end, the last point of Step 1 is a

straightforward consequence of the strong convergence of ϕj to uσ,ε, together with the fractional
Sobolev embedding. The proof of Step 1 is complete.

Step 2. Let (ϕj)j ∈ C∞c (BR) ∩ Mr
σ,ε(BR) be the sequence given by Step 1. Let (sk)k be a

sequence such that sk → σ, as k → +∞. For every j fixed, there exists a sequence (ϕj,k)k ⊂
C∞c (BR) such that ϕj,k ∈Mr

sk,ε
(BR) for every k, and

‖ϕj,k‖sk → ‖ϕj‖σ, Isk,ε(ϕj,k)→ Iσ,ε(ϕj), as k → +∞.

Let us fix j and let ϕj be as in the statement. From (4.8) and [17, Lemma 2.4], as k → +∞ we
have ‖ϕ±j ‖sk → ‖ϕ

±
j ‖σ and ‖ϕj‖sk → ‖ϕj‖σ. This easily implies that (ϕ+

j , ϕ
−
j )sk → (ϕ+

j , ϕ
−
j )σ,

while by a standard computation we get that |ϕ±j |
2∗sk
−ε

2∗sk
−ε → |ϕ

±
j |

2∗σ−ε
2∗σ−ε.

Let αk = α(j, k) > 0, βk = β(j, k) > 0 be such that αkϕ
+
j − βkϕ

−
j ∈ Mr

sk,ε
(BR) and define

ϕj,k := αkϕ
+
j − βkϕ

−
j . Arguing as in Step 1 we get that, up to a subsequence, αk, βk → 1 as

k → +∞. This easily implies that ‖ϕj,k‖sk → ‖ϕj‖σ and |ϕj,k|
2∗sk
−ε

2∗sk
−ε → |ϕj |

2∗σ−ε
2∗σ−ε, as k → +∞.

The proof of step 2 is complete.
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Step 3. Conclusion.

Let (sk)k ⊂ (0, 1) be a sequence such that sk → σ. Let us fix a small number τ > 0. Thanks
to Step 1, there exists a function ϕτ ∈ C∞c (BR) ∩Mr

σ,ε(BR) such that

|Iσ,ε(uσ,ε)− Iσ,ε(ϕτ )| < τ

2
.

On the other hand, thanks to Step 2 there exist k̂ = k̂(τ) > 0 and a sequence of functions (ϕk)k
such that ϕk ∈ C∞c (BR) ∩Mr

sk,ε
(BR) and

|Isk,ε(ϕk)− Iσ,ε(ϕτ )| < τ

2
, ∀k ≥ k̂(τ).

As a consequence, we get that

|Isk,ε(ϕk)− Iσ,ε(uσ,ε)| < τ, ∀k ≥ k̂(τ).

Therefore, since uσ,ε is a minimizer and ϕk ∈Mr
sk,ε

(BR), we infer that for all k ≥ k̂(τ)

CMr(BR)(sk, ε) ≤ Isk,ε(ϕk) ≤ CMr(BR)(σ, ε) + τ.

Taking the lim sup as k → +∞ we get that

lim sup
k→+∞

CMr(BR)(sk, ε) ≤ CMr(BR)(σ, ε) + τ,

and since τ > 0 is arbitrary we obtain the desired result. The proof is then complete. �

In the next result we prove a uniform bound with respect to s for the L∞-norm of the solutions.

Lemma 5.4. Let 0 < s0 < s1 ≤ 1, n > 2s1 and ε ∈ (0, ε̂), where ε̂ is given by Lemma 3.3. Then
there exists C > 0, depending on ε but not on s, such that

C−1 ≤ sup
s∈[s0,s1)

|us,ε|∞ ≤ C,

for every least energy radial sign-changing solution us,ε ∈Mr
s,ε(BR) of (2.4).

Proof. Let us fix s0, s1, n and ε as in the statement. The first inequality is trivial. As for the
second one, it can be proved in two different ways. Indeed, from [21, Theorem 3.2] there exists
M ∈ C(R+) such that

|us,ε|∞ ≤M(|us,ε|2∗s ).

