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We consider the spatially homogeneous Boltzmann equation for ballistic annihilation
in dimension d > 2. Such model describes a system of ballistic hard spheres that,
at the moment of interaction, either annihilate with probability « € (0, 1) or collide
elastically with probability 1—a. Such equation is highly dissipative in the sense that
all observables, hence solutions, vanish as time progresses. Following a contribution,
by two of the authors, considering well-posedness of the steady self-similar profile
in the regime of small annihilation rate a < 1, we prove here that such self-similar
profile is the intermediate asymptotic attractor to the annihilation dynamics with
explicit universal algebraic rate. This settles the issue about universality of the
annihilation rate for this model brought in the applied literature.

© 2019 Elsevier Masson SAS. All rights reserved.

RESUME

Nous considérons une équation de Boltzmann homogéne pour un modele d’annihi-
lation balistique en dimension d > 2. Ce modele décrit un systeme de spheres dures
qui, lors d’une interaction, ont une probabilité a € (0,1) de s’annihiler (et dispa-
raitre ainsi du systéme) et une probabilité 1—a« de subir une collision élastique. Cette
équation est fortement dissipative puisque tous les observables physiques tendent
vers zéro en temps long. Continuant la recherche de deux des auteurs concernant
I’existence et 'unicité d’un profil auto-similaire stationnaire dans un régime de faible
annihilation o < 1, nous montrons ici qu'un tel profil attire en temps long les
solutions de I’équation d’annihilation avec un taux de convergence explicite et algé-
brique. Ceci démontre le caractére universel du taux d’annihilation pour ce modeéle
conjecturé dans la littérature physique.
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1. Introduction

1.1. Physical motivation and setting of the problem

In recent years, the physics community proposed several kinetic models in order to test the relevance
of non-equilibrium statistical mechanics in systems of reacting particles. Such systems have important ap-
plications in different branches of physics and engineering such as surface growth (semiconductors) [23]
and coarsening processes (dynamics of traffic). A common feature of these models is that the dissipative
nature of the interactions results in the loss of collision invariants and leads to tremendous difficulties for
the derivation of suitable hydrodynamic models.

A paradigmatic example of such dissipative models is the one of granular gas dynamics which corresponds
to a system of d-dimensional hard-spheres undergoing inelastic collisions. For such a model, the number of
particles and the momentum are conserved, but the kinetic energy is dissipated at each collision. At the
kinetic level, the long-time behavior of granular gases is relatively well-understood, at least, in a spatially
homogeneous setting: in absence of external forcing, the kinetic energy is continuously decreasing and the
solution converges to a singular state described by a Dirac mass, that is, to a complete rest. Two main
questions then arise:

— First, what is the rate of the convergence to zero of the kinetic energy, i.e. how fast a granular gas is
cooling down? The precise rate of decay of the kinetic energy is known as Haff’s law and it has been
rigorously proven in [25] for inelastic hard-spheres with constant inelasticity and, more generally, in [5]
for the case of viscoelastic particles.

— Second, can we make a more precise description of the long-time behavior of the gas as it goes towards
the singular limit? More precisely, due to the diffusive nature of collisions, one expects some type of
intermediate self-similarity, i.e. a non Gaussian homogeneous cooling state. The existence and unique-
ness of such self-similar state has been rigorously obtained in [25,26], where it has been proven that in
the quasi-elastic regime it is the attractor of any properly rescaled solution, see [26]. The case of vis-
coelastic particles is intrinsically different to that of constant restitution and always produces Gaussian
intermediate asymptotic states, see [5].

The present contribution aims to answer similar questions for another example of dissipative systems,
known as probabilistic ballistic annihilation. Such model has been introduced in the 90’s by [10,14,16,22,30,
33] and describes a system of d-dimensional elastic hard spheres that interact in the following way: particles
move freely (ballistically) between collisions and, whenever two particles meet they either annihilate with
probability a € [0, 1] (both interacting particles vanish), or they undergo an elastic collision with probability
1 — «. Interestingly, as the annihilation probability « ranges from zero to one, the probabilistic ballistic
annihilation model will move from describing the dynamic of elastic hard spheres to describing the dynamic
of pure annihilation, which are substantially different. Ballistic annihilation is considered to be a very
accurate model in the whole range « € [0, 1] (including the pure annihilation case & = 1) in dimension other
than one. This conclusion has been reached through extensive numerical simulations in the aforementioned
references. In dimension one, the kinetic approach has been shown to mistakenly predict the correct dynamic
relaxation for the pure annihilation regime in the case of finite number of point masses (discrete velocities)
for initial data due to strong cumulative correlations. We will therefore in the sequel always consider the
case of d-dimensional hard spheres with d > 2.

Contrary to granular gases, ballistic annihilation dissipates the density, thus, it does not have natural
collision invariants. As a consequence, the solution to the associated kinetic equation converges to 0 as time
goes to infinity. We aim to answer the two questions raised before:
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(Q1) What is the precise rate of decay towards zero of the macroscopic quantities as density and kinetic
energy?

(Q2) Is the long-time behavior of the solution described by some suitable self-similar profile which would
attract any solution to the associated equation after proper rescaling?

We will focus on these questions in the regime when « is relatively small, but still order one. This
regime is interpreted as a system of elastic particles colliding many times before annihilating, that is,
particles undergoing significant diffusion due to collisions before annihilating. This is precisely the natural
regime to search for self-similarity. We prove that the model possesses an universal attractor related to the
self-similarity equation, which leads to universal algebraic relaxation rates that can be explicitly computed.
Exact rates are quite expensive to compute as they demand the knowledge of the attractor, which requires
solving the highly nonlinear integro-differential equation (1.5). For this reason, the rate found in the limit
a — 0 is of key relevance. In reference [33] was conjectured that, in particular, the mass of the solution
f(t,-) to the kinetic equation behaved in the long run as

/f(t, v)du ~ A/ G t — o0
Re

and later in [15] numerical evidence was given supporting this fact. A particular application of the analysis
performed in this work is precisely the rigorous proof of such statement (see Theorem 1.4 and comments
below). Interestingly, the pure annihilation case & = 1 does not enjoy attractors, and long time relaxation
rates depend on the initial configuration as proven in the aforementioned references (for both continuous
and discrete velocity initial data). Furthermore, it is unclear what happens with the system’s dynamics
in the regime where « is relatively large, however, reference [15] shows numerical evidence that seems to
indicate existence of attractors as long as a < 1.

Before discussing in details the results and answers to the above queries, let us precisely describe the
model we are dealing with.

1.2. The equation at stake

In a spatially homogeneous framework, the density of particles f(¢,v) with velocity v € R? (d > 2) at
time ¢ > 0, satisfies the following

{atf(t7v) :Ba(f’f)(tav) = (1—a)Q(f,f)(t,v)—aQ_(f,f)(t,v) t>0 (11)

f(07 U) = fO (U)
where Q is the quadratic Boltzmann collision operator defined by
Qo0 = [ o-vl@ s~ o) dv.do
R xSd—1

where we have used the shorthands g = g(v), ¢’ = g(v'), f« = f(vi) and f. = f(v.) with post-collisional
velocities v/ and v), parametrized by

8 A A S

Here above, do denotes the normalized Lebesgue measure over S4~1, i.e. defl do =1.

Please cite this article in press as: R.J. Alonso et al., Convergence to self-similarity for ballistic annihilation dynamics, J. Math.
Pures Appl. (2019), https://doi.org/10.1016/j.matpur.2019.09.008




MATPUR:3149

4 R.J. Alonso et al. / J. Math. Pures Appl. sse (ssee) eee—see

The above collision operator Q(f, f) splits as Q(f, f) = Q+(f, f) — Q_(f, f) where the gain part Q is
given by

Q. (f. /)w) = / v — vl fLf dv, do,

RdxSd—1

while the loss part Q_ is defined as

Q_(f, HHilw) = f(v)Es(v), with Yi(v) = /|v — Uy frdus. (1.3)

R4

The Cauchy theory for the above equation has been investigated in a previous contribution [7], and we
refer to [7] for related questions.

In all the present paper, we shall assume that fy € LI(R?) is a nonnegative initial datum and that
f(t,) € Li(R?) is the associated solution to (1.1) for a given parameter o € (0,1). As explained, such
solution f(t,-) is expected to converge to zero as t — oo and, before reaching such degenerate state, the
solution is expected to become close to a self-similar solution of the form

fu(t,0) = A(t) a(B(t)v), (1.4)

for some scaling functions A(t) and 8(t) and for a given self-similar profile ¢, (depending clearly on the
choice of the parameter «). One can then show, see [30,33,7], that such a self-similar profile is a solution to
the following stationary Boltzmann equation

Aatbo(€) + Ba & - Vetha(€) = (1 — @) Q(Va, Ya)(€) — @Q_ (Ya, ¥a)(E), (15)
where
_ @ d+2 _ d|£|2
Ao = 2]1{[ (f]Rd Vo (&) dé  fpa Valba) |E]? df*) Q— (Ya,va)(§)dE, (1.6)
and

a 1 €1% )
Ba = ——/ ( — Q* ¢m¢a 5 dg 17

2 ) \Ten@rie ~ Tvate)epas ) &0 vo)© .
Existence of solutions to (1.5) has been proven in [7] for any « smaller than some explicit threshold value.
Moreover, borrowing techniques already used for similar questions in the study of granular gases [26],
uniqueness of the self-similar profile has been established in [8] for a smaller range of parameters a. The
precise result is given in the following theorem.

Theorem 1.1. (Existence and uniqueness of the self-similar profile [7,8]) There is some explicit 0 < ag < 1
such that for any « € (0,p), for any given o0 > 0 and E > 0, there exists a unique solution v, to (1.5)
with mass o, energy E and zero momentum, i.e.

1 0
/ va© | € |ac=] 0
e i E

Moreover, ¥, is smooth and radially symmetric.
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By a simple scaling argument, there is no loss of generality in considering the special case in which o =1
and F = d/2 and, from now on, we will denote by 1), the unique solution to (1.5) that satisfies

1
/ Yal€ =10 (1.8)
i a
2
We denote by M(&) the Maxwellian distribution with same first moments as 1, i.e.
M(E) =2 exp(—[¢]*),  VEeR (1.9)

1.8. Self similar variable

Let us consider a solution f = f(t,v) to (1.1) for some nonnegative initial datum fy € Li(R%). Let us
introduce the following ¥ (7, §) through

£t 0) = ny (T ()"0 <r<t>, %) (1.10)

for some suitable scaling function 7 : R* — R+ and with

() = / ft oo, np(tup(t) = / F(t, v)vdv,
Rd R4

(1.11)
dngOT/(0) = [ 10— us@Pde, 130
]Rd,
Notice that the choice of the scaling enforces the following
1
/z/J 7,¢) d¢=10 vr >0, (1.12)
\&P 2

which ensures the self-similar function ¢ (7) to share the same mass, momentum and energy of the steady
profile ¥,. With such a scaling, straightforward computations, see Section 2.2 for details, combined with
the uniqueness of the solutions to both Cauchy problems (1.1) and (1.14) yield the following proposition.

Proposition 1.2. Let fy € Li(R?) be a nonnegative initial datum with positive mass ng, > 0 and temper-
ature Ty, > 0. Let f(t,v) denote the unique solution to (1.1) associated to the initial datum fo. Then,
min (ng(t), T¢(t)) > 0 for all t > 0. In addition, introducing the scaling function

T(t) = ﬁ/nf(s) Ty (s)ds, vt >0, (1.13)
0

and defining (7,§) by (1.10), it holds that ¥(T,&) is the unique solution to

0-(7,8) + (Ay(1)=dBy (7)) ¥(7,8) + By (7)dive ( (€ — vy(7)) ¥(7,))

(1.14)
=(1-a)Q,¥)(1,£) — aQ_(,)(7,§)
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with initial datum (0,€) = (2Tf0)d/2nj701 fo (2T, €+ uy,) and where Ay (-),By(-) and vy (-) are defined
by

adr) =5 [@rz- 2P e ko
Rd

Bur) =5 [ (1-FP) e (1.15)
Rd

Bu(rou(r) = -a [€Q-(0)n I e RL  vrz0.
R4

Remark 1.3. The choice of the time scaling 7(-) in (1.13) will be fully justified in Section 2.2. We can only
anticipate that it is introduced to obtain a unit constant in front of the time derivative 0;¢ in (1.14).
Notice also that, as it occurs for granular gases [25,6], the new time scaling is actually logarithmic, see
Proposition 3.17.

From the previous results, one sees that 1, is a steady solution to (1.14) — independent of the time
variable 7 — and for which

A, :=Ay,, B, =By, and vy, =0
since, ¥, being radially symmetric so is Q_ (¢4, ¥ )-
1.4. Notations

For all r > 0, we denote by D(r) the open disc of C with radius r, i.e. D(r) = {z € C ; |z| < r}. Given
two Banach spaces X and Y, we denote by Z(X,Y) the set of linear bounded operators from X to Y and
by || - l(x,y) the associated operator norm. If X =Y, we simply denote #(X) := Z(X, X). We denote
then by € (X) the set of closed, densely defined linear operators on X and by ¢ (X) the set of all compact
operators in X. For A € €(X), we write 2(A) C X for the domain of A, 4 (A) for the null space of A
and Range(A) C X for the range of A. The spectrum of A is then denoted by G(A) and the resolvent set
is o(A). For X € p(A), R(\, A) = (AId — A)~! denotes the resolvent of A.

Let us introduce some useful notations for function spaces. For any nonnegative weight function m :
R4 — R, we define, for all p > 1 and ¢ > 0 the space Lfl’(m) through the norm

1/p

12y = / FOPEPmEde |

Le. LE(m) ={f :R* = R; || fllpz(m) < oo} where, for £ € R, () = \/1 + [¢]2. We also define, for k € N,

WP (m) = {f € L¥(m); 07 f € LE(m) V|B| < k}

with the usual norm,

||f||§;qup(m) = Z Haﬁﬁ‘f”igﬁn)
1BI<k
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For m = 1, we simply denote the associated spaces by L? and W}F?. Given functions f(t), g(t) depending
on t > 0, we write f(t) =~ g(t) as t — oo whenever lim;_,, f(t)g(t)~! = 1.

1.5. Main results

Let us recall that A, := Ay, By := By,. We introduce the nonnegative quantities

dB, — A, d+2)B, — A,
g = Bo— Aoy WEDBam A g 0. (L16)

« (0%

The following is the main result of the paper.

Theorem 1.4. Assume that fo is nonnegative, with positive mass and temperature and such that

(5—d)t

fo€ Hy 2 (RY)NLLERY

for some n >4+ d/2 and some k> max{4 +d/2,d(d —2)/(d — 1)}, (d = 3). We also assume that fo has
finite entropy and Fisher information, i.e.

/fo(”) log fo(v)dv < oo and / ‘V\/m’zdv < 00.
R

R4

Let f(t,v) be the unique solution to (1.1) associated to the initial datum fo. Then, there exist some t > 0
and some explicit A > 0 such that for any a € (0, A/2), for any € > 0 there exists some explicit a. € (0, ap)
such that, for all o € (0, cw.), there is some C' = Cq 5, > 0 depending on fo through ny,, uys, and Ty, and
such that

R{If(t,v) fa(t,v) p( 0 )d <C(1+1) VE>1

where ¥ := m (qay + 1y — €), 1y denotes the spectral gap of the linearized operator £y associated to
the elastic Boltzmann equation in L?>(M™1),

Folt,v) = np(8) 2T (1) ¢s (J%é?) .20

with the moments ny(t), Tr(t) and wy(t) satisfying

4B,

a,
logngs(t) ~ —2————logt, log T (t) ~ “alan 1 b

a Do logt fort — oo (1.17)

and

S

lim ws(t) =uyp + \/QTfO/Bw(s)vw(s)exp f/Bw(r)dr ds.
0 0

t—o0

Moreover, for fized a, the aforementioned rates for ny and Ty are universal.

The above Theorem provides a satisfying answer to the queries (Q1) and (Q2) above:
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— The precise rate of convergence of the density and temperature is described by (1.17) for any « € (0, o).
Notice that this rate is sharp in the regime of small annihilation since one has (see Remark 2.7) for
a—0

2a, 4d 4B, 2(by —aqy) 2

aa+ba:4d+1’ alay + by) a,+by,  4d+1’

which results, for small values of «, in
__4d __2
np(t) ~t~1abT Ty(t) ~ ¢ w as t — 00.

These results match the rate of convergence conjectured by physicists in [33,15] described in Section 1.1.

— For an initial datum with little regularity requirement, any solution to (1.1) is asymptotically close to
the self-similar profile f(t,-). Notice that our statement is quantitative in the sense that explicit rate
of convergence toward zero for the difference f(¢,-) — f,(¢,-) is provided. Such rate is algebraic and,
interestingly, is related to the mass, momentum and energy of the profile 1, as well as to the spectral gap
of the classical (elastic) Boltzmann linearized operator. Observe also that the convergence is established
in L'-space with exponential weight, but such strong tail is not demanded for the initial datum. This
improvement in weight from polynomial to exponential is obtained by exploiting the instantaneous
appearance of exponential moments for Boltzmann-like equation associated to hard potentials.

— Notice that the answers to both queries (Q1) and (Q2) are related. Indeed, we are not able to obtain
in o direct way the behavior of the moments ns(t), us(t) and T¢(t) by inspecting just the moments
equations associated to (1.1). Surprisingly, the inspection of these moments equations just allows us to
get the decay of the product ny (t)\/m but not the decay of each term. We are able to determine the
long-time behavior of such moments after exploiting the convergence of the whole solution f(t,v), see
Section 3.4.

1.6. Strategy of the proof and novelty of the current approach

It appears convenient along the proof of Theorem 1.4 to rather investigate the solution of the rescaled
equation (1.14) because it is conservative. For such rescaled equation, the main result can be formulated as
follows.

Theorem 1.5. Under the Assumptions of Theorem 1./ on the initial datum fo, let f(t,v) be the unique
solution to (1.1) associated to the initial datum fo and let ¥(71,€) be the associated rescaled function given
by (1.10). Then, there exists some explicit A > 0 such that for any a € (0, A/2), for any € > 0 there exist
some explicit o, € (0,ap) such that, for all a € (0, a,)

[ 197.) = val©)l expaléde < Cula)expl(~(u. ) Vr> 1.

Rd
where [, denotes the spectral gap of the linearized operator £y associated to the elastic Boltzmann equation
in L>(M™1Y) and C.(«) is a positive explicit constant depending on o and e.

Remark 1.6. There are two noticeable facts in Theorem 1.5:

(1) the rate of convergence is nearly optimal, being as close as desired to the rate of convergence to equi-
librium for the elastic Boltzmann equation O(e™#+*). This is an important contrast with respect to
the results obtained so far in the context of granular gases [26,32] for which the rate of convergence
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to self-similarity is not continuous with respect to the elastic limit. To be more precise, in [26,32], if
n € (0,1) denotes the inelasticity parameter, then the decay to the self-similar profile is O(e=¢ (=" %)
for some explicit ¢ > 0. This shows a lack of continuity in the exponential parameter in the elastic limit
17 — 1. In Theorem 1.5, in the elastic limit v — 0 one exactly recovers the optimal rate of convergence
to equilibrium of the elastic Boltzmann equation in the sense that the exponential parameter may be
chosen as close as desired to the elastic parameter p, for o small enough (for such a small «, it is likely
that the constant C.(«) is very large, but remains finite).

(2) The rate of convergence of the self-similar problem is independent of «. That is, all corresponding
relaxation related to annihilation is hidden in the rescaling. Thus, the self-similarity rescaling becomes
a tool that decouples the annihilation dynamics from the elastic collision dynamics. This is a powerful
tool for analysis.

The strategy we adopt to prove the results combines the spectral analysis of the linearized operator and
the entropy-entropy production method. The introduction of the linearized operator in the rescaled equation
may seem, at first sight, as a bad idea since the rescaled problem (1.14) is non-autonomous. However, it

reveals to be very efficient because, essentially, the rescaled equation is conservative.
Let us try to describe more precisely our approach. In the weighted space

Xo=LY(w), @(&)=exp(alt])

where a > 0 is some suitable number, we can introduce the linearized operator around the profile v, as
follows.

Definition 1.7. For any « € (0, o), introduce the linear operator %, : 2(%.) C Xo — Xg by

Zah(€) = (1= a) [Q(h, ¥a)(§)+Q1a; h)(€)] — a[Q— (v, )(E) + Q—(h, 1) (8)]
_Aah(f)_Baf'th(§>7 Vh € D(Z.)

with domain 2(%,) given by 2(%,) = W,"'(z). We also denote by % the elastic linearized operator
Z  2(%) € Xo — X given by

Zoh = Q(h, M)+ Q(M,h),  Vhe DL)

with 2(%) = Li(w) and where M is the unique Maxwellian with same mass, momentum and energy as
Yo given by (1.9).

