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Abstract 

Morphology-derived lava flow rheology is a frequently used tool in volcanology and 

planetary science to determine rheological parameters and deduce the composition of lavas on 

terrestrial planets and their moons. These calculations are usually based on physical equations 

incorporating 1) lava flow driving forces: gravity, slope and flow-rate and 2) morphological data 

such as lava flow geometry: flow-width, -height or shape of the flow outline. All available 

methods assume that no geometrical changes occur after emplacement and that the measured 

flow geometry reflects the lava’s apparent viscosity and/or yield strength during emplacement. It 

is however well-established from terrestrial examples that lava flows may inflate significantly 

after the cessation of flow advance. This inflation affects, in turn, the width-to-height ratio upon 

which the rheological estimates are based and thus must result in uncertainties in the 

determination of flow rheology, as the flow height is one of the key parameters in the 

morphology-based deduction of flow properties. Previous studies have recognized this issue but, 

to date, no assessment of the magnitude of this error has been presented. This is likely due to a 

lack of digital elevation models (DEMs) at sufficiently high spatial and temporal resolution. 

The 2014/15 Holuhraun eruption in central Iceland represents one of the best monitored 

large volume (1.5 km3) lava flow fields (85 km2) to date. An abundance of scientific field and 

remote sensing data were collected during its emplacement. Moreover, inflation plays a key role 

in the emplacement dynamics of the late stage of the lava field. Here, we use a time series of 

high resolution DEMs acquired by the TanDEM-X satellite mission prior, during and after the 

eruption to evaluate the error associated with the most common methods of deriving lava flow 

rheology from morphological parameters used in planetary science. 
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We can distinguish two dominant processes as sources of error in the determination of 

lava flow rheology from morphology 1) wholesale inflation of lava channels and 2) post halting 

inflation of individual lava toes. These result in a 2.4- to 17 - fold overestimation of apparent 

viscosity and a 0.7- to 2.4 - fold overestimation of yield strength. When applied in planetary 

sciences, this overestimation in rheological parameters translates directly to an overestimation of 

the respective lavas silica content. We conclude that, although qualitatively informative, 

morphological analysis is insufficient to discern lava rheology and composition. Instead, in-situ 

analysis together with high resolution remote sensing data is needed to properly constrain the 

compositions involved in planetary volcanism. 

1. Introduction 

The rheology and composition of lava flows observed on other planets is commonly 

estimated from the morphology of lava flows (Baloga et al., 2003; Glaze and Baloga, 2006; 

Glaze et al., 2003; Hulme, 1974; Moore et al., 1978; Warner and Gregg, 2003; Wilson and Head, 

1994). These approaches have been developed and tested on analogue materials (Gregg and 

Fink, 2000; Griffiths and Fink, 1992; Pinkerton and Wilson, 1994). The individual approaches 

including all input parameters and limitations are discussed in detail in section 3 of this 

manuscript. Deducing flow properties from the 3D-shape of lava flows is a useful tool to 

establish paleo-emplacement conditions of lava flows on both Earth and other terrestrial planets 

and their satellites, informing estimates of the variability of compositions of lavas on planets 

where direct measurements are lacking (Baloga et al., 2003; Bruno et al., 1994; Chevrel et al., 

2013b; Glaze et al., 2003; Hiesinger et al., 2007; Hulme and Fielder, 1977; Keszthelyi et al., 

2006; Moore et al., 1978; Warner and Gregg, 2003; Wilson and Head, 1994; Zimbelman, 1985). 
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Such deductions of flow parameters from geometric measurements are obtained from 

static post-emplacement morphologies and must therefore be seen to be a cumulative result of 

the entire deformational history of the flow during emplacement. Inferring rheological 

parameters such as viscosity and/or yield strength from post-emplacement flow morphology is, 

therefore, based on a number of assumptions, namely: 1) the rheology did not change during 

emplacement (Hiesinger et al., 2007; Hulme, 1974; Moore et al., 1978), 2) the geometry is 

representative of the lava at flow conditions (Glaze and Baloga, 2006; Glaze et al., 2003; Hulme, 

1974; Pasckert et al., 2012; Warner and Gregg, 2003; Wilson and Head, 1994), and 3) the lava is 

emplaced as a single coherent isothermal flow (Baloga et al., 2001; Baloga et al., 2003; Glaze et 

al., 2003; Moore et al., 1978). 

Direct observations of lava flow dynamics on earth show that these assumptions are 

significant simplifications of lava flow emplacement processes. Firstly, lava flows undergo 

continuous changes in rheology during emplacement (Cashman et al., 2013; Cashman et al., 

1999; Chevrel et al., 2013b; Decker et al., 1987; Giordano et al., 2007; Kolzenburg et al., 2016b; 

Kolzenburg et al., 2017). Secondly, lava flow geometry may change significantly during 

emplacement and lava flows often inflate after reaching their final runout distance (Cashman et 

al., 2013; Hon et al., 1994; Pedersen et al., 2017; Walker, 1991). Thirdly, lava flows are often 

emplaced in a non-continuous and pulsating manner (Cashman et al., 2013; Favalli et al., 2010; 

Kolzenburg et al., 2017; Pedersen et al., 2017).  

Application and interpretation of morphological methods for the determination of 

rheological parameters from post-emplacement geometries thus need to be reviewed in the light 

of the effects that all the above-mentioned processes may have on the results obtained. Some 

estimates of the effects of changing rheology and densification through gas loss on flow 
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thickness have been presented in a theoretical approach by Baloga et al. (2001). The model is 

based on the aforementioned assumptions of flow emplacement and does not account for natural 

emplacement processes such as inflation. They show that even under those assumptions 

calculated changes in lava flow height due to different densities and viscosities may be up to 

40%, depending on model input parameters.  

