
PRACTICAL PRIVACY

Jurjen N.E. Bos

Practical Privacy

Proef schrift

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof. dr. J. H. van Lint, voor
een commissie aangewezen door het College van
Dekanen in het openbaar te verdedigen op dinsdag
24 maart 1992 om 16.00 uur

door

Jurjen Norbert Eelco Bos

geboren te Leiden.

Dit proefschrift is goedgekeurd

door de promotoren

prof. dr. ir. H. C. A. van Tilborg

en

prof. dr. J. H. van Lint,

en copromotor

dr. D. Chaum.

ISBN 90 6196 405 9

Table of Contents

1: Introduction

Cryptography

Classical cryptography

Modern cryptography

Complexity of a Computation

Basic Protocols

Blobs

Zero-knowledge proofs

Digital signatures

Privacy and Efficiency

Privacy

Efficiency

Overview

Disruption and synchronization in untraceable sending

An efficient voting scheme

Addition chain heuristics

Provably unforgeable signatures

Verification of RSA computations on a small computer

Notation .

References

6

6

8

10

12

12

14

15

2 Table of Contents

2: Disruption and Sychronization in Untraceable Sending

Introduction

The Dining Cryptographers (DC) System

Literature

Implementation . . .

Key sharing

Addition networks

An example

Verification

16

16

18

Detection of Disrupters 21

Opening

Traps

Synchronization 22

Slot reservation

Collision detect

Collision resolve

Sending long messages

Comparison of Transmission Rules 25

Slot reservation by Chaum

Slot reservation by den Boer

Collision resolve by Pfitzmann

Collision resolve after Chaum

Collision resolve after den Boer

Overview

Acknowledgement 34

References . . . 35

Table of Contents

3: An Efficient Voting Scheme 36

Introduction

Privacy

Security

Robustness

Verifiability

Efficiency

...... 36

Related Work .

Explanation of the Protocol

Local verification

Blobs

Blob validation

38

40

Description of the Protocol 43

First round

Second (voting) round

Third round

Fourth (challenge) round

Fifth (response) round

Overview

Proofs 48

Privacy

Security

Robustness

Verifiability

Efficiency

Extensions 50

Parallel computations

Precomputation

More options

Other blobs

Verification at the nodes

Less distribution of the results

Conclusion . . .

Acknowledgement

References . . .

52

52

53

3

4 Table of Contents

4: Ad(fition Chain Heuristics 55

Introduction 55

Addition chains

Addition sequences

Vector addition chains

Vector addition sequences

Related Work

Addition Graphs and Addition Machines

Addition graphs

Addition Machines

Quick Introduction to ABC

Making Addition Sequences

The protosequence algorithm

On-the-fly algorithms

58

59

63

64

Making Addition Chains 66

The binary method

The m-ary method

The window method

Window distribution

Addition sequence

Precomputation

Making Vector addition chains 71

Precomputation

Conclusion

References

Appendix to Chapter 4: The Programs

The right-to-left binary method

The right-to-left m-ary method

The window method

Addition machine programs for addition sequences

Precomputed addition chains

On-the-fly vector addition chains

72

73

75

Table of Contents

5: Provably Unforgeable Signatures

Introduction

Signature schemes

Related work

88

. 88

The Lamport Scheme 90

A small optimization

The New Signature Scheme 92

Signing

Verification

Parameters

Proof of Unforgeability 97

Conclusion 98

References 99

6: Verification of RSA Computations on a Small Computer 103

Introduction I 03

The Protocol I 04

Example: SmartCash I 05

Computation of the Residues 107

The Attack I 08

Choice of the Verification Modulus I 09

Prime numbers

Range of integers

Practical parameter values

Conclusion

References

Korte Omschrijving

Privacy

Efficientie

Overzicht

Dankwoord

Index

114

116

117

121

5

1
Introduction

Cryptography
Cryptography is the branch of mathematics that deals with the protection of

information. We distinguish classical and modern cryptography. We start explaining

the two terms in more detail.

Classical cryptography
Until about twenty years ago, cryptography was the art of making and breaking

codes. The codes are used to transfer messages over an unsafe channel. The channel

should be protected against intruders who read, insert, delete or modify messages (see

Figure I). Transmission of a message is done using an encryption function E, that

converts the message or plain text using the key into a cipher text. The receiver does

the reverse of this operation, using the decryption function D and key to recover the

plain text from the cipher text. The key is distributed in advance over a safe channel,

for example by courier.

Safe channel
Key

Message Message

Intruder

Figure 1: Classical cryptography.

Normally , the encryption and decryption function, but not the key, are considered

known to the enemy, so the protection of the information depends on the key only. If
the enemy knows the key, the whole system is useless until a new key is distributed.

Systems like this are still widely in use for secret communication. The American

National Security Agency (NSA) proposed a public encryption function , called Data

Introduction 7

Encryption Standard (DES), that is used for many applications nowadays.

Modern cryptography
This thesis covers aspects of modern cryptography. Modern cryptography deals

with communication between many different parties, without using a secret key for

every pair of parties. In 1976, Whitfield Diffie and Martin Hellman published an invited

paper in the "IEEE Transactions on Information Theory" titled "New Directions in
Cryptography" [DH76]*. This paper can be considered as the beginning of modern
cryptography.

The authors explain the notion of a "trapdoor one-way function". To explain what
this is, we first introduce the one-way function. A one-way function is a function that

is (relatively) easy to compute, but of which the inverse function is much harder to

compute. Of course, all input values can be tried; but there are so many input values
that this is impractical.

A nice example of the use of a one-way function is "flipping a coin over the
telephone" [Blu82], shown in Figure 2. Two parties, Alice and Bob, want to flip a fair

coin during a phone conversation. Of course, neither Alice nor Bob wants to believe the
other's claims just like that. To solve this, they use two coin flips and a one-way
function/ (in this case, a function on two arguments). First, Alice flips a coin,

computes the one-way function of the coin value and some random bits t and tells the

result to Bob. Then, Bob flips another coin, and tells the value to Alice. In the last step,
Alice tells her coin value to Bob, and the result of the protocol is whether the two coin
flips are equal or not. This behaves like a fair coin if at least one of the two uses a fair

coin.

Alice
cnoose r randomly

Flip coin a

Bob

f(a,r)

~ Flipcoinb

~ Verify f(a,r)

Figure 2: Coin flipping over the telephone.

A trapdoor one-way function (see Figure 3) is like a one-way function for

everybody except the owner of a certain piece of secret information. This extra
information, called again the key, allows to compute the inverse of the function

quickly.
An interesting application of trapdoor one-way functions is public-key

cryptography. This is a communication channel, as in classical cryptography, where

both ends use different keys instead of the same key. A trapdoor one-way function is

used as encryption function, and the function is assumed to be public. The description

of the function is called the public key. The corresponding private key is the secret

* Literature references are given at the end of each chapter.
t The extra random information r prevents Bob from trying out values to see what Alice's value was.

8 Chapter 1

information that allows to invert the function. This system allows sending of secret

messages by all parties, while they cannot decrypt each other's messages.
The trapdoor one-way function is the basis of modern cryptography. Almost all

modern cryptographic protocols use such functions in one way or another. At the time
the notion was introduced, no functions were available that had the needed properties.
A few years later Rivest, Shamir and Adleman [RSA 78] introduced the first trapdoor

one-way function that looked useful for practical use. Nowadays, this is the most

common trapdoor one-way function. The RSA function is explained later on.

Public knowledge: Secret knowledge:

(message) -0---,.. encryption encryption -a---. message

Figure 3: Trapdoor one-way function .

Protocols
A cryptographic system that solves a certain problem is called a protocol. For

example, the coin flipping example above is a protocol. Protocols with more than two

parties are called multiparty protocols. Using modern cryptography, protocols exist for

many different problems. Actually, it is possible to do "anything" with modern
cryptography in the sense that if a computation can be performed by a computer trusted

by all parties, it can also be done using cryptography and no trusted computer [BCC88,

CDG88]. Although this result gives an explicit protocol for a problem, this protocol is

so inefficient that it cannot be used in practice.

Many practical protocols are developed nowadays that address all kinds of
problems: electronic cash, elections, digital signatures, and so on.

Complexity of a Computation
Until now, we said a computation was "easy" or "hard" to perform (or, equivalently,

a problem is easy or hard to solve). Of course, to make accurate statements about the

security of a system, the notion must be stated more precisely. To show that a
computation is "easy", one can show an algorithm that performs it using a certain

number of steps, showing explicitly how much work it is. On the other hand , it is not

possible to show that a problem is "hard" by showing an algorithm, since there might

always be algorithms that do the computation in less steps. Unfortunately, for most
"hard" problems it is not known how much time the most efficient algorithm takes.

To show that a problem is hard to solve, we use a reduction from another problem.

To show that problem A is hard, we show that a solution to problem A can be used to
solve a problem B, where problem B is a well-known problem for which no efficient

solution has been found yet. If we assume that B is hard, we conclude that A must be

hard as well. This is called reduction from B to A. Note that a problem is reduced to a

Introduction 9

"harder" problem.

If a problem is so hard that finding a solution for given values is very expensive and

time consuming, we call it unfeasible. How much computation exactly is called

unfeasible, depends on the application. For example, for an encryption, the cost of
finding the key must be compared to the cost of stealing or buying it.

Table l shows an overview of hard problems that are used in cryptography. There

are algorithms to solve all these problems, but they are unfeasible for the parameter
values used in practice:

• The largest number that was factored nowadays using an algorithm that does
not use the special form of the number has l 06 digits [LM89]; this computation

needed the spare time of 400 computers over the world during a few months.

• The largest discrete log computation performed had a modulus p of 58 digits
[McC89, McC90, MO91] .

• It is an open problem whether RSA can be solved more efficiently than by

factoring the modulus.
• Finding a DES key given both plain text and cipher text (a known-plain text

attack) of DES is considered possible using a specially built computer. This
makes breaking DES not unfeasible for some applications.

Assumption Given Find

Factoring n= p·q p,q

Discrete Log ab (modp),a,p b

RSA ab (modn),b,n a

Breaking DES DES(k,m),m k
Table 1: Cryptographic assumptions.

There is one problem of which it is easy to compute how hard it is: guessing a

random value. Cryptosystems based on this have provable security, and those systems

are called unconditionally secure. For these systems, no information about the
contents of the message can be obtained without knowing the key. These systems
depend on the existence of a perfect random number generator. If a simulated random

generator is used, the security of the system depends on the qualities of the generator.
An example of an unconditionally secure system is the "Vemam Cipher", also

known as the "one-time pad". This is a classical cryptosystem; a message is encrypted
by shifting each letter a random amount in the alphabet. Every letter is shifted

separately by an amount specified by the key. The key consists of a list of random shifts

(0 to 25 steps) and is used only once. Note that the key has the same length as the
cipher text; this is always true for unconditionally secure ciphers. The cipher text is a

random string of letters, for which every plain text is equally probable. This makes that

an eavesdropper gains no information about the messages by intercepting the cipher

text, so the cipher text contains "no information" in information-theoretic sense.

10 Chapter 1

Basic Protocols
Three protocols that occur elsewhere in the thesis are considered standard protocols.

They are explained here separately.

Blobs
A blob [BCC88], also known as commitment, is a one-way function with two

arguments. The arguments are known as the contents and the key. The one-way

function used in the "coin flipping by telephone" example is used as a blob. The

purpose of a blob is to prove that a value was chosen before a certain time, and that it

didn't change since.

A blob between the parties Alice and Bob is used in three steps:

• First, Alice chooses a key, makes the blob, and sends it to Bob.

• Then, Alice and Bob perform a protocol, where Alice may use the secret blob

contents, while Bob doesn't know it.

• Then, Alice opens the blob by sending contents and key to Bob, proving that

she didn't change the contents during the protocol.

There are many different implementations of blobs, some offering extra properties.

An overview of implementations is given in [BCC88]. The simplest implementation of

a blob is a locked box. Alice puts the contents in the box, locks it, and sends it to Bob.

Alice opens the blob by sending the key of the box to Bob, so that he can open the box

to check the contents.

Digital signatures
A digital signature is a value that can only be computed by one party, while it can

be verified by everybody. Like handwritten signatures, they can be used to sign

messages. For example, a trap-door one-way function value of a message can be used

as a signature.

The most well-known digital signature system is the RSA system [RSA 78]. RSA is

a public key system. The public key consists of two numbers n and e, and a message

m is encrypted as

x = m e (modn).

The private key consists of the number d so that e · d = l (mod A(n)). Here, A is

the Carmichael function* that is the highest order of an element in the multiplicative

group modulo n. The number n must be composite; it is assumed that d cannot be

computed from n and e in this case. The decryption is performed by
xd =med= ml+k'A.(n) = m · lk = m (modn);

where k is a positive integer; here we use that mA(nl = I (mod n) for all m.

The two important properties that make RSA so useful are that encryption and

decryption are simple computational operations, and that encryption and decryption

* Although the Euler function <pis most often used in thi s context , the Carmichael function is more
general. In fact, A.(11) is a divisor of <p(n).

Introduction 11

commute with each other.

It is interesting to note that RSA can be reduced to factoring: if the factorization of

n is known, it is possible to extract roots modulo n. Whether the converse is true, is

not known; we know that if one can extract a few square roots modulo n (that is, b = 2

in Table I), it is possible to factor. For other values of b, no such algorithm is known.

Zero-knowledge proofs
A zero-knowledge proof (see [QGB89] for a witty and clear explanation) is a

protocol in which Peggy (the prover) convinces Vic (the verifier) that something is

true without revealing more information than that fact. An example of a zero­

knowledge proof is given in Figure 4. Here, Peggy proves to Vic that she knows x, the

discrete logarithm of h with respect to g:

h = gx (modp),

where g, h, and pare public numbers, and p is a prime. As the secret x cannot be

computed from g and h under the discrete log assumption, it will not be revealed.

Peggy

Chooser E {0, ... ,p-2}
m

1
=h,.

....................................

If b = 0:

If b = I: m2 =x·r (modp-1)

Figure 4: A zero-knowledge proof.

Vic

Choose b E {O, ll
Verify m1 = hm2

Verify m1 = gm2

In the protocol, Peggy first sends the number hr to Vic, where r is a random

number. In Vic's point of view, this is a random number from the range {I, .. . ,p - l}.

Vic then chooses a challenge bit b and sends this to Peggy. Finally, Peggy sends r or

x • r (mod p-1) depending on the challenge bit.

To prove that a protocol is a zero-knowledge proof, three things must be proved:

completeness, soundness and zero-knowledge.

A protocol is complete if Vic 's verification succeeds if Peggy is not cheating. In

the example, this can be verified using simple arithmetic.

A protocol is sound if Vic's verification fails with high probability if Peggy is ~

lying. The protocol can be repeated to increase this probability. In the example, if

Peggy does not know x, she cannot compute a message m1 for which she can open

both challenges. To see this, assume she can compute an m I so that she knows a value

for m2 for both values of b. If we call the mi-values a and p, we get:

m, =ha= gP

so Peggy knows that
h = gP!a (modp-l),

and this means that Peggy knew x from the beginning*, since there is only one x with

* The case that division by a. modulo p - l is not possible is ignored here for simplicity. This can be

prevented by choosing p of a special form.

12 Chapter 1

the property h = gt_ Thus, we know that Peggy cannot compute a and ~-

A protocol is zero-knowledge if Vic does not obtain any information from the

protocol that he cannot compute himself. Normally , we prove this by showing that Vic

can compute all messages involved in the protocol, with the same probability

distribution, without help from Peggy. This is called simulation of the protocol. From

a simulation we can conclude that Vic will obtain no information running the protocol

with Peggy.

Privacy and Efficiency
This dissertation consists of five chapters that contain different research topics in

cryptology. The connection between the chapters is that they all involve the practical

implementation of privacy related cryptographic protocols. The two aspects "privacy"

and "efficiency" play a role throughout the thesis.

Privacy
Nowadays, most organizations have large databases containing private information

of their clients. The clients have no access to this information, nor can they control

what it is used for. Linking of this information gives an accurate idea of what

individuals are doing. This is not a new idea; it already happens. Companies sell

databases to each other for consumer stati stics, credit-worthiness and other information.

Furthermore, organizations suffer from abuse by individuals. They react with more

aggressive security measures, like identity cards and television cameras. This way,

people lose more and more of their privacy. Another problem for the organizations is

that they cannot prove to individuals that they protect their privacy even if they do: the
clients have to trust them.

David Chaum addresses these problems in [Cha85], and gives solutions based on

modem cryptography. Much more work on the subject has been done since. This thesis

elaborates on several of the ideas, bringing the protection of privacy closer to reality.

Efficiency
The main argument against modem cryptography has always been that

implementing public key systems like RSA was "too expensive". While present day

technology makes the use of these systems more and more possible, the need for cheap

and thus simple systems remains. This thesis includes a chapter that increases the speed

of these computations, and shows methods to efficiently use public key cryptography
without the need for high-performance devices .

Overview
The five chapters with research topics address privacy and efficiency in several

ways. Here we discuss the contents of the five chapters briefly.

Introduction 13

Disruption and synchronization in untraceable sending
In protocols where privacy is an issue, like voting, it is convenient to be able to send

messages while the sender remains anonymous. The DC protocol solves this problem.
A problem with the DC protocol is that disrupters can delay or block transmissions of

other users, while they are protected by the anonymity of the scheme. There are solu­

tions to this problem in the literature, but they cost a lot of transmission. Two new so­

lutions are shown with much less transmission cost than the solutions in the literature.

An efficient voting scheme
A voting scheme much faster than existing in the literature is introduced. This

scheme is based on the DC protocol. All of the transmission is done simultaneously by

all participants, so that only a small number of transmission rounds is needed to perform

the election. The privacy of the users is unconditionally protected, so that the value of
the votes cannot be determined, even a long time after the election.

Addition chain heuristics
The RSA scheme is criticized because, though computationally simple, encryption

and decryption are relatively expensive. Methods are proposed to improve the speed of
the calculations. The calculation consists of many multiplications. Most research is

spent on improving the speed of the multiplications involved using advanced calculation

and special hardware. This chapter shows a method to reduce the number of multiplica­
tions, so that the other improvements sti ll apply.

Provably unforgeable signatures
Digital signatures are one of the more useful applications of cryptography. For

some applications, a form of provable security is needed. The scheme that has security

in the strongest sense (signatures cannot be obtained for a given message, even if other
signatures of the forger's choice are available), is rather inefficient. Here, a much more

efficient scheme is shown, that allows for many applications, including the fast signing

of short messages.

Verification of RSA computations on a small computer
Applications using smart cards are restricted because of the limited computation

power of a smart card. It is possible to make a smart card check the computation of a

larger computer using modulo reductions. A protocol is shown (of which a simpler

version already exists in the literature), and a security analysis is given. The protocol is
used in a commercial electronic cash system.

14 Chapter 1

Notation
In the formulae in this thesis, the following notations are used:

blob(x,y) blob of y with key x (see Chapter 3).

ceiling(x), Ix l the smallest integer~ x.

DC Dining Cryptographers scheme (see Chapter 2).

DES

expx

floor(x), Lx J
gcd S

GF(p), GF(p")

l(n)

lcmS

log(x)

logi(x)

RSA
X
~

xmodn

xdiv n

x = y (modn)

E (mod n)

?

x;i;y (modn)

VJ (modn),
1/ r y ·

alh
pklln

<p(n)

A(n)

L,f(i),flJU)
i eS

n!
i eS

{x E SI£}

#X

Data Encryption Standard private key scheme.

shorthand for eX.

the largest integer ~ x.
greatest common divisor of the elements of the set S.
Galois field of order p or pk.

length of shortest addition chain of n (see Chapter 4).

least common multiple of the elements of the set S.

natural logarithm of x.

base-2 logarithm of x.

Rivest-Shamir-Adleman public key scheme.

transmission of the value x from one place to another.

the rest of x after division by n.

Shorthand for l f, J.
x mod n = y mod n, or equivalently , nl(x-y)

value of expression E computed modulo n. Symbolic notation

meaning "interpret all computations in E modulo n".

check if x = y (modn).

RSA decryption: shorthand for l (modn), where dis defined

by d · x = I (modA(n)). [t can only be computed if one knows

the factorization of n (under the RSA assumption).

a divides h, or, equivalently, his a multiple of a.

pk is the highest power of p that divides n.

Euler's <p function: number of x E (I, .. . ,nl satisfying (x,n) = 1.
Carmichael function: highest order of elements in multiplication

group modulo n.

Sum, respectively product, over all values in a set.

Factorial function: equal to 1 · 2 · 3 · ... · n .

Binomial coefficient: the number of possibilities to choose y

elements from a set of x elements. Equal to '('~ •l' . y. "') .

the set of elements x of the set S that fulfill the conditional

expression E.

Number of elements of list or vector X.

Introduction 15

References
[BCC88] G. Brassard, D. Chaum, and C. Crepeau: Minimum Disclosure Proofs of

Knowledge, Journal of Computer and System Sciences 37 (No. 2, October
1988), pp. 156-189.

[Blu82] M. Blum: Coin Flipping by Telephone, Proc. IEEE Compcon (1982), pp.
133-137.

[CDG88] D. Chaum , I. B. Damgard, and J. van de Graaf, Multiparty computation

ensuring privacy of each party's input and correctness of the result,

Advances in Cryptology: Proc. Crypto '87 (Santa Barbara, CA, August
1987), pp. 87-119.

[Cha85] D. Chaum: Security without Identification : Transaction Systems to make

Big Brother Obsolete, Comm. of the ACM 28 (number I 0, October 1985),
pp. 1030-1044.

[DH76] W. Diffie and M. E. Hellman: New Directions in Cryptography, IEEE
Trans. Information Theory IT-22 (No. 6, November 1976), pp. 644-654.

[LM89] A. K. Lenstra and M. S. Manasse: Factoring by Electronic Mail,

Advances in Cryptology: Proc. Eurocrypt '89 (Houthalen, Belgium, April
1989), pp. 355-371.

[McC89] K. S. McCurley: The Discrete Logarithm Problem, Technical Report RJ-
6877, IBM Research division, Almaden Research Center, San Jose, CA.

[McC90] K. S. McCurley: The Discrete Logarithm Problem, Proc. Symposium of
Applied Mathematics, American Mathematical Society (1990), to appear.

[MO91] B. A. LaMacchia and A. M. Odlyzko: Computation of Discrete

Logarithms in Prime Fields, Designs, Codes and Cryptography 1 (Number
l,may 1991),pp.47-62.

[QGB89] J. J. Quisquater, L. Guillou, and T. Berson: How to explain Zero­

knowledge to your children, Advances in Cryptology: Proc. Crypto '89
(Santa Barbara, CA, August 1989), pp. 628-631.

[RSA78] R. L. Rivest, A. Shamir, and M. Adleman: A Methodfor Obtaining

Digital Signatures and Public Key Cryptosystems, Comm. ACM 21 (No 2,
February 1978), pp. 120-126.

2
Disruption and Synchronization

in Untraceable Sending

Introduction
One of the aspects of privacy is secrecy of communication. With this, we do not

only mean hiding the contents of the messages (which is easily done by encryption), but

also hiding the identity of the sender and receiver, and the number of messages sent and
received by each individual.

Hiding the receiver's identity is easily achieved by broadcasting the message. If the
message is targeted at one receiver, the message can be encrypted so that only the

proper receiver can decrypt it. Hiding the sender's identity is more difficult. ln current
transmission systems, the location of the sender of a message is always easily found.

The transmission of a message that hides the sender's identity is called untraceable

sending.

David Chaum [Cha88] introduced an untraceable sending system, the Dining

Cryptographers (DC) system, that hides the sender of a message unconditionally, and
only reveals an upper bound of the total number of messages sent. The name "dining

cryptographers" comes from one of the examples used in his article.

The main disadvantage of the system is that messages may not be sent simultane­
ously. If two messages are sent simultaneously, their sum (the messages being
interpreted as elements of a group) becomes public instead, so that the information is

lost. This brings the following problems:

• Some kind of synchronization is necessary to prevent collisions.

• Every sender can disrupt the total by sending random data. A special protocol
is needed to catch such a disrupter without reducing the privacy of the other
users.

In the rest of this chapter, we first discuss the implementation of a DC network in
practice. Then, we discuss the disruption and synchronization problems in detail.

Finally, two new solutions to these problems are shown and compared to the other
solutions that exist in the literature.

Untraceable Sending 17

The Dining Cryptographers (DC) System
The Dining Cryptographers system is best introduced by an example. Assume that

two people want to send a message anonymously to a third party. They want the recei ­

ver to be unable to find out which one of them sends this message. To do this, they first
make a random binary number, called the key. If one of them wants to send a message,

he outputs the bit-wise exclusive-or of that message and the key*. At the same moment,

the other of the two outputs the key itself. The receiver, or any other interested party,

can compute the exclusive-or of the two outputs to retrieve the message, but the two

random outputs cannot be distinguished to see which one of them contained the

message.
This idea can be extended to any number of senders. Let every pair of senders share

a key . The sender of a message outputs the exclusive-or of all keys he shares and the

message to be sent, while all other users output the exclusive-or of only their shared
keys. The exclusive-or of all these outputs gives the message, because every key occurs

twice in the total. Again, all outputs are random numbers, so all users are equally pro­
bable to be the sender.

In the applications we are interested in, the senders and receivers are the same group

of participants.
The example clearly shows two important properties of the DC system:

• Protection of the sender is unconditional; there is no way to find the sender of a

message, even with unlimited computing power.
• All participants transmit once for every message, even if they do not send a

message themselves.
On top of the DC protocol, a transmission rule is needed that defines when partici­

pants are allowed to send. Transmission rules must synchronize messages and detect
disrupters so that the network is used efficiently.

Literature
The problem of untraceable sending is first addressed in [Cha8 I]. This system uses

a network of trusted mail-relaying machines, the mixes. A mix receives RSA­

encrypted data, decrypts it, and forwards it in batches to the appropriate addresses. The
privacy protection is not unconditional , and the system in its simplest form has been

broken [PP89]. As far as we know, the mix system is the only alternative for the DC

system.
[Cha88] introduces the DC system. The problems of synchronization and disruption

are addressed, but the proposed transmission rule is rather inefficient.

[BB89] gives a more efficient solution to the synchronization problem, it was the
first publication on a collision resolve system. [Wai89] discusses the verification
problem (see below) and describes a synchronization protocol by Andreas Pfitzmann.

The ideas of that paper are further elaborated in [WP89]. The latter paper also elabora­

tes the placement of traps (see later on).

A discussion of practical considerations for untraceable sending occurs in [PW87].

* This is the same hiding of information as in the one-time pad.

18 Chapter 2

Implementation
[Cha88] states that the exclusive-or operation of the example may be extended to

other fields, but that it "seems to offer little practical advantage". It turns out however,

as Birgit Pfitzmann discovered [Pfi85] , that the exclusive-or operation may even be

replaced by the operation of any commutative group. Such an extension can be used in

many ways; for example see the voting scheme of Chapter 3. The group operations that

will be proposed in this chapter and in Chapter 3 are mainly addition or multiplication

modulo an integer, computations that are easy to perform in hardware. We write the

group operation that is used as a sum.

In the general case of a commutative group, the two owners of a key stream must

use inverse key values. If participants i and j use keys kij for their keys, we write

kij = -kji to show that they use opposite values of the keys. The message sent by user i

ism; ; we write m; = 0 if user i does not send a message. Using this notation , user i

outputs the value

m; + L,kij .
jeU

U is the set of all participants (the " universe"). It is easy to verify that the total of the

transmitted outputs is the total of the messages:

I,(m; + I,k,1) = I,m; + L,kij = I,m;.
ieU jeU ieU i,jeU ieU

Key sharing
If two participants share a key stream, they must both store the keys. To guarantee

unconditional privacy protection, the keys should not be generated by an algorithm, but

have to be truly random bits, just as with the one-time pad. This can make the list of

keys quite big; storage on an optical disk may be a practical solution.

Not all pairs of users need to share keys. Using less key pairs saves on three

important points:

• computation of the user 's output;

• storage of keys;

• key distribution.

