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Abstract 
  

The COVID-19 pandemic has revealed systemic deficiencies in preparing and planning for 
disasters, with profound health, economic, social, political, and humanitarian consequences. When 
preparing for pandemics, social vulnerability needs to be assessed using vulnerability indices to 
identify which populations are at greater risk. In this context, we examined the possible association 
of social vulnerabilities in U.S. cities with COVID-19 case fatality ratios. Post-pandemic return to 
normalcy is fraught with uncertainty over the ability of different communities to recover with 
varying degrees of resilience. Towards this, we recommend use of a community resiliency 
planning framework, along with modeling and evaluation of the required measures, which may be 
useful for the Indian scenario.  
 
Key words: Social vulnerability; Case fatality ratio; Community resilience; COVID-19; Pandemic; 
Socio-economic covariates. 
 

1. Introduction 
 

The COVID-19 pandemic, which had its first reported case in Wuhan, China on 17 
November 2019, has subsequently had profound global consequences on health, economic, social, 
political, and almost every major aspect of human life. It is unlike any other single phenomenon 
that has occurred in modern history since the end of World War II. The effects of the COVID-19 
pandemic have spanned over a range that is so vast over space, and yet so condensed over time, 
that the dual blows of intensity and rapidity have exposed myriad systemic vulnerabilities in many 
societies around the world. Many countries with apparently robust systems have come under 
severe stress, and now expect to trudge a slow and painful path to recovery. 

 
Evidently, such systemic deficiencies serve as a reminder of the complex interplay of 

anthropogenic factors that unfold daily in the form of a vast range of human activities that shape 



198    S. PYNE, S. RAY, R. GUREWITSCH AND M. ARURU [Vol. 18, No. 1 
 

 
the world around us. By 2050, the average urbanization rate is expected to reach 86% in developed 
countries, and 64% in developing countries (Liu et al., 2019). At the 2002 biennial meeting of the 
International Society for Ecosystem Health at Washington DC, a report titled, “Unhealthy 
Landscapes: How Land Use Changes Affect Health” was published (Patz et al., 2004). We 
understand now how rapid and extensive land-use changes may activate cascades of risk factors 
involving deforestation, pollution, poverty, migration, and an alarming rise in new human-animal 
interfaces, which exacerbate the risk of emergence of novel communicable diseases, especially 
through zoonotic pathogens such as bat-borne coronaviruses (Pyne et al., 2015). 

 
A century after the 1918 “Spanish flu” pandemic, at a 2018 meeting in Geneva, the World 

Health Organization (WHO) warned us about the possibility of a zoonotic pandemic caused by a 
novel pathogen, which was enigmatically called, “Disease X” (WHO 2018 Annual review of 
diseases). In fact, Disease X was included in its “2018 list of diseases to be prioritized under the 
R&D Blueprint”. Yet, as the COVID-19 crisis has clearly demonstrated, we have no choice but to 
identify, assess and address the systemic vulnerabilities not just at the level of select organizations, 
but indeed of entire societies.  
 

2. Social Vulnerability: The Place to Begin 
 

There is a lack of consensus on the definition of vulnerability in scientific literature. In the 
context of a pandemic and other disease outbreaks, we assume that vulnerability is a property of a 
system, which upon interaction with a given hazard produces an outcome, including a disaster. A 
stress to the system that has a high potential to harm people and places is termed as a hazard. A 
disaster refers to a singular large-scale event to which a local community finds it difficult to 
effectively adapt or cope with. Risk is defined as the likelihood that certain loss or damage could 
result from a disaster (National Research Council, 2006). 

 
In recent years, the field of vulnerability assessment has shifted from qualitative 

conceptualization to precise quantitative measures of vulnerability (Cutter SL, et al., 2009). Index 
based measurement provides objectivity to analysis and allows assessment by integrating various 
indicators to represent different vulnerability scenarios. Known examples of vulnerability indices 
include the Environmental Sustainability Index (Esty et al., 2005), and the Human Development 
Index (Burd-Sharps et al., 2008). Vulnerability assessments need not aim for quantification of any 
absolute level of potential damage but rather attempt to assess objectively which populations, and 
the corresponding systems, are more vulnerable to a particular hazard. 

