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1 
Introduction 

Cryptography 
Cryptography is the branch of mathematics that deals with the protection of 

information. We distinguish classical and modern cryptography. We start explaining 

the two terms in more detail. 

Classical cryptography 
Until about twenty years ago, cryptography was the art of making and breaking 

codes. The codes are used to transfer messages over an unsafe channel. The channel 

should be protected against intruders who read, insert, delete or modify messages (see 

Figure I). Transmission of a message is done using an encryption function E, that 

converts the message or plain text using the key into a cipher text. The receiver does 

the reverse of this operation, using the decryption function D and key to recover the 

plain text from the cipher text. The key is distributed in advance over a safe channel, 

for example by courier. 

Safe channel 
Key 

Message Message 

Intruder 

Figure 1: Classical cryptography. 

Normally , the encryption and decryption function, but not the key, are considered 

known to the enemy, so the protection of the information depends on the key only. If 
the enemy knows the key, the whole system is useless until a new key is distributed. 

Systems like this are still widely in use for secret communication. The American 

National Security Agency (NSA) proposed a public encryption function , called Data 
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Encryption Standard (DES), that is used for many applications nowadays. 

Modern cryptography 
This thesis covers aspects of modern cryptography. Modern cryptography deals 

with communication between many different parties, without using a secret key for 

every pair of parties. In 1976, Whitfield Diffie and Martin Hellman published an invited 

paper in the "IEEE Transactions on Information Theory" titled "New Directions in 
Cryptography" [DH76]*. This paper can be considered as the beginning of modern 
cryptography. 

The authors explain the notion of a "trapdoor one-way function". To explain what 
this is, we first introduce the one-way function. A one-way function is a function that 

is (relatively) easy to compute, but of which the inverse function is much harder to 

compute. Of course, all input values can be tried; but there are so many input values 
that this is impractical. 

A nice example of the use of a one-way function is "flipping a coin over the 
telephone" [Blu82], shown in Figure 2. Two parties, Alice and Bob, want to flip a fair 

coin during a phone conversation. Of course, neither Alice nor Bob wants to believe the 
other's claims just like that. To solve this, they use two coin flips and a one-way 
function/ (in this case, a function on two arguments). First, Alice flips a coin, 

computes the one-way function of the coin value and some random bits t and tells the 

result to Bob. Then, Bob flips another coin, and tells the value to Alice. In the last step, 
Alice tells her coin value to Bob, and the result of the protocol is whether the two coin 
flips are equal or not. This behaves like a fair coin if at least one of the two uses a fair 

coin. 

Alice 
cnoose r randomly 

Flip coin a 

Bob 

f(a,r) 

~ Flipcoinb 

~ Verify f(a,r) 

Figure 2: Coin flipping over the telephone. 

A trapdoor one-way function (see Figure 3) is like a one-way function for 

everybody except the owner of a certain piece of secret information. This extra 
information, called again the key, allows to compute the inverse of the function 

quickly. 
An interesting application of trapdoor one-way functions is public-key 

cryptography. This is a communication channel, as in classical cryptography, where 

both ends use different keys instead of the same key. A trapdoor one-way function is 

used as encryption function, and the function is assumed to be public. The description 

of the function is called the public key. The corresponding private key is the secret 

* Literature references are given at the end of each chapter. 
t The extra random information r prevents Bob from trying out values to see what Alice's value was. 
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information that allows to invert the function. This system allows sending of secret 

messages by all parties, while they cannot decrypt each other's messages. 
The trapdoor one-way function is the basis of modern cryptography. Almost all 

modern cryptographic protocols use such functions in one way or another. At the time 
the notion was introduced, no functions were available that had the needed properties. 
A few years later Rivest, Shamir and Adleman [RSA 78] introduced the first trapdoor 

one-way function that looked useful for practical use. Nowadays, this is the most 

common trapdoor one-way function. The RSA function is explained later on. 

Public knowledge: Secret knowledge: 

(message) -0---,.. encryption encryption -a---. message 

Figure 3: Trapdoor one-way function . 

Protocols 
A cryptographic system that solves a certain problem is called a protocol. For 

example, the coin flipping example above is a protocol. Protocols with more than two 

parties are called multiparty protocols. Using modern cryptography, protocols exist for 

many different problems. Actually, it is possible to do "anything" with modern 
cryptography in the sense that if a computation can be performed by a computer trusted 

by all parties, it can also be done using cryptography and no trusted computer [BCC88, 

CDG88]. Although this result gives an explicit protocol for a problem, this protocol is 

so inefficient that it cannot be used in practice. 

Many practical protocols are developed nowadays that address all kinds of 
problems: electronic cash, elections, digital signatures, and so on. 

Complexity of a Computation 
Until now, we said a computation was "easy" or "hard" to perform (or, equivalently, 

a problem is easy or hard to solve). Of course, to make accurate statements about the 

security of a system, the notion must be stated more precisely. To show that a 
computation is "easy", one can show an algorithm that performs it using a certain 

number of steps, showing explicitly how much work it is. On the other hand , it is not 

possible to show that a problem is "hard" by showing an algorithm, since there might 

always be algorithms that do the computation in less steps. Unfortunately, for most 
"hard" problems it is not known how much time the most efficient algorithm takes. 

To show that a problem is hard to solve, we use a reduction from another problem. 

To show that problem A is hard, we show that a solution to problem A can be used to 
solve a problem B, where problem B is a well-known problem for which no efficient 

solution has been found yet. If we assume that B is hard, we conclude that A must be 

hard as well. This is called reduction from B to A. Note that a problem is reduced to a 
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"harder" problem. 

If a problem is so hard that finding a solution for given values is very expensive and 

time consuming, we call it unfeasible. How much computation exactly is called 

unfeasible, depends on the application. For example, for an encryption, the cost of 
finding the key must be compared to the cost of stealing or buying it. 

Table l shows an overview of hard problems that are used in cryptography. There 

are algorithms to solve all these problems, but they are unfeasible for the parameter 
values used in practice: 

• The largest number that was factored nowadays using an algorithm that does 
not use the special form of the number has l 06 digits [LM89]; this computation 

needed the spare time of 400 computers over the world during a few months. 

• The largest discrete log computation performed had a modulus p of 58 digits 
[McC89, McC90, MO91] . 

• It is an open problem whether RSA can be solved more efficiently than by 

factoring the modulus. 
• Finding a DES key given both plain text and cipher text (a known-plain text 

attack) of DES is considered possible using a specially built computer. This 
makes breaking DES not unfeasible for some applications. 

Assumption Given Find 

Factoring n= p·q p,q 

Discrete Log ab (modp),a,p b 

RSA ab (modn),b,n a 

Breaking DES DES(k,m),m k 
Table 1: Cryptographic assumptions. 

There is one problem of which it is easy to compute how hard it is: guessing a 

random value. Cryptosystems based on this have provable security, and those systems 

are called unconditionally secure. For these systems, no information about the 
contents of the message can be obtained without knowing the key. These systems 
depend on the existence of a perfect random number generator. If a simulated random 

generator is used, the security of the system depends on the qualities of the generator. 
An example of an unconditionally secure system is the "Vemam Cipher", also 

known as the "one-time pad". This is a classical cryptosystem; a message is encrypted 
by shifting each letter a random amount in the alphabet. Every letter is shifted 

separately by an amount specified by the key. The key consists of a list of random shifts 

(0 to 25 steps) and is used only once. Note that the key has the same length as the 
cipher text; this is always true for unconditionally secure ciphers. The cipher text is a 

random string of letters, for which every plain text is equally probable. This makes that 

an eavesdropper gains no information about the messages by intercepting the cipher 

text, so the cipher text contains "no information" in information-theoretic sense. 
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Basic Protocols 
Three protocols that occur elsewhere in the thesis are considered standard protocols. 

They are explained here separately. 

Blobs 
A blob [BCC88], also known as commitment, is a one-way function with two 

arguments. The arguments are known as the contents and the key. The one-way 

function used in the "coin flipping by telephone" example is used as a blob. The 

purpose of a blob is to prove that a value was chosen before a certain time, and that it 

didn't change since. 

A blob between the parties Alice and Bob is used in three steps: 

• First, Alice chooses a key, makes the blob, and sends it to Bob. 

• Then, Alice and Bob perform a protocol, where Alice may use the secret blob 

contents, while Bob doesn't know it. 

• Then, Alice opens the blob by sending contents and key to Bob, proving that 

she didn't change the contents during the protocol. 

There are many different implementations of blobs, some offering extra properties. 

An overview of implementations is given in [BCC88]. The simplest implementation of 

a blob is a locked box. Alice puts the contents in the box, locks it, and sends it to Bob. 

Alice opens the blob by sending the key of the box to Bob, so that he can open the box 

to check the contents. 

Digital signatures 
A digital signature is a value that can only be computed by one party, while it can 

be verified by everybody. Like handwritten signatures, they can be used to sign 

messages. For example, a trap-door one-way function value of a message can be used 

as a signature. 

The most well-known digital signature system is the RSA system [RSA 78]. RSA is 

a public key system. The public key consists of two numbers n and e, and a message 

m is encrypted as 

x = m e (modn). 

The private key consists of the number d so that e · d = l (mod A(n)). Here, A is 

the Carmichael function* that is the highest order of an element in the multiplicative 

group modulo n. The number n must be composite; it is assumed that d cannot be 

computed from n and e in this case. The decryption is performed by 
xd =med= ml+k'A.(n) = m · lk = m (modn); 

where k is a positive integer; here we use that mA(nl = I (mod n) for all m. 

The two important properties that make RSA so useful are that encryption and 

decryption are simple computational operations, and that encryption and decryption 

* Although the Euler function <pis most often used in thi s context , the Carmichael function is more 
general. In fact, A.(11) is a divisor of <p(n). 
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commute with each other. 

It is interesting to note that RSA can be reduced to factoring: if the factorization of 

n is known, it is possible to extract roots modulo n. Whether the converse is true, is 

not known; we know that if one can extract a few square roots modulo n (that is, b = 2 

in Table I), it is possible to factor. For other values of b, no such algorithm is known. 

Zero-knowledge proofs 
A zero-knowledge proof (see [QGB89] for a witty and clear explanation) is a 

protocol in which Peggy (the prover) convinces Vic (the verifier) that something is 

true without revealing more information than that fact. An example of a zero­

knowledge proof is given in Figure 4. Here, Peggy proves to Vic that she knows x, the 

discrete logarithm of h with respect to g: 

h = gx (modp), 

where g, h, and pare public numbers, and p is a prime. As the secret x cannot be 

computed from g and h under the discrete log assumption, it will not be revealed. 

Peggy 

Chooser E {0, ... ,p-2} 
m

1
=h,. 

.................................... 

If b = 0: 

If b = I: m2 =x·r (modp-1) 

Figure 4: A zero-knowledge proof. 

Vic 

Choose b E {O, ll 
Verify m1 = hm2 

Verify m1 = gm2 

In the protocol, Peggy first sends the number hr to Vic, where r is a random 

number. In Vic's point of view, this is a random number from the range {I, .. . ,p - l}. 

Vic then chooses a challenge bit b and sends this to Peggy. Finally, Peggy sends r or 

x • r (mod p-1) depending on the challenge bit. 

To prove that a protocol is a zero-knowledge proof, three things must be proved: 

completeness, soundness and zero-knowledge. 

A protocol is complete if Vic 's verification succeeds if Peggy is not cheating. In 

the example, this can be verified using simple arithmetic. 

A protocol is sound if Vic's verification fails with high probability if Peggy is ~ 

lying. The protocol can be repeated to increase this probability. In the example, if 

Peggy does not know x, she cannot compute a message m1 for which she can open 

both challenges. To see this, assume she can compute an m I so that she knows a value 

for m2 for both values of b. If we call the mi-values a and p, we get: 

m, =ha= gP 

so Peggy knows that 
h = gP!a (modp-l), 

and this means that Peggy knew x from the beginning*, since there is only one x with 

* The case that division by a. modulo p - l is not possible is ignored here for simplicity. This can be 

prevented by choosing p of a special form. 
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the property h = gt_ Thus, we know that Peggy cannot compute a and ~-

A protocol is zero-knowledge if Vic does not obtain any information from the 

protocol that he cannot compute himself. Normally , we prove this by showing that Vic 

can compute all messages involved in the protocol, with the same probability 

distribution, without help from Peggy. This is called simulation of the protocol. From 

a simulation we can conclude that Vic will obtain no information running the protocol 

with Peggy. 

Privacy and Efficiency 
This dissertation consists of five chapters that contain different research topics in 

cryptology. The connection between the chapters is that they all involve the practical 

implementation of privacy related cryptographic protocols. The two aspects "privacy" 

and "efficiency" play a role throughout the thesis. 

Privacy 
Nowadays, most organizations have large databases containing private information 

of their clients. The clients have no access to this information, nor can they control 

what it is used for. Linking of this information gives an accurate idea of what 

individuals are doing. This is not a new idea; it already happens. Companies sell 

databases to each other for consumer stati stics, credit-worthiness and other information. 

Furthermore, organizations suffer from abuse by individuals. They react with more 

aggressive security measures, like identity cards and television cameras. This way, 

people lose more and more of their privacy. Another problem for the organizations is 

that they cannot prove to individuals that they protect their privacy even if they do: the 
clients have to trust them. 

David Chaum addresses these problems in [Cha85], and gives solutions based on 

modem cryptography. Much more work on the subject has been done since. This thesis 

elaborates on several of the ideas, bringing the protection of privacy closer to reality. 

Efficiency 
The main argument against modem cryptography has always been that 

implementing public key systems like RSA was "too expensive". While present day 

technology makes the use of these systems more and more possible, the need for cheap 

and thus simple systems remains. This thesis includes a chapter that increases the speed 

of these computations, and shows methods to efficiently use public key cryptography 
without the need for high-performance devices . 

Overview 
The five chapters with research topics address privacy and efficiency in several 

ways. Here we discuss the contents of the five chapters briefly. 
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Disruption and synchronization in untraceable sending 
In protocols where privacy is an issue, like voting, it is convenient to be able to send 

messages while the sender remains anonymous. The DC protocol solves this problem. 
A problem with the DC protocol is that disrupters can delay or block transmissions of 

other users, while they are protected by the anonymity of the scheme. There are solu­

tions to this problem in the literature, but they cost a lot of transmission. Two new so­

lutions are shown with much less transmission cost than the solutions in the literature. 

An efficient voting scheme 
A voting scheme much faster than existing in the literature is introduced. This 

scheme is based on the DC protocol. All of the transmission is done simultaneously by 

all participants, so that only a small number of transmission rounds is needed to perform 

the election. The privacy of the users is unconditionally protected, so that the value of 
the votes cannot be determined, even a long time after the election. 

Addition chain heuristics 
The RSA scheme is criticized because, though computationally simple, encryption 

and decryption are relatively expensive. Methods are proposed to improve the speed of 
the calculations. The calculation consists of many multiplications. Most research is 

spent on improving the speed of the multiplications involved using advanced calculation 

and special hardware. This chapter shows a method to reduce the number of multiplica­
tions, so that the other improvements sti ll apply. 

Provably unforgeable signatures 
Digital signatures are one of the more useful applications of cryptography. For 

some applications, a form of provable security is needed. The scheme that has security 

in the strongest sense (signatures cannot be obtained for a given message, even if other 
signatures of the forger's choice are available), is rather inefficient. Here, a much more 

efficient scheme is shown, that allows for many applications, including the fast signing 

of short messages. 

Verification of RSA computations on a small computer 
Applications using smart cards are restricted because of the limited computation 

power of a smart card. It is possible to make a smart card check the computation of a 

larger computer using modulo reductions. A protocol is shown (of which a simpler 

version already exists in the literature), and a security analysis is given. The protocol is 
used in a commercial electronic cash system. 
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Notation 
In the formulae in this thesis, the following notations are used: 

blob(x,y) blob of y with key x (see Chapter 3). 

ceiling(x), Ix l the smallest integer~ x. 

DC Dining Cryptographers scheme (see Chapter 2). 

DES 

expx 

floor(x), Lx J 
gcd S 

GF(p), GF(p") 

l(n) 

lcmS 

log(x) 

logi(x) 

RSA 
X 
~ 

xmodn 

xdiv n 

x = y (modn) 

E (mod n) 

? 

x;i;y (modn) 

VJ (modn), 
1/ r y · 

alh 
pklln 

<p(n) 

A(n) 

L,f(i),flJU) 
i eS 

n! 
i eS 

{x E SI£} 

#X 

Data Encryption Standard private key scheme. 

shorthand for eX. 

the largest integer ~ x. 
greatest common divisor of the elements of the set S. 
Galois field of order p or pk. 

length of shortest addition chain of n (see Chapter 4). 

least common multiple of the elements of the set S. 

natural logarithm of x. 

base-2 logarithm of x. 

Rivest-Shamir-Adleman public key scheme. 

transmission of the value x from one place to another. 

the rest of x after division by n. 

Shorthand for l f, J. 
x mod n = y mod n, or equivalently , nl(x-y) 

value of expression E computed modulo n. Symbolic notation 

meaning "interpret all computations in E modulo n". 

check if x = y (modn). 

RSA decryption: shorthand for l (modn), where dis defined 

by d · x = I (modA(n)). [t can only be computed if one knows 

the factorization of n (under the RSA assumption). 

a divides h, or, equivalently, his a multiple of a. 

pk is the highest power of p that divides n. 

Euler's <p function: number of x E (I, .. . ,nl satisfying (x,n) = 1. 
Carmichael function: highest order of elements in multiplication 

group modulo n. 

Sum, respectively product, over all values in a set. 

Factorial function: equal to 1 · 2 · 3 · ... · n . 

Binomial coefficient: the number of possibilities to choose y 

elements from a set of x elements. Equal to '( '~ •l' . y. "' ) . 

the set of elements x of the set S that fulfill the conditional 

expression E. 

Number of elements of list or vector X. 
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2 
Disruption and Synchronization 

in Untraceable Sending 

Introduction 
One of the aspects of privacy is secrecy of communication. With this, we do not 

only mean hiding the contents of the messages (which is easily done by encryption), but 

also hiding the identity of the sender and receiver, and the number of messages sent and 
received by each individual. 

Hiding the receiver's identity is easily achieved by broadcasting the message. If the 
message is targeted at one receiver, the message can be encrypted so that only the 

proper receiver can decrypt it. Hiding the sender's identity is more difficult. ln current 
transmission systems, the location of the sender of a message is always easily found. 

The transmission of a message that hides the sender's identity is called untraceable 

sending. 

David Chaum [Cha88] introduced an untraceable sending system, the Dining 

Cryptographers (DC) system, that hides the sender of a message unconditionally, and 
only reveals an upper bound of the total number of messages sent. The name "dining 

cryptographers" comes from one of the examples used in his article. 

The main disadvantage of the system is that messages may not be sent simultane­
ously. If two messages are sent simultaneously, their sum (the messages being 
interpreted as elements of a group) becomes public instead, so that the information is 

lost. This brings the following problems: 

• Some kind of synchronization is necessary to prevent collisions. 

• Every sender can disrupt the total by sending random data. A special protocol 
is needed to catch such a disrupter without reducing the privacy of the other 
users. 

In the rest of this chapter, we first discuss the implementation of a DC network in 
practice. Then, we discuss the disruption and synchronization problems in detail. 

Finally, two new solutions to these problems are shown and compared to the other 
solutions that exist in the literature. 
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The Dining Cryptographers (DC) System 
The Dining Cryptographers system is best introduced by an example. Assume that 

two people want to send a message anonymously to a third party. They want the recei ­

ver to be unable to find out which one of them sends this message. To do this, they first 
make a random binary number, called the key. If one of them wants to send a message, 

he outputs the bit-wise exclusive-or of that message and the key*. At the same moment, 

the other of the two outputs the key itself. The receiver, or any other interested party, 

can compute the exclusive-or of the two outputs to retrieve the message, but the two 

random outputs cannot be distinguished to see which one of them contained the 

message. 
This idea can be extended to any number of senders. Let every pair of senders share 

a key . The sender of a message outputs the exclusive-or of all keys he shares and the 

message to be sent, while all other users output the exclusive-or of only their shared 
keys. The exclusive-or of all these outputs gives the message, because every key occurs 

twice in the total. Again, all outputs are random numbers, so all users are equally pro­
bable to be the sender. 

In the applications we are interested in, the senders and receivers are the same group 

of participants. 
The example clearly shows two important properties of the DC system: 

• Protection of the sender is unconditional; there is no way to find the sender of a 

message, even with unlimited computing power. 
• All participants transmit once for every message, even if they do not send a 

message themselves. 
On top of the DC protocol, a transmission rule is needed that defines when partici­

pants are allowed to send. Transmission rules must synchronize messages and detect 
disrupters so that the network is used efficiently. 

Literature 
The problem of untraceable sending is first addressed in [Cha8 I]. This system uses 

a network of trusted mail-relaying machines, the mixes. A mix receives RSA­

encrypted data, decrypts it, and forwards it in batches to the appropriate addresses. The 
privacy protection is not unconditional , and the system in its simplest form has been 

broken [PP89]. As far as we know, the mix system is the only alternative for the DC 

system. 
[Cha88] introduces the DC system. The problems of synchronization and disruption 

are addressed, but the proposed transmission rule is rather inefficient. 

[BB89] gives a more efficient solution to the synchronization problem, it was the 
first publication on a collision resolve system. [Wai89] discusses the verification 
problem (see below) and describes a synchronization protocol by Andreas Pfitzmann. 

The ideas of that paper are further elaborated in [WP89]. The latter paper also elabora­

tes the placement of traps (see later on). 

A discussion of practical considerations for untraceable sending occurs in [PW87]. 

* This is the same hiding of information as in the one-time pad. 
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Implementation 
[Cha88] states that the exclusive-or operation of the example may be extended to 

other fields, but that it "seems to offer little practical advantage". It turns out however, 

as Birgit Pfitzmann discovered [Pfi85] , that the exclusive-or operation may even be 

replaced by the operation of any commutative group. Such an extension can be used in 

many ways; for example see the voting scheme of Chapter 3. The group operations that 

will be proposed in this chapter and in Chapter 3 are mainly addition or multiplication 

modulo an integer, computations that are easy to perform in hardware. We write the 

group operation that is used as a sum. 

In the general case of a commutative group, the two owners of a key stream must 

use inverse key values. If participants i and j use keys kij for their keys, we write 

kij = -kji to show that they use opposite values of the keys. The message sent by user i 

ism; ; we write m; = 0 if user i does not send a message. Using this notation , user i 

outputs the value 

m; + L,kij . 
jeU 

U is the set of all participants (the " universe"). It is easy to verify that the total of the 

transmitted outputs is the total of the messages: 

I,(m; + I,k,1) = I,m; + L,kij = I,m;. 
ieU jeU ieU i,jeU ieU 

Key sharing 
If two participants share a key stream, they must both store the keys. To guarantee 

unconditional privacy protection, the keys should not be generated by an algorithm, but 

have to be truly random bits, just as with the one-time pad. This can make the list of 

keys quite big; storage on an optical disk may be a practical solution. 

Not all pairs of users need to share keys. Using less key pairs saves on three 

important points: 

• computation of the user 's output; 

• storage of keys; 

• key distribution. 

The choice of which pairs of users share keys is important for privacy protection. 

If not every pair of users shares a key, the untraceability of a message depends on 

the reliability of certain participants, which we will explain using the key graph. The 

nodes of the key graph are the participants; two nodes are connected by an edge if the 

participants share a key. Figure 5 gives an example of a key graph. 

The set of users that share keys with a given user is called the set of neighbours of 

that user. In graph terminology, the set of neighbours of a node is the set of nodes 

directly connected to that node. The participant marked * in Figure 5 has 4 neighbours. 

The properties of the key graph model the privacy protection of the participants. 

Take two trustworthy participants. If they are connected by an edge, it is impossible to 

distinguish them as sender of a message. Also, if there is a path in the graph connecting 
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them, it is still impossible to distinguish them. If we now consider the entire key graph, 

we see that if the key graph is connected, the privacy of all members is ensured. If the 

graph is disconnected, messages can be traced to one of the parts of the graph. Within 

the connected parts of the graph, all members are untraceable with respect to each other. 

Figure 5: A key graph. 

The structure of the key graph determines untraceability of users with respect to 

other users. A simple example is shown in Figure 5: the user marked * knows the only 
key used by .._, so that all messages of.._ are clearly visible to him. User .._ has no un­

traceability with respect to *, but unconditional untraceability towards all other users. 

This can be generalized to knowledge of arbitrary sets of keys. A user who knows a set 

of shared keys can subtract those keys from the corresponding outputs, and remove the 

corresponding edges from the key graph. This way, he can construct a graph of the keys 

unknown to him. The structure of this reduced graph determines the anonymity of all 

other users for him. 