The choice of which pairs of users share keys is important for privacy protection.

If not every pair of users shares a key, the untraceability of a message depends on

the reliability of certain participants, which we will explain using the key graph. The

nodes of the key graph are the participants; two nodes are connected by an edge if the

participants share a key. Figure 5 gives an example of a key graph.

The set of users that share keys with a given user is called the set of neighbours of

that user. In graph terminology, the set of neighbours of a node is the set of nodes

directly connected to that node. The participant marked * in Figure 5 has 4 neighbours.

The properties of the key graph model the privacy protection of the participants.

Take two trustworthy participants. If they are connected by an edge, it is impossible to

distinguish them as sender of a message. Also, if there is a path in the graph connecting

Untraceable Sending 19

them, it is still impossible to distinguish them. If we now consider the entire key graph,

we see that if the key graph is connected, the privacy of all members is ensured. If the

graph is disconnected, messages can be traced to one of the parts of the graph. Within

the connected parts of the graph, all members are untraceable with respect to each other.

Figure 5: A key graph.

The structure of the key graph determines untraceability of users with respect to

other users. A simple example is shown in Figure 5: the user marked * knows the only
key used by .._, so that all messages of.._ are clearly visible to him. User .._ has no un­

traceability with respect to *, but unconditional untraceability towards all other users.

This can be generalized to knowledge of arbitrary sets of keys. A user who knows a set

of shared keys can subtract those keys from the corresponding outputs, and remove the

corresponding edges from the key graph. This way, he can construct a graph of the keys

unknown to him. The structure of this reduced graph determines the anonymity of all

other users for him.

Users sharing their keys, called colluders, may know a large number of keys. This

can remove many edges from the key graph. If the colluders know enough keys to

partition the graph, they can see which part of the graph messages come from. The

number of colluders that can partition the graph depends on the structure of the graph.

For example, the "polygon" (ring-shaped) graph gives untraceability from all users

towards all others, but every collusion splits the graph.

Practical key graphs have a structure that depends on the needs of the users in the

graph. The goal of a good key graph is to contain as few keys as possible, while having

enough keys to give all users sufficient privacy protection in their opinion. If the

participants are allowed to choose their neighbours, they can choose those they trust.

Another consideration is the physical key distribution: it is preferable to let the

participants have neighbours that are physically close to them.

Addition networks
It is obvious that an efficient implementation of the DC scheme must quickly

compute the output total. This can be done with what we call an addition network. An

addition network connects a set of participants for a DC scheme. The network takes the

output from each participant, adds them (using the proper group operation) and makes

the result available to every participant. Some of the protocols use a mixture of group

operations, and the addition network must make sure that the outputs are combined

properly.

The addition network does not need to be protected against wire tapping, because all

the users ' messages are encrypted (by adding the shared keys). If the signals are

publicly accessible, the computations of the addition network can be verified by any

20 Chapter 2

interested party.
The distribution of the total sum among the participants can be performed in

computation time logarithmic in #U (the number of users). This is done by a network

in the shape of a tree, where every branch adds the result of its subbranches, and sends
the sum to the next higher level. The highest level distributes the results back to the
leaves (see Figure 6). The time it takes to compute and distribute the total is called the

turnaround time. Because we assume a fixed transmission rate, this time is more

conveniently expressed in the number of bits that can be transmitted in that time. In

practical implementations, the turnaround time will be a few thousand bits.
If the turnaround time is long compared to the length of the messages, messages that

depend on previous messages are delayed considerably until the previous output is

distributed. Most protocols consist of rounds of messages whose contents do only
depend on previous rounds. To make such protocols efficient, as few rounds as possible

should be used to reduce the effect of the turnaround time.

Figure 6: Distributing the sum in a hierarchical network.

Addition networks are not hard to implement in practice. Most standard networks
can in principle be reprogrammed to implement an addition network. The worldwide

Internet network and the local token ring networks are good examples, because they do

some processing on the packets anyway.
Once an addition network is set up, it can also be used for other purposes, such as

broadcasting of messages, or quick addition of traceable messages of all users. These

last possibilities will be used for the construction of a voting scheme in Chapter 3.

An example
We found a very elegant addition network that can be built if the addition network

only has to perform additions modulo an integer. Unfortunately, this makes it unusable

for the voting protocol of Chapter 3.
The network has the form of a binary tree, where each node adds two numbers and

sends the sum to the next node. The nodes consist of only a stream adder (see Figure 7).

A stream adder adds two numbers with the least significant bit first. It uses only one bit
of memory (for the carry). Numbers must be separated by one or more zeros, to give

room for the carry. The addition network consists of a stream adder at every node,

computing the unreduced sum of the output values. The modulo reduction is done only

on the total. The last node computes this modulo reduction and distributes it back along
the other nodes. If there are p participants, the unreduced total sum is log2 p longer

than the user outputs. Thus, after every number, log2 p zeros must be fed into the

Untraceable Sending

stream adders for the extra bits.

This system uses a very small amount of hardware per node; essentially, only a
stream adder is necessary. Because only the last node has to take care about the

modulus, this system is particularly efficient if the modulus changes often. The
turnaround time is very low, because the nodes do not have to store the intermediate

results.

la _i 0] (Ca,•~:ae,tot)

Figure 7: A stream adder.

Verification

21

The distribution of the output among the participants must give each participant the

same value (that we call input for the discussion). If the participants can be given
different inputs, traffic analysis is possible by observing reactions of participants.

Making sure that all inputs are equal is called the verification problem.

The traffic analysis attack, and a solution to the verification problem, are described

in [Wai89]. His solution is to make the keys dependent on the input of the previous
round. If each participant receives the same input during a round (as it should be), the

key pairs are distributed uniformly, so that there is normal untraceability. If two
participants receive different inputs, their keys of the next round will not match, so that

the total output of that round is uniformly random. Although the users can detect that
two users received different inputs, there is no way to prevent it. Also, the turnaround

time is not taken into consideration in this protocol. Every transmission depends on the
previous total, so that the turnaround time effects every message.

A more efficient, but less secure solution to the verification problem is to distribute

the total over several routes simultaneously. The nodes compare their inputs from other

nodes to detect modification of the total along the way. An extra advantage of this
method is that it improves the reliability of the network. The turnaround time need not

be affected by this method.

Detection of Disrupters
Disruption is the transmission of data that are not allowed according to the protocol,

either maliciously or because of a defect. A malicious disrupter will try to hide his

identity using the untraceability of the network. A good transmission rule reduces the

amount of harm disrupters can cause, without reducing the untraceabi lity of the
messages.

22 Chapter 2

Opening
The only weapon in the battle against disrupters is opening. An output message is

opened if every user publishes all keys used to compute hi s output for that message.

This will also reveal the message m; of every user. The public can verify whether the
outputs were computed correctly, that participants sharing a key used matching keys

(we assume the key graph is public), and that the transmission rule was obeyed. The

anonymity of all user messages is lost, of course.
A disrupter can admit having sent the disruptive message, or try to hide it. If he

wants to hide his message by lying about his keys, a confli ct results between the disrup­

ter and one of hi s neighbours. The only solution is to stop using this key (removing an
edge from the key graph). A transmission error that is the result of wrong key sharing

will also be removed. A di srupter who keeps di srupting and lying about his keys will

quickly become suspect, and eventually lose all his keys.

Traps
Opening a message containing private information is impossible, because users do

not want their messages to be traced. To catch a di srupter by opening a message,

special messages must be made that contain no private information. A good solution

proposed in [Cha88] is to send trap messages, messages that contain no private
information. The sender of a trap message publishes a commitment of the trap in

advance so that he can prove afterwards that the corresponding message can safely be
opened. If a trap message gets disrupted, the corresponding message can be opened and

the disrupter can be caught. [WP89] gives an explicit example of such a method.

Synchronization
The important problem in a practical implementation of the DC scheme is the

coordination of the different senders. If two or more participants decide to send at the

same time, the result may not be understandable for the public. (In the case of two par­

ticipants, the participants in question can determine each other's message by subtracting
their own, but the other users only get the sum of the messages.) The transmission rule

determines when participants may send their message. This coordination problem is as
old as computer networks, and there is a lot of literature on this subject (see for example

[DBP79], [Tan88] for an overview). We do not go into details here, but the literature
shows that a good transmission rule provides the following properties:

• every user must be able to send a certain amount of data;
• delay times must be as short as possible.

In untraceable sending, we need an extra property:

• the protocol may not reduce sender anonymity.

This last rule limits the number of protocols from the literature that can be applied ,
because anonymity is not an issue in these standard protocols.

From the first and second properties it is clear that a transmission rule should limit

the harm caused by disrupters as much as possible. Finding di srupters is complicated by

Untraceable Sending

the third property. Ideally, all the disruptions should be traced, while the rest of the
messages stay untraceable.

Slot reservation

23

There are two kinds of transmission rules for untraceable sending. The simplest
transmission rules use slot reservation. Transmission is divided into two rounds: the

reservation round and the communication round. In the reservation round, all users
send a message (possibly simultaneously), determining an ordering for the users. In the
communication round, the users have to send in this order. All users send one (possibly

empty) message in that order.
In slot reservation, detection of disrupters is rather simple: a disruption of the

reservation round forces opening of the messages. The reservation round is designed so

that only random data is involved, so that the reservations can be opened without

compromising privacy. Disruptions in the communication round are caught using trap

messages.

Collision detect
The other idea is to use collision detect. In a collision detect system, users send

whenever they have something to send. The other users send zeros (output the sum of
their keys only). This is a special case of the ALOHA protocol.

The original ALOHA protocol [DBP79] was designed for satellite oriented radio
communication between islands. It is currently used on networks where all users have

access to the same bus. This bus need not be a radio frequency; it can also be a cable
(as is done on the Ethernet). The transmission rule is very simple: every user who wants

to send, sends immediately. If the transmission happens to be simultaneous with that of
another participant, the result will be garbled (a collision). In this case, both

participants wait a random time* and try again. This protocol is very efficient,

especially because senders do not have to wait for their turn. A disadvantage is the

unpredictable behaviour if there is a lot of traffic.
In untraceable sending, this system is applicable if transmission occurs at regular

intervals (this is called slotted ALOHA in [Tan88, section 3.2]). At each step, all users

send a zero message, except for users who want to say something, who start sending a
header block, followed by the actual message.

Since disrupters can send fake header blocks, these blocks must occasionally be

opened. To protect the privacy, header blocks must not contain message informationt.

Disruption of header blocks can be detected by opening header blocks at random times
or if the number of collisions is higher than statistically expected. Disruption of

messages can be prevented as before using traps.
The efficiency of collision detect comes from not having to waste time on users who

have nothing to send. The price paid for this is privacy: if a header block has to be

opened, the users who intended to send at that time are revealed. The privacy loss can

* In practice, the delay is a uniform random number from an interval. If collision happens again, the
delay is chosen from longer and longer intervals.
t This problem is overlooked in [Wai89].

24 Chapter 2

be reduced at the cost of efficiency by letting users send random header blocks for

empty messages at irregular intervals.

Collision resolve
The additive properties of the DC system allow to resolve collisions in a much more

efficient way than waiting a random time. If the header blocks are chosen appropriately,
the sum of the header blocks can determine an order for the group of messages that are

involved in the collision. The messages can then be sent in the specified order, like the
slot reservation system. This is called collision resolve. This notion was discovered
independently by Andreas Pfitzmann [Wai89]. From the user's viewpoint, slotted

ALOHA with collision resolve works as follows:

• If there is no message to send, send a 0.
• If there is a message to send, wait until the current group of messages ends.

• Start sending a header block.
• If there is a collision, determine when to send and wait for your tum in the

message group.
• At the proper moment, send the message contents without header block.

All collision resolve protocols use this structure. The protocols determine the form

of the header block, and the order of messages in a message group.

Sending long messages
The transmission of long messages (whether using collision detect or slot reserva­

tion) can be done in several ways.
The simplest solution is to give all messages a fixed length, and break long

messages in pieces. This gives full untraceability of the messages, but it is rather

inefficient.
It is more efficient to send messages in one piece. If all messages are sent in one

piece, the messages must contain some information about their length. The sender of

the next message must know this information to determine the moment he can start

sending his message. Thus, the time between two messages is at least as large as the

turnaround time. If the turnaround time is large, the protocol is again inefficient.
A more efficient solution is to encode the length of the messages in the header block

or reservation round. This way, the locations of all messages are known beforehand,

and the messages can be sent without delay. As opposed to the previous solutions, thi s
solution does compromise privacy: if the header block or reservation round is opened,
all the message lengths become public.

All protocols presented here can be adapted to use any of these three ways to handle
long messages. For the rest of the discussion, we assume that all messages have the

same length.

Untraceable Sending 25

Comparison of Transmission Rules
We compare five transmission rules: two slot reservation protocols and three

collision detect protocols. Two collision detect protocols are new, the others are known
from the literature.

A slot reservation protocol and a collision detect protocol are very similar. Both

protocols work in two steps: first an ordering is determined, then a list of messages is

sent in that order. Slot reservation protocols use a reservation block that contains
messages of every participant; collision detect protocols send a header block that

contains messages of all participants who happen to send at that time.
It is always possible to use a collision resolve protocol as a slot reservation protocol:

let all participants "collide" at a certain moment, and use the rules of the collision detect
protocol to determine an order. Conversion in the other direction, from a slot

reservation protocol to a collision detect protocol, is also possible. In fact, the two new

collision detect protocols are adapted slot reservation protocols.
An advantage of slot reservation protocols over collision detect protocols is that

they give more intrinsic privacy: opening the reservation round does not reveal who

wants to send something, because everybody reserves something in the round. An
advantage of the collision detect protocols, on the other hand, is that they allow more

efficient channel usage.
The criteria we use for comparison of the transmission rules are: transmission time,

sensitivity for turnaround time, and computation efficiency.

Slot reservation by Chaum
The slot reservation system as described in [Cha88] used a reservation round

consisting of a number of messages of weight one (zero bits on all but one position).

Every participant chooses one of the bit positions at random and sends a I on only this

position. The total of these messages is computed bitwise modulo 2 (exclusive or). If

two participants accidentally choose the same bit position, a conflict occurs. Such a
conflict is detected if the number of ones in the reservation round is less than #U. In

this case, the round is repeated. Otherwise, the order of the ones in the round
determines the order in which the participants may use the following rounds for their
message (see Figure 8). This way, all participants know when it is their tum to send.

The transmission time is quadratic in #U. This is because the length of the reser­

vation round must be large enough to keep the probability of a collision low. (This is

known as the birthday paradox. If there are more than 23 people in a room, the proba­

bility is more than 50% that there are two people among them with the same birthday.)
If there is a collision, the reservation round has to be repeated.

The protocol is insensitive to a long turnaround time, and uses almost no computa­

tion. After the reservation round, the turnaround time does not cause any more delays.

All users know when it is their tum to send, even before the total of the previous mes­

sage is computed. This allows the transmission of all messages in one round, without
breaks.

26 Chapter 2

~Time Reservation round

User A I 1IOIOIOIOIOIOIOIOIOIOIOIOIOI

User B IOIOIOIOIOIOIOIOIOIOIOI 1!0101

User C IOIOIOIOIOIOl 1IOIOIOIOIOIOIOI

Total I 1IOIOIOIOIOl 1IOIOIOIOI 110101

Messages

c::::J

c::::J

c::::J

Figure 8: Slot reservation of [Cha88].

The transmission time for this system can be estimated statistically. The probability

that there is a collision in the reservation round is
/
.,

C=l- .
(r - n)!r"'

where n is the number of participants, and r is the number of bits in the reservation

round.

The turnaround time influences the optimal length of the reservation round. If the

turnaround time is equivalent to the transmission oft bits, a reservation round takes

r+t bits. Because of collisions, a reservation is repeated ,~c times in average, so the

expected total transmission time for the reservation rounds is :-:~ bits. To compute the

optimal choice of r, we differentiate with respect tor:

i r+t -i(~- (r-n)!J-
a,. 1 - c - a,. ,. + t r ! -

,.n (r-n)! (I n)
- ·--· -+-+'l'(r+l-n)-'l'(r+I).
r+t r! r+t r

Using asymptotic approximation for small t, we get the optimal value for r:

r == 1-n2 + 1-n + t-l - ..±..(t +_J__) +O(n-2) 2 6 9 311 45 .

In some possible implementations of an addition network, t grows with r . If we set

t =Ar, we get

r==1-(l+A)·n2 +(1-_1.)·n+-1--l- 4 .1-+0(n- 2).
2 6 2 9(1+A) 3 135(1+A)2 11

From our computation we can see that the optimal value of r is quadratic in n.

The probability of a collision is rather high (if t = 0, we get r = ½n2 and C == I- ¼), so

that up toe repetitions of the round are to be expected. If t = 0, the expected total

transmission time for the reservation round is f n2 bits. (Note that the value for r of

100 · n2 suggested in [8B89] is not only much higher than the optimum, but also

significantly more than the expected total time.)

The influence of a long turnaround time on the total time for a reservation round is

relatively small. For small values oft, the total time grows like e • t, which is rather

slowly. For larger values oft, the total time grows even more slowly, since the

probability of collision drops.

A problem is that the participants can influence the position of their message during

the next round by sending the I bit in the reservation round earlier or later. There is a

Untraceable Sending 27

simple solution for this, that is not mentioned in the original article [Cha88]. We make

the assigned order unpredictable with a cyclic shift over a random distance. If the

original rule states that the users send in order a1 , oz,···, a,,, the modified rule defines

the order to be ax, ax+i•·--, a,,, a1, az,···, ax- J· The sh iftdistancex is a random
number from the interval {I, ... , n l- To make a random number known to all

participants, we can for example compute x as a one-way function value of the

reservation round. Another way is to let all participants send a random number for one

round, and use the total of that round. Such optimizations can be applied to all systems

mentioned here to make sure that the participants cannot predict their position in the

messages.

Slot reservation by den Boer
Bert den Boer [Boe88] proposed a slot reservation protocol that almost never needs

repetition of the reservation round. In it all participants send a special block containing

a random number. The values of all these blocks can be computed from their sum using

a rather complicated algorithm. The algorithm determines a transmission order that

cannot be predicted by the participants.

The transmission time of the algorithm is rather low, because almost always only

one block has to be sent. This makes the algorithm insensitive to a large turnaround

time, because this delay only influences the time between the reservation round and the

communication round. The computation, on the other hand, is much more involved

than the previous protocol.

Jf the turnaround time is very high, or the computation is too much, the rounds can

be skewed one or more rounds so that the reservation round determines a later message

round; see Figure 9. This allows the channel to be used efficiently. This idea is also

applicable for other slot reservation protocols, but not for collision detect protocols.

Reservation round 2 Message round 2

i i
Ca=J ~I - -2 __ 1 c:::LJ

Figure 9: Dealing with long delays in slot reservation.

3

In this slot reservation scheme, user i sends a reservation block of the form

A;,A; ,A;3, ... ,Af',
where the numbers A; are nonzero random numbers in a finite field with q elements.

For simplicity, we take q to be prime. The blocks are added up coordinatewise in the

field, giving the sums

S1 ,Sz,S3, .•. ,S11 •

The set of A; values can be determined from the sums alone. Later on we explain an

algorithm to do this in detail. The order in which the participants may send in the

message round is determined by this algorithm. The position of an A; in the communi-

28 Chapter 2

cation round is not determined by the value of A;, so an algorithm to "shuffle" the

communication round is not needed.

We now estimate the expected transmission time for the protocol. Call the number

of field elements q. A field element can be encoded using log2 q bits (ignoring

roundoff). The length of the reservation phase is
nlog2 q.

The probability of a conflict can be approximated in the same way as with the slot

reservation algorithm of Chaum. The probability is about

C = I - e - n2 /2q.

Taking account of the turnaround time, the total time of the reservation round with

repetitions becomes n
10

1~J+i , which is minimal if q is the solution of the equation

q = lo!2 . n(n log2 q + t);

we choose for q a prime number close to this value, which is roughly n2 log2 n. For

example, if there are a million participants, the optimal value of q is about 1.52· 10 13

and C is about 0.032.

We now explain the algorithm in detail. Every participant i chooses a random

nonzero value A; from the field . The reservation block is

A;, A;2, A(, ... , At.

The blocks are added up in the field , and we call the sums

S1= I,A/, wherejEO, ... ,n}.
iEU

The A; are the reciprocals of the roots of the polynomial over the field

P(x)= IJ(l-xA;).
iEU

The coefficients of this polynomial can be computed from the sums SJ' To see this,

first write out the product as
11

P(x)= II(l- xA;)= L,O';X;.

iEU i=O

From this product, the values of CT; can be computed:
O'o = I

cr 1 = - L,A;
iEV

0'2 = L,A;A;,
i=t.i'

crn = (-l)"IJ A;
iEV

Untraceable Sending

These equations can be rewritten as Newton's identities:
S1 -o-1 =0

S2 -o-1S1 +2cr2 =0

S3 - o-1S2 + o-2S1 - 3cr3 = 0

S11 - o- 1S,,_1 + ·· · + (-l)"-10-11 _ 1S1 + (-1)" na,, = 0

29

This is a triangular linear system of equations, so the O"; can be computed from the Sj

by simply solving the equations in order. Since q is a prime number, we know that no

redundant equations occur in this system. (Later on, we will discuss the case where q

is a power of 2.)
The O"; are the coefficients of the polynomial P whose roots are the reciprocals of

the values A;. To find the values A;, we find the roots of P by factoring. Since q is a
large number with respect to n, we cannot try out values to find the roots. An easy way

to factor a polynomial in a prime order field is using the polynomial

Q(x)=xq -x,

that has all field elements as roots . If P has no multiple roots (all A; are different),

then Q is a multiple of P. In other words, if Qmod P -:t- 0, there is a conflict, and the
participants must send a new reservation block. From now on, we assume that Q is a

multiple of P.

Q can be split into two parts
Q(x) = Q1 (x) · Q2 (x) = (x<p-I)/2 + l)(x(p+Il/2 -x).

Because Q is a multiple of P, P can be split in two parts using the greatest common
divisor:

P =Pi· P2 = gcd(P,Q1) · gcd(P,Q2).

The ordering of the roots of P can now be defined: first the roots of P 1, then the roots

of P 2. The splitting and ordering of the roots of P I and P 2 is performed recursively,
splitting up the polynomials P I and P 2 using Q(x +I). This process continues using

Q(x + 2), and so on, until Pis completely split up in polynomials of degree I. (These

polynomials of degree 1 are multiples of the factors I - xA; in the original definition of

P.)

A participant does not need to compute all the roots to find his position in the

ordering. Consider user Alice, who wants to know the position of her value A in the
reciprocals of the roots of P.

• First, she computes the coefficients of P using the method described above,

and verifies Q mod P = 0 to make sure there is no conflict.
• To know if the root corresponding to her value of A is in the first or second

half of P, she computes Q1(A- 1
). This value is 0 or I.

• If it is 0, she is in the first group of participants, and she computes

Pi = gcd(P,Q1), and proceeds recursively with P" computing Q1 (A- 1 + 1) .
• If it is 1, she is in the second group of participants. She continues the recursion

with P2 = gcd(P,Q2) . Her position in the whole group is the sum of her

30 Chapter 2

position in the second group and the size of the first group. Her position in the
second group is computed by recursion on P 2, and the size of the first group is

the degree of P 1• The degree of P I is the degree of P minus the degree of
P 2, so P I does not have to be computed to find its degree.

• Alice repeats until she has a first-degree polynomial with root A-1•

The expected number of steps of this algorithm is µ
11

, where the numbers µk are
defined as:

{:: :;. [µ,+ tmµ;l
It is possible to prove that µk = log2 k + 0(1) [0D91] , so that the expected number

of steps is about log2 n . The proof of this approximation is surprisingly hard, and lies

outside the scope of this book.
In this version of the protocol , the participants can influence their position by

choosing certain values for the A;. A simple extra requirement prevents this without

using extra transmission or computation. As stated above, Alice computes in the ph
recursion the value of Q1 (A- 1 + i) . If it is zero, she may go in the first group, and if it is

one, she has to wait for the second group. Instead, we define that Alice may go first if

this value is equal to the ith bit of a random number. A good choice for this random
number is the sum SI' because it is a random number influenced by all the participants.

The actual protocol as proposed by Bert den Boer uses a field of characteristic 2. In
this case the number of elements q is a power of two*. Computations in this field are

easier, but there are some differences. In a field of characteristic 2, the equality

x 2 + y2 = (x+ y)2
holds (the "freshmen 's dream"). This makes that the sums on the even powers of the A;

do not give new information, since they can be computed from the sums of other
powers. The reservation block consists of the odd powers

A; ,A;3 ,A;5 , .. . ,A/11
-

1
•

The Sj can be computed from the totals:

S1 = L,A;; S2 = S~; S3 = I,A;3; S4 =Si, and so on.
iEU iEU

The computation of the polynomial coefficients from these sums is different from

the previous case, because the even lines of Newton 's identities are useless. The linear

system that yields the CT; is not triangular anymore, so the equations cannot be solved
the easy way. Solving this equation is related to decoding BCH codes; two algorithms

that compute the CT; from the S1 are described in [Bur71]. Once these coefficients CT;

are found, the factorization of P is performed using the polynomial

Q(x) = xq +x.

Q(x) can be split up as
trace(x) · (trace(x) + I),

* The case where q is a power of another small prime is not considered here.

Untraceable Sending

where the trace function is defined as

trace(x) = (x + x 2 + x 4 + ... + xq/Z).

As before, the polynomial P is split up in two halves Pi and P2 using the splitting
of Q. For the recursion, the splittings

Q(x) = trace(a.x) · (trace(a.x) + 1),

Q(x) = trace(a2 x) • (trace(a2 x) + 1), .. .

are used, where a is a generator of the field GF(q).

These computations can be performed quickly using special hardware, especially

when a so called (optimal) normal base is used [AMOV91]. This might speed up the

computations considerably over the previous case where q is a prime.

Collision detect by Pfitzmann

31

The first collision resolve algorithm we consider is an algorithm that is developed
by Andreas Pfitzmann [Wai89], at the same time that we made the collision detect

algorithm after the system of Bert den Boer. Pfitzmann's protocol uses a trick that
divides the colliding participants in two groups, that use the algorithm recursively until
the collision is completely resolved.

If the turnaround time is equivalent to the transmission oft bits, and the maximum

collision size the algorithm can handle is smax• the collision resolve takes a total time of

approximately
(s-1) · (log2 n + 31og2 smax + t) bits,

wheres is the actual size of the collision. The derivation is shown below. The partici­

pants only have to perform very simple computations, so that no special hardware is
needed. The main problem of this protocol is the dependency on the turnaround time.

Because the protocol relies on repetitive resolving of collisions, the turnaround time

counts in every step.

The protocol is based on averaging. The header blocks are pairs (1, M), where M;
is a random number chosen from 11, ... , M max f. The elements of the pairs are added up
separately using a modulus* that is so large that the total is the actual sum of the
headers. Each participant can now compute the average

L,M;
~

s
The participants divide themselves in two groups depending on their value of M;.

The participants with values of M; that are lower than average may go first. They start

immediately resending the header blocks, resulting in a new collision of about half the
size. They recursively resolve the collision. When they all sent their messages, the

group with values higher than average may send. They don't have to send the header

block, because they can compute the total in advance by subtracting the total of the first

group from M;.

• The DC algorithm requires the use of a finite abelain group, so the addition must be modular.

32 Chapter 2

The protocol is detailed in Figure 10.

2

Put a random element of !l, ... ,Mmaxl in M.
Send the message (I, M), and wait for the total.
Put the total in C,S.
If C = I, the collision is resolved; send the message, and stop.
Put the average S/C in A.
IfM.,; A:

Send the header (1, M), and wait for the total.
Put the total in C',S'.
If C' = C, there is a conflict; go to step 1.
Otherwise, put C',S' in C,S and go to step 2.

Alice is in the second group:
Wait for the next total, and put it in C',S'.
Wait for the C' messages in the first group.
Put C-C',S-S' in C,S, and go to step 2.