 
While different frameworks of vulnerability assessment appear in literature, here we extend 

an earlier classification (Karmakar et al., 2010) of human vulnerability with respect to pandemics 
to include the following types: (1) individual (age, education, nutrition, immune health, 
comorbidities, exposures, behavioral factors), (2) social (housing, household composition, 
minority status, community network), (3) economic (income and employment, health insurance, 
food security, ready government programs, monetary relief instruments designed for a lockdown), 
(4) infrastructure (regional level secure essential supply chains, energy and communication access, 
means of essential transport during a crisis, reserved medical stocks), (5) technological (platforms 
to monitor physical, cognitive and psychological well-being, dynamic information on available 
medical facilities, optimized diagnostic and vaccination strategies, protected healthcare personnel, 
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interactive apps and round-the-clock helplines, real-time data collection and visualization, digital 
connectivity), and (6) administrative (see below). The above list is, of course, not exhaustive. 

 
In the context of a pandemic, useful administrative modes of action may consist of an 

assiduously data-driven apolitical style of leadership, dynamic and flexible decision-making, 
mandatory daily clear and accurate media updates on unfolding situations, active ongoing 
surveillance on the ground for both stationary and mobile populations, meticulous contact tracing 
with ethical protocols, recognizing sensitivity to key local needs, using empathy as a core criterion 
when dealing with minorities and vulnerable groups, taking swift steps to mitigate rumors and 
misinformation, meaningful engagement of communities to obtain regular feedback and respond 
accordingly and accountably, enact schemes of local and limited economic activity as equitably 
and cautiously as possible, and coordinate across a well-practiced disaster management plan.  

 
To aid planning, comprehensive social vulnerability maps have been developed in many 

countries in North America and Europe, and also China. Recent studies have produced 
vulnerability indices for health risk (NITI Aayog, 2019) and hydro-climatic risk in India (Vittal H, 
et al, 2020). However, to the best of our knowledge, India lacks a comprehensive health risk atlas 
based on district-wise vulnerability indices that can lay out the key socioeconomic and 
environmental determinants of community-specific health. The recently published Vulnerability 
Atlas of India, Third Edition, 2019 includes hazard scenarios for natural disasters, should also be 
extended to address future epidemics or pandemics (Vulnerability Atlas of India, 2019). Such 
lacuna could undermine the capacity of an administration to confront a sudden pandemic situation 
as it might render any breakdown of its systemic responses unpredictable, and thus, result in 
confounding of priorities. 

 
On quantitative assessment of vulnerability, we take the example of Social Vulnerability 

Index (SVI) developed by the Geospatial Research, Analysis, and Services Program (GRASP) 
within the United States Centers for Disease Control and Prevention (CDC) to help flag areas 
where residents will be in greatest need of support and recovery assistance in the case of a disaster 
or extreme weather event (CDC’s Social Vulnerability Index). SVI provides four categories of 
vulnerability: socioeconomic status, household composition and disability, minority status and 
language, and housing and transportation based on data from the 2012-2016 American Community 
Survey. These four SVI indices along with an overall SVI score are available for different 
geographical units (e.g., all U.S. counties) at a national scale (CDC’s Social Vulnerability Index).  
 

3. Does Social Vulnerability Impact COVID-19 Fatality? 
 
Since the first reported case of COVID-19 in the U.S. in Washington State on January 31, 

2020, there have been in the U.S. over 1.7 million cases as of May 27, 2020, when the number of 
related deaths crossed the mark of 100,000 (Coronavirus in the U.S., New York Times, 2020). In 
this study, we take a look at the early stages of the pandemic, from 29 February to 15 March, in 
the COVID-19 affected U.S. cities for possible association between their socioeconomic 
vulnerabilities and their case fatality ratio (CFR), which is given by the number of deaths by the 
disease divided by the number of confirmed cases of the same.  
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It is generally agreed that CFR of COVID-19 has varied between 4.5% and 16% globally, 

with the U.S. experiencing an overall 6% CFR. However, some U.S. cities have experienced a 
disproportionate number of deaths compared to others. Since precise calculation of CFR can be 
made only after an outbreak is over, which is not yet the case, we computed a crude version of 
CFR as the ratio of the cumulative number of deaths to the cumulative number of cases at a given 
city on a given date. This dynamic CFR value over a time-period starting from 29 February up to 
15 March 2020, for 110 U.S. cities that had at least 500 cases of COVID-19 by that end date, are 
shown as a heatmap in Figure 1 (Annexure). 

