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Abstract: The American Society of Clinical Oncology/College of
American Pathologists (ASCO/CAP) 2013 guidelines for HER2
assessment have increased the number of HER2 equivocal breast
carcinomas following in situ hybridization reflex testing, that is,
HER2 “double equivocal” (equivocal protein expression and
equivocal gene copy number). Forty-five double-equivocal carci-
nomas were subjected to Prosigna analysis. Twenty-seven cases
were investigated for the expression of genes found to be differ-
entially expressed between estrogen receptor (ER)-positive/
HER2-positive (N= 22) and ER-positive/HER2-negative (N=22)
control cases. Twenty-nine of the 45 cases were also analyzed by
targeted sequencing using a panel of 14 genes. We then explored the

pathologic complete response rates in an independent series of
double-equivocal carcinoma patients treated with trastuzumab-
containing chemotherapy. All cases were ER-positive, with a mean
Ki67 of 28%. Double-equivocal carcinomas were predominantly
luminal B (76%); 9 cases (20%) were luminal A, and 2 cases (4%)
HER2-enriched. The majority (73%) showed a high risk of re-
currence by Prosigna, even when the carcinomas were small (<2
cm), node-negative/micrometastatic, and/or grade 2. Double-
equivocal carcinomas showed TP53 (6/29, 20%), PIK3CA (3/29,
10%), HER2 (1/29, 3%), and MAP2K4 (1/29, 3%) mutations.
Compared with grade-matched ER-positive/HER2-negative breast
carcinomas from METABRIC, double-equivocal carcinomas
harbored more frequently TP53 mutations and less frequently
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PIK3CA mutations (P< 0.05). No significant differences were ob-
served with grade-matched ER-positive/HER2-positive carcinomas.
Lower pathologic complete response rates were observed in double-
equivocal compared with HER2-positive patients (10% vs. 60%,
P=0.009). Double-equivocal carcinomas are preferentially luminal
B and show a high risk of recurrence. A subset of these tumors can
be labeled as HER2-enriched by transcriptomic analysis. HER2
mutations can be identified in HER2 double-equivocal cases.

Key Words: breast carcinoma, HER2, equivocal result, molecular
subtype, risk of recurrence, mutations

(Am J Surg Pathol 2018;42:1190–1200)

HER2 status assessment is a key step to personalized
treatment of breast carcinoma patients, of whom ∼15%

are deemed HER2-positive and may benefit from anti-HER2
drugs.1 The 2013 American Society of Clinical Oncology/
College of American Pathologists (ASCO/CAP) recom-
mendations for HER2 testing in breast carcinomas2 led to
important changes, not least the adoption of a single cut-off
for both immunohistochemistry (IHC) and in situ hybrid-
ization (ISH) (>10%) and the implementation of a second
look to assess HER2 copy numbers when dealing with
HER2/CEP17 ratios <2 (ISH algorithm). Moreover, the
guidelines provided a more detailed definition of intratumor
HER2 genetic heterogeneity, acknowledging the presence of 3
patterns: (i) discrete populations of amplified and non-
amplified cells, (ii) diffuse intermingling of amplified and
nonamplified cells, (iii) scattered/isolated amplified cells in
a predominantly nonamplified tumor. Experts contended
that the first pattern represented the only significant type of
heterogenous amplification,2 as interobserver reproducibility
is more significant, and data on the clinical impact of inter-
mingled or scattered cell heterogeneity are lacking.

We3 and others4–7 have shown that the 2013 ASCO/
CAP guidelines led to an increase in the number of score 2+
cases with subsequent equivocal results. If ISH reflex tests are
not effective, these cases are labelled as “double-equivocal”
(equivocal HER2 protein expression and equivocal HER2
copy number). Some have suggested that the use of alternative
chromosome 17 probes may help reclassify a proportion of
these carcinomas as positive on the basis of HER2/CHR17
probe ratio.5 However, caution is advised, as chromosome 17
is well known to harbor complex rearrangements.8,9 More-
over, the clinical relevance of equivocal HER2 absolute copy
numbers remains to be established.

We previously examined HER2 gene levels in dou-
ble-equivocal carcinomas using a polymerase chain
reaction–based method and observed copy number gains
in 25% of cases and no copy number alterations in the
remaining cases.3 HER2 protein levels tested using a
quantitative proximity ligation assay ranged from those
found in IHC-0/ISH-negative carcinomas to those found
in IHC-2+/ISH-positive carcinomas.3 These data suggest
that, rather than simply exploring alternative methods to
evaluate HER2 status, a complementary approach might
be beneficial.

Therefore, we sought to stratify double-equivocal car-
cinomas by using transcriptomics, which allowed for the as-
sessment of RNA expression changes of this specific tumor
cell population; on the basis of the transcriptomic hetero-
geneity of clinically HER2-positive and HER2-negative
carcinomas10–13 and by the recent demonstration that the
identification of HER2-enriched subtype has been associated
with better response to anti-HER2 treatment within HER2-
positive carcinomas,10,11,13 we were particularly intrigued by
the molecular subgroup distribution across HER2 double-
equivocal carcinomas. Moreover, we investigated the preva-
lence of somatic mutations affecting the genes most frequently
mutated in breast carcinomas, including HER2. Finally, as a
hypothesis-generating study we explored the response rate of
double-equivocal carcinoma patients treated with trastuzu-
mab-containing chemotherapy.