The main issue hampering the correlation of rheology and morphology is that lava flows 

display complex emplacement dynamics that commonly feature a two-phase emplacement 

mechanism (independent of surface textures). An initial free-flow stage, where rheology can 

readily be deduced from the gravitational forcing of the lava as a function of density and slope of 

the emplacement surface (see Hiesinger et al. (2007) and Chevrel et al. (2013b) for reviews) and 

a subsequent inflation stage, where the lava flow is self-confined by a growing rheological 

contrast zone or “crust”. Although flow advance may continue to a certain degree, mainly in 

pāhoehoe type flows (Hon et al., 1994), the areal extent of the lava no longer increases 

significantly during the inflation stage. Instead newly erupted lava is accommodated via flow 

inflation and its height may increase by a factor of up to 10 (Cashman et al., 2013; Hon et al., 

1994; Pedersen et al., 2017; Walker, 1991). This process will result in estimates of lava viscosity 

and yield strength higher than the actual values during flow. Thus it becomes apparent that 

assigning a geometry-derived yield strength to a lava is extremely problematic. This is because 

the lava flow height is controlled by the confinement of the developing flow-carapace (i.e. 

external confinement by the rheologic contract zone) rather than an apparent internal yield-

strength (intrinsic rheologic parameter). It is important to note that in nature, even the fluid core 

of a lava flow is not actually a Bingham fluid but, being a three phase magmatic suspension, has 

a complex, strain-rate-dependent viscosity. The crust on the other hand contains brittle and 
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visco-elastic portions. Therefore, the use of a Bingham rheology model represents a drastic 

simplification and is a significant source of uncertainty and error in the estimation of flow 

properties from morphology, since height is a second to fourth power parameter in the respective 

equations (See section 3 for details).  

Here, for the first time, use of a time series of high resolution remote sensing elevation 

data (morphology and texture) recorded by the TanDEM-X satellite mission during the 2014/15 

Holuhraun eruption in Iceland enables the systematic assessment of the influence of lava flow 

inflation on the results obtained from current methods for the derivation of rheology from 

morphology.  

2. Geological Setting and Eruption Chronology 

The Holuhraun eruption took place in the tectonic fissure swarm between the 

Bárðarbunga-Veiðivötn and the Askja volcanic systems in the periglacial sander plain of 

Dyngjujökull, an outlet glacier of the Vatnajökull ice cap in Iceland (Fig. 1). It was fed by a 45 

km long, lateral dyke propagating from the subglacial Bárðarbunga volcano (Coppola et al., 

2017; Ruch et al., 2016; Sigmundsson et al., 2014). The eruption lasted about six months 

(29/08/2014 – 27/02/2015) and produced about 1.5 km3 of basaltic lava (Coppola et al., 2017; 

Jaenicke et al., 2014; Jaenicke et al., 2016; Münzer et al., 2016; Pedersen et al., 2017). The lava 

flow extends over an area of 85 km² with a maximum height of 48 m of the main crater (Baugur) 

located at the southwestern edge of the lava field (Jaenicke et al., 2014; Jaenicke et al., 2016; 

Münzer et al., 2016; Pedersen et al., 2017). The large volume and area of the Holuhraun flow-

field makes it a great comparative counterpart to extra-terrestrial flow-fields such as King- and 

Aristarchus-Crater on moon (Moore et al., 1978) and Olympus-, Arisa- and Ascrae-Mons on 

Mars (Moore et al., 1978; Zimbelman, 1985). 
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Lava effusion rates during the eruption period range from 320 to 10 m3/s. Averaged 

values are ~250, 100 and 50 m3/s during the initial (August – September 2014), intermediate 

(October – December 2014) and final phase (December 2014 to February 2015), respectively 

(Coppola et al., 2017; Pedersen et al., 2017). The lava was emplaced on the central part of the 

Flæður floodplain north of the Dyngjujökull glacier. This outwash plain is covered by glacial and 

fluvial deposits, and has a regional dip of ~0.2̊-0.5̊ to the northeast. Its small scale topography is 

made of decimeter to meter scale fluvial banks, bars and terraces. The gently sloping 

emplacement surface resulted in slow lava flow advancement rates (generally below ~1 m/min); 

see , Kolzenburg et al. (2017) and Pedersen et al. (2017) for details. Thus the eruption was an 

ideal target for scientific observations of unique detail ranging from direct ground measurements 

(Kolzenburg et al., 2017; Pedersen et al., 2017) over airborne platforms to satellite monitoring 

(Coppola et al., 2017; Jaenicke et al., 2014; Jaenicke et al., 2016; Münzer et al., 2016; Pedersen 

et al., 2017). The chemical composition of the lava is homogeneous throughout the entire 

eruption (Gíslason et al., 2015; Kolzenburg et al., 2017). This implies that neither the topography 

nor the composition were the driving factors for the observed changes in flow morphology. 

During its emplacement history, the lava field was initially dominated by channels and 

horizontal expansion. Then it transitioned to grow in volume primarily by inflation, tube-fed 

flow (i.e. transport of lava through roofed over partially or completely filled channels) and 

vertical stacking of lava-lobes. The main lava channel shows significant inflation (5-10 m). 

Inflation intensity increases from proximal to distal sections of the lava channel, see Pedersen et 

al. (2017) and section 5 for details. Pedersen et al. (2017) estimated a total lava volume of 0.09 

km3 to 0.18 km3 (i.e. about 10% of the erupted lava volume) to produce such inflation. 
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As highlighted in Pedersen et al. (2017), the Holuhraun flow field illustrates that studies 

of long-lived eruptions based exclusively on the final surface morphology may be incapable of 

revealing the complex morphological evolution of composite lava-fields. Here, the high spatial 

and temporal resolution of monitoring data available for the Holuhraun eruption provides a 

unique opportunity to study the emplacement and the growth of a large, composite lava flow 

field in both space and time. This is crucial for the assessment of errors resulting from 

geometrical changes during and post-emplacement, a fundamental part being the availability of 

sequential DEMs of the lava flow-field.  

3. Brief Review of Existing Methods 

The most commonly used methods for the determination of rheological parameters from 

lava flow morphology can broadly be separated into two groups: 1) Methods estimating the 

apparent viscosity of the lava through the relationships between flow-geometry (width, height), 

flow-rate (surface velocity or volumetric flux) and flow-driving forces (gravity, lava-density, and 

slope) and 2) Methods estimating the yield strength of the lava based on flow-geometry (width, 

height) and flow-driving forces (gravity, lava-density, and slope). These methods neglect the 

volumetric flow rate by assuming a constant Bingham rheology, where the final width to height 

ratio of the lava directly correlates with its yield strength. 