 
To identify the different common temporal patterns of CFR in an unsupervised manner, we 

used agglomerative hierarchical clustering with linkage by Ward’s distance. It revealed 4 clusters 
of cities having (1) early and prolonged, (2) intermediate, (3) mild, and (4) weak CFR profiles. 
The names of the cities in the clusters (1) through (4) are depicted in Figure 1 in brown, red, orange, 
and yellow, respectively. Given the generally weak profiles in cluster 4, we exclude it from further 
analysis.  

 
CFR is probably better suited than either absolute mortality figures or the COVID-19-

specific mortality rate to provide insights into systemic deficiencies that may affect a community’s 
response to the health and other challenges presented by the outbreak it faces. Upon grouping the 
cities according to the clustered CFR profiles, we compared the social vulnerability indices of 
these groups. We used SVI for Socioeconomic Status (SES), SVI for households, and overall SVI 
as computed by the U.S. CDC. Further, we also included some basic social and economic 
indicators from the latest U.S. Census Bureau data such as the percentages of black population 
(considered a minority group) and poor population of a city, and its Gini index as a known measure 
of overall wealth inequality. Figure 2 (Annexure) shows the boxplots for each of these indicators 
for the cities belonging to clusters 1 (brown), 2 (red) and 3 (orange).  

 
We note that the 3 clusters, as well as their respective medians, differ significantly for each 

of these variables as per Kruskal-Wallis 3-group test (p-value < 0.1). Notably, cluster 1 with its 
early and prolonged CFR profile has higher median social vulnerability values compared to the 
other two clusters, on each of the stated indicators. While we want to avoid making any ecological 
fallacy in drawing inferences about individual disease outcomes based on city level socioeconomic 
conditions, it is nonetheless difficult to ignore the common pattern – of higher median vulnerability 
in cluster 1 – across the various indicators shown in Figure 2.  

 
It is possible that pre-existing or chronic socioeconomic vulnerabilities could directly or 

indirectly contribute to the increased health risk in many of these cities when faced with the 
additional burden of a sudden and severe pandemic. The underlying pathways starting from one’s 
exposure to death are often diverse, e.g., many of the young black casualties had little choice but 
to go out to work on jobs that could not be done remotely from the safety of home. According to 
the U.S. Bureau of Labor Statistics 2017-2018 report on job flexibilities, while more than 60% of 
the top quarter of salaried employees could work from home, that figure is less than 10% of those 
in the bottom quarter (Economic News Release, 2019). Intense research to shed light on this 
complex topic will no doubt be conducted over the coming years. 
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4. Developing Community Resiliency to Pandemics 
 

Post-pandemic return to normalcy is fraught with uncertainty over the ability of different 
communities to recover with varying degrees of resilience. Above, we discussed social 
vulnerability in the context of populations to determine who would be more impacted by a 
pandemic than others. Resiliency is a term related to vulnerability. While vulnerability focuses 
more on chronic stressors such as existing exposures and sensitivities, resiliency, by contrast, is a 
dynamic property of a population that involves transformative concepts such as learning, critical 
reflection, adaptation, and reorganization (Cimellaro et al., 2016). Rather than assessing the state 
of a system prior to a disaster, action-oriented questions such as how long it would take to respond, 
organize, incorporate the lessons learned, and resume normal activities, are asked to assess 
resiliency of a community. 