MATERIALS AND METHODS

Cohort and Fluorescence ISH
Forty-five breast carcinomas scored as 2+ by IHC

and harboring a HER2/CEP17 ratio <2 and HER2 gene
copy numbers ≥ 4 and <6 by fluorescence in situ hybrid-
ization (FISH)2 were collected from the Pathology Divi-
sion, Azienda Ospedaliera Città della Salute e della
Scienza di Torino/University of Turin (N= 29) and the
Pathology Division, European Institute of Oncology,
Milan (N= 16). As per both laboratory protocols, sections
for FISH had been cut at 4 µm. In addition to the original
FISH scoring, 4 µm thick sections were cut to retest FISH
on the entire cohort, as previously described.8 Scoring was
performed by 2 independent observers (A.S./C.M.) with
expertise in HER2 FISH analysis, who recorded mean
HER2 and CEP17 copy numbers, HER2/CEP17 ratios,
and prevalence and type of heterogeneity. Consensus was
reached on the different patterns of heterogeneity de-
scribed in the guidelines.2 Whenever HER2 heterogeneity
was detected, FISH results were reported either as whole
(mean of HER2 and CEP17 copy numbers of both am-
plified and nonamplified cells) or separate populations
(mean HER2 and CEP17 copy numbers and HER2/
CEP17 ratios calculated within distinct populations).

Prosigna Assay
Representative formalin-fixed paraffin-embedded

blocks of the 45 cases were sectioned to run Prosigna
(NanoString Technologies, Seattle, WA) following the
manufacturer’s instructions and as previously reported14

(Supplementary Methods, Supplemental Digital Content 1,
http://links.lww.com/PAS/A652).

Gene expression measurements were converted into
intrinsic molecular subtypes, risk of recurrence (ROR)
scores, and risk categories using a fully prespecified
algorithm.14 Briefly, the Prosigna Breast Cancer Prognostic
Gene Signature Assay Reporter CodeSet and Capture
ProbeSet reagents contain a library of probes targeting the
50-gene sequences comprising PAM50. In addition, a set
of probes targeting 8 housekeeper genes are included as
a normalization tool for the assay. The assay algorithm
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enables a continuous ROR score, which is currently
referred to as the Prosigna score in the assay report. The
Prosigna score is calculated by multiplying the Pearson
correlation to a 46-gene subset of the 50 genes used to
calculate 4 molecular subtypes (Luminal A, Luminal B,
HER2-enriched, Basal-like), a proliferation score (mean
expression of an 18-gene subset of the 50 genes), and tumor
size by specific coefficients. The coefficients were learned
with a multivariate Cox proportional hazards model using
measured values for each test variable from formalin-fixed
paraffin-embedded breast cancer samples. The weighted
test variables are then summed to produce the Prosigna
score. The Prosigna score is reported as an integer on a 1 to
100 scale. A Pearson correlation to a 46-gene subset of the
50 genes is used to determine a value for 4 molecular
subtypes. The Prosigna score (range: 0 to 100) is calculated
as follows: Prosigna score= 54.769×((−0.0067×Basal-like
Pearson correlation+0.4317×HER2-enriched Pearson cor-
relation−0.3172×Luminal A Pearson correlation+0.4894×
Luminal B Pearson correlation+0.1981×Proliferation score
+0.1133×Tumor size)+0.8826).

In a previous testing with the PAM50, the ROR
score provided a continuous estimate of the ROR for es-
trogen receptor (ER)-positive, node-negative patients who
were treated with tamoxifen for 5 years.15,16

Global Transcriptomics by Microarray Analysis
and Validation by NanoString

Two control groups of ER-positive carcinomas, N=22
HER2-negative (IHC score 0/HER2-non-amplified) and
N=22 HER2-positive (HER2 IHC score 3+/HER2-
amplified), were subjected to global transcriptomics by Whole-
Genome DASL assay (Illumina Inc., San Diego, CA)
according to the manufacturer’s instructions (Supplementary
Methods and related Supplementary Figures, Supplemental
Digital Content 1, http://links.lww.com/PAS/A652). Genes
with differential expression in HER2-positive versus HER2-
negative carcinomas were identified on the basis of t test sig-
nificance P<0.01 and on mean gene expression variations
> ±2-fold. Cluster analysis was performed using GEDAS
software and the “Fuzzy Self-organizingMaps” algorithm with
cosenic distance.17

Subsequently, these 2 cohorts and the double-equivocal
carcinomas confirmed at least by 2 FISH observers were
analyzed by a customized nCounter GX CodeSet assay
(NanoString) including the gene signature obtained by
DASL, 4 housekeeping genes, 6 positive quality controls, and
8 negative quality controls (Supplementary Methods, Supple-
mental Digital Content 1, http://links.lww.com/PAS/A652).
Analysis of genes significantly differentially expressed between
subgroups was performed in MeV 4.8 software (version 10.2)
using the t test (critical P-value=0.05). Unsupervised clus-
tering was performed by nSolver 3.0 (NanoString).