Other, less commonly applied approaches include fractal analysis of the flow outlines 

(Bruno et al., 1994), analysis of flow thickness along the longitudinal axis of the flow (Glaze et 

al., 2003) or rate of levee growth along the flow (Glaze and Baloga, 2006). In this study we focus 

on the evaluation of the first two groups of methods, as these are the most commonly applied 

approaches in planetary sciences. 
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In order to apply these methods it is necessary to constrain the volumetric flux of lava for 

the eruption in question. Several approaches for doing so have been proposed for cooling-

limited, laminar lava flows. Inflation, however, is neglected in such calculations. These 

approaches relate lava flow length to flow velocity via the dimensionless Graetz number; see 

Pinkerton and Wilson (1994) and references therein, which considers the relationship between 

heat advection to conductive heat loss along the lava flow length as follows: 

𝐺𝑧 =
 𝑣 𝑑𝑒

2 

𝑘 𝑙
  eq. 1 

Where Gz is the Graetz number, v the mean flow velocity in m/s, de the equivalent 

diameter of the flow in meters, k the thermal diffusivity in m2s-1 and l the lava flow length in 

meters. Cooling limited lava flows have been found to stop once this number falls to a critical 

value of 300 (Pinkerton and Wilson, 1994). This Graetz number threshold as well as the flow 

dimensions are correlated to the volumetric effusion rate; see Chevrel et al. (2013b) for a review: 

𝑄 = 𝑢 𝑤 ℎ =
𝐺𝑧 𝑘 𝑙 𝑤

ℎ
  eq. 2 

Group 1 approaches (i.e. determination of the viscosity of the lava) rely on information 

about the mean flow velocity of lava along the investigated channel. They are commonly based 

on the Jeffreys equation. Nichols (1939) developed the Jeffreys equation into an approach that 

can be applied to lava flow emplacement: 

η1 =  
𝑔 𝑠𝑖𝑛𝛼 ℎ2𝜌

𝑛 𝑣
 eq. 3 
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Where η1 is the viscosity in Pa s, ρ is the lava density in kg/m3, α is the angle of the 

underlying slope in degrees, h is the lava flow height in meters and n is a constant set to 4 for 

narrow flows.  

The mean flow velocity v is related to the channel geometry and effusion rate via 

equation 2, above. Nichols’ equation can therefore, when accounting for flow geometry and 

assuming Newtonian viscosity, be re-written as: 

η2 =  
𝜌 𝑔 ℎ3 𝑤 𝑠𝑖𝑛𝛼

𝑛 𝑄
 eq. 4 

 where all parameters are as defined above. Based on the work of Fink and Griffiths 

(1990), this equation was simplified by Warner and Gregg (2003) to derive the effective bulk 

viscosity of crust forming lavas independent of flow width: 

η3 =  
𝜌 𝑔 ℎ4

𝑄
 eq. 5 

Group 2 approaches are based on the assumption of lava having a Bingham rheology, i.e. 

a yield strength forcing the flow to stop at a critical slope, thereby determining its geometry, 

which is recorded in the solidified flow. Relating yield strength to geometry was initially 

proposed by Hulme (1974) and developed into three separate equations presented in Moore et al. 

(1978): 

 𝜏1 =  𝜌 𝑔 ℎ 𝑠𝑖𝑛𝛼 eq. 6 

𝜏2 =  
𝜌 𝑔 ℎ2

𝑤
 eq. 7 

𝜏3 =  𝜌 𝑔 sin2 𝛼 2𝑤𝑙 eq. 8 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

11 

 

Where wl is the levee width and all other parameters are equivalent to the previous 

equations. Equation 6 simply balances the driving forces (density, height slope) and gravity. 

Equation 7 is slope independent, only assessing the lateral spreading of the flow, and was 

originally developed by Orowan (1949); derived from the flow of glaciers as analogues. This 

equation is also used in Zimbelman (1985) and allows to deduce yield strength without knowing 

the gradient of the underlying slope by restricting calculations to the lateral spreading of the lava 

flow perpendicular to the flow axis. Equation 8 accounts for the development of flow directing 

levees and is therefore commonly used for channelized flows. 

In the following analysis we focus on equations 4, 5, 6 and 7 since all input parameters 

are well-constrained for these approaches. Equation 8 is not assessed because, due to the 

inflation and overflow events that infilled the channels during emplacement, it was not possible 

to constrain the modifications in channel width satisfactorily. 

4. Satellite Elevation Data 

Within the framework of the project IsViews (Iceland subglacial Volcanoes interdisciplinary 

early warning system, 2012-2016) radar data were recorded by the TerraSAR-X and TanDEM-X 

satellites during the Holuhraun eruption. A Geomorphometric analysis using the TXD data is 

presented in Dirscherl and Rossi (2018). These data are property of the DLR and were made 

available for this study in the framework of a collaborative project (IsViews, Proposal Other 

2375, PI. C. Minet). In addition, very high resolution (20 cm), UltraCam Xp data (Gruber et al., 

2008; Wiechert et al., 2011) were acquired on 29/08/2014 (start of the eruption) and 08/09/2015 

to interpret the exact outline of the lava field on a processed true orthophoto mosaic and for 

verification the TDX data. Albeit higher 3D-resolution may be recovered by laser scanning or 

photogrammetry (Cashman et al., 2013; Farquharson et al., 2015; Kolzenburg et al., 2016a), 
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these methods can only be deployed locally and are, to date, unable to cover the large spatial 

extent represented by the Holuhraun lava-field in a satisfactory time-frame. The advantage of 

radar technology, especially in view of the frequent cloudy conditions in Iceland, is its ability to 

collect data independent of solar illumination and cloud cover.  

TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) is the name of TerraSAR-

X's twin satellite, a German Earth observation satellite using X-band SAR (Synthetic Aperture 

Radar). The TanDEM-X mission has been established in 2010 with the aim to generate a global 

digital elevation model (DEM) at 12 m posting using interferometric SAR (InSAR) technique 

(Krieger et al., 2007; Münzer et al., 2010). Additionally, the mission operation allows stacks of 

bistatic acquisitions (pairs of Coregistered Single look Slant range Complex; CoSSC's) within 

the framework of science proposals in order to generate temporal DEM series (Hajnsek and 

Busche, 2015). 

TanDEM-X (TDX) elevation data with a ground resolution of 6 m, acquired before 

(22/01/2011), during (06/12/2014, 10/02/2015) and after (28/04/2015) the Holuhraun eruption, 

were available for this study. The acquisitions were processed as RawDEMs at the German 

Aerospace Centre (DLR) using the operational Integrated TanDEM-X Processor (ITP) (Rossi et 

al., 2012). The individual RawDEMs each represent a single time and thus can be used to 

investigate temporal height changes. Within a time-series of TDX RawDEMs of the same orbit 

absolute height differences between DEMs are common (Mayer et al., 2016; Münzer et al., 2016; 

Rossi et al., 2016). Therefore, surface elevation change is derived by means of DEM differencing 

using precisely co-registered TDX DEM data. Since we analyse topographical changes relative 

to one of the acquisitions in the data stack, the flat and solid terrain around the lava flow could be 

used for calibration to a master scene (28/04/2015). According to height error maps provided by 
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the DLR, the vertical accuracy of the TDX data within the investigated area is ~20 cm. However, 

the extreme heat (up to 1200 ̊C) of the lava yields to artefacts that need to be considered when 

interpreting the TDX data acquired during the Holuhraun eruption. These artefacts were 

identified in the TDX data from 06/12/2014. There are two types of errors: 1) “Wave patterns” 

due to atmospheric heat propagating with the wind westwards from the main crater (Figure 2B) 

and 2) “local scatter” of the radar backscatter at active flow fronts where the lava is glowing 

(Figure 2D and Figure 3). Landsat 8 data from USGS, acquired during the eruption, were used in 

order to verify these occurrences. 

5. Identification of Target Areas  

During the Holuhraun eruption two emplacement processes caused most of the 

modifications to the lava flow geometry:  

1. Inflation of lava channels or tubes that were created during a constant flow regime and 

then later experienced increased internal pressure via either an increased volume flux or 

pressure tailback (i.e. pressure increase when downstream flow is blocked or confined); 

Figure 2B.  

2. Inflation of individual flow lobes via formation of a flow-confining crust that stopped 

flow advance and was subsequently inflated to accommodate the continued arrival of 

lava; Figure 2D. 

We processed difference TDX DEMs for the time periods between all available datasets 

to assess the relative changes in the lava flow-field (see Fig. 2). These were used to identify 

target areas for the investigation of the different inflation mechanisms, and to assess the 

respective impact on the morphology derived rheologic parameters. Representative elevation 

profiles of single TDX DEMs of these areas were then generated in order to quantify the 
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morphological readings used in the calculation of the lavas’ rheological parameters. In the 

following sections we detail how the target areas were chosen for investigation of the respective 

process. 

5.1 Zones for Application of the Standard Method 

For comparison to the results of areas where inflation was identified, we selected areas 

where emplacement occurred as a single unit and without identifiable post-emplacement 

modifications (Fig. 2A). These areas may have been inflated during late stages of flow (see 

section 5.3) but were free of secondary inflation. Due to the nature of the eruption (including 

several periods of re-activation of old parts of the flow field and superposition of flow units), 

single stage emplacement units are dominantly found in areas emplaced towards the end of the 

eruption. All investigated profiles for these locations were taken from the TDX dataset of 

28/04/2015. Eruptive activity and inflation had ceased by this point (Pedersen et al., 2017) and 

thus the data represent an application of the investigated methods equivalent to planetary/palaeo-

eruptive terrestrial scenarios. 

5.2 Zones of Lava flow Inflation 

Lava channel inflation occurred dominantly along the two central channels of the flow 

field, (Fig. 2B; see also figure 2 in Pedersen et al. (2017). Inflation of the southern channel was 

not captured well by the TDX data from 06/12/2014 due to artefacts generated by atmospheric 

heat propagating from the main crater Baugur westwards with the wind (see wave patterns in the 

central and eastern part of Fig. 2B). The magnitude and spatial extent of the inflation in the 

northern channel documented by the TDX data is in excellent agreement with high spatial and 

temporal resolution field observations reported in (Pedersen et al., 2017). Therefore, our 

investigation of the effect of channel inflation on the deduced rheological parameters focuses on 
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the northern channel (see profile locations in Fig. 2B and C). All investigated profiles were 

assessed for the change in the deduced rheological parameters between the 06/12/2014 and the 

28/04/2015. 

5.3 Pristine, Active Lava Flow Toes; Free of Inflation. 

In order to calculate the morphology derived rheological parameters of actively flowing 

lava we identified locations where unconfined lava flow emplacement occurred during the time 

of DEM data acquisition (neither by levees nor a fully developed crust). These areas were 

identified by combining the available field data from the Icelandic Meteorological Office reports, 

MODIS satellite infrared images processed by MIROVA (Coppola et al., 2015) and Landsat 

satellite images (USGS). Due to changing eruption dynamics active lava toes were only covered 

by the TDX dataset from 06/12/2014, where breakouts occurred along the northern edge of the 

lava flow field. On 10/02/2015 activity was dominantly confined to inflation of the existing lava 

field and no active toes were captured by this TDX dataset. Therefore, all elevation profiles for 

the assessment of active flow toes were generated from the 06/12/2014 dataset.  