 
To illustrate how to approach a community resilience planning process, we could take the 

example of the U.S. National Institute of Standards and Technology (NIST) Community 
Resilience Planning Guide (NIST Special Publication, 2016). It defines resilience as “the ability 
of a community to prepare for anticipated hazards, adapt to changing conditions, withstand, and 
recover rapidly from disruptions”. Often, such ability relies on key components such as 
infrastructure, utilities, administration, and governance – each of which requires significant time 
and resources to re-build. Towards this, the NIST guide offers a template of community resilience 
measurement framework based on estimates of expected recovery times, especially for different 
communities and infrastructure sectors, which could now be adapted for pandemic resiliency. The 
expression of resiliency in terms of recovery of system functionality over time following disruption 
by a disaster event can be seen in the concept diagram [Figure 3 (Annexure)] adapted from NIST 
Community Resilience Planning Guide, 2016. 
 

Community resiliency planning for a pandemic would require a population to adapt to the 
post-pandemic realities on the ground, allow backup measures and redundancies in the system, 
even at the cost of some efficiency, to halt cascades of avoidable losses and despair, restore supply 
chains for food and energy security, include built-in safety nets such as insurance plans, easy 
access to loans, medical reserves to limit avoidable losses of life and livelihood, activating new 
projects to generate economic vitality, resist various sources of rumors and misinformation, and 
support socializing activities as well as a variety of community-specific and locally relevant 
constructive measures. 

 
While the technical experts and policy makers may want to develop such resiliency measures 

by proposing interventions, it is, however, challenging to conduct real-life testing and 
benchmarking of their impact, particularly among high-density urban populations. In this regard, 
agent-based modeling (ABM) offers a promising solution based on a computational simulation 
approach. (Willensky and Rand, 2015) ABM is modeled as a collection of autonomous, decision-
making, and interacting entities called agents. An agent could represent an individual, an 
organization or, for that matter, any entity that can follow certain rules of behavior, and thus, 
interact with other agents and also the environment. As a result, we can observe macroscopic 
systemic behaviors – resulting from a large number of micro-level interactions among the agents 
– as bottom-up “emergent” properties. In an ABM, the stochastic behavior of each agent introduces 
a certain degree of randomness, which is compensated by conducting a large number of 
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simulations and aggregating the system responses at the end. By altering an input intervention for 
a fixed population that is subject to a fixed environment and disease conditions, and running over 
a given time-period, ABM can help in evaluating the impacts of different interventions. 

 
Despite its ability to allow uncertainty in the model, the micro-level design of an ABM 

makes it difficult to include in model specification the large degree of detail required to accurately 
reproduce real-world phenomena. However, an investigation of underlying principles and basic 
mechanisms is still quite possible, and indeed, most valuable (Brudermann et al., 2016). For 
example, measles outbreaks were modeled with FRED, an ABM platform, under different rates of 
vaccine coverage vis-à-vis anti-vaccination stigma among selected communities (Sinclair et al., 
2019). An ABM was combined with the application of optimal control theories in order to assess 
resilience of complex systems during extreme events (Cimellaro et al., 2016). A post-epidemic 
(Ebola) society was modeled with ABM to show how the original structure of the social network, 
severity of the disaster, and individual beliefs may affect the resilience of the community (Michel 
S, et al 2015). The emBRACE project used interdisciplinary, socially inclusive, and collaborative 
methods to develop an ABM based resiliency framework for Europe (Deeming et al., 2019). 
Another ABM study observed that relationship among the individuals of a community is so vital 
that a community with less population and more empathy may be more resilient to a disaster than 
one with more population and less empathy (Valinejad et al., 2020). 

 
Land use and land cover change often exhibit specific community dynamics, which have 

been modeled by several ABMs. (Guzy et al., 2008; Robinson, et al. 2007; Schwarz et al., 2012). 
This includes modeling of a cooperative approach to mitigate severe risk trade-offs resulting from 
increase in forest land at the cost of agricultural land (Guzy et al., 2008). The scenario closely 
resembles real-life in which trade-offs are negotiated between competing risks. Cooperation 
setting and establishing common grounds demonstrated better outcomes in the model. Such 
strategies need to be modeled to compare the faced risks and benefits during pandemics to 
determine policies that ultimately build resilience among the affected communities.  