Figure 10: Pfitzmann's collision resolve protocol for user Alice.

The transmission time of this scheme is easy to calculate. The headers are added up

using two moduli. The first modulus must be n +I, and the second modulus can be

smaxMmax + I, so that all collisions of size at most smax yield a correct sum. This
makes the length of a header block equal to

1Iog2(n + I) l + 1log2 (smaxMmax + 1)7-
Resolving a collision of s participants takes s - I steps, so the total time to resolve

a collision is

(s - l) · (1log2(n + I) l + 1log2(SmaxMmax + 1) l + t).

The optimal choice for the number M max is about s~ax log2 s.

If more than smax participants collide, a special protocol must resolve the collision

again. For example, all participants can send a second header with a higher value of

Collision resolve after Chaum
We extend the slot reservation algorithm of [Cha88] to a collision resolve algorithm.

The header block consists of r bits. It contains a I in one position and O in the other

positions. If a collision is detected, the rules of Chaum 's slot reservation algorithm

determine the order in which to send.

The problem with this protocol is the detection of conflicts. Conflicts can be

detected by sending an extra message containing a I, just as with the previous protocol

of Pfitzmann. The sum of these will be the number of participants in the collision. A

conflict is detected if the number of ones does not match the number of colliding

participants.

The transmission time of this scheme is quadratic in the number of colliding

participants. It can be computed in a similar fashion as the previous protocol. The

length of a header block is

Untraceable Sending 33

r + 1log2 (n + l)l bits.

The optimal choice for r is hard to calculate, because the probability of a conflict of
header messages depends on the size of a collision. If we assume that the collision size

sis equal to smax' the optimal choice for r would be

r = S~ax (Smax + ✓~s~_a_x_+_8_t).

The probability of a collision grows fast withs, so that the optimal choice of r is

probably slightly higher*. If all collisions are the same size, and the turnaround time is

zero, r must be s~3x/2, and the expected total time for the headers is

fs2 + e1log2 (n + l)l bits.

The dependency on the turnaround time is rather small. The expected extra time for

a turnaround time oft is t · e, because the expected number of retries for conflicts is e.

The computation needed for this slot reservation scheme is trivial.

Collision resolve after den Boer
The slot reservation scheme by Bert den Boer [Boe88] can also be extended to a

collision resolve protocol. The effect of this protocol is that after one header block the
c0llision is immediately resolved, and the parties can start sending in order. This makes
the turnaround time count only once per collision.

The header block is the message

l,A;,A;2 , ... ,A/-1

where A; are random numbers. The parameter k determines the maximal size of a

collision. For best results, the value k can be chosen a small number, and if the

collision turns out to involve more than k participants (by examination of the first sum),
more powers of the same number A can be sent to resolve the collision completely.

The protocol works just like the slot reservation version. The characteristic 2

version can also be used. As a collision detect protocol , the computation done by the
participants is a lot less because the expected number of participants involved in the
collision is much less than #U.

This new protocol is probably the most efficient protocol in practice, because it uses

little data for the header blocks, and is relatively insensitive to the turnaround time. The
only problem is that is uses a large amount of computation.

Overview
Table 2 shows an simplified overview of the discussed transmission rules.

The systems marked with a * are collision detect systems that we adapted here from

slot reservation systems. The original author of the slot reservation system is given in
those cases.

The column "Reference" lists the first publication of the protocol.

The column "Transmission" lists the approximate amount of bits it takes to

determine the order between the participants involved. In the case of a slot reservation
system, it is a function of the number of participants n. For a collision detect system,
• To compute this, we need a probabilistic model of the col lision size.

34 Chapter 2

we assume that all collisions have the same sizes, and the turnaround time is zero.

The column "Turnaround" gives an impression of the sensitivity of the system for

long turnaround times. It shows the expected number of repetitions of the scheme.

During every repetition , the participants have to wait for the outcome. To compute the

total delay for one round, the turnaround time has to be multiplied by the entry in the

column.

The column "Computation" gives the amount of computation. A "-" sign means

that the protocol needs negligible amount of computation, while "pol. factor(k)"

denotes the amount of computation to factor a polynomial of degree k in a field.

The column "Type" designates whether the system is a Slot Reservation (S.R.) or

Collision Detect (C.D.) system.

System Reference Transmission Turnaround Computation

Chaum [Cha88] fn e"' 2. 72

den Boer [Boe88] 2nlog2 n 1 pol. factor(n)

Pfitzmann [Wai89] s · (log2 n + 3 log2 s) s

Bos/Chaum * e·(log2n+½s2) e

Bos I den Boer * [8B89] 2slog2 s pol. factor(s)

Table 2: Comparison of transmission rules.

Acknowledgement
I would like to thank Adri Olde Daalhuis for his work on the µk and on the

asymptotic approximation of the r.

Type

S.R.

S.R.

C.D.

C.D.

C.D.

References
[AMOV9l]

Untraceable Sending 35

G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and S. A. Vanstone: An

Implementation for a Fast Public-Key Cryptosystem, Journal of Cryptology
3 (No. 2, 1991), pp. 63-79.

[BB89] J. N. E. Bos and H. den Boer: Detecting Disrupters in the DC protocol,

Advances in Cryptology: Proc. Eurocrypt '89 (Houthalen, Belgium, May
1989), pp. 320-327.

[Boe88] H. den Boer, personal communication.

[Bur7 l] H. 0. Burton: lnversionless Decoding of Binary BCH Codes, IEEE Trans.
Information Theory IT-17 (No. 4, July 1971), pp. 464-466.

[Cha8l] D. Chaum: Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms, Comm. ACM 24 (No. 2, February 1981), pp. 84-88.
[Cha88] D. Chaum: The Dining Cryptographers Problem: Unconditional Sender

and Recipient U ntraceability, Journal of Cryptology I (No. l, I 988) pp.
65-75.

[DBP79] D. W. Davies , D. L.A. Barber, W. L. Price , and C. M. Solomides:

[OD91]
[Pfi85]

[PP89]

Computer Networks and their Protocols, John Wiley and Sons, 1979.

A. Olde Daalhuis : personal communication.
B. Pfitzmann: personal communication.

B. Pfitzmann and A. Pfitzmann: How to break the Direct RSA-

Implementation of mixes, Advances in Cryptology: Proc. Eurocrypt '89

(Houthalen, Belgium, May 1989), pp. 373-381.

[PW87] A. Pfitzmann and M. Waidner: Networks without User Observability,

Computers & Security 6 (No. 2, April 1987), pp. 158-166.
[Tan88] A. S. Tanenbaum: Computer Networks, Prentice-Hall, 1988.

[Wai89] M. Waidner: Unconditional Sender and Recipient Untraceability in spite

of Active Attacks, Advances in Cryptology: Proc. Eurocrypt '89
(Houthalen, Belgium, May 1989), pp. 302-319.

[WP89] M. Waidner and B. Pfitzmann: The Dining Cryptographers in the Disco,

Advances in Cryptology: Proc. Eurocrypt '89 (Houthalen, Belgium, May

1989), p. 690.

3
An Efficient Voting Scheme

Introduction
The network for untraceable sending of Chapter 2 can be used for several purposes.

The present chapter describes the implementation of an efficient voting scheme using
this network. A voting scheme is a protocol that performs a secret-ballot election with

the following properties:
• Privacy: the voting is anonymous*, so that the votes are kept secret;

• Security: the participants are unable to influence the outcome more than by just

their vote;
• Robustness: it is hard for participants to disrupt the execution of the protocol ;

• Verifiability: every voter is convinced of the correctness of the election

outcome;
• Efficiency: the protocol can be applied in practice over an electronic network.

We discuss the features listed above in analogy of traditional statuary democratic

decision procedures as in carrying or rejection of motions or in the election of repre­

sentatives. In the rest of the chapter, we discuss the voting schemes that exist in the

literature compared to the new scheme. Then, after introduction of the terminology

used, we describe the protocol in detail. Proofs of the necessary properties are given,
and extensions are shown that make the voting scheme more flexible and efficient, while
preserving the necessary properties.

Privacy
In a voting scheme, privacy protection (that is, secrecy of the ballots) is never per­

fect. Any set of colluding participants can compute the total of all other users by

comparing their total to the total of all users. Sometimes, this information is enough to
determine a vote completely. For example, if the voting is unanimous, or if all but one

user cooperate, the identity of that user can be determined with certainty.

The privacy protection of voting schemes must be compared to the information that

* If the voting were not anonymous, we can just make every voter publish her vote. This yields a
protocol that is easi ly seen to have all other features, but cryptographically not very interesting.

An Etticient Voting Scheme 37

can be obtained by collusion. In the ideal case, this is all the information that a colluder

gets. Some voting schemes give cryptographic protection, meaning that getting extra
information involves breaking a certain cryptographic assumption. The voting system

introduced here gives the intrinsic privacy protection of the DC scheme of Chapter 2.

That means that the privacy of the users is unconditionally protected, depending on the
reliability of the set of neighbours in the key graphs. The details are explained in

Chapter 2. The privacy does not depend on any computational assumption; even if the
underlying cryptosystem is broken, the ballots are still secret.

In a practical election, the privacy of people using the voting machines* is not very
high. The most apparent problem is that a voting machine cannot prove to the user that

it does keep the votes secret. The identical paper ballots are better; the votes are col­

lected in a container that will only be opened after the election is over. The user can

wait until a few more votes are entered to make sure his vote is mixed in. The largest
privacy restriction is that the total of the group of about I 000 voters to which they
belong is made public.

Security
A voting scheme is secure if all a user can do to influence the total is cast a single

valid vote. This assures that the result of the voting is correct.
In our voting scheme, breaking the security is as hard as finding a discrete

logarithm.
In practice, security is maintained by checking a register of all legitimate voters.

Robustness
A protocol is robust if the participants are unable to disrupt the protocol by sending

messages (whether valid or invalid). It does not matter if the protocol identifies the

disrupter, but it must come to a proper ending.
Disruption of the practical voting involves the collusion of many parties. Computa­

tion of the tally is performed over many polling stations involving different people.
Formal reports of all tasks in the polling station are collected and verified.

Verifiability
Verifiability of a protocol denotes that all participants can verify the outcome of the

protocol. In principle, one could let each participant verify the tally by counting the

votes himself, but this is very impractical. A nice example of a relatively efficient way

to do this is shown in [Cha81]. The DC protocol does not have a high degree of
verifiability. The voting scheme described here uses a new local verification method for

the protocols using DC scheme.
The verifiability of the real election is high in theory, since every step in the tally is

open to public scrutiny.

* A voting machine is a device for automatic voting. It is used in voting stations where a few hundred
people vote. Voting is done by pressing a few keys. It does not get the identity of the voters. In
principle however, it could produce a list of all votes in order, so that all votes can be reconstructed.
In practice, most machines are mechanical , so that this is much harder.

38 Chapter 3

Efficiency
"Efficiency is hard to define, ~specially if one wants to make claims about applic­

ability in the real world. There are a lot of protocols that are very practical in principle,

but are not implementable for other reasons (insufficient infrastructure, for example).

The protocol shown here involves as little transmission as possible. The protocol

requires only five rounds of the DC protocol (as shown at the end of this chapter). Since

the rounds themselves take an amount of time that is logarithmic in the number of

participants, the entire protocol also takes time logarithmic in the number of

participants. All other known protocols take time at least quadratic in the number of

participants. The infrastructure that is used for the DC protocol is thought to be

practically implementable. Needed networks like the addition network are already in

existence today.

One aspect of the scheme is that all messages must be synchronized, but this is

probably handled automatically by the devices that perform the transmissions.

The current election scheme requires only messages per polling station. In this

sense, the scheme is very efficient.

Related Work
In [Cha8 l], the first voting scheme is described. A mix network is introduced of

trusted mail relaying machines (called mixes), that provides an untraceable sending

protocol. The mixes decrypt RSA-encrypted messages and forward them per batch to

hide the identity of the senders. This makes the privacy depend both on the size of the

mix batches and on the security of RSA. The voting scheme proposed in the article uses

the mix network for sending encrypted ballots. The election outcome is easy to verify

by scanning two public lists, one with the ballots and one with voter pseudonyms. It is

one of the few protocols that really give verifiability to all participants. The protocol

involves sending only four messages per voter, but the voters receive a large amount

(linear in the number of participants) of data. Although the direct implementation is

broken [PP89] , the system can be adjusted to prevent this attack.

The issue of multiparty computations has generated a number of articles. A

multiparty computation is the computation of a function value without revealing the

input values. An election is a special case of a multiparty computation. The easiest way

to implement such a protocol is to use a publically trusted computer with secret input

channels, that computes the function value and publishes it. There is a proof in

[BCC88, CDG88] that any computation using such a publically trusted computer can

also be done without one, by using a multiparty computation. This method , however, is

inefficient in general.

One of the first articles about multi party computations is [DLM82]. It describes a

protocol for multiparty computations, using a voting scheme as an example. This voting

protocol is similar to that of [Cha8 I], but it involves more messages, it can be disrupted

by every participant, and it requires that the participants know each other's identities. It

An Efficient Voting Scheme 39

is not efficient enough to be practical.
[Yao82] also describes a general protocol, with a voting scheme as example. The

protocol is the first to give unconditional privacy protection. On the other hand, it has a

fixed number of participants, needs a lot of messages, and is not robust. It is not a
practical protocol in the sense that it does not consider problems like transmission and
computation overhead.

The protocol described in [GMW86] is again a general purpose protocol that can be
used for voting applications. It is robust against any number of saboteurs up to half the
participants. The result is also purely theoretical , so there has not given been much

concern to efficiency.

[Ben87] is the final version of the voting protocols described in [CF85], [Coh86],
[BY86]. (Josh Benaloh was earlier called Cohen). The protocols described in the

earlier articles are much more practical, but have as main drawback that there is no
privacy towards a certain participant called the government. [Coh86] suggests splitting
the government up in tellers, so that any one part can protect privacy independently of

the others. In [Ben87], both incriminating privacy and disrupting the election needs
collusion between a group of tellers. The size of these groups varies with a security

parameter-the larger one group, the smaller the other. The protocol depends on

broadcasting by all parties.
The scheme in [Cha88] gives unconditional privacy using the DC scheme. The

protection against cheating and disruption is based on the RSA assumption. Verifiabili­
ty is excellent, because an official list is made public that allows anyone interested to
count the votes. It uses a lot of messages, so that it is rather inefficient.

The scheme described in [BCC88, CDG88] is a very powerful, very general, and

very unpractical scheme for multiparty computations. This article gives an overview of

the exact power of multiparty protocols, and it contains an overview of blob implemen­
tations.

The protocol in [HT88] is also a multiparty computation scheme, based on
[BCC88]. It is a theoretical result, with not much concern for practical applicability.

To give unconditional privacy protection, it needs a secure channel between every pair

of participants, an unrealistic assumption.
[MP89] is a protocol that allows computation of the sum of a set of private numbers.

The privacy protection is obtained by using a DC-like network. Although the protocol
has many similarities with the voting scheme presented here, it is not a voting scheme,

because the participants are not convinced of the correctness of the outcome.

There are more articles on multiparty computations, but they only address the
theoretical possibility of such a computation without considering a practical

implementation.
The new voting scheme explained in this chapter was originally described in

[BP88], but it was thoroughly extended since then. The protocol combines uncondi­

tional privacy with high efficiency.

An overview of the discussed protocols is shown in Table 3. The columns in the
table describe the given properties for each protocol. The properties "verifiability" and

40 Chapter 3

"efficiency" are not listed in the table as they are hard to compare fairly.

The entry "RSA" in the table means that the given property is as hard as breaking
RSA (computing a root modulo n). "Pub. key" means it is as hard as breaking some

particular public key cryptographic function. "Priv. key" means the breaking of a
private key (classical) cryptosystem. "Residue" means the recognizing of a number

mod n as being a certain power. This is believed to be about as hard as factoring

[Ben87, p. 31). The entry "No" in the "Robustness" column means that the protocols
can be stopped by any participant who stops acting according to the protocol.

Reference Privacy Security Robustness • Remarks

Cha81 RSA RSA RSA • Privacy depends on batch size

DLM82 Pub. key Pub. key No • Difficult to comprehend

Yao82 Uncond. Pub. key No

CF85 Residue RSA RSA • No privacy from government

Cha88 Uncond. RSA DC • DC system

Ben87 Residue Residue Uncond. • privacy H robustness tradeoff

HT88 Uncond. Priv. key Priv. key • Needs secure private channels

Present Uncond. D. log. DC • DC system
Table 3: Comparison of voting schemes.

Explanation of the Protocol
The Dining Cryptographers untraceable sending system that we described in

Chapter 2 had the important feature that messages that were sent simultaneously
summed together. This is just what is needed to count ballots. One can make a simple

voting scheme by letting each voter send a 1 for "yes" and a O for "no" and use the DC

protocol for the tally.

The ballot of user i is called b;, and the key shared between user i andj is called
tij, so that the values actually published over the addition network are

b; + ~>ij·
jEU

This gives us unconditional privacy protection for the voters, and some verifiability.

The robustness can be violated if there are disrupters during this round. The round
cannot be opened, because the ballots are private information. The security can only be
guaranteed if users prove that their ballot was indeed a O or 1.

The problems of robustness and security are solved using blobs. In the introduction
we explained that a blob on a value c is used to prove that c was chosen before a

certain time; it commits a user to that value. This is done by sending a special

encryption of c, called the blob value. This blob is opened at a later time by sending
c together with the encryption key.

In the voting protocol , a variant on this idea is used. The blobs on the ballots cannot

be opened as such, because the ballots are secret. The validity of the votes is proved

An Efficient Voting Scheme 41

without revealing their value using a special protocol explained later on.

The voting protocol uses several rounds. In the first round, the users commit to their
ballots with a blob. The second round of the protocol perform the actual tally in the

voting round. This is the transmission of the ballots using the DC scheme, exactly as
described earlier. The third and later rounds are used to prove that the ballots are valid.

Local verification
The outputs given by the users must be verifiable. In the ideal situation, all user 's

outputs are published, so that any interested party can check them. [Ben87] proposes

the use of "bulletin boards" where interested parties can get the information that users

put in it. A more efficient variation is to let the user's outputs be locally verified by a

group of users called the observers. The observers can be chosen from the group of
voters. These users check the outputs of the users that are physically close to them (for
example, all incoming users of a certain node of the network). The observers get a

special (traceable) round in which they send a O if there is no problem, and a I if there
is. This way, the public can quickly verify the results without large overhead.

Remember that anybody is assumed to have access to the network, so that this does not

incriminate privacy; it only increases efficiency. A disrupting observer will quickly be

found because his transmissions are traceable.

Blobs
The blobs used for this voting protocol are much like the blobs described in

[BKK87; CDG88]. Other blobs are also possible; see the extensions at the end of this

chapter. The blob of value c with key k is

blob(k,c) = ak~
2c (modp).

In this formula:
• pis a "safe prime", that is a prime number so that p~I is also a prime number.

• p must be large enough to make the discrete log problem modulo p unfeasible

[DH76; PH78; Odl84, McC90, LO90] .

• a and ~ are different generators of the multiplicative group modulo p.
p-3 • c is the contents of the blob, chosen from the set {0, . . . ,-2-).

• k is the key of the blob. It is a uniformly distributed random element from the
set {0, ... ,p-2).

The validity of a, ~' and p can easily be verified by the public. The size of the
number p determines the level of security of the protocol. It also influences the amount
of computation to generate a blob. In practice, p must have a size of about 150

decimal digits. This gives a high level of security, while still allowing the computation

of blobs on a small computer.
Computations on blobs are in the field GF(p), so from now on all equations are

implicitly modulo p.

Vic* breaks the blob by guessing the value of c from the blob value alone. This is

just as hard as guessing c without knowing the blob value. The blinding factor ak

* As in the introduction, Vic stands for the verifier and Peggy for the prover.

42 Chapter 3

makes all values for the blob equally probable, independent of the value of c. This

gives Peggy unconditional privacy protection, because a given value of the blob does
not give any information about the value of c.

Peggy cheats the blob by opening it with another value than c. This is unfeasible

by the discrete log assumption. To see this, assume that Peggy can open a blob in two
different ways: blob(c,k) = blob(c',k'). Since she has a solution to the equation

akp2c = ak' p2c',

she can compute the di screte log of p2 with respect to a as follows: she does this by
taking the inverse* d of c - c' (mod p;I), and computing

a(k-k')d = p 2d(c'-c) = p2;
the last step follows from d(c - c') = I (mod P;\ so that 2d(c - c') = 2 (mod(p-1)).

From the discrete log assumption, Peggy is unable to find a discrete log, so we conclude

that Peggy cannot cheat a blob.
Vic cannot find the value of Peggy's blob, even if he can break the di screte

logarithm. In the voting system, this means that the ballots remain secret even if

discrete log is broken during or after the election.
The blobs used have a nice and simple "additional" property , that allows a user who

issues two blobs to open the sum or difference without having to open the blobs
themselves. This turns out to be very convenient for our voting scheme. The additional
property can be written as

blob(k,c) · blob(m,d) = blob(k + m,c + d).

Note that there are three different moduli in this equation: the product of the blobs is
taken modulo p; the sum of the keys is taken modulo p - I ; and the sum of the values

is taken modulo P;1 . The product of two blobs is a blob on the sum of the values,

that is opened by revealing the sum of the keys. We assume that the addition network
we use can do both addition and multiplication computations, so that we can combine

blobs, values and keys over the network.

Blob validation
To prove that a blob contains the value O or I without revealing its contents is a well

known protocol [BCC88] . Assume that Peggy wants to prove that (previously sent)

blob(k,c) has a value c that is O or I. To prove this, Peggy and Vic do the blob

validity protocol:

• Peggy chooses random blob keys x and y and sends Vic the blobs: blob(x,0);
blob(y,l), in random order.

• Vic sends a challenge "open" or "equal".

• On challenge "open", Peggy opens both blobs sent in the first round by
revealing x and y.

• On challenge "equal", Peggy takes the blob of the first message that contains

the value that is equal to c. She then opens the blob on the difference between
her blob and this blob. This difference blob contains a O as value. In other

words, Peggy sends v = k - x if c = 0, and v = k - y if c = 1.

* This inverse exists, because the absolute value of c-c' is smaller than the prime number (p-1)/2.

An Efficient Voting Scheme

Vic verifies the received value v by checking if the product of the designated

blob of the first message and blob(v,O) equals Peggy 's blob.
We now prove that this is a zero-knowledge proof (see the introduction):

43

The protocol is complete, because if Peggy does not cheat, Vic computes, if c = 0:
blob(x,0) · blob(v,0) = blob(x + k-x,0) = blob(k, c)

or, if c =I:
blob(y, 1) · blob(v,0) = blob(y + k - y, I)= blob(k,c).

In any case, Vic will accept Peggy's answers.
The protocol is sound, because if Peggy does not have a proper value of c, she

cannot answer both challenges of Vic at the same time. In this case, she must guess

what challenge she will get:

• If she guesses that the challenge will be "open", she can follow the protocol as
it stands and open the blobs of the first round.

• If she guesses "equal", she can take one of the blobs of the first round to contain

the improper value c, so that she can open the difference blob.
If Peggy makes the wrong guess, she cannot answer the challenge, so that she will

be caught with probability ½ in both cases. This protocol can be repeated as many times
as Vic needs to be convinced that Peggy has a valid blob. In practice, about 25 times is

a reasonable value, giving a probability of about 2.98· J0- 8.

To show that the protocol is zero-knowledge, we show a simulation of the protocol.

Vic generates a simulated transcript as follows:
• First, Vic guesses the challenge he will receive in the second round.
• If the challenge is "open", the simulated first round consists of sending two

random blobs with values O and 1.
• If the challenge is "equal", Vic takes a random blob key v and a random group

element u. The first round consists of sending the pair blob(k, c)/blob(v, 0) ;u

in random order.
• The third round contains the blob values if the challenge was "open", and the

value v if the challenge was "equal".

It is easy to verify that these values satisfy the same checks as Peggy's answers, and

have the same probability distribution as the messages of a real transcript.

In the voting protocol, a modified version of the blob validity protocol will be used

that allows all participants to prove simultaneously that their blobs are correct.

Description of the Protocol
We assume an underlying "addition" network that can add messages modulo p - l

and P;' , add messages modulo 2 (exclusive-or), and multiply messages modulo p.

This network can then perform the voting protocol. The shared keys used by the DC

scheme are only used in those rounds where privacy protection is needed. This reduces

the amount of keys needed in the scheme. Also, the scheme allows certain values to be
checked locally so that disrupters can be found quickly.

44 Chapter 3

The protocol consists of five rounds:

• Issuing of blobs on the keys used in the DC sending

• The actual vote counting round using the DC system

• Issuing of blobs for proving the validity of the ballots

• Construction of a challenge bit

• Response to the challenge

The last three rounds have to be repeated a number of times to provide the needed

level of accuracy. (This can be done simultaneously, so that the protocol consists of five

rounds again; see the end of this chapter.)

To aid understanding the formulae, all are formed using blobs. For example, we

write blob(x;, 0) even though this is just a_x;_ The former form is easier to verify,

because all other formulae use blobs too. The proofs use only the blob properties

mentioned in the previous section and simple arithmetic. Note that the addition

property of blobs involves three different moduli ; all three moduli are used by the

addition network.

The values of the parameters p, a and p can best be chosen just before the voting

protocol is initiated. This gives cryptanalists as little time as possible to solve the

discrete log problem for a and P2 (mod p) to break the protocol. It does not matter if

the discrete log is found after the protocol is over, but if it is broken during the protocol ,

the outcome will be unreliable.

The output of user i in round n is denoted as [n];, and the total is written [n].

First round
Initially , the users share keys tij that are to be used for the second round. Similarly,

the users share blob keys kij for blobs on those keys. In the DC scheme, it is required

that t;j = -t ji to make the keys cancel out, and tij = 0 means that there is no key used

between user i and). The numbers kij are constructed the same way, so that also

kj; = -kij and kij = 0 ~f tij = 0. The only difference is that the kij are random numbers

from the set 10, ... , P~ l, while the tij are from the set 10, ... ,p- 1}. Thus, the numbers

kij can easily be generated and distributed in advance together with the ti)"

In the first round, user i sends a blob on the keys t,1 she is going to use during the

voting round.

The output of user i is

[l];:blob(L,kij, I,t;)-
jEV jEU

The network multiplies all messages modulo p, yielding (nobody cheating)

[I]= fl[I]; = blob(L, L,kij, I, L,tij) = blob(0,0) = 1.
iEU iEU jEU iEU jEU

All numbers involved in this message are random numbers. If the result of this

transmission is not equal to 1, the blobs can be opened to catch a disrupter. Then a new

round, with new values of tij and kij, can be performed The individual results of thi s

round are saved; for efficiency, the users may do this themselves. The observers will

also save the messages for later verification.

An Efficient Voting Scheme 45

Second (voting) round
The actual tally is now obtained. The users send their ballots over the DC network

in additive mode. This is sent untraceably using the keys tij from the first round:

[2];:b; + L.tij.
jEU

The addition is done modulo Pt . Because p is very large, Pt will be bigger than

the number of voters. Thus, the total result of this DC transmission will be the number
of l ("yes") votes:

[2] = I,[2]; = L,b; + L, L, lij = L,b;.
iEU iEU iEU jEU iEU

Cheaters and disrupters will not be detected until the fifth round. If everything
works well, the total of these transmissions will be the election result. Of course, this

round cannot be opened because the private vote information is in it.

Third round
The third round is the first step of the blob validity protocol that takes the last three

rounds of the protocol. To make things more efficient, it is executed simultaneously by
all users, adding the results.

We want to prove the validity of a blob on the ballot of user i. This blob does not
occur explicitly in the protocol, but it can be computed:

blob(0,b; + L,tij)
blob(0,[2];) = jEV =blob(- ~ k b)

~ ~ L I}' I •
[l]; blob(Lkij, Ltij) j EU

jEU jEU

This blob can be constructed by everyone who stored the values of the earlier
messages sent by user i. The key of this blob is

K; =-I,k,1 .
iEU

The blob keys and blob contents are only known to user i. Of course, opening this

blob would reveal b;.