Users sharing their keys, called colluders, may know a large number of keys. This 

can remove many edges from the key graph. If the colluders know enough keys to 

partition the graph, they can see which part of the graph messages come from. The 

number of colluders that can partition the graph depends on the structure of the graph. 

For example, the "polygon" (ring-shaped) graph gives untraceability from all users 

towards all others, but every collusion splits the graph. 

Practical key graphs have a structure that depends on the needs of the users in the 

graph. The goal of a good key graph is to contain as few keys as possible, while having 

enough keys to give all users sufficient privacy protection in their opinion. If the 

participants are allowed to choose their neighbours, they can choose those they trust. 

Another consideration is the physical key distribution: it is preferable to let the 

participants have neighbours that are physically close to them. 

Addition networks 
It is obvious that an efficient implementation of the DC scheme must quickly 

compute the output total. This can be done with what we call an addition network. An 

addition network connects a set of participants for a DC scheme. The network takes the 

output from each participant, adds them (using the proper group operation) and makes 

the result available to every participant. Some of the protocols use a mixture of group 

operations, and the addition network must make sure that the outputs are combined 

properly. 

The addition network does not need to be protected against wire tapping, because all 

the users ' messages are encrypted (by adding the shared keys). If the signals are 

publicly accessible, the computations of the addition network can be verified by any 
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interested party. 
The distribution of the total sum among the participants can be performed in 

computation time logarithmic in #U (the number of users). This is done by a network 

in the shape of a tree, where every branch adds the result of its subbranches, and sends 
the sum to the next higher level. The highest level distributes the results back to the 
leaves (see Figure 6). The time it takes to compute and distribute the total is called the 

turnaround time. Because we assume a fixed transmission rate, this time is more 

conveniently expressed in the number of bits that can be transmitted in that time. In 

practical implementations, the turnaround time will be a few thousand bits. 
If the turnaround time is long compared to the length of the messages, messages that 

depend on previous messages are delayed considerably until the previous output is 

distributed. Most protocols consist of rounds of messages whose contents do only 
depend on previous rounds. To make such protocols efficient, as few rounds as possible 

should be used to reduce the effect of the turnaround time. 

Figure 6: Distributing the sum in a hierarchical network. 

Addition networks are not hard to implement in practice. Most standard networks 
can in principle be reprogrammed to implement an addition network. The worldwide 

Internet network and the local token ring networks are good examples, because they do 

some processing on the packets anyway. 
Once an addition network is set up, it can also be used for other purposes, such as 

broadcasting of messages, or quick addition of traceable messages of all users. These 

last possibilities will be used for the construction of a voting scheme in Chapter 3. 

An example 
We found a very elegant addition network that can be built if the addition network 

only has to perform additions modulo an integer. Unfortunately, this makes it unusable 

for the voting protocol of Chapter 3. 
The network has the form of a binary tree, where each node adds two numbers and 

sends the sum to the next node. The nodes consist of only a stream adder (see Figure 7). 

A stream adder adds two numbers with the least significant bit first. It uses only one bit 
of memory (for the carry). Numbers must be separated by one or more zeros, to give 

room for the carry. The addition network consists of a stream adder at every node, 

computing the unreduced sum of the output values. The modulo reduction is done only 

on the total. The last node computes this modulo reduction and distributes it back along 
the other nodes. If there are p participants, the unreduced total sum is log2 p longer 

than the user outputs. Thus, after every number, log2 p zeros must be fed into the 
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stream adders for the extra bits. 

This system uses a very small amount of hardware per node; essentially, only a 
stream adder is necessary. Because only the last node has to take care about the 

modulus, this system is particularly efficient if the modulus changes often. The 
turnaround time is very low, because the nodes do not have to store the intermediate 

results. 

la _i 0] (Ca,•~:ae,tot) 

Figure 7: A stream adder. 

Verification 
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The distribution of the output among the participants must give each participant the 

same value (that we call input for the discussion). If the participants can be given 
different inputs, traffic analysis is possible by observing reactions of participants. 

Making sure that all inputs are equal is called the verification problem. 

The traffic analysis attack, and a solution to the verification problem, are described 

in [Wai89]. His solution is to make the keys dependent on the input of the previous 
round. If each participant receives the same input during a round (as it should be), the 

key pairs are distributed uniformly, so that there is normal untraceability. If two 
participants receive different inputs, their keys of the next round will not match, so that 

the total output of that round is uniformly random. Although the users can detect that 
two users received different inputs, there is no way to prevent it. Also, the turnaround 

time is not taken into consideration in this protocol. Every transmission depends on the 
previous total, so that the turnaround time effects every message. 

A more efficient, but less secure solution to the verification problem is to distribute 

the total over several routes simultaneously. The nodes compare their inputs from other 

nodes to detect modification of the total along the way. An extra advantage of this 
method is that it improves the reliability of the network. The turnaround time need not 

be affected by this method. 

Detection of Disrupters 
Disruption is the transmission of data that are not allowed according to the protocol, 

either maliciously or because of a defect. A malicious disrupter will try to hide his 

identity using the untraceability of the network. A good transmission rule reduces the 

amount of harm disrupters can cause, without reducing the untraceabi lity of the 
messages. 
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Opening 
The only weapon in the battle against disrupters is opening. An output message is 

opened if every user publishes all keys used to compute hi s output for that message. 

This will also reveal the message m; of every user. The public can verify whether the 
outputs were computed correctly, that participants sharing a key used matching keys 

(we assume the key graph is public), and that the transmission rule was obeyed. The 

anonymity of all user messages is lost, of course. 
A disrupter can admit having sent the disruptive message, or try to hide it. If he 

wants to hide his message by lying about his keys, a confli ct results between the disrup­

ter and one of hi s neighbours. The only solution is to stop using this key (removing an 
edge from the key graph). A transmission error that is the result of wrong key sharing 

will also be removed. A di srupter who keeps di srupting and lying about his keys will 

quickly become suspect, and eventually lose all his keys. 

Traps 
Opening a message containing private information is impossible, because users do 

not want their messages to be traced. To catch a di srupter by opening a message, 

special messages must be made that contain no private information. A good solution 

proposed in [Cha88] is to send trap messages, messages that contain no private 
information. The sender of a trap message publishes a commitment of the trap in 

advance so that he can prove afterwards that the corresponding message can safely be 
opened. If a trap message gets disrupted, the corresponding message can be opened and 

the disrupter can be caught. [WP89] gives an explicit example of such a method. 

Synchronization 
The important problem in a practical implementation of the DC scheme is the 

coordination of the different senders. If two or more participants decide to send at the 

same time, the result may not be understandable for the public. (In the case of two par­

ticipants, the participants in question can determine each other's message by subtracting 
their own, but the other users only get the sum of the messages.) The transmission rule 

determines when participants may send their message. This coordination problem is as 
old as computer networks, and there is a lot of literature on this subject (see for example 

[DBP79], [Tan88] for an overview). We do not go into details here, but the literature 
shows that a good transmission rule provides the following properties: 

• every user must be able to send a certain amount of data; 
• delay times must be as short as possible. 

In untraceable sending, we need an extra property: 

• the protocol may not reduce sender anonymity. 

This last rule limits the number of protocols from the literature that can be applied , 
because anonymity is not an issue in these standard protocols. 

From the first and second properties it is clear that a transmission rule should limit 

the harm caused by disrupters as much as possible. Finding di srupters is complicated by 
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the third property. Ideally, all the disruptions should be traced, while the rest of the 
messages stay untraceable. 

Slot reservation 
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There are two kinds of transmission rules for untraceable sending. The simplest 
transmission rules use slot reservation. Transmission is divided into two rounds: the 

reservation round and the communication round. In the reservation round, all users 
send a message (possibly simultaneously), determining an ordering for the users. In the 
communication round, the users have to send in this order. All users send one (possibly 

empty) message in that order. 
In slot reservation, detection of disrupters is rather simple: a disruption of the 

reservation round forces opening of the messages. The reservation round is designed so 

that only random data is involved, so that the reservations can be opened without 

compromising privacy. Disruptions in the communication round are caught using trap 

messages. 

Collision detect 
The other idea is to use collision detect. In a collision detect system, users send 

whenever they have something to send. The other users send zeros (output the sum of 
their keys only). This is a special case of the ALOHA protocol. 

The original ALOHA protocol [DBP79] was designed for satellite oriented radio 
communication between islands. It is currently used on networks where all users have 

access to the same bus. This bus need not be a radio frequency; it can also be a cable 
(as is done on the Ethernet). The transmission rule is very simple: every user who wants 

to send, sends immediately. If the transmission happens to be simultaneous with that of 
another participant, the result will be garbled (a collision). In this case, both 

participants wait a random time* and try again. This protocol is very efficient, 

especially because senders do not have to wait for their turn. A disadvantage is the 

unpredictable behaviour if there is a lot of traffic. 
In untraceable sending, this system is applicable if transmission occurs at regular 

intervals (this is called slotted ALOHA in [Tan88, section 3.2]). At each step, all users 

send a zero message, except for users who want to say something, who start sending a 
header block, followed by the actual message. 

Since disrupters can send fake header blocks, these blocks must occasionally be 

opened. To protect the privacy, header blocks must not contain message informationt. 

Disruption of header blocks can be detected by opening header blocks at random times 
or if the number of collisions is higher than statistically expected. Disruption of 

messages can be prevented as before using traps. 
The efficiency of collision detect comes from not having to waste time on users who 

have nothing to send. The price paid for this is privacy: if a header block has to be 

opened, the users who intended to send at that time are revealed. The privacy loss can 

* In practice, the delay is a uniform random number from an interval. If collision happens again, the 
delay is chosen from longer and longer intervals. 
t This problem is overlooked in [Wai89]. 
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be reduced at the cost of efficiency by letting users send random header blocks for 

empty messages at irregular intervals. 

Collision resolve 
The additive properties of the DC system allow to resolve collisions in a much more 

efficient way than waiting a random time. If the header blocks are chosen appropriately, 
the sum of the header blocks can determine an order for the group of messages that are 

involved in the collision. The messages can then be sent in the specified order, like the 
slot reservation system. This is called collision resolve. This notion was discovered 
independently by Andreas Pfitzmann [Wai89]. From the user's viewpoint, slotted 

ALOHA with collision resolve works as follows: 

• If there is no message to send, send a 0. 
• If there is a message to send, wait until the current group of messages ends. 

• Start sending a header block. 
• If there is a collision, determine when to send and wait for your tum in the 

message group. 
• At the proper moment, send the message contents without header block. 

All collision resolve protocols use this structure. The protocols determine the form 

of the header block, and the order of messages in a message group. 

Sending long messages 
The transmission of long messages (whether using collision detect or slot reserva­

tion) can be done in several ways. 
The simplest solution is to give all messages a fixed length, and break long 

messages in pieces. This gives full untraceability of the messages, but it is rather 

inefficient. 
It is more efficient to send messages in one piece. If all messages are sent in one 

piece, the messages must contain some information about their length. The sender of 

the next message must know this information to determine the moment he can start 

sending his message. Thus, the time between two messages is at least as large as the 

turnaround time. If the turnaround time is large, the protocol is again inefficient. 
A more efficient solution is to encode the length of the messages in the header block 

or reservation round. This way, the locations of all messages are known beforehand, 

and the messages can be sent without delay. As opposed to the previous solutions, thi s 
solution does compromise privacy: if the header block or reservation round is opened, 
all the message lengths become public. 

All protocols presented here can be adapted to use any of these three ways to handle 
long messages. For the rest of the discussion, we assume that all messages have the 

same length. 
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Comparison of Transmission Rules 
We compare five transmission rules: two slot reservation protocols and three 

collision detect protocols. Two collision detect protocols are new, the others are known 
from the literature. 

A slot reservation protocol and a collision detect protocol are very similar. Both 

protocols work in two steps: first an ordering is determined, then a list of messages is 

sent in that order. Slot reservation protocols use a reservation block that contains 
messages of every participant; collision detect protocols send a header block that 

contains messages of all participants who happen to send at that time. 
It is always possible to use a collision resolve protocol as a slot reservation protocol: 

let all participants "collide" at a certain moment, and use the rules of the collision detect 
protocol to determine an order. Conversion in the other direction, from a slot 

reservation protocol to a collision detect protocol, is also possible. In fact, the two new 

collision detect protocols are adapted slot reservation protocols. 
An advantage of slot reservation protocols over collision detect protocols is that 

they give more intrinsic privacy: opening the reservation round does not reveal who 

wants to send something, because everybody reserves something in the round. An 
advantage of the collision detect protocols, on the other hand, is that they allow more 

efficient channel usage. 
The criteria we use for comparison of the transmission rules are: transmission time, 

sensitivity for turnaround time, and computation efficiency. 

Slot reservation by Chaum 
The slot reservation system as described in [Cha88] used a reservation round 

consisting of a number of messages of weight one (zero bits on all but one position). 

Every participant chooses one of the bit positions at random and sends a I on only this 

position. The total of these messages is computed bitwise modulo 2 (exclusive or). If 

two participants accidentally choose the same bit position, a conflict occurs. Such a 
conflict is detected if the number of ones in the reservation round is less than #U. In 

this case, the round is repeated. Otherwise, the order of the ones in the round 
determines the order in which the participants may use the following rounds for their 
message (see Figure 8). This way, all participants know when it is their tum to send. 

The transmission time is quadratic in #U. This is because the length of the reser­

vation round must be large enough to keep the probability of a collision low. (This is 

known as the birthday paradox. If there are more than 23 people in a room, the proba­

bility is more than 50% that there are two people among them with the same birthday.) 
If there is a collision, the reservation round has to be repeated. 

The protocol is insensitive to a long turnaround time, and uses almost no computa­

tion. After the reservation round, the turnaround time does not cause any more delays. 

All users know when it is their tum to send, even before the total of the previous mes­

sage is computed. This allows the transmission of all messages in one round, without 
breaks. 
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~Time Reservation round 

User A I 1IOIOIOIOIOIOIOIOIOIOIOIOIOI 

User B IOIOIOIOIOIOIOIOIOIOIOI 1!0101 

User C IOIOIOIOIOIOl 1IOIOIOIOIOIOIOI 

Total I 1IOIOIOIOIOl 1IOIOIOIOI 110101 

Messages 

c::::J 

c::::J 

c::::J 

Figure 8: Slot reservation of [Cha88]. 

The transmission time for this system can be estimated statistically. The probability 

that there is a collision in the reservation round is 
/
., 

C=l- . 
(r - n)!r"' 

where n is the number of participants, and r is the number of bits in the reservation 

round. 

The turnaround time influences the optimal length of the reservation round. If the 

turnaround time is equivalent to the transmission oft bits, a reservation round takes 

r+t bits. Because of collisions, a reservation is repeated ,~c times in average, so the 

expected total transmission time for the reservation rounds is :-:~ bits. To compute the 

optimal choice of r, we differentiate with respect tor: 

i r+t -i(~- (r-n)!J-
a,. 1 - c - a,. ,. + t r ! -

,.n (r-n)! ( I n ) 
- ·--· -+-+'l'(r+l-n)-'l'(r+I). 
r+t r! r+t r 

Using asymptotic approximation for small t, we get the optimal value for r: 

r == 1-n2 + 1-n + t-l - ..±..(t +_J__) +O(n-2 ) 2 6 9 311 45 . 

In some possible implementations of an addition network, t grows with r . If we set 

t =Ar, we get 

r==1-(l+A)·n2 +(1-_1.)·n+-1--l- 4 .1-+0(n- 2 ). 
2 6 2 9(1+A) 3 135(1+A)2 11 

From our computation we can see that the optimal value of r is quadratic in n. 

The probability of a collision is rather high (if t = 0, we get r = ½n2 and C == I- ¼), so 

that up toe repetitions of the round are to be expected. If t = 0, the expected total 

transmission time for the reservation round is f n2 bits. (Note that the value for r of 

100 · n2 suggested in [8B89] is not only much higher than the optimum, but also 

significantly more than the expected total time.) 

The influence of a long turnaround time on the total time for a reservation round is 

relatively small. For small values oft, the total time grows like e • t, which is rather 

slowly. For larger values oft, the total time grows even more slowly, since the 

probability of collision drops. 

A problem is that the participants can influence the position of their message during 

the next round by sending the I bit in the reservation round earlier or later. There is a 
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simple solution for this, that is not mentioned in the original article [Cha88]. We make 

the assigned order unpredictable with a cyclic shift over a random distance. If the 

original rule states that the users send in order a1 , oz,···, a,,, the modified rule defines 

the order to be ax, ax+i•·--, a,,, a1, az,···, ax- J· The sh iftdistancex is a random 
number from the interval {I, ... , n l- To make a random number known to all 

participants, we can for example compute x as a one-way function value of the 

reservation round. Another way is to let all participants send a random number for one 

round, and use the total of that round. Such optimizations can be applied to all systems 

mentioned here to make sure that the participants cannot predict their position in the 

messages. 

Slot reservation by den Boer 
Bert den Boer [Boe88] proposed a slot reservation protocol that almost never needs 

repetition of the reservation round. In it all participants send a special block containing 

a random number. The values of all these blocks can be computed from their sum using 

a rather complicated algorithm. The algorithm determines a transmission order that 

cannot be predicted by the participants. 

The transmission time of the algorithm is rather low, because almost always only 

one block has to be sent. This makes the algorithm insensitive to a large turnaround 

time, because this delay only influences the time between the reservation round and the 

communication round. The computation, on the other hand, is much more involved 

than the previous protocol. 

Jf the turnaround time is very high, or the computation is too much, the rounds can 

be skewed one or more rounds so that the reservation round determines a later message 

round; see Figure 9. This allows the channel to be used efficiently. This idea is also 

applicable for other slot reservation protocols, but not for collision detect protocols. 

Reservation round 2 Message round 2 

i i 
Ca=J ~I - -2 __ 1 c:::LJ 

Figure 9: Dealing with long delays in slot reservation. 
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In this slot reservation scheme, user i sends a reservation block of the form 

A;,A; ,A;3, ... ,Af', 
where the numbers A; are nonzero random numbers in a finite field with q elements. 

For simplicity, we take q to be prime. The blocks are added up coordinatewise in the 

field, giving the sums 

S1 ,Sz,S3, .•. ,S11 • 

The set of A; values can be determined from the sums alone. Later on we explain an 

algorithm to do this in detail. The order in which the participants may send in the 

message round is determined by this algorithm. The position of an A; in the communi-
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cation round is not determined by the value of A;, so an algorithm to "shuffle" the 

communication round is not needed. 

We now estimate the expected transmission time for the protocol. Call the number 

of field elements q. A field element can be encoded using log2 q bits (ignoring 

roundoff). The length of the reservation phase is 
nlog2 q. 

The probability of a conflict can be approximated in the same way as with the slot 

reservation algorithm of Chaum. The probability is about 

C = I - e - n2 /2q. 

Taking account of the turnaround time, the total time of the reservation round with 

repetitions becomes n 
10

1~J+i , which is minimal if q is the solution of the equation 

q = lo!2 . n(n log2 q + t); 

we choose for q a prime number close to this value, which is roughly n2 log2 n. For 

example, if there are a million participants, the optimal value of q is about 1.52· 10 13 

and C is about 0.032. 

We now explain the algorithm in detail. Every participant i chooses a random 

nonzero value A; from the field . The reservation block is 

A;, A;2, A(, ... , At. 

The blocks are added up in the field , and we call the sums 

S1= I,A/, wherejEO, ... ,n}. 
iEU 

The A; are the reciprocals of the roots of the polynomial over the field 

P(x)= IJ(l-xA;). 
iEU 

The coefficients of this polynomial can be computed from the sums SJ' To see this, 

first write out the product as 
11 

P(x)= II(l- xA;)= L,O';X;. 

iEU i=O 

From this product, the values of CT; can be computed: 
O'o = I 

cr 1 = - L,A; 
iEV 

0'2 = L,A;A;, 
i=t.i' 

crn = (-l)"IJ A; 
iEV 
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These equations can be rewritten as Newton's identities: 
S1 -o-1 =0 

S2 -o-1S1 +2cr2 =0 

S3 - o-1S2 + o-2S1 - 3cr3 = 0 

S11 - o- 1S,,_1 + ·· · + (-l)"-10-11 _ 1S1 + (-1)" na,, = 0 
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This is a triangular linear system of equations, so the O"; can be computed from the Sj 

by simply solving the equations in order. Since q is a prime number, we know that no 

redundant equations occur in this system. (Later on, we will discuss the case where q 

is a power of 2.) 
The O"; are the coefficients of the polynomial P whose roots are the reciprocals of 

the values A;. To find the values A;, we find the roots of P by factoring. Since q is a 
large number with respect to n, we cannot try out values to find the roots. An easy way 

to factor a polynomial in a prime order field is using the polynomial 

Q(x)=xq -x, 

that has all field elements as roots . If P has no multiple roots (all A; are different), 

then Q is a multiple of P. In other words, if Qmod P -:t- 0, there is a conflict, and the 
participants must send a new reservation block. From now on, we assume that Q is a 

multiple of P. 

Q can be split into two parts 
Q(x) = Q1 (x) · Q2 (x) = (x<p-I)/2 + l)(x(p+Il/2 -x). 

Because Q is a multiple of P, P can be split in two parts using the greatest common 
divisor: 

P =Pi· P2 = gcd(P,Q1) · gcd(P,Q2). 

The ordering of the roots of P can now be defined: first the roots of P 1, then the roots 

of P 2. The splitting and ordering of the roots of P I and P 2 is performed recursively, 
splitting up the polynomials P I and P 2 using Q(x +I). This process continues using 

Q(x + 2), and so on, until Pis completely split up in polynomials of degree I. (These 

polynomials of degree 1 are multiples of the factors I - xA; in the original definition of 

P.) 

A participant does not need to compute all the roots to find his position in the 

ordering. Consider user Alice, who wants to know the position of her value A in the 
reciprocals of the roots of P. 

• First, she computes the coefficients of P using the method described above, 

and verifies Q mod P = 0 to make sure there is no conflict. 
• To know if the root corresponding to her value of A is in the first or second 

half of P, she computes Q1(A- 1
). This value is 0 or I. 

• If it is 0, she is in the first group of participants, and she computes 

Pi = gcd(P,Q1), and proceeds recursively with P" computing Q1 (A- 1 + 1) . 
• If it is 1, she is in the second group of participants. She continues the recursion 

with P2 = gcd(P,Q2 ) . Her position in the whole group is the sum of her 
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position in the second group and the size of the first group. Her position in the 
second group is computed by recursion on P 2, and the size of the first group is 

the degree of P 1• The degree of P I is the degree of P minus the degree of 
P 2, so P I does not have to be computed to find its degree. 

• Alice repeats until she has a first-degree polynomial with root A-1• 

The expected number of steps of this algorithm is µ
11

, where the numbers µk are 
defined as: 

{:: :;. [µ,+ tmµ;l 
It is possible to prove that µk = log2 k + 0(1) [0D91] , so that the expected number 

of steps is about log2 n . The proof of this approximation is surprisingly hard, and lies 

outside the scope of this book. 
In this version of the protocol , the participants can influence their position by 

choosing certain values for the A;. A simple extra requirement prevents this without 

using extra transmission or computation. As stated above, Alice computes in the ph 
recursion the value of Q1 (A- 1 + i) . If it is zero, she may go in the first group, and if it is 

one, she has to wait for the second group. Instead, we define that Alice may go first if 

this value is equal to the ith bit of a random number. A good choice for this random 
number is the sum SI' because it is a random number influenced by all the participants. 

The actual protocol as proposed by Bert den Boer uses a field of characteristic 2. In 
this case the number of elements q is a power of two*. Computations in this field are 

easier, but there are some differences. In a field of characteristic 2, the equality 

x 2 + y2 = (x+ y)2 
holds (the "freshmen 's dream"). This makes that the sums on the even powers of the A; 

do not give new information, since they can be computed from the sums of other 
powers. The reservation block consists of the odd powers 

A; ,A;3 ,A;5 , .. . ,A/11
-

1
• 

The Sj can be computed from the totals: 

S1 = L,A;; S2 = S~; S3 = I,A;3; S4 =Si, and so on. 
iEU iEU 

The computation of the polynomial coefficients from these sums is different from 

the previous case, because the even lines of Newton 's identities are useless. The linear 

system that yields the CT; is not triangular anymore, so the equations cannot be solved 
the easy way. Solving this equation is related to decoding BCH codes; two algorithms 

that compute the CT; from the S1 are described in [Bur71]. Once these coefficients CT; 

are found, the factorization of P is performed using the polynomial 

Q(x) = xq +x. 

Q(x) can be split up as 
trace(x) · (trace(x) + I), 

* The case where q is a power of another small prime is not considered here. 
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where the trace function is defined as 

trace(x) = (x + x 2 + x 4 + ... + xq/Z). 

As before, the polynomial P is split up in two halves Pi and P2 using the splitting 
of Q. For the recursion, the splittings 

Q(x) = trace(a.x) · (trace(a.x) + 1), 

Q(x) = trace(a2 x) • (trace(a2 x) + 1), .. . 

are used, where a is a generator of the field GF(q). 