 
Finally, we arrive at the problem of how to calibrate a model with community-specific 

characteristics. This is important as conditions prior to a disaster determine the degree of damage 
and lost functionality, which, in turn, impact resiliency of a community to withstand and recover. 
Therefore, when assessing resiliency, an ABM should be calibrated with pre-disaster conditions 
with community-specific real or estimated data and vulnerability indicators. For instance, a model 
for earthquake evacuation of pedestrians was based on the behavioral rules of the agents derived 
from real earthquake evacuations (Bernardini et al., 2014). Since local level estimates are not often 
available, small-area estimates may be used to quantify community-specific health outcomes (Das 
et al., 2019; Kong et al., 2020). For instance, such estimates for 500 U.S. cities were computed 
using 27 chronic health and behavioral risk factors (COVID-19 Pandemic Vulnerability Index, 
NIEHS of NIH). In India, data from national scale surveys such as the National Family Health 
Survey, Annual Health Survey, Comprehensive National Nutrition Survey, etc., (Dandona et al., 
2016) may be harnessed to compute suitable small area estimates for calibrating reliable models 
of community resiliency.  

 
We believe that the full potential of ABMs for modeling resiliency to disasters is yet to be 

realized. ABMs could be used for modeling complex administrative cascades, including obstacles, 
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trade-offs, dogmas, etc. Human emotions such as stigma or empathy can provide us key insights 
in testing of resilience. Examples of different ABM models were demonstrated in India at 2016 
and 2018 ‘Health Analytics and Disease Modeling’ workshops conducted by Health Analytics 
Network, and the Public Health Dynamics Laboratory of University of Pittsburgh (International 
Symposium on Health Analytics & Disease Modeling, 2016, 2018; Raghav and Verma, 2018). 
 

5. The Post-Pandemic Way Forward for India  
 

Incidentally, when a super cyclone named Amphan hit parts of the eastern coast of India and 
Bangladesh on 20 May 2020, right in the midst of the pandemic, despite the significant damage to 
local infrastructure, a relatively small number of human lives were lost thanks to administrative 
preparedness and efficient action (Cyclone Amphan bears down on India and Bangladesh – New 
York Times, 2020) that had to balance the competing risks of mass evacuation against the ongoing 
lockdown. With climate change and various recurring and seasonal disasters, new multi-hazard 
indices may prove to be useful for assessing possible vulnerability to the emerging reality of 
multiple concurrent disasters of different types (Locusts, COVID-19, Flooding pose “Triple 
Threat” in Africa – New York Times, 2020).  

 
As a model of a system that could be designed to perform like “well-oiled machinery” 

during a massive disaster, let us take the example of the 2004 tsunami in the Indian Ocean. WHO 
observed that despite the magnitude of the disaster that killed around 18,000 people in India, there 
was no significant disease outbreak. We can give credit for this to the state of Tamil Nadu (TN), 
which has, since 1922, legislated for an independent Directorate of Public Health with an 
administrative authority board and its own budget. Unlike other Indian states, TN keeps the 
delivery of public health and medical services distinct (Gupta et al., 2010). Importantly, it 
maintains a dedicated cadre of professionals who are trained in different public health activities, 
allowing TN to conduct annual “anticipatory planning” to prepare for recurring disasters such as 
floods, endemic diseases, and other public health emergencies (Krishnan and Patnaik, 2020). Thus, 
even if badly affected by the pandemic, TN is likely to rebound with its resilient system. 

 
Indeed, the central importance of the human component in the design of any critical system, 

however technologically enhanced, cannot be over-emphasized, especially if such a system is 
expected to have its “ear on the ground”. The Global Public Health Intelligence Network (GPHIN), 
developed by Health Canada in collaboration with WHO, is a secure Internet-based multilingual 
early-warning digital tool that continuously searches global media sources to identify information 
about disease outbreaks and other events of potential international public health concern. 
Interestingly, more than 60% of the initial outbreak reports in GPHIN come from unofficial 
informal sources, including non-electronic media, which are then verified by human experts 
(WHO Epidemic Intelligence). 

