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 Introduction

Chemotherapeutic agents and more targeted 
drugs, including antiangiogenic drugs targeting 
vascular endothelial growth factor (VEGF) or its 
receptors, not only can combat cancer growth but 
may also cause cardiovascular toxicity and endo-
thelial dysfunction. Continued research efforts 
aim at better understanding, preventing, and lim-
iting these cardiovascular toxicities. Conventional 
chemotherapeutic drugs, among which anthracy-
clines, platinum compounds, and taxanes, and 
newer targeted agents, such as trastuzumab, bev-
acizumab, and tyrosine kinase inhibitors, have a 
well-known risk of cardiovascular toxicity, which 
can burden their effectiveness by causing 
increased morbidity and/or mortality. The preser-

vation of cardiovascular function during or fol-
lowing therapies with antineoplastic drugs, 
without impairing anticancer drug effectiveness, 
is very important for limiting cardiovascular side 
effects and preserving cardiovascular health in 
long-term cancer survivors. Hence, early detec-
tion, and prevention and treatment of cardiovas-
cular toxicities are fundamental in order to let 
oncologic patients complete their lifesaving anti-
cancer therapies.

 Cellular Components 
of the Cardiovascular System: 
Cardiomyocytes and Beyond

The myocardium is composed of cardiomyocytes 
and non-myocytes, fibroblasts and ECs, which are 
all essential for the function of the healthy heart 
[1]. In particular, cardiac myocytes produce con-
tractile force, while fibroblasts secrete components 
of extracellular matrix and paracrine factors, and 
endothelial cells (ECs) line the coronary vascula-
ture, allowing delivery, via the bloodstream, of 
free fatty acids and oxygen required to meet the 
high metabolic demands of contracting myocytes 
[1, 2]. Additionally, cardiac ECs play a paracrine 
role. In particular, they release a glycoprotein, 
neuregulin 1, that binds to ErbB-4, a receptor tyro-
sine-protein kinase, which in turn heterodimerizes 
with ErbB2, activating downstream intracellular 
signaling, including the pathways extracellular 
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related kinase1/2 (ERK1/2) and phosphatidylino-
sitol 3-kinase (PI-3K) that regulate contractile 
function and cardiomyocyte survival and prolifer-
ation [3].

In the vasculature, the endothelium has a 
major role in the regulation of tissue homeosta-
sis, modulating local blood flow and other physi-
ological processes. It is important to preserve a 
healthy endothelium for the correct homeostasis 
of the whole cardiovascular system. Indeed, 
endothelial dysfunction is a hallmark of various 
pathophysiological conditions, including athero-
thrombosis, diabetes, sepsis, pulmonary hyper-
tension, microangiopathies associated with 
neurodegenerative diseases, liver steatosis, and 
cancer metastasis [4].

Mature ECs, endothelial progenitor cells, and 
circulating ECs play a role in the physiological 
maintenance of cardiovascular tissue homeosta-
sis, such as vessel tone, permeability and intima 
thickness, vessel remodeling and angiogenesis, 
coagulation, and fibrinolysis. Patients on chemo-
therapeutic drugs can present with systemic 
endothelial dysfunction, which enhances cardio-
vascular disease (CVD) risk and leads to vascular 
complications [5]. Subjects with cancer and con-
comitantly impaired systemic endothelial func-
tion may be particularly susceptible to the 
dangerous effects of antineoplastic drugs. 
Subjects administered with such treatments are 
often the elderly and exhibit several risk factors 
such as hypertension, obesity, dyslipidemia, and 
metabolic syndrome, further deteriorating vascu-
lar reserve and leading to enhanced risk of car-
diovascular toxicity that can burden anticancer 
treatments effects because of higher morbidity 
and mortality [6].