Then, one can prove that, for @ small enough, (%,, 2(%,)) generates a Cy-semigroup {S,(t); t > 0} in
Xo (see Theorem 4.11 for a precise statement) with the following spectral properties and decay.

Theorem 1.8. Let us fix v, € (0, uy). There exists o € (0,aq) such that, for any o € (0,a*) the operator
Lo+ D(Z) C Xo — Xo satisfies:

1) The spectrum S(Z,) is such that
S(L)N{ze€C;Rez > —vl} ={ul,. .. utt?

where pl, ..., udt? are eigenvalues of £, (not necessarily distinct) of finite algebraic multiplicity.
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2) For all p € (0,v)), there is C,, > 0 such that
||Sa(t)(IdfPa)||‘%(Xo) < Cpexp(—pt) vt >0
where P, denotes the spectral projection associated to {uk, ..., pdt2} in Xo.

The proof of this Theorem is quite lengthy and technical. Our approach to Theorem 1.8 is inspired by
the one introduced in [26] and revisited in [18,32]. It consists, roughly speaking, in a perturbation argument
which exploits the spectral analysis of the linearized elastic Boltzmann operator .%. In a more precise way,
we first use the fact that the spectrum of %, is well localized, meaning that it admits a spectral gap in a
large class of Sobolev spaces; second, we show that, for « small enough %, — % is of order O(«) for some
suitable norm; finally, to deduce the decay of the semigroup from the spectral structure of the generator, we
need to use some abstract spectral mapping theorem established in [27]. The decay in X is then deduced
from that in W, (co) thanks to an abstract enlargement and factorization argument as developed in [18].
The proof of Theorem 1.8 should not be seen as the main novelty of the paper and, for this reason, is
postponed to the end of the paper (see Section 4).

Remark 1.9. As will be seen later on, the sign of the eigenvalues u!, (i = 1,...,d + 2) do not play any role
in our subsequent analysis which is an important contrast with respect to the analysis performed in [26]
and [32]. On this point, it is an interesting open question to determine the sign of the eigenvalues ¢ . It
seems to be a non trivial problem and the fine asymptotics of u!, for @ ~ 0 would provide an interesting
complement of the above result.

Considering the fluctuations around the equilibrium

h(t7§) = ’(/)(t,f) - dja(g)a t >0,

it can be shown that h satisfies the following quasi-linear equation in mild form, see Section 3.3 for details,
h(t) = Su(t)h(te) + /Sa(t _S)Ga(s)ds, V>t >0, (1.18)

where, roughly speaking,
Ga(s) = Ba(h(s), h(s)) + O(a).

This is where the entropy-entropy production approach enters the game. It is well-known that for elastic
interactions the dissipation of entropy forces, by some kind of La Salle’s principle, the solution of the Boltz-
mann equation to become close to equilibrium. An important breakthrough in the study of the Boltzmann
equation has been to make this idea quantitative by using some version of the so-called Cercignani’s conjec-
ture [35]. This results in explicit estimates on the time needed for any solution to the Boltzmann equation
to fall into a vicinity of the equilibrium.

Even though the above equations (1.1) and (1.14) do not exhibit any dissipation of (relative) entropy
properties, we expect the persistence of the above behavior in the elastic limit. This idea is made rigorous
in Section 3.3 using in a crucial way the fact that the rescaled equation is conservative. We are led to an
estimate of the type: there exists some ot small enough such that, for a € (0, at) it holds

1) = Yallx, <) VE>T(a)
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for some explicit time T'(«) > 0 large enough and some function ¢(«) with lim, o ¢(c«) = 0. This allows to
sharpen our estimate on G, (s) yielding

1Ga(s)lx, <e(@) Ih(s)llx,, Vs =to = T(a),

where £(a) — 0 as o — 0. Unfortunately, this is not enough to obtain the convergence of h(t) to 0 in the
Duhamel representation (1.18) since the semigroup {S,(t); t > 0} does not decay to zero in full generality
(recall we do not know the sign of the eigenvalues p,). From Theorem 1.8, the decay happens only when
acting on the range of Id — P,. Because of the highly dissipative behavior of .%,,, the precise expression
of the projection P, seems difficult to obtain. At this point, a crucial role is played by the fact that the
scaling we choose is ezactly the one which makes (1.14) conservative. Because of this additional property,
the fluctuation h(¢,£) have zero mass, momentum and kinetic energy and, as such, satisfies

Poh(t) =0 WVt >0,

where Py is the spectral projection on the kernel of the elastic operator %. This obvious but fundamental
property together with the fact that, in some sense,

Pa - PO = O(Oé)
allows us to prove that, for « small enough,
[h(D)lx, < Cl(Id = Pa)h(t)[x,  Vt=0. (1.19)

In other words, it suffices to study the dynamic of Eq. (1.14) in the “orthogonal” space Range(Id — P,,).
However, it is important to emphasize the contrast here with the classical elastic Boltzmann equation:
for such a problem, as well-documented, the nonlinear dynamic occurs exclusively on the “orthogonal”
Range(Id — Py). Here, this is not the case, some part of the nonlinear dynamic still occurs on the space
Range(P,) but according to the estimate (1.19), such a dynamic is controlled by the one occurring in
Range(Id — P,,).

The combination of these two approaches — spectral analysis and entropy method — is reminiscent of the
work [26] on granular gases and strongly relies on the understanding of the elastic problem corresponding
to a = 0. However, the approach we follow is novel in different aspects:

1. Our approach is global in essence. This contrasts with the approach of [26] (see also [12]) where local
stability estimates (in which exponential convergence is proven for small perturbations of the equilibrium)
are first established and then suitable entropy estimates are used as a tool to pass from local to global
stability. Here, even if we fully exploit the spectral properties of the linearized operator and the decay of
the associated semigroup, our approach does not rely at all on the study of close-to-equilibrium solutions to
(1.14). We directly prove the global stability without proving first the local one. We insist here in particular

d+2

on the fact that the sign of the eigenvalues p, ..., u4*2 in Theorem 1.8 do not play any role in our analysis

(it is not completely clear actually whether these eigenvalues are nonnegative or not).

2. Related to this first point, our study of the global stability exploits in a crucial way the fact that the
rescaled equation is fully conservative. We recall here that the usual scaling performed for granular gases
[26,32] (inspired by similar scaling for nonlinear diffusion equations [9,13]) is temperature dependent and
results in some autonomous equation which does not preserve the energy (still preventing blow-up or cooling
down). Similar temperature-dependent scalings have also been introduced for numerical purposes [17]. Our
scaling (1.10)—(1.11) is related to these mentioned ones but is different in nature since (1.14) preserves mass,
momentum and kinetic energy. The price to pay for obtaining a fully conservative equation is that this latter
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is non-autonomous. As such, the linearization around steady solution is not completely natural and has no
direct physical meaning. It is somehow imposed by force in our analysis. However, as explained previously,
dealing with a conservative equation allows us to exploit — in a crucial way — the fact that the dynamic in
the space Range(P,,) is completely controlled by the dynamic in Range(Id — P,,).

3. By virtue of the point 2, the rate of convergence to equilibrium for the rescaled equation is sharp in
the sense that it allows to recover, in the limit o — 0, the decay to equilibrium for the Boltzmann equation
in O(e #+t). We already commented on this point in Remark 1.6 explaining the contrast with the analysis
in [26,32]. Let us emphasize at this point that recovering the sharp decay rate is made possible again thanks
to the conservative form of the rescaled equation and the method described in point 2 and in the previous
paragraph. Such novel approach is the main contribution of our paper which allows to understand in a
better way the role of the linearized operator in the rescaled equation. Let us also mention that this method
is robust enough and applies to the models of granular gases described earlier (at the price of performing
the scaling which exactly preserves the energy).

4. For the entropy-entropy production method, we follow a time-dependent approach initiated in [6] in the
context of granular gases. With respect to this approach, one can see that the regularity assumptions made
on the initial datum are minimal. This comes from an improvement of a well-known functional inequality
obtained by C. Villani that relates the entropy production functional associated to Q(f, f) to the relative
entropy. In [35], an almost linear inequality is derived under some strong (high order) regularity on fj. Here,
we used a version of such an inequality — obtained recently in [3] — where the functional inequality is far
from being linear but for which the regularity on fy is drastically relaxed. Namely, we will resort on the
following proposition.

Proposition 1.10. For a given function f € L3(R%) N L2(RY), let My denote the Mazwellian function with
the same mass, momentum and enerqy as f. Assume that there exist Ky > 0, Ag > 0 and qo > 2 such that

fw) = Ko exp (—Ap |v]|?) Yo € R4 (1.20)

Then, for all § € (0,1), there exists a constant As(f), depending on 6 and on f only through its mass and
energy and upper bounds on Ao, 1/Ko, ||f|lL2re) and || fl|L1(re), where s = s(qo) > 0 such that

2(1) 2 M) (R/ fotog (5515 Y ao

where D(f) is the entropy dissipation functional associated to the elastic Boltzmann operator

(146)(1+2/d)

9(f) = - R/ Q(f, f)(v) log (%) v

Notice that, in order to be able to apply the above Proposition to the solution t(t) to (1.14), we need
first to prove the appearance of Gaussian-like pointwise lower bound for such solutions, see Theorem 3.5.

5. Finally, a novelty of our approach also lies in the control of the Fisher information I(¢(t)) of the
solution to (1.14). Recall that, for a given nonnegative function f, the Fisher information of f is defined as

1 IVOP :
I(f)—4R[ Tl R[W\/f(a\ a (1.21)
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It is very easy to see that, to obtain a uniform control of the solution t(t) in spaces like W, (=), it is
enough to prove that

sup I(9(t)) < oo.
0

We prove that such an estimate is true in Theorem 3.10 under minimal regularity on the initial datum )y,
which in dimension say d = 3 is assumed to have finite Fisher information and to lie in H*(R¢) (with some
algebraic moments). The uniform control of Fisher information for solutions to Boltzmann like equation
seems to be completely new. We mention here the seminal work [34] dealing with the Boltzmann equation for
Maxwell-like collision kernels and for which an algebraic growth of the Fisher information is obtained. Our
approach relies in a heavy way on the appearance of Gaussian-like pointwise lower bounds (Theorem 3.5)
and on the precise control on the way the various parameters in these lower bounds depend on time. We
refer to Section 3.2 for more details on these new estimates. Again, the method we propose here seems
robust enough to apply to a larger variety of kinetic models exhibiting the appearance of such pointwise
lower bounds.

1.7. Organization of the paper

The paper is organized as follows. We describe in Section 2 the evolution of the moments for the nonlinear
equation in original variable (1.1). We are able, at this stage, to obtain only partial results yielding just
the decay of the product ns(t)? T¢(t). However, this will turn of paramount importance since such a decay
is actually governing the long-time behavior of the time scaling function 7(¢) (see Eq. 1.13). The rest of
Section 2 makes rigorous the scaling performed earlier and provides the proof of Proposition 1.2.

Section 3 of the paper is devoted to the stability analysis. In Section 3.1, we develop the time-dependent
entropy-entropy production method. In Section 3.2, we first obtain uniform bounds on the solution (¢, &)
to (1.14) — in particular obtaining the important estimate on the Fisher information Z((t)) and then
prove Theorem 1.5 in Section 3.3. Finally, in Section 3.4, we turn back to the original variable and prove
Theorem 1.4. Notice that, in this whole Section, we will use Theorem 1.8 even though this result is proven in
the next Section. Namely, Section 4 is devoted to the proof of Theorem 1.8 which is lengthy and technical.
It is reminiscent to the recent contributions [18,26,32] and consists in a perturbation argument around the
elastic limit combined with some abstract enlargement and factorization arguments as developed in [18].

The final part of the paper is made of three Appendices which collect several technical results used in the
main core of the paper. In particular, Appendix A gives the proof of two technical results used in Section 4.
Appendix B collects the main properties of the solutions to the rescaled equation (1.14) and, in particular,
the appearance of pointwise lower bounds which is fundamental for the use of the above Proposition 1.10.
Recall here that, for such lower bound, it is important to get a control of the various constants with respect
to time in order to perform our analysis of the Fisher information. In Appendix C, we prove that the
linearized operator (%, 2(%,)) is the generator of a Cy-semigroup in X, exploiting well-known abstract
generation results in L!-spaces.

Acknowledgments. R. J. Alonso is thankful for the support provided by the “Bolsa de Produtividade
em Pesquisa CNPq”. V. Bagland gratefully acknowledges the financial support from the “Réseau Franco-
Brésilien en Mathématiques” (GDRI-RFBM). B. Lods acknowledges the Financial support from the Italian
Ministry of Education, University and Research (MIUR), “Dipartimenti di Eccellenza” grant 2018-2022.

2. Evolution of the moments for the nonlinear equation

We consider here the evolution of macroscopic physically relevant quantities associated to the fully
nonlinear Boltzmann equation that we recall here for convenience
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{atf(t,v) = (1 -a)Q(f, Ht,v) —aQ (f, f)(t,v)  t>0 (2.1)

fO,0) = folv).

This kinetic equation has no conserved macroscopic quantities and density is decreasing to zero. To be
more precise, let us recall that, for any ¢ > 0, the density

nst) = [ ft0)do,
Rd
the momentum wus(t) € R? and the temperature Ty(t) > 0 are defined respectively by

ng(t)uys(t) = /f(t,v)vdv € R4 and dnyg(t)T(t) = /f(t,v)|v —uy(t)2dv.
R4 Rd

2.1. Evolution of first moments

We aim here to deduce the precise rate of convergence to zero of the quantity
Es(t) = dns(t)*Ty(t),  Vt=0,

and our main result is the following theorem which is reminiscent of Haff’s law [19] for granular gases with
constant inelasticity, see [25] for a rigorous proof and [6] for a similar result for visco-elastic granular gases.

Theorem 2.1. There exists some explicit a, € (0,1) such that, for any o € (0,c,) and any nonnegative
fo € L3(RY), the associated solution f(t,v) to (2.1) satisfies the following:

—2
(co+2(1+0a)t) % <dns(t)2 Ty(t) < (cl+%t) V>0

for positive constants cy,c1 > 0 depending only on the initial distribution fo and not on «,

1

Co ::R[ fo(v)|v —us(0)|do, ¢ = W

Let us introduce the moments

Mk(t):/f(t,v)|v—uf(t)|kdv t >0, (k> 0).
R

With such notations, ns(t) = Mo(t) and dnyg(t)Tf(t) = Ma(t) and Ef(t) = Mo(t)M(t). In the sequel, we
consider a nonnegative initial datum fo € Li(R) and denote by f(t), t > 0 the associated solution to (2.1).
One has the following lemma.

Lemma 2.2. One has
d d

&Mo(t) < —Q Mo(t) M1 (t) and —Mg(t) < — Mo(t) Mg(t) Vit 2 0. (2.2)

As a consequence

-2
1 «
Et)< | ——+=t| , Ww=>o.
() <Ef(0) 2)
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Proof. The proof follows from integration of (2.1) and the fact that both density and kinetic energy are
conserved by the Boltzmann operator Q. Therefore, we get

Gy =—a [0 pEdn S0 = -0 [0 GHE - usPw, (23)
R4 R4
so that
%nf(t) =—a [ f(t,v)f(t, v.)|v — vi|dv, do
R2d
d

M) = —a [ F(t0)f(t 0 [0 oo~ us(t) P,

R2d

According to Jensen’s inequality one has

/f(t,v*)\vaqdv*2nf(t)|vfuf(t)| vt > 0.
Rd

Therefore

%nf(t) < —anf(t)/f(t,v)|v—uf(t)\dv and %Mg(t) <—anf(t)/f(t,v)|v—uf(t)|3dv

R4 R4
from which (2.2) follows. To deduce from this the decay of Ef(t), we simply notice that, thanks to (2.2),

%Ef(t) — Mo(®) %Mo(t) + Mo(t)%Mg(t) < —a Mo(t)2Ms(t) < —a By (1)

where we used that Ms(t) > Mo_l/2 (t)My(t)3/? thanks to Hélder’s inequality. The result follows. 0O

Therefore, in order to capture the asymptotic behavior of both n(t) and T¢(t), it will be necessary to
understand the behavior of larger order moments, typically Mj5(t). One begins with recalling the Povzner’s
estimates obtained in [7]. For low order moments, one has the following which comes from a combination
of [7, Lemma 3.1] and [7, Lemma 3.7].

Lemma 2.3. For any k € (0,1) and any nonnegative mapping ¥ : R? — R one has

- /Ba(\ll,\ll)(v) lv|*#dv < —@ / U(v) U(vs) v —v.] (Jv]* + |v*|2)kdvdv*
R4 R2d
1
s / V)T (0.) o — va] ([0 + [022*) dudo,,
R2d

where Bi(a) = (1 — &) oy with

A~ k A k 1
1+U- o 1-U-o 1S4=2) ;4 k g 453
- — - - = 2 1 (1 — 2 . 2.4
o / < 5 >+< 5 ) do = 57T /( T (1-17) 2 dt (24)

Sd—1 1
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To prove Theorem 2.1, we need to compute the evolution of M (¢).

Lemma 2.4. There exists o, = 512: € (0,1) such that, for all « € (0,ay) the unique solution to (1.1)
satisfies
1 -1
—+2(1 t < My(t vt > 0.
(20 +me) <ano)

Proof. The proof resumes some of the arguments of [7, Lemma 3.7]. Precisely, multiplying Eq. (1.1) by
|v — uf(t)| and integrating over R? one has

G0 = [ Ba( 0 o= usoldo+ [ 00000 - uslo)ido
R Re (2.5)

- / B (f, £)(t0) [0 — g ()] dv — g (1) - / / “”%d”
R Re

Using now that

s ur() = —a [ Q(F 1)t vdu = ig(0)ur(t) + my(0)is (1)
Rd
together with (2.3) we easily get that
is(t) =~ [ QLU 0} = )

Consequently,

is (1) [ flt.0) T h | < i Ol < o [ Q- (£ HiE 0~ us Dl
R4 R4

Using that
/ Q_(f. F)(ts0)[v — s (1)]dv = / Ft0) f (vl = vl [0 — wp(8)]dudo,
R4 R2d

< / Ft0)f(tv.) (I =g (@B + e = up(B)]) [v = wp ()| dvdv, = Mo(t) Ma(t) + My (t)*
R2d

we get from (2.5),

S M) > / Bal(f. £)(t,0) [v — uy (£)]dv — o (Mo(t) Ma(t) + M (1)2) (2.6)
Rd

Using Lemma 2.3 with k = 1/2 and ¥(v) = f(¢,v + us(t)), we obtain that
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/ Bo(f, £)(t,0) [v — wy(£)]do

Rd

B / Bo(f(t, -+ (), f(t,- +ug(t))(v)|o[*dv
R4
2 % / Ftv+up(t) f(t, ve +up(t)T (v, ve)dvdo,
R2d

where
2 2\1/2
T, v:) = Brya(a)|v = va| (Jo]* + [vu]?) "7 = v = vu] (o] + [va]) -
Since ||v] — [vi|| < |[v = vi| < o] 4 || and (Jv]? + |v*|2)1/2 > ||v| — |vs| | one gets that

T (0,0.) = B1ya2(@) | o] = o] 7 = (o] + Joa])
= (Buy2() = 1) ([l + [val?) =2 (Brja(a) +1) Jvl Jva].

Since
[ 0+ wr o)+ wg(0) (0 + fo ) ded,
R2d
=2 / Ft,0) f(tve) v — up(t)|*dvdo,. = 2My(t) Ma(t)
R2d
while
2
/ Fts 0+ g (0) f(E ve + ()]0 [v.|dodo, = (R/ Ft o)l — g (Oldv | = My (1)?,
R2d d
we get
/[B%a(f, £ ) [ —up(t)|dv > (B1a(a) — 1) Mo(t)Ma(t) — (B1/2(c) + 1) My(t)%. (2.7)
Rd
Combining this with (2.6) we finally obtain
%Ml(t) > (ﬂl/Q(OZ) - — 1) MO(t)MQ(t) — (61/2(0&) + 1+ Oé) Ml(t)2. (28)
01/2—1

Now, setting a, = o121 One sees that, for any 0 < o < o, f1/2(a) > 1+ a. Moreover, Cauchy-Schwarz

inequality ensures that M (¢)? < My (t)Ma(t) so that (2.8) reads

%Ml(t) > (Brja(a) —a—1—(Bija(a) + 1+ a)) Mi(t)? = —2(1+a) My (t)>  Vt>0.

Integrating this differential inequality gives the result. O

The above inequality yields the optimal rate of convergence.
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Proof of Theorem 2.1. Let o € (0,a,) be fixed. Using again that My(t)Ma(t) > M?Z(t), we deduce from
Lemma 2.4 the lower bound

Mo(t)Ma(t) > (fm) +2(1+a) t>_ Vi > 0

which gives the conclusion thanks to Lemma 2.2. O
A direct consequence of Theorem 2.1 and Lemma 2.4 is that
My(t) oc (1+1)7 1 as t — 0o0.
More precisely, one has the following result.