 
We conclude with mentioning the “Sendai Framework for Disaster Risk Reduction 2015-

2030” (Sendai Framework for Disaster Reduction, 2015), which was adopted at the Third UN 
World Conference in Sendai, Japan, on 18 March 2015, and is supported by the United Nations 
Office for Disaster Risk Reduction. This framework aims to reduce disaster risk and losses over 
the next 15 years based on its 4 priorities: (1) understanding disaster risk, (2) strengthening disaster 
risk governance to manage disaster risk, (3) investing in disaster risk reduction for resilience, and 
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(4) enhancing disaster preparedness for effective response and to “Build Back Better” in recovery, 
rehabilitation and reconstruction. However, in its current form, it does not explicitly address the 
disaster of a pandemic. In India, the National Health Mission publishes the Indian Public Health 
Standards that incorporate many disasters but also lack explicit planning for pandemics (Krishnan 
and Patnaik, 2018). Likewise, the National Disaster Management Authority formed in 2005 
addresses most natural and human-made disasters except for pandemics (Krishnan and Patnaik, 
2020). Clearly, this is a gap that India needs to fill in its national planning efforts in the wake of 
COVID-19 pandemic. 

 
It is not commonly known that during the 1918 Spanish flu pandemic, more than half of all 

deaths worldwide took place in (then British) India – as many as 17 million deaths from the disease 
(Schoenbaum, 2001). The high risks of zoonotic and other emerging infectious disease outbreaks 
for this region is well understood (Jones et al., 2008; Allen et al., 2017). Yet, at the same time, 
India has the advantage of having many strong institutions including its civilian services, research 
labs, vibrant media, and well-knit communities. We believe that by adopting the formal structure 
and priorities (such as those of the Sendai framework) to fortify its systems, India can emerge as 
a global leader in setting response and recovery standards that are specific to pandemic disasters 
and cognizant of the strengths and vulnerabilities of its unique and diverse communities, and thus, 
become more resilient to the complex crises of the future. 

 
References 
 
Allen, T., Murray, K. A., Zambrana-Torrelio C., Morse S. S., Rondinini, C., Di Marco, M., Breit, 

N., Olival, K. J., and Daszal, P. (2017). Global hotspots and correlates of emerging zoonotic 
diseases. Naure Communications, 8(1), 1-10.  

Bernardini, G., D’Orazio, M., Quagliarini, E. and Spalazzi, L. (2014). An agent-based model for 
earthquake pedestrians’ evacuation simulation in Urban scenarios. Transportation Research 
Procedia,  2, 255-263.  

Brudermann, T., Hofer, C. and Yamagata, Y. (2016). Agent-based modelling - A tool for urban 
resilience research? In Y. Yamagata and H. Maruyama (Eds.), Urban Resilience, Advanced 
Sciences and Technologies for Security Applications, 135-151, Springer, Switzerland 
(ISBN: 978-3-319-39810-5). 

Burd-Sharps, S., Lewis, K. and Martins, E. B. (2008). The Measure of America : American Human 
Development Report, 2008-2009. Columbia University Press. 

CDC’s Social Vulnerability Index. Centers for Disease Control and Prevention. 
https://svi.cdc.gov/.  

Cimellaro, G. P., Renschler, C., Reinhorn, A. M. and Arendt, L. (2016). Urban Resilience for 
Emergency Response and Recovery. Fundamental Concepts and Applications. Springer 
International Publishing, 41 (ISBN: 978-3-319-30656-8).  

Coronavirus cases in the U.S.: Latest map and Case Count. (2020). The New York Times. 
https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html 

COVID-19 Pandemic Vulnerability Index. National Institute of Environmental Health Sciences. 
National Institutes of Health. https://covid19pvi.niehs.nih.gov/ 

Cutter, S. L., Emrich, C. T., Webb, J. J. and Morath, D. (2009). Vulnerability to Climate Variability 
Hazards: A Review of the Literature. Final Report to Oxfam America.1-44.  

 



2020] FROM VULNERABILITY TO RESILIENCY VIS-À-VIS COVID-19  205 
 

Cyclone Amphan Bears Down on India and Bangladesh. (2020). The New York Times. 
https://www.nytimes.com/2020/05/19/world/asia/cyclone-amphan-bangladesh-india.html.  