 Cardiovascular Toxicity by 
Chemotherapeutic Drugs

 Cardiac Toxicity Induced by 
Anthracyclines

Cardiovascular and endothelial toxicities are 
extensively studied; they are due to a combina-
tion of “on-target” and “off-target” effects of sev-

eral antineoplastic treatments. In particular, 
several drugs are able to perturb a series of sig-
naling pathways that stimulate tumor cell prolif-
eration, but the same pathways are fundamental 
in maintaining the healthy state of ECs and car-
diomyocytes, especially in response to stressful 
conditions. Hence, a clinical need is the develop-
ment of novel molecules capable of inducing 
robust antitumor responses along with minimal 
systemic collateral effects. Above all chemother-
apeutic agents, anthracyclines are well known to 
induce cardiac dysfunction and HF. Vascular tox-
icity induced by chemotherapy has historically 
been less studied; nevertheless, it can lead to 
enhanced morbidity and/or mortality, thus limit-
ing effectiveness of cancer therapies. Toxic 
effects of antineoplastic drugs can be very rele-
vant in oncologic patients with endothelial dys-
function. This is particularly true in patients 
treated with cardiotoxic drugs against cancer, 
since they are often elderly and have multiple risk 
factors such as hypertension, obesity, dyslipid-
emia, and metabolic syndrome, which all lead to 
a worse vascular reserve, a predisposition to 
endothelial dysfunction, and vascular damage [6, 
7]. Indeed, endothelial dysfunction can be pro-
duced virtually by any antineoplastic drug 
(Table  2.1) [8], with many of them involving 
ROS production [9, 10]. Such mechanisms 
dependent on reactive oxygen species (ROS)-
mediated pathways were among the first to be 
linked to endothelial toxicity of chemotherapeu-

Table 2.1 Mechanisms of action and vascular toxicities 
of the main anticancer drugs

Drugs Mechanism of vascular toxicity
Anthracyclines Derangement of NO-dependent 

function DNA damage, ROS 
production, caspase 3 and 7 
activation, apoptosis

Cisplatin Enhanced expression of ICAM-1, 
tPA, PAI-1, CRP, ROS

Taxanes Cytoskeleton disruption; impairment 
of proliferation, migration; 
prothrombotic effect

5-fluorouracil Blockade of DNA synthesis; 
disruption of endothelial layer

Trastuzumab Derangement of endothelial NO 
generation; alterations of the redox 
status
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tics (Fig.  2.1) [10]. In particular, cardiac and 
endothelial toxicity of anthracyclines has been 
ascribed to redox activation of these drugs to 
semiquinone intermediates, which can then pro-
duce superoxide radicals upon reduction [11]. 
Both the superoxide anion and its dismutation 
product—hydrogen peroxide—are characterized 
by some level of toxicity [12]. Anthracyclines are 
antineoplastic drugs originally derived from 
Streptomyces. Anthracyclines are red, aromatic 
polyketides and exist in different forms due to the 
structural differences in the aglycone and the dif-
ferent sugar residues attached [13]. Among the 
several pathways that are supposedly involved in 
cytotoxicity of this class of anti-antineoplastic 
compounds, accumulation in the nucleus of neo-
plastic and proliferating cells, DNA intercalation, 
interaction with/inhibition of DNA-binding pro-
teins (such as topoisomerase II-TopII, RNA poly-
merase, histones), ROS production, and 
antiangiogenic mechanisms [14] are considered 
to be the most relevant.

Cardiovascular toxicity provoked by anthra-
cyclines is a complex phenomenon, influenced 
by several mechanisms that include drug accu-
mulation in nuclei [15] and mitochondria [16] 
and DNA repair [17], stress-induced signaling 
pathways [18], sarcoplasmic reticulum stress 

[19], nitrosative stress [20], the activity on drug 
transporters (including MDR1 and MRP1) [21], 
drug metabolism [22], and TopI and II inhibition 
[16, 23]. In particular, TopII is a cellular target of 
anthracyclines [23]. In mammals, there are two 
isoenzymes of TopII: TopIIa and TopIIb. TopIIa 
is expressed only in proliferating cells such as 
tumor cells [24] and is thought to be the molecu-
lar basis for anthracyclines’ anticancer effects. 
TopIIb is a ubiquitous isoform highly expressed 
in terminally differentiated cells, including adult 
cardiomyocytes [25] and endothelial cells [26]. 
Thus, the interaction between anthracyclines and 
TopIIb may directly induce endothelial toxicity 
and LV dysfunction [25].