In the first round of the blob validity protocol, every user sends a pair of blobs

containing a 0 and a l as follows: user i chooses a random bits; and two blob keys x;

and Y;, and sends
[3a];:blob(x;,s;), and

[3 b];: blob(y;, 1- s;).

All users do this simultaneously, and the blobs will be multiplied modulo p by the

addition network, giving the products

[3a]: Tiblob(x;,s;) = blob(L,X;, L, S;), and
iEU

[3 bJ:Tiblob(y;,1-s;) = blob(L,Y;,#U - L, S;).
iEU iEU

The results of this transmission cannot be verified as such, because the blob keys
and contents are not public. To make it possible to verify the messages, all users send

the values of X;, Y; and s;. For privacy protection, the values must be sent over the

46 Chapter 3

network using untraceable sending. The DC keys used are not shown here.
[3c];:s;, [3d];:x;, and [3e]:y;.

p-1 + These messages are added over the untraceable sending network modulo - 2- ,or
[3c] and modulo p-1 for [3d] and [3e], giving the sums

[3c]: L, S;, [3d]: I, x;, and [3e]: L,Y;.
iEU iEU iEU

Using these sums, the products [3a] and [3b] can be verified in public using the

equations
[3a] = blob([3d],[3c]), and [3b] = blob([3e],n -[3c]).

Fourth (challenge) round
The fourth round of the voting protocol is the second step of the blob validity

protocol. The challenge has to be formed. The challenge is a trusted random bit formed

by all users. Every user sends a random bit
[4]; : r;.

These bits are added up modulo 2 (exclusive-or) by the network, giving the

challenge bit r:
[4] = L, T; = r.

iEU

This round cannot be cheated or disrupted at all, because the only thing that matters

is that the bit is not known in advance by the participants.

Fifth (response) round
Now the response to the challenge has to be sent. The description of the blob

validity protocol shows that the users can send two different responses, depending on
the challenge: opening the blobs from message [3] , and opening a difference blob

between the ballot and either of the two blobs. All users respond in the same way,

because they receive the same challenge.
If the challenge bit is 0, the blobs from message [3] are to be opened. The user just

sends the values
[5a];:s;, [5b];:x; , and [5c]:y;

p-1 b over the network, adding up the results modulo - 2- and p - l. The sums must e the

same as the sums [3c] , [3d] and [3e]. Since the outputs are now unprotected by DC

keys, the individual outputs of every user can be verified instead of only the total sum.

The outputs of the users are verified locally by the observers:
[3a]; = blob([5b];,[5a];), and [3b]; = blob([5c];,l-[5a];) -

If the challenge bit is I, the user must prove that her blob is the same as one of the
blobs sent in round [3]. Which of the two blobs this is may vary between users, because

it is dependent on the s; . The responses are such that the values of b; and s; cannot be
found from the responses.

If b; = s;, the user opens the difference blob between b; and the first blob:
[5a];:K; -x;.

An Efficient Voting Scheme 47

The messages will be added modulo p - 1. To simplify public verification, the user
also sends

[5b];:[3a]; = blob(x;,s;),

that will be multiplied modulo p.

If b; * s;, the user opens the difference blob between b; and the second blob:
[Sa];:K; - Y;, and correspondingly

(5 b];:[3 b]; = blob(y;, 1- s;).

For both cases, the response can be verified using the formula

blob(0,[2];) =[Sb];.
[l]; · blob([Sa];,O)

This is because
blob(0,[2];) blob(K b)

---~-= "' =blob(K-K+x b)=blob(x s)=[Sb]
[l];·blob([5a];,0) blob(K;-X;,0) ' ' 1

'
1

"'
1

or, if b; * s; for this user,

blob(0,[2];) = blob(K;,b;) = blob(K - K + . b) = blob(· 1 -s) = [Sb].
[l]; · blob([5a];,0) blob(K; - Y;,0) ' ' y,, ' y,, ' 1

Apart from the local verification of the responses per user, the totals can also be
verified:

Overview

blob(0,[2]) = [Sb].
[l] · blob([5a],0)

Table 4 shows an overview of the voting scheme messages and verifications.
The column "Message" shows the message that user i sends in that round. The

symbols are explained in the text. The column "Group" shows the group in which the

computation of the total talces place.
The last column shows the verifications that are to be done. The verifications in

round [5] that are indexed by i denote local verifications. As said before, this should
preferably be done by local agencies. There could be a traceable sixth round for

transmissions of the verification results. The local verifications are expected to be

accompanied by corresponding verifications of the total result by all participants.
The two possibilities for round [5] are separated by a dashed line. Above the dashed

line is the reply for a challenge (value of round [4]) of 0, the replies under the line are

for challenge 1. In the latter case, the two different replies vary per user. Both replies
are shown in the Message column; the network does not distinguish between them.

48 Chapter 3

Round Message Group Verification

[l] blob(Lkij, Llij) TTmodp [l] = l
)EU)EU

[2] b; + Llij I.mod p~l

)EU

[3a] blob(x;, s;) TTmodp

[3 b] blob(y;, l - s;) TTmodp

[3c] s; + DC keys I.mod p~l

[3d] x; + DC keys Imod(p -1) [3a] = blob([3d],[3c])

[3e] Y;+ DC keys I,mod(p-1) [3b] = blob([3e],IUl-[3c])

[4] ,..
I Imod2

[Sa] S; I.mod P;' [Sa]= [3c]

[Sb] X; Imod(p-1) [3a]; = blob([5b];,[5a];)

[Sc] Y; Imod(p-1) [3b]; = blob([5c];,IUl-[5a];) _______ { _________________________
-Ik-x I) I

)EU
[Sa] Imod(p-1)

- LkiJ- Y;
)EU

[Sb]
tlob(x;,s;)

blob(y;, l - s;)
TTmodp blob(0,[2];) = [Sb];

[l]; · blob([Sa];,0)

Table 4: Overview of the transmissions.

Proofs
What remains to be done is a proof that the claimed properties of the voting scheme

are fulfilled.

Privacy
In any voting system, electronic or otherwise, every group of participants can obtain

information over the votes of the others by sharing votes. In our voting system, thi s is

the only way to obtain information over a vote, under the assumptions of the underlying

DC system. This means that if a collusion of participants does not split the key graph

(see Chapter 2), all the votes are optimally protected; otherwise, privacy loss occurs.
If the DC system is not compromised, the privacy protection of the voting scheme

follows from three facts:

• the unconditional protection of messages [2], [3c], [3d] and [3e] by the DC
network;

• the unconditional protection of the contents of the blobs in [I] , [3a] , [3b];

• the zero-knowledge property of the blob validation protocol in rounds [3], [4]
and [5].

Privacy loss occurs if the DC protocol is compromised. This happens if a group of

participants share the keys used for the protection of their votes (of course losing their

An Efficient Voting Scheme 49

own privacy). Using the terminology of Chapter 2, the keys ~f this group split the key
graph in subgraphs. The users in the collusion can compute the total tally for each of

these subgraphs, and no more. The amount of privacy loss for these participants
depends on the size of the subgraphs; the smaller the subgraph, the bigger the privacy
loss.

Robustness
The voting scheme is robust in the sense that any participant who tries to prevent the

protocol from finishing successfully can be caught. The method to catch a disrupter
(

varies per round.

If round [I] does not give a total of 1, the values of kij and tij can be published to
catch disrupters (this may be called "opening", but it is not opening in the DC sense).

Round [3] can just be opened if the public verification does not succeed. Round [4]
cannot be disrupted at all. Round [5] uses a verification per user, that makes it very easy

to catch a disrupter directly without opening the round.
The only problem is round [2], that cannot be opened immediately because the

actual votes are in there. A disrupter in this round will be caught in round [5] with

probability ½ for every repetition.
Catching disrupters using opening in round [l] and [3] may cause a delay because

opening a round does not reveal the disrupter immediately (see Chapter 2). If the

disrupter is found, he can immediately be excluded from the tally, so that the protocol

can proceed without further delay .

Security
Security of our voting system means that a single participant cannot influence the

total otherwise than casting a single valid vote. Sending invalid messages causes the
user to be treated as a disrupter, and to be caught by the previously mentioned methods.

Users that try to use ballots with values other than O or I will be caught by the
validation protocol.

If a user can open a blob in two ways (thus, break discrete log), he can cast any

number of votes at once, because he can break the blob validation protocol.

Verifiability
Verifiability means that any participant can convince himself of the validity of the

outcome of the protocol. In our scheme, this depends on two factors.
First, the tally can be checked simply, since the tally is equal to the total of round

[2]. Every participant can perform the verifications of the other rounds, so that he
knows the tally was correct.

Second, the participants must trust the total of the outputs as computed by the

network. This is more a problem of the DC network than a problem of this voting

scheme. In theory, every participant can check this for himself, since the totals are

computed from publicly accessible numbers. In practice this might give problems; a

good solution seems to have several independent agencies compute the total.

50 Chapter 3

Efficiency
Our protocol can be implemented using an existing addition network for the DC

system. This protocol makes very efficient use of the network, since it uses only five
rounds of the network. We assume that the DC network is efficiently implementable.

Since the number of rounds is fixed , the protocol takes time proportional to the

logarithm of the number of voters, since the DC network is logarithmic in the number of

participants. This is a lot faster than all proposed systems published until now. All the
discussed voting systems from the literature were more than linear in the number of

participants. A disadvantage of the system is that a lot of keys have to be generated and

stored for one instance of the protocol. On the other hand, compared to other uses of the
DC system, this number is very small.

Extensions
There are several features that can be added to the protocol to make it more efficient

in practice.

Parallel computations
The blob validity protocol of rounds [3] to [5] is executed several times to produce a

high level of certainty. It is more efficient to execute these rounds in parallel, so that

every round stands for a number of rounds in the original version.
The parallel blob validity protocol is executed as follows:

• Peggy sends Vic a list of pairs of blobs.

• Vic sends Peggy a list of random bits (a challenge vector) .

• Peggy responds to the respective bits of the challenge vector.
If the parallel blob validity protocol is executed between two participants, it is not

zero-knowledge [BCC88] . To see this, assume that Vic's challenge vector is a one-way

function value of the first message. Now Vic cannot simulate the messages of the

protocol. To simulate the protocol , Vic must start with the challenge vector. Because
thi s is a one-way function value, the message from the first round cannot be found, so

simulation is impossible.

In the voting scheme, several instances of the parallel blob validity protocol are
executed together by all participants. Take a voter Peggy, who proves the validity of

her votes; call the community of all other voters Vic. The difference with the two-party
parallel blob validity protocol is that not only Vic, but also Peggy determines the

challenge vector. It is no use for Vic to compute the challenge in a special way (for
example, using the above mentioned one-way function), because Peggy can make the

challenge a random number with her own input. This makes the protocol simulatable

for Vic, and thus zero-knowledge. The actual proof is much the same as that at the

beginning of this chapter.

This parallelization decreases the number of rounds needed to only five. Because

the number of rounds is low, the protocol does not depend on a low turnaround time

(see Chapter 2).

Precomputation

An Efficient Voting Scheme 51

Precomputation is the computation of values ahead of executing a protocol, so that

during the protocol the values only have to be looked up in a table . The users can pre­

compute all values they send, so that the protocol itself is not delayed by computations

performed by the users. The computations performed by the addition network cannot be
precomputed, but these are only simple additions and multiplications.

The blob values can be computed using a vector addition chain (see Chapter 4),

saving over 40% of the computation time.

More options
The voting scheme allowed only two possible votes: "yes" and "no". This can

easily be extended to more realistic elections with more options. The easiest way to

extend this number is by doing multiple elections. They can be performed

simultaneously, so that the number of rounds is the same as with one voting. This
allows to make voting schemes with multiple nominees. Of course, it is also possible to

let participants choose to abstain from voting. In those cases, the blob validity protocol
must be adapted to reflect all possible votes instead of just O and I. Instead of two

blobs, the voter must send as many blobs in round 3 as there are legitimate votes.

Other blobs
The blobs used in this protocol can be replaced by other kinds, if the new blobs have

the following features:

• Unconditional unbreakability, so that the ballots cannot be computed when the
election is over.

• Some kind of addition property, to make the blob computations over the
network possible.

A good alternative are the blobs used in [8D90] . The main advantage of these blobs
is that the factorization of p - I can remain secret [8D90, footnote on page 2]. This

allows to decrease the size of p while sustaining the level of security. Also, blobs

based on elliptic curves or hyperelliptic curves can be used, possibly saving bits.

Verification at the nodes
The nodes of the tree that perform the additions are nice places to perform the local

verification. The nodes that are closest to the participants do the local verification, and

the top node does the public verification.

Less distribution of the results
In rounds [I], [3] and [5] the total result of the transmission is only needed for

verification. Instead of the sum, the nodes could just distribute the result of the

verification, consisting of only one bit (in principle). This reduces the time to distribute

the results a little. Even more savings would occur in the "Parallel computations" and

52 Chapter 3

"more options" versions proposed above. The transmission contains several rounds
here, and the results will be a string of bits or even one bit, telling if something has gone

wrong.

Conclusion
The DC protocol is not only applicable for untraceable sending, but also for an

efficient voting protocol. Other multi party protocols that use the additional and privacy

protecting properties of the DC protocol are a challenging area for further research.

Acknowledgement
I thank George Purdy for the cooperation on the design of the protocol.

An Efficient Voting Scheme 53

References
[BCC88] G. Brassard, D. Chaum, and C. Crepeau: Minimum Disclosure Proofs of

Knowledge, Journal of Computer and System Sciences 37 (No. 2, October
1988), pp. 156-189.

[BD90] J. F. Boyar and I. B. Damgard: A Discrete logarithm blob for

Noninteractive XOR gates, Technical report DAIMI PB-327, Arhus
University (August 1990).

[Ben87] J. Benaloh: Verifiable Secret-Ballot Elections, Ph.D thesis of Yale
University (September 1987).

[BKK87] J. F. Boyar, M. W. Krentel, and S. A. Kurtz, A Discrete Logarithm
Implementation of Zero-Knowledge Blobs, Technical Report 87-002,

University of Chicago (March '87).
[BP88] J. N. E. Bos and G. Purdy: A voting scheme, Rump session of Crypto '88.

Does not appear in proceedings.
[BY86] J. Benaloh and M. Yung: Distributing the Power of a Government to

Enhance the Privacy of Voters, Proc. 5th ACM Symp. Principles of
Distributed Computing (Calgary, AB, August 1986), pp. 52-62.

[CDG88] D. Chaum, I. B. Damgard, and J. van de Graaf, Multiparty computation

ensuring privacy of each party's input and correctness of the result,
Advances in Cryptology: Proc. Crypto '87 (Santa Barbara, CA, August
1987), pp. 87-119.

[Cha8 l] D. Chaum: Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms, Comm. ACM 24, 2 (February 1981), pp. 84-88.

[Cha88] D. Chaum: Elections with Unconditionally Secret-Ballots and Disruption
Equivalent to Breaking RSA, Advances in Cryptology: Proc. Eurocrypt '88
(Davos, Switzerland, May 1988), pp. 177-182.

[CF85] J. Cohen and M. Fisher: A Robust and Verifiable Cryptographically
Secure Election Scheme, Proc. 26th IEEE Symp. Foundations of Computer
Science (Portland, OR, October 1985), pp. 372-382.

[Coh86] J. Cohen: Improving Privacy in Cryptographic Elections, Technical Report
454, Yale University, Department of Computer Science (New Haven, CT,
February 1986).

[DH76] W. Diffie and M. E. Hellman: New Directions in Cryptography, IEEE
Trans. Information Theory IT-22 6 (November 1976), pp. 644-654.

[DLM82] R. DeMillo, N. Lynch, and M. Merritt: Cryptographic Protocols, Proc.
14th ACM Symp. Theory of Computing (San Fransisco, CA, May 1982), pp.
383-400.

[GMT82] S. Goldwasser , S. Micali, and P. Tong: Why and How to establish a

Private Code On a Public Network, Proc. 23rd IEEE Symp. Foundations of
Computer Science (Chicago, IL, November 1982), pp. 134-144.

54 Chapter 3

[GMW86] 0. GoldReich , S. Micali , and A. Widgerson: Proofs that Yield Nothing

But their Validity and a Methodology of Cryptographic Protocol Design,

Proc. 27th IEEE Symp. Foundations of Computer Science (Toronto, ON,
October 1986), pp. 174-186.

[HT88] M. A. Huang and S. Teng: Secure and verifiable Schemes for Election and

General Distributed Computing Problems, Proc. 7th ACM Symp. Principles
of Distributed Computing (Toronto, On, August 1988), pp. 182-196.

[LO90] 8. A. LaMacchia and A. M. Odlyzko: Computation of Discrete

Logarithms in Prime Fields, preprint.
[McC89] K. S. McCurley: The Discrete Logarithm Problem, Technical Report RJ-

6877, IBM Research division, Almaden Research Center, San Jose, CA.
[McC90] K. S. McCurley: The Discrete Logarithm Problem, Proc. Symposium of

Applied Mathematics, American Mathematical Society (1990), to appear.
[Mer83] M. Merritt: Cryptographic Protocols, Ph.D thesis of the Georgia Institute

of Technology (February 1983).

[MP89] C. A. Meadows and G. B. Purdy: Summing over a network without

revealing summands, BIT 29 (No. I , 1989), pp. 110-125.
[Odl84] A. M. Odlyzko: Discrete logarithms infinite fields and their cryptographic

significance, Advances in Cryptology: Proc. Eurocrypt '84 (Paris, France,

[PH78]

[PP89]

April '84), pp. 224-314.

S. C. Pohlig and M. E. Hellman: An Improved Algorithm for Computing

Logarithms over GF(p) and Its Cryptographic Significance, IEEE Trans.
Information Theory IT-24 (No. I , January 1978), pp. I 06-110.

B. Pfitzmann and A. Pfitzmann: How to break the Direct RSA-

implementation of Mixes, Advances in Cryptology: Proc. Eurocrypt '89

(Houthalen, Belgium, April 1989), pp. 373-381.

[QGB89] J. J. Quisquater, L. Guillou, and T. Berson: How to explain Zero­

knowledge to your children , Advances in Cryptology: Proc. Crypto '89

(Santa Barbara, CA, August 1989), pp. 628-631.

[Yao82] A. Yao: Protocols for Secure Computations, Proc. 23rd IEEE Symp.
Foundations of Computer Science (Chicago, IL, November 1982), pp. I 60-

164.

4
Addition Chain Heuristics

Introduction
Modem cryptographic protocols allow a large variety of applications that were not

possible with the classic methods. Almost all of these protocols are based on
exponentiation modulo a large number. This is true for all protocols based on RSA, but
also for systems using discrete log (such as the voting scheme described in Chapter 3).

The computation of such a power takes quite a lot of computation compared to
classic cryptosystems (DES, for example). Several methods have been tried to improve

the speed of the computation. The only known way to compute a power is by multipli­

cations. While a lot of current research emphasizes improving the speed of those multi­
plications (see for example, [Mon85]), we try to decrease the total number of multipli­
cations by rearranging the computation. In practice, this saves about 20% of the multi­

plications that are normally used to perform the exponentiation. This optimization can

again be combined with improved multiplication methods to get maximal performance.
Although a lot of research is spent on addition chains, almost no work has been

done in practically applying addition chains for doing RSA or other schemes. Here we

show heuristics that perform well in constructing addition chains to compute powers in
practical applications, both hardware and software.

A related problem is the computation of products of powers. Products of powers

occur for example in digital signature systems and payment systems. A product of
powers can be computed much more efficiently than the separate powers by combining

the computation of the individual powers. We show a practical algorithm that computes
a product of powers using these techniques.

The notation used in the literature for these algorithms is not suitable for determi­
ning memory usage; we introduce an new notation that closely resembles the actual

computation of (products of) powers in a computer. This notation is also well suited for
storage of addition chains.

The results in this chapter are also trivially applicable for computations in elliptic
curves and other groups.

In the rest of this chapter, we first introduce the four different kinds of addition

56 Chapter 4

processes. Then we discuss the literature on this subject. Then, for each of the four
kinds, we discuss algorithms to heuristically compute them. In the appendix to the
chapter, all algorithms used are shown in detail, so that the reader can try out for

himself.

Addition chains
If a power is computed by repeated multiplication, the process can be described by

all intermediate results. For example, a computation of x 15 in five multiplications can

be described by the sequence x, x2, x3, x6, x 12, x 15. In fact, the only interesting
aspect of this sequence are the exponents, so we could just as well have written I, 2, 3,
6, 12, 15 to describe the process. Such a list of numbers is called an addition chain .

More specifically, an addition chain of n is a list of (integer) numbers satisfying
• the first number is I ;

• every number, except the first, is the sum of two previous numbers;

• the list is ascending*, and the last number is n.

The number n is called the target of the chain.
The length of an addition chain is the number of elements minus one (that is, the

number of additions necessary to make the chain, or the number of multiplications to
compute the corresponding power). For reasons of efficiency, short addition chains are

preferred over long ones. Unfortunately, the computation of a minimal length addition
chain is hard; this problem is even NP-complete [DLS8 I]. Our goal is to construct short
(but not necessary optimal) addition chains at a reasonable cost.

To get an impression of the length of an addition chain, we define:
l(n): The length of a minimal addition chain with target n.

It is easy to see that l(n) ~ 1Iog2 n l The binary method, the simplest non-linear

method that is known, produces addition chains with expected length -f log2 n and
maximum length 2 log2 n, so that large savings (more than 30%) using addition chains

are not to be expected. Even so, small savings are sometimes worth the trouble.
Asymptotically, l(n) behaves like log2 n [Bra39]:

Addition sequences

Jim __!_0l_ = I .
n➔= log2 n

The notion of an addition chain can be generalized to make chains with more than
one target number; we call those addition sequences. Formally, an addition sequence

of a set of numbers (the numbers called again targets) is a list of numbers satisfying the
following conditions:

• the first number is I;

• every number, except the first, is the sum of two previous numbers;

• every number in the set occurs in the list;
• the list is ascending, and the last number is a target.

* Every number in the chain, except the first, is larger than the previous number.

Addition Chain Heuristics

The length of an addition sequence is one less that the number of elements.

Addition sequences can be used to make addition chains for large numbers, as will be
shown later on. In practice, addition sequences do not occur often. We use them

mainly to construct addition chains and vector addition chains, because these are
relatively easy to construct.

Vector addition chains

57

A product of powers can be computed more efficiently than computing the powers
separately and multiplying the product. For example, to compute the product
x9y 13z22, we could use the intermediates ,

x , y, z, x z, y z, xyz2, xy2z3, x2y3z5, .x4y6z 10, x8yl2z20, x9y1 3z22

to obtain the product in eight multiplications. Computing the product using these steps
is much less work than computing the powers first; the power z22 alone already needs
six multiplications. Like the addition chain, we only have to describe the exponents to

describe the computation. We get a list of vectors:
[IO OJ, [O I OJ, [O O IJ, [IO IJ, [O I IJ , [I I 2], [I 2 3], [2 3 5], [4 6 IOJ , [8 12 20J, [9 13 22J .

Such a list is of vectors is called a vector addition chain. A vector addition chain
is defined as a list of vectors satisfying:

• the first vectors are the unit vectors;
• every vector, except if it is a unit vector, is the sum of two previous vectors;

• the last vector is the target.
The length of a vector addition chain is the number of elements minus the unit

vectors (which is again the number of additions necessary to make the chain). There are
many practical applications for vector addition chains. Examples are the blobs of

Chapter 3, and the signatures of Chapter 5.

Vector addition sequences
The obvious extension of the three problems defined here is the vector addition

sequence. This is the most general problem; all other posed problems are special cases.

The only mentioning of vector addition chains that we found is [Pip76J. In this paper,
Nicholas Pippenger gives a lower bound for the length of vector addition sequences.

This lower bound implies that in the worst case, the savings of vector addition
sequences over vector addition chains or addition sequences will not be as large as the

savings of vector addition sequences over vector addition chains. In other words, vector

addition sequences are not very good for saving multiplications. Asymptotically, vector

addition sequences do not perform better than a set of vector addition chains or addition
sequences.

The general term we use for addition chains, addition sequences, vector addition

chains and vector addition sequences is addition processes. Table 5 shows the four
types of addition processes.

58 Chapter 4

One target Multiple targets

Powers Addition Chain Addition Sequence

Products of powers Vector Addition°Chain Vector Addition Sequence
Table 5: Addition Processes

An addition process is evaluated if the computation with corresponding inter­
mediate results is made. Evaluation of an addition chain for an exponentiation would be

the computation of the actual power. Evaluating an addition process takes as many
steps as the length of the process. Except for the time it takes to evaluate an addition
process (which depends on the length of the process), we also consider the amount of
memory needed (which depends on the maximum number of intermediate results

needed during evaluation).

Related Work
There is quite a lot of literature on addition chains. Most of the research is on the

asymptotic behaviour of the minimum length of addition chains. Only a few articles
address the actual computation of usable addition chains. For a long list of asymptotic

results, see the references of [Cos90].
The original problem statement is by Arnold Scholz [Sch37] . He was mainly

interested in the minimum length of addition chains, but he notes that constructing

addition chains is useful for exponentiation with as few multiplications as possible (for
manual computation; there were no computers at that time). The problem is elaborated
by A. Brauer [Bra39] and, a long time later, by Paul Erdos [Erd60] . These two articles

are the basis of a lot of research on the minimum length of addition chains.
The first statement of the vector addition chain problem is from Richard Bellman

[Be163]. He claims (incorrectly!) that "It is easy to determine the minimum number of

multiplications required to generate aN from a". The problem was worked out by E.
G. Straus [Str64]. With this partial solution, the editors note that "The proposer agrees

that the problems he has posed are not easy and that the minimum chain is not known

[...]". Also, they note that Bellman was working on a computational algorithm. We

could not find a reference to thi s algorithm.

Donald Knuth gives a good introduction to the addition chain problem in the second
volume of his well-known series 'The Art of Computer Programming" [Knu69]. He

considers some theoretical bounds on the length of addition chains, but also discusses
practical methods to construct chains for small numbers (up to about five digits). He

also introduces the m-ary method, that produces practical addition chains for large
numbers (hundred digits or more) that are more efficient than the standard binary

method. He introduces the addition sequence problem as an open problem.

More research on the length of addition chains was done by Andrew Yao [Yao76]
and Edward Thurber [Thu76].

Nicholas Pippenger [Pip76] poses addition processes in their full generality. He

Addition Chain Heuristics 59

was the first to note the relation between vector addition chains and addition sequences.
We shall see this equivalence later in this chapter.

Knuth shows, in the second (thoroughly rewritten) edition of his book [Knu8 l], that

an addition chain can be "reversed". The fact that this reversal yields a correspondence
between addition sequences and vector addition chains, is mentioned in Exercise 39.

This correspondence, and a conversion from vector addition chains to addition

sequences is shown by Jorge Olivos [Oli8 l]. Although he refers to [Pip76] in his paper,
he does not say that Pippenger already mentions the conversion. He does not consider

the practical application of hi s algorithm.
Peter Downey, Benton Leong, and Ravi Sethi [DLS8 l] prove that the construction

of an optimal addition sequence is NP-complete. They do this using addition graphs.

It is surprising to see how little use is made of addition chains in practice. For

example, H. R. Chivers [Chi84] describes a way to compute exponentiations on a small
computer. He did not know of the existence of addition chains, although the m-ary

method existed for fifteen years; he even claims that "An exponentiation with 100 bit

integers would involve 100 repeated squarings and an average of 50 other multipli­
cations."

The practical applicability of addition chain methods was only realized recently .

Nowadays, there are several exponentiation devices that use addition chains (this is
stated in [Bri90], but he does not say anything more that that).

Apparently, our work [BC89] inspired Y. Yacobi to make another algorithm for the
practical construction of addition chains [Yac90]. His method is very elegant, has a
simple description, but it uses some more multiplications and quite a lot more memory

than the on-the-fly method presented in this chapter.