Dandona,. R, Pandey, A. and Dandona, L. (2016). A review of national health surveys in India. 
Bulletin of the World Health Organization, 94, 286-296A.  

Das, S., Chandra, H. and Saha, U. R. (2019). District level estimates and mapping of prevalence 
of diarrhoea among under-five children in Bangladesh by combining survey and census data. 
PLoS One, 14(2), 1-19. 

Deeming, H., Fordham, M., Kuhlicke, C., Pedoth, L. and Schneiderbauer, S. C. (2019). Framing 
Community Disaster Resilience. John Wiley & Sons (ISBN: 9781119165996). 

Economics News Release.(2019). Job Flexibilities and Work Schedules Summary. U.S. Bureau of 
Labor Statistics. http://bls.gov/news.release/flex2.nr0.htm 

Esty, D., Levy, M., Srebotnjak, T. and de Sherbinin A. (2005). Environmental sustainability index: 
benchmarking national environmental stewardship. Yale Center for Environmental Law and 
Policy. http://sedac.ciesin.columbia.edu/es/esi/ESI2005_Main_Report.pdf. 

Gupta, M. D., Desikachari, B. R., Shukla, R., Somanathan, T. V., Padmanaban, P. and Datta, K. 
K. (2010). How might India’s public health systems be strengthened? Lessons from Tamil 
Nadu. Economic and Political Weekly, 45(10), 46-60.  

Guzy, M. R., Smith, C. L., Bolte, J. P., Hulse, D. W. and Gregory, S. V. (2008). Policy research 
using agent-based modeling to assess future impacts of urban expansion into farmlands and 
forests. Ecology and  Society, 13(3), 37. 

International Symposium on Health Analytics & Disease Modeling 2016. 
http://healthanalytics.net/HADM2016/.  

International Symposium on Health Analytics & Disease Modeling 2018. 
http://healthanalytics.net/HADM2018/ 

Jones, K. E., Patel, N.G., Levy, M. A., et al. (2008). Global trends in emerging infectious diseases. 
Nature, 451(7181), 990-993.  

Karmakar, S., Simonovic, S. P., Peck, A. and Black, J. (2010). An Information System for Risk-
Vulnerability Assessment to Flood. Journal of Geographic Information System.  02(03),129-
146. 

Kong, A.Y. and Zhang, X. (2020). The Use of Small Area Estimates in Place-Based Health 
Research. American Journal of Public Health. 110(6), 829-832. 

Krishnan, S. and Patnaik, I. (2018). Health and Disaster Risk Management in India. NIPFP 
Working Paper Series. https://www.nipfp.org.in/publications/working-papers/1836/ 

Krishnan, S. and Patnaik, I. (2020). Health and Disaster Risk Management in India. In: Ardalan 
A, Ordun CY, Riley JM. Public Health and Disasters. Springer Singapore.  

Liu, Y., Li, L., Chen, L., et al. (2019). Urban growth simulation in different scenarios using the 
SLEUTH model: A case study of Hefei, East China. PLoS One. 14(11), e0224998.  

Locusts, COVID-19, Flooding Pose “Triple Threat” in Africa. (2020). The New York Times. 
https://www.nytimes.com/aponline/2020/05/21/world/africa/ap-af-africa-locust-
outbreak.html.  

Michel, S. and Megerdoomian, K. (2015). Modeling Community Resilience for a Post-Epidemic 
Society Modeling Community Resilience for a Post-Epidemic Society. In: Computational 
Social Science Society of the Americas, Santa Fe, New Mexico. 
http://computationalsocialscience.org/wp-
content/uploads/2015/10/CSSSA_2015_submission_37.pdf. 



206    S. PYNE, S. RAY, R. GUREWITSCH AND M. ARURU [Vol. 18, No. 1 
 

 
National Research Council. (2006). Facing Hazards and Disasters: Understanding Human 

Dimensions. The National Academies Press, Washington, DC. 
NIST (2016). Special Publication 1190: Community Resilience Planning Guide for Buildings and 

Infrastructure Systems, Volume II. National Institute of Standards and Technology. II:126. 
https://www.nist.gov/topics/community-resilience/planning-guide. 