Recent evidence showing that pixantrone, a 
novel anthracycline used in refractory-relapsed 
non-Hodgkin lymphoma, ineffective on TopIIb, 
does not cause endothelial toxicity and cardio-
myopathy, further supports the hypothesis that 
inhibition of TopIIb is a key player in the genera-
tion of anthracycline toxicity [27]. However, pix-
antrone has different functional properties 
compared to anthracyclines, with specific toxici-
ties [28]. A deeper knowledge into these mecha-
nisms will help design a rational strategy to fight 
endothelial toxicity of anthracyclines. A valid 
alternative is the use of liposomal doxorubicin, 

Antineoplastic drugs
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Fig. 2.1 Damages induced by anticancer drugs on endo-
thelial cells. AngII angiotensin II, BK bradykinin, cGMP 
cyclic guanosine monophosphate, ET endothelin, FGF2 

fibroblast growth factor, MAPK mitogen-activated prote-
ine kinase, NO nitric oxide, PGI2 prostacyclin, SP sub-
stance P, VEGF vascular endothelial growth factor, 
VSMCs vascular smooth muscle cells
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which is associated with lower cardiac toxicity 
[29]. This formulation seems also to be safer on 
the endothelial side, with lower caspase-3 activa-
tion and concomitant preservation of anti- 
apoptotic protein Mcl-1 expression in cultured 
ECs, as compared with doxorubicin [30].

In addition, anthracyclines also seem to cause 
negative arterial remodeling. Indeed, acute 
changes in pulse wave velocity (PWV) and arte-
rial distensibility have been observed in breast 
cancer patients treated with anthracyclines, and 
such changes partially reversed after therapy dis-
continuation [31]. Higher arterial stiffness was 
also shown in childhood cancer survivors who 
had undergone chemotherapy [32].

 Cardiac Toxicity Induced by Other 
Chemotherapeutic Drugs

A widely used antimetabolite is the pyrimidine 
analogue 5-fluorouracil (5-FU) that fights cancer 
proliferation by several mechanisms, among 
which are inhibition of thymidylate synthase by 
5-fluoro-2′-deoxyuridine-5′-monophosphate, 
incorporation of 5-fluorouridine-5′-triphosphate 
into RNA, and incorporation of 5-fluoro-2′-
deoxyuridine-5′-triphosphate into DNA [33]. 
5-FU has a brief half-life; nevertheless, active 
metabolites are retained in all tissues, including 
heart and tumor cells, resulting in a prolonged 
exposure of cells to the drug [9, 34–36]. 5-FU is 
able to inhibit the angiogenic process by antago-
nizing the stimulatory effect of vascular endothe-
lial growth factor (VEGF) on DNA synthesis 
during endothelial cells (EC) mitosis [37] and 
generates ROS-induced endothelial damage [38]. 
Although a therapeutic approach to starve tumors 
and decrease their progression can be achieved 
through inhibition of EC proliferation during 
tumor angiogenesis, inhibiting systemic VEGF 
also leads to alterations of endothelial cell 
homeostasis, increasing the risk of atherogenesis 
and arterial thromboembolic events, often lead-
ing to coronary vasospasm and myocardial 
infarction, cerebrovascular insults, and periph-
eral or mesenteric ischemia [39–41]. Hence, pro-
tecting endothelial cell function may be of some 

importance during administration of 
5-FU. Among other mechanisms that have been 
hypothesized are impairment of generation of 
nitric oxide (NO) that can lead to coronary 
spasms and endothelium-independent vasocon-
striction [9, 42, 43]; enhanced intracellular levels 
of ROS/RNS, leading to oxidative stress and 
myocyte apoptosis [44]; and interference with 
DNA and RNA growth by substituting for the 
normal building blocks of RNA and DNA [9].