Corollary 2.5. There exists some explicit a, € (0,1) such that, for any « € (0, a,), any nonnegative solution
f(t,v) to (2.1) associated to a nonnegative initial datum fo € L3(RY) satisfies the following:

—1
(co+2(1+a)t) " <M(H) < (1 +51) V>0

for positive constants cg,c1 > 0 depending on the initial distribution fy.

Proof. The lower bound comes from Lemma 2.4 while the upper bound comes from the corresponding upper
bound for My (t) M (t) in Theorem 2.1 together with the fact that My (t) < /Mo(t)Ma(t). O

2.2. Scaling and self-similarity

Let us recall that we introduced in (1.10) the following rescaled function (7, &) through

F(tv) = np(8) (25 (1)~ (ms), J%é?) . V0,

where n¢(t), T¢(t) and us(t) denote the first moments of f(¢,-) defined by (1.11). We give briefly here the
proof of Proposition 1.2 which asserts that, under such scaling, ¢ (7, £) is the unique solution to (1.14).

Using (1.10), one gets that, for 7 = 7(¢) and £ = %\/%,

Ouf(t,0) = s (D) 2T7(1) ™ 27(1)0-(7,)
+ (g (T (0) 2 = Tyt (1)(2T5 (6)772) (7, )

— g (DT (8) ™5 Ty (1) - Veth(r, €) — ng (£)(2T5 (£) ™2 is (1) - Verh(7,€),

where the dot symbol denotes derivative with respect to ¢t. Moreover, using the scaling properties of Q4 (f, f),
one has

Qu(f, f)(t,v) = np(t)2(2T4(t) = Qu (3, ) (7, €),

so that (7, &) satisfies the following equation
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Ba (4, ¥)(7,€) = np () 71 (214 (1)) "2 7 ()9, (7, €)
+ (g (O (02T (8) 72 = dT (O (ORTy () 72) $(7,€)

= Ty()n; ()2T5 () %€ - Veub(1,) — np(8) 71 (2T (1)) Vg (1) - Verp(r, €)

for T =7(t), £ = v_%/() Onpe sees then that choosing the time scaling function 7 in such a way that

2T (t)
7(t) = ng(t)\/2T¢(t), Vit >0,

we obtain, finally

877/}(7—7 5) + ATZJ(T) 1/’(77 5) + BU) (T)f : Vﬂ/’(ﬂ 5) + VTZ’(T) ! Vﬂ/’(ﬂ 5) = Ba(wv 1/))(7, 5)

with
Ay(r(t) = (T'Lf(t)nf(t)’Q(QTf(t))’l/2 - de(t)nfl(t)(QTf(t))’3/2) €R
Bu(r(t) = ~Ty(tn; ()(205(0) 72/ = n} (1) S (275 (1) /2 € B (2:9)
Vi(r(t) = —ng ()7 @T;(0) g () € R, 0.
Introducing
= T) — T vy (T :——1 T d
aay (1) = dBy (1) — Ay (7), w(T) Bw(r)v¢( ) ER

allows to write the above equation satisfied by (7, ) in divergence form

a‘r'@[](Ta 6) - Ozaw(T) ¢(Ta 5) + Blﬁ(T)diVE( (f - vlb(T)) ’(/}(7—7 f)) = (1 - OC)Q(% ¢)(T? f) - OéQ,(w7 w)(Ta 5)

Also, conservation of mass implies that

ay(r) = / Q_ (1, 9)(r, £)dE = / € — £ (. )b (r, £)dEdE > 0.
Rd

RdxRd

The zero momentum assumption on ¢(7, &) reads
Bu(rjou(r) = —a [€Q_(hu)(nedg eRY,  vr>0,
Rd

while conservation of kinetic energy yields

aau(r) + 2By(r) = ((d+ 2By(r) - Ap(r)) = 27 [ IEPQ- (0, 0)(r ). (2.10)
Rd

One sees easily then that this yields the expressions for By, Ay and vy given by (1.15) and the mapping
¥(7,&) is a solution to (1.14). Notice that a variant of Eq. (1.14) has been introduced and studied in [7]
and we can deduce from [7, Theorem 1.10] that ¢(7,&) is the unique nonnegative solution, belonging to
C([0,00), LY (R%)) N LL .((0,00), LY(RY)) to (1.14) with initial condition 1.

loc
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Remark 2.6. Notice that the coefficients A (7), and By (7) do not have definite sign. Furthermore, for the
case of steady solution v, for which we recall that

Awa = Aa, Bwa = Ba,
it is not clear whether A, and B, have a sign. However
dB A
ay(r) = 2D Al /Q (. 4)(7,6) dE,
d+2)B A
by(r) o= LHHB = Al /Q (1), €) ede

are both nonnegative for any 7 > 0. Notice that, from (2.10), we see that aay(7) + 2By (1) = aby(7) for
any 7 > 0. Again, we use the shorthand notations a, = ay_, bo = by, for the steady solution .

Remark 2.7. As far as steady solution ), is concerned, we recall that, according to [8, Theorem 3.1], ¥,
converges to M defined by (1.9) as @ — 0. In particular, using the notations A, instead of A, and similar
notations B,,a, and b, we see that

) B - - |Sd 1|

il_%aa—ao .—/Q,(M,M)(g)df = V2 IS
. 2 2d+1 Sd-1
lim by = by = 7 [ @ (M) g a¢ = 250E var L]

d
Hence,

L 2a 4d . ; b 4d +2
frd 11 = .
as0 a, + by dd+ 1 & a0 ay + by Ad+1

Introducing also

A= 2 [@r2—2eP) o M M)©)de, Bo=—1 [ (1212 o (M, M)(e)de,
2 2 d

R4 Rd
we see that

A,—aA -
lim o 7 @0 =0 and lim M

a—0t « a—0t «

=0.
In particular, ag = dBy — Ag and by = (d + 2) By — Ay. Notice also that, since by > ag, we get By > 0 and
B, > 0 for a small enough. We will also use repeatedly in the sequel the fact that there exists C' > 0 such
that

|Ay] + |Ba| < Cay Va € (0, ap),

which can be easily deduced from the fact that sup,e(g,a) %o ll L3 ®e) < 00

Notice that, by virtue of Theorem 2.1, 7(¢) behaves for large time like log(1 + ¢). Of course, the main
interest of the above result is that, in order to deduce the rate of convergence to f,, for the solution f(t,v),
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it “suffices” to prove the rate of convergence to 1), of the solution ¥(7,¢). Since Equation (1.14) conserves

both mass and kinetic energy, it will be possible to exploit entropy-entropy production methods.
Let us now explicit the first order moments of f(¢,v) in terms of quantities involving ¢ (7, ).

Lemma 2.8. Under the assumptions and notations of Proposition 1.2, it holds

7(t) 7(t)

ng(t) =nygexp | —a /aw(s)ds . Tp(t) =Ty, exp —2/B¢(s)ds , vt > 0.
0 0

In particular, the time scaling 7(-) : RT — RY is the unique solution with 7(0) = 0 to the following
differential equation

T(t)
%T(t):nfm/QTfoexp —%/(aw(s)—i—bw(s))ds , t>0,

0

where we recall that aay(s) = dBy(s) — Ay(s) while aby(s) = (d+2)By(s) — Ay(s) > 0 for any s > 0.
Finally, one has

7(t)

1 1
\/muf(t):mexp O/Bw(s)ds Uuj,

(1)
By (s)vy(s) exp /Bw(r)dr ds, vt > 0.

+
o\;\\

Proof. The proof resorts on the equation (2.9) where the evolution of the moments n¢(t), Tt (t) and us(t) is
related to the definition of Ay (7(t)), By (7(t)) and vy, (7(t)). Namely, setting for simplicity 5(t) = \/ﬁ’
the first and second identity in (2.9) imply that

. ¥ (t) d _ 1
Autr) = 200500+ g0, Butr) = B0
From this, :ff((tt))zﬁ(t) = —aay(7(t)), and since ﬁﬁ(t) = W = %, we get that

. ()
log ny(¢) = —a /a¢(7(s))%(s)ds =« / ay (s)ds,
0

N fo
0
which gives the desired expression for ny(t). Similarly, since

By (r(1)) = ~Ty(tyny ()14 (1)) %, t>0,

we easily obtain that 27(¢)By(7(t)) = —;ﬁ Eg, which gives the expression of T(t). Finally, using again
that 7(t) = nys(t)y/2T¢(t) we get the desired differential equation for the time scaling. Introduce now

z(t) = \/ﬁuf(t) = B(t)uy(t). According to the third identity in (2.9),
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Bt)yay(t) = —r(t)Vy(r(t))

so that

£(t) = B(tyus(t) + B(t)yas(t) = —t)Z(t) — () Vy(7(t) = 7()By(1(8))2(t) = 7()Vy(7(2)),

where we used that 50 = OB (7(t)) = 7(t)By(7(t)). Thus,

7(t)

(1)
% exp —/B¢(s)ds z(t)| = —T(t)Vy(7(t)) exp —/Bw(s)ds
0 0

which gives the result. O
Remark 2.9. Notice that, since 2B (s) + aay(s) = aby(s) for any s > 0 (see Remark 2.6), we get

7(t)

/f(t,v)|v —uyp(t)]Pdv = dng(t)Ty(t) = dny, Ty, exp | —a / by (s)ds |, vt > 0.
R¢ 0

3. Stability analysis

We establish here the main results concerning the long-time behavior of the solution to (1.14) that we
recall here for the reader convenience:

O (t,€) + (Ay(t) — dBy (1)) ¥(t,€) + By (t)dive ((§ — vy (1) ¥(t,6))
= (1= a)Q(¥, ¥)(t,§) — aQ_ (¥, ¥)(t,§)

where we recall that ¥ (¢,&) is obtained from the original solution f(¢,v) to (1.1) through the scaling
(1.10). As already said, our approach combines the entropy production method with the spectral analysis
of Theorem 1.8 whose proof, as mentioned in the Introduction, is postponed to the end of the paper.
Along this Section, we shall assume f, € Li(R?) to be given and satisfy the assumptions of Proposition 1.2
and 9 (t, &) will be the unique solution to (1.14) obtained through the scaling (1.10) in Proposition 1.2.

3.1. Entropy production method

Introduce the time-dependent relative entropy

¥(t,§)
M(§)

H(t) =H (Y(t) M) := /w(t,f) log ( ) d¢, t>0 (3.1)
Rd

where we recall that M denotes the Maxwellian distribution with same mass, momentum and kinetic energy
of ¥(t,-) and v,, that is,

M@ =n""exp(-[¢f), EeR%

We also introduce the entropy production functional associated to the elastic Boltzmann operator
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¢(t7§)>
= 1 d¢. .
0 R/ Q(v.0)(t.9)1ox (55 ag (32

Lemma 3.1. The evolution of H(t) is given by the following

%H(t) + (1= a)Zp(t) = (dBy(t) — Ay(t)) H(t) + Li(t), vVt >0 (3.3)

with
— ¥(t,€)
L) =-a R/ 0 (v.4) (1.6 tos 3-8 ) ac. (3.0

Proof. The proof consists simply in multiplying (1.14) by log (%fé)) ) and integrating over R?. This leads
to

SH() + (1 - ) 70(0) = (dBy(t) ~ Au (D) H(H) + To(1) + By ()T (1)
where

_ (e _ Y(t,§)
L) = R/ Ve (€ - o) 0(e.6) g (Y] ) de.
One checks, integrating by parts, that Zo(t) = 0 since
[1ePueae =5 =5 [wie.eae
]Rd

R4

This shows the result. O

In order to estimate the term Z;(t) we need the propagation of the 3rd moment and some LP Lebesgue
norm. We refer to Appendix A for a discussion on propagation and creation of moments and the proof of
the following result, see also [7, Theorem 1.6 and Remark 1.7].

Lemma 3.2. For any 1 > 0, there exists some explicit oy, € (0,1) such that for all p € (1,00) and any

€ (0, Oz;), if fo € L%(Rd) NnNLY ., (Rd) N Lp(Rd) with
n+i=g n

z ifp € (1,2],
d(p—2)+1 .
% pr€ [2700)7
then

sup [9(t) || Lp (ray < max {[[Yoll Lz®ay, Cpm (o) } (3.5)

for an explicit constant Cp (o) > 0 depending only on p, d, ||¢ol|Lywray and ||1)[J()HL1+[172 (Re) but not on a.
n+1-g
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Remark 3.3. Notice that the bound obtained in [7, Theorem 1.6 & Remark 1.7] actually depends on a.
However, a careful reading of the proof shows that it depends on « only through the parameter p, such
that inf>0 [pa V(L E)|€ — &|d&s > pa(€). Using that the upper bound on, say, the third-order moment of
¥(t) is independent of , Lemma B.3, we deduce from [3, Lemma 2.1] that p, is actually independent of a,
i.e. there exists kg > 0 such that

P(t, )€ — &|dés = ro(€),  VEERY, >0 (3.6)

Rd

and the bound in (3.5) turns out to be uniform with respect to a. Notice also that the proof in [7] is done
for n = 0. It is straightforward to extend it to n > 0. We provide in the Appendix a full proof in the case
p = 2, which is the one we use in the sequel.

We have all in hands to estimate the term Z;(¢) defined in Lemma 3.1.

Lemma 3.4. Let fo € Li(RY) N LP(R?) for some p > 1. Then, there exists a positive constant C' depending
only on |[thol|Lr(ray and [[YollL1ray such that, for all 0 < a < min(ax, ag),

ITi(H)] < Ca t>0. (3.7)

Proof. Clearly, there is some positive constant Cy depending only on d such that

/Q (6, 9)(t,€)lo f\(j /Q w<tf)|log¢<tf|d5+cd/9 (6, 0)(6,€) (1 + l¢2)de,
so that
LO] < o [0l0)yame [ (€10(8.€) Mog vt €)]d€ + aCall (t)|oymo [910) oy oy
)
Now,

/ (&) (t,€) [log (1, €)| dé = / (&) (t,€) llog (1, €)| dé + / () (t,€) [log (. €)] de.

R4 ll<1 [¥|>1

On the one hand, setting C, = sup,.»; ' 7?|log 7|, we deduce that

[ @veonsveolac<yi+5 | [ vohosuola

lv|>1 [¥]21

<G, ||w £)1% Ray-

1/2

On the other hand, for 8 € (0,1), setting Dg = SUP,¢(0,1) rP|logr|, we have
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/ () (t, ) [log (t, €)| A€ < Dy / (£)20-5)-0-28) )18

lyl<1 R4

1-8
<p; (1+3) (m/ (€)1-29)/3dg

together with propagation of the third moment and Lemma 3.2 yield the result. O

B

The choice § = 713,

The following technical theorem, refer to Appendix B for a proof, proves the appearance of Gaussian-like
pointwise lower bound. Because of the use we make such lower bound later, a precise estimate on the time
rate appearance is needed.

Theorem 3.5. (Gaussian-like lower bound) Let vy € Li(R?) N LP(RY) for some p > 1. Let 0 < a <
min(ay, of) be given. Then, for any t; € (0,1) and any € > 0 there exist some explicit constant co(a) and
some integer N € N depending on ¢, ||Yol|L1ray and |[vollprray and a (but not on t1) such that

0(t,) = col)t exp (o) (1+10g (£)) ), 21, £ere (3.8)
Remark 3.6. It readily follows from Theorem 3.5 that, for any € > 0,
[log v (t, )| < C=(1 +1og* (1/)){€)**° +¥(t,€),  €€R%t>0

for some universal constant C. > 0. Indeed, for ¢(¢,£) > 1, we clearly have log ¢ (¢,£) < ¥(t,£) whereas for
¥(t, &) <1, (3.8) ensures that

—log¥(t,6) < Ce(1+log™ (1/1))(€)**.

Theorem 3.7. Assume that fo € L3(RY) N L2(R?). Given 0 < a < min(ay, of)) where o, and ofy are defined
respectively in Theorem 2.1 and Lemma 3.2, the unique solution ¥(t,€) to (1.14) satisfies, for all tog > 0

H(t) = H(b(6)|IM) < Oy ((1 Tl a1/2) Vi > to (3.9)

where the positive constant Cy depends explicitly on to, sup;,, H’l/)(t)HLéO(Rd) (with sg > 2 large but explicit)
and Yol L2 R4 -

Proof. Since fy € L3(R?) N L?(RY), for all tq > 0, according to Theorem 3.5, there exists ¢y > 0 such (3.8)
holds true for, say, € = 1. Then, according to Proposition 1.10, for all ¢ > ¢y, one has

Do(t) = A(w(t)) H3(t)

for A(¢(t)) depending only on cg, [|[¢(t)||.2ra) and ||’(/J(t)||Lé0(Rd) for some explicit sop > 0 related to cy. By
virtue of the creation of moments Lemma B.3 and from Lemma 3.2,

sup [|9(t)]| 21 (re) < Cso (to), sup [[9(t)[| L2 (ray < Cr2
t>to >0

for Cr2 > 0 depending only on [[¢g]|p2(re). In other words, inf;>¢, A(¥(t)) > Ao for some positive Ag
depending only on cg, Cs,(to), and o]/ 2(r4)- This shows that
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%H(t) (1= a)H2(t) < (dBy(t) — Ay () H(E) + Tu(t) Vit >t

which, thanks to Lemma 3.4, yields

%H(t) + (1= a)AoH2(t) < (dBy(t) — Ay(t) H(t) + Ca, Vit > to.

Because,
dBy(t) - Ault) =a [ Q- (0 0)(t.EE < a0y e < Cra
R4

for some C1 > 0 depending only on ||| 1 (rae) While

H(t) < Cs (10l L2may + 19 0) Ly ®e))

for some positive constant C3, we obtain, using Lemma 3.2 again, the following inequality satisfies by H (),

%'H(t) + X0 (1 — a)H2(t) < Ca

for some positive constant C' depending only on [|1)o || 2(ray and [|[¢ho]| Ll (R): Integration of this inequality
yields the desired result. O

Remark 3.8. Of course, it would be preferable to be able to get rid of the unphysical assumption that
fo € L?>(R%). Such an assumption appears somehow technical here and is needed in order to apply Proposi-
tion 1.10. To relax such an assumption, a splitting of the solution to (1.14) in a regular part and a singular
part which decreases exponentially fast with time, would be necessary. We did not investigate this point
which appears highly technical due to the non-autonomous nature of (1.14).

8.2. Uniform bounds

We collect here uniform estimates for ¢(t) in the Banach spaces L}(ww) and W, (zo) with exponential
weight

w(§) = exp(alé]),  a>0.

Notice that these spaces correspond to the scale of Banach spaces X, X; used for the linear analysis and
the proof of Theorem 1.8. From now on, we shall assume that the initial datum fy is nonnegative, with
positive mass and temperature, and such that

fo € LR N LA(RY).

/2
By (1.10), we have 1o(¢) = (2Tf0 fo (\/2T, € +uy,), so that v € LY(RY) N L2(RY).
The following result shows the appearance of exponential moments for the solutions to (1.14). We refer
to Lemma B.3 and subsequent discussion in the Appendix for a proof.

Theorem 3.9. For any o € (0, ), let ¢¥(t,§) be the unique solution to (1.14) with initial datum . Let
B > 1. Then, there exists A >0, C > 0 explicit and depending on 3, d and [p, Yo (€)|€] d€ such that
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/w(t,g) exp (amin{1,#7}|¢]) d¢ < C, Vae (0,4).

In particular, for any a € (0, ),

b(t) € Li(w), with [[v(O)llpie) <C, Vi1,
with exponential weight
w(§) = exp(alg]), 0<a<A. (3.10)
It is more intricate to derive uniform bounds on the solution ¥(¢,£) in the weighted Sobolev space
I/Vl1 ’1(w). Using the estimates on @, in weighted spaces provided in [3, Section 4], it would be simple to
prove the propagation of H!(zo) norms. We adopt here a new viewpoint which is based on the propaga-
tion of Fisher information and relies on the pointwise lower bounds (Theorem 3.5). We recall that Fisher

information has been defined in (1.21).

Theorem 3.10. (Uniform bound on the Fisher information) Assume, in addition, that

foe NRYNH,FT®RY and  I(fo) < oo

for somen >4+ d/2, d > 2. Then, the unique solution ¥ (t) of (1.14) satisfies

sup I(1(t)) < C
t>0

2T ((Eha
ffo I(fo) and the L), N Hy *  -norm of 1.
0

for some positive constant C' depending on I(1g) =

Proof. Let us multiply Equation (1.14) by W to get

O/TTE) + 3 Au(VITEE) + Byl — vult)) - VeI 0
1

=—2 TR J—Ewtf

where ¥y (t,&) = [ga (t,64)|€ — &|dE,. Now, given i = 1,...,d, let us define g(t,£) := O, \/1(t,€), so that
e, (€ —vy(t) - Vev) = (€ —wy(t)) - Veg + g. Then, 9(75,5) satisfies

Drg(t,€) + 5 (Ay(t) +2By)g(t, ) + By (t)(€ — vy (t)) - Veg(t,§) =
_1-0[0,2: (. ¥)(E)  g(t,€) (v, ¥)(¢§)
2 Y(t,€) ¥(t, )

.
0
— 596 T (1,6) — S VIEE 06 Dl 6).