These computations can be performed quickly using special hardware, especially 

when a so called (optimal) normal base is used [AMOV91]. This might speed up the 

computations considerably over the previous case where q is a prime. 

Collision detect by Pfitzmann 

31 

The first collision resolve algorithm we consider is an algorithm that is developed 
by Andreas Pfitzmann [Wai89], at the same time that we made the collision detect 

algorithm after the system of Bert den Boer. Pfitzmann's protocol uses a trick that 
divides the colliding participants in two groups, that use the algorithm recursively until 
the collision is completely resolved. 

If the turnaround time is equivalent to the transmission oft bits, and the maximum 

collision size the algorithm can handle is smax• the collision resolve takes a total time of 

approximately 
(s-1) · (log2 n + 31og2 smax + t) bits, 

wheres is the actual size of the collision. The derivation is shown below. The partici­

pants only have to perform very simple computations, so that no special hardware is 
needed. The main problem of this protocol is the dependency on the turnaround time. 

Because the protocol relies on repetitive resolving of collisions, the turnaround time 

counts in every step. 

The protocol is based on averaging. The header blocks are pairs ( 1, M), where M; 
is a random number chosen from 11, ... , M max f. The elements of the pairs are added up 
separately using a modulus* that is so large that the total is the actual sum of the 
headers. Each participant can now compute the average 

L,M; 
~ 

s 
The participants divide themselves in two groups depending on their value of M;. 

The participants with values of M; that are lower than average may go first. They start 

immediately resending the header blocks, resulting in a new collision of about half the 
size. They recursively resolve the collision. When they all sent their messages, the 

group with values higher than average may send. They don't have to send the header 

block, because they can compute the total in advance by subtracting the total of the first 

group from M;. 

• The DC algorithm requires the use of a finite abelain group, so the addition must be modular. 
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The protocol is detailed in Figure 10. 

2 

Put a random element of !l, ... ,Mmaxl in M. 
Send the message (I, M), and wait for the total. 
Put the total in C,S. 
If C = I, the collision is resolved; send the message, and stop. 
Put the average S/C in A. 
IfM.,; A: 

Send the header (1, M), and wait for the total. 
Put the total in C',S'. 
If C' = C, there is a conflict; go to step 1. 
Otherwise, put C',S' in C,S and go to step 2. 

Alice is in the second group: 
Wait for the next total, and put it in C',S'. 
Wait for the C' messages in the first group. 
Put C-C',S-S' in C,S, and go to step 2. 

Figure 10: Pfitzmann's collision resolve protocol for user Alice. 

The transmission time of this scheme is easy to calculate. The headers are added up 

using two moduli. The first modulus must be n +I, and the second modulus can be 

smaxMmax + I, so that all collisions of size at most smax yield a correct sum. This 
makes the length of a header block equal to 

1Iog2(n + I) l + 1log2 (smaxMmax + 1)7-
Resolving a collision of s participants takes s - I steps, so the total time to resolve 

a collision is 

(s - l) · (1log2(n + I) l + 1log2(SmaxMmax + 1) l + t ). 

The optimal choice for the number M max is about s~ax log2 s. 

If more than smax participants collide, a special protocol must resolve the collision 

again. For example, all participants can send a second header with a higher value of 

Collision resolve after Chaum 
We extend the slot reservation algorithm of [Cha88] to a collision resolve algorithm. 

The header block consists of r bits. It contains a I in one position and O in the other 

positions. If a collision is detected, the rules of Chaum 's slot reservation algorithm 

determine the order in which to send. 

The problem with this protocol is the detection of conflicts. Conflicts can be 

detected by sending an extra message containing a I, just as with the previous protocol 

of Pfitzmann. The sum of these will be the number of participants in the collision. A 

conflict is detected if the number of ones does not match the number of colliding 

participants. 

The transmission time of this scheme is quadratic in the number of colliding 

participants. It can be computed in a similar fashion as the previous protocol. The 

length of a header block is 
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r + 1log2 (n + l)l bits. 

The optimal choice for r is hard to calculate, because the probability of a conflict of 
header messages depends on the size of a collision. If we assume that the collision size 

sis equal to smax' the optimal choice for r would be 

r = S~ax ( Smax + ✓~s~_a_x_+_8_t). 

The probability of a collision grows fast withs, so that the optimal choice of r is 

probably slightly higher*. If all collisions are the same size, and the turnaround time is 

zero, r must be s~3x/2, and the expected total time for the headers is 

fs2 + e1log2 (n + l)l bits. 

The dependency on the turnaround time is rather small. The expected extra time for 

a turnaround time oft is t · e, because the expected number of retries for conflicts is e. 

The computation needed for this slot reservation scheme is trivial. 

Collision resolve after den Boer 
The slot reservation scheme by Bert den Boer [Boe88] can also be extended to a 

collision resolve protocol. The effect of this protocol is that after one header block the 
c0llision is immediately resolved, and the parties can start sending in order. This makes 
the turnaround time count only once per collision. 

The header block is the message 

l,A;,A;2 , ... ,A/-1 

where A; are random numbers. The parameter k determines the maximal size of a 

collision. For best results, the value k can be chosen a small number, and if the 

collision turns out to involve more than k participants (by examination of the first sum), 
more powers of the same number A can be sent to resolve the collision completely. 

The protocol works just like the slot reservation version. The characteristic 2 

version can also be used. As a collision detect protocol , the computation done by the 
participants is a lot less because the expected number of participants involved in the 
collision is much less than #U. 

This new protocol is probably the most efficient protocol in practice, because it uses 

little data for the header blocks, and is relatively insensitive to the turnaround time. The 
only problem is that is uses a large amount of computation. 

Overview 
Table 2 shows an simplified overview of the discussed transmission rules. 

The systems marked with a * are collision detect systems that we adapted here from 

slot reservation systems. The original author of the slot reservation system is given in 
those cases. 

The column "Reference" lists the first publication of the protocol. 

The column "Transmission" lists the approximate amount of bits it takes to 

determine the order between the participants involved. In the case of a slot reservation 
system, it is a function of the number of participants n. For a collision detect system, 
• To compute this, we need a probabilistic model of the col lision size. 
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we assume that all collisions have the same sizes, and the turnaround time is zero. 

The column "Turnaround" gives an impression of the sensitivity of the system for 

long turnaround times. It shows the expected number of repetitions of the scheme. 

During every repetition , the participants have to wait for the outcome. To compute the 

total delay for one round, the turnaround time has to be multiplied by the entry in the 

column. 

The column "Computation" gives the amount of computation. A "-" sign means 

that the protocol needs negligible amount of computation, while "pol. factor(k)" 

denotes the amount of computation to factor a polynomial of degree k in a field. 

The column "Type" designates whether the system is a Slot Reservation (S.R.) or 

Collision Detect (C.D.) system. 

System Reference Transmission Turnaround Computation 

Chaum [Cha88] fn e"' 2. 72 

den Boer [Boe88] 2nlog2 n 1 pol. factor(n) 

Pfitzmann [Wai89] s · (log2 n + 3 log2 s) s 

Bos/Chaum * e·(log2n+½s2) e 

Bos I den Boer * [8B89] 2slog2 s pol. factor(s) 

Table 2: Comparison of transmission rules. 
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3 
An Efficient Voting Scheme 

Introduction 
The network for untraceable sending of Chapter 2 can be used for several purposes. 

The present chapter describes the implementation of an efficient voting scheme using 
this network. A voting scheme is a protocol that performs a secret-ballot election with 

the following properties: 
• Privacy: the voting is anonymous*, so that the votes are kept secret; 

• Security: the participants are unable to influence the outcome more than by just 

their vote; 
• Robustness: it is hard for participants to disrupt the execution of the protocol ; 

• Verifiability: every voter is convinced of the correctness of the election 

outcome; 
• Efficiency: the protocol can be applied in practice over an electronic network. 

We discuss the features listed above in analogy of traditional statuary democratic 

decision procedures as in carrying or rejection of motions or in the election of repre­

sentatives. In the rest of the chapter, we discuss the voting schemes that exist in the 

literature compared to the new scheme. Then, after introduction of the terminology 

used, we describe the protocol in detail. Proofs of the necessary properties are given, 
and extensions are shown that make the voting scheme more flexible and efficient, while 
preserving the necessary properties. 

Privacy 
In a voting scheme, privacy protection (that is, secrecy of the ballots) is never per­

fect. Any set of colluding participants can compute the total of all other users by 

comparing their total to the total of all users. Sometimes, this information is enough to 
determine a vote completely. For example, if the voting is unanimous, or if all but one 

user cooperate, the identity of that user can be determined with certainty. 

The privacy protection of voting schemes must be compared to the information that 

* If the voting were not anonymous, we can just make every voter publish her vote. This yields a 
protocol that is easi ly seen to have all other features, but cryptographically not very interesting. 
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can be obtained by collusion. In the ideal case, this is all the information that a colluder 

gets. Some voting schemes give cryptographic protection, meaning that getting extra 
information involves breaking a certain cryptographic assumption. The voting system 

introduced here gives the intrinsic privacy protection of the DC scheme of Chapter 2. 

That means that the privacy of the users is unconditionally protected, depending on the 
reliability of the set of neighbours in the key graphs. The details are explained in 

Chapter 2. The privacy does not depend on any computational assumption; even if the 
underlying cryptosystem is broken, the ballots are still secret. 

In a practical election, the privacy of people using the voting machines* is not very 
high. The most apparent problem is that a voting machine cannot prove to the user that 

it does keep the votes secret. The identical paper ballots are better; the votes are col­

lected in a container that will only be opened after the election is over. The user can 

wait until a few more votes are entered to make sure his vote is mixed in. The largest 
privacy restriction is that the total of the group of about I 000 voters to which they 
belong is made public. 

Security 
A voting scheme is secure if all a user can do to influence the total is cast a single 

valid vote. This assures that the result of the voting is correct. 
In our voting scheme, breaking the security is as hard as finding a discrete 

logarithm. 
In practice, security is maintained by checking a register of all legitimate voters. 

Robustness 
A protocol is robust if the participants are unable to disrupt the protocol by sending 

messages (whether valid or invalid). It does not matter if the protocol identifies the 

disrupter, but it must come to a proper ending. 
Disruption of the practical voting involves the collusion of many parties. Computa­

tion of the tally is performed over many polling stations involving different people. 
Formal reports of all tasks in the polling station are collected and verified. 

Verifiability 
Verifiability of a protocol denotes that all participants can verify the outcome of the 

protocol. In principle, one could let each participant verify the tally by counting the 

votes himself, but this is very impractical. A nice example of a relatively efficient way 

to do this is shown in [Cha81]. The DC protocol does not have a high degree of 
verifiability. The voting scheme described here uses a new local verification method for 

the protocols using DC scheme. 
The verifiability of the real election is high in theory, since every step in the tally is 

open to public scrutiny. 

* A voting machine is a device for automatic voting. It is used in voting stations where a few hundred 
people vote. Voting is done by pressing a few keys. It does not get the identity of the voters. In 
principle however, it could produce a list of all votes in order, so that all votes can be reconstructed. 
In practice, most machines are mechanical , so that this is much harder. 
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Efficiency 
"Efficiency is hard to define, ~specially if one wants to make claims about applic­

ability in the real world. There are a lot of protocols that are very practical in principle, 

but are not implementable for other reasons (insufficient infrastructure, for example). 

The protocol shown here involves as little transmission as possible. The protocol 

requires only five rounds of the DC protocol (as shown at the end of this chapter). Since 

the rounds themselves take an amount of time that is logarithmic in the number of 

participants, the entire protocol also takes time logarithmic in the number of 

participants. All other known protocols take time at least quadratic in the number of 

participants. The infrastructure that is used for the DC protocol is thought to be 

practically implementable. Needed networks like the addition network are already in 

existence today. 

One aspect of the scheme is that all messages must be synchronized, but this is 

probably handled automatically by the devices that perform the transmissions. 

The current election scheme requires only messages per polling station. In this 

sense, the scheme is very efficient. 

Related Work 
In [Cha8 l ], the first voting scheme is described. A mix network is introduced of 

trusted mail relaying machines (called mixes), that provides an untraceable sending 

protocol. The mixes decrypt RSA-encrypted messages and forward them per batch to 

hide the identity of the senders. This makes the privacy depend both on the size of the 

mix batches and on the security of RSA. The voting scheme proposed in the article uses 

the mix network for sending encrypted ballots. The election outcome is easy to verify 

by scanning two public lists, one with the ballots and one with voter pseudonyms. It is 

one of the few protocols that really give verifiability to all participants. The protocol 

involves sending only four messages per voter, but the voters receive a large amount 

(linear in the number of participants) of data. Although the direct implementation is 

broken [PP89] , the system can be adjusted to prevent this attack. 

The issue of multiparty computations has generated a number of articles. A 

multiparty computation is the computation of a function value without revealing the 

input values. An election is a special case of a multiparty computation. The easiest way 

to implement such a protocol is to use a publically trusted computer with secret input 

channels, that computes the function value and publishes it. There is a proof in 

[BCC88, CDG88] that any computation using such a publically trusted computer can 

also be done without one, by using a multiparty computation. This method , however, is 

inefficient in general. 

One of the first articles about multi party computations is [DLM82]. It describes a 

protocol for multiparty computations, using a voting scheme as an example. This voting 

protocol is similar to that of [Cha8 I], but it involves more messages, it can be disrupted 

by every participant, and it requires that the participants know each other's identities. It 
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is not efficient enough to be practical. 
[Yao82] also describes a general protocol, with a voting scheme as example. The 

protocol is the first to give unconditional privacy protection. On the other hand, it has a 

fixed number of participants, needs a lot of messages, and is not robust. It is not a 
practical protocol in the sense that it does not consider problems like transmission and 
computation overhead. 

The protocol described in [GMW86] is again a general purpose protocol that can be 
used for voting applications. It is robust against any number of saboteurs up to half the 
participants. The result is also purely theoretical , so there has not given been much 

concern to efficiency. 

[Ben87] is the final version of the voting protocols described in [CF85], [Coh86], 
[BY86]. (Josh Benaloh was earlier called Cohen). The protocols described in the 

earlier articles are much more practical, but have as main drawback that there is no 
privacy towards a certain participant called the government. [Coh86] suggests splitting 
the government up in tellers, so that any one part can protect privacy independently of 

the others. In [Ben87], both incriminating privacy and disrupting the election needs 
collusion between a group of tellers. The size of these groups varies with a security 

parameter-the larger one group, the smaller the other. The protocol depends on 

broadcasting by all parties. 
The scheme in [Cha88] gives unconditional privacy using the DC scheme. The 

protection against cheating and disruption is based on the RSA assumption. Verifiabili­
ty is excellent, because an official list is made public that allows anyone interested to 
count the votes. It uses a lot of messages, so that it is rather inefficient. 

The scheme described in [BCC88, CDG88] is a very powerful, very general, and 

very unpractical scheme for multiparty computations. This article gives an overview of 

the exact power of multiparty protocols, and it contains an overview of blob implemen­
tations. 

The protocol in [HT88] is also a multiparty computation scheme, based on 
[BCC88]. It is a theoretical result, with not much concern for practical applicability. 

To give unconditional privacy protection, it needs a secure channel between every pair 

of participants, an unrealistic assumption. 
[MP89] is a protocol that allows computation of the sum of a set of private numbers. 

The privacy protection is obtained by using a DC-like network. Although the protocol 
has many similarities with the voting scheme presented here, it is not a voting scheme, 

because the participants are not convinced of the correctness of the outcome. 

There are more articles on multiparty computations, but they only address the 
theoretical possibility of such a computation without considering a practical 

implementation. 
The new voting scheme explained in this chapter was originally described in 

[BP88], but it was thoroughly extended since then. The protocol combines uncondi­

tional privacy with high efficiency. 

An overview of the discussed protocols is shown in Table 3. The columns in the 
table describe the given properties for each protocol. The properties "verifiability" and 
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"efficiency" are not listed in the table as they are hard to compare fairly. 

The entry "RSA" in the table means that the given property is as hard as breaking 
RSA (computing a root modulo n). "Pub. key" means it is as hard as breaking some 

particular public key cryptographic function. "Priv. key" means the breaking of a 
private key (classical) cryptosystem. "Residue" means the recognizing of a number 

mod n as being a certain power. This is believed to be about as hard as factoring 

[Ben87, p. 31). The entry "No" in the "Robustness" column means that the protocols 
can be stopped by any participant who stops acting according to the protocol. 

Reference Privacy Security Robustness • Remarks 

Cha81 RSA RSA RSA • Privacy depends on batch size 

DLM82 Pub. key Pub. key No • Difficult to comprehend 

Yao82 Uncond. Pub. key No 

CF85 Residue RSA RSA • No privacy from government 

Cha88 Uncond. RSA DC • DC system 

Ben87 Residue Residue Uncond. • privacy H robustness tradeoff 

HT88 Uncond. Priv. key Priv. key • Needs secure private channels 

Present Uncond. D. log. DC • DC system 
Table 3: Comparison of voting schemes. 

Explanation of the Protocol 
The Dining Cryptographers untraceable sending system that we described in 

Chapter 2 had the important feature that messages that were sent simultaneously 
summed together. This is just what is needed to count ballots. One can make a simple 

voting scheme by letting each voter send a 1 for "yes" and a O for "no" and use the DC 

protocol for the tally. 

The ballot of user i is called b;, and the key shared between user i andj is called 
tij, so that the values actually published over the addition network are 

b; + ~>ij· 
jEU 

This gives us unconditional privacy protection for the voters, and some verifiability. 

The robustness can be violated if there are disrupters during this round. The round 
cannot be opened, because the ballots are private information. The security can only be 
guaranteed if users prove that their ballot was indeed a O or 1. 

The problems of robustness and security are solved using blobs. In the introduction 
we explained that a blob on a value c is used to prove that c was chosen before a 

certain time; it commits a user to that value. This is done by sending a special 

encryption of c, called the blob value. This blob is opened at a later time by sending 
c together with the encryption key. 

In the voting protocol , a variant on this idea is used. The blobs on the ballots cannot 

be opened as such, because the ballots are secret. The validity of the votes is proved 
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without revealing their value using a special protocol explained later on. 

The voting protocol uses several rounds. In the first round, the users commit to their 
ballots with a blob. The second round of the protocol perform the actual tally in the 

voting round. This is the transmission of the ballots using the DC scheme, exactly as 
described earlier. The third and later rounds are used to prove that the ballots are valid. 

Local verification 
The outputs given by the users must be verifiable. In the ideal situation, all user 's 

outputs are published, so that any interested party can check them. [Ben87] proposes 

the use of "bulletin boards" where interested parties can get the information that users 

put in it. A more efficient variation is to let the user's outputs be locally verified by a 

group of users called the observers. The observers can be chosen from the group of 
voters. These users check the outputs of the users that are physically close to them (for 
example, all incoming users of a certain node of the network). The observers get a 

special (traceable) round in which they send a O if there is no problem, and a I if there 
is. This way, the public can quickly verify the results without large overhead. 

Remember that anybody is assumed to have access to the network, so that this does not 

incriminate privacy; it only increases efficiency. A disrupting observer will quickly be 

found because his transmissions are traceable. 

Blobs 
The blobs used for this voting protocol are much like the blobs described in 

[BKK87; CDG88]. Other blobs are also possible; see the extensions at the end of this 

chapter. The blob of value c with key k is 

blob(k,c) = ak~
2c (modp). 

In this formula: 
• pis a "safe prime", that is a prime number so that p~I is also a prime number. 

• p must be large enough to make the discrete log problem modulo p unfeasible 

[DH76; PH78; Odl84, McC90, LO90] . 

• a and ~ are different generators of the multiplicative group modulo p. 
p-3 • c is the contents of the blob, chosen from the set {0, . . . ,-2-). 

• k is the key of the blob. It is a uniformly distributed random element from the 
set {0, ... ,p-2). 

The validity of a, ~' and p can easily be verified by the public. The size of the 
number p determines the level of security of the protocol. It also influences the amount 
of computation to generate a blob. In practice, p must have a size of about 150 

decimal digits. This gives a high level of security, while still allowing the computation 

of blobs on a small computer. 
Computations on blobs are in the field GF(p), so from now on all equations are 

implicitly modulo p. 

Vic* breaks the blob by guessing the value of c from the blob value alone. This is 

just as hard as guessing c without knowing the blob value. The blinding factor ak 

* As in the introduction, Vic stands for the verifier and Peggy for the prover. 
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makes all values for the blob equally probable, independent of the value of c. This 

gives Peggy unconditional privacy protection, because a given value of the blob does 
not give any information about the value of c. 

Peggy cheats the blob by opening it with another value than c. This is unfeasible 

by the discrete log assumption. To see this, assume that Peggy can open a blob in two 
different ways: blob(c,k) = blob(c',k'). Since she has a solution to the equation 

akp2c = ak' p2c', 

she can compute the di screte log of p2 with respect to a as follows: she does this by 
taking the inverse* d of c - c' (mod p;I ), and computing 

a(k-k')d = p 2d(c'-c) = p2; 
the last step follows from d(c - c') = I (mod P;\ so that 2d(c - c') = 2 (mod(p-1)). 

From the discrete log assumption, Peggy is unable to find a discrete log, so we conclude 

that Peggy cannot cheat a blob. 
Vic cannot find the value of Peggy's blob, even if he can break the di screte 

logarithm. In the voting system, this means that the ballots remain secret even if 

discrete log is broken during or after the election. 
The blobs used have a nice and simple "additional" property , that allows a user who 

issues two blobs to open the sum or difference without having to open the blobs 
themselves. This turns out to be very convenient for our voting scheme. The additional 
property can be written as 

blob(k,c) · blob(m,d) = blob(k + m,c + d). 

Note that there are three different moduli in this equation: the product of the blobs is 
taken modulo p; the sum of the keys is taken modulo p - I ; and the sum of the values 

is taken modulo P;1 . The product of two blobs is a blob on the sum of the values, 

that is opened by revealing the sum of the keys. We assume that the addition network 
we use can do both addition and multiplication computations, so that we can combine 

blobs, values and keys over the network. 

Blob validation 
To prove that a blob contains the value O or I without revealing its contents is a well 

known protocol [BCC88] . Assume that Peggy wants to prove that (previously sent) 

blob(k,c) has a value c that is O or I. To prove this, Peggy and Vic do the blob 

validity protocol: 

• Peggy chooses random blob keys x and y and sends Vic the blobs: blob(x,0); 
blob(y,l), in random order. 

• Vic sends a challenge "open" or "equal". 

• On challenge "open", Peggy opens both blobs sent in the first round by 
revealing x and y. 

• On challenge "equal", Peggy takes the blob of the first message that contains 

the value that is equal to c. She then opens the blob on the difference between 
her blob and this blob. This difference blob contains a O as value. In other 

words, Peggy sends v = k - x if c = 0, and v = k - y if c = 1. 

* This inverse exists, because the absolute value of c-c' is smaller than the prime number (p-1 )/2. 
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Vic verifies the received value v by checking if the product of the designated 

blob of the first message and blob(v,O) equals Peggy 's blob. 
We now prove that this is a zero-knowledge proof (see the introduction): 
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The protocol is complete, because if Peggy does not cheat, Vic computes, if c = 0: 
blob(x,0) · blob(v,0) = blob(x + k-x,0) = blob(k, c) 

or, if c =I: 
blob(y, 1) · blob(v,0) = blob(y + k - y, I)= blob(k,c). 

In any case, Vic will accept Peggy's answers. 
The protocol is sound, because if Peggy does not have a proper value of c, she 

cannot answer both challenges of Vic at the same time. In this case, she must guess 

what challenge she will get: 

• If she guesses that the challenge will be "open", she can follow the protocol as 
it stands and open the blobs of the first round. 

• If she guesses "equal", she can take one of the blobs of the first round to contain 

the improper value c, so that she can open the difference blob. 
If Peggy makes the wrong guess, she cannot answer the challenge, so that she will 

be caught with probability ½ in both cases. This protocol can be repeated as many times 
as Vic needs to be convinced that Peggy has a valid blob. In practice, about 25 times is 

a reasonable value, giving a probability of about 2.98· J0- 8. 

To show that the protocol is zero-knowledge, we show a simulation of the protocol. 

Vic generates a simulated transcript as follows: 
• First, Vic guesses the challenge he will receive in the second round. 
• If the challenge is "open", the simulated first round consists of sending two 

random blobs with values O and 1. 
• If the challenge is "equal", Vic takes a random blob key v and a random group 

element u. The first round consists of sending the pair blob(k, c )/blob( v, 0) ;u 

in random order. 
• The third round contains the blob values if the challenge was "open", and the 

value v if the challenge was "equal". 

It is easy to verify that these values satisfy the same checks as Peggy's answers, and 

have the same probability distribution as the messages of a real transcript. 