A careful analysis of the proof shows that the function M can be chosen in such a way that M
depends only on n,R, s0, s1 and ε, but not on s. Since us,ε ∈Mr

s,ε(BR) ⊂ Ns,ε(BR) and us,ε is
a least energy sign-changing solution to (1.2), we infer that

CMr(BR)(s, ε) =
2∗s − 2− ε
2(2∗s − ε)

‖us,ε‖2s. (5.2)

Thus, thanks to the fractional Sobolev embedding and Lemma 3.3 we deduce that |us,ε|2∗s ≤ C1,
for some constant C1 > 0 independent on s. Similarly, using that 2CN (BR)(s, ε) ≤ CMr(BR)(s, ε)
and Lemma 3.2 we obtain that |us,ε|2∗s ≥ C0 > 0, where C0 does not depend on s, and the
desired result easily follows.

Alternatively, we can argue as follows: fix s0, s1, n and ε as in the statement. Since us,ε
is a least energy sign-changing solution to (1.2) with us,ε ∈ Mr

s,ε(BR) ⊂ Ns,ε(BR), and since

Lemma 3.3 holds, by (5.2) we get that the quantity |us,ε|
2∗s−ε
2∗s−ε is uniformly bounded with respect

to s ∈ [s0, s1). Now, suppose by contradiction that there exists a sequence (sk)k ⊂ [s0, s1)
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and a sequence (usk,ε)k such that δsk := |usk,ε|∞ → +∞, as k → +∞. Up to a subsequence,
sk → σ ∈ [s0, s1], as k → +∞. Let us consider the rescaled functions

vk(x) :=
1

δsk
usk,ε

(
x

δ
βsk
sk

)
, x ∈ Rn

where βsk := 2
n−2sk

. We recall that

‖vk‖2sk = ‖usk,ε‖2sk , |vk|
2∗sk
−ε

2∗sk
−ε = (δsk)

−ε
(
n−2sk
2sk

)
|usk,ε|

2∗sk
−ε

2∗sk
−ε,

and vk weakly satisfies (−∆)skvk = 1
δεsk
|vk|2

∗
s−2−εvk in B

δ
βsk
s

,

vk = 0 in B
δ
βsk
s

.
(5.3)

Arguing exactly as in Lemma 4.3 we see that vk → v in C0,α
loc (Rn), for some α ∈ (0, s0), where

v 6≡ 0. On the other hand, by Fatou’s Lemma we have

|v|2
∗
σ−ε

2∗σ−ε ≤ lim inf
k→+∞

|vk|
2∗sk
−ε

2∗sk
−ε = lim inf

k→+∞
(δsk)

−ε
(
n−2sk
2sk

)
|usk,ε|

2∗sk
−ε

2∗sk
−ε = 0,

because δsk → +∞ and |usk,ε|
2∗sk
−ε

2∗sk
−ε is bounded. Hence v ≡ 0 and we get a contradiction. The

proof is complete. �

In the next result we study the asymptotic behavior of the solutions as s goes to some limit
value.

Lemma 5.5. Let 0 < s0 < s1 ≤ 1, n > 2s1 and ε ∈ (0, ε̂), where ε̂ is given by Lemma 3.3. Let
sk → σ, where σ ∈ [s0, s1], and let (usk,ε)k be a sequence of least energy nodal radial solution to
(1.2). Then

usk,ε → uσ,ε in C0,s0
loc (Rn),

where uσ,ε ∈Mr
σ,ε(BR) weakly satisfies{

(−∆)suσ,ε = |uσ,ε|2
∗
σ−2−εuσ,ε in BR,

uσ,ε = 0 in Rn \BR.
In addition, it holds that

lim
sk→σ

Isk,ε(usk,ε) = Iσ,ε(uσ,ε).

Proof. It suffices to argue as in [8, Theorem 6.7], taking into account Lemma 3.3 and Lemma
5.4. �

As a corollary of the previous results we obtain the continuity of the map s 7→ CMr(BR)(s, ε).

Proposition 5.6. Let 0 < s0 < s1 ≤ 1, n > 2s1 and let ε ∈ (0, ε̌), where ε̌ is given by Lemma
5.2. Let (sk)k ⊂ [s0, s1), σ ∈ [s0, s1], (usk,ε)k and uσ,ε be as is Lemma 5.5. Then uσ,ε is a least
energy solution, that is, Iσ,ε(uσ,ε) = CMr(BR)(σ, ε).

In particular, for any ε ∈ (0, ε̌) the map from [s0, s1] to R, defined by s 7→ CMr(BR)(s, ε), is
continuous.