Capecitabine is a prodrug that is transformed 
enzymatically to 5-FU by thymidine phosphory-
lase after oral intake [7]. This key enzyme is 
highly expressed in both atherosclerotic plaques 
and cancer tissues, explaining the higher preva-
lence of CTX from capecitabine in patients with 
coronary artery disease (CAD). Capecitabine 
may impair vascular biology profoundly; never-
theless, this toxicity is much milder than 5-FU, 
resulting in uncommon cardiotoxic side effects. 
Other possible mechanisms include endothelial 
dysfunction with thrombosis, direct damage of 
myocytes, and hypersensitivity reaction with 
Kounis syndrome [7, 45]. The main pathophysi-
ologic explanation for the cardiotoxicity of 
5- fluorouracil has been the adverse effects on 
coronary circulation. This may also be consid-
ered the underlying mechanism of presentation 
of apical ballooning syndrome described with 
various chemotherapeutic agents.

A synergistic effect between capecitabine and 
other antineoplastic agents has also been hypoth-
esized. Cardiotoxicity has been shown to be more 
frequent in patients treated with capecitabine in 
addition to either taxanes or lapatinib than in 
patients treated with capecitabine alone [9, 
46–49].

Interestingly, a single high dose of capecitabine 
was able to cause hemorrhagic infarction of the 
LV in rabbits, with proximal spasms of the coro-
nary arteries, and death within a few hours from 
intravenous injection. In contrast, repeated lower 
doses led to cardiac hypertrophy, concentric 
fibrous thickening of the coronary intima, and 
foci of necrotic cardiomyocytes [50].

Other anticancer drugs such as cisplatin, often 
used in combination with bleomycin and vinca 
alkaloids, can produce cardiovascular toxicity 
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including acute coronary thrombosis and may be 
linked to higher long-term cardiovascular risk 
[51]. Cisplatin and most other platinum-based 
drugs are simple inorganic molecules containing 
a platinum ion. Tumor apoptosis and, unfortu-
nately, also myocardial ischemia can be caused 
by these drugs via stimulation of signal transduc-
tion that finally activates mechanisms involving 
death receptor as well as mitochondrial path-
ways. The characteristic nephrotoxicity, ototox-
icity, and most other cytotoxicities caused by 
platinum compounds can be ascribed to apopto-
sis. In endothelial cells, cisplatin can provoke 
cytotoxicity by means of enhanced production of 
procoagulant endothelial microparticles [52] and 
free radicals [53, 54]. Indeed, higher plasma lev-
els of the endothelial prothrombotic markers 
vWF and PAI-1 were present in testicular cancer 
patients administered with cisplatin, in compari-
son to subjects who underwent orchiectomy 
alone [55]. In addition, a study from Vaughn and 
coworkers [56] found that in long-term cancer 
survivors who had been administered with 
cisplatin- based regimens, there was a derange-
ment in NO-dependent vasodilation (flow- 
mediated vasodilation) in the brachial artery, 
compared to chemotherapy-naïve subjects. On 
such basis, subjects who underwent therapies 
with alkylating agents such as cisplatin would 
benefit from the administration of antiplatelet or 
anticoagulant or antithrombotic drugs in order to 
protect vascular function, thus preserving cardio-
vascular health [55, 56]. Interestingly, recent evi-
dence shows increased platelet activation in 
cancer (e.g., colon cancer), with a lower inci-
dence and mortality for colon cancer in patients 
on low doses of aspirin [57]. Ongoing primary 
prevention and adjuvant trials (e.g., ADD-Aspirin 
Trial) of low-dose aspirin will be of help to inves-
tigate the contribution of this strategy on 
chemotherapy- associated vascular toxicity.

Taxanes are diterpenes produced by the plants 
of the genus Taxus. They inhibit cell division, 
chromatid separation, and growth, thus leading to 
cell death. These microtubule-binding drugs are 
generally known as mitotic inhibitors or microtu-
bule inhibitors. As for several tumors, taxanes 
harm endothelial cell functions, such as prolifera-

tion and invasion [58]. In addition, the taxane 
paclitaxel also augments endothelial tissue factor 
(TF) expression via its stabilizing effect on 
microtubules and stimulation of c-jun kinase 
(JNK), thus leading to downregulation of throm-
bomodulin and increased protein nitration [59]. It 
has been demonstrated that another tubulin 
blocker, vincristine, is able to adversely affect rat 
cardiac microvascular ECs [7, 60].