The extreme heat of the active lava flow fronts (~1150 ̊C; see Kolzenburg et al. (2017)) 

affects the TDX data. It causes variations in travel time of the radar waves depending on the 

vantage point of the two satellites and produces wave like patterns in the derived DEMs (see the 

zones east of the eruptive craters in Figure 2 B and D). This results in local zones of large scatter 

in the derived DEM data (Figure 3). This effect most likely results from the large density 

contrasts in the atmosphere above freshly exposed lava (i.e. between hot and cold air). Further, 

the temporal difference between the TerraSAR-X und TanDEM-X recordings were `10 sec 

during this recording phase, which could result in movement of these density contrast, inducing 
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the wave-pattern errors. We discard these data in our analyses and interpolate between the 

unaffected zones of the profiles. 

We identified three (A1-3; Fig.2D) locations where longitudinal profiles of the active 

flow-front and four (A1-4; Fig 2D) locations where cross-sectional profiles of the active lava 

toes could be recovered. All cross sectional profile locations are set slightly upstream of the 

active flow front to avoid zones of large thermal scatter. Because flow was active during the time 

of TanDEM-X acquisition we assume that it was unconfined (with exception of the coolling 

induced rheologic contrast in the lava) at the flow front, where fresh lava was being emplaced 

continuously and the flow was in hydrostatic equilibrium. The identified profiles thus represent 

the geometry on the lava flow that is reflective of its rheological parameters during active flow 

advance.  

6. Determination of Model Input Parameters 

6.1 Density and Vesicularity 

The density and vesicularity of the Holuhraun lava were determined via He-Pycnometry 

at the Department of Earth and Environmental Sciences, Ludwig-Maximilians-University of 

Munich. Measured density values range between 2700 and 2100 kg/m3 for vesicularity ranging 

between 15 and 35 vol%. These values agree with the calculated, composition-dependent melt 

density of 2731 kg/m3 for an eruptive temperature of 1100 ̊C using the model of Lange and 

Carmichael (1990). Therefore, the following calculations use an average value of 2050 kg/m3 for 

lava density at 25 vol% vesicularity. 
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6.2 Effusion Rate 

The time-dependent effusion rate of the Holuhraun eruption was reconstructed in great 

detail by Coppola et al. (2017), who combine measurements of radiative heat flux of the lava 

field measured using the MIROVA system (Coppola et al., 2016; D. Coppola 2013) with 

geometrical constraints on the magma storage region inside the Bárðarbunga caldera. Using 

these data, the effusion rate for 06/12/2014 could be constrained at ~100 m3/sec.  

The satellite derived values are in agreement with the geometry derived effusion rates 

calculated using the methods described in section 3. The calculated values, based on the range of 

individual flow dimensions reported in Pedersen et al. (2017), range between 70 and 128 m3/sec 

for cooling limited flows of 11 to 16 km length, 800 to 1000 m width, 15 m height and a thermal 

diffusivity of the lava of 4 10-7 m3s-1. We, therefore, use 100 m3/sec as a reasonable value for the 

volumetric effusion rate during the emplacement of the flow units investigated here. 

6.3 Width, Height and Slope 

Elevation profile locations were chosen as described in section 5. Lava flow width and 

height were determined by means of the TDX data for each profile location shown in Figure 2. 

Local and global slopes of the emplacement surface are very shallow and range from 0.2̊ to 0.5̊ 

with an average of 0.35̊. These measurements were then combined with the average density, 

vesicularity, and effusive rate of the lava in order to calculate the rheological parameters 

following equations 4, 5, 6 and 7 for each profile.  
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7. Results 

7.1 Standard Method 

We measured the morphological parameters for 14 different profile locations in the lava 

flow-field that were emplaced as a single unit (Figure 4). The calculated rheological parameters 

are reported in Figure 5 and Table 1. The apparent viscosities range from 104.3-105.4 Pa s for 

equation 4 and 105.1-106.3 Pa s for equation 5. The calculated yield strengths range from 102.8-

103.1 Pa for equation 6 and 102.9-103.5 Pa for equation 7. These data are in good agreement with 

the results from inflated sections of the lava flow (see Figures 6 and 7, described in the following 

chapter 7.2.), confirming that post-halting inflation, as observed in the field (Kolzenburg et al., 

2017; Pedersen et al., 2017) was occurring even in flow lobes that were emplaced as a single 

unit. 

7.2 Lava flow Inflation 

Morphologically-derived rheologic parameters were calculated for 36 profile locations in 

five different sections of the lava flow field (34 samples for the TDX elevation difference 

between 06/12/2014 and 28/04/2015 and 2 samples for the difference between 10/02/2015 and 

28/04/2015; Figure 6). The average calculated rheological parameters for each investigated 

section are reported with their respective standard errors in Figure 7 and individually in Table 2. 

Pre-inflation viscosities range from 103.4-104.6 and 104.5-105.3 for equations 4 and 5, respectively, 

and yield strengths range from 102.6-102.8 Pa and 103.7-102.3 Pa for equations 6 and 7, 

respectively. Inflation of the lava channels leads to a 1.0 – 5.2 m (18-200 %; with respect to the 

initial height) increase in average lava flow height without a significant change in flow width. 

This results in a 2.4 to 17 fold increase in the calculated apparent viscosity and 0.7 to 2.4 fold 

increase in the calculated yield strength. Final post emplacement values range from 104.3-105.1 Pa 
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s and 105.7-105.9 Pa s for equations 4 and 5, respectively and yield strengths range from 102.9-103.9 

Pa and 103.2-103.7 Pa for equations 6 and 7, respectively. The data show a significant increase in 

the estimated viscosities between the 06/12/2014 and 28/04/2015 DEM datasets as a result of 

inflation. The increase in estimated viscosity due to inflation between 10/02/2015 and 

28/04/2015 is smaller. The post-inflation data is in good agreement with the values recovered 

using the standard method, whereas pre-inflation data is significantly lower in all cases. 

7.3 Active Flow Toes 

The cross-sectional profiles of active sections at Holuhraun lava field are shown in Figure 

8. The average calculated rheological parameters and respective standard errors for the active 

lava toes are plotted as red stars in Figure 7 and Table 3. Pre-inflation viscosities range from 

102.9-103.7 and 103.8-104.9 for equations 4 and 5, respectively and yield strengths range from 102.5-

102.8 Pa and 102.7-103.4 Pa for equations 6 and 7, respectively. The rheological parameters 

recovered for the active flow toes are the lowest measured values for equations 4, 5, and 6. 