In the voting protocol, a modified version of the blob validity protocol will be used 

that allows all participants to prove simultaneously that their blobs are correct. 

Description of the Protocol 
We assume an underlying "addition" network that can add messages modulo p - l 

and P;' , add messages modulo 2 (exclusive-or), and multiply messages modulo p. 

This network can then perform the voting protocol. The shared keys used by the DC 

scheme are only used in those rounds where privacy protection is needed. This reduces 

the amount of keys needed in the scheme. Also, the scheme allows certain values to be 
checked locally so that disrupters can be found quickly. 
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The protocol consists of five rounds: 

• Issuing of blobs on the keys used in the DC sending 

• The actual vote counting round using the DC system 

• Issuing of blobs for proving the validity of the ballots 

• Construction of a challenge bit 

• Response to the challenge 

The last three rounds have to be repeated a number of times to provide the needed 

level of accuracy. (This can be done simultaneously, so that the protocol consists of five 

rounds again; see the end of this chapter.) 

To aid understanding the formulae, all are formed using blobs. For example, we 

write blob(x;, 0) even though this is just a_x;_ The former form is easier to verify, 

because all other formulae use blobs too. The proofs use only the blob properties 

mentioned in the previous section and simple arithmetic. Note that the addition 

property of blobs involves three different moduli ; all three moduli are used by the 

addition network. 

The values of the parameters p, a and p can best be chosen just before the voting 

protocol is initiated. This gives cryptanalists as little time as possible to solve the 

discrete log problem for a and P2 (mod p) to break the protocol. It does not matter if 

the discrete log is found after the protocol is over, but if it is broken during the protocol , 

the outcome will be unreliable. 

The output of user i in round n is denoted as [n];, and the total is written [n]. 

First round 
Initially , the users share keys tij that are to be used for the second round. Similarly, 

the users share blob keys kij for blobs on those keys. In the DC scheme, it is required 

that t;j = -t ji to make the keys cancel out, and tij = 0 means that there is no key used 

between user i and). The numbers kij are constructed the same way, so that also 

kj; = -kij and kij = 0 ~f tij = 0. The only difference is that the kij are random numbers 

from the set 10, ... , P~ l, while the tij are from the set 10, ... ,p- 1}. Thus, the numbers 

kij can easily be generated and distributed in advance together with the ti)" 

In the first round, user i sends a blob on the keys t,1 she is going to use during the 

voting round. 

The output of user i is 

[l];:blob(L,kij, I,t;)-
jEV jEU 

The network multiplies all messages modulo p, yielding (nobody cheating) 

[I]= fl[I]; = blob(L, L,kij, I, L,tij) = blob(0,0) = 1. 
iEU iEU jEU iEU jEU 

All numbers involved in this message are random numbers. If the result of this 

transmission is not equal to 1, the blobs can be opened to catch a disrupter. Then a new 

round, with new values of tij and kij, can be performed The individual results of thi s 

round are saved; for efficiency, the users may do this themselves. The observers will 

also save the messages for later verification. 
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Second (voting) round 
The actual tally is now obtained. The users send their ballots over the DC network 

in additive mode. This is sent untraceably using the keys tij from the first round: 

[2];:b; + L.tij. 
jEU 

The addition is done modulo Pt . Because p is very large, Pt will be bigger than 

the number of voters. Thus, the total result of this DC transmission will be the number 
of l ("yes") votes: 

[2] = I,[2]; = L,b; + L, L, lij = L,b;. 
iEU iEU iEU jEU iEU 

Cheaters and disrupters will not be detected until the fifth round. If everything 
works well, the total of these transmissions will be the election result. Of course, this 

round cannot be opened because the private vote information is in it. 

Third round 
The third round is the first step of the blob validity protocol that takes the last three 

rounds of the protocol. To make things more efficient, it is executed simultaneously by 
all users, adding the results. 

We want to prove the validity of a blob on the ballot of user i. This blob does not 
occur explicitly in the protocol, but it can be computed: 

blob(0,b; + L,tij) 
blob(0,[2];) = jEV =blob(- ~ k b) 

~ ~ L I}' I • 
[l]; blob(Lkij, Ltij) j EU 

jEU jEU 

This blob can be constructed by everyone who stored the values of the earlier 
messages sent by user i. The key of this blob is 

K; =-I,k,1 . 
iEU 

The blob keys and blob contents are only known to user i. Of course, opening this 

blob would reveal b;. 

In the first round of the blob validity protocol, every user sends a pair of blobs 

containing a 0 and a l as follows: user i chooses a random bits; and two blob keys x; 

and Y;, and sends 
[3a];:blob(x;,s;), and 

[3 b];: blob(y;, 1- s;). 

All users do this simultaneously, and the blobs will be multiplied modulo p by the 

addition network, giving the products 

[3a]: Tiblob(x;,s;) = blob(L,X;, L, S;), and 
iEU 

[3 bJ:Tiblob(y;,1-s;) = blob(L,Y;,#U - L, S;). 
iEU iEU 

The results of this transmission cannot be verified as such, because the blob keys 
and contents are not public. To make it possible to verify the messages, all users send 

the values of X;, Y; and s;. For privacy protection, the values must be sent over the 
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network using untraceable sending. The DC keys used are not shown here. 
[3c];:s;, [3d];:x;, and [3e]:y;. 

p-1 + These messages are added over the untraceable sending network modulo - 2- ,or 
[3c] and modulo p-1 for [3d] and [3e], giving the sums 

[3c]: L, S;, [3d]: I, x;, and [3e]: L,Y;. 
iEU iEU iEU 

Using these sums, the products [3a] and [3b] can be verified in public using the 

equations 
[3a] = blob([3d],[3c]), and [3b] = blob([3e],n -[3c]). 

Fourth (challenge) round 
The fourth round of the voting protocol is the second step of the blob validity 

protocol. The challenge has to be formed. The challenge is a trusted random bit formed 

by all users. Every user sends a random bit 
[ 4 ]; : r;. 

These bits are added up modulo 2 (exclusive-or) by the network, giving the 

challenge bit r: 
[4] = L, T; = r. 

iEU 

This round cannot be cheated or disrupted at all, because the only thing that matters 

is that the bit is not known in advance by the participants. 

Fifth (response) round 
Now the response to the challenge has to be sent. The description of the blob 

validity protocol shows that the users can send two different responses, depending on 
the challenge: opening the blobs from message [3] , and opening a difference blob 

between the ballot and either of the two blobs. All users respond in the same way, 

because they receive the same challenge. 
If the challenge bit is 0, the blobs from message [3] are to be opened. The user just 

sends the values 
[5a];:s;, [5b];:x; , and [5c]:y; 

p-1 b over the network, adding up the results modulo - 2- and p - l. The sums must e the 

same as the sums [3c] , [3d] and [3e]. Since the outputs are now unprotected by DC 

keys, the individual outputs of every user can be verified instead of only the total sum. 

The outputs of the users are verified locally by the observers: 
[3a]; = blob([5b];,[5a];), and [3b]; = blob([5c];,l-[5a];) -

If the challenge bit is I, the user must prove that her blob is the same as one of the 
blobs sent in round [3]. Which of the two blobs this is may vary between users, because 

it is dependent on the s; . The responses are such that the values of b; and s; cannot be 
found from the responses. 

If b; = s;, the user opens the difference blob between b; and the first blob: 
[5a];:K; -x;. 
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The messages will be added modulo p - 1. To simplify public verification, the user 
also sends 

[5b];:[3a]; = blob(x;,s;), 

that will be multiplied modulo p. 

If b; * s;, the user opens the difference blob between b; and the second blob: 
[Sa];:K; - Y;, and correspondingly 

(5 b ];:[3 b ]; = blob(y;, 1- s; ). 

For both cases, the response can be verified using the formula 

blob(0,[2];) =[Sb];. 
[l]; · blob([Sa];,O) 

This is because 
blob(0,[2];) blob(K b) 

---~-= "' =blob(K-K+x b)=blob(x s)=[Sb] 
[l];·blob([5a];,0) blob(K;-X;,0) ' ' 1

'
1 

"' 
1 

or, if b; * s; for this user, 

blob(0,[2];) = blob(K;,b;) = blob(K - K + . b) = blob( · 1 -s) = [Sb]. 
[l]; · blob([5a];,0) blob(K; - Y;,0) ' ' y,, ' y,, ' 1 

Apart from the local verification of the responses per user, the totals can also be 
verified: 

Overview 

blob(0,[2]) = [Sb]. 
[l] · blob([5a],0) 

Table 4 shows an overview of the voting scheme messages and verifications. 
The column "Message" shows the message that user i sends in that round. The 

symbols are explained in the text. The column "Group" shows the group in which the 

computation of the total talces place. 
The last column shows the verifications that are to be done. The verifications in 

round [5] that are indexed by i denote local verifications. As said before, this should 
preferably be done by local agencies. There could be a traceable sixth round for 

transmissions of the verification results. The local verifications are expected to be 

accompanied by corresponding verifications of the total result by all participants. 
The two possibilities for round [5] are separated by a dashed line. Above the dashed 

line is the reply for a challenge (value of round [4]) of 0, the replies under the line are 

for challenge 1. In the latter case, the two different replies vary per user. Both replies 
are shown in the Message column; the network does not distinguish between them. 
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Round Message Group Verification 

[l] blob(Lkij, Llij) TTmodp [l] = l 
)EU )EU 

[2] b; + Llij I.mod p~l 

)EU 

[3a] blob(x;, s;) TTmodp 

[3 b] blob(y;, l - s;) TTmodp 

[3c] s; + DC keys I.mod p~l 

[3d] x; + DC keys Imod(p -1) [3a] = blob([3d],[3c]) 

[3e] Y;+ DC keys I,mod(p-1) [3b] = blob([3e],IUl-[3c]) 

[4] ,.. 
I Imod2 

[Sa] S; I.mod P;' [Sa]= [3c] 

[Sb] X; Imod(p-1) [3a]; = blob([5b];,[5a];) 

[Sc] Y; Imod(p-1) [3b]; = blob([5c];,IUl-[5a];) _______ { _________________________ 
-Ik-x I) I 

)EU 
[Sa] Imod(p-1) 

- LkiJ- Y; 
)EU 

[Sb] 
tlob(x;,s;) 

blob(y;, l - s;) 
TTmodp blob(0,[2];) = [Sb]; 

[l]; · blob([Sa];,0) 

Table 4: Overview of the transmissions. 

Proofs 
What remains to be done is a proof that the claimed properties of the voting scheme 

are fulfilled. 

Privacy 
In any voting system, electronic or otherwise, every group of participants can obtain 

information over the votes of the others by sharing votes. In our voting system, thi s is 

the only way to obtain information over a vote, under the assumptions of the underlying 

DC system. This means that if a collusion of participants does not split the key graph 

(see Chapter 2), all the votes are optimally protected; otherwise, privacy loss occurs. 
If the DC system is not compromised, the privacy protection of the voting scheme 

follows from three facts: 

• the unconditional protection of messages [2], [3c], [3d] and [3e] by the DC 
network; 

• the unconditional protection of the contents of the blobs in [ I] , [3a] , [3b]; 

• the zero-knowledge property of the blob validation protocol in rounds [3], [4] 
and [5]. 

Privacy loss occurs if the DC protocol is compromised. This happens if a group of 

participants share the keys used for the protection of their votes (of course losing their 
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own privacy). Using the terminology of Chapter 2, the keys ~f this group split the key 
graph in subgraphs. The users in the collusion can compute the total tally for each of 

these subgraphs, and no more. The amount of privacy loss for these participants 
depends on the size of the subgraphs; the smaller the subgraph, the bigger the privacy 
loss. 

Robustness 
The voting scheme is robust in the sense that any participant who tries to prevent the 

protocol from finishing successfully can be caught. The method to catch a disrupter 
( 

varies per round. 

If round [I] does not give a total of 1, the values of kij and tij can be published to 
catch disrupters (this may be called "opening", but it is not opening in the DC sense). 

Round [3] can just be opened if the public verification does not succeed. Round [4] 
cannot be disrupted at all. Round [5] uses a verification per user, that makes it very easy 

to catch a disrupter directly without opening the round. 
The only problem is round [2], that cannot be opened immediately because the 

actual votes are in there. A disrupter in this round will be caught in round [5] with 

probability ½ for every repetition. 
Catching disrupters using opening in round [l] and [3] may cause a delay because 

opening a round does not reveal the disrupter immediately (see Chapter 2). If the 

disrupter is found, he can immediately be excluded from the tally, so that the protocol 

can proceed without further delay . 

Security 
Security of our voting system means that a single participant cannot influence the 

total otherwise than casting a single valid vote. Sending invalid messages causes the 
user to be treated as a disrupter, and to be caught by the previously mentioned methods. 

Users that try to use ballots with values other than O or I will be caught by the 
validation protocol. 

If a user can open a blob in two ways (thus, break discrete log), he can cast any 

number of votes at once, because he can break the blob validation protocol. 

Verifiability 
Verifiability means that any participant can convince himself of the validity of the 

outcome of the protocol. In our scheme, this depends on two factors. 
First, the tally can be checked simply, since the tally is equal to the total of round 

[2]. Every participant can perform the verifications of the other rounds, so that he 
knows the tally was correct. 

Second, the participants must trust the total of the outputs as computed by the 

network. This is more a problem of the DC network than a problem of this voting 

scheme. In theory, every participant can check this for himself, since the totals are 

computed from publicly accessible numbers. In practice this might give problems; a 

good solution seems to have several independent agencies compute the total. 
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Efficiency 
Our protocol can be implemented using an existing addition network for the DC 

system. This protocol makes very efficient use of the network, since it uses only five 
rounds of the network. We assume that the DC network is efficiently implementable. 

Since the number of rounds is fixed , the protocol takes time proportional to the 

logarithm of the number of voters, since the DC network is logarithmic in the number of 

participants. This is a lot faster than all proposed systems published until now. All the 
discussed voting systems from the literature were more than linear in the number of 

participants. A disadvantage of the system is that a lot of keys have to be generated and 

stored for one instance of the protocol. On the other hand, compared to other uses of the 
DC system, this number is very small. 

Extensions 
There are several features that can be added to the protocol to make it more efficient 

in practice. 

Parallel computations 
The blob validity protocol of rounds [3] to [5] is executed several times to produce a 

high level of certainty. It is more efficient to execute these rounds in parallel, so that 

every round stands for a number of rounds in the original version. 
The parallel blob validity protocol is executed as follows: 

• Peggy sends Vic a list of pairs of blobs. 

• Vic sends Peggy a list of random bits (a challenge vector) . 

• Peggy responds to the respective bits of the challenge vector. 
If the parallel blob validity protocol is executed between two participants, it is not 

zero-knowledge [BCC88] . To see this, assume that Vic's challenge vector is a one-way 

function value of the first message. Now Vic cannot simulate the messages of the 

protocol. To simulate the protocol , Vic must start with the challenge vector. Because 
thi s is a one-way function value, the message from the first round cannot be found, so 

simulation is impossible. 

In the voting scheme, several instances of the parallel blob validity protocol are 
executed together by all participants. Take a voter Peggy, who proves the validity of 

her votes; call the community of all other voters Vic. The difference with the two-party 
parallel blob validity protocol is that not only Vic, but also Peggy determines the 

challenge vector. It is no use for Vic to compute the challenge in a special way (for 
example, using the above mentioned one-way function), because Peggy can make the 

challenge a random number with her own input. This makes the protocol simulatable 

for Vic, and thus zero-knowledge. The actual proof is much the same as that at the 

beginning of this chapter. 

This parallelization decreases the number of rounds needed to only five. Because 

the number of rounds is low, the protocol does not depend on a low turnaround time 
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Precomputation 
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Precomputation is the computation of values ahead of executing a protocol, so that 

during the protocol the values only have to be looked up in a table . The users can pre­

compute all values they send, so that the protocol itself is not delayed by computations 

performed by the users. The computations performed by the addition network cannot be 
precomputed, but these are only simple additions and multiplications. 

The blob values can be computed using a vector addition chain (see Chapter 4), 

saving over 40% of the computation time. 

More options 
The voting scheme allowed only two possible votes: "yes" and "no". This can 

easily be extended to more realistic elections with more options. The easiest way to 

extend this number is by doing multiple elections. They can be performed 

simultaneously, so that the number of rounds is the same as with one voting. This 
allows to make voting schemes with multiple nominees. Of course, it is also possible to 

let participants choose to abstain from voting. In those cases, the blob validity protocol 
must be adapted to reflect all possible votes instead of just O and I. Instead of two 

blobs, the voter must send as many blobs in round 3 as there are legitimate votes. 

Other blobs 
The blobs used in this protocol can be replaced by other kinds, if the new blobs have 

the following features: 

• Unconditional unbreakability, so that the ballots cannot be computed when the 
election is over. 

• Some kind of addition property, to make the blob computations over the 
network possible. 

A good alternative are the blobs used in [8D90] . The main advantage of these blobs 
is that the factorization of p - I can remain secret [8D90, footnote on page 2]. This 

allows to decrease the size of p while sustaining the level of security. Also, blobs 

based on elliptic curves or hyperelliptic curves can be used, possibly saving bits. 

Verification at the nodes 
The nodes of the tree that perform the additions are nice places to perform the local 

verification. The nodes that are closest to the participants do the local verification, and 

the top node does the public verification. 

Less distribution of the results 
In rounds [I], [3] and [5] the total result of the transmission is only needed for 

verification. Instead of the sum, the nodes could just distribute the result of the 

verification, consisting of only one bit (in principle). This reduces the time to distribute 

the results a little. Even more savings would occur in the "Parallel computations" and 
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"more options" versions proposed above. The transmission contains several rounds 
here, and the results will be a string of bits or even one bit, telling if something has gone 

wrong. 

Conclusion 
The DC protocol is not only applicable for untraceable sending, but also for an 

efficient voting protocol. Other multi party protocols that use the additional and privacy 

protecting properties of the DC protocol are a challenging area for further research. 
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4 
Addition Chain Heuristics 

Introduction 
Modem cryptographic protocols allow a large variety of applications that were not 

possible with the classic methods. Almost all of these protocols are based on 
exponentiation modulo a large number. This is true for all protocols based on RSA, but 
also for systems using discrete log (such as the voting scheme described in Chapter 3). 

The computation of such a power takes quite a lot of computation compared to 
classic cryptosystems (DES, for example). Several methods have been tried to improve 

the speed of the computation. The only known way to compute a power is by multipli­

cations. While a lot of current research emphasizes improving the speed of those multi­
plications (see for example, [Mon85]), we try to decrease the total number of multipli­
cations by rearranging the computation. In practice, this saves about 20% of the multi­

plications that are normally used to perform the exponentiation. This optimization can 

again be combined with improved multiplication methods to get maximal performance. 
Although a lot of research is spent on addition chains, almost no work has been 

done in practically applying addition chains for doing RSA or other schemes. Here we 

show heuristics that perform well in constructing addition chains to compute powers in 
practical applications, both hardware and software. 

A related problem is the computation of products of powers. Products of powers 

occur for example in digital signature systems and payment systems. A product of 
powers can be computed much more efficiently than the separate powers by combining 

the computation of the individual powers. We show a practical algorithm that computes 
a product of powers using these techniques. 

The notation used in the literature for these algorithms is not suitable for determi­
ning memory usage; we introduce an new notation that closely resembles the actual 

computation of (products of) powers in a computer. This notation is also well suited for 
storage of addition chains. 

The results in this chapter are also trivially applicable for computations in elliptic 
curves and other groups. 

In the rest of this chapter, we first introduce the four different kinds of addition 
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processes. Then we discuss the literature on this subject. Then, for each of the four 
kinds, we discuss algorithms to heuristically compute them. In the appendix to the 
chapter, all algorithms used are shown in detail, so that the reader can try out for 

himself. 

Addition chains 
If a power is computed by repeated multiplication, the process can be described by 

all intermediate results. For example, a computation of x 15 in five multiplications can 

be described by the sequence x, x2, x3, x6, x 12, x 15. In fact, the only interesting 
aspect of this sequence are the exponents, so we could just as well have written I, 2, 3, 
6, 12, 15 to describe the process. Such a list of numbers is called an addition chain . 

More specifically, an addition chain of n is a list of (integer) numbers satisfying 
• the first number is I ; 

• every number, except the first, is the sum of two previous numbers; 

• the list is ascending*, and the last number is n. 

The number n is called the target of the chain. 
The length of an addition chain is the number of elements minus one (that is, the 

number of additions necessary to make the chain, or the number of multiplications to 
compute the corresponding power). For reasons of efficiency, short addition chains are 

preferred over long ones. Unfortunately, the computation of a minimal length addition 
chain is hard; this problem is even NP-complete [DLS8 I]. Our goal is to construct short 
(but not necessary optimal) addition chains at a reasonable cost. 

To get an impression of the length of an addition chain, we define: 
l(n): The length of a minimal addition chain with target n. 

It is easy to see that l(n) ~ 1Iog2 n l The binary method, the simplest non-linear 

method that is known, produces addition chains with expected length -f log2 n and 
maximum length 2 log2 n, so that large savings (more than 30%) using addition chains 

are not to be expected. Even so, small savings are sometimes worth the trouble. 
Asymptotically, l(n) behaves like log2 n [Bra39]: 

Addition sequences 

Jim __!_0l_ = I . 
n➔= log2 n 

The notion of an addition chain can be generalized to make chains with more than 
one target number; we call those addition sequences. Formally, an addition sequence 

of a set of numbers (the numbers called again targets) is a list of numbers satisfying the 
following conditions: 

• the first number is I; 

• every number, except the first, is the sum of two previous numbers; 

• every number in the set occurs in the list; 
• the list is ascending, and the last number is a target. 

* Every number in the chain, except the first, is larger than the previous number. 
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The length of an addition sequence is one less that the number of elements. 

Addition sequences can be used to make addition chains for large numbers, as will be 
shown later on. In practice, addition sequences do not occur often. We use them 

mainly to construct addition chains and vector addition chains, because these are 
relatively easy to construct. 

Vector addition chains 

57 

A product of powers can be computed more efficiently than computing the powers 
separately and multiplying the product. For example, to compute the product 
x9y 13z22, we could use the intermediates , 

x , y, z, x z, y z, xyz2, xy2z3, x2y3z5, .x4y6z 10, x8yl2z20, x9y1 3z22 

to obtain the product in eight multiplications. Computing the product using these steps 
is much less work than computing the powers first; the power z22 alone already needs 
six multiplications. Like the addition chain, we only have to describe the exponents to 

describe the computation. We get a list of vectors: 
[IO OJ, [O I OJ, [O O IJ, [IO IJ, [O I IJ , [I I 2], [I 2 3], [2 3 5], [4 6 IOJ , [8 12 20J, [9 13 22J . 

Such a list is of vectors is called a vector addition chain. A vector addition chain 
is defined as a list of vectors satisfying: 

• the first vectors are the unit vectors; 
• every vector, except if it is a unit vector, is the sum of two previous vectors; 

• the last vector is the target. 
The length of a vector addition chain is the number of elements minus the unit 

vectors (which is again the number of additions necessary to make the chain). There are 
many practical applications for vector addition chains. Examples are the blobs of 

Chapter 3, and the signatures of Chapter 5. 

Vector addition sequences 
The obvious extension of the three problems defined here is the vector addition 

sequence. This is the most general problem; all other posed problems are special cases. 

The only mentioning of vector addition chains that we found is [Pip76J. In this paper, 
Nicholas Pippenger gives a lower bound for the length of vector addition sequences. 

This lower bound implies that in the worst case, the savings of vector addition 
sequences over vector addition chains or addition sequences will not be as large as the 

savings of vector addition sequences over vector addition chains. In other words, vector 

addition sequences are not very good for saving multiplications. Asymptotically, vector 

addition sequences do not perform better than a set of vector addition chains or addition 
sequences. 

The general term we use for addition chains, addition sequences, vector addition 

chains and vector addition sequences is addition processes. Table 5 shows the four 
types of addition processes. 
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One target Multiple targets 

Powers Addition Chain Addition Sequence 

Products of powers Vector Addition°Chain Vector Addition Sequence 
Table 5: Addition Processes 

An addition process is evaluated if the computation with corresponding inter­
mediate results is made. Evaluation of an addition chain for an exponentiation would be 

the computation of the actual power. Evaluating an addition process takes as many 
steps as the length of the process. Except for the time it takes to evaluate an addition 
process (which depends on the length of the process), we also consider the amount of 
memory needed (which depends on the maximum number of intermediate results 

needed during evaluation). 