This chapter is based on material of [BC89] together with the vector addition chain
work [BC89a] and [Cos90].

Addition Graphs and Addition Machines
We introduce two alternative representations of addition chains that are more useful

for describing addition processes than the list of intermediate results. The first notation
occurs in the literature, and allows the useful definition of "reversing" an addition

process. The second notation is new; it allows us to see how efficient an addition chain
is in both memory and operation efficiency.

Addition graphs
It is often convenient to see the computation of a power as a graph instead of a list.

Addition graphs were introduced in [Pip76] and they tum out to be a useful tool for

describing the vector addition chain algorithm.

60 Chapter 4

We define an addition graph for a set of values as a directed loop-free graph* with

a vector in each node, fulfilling the following properties:
• Every source (node with no incoming edges) contains a different unit vector.

The dimension of these vectors is equal to the number of sources.

• Every non-source node contains the sum of the values of the nodes of the
incoming edges.

• There is a sink (node with no outgoing edges) for every target value. This is for

reasons of symmetry; most sinks will have one incoming edge from a node with

the same contents.
• Every internal node (node that is neither a source nor s_ink) has two or more

incoming edges.
(Integers are treated as vectors of length one.)

Figure 11 gives an example of an addition graph. If all internal nodes of an addition
graph have two incoming edges, the nodes of the graph form a (vector) addition chain.

A node in an addition graph that has more than two incoming edges specifies multiple

additions; the order in which the additions take place is not specified, but the number of
additions is fixed . Such nodes can be split into a set of nodes with two incoming edges,

making the order of the additions explicit. We call the process of splitting nodes to

make an addition graph with at most two incoming edges per node specification.

Specification of the addition graph in Figure 12 produces the addition graphs of Figure
11. Note that specification always produces the same number of nodes.

Figure 11: Two addition graphs for the number 5.

Generalization of an addition graph is the converse process of specification. All

nodes with exactly one outgoing edge can be removed , unless it is a source. At removal

of a node, the incoming edges become the incoming edges of the node it pointed to.

Figure 12: Generalized addition graph for the number 5.

An addition graph with one source and one target can be converted to an addition

* Directed loop-free graph: the edges of the graph are ordered pairs (denoted by arrows), and no node
is connected to itself.

Addition Chain Heuristics 61

chain by specification; the nodes contain the values of an addition chain. This is easy to
see from the definition of an addition chain. If we also consider addition graphs with

more sources or more targets, we get vector addition chains and (vector) addition
sequences. For an overview, see Table 6 (also see Table 5).

Addition chains with

One source, one sink

One source, more sinks

More sources, one sink

More sources, more sinks

Are convertible to and from:

Addition chains

Addition sequences

Vector addition chains

Vector addition sequences
Table 6: Conversion of addition graphs.

If we call addition processes that correspond to the same generalized addition graph
equivalent, we get an equivalence relation. For example, the addition chains 1, 2, 3, 5

and I, 2, 4, 5 of Figure 11 are equivalent. Although equivalent addition processes have

the same length (because specification always produces the same number of nodes), the
memory usage does not need to be the same. Investigating this equivalence relation
might be subject for further research.

An interesting operation on addition graphs is the reversal of all edges. If the graph

is generalized, it is easy to see that the resulting graph is also an addition graph. The
reversal of the corresponding addition graph converts addition chains to other addition

chains and vector addition sequences to other vector addition sequences. The interest­
ing thing is that vector addition chains are converted to addition sequences, and vice

versa. This relationship, first stated by Nicholas Pippenger [Pip76], is used by Jorge
Olivos [Oli8 l]. The graph representation makes the relation between vector addition

chains and addition sequences easy to see. We call this conversion of addition se­

quences to and from vector addition chains reversal.
The graph representation is used in the literature for several different purposes

[DLS8 l, Oli8 I, Pip76], because it beautifully shows the structure of an addition

process. Since we are also interested in the memory usage of addition processes, which
it not shown by the addition graph, we introduce still another notation.

Addition machines
There are several properties of addition processes that cannot be expressed with

either the addition chain or the addition graph notation. The first property is the order in

which the additions take place. The second property, which is very important in
practical implementation of addition chains, is the amount of memory needed during

evaluation. The third property is the "doubling", the adding of a number to itself, which
is a special case in most implementations of addition processes. We introduce a new

notation, the "addition machine program", that can make these properties explicit. An

addition machine program is a description of an addition process that specifies all details
of the addition chain without being machine dependent.

62 Chapter 4

An addition machine is a hypothetical device that evaluates addition chains (see

Figure 13). The addition machine consist of an adder, the unit that does the actual

addition of numbers. The result of the additibn of two numbers is stored in the

accumulator register. Intermediate results that are needed later on in the addition

process are stored in a register. The adder adds the contents of the accumulator to one

of the registers, or it adds the accumulator to itself. The latter case is a doubling. The

number of regi sters that is needed to evaluate an addi tion process determines the

memory usage of the addition process.

The addition machine executes a program that consists of a sequence of

instructions. Initially , the accumulator contains I. (In the discussion of vector

addition chains, the unit vectors are initially in a given subset of the registers .) Then,

the program is executed by executing all instructions in order. At the end of a program,

a determined subset of the registers contains the result of the execution.

i
Figure 13: The Addition Machine

The instruction set of the addition machine is:

• double : double the contents of the accumulator (add it to itself).

• add register: add the contents of register to the accumulator.

• store register: store the contents of the accumulator into register.

• load register: store the contents of the register into the accumulator.

In Figure 13, thin lines show connections that are only active for certain

instructions. The words next to these lines show for which instructions the lines are

active.

The memory usage of an addition process can now simply be defined as the
minimum number of registers that is needed to execute the program on the addition

machine. This number accurately represents the memory usage in reality.

The instruction double is in principle not necessary in addition processes, because it

could be replaced by the sequence store 1; add I (if I is a register that is used nowhere

else in the program). We choose to use double explicitly, because it is often treated

separately in the implementation. This can be for efficiency reasons (a squaring is less

expensive than a multiplication) or out of necessity (in elliptic curve groups, addition of

a point to itself is a different operation than adding different points). If the addition

process is evaluated, some of the add instructions can accidentall y involve two equal

numbers, but this will seldomly happen; we ignore this possibility in our performance

approximations.

Any addition process can be converted to an addition machine program. The length

Addition Chain Heuristics 63

of the process is equal to the number of add and double instructions in the program *.

Evaluation of the corresponding value of an addition process is trivial by emulation
of the addition machine on a real computer, with corresponding interpretations of the
instructions. For example, to compute a power of x using an addition chain, the

instructions are interpreted as follows :
• the initial value of the accumulator is x, instead of I

• double becomes a (modular) squaring
• add becomes a (modular) multiplication

• store and load retain their meaning

The same thing can be done for different addition processes (for example: vector
addition chains to compute products of powers) of for different groups (for example:

computing of elliptic curve elements). Using an addition machine program, an addition
process can be stored efficiently for later evaluation.

Quick introduction to ABC
We describe all algorithms in the programming language ABC [Pem90]. This

language is specially suitable for demonstrating algorithms. The notation is
typographically modified to improve legibility.

A program definition starts with a header that consists of the words how to and a

template showing how the program is to be called. The template contains the names of
the program 's arguments. This adds a new command to the language.

A simple example:
how to greet name:

write "Hello", name,"!" /
greeting program

/ produces "end of line"

If this program is entered, we could type "greet "Jurjen"", resulting in
greet "Jurjen"

Hello Jurjen!

There are the following data types in ABC:
• Numbers, e.g. 3215031751.
• Strings, e.g. "This is a string" . Strings are delimited by " or'.
• Lists, e.g. { "a"; "a"; "c"). Lists are always sorted and may contain doubles.

• Tables, e.g. {[I]: "a"; [3]: "b"; [9]: "c"). They are generali zations of arrays.
• Tuples, e.g. (I, "a"). Used for grouping of data.

In this thesis, we use the following typographic conventions for ABC programs:
• bold font is used for keywords (originally, ABC uses capitals).

• italic font is used for variable names.

• roman font is used for functions . Functions can be defined using how to
return.

* The notion of length can be generalized to give a different weight to add and double.

64 Chapter 4

Making Addition Sequences
We make addition sequences with a very simple algorithm, that performs

remarkably well. The algorithm can be adapted to produce sequences that have special

properties.
The addition sequences produced by this algorithm are used in the addition chain

and vector addition chain algorithms. The only application of addition sequences we

know of is in these two algorithms; we have not seen any practical protocol that uses
addition sequences.

The protosequence algorithm
The algorithm we use to make addition sequences is called the protosequence

algorithm. It is a skeleton algorithm that produces addition sequences from higher to
lower elements using an auxiliary function that determines the exact behaviour of the
algorithm. This auxiliary function is called "new.numbers", and it produces a list of

numbers that is to be included in the addition sequence.

To compute an addition sequence for the number in the list a, we execute the

following algorithm.

how to make sequence a:
put a inp
insert 1 in p

insert 2 inp

put 11; 2} in sequence

while max p > 2:

put maxp in/
insert/in sequence

for n in new.numbers p:
if n not.in p:

insert n in p

remove f from p

write sequence

make addition sequence for list a

initialize protosequence p

initialize sequence

f scans downwards

generate new lower elements

put into protosequence

print the result

The function "new.numbers" in the above algorithm outline is the protosequence

function . The function returns a list of numbers. An example definition is shown

below. The protosequence function determines what addition sequence will be

generated. The function is applied to the list p, the protosequence. The result of the
function is a list of numbers with the following properties:

• The largest number f of the protosequence must be the sum of two numbers

coming from the function result or the protosequence.

• All numbers in the function result must be between 3 and/- 1, inclusive.

Addition Chain Heuristics 65

The list produced by the protosequence function may be empty, if the number f
happens to be the sum of two numbers from the protosequence. Numbers from the li st
that already occur in the protosequence are discarded by the skeleton program. Note

that the skeleton program does not use any time-consuming operations; the management
of the protosequence is rather simple, since the number of elements of the

protosequence is small.

If the protosequence function fulfills the above conditions, the variable sequence
contains at the end of the algorithm an addition sequence for the numbers in a. To see

this, we check the four properties of addition sequences. Obviously, the first number is

I, since it is put directly in sequence by the skeleton program. To see that every
number is the sum of two previous numbers, consider what happens if a new number f

is inserted into sequence. The prototype function produces a list of numbers so thatf
is the sum of two of these numbers. These numbers are inserted in p, and they will be

put into sequence at a later stage. The third property is that every number in a occurs
in the list, which is trivially true from the algorithm. The last property is the result of

the property of ABC to sort lists automatically. A practical algorithm in another

language can easily keep the lists as a sorted array.
Note that the algorithm produces addition sequences from higher to lower numbers.

Also, the algorithm treats the number 1 and 2 in a special way: they are always included

in the output. This is done to simplify the protosequence function definition. The
algorithm assumes that a contains an element larger than I. It is easy to make it work

for all cases, but this is omitted for simplicity.

The choice of the protosequence function depends on the application. For the dis­

cussion, we call the elements of the protosequence in order from largest to smallestf,

f, ,J2, ••.• The simplest protosequence function just always returns the number f - f,:

how to return simple.numbers p:

put maxp inf
putfmaxp inf]

return If - f 1 l

simplest protosequence function

f max p: largest element <J of p

To use this protosequence function in the program, we define "new.numbers" as:
how to return new.numbers p: define function new.numbers

return simple.numbers p

This very simple solution does not produce excellent addition sequences, but it

demonstrates the idea. The addition sequence algorithm would produce for the numbers
12, 17, 32

the (not optimal) addition sequence:
1, 2, 3, 6, 9, 12, 15, 17, 32.

A much more complicated prototype function is introduced in [BC89]. We will not

66 Chapter 4

discuss it here.

The protosequence function can be adapted to produce addition machine programs
instead of the values of the addition sequence,. An ABC program that does this is shown

in the appendix to this chapter.

On-the-fly Algorithms
Until now, we only considered precomputed addition processes, that are evaluated

later on. In some applications, addition processes are used only once (for example, the
computation of blob values used in Chapter 3). If an addition process is used only once,

it is advantageous to spend less time generating the process, even if this results in a
longer process, if the time to generate the process is reduced. An algorithm that uses an

addition process only once can save memory by evaluating the process as it is

generated. Such an algorithm is called an on-the-fly algorithm.
Unfortunately, an on-the-fly algorithm for addition sequences is not known. To

evaluate an addition sequence, it must be generated first. This problem occurs for

example in the on-the-fly addition chain program that is shown later on.

Making Addition Chains
There are many ways to make addition chains. [Knu69] gives precomputation

methods to make addition chains for small numbers. We are only interested in large
numbers (a hundred digits or more). We first give some examples of on-the-fly addition
chain algorithms that occur in the literature, then we introduce a new on-the-fly

algorithm for addition chains. Finally, we show how this algorithm can be adapted for

precomputation purposes.

The binary method
The simplest example of an on-the-fly addition chain is the left-to-right binary

method. Such an addition chain can easiest be constructed by repetition of the

following: if n is even, insert n/2 into the chain; otherwise, insert n-1. The resulting
chain consists of all numbers that form an initial segment of n in binary notation.

For example, the number I 05 written in binary is 110 I 00 I. The resulting addition

chain consists of the numbers I, 2, 3, 6, 12, 13, 26, 52, 104, 105; in binary these are the

numbers I, 10, 11, 110, 1100, 1101, 110101, 110100, I 101000, I 101001.
In practice, the left-to-right addition chain algorithm is used on-the-fly like this:

Addition Chain Heuristics

how to left2right binary method x power n:
put (floor (2 log n)) + I in v

put x in result

for j in !2 ... v):

put result*result in result

if n bit (v- j)=l:

put result*x in result

write result

compute power x**n

addition chain element: I

double addition chain element

n bit (v- j) is dv- j

set last bit to I

Where "bit" is an auxiliary function defined in ABC as
how to return n bit b: return (floor(n/2**b)) mod 2

67

Although this ABC program for "bit" takes an exponentiation, the function takes a

negligible amount of computation on most (binary) computers.

This left-to-right binary method computes x" without using auxiliary registers

(except for two counters j and v). The variable result contains during the

computations the powers of x corresponding to the elements of the addition chain. The

number of multiplications needed to compute an nth power depends on the number of

digits v and on the number of nonzero digits w. As is easily seen from the program,

the number of multiplications is

v+w-2 ,

and if we approximate w by I+ v21, we get the approximate number of

multiplications

{(v-1).

There is also a right-to-left binary method; the algorithm is shown in the appendix.

The m-ary method
A generalization of this algorithm is the m-ary method [Knu8 I]. This method uses

a different number base. More specifically, we write n as
v-1

n = 'I,m;d;, where 0 :s; d; < m,
i=O

with d,,_1 > 0, and we put in the addition chain the following numbers:

• 1, ... , m - I;

• for j in 1, ... , v, the number consisting of the first j digits of n;

• all numbers from the preceding line, with the last digit replaced by 0.

The number base m may be any number, but the resulting addition chains are much

more efficient if m is a power of two.

In our program notation, we would get:

68 Chapter 4

how to left2right m ary method x power n:
put (floor (m log n)) + l in v

compute power x**n

put l [1]: x) in aux

for j in l 2 .. . m - I } :

put aux[i - I]* x in aux[! 1
put l in result

for j in l l ... v):

put result**m in result

if digit> 0:
put result*aux[digit] in result

write result

digit:
return (floor(n/m**(v -j))) mod m

initialize auxiliary array

[a] elements 2 ... m- l

for simplicity, start chain with 0

[b] multiply with m

(more than one step in the chain)

if dv-j is not zero*
[c] first j m-ary digits of n

print the result

definition of digit:

returns the /h m-ary digit of n

This algorithm needs m - 2 extra registers. The computation of "digit" is assumed

to be negligible on the computer implementing the algorithm.
We estimate the number of multiplications that is necessary to compute a nth power

with the m-ary method. The addition chain consists of three different steps (see the

corresponding locations in the program):
[a] The initial steps to generate the numbers I tom - I. This takes m - 2 multi­

plications.
[b] The steps that multiply a number with m. This is executed v times, and each

step takes l(m) additions.

[c] The steps to compute the next prefix of n. The number of additions is equal to

the number of digits of n that are not zero. Call this w.

During the first execution of the loop, the multiplications [b] and [c] are trivial

multiplications by 1, so we do not count them. This makes the total number of
multiplications to compute a nth power equal to

m+(v-1)/(m)+ w-3.

We assume m is a power of two, so we have
m=2k

l(m) = k

v = L logm n J + 1 = l '0 ~
2

n j + l

average w = l + (v -1) m,;;-I

Substituting this, we get the expected value of the number of multiplications:

2k +l'o~2n j<k+I-Tk)-2.

For practical values of n of 150 to 200 decimal digits, the optimal value fork is 5,

• The word "digit" notifies a local function, a so-called refinement. the definition of "digit" appears
at the end of the program.

Addition Chain Heuristics 69

giving expected 635 multiplications for a number n near 251 2 (about l0 154). The

binary method needs about 767 multiplications for those numbers, so the 25-ary method
saves 17% of the work.

The window method
The m-ary method can be improved upon quite easily. The method puts the initial

numbers 2, .. . , m - I in the addition chain, while most of these numbers are not needed

at all in the computation. The even numbers except 2 can also be removed. If j is such
a number, it will always occur in the addition chain as x, 2x, 2x + j , which can be

replaced by x, x + {, 2x + j. This saves both the time to compute these numbers, and

the memory to store them.
This idea was the start of the method we used in the article [BC89]. Basically, the

algorithm does the following:
• Split the binary description of n into "windows" consisting of odd binary

numbers separated by strings of zeros. Make sure that the first window is the
largest*.

• Produce an addition sequence for the numbers that occur in the windows.

• Produce the final chain, consisting of doublings starting from the value of the
first window, adding in numbers of the addition sequence at the proper

positions.
The total length of the addition chain is the sum of the length of the addition

sequence, the number of doublings, and the number of windows in the chain minus one.
A complete ABC program for the window method is shown in the appendix .

For example, to compute an addition chain for the number 496300971, we first write

the number in binary and split it in windows:
lllQll 00 lQl 00 .l.l.l.l 00 ill 0 lO lO 1 1

The windows are 111011 (59), lO I (5), 1111 (15) , 111 (7), and IOIO 11 (43). The

addition chain becomes:
1, 2, 4, 5, 7, 11 , 15, 16, 27, 43, 59 made from window values with

protosequence algorithm above

118, 236, 472, 944, 1888 doublings
1893 next window value (5) gets added in

3786, 7572, 15144, 30288, 60576, 121152

121167 window value 15
242334,484668, 969336, 1938672,3877344

3877351 window value 7
7754702, 15509404, 31018808, 62037616, 124075323,248150464,496300928

496300971 the final result n

The length of this addition chain is 37. This chain is shorter than the addition chains

* This is without loss of generality; the first window can be chosen larger even without influencing the
resulting addition chain.

70 Chapter 4

for this number made with the other methods mentioned above. The binary method

produces a chain of length 45, and the m-ary methods generates chains of length 42, if

m is 4 or 8, and 49 or more for other values o,f m. This behaviour is typical : them-

ary method is better than the binary method, while the improved method is still better,

using larger windows that the m-ary method. (Actually, a chain of length 36 exists;

such a chain can be generated with the algorithm in the appendix, if the window size is

chosen to be 7.)

There are two things left to consider: the window distribution and addition sequence

algorithm we use.

Window distribution
In the optimal case, the windows must be chosen in such a way that the addition

sequence that generates the window values has minimal length. Since thi s requires a lot

of computation, we need a heuristic.

Our heuristic for generating the window distribution is as follows:

• Choose the size of the initial window. We take a fixed value, depending on the

size of n.

• Find the minimal number of windows needed to split n. All window values

must be smaller than or equal to the value of the initial window.

• Among the distributions with the minimal amount of windows, find the one

with the smallest product of the window values.

Such a distribution can be computed in time linear in the number of bits of n. An

algorithm for this is shown in the appendix. We tried other heuristics, but they took

more time to calculate (more than linear in the number of bits of n), and they did not

perform much better. Ideally, the heuristic should minimize the resulting addition

sequence for the window values.

Addition sequence
When the window distribution is computed, an addition sequence must be

constructed and generated for the window values. We use the protosequence algorithm

for this. Since we do not know of an on-the-fly addition sequence algorithm, the

generated addition sequence is stored as an addition machine program, and evaluated
immediately after it is generated.

The addition sequences we generate for the window values must be generated

quickly, so we want a very simple protosequence function, that can be computed in little

time. The first example function "simple.numbers" is a bit too simple, because it gives

bad results if the quotient of the highest two elements of the protosequence f If,
becomes large. We use the function "quick.values", that uses a simple trick to avoid

this:

• If the number f If, is smaller than 2, produce/- / 1•

• If f is even, produce f I 2.

• Iff is odd, produce the difference off and the largest odd number in the

protosequence that is smaller than f.

Addition Chain Heuristics 71

The last step of the window method is a series of doublings, starting from the initial
window value, with the addition of the window values. This is very easy to implement.

The expected total number of steps for the window method is hard to compute.
Random tests of a 512-bit number gave an average of 608 multiplications for random

512-bit numbers, if the optimal initial window of size 6 is chosen. This is not only 21 %
less than the binary method, but also still 5% less than the 25-ary method.

Precomputation
We precompute an addition chain if it is to be used for a large number of

exponentiations with the same exponent. The precomputed addition chain can be stored
as an addition machine program, so that evaluation is very efficient. The chain could

even be stored as a computer program that computes the corresponding power directly,
or encoded as an addition machine program.

To use the window method for precomputation, we suggest using the window

method with several initial window sizes, and using the shortest resulting chain. Also, a

more effective protosequence function can be used that recognizes several special cases.
The appendix shows statistical results on the resulting addition chain lengths.

Making Vector Addition Chains
It is very advantageous to use vector addition chains if they are applicable, since

they give a large savings for only little work. Also, it is possible to do a vector addition
chain based computation without actually storing the chain, thus saving memory.

Vector addition chains can be generated from vector addition sequences by rever­
sing the addition sequence. The addition sequence is made again by the protosequence

algorithm shown above. Since the addition sequences are generated backwards, the
vector addition chain is generated in the forward direction , so that it can be evaluated

while it is generated. The resulting algorithm is surprisingly simple and gives large

savings if the number of factors is large.

The memory usage of the algorithm depends on the addition sequences generated.
The protosequence function has a special form the make the resulting vector addition

chain use as little memory as possible.
The appendix shows the algorithm to compute vector addition chains, with

statistical information about the performance.

Precomputation
Precomputed computation of vector addition chains can decrease the length because

there is time for a more sophisticated protosequence function. Using this technique only
is effective if the length of the vector is small (two or three). For details, see the

appendix.

72 Chapter 4

Conclusion
We discussed several ways to use addition processes in practice using heuristic

techniques. An overview of the cases is shown in Table 7. "Yes" means that a new
heuristic algorithm is introduced in this chapter, and"?" means that no efficient

algorithm is known.

We constructed heuristic precomputing algorithms for addition chains, addition
sequences and vector addition chains; the algorithm for vector addition sequences of
[Pip76] cannot much be improved upon, as is proved in the same article. The addition

processes can easily be stored in the form of an addition machine program.
Addition chains and vector addition chains can also be generated on-the-fly. This

saves memory and time over precomputation algorithm if the process is only used once.

The explicit algorithms are shown in the appendix.

On - the - fly Precomputation

Addition chains Yes Yes

Addition sequences ? Yes

Vector chains Yes Yes

Vector sequences ? [Pip76]
Table 7: Overview of the algorithms.

Several attempts by us to generate addition chains using other heuristics have failed.

For example, we tried to apply simulated annealing (also known as statistical cooling),

but this method seems not to apply to the addition process problem.

Addition Chain Heuristics 73

References
[BC89] J. N. E. Bos and M. J. Coster: Addition Chain Heuristics, Proc. Crypto '89

(Santa Barbara, CA, August 1989), pp. 400-407.
[BC89a] J. N. E. Bos and M. J. Coster: Heuristics for addition chains, Report CS­

R8945, Centrum voor Wiskunde en Informatica (Amsterdam, November

1989).
[Bel63] R. Bellman: Problem 5125, American Mathematical Monthly 70

(September 1963), p. 765.
[Bra39] A. Brauer: On addition chains, Bulletin American Mathematical Society

45 (October I 939), pp. 736-739.

[Bri90] E. Brickell : A survey of Hardware Implementations of RSA, Proc.

Crypto '89 (Santa Barbara, CA, August 1989), pp. 368-370.
[Chi84] H. R. Chivers: A practical fast exponentiation algorithm for public key,

[Cos90]

[DLS81]

[Erd60]

[Knu69]

[Knu81]

[Mon85]

[Oli81]

[Pem90]

[Pip76]

[Sch37]

[Str64]

[Thu76]

International conference on Secure Communication Systems (London,

February 1984), pp. 54-58.

M. J. Coster: Some algorithms on addition chains and their complexity,
Report CS-R9024, Centrum voor Wiskunde en Informatica (Amsterdam,

June 1990).
P. Downey, B. Leong, and R. Sethi: Computing sequences with addition

chains, SIAM Journal on Computing IO (No. 3, August 1981), pp. 638-646.
P. Erdos: Remarks on number theory III: On addition chains, Acta
Arithmetica VI (1960), pp. 77-81 (with erratum for p. 78).

D. E. Knuth: Seminumerical algorithms, The Art of Computer

Programming 2 (1969), section 4.6.3.

D. E. Knuth: Seminumerical algorithms, The Art of Computer
Programming 2 (second edition, 1981), section 4.6.3.

P. L. Montgomery : Modular Multiplication Without Trial Division,
Mathematics of Computation 44 (No. 170, April 1985), pp. 5 I 9-521.

J. Olivos: On Vectorial Addition Chains, Journal of Algorithms 2 (June
1981), pp. 13-21.

S. Pemberton: The ABC programming language, Prentice-Hall, 1990.

N. Pippenger: On the evaluation of powers and related problems, Proc.

17th IEEE Symp. Foundation of Computer Science (Houston, TX, 1976),
pp. 258-263.

A. Scholz: Aufgabe 253, Jahresbericht der Deutschen Mathematiker­
Vereinigung 47 (1937), pp. 41-42.

E.G. Straus: Solution to problem 5125, American Mathematical Monthly
71 (September 1964), p. 806-808.

E.G. Thurber: Addition chains and solutions of 1(2n) = l(n) and

1(2n - I)= n + l(n) -1, Discrete Mathematics 16 (1976), pp. 279-289.

V, -....,_JL.._, 't

[Yac90] Y. Yacobi: Exponentiating faster with addition chains, Proc. Eurocrypt '90
(Arhus, Denmark, May 1990), to appear.

[Yao76] A. Yao: On the evaluation of powers, SIAM Journal on Computing 5
(No. l, March 1976), pp. 100-103.

The Programs 75

Appendix to Chapter 4: The Programs
This appendix shows a set of ABC programs that can be used to try out the different

algorithms discussed in the chapter. Some statistical information on the performance is

also supplied.

ABC is a programming language that is designed as a truly simple programming

language for beginning programmers, but it turns out to be very useful for trying out
algorithms. In a book, it is important that algorithms are denoted clear and precise, and

we believe that ABC is the best way to do this. The ABC code is only typographically

modified, so the programs are executable as they stand.

The right-to-left binary method
The right-to-left binary method is, like the left-to-right binary method, based on the

binary notation of the target number. It uses the same amount of multiplications. In
addition graph terminology, the right-to-left binary method is the reversal of the left-to­

right binary method. It is an on-the-fly algorithm, because the elements of the addition

chain are generated in order.
The algorithm bears its name from the order in which the bits of the exponent are

processed. This right-to-left order is often easier to program; for example, the ABC

program below is much shorter than the corresponding program for the left-to-right
method. On the other hand, the method does use an auxiliary register that the left-to­

right method does not need.
The addition chain of the right-to-left binary method for the number n consists of

the binary suffixes of n, combined with all powers of two that are smaller than n. For

example, the right-to-left addition chain for 13 contains the numbers I, 2, 4, 5, 8, 13.
An on-the-fly algorithm to compute a power using the right-to-left binary method is

how to right2left binary method x power n:

put 1, x, n in result, b, e

while e > 0:
while e mod 2 = 0:

put b*b, e I 2 in b, e

put result*b, e - I in result, e

write result

compute power x**n

result*b**e =x**n

In this algorithm, b is repeatedly squared, corresponding to the powers of two in

the addition chain, while e follows the binary suffixes of n, with corresponding
powers result. We see that one auxiliary register (called bin the program) is used.
On most binary computers, the bits of n can be accessed directly without using the

auxiliary variable e.