However, they plot very close to the data measured for the confined lava channels, suggesting 

that on 06/12/2014 the lava inflation in the channel was minimal. The data calculated for 

equation 7 plots slightly above the values calculated for lava channel sections I1 and I2 at similar 

values to lava channel section I4. This is likely because the lava channel was confined by 

neighboring parts of the lava field, resulting in a reduced effective lava flow width that translates 

to a reduction in the calculated yield strengths, as width is in the divisor in this equation. Data 

recovered from the active lava toes are the lowest calculated values for equations 4, 5 and 6, 

whereas they represent an intermediate value for equation 7. This demonstrates that the 

application of the tested methods to post emplacement flow-geometries will in all cases result in 

an overestimation of the respective rheological parameters. 
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The difference between syn- and post-emplacement flow geometries is most obvious 

when comparing profiles of the lava flow fronts along the direction of flow emplacement. Figure 

9 shows the longitudinal profiles of the flow front locations shown in Figure 2 A and D. Active 

toes are significantly lower and have much shallower flow front angles than post-emplacement 

flow fronts. This is the result of post-halting inflation, where the lava flow crust grew sufficiently 

strong to prevent further flow advance and the continued supply of viscous lava was 

accommodated by internal growth of the lava toe, resulting in vertical inflation and flow-front 

steepening. 

8. Discussion 

8.1 The Effect of Inflation on the Rheologic Parameters 

Lava flows, both terrestrial and extra-terrestrial, display a large range in viscosities and 

shear strain rates and thus varying morphology (Cashman et al., 2013; Chevrel et al., 2014; 

Glaze and Baloga, 2006; Griffiths and Fink, 1992; Hiesinger et al., 2007; Hon et al., 2003; Hon 

et al., 1994; Keszthelyi et al., 2006; Nichols, 1939; Peterson and Tilling, 1980). At any given 

point in an inactive flow field the morphology is only recording the conditions of the lava after 

flow advance ceased. At the final stage of advance, sufficient surface crust is commonly formed 

to impede further flow front advancement, while the interior of the flow continues to be able to 

deform, resulting in inflation and hence a modified morphology (Hon et al., 1994; Kolzenburg et 

al., 2017; Walker, 1991).  

For the 2014/15 Holuhraun lava flow field, the average apparent viscosities calculated for 

the post inflation lava are 104.8 and 105.7 Pa s for equations 4 and 5, respectively. The average 

yield strengths for the post inflation lava are 102.9 and 103.2 Pa for equations 6 and 7, respectively. 

These values are comparable to the values reported in Chevrel et al. (2013b) measured for lavas 
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of similar composition and volcanic setting. This demonstrates that the tested methods return 

reproducible results for comparable terrestrial settings. It further implies that inflation is an 

inherent problem in the determination of rheological parameters and that these previous 

estimates are most likely also affected by lava flow inflation and therefore represent an over 

estimate in both viscosity and yield strength. This is supported by the fact that viscosity values 

derived from the non-inflated, active emplacement stage (i.e. ones that correspond to the actual 

viscosity of the lava during flow) are lower than those estimated from flow morphology. 

The data presented here show that the geometries of actively flowing lava (i.e. the stage 

of emplacement where rheologic parameters are applicable) in both confined and unconfined 

environments (i.e. single stage emplacement toes and active lava-channels) differ significantly 

from the post-emplacement geometries of inactive lava flows. 

Inflation, which is commonplace in lava flows, results in an over-estimation of the lavas’ 

rheological parameters of 0.8 and 1.1 log units in viscosity and 0.27 and 0.25 log units in yield 

strength for equations 4, 5, 6 and 7, respectively. This increase in calculated rheological 

parameters is higher for the dataset comparing the 06/12/2014 to the 28/04/2015 TDX data than 

for the dataset between 10/02/2015 and 28/04/2015. This difference is likely due to the decrease 

in effusion rate towards the end of the eruption and the resulting lower degree of inflation.  

At a temperature of 1150 ̊C a 0.8 to 1.1 order of magnitude increase in viscosity implies a 

14 to 19 wt% increase in silica content for the Holuhraun lava, (calculated using the viscosity 

model of Giordano et al. (2008)). Because of the decreasing fragility of melt viscosity with 

increasing silica content, this compositional uncertainty becomes more important with increasing 

silica content at common eruptive temperatures (1200-1050 ̊C). This means that the correlation 
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of rheological parameters and composition is especially sensitive for high viscosity melts (i.e. 

high aspect ratio lava flows). That is an important issue consider when deducing compositional 

interpretations from morphological data on more evolved compositions as presented in Warner 

and Gregg (2003). 

Although less critical than the errors in estimated viscosity, the estimation of apparent 

yield strength is also problematic. All common calculations are based on the assumption that no 

flow-impeding crust exists but that the morphology is a direct reflection of the lavas’ internal 

forces. However, as outlined above, lava flow height is dominated by the strength of the 

developing rheological contrast zone (i.e. crust) that is governed by the balance between the rates 

of heat loss and lava-solidification. Thus, lava flow height is not correlated to the actual yield 

strength of the magmatic suspension in a rheological sense. 

8.2 Implications for Interpreting Remote Sensing Data in Planetary Sciences  

The presented data and analysis show that an increase in lava flow height due to inflation 

results in significant overestimation of all rheological parameters. The high viscosity values in 

the range of 105 to106 Pa s estimated from the morphology of Martian and Lunar lavas (Baloga 

et al., 2003; Glaze and Baloga, 2006; Hiesinger et al., 2007; Hulme and Fielder, 1977; Moore et 

al., 1978; Pasckert et al., 2012; Warner and Gregg, 2003; Wilson and Head, 1994; Zimbelman, 

1985) for which compositional constraints would predict much lower viscosities (Chevrel et al., 

2014; Musselwhite et al., 2006), could potentially be explained by high (>50 vol%) crystal 

contents (Chevrel et al., 2013b). However, suspensions with such high crystal contents are 

unlikely to achieve the long run-out distances documented by Martian lavas. Instead, widespread 

lava flow inflation, as documented for the Holuhraun example, is a much more likely reason for 

the observed mismatch between morphologically and compositionally inferred viscosities. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

23 

 

The lower calculated average apparent viscosities for active, non-inflated lava channels 

and individual toes (Fig. 7), representative of flowing lava prior to inflation, return more realistic 

values of 103.8 to 104.7 Pa s. This implies that lavas on other planets likely have lower effective 

flow viscosities than previously estimated. 