Related Work 
There is quite a lot of literature on addition chains. Most of the research is on the 

asymptotic behaviour of the minimum length of addition chains. Only a few articles 
address the actual computation of usable addition chains. For a long list of asymptotic 

results, see the references of [Cos90]. 
The original problem statement is by Arnold Scholz [Sch37] . He was mainly 

interested in the minimum length of addition chains, but he notes that constructing 

addition chains is useful for exponentiation with as few multiplications as possible (for 
manual computation; there were no computers at that time). The problem is elaborated 
by A. Brauer [Bra39] and, a long time later, by Paul Erdos [Erd60] . These two articles 

are the basis of a lot of research on the minimum length of addition chains. 
The first statement of the vector addition chain problem is from Richard Bellman 

[Be163]. He claims (incorrectly!) that "It is easy to determine the minimum number of 

multiplications required to generate aN from a". The problem was worked out by E. 
G. Straus [Str64]. With this partial solution, the editors note that "The proposer agrees 

that the problems he has posed are not easy and that the minimum chain is not known 

[ ... ]". Also, they note that Bellman was working on a computational algorithm. We 

could not find a reference to thi s algorithm. 

Donald Knuth gives a good introduction to the addition chain problem in the second 
volume of his well-known series 'The Art of Computer Programming" [Knu69]. He 

considers some theoretical bounds on the length of addition chains, but also discusses 
practical methods to construct chains for small numbers (up to about five digits). He 

also introduces the m-ary method, that produces practical addition chains for large 
numbers (hundred digits or more) that are more efficient than the standard binary 

method. He introduces the addition sequence problem as an open problem. 

More research on the length of addition chains was done by Andrew Yao [Yao76] 
and Edward Thurber [Thu76]. 

Nicholas Pippenger [Pip76] poses addition processes in their full generality. He 
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was the first to note the relation between vector addition chains and addition sequences. 
We shall see this equivalence later in this chapter. 

Knuth shows, in the second (thoroughly rewritten) edition of his book [Knu8 l ], that 

an addition chain can be "reversed". The fact that this reversal yields a correspondence 
between addition sequences and vector addition chains, is mentioned in Exercise 39. 

This correspondence, and a conversion from vector addition chains to addition 

sequences is shown by Jorge Olivos [Oli8 l]. Although he refers to [Pip76] in his paper, 
he does not say that Pippenger already mentions the conversion. He does not consider 

the practical application of hi s algorithm. 
Peter Downey, Benton Leong, and Ravi Sethi [DLS8 l] prove that the construction 

of an optimal addition sequence is NP-complete. They do this using addition graphs. 

It is surprising to see how little use is made of addition chains in practice. For 

example, H. R. Chivers [Chi84] describes a way to compute exponentiations on a small 
computer. He did not know of the existence of addition chains, although the m-ary 

method existed for fifteen years; he even claims that "An exponentiation with 100 bit 

integers would involve 100 repeated squarings and an average of 50 other multipli­
cations." 

The practical applicability of addition chain methods was only realized recently . 

Nowadays, there are several exponentiation devices that use addition chains (this is 
stated in [Bri90], but he does not say anything more that that). 

Apparently, our work [BC89] inspired Y. Yacobi to make another algorithm for the 
practical construction of addition chains [Yac90]. His method is very elegant, has a 
simple description, but it uses some more multiplications and quite a lot more memory 

than the on-the-fly method presented in this chapter. 

This chapter is based on material of [BC89] together with the vector addition chain 
work [BC89a] and [Cos90]. 

Addition Graphs and Addition Machines 
We introduce two alternative representations of addition chains that are more useful 

for describing addition processes than the list of intermediate results. The first notation 
occurs in the literature, and allows the useful definition of "reversing" an addition 

process. The second notation is new; it allows us to see how efficient an addition chain 
is in both memory and operation efficiency. 

Addition graphs 
It is often convenient to see the computation of a power as a graph instead of a list. 

Addition graphs were introduced in [Pip76] and they tum out to be a useful tool for 

describing the vector addition chain algorithm. 
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We define an addition graph for a set of values as a directed loop-free graph* with 

a vector in each node, fulfilling the following properties: 
• Every source (node with no incoming edges) contains a different unit vector. 

The dimension of these vectors is equal to the number of sources. 

• Every non-source node contains the sum of the values of the nodes of the 
incoming edges. 

• There is a sink (node with no outgoing edges) for every target value. This is for 

reasons of symmetry; most sinks will have one incoming edge from a node with 

the same contents. 
• Every internal node (node that is neither a source nor s_ink) has two or more 

incoming edges. 
(Integers are treated as vectors of length one.) 

Figure 11 gives an example of an addition graph. If all internal nodes of an addition 
graph have two incoming edges, the nodes of the graph form a (vector) addition chain. 

A node in an addition graph that has more than two incoming edges specifies multiple 

additions; the order in which the additions take place is not specified, but the number of 
additions is fixed . Such nodes can be split into a set of nodes with two incoming edges, 

making the order of the additions explicit. We call the process of splitting nodes to 

make an addition graph with at most two incoming edges per node specification. 

Specification of the addition graph in Figure 12 produces the addition graphs of Figure 
11. Note that specification always produces the same number of nodes. 

Figure 11: Two addition graphs for the number 5. 

Generalization of an addition graph is the converse process of specification. All 

nodes with exactly one outgoing edge can be removed , unless it is a source. At removal 

of a node, the incoming edges become the incoming edges of the node it pointed to. 

Figure 12: Generalized addition graph for the number 5. 

An addition graph with one source and one target can be converted to an addition 

* Directed loop-free graph: the edges of the graph are ordered pairs (denoted by arrows), and no node 
is connected to itself. 
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chain by specification; the nodes contain the values of an addition chain. This is easy to 
see from the definition of an addition chain. If we also consider addition graphs with 

more sources or more targets, we get vector addition chains and (vector) addition 
sequences. For an overview, see Table 6 (also see Table 5). 

Addition chains with 

One source, one sink 

One source, more sinks 

More sources, one sink 

More sources, more sinks 

Are convertible to and from: 

Addition chains 

Addition sequences 

Vector addition chains 

Vector addition sequences 
Table 6: Conversion of addition graphs. 

If we call addition processes that correspond to the same generalized addition graph 
equivalent, we get an equivalence relation. For example, the addition chains 1, 2, 3, 5 

and I, 2, 4, 5 of Figure 11 are equivalent. Although equivalent addition processes have 

the same length (because specification always produces the same number of nodes), the 
memory usage does not need to be the same. Investigating this equivalence relation 
might be subject for further research. 

An interesting operation on addition graphs is the reversal of all edges. If the graph 

is generalized, it is easy to see that the resulting graph is also an addition graph. The 
reversal of the corresponding addition graph converts addition chains to other addition 

chains and vector addition sequences to other vector addition sequences. The interest­
ing thing is that vector addition chains are converted to addition sequences, and vice 

versa. This relationship, first stated by Nicholas Pippenger [Pip76], is used by Jorge 
Olivos [Oli8 l]. The graph representation makes the relation between vector addition 

chains and addition sequences easy to see. We call this conversion of addition se­

quences to and from vector addition chains reversal. 
The graph representation is used in the literature for several different purposes 

[DLS8 l, Oli8 I, Pip76], because it beautifully shows the structure of an addition 

process. Since we are also interested in the memory usage of addition processes, which 
it not shown by the addition graph, we introduce still another notation. 

Addition machines 
There are several properties of addition processes that cannot be expressed with 

either the addition chain or the addition graph notation. The first property is the order in 

which the additions take place. The second property, which is very important in 
practical implementation of addition chains, is the amount of memory needed during 

evaluation. The third property is the "doubling", the adding of a number to itself, which 
is a special case in most implementations of addition processes. We introduce a new 

notation, the "addition machine program", that can make these properties explicit. An 

addition machine program is a description of an addition process that specifies all details 
of the addition chain without being machine dependent. 
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An addition machine is a hypothetical device that evaluates addition chains (see 

Figure 13). The addition machine consist of an adder, the unit that does the actual 

addition of numbers. The result of the additibn of two numbers is stored in the 

accumulator register. Intermediate results that are needed later on in the addition 

process are stored in a register. The adder adds the contents of the accumulator to one 

of the registers, or it adds the accumulator to itself. The latter case is a doubling. The 

number of regi sters that is needed to evaluate an addi tion process determines the 

memory usage of the addition process. 

The addition machine executes a program that consists of a sequence of 

instructions. Initially , the accumulator contains I. (In the discussion of vector 

addition chains, the unit vectors are initially in a given subset of the registers .) Then, 

the program is executed by executing all instructions in order. At the end of a program, 

a determined subset of the registers contains the result of the execution. 

i 
Figure 13: The Addition Machine 

The instruction set of the addition machine is: 

• double : double the contents of the accumulator (add it to itself). 

• add register: add the contents of register to the accumulator. 

• store register: store the contents of the accumulator into register. 

• load register: store the contents of the register into the accumulator. 

In Figure 13, thin lines show connections that are only active for certain 

instructions. The words next to these lines show for which instructions the lines are 

active. 

The memory usage of an addition process can now simply be defined as the 
minimum number of registers that is needed to execute the program on the addition 

machine. This number accurately represents the memory usage in reality. 

The instruction double is in principle not necessary in addition processes, because it 

could be replaced by the sequence store 1; add I (if I is a register that is used nowhere 

else in the program). We choose to use double explicitly, because it is often treated 

separately in the implementation. This can be for efficiency reasons (a squaring is less 

expensive than a multiplication) or out of necessity (in elliptic curve groups, addition of 

a point to itself is a different operation than adding different points). If the addition 

process is evaluated, some of the add instructions can accidentall y involve two equal 

numbers, but this will seldomly happen; we ignore this possibility in our performance 

approximations. 

Any addition process can be converted to an addition machine program. The length 
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of the process is equal to the number of add and double instructions in the program *. 

Evaluation of the corresponding value of an addition process is trivial by emulation 
of the addition machine on a real computer, with corresponding interpretations of the 
instructions. For example, to compute a power of x using an addition chain, the 

instructions are interpreted as follows : 
• the initial value of the accumulator is x, instead of I 

• double becomes a (modular) squaring 
• add becomes a (modular) multiplication 

• store and load retain their meaning 

The same thing can be done for different addition processes (for example: vector 
addition chains to compute products of powers) of for different groups (for example: 

computing of elliptic curve elements). Using an addition machine program, an addition 
process can be stored efficiently for later evaluation. 

Quick introduction to ABC 
We describe all algorithms in the programming language ABC [Pem90]. This 

language is specially suitable for demonstrating algorithms. The notation is 
typographically modified to improve legibility. 

A program definition starts with a header that consists of the words how to and a 

template showing how the program is to be called. The template contains the names of 
the program 's arguments. This adds a new command to the language. 

A simple example: 
how to greet name: 

write "Hello", name,"!" / 
greeting program 

/ produces "end of line" 

If this program is entered, we could type "greet "Jurjen"", resulting in 
greet "Jurjen" 

Hello Jurjen! 

There are the following data types in ABC: 
• Numbers, e.g. 3215031751. 
• Strings, e.g. "This is a string" . Strings are delimited by " or'. 
• Lists, e.g. { "a"; "a"; "c"). Lists are always sorted and may contain doubles. 

• Tables, e.g. {[I]: "a"; [3]: "b"; [9]: "c"). They are generali zations of arrays. 
• Tuples, e.g. (I, "a"). Used for grouping of data. 

In this thesis, we use the following typographic conventions for ABC programs: 
• bold font is used for keywords (originally, ABC uses capitals). 

• italic font is used for variable names. 

• roman font is used for functions . Functions can be defined using how to 
return. 

* The notion of length can be generalized to give a different weight to add and double. 
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Making Addition Sequences 
We make addition sequences with a very simple algorithm, that performs 

remarkably well. The algorithm can be adapted to produce sequences that have special 

properties. 
The addition sequences produced by this algorithm are used in the addition chain 

and vector addition chain algorithms. The only application of addition sequences we 

know of is in these two algorithms; we have not seen any practical protocol that uses 
addition sequences. 

The protosequence algorithm 
The algorithm we use to make addition sequences is called the protosequence 

algorithm. It is a skeleton algorithm that produces addition sequences from higher to 
lower elements using an auxiliary function that determines the exact behaviour of the 
algorithm. This auxiliary function is called "new.numbers", and it produces a list of 

numbers that is to be included in the addition sequence. 

To compute an addition sequence for the number in the list a, we execute the 

following algorithm. 

how to make sequence a: 
put a inp 
insert 1 in p 

insert 2 inp 

put 11; 2} in sequence 

while max p > 2: 

put maxp in/ 
insert/in sequence 

for n in new.numbers p: 
if n not.in p: 

insert n in p 

remove f from p 

write sequence 

make addition sequence for list a 

initialize protosequence p 

initialize sequence 

f scans downwards 

generate new lower elements 

put into protosequence 

print the result 

The function "new.numbers" in the above algorithm outline is the protosequence 

function . The function returns a list of numbers. An example definition is shown 

below. The protosequence function determines what addition sequence will be 

generated. The function is applied to the list p, the protosequence. The result of the 
function is a list of numbers with the following properties: 

• The largest number f of the protosequence must be the sum of two numbers 

coming from the function result or the protosequence. 

• All numbers in the function result must be between 3 and/- 1, inclusive. 
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The list produced by the protosequence function may be empty, if the number f 
happens to be the sum of two numbers from the protosequence. Numbers from the li st 
that already occur in the protosequence are discarded by the skeleton program. Note 

that the skeleton program does not use any time-consuming operations; the management 
of the protosequence is rather simple, since the number of elements of the 

protosequence is small. 

If the protosequence function fulfills the above conditions, the variable sequence 
contains at the end of the algorithm an addition sequence for the numbers in a. To see 

this, we check the four properties of addition sequences. Obviously, the first number is 

I, since it is put directly in sequence by the skeleton program. To see that every 
number is the sum of two previous numbers, consider what happens if a new number f 

is inserted into sequence. The prototype function produces a list of numbers so thatf 
is the sum of two of these numbers. These numbers are inserted in p, and they will be 

put into sequence at a later stage. The third property is that every number in a occurs 
in the list, which is trivially true from the algorithm. The last property is the result of 

the property of ABC to sort lists automatically. A practical algorithm in another 

language can easily keep the lists as a sorted array. 
Note that the algorithm produces addition sequences from higher to lower numbers. 

Also, the algorithm treats the number 1 and 2 in a special way: they are always included 

in the output. This is done to simplify the protosequence function definition. The 
algorithm assumes that a contains an element larger than I. It is easy to make it work 

for all cases, but this is omitted for simplicity. 

The choice of the protosequence function depends on the application. For the dis­

cussion, we call the elements of the protosequence in order from largest to smallestf, 

f, ,J2, ••.• The simplest protosequence function just always returns the number f - f,: 

how to return simple.numbers p: 

put maxp inf 
putfmaxp inf] 

return If - f 1 l 

simplest protosequence function 

f max p: largest element <J of p 

To use this protosequence function in the program, we define "new.numbers" as: 
how to return new.numbers p: define function new.numbers 

return simple.numbers p 

This very simple solution does not produce excellent addition sequences, but it 

demonstrates the idea. The addition sequence algorithm would produce for the numbers 
12, 17, 32 

the (not optimal) addition sequence: 
1, 2, 3, 6, 9, 12, 15, 17, 32. 

A much more complicated prototype function is introduced in [BC89]. We will not 
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discuss it here. 

The protosequence function can be adapted to produce addition machine programs 
instead of the values of the addition sequence,. An ABC program that does this is shown 

in the appendix to this chapter. 

On-the-fly Algorithms 
Until now, we only considered precomputed addition processes, that are evaluated 

later on. In some applications, addition processes are used only once (for example, the 
computation of blob values used in Chapter 3). If an addition process is used only once, 

it is advantageous to spend less time generating the process, even if this results in a 
longer process, if the time to generate the process is reduced. An algorithm that uses an 

addition process only once can save memory by evaluating the process as it is 

generated. Such an algorithm is called an on-the-fly algorithm. 
Unfortunately, an on-the-fly algorithm for addition sequences is not known. To 

evaluate an addition sequence, it must be generated first. This problem occurs for 

example in the on-the-fly addition chain program that is shown later on. 

Making Addition Chains 
There are many ways to make addition chains. [Knu69] gives precomputation 

methods to make addition chains for small numbers. We are only interested in large 
numbers (a hundred digits or more). We first give some examples of on-the-fly addition 
chain algorithms that occur in the literature, then we introduce a new on-the-fly 

algorithm for addition chains. Finally, we show how this algorithm can be adapted for 

precomputation purposes. 

The binary method 
The simplest example of an on-the-fly addition chain is the left-to-right binary 

method. Such an addition chain can easiest be constructed by repetition of the 

following: if n is even, insert n/2 into the chain; otherwise, insert n-1. The resulting 
chain consists of all numbers that form an initial segment of n in binary notation. 

For example, the number I 05 written in binary is 110 I 00 I. The resulting addition 

chain consists of the numbers I, 2, 3, 6, 12, 13, 26, 52, 104, 105; in binary these are the 

numbers I, 10, 11, 110, 1100, 1101, 110101, 110100, I 101000, I 101001. 
In practice, the left-to-right addition chain algorithm is used on-the-fly like this: 
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how to left2right binary method x power n: 
put (floor (2 log n)) + I in v 

put x in result 

for j in !2 ... v): 

put result*result in result 

if n bit (v- j)=l: 

put result*x in result 

write result 

compute power x**n 

addition chain element: I 

double addition chain element 

n bit (v- j) is dv- j 

set last bit to I 

Where "bit" is an auxiliary function defined in ABC as 
how to return n bit b: return (floor(n/2**b)) mod 2 
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Although this ABC program for "bit" takes an exponentiation, the function takes a 

negligible amount of computation on most (binary) computers. 

This left-to-right binary method computes x" without using auxiliary registers 

(except for two counters j and v). The variable result contains during the 

computations the powers of x corresponding to the elements of the addition chain. The 

number of multiplications needed to compute an nth power depends on the number of 

digits v and on the number of nonzero digits w. As is easily seen from the program, 

the number of multiplications is 

v+w-2 , 

and if we approximate w by I+ v21, we get the approximate number of 

multiplications 

{(v-1). 

There is also a right-to-left binary method; the algorithm is shown in the appendix. 

The m-ary method 
A generalization of this algorithm is the m-ary method [Knu8 I]. This method uses 

a different number base. More specifically, we write n as 
v-1 

n = 'I,m;d;, where 0 :s; d; < m, 
i=O 

with d,,_1 > 0, and we put in the addition chain the following numbers: 

• 1, ... , m - I; 

• for j in 1, ... , v, the number consisting of the first j digits of n; 

• all numbers from the preceding line, with the last digit replaced by 0. 

The number base m may be any number, but the resulting addition chains are much 

more efficient if m is a power of two. 

In our program notation, we would get: 
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how to left2right m ary method x power n: 
put (floor (m log n)) + l in v 

compute power x**n 

put l [1]: x) in aux 

for j in l 2 .. . m - I } : 

put aux[i - I]* x in aux[! 1 
put l in result 

for j in l l ... v): 

put result**m in result 

if digit> 0: 
put result*aux[digit] in result 

write result 

digit: 
return (floor(n/m**(v -j))) mod m 

initialize auxiliary array 

[a] elements 2 ... m- l 

for simplicity, start chain with 0 

[b] multiply with m 

(more than one step in the chain) 

if dv-j is not zero* 
[ c] first j m-ary digits of n 

print the result 

definition of digit: 

returns the /h m-ary digit of n 

This algorithm needs m - 2 extra registers. The computation of "digit" is assumed 

to be negligible on the computer implementing the algorithm. 
We estimate the number of multiplications that is necessary to compute a nth power 

with the m-ary method. The addition chain consists of three different steps (see the 

corresponding locations in the program): 
[a] The initial steps to generate the numbers I tom - I. This takes m - 2 multi­

plications. 
[b] The steps that multiply a number with m. This is executed v times, and each 

step takes l(m) additions. 

[c] The steps to compute the next prefix of n. The number of additions is equal to 

the number of digits of n that are not zero. Call this w. 

During the first execution of the loop, the multiplications [b] and [ c] are trivial 

multiplications by 1, so we do not count them. This makes the total number of 
multiplications to compute a nth power equal to 

m+(v-1)/(m)+ w-3. 

We assume m is a power of two, so we have 
m=2k 

l(m) = k 

v = L logm n J + 1 = l '0 ~
2 

n j + l 

average w = l + (v -1) m,;;-I 

Substituting this, we get the expected value of the number of multiplications: 

2k +l'o~2n j<k+I-Tk)-2. 

For practical values of n of 150 to 200 decimal digits, the optimal value fork is 5, 

• The word "digit" notifies a local function, a so-called refinement. the definition of "digit" appears 
at the end of the program. 
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giving expected 635 multiplications for a number n near 251 2 (about l0 154). The 

binary method needs about 767 multiplications for those numbers, so the 25-ary method 
saves 17% of the work. 

The window method 
The m-ary method can be improved upon quite easily. The method puts the initial 

numbers 2, .. . , m - I in the addition chain, while most of these numbers are not needed 

at all in the computation. The even numbers except 2 can also be removed. If j is such 
a number, it will always occur in the addition chain as x, 2x, 2x + j , which can be 

replaced by x, x + {, 2x + j. This saves both the time to compute these numbers, and 

the memory to store them. 
This idea was the start of the method we used in the article [BC89]. Basically, the 

algorithm does the following: 
• Split the binary description of n into "windows" consisting of odd binary 

numbers separated by strings of zeros. Make sure that the first window is the 
largest*. 

• Produce an addition sequence for the numbers that occur in the windows. 

• Produce the final chain, consisting of doublings starting from the value of the 
first window, adding in numbers of the addition sequence at the proper 

positions. 
The total length of the addition chain is the sum of the length of the addition 

sequence, the number of doublings, and the number of windows in the chain minus one. 
A complete ABC program for the window method is shown in the appendix . 

For example, to compute an addition chain for the number 496300971, we first write 

the number in binary and split it in windows: 
lllQll 00 lQl 00 .l.l.l.l 00 ill 0 lO lO 1 1 

The windows are 111011 (59), lO I (5), 1111 (15) , 111 (7), and IOIO 11 (43). The 

addition chain becomes: 
1, 2, 4, 5, 7, 11 , 15, 16, 27, 43, 59 made from window values with 

protosequence algorithm above 

118, 236, 472, 944, 1888 doublings 
1893 next window value (5) gets added in 

3786, 7572, 15144, 30288, 60576, 121152 

121167 window value 15 
242334,484668, 969336, 1938672,3877344 

3877351 window value 7 
7754702, 15509404, 31018808, 62037616, 124075323,248150464,496300928 

496300971 the final result n 

The length of this addition chain is 37. This chain is shorter than the addition chains 

* This is without loss of generality; the first window can be chosen larger even without influencing the 
resulting addition chain. 
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for this number made with the other methods mentioned above. The binary method 

produces a chain of length 45, and the m-ary methods generates chains of length 42, if 

m is 4 or 8, and 49 or more for other values o,f m. This behaviour is typical : them-

ary method is better than the binary method, while the improved method is still better, 

using larger windows that the m-ary method. (Actually, a chain of length 36 exists; 

such a chain can be generated with the algorithm in the appendix, if the window size is 

chosen to be 7.) 

There are two things left to consider: the window distribution and addition sequence 

algorithm we use. 

Window distribution 
In the optimal case, the windows must be chosen in such a way that the addition 

sequence that generates the window values has minimal length. Since thi s requires a lot 

of computation, we need a heuristic. 

Our heuristic for generating the window distribution is as follows: 

• Choose the size of the initial window. We take a fixed value, depending on the 

size of n. 

• Find the minimal number of windows needed to split n. All window values 

must be smaller than or equal to the value of the initial window. 

• Among the distributions with the minimal amount of windows, find the one 

with the smallest product of the window values. 

Such a distribution can be computed in time linear in the number of bits of n. An 

algorithm for this is shown in the appendix. We tried other heuristics, but they took 

more time to calculate (more than linear in the number of bits of n), and they did not 

perform much better. Ideally, the heuristic should minimize the resulting addition 

sequence for the window values. 

Addition sequence 
When the window distribution is computed, an addition sequence must be 

constructed and generated for the window values. We use the protosequence algorithm 

for this. Since we do not know of an on-the-fly addition sequence algorithm, the 

generated addition sequence is stored as an addition machine program, and evaluated 
immediately after it is generated. 

The addition sequences we generate for the window values must be generated 

quickly, so we want a very simple protosequence function, that can be computed in little 

time. The first example function "simple.numbers" is a bit too simple, because it gives 

bad results if the quotient of the highest two elements of the protosequence f If, 
becomes large. We use the function "quick.values", that uses a simple trick to avoid 

this: 

• If the number f If, is smaller than 2, produce/- / 1• 

• If f is even, produce f I 2. 

• Iff is odd, produce the difference off and the largest odd number in the 

protosequence that is smaller than f. 
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The last step of the window method is a series of doublings, starting from the initial 
window value, with the addition of the window values. This is very easy to implement. 