The right-to-left m-ary method
The right-to-left binary method can be generalized to other number bases. In

principle, the right-to-left m-ary method produces the reversed chains of the left-to­
right m-ary method, so the length of the chain is the same. The method uses m - I
auxiliary registers; this is one more than the left-to-right m-ary method. The algorithm

is shown below. The computations on the number e can be omitted if the computer has

instructions to access the m-ary digits of a number directly.

how to right21eft m ary method x power n:
put x, n, { l in b, e, mem

for i in { l.. .m-1}: put I in mem[i]

while e 2': m:

if e mod mt:O:
put mem[e mod m]*b in mem[e mod m]

put b**m, floor(e Im) in b,e

put mem[e]*b in mem[e]

foriin {-m+l...-2}:

put mem[-i-I]*mem[-i] in mem[-i-l]

for i in {2 ... m-1 }:

put mem[i]*mem[i-I] in mem[i]

write mem[m-I]

The window method

compute power x**n

initialize auxiliary registers

This takes l(m) multiplications

Compute result from intermediates

The algorithm to compute an addition chain with the window method consists of

three parts. First, the target is split into windows. Then, an addition sequence has to be
generated for the window values, and evaluated to produce the elements corresponding

to the window values. When these values are computed and stored, the actual chain can

be computed by repeated doubling and adding with the stored values.
We will show algorithms for the three parts separately. The heuristic window

distribution is found by the routine "window.split". The window distribution that is
computed is based on the heuristic explained before: it is the window distribution with

the fewest possible windows that has the smallest product of window values. We admit

that this is a very naive heuristic, but it produces reasonable results. The other heuristics

we tried were too complex to compute a window distribution in short time.

The algorithm to compute the window distribution is straightforward; the number n

is scanned from left to right, and the optimal window distribution is computed for every

prefix of n. In each step, the window distribution is found from the previously
computed distributions. In fact, only distributions with exactly one less window are
needed to compute an optimal distribution.

how to return k window.split n:
put value(nlk) in iw

The Programs

put { [k]: (iw, { [k]: iw l) l, { l in prev, opt

split a number in windows

nlk = the first k characters of n

put k in pos "item k" means the kth element

while some pos in { pos+ I. . . #n l has n item pos=" I " :
if value(nlpos@(max keys prev)+ 1)>iw:

put opt, { l in prev, opt
put O in m

we need another window

77

for p in keys prev: all solutions with one less window

put prev[p] in val, sol
put value(nlpos@p+ 1) in nwv
if nwv:5iw and (m=O or val* nwv<m):

put val*nwv in m
put nwv in sol[pos]
put m, sol in opt[pos]

put opt[pos] in val, result
return result

we found a better solution

take optimal solution

The function of the most important variables in "window.split" is:

iw The value of the initial window.

k Parameter of the algorithm: size of the first (and largest) window.

opt Description of window distribution with same amount of windows.

prev Description of window distributions with one less window.

opt and prev are arrays indexed by the value of pos. The contents

are pairs of values: the product of the window values, and an array

mapping positions to window values.

pos The position of the bit currently inspected. opt[pos] is the optimal

distribution of bits 1 through pos of n.
m The maximum product of window value found so far. If m=O, no

window has been found yet.

n
nwv
result

Parameter of the function: binary string representing the target.

Value of the new window.

The optimal window distribution: output of the function.

The function "window.split" uses a simple auxiliary function "value", which returns

the value of a binary number that is expressed as a string:

how to return values:

put O in result
ford ins:

put result*2+1 ["O"]: O; ["I"]: l l [d] in result
return result

value of a binary string

78 Chapter 4

Computing the addition sequence for the window values is done with the addition

sequence algorithm described in the chapter. For "new.values", we use the function

"quick.values". The algorithm is repeated hei,-e in a slightly different form, so it fits in

the main program:

how to return make.sequence p :

insert l in p

insert 2 in p

put { I; 2 l in sequence

while max p > 2:

put maxp in /
remove f from p

insert/in sequence

put new.number in n

if n not.in p: insert n in p

return sequence

new.number:

put max p in fl
select:

make addition sequence

initialize protosequence

initialize output sequence

get next element/

new.number is a refinement

update protosequence

return the result

the protosequence function

f I fl < 2: return/-fl subtract

f mod 2=0: return f I 2 double

some i in {--#p ... -1 l has (p item (-i))mod 2=1:

return/- (p item (-i)) /- largest odd element of p

The complete computation is performed by the main program, that uses the other

two programs:

how to window method n size k:

put k window.split n in windows

put { l in values

for i in windows:

if i not.in values: insert i in values

put make.sequence values in part I
put windows[min keys windows] in element

ford in { !+min keys windows ... #n):

put element*2 in element

if d in keys windows:

put element+windows[d] in element

write "Length of the chain:"/

write "Sequence:",#partl-1 I
write "Doublings:", #n-min keys windows I
write "Memory:", #windows-I I

chain length of window method

window values in array

convert array to list

initial addition sequence

value of first window

squaring

at a window?

add window value

/ gives a new line

The Programs 79

In this program, the variable part] contains the addition sequence for the window
values, and element successively gets all the values of the rest of the addition chain.

Note that the program does not evaluate the addition chain; it only computes the length.
We investigated the length of the addition chains produced by the window method

as a function of the number of ones in the binary representation of the number. The

binary method has a simple linear dependency, but the window method gives a curved

graph as shown in Figure 14. To make the figure, we generated strings of random bits
with different probabilities for zeros and ones, and applied the above algorithm to the

resulting numbers. The strings had a length of 5 I 2 bits; the first bit was always one.
The black dots denote the results of the experiment, while the line gives the length of

the addition chain of the binary method.

Length

of
addition

600

chain 580

t 560

540

•
•

•

• • • • •
• • • •• • • • • •

•

520 +'--..-----,---,-----,----,-----,---,--..-----,---,--

0 .1 .2 .3 .4 .5 .6 .7 .8 .9
_..,. Fraction of ones

Figure 14: Window method for different numbers of ones.

Addition machine programs for addition sequences
If the addition chain program above is to be used in practice, the addition chain

needs to be evaluated. The most interesting part of this is the evaluation of the addition

sequence for the window values. If those values are computed, the rest of the

computation is simple.
We need a special version of the addition sequence algorithm that can evaluate the

addition sequence. To do this, we construct an addition machine program. This
program can later be used to evaluate the chain. The addition machine program can be

produced in reverse order directly with a modification of the protosequence algorithm.
An example program that produces this addition machine program, using the same

protosequence function as before, is shown below.

80

how to addition sequence a:
init

while p * I I I:
put maxp inf

remove f from p

store
add

select:
keys mem={): pass
#keys mem= I :

write "store", min keys mem

init:

Chapter 4

write "Reverse addition program:"/

put {) in mem

for i in { 1.. .#a):

put a item i in mem[i]

put a inp

if I not.in p: insert 1 in p

if 2 not.in p: insert 2 in p

store:
if some i in keys mem has mem[i] = f:

write "store", i /
delete mem[i]

add:
put max p in fl

select:
f!fl<2:

putf-fl inf

memory
fmod 2=0:

putf/2 inf
write "double"/

produce addi tion machine program

take f off protosequence

produce store if needed

produce add if needed

produce last store
initialization

initialize registers

initialize protosequence

produce store if necessary

equivalent to new.number

some i in {--#p ... -1) has (p item (- i))mod 2=1:

put (p item (- i)) inn
memory
putf-n inn

if f not.in p: insert fin p

The Programs 81

memory: find memory location for term/

select:
some i in keys mem has mem[i]=J:

write "add", i /
some i in I 1.. .#p l has i not.in keys mem:

put/in mem[i]
write "add", i /

This program takes a list of values, and produces an addition machine program that

evaluates the corresponding addition sequences. After this program is finished, the

values are stored in order in the registers of the addition machine. The addition machine

program is produced in reverse order. The program keeps the contents of the addition

machine registers in the variable mem.
Example:

>>>addition sequence 12; 5; 14)

Reverse addition program:

store 3

double
add I
store 2

add 2

double
store I
double

store 2

In a practical application, the addition program would be stored, and evaluated at a

later moment.

Precomputed addition chains
If an exponent is about 512 bits, the minimal number of multiplications produced by

the window method depends on the parameter k: the window size. The minimum

number of multiplications occurs for a window size near 6. Figure 15 shows the

minimum, maximum and average lengths of the vector addition chains for 19 random

numbers . A window size of 6 does not always generate the minimum addition chain, so

if the time is available, it is worth to try several window sizes to see which one gives the

best result. On average, this saves about two multiplications.

The addition sequences generated for the window method can also be improved

upon. The heuristic techniques of [BC89] produce slightly better addition chains at a

relatively high cost. In the graph of Figure 15, this would reduce the number of

multiplications fork in the range from 6 to 15, so that the range of values fork that

give a good chain is broader. The amount of computation needed for these addition

82 Chapter 4

chains is quite high, while the number of multiplications that can be saved is another
one or two. This method is rather expensive, so that it is only worth the trouble if the

chain is going to be used very often.

Length
640

of I addition

t tttttttttf+ttttttttftttttt+tttt!

chain 630

t 620

610

t!!
600

2 4 6 8 10 15 20 25 30 35 40 - Window size

Figure 15: The window method for 512-bit numbers.

The window size that gives a minimum length chain is almost always 6 for numbers
of 512 bits. If we take a smaller exponent, we get a different picture; Figure 16 shows
the results for random 128- and 256-bits numbers. It is clear that the position of the

minimum is much more variable. The reason is that the addition sequence algorithm

gets fewer numbers, so that its performance is less predictable.

180

170

j1m•1~t1~'1J~ml*1 160 310

150 300

2 4 10 20 30 40 2 4 10 20 30 40

128 bits 256 bits

Figure 16: The window method for smaller numbers.

On-the-fly vector addition chains
Vector addition chains can be computed with a simple on-the-fly algorithm. The

algorithm consists of three computations:

• generation of the addition sequence;

• reversal of the addition sequence to a vector addition chain;
• evaluation of the vector addition chain.

The Programs

These computations are performed in parallel , so that almost no extra memory for

the computation is needed. We discuss the three processes separately, although the

program code contains all three intermingled.,

The addition sequence is generated by a special protosequence function that

generates sequences that yield efficient memory behaviour when reversed. The

protosequence function works like this:

• Compute the quotient of the largest two elements of the protosequence; call

them h and J1•

• If the quotient Ji/ J2 is smaller than 2, produce the difference f, - Ji.

83

• If the quotient is larger than 2, use the left-to-right binary method to generate a

chain from h to Lf2 / Ji J · f2.
The method used in the last case, when the quotient is larger than 2, is designed to

make memory usage of the resulting vector addition chain as low as possible. The

reversal of the left-to-right binary method used is the right-to-left binary method. This

latter method uses minimal memory. Because of this, the algorithm never uses more

memory than was needed for the inputs, and the computation can be performed in place.

We use a special version of the protosequence function that generates the elements of

the chain one by one, to simplify the rest of the algorithm.

There may be addition sequence algorithms that use slightly more memory and give

better performance when reversed. Since the quotient Ji/ h is almost always small, an

algorithm that makes good chains for small numbers should be used.

The distribution of the quotients Ji / h depends on the length of the vectors. The

case that the vectors have length one can be considered as a special case (the algorithm

performs poorly in this case). If the vectors have length 2, the quotient is smaller than

14 in 90% of the steps [Knu69, section 4.5.3]. If there are more factors, the quotient is

even smaller. To make good addition chains for such small numbers, a table of optimal

addition chains can be used, together with a simple addition chain method for numbers

not in the table. This saves approximately 2% of the multiplications. We computed this

figure comparing the binary method and the optimal method for number up to I 00. If
the vector addition chains are precomputed, the optimal addition chains for those small

numbers can be easily computed using the techniques from [Knu69].

The reversal of an addition sequence is a tricky process, although it requires little

computation. The produced output of the protosequence algorithm is used to determine

the addition graph, and the reverse is produced in the form of a sequence of instructions

for an addition machine. The graph is stored in a special data structure. Some

optimizations are performed to eliminate unnecessary stores and to make sure double is
used whenever possible.

The final step is the execution of the produced addition machine instructions. As

explained before, the instructions are "interpreted multiplicatively" so that the actual

product of powers is computed.

84 Chapter 4

The program below computes the product

nb e;
I '

where the b,- are stored in bases, and thee,- are in exponents. The index set for i is

the key list of both bases and exponents.

how to vector chain bases power exponents mod n:

check keys bases=keys exponents index sets must be equals

init
while #ref> 1:

generate
reverse
store

put max keys ref inf

reverse
write "Result:", ace

initialize algorithm

first step: addition sequence

second step: reversing

third step: evaluation

final multiplications

result of the computation

init: initialize ref, memory, mem.list

put bases, I [l]: { l l, { l in memory, ref, mem.list

for i in keys bases:

if exponents[i] not.in keys ref: put { l in refiexponents[i]]

insert i in refiexponents[i]]

insert i in mem.list

put max keys exponents in m

write "load", m I
put memory[m], min ace, stored

load initial number

remove m from refiexponents[max keys exponents]]

remove m from mem.list initial multiplication not necessary

generate: make the addition sequence

put (keys ref) item #ref, (keys ref) item (#ref-I) in/,/2
put floor(// /2),/2 in q, d (most of the time, q is 1)

while q mod 2=0: put q/2, d*2 in q, d

if d = f: put d/2 in d

if d not.in keys ref: put { l in refid]

if f-d not.in keys ref: put { l in reflf-d]

if d > f-d: putf-d ind
update ref ford and/

make sure dis smallest

The Programs

reverse:
if f in keys ref and stored in rejff]:

remove stored from rejff]

remove stored from mem.list

write "double"/
put (acc*acc)mod n, 0 in ace, stored

for m in rejff] :

select:
m>O:

write "add", m I

ref does the reversing
produce double instead of add

produce all multiplications

put (acc*memory[m])mod n, 0 in ace, stored

remove m from mem.list

delete rejff]

store:
select:

f= 2*d:

add
write "double"/
put (acc*acc)mod n, 0 in ace, stored

stored>O:

insert stored in refid]

insert stored in mem.list

else:
select:

store number

use double instead of store and

value is already stored

find empty memory location

some m in { l ... l +#mem.list l has m not.in mem.list:

put m in stored

write "store", m I
put ace in memory[m]

insert stored in refid]

insert stored in mem.list

For example, to compute 25 • 3 7 mod IO I, one would type:
>»vector chain { [I] : 2; [2]:3 l power { [l]: 5; [2] : 7 l mod 101

to get the addition machine program and result:
load 2

add I
store 1
double
add 2

double
add I
Result: 92

85

86 Chapter 4

The variables used in the program have the following meaning:

ace

bases

d

exponents

mem.list

memory

n

ref

re/If]

keys ref

stored

accumulator of the addition machine
table of the numbers b; (input parameter)

is the place where a * instruction is generated
table of the numbers e; (input parameter)
contains used memory locations (with multiplicity)

stores intermediate results
modulus for the multiplications (input parameter)
contains the edges of the addition graph
is the list of numbers that have to be multiplied in when the sequence

reaches I
is the protosequence (partial addition sequence)

keeps track of the contents of the accumulator:
number: memory location; 0:a product not in memory

The on-the-fly vector addition chain algorithm gives no savings if there is only one
factor in the product; in fact, it is not more efficient than the binary method. The
savings for 2 or more factors are probably always worth the trouble of the algorithm.

Table 8 gives the average lengths of vector addition chains. The top row gives the
number of factors in the addition chain, and the first column gives the number of bits of

the factors . Each entry is the average of fifteen chains for random numbers. The

bottom row gives the number of multiplications that a product of 500-bit numbers
would take if the binary method was used together with multiplication of the factors .

As can be seen, the savings of using a vector addition chain are enormous, even for only

two factors.

factors I 2 5 10 20 50

20 bits 30 32 47 69 114 227

50 bits 73 81 110 169 263 468

JOO bits 148 161 221 330 471 737

200 bits 299 321 440 650 988 1615

500 bits 743 803 1093 1627 2573 4778

1000 bits 1493 1608 2183 3245 5192 9973

multiply 748 1498 3746 7494 14989 37474
Table 8: On-the-fly vector addition chains.

The percentage of doublings in a generated vector addition chain decreases if the

number of factors increases. Table 9 gives the percentage of doublings with respect to

the length of the vector addition chain for the experiments that yielded Table 8. We see

that the percentage of multiplications decreases to a very small portion of the

multiplications if the number of factors is large. This is not a surprise, but it means that

The Programs 87

for a large number of factors, substitution of double whenever possible is not effective

anymore; it is probably cheaper to always use a multiplication or detect squarings at

multiplication time.

factors 2 5 JO 20 50

20 bits 64.2% 44.0% 18.5% 7.7% 3.0% 1.8%

50 bits 66.8% 44.6% 17.4% 4.8% 2.0% 1.9%

JOO bits 66.8% 44.6% 15.7% 4.4% 2.9% 2.4%

200 bits 66.5% 45.8% 15.7% 4.5% 1.8% 1.3%

500 bits 67.1% 45.3% 16.3% 4.0% 0.8% 0.4%

JOOO bits 66.9% 45.5% 15.9% 4.0% 0.6% 0.2%
Table 9: Doublings in vector addition chains.

5
Provably Unforgeable Signatures

Introduction
One of the greatest achievements of modem cryptography is the digital signature. A

digital signature on a message is a special encryption of the message that can easily be

verified by third parties. Signatures cannot be denied by the signer nor falsified by other

parties.
There are several attempts in the literature to make an efficient provably secure

signature scheme. With "secure", we mean that it is hard for unauthorized parties to

make a false signature. The strongest sense of security is defined in [GMR88], and a
scheme is described that provides this level of security under the factoring assumption.
Our new signature scheme gives the same level of security much more efficiently-in

fact, it is about as efficient as the RSA scheme. Parameter values can be chosen to suit

special needs. In the most efficient case, a signature on a short message (64 bits) can be
signed in 33 modular multiplications (not counting precomputation) and verified in 35

multiplications. The scheme is based on the modular root (RSA) assumption.
After the introduction, we discuss other signature schemes relevant to this work.

We discuss the Lamport signature scheme, on which this signature scheme is based, in

detail. Then, the new scheme is explained, and the possible choices for parameter

values are shown.

Signature scheme
An overview of signature schemes, comparing securities, can be found in the paper

mentioned earlier [GMR88]. We use their notation. They define a signature scheme as

consisting of the following components:

• A security parameter k, that defines the security of the system, and that may
also influence performance figures such as the length of signatures, running
times and so on.

• A message space M, that defines on which messages the signature algorithm
may be applied.

Provably Unforgeable Signatures 89

• A signature bound b, that defines the maximal number of signatures that can

be generated without reinitialization. Typically, this value depends on k, but it
can be infinite.

• A key generation algorithm G, that allows a user to generate a pair of
corresponding public and secret keys for signing. The secret key S is used for
generating a signature, while the public key Pis used to verify the signature.

• A signature algorithm a, that produces a signature, given the secret key and
the message to be signed.

• Finally, a verification algorithm, that produces true or false on input of a

signature and a public key. It ouputs true if and only if the signature is valid for

the particular public key.

Some of these algorithms may be randomized, which means that they may use

random numbers. Of course, G must be randomized, because different users must

produce different signatures. The signing algorithm CJ is sometimes randomized, but
this tends to produce larger signatures. The verification algorithm is usually not

randomized.
A simple example of a signature scheme is a trapdoor one-way function/ The

function/ is used for verification by comparing the function value of the signature with

the message to be signed, and CJ is the trapdoor off The main problem with such a
scheme is that random messagesf(x) can be signed by taking a random signature value

x. A simple solution is to let M be a sparse subset of a larger space, so that the
probability that/(x) is a valid message for random xis low. An example of a sparse

subset is the set of "meaningful" messages.

Related work
The notion "digital signature" was introduced in [DH76] . This paper, which can be

considered the foundation of modem cryptography, discusses the possibility of digital

signatures and the use of a trapdoor one-way function to make them.

[RSA 78] is the original article on the RSA scheme. It introduces the famous RSA
trapdoor one-way function . This function is still widely in use and is applied frequently .

A well-known weakness of RSA is that it is multiplicative: the product of two

signatures is the signature of the product. This potential problem can be prevented as
above by choosing an appropriate sparse message space.

Since then, an enormous number of signature schemes have been proposed [Rab77,

MH78, Sha78, Rab79, Lie81, DLM82, GMY83, Den84, GMR84, OSS84, EIG85,
OS85, FS86, BM88, GMR88, CA89, EGL89, EGM89, Mer89, Sch89, SQV89,

BCDP90, Cha90, CR90, Hay90, CHP91], applied [Wil80, Cha82, Gol86, Bet88], and
broken [Yuv79, Sha82, Tu84, BO85, EAKMM85, Roo91]. We will not discuss all

these schemes here; we only discuss the ones that are interesting to compare with the
new scheme.

The schemes [Rab79, GMY83, GMR84, GMR88] are steps towards a provably
secure signature scheme. The scheme described in the last article is secure in a very

90 Chapter 5

strong way: it is "existentially unforgeable under an adaptive chosen-message attack"
with probability smaller than 1/Q(k) for every polynomial Q. This means that

generating a new signature is polynomially hard if signatures on old messages are
known, even if the old signatures are on messages chosen by the attacker.

The scheme in [GMR88] is based on factoring. While our scheme is based on the
slightly stronger RSA assumption, it is much more efficient. The signature scheme of
[GMR88] uses a large amount of memory for the signer, and quite a lot of computation.

Our scheme uses no memory at all, except for a counter and the public values, and
signing and verifying takes about as much computation as RSA does, depending on the
parameters.

The Lamport Scheme
To explain the new system, we compare it to the earlier Lamport scheme

(explained already in [DH76, page 650]). To make a signature in thi s scheme, the

signer makes a secret list of 2k random numbers

A= a 1,0,a1,1,a2,0,a2,1, . . . ,ak,O,ak,l •

applies a one-way function f to all elements, and publishes the result B:

8
= {f(a,,o)J(a2,o), . . . ,f(ak,O)

f (a1,1),f(a2,1),. • .,f(ak,l)

The signature consists of the numbers a,,m
1

, a2,m
2

, ••• , ak ,mk from the li st A (one
from each "column"),where m1, m 2, .. . , mk are the bits of the message to be signed.

The lists A and B cannot be used again.
The properties of Lamport 's scheme are easy to verify:

• Signing a message is only the publication of the proper elements of A .

• To forge a signature, one needs to find certain values from the list A. How hard
this is, depends on the security of the one-way function/

• If the values A are only used for one signature, new signatures cannot be made

from old ones.

• Verification of a signature consists of applying the one-way function to the

signature values, and comparing them to the public values determined by the

signed message.

The new system uses the same idea, with three important differences. First, the list

B is replaced by another li st that can be used for all signatures. Second, the list A is
constructed from two lists so that less memory is needed to define it. Third, the

elements of A in the signature can be combined into a single number.

A small optimization
There is a trivial optimization of Lamport's scheme that reduces the number of

public function values to almost half, that we could not find in the literature. This

optimization is independent of the signature scheme as such. Basically, the signer signs

by publishing a k-element subset of the 2k secret numbers. Lamport 's scheme

Provably Unforgeable Signatures

chooses a particular set of subsets of the set of 2k elements, as shown above. The

necessary property of this set of subsets is that no subset includes another.

91

There are other sets of subsets with the property that no subsets includes another. A

largest set of subsets with this property is the set of all k-element subsets (a well-known

result from lattice theory). For these sets, it is easy to see that no subset includes
another.

For example, in Lamport's scheme, the list of 6 elements

A= a1,o,a1,1,a2,o,a2,1,a3,o,a3,1

allows us to sign messages of 3 bits. If we renumber A as a 1 ,a2 ,a3 ,a4 ,a5 ,a6 , we

get the set of 20 three-element subsets of A:
{ a 1 ,ai,a3 }, { a 1 ,a2 ,a4 }, { a 1 ,a2 ,a5 }, { a 1 ,a2 ,a6 }, { a 1 ,a3 ,a4 },

{ a 1 ,a3 ,a5 }, { a 1 ,a3 ,a6 }, { a 1 ,a4 ,a5 }, { a 1 ,a4 ,a6 }, { a 1 ,a5 ,a6 },

{ a2 ,a3 ,a4 }, { a2 ,a3 ,a5 }, { a2 ,a3 ,a6 }, { a2 ,a4 ,a5 }, { a2 ,a4 ,a6 },

{a2 ,a5 ,a6 }, {a3 ,a4 ,a5 }, {a3 ,a4 ,a6 }, {a3 ,a5,a6 }, {a4 ,a5,a6 };

this allows us to sign one of 20 messages, which is equivalent to more than 4 bits.

In general, there are

(2k) 2
2

k
k , or about fu ,

k-element subsets, so that we can sign messages of about 2k -½ log2 (krr) bits. The

original Lamport scheme allowed messages of only k bits, so that we get almost a

doubling of the message size for the same size of the list B. This simple improvement

can also be used in our new signature scheme.

To encode a signature, a mapping needs to be defined between messages and these

subsets:
s(message) = subset.

The simplest mapping just enumerates messages (interpreted as numbers from 0
onwards) to sets (seen as binary strings that denote l for presence and O for absence) in

order. Such a mapping is easily and efficiently computed by the algorithm shown in

Figure 17. The binomial coefficients do not need to be computed by repeated

multiplication and division. The first binomial coefficient is always the same, so it can

be precomputed, and the others can be computed by one multiplication and one division

by small numbers using the properties:

(' ~ l) = (! } t ~ e and G = D = (! } ~.
The algorithm outputs ones and zeros corresponding to the elements in the resulting

set.

Note that the Lamport scheme uses another mapping that maps numbers onto k­

element subsets, but that only a small number of these sets are used.

92 Chapter 5

Let n, the message, be a number in the range 0 . . . (
2
/)- 1.

Put 2k int and kine.

While t > 0:

Put t-1 int.

If n;:: (!), put n -(!) in n, e - 1 in e, and output a 1 (thi s tis in the set).

Else, output a 0 (this tis not in the set).

Figure 17: Algorithm for the mapping s.

The New Signature Scheme
The new signature scheme replaces the list A of the Lamport scheme by a list of

numbers that can be organized in a matrix . Instead of using a new list B for every

signature, a fixed list called R is used for all signatures and all participants. The one­

way function/ is replaced by a set of trapdoor one-way functions, that changes per

signature. For the trapdoor one-way functions, we use the modular root function of

[RSA78] .

The construction allows us to sign long messages using only a few numbers to

define the set A. In the example of Figure 18, the set A of 12 elements is constructed

from three primes p 1, p2, p3 (used only for this signature) and four public values r 1,

ri, r3, r 4 (that can be used again). This set allows us to sign messages of 9 bits,

since there are 924 > 29 possible 6-element subsets of A. Signing messages of 9 bits in

the original Lamport scheme takes 18 public values that can be used only once.

Figure 18: Example list A of the new scheme.

The numbers a; of A are secret encryptions of the numbers r; of R, and the

corresponding decryption exponents are public. The multiplicative property of RSA

allows us to multiply the values of the signature to form one number. Verification of a

signature can be done using a simple computation, without having to compute the

separate factors.

Provably Unforgeable Signatures 93

The public values of the new system are:

• One modulus per signer;

• The system-wide list R. This list is used by all users, and that it does not
change often, so that distribution does not require much traffic. The numbers in
R are smaller than the smallest modulus used by the signers.