Further, variations in environmental parameters such as surface- and eruptive-

temperatures as well as the different precipitation, nature of the atmosphere and gravitational 

force on extra-terrestrial bodies may result in different emplacement dynamics. Griffiths and 

Fink (1992) and Keszthelyi et al. (2006) for example, show that the heat loss of lavas may vary 

widely between Earth, Mars and Venus and Moon/Io. Thus the efficiency of the development of 

an insulating and flow-impeding crust may vary drastically, which in turn influences the 

potential for lava flow inflation and the accompanying changes in lava flow aspect ratios. Colder 

surface temperatures, for example, favour crust formation, leading to earlier flow halting and 

consequently more intense inflation. Whereas higher surface temperatures retard crust 

formations resulting in lower degrees of inflation and thus flow geometries are more 

representative of the actual rheological parameters during emplacement. Further, the oxygen 

fugacity of the emplacement atmosphere can affect both the melt viscosity (Chevrel et al., 2013a; 

Di Genova et al., 2017) as well as its rheological solidification behaviour (Feig et al., 2010; 

Kolzenburg et al., 2018). 

Therefore, accurate deduction of rheological parameters from morphological 

measurements needs to be benchmarked via environmental, morphological, petrological, and 

compositional constraints. The development and application of methods for accurate 

microanalysis of glass compositions in extra-terrestrial volcanic deposits, as presented in Di 

Genova et al. (2016), in conjunction with the rapidly growing availability of morphological data 
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on other planets e.g. (Baloga et al., 2003; Glaze and Baloga, 2006; Jaeger et al., 2007; Jaeger et 

al., 2010; James et al., 2015; Keszthelyi et al., 2008; Keszthelyi et al., 2006; Warner and Gregg, 

2003; Williams et al., 2005; Wilson and Head, 1994) are crucial parts of furthering our 

understanding of the rheology of planetary volcanism. 

8.3 Comparison to Laboratory Data 

The lower calculated average apparent viscosities (104 to 104.7 Pa s) for non-inflated lava 

flows (see Figure 7) is the closest value representative of flowing lava prior to inflation. These 

values reflect the lavas’ viscosity at an emplacement-stage where lava flow advance ceased and 

further activity did not result in growth of the respective flow field section but rather its inflation. 

Therefore, they lend themselves for comparison with experimentally determined viscosities of 

crystallizing lavas. 

The bulk cooling rate of the Holuhraun lava was reconstructed to lie between 0.2 and 0.8 

K/min by Kolzenburg et al. (2017) The experimental results show that at a cooling rate of 0.5 

K/min the viscosity of the Holuhraun lava starts to increase at around 1180 ̊C (at an absolute 

viscosity of around 101.7 Pa s) and approaches its cut-off value (i.e. the point where the viscosity 

goes towards extreme values and flow ceases) at temperatures below 1120 ̊C (beyond an absolute 

viscosity of 103.4Pa s).  At lower oxygen fugacity, the Tcutoff values decrease, indicating the 

potential for longer runout distances under reduced conditions (Kolzenburg et al., 2018). This 

correlation between morphologically and experimentally determined lava flow stopping criteria 

suggests that the Tcutoff values measured in the laboratory accurately reproduce the 

morphologically derived viscosities at which lava flows stop and can, therefore, serve to improve 

existing computational lava flow models. 
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9. Conclusions 

Based on the data presented in this study and the accompanying analysis and discussion, 

we draw the following conclusions: 

1. Lava flow inflation results in a 2.4 to 17 fold overestimation of apparent viscosity 

and a 0.7 to 2.4 fold overestimation of yield strength for the methods commonly 

used in planetary science. 

2. Previous estimates of rheological parameters on extra-terrestrial bodies may, at 

best, represent an upper limit, and actual viscosity values of these melts may be 

significantly lower. 

3. The resulting uncertainty in the deduced lava compositions is large and increases 

for more evolved compositions. 

4. Remote sensing and laboratory data are in reasonable agreement with respect to 

the absolute viscosity that determines the point at which lava flow advance 

ceases. 

5. Bistatic SAR Missions and the derived height information prove to be a valuable 

tool for monitoring lava flow fields. Future SAR missions with this capability 

would be very important for research in remote sensing. 
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11. Figure Captions 

Figure 1: Overview of Eruption Site 

 

Figure 1: A) RapidEye satellite mosaic of Iceland with the Neovolcanic Zone (1) and 

some iconic volcanic centres (2-6) within the rift system. The Holuhraun eruption site is located 

in the white square between the subglacial central volcano Bárðarbunga and the Askja caldera 

(RapidEye mosaic, Planet Labs Germany, DLR/RESA proposal ID 619, compiled by RSS 

GmbH within the project IsViews) B) Enlargement of the square in (A) showing an UltraCam 

mosaic from 08/09/2015; 20 cm pixel resolution, covering the final extent of the Holuhraun lava 

field (85 km2) located south of Askja caldera and north of the outlet glacier Dyngjujökull © 

IsViews. C) TanDEM-X difference, calculated between 22/01/2011 and 28/04/2015, showing 

various lava flow channels within the lava field [raw data © DLR]. The eruptive centre, called 

Baugur crater (8), is located in the south west of the lava field.  
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Figure 2: Profile Locations 

 

Figure 2: Overview over the individual profile locations identified by means of TanDEM-

X difference. A) DEM difference between 28/04/2015 and 22/01/2011 showing the absolute 

elevation difference between pre and post eruption surfaces. This image was used to identify 

locations for the standard approach of deducing rheology from morphology of single flow units. 