Mutational Analysis by Targeted Sequencing
and Comparison With the METABRIC Data Set

Twenty-nine of the 45 cases were investigated for the
presence of 140 mutations by a 14-gene breast cancer
panel using the MassARRAY System (Agena Bioscience,

Hamburg, Germany) (Supplementary Methods, Supple-
mental Digital Content 1, http://links.lww.com/PAS/
A652. Supplementary Table 1, Supplemental Digital
Content 2, http://links.lww.com/PAS/A653).

The mutational frequencies of the HER2 double-
equivocal carcinomas were compared with cases in the
METABRIC cohort.18,19 METABRIC cases were ER,
histologic subtype, histologic grade (G), and PAM50
matched to HER2 double-equivocal cases at a 10:1 ratio.
Additional comparisons involved ER-positive/HER2-
negative METABRIC cases (G and subtype matched to
HER2 double-equivocal carcinomas at a 10:1 ratio) and
ER-positive/HER2-positive METABRIC cases (G and
subtype matched to HER2 double-equivocal carcinomas
at a 2:1 ratio, Supplementary Methods, Supplemental
Digital Content 1, http://links.lww.com/PAS/A652). So-
matic mutations in PIK3CA, TP53, ERBB2, andMAP2K4
were extracted, and only hotspot mutations included in our
panel were taken into account (Supplementary Methods,
Supplemental Digital Content 1, http://links.lww.com/
PAS/A652). Comparisons were performed using Fisher
exact tests. P-values < 0.05 were considered statistically
significant.

Breast Carcinomas Treated With Neoadjuvant
Anti-HER2 Therapy

We collected pathologic response data20 of an in-
dependent series of 40 breast carcinoma patients who re-
ceived a sequence of anthracycline-based therapy followed
by a taxane with concomitant trastuzumab for a total du-
ration of 24 weeks in the neoadjuvant setting. This cohort
comprised 10 HER2 double-equivocal invasive carcinomas
of no special type (IC-NSTs) that were matched 1:3 with IC-
NSTs showing HER2 overexpression (score 3+ by IHC) and
HER2 amplification (n= 30). The 2 subgroups displayed
comparable ER status and Ki67 indices (Supplementary
Table 2, Supplemental Digital Content 3, http://links.lww.
com/PAS/A654). The ten double-equivocal carcinomas
showed a non-negligible degree (range: 11% to 44%; mean:
19%) of tumor cells harboring ≥6 HER2 copies (range: 6.4
to 8; mean: 7.1) that could be interpreted as HER2 genetic
heterogeneity in the form of diffuse intermingling of ampli-
fied and nonamplified cells.2

As a negative control group of patients treated with
chemotherapy alone, we referred to a series of neo-
adjuvant treated patients we previously reported.21 A co-
hort of 152 ER-positive/HER2-negative patients with
Ki67 indices comparable to double-equivocal carcinomas
was extracted (Supplementary Table 3, Supplemental
Digital Content 4, http://links.lww.com/PAS/A655).

RESULTS

Clinicopathologic Features of Double-equivocal
Carcinomas

Complete clinicopathologic details of the cohort are
reported in Table 1. Most cases were IC-NSTs (39/45, 87%)
and G2 (58%, 26/45). All cases were ER-positive with over
50% positive cells, and 62% (28/45) showed progesterone
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TABLE 1. Cohort of 45 Breast Carcinomas Harboring a Double-equivocal Result for the HER2 Status

N Code
ER
(%)

PR
(%)

Ki67
(%)

Probability
of

Recurrence
ROR
Score

Mean
HER2
c.n.

Mean
CEP17
c.n.

HER2/
CEP17

%
HT

Histologic
Type pT pN G

Identified
Mutations
(VAF)

Molecular
Subgroup

1 EQV
04-EEE

98 98 7 Low 18 4 3.4 1.1 2 ILC 1b 0
(sn)

2 TP53 c.574C>T, p.
Q192* (16%)

Luminal A

2 EQV
08-EEE

96 0 10 High 48 4 2.4 1.7 < 1 Mixed IC-
NST/ILC

2
(m)

1a 2 NA Luminal A

3 EQV
18-EEE

100 30 27 High 55 4 3.8 1.1 < 1 IC-NST 2
(m)

1a 1 NA Luminal A

4 EQV
36-EPP

99 90 35 Intermediate 57 4 3.3 1.2 20 IC-NST 1c 0
(sn)

2 NA Luminal B

5 EQV
39-EPP

100 < 1 28 Intermediate 55 4 2.7 1.5 13 IC-NST 1c 0
(sn)

2 NA Luminal B

6 EQV
40-EPP

99 15 25 High 73 4 3.2 1.2 12 IC-NST 1c 0
(sn)

2 NA Luminal B

7 EQV
03-EEE

98 55 21 High 75 5 2.9 1.7 3 IC-NST 1c 0
(sn)