Multiplying this equation by g(t, ) and integrating over R<, it follows that
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d 1
d—||9( )72 ®ay + 5 (Ay(t) + 2By (1)) lg(t)]172Ra)

DN | =

+By(®) [ (6= vul®) - Vealt.))a(t.€) dg

R4
_1-a 93&9+(¢71/})d [ Q+(1/mlf)d]
2 { R / v &
—%/QQEwdf—%/g\/EasiEwdé
R4 R4

Now, integration by parts leads to [p.((€§ — vy (t)) - Veg(t,€))g(t, &) d€ = —%ng(t)HQL?(Rd) and

0,0 (W) 1 1
/ 20620 - 5R[ (0, 0g )06, Q. (0, ) = 5 [ 1og 92,0 (w0) .

Rd

Moreover, as already observed (see (3.6)), Xy (t,&) = ko(§) for some positive kg so that

d 1 K
g + 5 (Au®) + @ = DB 9o, + Oz

152 [logute 2.0 wu (e o
R4

N | =

N

~ 5 [ 90 OVIED 2Dt e

Rd

Moreover, we have that |Og, 3 (¢, €)] fRd P(t,€)d¢ = 1. Thus, we get

/ 9t €) /(L) 06, St €) de| < [lg(t)l]p2(ra)

R4

Furthermore, by the instantaneous appearance of an exponential lower bound (see Theorem 3.5 and the
remark afterwards), we have for any € > 0

[log tp(t,€)] < ce ()T +4(t,€),  £€R?, t>0

where c.(t) = C.(1 + log™(1/t)) for some universal constant C. > 0. Thus, using first Cauchy-Schwarz
inequality we get for any ¢ > 0

108066 2.04 (0. 069 A < [ (eat)( €+ 0(.9)) 02, Qs w000 ¢
Rd

Rd

< Cae () + 10Oz ) [ (V227242 2. Q. (6, 0) 1, )|

L2(Rd)

for some universal positive constant depending on d,e. Now, using Theorem B.6 we can estimate the last
term as

H<.>2+3s/2+d/2 852 Q4 (¥, ¥)(t, .)‘

R PR OROIOT rey < C (10O o +IVOI3, &)

2+35/2+d/2(
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with
8+d+ 3¢ 6+3+d (b-—d)T
m = 5 N2 = 5 S:T'

Therefore, using the uniform estimates on the Hp, (R%)-norms and moments we obtain that, for a suitable
choice of € > 0 small enough and « € (0, af), it holds

d Ko 1
a”g(t)HQp(Rd) + 7”9(0”%2(11@0!) < C(1+1log*(1/1)) + §||9(75)||L2(Rd) t>0,
or, equivalently

R0

Syl + o

g —yt) <C(A+logh(1/1),  t>0,  with y(t) = g(t)l|72(a)-

Using that the mapping ¢t — 1 4 log™(1/t) is integrable at t = 0, simple integration of this differential
inequality implies that sup,>qy(t) < C1y(0) + Cz < oo for some explicit constants Cy and Ca. This proves
the result. O

Corollary 3.11. Under the assumptions of Theorem 3.10, the unique solution (t) to (1.14) satisfies the
estimate supysq [|¥(t) |y 1 () < 00, with weight © having rate a < A/2.

Proof. Using Cauchy-Schwarz inequality

1/2

/ Vet (t,€)] expla/20€)de < 20/T(0 (R/wtsexpamds <C

for any a < A and ¢t > 1. The boundedness in the last inequality is concluded thanks to Theorem 3.10 and
Theorem 3.9. O

3.3. Stability estimate: proof of Theorem 1.5

Using the Csiszér-Kullback inequality, see [20, Theorem A.2, p. 131], we deduce from Theorem 3.7 the
following result.

Corollary 3.12. Assume that 0 < fo € LA(R?) N L2(R?) and that 0 < a < min{a, A/2} where @ and A are
defined respectively in Lemma 4.1 and Theorem 3.9. There exists some explicit function £ : (0,a%] — R
with lim,_,0 £(a) = 0 and some constant C' > 0 both depending on the LY N L?-norm of 1o such that, for
any o € (0,at) the solution 1(t,€) to (1.14) satisfies

[6(t) = Yall 1 m,y < Ua)+CA+HV2 Vi1,
where mq(€) := exp(alg]).

Proof. Using both Csiszar-Kullback and Cauchy-Schwarz inequalities, we obtain, for all m,(§) := exp(al¢])

() = MIITs () < N0(E) = M Lrgay [19() = M| L1 (1m0

< V2HWE)IM) [[¢(E) = Ml ms,)-
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Due to Theorem 3.9, choosing a < A/2, gives sup;; [|%(t) — M| £1(1m,,) < 00. One deduces from (3.9) that
there exists some constant C' > 0 such that

[6(t) = Mllzsgnny < C (A +072+a4) | vez1.

Using that [|¢(t) — YallL1(m.) < [U(t) = M| L1(m,) + M = ¥all£1 (m,), We obtain the conclusion invoking
Lemma 4.1. O

Let us move to a perturbative setting. Set h(t, &) := ¥ (¢, &) — 1o (§), so that,

ath(tag) = jah(tag) + Ba(h’7 h)(t7£) + [AO& - Aﬂi(t)] QZJ(t,g)
+ [Ba =By ()] § - Ve (£, §) + By () vy (t) - Veb(t, €),

where %, is defined in Definition 1.7. As already mentioned, defining v, through

Bava = —O[/f Qf(lﬁa,iﬁa)(f)dfa
R4

one sees that v, is equal to zero since Q_ (1,1, ) is radially symmetric. Therefore, one can rewrite the
evolution as

Oph(t,€) = Zuh(t,€) + Ba(h, h)(1,€) + [Aa — Ay (D)] P(1,€)

3.11
+ [Ba =By ()] € Ve(1,€) + By (v (t) — Bawa] - Vetb(t,€). &1

Moreover, for any t > 1 we have that h(t, &) € Xo = L!(w), and

1 0
h(t,§)| & |ds=1]10], V> 0.
R €2 0

Let us introduce, for any ¢ > 0

Galt,€) = Ba(h, h)(£,€) + [Aa — Ay ()] U(E,€)
+ [Ba — By(0)]€- Veu(t,€) + By(t)vy(t) - Baval - Ver(t,6).

As a consequence, using Duhamel’s formula, where we recall that {S,(¢); t = 0} denotes the Cy-semigroup
generated by .%, in Li(w), we can write

h(t) = Su(t — to)h(to) + /Sa(t L S)Ga(s)ds, Vi to>0. (3.12)

Lemma 3.13. Assume the conditions of Theorem 35.10 for fo > 0 and take any to¢ > 1 and a €
(0, 2 min{a, A/2}). Then,

1Ga ()]l () < Cl() |11 (o) (a Fo)r+ (1+ s)-1/4) Vs > to.

The constant C > 0 depends on L}] N H7(75_d)+/2—n0rm of o, withn >4+ d/2.
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)t
Proof. Denote by C' > 0 a constant that may depend on L,ll N H7(,5 D72 porm of o, with n > 4+ d/2, and
that can change from line to line. Using Lemma B.4

[Ba(h(s), h(s))lL1 () < CllA($) || Ly (o) 12(5) ]| L1 (o) Vs > to.
Moreover, using Cauchy-Schwarz inequality together with Corollary 3.12, one sees that
18 acem) = 1) z3may < CIRE L,y < C (6@)2 4 (145) 7)W= 10,
where m,(§) := exp(al]). Therefore,
1B (). h() 2y < € (€(@)2 4 (1)) sy Vs > to.
It is easy to check that

A~ Ay(s)] < 152

112 (h(s), Vo)l Lymay + 11Q—(1(s), (5)) |l Ly (m)]
< Ca ||h($)||L§(Rd)~
In the same way,
[Ba — By (s)[ + [Bava — By (s)vy(s)| < Callh(s)||pyra) - (3.13)
Consequently, for s > tg > 1,

1Ga(8)llLt () < CllA(S) L1 (o) (6(04)1/2 + (148"t allv(s)lx, + allw(S)Hxl) ;

where X; = W11 1(‘w) Moreover, under our assumption on fy, by Theorem 3.9 and Corollary 3.11,
sup,sq [|Y(s )HL%(W) C and sups [|9(s )le ) S <C. O

The following lemma is crucial to the argument. We use the notations of Lemma 4.21.
Lemma 3.14. There exists some constant Cy > 0 such that
1ROl () < CollId = Po)h(t)|[1(w),  VEZ1,  Vae(0,a)),
where o is defined in Lemma /.21 and P, is defined in Theorem 1.8.

Proof. We denote by Py the spectral projection on the kernel of the elastic operator .%. Since Poh(t) =
for all ¢ > 0, one has

P.h(t) = (Po ~ Po)h(t) and  g(t) := (Id - Po)h(t) = (Id — (Po — Po))h(t).

Since Id — (P, — Py) is invertible for any o € (0,a}) we get from Lemma 4.21 that there exists Cyp > 0
independent of « such that

Ih) 22w < I = (Pa = Po)) "z @p 9Bl @) < Collg®)lliwy,  VE=1,

for any o € (0, o). This proves the result. O
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Proof of Theorem 1.5. For any « € (0, a7), introduce, as in above proof,
g(t) = (Id —P,)h(t), Vt>D0.

Applying (Id — P,,) to Duhamel’s formula (3.12) and using that P, commutes with S, (t) we get

t

g(t) = Salt — to)g(to) + /Sa(t —5)(Id — P,) Gu(s)ds, Vi > to.

to

Using Theorem 1.8 and Lemma 3.13, for all u € (0,v]) and any t > tg we have that

t
1960) 22 m) < Cpexp(=a(t = 1) h(t0) |12 + Ci [ exp(=nlt = ) [Goa(s)] 11
to
< Cpexp(—p(t — to))[|h(to)llx,
t
4Gy [ (ot + (145 expl-p(t = ) (), s
to
Using Lemma 3.14, this translates into
19|21 () < Cpexp(=p(t —to))|h(to) | 1 (w)
t
+ Co Cu/ (a +0(a)? + (1 + s)_1/4) exp(—u(t —5))|lg(s)|| L1 (w)ds.
to
Thanks to Gronwall’s Lemma, we obtain
4
900226y < €3 exp(=pt)exp (o G at + ) 21+ 50+ 071 ) o) e

for any t > to. But, one has (1 + )34 < x(1+1) + Cy, for x > 0. Hence,

gl L2 () < C exp(—pat)|[h(to)l| L1 (), Vit =t

with o = p— CoCy (a + ()% + X)~ Recall from Theorem 1.8 that p may be chosen arbitrarily close to
11« Consequently, p, may be chosen arbitrarily close to p, for a small enough. Using again Lemma 3.14,
this gives

[A ()] L1 (w) < Cexp(—pat)[[h(to)lr(w) VT2 to,
achieving the proof. 0O
3.4. Back to the original variable
Let us now explain how the above convergence result can be translated in the original variable. Recall

that, from (1.10), the link between the original unknown f(¢,v) and the rescaled function v (7,&) is given
by
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V2T (t)

where ns(t),us(t) and Tf(t) denote respectively the mass, momentum and temperature of f(¢,-). Then,

F(t,0) = ng(H)2Ty ()~ (r(t), w)

Theorem 1.5 can be reformulated as follows:

Proposition 3.15. Under the assumption and notations of Theorem 1.5, for any € > 0 there exist some
explicit a. € (0,00) and C. > 0 such that, for any a € (0, a.)

—uy ()]

/ F(t0) — Fult,0)] exp ( [ e

) dv < Cong(t) exp (—(ne —)7(D)), 7(H) 21,
Ré

where

Falt0) = np(D)2T5 (1)~ (%) |

For Proposition 3.15 to be operant, we need to have a better understanding of the behavior, as t — oo,
of the quantities ns(t), us(t), T¢(t). We mentioned in Section 2 that this seems a difficult task, yet, we can
profit from the exponential convergence of ¢ (7, §) towards 1, to obtain estimates for the long-time behavior
of these macroscopic quantities.

Lemma 3.16. With the notations of Theorem 1./, for any e > 0 there exist some explicit a. € (0, ) and
C > 0 depending only on € and fy such that, for any a € (0, )

|Aw(7) - Aa‘ + |B¢(7') — Ba} + |B¢(T) ’Uw(T)‘ < Caexp(—(px —&)7) V1 >1,
where we recall that Ay(7),By(7) and vy (7) are defined in (1.15).

Proof. The result was almost established in Lemma 3.13. Namely, it was proved there that, for all 7 > 0

[ Ay (1) = Aa| + [Ba — By(7)] + [Bava — By (r)vy (7)| < Col|h(7) [ 1yra) = Callt(7) = Yallyma) ,

for some positive constant C' > 0 depending only on fj. Since v, = 0 and

WV
—_

[0(7) = YallLywey < CllY(T) = dallLr(w) < Ceexp(—(pe —€)7) 7
the result follows. O
This, combined with Lemma 2.8, translates into the following result.

Proposition 3.17. Under the assumptions of Theorem 1.4, for alle > 0 and o € (0, ) one has

(t) 2 logt s t— o0
T(t) ~ —m—— a
alay + by) &b
and
4B
logng(t) ~ _QaQE—IF—aba logt, and logTy(t) =~ —m logt  fort— oco.
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—+oo s
Pinally, iy oc s (t) = ug, + V23, [ Bu(s)os(s)exp |~ [ By(rydr | ds.
0 0

Proof. We notice that, from Lemma 3.16, lim, ,o ay(7) = a, and lim, . By(7) = B, so that, by a
Cesaro-type argument (noticing that both mappings s — ay(s) and s — By (s) are locally integrable),

. 1 . 1
lim —
t—00 T(t)
0

Then, a direct consequence of Lemma 2.8 is that

ng(t) ~nyg exp (—aay7(t)), and Ty (t) ~ Ty, exp (—2B,7(t)) for t — oo (3.14)
and
+oo s
ws(t) ~uyg, + /2717, / By(s)vy(s)exp | — /Bd,(r)dr ds as t — 0o. (3.15)
0 0

Let us note that the above integral converges, at least for o small enough. Indeed, we deduce from (3.13)
that there exists some constant C, such that

By (s)vy(s)| < Ca, 5> 0.

On the other hand, (3.13) and Theorem 1.5 imply that for fixed c, lims_, o By(s) = B,. Moreover, by
Remark 2.7, we have B, > 0 for « small enough. Thus, taking « small enough, there exists 7y > 0 such
that

1
Bw(s) 2 §Ba > 0, S 2 70,

whence the convergence of the integral in (3.15).
The same reasoning as above also shows that

d o
aT(t) ™~ ¢, €XP (—5(3(1 + ba)T(t)) as t — oo

where we set ¢y, = ny,\/21y,. An application of de L’'Hopital’s rule shows that

o1 aq + ba aq + bg
lim — exp aTT(t) = cCpa——pg—,

t—oo t

that is,

#lo <c aaa+bat)~ 2 log t as t — oo
a(an + by) B\ = a(an + by) 8 '

This, combined with (3.14) gives the result. 0O

7(t) ~
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Proof of Theorem 1.4. The proof follows directly from Propositions 3.15 and 3.17. It only remains to show
that the rates obtained for ns(t) and T¢(t) in Proposition 3.17 only depend on «. Let us fix o > 0 and £ > 0
and let ¢, be the unique solution to (1.5) that has mass g, energy E and zero momentum. Let us denote by
A,,B,,a, and b, the associated coefficients defined by (1.6), (1.7) and (1.16) where 1/, is replaced with
1, We deduce from [7, Section 1.2] and Theorem 1.1 that

R =o(22)" . (\/% 5) .

Consequently, the scaling properties of Q_ lead to

_ 2F — 2F
Aa = 5 Aou a — 5 Bou
0 do Y do
2F — 2F
a=0 d—gaa and b, =0 d—g o
In particular,
Ea Ba 50& aa

and

a, + b, an+by a, + b, au+tby

This proves that the rates in (1.17) depend only on « and not on the mass and energy of ¢,. O
4. Linear analysis
The scope of this Section is to prove Theorem 1.8. We shall consider in the sequel the weight
@(§) = exp(al¢]),  a>0. (4.1)
Inspired by [32], we work on the following scales of Banach spaces:
X, Xy CcXg

where

Xo=L'(w), X;1=W"'w), X;=W>"(w). (4.2)

Recall that the linearized operator associated to B, around the unique steady state 1, has been defined in
Definition 1.7. We recall here that

Zah(€) = (1= a)[Q(h, ¥a) (E)+Q(Ya, h)(€)] — [ Q- (Ya, h)(€) + Q- (h,1a)(€)]
—ALh(§) = Bo & Veh(§),  Vhe D(ZL) =W (w)

while the elastic linearized operator is %h = Q(h, M) + Q(M, h), for all h € (%) = L}(w) and where
M is the unique Maxwellian with same mass, momentum and energy as ¥, given by (1.9). Notice that, for
any a € (0, ap)

X1 = 2(%,), Xy = 2(£2).
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We investigate in this section general properties of the linearized operators .Z,, and .% in general weighted
spaces Yqu’l(‘w).l We should keep in mind that we are mainly interested in the properties of the operators
in the Banach spaces X;, ¢ = 0, 1,2 and shall restrict ourselves to these spaces at some point.

4.1. FElastic limit

A crucial role in our analysis will be played by the fact that, in some suitable sense, .Z,, is close to the
elastic linearized operator %y for a ~ 0. Let us begin with the following lemma.

Lemma 4.1. There exists some explicit @ > 0 such that, for all k € N, g > 0, there exists a explicit function
Mg @ (0,c0) = RY with lim, 0+ 1k,q(a) = 0 such that

[V = Ml ) < ale) Vo€ (0,00),
where the weight function © is given by w (&) = exp(alé]), a € (0,a).
Proof. According to [8, Theorem 3.1], for all k € N, ¢ > 0
Jim v = Mgz gay =0 (4.3)
with some explicit rate of convergence, while, according to [8, Corollary 3.3|, there is A > 0 such that
Jim, [0 = MllL(m,) =0, Vg2 0,b€[0,4/2)

where my,(§) = exp(bl¢]). Using the following interpolation inequality (see [26, Lemma B.1] where we recall
that ©o = my)

1/8 3/4
1wt ey < CNF lpansrasar 2 gy 11 Ermnay 1125

valid for all f € W8k+7(1+d/2).2(Rd) N L1 (1m,,), we deduce easily the conclusion. Notice that the above
rate of convergence can be made explicit. O

In the sequel, we always assume the weight ©o to be given by (4.1) for a € (0,a).

On the underlying space qu’l(w), introduce the operator Ty, : 2(T,) C qu’l(w) — qu’l(w) defined
by 2(T) = W' (w) and

Toh = —Bodiv(Eh(€)),  he D(Ty).

One sees that the operator T, is the one responsible for the discrepancy between the domain of %, and
Z,. Because of this, we set

P2+ 2(PY) C Whl(w) = W (w)

as P = % — %, + T, with domain

1 To avoid too heavy notations, we shall still denote by L, and Ly the restriction of the above defined operators in the spaces
X; and Xo. We adopt the same convention for the associated semigroups and spectral projections in those different spaces.
Howewver, one should always keep in mind the underlying space on which one considers such operators.
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D(PS) = D) = Wiy (w).
Notice that little algebra yields
Pgh = Q(th - 7/}04) + Q(M - 'l/}aa h) t+a [Q+(¢av h) + Q+(ha ¢a)] + (Aa - dB&) h
for any h € 2(P2). One has the following proposition.