Proof. Fixing s0, s1, n, ε as in the statement, applying both Lemma 5.3 and Lemma 5.5, since
0 < ε̌ < ε̂, we infer that

CMr(BR)(σ, ε) ≤ Iσ,ε(uσ,ε) = lim
s→σ

Is,ε(us,ε) = lim
s→σ

CMr(BR)(s, ε) ≤ CMr(BR)(σ, ε),

which implies both stated results. �



SIGN-CHANGING BUBBLE-TOWER SOLUTIONS 22

The following Lemma grants that every least energy nodal radial solution in a ball changes
sign exactly once, when s is close to one.

Lemma 5.7. Let s0 ∈ (0, 1) and n ≥ 3. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), there
exists s̄ = s̄(ε) ∈ (0, 1) such that for any s ∈ (s̄, 1) any least energy radial sign-changing solution
us,ε to (1.2) changes sign exactly once.

Proof. We begin by recalling that, in the local case, when n ≥ 3 there exists ε1 > 0 such that,
for every ε ∈ (0, ε1), least energy radial sing-changing solutions to{

−∆u = |u|2∗1−2−εu in BR,

u = 0 in Rn \BR,
(5.4)

change sign exactly once (see e.g. [3]). Now, let us fix s0 ∈ (0, 1) and define ε0 := min{ε̌, ε1},
where ε̌ is given by Lemma 5.2 for s0 and s1 = 1. Let us fix ε ∈ (0, ε0) and assume by
contradiction that there exist (sk)k ⊂ [s0, 1) such that sk → 1− and a sequence (usk,ε)k of least
energy radial sign-changing solutions in BR which change sign exactly twice for any k (these
functions change sign at most twice in view of Lemma 5.2). Then, by Proposition 5.6 we have
that usk,ε → u1,ε in C0,α(Rn), for some α ∈ (0, s0), and that u1,ε is a least energy sing-changing
solution to (5.4). In particular, u1,ε changes sign exactly once, in view of our choice of ε.

On the other hand, arguing as in the proof of [8, Theorem 1.3] we infer that the number of
sign changes is preserved when passing to the limit as s→ 1−, and thus u1,ε has to change sign
twice. This gives a contradiction and concludes the proof. �

Finally, we can state and prove Theorem 5.8. We first recall that, when speaking of a L2(BR)-
continuous family A = {vs,ε}s∈[s0,1) of least energy nodal radial solutions to Problem (1.2), we

mean a map Φ : [s0, 1) → L2(BR) such that Φ is continuous and Φ(s) = vs,ε ∈ Mr
s,ε(BR) is a

least energy radial sign-changing solution to Problem (1.2) for any s ∈ [s0, 1).

Theorem 5.8. Let s0 ∈ (0, 1) and n ≥ 3. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), if
there exists a L2(BR)-continuous family A = {vs,ε}s∈[s0,1) of least energy nodal radial solutions
to Problem (1.2), then every element of the family changes sign exactly once.

Proof. Let us fix s0 ∈ (0, 1), and let ε0 > 0 be the number given by Lemma 5.7. Let us fix
ε ∈ (0, ε0) and observe that, in view of Lemma 5.7, there exists s̄ ∈ (0, 1) such that for any
s ∈ (s̄, 1), every least energy radial sign-changing solution to (1.2) changes sign only once. Let
us fix s1 ∈ (s̄, 1), let A be as in the statement, and set

Sε := {s ∈ [s0, s1] ; vs,ε changes sign exactly once}.

In view of the previous disccusion Sε is not empty. We claim that Sε is closed.
Indeed, let (sk)k ⊂ Sε be a sequence such that sk → σ, for some σ ∈ [s0, s1], and consider

the associated sequence (vsk,ε)k ⊂ A. By Lemma 5.5 and thanks to Proposition 5.6, up to a

subsequence, we have vsk,ε → uε in C0,α(BR) for some α ∈ (0, s0), where uε ∈ Xσ
0 (BR) is a

least energy nodal radial solution of (1.2) with s = σ. In particular, vsk,ε → uε in L2(BR) and,
since we are assuming that A is L2(BR)-continuous, it holds that uε = vσ,ε ∈ A. Now, taking

into account Lemma 5.2, since vsk,ε → uε in C0,α(BR) and vsk,ε changes sign once for all k, we
infer that the only possibility is that vσ,ε changes sign only once. Hence σ ∈ Sε, and the claim
is proved.