• A list of sets of primes that may be used for signing. For security reasons, the

sets may not overlap each other, and the signers may only use these sets of
primes.

A signature consists of the original message signed, the signature proper (an integer
smaller than the modulus of the signer), and a description of the prime set.

In the language of [GMR88]:

• The security parameter determines the size of the RSA modulus. This modulus

can vary per user.

• The message space M is (equivalent to) the set of subsets of A that include half
the elements.

• The size of the public list of sets of primes determines the signature bound b.

• Key generation is a matter of generating an RSA modulus, and computing
exponents for the modular root extractions.

• Signing and verification are defined below.

Signing
For the list A of a signature, the set of RSA encryptions

A= {w modn lpE P;r ER}
is used, where:

• P a set of primes from the public list;

• R is the public list of verification values;

• n is the RSA modulus of the signer.
As explained above, a signature is constructed from a subset determined by s(m)

of half these numbers. The constant k used in the algorithm that maps s is equal to

l #P;f R J. This allows us to sign a message of almost #A = #P·#R bits. The product of
the elements of A in this subset is the signature. Since this is a single number, the
signature is much more compact than in Lamport's scheme.

94 Chapter 5

Thus, signing a message consist of the following steps:
• Choose the set P of primes that is to be used for this signing from the public list.

This determines A:

A={~ modnli,j E {1 , ... ,#P} x !1, ... #RJ} .

Like the sets A and Bin Lamport's scheme, the set P can be used only once.

The list A need not be computed.

• Determine the message m to sign. This could be a message, or a public hash

function value of that message, for example.
• Compute the subset M of index pairs from { 1, . .. ,#P}x{ 1, ... ,#R} from the

message m with the algorithm described above:
M =s(m)

• Compute the signature proper:

S = IJ P~ (modn) ,
i,jEM

and send m, P, and S to the recipient.
There are two ways to increase the efficiency of signing. If there is time to do a

precomputation, the entire set A can be computed before the value of m is known.
Although this takes quite a while, signing becomes much faster, since signing consists

only of multiplying the proper values of A together. If precomputation is not possible,

the computation of Scan be speeded up with a vector addition chain (see the previous

chapter).

Verification
Instead of trying to compute individual factors of the signature, the number Scan

be verified in a single computation. To see this, we note that the power of the signature
TI Pk

SkeP .

should be equal to the following product that can be computed from public values:

Il Pk/ Pj
IJr/ eP

i,jEM

The lower product can be computed with a vector addition chain. Verification of a

signature consists of checking that these two values are the same. The verification can

be performed with a single vector addition chain, if the inverse of the signature is

computed first:
TI Pk Il Pk/ Pj

(S- 1 r r . II r;keP ,

i,jE M

which must evaluate to I (mod n). To increase the efficiency of the verification, the

signer could send 1/S instead of S, so that the inversion is performed only once by the

signer, and not by every verifier.
If not all prime numbers from P occur as exponents in the set M, it is possible to

verify a signature using slightly fewer multiplications by raising S to only the occurring

Provably Unforgeable Signatures 95

primes. Unfortunately, this optimization is only applicable in the less interesting cases
where verification requires a lot of multiplications.

The verifier must also check whether P occurs in the public list. If P is described as
an index number in this list, this is of course unnecessary.

Parameters
In practice, the following parameter values could be used:

• A modulus size big enough to make factorization hard (200 digits, or 668 bits).
• R a list of 50 numbers.

• The sets P consisting of the (Sn+ l) th to the (Sn+ 5)th odd prime number,
where n E { 0, . .. ,16404} is the sequence number of the signature. This uses

the primes of up to 20 bits.

With these parameters, we have sets A of 250 elements, so that a message of 245

bits (30 bytes) can be signed. A signature consists of the message, the signature product
(668 bits, or 84 bytes), and the index number of the prime set (15 bits, or 2 bytes).

Computing a signature takes about 1512 modular multiplications, and verification about
272; both these numbers are obtained using vector addition chains.

The list of the odd primes up to 20 bits (the highest being 1048557) can easily be

stored; it would need only 64 K bytes of storage (using a bit table of the odd numbers)
and contain 82025 primes. Such a list can easily be stored in a ROM chip. When all

primes are used up, the user can choose a new modulus and start again. Another
solution is to change the list R often enough so that users do not run out of primes. To

make it possible to verify old signatures, old values of R and the user moduli must be
saved.

The list R can be computed from a seed number using a public hash function. This

way, only one seed number is needed to define R. This allows us one to use a long list

R while using small amounts of data to distribute it. Also, Jess data is needed to save
old lists.

Table IO shows the performance of the algorithm for several sizes of R and P. For

each of the entries in the table, the modulus is 668 bits (200 decimal digits), and the size
of the primes in P is 20 bits. The entries are computed by averaging random number
approximations. The entries marked by * have an estimated standard deviation higher

than 10, so that the last digits are likely to be inaccurate.
Powers and products were computed using addition chains and sequences; see the

previous chapter. The products were computed collecting the base numbers; for

example, the product

would be computed as
b e2 bel +e3 . b el +ez . b ez

I . 2 3 4

using a vector addition chain algorithm. In the cases were a single power was to be

computed, the "window method" of Chapter 4 was applied.

96 Chapter 5

The table shows that in the general case, where verification is done more often than

signing, it is advantageous to use a small P, possibly of only one element. The length of
the list R is not a problem if it is generated from a seed, as suggested above. Another
advantage of using a small set P is that the list R has to change less often.

#R #P message sign verify

250 I 245 910 152

50 5 245 1512 272

5 50 245 1451 2048*

l 250 245 796 7123 *

500 495 1035 278

50 10 495 2964* 1372*

68 64 819 61

17 4 64 1317 162

4 17 64 1301 659*
Table 10: Pertormance for different size of Rand P.

The influence of the modulus size and prime size on the performance is shown is

Table 11. In this table, the size of R is set to 50 elements, while the sets P contain 5
elements each. The number of multiplications for signing depends on the size of the

modulus only, while the number of multiplications for verifying depends on the size of
the prime numbers only. Although it saves a little time during the signing to use a

shorter modulus, we suggest using a modulus of 668 bits, since the current technology

already allows factoring numbers of up to 351 bits.
The size of the primes in the sets P determines the verification time. Choosing

smaller primes increases the speed of verification, but allows fewer signatures before a

new list R is needed.

modulus size signing
prime size verifying

10 171
512 1172

20 272
668 1512

30 381
Table 11 : Pertormance for different sizes of modulus and primes.

If the elements of A are precomputed, signing takes #A/2-1 multiplications. The

precomputation takes about 796-#A multiplications, so precomputation is only effective
if there is plenty of time for doing it.

For extremely fast verification of signatures, we choose a li st R of 68 elements,

generated from a seed number that is part of the signature, and P = ! 3 } . For these
parameters, the message to be signed is 64 bits (8 bytes). This allows verification of a

signature in only 35 modular multiplications, plus the time to generate the elements of

Provably Unforgeable Signatures 97

R. Signing takes about 819 multiplications. Using precomputation, signing takes 33
multiplications, but about 55000 multiplications for the precomputation.

Proof of unforgeability
We prove that the signature scheme is "existentially unforgeable under an adaptive

chosen-message attack". This means that, under the RSA assumption, if an attacker can
influence the signer to sign any number of messages of his liking, he cannot forge new

signatures in polynomial time, even if the messages depend on the signatures on earlier

messages.
The main theorem used to prove unforgeability of the signature system is proved by

Jan-Hendrik Evertse and Eugene van Heijst in [EH90], and is a generalization of a

theorem by Adi Shamir [Sha83]. The theorem is about computing a product of RSA

roots with a given modulus if a set of products of signatures is known. Under the RSA
assumption, the theorem states that if a set of products of roots is known, the only new

products of roots that can be constructed in polynomial time are those that can be

computed using multiplication and division.
One assumption we make is that the attacker cannot combine the signatures of

different participants, because they have different moduli. This is still an open problem.
This assumption allows us to use the results of [EH90].

In our situation, we assume an attacker who knows many signature products S from

a participant. These products can be written as products of roots of elements of R:

r/lr,{2,3X3 ... ,.;~R'
where the numbers X; are rational numbers. The theorem of [EH90] states that if we

interpret the x as vectors, the only new products that can be computed by the attacker
correspond to linear combinations of these vectors. What remains to be proved is that

linear combinations of these vectors do not give products that the attacker can use for
new signatures.

The denominators of the rational numbers x; are products of primes from the set P
of the corresponding signature, since the x; are sums of the form ..L + ..L +· • •, where

Pi P2
P; E P. This means that we can speak of "the set of primes in a vector", meaning both
the set of primes that occur in the denominators of the elements, and the set P used for

generating the signature. Every signature uses another P, and the sets P do not overlap,
so the sets of primes in the vectors also do not overlap. A linear combination of vectors

will contain only primes that occurred in the original vectors. From this we see that

combining signatures with multiplication and division will not produce a signature with
a set P that is not used before.

For a set P that has already been used, the only linear combination of vectors that
contains the primes of Pis a multiple of the corresponding vector, because any other

linear combination of vectors contains primes not in P . This means that other signature
products do not help compute a new signature product with a given set P. From the

definition of the signature product, we see that a power of a product cannot be a

98 Chapter 5

signature on another message, so this method also yields no new signatures for the
attacker.

Note that if m is a one-way hash function of a message, signatures on other

messages can be forged if the hash function is broken. This is of course a separate
problem from the security of the signature scheme.

From the above we conclude that an attacker cannot, under the RSA assumption,

produce a signature product that is not already computed by the signer. This finishes the

proof that the signature scheme is secure.

Conclusion
It was already known that a signature with provable unforgeability existed under the

factoring assumption. Our scheme, based on the modular root assumption, improves on
the scheme in the literature on several points: signatures are smaller, while signing and
verification use much less memory and computation. The new scheme has a large

degree of flexibility, allowing the signing of both long and short messages by varying
the parameters.

Provably Unforgeable Signatures

References
[BCDP90] J. F. Boyar , D. Chaum, I. B. Damgard and T. Pedersen: Convertible

Undeniable Signatures, Advances in Cryptology: Proc. Crypto '90 (Santa
Barbara, CA, August 1990), to be published.

99

[BD85] E. F. Brickell and J. M. DeLaurentis: An Attack on a Signature Scheme

proposed by Okamoto and Shiraishi, Advances in Cryptology: Proc. Crypto
'85 (Santa Barbara, CA, August 1985), pp. 28-32.

[Bet88] T. Beth: A Fiat-Shamir-like Authentication Protocol for the ElGamal

Scheme, Advances in Cryptology: Proc. Eurocrypt '88 (Davos,
Switzerland, May 1988), pp. 77-86.

[BM88] M. Bellare and S. Micali: How to Sign Given any Trapdoor Function,

Advances in Cryptology: Proc. Crypto '88 (Santa Barbara, CA, August
1988), pp. 200-215 .

[CA89] D. Chaum and H. van Antwerpen: Undeniable Signatures, Advances in

Cryptology: Proc. Crypto '89 (Santa Barbara, CA, August 1989), pp. 212-
216.

[Cha82] D. Chaum: Blind Signatures for Untraceable Payments, Advances in

Cryptology: Proc. Crypto '82 (Santa Barbara, CA, August 1982), pp. I 99-

203.
[Cha90] D. Chaum: Zero-knowledge Undeniable Signatures, Advances in

Cryptology: Proc. Eurocrypt '90 (Arhus, Denmark, May 1990), pp. 458-464.

[CHP9 l] D. Chaum, E. van Heijst, and B. Pfitzmann: Cryptographically Strong
Undeniable Signatures, Unconditionally Secure for the Signer, Advances

of Cryptology: Proc. Crypto '9 1 (Santa Barbara, August 1991), to be
published.

[CR90] D. Chaum and S. Roijakkers: Unconditionally Secure Digital Signatures,

Advances in Cryptology: Proc. Crypto '90 (Santa Barbara, CA, August

1990), pp. 209-217.
[Den84] D. E. R. Denning: Digital Signatures with RSA and Other Public-Key

Cryptosystems, Comm. ACM 27 (No. 4, April 1984), pp. 388-392.

[DH76] W. Diffie and M. E. Hellman: New Directions in Cryptography, IEEE
Trans. Information Theory IT-22 (No. 6, November 1976), pp. 644-654.

[DLM82] R. DeMillo, N. Lynch, and M. Merritt: Cryptographic Protocols, Proc.
14th ACM Symp. Theory of Computing (San Fransisco, CA, May 1982), pp.

383-400.

[EAKMM85]
D. Estes, L. M. Adleman, K. Kompella, K. Mccurley , and G. L. Miller:
Breaking the Ong-Schnorr-Shamir Signature Scheme for Quadratic

Number Fields, Advances in Cryptology: Proc. Crypto '85 (Santa Barbara,

CA, August 1985), pp. 3-13.

1 00 Chapter 5

[EGL89] S. Even, 0. Goldreich , and A. Lempe!: A Randomized Protocol for
Signing Contracts, Advances in Cryptology: Proc. Crypto '89 (Santa

Barbara, CA, August 1989), pp. 205-210.
[EGM89] S. Even, 0. Goldreich, and S. Micali: On-line/Off-line Digital Signatures,

[EH90]

[EH91]

Advances in Cryptology: Proc. Crypto '89 (Santa Barbara, CA, August

1989),pp. 263-275
J-H. Evertse and E. van Heyst: Which RSA Signatures can be Computed

from Some Given Signatures?, Advances in Cryptology: Proc. Eurocrypt

'90 (Arhus, Denmark, May 1990), pp. 83-97.
J-H. Evertse and E. van Heyst: Which RSA Signatures can be Computed

from Certain Given Signatures?, Report W 91-06, February 1991,
Mathematical Institute, University of Leiden.

[EIG85] T. EIGamal: A Public Key Cryptosystem and a Signature Scheme Based on

Discrete Logarithm, IEEE Trans. Information Theory IT-31 (No. 4, July

1985), pp. 469-472.
[FS86] A. Fiat and A. Shamir: How to Prove Yourself: Practical Solutions of

Identification and Signature Problems, Advances in Cryptology: Proc.
Crypto '86, (Santa Barbara, CA, August 1986), pp. 186-194.

[GMR84] S. Goldwasser, S. Micali , and R. L. Rivest: A "Paradoxical" Solution to

the Signature Problem, Proc. 25th IEEE Symp. Foundations of Computer
Science (Singer Island, I 984), pp. 441-448.

[GMR88] S. Goldwasser, S. Micali, and R. L. Rivest: A Digital Signature Scheme

Secure Against Adaptive Chosen-Message Attacks, SIAM Journal on
Computing 17 (No 2, April 1988), pp. 281-308.

[GMY83] S. Goldwasser, S. Micali , and A. Yao: Strong Signature Schemes, Proc.

15th ACM Symp. Theory of Computing (Boston, MA, April 1983), pp.431-

439.

[Gol86] 0. Goldreich: Two Remarks Concerning the Goldwasser-Micali-Rivest
Signature Scheme, Advances in Cryptology: Proc. Crypto '86 (Santa

Barbara, CA, August 1986), pp. 104-1 I 0.
[Gol86a] 0. Goldreich : Two Remarks Concerning the Goldwasser-Micali-Rivest

Signature Scheme, Report MIT/LCS/TM-315, Massachusetts Institute of

Technology.

[Hay90] B. Hayes: Anonymous One-Time Signatures and Flexible Untraceable
Electronic Cash, Advances in Cryptology: Proc. Auscrypt '90 (Sydney,

Australia, January 1990), pp. 294-305.
[Lie8 I] K. Lieberherr: Uniform Complexity and Digital Signatures, Theoretical

Computer Science 16 (1981), pp. 99- I l 0.

[Mau91] U. Maurer: Non-interactive Public Key Cryptography, Advances in

Cryptology: Proc. Eurocrypt '91 (Brighton, United Kingdom, April 1991),

to be published.

Provably Unforgeable Signatures 101

[Mer89] R. C. Merkle: A Certified Digital Signature, Advances in Cryptology:
Proc. Crypto '89 (Santa Barbara, CA, August 1989), pp. 2 I 8-238.

[MH78] R. C. Merkle and M. E. Hellman: Hiding Information and Signatures in

Trapdoor Knapsacks, IEEE Trans. Information Theory IT-24 (No. 5,
September 1987), pp. 525-530.

[Oka88] T. Okamoto: A Digital Multisignature Scheme Using Bijective Public-Key

Cryptosystems , ACM Trans. Computer Systems 6 (No. 8, November 1988),
pp. 342-441.

[OS85] T. Okamoto and A. Shiraishi: A Fast Signature Scheme Based on

Quadratic Inequalities, Proc. 1985 Symp. Security and Privacy (Oakland,
CA, April 1985), pp. 123-132.

[OSS84] H. Ong, C. P. Schnorr, and A. Shamir: Efficient Signature Schemes based

on Polynomial Equations, Advances in Cryptology: Proc. Crypto '84
(Santa Barbara, August 1984), pp. 37-46.

[Rab77] M. 0. Rabin: Digitalized Signatures, Foundations of Secure Computations
1977 (Atlanta, GA, October 1977), pp. 155-168.

[Rab79] M. 0. Rabin: Digitalized Signatures and Public-key Function as

Intractable as Factorization, Report MIT/LCS{fR-212, Massachusetts

Institute of Technology.
[Roo9 l] P. J. N. de Rooij : On the security of the Schnorr Scheme using

Preprocessing, Proc. Eurocrypt '9 1 (Brighton, United Kingdom), to be

published.
[RSA78] R. L. Rivest , A. Shamir, and M. Adleman: A Method for Obtaining

Digital Signatures and Public Key Cryptosystems, Comm. ACM 21 (No 2,

February 1978), pp. 120-126.
[Sch89] C. P. Schnorr: Efficient Identification and Signatures for Smart Cards,

Advances in Cryptology: Proc. Crypto '89 (Santa Barbara, CA, August

1989), pp. 239-251 .

[Sha78] A. Shamir: A Fast Signature Scheme, Report MIT/LCS{fR-107,
Massachusetts Institute of Technology.

[Sha82] A. Shamir: A polynomial Time Algorithm for Breaking the Basic Merkle­

Hellman Cryptosystem , Proc. 23rd IEEE Symp. Foundations of Computer
Science (Chicago, IL, 1982), pp. 145-152.

[Sha83] A. Shamir: On the Generation of Cryptographically Strong Pseudorandom

Sequences, ACM Trans. Computer Systems 1 (No. I, February 1983), pp.

38-44.

[Sha84] A. Shamir: Identity-based Cryptosystems and Signature Schemes,

Advances in Cryptology: Proc. Crypto '84 (Santa Barbara, CA, August
1984), pp. 47-53.

[SQV89] M. de Soete, J.-J. Quisquater, and K. Vledder: A Signature with Shared

Verification Scheme, Advances in Cryptology: Proc. Crypto '89 (Santa

Barbara, CA, August 1989), pp. 253-262.

1 02 Chapter 5

[Tu84] Y. Tulpan: Fast Cryptoanalysis of a Fast Signature System, Master's

thesis in Applied Mathematics, Weizmann Institute, Israel, 1984.
[Wil80] H. C. Williams, A Modification of the RSA Public-Key Encryption

Procedure , IEEE Trans. Information Theory IT-26, (No. 6, November

1980), pp. 726-729.
[Yuv79] G. Yuval : How to Swindle Rabin, Cryptologia 3 (No. 3, July 1979), pp.

187-189.

6
Verification of RSA Computations

on a Small Computer

Introduction
In many cryptographic applications, a protocol has to be performed between two

parties where one of the parties is a cheap, small and handy computer, for example a
smart card. In particular, we assume that this small computer is not capable of

performing RSA calculations. In this chapter a protocol is presented that allows such a
small computer to verify an RSA computation with high certainty, using only operations

that require little memory and computing power. When the verification succeeds, the

smart card can sign the result produced by the larger computer for later use.
For example, although smart cards that perform RSA are on the drawing tables

nowadays, current cheap smart cards have about 128 bytes of RAM memory, 3

kilobytes of EEPROM memory (slow non-volatile memory), and an 8 bits processor.
This is not enough to perform RSA in reasonable time (it would take several minutes),

since the intermediate results do not fit in RAM memory. For the rest of this chapter,
we will speak of the small computer as "the smart card" or SC and of the larger party as
"the computer" or LC.

The smart card verifies the computation of the LC by performing the same
computations as the LC on smaller numbers. The SC replaces the number by the
residue (remainder after division) modulo the verification modulus. The verification

modulus is a secret number only known to this smart card, and small enough that the
remainders are manageable for it. The verification modulus can be fixed for a particular

smart card or vary per instance of the protocol. This method allows the smart card to

verify additions, subtractions, and multiplications. Division or modulo reduction can be

verified if the LC sends both the quotient and the remainder to the SC, so that it can
check if the numbers match. Repeated multiplication and modulo reduction can be used

to perform RSA encryptions.
The SC never stores the numbers involved in the computation of the LC, because it

always deals with residues. If the LC sends a number to the SC, the residue is

104 Chapter 6

calculated during reception of this number. It is also possible for the SC to send a

number that it does not store, by generating the number during transmission. In this
case, the residue can also be computed during that transmission. This allows the smart

card to deal with several large numbers without running out of RAM space.
The communication between a small and a large computer was addressed earlier in

[MKI88, QS90]. [QS90] shows several protocols, one of which is similar to the
protocol shown here, but it turns out to be insufficiently secure. Secure versions will be

presented here, and the level of security is investigated for practical parameter values.
This chapter is organized as follows: first, the protocol is explained in general. Then

we show an application of the protocol for a privacy-protecting payment system, and

algorithms to compute the residues. Finally, we show a possible attack on the system,
and compute the probability of success of this attack for different parameter values.

The Protocol
In general, the protocol consists of three phases, as depicted in Figure 19:

• agreement on initial values known to both parties;
• computation of the actual result, verified by the SC;
• issuing of a signature by the SC.

Initially, the SC and LC must agree on the values that are going to be used in the
computation. How these values are obtained, is not important for the protocol; it

depends on the application. The SC does not have to store these numbers; it will only
store the residue modulo w. Residues modulo w are depicted by a tilde C).

In the second phase, the LC computes new values from the values that are agreed

upon. The smart card performs the same computations on the residues modulo w. If
the LC does a division or a modulo reduction, both the quotient and remainder are sent

to the smart card for verification. If the LC wants to reduce the number P; modulo n,
the remainder r; and quotient Q; of the division by n are sent to the SC as depicted in

?

Figure I 9. The smart card verifies the modular equation <]; · n + F; i: i5; (mod w) and
checks the range and validity of the numbers sent to it. The numbers r; and Q; can be
used in later calculations.

For RSA calculations, the exponent is computed using repeated multiplication and

modulo reductions. Although it is faster than performing the calculation on the smart

card, this can take some time, especially if slow communication is used (as with most
smart cards). For this reason, it is advisable to use a short exponent, if possible.

For security reasons, the size of P; is restricted; normally, P; may be up to n2; that
is, P; may be a product of two numbers modulo n. Increasing the size of P; decreases
the total number of bits sent (especially for RSA calculations) at the cost of security.

The relation between the size of P; and the security is shown later on.

In the last phase, the LC sends the result r of the complete computation to the SC.

During reception of this number, the smart card computes both the signature on rand

the residue r mod w. The smart card must do this simultaneously with the reception,

Verification of RSA computations 105

because r does not fit in its memory. The signature is a simple secret-key hash

function that can be computed from r during reception without storing it. Hash
functions of this form can be constructed from a conventional encryption function like

DES [GPV9 I]. If the modular verification succeeds, the smart card sends the signature.
The signature can be any number that the LC can use to prove validity of its

computation in later protocols.

SC LC
agreemem of values ,

?

ii; ·n+i/=P; (modw) : computep;

check r
result r

signature on r

Figure 19: Sketch of the general protocol.

Example: SmartCash
To demonstrate how the protocol is used in a practical application, we show an

example. This example demonstrates the use of the protocol in the SmartCash privacy

protecting payment system suggested and developed by David Chaum [BC90; earlier
systems appeared in BCHMS89, CFN88, Cha89, Cha90] .

In the SmartCash payment system, users have a smart card owned and controlled by

the organizing organization called the bank. Also, every user has a transponder, a
pocket computer capable of RSA calculations and available freely on the market, that
they own and control themselves. The smart card ensures the security of the system,

while the transponder acts as an intermediary for the user, ensuring his privacy. The

transponder is the only way in which the smart card communicates with the outside

world.
We will not explain the working of the complete SmartCash system here, but only

discuss those parts of the system that are relevant for the discussion. The only subpro­

tocol of the SmartCash system that we are interested in, is the so called blind check

protocol depicted in Figure 20. This protocol is a good example of our verification
scheme. It is performed between the smartcard and the transponder (that takes the place

of the LC in this protocol).
The blind check protocol prepares for a "blind signature" [Cha82, Cha85] by a

signature authority called the bank . The bank performs the signing of the blinded
number c in a later protocol with an RSA signature with public key 3. This number c
is later used for doing a payment.

The transponder makes sure that the value c is perfectly blinded, ensuring the

user 's privacy for the payment involving this number. The bank, and the smart card as

106 Chapter 6

its representative to the transponder, make sure that the transponder can only use the

protocol for obtaining a signature on the number c, and not for other things. This

prevents users (via their transponders) attacking the system by letting the bank sign

numbers of a special form.

Smart Card

compute x

compute ji

recomputex

compute b = x + y
? -

q1 ·ii+Fi ci: c-b (modw)
? -

q2 ·ii+r2 ci:Fi-b (mod w)
? -

Q3 ·ii+ r3 ci:r2 · b (modw)

computes

J(x)

r1 =c·b mod n,q1 =c·bdiv n

~

Transponder

choose y

verify x

compute b = x+ y

Figure 20: The blind check protocol of the SmartCash system.

In the SmartCash version of the verification protocol , the verification modulus w is

fixed. The residue ii = n mod w of the RSA modulus n of the bank is stored in advance

in the smart card ROM. In the protocols preceding the blind check protocol, the check

number c is computed by the smart card and the transponder, and the smart card keeps

the residue c.
In the first phase of the blind check protocol , the smart card and the transponder

agree on a blinding factor to be used for blinding the number c. They make this

number together using a three step protocol : first the smart card commits to its term x

using a one-way function/, then the transponder sends its term y, and finally the smart

card sends x, opening the commitment. The blinding factor, the value that is going to

be used for the blinding, is the sum
b = x + y.

In the second phase, the transponder computes the blinded number ,3 = c · b3 mod n,

sending intermediate results allowing the smart card to verify the computation. The

verifications performed by the smart card are modular versions of the defining equality

of div and mod:
(a div n) · n + (a modn) = a.

In the SmartCash protocol , the smart card does not check whether r,- < n and q,- < 11,

but instead the smart card receives only as many bits as the length of the modulus.

(Actually, since the number b may be larger than n (up to 2-n), the quotients may be

one bit longer than n.) This extra freedom does not allow significant extra room for

cheating.

ln the third phase, the smart card sends a signature s to the transponder. The final

result of the protocol, r 3, does not have to be sent, since it is already sent in the second

phase. Also at that time, the signature was computed during reception of the number, so

Verification of RSA computations 107

no computation is necessary here. The signature is a secret key encryption of r3 based

on DES; it is a number of 512 bits. The key used for this encryption is also known to

the bank.

In the next protocol, the transponder will send r3 = c · b3 mod n to the bank, and get
from the bank the cube root, added to the signature s:

~c -b3 +s= Vc- b+s (modn).

After reception of the number, the transponder can compute the RSA signature Ve
by subtraction of sand modular division by b. This signature on c is used in the

system at a later point.

Computation of the residues
The residue modulo w that is computed by the smart card can be computed by

straightforward long division of the number sent to it by the verification modulus. To

be explicit, we will show two algorithms to perform this computation. We assume that

the message is processed in blocks d of b bits*; furthermore, we assume that w > 2h.