2 // Luminal B

8 EQV
13-EEE

98 98 31 High 65 5 2.6 1.9 2 IC-NST 1c 0
(sn)

3 NA Luminal B

9 EQV
20-EEE

95 40 25 High 72 4.02 2.45 1.64 5 IC-NST 2 0 2 // Luminal B

10 EQV
46-ENN

95 0 23 Intermediate 46 4.03 2.13 1.89 2 IC-NST 1b 0 2 TP53 c.916C>T, p.
R306* (17%)

Luminal B

11 EQV
27-EEN

95 5 31 High 84 4.08 2.48 1.64 5 IC-NST 1c
(m)

0 2 // Luminal B

12 EQV
01-EEE

98 20 26 High 71 4.1 3.2 1.3 4 IC-NST 1c 0
(sn)

2 // Luminal B

13 EQV
05-EEE

98 45 24 High 76 4.1 2.5 1.7 3 IC-NST 2 1a 2 // Luminal B

14 EQV
15-EEE

99 60 17 High 62 4.1 3.5 1.1 < 1 IC-NST 2 1a 2 // HER2-
enriched

15 EQV
17-EEE

95 10 22 High 62 4.1 3.9 1.3 < 1 IC-NST 1b 0
(sn)

2 // Luminal B

16 EQV
23-EEE

95 75 60 High 82 4.1 3.9 1 5 IC-NST 2
(m)

2a 3 PI3KCA c.3140
A>G, p.H1047R

(23%); TP53
c.637C>T, p.R213*

(18%)

Luminal B

17 EQV
41-EPP

99 10 36 High 86 4.1 2.8 1.5 12 IC-NST 1c 0
(sn)

2 NA Luminal B

18 EQV
02-EEE

98 50 15 High 69 4.2 3.7 1.1 3 IC-NST 1c 0
(sn)

2 // Luminal B

19 EQV
07-EEE

95 10 20 High 71 4.2 3.1 1.3 3 IC-NST 2 0
(sn)

2 // Luminal B

20 EQV
10-EEE

95 5 40 High 62 4.2 3.8 1.1 3 IC-NST 1c 0
(sn)

3 // Luminal B

21 EQV
12-EEE

80 3 26 High 89 4.2 3.4 1.2 5 IC-NST 2
(m)

3a 3 // Luminal B

22 EQV
45-ENN

95 80 25 Intermediate 53 4.2 2.33 1.8 5 IC-NST 1b
(m)

0 2 // Luminal B

23 EQV
48-ENN

98 90 16 Low 30 4.2 3.9 1.1 < 1 IC-NST 1b 0 2 TP53 c.637C>T,
p.R213* (10%)

Luminal A

24 EQV
43-ENN

60 0 40 High 81 4.24 2.2 1.92 3 ILC 1c 0 3 NA Luminal B

25 EQV
14-EEE

99 60 25 High 99 4.3 3.4 1.3 5 IC-NST 2 0 3 NA Luminal B

26 EQV
25-EEE

90 70 40 High 66 4.3 3.6 1.2 < 1 IC-NST 2 1a 3 HER2 c.2264T>A,
L755*
(11%)

HER2-
enriched

27 EQV
42-EPN

99 15 5 Low 4 4.3 2.8 1.5 15 IC-NST 1b 0 2 NA Luminal A

28 EQV
30-EEN

95 70 20 Intermediate 19 4.43 2.37 1.87 10 IC-NST 2
(m)

1a 2 NA Luminal A

29 EQV
29-EEN

95 95 28 High 81 4.46 2.25 1.95 3 ILC 2 1a 3 NA Luminal B

30 EQV
31-EPP

90 90 35 High 81 4.47 2.6 1.72 18 IC-NST 2 0 3 PI3KCA c.3140
A>G, p.H1047R

(30%)

Luminal B

31 EQV
16-EEE

95 90 26 High 78 4.5 4.1 1.1 3 IC-NST 1c 0 3 // Luminal B

32 EQV
37-EPP

100 15 30 High 81 4.5 3.4 1.3 25 IC-NST 1c 0
(sn)

2 NA Luminal B
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receptor expression in over 20% of tumor cells. Proliferation
indices ranged between 5% and 60% (mean: 28%); 38% of
cases (17/45) had proliferation indices ≥30%, and the large
majority (34/45, 75%) showed a Ki67 above the 20%
threshold. A low proliferation index (<10%) was occasionally
found (cases 1, 27, and 40). Of note, equivocal carcinomas
display intermediate HER2 gene and HER2 protein levels,
and, indeed, it is unknown whether or not this status leads to
the activation of the HER2 pathway. One could hypothesize
that, in these cases featuring a very low proliferation index, the
HER2 pathway is not activated. All of these cases featuring a
low proliferation index were classified as luminal A carcinomas
(see below).