The expected total number of steps for the window method is hard to compute. 
Random tests of a 512-bit number gave an average of 608 multiplications for random 

512-bit numbers, if the optimal initial window of size 6 is chosen. This is not only 21 % 
less than the binary method, but also still 5% less than the 25-ary method. 

Precomputation 
We precompute an addition chain if it is to be used for a large number of 

exponentiations with the same exponent. The precomputed addition chain can be stored 
as an addition machine program, so that evaluation is very efficient. The chain could 

even be stored as a computer program that computes the corresponding power directly, 
or encoded as an addition machine program. 

To use the window method for precomputation, we suggest using the window 

method with several initial window sizes, and using the shortest resulting chain. Also, a 

more effective protosequence function can be used that recognizes several special cases. 
The appendix shows statistical results on the resulting addition chain lengths. 

Making Vector Addition Chains 
It is very advantageous to use vector addition chains if they are applicable, since 

they give a large savings for only little work. Also, it is possible to do a vector addition 
chain based computation without actually storing the chain, thus saving memory. 

Vector addition chains can be generated from vector addition sequences by rever­
sing the addition sequence. The addition sequence is made again by the protosequence 

algorithm shown above. Since the addition sequences are generated backwards, the 
vector addition chain is generated in the forward direction , so that it can be evaluated 

while it is generated. The resulting algorithm is surprisingly simple and gives large 

savings if the number of factors is large. 

The memory usage of the algorithm depends on the addition sequences generated. 
The protosequence function has a special form the make the resulting vector addition 

chain use as little memory as possible. 
The appendix shows the algorithm to compute vector addition chains, with 

statistical information about the performance. 

Precomputation 
Precomputed computation of vector addition chains can decrease the length because 

there is time for a more sophisticated protosequence function. Using this technique only 
is effective if the length of the vector is small (two or three). For details, see the 

appendix. 
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Conclusion 
We discussed several ways to use addition processes in practice using heuristic 

techniques. An overview of the cases is shown in Table 7. "Yes" means that a new 
heuristic algorithm is introduced in this chapter, and"?" means that no efficient 

algorithm is known. 

We constructed heuristic precomputing algorithms for addition chains, addition 
sequences and vector addition chains; the algorithm for vector addition sequences of 
[Pip76] cannot much be improved upon, as is proved in the same article. The addition 

processes can easily be stored in the form of an addition machine program. 
Addition chains and vector addition chains can also be generated on-the-fly. This 

saves memory and time over precomputation algorithm if the process is only used once. 

The explicit algorithms are shown in the appendix. 

On - the - fly Precomputation 

Addition chains Yes Yes 

Addition sequences ? Yes 

Vector chains Yes Yes 

Vector sequences ? [Pip76] 
Table 7: Overview of the algorithms. 

Several attempts by us to generate addition chains using other heuristics have failed. 

For example, we tried to apply simulated annealing (also known as statistical cooling), 

but this method seems not to apply to the addition process problem. 
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Appendix to Chapter 4: The Programs 
This appendix shows a set of ABC programs that can be used to try out the different 

algorithms discussed in the chapter. Some statistical information on the performance is 

also supplied. 

ABC is a programming language that is designed as a truly simple programming 

language for beginning programmers, but it turns out to be very useful for trying out 
algorithms. In a book, it is important that algorithms are denoted clear and precise, and 

we believe that ABC is the best way to do this. The ABC code is only typographically 

modified, so the programs are executable as they stand. 

The right-to-left binary method 
The right-to-left binary method is, like the left-to-right binary method, based on the 

binary notation of the target number. It uses the same amount of multiplications. In 
addition graph terminology, the right-to-left binary method is the reversal of the left-to­

right binary method. It is an on-the-fly algorithm, because the elements of the addition 

chain are generated in order. 
The algorithm bears its name from the order in which the bits of the exponent are 

processed. This right-to-left order is often easier to program; for example, the ABC 

program below is much shorter than the corresponding program for the left-to-right 
method. On the other hand, the method does use an auxiliary register that the left-to­

right method does not need. 
The addition chain of the right-to-left binary method for the number n consists of 

the binary suffixes of n, combined with all powers of two that are smaller than n. For 

example, the right-to-left addition chain for 13 contains the numbers I, 2, 4, 5, 8, 13. 
An on-the-fly algorithm to compute a power using the right-to-left binary method is 

how to right2left binary method x power n: 

put 1, x, n in result, b, e 

while e > 0: 
while e mod 2 = 0: 

put b*b, e I 2 in b, e 

put result*b, e - I in result, e 

write result 

compute power x**n 

result*b**e =x**n 

In this algorithm, b is repeatedly squared, corresponding to the powers of two in 

the addition chain, while e follows the binary suffixes of n, with corresponding 
powers result. We see that one auxiliary register (called bin the program) is used. 
On most binary computers, the bits of n can be accessed directly without using the 

auxiliary variable e. 



The right-to-left m-ary method 
The right-to-left binary method can be generalized to other number bases. In 

principle, the right-to-left m-ary method produces the reversed chains of the left-to­
right m-ary method, so the length of the chain is the same. The method uses m - I 
auxiliary registers; this is one more than the left-to-right m-ary method. The algorithm 

is shown below. The computations on the number e can be omitted if the computer has 

instructions to access the m-ary digits of a number directly. 

how to right21eft m ary method x power n: 
put x, n, { l in b, e, mem 

for i in { l.. .m-1}: put I in mem[i] 

while e 2': m: 

if e mod mt:O: 
put mem[e mod m]*b in mem[e mod m] 

put b**m, floor(e Im) in b,e 

put mem[e]*b in mem[e] 

foriin {-m+l...-2}: 

put mem[-i-I]*mem[-i] in mem[-i-l] 

for i in {2 ... m-1 }: 

put mem[i]*mem[i-I] in mem[i] 

write mem[m-I] 

The window method 

compute power x**n 

initialize auxiliary registers 

This takes l(m) multiplications 

Compute result from intermediates 

The algorithm to compute an addition chain with the window method consists of 

three parts. First, the target is split into windows. Then, an addition sequence has to be 
generated for the window values, and evaluated to produce the elements corresponding 

to the window values. When these values are computed and stored, the actual chain can 

be computed by repeated doubling and adding with the stored values. 
We will show algorithms for the three parts separately. The heuristic window 

distribution is found by the routine "window.split". The window distribution that is 
computed is based on the heuristic explained before: it is the window distribution with 

the fewest possible windows that has the smallest product of window values. We admit 

that this is a very naive heuristic, but it produces reasonable results. The other heuristics 

we tried were too complex to compute a window distribution in short time. 

The algorithm to compute the window distribution is straightforward; the number n 

is scanned from left to right, and the optimal window distribution is computed for every 

prefix of n. In each step, the window distribution is found from the previously 
computed distributions. In fact, only distributions with exactly one less window are 
needed to compute an optimal distribution. 



how to return k window.split n: 
put value(nlk) in iw 

The Programs 

put { [k]: (iw, { [k]: iw l) l, { l in prev, opt 

split a number in windows 

nlk = the first k characters of n 

put k in pos "item k" means the kth element 

while some pos in { pos+ I. . . #n l has n item pos=" I " : 
if value(nlpos@(max keys prev)+ 1 )>iw: 

put opt, { l in prev, opt 
put O in m 

we need another window 
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for p in keys prev: all solutions with one less window 

put prev[p] in val, sol 
put value(nlpos@p+ 1) in nwv 
if nwv:5iw and (m=O or val* nwv<m ): 

put val*nwv in m 
put nwv in sol[pos] 
put m, sol in opt[pos] 

put opt[pos] in val, result 
return result 

we found a better solution 

take optimal solution 

The function of the most important variables in "window.split" is: 

iw The value of the initial window. 

k Parameter of the algorithm: size of the first (and largest) window. 

opt Description of window distribution with same amount of windows. 

prev Description of window distributions with one less window. 

opt and prev are arrays indexed by the value of pos. The contents 

are pairs of values: the product of the window values, and an array 

mapping positions to window values. 

pos The position of the bit currently inspected. opt[pos] is the optimal 

distribution of bits 1 through pos of n. 
m The maximum product of window value found so far. If m=O, no 

window has been found yet. 

n 
nwv 
result 

Parameter of the function: binary string representing the target. 

Value of the new window. 

The optimal window distribution: output of the function. 

The function "window.split" uses a simple auxiliary function "value", which returns 

the value of a binary number that is expressed as a string: 

how to return values: 

put O in result 
ford ins: 

put result*2+1 ["O"]: O; ["I"]: l l [d] in result 
return result 

value of a binary string 
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Computing the addition sequence for the window values is done with the addition 

sequence algorithm described in the chapter. For "new.values", we use the function 

"quick.values". The algorithm is repeated hei,-e in a slightly different form, so it fits in 

the main program: 

how to return make.sequence p : 

insert l in p 

insert 2 in p 

put { I; 2 l in sequence 

while max p > 2: 

put maxp in / 
remove f from p 

insert/in sequence 

put new.number in n 

if n not.in p: insert n in p 

return sequence 

new.number: 

put max p in fl 
select: 

make addition sequence 

initialize protosequence 

initialize output sequence 

get next element/ 

new.number is a refinement 

update protosequence 

return the result 

the protosequence function 

f I fl < 2: return/-fl subtract 

f mod 2=0: return f I 2 double 

some i in {--#p ... -1 l has (p item (-i))mod 2=1: 

return/- (p item (-i)) /- largest odd element of p 

The complete computation is performed by the main program, that uses the other 

two programs: 

how to window method n size k: 

put k window.split n in windows 

put { l in values 

for i in windows: 

if i not.in values: insert i in values 

put make.sequence values in part I 
put windows[min keys windows] in element 

ford in { !+min keys windows ... #n): 

put element*2 in element 

if d in keys windows: 

put element+windows[d] in element 

write "Length of the chain:"/ 

write "Sequence:",#partl-1 I 
write "Doublings:", #n-min keys windows I 
write "Memory:", #windows-I I 

chain length of window method 

window values in array 

convert array to list 

initial addition sequence 

value of first window 

squaring 

at a window? 

add window value 

/ gives a new line 



The Programs 79 

In this program, the variable part] contains the addition sequence for the window 
values, and element successively gets all the values of the rest of the addition chain. 

Note that the program does not evaluate the addition chain; it only computes the length. 
We investigated the length of the addition chains produced by the window method 

as a function of the number of ones in the binary representation of the number. The 

binary method has a simple linear dependency, but the window method gives a curved 

graph as shown in Figure 14. To make the figure, we generated strings of random bits 
with different probabilities for zeros and ones, and applied the above algorithm to the 

resulting numbers. The strings had a length of 5 I 2 bits; the first bit was always one. 
The black dots denote the results of the experiment, while the line gives the length of 

the addition chain of the binary method. 
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Figure 14: Window method for different numbers of ones. 

Addition machine programs for addition sequences 
If the addition chain program above is to be used in practice, the addition chain 

needs to be evaluated. The most interesting part of this is the evaluation of the addition 

sequence for the window values. If those values are computed, the rest of the 

computation is simple. 
We need a special version of the addition sequence algorithm that can evaluate the 

addition sequence. To do this, we construct an addition machine program. This 
program can later be used to evaluate the chain. The addition machine program can be 

produced in reverse order directly with a modification of the protosequence algorithm. 
An example program that produces this addition machine program, using the same 

protosequence function as before, is shown below. 
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how to addition sequence a: 
init 

while p * I I I: 
put maxp inf 

remove f from p 

store 
add 

select: 
keys mem={ ): pass 
#keys mem= I : 

write "store", min keys mem 

init: 

Chapter 4 

write "Reverse addition program:"/ 

put {) in mem 

for i in { 1.. .#a): 

put a item i in mem[i] 

put a inp 

if I not.in p: insert 1 in p 

if 2 not.in p: insert 2 in p 

store: 
if some i in keys mem has mem[i] = f: 

write "store", i / 
delete mem[i] 

add: 
put max p in fl 

select: 
f!fl<2: 

putf-fl inf 

memory 
fmod 2=0: 

putf/2 inf 
write "double"/ 

produce addi tion machine program 

take f off protosequence 

produce store if needed 

produce add if needed 

produce last store 
initialization 

initialize registers 

initialize protosequence 

produce store if necessary 

equivalent to new.number 

some i in {--#p ... -1) has (p item (- i))mod 2=1: 

put (p item (- i)) inn 
memory 
putf-n inn 

if f not.in p: insert fin p 
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memory: find memory location for term/ 

select: 
some i in keys mem has mem[i]=J: 

write "add", i / 
some i in I 1.. .#p l has i not.in keys mem: 

put/in mem[i] 
write "add", i / 

This program takes a list of values, and produces an addition machine program that 

evaluates the corresponding addition sequences. After this program is finished, the 

values are stored in order in the registers of the addition machine. The addition machine 

program is produced in reverse order. The program keeps the contents of the addition 

machine registers in the variable mem. 
Example: 

>>>addition sequence 12; 5; 14) 

Reverse addition program: 

store 3 

double 
add I 
store 2 

add 2 

double 
store I 
double 

store 2 

In a practical application, the addition program would be stored, and evaluated at a 

later moment. 

Precomputed addition chains 
If an exponent is about 512 bits, the minimal number of multiplications produced by 

the window method depends on the parameter k: the window size. The minimum 

number of multiplications occurs for a window size near 6. Figure 15 shows the 

minimum, maximum and average lengths of the vector addition chains for 19 random 

numbers . A window size of 6 does not always generate the minimum addition chain, so 

if the time is available, it is worth to try several window sizes to see which one gives the 

best result. On average, this saves about two multiplications. 

The addition sequences generated for the window method can also be improved 

upon. The heuristic techniques of [BC89] produce slightly better addition chains at a 

relatively high cost. In the graph of Figure 15, this would reduce the number of 

multiplications fork in the range from 6 to 15, so that the range of values fork that 

give a good chain is broader. The amount of computation needed for these addition 
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chains is quite high, while the number of multiplications that can be saved is another 
one or two. This method is rather expensive, so that it is only worth the trouble if the 

chain is going to be used very often. 

Length 
640 

of I addition 

t tttttttttf+ttttttttftttttt+tttt! 

chain 630 

t 620 

610 

t!! 
600 

2 4 6 8 10 15 20 25 30 35 40 - Window size 

Figure 15: The window method for 512-bit numbers. 

The window size that gives a minimum length chain is almost always 6 for numbers 
of 512 bits. If we take a smaller exponent, we get a different picture; Figure 16 shows 
the results for random 128- and 256-bits numbers. It is clear that the position of the 

minimum is much more variable. The reason is that the addition sequence algorithm 

gets fewer numbers, so that its performance is less predictable. 

180 

170 

j1m•1~t1~'1J~ml*1 160 310 

150 300 

2 4 10 20 30 40 2 4 10 20 30 40 

128 bits 256 bits 

Figure 16: The window method for smaller numbers. 

On-the-fly vector addition chains 
Vector addition chains can be computed with a simple on-the-fly algorithm. The 

algorithm consists of three computations: 

• generation of the addition sequence; 

• reversal of the addition sequence to a vector addition chain; 
• evaluation of the vector addition chain. 
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These computations are performed in parallel , so that almost no extra memory for 

the computation is needed. We discuss the three processes separately, although the 

program code contains all three intermingled., 

The addition sequence is generated by a special protosequence function that 

generates sequences that yield efficient memory behaviour when reversed. The 

protosequence function works like this: 

• Compute the quotient of the largest two elements of the protosequence; call 

them h and J1• 

• If the quotient Ji/ J2 is smaller than 2, produce the difference f, - Ji. 
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• If the quotient is larger than 2, use the left-to-right binary method to generate a 

chain from h to Lf2 / Ji J · f2. 
The method used in the last case, when the quotient is larger than 2, is designed to 

make memory usage of the resulting vector addition chain as low as possible. The 

reversal of the left-to-right binary method used is the right-to-left binary method. This 

latter method uses minimal memory. Because of this, the algorithm never uses more 

memory than was needed for the inputs, and the computation can be performed in place. 

We use a special version of the protosequence function that generates the elements of 

the chain one by one, to simplify the rest of the algorithm. 

There may be addition sequence algorithms that use slightly more memory and give 

better performance when reversed. Since the quotient Ji/ h is almost always small, an 

algorithm that makes good chains for small numbers should be used. 

The distribution of the quotients Ji / h depends on the length of the vectors. The 

case that the vectors have length one can be considered as a special case (the algorithm 

performs poorly in this case). If the vectors have length 2, the quotient is smaller than 

14 in 90% of the steps [Knu69, section 4.5.3]. If there are more factors, the quotient is 

even smaller. To make good addition chains for such small numbers, a table of optimal 

addition chains can be used, together with a simple addition chain method for numbers 

not in the table. This saves approximately 2% of the multiplications. We computed this 

figure comparing the binary method and the optimal method for number up to I 00. If 
the vector addition chains are precomputed, the optimal addition chains for those small 

numbers can be easily computed using the techniques from [Knu69]. 

The reversal of an addition sequence is a tricky process, although it requires little 

computation. The produced output of the protosequence algorithm is used to determine 

the addition graph, and the reverse is produced in the form of a sequence of instructions 

for an addition machine. The graph is stored in a special data structure. Some 

optimizations are performed to eliminate unnecessary stores and to make sure double is 
used whenever possible. 

The final step is the execution of the produced addition machine instructions. As 

explained before, the instructions are "interpreted multiplicatively" so that the actual 

product of powers is computed. 
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The program below computes the product 

nb e; 
I ' 

where the b,- are stored in bases, and thee,- are in exponents. The index set for i is 

the key list of both bases and exponents. 

how to vector chain bases power exponents mod n: 

check keys bases=keys exponents index sets must be equals 

init 
while #ref> 1: 

generate 
reverse 
store 

put max keys ref inf 

reverse 
write "Result:", ace 

initialize algorithm 

first step: addition sequence 

second step: reversing 

third step: evaluation 

final multiplications 

result of the computation 

init: initialize ref, memory, mem.list 

put bases, I [l]: { l l, { l in memory, ref, mem.list 

for i in keys bases: 

if exponents[i] not.in keys ref: put { l in refiexponents[i]] 

insert i in refiexponents[i]] 

insert i in mem.list 

put max keys exponents in m 

write "load", m I 
put memory[m], min ace, stored 

load initial number 

remove m from refiexponents[max keys exponents]] 

remove m from mem.list initial multiplication not necessary 

generate: make the addition sequence 

put (keys ref) item #ref, (keys ref) item (#ref-I) in/,/2 
put floor(// /2),/2 in q, d (most of the time, q is 1) 

while q mod 2=0: put q/2, d*2 in q, d 

if d = f: put d/2 in d 

if d not.in keys ref: put { l in refid] 

if f-d not.in keys ref: put { l in reflf-d] 

if d > f-d: putf-d ind 
update ref ford and/ 

make sure dis smallest 
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reverse: 
if f in keys ref and stored in rejff]: 

remove stored from rejff] 

remove stored from mem.list 

write "double"/ 
put (acc*acc)mod n, 0 in ace, stored 

for m in rejff] : 

select: 
m>O: 

write "add", m I 

ref does the reversing 
produce double instead of add 

produce all multiplications 

put (acc*memory[m])mod n, 0 in ace, stored 

remove m from mem.list 

delete rejff] 

store: 
select: 

f= 2*d: 

add 
write "double"/ 
put (acc*acc)mod n, 0 in ace, stored 

stored>O: 

insert stored in refid] 

insert stored in mem.list 

else: 
select: 

store number 

use double instead of store and 

value is already stored 

find empty memory location 

some m in { l ... l +#mem.list l has m not.in mem.list: 

put m in stored 

write "store", m I 
put ace in memory[m] 

insert stored in refid] 

insert stored in mem.list 

For example, to compute 25 • 3 7 mod IO I, one would type: 
>»vector chain { [I] : 2; [2]:3 l power { [l]: 5; [2] : 7 l mod 101 

to get the addition machine program and result: 
load 2 

add I 
store 1 
double 
add 2 

double 
add I 
Result: 92 
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The variables used in the program have the following meaning: 

ace 

bases 

d 

exponents 

mem.list 

memory 

n 

ref 

re/If] 

keys ref 

stored 

accumulator of the addition machine 
table of the numbers b; (input parameter) 

is the place where a * instruction is generated 
table of the numbers e; (input parameter) 
contains used memory locations (with multiplicity) 

stores intermediate results 
modulus for the multiplications (input parameter) 
contains the edges of the addition graph 
is the list of numbers that have to be multiplied in when the sequence 

reaches I 
is the protosequence (partial addition sequence) 

keeps track of the contents of the accumulator: 
number: memory location; 0:a product not in memory 

The on-the-fly vector addition chain algorithm gives no savings if there is only one 
factor in the product; in fact, it is not more efficient than the binary method. The 
savings for 2 or more factors are probably always worth the trouble of the algorithm. 

Table 8 gives the average lengths of vector addition chains. The top row gives the 
number of factors in the addition chain, and the first column gives the number of bits of 

the factors . Each entry is the average of fifteen chains for random numbers. The 

bottom row gives the number of multiplications that a product of 500-bit numbers 
would take if the binary method was used together with multiplication of the factors . 

As can be seen, the savings of using a vector addition chain are enormous, even for only 

two factors. 

factors I 2 5 10 20 50 

20 bits 30 32 47 69 114 227 

50 bits 73 81 110 169 263 468 

JOO bits 148 161 221 330 471 737 

200 bits 299 321 440 650 988 1615 

500 bits 743 803 1093 1627 2573 4778 

1000 bits 1493 1608 2183 3245 5192 9973 

multiply 748 1498 3746 7494 14989 37474 
Table 8: On-the-fly vector addition chains. 

The percentage of doublings in a generated vector addition chain decreases if the 

number of factors increases. Table 9 gives the percentage of doublings with respect to 

the length of the vector addition chain for the experiments that yielded Table 8. We see 

that the percentage of multiplications decreases to a very small portion of the 

multiplications if the number of factors is large. This is not a surprise, but it means that 
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for a large number of factors, substitution of double whenever possible is not effective 

anymore; it is probably cheaper to always use a multiplication or detect squarings at 

multiplication time. 

factors 2 5 JO 20 50 

20 bits 64.2% 44.0% 18.5% 7.7% 3.0% 1.8% 

50 bits 66.8% 44.6% 17.4% 4.8% 2.0% 1.9% 

JOO bits 66.8% 44.6% 15.7% 4.4% 2.9% 2.4% 

200 bits 66.5% 45.8% 15.7% 4.5% 1.8% 1.3% 

500 bits 67.1% 45.3% 16.3% 4.0% 0.8% 0.4% 

JOOO bits 66.9% 45.5% 15.9% 4.0% 0.6% 0.2% 
Table 9: Doublings in vector addition chains. 



5 
Provably Unforgeable Signatures 

Introduction 
One of the greatest achievements of modem cryptography is the digital signature. A 

digital signature on a message is a special encryption of the message that can easily be 

verified by third parties. Signatures cannot be denied by the signer nor falsified by other 

parties. 
There are several attempts in the literature to make an efficient provably secure 

signature scheme. With "secure", we mean that it is hard for unauthorized parties to 

make a false signature. The strongest sense of security is defined in [GMR88], and a 
scheme is described that provides this level of security under the factoring assumption. 
Our new signature scheme gives the same level of security much more efficiently-in 

fact, it is about as efficient as the RSA scheme. Parameter values can be chosen to suit 

special needs. In the most efficient case, a signature on a short message (64 bits) can be 
signed in 33 modular multiplications (not counting precomputation) and verified in 35 

multiplications. The scheme is based on the modular root (RSA) assumption. 
After the introduction, we discuss other signature schemes relevant to this work. 

We discuss the Lamport signature scheme, on which this signature scheme is based, in 

detail. Then, the new scheme is explained, and the possible choices for parameter 

values are shown. 

Signature scheme 
An overview of signature schemes, comparing securities, can be found in the paper 

mentioned earlier [GMR88]. We use their notation. They define a signature scheme as 

consisting of the following components: 

• A security parameter k, that defines the security of the system, and that may 
also influence performance figures such as the length of signatures, running 
times and so on. 

• A message space M, that defines on which messages the signature algorithm 
may be applied. 
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• A signature bound b, that defines the maximal number of signatures that can 

be generated without reinitialization. Typically, this value depends on k, but it 
can be infinite. 

• A key generation algorithm G, that allows a user to generate a pair of 
corresponding public and secret keys for signing. The secret key S is used for 
generating a signature, while the public key Pis used to verify the signature. 

• A signature algorithm a, that produces a signature, given the secret key and 
the message to be signed. 

• Finally, a verification algorithm, that produces true or false on input of a 

signature and a public key. It ouputs true if and only if the signature is valid for 

the particular public key. 