We claim that Ss0,ε is open. To prove the claim we show that the complementary set Sc
ε is

closed. By definition and thanks to Lemma 5.2 we have

Sc
ε = {s ∈ [s0, s1] ; vs,ε changes sign exactly twice}.
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Let (sk)k ⊂ Sc
ε be such that sk → σ for some σ ∈ [s0, s1], as k → +∞. Arguing as before, up to

a subsequence, we get that vsk,ε → vσ,ε in C0,α(BR), for α ∈ (0, s0).
Let us denote by 0 < r′k < r′′k < R the nodes of vsk,ε(r) = vsk,ε(x), |x| = r. We observe that

r′k 6→ 0. Indeed, if r′k → 0, as k → +∞, as a consequence of the C0,α-convergence we infer that
vσ,ε(0) = 0. But this contradicts Lemma 5.2, and we are done.

Secondly, we claim that r′k − r′′k 6→ 0. Indeed, assume by contradiction that r′k − r′′k → 0.
Thanks to Lemma 5.4 we get that

|v−sk,ε|
2∗sk
−ε

2∗sk
−ε =

∫
Br′′

k
\Br′

k

|v−sk,ε|
2∗sk
−ε dx

≤ C|vsk,ε|
2∗sk
−ε

∞

∫ r′′k

r′k

ρn−1 dρ ≤ C ((r′′k)n − (r′k)n)→ 0.

(5.5)

On the other hand, since vsk,ε ∈Mr
sk,ε

(BR) and thanks to Lemma 3.2 we find a constant C > 0
independent on k such that

CεSsk ≤ Ssk,ε ≤
‖v−sk,ε‖

2
sk

|v−sk,ε|22∗sk−ε
< |vsk,ε|

2∗sk
−2−ε

2∗sk
−ε . (5.6)

Hence, |vsk,ε|
2∗sk
−2−ε

2∗sk
−ε is bounded away from zero and this contradicts (5.5).

It remains to prove that r′′k 6→ R. To this end, we first point out that, thanks [24, Theorem
1.2], it holds ∥∥∥vsk,ε

δsk

∥∥∥
C0,α(BR)

≤ C|vsk,ε|
2∗sk
−1−ε

∞ ,

where 0 < α < min{s, 1− s},

δs(x) := d(x, ∂BR))s = (R− |x|)s and
vsk,ε
δsk

(R) := lim
τ→0

vsk,ε(R− τ)

δsk(R− τ)
.

A careful analysis of the proof shows that the constant C > 0 is uniform for s ∈ [s0, s1] because
s1 is strictly less than one. Moreover we can fix α by choosing 0 < α < min{s0, 1− s1}.

Assume now by contradiction that R − r′′k → 0 as k → +∞. Using the previous estimate,
Lemma 5.4 and since vsk,ε(r

′′
k) = 0, we have∣∣∣vsk,ε

δsk
(R)
∣∣∣ =

∣∣∣∣vsk,εδsk
(R)− vsk,ε(r

′′
k)

δsk(r′′k)

∣∣∣∣ ≤ C|R− r′′k |α → 0. (5.7)

On the other hand, applying the fractional Pohozaev identity (see [25]) to (1.2) we get that

2n− (n− 2sk)(2∗sk − ε)
2∗sk − ε

|vsk,ε|
2∗sk
−ε

2∗sk
−ε = Γ(1 + sk)2R|∂BR|

∣∣∣usk,ε
δsk

(R)
∣∣∣2

which, together with (5.7), implies that |vsk,ε|
2∗sk
−ε

2∗sk
−ε → 0 as sk → σ, thus contradicting (5.6).

From this discussion it follows that r′k and r′′k definitely stay in the interior of the domain,
away from the origin and their distance does not tend to zero. Thanks to the C0,α-convergence
and by Lemma 5.2 we infer that also vσ,ε changes sign exactly twice. Hence σ ∈ SC

ε , and thus
SC
ε is a closed set. At the end, Sε is not empty and both open and closed, thus it coincides

with the whole interval [s0, s1]. Since by construction s1 > s̄ we conclude that every element of
A changes sign exactly once. The proof is complete. �
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