FISH Patterns
In 27 of 45 cases (60%), all observers agreed on the

presence of a homogeneously HER2-equivocal tumor cell
population (4≤HER2 copy number >6) (Figs. 1, 2). In 12
additional cases (27%), the equivocal range was confirmed
by all observers who also identified aggregated tumor cells
accounting for >10% of the tumor population (range: 12%
to 30%; mean: 20%) harboring ≥6 HER2 signals
(Supplementary Fig. 1, Supplemental Digital Content 5,
http://links.lww.com/PAS/A656, Supplementary Table 4,
Supplemental Digital Content 6, http://links.lww.com/PAS/
A657). Finally, six cases (13%) were scored as HER2-
negative by 2/3 observers.

Molecular Subtyping
The large majority (34/45, 76%) of cases were clas-

sified as luminal B, 9 (20%) fell in the luminal A subgroup,
and 2 (4%) were HER2-enriched.

Double-equivocal carcinomas frequently (33/45,
73%) showed a high ROR (mean: 64; range: 4 to 99; mean
value of high RORs: 73.3; range of high RORs: 45-99),
even when considering only unifocal small (< 2 cm) node-
negative/micrometastatic carcinomas (13/23, 56%; mean:
57; range: 4-86; mean value of high RORs: 71.2; range of
high RORs: 56-86) (Table 1 and Fig. 2). Within the 17 G2
carcinomas with a tumor size <2 cm and which were node
negative/micrometastatic, 9 (53%), 4 (23.5%), and 4
(23.5%) showed high, intermediate, and low ROR,
respectively (ROR mean: = 53.6; ROR range: 4 to 86;
Table 1). Within the 9 luminal A carcinomas, 3 (33%)
showed a high ROR (mean value: 49.3; range: 45 to 55;
Table 1).

HER2 mRNA Levels
HER2 mRNA levels extrapolated by the NanoString

custom assay were significantly different between HER2-
positive, HER2-negative, and HER2 double-equivocal carci-
nomas (P<0.0001, ANOVA test, Fig. 3A and B). A greater
overlap in terms ofHER2mRNA levels was observed between
HER2-negative and HER2-equivocal carcinomas than
between HER2-equivocal and HER2-positive carcinomas.

TABLE 1. (continued)

N Code
ER
(%)

PR
(%)

Ki67
(%)

Probability
of

Recurrence
ROR
Score

Mean
HER2
c.n.

Mean
CEP17
c.n.

HER2/
CEP17

%
HT

Histologic
Type pT pN G

Identified
Mutations
(VAF)

Molecular
Subgroup

33 EQV
44-ENN

95 90 40 High 75 4.5 2.33 1.9 3 IC-NST 1c 1a 3 // Luminal B

34 EQV
47-ENN

95 30 55 High 82 4.5 2.25 1.8 < 1 IC-NST 1c
(m)

0 3 PI3KCA c.3140
A>G,

p.H1047R (50%)

Luminal B

35 EQV
26-EEN

95 0 28 High 45 4.52 2.32 1.95 5 IC-NST 2 1a 2 // Luminal A

36 EQV
06-EEE

99 60 20 High 56 4.6 3.7 1.2 5 IC-NST 1b 1mi
(sn)

2 TP53 c.844 C>T,
p.R282W (10%)

Luminal B

37 EQV
28-EEN

95 5 45 Intermediate 59 4.65 2.75 1.69 3 IC-NST 1c 0 3 // Luminal B

38 EQV
32-EPP

90 80 50 High 73 4.67 2.35 1.99 27 IC-NST 2 1a 3 TP53
c.626_627delGA

p.R209fs*6 (40%)

Luminal B

39 EQV
11-EEE

99 8 35 High 89 4.7 3.2 1.4 < 1 IC-NST 2
(m)

3a 3 NA Luminal B

40 EQV
35-EPP

100 95 8 Intermediate 23 4.7 2.4 1.9 30 ILC 1b 1mi
(sn)

2 NA Luminal A

41 EQV
34-EPP

95 30 40 High 84 4.75 2.49 1.91 15 IC-NST 2 0 3 // Luminal B

42 EQV
33-EPP

90 80 18 Low 39 4.82 2.58 1.87 23 MPC 1b 0 2 // Luminal A

43 EQV
19-EEE

95 90 26 Intermediate 52 4.95 2.92 1.7 5 IC-NST 1c 0 3 // Luminal B

44 EQV
09-EEE

99 50 28 High 81 5.4 5.1 1.1 3 IC-NST 2
(m)

1a 3 MAP2K4 c.770 C>T
p.S257F (13%)

Luminal B

45 EQV
38-EPP

100 75 38 High 67 5.9 3.4 1.73 30 IC-NST 1c 0
(sn)

2 NA Luminal B

// indicates no mutations identified; c.n., copy numbers; G, histologic grade; HT, heterogeneity, percentage of cells harboring HER2 copy numbers ≥ 6; ILC, invasive
lobular carcinoma; MPC, invasive micropapillary carcinoma; N, sequential number of cases; NA, not assessed; VAF, variant allele frequency.
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Transcriptomic Stratification
A list of 24 genes differentially expressed between

HER2-positive/ER-positive and HER2-negative/ER-positive
tumors was derived from global transcriptomics and further
investigated using the NanoString custom assay. Fourteen

genes were confirmed as differentially expressed between the 2
groups and investigated in the subset of 27 double-equivocal
carcinomas showing a homogenous population of cells with
HER2 copy number in the equivocal range (Supplementary
Table 5, Supplemental Digital Content 7, http://links.lww.com/