Proposition 4.2. For any k € N and any q > 0, there exists some explicit function €y 4 : (0,0) — RT with
limy 0+ €k,q(a) = 0 and such that

K,
||Pgh||w§v1(w) < Ekyq(a) ||h||W1"‘+’1q(w) Vh e W1+1q(w)' (4.4)
As a consequence,
| L~ Lohll sy < (@) [l sy Vh € W (@), (4.5)

Proof. The proof is based upon the well-known estimate for the operators Q. associated to hard-potentials
(see Lemma B.4 in Appendix B for a simple proof): for any ¢ > 0, there is some universal positive constant
Cq > 0 such that

192 (9. NliLr(w) < Callgllzs, ) 1flL1, ) VFo9 € Loy (@) (4.6)

gq+1

Then, since
Zah(§) — Loh(§) = Q(h, Yo — M)(£) + Qe — M, h)(§)
—a [Qy(h,Ya)(§) + Qi (Ya, h)(§)] + aanh(§) — Badiv(Eh(§))  (4.7)

(where we used that ca, = dB, — A, ), one deduces from (4.6) that

IPaRllLy ey < 2Cq Nl L1, () 1Ya = MllLt, ) + 2Cqa |7l 14

Lo et (@) + callhll Ly (w)-

Using the fact that ¢ := SuP,¢(0,a0) [[¥allLt,, (w) < oo while there exists a > 0 such that sup,¢(g,aq) 2a =
a < oo we get that

||7)3h||L;(w) < (2Cgmo14q(a) +2C; cqa + aa) [|hf| L1, () Vh e L, ()
where 19,144() is provided by Lemma 4.1. This proves (4.4) for k = 0 with
g0,q() = (2Cq Mo, 144(c) + 2C; g + ).

To prove the result for higher-order derivatives, say for £ = 1, one argues as before using the fact that

One obtains then easily from (4.7) that

||772h||qu,1(w) < 2Cq||h||wajl(w) [Ya — Mlequ(w) + 2Cq04||h||wajl(w) ||¢a||w11jq(w) + aaaHhHqu,l(w).
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Setting €1 4(a) = (2C; M 144(@) +2C, c1,400 + ac) where 71 144() is given in Lemma 4.1 and ¢, =
SUP e (0,00) ||1/Ja||W11J,rl (w) < 00, we get (4.5) for k = 1. The proof for k > 1 follows along the same paths.
One deduces then (4.5) from (4.4) using the obvious estimate ||Tah||qu,1(w) < |Ba|Hh||W1"j1*1(w)' O

4.2. Splitting of £,

Let us now recall the following splitting of % introduced in [28,32]. For any 6 € (0,1), we consider
Os = O5(&, &4, 0) € C°(R? x RY x S?=1) which is bounded by 1, which equals 1 on

Js = {(6,6,0) ERTXRIx ST g <0715 26 <€ — & <615 |eosf| < 126}

and whose support is included in J5/, (here above cos = <é:§:| ,0)). We then set

Ly h(€) = / [MEDR(E) + M(ENR(E,) — M(E)h(EL)] € — &.] O5(E, &4, 0)dEdo

RdxSd—1
) (4.8)

Lyh(E) = / [MEDR(E) + M(ENR(E) = MOREITIE — &l (1 = B5(&, €, 0))dEdo

RdxSd—1

so that
Dipo — 305,5 +$0R,5 _ EM

where ¥ denotes both the mapping

(€)= /M(é*)lf Celde., £
R4

and the associated multiplication operator. We define then
As(h) := Z2°(h)  and  Bos(h) :i= L (h) — Sah
so that £ = As + Bos. Let us recall [18, Lemma 4.16]:

Lemma 4.3. For any k € N and 6 > 0, there are two positive constants Crs > 0 and Rs > 0 such that
supp (A; f) € B(0, Rs) and

[ As fllwe.2 < Crsl

fliy, Ve Li(RY), (4.9)
This leads to the following splitting of .Z,:
fa = Ba75 + -A6

where By.s = Bos + [Za — %] One has the following properties of B, s, see [32, Lemma 2.7, 2.8, 2.9] for
a similar result.

Proposition 4.4. For any k,q > 0, there exists a,t 0> 0 Ok,q > 0 and vy, > 0 such that

Ba,s + vk is hypo—dissipative in qu"l(w), Va € (O,al’q), d € (0,0k,4)
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with P(Ba.s) = qujll’l(w) and
Bo.sh = By sh — Poh + Tuh, he Wi (w).

Remark 4.5. Notice that, for £ = 0, the hypo-dissipativity of B, s simply reads

/ Basf(€)signf(€) (1w (€)de < —w0lfllir,,w)»  Vf € Lty (w)
]Rd

which means that, for k = 0, B, s is actually dissipative. For k > 1, there exists a norm — denoted by [-] —
which is equivalent to the || - HW(;"’l(w) norm (for which [-], denotes the norm on the dual space (W}-! (w))*)

and such that for all f € 2(Ba,s), there exists uy € (W (w))” such that
(ug, ) = [fI> = [us]?  and  Re(ug,Basf) < —vi[f]?
where here (-, -) denote the duality bracket between (qu’l(w))* and qu’l(w).

Proof. Notice that the analysis performed in [26] and [32] (in the spatially inhomogeneous case) proves
that, for any k,q > 0, there exist § > 0 and v > 0 such that

Bo,s + vk is hypo—dissipative in qu’l(w).

It would be possible to simplify the proof we give using such an estimate. We prefer to give a direct and full
proof of the result. Notice that our proof is a technical adaptation of the one given in [32]. We first consider
the case k = 0. We write By, 5(h) = Z?Zl C;(h) with

Ci(h)==Poh,  Ca(h)= 23" (h),  Cs(h) = ~Badiv(§h(€)), Ca(h) = —Sumh
and correspondingly,

[ Bush(©sign(h(©)) €)7 () d€ = S 1o

Rd
First, it follows from Proposition 4.2 that
Li(h) < |Pahllci(e) < €o,g(@)lBllz, (),

with lim &g 4(a) = 0. Now, as in [32, Eq. (2.10)], one has

a—0t
1) < L5 sy < 7O, (o0

with ;ir% 7(0) = 0. Then, since hV¢signh = 0, one has
—

I;(h) = —Ba / div(E|h(©)]) (€)1 @ (€) A = B, / ()€ - Ve (€)1 (£)) de
R4 R4

Since £ - Ve ((€)7w(€)) = q€]2(6)T % (&) + a(€)?|¢|w (€), it is not difficult to see then that there is C' > 0
such that
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«
I3(h) < 05 (aa +ba)llAllL:, () < @ClRl| L1, | (w)-

Finally, it is well-known that there exists some constants oo, o1 > 0 such that, for any ¢ € R?,
0 <09 <oplf) <EmE) <o1(f), (4.10)
which leads to
I4(h) < =oollhllL:, , (w)-

Gathering the previous estimates, one obtains

/Ba,s(h)(é) sign(h(€)) (€)@ (&) d€ < (e0,4() +a C +7(0) = 00)[|hll Ly, , (w)- (4.11)
R4

Let ) € 0, ag) be such that g ,(a) + aC < oq for all a € O,ozT . We then choose 6§y, small enough
0,q »q 0,q »q

such that, for any ¢ € (0, do,q)
vy = —(7(0) + e0,q(@) + aC —0g) >0
for all « € [0, a&q) and get the result. We now investigate the case k = 1. We consider the norm
[7] = Il Ly ) + 0l Vehll L1 (e,
for some 1 > 0, the value of which shall be fixed later on. This norm is equivalent to the classical

qu’l(w)-norm. We shall prove that for some v; > 0, B, s + v is dissipative in quvl(w) for the norm
[-] and thus hypo-dissipative in W' (zo). To this end, we consider

[ VelBash(©)) -sien(Ten() (61 () de
Rd

where we used the shorthand notation sign(Veh(§)) = (sign(0g, h(€)), . . ., sign(0¢,h(£))). First,
Ve(Bash) = Ve(Bosh) — Ve(PSh) + Ve(Tah) = Ve[ Ly h — Sp()h] — Ve(PSh) + Ve(Tah).  (4.12)
It then follows from Proposition 4.2 that
IVe(Pah)llzye) < era(@)Pllwis, ) = era(@IhlLy, ) + €1a(@)VehllLy, ) (4.13)
with lima_+ £1,4() = 0. Now,
Vel h = Sm(©h] = £ (Veh) = Sm(€)Veh + R(h),
where
R(h) = Q(h, VeM) + Q(VeM, h) — Ve(As(h)) + A5(Veh).

Again as in [32, Eq. (2.10)], one has
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125 (V)| oy < 7(6)[[Vehl|

q+1

with lim 7(0) = 0. Then, by (4.10),

§—0

~ [ £aal€) Veh) -sien(Ven() (61 () d = - / Eaal€) [Veh(©)] (€)7 w(¢) e

Rd Rd
=00 [[VehllLy

+1(‘W

Here above, |V¢h(§)| = 25:1 |0¢, h(€)]. Still, as in [32, p. 1942], an integration by parts leads to
IVe(As ()l L1 (w) + [As(Veh) || Ly () < CsllRl| Ly ()
for some constant Cs > 0. Hence,

IR 3w) < CsllAll 21, o)-

Therefore,

IVl 28 (h) = Saa bl oo < Csllhl s

q+1

4+ (7(8) = 00) IVehlzs () (4.14)
with lims_, g+ 7(0) = 0. Finally,

/Va(Tah(S))'Sign(Vsh(é)) (€)@ (§) A = *Ba/\Vsh(é)HOqW(E)dS

R4 R4

LB, / IVeh(€)] Ve - (€(6) w(£)) € < a C [ Vehllp (-
Rd

(4.15)

Combining (4.12) with the above estimates (4.13)—(4.15), one obtains

[ VB ) sign(en(©) (€7 w(6) e

Rd

< (Cs +e1g(@)lbllLy,, (@) + (14(@) +aC+7(6) = 00)[[Vehl| L2

q+1

Hence, combining this estimate with (4.11)

/Ba,s(h)(f) sign(h(£)) (€)? = (£) d§+n/Vg(Ba,a(h)(§)) -sign(Veh(§)) (§) @ (£) d€

R4 R4
< (€0,4() +7(0) + aC — 00 + 1 (C5 + e1,4() Al L2, ()
+n(e1g(@) +aC+7(8) = 00)[VehllLy,, (w)
We now choose 6 > 0 and a > 0 small enough so that —\ := ey ¢(o) + a C + 7(6) — 09 < 0. Let then n > 0

be small enough such that vy — 1 (Cs + €1 4(c)) > 0. We set v1 := min{rvy — 1 (Cs + €1,4(c)), A} and we
finally obtain
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/ Bo s(h) sign(h(€)) (€9 w(€) dé + 1 / Ve(Bas(h)) - sign(Veh(€)) (€)1 w(€) de

R4 Rd

@) Vel (w)| < —nilh],

q

<= [0l

which means that B, s + 1 is hypo-dissipative in qu’l(w). We prove the result for higher order derivatives
in the same way. O

Remark 4.6. Notice that, for any € > 0 and any k,q > 0, a careful reading of the above proof shows that
one can choose v, = 09 — € up to choosing ozl ¢ >0 and 0y 4 > 0 sufficiently small.

4.8. Properties on the scale of Banach spaces X;, i =0,1,2

Let us from now on restrict ourselves to the scales of Banach spaces Xo C X7 C X introduced earlier.
We begin this section by recalling the spectral properties of % in the spaces X;, referring to [26] for details.

Theorem 4.7. For i =0,1,2, the operator £y : 2(%) C X; = X,; with domain
2(%) = Wﬁi (=)
is such that 0 is an eigenvalue of £y associated to the null set
N (L) = Span(M, &M, ..., EaM, [€PM).
Moreover £y admits a positive spectral gap p > 0, i.e.
S(L)N{AeC; Red > —u,} = {0}

and %y is the generator of a Cy-semigroup {Sp(t) ; t > 0} in X; for which there exists a positive constant
Co > 0 such that

[[So(t)h — Pohllx, < Coexp(—pst)||h — Pohllx,, vt > 0, heX;

where Pg is the spectral projection of £y associated to the eigenvalue {0}. Moreover, there exists ng € N
and C(ng) > 0 such that

C(n
IR, Z0)ll z(x,) < )E|n(()))’

VReA > —py. (4.16)
Remark 4.8. Notice that the above projection operator Py does not depend on the space X; (i = 0,1, 2), i.e.
it acts in the same way in each of the spaces Wy'! (), W' (zo) and W, (w0). Indeed, setting My = M,
M;(€) = M) (j =1,...,d) and Mgy1(§) = [PM(E), for any @ = 0,1,2 and any h € X;, one has
Poh = Zjié n;(h)M; for some n;(h) € R. Moreover Range(Id — Py) C Range(%) from [21, equation
(6.34), p 180] so that

1 0
/(IdfPo)h(i) & |de=1|o Vi=1,...,d.
R €12 0

Little algebra, using standard Gaussian computations, allows to determine n;(h) and we get easily that
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min) = [ @) (52 -1l Y e, neato = [nie) (GleP 1) ae

Rd Rd

and n;(h) =2 / h(€)¢;d€ for j =1,...,d. Notice in particular that, since all the M; are smooth, it holds
R4
P() S @(Xi,XHl), for i = O, 1.
We have the following result whose proof is differed to Appendix C

Proposition 4.9. For i = 0,1,2, there exist some explicit 5, > 0 and ot > 0 small enough such that, for all
a € (0,al), § € (0,6) the operator
Bas - -@(Ba,é) cX; =X

)

is the generator of a Co-semigroup {Uy s(t) ; t = 0}. Moreover, there exists v. € (ux,00) and C > 0 such
that

1o s () | g,y < Ciexp(—vat) V£ >0,i=0,1,2.

Remark 4.10. With the notations of Proposition 4.4, one notices simply that C; is a positive constant which
relates the usual norm to the modified equivalent norm [-] in X;. Moreover, using Remark 4.6, one also sees
that for «, d small enough, one has v, arbitrarily close to og (with v, < g¢). By [28], we have u, < 0. We
can thus assume that og > v, > ps.

Notice that, since Ajs f is compactly supported for any f € L1(R%), one can deduce easily from (4.9) that
As € B(WF(w)) for any k,q > 0. In particular, from the bounded perturbation Theorem, one has the
following

Theorem 4.11. With the notations of Proposition /.9, for any i = 0,1,2 and o € (0,al) the linearized
operator

ja : g(fa) cX; -+ X;

is the generator of a Cy-semigroup {S,(t); t = 0} given by So(t) = > 0, ) (t), where” 2% (t) = Uns(t)
and

WV
o

t
V) = [V - D Als()ls,  neEN,
0

where {Uy 5(t) ; t > 0} is defined in Proposition 4.9 and the above series converges in #(X;) (1 =0,1,2).
For notations convenience, we introduce for any n € N,
T () = AsV(), V> 0.

Notice that, with the notations of [18,32], 7;("+1)(t) = (.A(;Lla,g)*(nﬂ) (t).

? Notice that, for each n € N, the above Dyson-Phillips iterated VL") (t) depends on §. We do not explicitly show this dependence
to avoid heavy notation.
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Proposition 4.12. Let i = 0,1 be given. Let § € (0,6,) and o € (0,a’) be given as in Proposition /.9. Then,
for any n € N, there is Cs,, > 0 such that

VS ()| ax,) < Cont™ exp (—vst) (t > 0),

and

17"V Ol Xi40) < Cont™ exp(=wat) (> 0).

Proof. The proof of the first point is easily obtained by induction. Indeed, it holds true for n = 0 thanks to
Proposition 4.9. Assume it holds true for some n € N. Since A; € #(X;) one has

t
O < [ 700 Adk)
Vo )llzex,) < / V) (¢ — 5) AsUy.5(5) (@(Xi)ds
0

t

< Csnll sl zcx.) /(t — 5)" exp(—vu(t = 5)) [Ua,s(5) | (x,)ds
0

t
< CiCs |l As |l cx,) exp(— /t—s )ds
0

so the result is true for V(nﬂ)( t) by setting Cs 41 := n+1 —7C0iCs.n||As|| (x,)- Since Ash has compact support
for any h, we get As € B(Wr(w), Wlqul !'(w)), and therefore

||7;(n+1) (t) ||55(Xi,Xz‘+1) < ||A5 ||55(X1,7X11+1) ||V(§zn) (t) ||B(X'L) :
The result follows from the first point. O

Lemma 4.13. For any n € N, there exists C(d,n) > 0 such that, for all i = 0,1 and all A\ € C with
ReA > —v,, it holds

HATRO Bao)l" g, 3, < C(6m) (ReA+ 1) " (4.17)

Proof. Using the fact that, for A € C with ReA > —v,, R(X, Bas) [AsR(A, Ba.5)]" ! is the Laplace transform
of Vc(kal)(t) (which is easily checked by induction argument), we obtain that

AR\ Bas))F = AsR(N Bas) [AsRON Bas)]" ™! = As / exp(—A)VE-D (1)t
0
/exp DAV (1)t :/exp(—xtmgk)(t)dt.
0 0

The result follows then directly from the previous proposition. O
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4.4. Spectral properties of £, in Xy
In all the sequel, we fiz § € (0,9.) and simply write
A= As, Bo = Ba.s, By = Bos.
We obtain the following whose proof is the same as [32, Lemma 2.16] and is postponed to Appendix A.
Lemma 4.14. For all A € C\{0} with Re\ > —u, and all k € N, let
Jak(N) = (Lo — Lo) RN, Z0) [AR(N, Ba)]"
Then, for all V. € (0, iu,), there exists v}, = (0,a') — RT with limy_,o+ 7% () = 0 and such that
||Ja,k(A)||%(X1) < rp(a), YA€ Qi(a) (4.18)

where Qp(a) = {\ € C ; ReX > —v. and |\| > ri(a)}. Moreover, there exists o, € (0,alt) such that
Id — Jokx(N) and A — Z, are invertible in Xy for any A € Qi(a), o € (0,q;) with

R Z) =TarNAd — Tae(N)7H A€ Q(a) (4.19)

where T, (X) = Z;:é R\, Bo) [AR, Bo)) + R(A, %) [AR(N, Bo)|". Finally, there exists some positive
constant Cy > 0 such that

VA € Qu(a), ae (0,q;). (4.20)

Ck
<
HR(/\aga)”%(Xﬂ N7 _Tk(a) .

k 1
2l — i)

Let us fix v, € (0, pu,) and k € N. There exists QT]C € (0,qy,) such that ri(a) < v, for any a € (O,g;fc).
From the previous result, one gets in particular that,

S(Za)N{AEC;ReA = -1} C{z €C; |2| < r(a)}, Vo € (O,QZ).
We denote then by P, the spectral projection in X; associated to the set
Sy =6(Z)N{NEC;RerA = .} =6(ZL)N{z€C; |z| <rp(a)}.

One can deduce the following lemma. The proof is similar to that of [32, Lemma 2.17], and it is postponed
to Appendix A.

Lemma 4.15. For any « small enough, P, € $(X1,X2). Moreover, there exists some explicit £y : (O,QITC) —
RY such that lim,_,o+ £o(a) = 0 and

IPa = Poll gx,) < fo(a)- (4.21)
Using Lemma 4.15, there exists some explicit oy € (0, ap) such that
||Pa — PO”%(Xl) < 17 Ya € (0,@1).

According to [21, Paragraph 1.4.6] (see also [32, Lemma 2.18]), for all a € (0, 1)
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dim Range(P, ) = dim Range(Py) = d + 2
where the last identity is deduced from Theorem 4.7. This leads to the following proposition.

Proposition 4.16. Let us fiz v, € (0, py). There is some explicit a1 € (0,ap) such that, for all a € (0, 1),
the linearized operator £, : P(%.) C X1 — Xy is such that,

S(ZL)N{ze€C;Rez > v} ={ul,..., ul

d+2

where pl, ..., udt? are eigenvalues of £, (not necessarily distinct) with || < ri.(a) for j =1,...,d +2.

4.5. Semigroup decay in X

Let us now deduce, from the above results, the decay of the semigroup associated to %, in the space X;.
This is done thanks to the following quantitative spectral mapping Theorem which can be deduced from
[27, Theorem 2.1], see more precisely [24] for a slight correction on the assumptions.

Theorem 4.17. (Quantitative Spectral Mapping Theorem [27]) Let X be a given Banach space and let
A 9(A) C X — X be the generator of a Cy-semigroup {Sa(t); t = 0} in X. Assume that A can be split
as

A=A+B

where B is the generator of a Cy-semigroup {Sp(t);t = 0} on X and A is B-bounded. Assume moreover
that

H1) There exists a* € R such that, for all a > a* and any £ > 0, there exists C' = Cqy > 0 such that

HSB + (ASH)0 (t)H@(X) <Cexplat) t30.

H2) There ezists ¢ € (0,1], s € [0,() such that A € B(X,,X) and there exists n > 1 such that, for all
a>a*

H(ASB)(*”) (t)H:%(X,XC) < C, exp(at) t>0

for some positive constant C,, depending only on a,n,( and Xs denotes the abstract Sobolev space
associated to A.
H3) The spectrum &(A) satisfies

S(A)N{zeC;Rez>a*} C{z€C;Rez>d'}
for some a’' > a*.
Then, there exists a projector I1 € B(X) satisfying
AT =T1IA, A = A|x, € B(X1), S(A1) C{zeC;Rez>a"}
where X1 = Range(IT) and, for any a > a*, there exists some positive constant Cy > 0 such that

ISA()(1d ~ 1)) < Coexplat), 0.
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We deduce from this the following relaxation rate in Xj.