Cardiovascular damage has also been reported 
for other classical chemotherapeutics, such as 
cyclophosphamide (a nitrogen mustard inducing 
DNA alkylation) [61], bleomycin (antitumor anti-
biotic inducing DNA degradation), and vinca 
alkaloids (depolarizing agents causing spiral-like 
distortions of the cellular microtubules) [7, 62].

 Vascular Toxicity Induced by 
Chemotherapy

First, it has to be kept in mind that it usually takes 
many years for atherosclerotic processes to 
become symptomatic. This latency might contrib-
ute to the fact that the effects of anticancer drugs 
on blood vessels are not clear yet. In addition, 
smoking and dyslipidemia are main risk factors 
for both cancer and atherosclerosis [63]. Also, the 
co-prevalence of different cancers and clinical 
manifestations of atherosclerosis complicate the 
distinction between toxic side effects of chemo-
therapy and preexisting cardiovascular risk. Of 
notice, anticancer drugs such as cisplatin, bleomy-
cin, and etoposide cause a higher long- term risk 
for vascular and atherosclerotic complications [64, 
65]. Such long-term effects have to be separated 
from acute vascular events induced by arterial 
thrombosis, which might provoke thrombotic 
occlusion of coronary vessels even with no sign of 
coronary artery disease [62]. Vascular spasm and 
Raynaud phenomenon, angina pectoris, and even 
myocardial infarction can be caused by 5-FU and 
capecitabine or paclitaxel, gemcitabine, rituximab, 
and sorafenib [66–68]. In addition, cisplatin, beva-
cizumab (angiogenesis inhibitor), tamoxifen 
(selective estrogen receptor blocker), and sunitinib 
and sorafenib (tyrosine kinase inhibitors) can 
cause an enhanced incidence of VTE [69–72].

2 Mechanisms of Cardiovascular Damage Induced by Traditional Chemotherapy
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5-fluorouracil (5-FU) can provoke chest pain 
in 1–18% of subjects who are administered with 
this drug, with its oral prodrug capecitabine at a 
50% lower rate. The onset can be pretty quick (as 
systemic peak levels are reached) and is linked to 
deranged vascular reactivity [51, 73, 74]. Chest 
pain can manifest as exertional angina and abnor-
mal noninvasive stress testing [75] but also as 
resting or variant angina. This is due to the fact 
that these drugs primarily alter molecular signal-
ing pathways modulating vascular smooth mus-
cle cell tone, thus causing vasoconstriction [51, 
75].

Taxanes can also cause similar types of chest 
pain. In particular, paclitaxel induces chest pain 
with an incidence of 0.2–4% [51, 68, 76, 77]. As 
for 5-FU, a major role is believed to be played by 
vasoconstriction (spasm). Differently from 5FU, 
though, taxanes can induce alterations of heart 
rhythm with a higher incidence [76].

Cisplatin, especially when administered with 
bleomycin and vinca alkaloids, can cause chest 
pain at an incidence as high as 40% [78–83]. 
Endothelial dysfunction is the major mechanism 
of deranged vasoreactivity [84].

Beside chest pain, oncologic patients treated 
with 5-FU and capecitabine can even present 
with acute coronary syndromes (ACS) and can 
show the entire spectrum from unstable angina to 
acute myocardial infarction (AMI) and also 
arrhythmic complications such as ventricular 
tachycardia and fibrillation leading to sudden 
death, according to the intensity and duration of 
vasoconstriction [85–87]. ACS presentations of 
paclitaxel, gemcitabine, rituximab, and sorafenib 
have also been ascribed to vasoconstrictive 
pathophysiology [66–68, 77, 88, 89]. In onco-
logic patients with significantly lowered myocar-
dial reserve, ACS and AMI can be caused by 
tachycardia, hypotension, hypoxia, and anemia 
because of coronary artery disease or potentially 
pathoanatomic variants such as myocardial 
bridging or as the result of the well-established 
types of plaque complications [51].