Some of these algorithms may be randomized, which means that they may use 

random numbers. Of course, G must be randomized, because different users must 

produce different signatures. The signing algorithm CJ is sometimes randomized, but 
this tends to produce larger signatures. The verification algorithm is usually not 

randomized. 
A simple example of a signature scheme is a trapdoor one-way function/ The 

function/ is used for verification by comparing the function value of the signature with 

the message to be signed, and CJ is the trapdoor off The main problem with such a 
scheme is that random messagesf(x) can be signed by taking a random signature value 

x. A simple solution is to let M be a sparse subset of a larger space, so that the 
probability that/(x) is a valid message for random xis low. An example of a sparse 

subset is the set of "meaningful" messages. 

Related work 
The notion "digital signature" was introduced in [DH76] . This paper, which can be 

considered the foundation of modem cryptography, discusses the possibility of digital 

signatures and the use of a trapdoor one-way function to make them. 

[RSA 78] is the original article on the RSA scheme. It introduces the famous RSA 
trapdoor one-way function . This function is still widely in use and is applied frequently . 

A well-known weakness of RSA is that it is multiplicative: the product of two 

signatures is the signature of the product. This potential problem can be prevented as 
above by choosing an appropriate sparse message space. 

Since then, an enormous number of signature schemes have been proposed [Rab77, 

MH78, Sha78, Rab79, Lie81, DLM82, GMY83, Den84, GMR84, OSS84, EIG85, 
OS85, FS86, BM88, GMR88, CA89, EGL89, EGM89, Mer89, Sch89, SQV89, 

BCDP90, Cha90, CR90, Hay90, CHP91], applied [Wil80, Cha82, Gol86, Bet88], and 
broken [Yuv79, Sha82, Tu84, BO85, EAKMM85, Roo91]. We will not discuss all 

these schemes here; we only discuss the ones that are interesting to compare with the 
new scheme. 

The schemes [Rab79, GMY83, GMR84, GMR88] are steps towards a provably 
secure signature scheme. The scheme described in the last article is secure in a very 
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strong way: it is "existentially unforgeable under an adaptive chosen-message attack" 
with probability smaller than 1/Q(k) for every polynomial Q. This means that 

generating a new signature is polynomially hard if signatures on old messages are 
known, even if the old signatures are on messages chosen by the attacker. 

The scheme in [GMR88] is based on factoring. While our scheme is based on the 
slightly stronger RSA assumption, it is much more efficient. The signature scheme of 
[GMR88] uses a large amount of memory for the signer, and quite a lot of computation. 

Our scheme uses no memory at all, except for a counter and the public values, and 
signing and verifying takes about as much computation as RSA does, depending on the 
parameters. 

The Lamport Scheme 
To explain the new system, we compare it to the earlier Lamport scheme 

(explained already in [DH76, page 650]). To make a signature in thi s scheme, the 

signer makes a secret list of 2k random numbers 

A= a 1,0,a1,1,a2,0,a2,1, . . . ,ak,O,ak,l • 

applies a one-way function f to all elements, and publishes the result B: 

8 
= {f(a,,o)J(a2,o), . . . ,f(ak,O) 

f (a1,1 ),f(a2,1 ),. • .,f(ak,l) 

The signature consists of the numbers a,,m
1

, a2,m
2

, ••• , ak ,mk from the li st A ( one 
from each "column"),where m1, m 2, .. . , mk are the bits of the message to be signed. 

The lists A and B cannot be used again. 
The properties of Lamport 's scheme are easy to verify: 

• Signing a message is only the publication of the proper elements of A . 

• To forge a signature, one needs to find certain values from the list A. How hard 
this is, depends on the security of the one-way function/ 

• If the values A are only used for one signature, new signatures cannot be made 

from old ones. 

• Verification of a signature consists of applying the one-way function to the 

signature values, and comparing them to the public values determined by the 

signed message. 

The new system uses the same idea, with three important differences. First, the list 

B is replaced by another li st that can be used for all signatures. Second, the list A is 
constructed from two lists so that less memory is needed to define it. Third, the 

elements of A in the signature can be combined into a single number. 

A small optimization 
There is a trivial optimization of Lamport's scheme that reduces the number of 

public function values to almost half, that we could not find in the literature. This 

optimization is independent of the signature scheme as such. Basically, the signer signs 

by publishing a k-element subset of the 2k secret numbers. Lamport 's scheme 
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chooses a particular set of subsets of the set of 2k elements, as shown above. The 

necessary property of this set of subsets is that no subset includes another. 
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There are other sets of subsets with the property that no subsets includes another. A 

largest set of subsets with this property is the set of all k-element subsets (a well-known 

result from lattice theory). For these sets, it is easy to see that no subset includes 
another. 

For example, in Lamport's scheme, the list of 6 elements 

A= a1,o,a1,1,a2,o,a2,1,a3,o,a3,1 

allows us to sign messages of 3 bits. If we renumber A as a 1 ,a2 ,a3 ,a4 ,a5 ,a6 , we 

get the set of 20 three-element subsets of A: 
{ a 1 ,ai,a3 }, { a 1 ,a2 ,a4 }, { a 1 ,a2 ,a5 }, { a 1 ,a2 ,a6 }, { a 1 ,a3 ,a4 }, 

{ a 1 ,a3 ,a5 }, { a 1 ,a3 ,a6 }, { a 1 ,a4 ,a5 }, { a 1 ,a4 ,a6 }, { a 1 ,a5 ,a6 }, 

{ a2 ,a3 ,a4 }, { a2 ,a3 ,a5 }, { a2 ,a3 ,a6 }, { a2 ,a4 ,a5 }, { a2 ,a4 ,a6 }, 

{a2 ,a5 ,a6 }, {a3 ,a4 ,a5 }, {a3 ,a4 ,a6 }, {a3 ,a5,a6 }, {a4 ,a5,a6 }; 

this allows us to sign one of 20 messages, which is equivalent to more than 4 bits. 

In general, there are 

(2k) 2
2

k 
k , or about fu , 

k-element subsets, so that we can sign messages of about 2k -½ log2 (krr) bits. The 

original Lamport scheme allowed messages of only k bits, so that we get almost a 

doubling of the message size for the same size of the list B. This simple improvement 

can also be used in our new signature scheme. 

To encode a signature, a mapping needs to be defined between messages and these 

subsets: 
s(message) = subset. 

The simplest mapping just enumerates messages (interpreted as numbers from 0 
onwards) to sets (seen as binary strings that denote l for presence and O for absence) in 

order. Such a mapping is easily and efficiently computed by the algorithm shown in 

Figure 17. The binomial coefficients do not need to be computed by repeated 

multiplication and division. The first binomial coefficient is always the same, so it can 

be precomputed, and the others can be computed by one multiplication and one division 

by small numbers using the properties: 

(' ~ l) = ( ! } t ~ e and G = D = ( ! } ~. 
The algorithm outputs ones and zeros corresponding to the elements in the resulting 

set. 

Note that the Lamport scheme uses another mapping that maps numbers onto k­

element subsets, but that only a small number of these sets are used. 
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Let n, the message, be a number in the range 0 . . . (
2
/ )- 1. 

Put 2k int and kine. 

While t > 0: 

Put t-1 int. 

If n;:: ( ! ), put n -( ! ) in n, e - 1 in e, and output a 1 (thi s tis in the set). 

Else, output a 0 (this tis not in the set). 

Figure 17: Algorithm for the mapping s. 

The New Signature Scheme 
The new signature scheme replaces the list A of the Lamport scheme by a list of 

numbers that can be organized in a matrix . Instead of using a new list B for every 

signature, a fixed list called R is used for all signatures and all participants. The one­

way function/ is replaced by a set of trapdoor one-way functions, that changes per 

signature. For the trapdoor one-way functions, we use the modular root function of 

[RSA78] . 

The construction allows us to sign long messages using only a few numbers to 

define the set A. In the example of Figure 18, the set A of 12 elements is constructed 

from three primes p 1, p2, p3 (used only for this signature) and four public values r 1, 

ri, r3, r 4 (that can be used again). This set allows us to sign messages of 9 bits, 

since there are 924 > 29 possible 6-element subsets of A. Signing messages of 9 bits in 

the original Lamport scheme takes 18 public values that can be used only once. 

Figure 18: Example list A of the new scheme. 

The numbers a; of A are secret encryptions of the numbers r; of R, and the 

corresponding decryption exponents are public. The multiplicative property of RSA 

allows us to multiply the values of the signature to form one number. Verification of a 

signature can be done using a simple computation, without having to compute the 

separate factors. 
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The public values of the new system are: 

• One modulus per signer; 

• The system-wide list R. This list is used by all users, and that it does not 
change often, so that distribution does not require much traffic. The numbers in 
R are smaller than the smallest modulus used by the signers. 

• A list of sets of primes that may be used for signing. For security reasons, the 

sets may not overlap each other, and the signers may only use these sets of 
primes. 

A signature consists of the original message signed, the signature proper (an integer 
smaller than the modulus of the signer), and a description of the prime set. 

In the language of [GMR88]: 

• The security parameter determines the size of the RSA modulus. This modulus 

can vary per user. 

• The message space M is (equivalent to) the set of subsets of A that include half 
the elements. 

• The size of the public list of sets of primes determines the signature bound b. 

• Key generation is a matter of generating an RSA modulus, and computing 
exponents for the modular root extractions. 

• Signing and verification are defined below. 

Signing 
For the list A of a signature, the set of RSA encryptions 

A= {w modn lpE P;r ER} 
is used, where: 

• P a set of primes from the public list; 

• R is the public list of verification values; 

• n is the RSA modulus of the signer. 
As explained above, a signature is constructed from a subset determined by s(m) 

of half these numbers. The constant k used in the algorithm that maps s is equal to 

l #P;f R J. This allows us to sign a message of almost #A = #P·#R bits. The product of 
the elements of A in this subset is the signature. Since this is a single number, the 
signature is much more compact than in Lamport's scheme. 



94 Chapter 5 

Thus, signing a message consist of the following steps: 
• Choose the set P of primes that is to be used for this signing from the public list. 

This determines A: 

A={~ modnli,j E {1 , ... ,#P} x !1, ... #RJ} . 

Like the sets A and Bin Lamport's scheme, the set P can be used only once. 

The list A need not be computed. 

• Determine the message m to sign. This could be a message, or a public hash 

function value of that message, for example. 
• Compute the subset M of index pairs from { 1, . .. ,#P}x{ 1, ... ,#R} from the 

message m with the algorithm described above: 
M =s(m) 

• Compute the signature proper: 

S = IJ P~ (modn) , 
i,jEM 

and send m, P, and S to the recipient. 
There are two ways to increase the efficiency of signing. If there is time to do a 

precomputation, the entire set A can be computed before the value of m is known. 
Although this takes quite a while, signing becomes much faster, since signing consists 

only of multiplying the proper values of A together. If precomputation is not possible, 

the computation of Scan be speeded up with a vector addition chain (see the previous 

chapter). 

Verification 
Instead of trying to compute individual factors of the signature, the number Scan 

be verified in a single computation. To see this, we note that the power of the signature 
TI Pk 

SkeP . 

should be equal to the following product that can be computed from public values: 

Il Pk/ Pj 
IJr/ eP 

i,jEM 

The lower product can be computed with a vector addition chain. Verification of a 

signature consists of checking that these two values are the same. The verification can 

be performed with a single vector addition chain, if the inverse of the signature is 

computed first: 
TI Pk Il Pk/ Pj 

(S- 1 r r . II r;keP , 

i,jE M 

which must evaluate to I (mod n). To increase the efficiency of the verification, the 

signer could send 1/S instead of S, so that the inversion is performed only once by the 

signer, and not by every verifier. 
If not all prime numbers from P occur as exponents in the set M, it is possible to 

verify a signature using slightly fewer multiplications by raising S to only the occurring 
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primes. Unfortunately, this optimization is only applicable in the less interesting cases 
where verification requires a lot of multiplications. 

The verifier must also check whether P occurs in the public list. If P is described as 
an index number in this list, this is of course unnecessary. 

Parameters 
In practice, the following parameter values could be used: 

• A modulus size big enough to make factorization hard (200 digits, or 668 bits). 
• R a list of 50 numbers. 

• The sets P consisting of the (Sn+ l) th to the (Sn+ 5)th odd prime number, 
where n E { 0, . .. ,16404} is the sequence number of the signature. This uses 

the primes of up to 20 bits. 

With these parameters, we have sets A of 250 elements, so that a message of 245 

bits (30 bytes) can be signed. A signature consists of the message, the signature product 
(668 bits, or 84 bytes), and the index number of the prime set ( 15 bits, or 2 bytes). 

Computing a signature takes about 1512 modular multiplications, and verification about 
272; both these numbers are obtained using vector addition chains. 

The list of the odd primes up to 20 bits (the highest being 1048557) can easily be 

stored; it would need only 64 K bytes of storage (using a bit table of the odd numbers) 
and contain 82025 primes. Such a list can easily be stored in a ROM chip. When all 

primes are used up, the user can choose a new modulus and start again. Another 
solution is to change the list R often enough so that users do not run out of primes. To 

make it possible to verify old signatures, old values of R and the user moduli must be 
saved. 

The list R can be computed from a seed number using a public hash function. This 

way, only one seed number is needed to define R. This allows us one to use a long list 

R while using small amounts of data to distribute it. Also, Jess data is needed to save 
old lists. 

Table IO shows the performance of the algorithm for several sizes of R and P. For 

each of the entries in the table, the modulus is 668 bits (200 decimal digits), and the size 
of the primes in P is 20 bits. The entries are computed by averaging random number 
approximations. The entries marked by * have an estimated standard deviation higher 

than 10, so that the last digits are likely to be inaccurate. 
Powers and products were computed using addition chains and sequences; see the 

previous chapter. The products were computed collecting the base numbers; for 

example, the product 

would be computed as 
b e2 bel +e3 . b el +ez . b ez 

I . 2 3 4 

using a vector addition chain algorithm. In the cases were a single power was to be 

computed, the "window method" of Chapter 4 was applied. 
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The table shows that in the general case, where verification is done more often than 

signing, it is advantageous to use a small P, possibly of only one element. The length of 
the list R is not a problem if it is generated from a seed, as suggested above. Another 
advantage of using a small set P is that the list R has to change less often. 

#R #P message sign verify 

250 I 245 910 152 

50 5 245 1512 272 

5 50 245 1451 2048* 

l 250 245 796 7123 * 

500 495 1035 278 

50 10 495 2964* 1372* 

68 64 819 61 

17 4 64 1317 162 

4 17 64 1301 659* 
Table 10: Pertormance for different size of Rand P. 

The influence of the modulus size and prime size on the performance is shown is 

Table 11. In this table, the size of R is set to 50 elements, while the sets P contain 5 
elements each. The number of multiplications for signing depends on the size of the 

modulus only, while the number of multiplications for verifying depends on the size of 
the prime numbers only. Although it saves a little time during the signing to use a 

shorter modulus, we suggest using a modulus of 668 bits, since the current technology 

already allows factoring numbers of up to 351 bits. 
The size of the primes in the sets P determines the verification time. Choosing 

smaller primes increases the speed of verification, but allows fewer signatures before a 

new list R is needed. 

modulus size signing 
prime size verifying 

10 171 
512 1172 

20 272 
668 1512 

30 381 
Table 11 : Pertormance for different sizes of modulus and primes. 

If the elements of A are precomputed, signing takes #A/2-1 multiplications. The 

precomputation takes about 796-#A multiplications, so precomputation is only effective 
if there is plenty of time for doing it. 

For extremely fast verification of signatures, we choose a li st R of 68 elements, 

generated from a seed number that is part of the signature, and P = ! 3 } . For these 
parameters, the message to be signed is 64 bits (8 bytes). This allows verification of a 

signature in only 35 modular multiplications, plus the time to generate the elements of 
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R. Signing takes about 819 multiplications. Using precomputation, signing takes 33 
multiplications, but about 55000 multiplications for the precomputation. 

Proof of unforgeability 
We prove that the signature scheme is "existentially unforgeable under an adaptive 

chosen-message attack". This means that, under the RSA assumption, if an attacker can 
influence the signer to sign any number of messages of his liking, he cannot forge new 

signatures in polynomial time, even if the messages depend on the signatures on earlier 

messages. 
The main theorem used to prove unforgeability of the signature system is proved by 

Jan-Hendrik Evertse and Eugene van Heijst in [EH90], and is a generalization of a 

theorem by Adi Shamir [Sha83]. The theorem is about computing a product of RSA 

roots with a given modulus if a set of products of signatures is known. Under the RSA 
assumption, the theorem states that if a set of products of roots is known, the only new 

products of roots that can be constructed in polynomial time are those that can be 

computed using multiplication and division. 
One assumption we make is that the attacker cannot combine the signatures of 

different participants, because they have different moduli. This is still an open problem. 
This assumption allows us to use the results of [EH90]. 

In our situation, we assume an attacker who knows many signature products S from 

a participant. These products can be written as products of roots of elements of R: 

r/lr,{2,3X3 ... ,.;~R' 
where the numbers X; are rational numbers. The theorem of [EH90] states that if we 

interpret the x as vectors, the only new products that can be computed by the attacker 
correspond to linear combinations of these vectors. What remains to be proved is that 

linear combinations of these vectors do not give products that the attacker can use for 
new signatures. 

The denominators of the rational numbers x; are products of primes from the set P 
of the corresponding signature, since the x; are sums of the form ..L + ..L +· • •, where 

Pi P2 
P; E P. This means that we can speak of "the set of primes in a vector", meaning both 
the set of primes that occur in the denominators of the elements, and the set P used for 

generating the signature. Every signature uses another P, and the sets P do not overlap, 
so the sets of primes in the vectors also do not overlap. A linear combination of vectors 

will contain only primes that occurred in the original vectors. From this we see that 

combining signatures with multiplication and division will not produce a signature with 
a set P that is not used before. 

For a set P that has already been used, the only linear combination of vectors that 
contains the primes of Pis a multiple of the corresponding vector, because any other 

linear combination of vectors contains primes not in P . This means that other signature 
products do not help compute a new signature product with a given set P. From the 

definition of the signature product, we see that a power of a product cannot be a 
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signature on another message, so this method also yields no new signatures for the 
attacker. 

Note that if m is a one-way hash function of a message, signatures on other 

messages can be forged if the hash function is broken. This is of course a separate 
problem from the security of the signature scheme. 

From the above we conclude that an attacker cannot, under the RSA assumption, 

produce a signature product that is not already computed by the signer. This finishes the 

proof that the signature scheme is secure. 

Conclusion 
It was already known that a signature with provable unforgeability existed under the 

factoring assumption. Our scheme, based on the modular root assumption, improves on 
the scheme in the literature on several points: signatures are smaller, while signing and 
verification use much less memory and computation. The new scheme has a large 

degree of flexibility, allowing the signing of both long and short messages by varying 
the parameters. 
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6 
Verification of RSA Computations 

on a Small Computer 

Introduction 
In many cryptographic applications, a protocol has to be performed between two 

parties where one of the parties is a cheap, small and handy computer, for example a 
smart card. In particular, we assume that this small computer is not capable of 

performing RSA calculations. In this chapter a protocol is presented that allows such a 
small computer to verify an RSA computation with high certainty, using only operations 

that require little memory and computing power. When the verification succeeds, the 

smart card can sign the result produced by the larger computer for later use. 
For example, although smart cards that perform RSA are on the drawing tables 

nowadays, current cheap smart cards have about 128 bytes of RAM memory, 3 

kilobytes of EEPROM memory (slow non-volatile memory), and an 8 bits processor. 
This is not enough to perform RSA in reasonable time (it would take several minutes), 

since the intermediate results do not fit in RAM memory. For the rest of this chapter, 
we will speak of the small computer as "the smart card" or SC and of the larger party as 
"the computer" or LC. 

The smart card verifies the computation of the LC by performing the same 
computations as the LC on smaller numbers. The SC replaces the number by the 
residue (remainder after division) modulo the verification modulus. The verification 

modulus is a secret number only known to this smart card, and small enough that the 
remainders are manageable for it. The verification modulus can be fixed for a particular 

smart card or vary per instance of the protocol. This method allows the smart card to 

verify additions, subtractions, and multiplications. Division or modulo reduction can be 

verified if the LC sends both the quotient and the remainder to the SC, so that it can 
check if the numbers match. Repeated multiplication and modulo reduction can be used 

to perform RSA encryptions. 
The SC never stores the numbers involved in the computation of the LC, because it 

always deals with residues. If the LC sends a number to the SC, the residue is 
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calculated during reception of this number. It is also possible for the SC to send a 

number that it does not store, by generating the number during transmission. In this 
case, the residue can also be computed during that transmission. This allows the smart 

card to deal with several large numbers without running out of RAM space. 
The communication between a small and a large computer was addressed earlier in 

[MKI88, QS90]. [QS90] shows several protocols, one of which is similar to the 
protocol shown here, but it turns out to be insufficiently secure. Secure versions will be 

presented here, and the level of security is investigated for practical parameter values. 
This chapter is organized as follows: first, the protocol is explained in general. Then 

we show an application of the protocol for a privacy-protecting payment system, and 

algorithms to compute the residues. Finally, we show a possible attack on the system, 
and compute the probability of success of this attack for different parameter values. 

The Protocol 
In general, the protocol consists of three phases, as depicted in Figure 19: 

• agreement on initial values known to both parties; 
• computation of the actual result, verified by the SC; 
• issuing of a signature by the SC. 

Initially, the SC and LC must agree on the values that are going to be used in the 
computation. How these values are obtained, is not important for the protocol; it 

depends on the application. The SC does not have to store these numbers; it will only 
store the residue modulo w. Residues modulo w are depicted by a tilde C). 

In the second phase, the LC computes new values from the values that are agreed 

upon. The smart card performs the same computations on the residues modulo w. If 
the LC does a division or a modulo reduction, both the quotient and remainder are sent 

to the smart card for verification. If the LC wants to reduce the number P; modulo n, 
the remainder r; and quotient Q; of the division by n are sent to the SC as depicted in 

? 

Figure I 9. The smart card verifies the modular equation <]; · n + F; i: i5; (mod w) and 
checks the range and validity of the numbers sent to it. The numbers r; and Q; can be 
used in later calculations. 

For RSA calculations, the exponent is computed using repeated multiplication and 

modulo reductions. Although it is faster than performing the calculation on the smart 

card, this can take some time, especially if slow communication is used (as with most 
smart cards). For this reason, it is advisable to use a short exponent, if possible. 

For security reasons, the size of P; is restricted; normally, P; may be up to n2; that 
is, P; may be a product of two numbers modulo n. Increasing the size of P; decreases 
the total number of bits sent (especially for RSA calculations) at the cost of security. 

The relation between the size of P; and the security is shown later on. 

In the last phase, the LC sends the result r of the complete computation to the SC. 

During reception of this number, the smart card computes both the signature on rand 

the residue r mod w. The smart card must do this simultaneously with the reception, 
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because r does not fit in its memory. The signature is a simple secret-key hash 

function that can be computed from r during reception without storing it. Hash 
functions of this form can be constructed from a conventional encryption function like 

DES [GPV9 I]. If the modular verification succeeds, the smart card sends the signature. 
The signature can be any number that the LC can use to prove validity of its 

computation in later protocols. 

SC LC 
agreemem of values , 

? 

ii; ·n+i/=P; (modw) : computep; 

check r 
result r 

signature on r 

Figure 19: Sketch of the general protocol. 

Example: SmartCash 
To demonstrate how the protocol is used in a practical application, we show an 

example. This example demonstrates the use of the protocol in the SmartCash privacy 

protecting payment system suggested and developed by David Chaum [BC90; earlier 
systems appeared in BCHMS89, CFN88, Cha89, Cha90] . 

In the SmartCash payment system, users have a smart card owned and controlled by 

the organizing organization called the bank. Also, every user has a transponder, a 
pocket computer capable of RSA calculations and available freely on the market, that 
they own and control themselves. The smart card ensures the security of the system, 

while the transponder acts as an intermediary for the user, ensuring his privacy. The 

transponder is the only way in which the smart card communicates with the outside 

world. 
We will not explain the working of the complete SmartCash system here, but only 

discuss those parts of the system that are relevant for the discussion. The only subpro­

tocol of the SmartCash system that we are interested in, is the so called blind check 

protocol depicted in Figure 20. This protocol is a good example of our verification 
scheme. It is performed between the smartcard and the transponder (that takes the place 

of the LC in this protocol). 
The blind check protocol prepares for a "blind signature" [Cha82, Cha85] by a 

signature authority called the bank . The bank performs the signing of the blinded 
number c in a later protocol with an RSA signature with public key 3. This number c 
is later used for doing a payment. 

The transponder makes sure that the value c is perfectly blinded, ensuring the 

user 's privacy for the payment involving this number. The bank, and the smart card as 
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its representative to the transponder, make sure that the transponder can only use the 

protocol for obtaining a signature on the number c, and not for other things. This 

prevents users (via their transponders) attacking the system by letting the bank sign 

numbers of a special form. 