Proposition 4.18. Let us fix v, € (0,py). There exists a* € (0,aq) such that, for any o € (0,a*) the
Co-semigroup {Sa(t) ; t = 0} in Xy generated by L, : 2(Z,) C X1 — Xy satisfies, for all € (0,v))

[Sa()(Id = Pa) || g,y < Cuexp(—ut)  VE=0
for some positive constant Cy, > 0.

Proof. Let a; € (0, ap) be such that Proposition 4.16 holds true. Given a € (0, a1 ), we apply the above The-
orem 4.17 with X = X and A = %,. The splitting of .Z, has been established in Section 4.1. According to
Proposition 4.16, if we set a* = —v/., one sees that Hypothesis H3) is met with a* < a’ < min(ul, ..., udt?).
Notice also that, for all n € N, Sp* (ASp)*™)(t) is exactly yirty (t) so that Assumption H1) is met thanks
to Proposition 4.12 since, for all n € N, t"Tlexp(—v,t) < C exp(—v.t), for all t > 0, for some positive
constant depending only on n, v, ;. In the same way, for ( = 1 so that X = X, and s = 0 so that X; = X;
one sees that H2) is met thanks to Proposition 4.12. This proves that there exists a projector I, such that,
for all pn € (0,v7)

[Sa () (Id — ILs) || g(x,) < Cpuexp(—pt).
It is well-known that this implies that the spectrum of the generator .Z,, satisfies
6(9%01) == 6(£&‘Range(ld—na)) U 6($a|Range(Ha))

and, since &(Zu|Rrange(m1.)) C {z € C; Rez > —v.} according to Theorem 4.17, we see that it coincides
with {uk, ..., u&+?} and therefore I1, = P,. O

4.6. Stability in Xq: proof of Theorem 1.8

We still denote here by {S,(t); t = 0} the Cy-semigroup in Xq generated by the linearized operator .%,.
To deduce the decay of the associated semigroup from the above fine properties of the spectrum of .Z,,, we
shall resort to the following enlargement result which ensures some suitable quantitative spectral mapping
theorem from X; to Xo.

Theorem 4.19. (Enlargement result [18, Theorem 2.13]) Let E, £ be two Banach spaces with E C £ dense
with continuous embedding, and consider L € €(F), L € €(€) with L|g = L and a € R. Assume the
following:
A1) L is the generator of a Cy-semigroup {U(t); t > 0} in E,
S(L)N{X; ReA 2 a} ={&,..., &} C 6q4(L)
and L—a is hypo-dissipative on Range(Id —1IIy, ,) where IIy, , is the spectral projection on E associated

to the above set of eigenvalues.
A2) The operator L can be written as

L=A+B

with A, B € €(E) where A € B(E) and L generates a Cy-semigroup {S(t); t = 0} in £ and such that
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(a) (B —a) is hypo-dissipative on € while A € B(E) and Alg € B(E),
(b) there are constants n € N, C, = 1, such that

|(AS)™ ) < C,, exp(at), Ve > 0.

O] Py

Then, L is hypo-dissipative on € and there exists some constructive constant C' > 1 such that
S0 ~TL ) ) < Cht™ explat), ¥t >0
where Il o is the spectral projector of L associated to {&1,...,&x} in .
We are now in position to prove our main result concerning the linearized operator %, in Xgq.

Proof of Theorem 1.8. We apply Theorem 4.19 with &€ = Xy, £ = X; and L = Z,|x,. The spectral
structure of L in X, is given by Proposition 4.16. From Proposition 4.18, we deduce that, for any p satisfying
—min(pl, ..., pd*2) < u < vl the operator L — i is hypo-dissipative in Range(Id — P,) (see [18, Theorem
2.9] for the equivalence between hypo-dissipativity and decay of the semigroup). Again Proposition 4.12

shows that Assumption A2) is met and the conclusion follows. O
As mentioned earlier, it is not clear whether the above Lemma 4.15 holds true in Xg or not. However, it
appears important for the proof of Lemma 3.14 to obtain suitable norms of P, in Xy for small values of «,

where P, is defined in Theorem 1.8. This will be done thanks to the following result.

Lemma 4.20. With the notations of Lemma 4.15, one has

sup  [|Paollzx,x,) < o0
a€(0,a)

Proof. According to [18, Theorem 2.1}, for any « € (O,QL), the restriction of projection operator P, on X3
is exactly P, and, for all j =1,...,d+ 2,

Ker(%, — p)™ = Ker(L — pl )™, j=1,...,d+2
where m; is the algebraic multiplicity of 47, and, as in the proof of Theorem 1.8, we set L = %, |x, . In particu-
lar, the eigenfunctions of .%,, associated to p, belongs to X;. One gets therefore easily that P, € %(Xo, X1).
Using Lemma 4.15 we have that, for all h € Xy, lim,_,¢ |Poh—Poh||x, = 0 while, according to Remark 4.8,
Py € #(Xo,X1). Since X; is dense in Xg and P,|x, = Pa, this implies that SUD ¢ (0,a]) IPohlx, < oo for
any h € Xy and we get the conclusion thanks to Banach-Steinhaus Theorem. 0O
Lemma 4.21. There exists a mapping {1 : (O,QL) — (0,1) with limy—0¢1(e) =0 and

I(Pa = Po)?xo) < a(@) Vo€ (0,a)). (4.22)

In particular, there exists af such that, for all o € (0,a%), Id — (Po — Pyg) s invertible in Xo and there
exists C' > 0 — independent of o — such that

|(1d — (Po —Pp)) sy <C Vo€ (0,a1).
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Proof. Since, for all o € (O,gl), (Po —Pg)? = (Py —Po) P, + (Py — P,) Py, and since, for any h € Xj,
[hllx, < [[hllx, one gets

[(Pa —Po)*lax,) < IPa — Pollzxy)IPallzxo,x:) + IPa — Pollzex) IPollsx,x1)

and, thanks to the previous Lemma and Lemma 4.15, we get (4.22) with ¢;(a) = Cly(a) where C' =
2 SUD,e(0.al) IPallzxox,) < oo. Now, given é € (0, 1), there exists aj such that /1 (a) < d for all a € (0, a7).
Then, from (4.22) and since [|[Po — Pollsx,) < 2 for any o, we get

n—1
[(Pa = Po)"[[x,) <262 Yn=>2.

We deduce easily that (Id — (P, — Py)) is invertible with (Id — (P, — Pg))™* = > >° (P, — Py)" and

[(Id — (Po —Po)) Mlax,) <1+2+2>07,6 <3+ lf‘s/g. This proves the result. O

Appendix A. Proofs of Lemma 4.14 and Lemma 4.15

We collect here the proofs of two fundamental results in Section 4.4. Notations are those introduced in
Sections 4.1 and 4.4.

Proof of Lemma 4.14. One has clearly that, for all ReA > —pu,, [AR(M, Bo)]" € B(X1,Xs), R(\,.%) €
A(Xy) and L, — L € B(Xo,Xy) for a € (0,al) from which

ek Wy < 1o = Loll e,y 1RO 20}y [[ARO B

Using (4.16), (4.17) and (4.5), this yields to a bound
|‘ja7k(/\)||.%,(xl) < Ch 51,1(04) |)\|_”D7 VRel > —

for some explicit constant Cj > 0. Choosing then r4(a) = (Cg 51’1(a))ﬁ, we get (4.18) and clearly
lim, o+ 71 () = 0. Clearly then, if a, is chosen in such a way that ri(«) < 1 for all a € (0, ), one sees
that Id — Jo % (\) is invertible in X; for all A € Q(a) with

oo

(Id = Ja (W)™ =D [Tap V]

p=0

Let us fix then o € (0,¢;) and A € Qi (a). The range of I'y 1 (A) is clearly included in 2(B,) = 2(%a)-
Then, writing .%,, = A + B, we get

(A= Z)Tar(N) = (A= Ba — ZR (A Bo) [ARN, Bl + (A — Zo)R(A, Z) [AR(N, Ba))* .

The first term on the right-hand side is equal to

k—1 k—1
(A= Ba — A) Y RN\, Bo) [ARN, Bo)) = > [AR(N, Ba)V
Jj=0 Jj=0
k—1
= AR\ Ba) [AR(A Bo)) = Id — [AR(A, B.))*
j=0
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while, writing simply (A — %) as (A — %) + (£ — Z,) the second term is equal to
AR, Ba)]™ + (L — Za)RO\, %) [AR(N, Ba)] = AR, Ba)* = Ta (V).
This proves that
AN =L))o k(N =1d — Tor(N)

and shows that Ty x(A)(Id — Jak(X)) ! is a right-inverse of (A —.%,).

To prove that A — %, is invertible, it is therefore enough to prove that it is one-to-one. Consider then
the eigenvalue problem

ZLoh=Ah,  he (L) =W (w).
Since 2(%y) = W, (ww), one can write this as (A — .%y)h = Zuh — Zh and as such
[hllx, = IR\, Z0)(Za — Zo)hlx, < eri(@) [[ROA Z0)llsx,) 1hlx,

where we noticed that, since A # 0 and Re\ > —py, A € 0(%) and where we used (4.5). Notice that,
according to Hille-Yosida Theorem, there exists a constant C > 0 such that

IR, Z0)llacxy) < Co(ReA + )" < Colpe — i)™
so that
IR]lx, < Coer(a)(pme — ) IRk,

Let us now estimate ||h||x,. Since Z,h = A h one has (A — B,)h = Ah and h = R(\, B,)Ah, so that

C 02 ||A||@(X Xs) CQ ||~AH%’(X X2)
h < A o h X h —1 2 h —17 2 h
Iz, < 1RO Bl ARl < oo Al < BTy < 2ROl
for some positive constant Cy which gives the equivalence between the norm || - ||x, and the modified

equivalent norm [-] obtained in Proposition 4.4. Thus,

CollAll x, X) 2l

[hlx, < Coer,1() 5
(,u* - Vi)

% < 1 which implies that

h = 0. This proves that A — %, is one-to-one and its right-inverse is actually its inverse.

and one sees that, up to reduce «, one can assume that Cpeq 1(c)

To estimate [|R(A, £, )| % (x,), one simply notices that

1
_ p [
1d — Tax (V) Hlax,) < E: 1ok M,y < 7 (o)’ VA € Qp(a)
from which
IR, Za)ll <— ITa k(M
yLa)llB(X1) X 1_ rk(a) o,k B(X1)
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and, from the previous estimates of [R(A,Ba)|lzx,), | [AR (X, B,)) |l zx,) together with that of
R(X, £0) || scx,) one checks without difficulty that there exists Cy > 0 such that

k
Tk M)l zx,) < Cr > (Red + 1)~ Ck
7=0

m
M -

\

T

from which we get the result. 0O

Proof of Lemma 4.15. We use Lemma 4.14 for some suitable £ € N and let y;(a) :== {2z € C ; |z] = ri(a)}
where 7y () is provided by Lemma 4.14. One has

1 1

]P)a = f R(}\,ga)dA, PO = — % R()\7$0)d)\

24w 2
i () i (@)

To prove that P, € #(X1,Xy), it suffices to estimate [|R(), Z)|lzx, x,)- Notice that, in the space Xi,
the range of R(\,.%,) is indeed X2 which is the domain of .%, (i.e. Xy = Z(%,|x,)). Therefore, the norm
Il - IIx, is equivalent to the graph norm of .Z, (seen as an operator of X;): there exists Cy, > 0 such that

[fllx, < Co (Ifllx, + [ Zafllx,),  VfeXa.

Then, given A € (o) and g € X; one has
IR(A, Za)gllx, < Ca (IR, Za)glx, + [|ZaRA, Za)gllx,)
Since ZaR(A, Za)g = —g + AR(N, Z,)g and |\ = ri(a) we get

IR Za)gllx, < Co (1 +7r6(@)) IR, Za)glix, + llglx,)-

Using (4.20), one has |R(\, Zu)llzx,) < Mi(a) for all X € y(a) for some positive constant My (a)
depending only on k, a and on v, — v,. This shows that

sup HR(/\"’%CE)”%(XLXz) = C(k’a) < o0
A€k ()

and this proves the bound on [Py zx, x,)- Let us now prove (4.21). Recall that

1
P, —Po=5— f{ [R(N,-Z) — R(N, %) dA
Vi ()
with R(\, %) — R\, Za) = R(A %) (L — ZLa)R(N, Z,). However, even if for small a, one can make
Ly — £, small, it appears difficult to obtain bounds on [|R(), £) — R(A, £4)| % x,) because of the domain
loss in (4.5). Indeed, such a domain loss would require uniform bound on [|R(X, Z,)| % x, x,) for a ~ 0

and such bound cannot hold true because the range of R(X,.%) is not X5. We have then to proceed in a
different way, following the approach of [32, Lemma 2.17]. We apply Lemma 4.14. We simply write

Ga(N) =D RNBHARNBL)Y,  0<a<af

so that Lemma 4.14 reads
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RO\ Za) = Ga(N)(Id = Tae(\) "+ RO, L) AR, B)]* (Id = Tk (V)
while one proves without difficulty that, since %y = A + By, it holds
RN, %) = Go(N) + R(N, %) [AR(N, Bo)]" .

Since A — R(\, By) and A — R(\, B,) are both analytic on D(0,7(c)), one has

7{ Go(\)d\ = f Go(N\)dX = 0. (A1)
Vi () Vi (@)
Consequently
1 1
Py— - 7{ RO, Z)dA = —— 7{ RO\ %) AR, Bo)]* dA
207 27
i () V(@)
while
1
P,=— G, \NId — T, (M)t
5§ GalNId - Zuv)
Vi ()

= 7{ RO\ %) AR, Ba)] (Id — o s (V) ~1d

2
V(@)
— 1 -1
Yk ()
1
s f RO %) [AR(A Ba)]* (Id — o 1 (A)1dA
Yk ()

where we used (A.1) in the first integral. From this, we get

P, — Py = % ]{ RN, %) {[AR()\,BQ)]’“ (Id — Jor(\) 7L = [AR(A,BO)}’“} dA

V()
1 -1
+ % f Ga(/\)joz,k()‘)(]:d — ja,k()‘)) dA
Vi (@)
1
== 7{ R(AZ0) AR, Bo)]* [(1d — Tk (V)™ — Td] dA
V(o)

- % 74 R\ %) {[.AR(A,BQ)]k - [AR(A,Bo)]k} dA
Yk (@)

+ L 75 GV Ta k(NI — T (1) ~1dN
i (@)

= ]Il,a + ]12,(1 + ]I37o¢-

According to (4.18) and arguing as in the proof of (4.20), for any A € yx(«), the integrand in I3, is such
that
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C
G (Mo (VA TosN) ) € 0G0 ey < )

S 1 —rp(a) —rg(a)

for some positive constant depending on k and on v;. Thus, ||I3 4 ||zx,) = O(rx(a)). In the same way, since
[(Id = Tk (V) 7' = 1d] = Tak(A)(Xd — Jo k(X)) !, one gets that the integrand of I 4 is such that

[ROn 20) 4RO B [0~ T — 1] < RO ) (AR Bl

2X1)  1—ri(a)

and, using (4.17), one gets easily that I o, = O(ri(a)). Now, concerning the integrand of Iy, one has

[AR(N, Bo)]" = [AR (X, Bo)]*
k—1

= 24RO, B A (R(A,BOJ - R(A,Bo>) AR, Bo)l !
=0

AR(N, Bo) (Ba — BO) R\, Bo) [AR(N, Bo)]F 77

|

Since k —j — 1 # 0 for all j € {0,...,k — 2}, one can exploit the regularizing effect of A and prove, as in
(4.17) that, for all A € (),

- k—j—1
[ (B~ BoyROr B RO B
< 1Ba = Bollsagxs 1) IR Bo)ll o) I AR, Bo)l* ™ ! | sx, x0) < Cera(e)

for some positive constant C where we used (4.5) since £, — % = Bo — Bo. Next, for j = k — 1, one
deduces from (4.5) and (4.17) that, for all A € v («),

H AR Ba)J* (Ba — Bo)R(N By)
B(X1)

(A.2)

< [arr B 1Ba = Boll s o) RO Bo)ll s

k
)] HFB(XO,Xl)

< Cr1,1€0,0()

for some positive constant Cy_1 > 0. One concludes from this easily that
2,0 = O(e11(a)) + O(eo,0())
and the proof is complete. 0O

Remark A.1. It is not clear whether the above Lemma is valid in the space Xg. This comes from the fact that
our last estimate (A.2) relies on the estimate of B, — By in %(X1,Xo). This explains why we need to work
on the scales of three Banach spaces X, X; and X and cannot work directly on Xo (and X; = 2(%,)).
This was already observed in a similar framework in [32] and comes from the fact that the elastic limit
a — 0 is strongly ill-behaved because of the loss of domain induced by the drift term. In particular, it
appears difficult to apply directly the classical spectral perturbation theory developed in [21].

Appendix B. Main properties of the solutions to the rescaled Boltzmann equation

We prove in this Appendix the main properties of the solutions to (1.14) that we used in Section 3.1.
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B.1. Creation and propagation of algebraic and exponential moments

First, we prove the following evolution for the moments of (¢, ). We set

ma(t) = / PLOlEde, Vs o.
R4

We follow the approach in [1] and introduce, for all s,p > 0

=
1

Ssp(t) = (i ) (st 1 (E)Mis(p—i) (t) + Mt () Mg (11 (1)) (B.1)

p+l

where k, = [T] is the integer part of %.

Lemma B.2. Let fo € Li(R?) be a given nonnegative initial datum with ny,, Ty, > 0. For any o € (0, ),
let ¥(t,€) be the unique solution to (1.14). There exists &g € (0, ) such that for a € (0,dp), s € (0,2] and
po > 2/s, one has, for anyt >0 and any p = py > 2/s,

d
Emsp(t) < (1 - a)gsp/2ss,p(t) - K m8p+1(t) +a SpKZ msp(t) + CVSpd mspfl(t)

where Ky = 1 — 0po, Ok is defined by (2.4) and Ky is a positive constant depending only on d, &y and
Jra bo(&)[E]° d€.

Proof. Asin [1] (see also [7, Lemma 3.1]), one has

/ (€125 +1€17%) do < on (€7 + €7 VEk>1
Sd*l

where gy, is defined by (2.4). Notice that the mapping k£ > 0 — g, € (0,1) is decreasing and limy_, o, 0 = 0.
Introduce

Br(a) = (1 — a)og.

After multiplying (1.14) by [{|*? and arguing as in [I] and [7, Lemma 3.1] with & = 7, we obtain easily
that

d

Emszv (t) <

p(@) [ w9l - &l (6P +16) ¥ ~ 1 - le.pw) deas,

RdxRd

~(1-85@) [ wegue - el gracds,

RdxRd

+ ((d+ sp)By(t) — Ay (1)) map(t) + spBy (t)vy (1) - /é\ﬁl“”%(t, §) d¢.
Rd

Since (¢, £) has zero momentum and mass one, one has

/ Bt £ — ELde. > |¢ - / Pt E)EME] = (€],
Rd Rd
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which yields the lower bound:

€177 (E, ) (8, &) € — E4ldEEs = migpia (t).

RdxRd

One estimates the first integral as in [1] to get

%mszi(t) < B% (@) Ssp(t) — (1 - ﬁ‘;—‘" (a)) Mesp+1(t)
+ ((d+ sp)By (1) — Ay(t)) map(t) + spBuy (t)vy (1) - /£\§|5p72¢(t §) de.
R4
Now, one checks that
@+ 5p)Bo(0) ~ A0 < [ 0 )(t.OIePds < “5F (ma(t) + (1)
Rd

and

By (t)oy(t)] <o / Q_ (4, )1, ©)[€ldE < a(d/2 +ma(t)?) |
Rd

which results in

%msp(t) <Bip () Ssp(t) — (1 — By (a)) Mapt1(t) (B.2)
+ 5 () + (@/2)% ) may (1) + aspdmag 1 (1)

where we used that mq(t) < y/d/2. In particular, for s = 1 and p = 3, one obtains that

Coma(t) < 684 (@) (ma (HYms (1) + (4/2)%) — (1~ By (0))ma(t)

ISl

+ 22 (g 0) + (82007 ma(t) + 255

Holder inequality implies that ma4(t) > 2 m3(t)? and one deduces that

« (0% 2
Sns(t) <~ (135000 = 50) 2 s 445 (63300 + 5 matt) + 25 301 + ).