FIGURE 1. HER2 expression and HER2/CEP17 pattern by FISH in double-equivocal carcinomas. A and B represent examples of a
double-equivocal breast carcinoma pertaining to the luminal B subgroup by Prosigna. C and D illustrate one of the 2 cases that
were labeled as HER2-enriched by Prosigna; this case was also found to harbor a subclonal L755 HER2 truncating mutation
affecting the kinase domain. E and F depict one of the 2 double-equivocal carcinomas that clustered together with HER2-positive
carcinomas on the basis of the 14-gene signature and that was luminal B by Prosigna.
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PAS/A658). This 14-gene signature included HER2 and genes
pertaining to the HER2 amplicon, together with genes
(AGTR1, NOVA1, TPRG1) whose expression appeared as
mutually exclusive with HER2, when analyzed in The Cancer
Genome Atlas (TCGA) breast cancer data set (www.
cbioportal.org, study: Breast Invasive Carcinoma—TCGA
provisional; n=1105) (Supplementary Fig. 2, Supplemental
Digital Content 8, http://links.lww.com/PAS/A659).

Unsupervised clustering produced 2 main clusters,
which differed by the expression of HER2 amplicon-re-
lated genes (Fig. 3). The cluster showing lower levels of
these genes comprised one subcluster characterized by
heterogenous and intermediate expression levels of HER2
amplicon–related genes together with high levels of HER2
anticorrelated genes, and another subcluster with cases
showing low expression levels of HER2 amplicon–related
genes as well as HER2 anticorrelated genes. The large
majority (25/27) of HER2-equivocal carcinomas clustered
with HER2-negative carcinomas, whereas all but one
HER2-positive carcinoma grouped within the cluster en-
riched for HER2 amplicon-related genes, together with 2
double-equivocal carcinomas classified as luminal B
(Fig. 3; P< 0.0001, χ2 test).

Mutations in Cancer Genes
Recurrent mutations were found in TP53 (6/29,

20%) and PIK3CA (3/29, 10%); one case showed a

MAP2K4 mutation (3%) and another case (3%), “HER2-
enriched” by Prosigna, harbored a subclonal (variant al-
lele frequency= 11%) truncating L755×HER2 mutation
(Table 1).

Double-equivocal carcinomas showed a significantly
higher frequency of TP53 mutations and a significantly
lower frequency of PIK3CAmutations (P=0.007 and 0.018,
respectively, Table 2) compared with that of ER-positive,
grade-matched and molecular subtype–matched cohort of
cases from the METABRIC data set. This held true when
compared with grade-matched ER-positive/HER2-negative
cases (P=0.003 and 0.001, respectively), whereas no sig-
nificant differences were observed with grade-matched ER-
positive/HER2-positive carcinomas (Table 2).

Pathologic Complete Response Rates in HER2
Double-equivocal Carcinomas Treated With
Trastuzumab-containing Chemotherapy

The pathologic complete response (pCR) rate within
the cohort of double-equivocal carcinomas was sig-
nificantly lower than in ER-matched and Ki67-matched
HER2 score 3+ carcinomas (10% vs. 60%, Fisher exact
test, P= 0.009, Supplementary Table 6, Supplemental
Digital Content 9, http://links.lww.com/PAS/A660). Three
cases showed a near pCR (minimal residual disease/near
total effect/< 10% of tumor remaining20). When pCR and
near-pCR categories were grouped, the difference in terms