Six zones (S1-6) were selected to recover a total of 22 cross sectional and longitudinal post 

eruption profiles. B) DEM difference between 28/04/2015 and 06/12/2014 showing areas of lava 

flow inflation. This image was used to identify locations in which inflation had occurred in 

previously existing lava channels. Four zones (I1-4) were selected to recover a total of 34 cross 

sectional profiles from both the 28/04/2015 and 06/12/2014 TDX datasets. C) DEM difference 

between 28/04/2015 and 15/02/2015 showing areas of lava flow inflation between 10/02/2015 

and the end of the eruption. Two additional cross sectional profiles of Zone I1 were selected 

from this dataset to assess the degree of inflation between 15/02/2015.and 28/04/2015 D) DEM 

difference between 06/12/2014 and 15/02/2015. Four zones (A1-4) were selected to recover a 

total of 12 cross sectional and longitudinal post eruption profile from the 06/12/2014 TDX 

dataset. This image was also used to identify zones of localized thermal instabilities in areas of 

active lava flow emplacement. 
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Figure 3: Thermally Induced Scatter in Radar Data 

 

Figure 3: Examples of the thermally induced scatter in the TDX data from 06/12/2014 at 

active lava flow fronts. Areas of high thermal activity produce up to > ±10 m scatter in the DEM 

recovered from the radar data (red dotted and dashed lines). Solidified lava flow surfaces are not 

affected by this scatter (solid black lines). Where present, these gaps were interpolated (black 

dotted and dashed lines). 
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Figure 4: Elevation Profiles for Standard Approach 

 

Figure 4: Plot of 14 elevation profiles generated from the TDX DEM of the 28/04/2015. 

The profiles are used to recover rheological parameters of lava flow lobes emplaced as a single 

unit. Profile locations are shown in Figure 2. Although the width varies significantly, the 

calculated rheological parameters return similar values (see Fig. 5). 
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Figure 5: Calculated Results from Standard Approach 

 

Figure 5: Rheological parameters calculated for the profiles of lava flow lobes emplaced 

as a single unit. A) Viscosities calculated with Equations 4 and 5 are plotted as black dots and 

blue triangles, respectively. Data returned by equation 5 are consistently higher than those for 

equation 4. B) Yield strengths calculated with equations 6 and 7 are plotted as black dots and 

blue triangles, respectively. Values returned by equation 7 are consistently higher than those for 

equation 6. Despite some scatter, the overall order of magnitude returned for all profile locations 

falls within a narrow range, indicating a good consistency for all four methods. 
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Figure 6: Elevation Profiles for Inflated Sections  

 

Figure 6: Summary plot of the inflation profiles investigated for this study. Profiles from 

the DEM of TanDEM-X data from 06/12/2014 are plotted as dotted, blue lines. Profiles from 

28/04/2015 are plotted in solid black. Two profiles where inflation occurred between 10/02/2015 

and 28/04/2015 are plotted as dashed, red lines. Profiles are labelled according to figure 2. 

Profiles labelled with small letters (a) or (b) correspond to sub-sections of the respective profile 

locations in figure 2 where the profile lines spans more than one individual flow. Inflation is in 

most cases restricted to vertical growth of the lava flows with little to no horizontal expansion. 

Horizontal growth is only detected in the two examples of inflation between the February and 

April datasets.    
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Figure 7: Calculated Results from Inflated Sections 

 

Figure 7: Results from the investigations of inflation of the Holuhraun lava flow field. 

Viscosities calculated with equations 4 and 5 are plotted in sub-plots A and B, respectively. 

Yield strengths calculated with equations 6 and 7 are plotted in sub-plots C and D, respectively. 

Data are reported as averages of all profiles in each section together with the respective standard 

error. Pre-inflation data are plotted as blue filled and open triangles for the 06/12/2014 and 

10/02/2015 datasets, respectively; Post-inflation data from 28/04/2015 are plotted as black dots. 

Average and standard error for the standard approach data shown in figure 4 are plotted as a 

brown square. Average and standard error for the active lava toes are plotted as a red star.   
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Figure 8: Elevation Profiles of Active Lava Flows 

 

Figure 8: Summary plot of all profiles used to recover rheological parameters of active 

lava flow toes. Profile locations are shown in Figure 2. Areas where the TDX elevation data 

(06/12/2014) were affected by thermally induced scatter (see Figure 3) were interpolated and are 

shown as dotted lines. 
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Figure 9: Inflation of Lava Flow Fronts 

 

Figure 9: Summary plot of all profiles of lava flow fronts shown in Figure 2. There is a 

drastic difference in both front-angle (~40 vs. ~80 degrees) and –height (~5 vs. ~10) between 

active and post-emplacement, inflated flow fronts. Areas where the TanDEM-X data were 

affected by the thermal scatter (see Figure 3) were interpolated and are shown as dotted lines. 

Photographs on the right show examples of active and inflated lava flow-field sections with a 

person for scale. Photos were taken on the SW flow field on the 20/11/2014; ©S. Kolzenburg.  
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Research Highlights for: “The effect of inflation on the morphology-derived 

rheological parameters of lava flows and its implications for interpreting remote sensing 

data. - A case study on the 2014/2015 eruption at Holuhraun, Iceland -” 

 

1. We present the first comprehensive evaluation of the effect of lava flow inflation on the 

rheological parameters deduced from lava flow morphology 

2. We find that lava flow inflation results in a 2.4 to 17 fold overestimation of apparent 

viscosity and a 0.7 to 2.4 fold overestimation of yield strength 

3. Previous estimates of rheological parameters on Earth and extra-terrestrial bodies may, at 

best, represent an upper limit, and actual viscosity values of these melts may be 

significantly lower. 

4. The resulting uncertainty in the deduced lava compositions is large and increases for 

more evolved compositions. 

5. Remote sensing and laboratory data are in reasonable agreement with respect to the 

absolute viscosity that determines the point at which lava flow advance ceases. 
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