Let us fix &g € (0, ) satisfying

Then, for « € (0, dyp), one obtains

gm0 < = (183000 - 200 2 ma(e + (603 + 3 ) (@2 malt) + 5 (03 + 1.
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This shows that, for a < @, there is an explicit constant M3, depending only on d (and dg) such that

supms(t) < max | s, / Pol©)leP de | - (B.3)
t>0 R

With this, (B.2) becomes, for any a € (0, ag),

d

&mspa) < ﬁ% (a)SS,P(t) - (1 - B% (Oé)) m8p+1(t) + 043pK2 msp(t) + aspdmspfla) ’

where Ko only depends on d, &y and mg(0). This proves the result. O

Lemma B.3. Let fo € Li(R?) be a given nonnegative initial datum with ny,, Ty, > 0. For any o € (0, ),
let ¥(t,€) be the unique solution to (1.14). There exists do € (0, o) such that for a € (0,60) and p > 0,
there exists some constant Cy, > 0 depending only on p, ny,, Ty, and || follpy such that

my(t) < Cpmax {1,677} fort>0. (B.4)

Proof. We know from (B.3) that the third moment of solution () is uniformly propagated. Moreover, it
follows from Lemma B.2 that, for any p > 3, m,(t) becomes finite for all positive time. Now, observe that
by Holder’s inequality

S1p(t) < Cpma(t)mp(t),  my—1(t) < (my(8)' 77 and  mya(t) > (my ()7,
Consequently, we infer from Lemma B.2 that m,(t) satisfies the differential inequality

%mp(t) < Crmy(t) — K1 (my ()17 + Ca(my (1)) 717 (B.5)

Thus, for t € (0,1], (B.4) follows by comparison with the upper solution z* = C/t? of the differential
equation ' = Cix — Kyaltl/p 4 Cypt=1/p, Then, once the moment is finite at time ¢ = 1, the same estimate
(B.5) implies that (B.4) holds for t > 1. O

Proof of Theorem 3.9. Introduce, as in [1],

zP
>

But2) = [ (8.6 expl:)E = 3 maplt)
R p=0

s=20, z2>0,

and, forn € N
” - 2P n - ZP
E¢(t z) = stp(t)ﬁ, I3(t,2) = Zm3p+1(t)ﬁ-
p=0 p=0

We consider here s = 1 and fix n € N. We shall show that there exists a € (0,1) independent of n such
that, for any a € (0,a) and any 0 < t < 1, one has

El(t,at?) < 4.

Since this is true for all n € N, this would imply the result for ¢ < 1. Notice that (B.4) implies that for
a<l1,
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n
t(B=1)p
n ﬁ
B (tat’) <1+)°C, —r
p=1

Since B > 1, there exists # small enough and depending on n such that E7(¢,at®) < 4 for all @ < 1 and
€ (0,t). For pg > 2/s, by Lemma B.2,

d & atﬁ
D S P P U
P=p P=Po : P=Po
n
atﬂ 5)17
+aK22mp(t)( dZmp 1 1)'
P=Po pP=po
n
aPtPr—1
+8Y, my (-1
P=po
Now, we have
n
(atﬁ)P tﬁ)p+1 atﬁ)
> mp(t)m Z M1 ( t aZmPJrl
P=po p=po—1
atﬂ) atﬁ p+2 9 at'@)p
> a0 = 5 a0 <
P=po P=po—2
n n
aPtPr—1 aPT1¢Br+B—-1 atB)p
S 00 = S a0 S )
P=Po p " p=po—1 P! p=0 P
Choosing a small enough so that aKs < %, a?d < % and fBa < % we get that
d 2 Kl ol (Itﬁ p
43 0 < 3 s B ) + K0 Y a2
P=po P=Po : p=0 '
tﬂ P K1 1 -
< oY B ay s e,
P=Po
with Cp, = 5 ‘;Bl C;jfl, where we used (B.4) and a < 1. From here, we can then argue exactly as in [1,

Theorem 1] to get the result for ¢ < 1.
We shall now show that for any a € (0,a) and any ¢ > 1, one has EJ(¢,a) < 4. Since this is true for

all n € N, this would imply the result for ¢ > 1. Notice that we have just proved that E7(1,a) < 4 for all
€ (0,a). Then, for pg > 2/s and t > 1, by Lemma B.2,

d n
a 2 ™ <3 oS0 K1 Y mpral
pP=Po pP=po p=p0

n

+aKQZ ()(p +adZmp1 1)'.

P=Ppo P=Po

Recall that the last two sums are bounded from above by

n n
a? 9 a?
a E mp+1(t)—  and  a E mp+1(t) —
p=0 P p=0 P
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respectively. Thus, for a € (0,a), we get

d & po—1 aP
dat Z Z 0p/251,p(t) 11 (t,a) + Ky Z Mpy1 () — ,
P=Dpo P=DPo p=0 p:
aP
Z 0p/251,p(t)— — _Il (t,a) +K10p0
pP=Po

with Cp, = > nso ! C”,“ where we used (B.4). We can then argue exactly as in [1, Theorem 2] to get the
result. O

We end this appendix with well-known estimates about Q. on the weighted L!-spaces.
Lemma B.4. For any b > 0, set

my(€) = exp(blé]), €€ R

Then, for any q = 0, there exists Cy 4 > 0 such that

195 (e, )1y + 199 W 22y < CogllBll i, (o N9l )

and

19+ (7, M)l (my) < CollPll Ly (my) 1Pl L1 (-

Proof. Without any loss of generality, one shall assume that h and g are nonnegative. One first notices that,
for any h,g € L'(ms), one has

19 (s )23 ma) = / Q. (h, 9) () my(0)(0) (0) 1dw.

”wHLOO(Rd)

To estimate this last integral, one can assume without loss of generality that h, g, ¢ are nonnegative. Then,
using the weak formulation of 9, :

/ Q. (1, 9)(v) my ()2 (v) (v)dw = / B(0)g(v.) [0 — v my (0, (0] (o) dvdv, do
Rd

RdxRdxSd—1

where the post-collision velocity v/, is defined by (1.2). Clearly |v,| < |v] 4 |vi], 1.e. mp(v]) < mp(v)mp(vs)
and (v, )? < (v)?(v,)9. Therefore,

/Q+(h, 9)(v) mp(v)3(v){v)?dv < / (mp(0) () h(v)) (M (v4) (V) 79 (v4)) [0 = Vi lth(v]) dvdo,.
Rd

R4 xR4

One recognizes that this last integral is equal to [ps Q4 (my(-)? h, mp(-)? g)(v)1(v)dv and this proves that

19+ (P, DLy (my) < 1R+ (mu () hymi () 9) || 1 mey- (B.6)

Then, the estimate follows easily from the well-known boundedness of the bilinear operator Q : L}(R9) x
Li(RY) — LY(RY) (see, e.g. [2, Theorem 1]). The proof for Q_ is simpler since Q_(h,g)(v) <
h(v){v)llgllLywae) for any nonnegative h,g. Thus, |Q—(h, 9)llL1(m,) < ll9llzi ey 1PllL,, (my)-

Please cite this article in press as: R.J. Alonso et al., Convergence to self-similarity for ballistic annihilation dynamics, J. Math.
Pures Appl. (2019), https://doi.org/10.1016/j.matpur.2019.09.008




MATPUR:3149

R.J. Alonso et al. / J. Math. Pures Appl. sse (ssee) eso—see 59

For the quadratic estimate, one notices first that, by virtue of the above estimate,

1Q— (s )| Lr (myy < NP L1 (g [l L3 Rty < Cb Al Ly o) [Pl 2 () -

Let us now focus on Q4 (h, h). From (B.6), it suffices to prove that,

1Q+(f, Hllimey < Clf Iy I fliray.  VF € Ly(RY). (B.7)

Indeed, applying this with f = hmy would yield the result. Now, using the weak formulation,

CRIVIPES /Q+ff (v)dv
”L°°(Rd>
I / F@)F@a)lo — v, (o) dvdv,do
Hw”LOO(]Rd)Zl

RdxRdxSd-1
Using [v — v.| < (v)(v,) < §(v)% + §(v.)? we get easily
F@)f (o = vl (vi)dvdvado < | fll Lyl fll ey 191 L me)
RdxRdxSd-1

for any ¢ € L°°(R?). This proves (B.7). O
B.2. Propagation of Lebesgue and Sobolev norms

We start with the proof of Lemma 3.2. As said in the core of the paper, we provide the proof only for
p = 2 since it is the only case we are dealing with.

Proof of Lemma 3.2. Let p = 2 and 1 > 0 be given. Multiply (1.14) by ¥(t, £)(¢)?"7 and integrate over R<.
We obtain

Q—‘|CL

W( )Hi%(Rd) + (Aw(t) —(4+ ﬁ)Bw(t))W(t)HQLg(Rd) + an(t)Hw(t)Hi%il(Rd)

N =

+ 0By (Hy(t) / B(t,€)2€(€)212de
R4

<(1-a) / (€271, €) Q. (4, ) (1, ) — / (€)2M(1,©)Q_ (1, ) (¢, E)de.
Rd

Rd
Recalling that [p. 1(t,&)]€ — &|dE. > Ko(€) for some explicit kg > 0 we get
Jirut.90- @ v)(t. 0 > mollwlo)lE; oy
Rd
Since moreover there exists a positive constant K > 0 such that
max (| Ay (t)], By (£)], [By (H)vy (1)) < Ka

for all @ € (0, ap) so that one can choose a;; € (0, ap) small enough so that
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Ko
Ay (@) + (5 +2m)[By (@) + 1By oy () < 5 VE20, ae(0,a)). (B.8)

Then, for all a € (0, ), it holds

N~

d
POl + %W(t)ﬂigﬂ/z(md) <(1-a) / ()21 (t,€) Qp (¢, ) (£, £)dE.

Rd

At this stage, we handle the last integral as for the classical Boltzmann equation, see [4, Theorem 1], to get
the result. O

Proposition B.5. Let ) > 0. There exists d,, € (0,1) such that, for any 1o € L3(RY) with unit mass and
satisfying

Yo € L

717+3/2+ dd—2) RN L727+3/2(Rd) n H% (RY),

then, the unique solution 1(t,&) to (1.14) with initial condition 1o satisfies

sup ||¢(t)||H;(Rd) = Cp < 0.
>0

The proof is based on the following regularity estimates for Boltzmann operator due initially to [11] and
extended in [29].

Theorem B.6. For all s > 0 and alln > 0, it holds

1940 N vazr < Ca (gl yey 1Lz, mey + lg) L)

7 (RY) £ ®a [ f]

for some positive constant Cy depending only on the dimension d.
With this in hand, the proof is based on standard computations.

Proof of Proposition B.5. For any i = 1,...,d, set ®(¢,§) = O, ¢(t, ). It is straightforward to check that
O(t, &) satisfies

B ®(t,€) + (Ay(t) + By (1) ®(t, €) + By (t)(€ — vy (1) - Ved(t,€)
= (1 - a)a& Q+(¢’ ¢)(t7 5) - a& Q- (QZ}’ w)(tv 5)

Multiplying by (£)27®(t,¢) and integrating over R we get
1d 2 d 2 2
1RO mey + (Aul) + (1~ 5~ Bu(®)) 19D ey + BRI g

By (v (t) - / £B(1,€)? (€)1
R4

<(1-a) / (€210 (1,€) D, Q4 (1, ) (¢, €)dE — / (€210 (1,€)0e, (1, ) (1, €)dE.
R4

Rd

Notice that
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0, Q- (5. 0)(:6) = (t.€) [ W(t.E)IE - E1d8. + Q- (v, )(1.)
we get as before that
[(€r0(t.996.0- (0. 0693 > mall @O e+ [ (O8O (. B)E, 3k

R4 R2d

As for (B.8), one can choose &, € (0, ) small enough so that

d -
[Ay(@O)] + L+ 5 +20)[By (@) + 0By (ve(t) < o7 V20, ae(0ay).
It thus holds, for a € (0, &),

1d
th”@( )HL2(Rd + = KOH(P( )”L Jrl/,‘,(]Rd)

< [|@(t )||L2+1/2(Rd)“8& Q+(¢(t)a¢(t))||Lg_1/2(Rd)
F L)) 2 ey | Q- (¥(2), 2(t))]] 2 -

At this stage the proof is exactly the same as the one usually used for the Boltzmann equation. Namely,
noticing that

Q*('(/% (b)(tvf) = 1/1(15’5) / ‘b(t,f*”f - §*|d§* = w(taf)/w(taﬁ*)a& 5 - §*|d£*
Rd

Rd

and ’fRd "/J(ty f*)a&

§— §*|d§*| < fRd P(t,&:)dEx = 1 we see that

1Q-(¥(t), ®())ll L2 ey < [1P(1)l| L2 (Ra)-

Using now Theorem B.6 with s = 37 and the uniform propagation of L? 03 /2( 4) and L

we get easily to the conclusion. O

+1/2(Rd)—norms,

B.3. Pointwise lower bounds
We recall the following spreading properties of Q. in general dimension d > 3
Proposition B.7. For any vy € R? and any § > 0, one has
Supp (Q+ (1B(uy.6) : 1B(ve,s))) = B(vo, V20).
More precisely, for any 0 < x < 1, there exists a universal kg > 0 such that
Q1 (1B(wo.s) 5 1B(vos)) = K0 8T X g sy VI >0. (B.9)

Proof. We just give a sketch of the proof which is well-known [31]. We can assume without loss of generality
that vg = 0. Let us assume 6 = 1. As in [6, Lemma 5.4], we have

d+1
IS (V2 —1/d
1 1 > — 1-2 1 .
94 (1p0,1), 1B(0,1)) J+1 \ 3 ( ) ]B(Oyg)
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Let r € (1/2,1) and ¢ € R? with |¢] = v/2r. Let ¢ € (0, 1) satisfying ¢ < 21;;5 and set

Q:(6) = {(€,0) eRI X S7H 6] <e, |(E+&) ol <ele+&l} .

For (&4,0) € €., one has

I£\2 Ié*\2

€% = \g EJ(E+E) o r+—+ (\/_r+5) <r+e(24+V2) <1

since r < 1 and ¢ < 1. Similarly, |¢.| < 1. Since one also has ¢ — &,| > v2r — ¢, we deduce that

Q1 (1p(0.1), 1e(0.1))(€) = (V2r —¢) /dadg*

Qe

Since v2r — ¢ >

3 1
oYV and € < 30 We get that

0 (1 1 )(5) > M (1>d23 ,,,gd+1
FEBOD, IO Z o ey \ 2 |

We then conclude as in the proof of [6, Proposition 5.1]. O
Finally, we have the following lemma, see [25].

Lemma B.8. Fiz p € (1,00]. Let f be nonnegative such that

/ F(&)de = m, / FEOlEPde < BE< oo, |l < oo (B.10)
R4 R4

Then, there exist vg € R, 7 and 1o depending only on m, E and ||f||, and such that

Qi (£, Q+(f, 1)) =m0 LB vy, r)-

From now we will assume the solution ¢(¢,£) to (1.14) to be given and fized. It is clear that there exists
Cp > 0 large enough so that

Q- (¥, ¥)(t,6) < Co(1+ [ENP(t,€),  and  max(Ay(t),By(t) <Co  VE>0.

Introduce then

o(§) = Co(L+ 5],  E(t,€) = Ay(t) +0(E).

Then, one can write (1.14) as
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O (t,€) + By (1) (€ — vy (1)) - Ve (t, §) + X(, ) (1, )

(B.11)
=1 =)Qs (¥, ¥)(t, &) + (0(§)¥(t, &) — Q- (4, ¥)(t,£))

anda assuming 7,[)(0,5) - ¢0(€) > 07 we get U(fﬁ/’(ﬂf) - Q- (7/13 ¢)(t7£) > 0 and

(L, €) + By (1)(§ — vy (1) - Verb(t, &) + E(t,)U(t,€) = (1 — a) Qu (¢, ¥)(E, §). (B.12)
We introduce the characteristic curves associated to the transport operator in (B.12),

d

X (65,6 =By(t) (X(#5,6) —vy(t),  X(sis.8) =¢,

which produces a unique global solution given by

t t t

X(t;8,&) =& exp /Bw(T) dr —/Bw(a)'vw(o) exp /B¢(T) dr | do. (B.13)

S S g
In order to simplify notation let us introduce the evolution family (S!);>s>0 defined by

t

[SER] () :=exp —/E(T7X(T;t7f)) dr | h(X(s;t,€)) Vt>s >0, Yh=h(v).

S

The evolution family preserves positivity, thus according to (B.12) the solution ¥(¢, &) to (1.14) satisfies the
following Duhamel inequality

0.9 > [Soun] (O + (1= ) [ 5104 (9(s, ). w05 ) (. (5.14)

We have the following analogue of [6, Lemma 5.15] where however the characteristic functions are not con-
tractions anymore. We recall here that there is some positive constant b > 0 depending only on ||vo|| £y (r)
such that

By(s)| < ba and By (s)vy(s)| < ba, Vs > 0.

Lemma B.9. For any nonnegative h = h(§) > 0 and any t > s > 0, one has

[SER](€) = (A)" exp (—o()ua(t — 5)) [TS](€) (B.15)
where
AL = exp —/Bw(’r)dT , U (1) = %, T>0

and [TIh] (&) :== h(X(s;t,€)) for any & € R

Proof. Notice that, for any ¢ > s > 0, exp (f By(r dr) exp(ba(t—s)), and thus, using (B.13), we check
without difficulty that
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IX(7:t, )l < A+ [¢]) exp(ba(t —7)) -1, VO<7T<HL
Therefore,
S(r, X (13t,6)) K Ay(r) +o(@)exp (ba(t—7))) VO<T<E VEeR%

Integrating this over (s,t) we get

t

/E(T,X(T;t,g))dr < /A¢(7')d7’ + o (un(t — ), Vt>s>0.

S

Finally, since Ay (1) — dBy(7) < 0 for all 7 > 0, we get that, for any ¢t > s > 0,

t
exp —/Aw(T)dT > ()\i)d

which yields the conclusion. 0O
We can then prove the analogue of [6, Lemma 5.17].
Lemma B.10. For any nonnegative f = f(£) = 0 it holds
T (TS f. T2 Qw(To £, 75 1)) = A D™ T Q4 (f . Q4 (. ) (B.16)
forany 0 <7< s<t.

In particular, when f is compactly supported with support included in B(0, ¢) (0 > 0), then for anyt >0
there exists C(t, ) > 0 such that

IO (31810 (ST1.S51) > Ct.OT{Qu (F.Q4(f.f)) . VO<T<s<t (B.17)

Proof. The proof is a simple adaptation of that of [6, Lemma 5.17]. The proof of (B.16) is exactly the same.
It relies on the still valid following relation: for any h and any 0 < 7 < s

T2Qy(hh) = (A Qu(T2h, T2h). (B.18)

For the proof of (B.17), we just recall the main steps. For any ¢ > s > 0, one has using (B.13),

¢ ¢
| X (5:,8)] = [€] exp —/Bw(r) dr | — /ba exp(ba(o — s))do = N |¢] — ePot=9) 11,

S

If f(v) =0 for any |v| > g, then S!f(€) = 0 for any [£] > A (0 + eP*(*=%) — 1) and (B.15) shows that

Stf = () exp (—o (A5 (o4 €2 = 1) Jua(t = ) T2 f.