Oncologic patients treated with vasculotoxic 
chemotherapeutics such as cisplatin (with and 
without bleomycin and vinca alkaloids) may also 
present with a greater propensity toward erosion 

[51]. Indeed, angiography may reveal single or 
multivessel coronary thrombosis even without 
evidence of atherosclerosis [62, 90–95]. Erosion 
as the leading mechanism is supported by experi-
mental evidence showing induction of endothe-
lial damage with activation of apoptosis and 
stimulation of thromboxane generation, platelet 
activation, and aggregation [90, 92, 96, 97]. 
Accordingly, these acute coronary events are 
unpredictable. Interestingly, cisplatin levels can 
be detected for years after therapy, and this is par-
alleled by a high risk for chest pain episodes and 
acute ischemic events [51, 98].

Beside typical scenarios of ACS, oncologic 
patients can also undergo apical ballooning syn-
drome, precipitated by several factors, among 
which is the exposure to various and significant 
stressors [99]. In particular, this syndrome has 
been noted in patients treated with 5-FU, 
capecitabine, cytarabine, axitinib, sunitinib, bev-
acizumab, rituximab, trastuzumab, and combret-
astatin [100–109]. In 38 subjects with cancer and 
stress cardiomyopathy seen at the MD Anderson 
Cancer Center, female sex (76%), advanced age 
(65.9 ± 9 years), and advanced cancer were the 
main patient characteristics [110]. Most of the 
events occurred in close temporal proximity to 
three kinds of tumor interventions: surgery, stem 
cell transplantation, and chemotherapy. 
Importantly, in this latter group, 64% were able 
to resume different anticancer drugs on cardio-
protective therapies within 1  month with no 
recurrence. Although the exact pathophysiology 
of apical ballooning syndrome is still unclear, 
one possible explanation is abnormal coronary 
vasoreactivity caused by the aforementioned che-
motherapeutics. Interestingly, a subject who 
exhibited apical ballooning with 5-FU, for 
instance, showed abnormal coronary vaso- 
response to acetylcholine, with paradoxical vaso-
constriction following 5-FU [75, 111]. Similarly, 
the response to catecholamines might be also 
altered, and coronary microcirculation might also 
be involved in changes in vasoreactivity, thus 
leading to abnormalities in perfusion and con-
traction [99, 112, 113].

Cancer patients can also present with limb 
ischemia. The primary presentation of limb isch-

V. Mercurio et al.
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emia in these patients has been Raynaud’s that 
can also lead to ischemic fingertip necrosis. The 
incidence can be as high as 30% and may be a 
signal systemically abnormal vasoreactivity and 
even myocardial infarction risk [82, 83]. This 
complication has been reported for bleomycin, 
vinca alkaloids, cisplatin, carboplatin, gem-
citabine, and interferon-α.29 [114–117]. For 
bleomycin, Raynaud’s can be apparent as early as 
after the first dose and is likely linked to a direct 
effect on the endothelium [118]. For other drugs, 
e.g., interferon-α, the mechanisms seem to be 
more complex, including vasospasm, thrombus 
formation, and immune-mediated vasculitis 
[119]. Importantly, it also has to be acknowl-
edged that Raynaud’s can also occur as a para-
neoplastic phenomenon, even before the 
diagnosis of a tumor or its recurrence [120].

Stroke and transient ischemic attack can appear 
in oncologic patients with patterns and risk factors 
similar to non-cancer patients. Cancer patients are 
already at higher risk for thromboembolic events, 
including those related to paradoxical emboliza-
tion and indwelling catheters [51, 121–123], with 
a major role that can be played by hypercoagula-
bility in some subjects [124]. 5-FU and cisplatin 
have been linked with a higher risk of stroke [125–
128]. In particular, endothelial cell death caused 
by cisplatin may generate not only local but also 
possibly even systemic vulnerability by the gen-
eration of procoagulant microparticles [129]. This 
may explain why, in some cases, no cause of isch-
emic stroke can be identified, while, in other cases, 
local cranial arterial thromboses can even cause 
acute complete occlusions [51, 130].

Disclosures CGT received speaking fees from Alere.
Funding CGT is funded by a Federico II University/
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