The first algorithm computes the residue if the number is sent with the most significant

block first:
put O in r

for i in { I .. . blocks l :
received

put (r * 2**b) mod win r

put (r + d) mod w in r

initialize

blocks is the number of blocks

receive next block

The number is sent to the smart card expressed in base 2h _ At the end of

execution, r contains the remainder mod r of the number. The algorithm takes two

modulo reductions per received block, but the second reduction is trivial: the

corresponding quotient is O or 1, because both rand dare smaller than w. This latter

reduction can be performed using a conditional subtraction. To make this explicit, the

last line of the algorithm can be replaced by the lines:
put r +din r
if r 2'. w: put r - w in r

The other modulo reduction is reducing a l+b-bit number modulo a /-bit number,

where l is the number of bits of the modulus, and b is the number of bits in a block. If

the number of bits per block is one, all modulo reductions become conditional

subtractions. If the smart card has no division instruction, this is probably the most

efficient solution.

If the number is transmitted least significant block first (that is "backwards" with

respect to the previous algorithm), the reduction can be performed by the slightly more

elaborate algorithm

* The smart card could receive several blocks at a time for efficiency reasons.

108

put 0,1 in r, m

for i in 11 .. . blocks) :
received
put (d * m) mod wind

put (m * 2**b) mod win m

put (r + d) mod w in r

Chapter 6

The same optimizations apply as above: the last line can again be replaced by a

conditional subtraction, so that the algorithm takes two modulo reductions per block.

Also, all modulo reductions can be replaced by a conditional subtraction if the block

size is one bit. Another optimization is to store the possible values of m beforehand
when the modulus is determined. Note that m follows the powers of 2b mod w; these

numbers can be precomputed and stored in ROM or EEPROM to save a modulo

reduction per block.

[QS90] proposes to use multiple small verification moduli . Although thi s looks

more efficient than using a single modulus, in the practice of a smart card without

division instruction, it is not more efficient than using one large modulus . From a

security point of view, it is better to use one large modulus.

The Attack
To analyze the security of this algorithm, we first show what the LC can do to cheat.

Then, we compute the probability of successful cheating. This probability depends on

the way the verification modulus w is determined. Finally, we provide an overview of

the values for practical parameter values.

A cheating LC tries to get the smart card to accept a different value than the value

that it is supposed to compute. We consider one round of the protocol, as shown in

Figure 21. In this figure, pis a number that is computed from the known values. We

assume than p is smaller than n2. The smart card computes p by performing all

computations modulo w, as before.

An attack is successful if the LC successfully makes the smart card accept another

value for r than p mod n. If the LC would know w, he could simply choose any
value of r' in the range 11, .. . ,n - I} and compute the value

q'= p-r' (modw)
n

to get a pair (r', q') that is accepted by the smart card. The choice of the value r' is

done so that this is useful for cheating subsequent protocols; thi s value depends on the
application.

The value q' can be compute so that more than one value of w of the smart card

results in a successful attack. Let S be the set of values for w that are taken into

account. From this, we define the breaking modulus
t= lcmS

and compute q' as

Verification of RSA computations

q' = p - r' (modt).
n

This pair (q', r') is accepted by the SC if wit. This means that the pair is accepted

for w E S, but also possibly for other values from the set M of possible verification
moduli. For simplicity, we include these values in S.

109

The smart card checks the size of r and q. To make sure that this check succeeds,

r' must be chosen small enough, and we make q' small enough by taking S so small

that t ~ n. We assume here that p gets a value that is smaller than n2. If pis

allowed to take values higher than this, q must be allowed to get values higher than n,
allowing more room for cheating.

The LC attacks the system by choosing a subset S of the set of all possible
verification moduli M, and computing q' for the corresponding t. The probability of
success of this attack depends on the way the verification modulus is chosen, and on the

set S. We will now analyze this in detail.

SC LC
?

q·n+r~p (modw) r=pmodn ,q=pdivn computep

Figure 21: One round of the second phase.

Choice of the Verification Modulus
The smart card must choose the secret verification modulus so that the attack shown

above has a probability of success that is as low as possible. More specifically, the

algorithm that chooses w must be so that the probability that w E Sis low, for every

set S for which 1cm S is smaller than n.

Let M be the set of all possible values of the verification modulus. There are two

ways to choose w from this set. The obvious way is to let the smart card pick the
verification modulus itself each time the protocol is executed. This makes it harder for

the LC to guess the used modulus. A disadvantage of this idea is that the choice for M

is restricted to sets the SC can handle. For example, M cannot be chosen as a set of

primes, because testing for a prime is too hard for a smart card.
The simpler way is to always use the same value of win a given smart card (but

randomly chosen for every card). This is the solution also taken in the SmartCash

system. This has as advantage that several values can be stored in the smart card ROM:
• the verification modulus;
• the residue of the system modulus Ii;

• the reduced values of m in the least-significant-block-first algorithm discussed
above.

This saves RAM space and calculation time. A disadvantage of this idea is that the

smart card issuing authority must be very careful with the information about the moduli.

If somebody can get hold of the list, he can find the modulus by elimination. Preferably,

the moduli must be generated with a physical random generator, and the list with moduli

110 Chapter 6

must not be stored at all.

There is also a mixed solution as proposed by [QS90], where a smart card contains

several prime moduli, and chooses one of these at random. This gives a small security

improvement at the cost of storage space.

In the next section, we will discuss several choices for the set M.

Prime numbers
Assume that the set of all verification moduli M contains prime numbers only. For

the moment, we assume that the verification modulus w is chosen using a nonuniform

distribution proportional to its logarithm:
For all pin M: Pr(w = p) = c · logp .

The constant c must be so that the sum of all these probabilities is 1. We get
l

c=---
I,logp .

pEM

In the case where M is the set of prime numbers in a given range /, we can use the

approximation*

I,togp= I,togx· . "" I,togx·-=#1, {
1 if x is prime I

pEM xEI O 1f not xEI logx

where#/ is the number of integers in the range. The approximation is based on the

density 1/log x of the primes around x.

If the verification modulus is chosen from this M, the most efficient way for the LC

to attack is to choose a set S so that Pr(w E S) is as high as possible, while

t = lcmS = IJ S

is smaller than n. It is easy to see that

Pr(w ES)= I, c · logp = c · log IJp = c · logt,
pES pES

so that we can see that the maximum probability for t -s; n is less than c • log n.

Using unequal probabilities for the different primes seems unnecessary complicated.

If the size of the primes in the interval is approximately equal (for example, all primes

have the same number of bits), the probabilities are almost equal. In this case, the

primes can be chosen uniformly random, which is much simpler. This is not a good

idea if the primes are of unequal size. If a uniform distribution is chosen for primes of

unequal size, a good attack strategy for the LC is to choose the small primes of Mas
elements of S.

For example, if the verification modulus is chosen as a random b-bit prime, the

probability of a successful attack is approximated by the simple formula
logn _ logn

#!2h-1, .. . ,2h - ll - zb-1 ,

where n is again the modulus of the RSA system. The SmartCash system uses a prime

number of 64 bits and an RSA modulus of 512 bits, giving a probability of 3,8· J0- 17.

* A mathematically more accurate approximation (with the same outcome) is possible using the
Stie ltjes integra l; this falls outside the scope of thi s thesis .

Verification of RSA computations 111

This result shows that for a 512-bit RSA modulus, the primes must be at least IO bits to

get any security at all; the suggestion of [QS90] to use small primes does not give

protection. This formula also illustrates that using one large prime yields more security

than several small ones.

Range of integers
If we want a different verification modulus each time the protocol is executed, the

smart card must be able to compute the modulus itself. Since the smart card is not able

to do a prime test, we need a simpler set M. The simplest set to choose is an range 1

of integers, with equal probabilities for all elements. It is simple to generate a random
element from such an interval, especially if the range is of the form { 2b- l , ... ,2b - l l.

Unfortunately, this set M does not give such a nice theory as the previous version.

One problem is that the optimal attack strategy for the LC is hard to compute. Instead

of choosing a set S and computing t, we now describe the attack strategy by the value

oft, so we define Sas the set of divisors oft that lie in M:
{d E lid divides tl.

The probability of success of the attack is equal to # S/# 1. Ideally, we must find that

value oft for which the set S is largest.

Clearly, t must be a number with many small divisors. A class of numbers that can

be used for this are the highly composite numbers [Ram 15, Ram27]. A number is

called highly composite if no smaller number has more divisors. The first few highly

composite numbers are:
2 (2), 4 (3), 6 (4), 12 (6), 24 (8), 36 (9), ...

where the number of divisors of each number is shown in parentheses.

A subclass of these numbers, the superior highly composite numbers, can be

constructed simply using the formula

TI ip/-1-1l
p ,

p prime

where y is a parameter between zero and one.

Although the highly composite numbers have a maximal number of factors for their

size, they are not guaranteed to have a maximal number of factors in the given range 1.

However, they perform better than all other numbers we tried. We do not know of

numbers that give a higher probability of success for the attack.

Once such a number tis chosen, the probability of a successful attack can be

written as

Pr(w ES)= #S = #{d E lid divides tl
#1 #1 '

where# {d E lid divides t) is the number of divisors oft in the interval 1. We compute

this number using the distribution of randomly chosen divisors oft:
#{d E lid divides tl =#{divisors oft)· Pr(d E /).

112 Chapter 6

So, to compute Pr(w E S), we need to know three numbers:

• The number of elements of/ is given.

• The number of divisors oft can be computed from the factorization oft.

• The probability that a random divisors oft is in/ is computed using
Pr(d E {a, ... ,b}) = Pr(d < b) - Pr(d < a).

The computation of the last two probabilities requires computation of the

cumulative distribution of random divisors oft. This will be done with a

straightforward statistic computation. If the factorization oft is written as

I]pfi,

a random divisor oft has the probability distribution

TI ur{O ... a;}
P; ,

where "ur" stands for the uniform random distribution on a set. The logarithm of a

random divisor oft has a probability distribution

I,logp; -ur{O ... a;l-

Since this is a sum of distributions, we know from the Central Limit Theorem that

this can be approximated by a normal distribution. The average and variance are not

hard to compute, since the distributions are easy:

µ=I,~;· logp; = ½logt

2 _ ~ a;·(a;+2) (l)2 cr - ~ 12 . og P;

but, unfortunately, the resulting approximation of the number of divisors is not accurate

enough for our purposes. A better approximation is performed by the so called

Edgeworth expansion [KS69, or any other advanced statistics book]. This approxima­

tion uses higher order moments to approximate a probability distribution . The compu­

tation of the parameters is a lot of work, and falls outside the scope of this thesis.

Results of such an expansion are given later on.

A slight improvement for the smart card is to remove numbers with small factors

from the set M . The smart card could generate random numbers that are not divisible

by small factors by a few trial divisions. This method ensures that it is no use for the

LC to include small factors int, so security is improved slightly.

Practical parameter values
In practice, one wants to have a low probability that the LC is able to get the smart

card to sign an invalid number. The probability that is needed varies in practice,
depending on the application, between 10- 6 and 10- 18 . We show parameter values that

give practical probabilities. Results are summarized in Table 12 and Table 13.

Table 12 summarizes the case where the verification modulus is a prime number of

a fixed number of bits, and the modulus is 512 bits. The table is directly derived from

the formula explained above:

Verification of RSA computations

logn
Pr(w ES)= 2b-l .

113

The SmartCash system uses a verification modulus of 64 bits, giving a probability of

3.8-10- 17 .

Pr(w ES) 10-6 10-9 10-12 10-15 10- 18

prime (bits) 30 40 50 60 70
Table 12: Prime verification modulus.

Table 13 shows the computation of the security where the verification modulus is

randomly chosen from a range of integers using the Edgeworth expansion. The

modulus is 512 bits, as before, and the breaking modulus t is taken to be the product

IT lp01 : 9 _1J
p '

pprime

which is

21
I · 37 · 54

· 73 · 113 · 132 · 172 · 192 · 232 · 292 · 31 · ... · 33 l · 337;

this is about 3.35-10153 , or 510 bits. The number of factors oft can easily be

calculated:

#{divisors of ti= IT (a;+ l)= 537907057189370525122560 == 5.38-1023.

The Edgeworth expansions for Pr(d E /) are computed for degrees 2 (the normal

approximation), 3, 5, and 7. Since the even term of the expansion are zero, degrees 4, 6

and 8 do not give new information. The results are shown in the top three rows of Table

13.

The probabilities shown are the probability that a randomly chosen divisor oft is

smaller than 264 respectively 263, and the difference between these two. Note the

negative probabilities for the degrees 3 and 5; this is a result of the inaccuracy of the

approximation. From this we can see that, in order to get an accurate result, the

Edgeworth approximation must be computed to a degree higher than 7. Computing

higher degrees than this turned out to be too much work, since no software was

available. The value of Pr(d E /) determines the accuracy of the computation: the

lower its value, the more terms of the Edgeworth expansion need be calculated.

The bottom row of Table 13 shows the resulting probability of a successful attack.

Probably, the actual probability is lower than 10-6, making the protocol useable for

some practical applications.

114 Chapter 6

degree of approximation 2 (normal) 3 5 7

Pr(d < 264
) 6.65 · I0- 11 -6.71 · 10- 11 -4.78 · I0- 11 3.35 · 10- 11

Pr(d < 263) 5.33-10- 11 -5.61-10- 11 -4.0(· 10- II 2.83 · 10- I I

Pr(d E /) 1.32. 10-I I -1.10 · 10-I I -0.77-10- 11 0.62 · l0- I I

Pr(w ES) i11-10:.::7 _:_6. 43. 10:.::7 -4.50. io:.:7 · i62: 16- 7

Table 13: Edgeworth expansion for 64-bit verification modulus.

If n becomes more than 512 bits, t can be chosen higher, so that the probability of

attack increases. In this case, the accuracy of the computation decreases. This means

that a longer verification modulus is necessary, but the accuracy of the computation is so

low than no clear statements can be made anymore without doing a higher degree

Edgeworth expansion.

If the set M excludes numbers divisible by 2, 3, 5, and 17 (testing for 3, 5 and 17

can be done simultaneously by adding up the bytes and looking up in a bit table) , we get

the probabilities 1.20· 1 o-7 for the normal approximation and 0.40· 10- 7 for the degree 7

Edgeworth approximation. This is only little better than using the entire interval for M.

Conclusion
In the practice of cheap smart cards, it is possible to make protocols where the smart

cards must check those computations done by another computer. This might be a

cheaper solution to systems where the smart card itself must do the calculations. The

protocol is particularly interesting for privacy protecting payment systems, where RSA

is needed.

Although [QS90] suggests to use several small verification moduli, this is not

secure: numbers smaller than 10 bits cannot be used as verification modulus, even if

multiple primes are used .

The verification modulus is most easily precomputed and stored in the smart card,

but at the cost of complexity, it is also possible to let the smart card compute the

modulus itself. Determining the security level in the latter case is very complicated.

For practical applications, it seems best to use a fixed verification modulus.

Verification of RSA computations 115

There are a few simple extensions of this protocol:
• Doing other calculations: the smart card can verify every calculation based on

addition, subtraction, multiplication and division, not only RSA calculations.

• Reducing numbers p higher than n2: this saves protocol rounds at the cost of
transmission time and a little security.

• Let the smart card perform calculations of its own, for example hash functions,

during the calculation. These values can be incorporated in the computation of
the LC. There is a privacy threat here, since these numbers cannot be verified

by the LC. This problem can be solved by special protocols.

• Choosing a different set M. Choosing a good set M that allows the smart card
to choose its own modulus randomly, while giving a good security, is still an
open problem.

The security analysis of the case in which the smart card chooses the verification

modulus randomly yields some interesting problems. The first problem is computing a

good breaking modulus for an attack: we computed a good approximation. The hardest
problem is the computation of the success probability for the attacker given this

modulus. Our method using the Edgeworth expansion of a probability distribution is

complicated and inaccurate; finding a better way to compute it is still an open problem.
The third problem, finding a good set M that allows the smart card to increase the

security, is mentioned above.

116 Chapter 6

References
[BC90] J. N. E. Bos and D. Chaum: SmartCash: A Practical Payment System,

Report CS-R9035, Centrum voor Wiskunde en Informatica (Amsterdam,
August 1990).

[BCHMS89]
B. den Boer, C. Chaum, E. van Heyst, S. Mj0lsnes and A. Steenbeek:
Efficient Offline Electronic Checks, Advances in Cryptology: Proc.
Eurocrypt '89 (Houthalen, Belgium, April 1989), pp. 294-301.

[CFN88J D. Chaum, A. Fiat and M. Naor: Untraceable Electronic Cash, Advances
in Cryptology: Proc. Crypto '88 (Santa Barbara, August 1988), pp. 319-327.

[Cha82] D. Chaum: Blind Signatures for Untraceable Payments, Advances in
Cryptology: Proc. Crypto '82 (Santa Barbara, August 1982), pp. 199-203.

[Cha85] D. Chaum: Blind Signature Systems, Advances in Cryptology: Proc.
Crypto '85 (Santa Barbara, August 1985), pp. 18-27.

[Cha89] D. Chaum: Online Cash Checks, Advances in Cryptology: Proc. Eurocrypt
'89 (Houthalen, Belgium, April 1989), pp. 288-293.

[Cha90] D. Chaum: Privacy Protected Payments: Unconditional Payer and/or

Payee Untraceability, Proc. Smartcard 2000, pp. 69-93.
[GPV9 l] R. Govaerts, B. Preneel and J. Vandewalle: Cryptographically Secure

Hash functions : an Overview, to be published.
[KS69] M. G. Kendall and A. Stuart: The advanced theory of Statistics, Vol. I ,

Third edition, Charles Griffin & Company Limited, London.
[MKI88] T. Matsumoto , K. Kato and H. Imai: Speeding Up Secret Computations

with Insecure Auxiliary Devices, Advances in Cryptology: Proc. Crypto '88
(Santa Barbara, CA, August 1988), pp. 497-506.

[QS90] J.-J. Quisquater and M. de Soete: Speeding up smart card RSA

computations with insecure coprocessors, Proc. Smartcard 2000, to appear.
[Raml5] S. Ramanujan: Highly Composite Numbers, Proc. London Mathematical

Society 2, (no. XIV, 1915), pp. 347-409.
[Ram27] S. Ramanujan: Highly Composite Numbers, Collected Papers of Srinivasa

Ramanujan, Cambridge university press, 1927, pp. 78-128.

Korte Omschrijving

Dit proefschrift bestaat uit vijf hoofdstukken die verschillende onderzoeks­
onderwerpen uit de cryptologie behandelen. Cryptologie is de tak van wiskunde die
zich bezig houdt met informatiebeveiliging. De hoofdstukken van het proefschrift
hebben met elkaar gemeen dat ze allemaal gaan over het practisch toepassen van
privacy-gerelateerde cryptografische protocollen. De begrippen "privacy" en
"efficientie" spelen een rol door het hele proefschrift.

Privacy
Vandaag de dag hebben allerlei organisaties grote bestanden met prive-informatie

over hun klanten. De klanten hebben geen toegang tot deze informatie, en ze kunnen
ook niet bepalen waar deze voor wordt gebruikt. Het combineren van informatie uit
meerdere bestanden kan gebruikt worden om informatie te krijgen over mensen. Dit is
niet alleen een theoretische mogelijkheid, het gebeurt al: bedrijven verkopen bestanden
aan elkaar voor reclamedoeleinden, kredietbepalingen, statistische toepassingen en
dergelijke.

Aan de andere kant hebben bedrijven te lijden onder oplichting door individuen die
valse gegevens verstrekken. De bedrijven reageren met steeds strengere maatregelen
om dit te voorkomen, zoals identiteitskaarten met streepjescodes en televisiecamera's
bij balies. Op deze manier raken de klanten steeds meer privacy kwijt. Bedrijven
kunnen niet eens aantonen dat ze de privacy van hun klanten beschermen, zelfs als ze
dat (willen) doen.

In 1985 heeft David Chaum een artikel geschreven dat een oplossing geeft voor dit
probleem. Deze oplossing maakt gebruik van modeme cryptografie, met name public­
key systemen. Bij deze oplossing houdt iedere klant zelf zijn gegevens bij zich, zodat
hij alleen gegevens hoeft te verstrekken die een bedrijf nodig heeft. Sindsdien is er veel
onderzoek op dit gebied gedaan, waaronder onderzoek in dit proefschrift.

Efficientie
Het meest gebruikte argument tegen modeme cryptografie was altijd dat public-key

systemen "te duur" waren. Hoewel de technologie het gebruik van dit soort systemen
steeds dichterbij brengt, blijft er een behoefte aan goedkope systemen. Dit boek bevat

118

een hoofdstuk dat de snelheid van deze berekeningen verhoogt, en een hoofdstuk dat

methoden laat zien om public key cryptografie te gebruiken zonder het gebruik van dure
apparaten aan de kant van de gebruiker.

Overzicht
De vijf hoofdstukken gebruiken privacy en efficientie op verschillende manieren.

We behandelen de hoofdstukken hier in het kort.

Het eerste van deze hoofdstukken, "Detecting Disrupters in Untraceable Sending",

is een uitwerking van het zogenaamde Dining Cryptographers protocol dat berichten
verzendt met geheimhouding van de identiteit van de zender. Het probleem bij dit

systeem is dat verstoring van boodschappen (al dan niet kwaadwillend) moet worden

voorkomen zonder dat de anonimiteit van de andere boodschappen verloren gaat. Orie
nieuwe protocollen worden getoond die een efficiencyverbetering geven over de proto­

collen uit de literatuur. De hoeveelheid te zenden informatie, die erg van belang is in dit

protocol, wordt in het bijzonder veel kleiner gemaakt.

Het tweede hoofdstuk, "An Efficient Voting Scheme", is een toepassing van het
bovengenoemde Dining Cryptographers systeem voor het houden van een referendum.

Door gebruik te maken van het tegelijkertijd verzenden van de informatie door alle

partijen is het mogelijk om stemmen te tellen en hun geldigheid te bewijzen in een zeer

korte tijd, terwijl de anonimiteit van de stemmers perfect bewaard blijft.

Het derde hoofdstuk, "Addition Chain Heuristics", gaat over het efficient berekenen

van (producten van) RSA vercijferingen. (RSA is het meest gebruikte public-key

cryptosysteem.) Dit gebeurt door de benodigde vermenigvuldigingen zo te rangschik­
ken dat er minder nodig zijn. Dit "addition chain" probleem is al oud, maar de prac­

tische toepassing in computers is nieuw. Het bepalen van deze volgorde kan van de
voren gebeuren (precomputation) of tijdens het uitvoeren van de berekening (real-time).

Het hoofdstuk toont een aantal manieren om machtsverheffingen en producten van

machten op beide manieren efficient uit te rekenen.

Het vierde hoofdstuk, "Provably Secure Signatures", toont een nieuw systeem voor

digitale handtekeningen. Van dit systeem kan (in tegenstelling tot RSA) worden bewe­
zen dat de kennis over oude handtekeningen niet helpt om nieuwe te maken. Er waren

al systemen waarvan dit kon worden bewezen, maar deze gebruikten lange handtekenin­

gen, en maakten het nodig veel informatie over oude handtekeningen te bewaren. Het
nieuwe protocol is ongeveer net zo efficient als RSA, hetgeen een grote besparing in

geheugen oplevert ten opzichte van de andere systemen. Ook is het zo flexibel dat het
voor speciale toepassingen kan worden gebruikt.

Korte Omschrijving 119

Het vijfde hoofdstuk "Verification of RSA Computations on a Small Computer",

geeft een analyse van een eenvoudig protocol dat wordt gebruikt om berekeningen van
een computer te controleren met een eenvoudige smartcard. (Een smartcard is een

computertje ter grootte van een creditcard.) Het voordeel van deze methode is dat een
goedkope smartcard kan worden gebruikt, terwijl berekeningen kunnen worden gebruikt
die anders alleen met veel duurdere smartcards gedaan kunnen worden. Het protocol

wordt gebruikt in privacy-beschermende electronische betalingssystemen.

120

Dankwoord
Dit proefschrift kon niet tot stand komen zonder de hulp van de vele mensen die mij

op een of andere manier hebben geholpen. Yerschillende mensen hebben stukken ervan
proefgelezen en hun commentaar gegeven. Om te beginnen zijn dat mijn collega's

Eugene van Heyst, Maarten van der Ham, Ray Hirschfeld en Torben Pedersen. Yerder
hebben Jan van de Craats, Johan van Tilburg, Josh Benaloh en Eduard de Jong geheel

belangeloos proefgelezen, en daarmee de tekst helpen verbeteren. Jack van Lint heeft

als commissielid nog erg veel verbeteringen weten te vinden. De drukker Jan Schipper

heeft me geholpen er ondanks tegenslagen een fraai geheel van te maken.
Ik wil vooral Henk van Tilborg bedanken, die vele versies heeft gelezen en mij door

de formaliteiten van het promoveren heen hielp, en David Chaum, die mij geholpen
heeft om een onderzoeker te worden. lk wil ook mijn vrouw Jolanda bedanken die mij

er door heen sleepte, en zorgde dat het allemaal de moeite waard was.

Index

A
ABC63
addition

. . . chain 56,66

... graph 59

.. . machine 61

. .. network 19,43

.. . process 57

... sequence 56,70

vector ... chain 57 ,71

vector . . . sequence 57

Adleman 8

ALOHA protocol 23

B
binary method 66

left-to-right .. . 66

right-to-left . . . 75

birthday paradox 25

blind check protocol I 05

blob 10,41

... validation 42

den Boer, Bert 27,33

breaking modulus 108

bus 23

C
Carmichael function 10

cipher text 6

challenge (bit) 11

channel6

Chaum, David 12,25,32

classical cryptography 6

coin flipping over the telephone 7

collision 23

... detect 23

. . . resolve 24

colluder 19

commitment 10
communcation round 23

completeness of a ZK proof 11

complexity of a computation 8
conflict 25

cryptography 6

classical . . . 6
modern . . . 6,7,8

D
data encryption standard (DES) 6,9

decryption 6

. . . function 6
DES (data encryption standard) 6,9
Diffie, Whitfield 7

digital signature I 0,88
dining cryptographers (DC) 16
discrete logarithm 9

disruption 16

E
Edgeworth expansion 113

efficiency 12

elliptic curves 55
encryption 6

. . . function 6
Euler function I 0

evalutation of an addition process 58

F
factoring a number 9

flipping a coin over the telephone 7

H
header block 23

Hellman, Martin 7

K
key 6,17

key graph 18

L
Lamport, Leslie 90

locked box l 0

122

M
m-ary method 67,76
message 6
mix network 17
modern cryptography 6, 7 ,8

modular root 11
multiparty computation 38

multiparty protocol 8

N
neighbours 18
normal base 31

NSA (national security agency) 6

0
one time pad 9
one-way function 7

trapdoor ... 7

on-the-fly algorithm 66
opening a blob 10,40

opening (against disrupters) 22
p
Pfitzmann, Andreas 31

Pfitzmann, Birgit 18

plain text 6
public key 7

... cryptography 6
privacy 12
private key 7

protocol 8
multi party ... 8

protosequence 64
... algorithm 64

R
Ramanujan, Srinivasa 111
receiver 6

reduction of a problem 8
reservation round 23

reversing an addition process 61,82
Rivest, Ronald 8

RSA (Rivest-Shamir-Adleman)

8,9,55,88

s
secrecy of communication 16
sender 6,16
Shamir, Adi 8
signature I 0,88

simulation of a ZK proof 12,43
slot reservation 23

slotted ALOHA protocol 23
soundness of a ZK proof 11

synchronization 16,22

T
transmission rule 17

transponder I 05
trapdoor one-way function 7,8

trap message 22
trusted computer 8

turnaround time 20

u
un'conditionally secure 9

unfeasible computation 9
untraceable sending 16

V
vector addition

... chain 57

.. . sequence 57
verification

... of a computation I 03

... of a signature 89,94

... modulus 103

... problem 21
Vernam cipher 9

voting scheme 36

w
window method 69,76

z
zero-knowledge proof 11

	Scanned-image
	Scanned-image-1