NITI Aayog. (2020). Healthy States, Progressive India: Report on the Ranks of States and Union 
Territories. 

Patz, J. A., Daszak, P., Tabor, G. M, et al. (2004). Unhealthy Landscapes : Policy 
recommendations on land use change and infectious disease emergence. Environmental 
Health Perspectives, 1092(10),1092-1098.  

Pyne, S., Lee, S. and McLachlan, G. (2015). Nature and Man: The Goal of Bio-security in the 
Course of Rapid and Inevitable Human Development. Journal of Indian Society of 
Agricultural Statistics, 69(2), 117-125. 

Raghav, P, and Verma, C. (2018). International Symposium in New Delhi Addresses Emerging 
Challenges in Health Analytics and Disease Modeling. Science Reporter, June, pp 49-50. 

Robinson, D. T., Brown, D. G., Parker, D. C., et al. (2007). Comparison of empirical methods for 
building agent-based models in land use science. Journal of Land Use Science. 2(1),31-55.  

Schoenbaum, S. C. (2001). The impact of pandemic influenza, with special reference to 1918. 
International Congress Series. 1219 (C), 43-51.  

Schwarz, N., Kahlenberg, D., Haase, D. and Seppelt, R. (2012). ABMland - A tool for agent-based 
model development on urban land use change. Journal of Artifical Societies and Social 
Simulation. 15(2), 8.  

Sendai framework for disaster risk reduction 2015-2030. (2015). Australian Journal of Emergency 
Management. 30(3), 9-10. 

Sinclair, D. R., Grefenstette, J. J., Krauland, M. G., et al. (2019). Forecasted zize of measles 
outbreaks associated with vaccination exemptions for school children. JAMA Network Open,  
2(8), e199768.  

Valinejad, J., Mili, L., Triantis, K., von Spakovsky, M. and van der Wal C. N. (2020). Stochastic 
Multi-Agent-Based Model to Measure Community Resilience-Part 2: Simulation Results. 1-
12. http://arxiv.org/abs/2004.05185. 

Vittal, H., Karmakar, S., Ghosh, S. and Murtugudde, R. (2020). A comprehensive India-wide 
social vulnerability analysis: Highlighting its influence on hydro-climatic risk. 
Environmental Research Letters, 15(1),14005.  

Vulnerability Atlas of India. Third Edition, 2019. 
https://bmtpc.org/topics.aspx?mid=56&Mid1=180 

WHO (2018). 2018 Annual review of diseases prioritized under the Research and Development 
Blueprint Informal consultation. World Health Organization. 
http://www.who.int/csr/research-and-
development/documents/prioritizing_diseases_progress/en/. 

WHO Epidemic intelligence – systematic event detection. World Health Organization. 
https://www.who.int/csr/alertresponse/epidemicintelligence/en/.  

Willensky, U. and Rand, W. (2015). An Introduction to Agent-Based Modeling. Modeling Natural, 
Social, and Engineered Complex Systems with NetLogo. (ISBN: 9780262731898). 

  



2020] FROM VULNERABILITY TO RESILIENCY VIS-À-VIS COVID-19  207 
 

ANNEXURE 
 
 
 

 

Figure 1: Clusters of COVID-19 affected U.S. cities. Unsupervised hierarchical clustering of 
dynamic CFR time series, shown in heatmap, of 110 U.S. cities (x-axis) revealed 4 clusters of 
cities, as named in 4 different colors. The dashed lines mark 15-day intervals over the time-period 
(y-axis) of February 29 to April 15, 2020. On top is a dendrogram showing the linkage among the 
clusters based on Ward’s distance. 
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Figure 2: Comparison of socioeconomic covariates. For clusters 1, 2, and 3 of U.S. cities, the 
boxplots show (a) the percentage of black population, (b) the percentage of poor population, (c) 
Gini index, (d) SVI for SES, (e) SVI for households, and (f) overall SVI. 
 
 
 
 

 
 
Figure 3: A Functional Concept of Resiliency. Resiliency can be expressed in terms of recovery 
of system functionality over time following disruption by a disaster event (adapted from NIST 
Community Resilience Planning Guide, 2016). 
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