Smart Card 

compute x 

compute ji 

recomputex 

compute b = x + y 
? -

q1 ·ii+Fi ci: c-b (modw) 
? -

q2 ·ii+r2 ci:Fi-b (mod w) 
? -

Q3 ·ii+ r3 ci:r2 · b (modw) 

computes 

J(x) 

r1 =c·b mod n,q1 =c·bdiv n 

~ 

Transponder 

choose y 

verify x 

compute b = x+ y 

Figure 20: The blind check protocol of the SmartCash system. 

In the SmartCash version of the verification protocol , the verification modulus w is 

fixed. The residue ii = n mod w of the RSA modulus n of the bank is stored in advance 

in the smart card ROM. In the protocols preceding the blind check protocol, the check 

number c is computed by the smart card and the transponder, and the smart card keeps 

the residue c. 
In the first phase of the blind check protocol , the smart card and the transponder 

agree on a blinding factor to be used for blinding the number c. They make this 

number together using a three step protocol : first the smart card commits to its term x 

using a one-way function/, then the transponder sends its term y, and finally the smart 

card sends x, opening the commitment. The blinding factor, the value that is going to 

be used for the blinding, is the sum 
b = x + y. 

In the second phase, the transponder computes the blinded number ,3 = c · b3 mod n, 

sending intermediate results allowing the smart card to verify the computation. The 

verifications performed by the smart card are modular versions of the defining equality 

of div and mod: 
(a div n) · n + (a modn) = a. 

In the SmartCash protocol , the smart card does not check whether r,- < n and q,- < 11, 

but instead the smart card receives only as many bits as the length of the modulus. 

(Actually, since the number b may be larger than n (up to 2-n), the quotients may be 

one bit longer than n.) This extra freedom does not allow significant extra room for 

cheating. 

ln the third phase, the smart card sends a signature s to the transponder. The final 

result of the protocol, r 3, does not have to be sent, since it is already sent in the second 

phase. Also at that time, the signature was computed during reception of the number, so 
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no computation is necessary here. The signature is a secret key encryption of r3 based 

on DES; it is a number of 512 bits. The key used for this encryption is also known to 

the bank. 

In the next protocol, the transponder will send r3 = c · b3 mod n to the bank, and get 
from the bank the cube root, added to the signature s: 

~c -b3 +s= Vc- b+s (modn). 

After reception of the number, the transponder can compute the RSA signature Ve 
by subtraction of sand modular division by b. This signature on c is used in the 

system at a later point. 

Computation of the residues 
The residue modulo w that is computed by the smart card can be computed by 

straightforward long division of the number sent to it by the verification modulus. To 

be explicit, we will show two algorithms to perform this computation. We assume that 

the message is processed in blocks d of b bits*; furthermore, we assume that w > 2h. 

The first algorithm computes the residue if the number is sent with the most significant 

block first: 
put O in r 

for i in { I .. . blocks l : 
received 

put (r * 2**b) mod win r 

put (r + d) mod w in r 

initialize 

blocks is the number of blocks 

receive next block 

The number is sent to the smart card expressed in base 2h _ At the end of 

execution, r contains the remainder mod r of the number. The algorithm takes two 

modulo reductions per received block, but the second reduction is trivial: the 

corresponding quotient is O or 1, because both rand dare smaller than w. This latter 

reduction can be performed using a conditional subtraction. To make this explicit, the 

last line of the algorithm can be replaced by the lines: 
put r +din r 
if r 2'. w: put r - w in r 

The other modulo reduction is reducing a l+b-bit number modulo a /-bit number, 

where l is the number of bits of the modulus, and b is the number of bits in a block. If 

the number of bits per block is one, all modulo reductions become conditional 

subtractions. If the smart card has no division instruction, this is probably the most 

efficient solution. 

If the number is transmitted least significant block first (that is "backwards" with 

respect to the previous algorithm), the reduction can be performed by the slightly more 

elaborate algorithm 

* The smart card could receive several blocks at a time for efficiency reasons. 
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put 0,1 in r, m 

for i in 11 .. . blocks) : 
received 
put (d * m) mod wind 

put (m * 2**b) mod win m 

put (r + d) mod w in r 

Chapter 6 

The same optimizations apply as above: the last line can again be replaced by a 

conditional subtraction, so that the algorithm takes two modulo reductions per block. 

Also, all modulo reductions can be replaced by a conditional subtraction if the block 

size is one bit. Another optimization is to store the possible values of m beforehand 
when the modulus is determined. Note that m follows the powers of 2b mod w; these 

numbers can be precomputed and stored in ROM or EEPROM to save a modulo 

reduction per block. 

[QS90] proposes to use multiple small verification moduli . Although thi s looks 

more efficient than using a single modulus, in the practice of a smart card without 

division instruction, it is not more efficient than using one large modulus . From a 

security point of view, it is better to use one large modulus. 

The Attack 
To analyze the security of this algorithm, we first show what the LC can do to cheat. 

Then, we compute the probability of successful cheating. This probability depends on 

the way the verification modulus w is determined. Finally, we provide an overview of 

the values for practical parameter values. 

A cheating LC tries to get the smart card to accept a different value than the value 

that it is supposed to compute. We consider one round of the protocol, as shown in 

Figure 21. In this figure, pis a number that is computed from the known values. We 

assume than p is smaller than n2. The smart card computes p by performing all 

computations modulo w, as before. 

An attack is successful if the LC successfully makes the smart card accept another 

value for r than p mod n. If the LC would know w, he could simply choose any 
value of r' in the range 11, .. . ,n - I} and compute the value 

q'= p-r' (modw) 
n 

to get a pair (r', q') that is accepted by the smart card. The choice of the value r' is 

done so that this is useful for cheating subsequent protocols; thi s value depends on the 
application. 

The value q' can be compute so that more than one value of w of the smart card 

results in a successful attack. Let S be the set of values for w that are taken into 

account. From this, we define the breaking modulus 
t= lcmS 

and compute q' as 
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q' = p - r' (modt). 
n 

This pair (q', r') is accepted by the SC if wit. This means that the pair is accepted 

for w E S, but also possibly for other values from the set M of possible verification 
moduli. For simplicity, we include these values in S. 
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The smart card checks the size of r and q. To make sure that this check succeeds, 

r' must be chosen small enough, and we make q' small enough by taking S so small 

that t ~ n. We assume here that p gets a value that is smaller than n2. If pis 

allowed to take values higher than this, q must be allowed to get values higher than n, 
allowing more room for cheating. 

The LC attacks the system by choosing a subset S of the set of all possible 
verification moduli M, and computing q' for the corresponding t. The probability of 
success of this attack depends on the way the verification modulus is chosen, and on the 

set S. We will now analyze this in detail. 

SC LC 
? 

q·n+r~p (modw) r=pmodn ,q=pdivn computep 

Figure 21: One round of the second phase. 

Choice of the Verification Modulus 
The smart card must choose the secret verification modulus so that the attack shown 

above has a probability of success that is as low as possible. More specifically, the 

algorithm that chooses w must be so that the probability that w E Sis low, for every 

set S for which 1cm S is smaller than n. 

Let M be the set of all possible values of the verification modulus. There are two 

ways to choose w from this set. The obvious way is to let the smart card pick the 
verification modulus itself each time the protocol is executed. This makes it harder for 

the LC to guess the used modulus. A disadvantage of this idea is that the choice for M 

is restricted to sets the SC can handle. For example, M cannot be chosen as a set of 

primes, because testing for a prime is too hard for a smart card. 
The simpler way is to always use the same value of win a given smart card (but 

randomly chosen for every card). This is the solution also taken in the SmartCash 

system. This has as advantage that several values can be stored in the smart card ROM: 
• the verification modulus; 
• the residue of the system modulus Ii; 

• the reduced values of m in the least-significant-block-first algorithm discussed 
above. 

This saves RAM space and calculation time. A disadvantage of this idea is that the 

smart card issuing authority must be very careful with the information about the moduli. 

If somebody can get hold of the list, he can find the modulus by elimination. Preferably, 

the moduli must be generated with a physical random generator, and the list with moduli 
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must not be stored at all. 

There is also a mixed solution as proposed by [QS90], where a smart card contains 

several prime moduli, and chooses one of these at random. This gives a small security 

improvement at the cost of storage space. 

In the next section, we will discuss several choices for the set M. 

Prime numbers 
Assume that the set of all verification moduli M contains prime numbers only. For 

the moment, we assume that the verification modulus w is chosen using a nonuniform 

distribution proportional to its logarithm: 
For all pin M: Pr(w = p) = c · logp . 

The constant c must be so that the sum of all these probabilities is 1. We get 
l 

c=---
I,logp . 

pEM 

In the case where M is the set of prime numbers in a given range /, we can use the 

approximation* 

I,togp= I,togx· . "" I,togx·-=#1, {
1 if x is prime I 

pEM xEI O 1f not xEI logx 

where#/ is the number of integers in the range. The approximation is based on the 

density 1/log x of the primes around x. 

If the verification modulus is chosen from this M, the most efficient way for the LC 

to attack is to choose a set S so that Pr(w E S) is as high as possible, while 

t = lcmS = IJ S 

is smaller than n. It is easy to see that 

Pr(w ES)= I, c · logp = c · log IJp = c · logt, 
pES pES 

so that we can see that the maximum probability for t -s; n is less than c • log n. 

Using unequal probabilities for the different primes seems unnecessary complicated. 

If the size of the primes in the interval is approximately equal (for example, all primes 

have the same number of bits), the probabilities are almost equal. In this case, the 

primes can be chosen uniformly random, which is much simpler. This is not a good 

idea if the primes are of unequal size. If a uniform distribution is chosen for primes of 

unequal size, a good attack strategy for the LC is to choose the small primes of Mas 
elements of S. 

For example, if the verification modulus is chosen as a random b-bit prime, the 

probability of a successful attack is approximated by the simple formula 
logn _ logn 

#!2h-1, .. . ,2h - ll - zb-1 , 

where n is again the modulus of the RSA system. The SmartCash system uses a prime 

number of 64 bits and an RSA modulus of 512 bits, giving a probability of 3,8· J0- 17. 

* A mathematically more accurate approximation (with the same outcome) is possible using the 
Stie ltjes integra l; this falls outside the scope of thi s thesis . 
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This result shows that for a 512-bit RSA modulus, the primes must be at least IO bits to 

get any security at all; the suggestion of [QS90] to use small primes does not give 

protection. This formula also illustrates that using one large prime yields more security 

than several small ones. 

Range of integers 
If we want a different verification modulus each time the protocol is executed, the 

smart card must be able to compute the modulus itself. Since the smart card is not able 

to do a prime test, we need a simpler set M. The simplest set to choose is an range 1 

of integers, with equal probabilities for all elements. It is simple to generate a random 
element from such an interval, especially if the range is of the form { 2b- l , ... ,2b - l l. 

Unfortunately, this set M does not give such a nice theory as the previous version. 

One problem is that the optimal attack strategy for the LC is hard to compute. Instead 

of choosing a set S and computing t, we now describe the attack strategy by the value 

oft, so we define Sas the set of divisors oft that lie in M: 
{d E lid divides tl. 

The probability of success of the attack is equal to # S/# 1. Ideally, we must find that 

value oft for which the set S is largest. 

Clearly, t must be a number with many small divisors. A class of numbers that can 

be used for this are the highly composite numbers [Ram 15, Ram27]. A number is 

called highly composite if no smaller number has more divisors. The first few highly 

composite numbers are: 
2 (2), 4 (3), 6 (4), 12 (6), 24 (8), 36 (9), ... 

where the number of divisors of each number is shown in parentheses. 

A subclass of these numbers, the superior highly composite numbers, can be 

constructed simply using the formula 

TI ip/-1-1l 
p , 

p prime 

where y is a parameter between zero and one. 

Although the highly composite numbers have a maximal number of factors for their 

size, they are not guaranteed to have a maximal number of factors in the given range 1. 

However, they perform better than all other numbers we tried. We do not know of 

numbers that give a higher probability of success for the attack. 

Once such a number tis chosen, the probability of a successful attack can be 

written as 

Pr(w ES)= #S = #{d E lid divides tl 
#1 #1 ' 

where# {d E lid divides t) is the number of divisors oft in the interval 1. We compute 

this number using the distribution of randomly chosen divisors oft: 
#{d E lid divides tl =#{divisors oft)· Pr(d E /). 
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So, to compute Pr(w E S), we need to know three numbers: 

• The number of elements of/ is given. 

• The number of divisors oft can be computed from the factorization oft. 

• The probability that a random divisors oft is in/ is computed using 
Pr(d E {a, ... ,b}) = Pr(d < b) - Pr(d < a). 

The computation of the last two probabilities requires computation of the 

cumulative distribution of random divisors oft. This will be done with a 

straightforward statistic computation. If the factorization oft is written as 

I]pfi, 

a random divisor oft has the probability distribution 

TI ur{O ... a;} 
P; , 

where "ur" stands for the uniform random distribution on a set. The logarithm of a 

random divisor oft has a probability distribution 

I,logp; -ur{O ... a;l-

Since this is a sum of distributions, we know from the Central Limit Theorem that 

this can be approximated by a normal distribution. The average and variance are not 

hard to compute, since the distributions are easy: 

µ=I,~;· logp; = ½logt 

2 _ ~ a;·(a;+2) (l )2 cr - ~ 12 . og P; 

but, unfortunately, the resulting approximation of the number of divisors is not accurate 

enough for our purposes. A better approximation is performed by the so called 

Edgeworth expansion [KS69, or any other advanced statistics book]. This approxima­

tion uses higher order moments to approximate a probability distribution . The compu­

tation of the parameters is a lot of work, and falls outside the scope of this thesis. 

Results of such an expansion are given later on. 

A slight improvement for the smart card is to remove numbers with small factors 

from the set M . The smart card could generate random numbers that are not divisible 

by small factors by a few trial divisions. This method ensures that it is no use for the 

LC to include small factors int, so security is improved slightly. 

Practical parameter values 
In practice, one wants to have a low probability that the LC is able to get the smart 

card to sign an invalid number. The probability that is needed varies in practice, 
depending on the application, between 10- 6 and 10- 18 . We show parameter values that 

give practical probabilities. Results are summarized in Table 12 and Table 13. 

Table 12 summarizes the case where the verification modulus is a prime number of 

a fixed number of bits, and the modulus is 512 bits. The table is directly derived from 

the formula explained above: 
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logn 
Pr(w ES)= 2b-l . 
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The SmartCash system uses a verification modulus of 64 bits, giving a probability of 

3.8-10- 17 . 

Pr(w ES) 10-6 10-9 10-12 10-15 10- 18 

prime (bits) 30 40 50 60 70 
Table 12: Prime verification modulus. 

Table 13 shows the computation of the security where the verification modulus is 

randomly chosen from a range of integers using the Edgeworth expansion. The 

modulus is 512 bits, as before, and the breaking modulus t is taken to be the product 

IT lp01 : 9 _1J 
p ' 

pprime 

which is 

21 
I · 37 · 54 

· 73 · 113 · 132 · 172 · 192 · 232 · 292 · 31 · ... · 33 l · 337; 

this is about 3.35-10153 , or 510 bits. The number of factors oft can easily be 

calculated: 

#{divisors of ti= IT (a;+ l )= 537907057189370525122560 == 5.38-1023. 

The Edgeworth expansions for Pr(d E /) are computed for degrees 2 (the normal 

approximation), 3, 5, and 7. Since the even term of the expansion are zero, degrees 4, 6 

and 8 do not give new information. The results are shown in the top three rows of Table 

13. 

The probabilities shown are the probability that a randomly chosen divisor oft is 

smaller than 264 respectively 263, and the difference between these two. Note the 

negative probabilities for the degrees 3 and 5; this is a result of the inaccuracy of the 

approximation. From this we can see that, in order to get an accurate result, the 

Edgeworth approximation must be computed to a degree higher than 7. Computing 

higher degrees than this turned out to be too much work, since no software was 

available. The value of Pr(d E /) determines the accuracy of the computation: the 

lower its value, the more terms of the Edgeworth expansion need be calculated. 

The bottom row of Table 13 shows the resulting probability of a successful attack. 

Probably, the actual probability is lower than 10-6, making the protocol useable for 

some practical applications. 
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degree of approximation 2 (normal) 3 5 7 

Pr(d < 264
) 6.65 · I0- 11 -6.71 · 10- 11 -4.78 · I0- 11 3.35 · 10- 11 

Pr(d < 263 ) 5.33-10- 11 -5.61-10- 11 -4.0( · 10- II 2.83 · 10- I I 

Pr(d E / ) 1.32. 10-I I -1.10 · 10-I I -0.77-10- 11 0.62 · l0- I I 

Pr(w ES) i11-10:.::7 _:_6. 43. 10:.::7 -4.50. io:.:7 · i62: 16- 7 

Table 13: Edgeworth expansion for 64-bit verification modulus. 

If n becomes more than 512 bits, t can be chosen higher, so that the probability of 

attack increases. In this case, the accuracy of the computation decreases. This means 

that a longer verification modulus is necessary, but the accuracy of the computation is so 

low than no clear statements can be made anymore without doing a higher degree 

Edgeworth expansion. 

If the set M excludes numbers divisible by 2, 3, 5, and 17 (testing for 3, 5 and 17 

can be done simultaneously by adding up the bytes and looking up in a bit table) , we get 

the probabilities 1.20· 1 o-7 for the normal approximation and 0.40· 10- 7 for the degree 7 

Edgeworth approximation. This is only little better than using the entire interval for M. 

Conclusion 
In the practice of cheap smart cards, it is possible to make protocols where the smart 

cards must check those computations done by another computer. This might be a 

cheaper solution to systems where the smart card itself must do the calculations. The 

protocol is particularly interesting for privacy protecting payment systems, where RSA 

is needed. 

Although [QS90] suggests to use several small verification moduli, this is not 

secure: numbers smaller than 10 bits cannot be used as verification modulus, even if 

multiple primes are used . 

The verification modulus is most easily precomputed and stored in the smart card, 

but at the cost of complexity, it is also possible to let the smart card compute the 

modulus itself. Determining the security level in the latter case is very complicated. 

For practical applications, it seems best to use a fixed verification modulus. 



Verification of RSA computations 115 

There are a few simple extensions of this protocol: 
• Doing other calculations: the smart card can verify every calculation based on 

addition, subtraction, multiplication and division, not only RSA calculations. 

• Reducing numbers p higher than n2: this saves protocol rounds at the cost of 
transmission time and a little security. 

• Let the smart card perform calculations of its own, for example hash functions, 

during the calculation. These values can be incorporated in the computation of 
the LC. There is a privacy threat here, since these numbers cannot be verified 

by the LC. This problem can be solved by special protocols. 

• Choosing a different set M. Choosing a good set M that allows the smart card 
to choose its own modulus randomly, while giving a good security, is still an 
open problem. 

The security analysis of the case in which the smart card chooses the verification 

modulus randomly yields some interesting problems. The first problem is computing a 

good breaking modulus for an attack: we computed a good approximation. The hardest 
problem is the computation of the success probability for the attacker given this 

modulus. Our method using the Edgeworth expansion of a probability distribution is 

complicated and inaccurate; finding a better way to compute it is still an open problem. 
The third problem, finding a good set M that allows the smart card to increase the 

security, is mentioned above. 
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Korte Omschrijving 

Dit proefschrift bestaat uit vijf hoofdstukken die verschillende onderzoeks­
onderwerpen uit de cryptologie behandelen. Cryptologie is de tak van wiskunde die 
zich bezig houdt met informatiebeveiliging. De hoofdstukken van het proefschrift 
hebben met elkaar gemeen dat ze allemaal gaan over het practisch toepassen van 
privacy-gerelateerde cryptografische protocollen. De begrippen "privacy" en 
"efficientie" spelen een rol door het hele proefschrift. 

Privacy 
Vandaag de dag hebben allerlei organisaties grote bestanden met prive-informatie 

over hun klanten. De klanten hebben geen toegang tot deze informatie, en ze kunnen 
ook niet bepalen waar deze voor wordt gebruikt. Het combineren van informatie uit 
meerdere bestanden kan gebruikt worden om informatie te krijgen over mensen. Dit is 
niet alleen een theoretische mogelijkheid, het gebeurt al: bedrijven verkopen bestanden 
aan elkaar voor reclamedoeleinden, kredietbepalingen, statistische toepassingen en 
dergelijke. 

Aan de andere kant hebben bedrijven te lijden onder oplichting door individuen die 
valse gegevens verstrekken. De bedrijven reageren met steeds strengere maatregelen 
om dit te voorkomen, zoals identiteitskaarten met streepjescodes en televisiecamera's 
bij balies. Op deze manier raken de klanten steeds meer privacy kwijt. Bedrijven 
kunnen niet eens aantonen dat ze de privacy van hun klanten beschermen, zelfs als ze 
dat (willen) doen. 

In 1985 heeft David Chaum een artikel geschreven dat een oplossing geeft voor dit 
probleem. Deze oplossing maakt gebruik van modeme cryptografie, met name public­
key systemen. Bij deze oplossing houdt iedere klant zelf zijn gegevens bij zich, zodat 
hij alleen gegevens hoeft te verstrekken die een bedrijf nodig heeft. Sindsdien is er veel 
onderzoek op dit gebied gedaan, waaronder onderzoek in dit proefschrift. 

Efficientie 
Het meest gebruikte argument tegen modeme cryptografie was altijd dat public-key 

systemen "te duur" waren. Hoewel de technologie het gebruik van dit soort systemen 
steeds dichterbij brengt, blijft er een behoefte aan goedkope systemen. Dit boek bevat 
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een hoofdstuk dat de snelheid van deze berekeningen verhoogt, en een hoofdstuk dat 

methoden laat zien om public key cryptografie te gebruiken zonder het gebruik van dure 
apparaten aan de kant van de gebruiker. 

Overzicht 
De vijf hoofdstukken gebruiken privacy en efficientie op verschillende manieren. 

We behandelen de hoofdstukken hier in het kort. 

Het eerste van deze hoofdstukken, "Detecting Disrupters in Untraceable Sending", 

is een uitwerking van het zogenaamde Dining Cryptographers protocol dat berichten 
verzendt met geheimhouding van de identiteit van de zender. Het probleem bij dit 

systeem is dat verstoring van boodschappen (al dan niet kwaadwillend) moet worden 

voorkomen zonder dat de anonimiteit van de andere boodschappen verloren gaat. Orie 
nieuwe protocollen worden getoond die een efficiencyverbetering geven over de proto­

collen uit de literatuur. De hoeveelheid te zenden informatie, die erg van belang is in dit 

protocol, wordt in het bijzonder veel kleiner gemaakt. 

Het tweede hoofdstuk, "An Efficient Voting Scheme", is een toepassing van het 
bovengenoemde Dining Cryptographers systeem voor het houden van een referendum. 

Door gebruik te maken van het tegelijkertijd verzenden van de informatie door alle 

partijen is het mogelijk om stemmen te tellen en hun geldigheid te bewijzen in een zeer 

korte tijd, terwijl de anonimiteit van de stemmers perfect bewaard blijft. 

Het derde hoofdstuk, "Addition Chain Heuristics", gaat over het efficient berekenen 

van (producten van) RSA vercijferingen. (RSA is het meest gebruikte public-key 

cryptosysteem.) Dit gebeurt door de benodigde vermenigvuldigingen zo te rangschik­
ken dat er minder nodig zijn. Dit "addition chain" probleem is al oud, maar de prac­

tische toepassing in computers is nieuw. Het bepalen van deze volgorde kan van de 
voren gebeuren (precomputation) of tijdens het uitvoeren van de berekening (real-time). 

Het hoofdstuk toont een aantal manieren om machtsverheffingen en producten van 

machten op beide manieren efficient uit te rekenen. 

Het vierde hoofdstuk, "Provably Secure Signatures", toont een nieuw systeem voor 

digitale handtekeningen. Van dit systeem kan (in tegenstelling tot RSA) worden bewe­
zen dat de kennis over oude handtekeningen niet helpt om nieuwe te maken. Er waren 

al systemen waarvan dit kon worden bewezen, maar deze gebruikten lange handtekenin­

gen, en maakten het nodig veel informatie over oude handtekeningen te bewaren. Het 
nieuwe protocol is ongeveer net zo efficient als RSA, hetgeen een grote besparing in 

geheugen oplevert ten opzichte van de andere systemen. Ook is het zo flexibel dat het 
voor speciale toepassingen kan worden gebruikt. 
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Het vijfde hoofdstuk "Verification of RSA Computations on a Small Computer", 

geeft een analyse van een eenvoudig protocol dat wordt gebruikt om berekeningen van 
een computer te controleren met een eenvoudige smartcard. (Een smartcard is een 

computertje ter grootte van een creditcard.) Het voordeel van deze methode is dat een 
goedkope smartcard kan worden gebruikt, terwijl berekeningen kunnen worden gebruikt 
die anders alleen met veel duurdere smartcards gedaan kunnen worden. Het protocol 

wordt gebruikt in privacy-beschermende electronische betalingssystemen. 
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