

Contents lists available at ScienceDirect

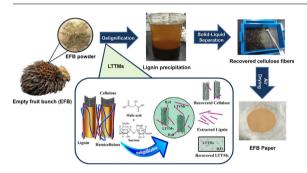
Bioresource Technology

journal homepage: www.elsevier.com/locate/biortech

Short Communication

Recovery of cellulose fibers from oil palm empty fruit bunch for pulp and paper using green delignification approach

Chung Loong Yiin^a, Syhui Ho^b, Suzana Yusup^{b,*}, Armando T. Quitain^{c,d}, Yi Herng Chan^b, Adrian Chun Minh Loy^b, Yong Ling Gwee^b


^a Chemical Engineering Department, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, Kuching, Sarawak 93350, Malaysia

^b Biomass Processing Cluster, HICOE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia

⁶ Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan

^d International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan

G R A P H I C A L A B S T R A C T

ARTICLE INFO

Keywords: Oil palm empty fruit bunch Low-transition-temperature-mixtures Delignification Fibers Paper

ABSTRACT

The aim of this work was to recover the cellulose fibers from EFB using low-transition-temperature-mixtures (LTTMs) as a green delignification approach. The hydrogen bonding of LTTMs observed in ¹H NMR tends to disrupt the three-dimensional structure of lignin and further remove the lignin from EFB. Delignification process of EFB strands and EFB powder were performed using standard L-malic acid and cactus malic acid-LTTMs. The recovered cactus malic acid-LTTMs showed higher glucose concentration of 8.07 mg/mL than the recovered L-malic acid LTTMs (4.15 mg/mL). This implies that cactus malic acid-LTTMs had higher delignification efficiency which led to higher amount of cellulose hydrolyzed into glucose. The cactus malic acid-LTTMs-delignified EFB was the most feasible fibers for making paper due to its lowest kappa number of 69.84. The LTTMs-delignified EFB has great potential to be used for making specialty papers in pulp and paper industry.

1. Introduction

The consumption for pulp and paper products is rising

proportionally with the population growth in the world. Global paper demand is predicted to increase by an average of 2.1% per year (Suseno et al., 2017). Pulp and paper industry utilizes both hardwood and

* Corresponding author.

E-mail address: drsuzana_yusuf@utp.edu.my (S. Yusup).

https://doi.org/10.1016/j.biortech.2019.121797 Received 10 June 2019; Received in revised form 9 July 2019; Accepted 10 July 2019 Available online 12 July 2019

0960-8524/ © 2019 Elsevier Ltd. All rights reserved.