FIGURE 2. Overview of the cohort of 45 double-equivocal carcinomas included in the study. Heatmap illustrating the histologic
and immunohistochemical features, IHC-defined and Prosigna-defined molecular subtype, and FISH results. Cases are represented
in columns; parameters are depicted in rows and color-coded according to the key. In this figure molecular comparison between
molecular subtyping by IHC and Prosigna is available. The 2 methods were concordant in the majority of cases (40/45, 89%). Two
IHC-defined luminal A-like carcinomas were reclassified as luminal B and HER2-enriched by Prosigna. Four IHC-defined luminal
B-like carcinomas were reclassified as luminal A (3 cases) or HER2-enriched by Prosigna. Two of the 3 luminal B-like carcinomas by
IHC reclassified as luminal A by Prosigna had tumor cell content between 30% and 50%.
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FIGURE 3. Gene expression analysis. A and B, HER2 mRNA levels in double-equivocal breast carcinomas in comparison with HER2-positive
and HER2-negative carcinomas. HER2 mRNA levels (y-axis, extrapolated from the NanoString custom assay) were significantly different
between HER2-positive (score 3+), HER2-negative (score 0), and HER2 double-equivocal carcinomas (x-axis) (P<0.0001, ANOVA test).
D-Equiv: HER2 double-equivocal carcinomas. In A, the double-equivocal carcinomas are represented altogether in a single group. Comparison
between HER2-equivocal versus HER2-positive and HER2- equivocal versus HER2-negative were both statistically significantly different ( t test,
P<0.0001 and 0.0048, respectively). In B, double-equivocal carcinomas are subgrouped into those confirmed by 2/3 observers (EEN) and
those confirmed by 3/3 observers (EEE); in addition, we separated score 0 cases into those in which no staining was observed and those
wherein incomplete and faint/barely perceptible membrane staining within ≤10% of tumor cells could be appreciated. HER2mRNA levels of
these subgroups were compared with those of HER2-equivocal: the difference between HER2-equivocal versus score 0-negative carcinomas
was significant (t test, P=0.014), whereas the difference between HER2-equivocal versus score 0 to <10% did not reach statistical significance
(t test, P=0.066). C, Hierarchical clustering of ER-positive/HER2-double-equivocal, ER-positive/HER2-positive, and ER-positive/HER2-negative
breast carcinomas based on a gene signature of 14 genes found to be differentially expressed between the 2 cohorts of ER-positive/
HER2-positive and ER-positive/HER2-negative carcinomas. Cases are represented in columns; genes are depicted in rows. All HER2-positive
carcinomas except one grouped within the cluster enriched for HER2 amplicon–related genes together with 2 double-equivocal carcinomas
classified as luminal B by Prosigna (black asterisks); the large majority of HER2-equivocal carcinomas preferentially clustered with HER2-
negative carcinomas and one HER2-positive carcinoma (red asterisk) in the remaining 2 clusters (P<0.0001, χ2 test). The 2 Prosigna
HER2-enriched carcinomas (blue asterisks) clustered with those characterized by nonhomogenous expression of HER2 amplicon-related genes
as well as HER2 anticorrelated genes. The control cohorts comprised 19 of the original 22 cases, as 3 cases in each subset showed low Pearson
correlation coefficients, when compared with the rest of the cases within each cohort. CTRL 0: breast carcinoma of the control group of
HER2-negative cases (score 0); CTRL 3: breast carcinoma of the control group of HER2-positive cases (score 3+).
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of response rate was not statistically significant between
double-equivocal and score 3+ carcinomas (40% vs.
63.3%, P= 0.27, Fisher exact test, Supplementary Table 7,
Supplemental Digital Content 10, http://links.lww.com/
PAS/A661).

Notably, the response rates in a series of 152 ER-
positive/HER2-negative carcinomas were numerically
lower (27%) compared with that observed in double-
equivocal carcinomas that received trastuzumab in addi-
tion to chemotherapy (40%; Fisher exact test, P= 0.46,
Supplementary Table 8, Supplemental Digital Content 11,
http://links.lww.com/PAS/A662).

DISCUSSION
Here we show that double-equivocal carcinomas

represent a rather heterogenous group of breast carcino-
mas that are preferentially luminal B at the transcriptomic
level and whose HER2 mRNA levels show a greater
overlap with HER2-negative rather than with HER2-
positive carcinomas. Nevertheless, TP53 and PIK3CA
mutation rates are more similar to those found in ER-
positive/HER2-positive carcinomas than those observed in
ER-positive/HER2-negative carcinomas, and a subgroup
of double-equivocal cases can be defined “HER2-enriched”
at the transcriptomic level and may harbor pathogenic
HER2 mutations.

In line with recent reports,4 we observed subclonal
tumor populations with a variable range of HER2 copy
numbers (HER2 genetic heterogeneity) in double-equivocal
carcinomas. The prognostic and predictive relevance of
subclonal populations of cells with a copy number ≥ 6
within otherwise nonamplified tumors remains a topic
of debate. Of note, in our series, these cases typically
showed relatively low HER2 copy numbers and mostly
harbored HER2/CEP17 ratios <2 because of co-occur-
rence of CEP17 gains, as also observed by others.4,22

These features may suggest complex rearrangements in
chromosome 17 that merit further investigation. From a
clinical standpoint, the key question is whether these
genetically heterogenous tumors respond to trastuzumab.
We explored this question in a cohort of patients treated
with neoadjuvant trastuzumab-containing chemotherapy
and observed that pCR rates were significantly lower in

double-equivocal carcinomas with HER2 heterogeneity
compared with score 3+ carcinomas. Although our
analysis is limited by a small number of cases, these
results are in line with recent data.23,24 When pCR and
near-pCR categories were grouped together, the response
rates in double-equivocal carcinomas reached 40%;
however, we cannot rule out that this was due to the
beneficial effect of chemotherapy, as this rate was not
significantly different from the rates accrued in a cohort
of ER-positive/HER2-negative patients treated with
chemotherapy only. It should be emphasized that this is a
hypothesis-generating study and that larger studies
comparing patients who received the same chemotherapy
regimens +/− trastuzumab treatment are warranted to
ascertain the real impact of anti-HER2 therapy in this
specific subset of breast carcinomas.