In particular,

Q1 (31,85 ) = g exp (—20 (A2 (0 + 2™ — 1)) wa(7)) Qs (T5 £, T4 f) -
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Now, the support of Q. (Sff,S5f) is included in IB(O, V200 (Q—l—eb(” - 1)) Hence, the support of
8209, (87 f,S5 f) is included in

B (O,)\; (\/5/\2 (Q+ ebaT _ 1) + 6boé(sf'r) _ 1)) CcB (0, \/5)\8 (Q+ 6bozs _ 1)) )
Consequently, we get thanks to (B.15), (B.18) and the above estimates that

819+ (S5 £.S5f) = Cols, 7,09+ (T5' f. 75 f)

with

Co(s,m,0) = (A7) (A2 exp (20 (A (04 €7 — 1)) ua(7))
X exp (70’ (\/5)\2 (QJr ebas 1)) Ug(s — T)) )

Since the support of Q. (ng, S04 (S5 f, ng)) is included in B (0, 220 (g + ebas — 1)) it follows that the
one of S1Q (85,8594 (S5 f, S5 f) is included in

B (0,47 (200 (0+ €2 — 1) +¢220=9 — 1)) € B (0,2] (0 + " — 1))

Hence,

SLQL(S3F, S2QL(STF.ST) = Crlt 5,7, 0) TE Qs (£, Qi (£, 1)
with
Ch(t, 5,7, 0) = Cols,m 0) (A) " (Ag)% (A0) 2V
cexp (=0 (A2 (04 e — 1)) ua(s) — o (200 (o4 ¢ — 1)) wa(t — )
= Q02NN exp (=0 (VIR (o 2 =1) ) wa(5 = 1)

xexp (=20 (A2 (0 + €**7 — 1)) ua(r) — 0 (A (0 +€®** — 1)) ua(s))
x exp (—o (2)] (o + ebot — 1) ua(t —s))

Reminding that o(v) = Cy + Cy|v|, one observes that, on the one hand

U (s — T) + 2ua (T) + ua(s) + ua(t — s) < Buy(t), 0<7<s<t,
and, on the other hand,
V22 (0+€® — 1) ua(s — 7) + 2\ (04 €7 — 1) ua(7)

+ A2 (o+ ebos — 1) ua(s) + 22 (o + ebat _ 1) ua(t —s)
< Tug ()€ (0 + baug (1))
where we used that A0 < e?®% < eP@*t. Now, using that ! > e70(¢=5) > e=bat for any ¢ > s > 0 and

setting

C(t, 0) = exp ( —dbat — 5Couq(t) — TCoua (t)e* ! (o + bauy(t)) > (B.19)
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we get the result. O

Proposition B.11. Assume that the initial datum v € LY(RY) has mass 1, momentum 0 and kinetic energy
d/2 > 0 and that

Yo € LP(RY)

for some p > 1. Let ¥(t,-) be the solution to the rescaled equation (1.14). For any 7 > 0, there exist Ry > 0
large enough (depending only on 1) and py > 0 such that

U(t,-) = plpo,r) (), Vt2>m. (B.20)

Moreover, for any sequence (xx)r € (0,1) and increasing sequence (x)r one has

¢(t, ) = ,uk]-IB((LRk)(') ) Vit (B21)
with

Ri1 = (1—xx)V2 (Rk +1- ebo‘(T’““’T’“)) e~ bH(Ter1=7k)

" (B.22)

prgr = (1= a)roxt ™ pip (R +1 — b= T’“)) ERy (The1 — ), VEEN

where kg is the positive constant appearing in (B.9) and we set for any s > 0 and R > 0,
Er(s) = /exp (—dbaT — Co(1 + € (V2R + b — 1))ua(7')) dr.
0
Proof. We describe briefly the main steps of the proof which follows the one of [6, Proposition 5.18] and

[25, Theorem 4.9]. Notice only that, because By /() has no sign, the characteristic curves X (s;t,-) are not
contractive and some additional work has to be done in the initialization step.

e Step 1: Initialization. Let tg > 0 be fixed and define go(t,-) = ¥(tg +t,-) for t > 0, and Gy = go(0,-) =
¥ (o, ). Using Duhamel inequality (B.14) one has

t s
Gol(t,) = (1 —a)? / ds / S0, (S50 Go, 8210 Q4 (ST Gy, ST Gy )) dr. (B.23)
0

~

For R > 0 large enough, we have Gy > G 1g(o,r) = Go and [, @0(§)d§ > 0. It then follows from (B.17)
that, for any 0 <7< s <t <711,

S0 QL (S5H10Go, 2T Q4 (ST Go, ST Gy, )) = O, T Q. (éo, Q. (G, éo)) :

with O, = infyepo 1) C(t, R) = C(T1, R) where we recall that C(t, R) is given by (B.19). For T} > 0 small
enough, one has Cp, > 1/2 and

Go(t,) = (1—a)® — Tt+t° Qy (Go, Q+(G07Go)> ;o VOst<T.

It now follows from Lemma B.8 that there exists vg € R?, ro and 1y depending only on H@OH 11, the energy
of 1o and |[1o||z» such that
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Qr (@o, Q+(@07@o)) Z No1B(wvg,ro)-
This leads to
N 5 12
o(t,§) = (1 —«a) L 1B(vy,ro) (X (to; t +t0,8)), VOo<t<Th.
Let € > 0. For T} small enough, one has for any t € [0,7}],
bat < 1 E d 1 bat 1 < gi.
‘ typooom (ol +1) (e ) 2(1+¢)
Consequently, as soon as |§ — vg| < 1+€’ one has
t-+to
| X (to;t + to, &) — vo| < ALSIE = vo| + |vol |1 = AT + ba / A7 do
; (B.24)
0

< eP1¢ = vol + Jvo] (" = 1) + (*** 1) < ro.

This means that go(¢,-) = (1 —a)? £ 0 ( ) for all ¢ € (0,T1). Hence, for any ¢, € (0,71/2], it holds
9o(t, ) = M 1g(y,r) for any t; <t < Ty with

t2 To
=(1-a)?2 d = . B.25
m=(1-a)” an "= (B.25)

Notice at this stage that an important difference with respect to [6] and [25, Theorem 4.9] is that r < rg

We set g1(t,-) = Go(t + t1,-). We have thus obtained that
T
! (B.26)

Vo<t —.

91(t+) = m 1B(w,r) » 5

Using again Duhamel’s inequality (B.14) (recall that g (¢,-) = (¢t + to + t1,-)) one has

Gty > (1-a / SEE QL (G (r, ), (7, ) dr. (B.27)

Let x € (0,1), the value of which will be fixed later. We now deduce from (B.26), Proposition B.7 and
Lemma B.9 that, for any ¢ € [0,7}/2] and any & € R?,

/g\l (tv 5) >

t
(1— )2 i1y / (AL ) o (— o (E)ua(t — 7))
0

1]B(v0,(1 X)\/§r1)<X<T +tog+ti;t+1to+ tl,f)) dr

Arguing as in (B.24), one obtains, for any 0 < 7 <t < Ty /2 and ¢ € R9,

Lp vy, (1—x)var) (X (T +to + t15t + 1o + £1,€)) 2 113(@07(1_1‘155”)(5)'

On the other hand, for any 0 <t < %,
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t t

t+to+t —dba(t— —dbaTy /2

/ )\T+t2)+t11 dr 2 /6 a(t=7) dr 2 te oTi/
0 0

so that, for any ¢, € (0,71 /4],

91(t,+) = n2 1B(vg,ra)> Vie <t < Th/4,

with 7y := (= i‘l\f” and
2 = (L= a)nf rit ' X g exp (= (Jvo| + 72) ua(T1/2)) t2e” T2, (B.28)
One chooses now € and x small enough such that - T +)‘/_ > 1. Iterating this procedure, one obtains that,

for any k > 1, for any ¢, € (0, %] (i=1,...,k), there exists n such that,

k—1

k
R ) 1—x)V2
ge(t,") =1 <t+ §t> 2 Nk 1B (v, ) with Tk = (%) "

Arguing exactly as in [6,25], there exists some explicit 7, > 0 and some arbitrarily small ¢, > 0, both
independent of the initial choice of ¢y, such that

Y(te +to,-) = nlpo,r)-

Notice that t, = Zle t; and n, = 7, where k is large enough in such a way that B(0, R) C B(vg, r).
For i > 2, we choose t; = t; /271 so that t, = t; Zle 2174 Since to > 0 is arbitrary, this proves (B.20)
with Ry = R, uy = n4. For the proof of Theorem 3.5, it will be important to understand the way u;
depends on t, and thus on ¢;. We obtained in Eq. (B.25) that 7, = O(t?) while, from (B.28), gy = O(tan?)
for some ty € (0,71/4) to be chosen. Iterating this procedure one can check without difficulty that 7, =
o (t%k Hl 9 tfk ) and, with our choice of (¢;) one obtains

i =me =0 (£ (B.29)
with Ny = 28 + 328 ok—i = 32k-1 1,

e Second step (Implementation of the induction scheme). For 71 > 0 and any t > 71, we get using (B.20)

t

B(t,) > (1 ) / 510, (¥(s, ), (s, ))ds

T1

2 (1 - Oé) /,(,? /8}5 Q+ (]-]B(O,Rl) 5 ]-]B(O,Rl)) ds. (B30)

T1

Since the support of Q1 (1]B(O,R1) , 1]B(O,R1)) is included in IB(O, \/§R1), the one of StQ (1]]3(0731) , 1]]3(0731))
is included in

B(0,\; (V2R + e®(7) — 1))  B(0, >~ (V2R + P72 — 1))

and we get from (B.15) and (B.18) that
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SLQ4 (1p(o,ry) > 1B(0,R1)) = ()\t)ZdH exp (= o(wr, (t — 8)ua(t — ) Q4 (TS 1B0,R) > T3 1B(0,R1)) »

where wg(7) := 7 (V2R + 7 — 1). Now, since | X (s;t,£)| < AL|¢] + eP2(=%) — 1, we deduce that

7—;113(071%1) > 1B(0,A§§1(t—s))

where Ry (7) := Ry + 1 — €7 for any 7 > 0. This leads to

Sto. (1]B(0,R1) ) 1lB(0,R1))

2d+1
> (X;) exp ( —o(wr, (t = 8))ua(t — 5)) Q4 (1113(0)\:?1(&5)) ) 1B(0,A§§1(t—s))> :

Using Proposition B.7, for any x1 € (0, 1) this can be again bounded from below by

Ko (X;)QdH exp (— o(wp, (t — s))ua(t — s))
)X (Rt — 5))d+11]B(0,(1—X1)\/§>\;§E1(t—s))
= ko (AL) exp (— 0w, (t — 8))ua(t — 5))

X’fH(R (t— 3))d+11B(0,(1—X1)\/§/\f§1(t—s))'

Notice that a difference with respect to [6, Prop. 5.18] is that, here, it is not true that Aj > 1 since By (7)
has no sign. However, one has \{ > exp(—ba (t — s)). Using (B.30), one obtains

t—11

0l > (L= a)ro it Ik [ (F(r) exp (~dbar = o(w, (1)a(7)) Lo(o (1yo)vae-ver 7 )7

(=)

Therefore,

Y(t,-) = p2 1p(o,Ry) » Vizmn>7

with Ry = (1 — x1)v2e (277 (Ry 41 — P77} and

d+1
po = (1 —a) ko pd X(11+1 (Rl +1-— ebo‘(”_ﬁ)> ERr, (T2 — 11).
Iterating this procedure, we obtain the result. O
With this we can prove Theorem 3.5.

Proof of Theorem 3.5. We apply Proposition B.11 to a constant sequence (xx)r and bounded sequence
(Tk)k>1. More precisely, let t1 € (0,1) be fixed and write

tl tl

7'1:57 Th4+1 = +2k+1 Vk > 1.

For any given € > 0, set xx = ¢ for all £ > 1. One deduces from (B.22) that
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k-1 k ,
R = (\/5(1 - 5)) Riexp | —baty Z 277
j=2
— k . —i—1
+Z( 1—5) exp | —baty Z 277 (l—ebo‘tlzl ),
j=i+1
that is
k—1 1 1
Ry = (\/5(1 — 5)) Ry exp (—batl <§ — Q_k))
= k—i 1 1 L
- Z (ﬂ(l - E)) exp (—batl <2lﬁ - 2—k>) (1 —ebah2 1) . (B.31)
i=1

It is clear that Ry, < (ﬂ)k_lRl for any £ > 1. On the other hand, since 1 — e™® < z for any = > 0, we
deduce that

¢ k—i
Ry, > (V2(1 — €))* 'Ry exp (—ba%) —bat Z ( (1—¢ ) g1 vV k>1.

We finally obtain for any k£ > 1

(va( - 5))]H (

Moreover, by definition of Zg(s), one has easily

Ry < (V2)FIR;. (B.32)

=
ml
o
Q
Sy
|
_
|
(O}
S—
S
Q
~
=
N——
N

1
Er, (Tht1 — k) = “ba exp (—Co(1 + wr, (Tkt1 — Tk))Ua (Tkr1 — k) (1 — exp(—dba(Ti+1 — 1))

where we recall that wr(7) = €®*7(v/2R + €27 — 1). In particular, since 741 — 7% < t; < 1 one sees that
there is some positive constant ¢(a) > 0 (independent of ¢1) such that

b (1 — exp(—=dba(Ti41 — 1)) = (@) (Th+1 — Tk)s VEk > 1.

Moreover, o (Tk+1 — Ti) < Ua(t1) < ua(l) for ¢ <1 and wr, (Ti1 — k) < W( /5 0-1 g, (1) so that

Er, (Tht1 — k) = c(a) (Th41 — Tk) €Xp (—C’O(l + ebo‘(2k/2R1 + e — 1))ua(1)>

Using (B.22), one gets, as in [6] that for any & > 1

tq “k—1\ d+1
g1 = (1 — a)c(a)rped e (Rk 1] gbata2” 1)

X exp (—Co(l + ezba)ua(l)) exp(—z(a)2k/2R1)uz,

for some explicit z(«) > 0. Arguing as before, we infer from (B.31) that

—k— k—1 1—e¢e)bat ¢

k—1 _potl £)oaty t

Ry +1 — bati2 ><\/§(175)) (Rle ball _ ( ) bt )
4(1—¢)—+/2
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1 1 ba ba L . .
where we used that exp (—batl (W — Q—k)) < e’z L e’ forany 1 < i < k. Since t; < 1 we get

exactly as in [6, Prop. 5.18] that

t E=1
pir1 2 Cal(e) iy exp(—2(a)Ri272 )i

for some positive constant Cy,(g) depending only on « and e (but not on k or t1). Arguing as in [6] we get
that, for ¢ > 0 small enough and ag > 2 there is a positive ¢y > 0 depending on a but not ¢; so that®

P(t,€) = exp(—co(1 +log(1/t1))[§]")  VIE[ =Ry VE=t

Now, for || < Ry, we have from (B.20) that

1/’(7575)2#1 vt>7’1:t1/2.

We get the lower bound (3.8) using also the estimate on p; obtained in Proposition B.11 (see (B.29)). O
Appendix C. Cy-semigroup generation properties

We prove in this section that the operator B, s is the generator of a Cp-semigroup in L' (o) for suitable
choice of «, §. Recall the notations of Section 4.2. One has, in the underlying Lé(w),

Zoh = Ash+ L h— S h — POh + Toh
with 2(%,) = 2(T,) = qu_;ll (o) where
Toh(€) = —Bodiv(Eh(€)),  Vhe WH (w).

q+1

Introduce the (anti)-drift operator with absorption
Toh() = =Sm(@h(€) + Tah(€),  Vh € Wi (w).

Notice that, since there are og > 0, oy > 0 such that 0 < 0¢(&) < Zpm(€) < 01(¢) for all & € RY, the
domain of T, coincides with that of Ti,. One has then the following elementary result where we recall that

@ (&) = exp(al¢]), £ € RY.

Lemma C.12. Assuming « > 0 to be small enough so that
oo = \/ia/Ba = 07

then the above operator To : P(Ty) C Li(w) — Ly(w) with 2(Tq) = qui_ll(w) is the generator of a
nonnegative Co-semigroup {Uq(t); t > 0} in Li(zz) given by

t

Un(€) = e | = [ [aBa +Sar (66705 ) ar | fige ™), fe L) t20

0

such that

3 In the proof of [6], the assumption |¢| > R; is missing but it is needed.
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(o) 1
100y < 050 (— (5 =B )t) Ufliymy i) 220 (€

In particular, {Us(t); t > 0} is a nonnegative contraction semigroup in Lé(w) as soon as g = v/2qB.,.

Remark C.13. Notice that T, does not generate a Cy-semigroup in Lé(w). The absorption term here is
exactly what allows to prove that U, (t) € #(Lj(w0)) for all t > 0.

Proof. Using the characteristics method to solve the evolution problem

atg(t7£):Tag(t7§)7 t>07§€Rd

with initial datum ¢(0,&) = f(§) shows that the only possible candidate to be the Cp-semigroup generated
by T, is indeed {U,(t);t > 0}. Let us show (C.1). There is no loss of generality in assuming f to be
nonnegative. Then,

t

1Ua(t)5 1y = [ explaléD(©)exp | ~ [ [dBa+ S (%) ] ar | sieeP)a

Rd 0
and, setting y = e tBe | we get

t

1Ua(t)fll sy < e /eXP (aeBaly]) (y)exp —/EM (ye™=)dr | f(y)dy.

Rd 0

Now, since X () > 0(€) > 70— (1 + |¢]) for all ¢ € R? we get under the assumption that \‘;0— aB, > 0:

10 (0) 3y < exp (—%tJrtha)

t
x / (5)7 exp (a™B=]y]) exp | —aBalyl / eBedr | fy)dy
0

Rd

o)
<o (- (%~ aBa ) ) Wleyem

This proves the claim. It is not difficult then to prove that {U,(t) , t > 0} is indeed a Cp-semigroup in
Li(w). O

Lemma C.14. Let « > 0 be such that o9 > v/2aB,, > 0. For any q = 0, one has

1

_ VA > ¢B,.
oo — aB, 4

IR(A, To)ll (1 (20,11, () S
Proof. Given f € L}](w) and A > 0 large enough, we need to compute HR()\,Ta)fHth(w). First of all,

since {U,(t); t > 0} is a nonnegative semigroup, R(A, T,) is nonnegative and, since the positive cone of
L}I(w) is generating, it is enough to consider f nonnegative. Set then g = R(\, Ty)f. One has

A+ Zm(€)g(€) + Badiv(ég(E)) = f(),  €€R

Multiplying by (£)9zo(£) and integrating over R? we get
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/ (A + Zre(€))9(6) () 7 (€)dE = £l (ew) — Ban / div(€ 9(€))(€) e (€)de

Rd Rd

— | fllsye) + B / 9E)E - Ve ((€)7ew(€)) de

R4

Since £ - Ve (€)@ (€)) = ql€[*(6)* @ (&) + a(&) ¢l (€), we get

/(/\ +20m(6))9(6) (€)= (§)dE < | fllLy(w) + aBallgllLy ) + aBallgllLy,, (w)-

q
Rd

Since X (&) = 00(€), we get the estimate

Mgllzr @)y +oollgllz,, (w) < 122w + dBallgllriw) + aBallgllLs,, (w)-

q+1 q

Therefore, fixing o > 0 such that o9 > v/2aB, > aB, and taking then \ > ¢B,, we get
. 1
||9||L}1+1(w) S m”ﬂh;(w)
which gives the desired estimate. 0O

Remark C.15. The above estimate directly yields [|g|[11(w) < ﬁﬂfﬂ%(w% ie.

1

R\, T, JERN L —
R Ta)ll (L1 () »_ ¢B.

Recall the definition of fOR75,

Ly h(6) = / (1= ©5)[M(ENR(E) + M(ENN(EL) = M(A(E)] € — &x] d€udo

Rd X Sd* 1
One can split .ZOR"S into positive and negative parts,
R, _ R, R,$
LT =L -4
where

LOn(E) = / (1— O5) MO(E|E — &.] deudo = M(E) / h(E s (6,6.)de,
Rd

RdxSd—1

with

v(€.6) = € — &.| / (1 - O5(£.6..0))do
Sd*l

One has the following lemma with similar proof as that of [12, Lemma B.1 & Proposition B.2].
Lemma C.16. For any q > 0, there exists k4(0) > 0 such that lims_,o k4(5) = 0 and

1L Bl sy < BaOIRl L2, (ys YR E Liyy(w),
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while

L Li(w) - Li(w)

is bounded.

Introduce the sum Z?2 := .,Sfolf’f + T4 with domain 2(Z2) = 2(T,,). Combining both the above Lemmas,
one gets that, as soon as gg > V2aB,, > 0, it holds

RS Kiq(9)
L0, RN Ta) | 2Lt (w)) < p- - B VA > ¢B..
As a consequence, picking § > 0 small enough so that
Kq(6) <1
oo — aB,
one deduces that (¢B,;+0o0) C o(22), and
oo .
RN, 20) = R(A, Ta) Z[XR‘SR)\T R -
7=0

In particular, one checks from the above series representation that, for any A > ¢B,,

IR(X, 22 B (), 11, () < ||R(>\ To)l@ry(w),Ll,, (=)

[.,%R SR\ T )}

B(L} () (C.3)

> .
S oo—aB oo—aB ~ 0g—aB, — k4(6)

Notice also that, according to (C.2),
Jim [[R(A, Z)| #(Li () = 0. (C.4)
Introduce then Z, = Z% — P with 2(2,) = 2(Z9). Picking A > ¢B,, one has
A=Z)=(A-2)+P2
and, multiplying from the right by the resolvent R(\, Z2), one has
A= Z)R(\, 22) =T+ POR(), 20).

Notice that all the operators here are well defined since the range of R(\, 22) is 2(22) = 2(Z,) (which
makes first the operator on the left-hand-side well defined) and, as such, is included in L}, (=) which is
the domain of PY. Moreover, from (C.3) and Proposition 4.2

€0,4()
oo — aBy — Kkg(d)

IPaR(A, Z3)]l ¢ (Li(w)) < €0,q(a)[[R(A, Z) (LY(w),LL () S

One can therefore find a small enough so that
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IPIRO EDl#(riwn <1, YA>qBa

and, as such, I +PIR (), Z,) becomes invertible and so is (A — Z,)R(A, Z2). This proves that, for A > ¢B,,
(A = Z,) is invertible with

R\, Za) = R(\, 22) i R(A ZO)]

j=0

In particular, according to (C.4), limy_, ||R(A, Za)||@(L;(w)) = 0. Finally, since

Ba(;:Za_o?I?f

)

with ,?01?;5 bounded, one deduces easily that A—B,, s is invertible provided A is large enough so that A > ¢B,
and

12 21 (e RN Zo) (21 ey < 1.

This, together with the hypo-dissipativity ensures that B, s generates a Cop-semigroup.
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