As well as containing carcinomas with some degree
of HER2 genetic heterogeneity, our series was sub-
stantially composed of tumors featuring homogeneously
HER2-equivocal tumor cell populations. Whether the
HER2 gain/HER2 protein expression showed by these
tumor cells is capable of driving significant HER2 path-
way activation that may be sensitive to anti-HER2 agents
is unknown and difficult to assess. Currently, only com-
parative data between double-equivocal and HER2-
negative carcinomas treated with chemotherapy regimens
are available and suggest comparable outcomes between
the 2 categories.25 Whether patients affected by double-
equivocal carcinomas do better with the addition of anti-
HER2 agents has yet to be determined. In addition, data
on the prognostic impact of double-equivocal HER2 sta-
tus remain controversial.26–28 Our results on the relatively
high frequency of TP53 mutations may support the con-
tention that these cases constitute an aggressive subgroup
of ER-positive carcinomas. This is in line with the risk-
based stratification of the cohort provided by Prosigna
analysis, which demonstrated high RORs, even within the
subgroup of node-negative G2 carcinomas with tumor size
<2 cm. The clinical utility of the Prosigna assay in double-
equivocal carcinomas may also be relevant because of the
molecular subtyping. The possibility to label a breast
carcinoma otherwise classified as equivocal as “HER2-
enriched” opens up the possibility to explore the beneficial
effect of anti-HER2 agents in ad hoc window of

TABLE 2. Mutation Frequencies for TP53, PIK3CA, HER2, and MAP2K4 in Our Cohort of 29 Double-Equivocal Carcinomas
Subjected to Sequenom MassARRAY and Cohorts Extracted From the METABRIC Data Set (ER+, Grade/PAM50/ER/Histotype
Matched, 1:10; ER+/HER2− Grade, Histotype Matched 1:10; ER+/HER2+ Grade, Histotype Matched 1:2)

HER2 Double-
equivocal Carcinomas

(N= 29)

METABRIC Cohort (Grade/
PAM50/ER/Histotype Matched,

1:10) (N= 290)

METABRIC Cohort ER+/HER2−

(1:10 Grade, Histotype Matched)
(N= 290)

METABRIC Cohort ER+/HER2+
(1:2 Grade, Histotype Matched)

(N= 58)

Gene
No. Mutated

Samples [n (%)]
No. Mutated

Samples [n (%)] P
No. Mutated

Samples [n (%)] P
No. Mutated

Samples [n (%)] P

PIK3CA 3 (10) 93 (32) 0.018 120 (41) 0.001 16 (28) 0.098
HER2 1 (3) 3 (1) 0.318 2 (0.7) 0.249 2 (3) 1
TP53 6 (21) 15 (5) 0.007 12 (4) 0.003 5 (9) 0.169
MAP2K4 1 (3) 2 (1) 0.249 3 (1) 0.318 0 0.333
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opportunity trials. Interestingly, one of the 2 HER2-
enriched tumors harbored a subclonal L755 HER2 trun-
cating mutation. Although likely deleterious, as it is a
truncating mutation affecting the HER2 kinase domain,
its clinical significance is unknown at present. Never-
theless, the potential identification of HER2 mutations
should be considered in HER2 double-equivocal cases, as
this may be of clinical relevance, given the recent results
on the response rates to neratinib in breast carcinoma
patients harboring oncogenic HER2 mutations.29

As a further level of complexity, stratification of
double-equivocal carcinomas by means of a gene sig-
nature derived from ER-positive/HER2-positive and
ER-positive/HER2-negative carcinomas showed that
double-equivocal carcinomas preferentially clustered with
HER2-negative cases, and a subgroup expressed high
levels of genes that negatively correlate with HER2 in the
TCGA data set. Of these, AGTR1 has been described as
a potential therapeutic target for ER-positive/HER2-
negative breast carcinomas30,31 and linked to resistance to
neoadjuvant chemotherapy in HER2-negative breast
carcinomas.32

Our study has several limitations, including the small
sample size. Nevertheless, double-equivocal carcinomas are
relatively rare, need ISH testing to be recognized, and the
cases analyzed here were selected from 2 institutions with
high ISH testing workloads per year. Second, the mutational
analysis was limited to the hotspots of the most frequently
mutated genes in breast cancer. We cannot exclude that
whole-exome sequencing may reveal potentially actionable,
key driver alterations in this subgroup. Finally, no follow-up
information for this cohort was available. Nevertheless, a
surrogate of outcome stemmed from the multigene prog-
nostic signature analysis.

Despite these limitations, our thorough genomic
characterization of breast carcinomas with double-equivocal
HER2 status demonstrates the possibility of biologically
and prognostically stratifying these carcinomas, a feature
that may be instrumental to support treatment decision-
making. A single group assignment study called EQUI-
VOK (NCT03197805, ClinicalTrials.gov) is currently
investigating the impact of RNA genomic profiling on
treatment decision-making in this subgroup of breast
carcinoma patients. It is important to note that, if on the
one side double-equivocal breast carcinomas are frequently
luminal B and preferentially cluster with HER2-negative
rather than HER2-positive carcinomas on the basis of
their gene expression profiles, on the other side a subset of
these tumors are classified as HER2-enriched and harbor
a mutation profile more consistent with HER2-positive
rather than HER2-negative carcinomas. Our study prompts
the need to investigate in clinical trials whether patients
with double-equivocal breast carcinomas, including those
classified as HER2-enriched, may benefit from anti-HER2
therapies.
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